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Chapter 1
Introduction

Robin C. Sickles and William C. Horrace

This volume is dedicated to the remarkable career of Professor Peter Schmidt and
the role he has played in mentoring us, his Ph.D. students. Peter’s accomplishments
are legendary among his students and the profession. Each of the papers in this
Festschrift is a research work executed by a former Ph.D. student of Peter, from his
days at the University of North Carolina at Chapel Hill to his time at Michigan State
University. Most of the papers were presented at The Conference in Honor of Peter
Schmidt, June 30–July 2, 2011 (http://economics.rice.edu/Content.aspx?id=686).
The conference was largely attended by his former students and one current student,
who traveled from as far as Europe and Asia to honor Peter. This was a conference
to celebrate Peter’s contribution to our contributions. By “our contributions” we
mean the research papers that make up this Festschrift and the countless others by
his students represented and not represented in this volume. Peter’s students may
have their families to thank for much that is positive in their lives. However, if we
think about it, our professional lives would not be the same without the lessons and
the approaches to decision making that we learned from Peter.

A brief, and by no means exhaustive, list of those lessons and approaches to
decision making we have learned from Peter have filled our collective skill set with
attributes that have made our professional successes so much more achievable and
inevitable. They are the “Five P’s” from Peter. The first is perfection. As Peter would
remind us, there is no theorem or computer program that can be almost correct.
The second is a positive attitude. The cup is always half full, not half empty, and if
not, then one may wish to get a smaller cup. A third is perseverance. Showing up
to work every day is not a small part of success. A fourth is to play and play hard.

R.C. Sickles (�)
Department of Economics, Rice University, Houston, TX, USA
e-mail: rsickles@rice.edu

W.C. Horrace
Department of Economics, Syracuse University, Syracuse, NY, USA
e-mail: whorrace@syr.edu
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2 R.C. Sickles and W.C. Horrace

Whether it is on the basketball court, at a professional conference, traveling, etc.,
in life don’t leave anything on the table (or the court). A fifth is that personal
relationships are crucial in life. No person is an island and one should embrace
the possibilities that are opened up by your friendships and collaborations.

We spent our days together at Peter’s conference and the months since reminded
of these aspects of our personalities and life goals that were enhanced, fostered,
and nurtured by the very singular experiences we have had as Peter’s students. We
recognized in 2011 that it was unlikely we would all be together again to celebrate
such a wonderful moment in ours and Peter’s lives and pledged then to take full
advantage of it. We did then, and we are now in the form of this volume.

Festschrifts often have a topical link, and at first blush the combination of
econometric, applied econometric and empirical papers in this volume appear
unrelated. However, they are linked in the way that the authors frame and analyze
their problems using rigorous econometric techniques, but not for the purpose of
showcasing the technical refinements per se. The applicability of the techniques are
the centerpiece of each paper, with advantages and disadvantages of the techniques
clearly articulated. Quite frankly, this is the remarkable legacy that Peter Schmidt
has left to his students and to the profession. We think this volume will be one that
graduate students and seasoned scholars alike will find invaluable in their research.
We provide a brief overview of the papers below. The names of Peter’s students are
in boldface.

The contribution of Guilkey and Lance is “Estimation of non-random program
impact when the program variable and outcome variable are binary indicators.” It is
the most comprehensive analysis to date of small sample performance of program
evaluation models when both outcome and program variables are binary and when
the program variable is endogenous. Their focus is the overidentified case, and they
consider several estimators that are commonly employed in the literature, including
a semiparametric random effects model. Their ambitious Monte Carlo study and
application to contraception use in Bangladesh and Tanzania should inform the
modelling choices of practitioners, particularly when program assignment is not
randomized.

The Almanidis, Qian, and Sickles contribution, “Stochastic Frontier Models with
Bounded Inefficiency,” considers a new parametric specification of the stochastic
frontier model where inefficiency is drawn from a double-truncated normal distribu-
tion. The new distributional feature achieves two things. First, it places a finite bound
on inefficiency in the population. Second, it allows for a richer class of models that
includes negatively skewed inefficiency distributions. Both are desirable features of
the standard parametric model. They provide simulated evidence and an application
to US banking.

In Chap. 4, Hasker, Jiang, and Sickles consider the challenges associated with
“Estimating Consumer Surplus in eBay Computer Monitor Auctions.” Despite the
prevalence of studies of eBay auctions, there are very few that consider calculation
of consumer surplus, and none that are as comprehensive as this. Using a variety of
parametric and non-parametric methodologies, they estimate consumer surplus from
eBay auctions of computer monitors and find significant variation in the estimates

http://dx.doi.org/10.1007/978-1-4899-8008-3_4


1 Introduction 3

obtained. They also introduce a new measure of auction competitiveness that does
not require estimation of the underlying distribution of bid values. The new measure
requires only a mild assumption on bidder homogeneity.

Atkinson and Cornwell have contributed “Inference in two-step panel models
with time-invariant regressors: Bootstrap versus analytic estimators.” The authors
consider a commonly employed two-step estimator of time-invariant partial effects
in a fixed effect model for panel data. They derive the asymptotic covariance matrix
of the estimator and perform a comprehensive Monte Carlo study that compares the
finite sample behavior of tests based on the analytic results and the bootstrap. Not
surprisingly they find that the bootstrap outperforms tests based on the asymptotic
distribution in small samples. However, the bootstrap outperforms up to samples as
large as 1,000.

Seale, Dahl, Moss and Regmi have contributed “International evidence on
cross-price effects of food and other goods.” This paper is a comprehensive
empirical study of nine major consumption categories from the 1996 International
Comparison Project data across 114 countries. While there are many papers that
estimate cross-price elasticities, the scope of this paper is unprecedented.

Lee and Shin’s “Comparison of stochastic frontier ‘effect’ models using Monte
Carlo simulation” is a comprehensive simulation study of stochastic frontier models
for panel data. The models are differentiated by the way technical inefficiency is
specified, both parametrically and semi-parametrically. They find that the semi-
parametric fixed effect model is fairly robust to the distribution of technical
efficiencies while two parametric models are not. However, the fixed effect estimator
produces noisier estimates of the order statistic of ranked efficiency estimates, and
this is reflected in rank correlation between estimated and true inefficiency values.

Ahn and Moon consider “Large-N and large-T properties of panel data esti-
mators and the Hausman test.” They study asymptotic properties of the “within”
and generalized least-squares estimators for panel data that are complicated by
cross-sectional heterogeneity and time trends, showing how estimator convergence
rates vary with these complications. In doing so, they also consider the finite and
asymptotic properties of the Hausman test, and show how the power varies with T
and the covariance structure of the regressors. Their paper is important as “big data”
(with both large N and T) become increasingly prevalent.

Shin, Yu and Greenwood-Nimmo consider “Modelling asymmetric cointegration
and dynamic multipliers in a nonlinear ARDL framework.” Their paper develops
a simple and flexible nonlinear framework capable of modeling asymmetries in
long-run and short-run patterns of time-series adjustment. They use a partial sum
decomposition approach to model the negative and non-linear relationship between
unemployment and output growth (Okun’s Law) in the US, Canada and Japan. Their
model uncovers the long- and short-run nonlinearities in the co-integrated series.
Their approach is simple but effective, and should prove useful to empiricists into
the future.

In “More powerful unit root test with non-normal errors” Im, Lee and Tieslau
develop a unit root test statistic for a linearized version of the Residual Augmented
Least Squares (RALS) procedure of Im and Schmidt (2008). While the test statistic
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does not require GMM estimation, they show that the limiting distribution of their
static is almost identical to the distribution of the unit root test based on GMM.
As such their test is easier to implement. Simulations suggest that their test has
improved power over the Dickey-Fuller test. In a follow-up paper “More powerful
LM unit root test with non-normal errors” Meng, Im, Lee and Tieslau develop a
Lagrange Multiplier unit root test for the RALS procedure. Their LM test also has
improved power over the Dickey-Fuller test.

In “Efficiency Selection Procedures for Capacity Utilization Estimation” Hor-
race and Schnier adapt the Multiple Comparison with the Best procedures of
Horrace and Schmidt (2000) to the problem of estimating capacity utilization in
US fisheries. The data-driven estimator nests the usual capacity estimator, while
accounting for uncertainty over a vessel’s ability (or inability) to achieve efficiency.
The methodology will be useful for policy-makers.

Finally, Huang and Prokhorov use Edgeworth expansions to develop a finite
sample correction to a general version of the popular Newey-West (1987) distance
measure test for competing specifications. Their contribution, “Bartlett-type correc-
tion of distance metric test” calculates the asymptotic approximation and provides
simulated evidence that the distribution of their test static is surprisingly close to the
asymptotic distribution at the 95th percentile. They apply their results to U.S. labor
market data.

References

Horrace WC, Schmidt P (2000) Multiple comparisons with the best, with economic applications.
J Appl Econom 15:1–26

Im KS, Schmidt P (2008) More efficient estimation under non-normality when higher moments
do not depend on the regressors, using residual augmented least squares. J Econometrics
144:219–233



Chapter 2
Program Impact Estimation with Binary
Outcome Variables: Monte Carlo Results
for Alternative Estimators and Empirical
Examples

David K. Guilkey and Peter M. Lance

2.1 Introduction

A common problem in program evaluation is measuring the impact of a binary
program indicator on a binary outcome variable. For example, one of the most
frequently used methods to promote contraceptive use in less developed countries is
multi-media campaigns. Evaluation of such programs is complicated by the fact that,
except in a very few cases, an experimental design is not used (Bauman et al. 1993;
Mwaikambo et al. 2011) and the program implementers have little control over who
is exposed to the campaign. The typical method that has been used to evaluate such
programs relies on a cross sectional design where respondents are asked yes/no
questions about program exposure and contraceptive use along with questions that
solicit information about various other characteristics of the respondents that can
serve as control variables in a multivariate analysis. In a systematic review of family
planning interventions, Mwaikambo et al. (2011) found that two thirds of the 63
family planning interventions that were evaluated in the published literature between
1995 and 2005 involved this type of demand side intervention, although not all of
them only considered binary outcomes.

Statistical methods used to measure program impact with this type of data have
ranged from those that ignore the potential endogeneity of program recall, such
as simple logit or probit regression (see Mwaikambo et al. 2011; Hutchinson and
Wheeler 2006 for reviews) and propensity score matching (Babalola 2005), to

D.K. Guilkey (�)
Department of Economics and the Carolina Population Center, University of North Carolina
at Chapel Hill, Chapel Hill, NC 27514, USA
e-mail: dguilkey@email.unc.edu

P.M. Lance
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6 D.K. Guilkey and P.M. Lance

estimators that correct for endogenous recall using linear or non-linear instrumental
variables methods or some type of full information maximum likelihood method
(Guilkey et al. 2006; Chen and Guilkey 2003; Guilkey and Hutchinson 2011).
On the surface, it would seem that simple methods that do not correct for the
potential endogeneity of program recall should inherently perform worse than
those that do. However, it is possible to make a case for these simple approaches
since methods that explicitly correct for endogeneity rely on the presence of valid
exclusion restrictions – variables that affect program recall directly but only affect
contraceptive use indirectly through the recall variable or, in some cases and as a
last resort, the nonlinearity provided by parametric assumptions.

Unfortunately, there are typically few variables that are candidates for exclusion
from the contraceptive use equation, and this is not a unique complication to the
multimedia campaign impact evaluation literature: the paucity of potential credible,
strong instruments is a widespread challenge in many other applications with
different outcomes and endogenous regressors of interest but a similar behavioral
structure. Instrumental variables methods as well as more complicated strategies
such as full information maximum likelihood estimation can yield highly unstable
results in the face of weak instruments. On the other hand, simple methods, even
when inconsistent, could lead to results that capture more reliably true program
effects (Bollen et al. 1995). In addition, some of the single and systems of equations
estimators rely on the assumption of normally distributed error terms and there is
evidence that when that assumption is violated, estimated impacts can be far from
the truth (Mroz 1999; Chiburis et al. 2011).

The purpose of this paper is to provide the most comprehensive analysis to date
of the finite sample performance of alternative methods to estimate program impact
when both the treatment and the outcome variables are binary. We focus primarily on
methods that can be implemented in STATA, a widely available statistical package,
but we also evaluate a semi-parametric instrumental variables random effects model
that is not available in STATA.1 Much of the work to date has focused on a model in
which either the treatment variable or the outcome variable is continuous while the
other is binary (Guilkey et al. 1992; Bollen et al. 1995; Mroz 1999). Chiburis et al.
(2011) do examine the finite sample performance of the bivariate probit estimator
and several linear estimators for our case of interest; however, they focus on a model
that is exactly identified case for linear models, which does not allow for the use of
tests that require the model, at least in theory, to be overidentified. Further, they
do not evaluate the wide range of estimators that are used in this setting, including
semi-parametric models that are potentially robust to departures from normality.
Our Monte Carlo data generation process is designed to mimic the type of data
that has been used to evaluate the impact of program recall on contraceptive use
in a developing country and we provide examples of the methods using data from
Bangladesh and Tanzania. However, the methods have wide applicability beyond
our specific examples given how often the basic behavioral structure behind them

1The authors are currently writing STATA commands to implement this estimator.
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appears in applied work. In this manuscript we restrict attention to the constant
effect case, limiting somewhat the applicability of our findings to instances where,
for instance, Local Average Treatment Effects are a concern.

This paper is organized as follows. In the next section, we lay out the statistical
model and provide details on the alternative estimation and testing procedures that
are evaluated. In Sect. 2.3, we detail the data generating process for the Monte Carlo
experiment and the results of the experiment are presented in Sect. 2.4. Section 2.5
presents the empirical example and Sect. 2.6 concludes.

2.2 Model and Estimation Methods

We are concerned with a model of the following form:

Y �
i1 D X

0

i ˇ1 CZ
0

i ˛ C �i1 (2.1)

Y �
i2 D X

0

i ˇ2 C Yi1ı C �i2 (2.2)

where there are i D 1; 2; : : : ; N observations and the dependent variables are latent
variables. The observed dependent variables are binary indicators: Yij D 1 if Y �

ij >

0 and Yij D 0 otherwise for j D 1; 2. Xi is a kX1 vector that represents variables
that appear in both Eqs. (2.1) and (2.2) while Zi is a kZX1 vector that represents a
set of variables that are excluded from Eq. (2.2). The coefficients in the model are
column vectors of appropriate dimension.

In our model, the observed binary indicator, Yi1, is the right-hand-side endoge-
nous explanatory variable, as opposed to the latent variable. It is well known for
this case that there exist estimators that are technically identified without exclusion
restrictions (˛ could be zero) due to functional form. However, the case that we are
interested in this paper is the one in which there are at least two valid exclusion
restrictions and so even the linear instrumental variables model would be over-
identified. Our primary interest is the outcome in Eq. (2.2) with Eq. (2.1) specifying
an endogenous treatment.

Several of the estimation methods that we compare assume that [�i1; �i2] follows
a bivariate normal distribution. To keep the notation simple, in this manuscript
we capture this by assuming that var.�ij / D 1 for j D 1; 2 and all i and that
E.�i1; �i2/ D �. The normalization that the error variances equal 1 means that the
parameter estimates are only estimated to scale, as is common when the dependent
variable is a binary indicator. However, the scale of the estimated parameters is
of little concern in this paper since the most important basis of comparisons will
be how well the various estimators approximate the population average treatment
effect (ATE) defined as:

ATE D E .Y2jY1 D 1/�E .Y2jY1 D 0/ (2.3)

We now turn to a brief discussion of the estimators we consider in this manuscript.
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2.2.1 Linear Probability Model (LPM)

Simple ordinary least squares estimation of Eq. (2.2) ignores the endogeneity of Yi1
and the binary nature of the dependent variable Yi2. In this case, the estimated ATE
is simply the estimate of ı and it will be a consistent estimator only ifE.Yi1�i2/ D 0.

2.2.2 Probit

From the class of single equation estimators for Eq. (2.2) that ignore the endogeneity
of Yi1, we also consider estimation of Eq. (2.2) by simple probit regression and then
note that:

OP .Yi2 D 1/ D ˆ
�
Xi Ǒ

2 C Yi1 Oı
�

(2.4)

where ˆ.�/ is the cumulative normal distribution function. We can now use (2.4) to
obtain an estimate of the ATE:

1ATE D 1

N

NX
iD1

OP .Yi2 D 1jYi1 D 1/�
NX
iD1

OP .Yi2 D 1jYi1 D 0/ (2.5)

This will be a consistent estimator under the same conditions as presented for the
OLS estimator.

2.2.3 Instrumental Variables

We compare three variants of linear instrumental variables: two-stage least squares
(TSLS), limited information maximum likelihood (LIML) and generalized method
of moments (GMM). In all cases, we use the default options in STATA for
estimation per the -ivreg- command. We consider all three because they offer
different estimation approaches within the context of linear instrumental variables
and allow for different tests for endogeneity and identification. Tests for endogneity
are based on the Wu-Hausman (Wu 1974; Hausman 1978) and Durbin (1954) tests
for TSLS, the standard Hausman test (Hausman 1978) for LIML, and a test referred
to as the C statistic for GMM (Hayashi 2000). The identification tests considered for
these estimation methods are: Sargon’s test (Sargon 1958) for TSLS; Basmann’s test
(Bassman 1960) for TSLS (specifically, Basmann’s �2 test) and LIML (Basmann’s F
test); the Anderson-Rubin test (Anderson and Rubin 1950) for LIML; and Hansen’s
test (Hansen 1982) for GMM. Details regarding all tests can be found in the STATA
reference manual and the cited references.
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For all three estimators, we use the estimated ı as the estimate of the ATE. In
general in linear instrumental variables models, what is actually estimated is a local
average treatment effect (LATE) (Imbens and Angrist 1994; see Angrist and Pischke
2009 for an excellent and succinct review). However, the design of our experiment
precludes the possibility of LATE, though it may be at play in the results from the
two applied examples considered in this manuscript.

2.2.4 Linear Predictor and Residual Models

Terza et al. (2008) discuss two basic approaches commonly applied in the face of
an endogenous regressor in a non-linear equation of interest and a possibly non-
linear first stage for that endogenous regressor: first stage predictor substitution
(which is essentially just the extension of linear two-stage least squares estimation
to the nonlinear setting) and residual inclusion. The predictor substitution strategy
is inconsistent whereas under very general conditions the residual inclusion strategy
is consistent (Terza et al. 2008). Previous work has suggested that, in the setting
of a second-stage binary dependent variable of interest and endogenous continuous
regressor, residual inclusion should be consistent provided that the distribution of
the unobservable determinants of the binary outcome and continuous endogenous
regressor is jointly normal (Rivers and Vuong 1988; Bollen et al. 1995).

We consider two versions of the residual inclusion approach as adapted to the
structure defined by the behavioral model in (2.1) and (2.2).2 First, for the most
obvious potential extension of Terza et al. (2008), Rivers and Vuong (1988) and
Bollen et al. (1995) to the present setting, we estimate (2.1) by ordinary least squares
(i.e. the linear probability model) and generate predicted residuals that are then
included in probit regression of (2.2). In the results tables we refer to this estimator
as Residual1. Second, we estimate (2.1) by probit and then calculate the generalized
residuals using the following formula (Gourieroux et al. 1987):

�
Yi1 � X

0

i ˇ1 �Z0

i ˛
�
�
�
Yi1 �X 0

i ˇ1 �Z
0

i ˛
�

ˆ
�
Yi1 � X

0

i ˇ1 �Z
0

i ˛
� �
1 �ˆ

�
Yi1 �X 0

i ˇ1 �Z
0

i ˛
�� (2.6)

where ˆ.�/ is the cumulative normal distribution function and �.�/ is the normal
density function. These residuals are then included in probit regression of (2.2). In
the tables and text we refer to this estimator as Residual2.

2We did consider predictor substitution schemes as well but, as expected, they performed poorly
and we do not include them in the comparisons.
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2.2.5 Bivariate Probit (BIPROBIT)

Bivariate probit jointly estimates Eqs. (2.1) and (2.2) by maximum likelihood
methods assuming bivariate normality for the error terms. The -biprobit- routine
in STATA relies on standard Newton-Raphson estimation using a conventional
approximation of the bivariate normal cumulative distribution function based on
quadrature. We also considered including the -mvprobit- routine, which is not
part of the basic STATA package but available as a user-written program (i.e., an
.ado file). This routine is designed to allow for more than two binary outcome
equations and uses Geweke-Hajivassilou smooth recursive conditioning simulator
to approximate the bivariate cumulative normal density (see Cappellari and Jenkins
2003). In preliminary runs, we found that we needed to use far more than the default
number of draws (five) in order to obtain accurate parameter estimates and so we
dropped this estimator from consideration.

After the model is estimated, the treatment effect is calculated from the marginal
probability distribution for the second outcome – using Eqs. (2.3) and (2.4) but
with estimated coefficients obtained from the full information maximum likelihood
estimator. An endogeneity test is simply a direct test of the null hypothesis
that the error correlation across the two equations is zero. We also report an
overidentification test that exploits the fact that this model is identified without
exclusion restrictions by including the instruments as explanatory variables in
Eq. (2.2) (adding the Z variables) and then performing a likelihood ratio test of
the null hypothesis that the coefficients are jointly zero. Support for the null implies
that these variables are in fact properly excluded.

2.2.6 Semi-parametric Maximum Likelihood
Estimation (DFM)

We consider a version of a semi-parametric estimator based on Heckman and Singer
(1984) but using a non-linear extension proposed by Mroz (1999). To set up the
likelihood function for this model, we adopt an error components approach to the
unobservables and re-write Eqs. (2.1) and (2.2) as follows:

Y �
i1 D X

0

i ˇ1 CZ
0

i ˛ C �i1 C ��
i1 (2.7)

Y �
i2 D X

0

i ˇ2 C Yi1ı C �i2 C ��
i2 (2.8)

where the correlation in the error terms is between the �’s and E.��
i1; �

�
i2/ D 0.

The approach that we use for this estimator is based on the type-I Extreme Value
distribution for the �’s (leading to the logit model) instead of the normal distribution.
However, the basis of comparison is the ATE as defined in Eq. (2.3) and not the
estimated coefficients (which are well known to be different by a scale factor from
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corresponding probit coefficients). Hence, the shift from the cumulative normal
distribution to the logistic function still allows a simple comparison of results. We
can then write:

P .Yi1j�i1/ D e.X
0

i ˇ1CZ
0

i ˛C�i1/

1C e

�
X

0

i ˇ1CZ0

i ˛C�i1
� (2.9)

P .Yi2j�i2/ D e.X
0

i ˇ2CYi1ıC�i2/

1C e

�
X

0

i ˇ2CYi1ıC�i2
� (2.10)

The contribution to the likelihood function for observation i , conditional on the
�’s is:

Li .�i1; �i2/ D ŒP .Yi1 D 1j�i1/ P .Yi2 D 1j�i2/�Yi1Yi2

ŒP .Yi1 D 0j�i1/P .Yi2 D 0j�i2/�.1�Yi1/.1�Yi2/

ŒP .Yi1 D 1j�i1/P .Yi2 D 0j�i2/�Yi1.1�Yi2/

ŒP .Yi1 D 0j�i1/P .Yi2 D 1j�i2/�.1�Yi1/Yi2

We assume that the distributions of the �’s can be approximated by a step function
with J steps for each of the �’s and probability weights (wj for j D 1; 2; : : : ; J )
that sum to one for the J steps. The unconditional contribution to the likelihood
function for observation i can then be written:

Li D
JX
jD1

wj Li .�i1; �i2/ (2.11)

The likelihood function is simply the product of (2.11) over the N observations. In
addition to the model’s coefficients, one searches over J �1weights (since they sum
to one) and J � 1 sets of the �’s (since one of the �’s must be set to zero if there is
a constant term in the model). We call this the “discrete factor model” (and, for the
sake of brevity, frequently refer to it as the ‘DFM’ in discussions below); (see Mroz
(1999) for additional details). The estimated ATE can be obtained using Eq. (2.10)
where the population parameters are replaced with estimates including the estimates
for the weights and mass points (the �’s ).

In practice, one would add points of support to the heterogeneity distribution
until there is no significant improvement in the likelihood function. However, this
is not practical in a Monte Carlo experiment and so we simply set the number of
points of support for the discrete distribution to four.
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2.3 Data Generating Process

The basic logic behind the data generating process is straightforward: within each
Monte Carlo experiment data are generated in a fashion that insures that the resulting
estimation samples conform to the behavioral parameters of that experiment. Most
of these behavioral parameters vary across Monte Carlo experiments (one was
fixed across them). It is this variation in these parameters that allows examination
of the comparative performance under alternative circumstances of the estimators
considered in this study. The behavioral parameters that vary across experiments
include the true (i.e. established by the design of the experiment): program effect
(E.Y2jX; Y1 D 1/ � E.Y2jX; Y1 D 0/); correlation of the errors {�1, �2}; average
of the program outcome (Y1) within the sample3; average of the outcome of interest
(Y2) within the sample; first stage strength of the instruments Z to explain Y1 (as
reflected in the �2 statistic emerging from a test of the joint significance of those
instruments); and the bivariate error type (i.e. normal or non-normal errors).

In each experiment, the first step is to draw pseudo-randomly a sample of size
N for the exogenous variables X , Z and � (given the error correlation and type
specified for that experiment). Given the draws from X and Z and this initial draw
from �, we then determine values for the system parameters ˇ1, ˇ2, ˛ and ı from
Eqs. (2.1) and (2.2) that insure that data generated conditional on those values for
the system parameters and X and Z would conform to the remaining behavioral
parameters. The experiment itself then involved replications (1,000 replications in
the case of experiments involving 1,000 or 5,000 observations and 500 replications
in the case of experiments involving 10,000 observations). In each, a new pseudo-
random draw was made from the distribution of the error terms � for each of the
N observations and, conditional on that new draw, the draw from X and Z and
the values for ˇ1, ˇ2, ˛ and ı determined in the first step, new values for Y1 and
Y2 were calculated for each observation. The performance of the various estimators
considered in this manuscript was then recorded given “observed” data Y1, Y2, X
and Z.

2.3.1 Sample Sizes and Behavioral Parameter Values

Our various Monte Carlo experiments are distinguished by the values of the behav-
ioral parameters set for them, as well as the sample sizes involved. We consider
many alternative combinations of these sample sizes and behavioral parameters. To
begin with, three basic sample sizes are considered: 1,000, 5,000 and 10,000. These
were selected based on a rough sense of the sort of ranges of sample sizes frequently
encountered when estimating systems along the lines of Eqs. (2.1) and (2.2) using
real world data.

3That is, the program enrollment prevalence within the sample.
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For program participation prevalence and outcome prevalence we consider values
of 0.5 and 0.25. These capture the cases of programs for which participation is
comparatively common and less common, and outcomes of interest for which the
same can be said.

For program impact (the true marginal effect of Y1 on the probability of Y2)
we consider high (0.2) and modest (0.05) impact cases. The program impact levels
reflect constant (as opposed to varying with observed or unobserved heterogeneity)
effects.

The error terms � are based on two basic bivariate distributions:

1. A bivariate standard normal distribution;
2. A non-normal distribution with a skewness of 1.5 and an excess kurtosis of 3.

The algorithm for drawing the non-normal errors is based on the method proposed
by Vale and Maurelli (1983).4 The Vale and Maurelli (1983) approach involves a
combination of Fleishman’s (1978) procedure for generating non-normal random
variables with a matrix decomposition method typically applied to the task of
generating multivariate normal random variables (Kaiser and Dickman 1962). Two
levels of error correlation are employed for these bivariate distributions: 0.1 and 0.3,
allowing different degrees of endogeneity. Finally, we vary the first stage (Eq. (2.1))
explanatory power of the instruments as manifested by a �2 statistic resulting from
a test of the joint significance of those instruments based on a probit regression of
Y1 on X and Z. We cover test statistic values of 15, 25, and 50, encompassing a
range of instrument strength levels.

Overall explanatory power of Eqs. (2.1) and (2.2), as captured by the R2 from
ordinary least squares regression estimation of them, is fixed at 0.3 in both cases
in order to reflect a degree of explanatory power more realistic to regression
analyses using micro-level samples. This typically results in pseudo-R2 values in
the 0.15–0.25 range.

2.3.2 Drawing X and Z

The exogenous explanatory variables X and Z are pseudo-randomly drawn from
the standard normal distribution. In this manuscript, four exogenous characteristics
X (X1, X2, X3 and X4) and two instruments Z (Z1 and Z2) are drawn for each
Monte Carlo experiment. Thus, in the terms of the discussion introducing Eqs. (2.1)
and (2.2) in Sect. 2.2, k D 4 and kz D 2.

4We are grateful to Stas Kolenikov for generously sharing a STATA .ado file that he wrote
implementing that Vale and Maurelli (1983) procedure.
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2.3.3 The Mechanics of the Data Generating Process

Each Monte Carlo experiment could be characterized by these behavioral parame-
ters as applied to the system of equations (2.1) and (2.2). To begin with, the Monte
Carlo experiments revolve around the latent variable equations

Y �
i1 D X

0

i ˇ1 CZ
0

i ˛ C �1�i1 (2.12)

Y �
i2 D X

0

i ˇ2 C Yi1ı C �2�i2 (2.13)

which differ from (2.1) and (2.2) primarily by the coefficients � on the error terms �.
(As will be seen below, these coefficients are placed on the errors to support the
target R2 of 0.3 in each equation.) Given the dimensionality of X and Z employed
in this study, (2.12) and (2.13) are, effectively,

Y �
i1 D ˇ10 CX1iˇ11 CX2iˇ12 CX3iˇ13 CX4iˇ14 CZ1i˛1 CZ2i˛2 C �1�i1

(2.14)

Y �
i2 D ˇ20 CX1iˇ21 CX2iˇ22 CX3iˇ23 CX4iˇ24 C Yi1ı C �2�i2 (2.15)

These equations are used to generate the variables Y used for each experiment. To
do this, specific values need to be assigned to the ˇ’s, ˛’s, ı and the �’s.

We begin with the ˇ’s that served as coefficients for the four exogenous
explanatory variables X1, X2, X3 and X4. The values of these do not vary across
experiments. For Eq. (2.1) these (ˇ11, ˇ12, ˇ13 and ˇ14, respectively) are set to �0.5,
0.33, 0.57 and �0.2. The corresponding values for Eq. (2.2) are �0.35, 0.33, 0.77
and �0.18. These values were randomly determined at the outset of the study.5

The remaining parameters of (2.14) and (2.15) are thus set at the outset of each
experiment as follows:

1. N observations for X and Z are pseudo-randomly drawn from the multivariate
standard normal distribution with zero correlation across X and Z;

2. For each of these N observations, a pair of errors {�1; �2} was drawn (either the
bivariate normal distribution or via the Vale and Maurelli (1983) procedure, with
correlation level indicated for that experiment);

3. The values for ˇ10, ˛1, ˛2 and �1 were set to guarantee the data generating
process conformed to the program participation prevalence and first stage
instrument strength indicated for that experiment as well as the explanatory
power for Eq. (2.14) of R2 D 0:3. This was done through an iterative search
over candidate values for these four parameters as follows:

5Experimentation suggests that variation in the values assigned to these coefficient terms had very
little impact on the statistics of interest in this study.
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(a) Set all four parameters to low initial values;
(b) Find the values for �1 and ˇ10 that yield R2 D 0:3 (from linear regression

of Y �
i1 on Xi and Zi ) and the target program prevalence (with program

participation Y1i determined by whether Y �
i1 exceeds zero);

(c) Given these values, determine the �2 statistic resulting from a test of the joint
significance of Z1 and Z2 based on a probit regression of Y1 on the X ’s
and Z’s;

(d) If the �2 statistic value matched the target, the parameter value search was
concluded. If not the values of ˛1 and ˛2 were increased incrementally and
steps 3(b)–(d) were repeated.

4. Once the values for ˇ10, ˛1, ˛2 and �1 had been found, Y1i was determined by
whether Y �

i1 exceeded zero given the draws for X , Z and �1 and those parameter
values.

5. The focus then shifted to Eq. (2.15), and a similar iterative process was used to
find values for ˇ20, ı and �2. It proceeded as follows:

(a) Set the three parameters to low initial values;
(b) Find values for ˇ20 and �2 that yield R2 D 0:3 (from linear regression of Y �

i2

on Xi and Y1i ) and the target prevalence for the outcome of interest;
(c) Given these values, determine the program effect according to

ˆ.ˇ20 CX1iˇ21 CX2iˇ22 CX3iˇ23 CX4iˇ24 C ı/

�ˆ.ˇ20 CX1iˇ21 CX2iˇ22 CX3iˇ23 CX4iˇ24/

where ˆ.�/ is the cumulative normal distribution function.
(d) If the program impact matched the target parameter value, the search was

concluded; if not ı was increased incrementally and steps 5(b)–(d) were
repeated.

6. Once appropriate values for ˇ20, ı and �2 were found, Y2i was determined by
whether Y �

2i exceeded zero given the draws for X and �2 as well as Yi1 and those
parameter values.

The first phase of each Monte Carlo experiment thusly found values for the equation
parameters that conformed to the behavioral parameters of that experiment.

The experiment then shifted to the empirical repetition phase. In each of the
repetitions, the same sequence of events occurred:

1. A new draw for {�1, �2} was made6;

6Step 1 was actually slightly more involved. It became apparent in early rounds of experiments
that some behavioral parameters, particularly instrument strength, occasionally varied across
replications to a degree with which the authors were not comfortable. In particular, the various
replications from experiments involving first stage �2 statistics with target values of 15 and 25
occasionally produced overlapping ranges for the �2 statistic values actually generated across
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2. Given the values assigned to ˇ10, ˇ11, ˇ12, ˇ13, ˇ14, ˛1, ˛2 and �1, and X1i , X2i ,
X3i , X4i , Z1i , Z2i and �1i , for each of the N observations Yi1 was set to 1 if Y �

i1

exceeded 0 and to 0 otherwise;
3. Given the values assigned to ˇ20, ˇ21, ˇ22, ˇ23, ˇ24, ı and �2, and X1i , X2i , X3i ,
X4i , Yi1 and �2i , for each of the N observations Yi2 was set to 1 if Y �

i2 exceeded
0 and to 0 otherwise.

The data X , Z, Y1 and Y2 so generated thus formed the empirical “observations”
over which the performance of each of the estimators was then recorded for that
repetition.

2.4 Monte Carlo Results

The results of the Monte Carlo experiments are presented in Tables 2.1–2.25.
Tables 2.1–2.8 present mean absolute deviations between estimated and true ATE
across either 1,000 (sample sizes 1,000 and 5,000) or 500 (sample size 10,000) repli-
cations of the each of the experiments. The experiments differ by their sample sizes
or assumed behavioral parameters.7 Tables 2.9–2.16 present mean estimated ATE.
Tables 2.17–2.21 present regression results summarizing the findings regarding ATE
estimation. Tables 2.22–2.25 present a restricted set of results for the identification
and endogeneity tests. Owing to space constraints, in Tables 2.1–2.16 and 2.22–2.25
we present only results for experiments in which the average frequencies for the two
dependent variables Yi1 and Yi2 were both set to be the same at 0.25 or 0.5.

Most tables presenting Monte Carlo experiment results cover a particular com-
bination of target average treatment effect and error correlation. In all such tables,
the columns provide results by the error type applied in the experiment (bivariate
normal or bivariate non-normal) and, within each error type, instrument strength in
terms of the �2 test statistic for the joint significance of the instruments in Eq. (2.1)
as estimated by probit (e.g. �2 D 15, �2 D 25, etc.) for given values of Y1 and
Y2 (where, for instance, Y1 D 0:25, Y2 D 0:25 indicates results for experiments

the replications for the two experiments. This muddied the waters somewhat for the purposes
of making inferences about estimator performance differentials as instrument strength varied. To
address this, we set tolerance bands for acceptable variation of such �2 values around their target
for a given experiment. If, on a particular replication, a draw {�1, �2} resulted in a �2 value outside
of the tolerance range for that experiment, that draw was discarded and a new draw {�1, �2}
was made. This was done to insure that the replications within an experiment conformed to an
acceptable degree to the parameters of that experiment.
7As explained in Sect. 2.3, the behavioral parameters are imposed by the design of the data
generating process for each experiment and included the: program effect (P r.Y2jX; Y1 D 1/ �
P r.Y2jX; Y1 D 0/); correlation of the errors {�1; �2}; average of the program outcome (Y1) within
the sample; average of the outcome of interest (Y2) within the sample; first stage strength of the
instruments Z to explain Y1 (as reflected in the �2 statistic emerging from a test of the joint
significance of those instruments); and bivariate error type (i.e. normal or a non-normal errors).
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Table 2.1 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.1,
Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0812 0.0805 0.0771 0.0797 0.0776 0.0719
Probit 0.0597 0.0597 0.0592 0.0662 0.0647 0.0614
TSLS 0.2099 0.1627 0.1076 0.2123 0.1599 0.1098
LIML 0.2279 0.1692 0.1096 0.2314 0.1672 0.1121
GMM 0.2111 0.1632 0.1076 0.2122 0.1600 0.1099
Residual1 0.2043 0.1674 0.1132 0.1945 0.1572 0.1130
Residual2 0.1431 0.1235 0.0946 0.1895 0.1564 0.1053
BIPROBIT 0.1448 0.1251 0.0961 0.2319 0.1927 0.1227
DFM 0.1175 0.1102 0.0943 0.0938 0.0919 0.0791

N D 5,000
LPM 0.0820 0.0824 0.0813 0.0848 0.0838 0.0834
Probit 0.0588 0.0594 0.0588 0.0691 0.0684 0.0684
TSLS 0.2208 0.1684 0.1141 0.2009 0.1574 0.1058
LIML 0.2392 0.1766 0.1163 0.2143 0.1640 0.1081
GMM 0.2209 0.1684 0.1142 0.2009 0.1574 0.1059
Residual1 0.2130 0.1730 0.1209 0.1905 0.1576 0.1103
Residual2 0.0854 0.0832 0.0713 0.3110 0.2591 0.1822
BIPROBIT 0.0973 0.0900 0.0740 0.2862 0.2648 0.2149
DFM 0.1198 0.1125 0.1050 0.0643 0.0648 0.0643

N D 10,000
LPM 0.0823 0.0808 0.0818 0.0821 0.0810 0.0804
Probit 0.0594 0.0582 0.0593 0.0664 0.0654 0.0651
TSLS 0.2054 0.1649 0.1097 0.2066 0.1643 0.1186
LIML 0.2183 0.1697 0.1117 0.2223 0.1707 0.1205
GMM 0.2051 0.1649 0.1109 0.2055 0.1643 0.1187
Residual1 0.1989 0.1635 0.1129 0.2017 0.1650 0.1224
Residual2 0.0716 0.0644 0.0622 0.3239 0.2951 0.2463
BIPROBIT 0.0838 0.0771 0.0666 0.2774 0.2675 0.2466
DFM 0.1310 0.1288 0.1076 0.0597 0.0597 0.0591

for which the average values of the endogenous variable Y1 and the outcome of
interest Y2 are 0.25). Generally speaking, the rows of these tables provide statistics
for the estimators considered in this manuscript at various sample sizes. Finally,
to save space, the individual models are referred to in the rows of the tables by
shorthand expressions: LPM for linear probability model (i.e. single equation OLS
with no control for endogeneity); Probit for single equation probit regression; TSLS
for two-stage least squares; LIML for the limited information linear instrumental
variables estimator; GMM for the generalized method of moments implementation
of the linear instrumental variables estimator; Residual1 and Residual2 for the two
variants of the residual inclusion estimators; BIPROBIT for the bivariate probit
estimator provided by the STATA -biprobit- command; and DFM for the discrete
factor model.
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Table 2.2 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.1, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0832 0.0832 0.0780 0.1001 0.0972 0.0919
Probit 0.0749 0.0752 0.0712 0.0870 0.0846 0.0816
TSLS 0.2133 0.1623 0.1109 0.2097 0.1624 0.1138
LIML 0.2341 0.1688 0.1130 0.2279 0.1693 0.1161
GMM 0.2136 0.1624 0.1113 0.2099 0.1628 0.1138
Residual1 0.1986 0.1597 0.1112 0.1937 0.1568 0.1139
Residual2 0.1666 0.1412 0.1043 0.1572 0.1304 0.1026
BIPROBIT 0.1773 0.1447 0.1051 0.1269 0.1087 0.0935
DFM 0.1420 0.1263 0.1045 0.1021 0.0833 0.0669

N D 5,000
LPM 0.0815 0.0813 0.0790 0.0998 0.0992 0.0999
Probit 0.0738 0.0737 0.0718 0.0871 0.0867 0.0877
TSLS 0.2077 0.1624 0.1116 0.2071 0.1654 0.1128
LIML 0.2228 0.1688 0.1137 0.2220 0.1713 0.1146
GMM 0.2079 0.1624 0.1117 0.2071 0.1655 0.1129
Residual1 0.1906 0.1554 0.1116 0.1900 0.1589 0.1123
Residual2 0.1286 0.1091 0.0907 0.1771 0.1454 0.0998
BIPROBIT 0.1399 0.1184 0.0943 0.0983 0.0837 0.0630
DFM 0.1438 0.1270 0.1043 0.0661 0.0587 0.0511

N D 10,000
LPM 0.0820 0.0829 0.0814 0.0993 0.1004 0.0989
Probit 0.0740 0.0750 0.0737 0.0862 0.0872 0.0859
TSLS 0.2067 0.1595 0.1077 0.2157 0.1633 0.1206
LIML 0.2206 0.1663 0.1096 0.2307 0.1699 0.1228
GMM 0.2049 0.1592 0.1076 0.2150 0.1632 0.1206
Residual1 0.1861 0.1511 0.1071 0.1975 0.1560 0.1206
Residual2 0.0997 0.0964 0.0814 0.2287 0.2072 0.1603
BIPROBIT 0.1202 0.1094 0.0853 0.1081 0.0967 0.0747
DFM 0.1471 0.1336 0.1127 0.0887 0.0877 0.0810

Before turning to the mean absolute deviation results, it is interesting to note
that Tables 2.9–2.16 for mean estimated treatment effect indicate that there is
typically, though not always, an upward bias to the estimated treatment effect even
for estimators that correct for the endogeneity of the treatment effect. The bias,
however, is typically smaller as one moves from a true treatment effect of 0.05–0.2.

The results in Tables 2.1–2.8 on mean absolute deviations are varied and difficult
to summarize. A few broad trends seem to emerge. First, the bivariate probit
model (BIPROBIT) appears to do well in general when the error terms are indeed
jointly normally distributed. However, at sample size 1,000 it is frequently no
better than DFM, especially when instrument strength is low and is sometimes
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Table 2.3 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.3,
Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.1945 0.1923 0.1835 0.2124 0.2084 0.1968
Probit 0.1678 0.1658 0.1598 0.1929 0.1896 0.1814
TSLS 0.2149 0.1612 0.1118 0.2146 0.1625 0.1061
LIML 0.3353 0.1668 0.1136 0.2378 0.1686 0.1083
GMM 0.2154 0.1617 0.1119 0.2144 0.1625 0.1065
Residual1 0.2057 0.1605 0.1134 0.2020 0.1586 0.1099
Residual2 0.1473 0.1281 0.0942 0.2115 0.1553 0.0980
BIPROBIT 0.1540 0.1295 0.0923 0.2308 0.1696 0.0994
DFM 0.1164 0.1155 0.0981 0.1125 0.1004 0.0742

N D 5,000
LPM 0.1986 0.1991 0.1977 0.2018 0.2012 0.1991
Probit 0.1713 0.1720 0.1710 0.1854 0.1848 0.1831
TSLS 0.2246 0.1673 0.1238 0.1969 0.1489 0.1021
LIML 0.2421 0.1718 0.1255 0.2114 0.1558 0.1042
GMM 0.2248 0.1675 0.1240 0.1970 0.1490 0.1020
Residual1 0.2182 0.1695 0.1268 0.1801 0.1485 0.1064
Residual2 0.0897 0.0899 0.0758 0.2005 0.1686 0.1173
BIPROBIT 0.1051 0.0963 0.0782 0.2130 0.1777 0.1232
DFM 0.1506 0.1443 0.1240 0.1207 0.1066 0.0924

N D 10,000
LPM 0.1948 0.1951 0.1942 0.2081 0.2085 0.2075
Probit 0.1675 0.1678 0.1672 0.1909 0.1914 0.1903
TSLS 0.1938 0.1598 0.1113 0.2015 0.1549 0.1068
LIML 0.2100 0.1650 0.1134 0.2194 0.1621 0.1088
GMM 0.1954 0.1598 0.1112 0.2013 0.1549 0.1066
Residual1 0.1850 0.1566 0.1129 0.1891 0.1488 0.1114
Residual2 0.0698 0.0658 0.0613 0.2661 0.2407 0.1901
BIPROBIT 0.0956 0.0830 0.0684 0.2665 0.2428 0.1862
DFM 0.1562 0.1447 0.1083 0.1053 0.1080 0.0881

worse than LPM and Probit when sample size is small and error correlation is
low. In addition, the Residual2 estimator which uses a first stage probit regression
to generate generalized residuals frequently has lower mean absolute deviation
(MAD) than BIPROBIT. Whatever advantage BIPROBIT has when the true errors
are normal disappears for non-normal errors. For non-normal errors, the DFM
model typically performs the best. The linear instrumental variables estimators’
performance increases significantly as instrument strength and sample size increases
regardless of whether or not the true error distribution is normal or non-normal. That
said, it is understandably difficult to grasp general patterns from the many cells of
these tables.
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Table 2.4 Mean absolute deviation of ATE for true ATE D 0.05, error correlation D 0.3, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.2033 0.1994 0.1946 0.2308 0.2293 0.2211
Probit 0.1948 0.1913 0.1871 0.2089 0.2076 0.2010
TSLS 0.2192 0.1680 0.1162 0.2135 0.1633 0.1180
LIML 0.2345 0.1726 0.1174 0.2305 0.1702 0.1188
GMM 0.2193 0.1684 0.1166 0.2138 0.1643 0.1189
Residual1 0.2047 0.1633 0.1162 0.1975 0.1576 0.1141
Residual2 0.1805 0.1495 0.1093 0.1525 0.1263 0.0968
BIPROBIT 0.1854 0.1494 0.1068 0.1331 0.1132 0.0909
DFM 0.1411 0.1170 0.0969 0.1107 0.0933 0.0775

N D 5,000
LPM 0.2031 0.2020 0.2015 0.2269 0.2255 0.2249
Probit 0.1953 0.1942 0.1939 0.2115 0.2101 0.2099
TSLS 0.2092 0.1600 0.1139 0.2156 0.1706 0.1244
LIML 0.2347 0.1657 0.1157 0.2288 0.1751 0.1250
GMM 0.2092 0.1601 0.1140 0.2158 0.1707 0.1245
Residual1 0.1893 0.1539 0.1132 0.1977 0.1638 0.1193
Residual2 0.1248 0.1080 0.0934 0.2125 0.1742 0.1203
BIPROBIT 0.1480 0.1180 0.0946 0.1177 0.0873 0.0657
DFM 0.1491 0.1380 0.1070 0.0516 0.0454 0.0468

N D 10,000
LPM 0.2039 0.2024 0.2029 0.2316 0.2309 0.2297
Probit 0.1956 0.1941 0.1947 0.2136 0.2130 0.2120
TSLS 0.2186 0.1673 0.1142 0.2117 0.1599 0.1102
LIML 0.2392 0.1768 0.1166 0.2273 0.1668 0.1116
GMM 0.2184 0.1649 0.1138 0.2146 0.1606 0.1103
Residual1 0.1869 0.1540 0.1127 0.1959 0.1547 0.1103
Residual2 0.1077 0.0968 0.0746 0.1922 0.1683 0.1265
BIPROBIT 0.1413 0.1186 0.0837 0.0725 0.0627 0.0516
DFM 0.1557 0.1322 0.1102 0.0761 0.0689 0.0678

To perhaps provide a somewhat clearer overall picture, we consider a series
of simple regression results. Tables 2.17–2.21 provide results for these regression
analyses. These involve regressing mean absolute deviation estimates across the
replications of our Monte Carlo experiments on dummy variables capturing the
models that generated those mean absolute deviation estimates. The regression relies
on a sample that has an observation for each mean absolute deviation estimate
generated by each model considered in each Monte Carlo experiment (for instance,
the typical Monte Carlo experiment will yield nine observations in the regression
sample corresponding to the mean absolute deviation estimates generated by the
various models). In Table 2.17, we present results across all experiments and a
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Table 2.5 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:25

and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0972 0.0976 0.0939 0.0577 0.0569 0.0565
Probit 0.0711 0.0715 0.0700 0.0426 0.0424 0.0432
TSLS 0.2150 0.1650 0.1145 0.2036 0.1595 0.1051
LIML 0.2350 0.1711 0.1167 0.2204 0.1663 0.1071
GMM 0.2160 0.1652 0.1148 0.2044 0.1603 0.1053
Residual1 0.2312 0.1897 0.1372 0.2173 0.1820 0.1270
Residual2 0.1684 0.1457 0.1112 0.1974 0.1690 0.1093
BIPROBIT 0.1741 0.1500 0.1111 0.2482 0.2076 0.1318
DFM 0.1324 0.1264 0.1143 0.1332 0.1328 0.1250

N D 5,000
LPM 0.0919 0.0919 0.0906 0.0734 0.0735 0.0706
Probit 0.0639 0.0639 0.0633 0.0555 0.0558 0.0536
TSLS 0.2245 0.1621 0.1155 0.2026 0.1485 0.1078
LIML 0.2446 0.1690 0.1172 0.2175 0.1539 0.1097
GMM 0.2246 0.1621 0.1157 0.2027 0.1484 0.1077
Residual1 0.2385 0.1892 0.1375 0.2161 0.1714 0.1312
Residual2 0.0950 0.0929 0.0825 0.3361 0.2919 0.2127
BIPROBIT 0.1071 0.1004 0.0849 0.3154 0.2988 0.2520
DFM 0.0977 0.0933 0.0924 0.0616 0.0576 0.0542

N D 10,000
LPM 0.0960 0.0962 0.0958 0.0577 0.0584 0.0577
Probit 0.0673 0.0676 0.0673 0.0405 0.0411 0.0407
TSLS 0.1935 0.1508 0.1062 0.1974 0.1516 0.1093
LIML 0.2066 0.1571 0.1081 0.2147 0.1572 0.1116
GMM 0.1933 0.1507 0.1064 0.1968 0.1518 0.1093
Residual1 0.2190 0.1793 0.1293 0.2154 0.1741 0.1292
Residual2 0.0746 0.0790 0.0663 0.3123 0.2908 0.2362
BIPROBIT 0.0869 0.0902 0.0725 0.2798 0.2707 0.2444
DFM 0.1351 0.1341 0.1157 0.0414 0.0433 0.0412

stratification by error type (bivariate normal versus bivariate non-normal). The
omitted category among the regressors (which are dummy variables indicating the
model behind the mean absolute deviation estimate in a particular observation) is
the linear probability model (LPM). Thus, a negative number means that the model
outperforms the omitted category model (the LPM) while a positive number means
that it performed more poorly than that omitted category model. For these tables we
used all of the experiments (i.e. we did not confine ourselves to cases where program
participation prevalence and outcome prevalence were both 0.25 or 0.5).

From Table 2.17 it is clear that, across all Monte Carlo experiments, only simple
Probit and DFM perform slightly better than LPM while all other estimators perform
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Table 2.6 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.0809 0.0814 0.0816 0.1071 0.1062 0.1035
Probit 0.0728 0.0737 0.0746 0.0888 0.0886 0.0891
TSLS 0.2147 0.1704 0.1173 0.2233 0.1676 0.1193
LIML 0.2328 0.1780 0.1192 0.2447 0.1739 0.1209
GMM 0.2157 0.1706 0.1175 0.2240 0.1684 0.1197
Residual1 0.2080 0.1752 0.1259 0.2210 0.1732 0.1263
Residual2 0.1801 0.1548 0.1137 0.1859 0.1450 0.1100
BIPROBIT 0.1879 0.1591 0.1144 0.1362 0.1126 0.0962
DFM 0.1430 0.1405 0.1216 0.1671 0.1634 0.1555

N D 5,000
LPM 0.0759 0.0747 0.0756 0.1003 0.0997 0.1006
Probit 0.0681 0.0670 0.0680 0.0831 0.0829 0.0841
TSLS 0.2017 0.1592 0.1176 0.2119 0.1647 0.1208
LIML 0.2182 0.1654 0.1195 0.2243 0.1708 0.1225
GMM 0.2018 0.1592 0.1177 0.2121 0.1648 0.1209
Residual1 0.2001 0.1641 0.1252 0.2091 0.1713 0.1283
Residual2 0.1307 0.1164 0.1000 0.2655 0.2196 0.1481
BIPROBIT 0.1443 0.1252 0.1023 0.1519 0.1224 0.0851
DFM 0.1273 0.1185 0.1060 0.1026 0.1046 0.0983

N D 10,000
LPM 0.0826 0.0816 0.0809 0.0939 0.0930 0.0921
Probit 0.0744 0.0734 0.0728 0.0764 0.0756 0.0748
TSLS 0.2023 0.1590 0.1140 0.2204 0.1684 0.1187
LIML 0.2173 0.1645 0.1159 0.2361 0.1764 0.1209
GMM 0.2034 0.1606 0.1143 0.2205 0.1673 0.1192
Residual1 0.2010 0.1649 0.1231 0.2178 0.1740 0.1298
Residual2 0.1051 0.0998 0.0880 0.3435 0.3172 0.2567
BIPROBIT 0.1227 0.1102 0.0946 0.2020 0.1792 0.1398
DFM 0.1462 0.1352 0.1160 0.0693 0.0676 0.0694

slightly worse. For Monte Carlo experiments involving normal errors, BIPROBIT
and Residual2 perform slightly better than LPM while DFM and Probit perform
about the same as LPM. This result for BIPROBIT is not surprising since it is
the asymptotically efficient estimator, given that it is based on a joint distributional
assumption for the errors that happens to exactly match the actual error distribution
behind the data generating process. The other four estimators perform worse.
Although their point estimates are small, they are significantly different from zero in
all four cases. For non-normal errors, no estimator performs better than LPM except
for DFM and the two worst performing estimators are Residual2 and BIPROBIT.
This is not surprising since these two estimators rely heavily on a normality
assumption for the error term.
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Table 2.7 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25

and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.1985 0.2020 0.1918 0.1951 0.1883 0.1747
Probit 0.1779 0.1820 0.1718 0.1806 0.1741 0.1630
TSLS 0.2144 0.1643 0.1098 0.2126 0.1599 0.1116
LIML 0.2295 0.1701 0.1108 0.2302 0.1658 0.1137
GMM 0.2157 0.1648 0.1100 0.2134 0.1602 0.1116
Residual1 0.2322 0.1898 0.1348 0.2290 0.1894 0.1419
Residual2 0.1565 0.1472 0.1130 0.2076 0.1661 0.1137
BIPROBIT 0.1647 0.1469 0.1086 0.2401 0.1867 0.1180
DFM 0.1432 0.1415 0.1208 0.1757 0.1546 0.1407

N D 5,000
LPM 0.1957 0.1955 0.1936 0.1602 0.1606 0.1575
Probit 0.1749 0.1748 0.1733 0.1487 0.1490 0.1461
TSLS 0.2196 0.1737 0.1211 0.2033 0.1526 0.1068
LIML 0.2346 0.1788 0.1224 0.2197 0.1598 0.1094
GMM 0.2198 0.1739 0.1212 0.2034 0.1526 0.1067
Residual1 0.2381 0.2004 0.1422 0.2208 0.1829 0.1471
Residual2 0.0962 0.0928 0.0853 0.1612 0.1429 0.0988
BIPROBIT 0.1144 0.1041 0.0883 0.1907 0.1648 0.1160
DFM 0.1093 0.1098 0.0978 0.0966 0.0925 0.0782

N D 10,000
LPM 0.1963 0.1969 0.1960 0.1694 0.1692 0.1701
Probit 0.1748 0.1754 0.1747 0.1571 0.1570 0.1577
TSLS 0.1784 0.1465 0.1072 0.1987 0.1503 0.1087
LIML 0.1895 0.1517 0.1083 0.2153 0.1581 0.1115
GMM 0.1791 0.1452 0.1085 0.1989 0.1505 0.1087
Residual1 0.2090 0.1787 0.1380 0.2216 0.1827 0.1484
Residual2 0.0809 0.0692 0.0680 0.1978 0.1720 0.1366
BIPROBIT 0.1051 0.0869 0.0793 0.2025 0.1780 0.1439
DFM 0.1381 0.1244 0.1060 0.1056 0.0916 0.0727

The results presented above likely mask some important variations in the
performance of the estimators for different configurations of the data generating
process. In Table 2.18 we present results based on further stratification of the simple
regression by error correlation. For normal errors and the lower error correlation
level of 0.1, no estimator has a lower MAD than LPM but the Probit estimator’s
MAD is not significantly different from that for the LPM. However, it is interesting
to note that the relative performance of the estimators is completely different with
normal errors and error correlation 0.3. Now Residual2 and BIPROBIT are the
dominant estimators followed closely by DFM while the other estimators are not
much different in terms of MAD from LPM. For non-normal errors, the results
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Table 2.8 Mean absolute deviation of ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5

and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
LPM 0.1757 0.1706 0.1712 0.2202 0.2199 0.2151
Probit 0.1715 0.1662 0.1669 0.2027 0.2025 0.1990
TSLS 0.2177 0.1627 0.1134 0.2101 0.1670 0.1324
LIML 0.2342 0.1698 0.1156 0.2252 0.1712 0.1335
GMM 0.2182 0.1636 0.1138 0.2105 0.1679 0.1334
Residual1 0.2162 0.1728 0.1258 0.2183 0.1787 0.1372
Residual2 0.1862 0.1549 0.1172 0.1891 0.1507 0.1195
BIPROBIT 0.1920 0.1535 0.1125 0.1487 0.1226 0.1049
DFM 0.1428 0.1385 0.1199 0.1607 0.1634 0.1512

N D 5,000
LPM 0.1750 0.1745 0.1732 0.1934 0.1932 0.1926
Probit 0.1707 0.1703 0.1691 0.1835 0.1832 0.1830
TSLS 0.2058 0.1630 0.1143 0.2038 0.1582 0.1135
LIML 0.2201 0.1700 0.1166 0.2188 0.1641 0.1150
GMM 0.2059 0.1631 0.1144 0.2037 0.1583 0.1136
Residual1 0.2074 0.1777 0.1292 0.2130 0.1738 0.1272
Residual2 0.1324 0.1179 0.0992 0.3206 0.2778 0.2028
BIPROBIT 0.1526 0.1310 0.1020 0.2706 0.2052 0.1334
DFM 0.1211 0.1090 0.0992 0.0905 0.0924 0.0889

N D 10,000
LPM 0.1799 0.1797 0.1793 0.2073 0.2063 0.2068
Probit 0.1753 0.1751 0.1748 0.1939 0.1930 0.1936
TSLS 0.2101 0.1485 0.1133 0.2052 0.1657 0.1058
LIML 0.2290 0.1549 0.1154 0.2200 0.1721 0.1076
GMM 0.2116 0.1483 0.1132 0.2052 0.1657 0.1085
Residual1 0.2166 0.1623 0.1305 0.2141 0.1792 0.1249
Residual2 0.1065 0.1052 0.0907 0.3346 0.3080 0.2551
BIPROBIT 0.1393 0.1226 0.0991 0.2238 0.1890 0.1397
DFM 0.1349 0.1364 0.1157 0.0504 0.0521 0.0485

are quite different. We see that for error correlation 0.1, only PROBIT and DFM
perform as well as LPM, with all other methods performing significantly worse. At
the error correlation level of 0.3, DFM dominates all other estimators.

We also consider stratification of the summary regression by instrument strength.
Results for this are presented in Tables 2.19 and 2.20. We consider only two
instrument strength levels (as manifested by the size of the �2 statistic obtained
from a test of the joint significance of the instruments in a probit regression with Y2
as the dependent variable): �2 D 15 and �2 D 50. Not surprisingly, the estimators
most affected by instrument strength are the linear instrumental variables methods.
They perform quite poorly compared with the LPM at instrument strength �2 D 15.
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Table 2.9 Mean ATE for true ATE D 0.05, error correlation D 0.1, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.1306 0.1299 0.1261 0.1291 0.1269 0.1212
Probit 0.1084 0.1086 0.1077 0.1155 0.1139 0.1106
TSLS 0.0755 0.0770 0.0654 0.0184 0.0444 0.0486
LIML 0.0739 0.0745 0.0642 0.0074 0.0400 0.0469
GMM 0.0761 0.0773 0.0657 0.0181 0.0443 0.0488
Residual1 0.1089 0.0980 0.0677 0.0527 0.0613 0.0516
Residual2 0.0896 0.0852 0.0701 0.1755 0.1410 0.0913
BIPROBIT 0.0811 0.0808 0.0735 0.1675 0.1465 0.0943
DFM 0.1175 0.1076 0.0952 0.1076 0.1045 0.0819

Obs D 5,000
LPM 0.1315 0.1319 0.1309 0.1343 0.1334 0.1329
Probit 0.1083 0.1089 0.1083 0.1186 0.1179 0.1179
TSLS 0.0948 0.0880 0.0821 0.0477 0.0480 0.0545
LIML 0.0913 0.0858 0.0810 0.0424 0.0443 0.0530
GMM 0.0949 0.0883 0.0823 0.0481 0.0481 0.0547
Residual1 0.1122 0.0967 0.0793 0.0655 0.0532 0.0483
Residual2 0.0705 0.0726 0.0699 0.3602 0.3070 0.2279
BIPROBIT 0.0524 0.0596 0.0640 0.3292 0.3034 0.2495
DFM 0.1186 0.1082 0.1105 0.1105 0.1097 0.1096

Obs D 10,000
LPM 0.1318 0.1303 0.1313 0.1316 0.1305 0.1300
Probit 0.1089 0.1077 0.1088 0.1159 0.1149 0.1146
TSLS 0.0837 0.0663 0.0727 0.1136 0.0944 0.0981
LIML 0.0813 0.0647 0.0719 0.1125 0.0927 0.0979
GMM 0.0837 0.0664 0.0801 0.1158 0.0941 0.0982
Residual1 0.0878 0.0656 0.0669 0.1160 0.0915 0.0883
Residual2 0.0708 0.0560 0.0730 0.3734 0.3446 0.2958
BIPROBIT 0.0532 0.0399 0.0613 0.3269 0.3171 0.2940
DFM 0.1227 0.1229 0.1007 0.1088 0.1085 0.1079

However, even at instrument strength �2 D 50, they do not perform any better
than the LPM model (or at least they do not do so to a statistically significant
degree). For BIPROBIT and Residual2, we see improved performance as instrument
strength increases for both normal and non-normal errors. Finally, DFM improves
with increasing instrument strength for normal errors but does roughly equally well
at the two instrument strengths when the errors are non-normal.

In Table 2.20, rather than stratifying by error distribution, we stratify by error
correlation and then instrument strength. This table clearly isolates the cases in
which the linear instrumental variables estimators perform relatively well. We see
that all three linear instrumental variables estimators are inferior to LPM when
the error correlation is low regardless of instrument strength. At the lower value
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Table 2.10 Mean ATE for true ATE D 0.05, error correlation D 0.1, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.1327 0.1326 0.1273 0.1496 0.1467 0.1414
Probit 0.1243 0.1245 0.1204 0.1365 0.1341 0.1310
TSLS 0.0826 0.0818 0.0773 0.0923 0.0874 0.0812
LIML 0.0743 0.0804 0.0763 0.0884 0.0843 0.0800
GMM 0.0832 0.0819 0.0778 0.0926 0.0881 0.0817
Residual1 0.0823 0.0787 0.0719 0.0813 0.0760 0.0707
Residual2 0.0804 0.0783 0.0746 0.0100 0.0290 0.0589
BIPROBIT 0.0703 0.0779 0.0761 0.0271 0.0420 0.0654
DFM 0.1224 0.1131 0.0922 0.1215 0.0982 0.0808

Obs D 5,000
LPM 0.1310 0.1308 0.1285 0.1493 0.1487 0.1494
Probit 0.1233 0.1232 0.1213 0.1366 0.1362 0.1372
TSLS 0.0770 0.0680 0.0639 0.1066 0.0896 0.0906
LIML 0.0724 0.0653 0.0626 0.1054 0.0872 0.0895
GMM 0.0771 0.0680 0.0639 0.1068 0.0897 0.0908
Residual1 0.0751 0.0631 0.0568 0.1032 0.0835 0.0818
Residual2 0.0745 0.0689 0.0613 �0.1167 �0.0774 �0.0217
BIPROBIT 0.0538 0.0563 0.0567 �0.0320 �0.0098 0.0230
DFM 0.1315 0.1148 0.0978 0.1074 0.0998 0.0918

Obs D 10,000
LPM 0.1315 0.1324 0.1309 0.1488 0.1499 0.1484
Probit 0.1235 0.1245 0.1232 0.1357 0.1367 0.1354
TSLS 0.0293 0.0377 0.0518 0.0605 0.0592 0.0721
LIML 0.0242 0.0347 0.0503 0.0544 0.0562 0.0705
GMM 0.0314 0.0362 0.0519 0.0575 0.0562 0.0726
Residual1 0.0569 0.0494 0.0568 0.0905 0.0799 0.0830
Residual2 0.0742 0.0652 0.0580 �0.1792 �0.1570 �0.1088
BIPROBIT 0.0454 0.0486 0.0525 �0.0566 �0.0451 �0.0186
DFM 0.1296 0.1185 0.1045 0.1360 0.1348 0.1285

for instrument strength, the linear instrumental variables estimators still offer
no improvement over LPM when error correlation is 0.1. However, they offer
substantial improvement over LPM when error correlation is 0.3 and instrument
strength is high. We do not display results for instrument strength 25 but in this
case, the linear instrumental variables estimators offer slight improvement over
LPM with the higher error correlation. This relatively strong performance for the
linear instrumental variables methods is robust to a further stratification by error
distribution (results not displayed). When error correlation is 0.3 and instrument
strength is 50, there is no difference in the level of improvement over LPM for
normal or non-normal errors. This is reassuring given that the linear instrumental
approach has been recommended in this setting (e.g. Angrist and Krueger 2001).
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Table 2.11 Mean ATE for true ATE D 0.05, error correlation D 0.3, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2440 0.2418 0.2330 0.2619 0.2579 0.2463
Probit 0.2173 0.2153 0.2093 0.2424 0.2391 0.2309
TSLS 0.0965 0.0886 0.0742 0.0768 0.0613 0.0538
LIML �0.0203 0.0812 0.0706 0.0683 0.0533 0.0499
GMM 0.0960 0.0889 0.0745 0.0765 0.0610 0.0537
Residual1 0.1086 0.0827 0.0531 0.0856 0.0543 0.0302
Residual2 0.1071 0.0983 0.0728 0.2143 0.1460 0.0825
BIPROBIT 0.0969 0.0955 0.0751 0.1886 0.1280 0.0722
DFM 0.1306 0.1298 0.1059 0.1380 0.1230 0.0835

Obs D 5,000
LPM 0.2481 0.2486 0.2472 0.2513 0.2507 0.2486
Probit 0.2209 0.2215 0.2205 0.2349 0.2343 0.2326
TSLS 0.1234 0.1226 0.1071 0.0254 0.0442 0.0453
LIML 0.1148 0.1168 0.1040 0.0109 0.0359 0.0414
GMM 0.1242 0.1232 0.1076 0.0256 0.0446 0.0455
Residual1 0.1229 0.1076 0.0802 0.0303 0.0298 0.0152
Residual2 0.0907 0.0970 0.0866 0.2387 0.2068 0.1512
BIPROBIT 0.0638 0.0810 0.0770 0.1984 0.1731 0.1202
DFM 0.1742 0.1675 0.1497 0.1665 0.1511 0.1353

Obs D 10,000
LPM 0.2444 0.2446 0.2438 0.2576 0.2580 0.2570
Probit 0.2170 0.2173 0.2167 0.2404 0.2409 0.2398
TSLS 0.0552 0.0694 0.0730 0.0571 0.0566 0.0566
LIML 0.0401 0.0635 0.0694 0.0409 0.0480 0.0519
GMM 0.0532 0.0697 0.0732 0.0568 0.0561 0.0563
Residual1 0.0459 0.0485 0.0376 0.0495 0.0364 0.0210
Residual2 0.0839 0.0803 0.0748 0.3151 0.2896 0.2390
BIPROBIT 0.0410 0.0465 0.0530 0.2984 0.2745 0.2219
DFM 0.1764 0.1647 0.1309 0.1546 0.1571 0.1361

However, the linear instrumental variables estimator never performs as well as DFM
for any of these stratifications.

Finally, in Table 2.21 we add to the basic summary models presented in
Table 2.17 controls for the behavioral parameters of the Monte Carlo experiment.
Among the sample size regressors, the omitted category is experiments with 1,000
observations. The omitted instrument strength is �2 D 15 (the lowest). The
comparison values for error correlation and treatment effect are 0.1 and 0.05,
respectively. Finally, for both program (i.e. program enrollment) and treatment
prevalence the comparison value is 0.5.

There appears to be a clear performance improvement at the larger sample
sizes with normal errors but performance actually deteriorates as sample size
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Table 2.12 Mean ATE for true ATE D 0.05, error correlation D 0.3, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2528 0.2489 0.2441 0.2803 0.2788 0.2706
Probit 0.2444 0.2408 0.2366 0.2584 0.2571 0.2505
TSLS 0.1183 0.0991 0.0997 0.1100 0.0998 0.1123
LIML 0.1084 0.0932 0.0970 0.0932 0.0902 0.1085
GMM 0.1185 0.0996 0.1001 0.1119 0.1013 0.1142
Residual1 0.1108 0.0890 0.0839 0.0851 0.0695 0.0784
Residual2 0.1138 0.0948 0.0903 0.0251 0.0368 0.0717
BIPROBIT 0.1087 0.0956 0.0933 0.0531 0.0624 0.0896
DFM 0.1471 0.1224 0.1006 0.1382 0.1168 0.1035

Obs D 5,000
LPM 0.2526 0.2515 0.2510 0.2765 0.2750 0.2744
Probit 0.2448 0.2437 0.2434 0.2610 0.2596 0.2594
TSLS 0.0375 0.0667 0.0735 0.1199 0.1332 0.1153
LIML 0.0131 0.0597 0.0700 0.1091 0.1278 0.1122
GMM 0.0374 0.0668 0.0734 0.1202 0.1333 0.1154
Residual1 0.0402 0.0577 0.0565 0.1069 0.1115 0.0892
Residual2 0.0729 0.0737 0.0712 �0.1611 �0.1201 �0.0576
BIPROBIT 0.0380 0.0548 0.0644 �0.0585 �0.0189 0.0212
DFM 0.1577 0.1424 0.1145 0.0952 0.0890 0.0909

Obs D 10,000
LPM 0.2534 0.2519 0.2524 0.2811 0.2804 0.2792
Probit 0.2451 0.2436 0.2442 0.2631 0.2625 0.2615
TSLS �0.0107 �0.0095 0.0325 0.0611 0.0701 0.0788
LIML �0.0313 �0.0211 0.0285 0.0445 0.0602 0.0742
GMM �0.0105 �0.0080 0.0329 0.0641 0.0685 0.0803
Residual1 0.0166 �0.0015 0.0261 0.0818 0.0742 0.0712
Residual2 0.0694 0.0526 0.0601 �0.1421 �0.1172 �0.0732
BIPROBIT 0.0161 0.0156 0.0394 �0.0086 0.0083 0.0318
DFM 0.1674 0.1426 0.1111 0.1253 0.1183 0.1172

increases for non-normal errors. Interestingly, however, the effects of instrument
strength and error correlation do not differ substantially by error type. Increasing
the instrument strength always reduces MAD while increasing the error correlation
always increases it. The true treatment effect has a small but significant effect on
performance (with performance deteriorating as true treatment effect increases).
Program participation and outcome prevalence have substantial, highly significant
effects, but in opposite directions. Performance clearly worsens with non-normal
errors.

Before proceeding, it is worth reflecting on the generally poor performance of
several estimators in the case of non-normal errors. This is very concerning when
one considers that, in many respects, the non-normal error distribution considered in
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Table 2.13 Mean ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2965 0.2970 0.2933 0.2564 0.2559 0.2556
Probit 0.2694 0.2704 0.2691 0.2395 0.2399 0.2410
TSLS 0.2403 0.2468 0.2399 0.1717 0.2068 0.1941
LIML 0.2315 0.2437 0.2387 0.1624 0.2043 0.1928
GMM 0.2404 0.2469 0.2402 0.1714 0.2066 0.1941
Residual1 0.2336 0.2325 0.2209 0.1688 0.1966 0.1766
Residual2 0.2223 0.2349 0.2228 0.3155 0.2953 0.2319
BIPROBIT 0.2115 0.2326 0.2246 0.3170 0.3030 0.2375
DFM 0.1704 0.1715 0.1846 0.1981 0.1949 0.1900

Obs D 5,000
LPM 0.2914 0.2914 0.2901 0.2730 0.2730 0.2701
Probit 0.2634 0.2634 0.2628 0.2550 0.2553 0.2531
TSLS 0.2522 0.2404 0.2507 0.2097 0.2061 0.2032
LIML 0.2504 0.2377 0.2502 0.2043 0.2039 0.2021
GMM 0.2527 0.2406 0.2510 0.2102 0.2061 0.2033
Residual1 0.2378 0.2237 0.2293 0.1968 0.1870 0.1761
Residual2 0.2167 0.2147 0.2208 0.5348 0.4901 0.4086
BIPROBIT 0.1996 0.2035 0.2167 0.5092 0.4914 0.4409
DFM 0.2120 0.2024 0.2199 0.2074 0.2053 0.2033

Obs D 10,000
LPM 0.2956 0.2957 0.2953 0.2572 0.2579 0.2572
Probit 0.2668 0.2671 0.2668 0.2400 0.2406 0.2402
TSLS 0.2417 0.2283 0.2309 0.2236 0.2338 0.2192
LIML 0.2380 0.2254 0.2295 0.2231 0.2333 0.2182
GMM 0.2419 0.2283 0.2310 0.2183 0.2338 0.2192
Residual1 0.2124 0.1928 0.1942 0.1981 0.2105 0.1939
Residual2 0.2133 0.2122 0.2092 0.5118 0.4902 0.4354
BIPROBIT 0.1977 0.1975 0.2006 0.4792 0.4698 0.4432
DFM 0.2560 0.2504 0.2378 0.2165 0.2164 0.2136

this study represents a rather forgiving departure from joint normality. For instance,
it still involves unimodal marginal distributions for the errors and a unimodal surface
for the joint density of the errors in R3. This may indeed be too generous from
the standpoint of accurately reflecting conditions likely to be encountered in actual
applied microeconometric settings.

For instance, in the real world the joint distribution of the error term from a
particular application involving a system along the lines of Eqs. (2.1) and (2.2) is
likely often to involve multi-modality: the joint distribution of the unobservables
for the error term in many settings is likely to reflect substantial mass for extreme
(in terms of behavior) types of individuals that would be difficult to accommodate
accurately with unimodal joint distributions under which such varied and extreme
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Table 2.14 Mean ATE for true ATE D 0.2, error correlation D 0.1, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.2803 0.2809 0.2809 0.3066 0.3057 0.3030
Probit 0.2722 0.2731 0.2737 0.2883 0.2880 0.2886
TSLS 0.2511 0.2310 0.2291 0.2714 0.2665 0.2611
LIML 0.2471 0.2289 0.2279 0.2646 0.2642 0.2601
GMM 0.2525 0.2316 0.2297 0.2729 0.2676 0.2618
Residual1 0.2305 0.2154 0.2147 0.2383 0.2410 0.2459
Residual2 0.2307 0.2167 0.2183 0.1206 0.1569 0.2122
BIPROBIT 0.2262 0.2162 0.2197 0.1575 0.1826 0.2237
DFM 0.1932 0.1802 0.1781 0.2455 0.2402 0.2563

Obs D 5,000
LPM 0.2754 0.2742 0.2751 0.2998 0.2992 0.3001
Probit 0.2676 0.2665 0.2676 0.2826 0.2824 0.2836
TSLS 0.2061 0.2139 0.2202 0.2811 0.2649 0.2628
LIML 0.2016 0.2116 0.2192 0.2799 0.2633 0.2621
GMM 0.2063 0.2140 0.2203 0.2814 0.2649 0.2630
Residual1 0.1858 0.1968 0.2044 0.2575 0.2433 0.2437
Residual2 0.2070 0.2054 0.2061 �0.0613 �0.0140 0.0676
BIPROBIT 0.1901 0.1941 0.2026 0.0547 0.0859 0.1351
DFM 0.2132 0.2075 0.2031 0.1920 0.1947 0.2053

Obs D 10,000
LPM 0.2821 0.2811 0.2804 0.2934 0.2925 0.2916
Probit 0.2739 0.2729 0.2723 0.2759 0.2751 0.2743
TSLS 0.1942 0.2002 0.2089 0.2346 0.2432 0.2289
LIML 0.1878 0.1977 0.2076 0.2294 0.2404 0.2273
GMM 0.1937 0.2000 0.2103 0.2348 0.2418 0.2289
Residual1 0.1869 0.1938 0.2013 0.2339 0.2372 0.2224
Residual2 0.2126 0.2031 0.2041 �0.1440 �0.1177 �0.0572
BIPROBIT 0.1898 0.1888 0.1984 �0.0025 0.0203 0.0598
DFM 0.2488 0.2482 0.2307 0.1748 0.1718 0.1780

combinations are typically found only with much lower probability. If Y1 were
smoking and Y2 were obesity, for example, one could easily imagine a significant
proportion of the population with combinations of strong unobserved tendencies
toward and away from smoking and obesity that are hard to accommodate with
unimodal (in terms of marginal errors or density surface in R3) errors, let alone joint
normality. However, it also hard to believe that the performance of many models
(such as those based on joint normality) would improve from what is presented
in this manuscript once the departure from joint normality involved relaxing the
assumption of unimodality.

In Tables 2.22–2.25, we examine a limited set of results for the endogeneity tests
and the identification tests considered in our Monte Carlo experiments. To begin
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Table 2.15 Mean ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25 and Y2 D 0:25

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.3981 0.4015 0.3913 0.3946 0.3878 0.3742
Probit 0.3774 0.3815 0.3713 0.3801 0.3736 0.3625
TSLS 0.2668 0.2543 0.2463 0.2156 0.2264 0.1967
LIML 0.2561 0.2474 0.2431 0.2005 0.2190 0.1930
GMM 0.2676 0.2549 0.2468 0.2154 0.2267 0.1970
Residual1 0.2317 0.2095 0.1909 0.1826 0.1830 0.1460
Residual2 0.2301 0.2257 0.2129 0.3335 0.2908 0.2075
BIPROBIT 0.2189 0.2221 0.2173 0.3056 0.2755 0.1984
DFM 0.1947 0.1892 0.1794 0.2499 0.2228 0.1860

Obs D 5,000
LPM 0.3952 0.3950 0.3931 0.3597 0.3601 0.3570
Probit 0.3744 0.3743 0.3728 0.3482 0.3485 0.3456
TSLS 0.2850 0.2826 0.2625 0.1494 0.1651 0.1624
LIML 0.2770 0.2779 0.2590 0.1358 0.1573 0.1587
GMM 0.2855 0.2832 0.2629 0.1498 0.1655 0.1625
Residual1 0.2464 0.2408 0.2081 0.1246 0.1236 0.1066
Residual2 0.2164 0.2219 0.2175 0.3340 0.3097 0.2487
BIPROBIT 0.1905 0.2048 0.2092 0.2971 0.2809 0.2194
DFM 0.2483 0.2534 0.2409 0.2604 0.2486 0.2191

Obs D 10,000
LPM 0.3958 0.3964 0.3955 0.3689 0.3687 0.3696
Probit 0.3743 0.3749 0.3742 0.3566 0.3565 0.3572
TSLS 0.2316 0.2282 0.2297 0.1636 0.1702 0.1713
LIML 0.2227 0.2211 0.2260 0.1480 0.1609 0.1670
GMM 0.2306 0.2265 0.2288 0.1630 0.1699 0.1712
Residual1 0.1730 0.1621 0.1588 0.1274 0.1185 0.1098
Residual2 0.2176 0.2123 0.2032 0.3943 0.3681 0.3288
BIPROBIT 0.1836 0.1817 0.1827 0.3824 0.3548 0.3092
DFM 0.2762 0.2559 0.2367 0.2920 0.2794 0.2546

with, in each of these tables we list models with the specific test associated with that
model in parentheses. In both tables we present proportions of p-values that exceed
or fall below some important threshold. We begin with the overidentification tests
in Tables 2.22 and 2.23, for which the null is that the overidentifying restrictions
are valid (i.e. that the specification considered is valid).8 Since the identifying

8Recall that the overidentification test statistic for the bivariate probit model is simply the �2

statistic for a test of the joint significance of the instruments in the marginal probit equation for
Y2 under the “just identified” specification under which the instruments appear in both marginal
probit equations and identification rests on nonlinearity from functional form (i.e. joint normality)
alone. The null hypothesis of such a test is that the instruments are not jointly significant regressors
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Table 2.16 Mean ATE for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5 and Y2 D 0:5

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

Obs D 1,000
LPM 0.3752 0.3701 0.3707 0.4197 0.4194 0.4146
Probit 0.3710 0.3657 0.3665 0.4022 0.4020 0.3985
TSLS 0.2350 0.2126 0.2262 0.2729 0.2709 0.2804
LIML 0.2255 0.2051 0.2229 0.2584 0.2639 0.2769
GMM 0.2357 0.2135 0.2269 0.2747 0.2729 0.2823
Residual1 0.2155 0.1894 0.2006 0.2235 0.2195 0.2345
Residual2 0.2185 0.1941 0.2034 0.0842 0.1343 0.1948
BIPROBIT 0.2140 0.1949 0.2085 0.1373 0.1765 0.2229
DFM 0.1853 0.1671 0.1668 0.2149 0.2113 0.2298

Obs D 5,000
LPM 0.3745 0.3740 0.3727 0.3929 0.3927 0.3921
Probit 0.3702 0.3698 0.3686 0.3830 0.3827 0.3825
TSLS 0.1848 0.1780 0.2060 0.2153 0.2274 0.2348
LIML 0.1716 0.1707 0.2026 0.2031 0.2206 0.2317
GMM 0.1849 0.1780 0.2059 0.2151 0.2277 0.2350
Residual1 0.1651 0.1532 0.1786 0.1800 0.1896 0.1963
Residual2 0.1855 0.1813 0.1892 �0.1205 �0.0773 0.0004
BIPROBIT 0.1597 0.1647 0.1842 �0.0701 �0.0033 0.0731
DFM 0.2231 0.2071 0.1977 0.1265 0.1244 0.1334

Obs D 10,000
LPM 0.3794 0.3792 0.3788 0.4068 0.4058 0.4063
Probit 0.3748 0.3746 0.3743 0.3934 0.3925 0.3931
TSLS 0.1182 0.1547 0.1773 0.2124 0.2121 0.2165
LIML 0.1038 0.1462 0.1734 0.1984 0.2039 0.2125
GMM 0.1193 0.1534 0.1773 0.2125 0.2123 0.2175
Residual1 0.1069 0.1300 0.1491 0.1916 0.1857 0.1810
Residual2 0.1804 0.1819 0.1804 �0.1350 �0.1085 �0.0555
BIPROBIT 0.1377 0.1580 0.1664 �0.0241 0.0108 0.0610
DFM 0.2372 0.2437 0.2148 0.1561 0.1563 0.1609

restrictions in our Monte Carlo experiments are indeed valid by construction,
large test statistics (and accompanying low p-values) would be cause for concern.
Tables 2.22 and 2.23 thus present the percentage of p-values that are in the
concerning range (i.e. below the conventional cutoff level of 0.1). Interestingly, here
all three linear instrumental variables models appear to do quite well.

The same cannot be said for the bivariate probit model, which produces large test
statistics (as evidenced by low p-values) alarmingly often. Its performance appears

in marginal probit equation for Y2 (i.e. that they are legitimately excluded from the marginal probit
equation for Y2).
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Table 2.17 Basic summary regressions

All models Normal errors Non-normal errors

Method Coeff. T-statistic Coeff. T-statistic Coeff. T-statistic

Probit �0.0038 �0.71 �0.0054 �1.05 �0.0023 �0.28
TSLS 0.0361 6.76 0.0397 7.81 0.0325 4.03
LIML 0.0450 8.42 0.0490 9.64 0.0410 5.07
GMM 0.0363 6.79 0.0399 7.85 0.0326 4.04
Residual1 0.0361 6.76 0.0393 7.72 0.0330 4.08
Residual2 0.0409 7.64 �0.0201 �3.96 0.1018 12.6
BIPROBIT 0.0402 7.52 �0.0128 �2.52 0.0933 11.54
DFM �0.0242 �4.52 �0.0041 �0.81 �0.0442 �5.47
N 2,592 1,296 1,296

to improve considerably with larger sample sizes and joint normality of errors. On
the whole, however, using an overidentification test which relies on the non-linearity
of the bivariate probit model is of limited usefulness.

Turning to Tables 2.24 and 2.25 and the endogeneity test results, we now consider
the proportion of the time that the test statistic yields a large p-value. This is once
again natural and fitting since the null hypothesis in these tests is exogeneity. A small
test statistic (and accompanying large p-value) would thus be cause for concern
since endogeneity is present in our models by design (and therefore the null should
be rejected). We consider the proportion of p-values that exceed 0.1. Here the
results are generally far less reassuring. The performance of endogeneity tests in the
linear instrumental variables models is poor,9 with particularly misleading results
in the case of the Hausman test. The performance of the bivariate probit model,
Residual1 and Residual2 are not much better. In general, these results suggest that
conventional endogeneity tests are more or less completely unreliable, at least in
terms of conventional benchmark p-value thresholds when both dependent variables
are binary.

2.5 Empirical Examples

We present two empirical examples based on data sets from Bangladesh and
Tanzania that have been previously analyzed by Chen and Guilkey (2003) and
Guilkey and Hutchinson (2011). The models that we use in this paper are highly
simplified compared to those presented in the original papers. However, they
are sufficiently detailed to provide a good comparison of the methods and to
demonstrate the pitfalls that one might encounter in analyzing similar problems.

9We refer to the Wu-Hausman test (Wu 1974; Hausman 1978) simply as “Wu” in Tables 2.24
and 2.25.
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Table 2.21 Summary regressions with controls for all experimental features

All models Normal errors Non-normal errors

Method Coeff. T statistic Coeff. T statistic Coeff. T statistic

Probit �0.0038 �0.84 �0.0054 �1.39 �0.0023 �0.33
TSLS 0.0361 7.95 0.0397 10.32 0.0325 4.82
LIML 0.0450 9.9 0.0490 12.73 0.0410 6.07
GMM 0.0363 7.99 0.0399 10.37 0.0326 4.84
Residual1 0.0361 7.95 0.0393 10.2 0.0330 4.89
Residual2 0.0409 8.99 �0.0201 �5.23 0.1018 15.1
BIPROBIT 0.0402 8.85 �0.0128 �3.33 0.0933 13.82
DFM �0.0242 �5.32 �0.0041 �1.07 �0.0442 �6.55
Sample size 5,000 �0.0019 �0.74 �0.0099 �4.47 0.0061 1.55
Sample size 10,000 �0.0013 �0.48 �0.0154 �6.93 0.0129 3.31
Instrument strength 25 �0.0271 �10.31 �0.0257 �11.55 �0.0284 �7.3
Instrument strength 50 �0.0577 �21.98 �0.0546 �24.55 �0.0607 �15.59
Error correlation 0.3 0.0213 9.93 0.0252 13.86 0.0174 5.47
Treatment effect 0.2 0.0038 1.75 0.0001 0.04 0.0074 2.34
Program prevalence 0.25 0.0251 11.7 0.0115 6.35 0.0386 12.14
Outcome prevalence 0.25 �0.0265 �12.35 �0.0164 �9.02 �0.0365 �11.49
Non-normal errors 0.0239 11.14
N 2,592 1,296 1,296

That said, an important consideration to remember now that we have moved from
simulations (for which we control all parameters) to applications with real world
samples is that heterogeneous treatment effects (which were not considered in the
simulations) may be at play and driving differences in estimates.

In Bangladesh, we use data that was gathered to examine how self-exposure to the
Smiling Sun multimedia communication campaign in rural Bangladesh impacted
women’s use of modern contraception (more details and more extensive models are
to be found in Guilkey and Hutchinson (2011)). The Smiling Sun communication
program, launched in Bangladesh in 2001, was a multi-channel campaign with the
objectives of establishing the Smiling Sun symbol, disseminating important health-
related messages, and promoting health services in urban and rural areas at Paribarik
Shastha Clinics (Family Health Clinics) operated by the NGO Service Delivery
Program (for which the Smiling Sun served as a logo). The campaign involved
a 26-episode television drama serial ‘Eyi Megh Eyi Roudro’ (“Now cloud, now
sunshine”), television advertisements, radio spots, posters, billboards, press ads in
daily newspapers and local publicity efforts.

The data were collected roughly at the beginning of the Smiling Sun campaign in
2001 and then again 2 years later. Questions were asked of women of reproductive
age about whether they had seen the Smiling Sun logo and, if so, whether they
had seen it in a television drama, in a television advertisement, on the radio, on a
billboard, at a signboard at a clinic, or elsewhere. In the original paper, we examined
the impact of recall for each source separately. In the simplified model used here,
all sources are combined into a single binary indicator for exposure to the program.
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Table 2.22 Identification tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25 and
Y2 D 0:25: proportion of times that the p-value for the test statistic is less than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Sargan 0.0900 0.1010 0.0980 0.1010 0.0950 0.0940
TSLS_Basmann 0.0900 0.1000 0.0980 0.1010 0.0950 0.0930
LIML_AndersonRubin 0.0880 0.0990 0.0980 0.1010 0.0950 0.0950
LIML_Basmann 0.0880 0.0970 0.0980 0.0950 0.0930 0.0920
GMM_Hansen 0.0840 0.1000 0.0980 0.0990 0.0920 0.0880
BIPROBIT 0.2748 0.2890 0.2821 0.2624 0.3361 0.3810

N D 5,000
TSLS_Sargan 0.1080 0.0910 0.1190 0.0930 0.1040 0.0990
TSLS_Basmann 0.1080 0.0910 0.1190 0.0930 0.1040 0.0990
LIML_AndersonRubin 0.1030 0.0910 0.1190 0.0910 0.1020 0.0990
LIML_Basmann 0.1010 0.0910 0.1180 0.0910 0.1020 0.0990
GMM_Hansen 0.1070 0.0890 0.1200 0.0930 0.1030 0.0970
BIPROBIT 0.1416 0.1249 0.1263 0.2385 0.2613 0.3340

N D 10,000
TSLS_Sargan 0.1100 0.1080 0.1180 0.1000 0.1240 0.1200
TSLS_Basmann 0.1100 0.1080 0.1180 0.1000 0.1240 0.1200
LIML_AndersonRubin 0.1080 0.1060 0.1180 0.0980 0.1200 0.1200
LIML_Basmann 0.1080 0.1060 0.1180 0.0980 0.1200 0.1200
GMM_Hansen 0.1080 0.0960 0.1200 0.1000 0.1240 0.1180
BIPROBIT 0.1172 0.0984 0.1240 0.2360 0.3026 0.4140

We pool the data from 2001 and 2003 in the analysis. Descriptive statistics
and variable definitions are presented in Table 2.26. There are three exclusion
restrictions in the current use of contraception equation: the last three variables that
indicate the number of Smiling Sun posters in clinics that are within 1 km of the
sample cluster and whether or not the household owns a TV and radio (two separate
indicators).

In Tanzania, we use data gathered over a 9-year period for the purpose of
evaluating that nation’s National Population Policy (NPP). The NPP began in 1992
and was developed to address a very high total fertility rate of about 6.3 children
(Ngallaba et al. 1993) and an under five mortality rate of 141 per 1,000 live births.
The NPP had substantial funding from donor agencies including the United States
Agency for International Development (USAID).

The main USAID program in Tanzania for family planning was the Family
Planning Support System (FPSS) project. The major components of the program
were to train health providers in the provision of family planning, to provide
logistical support for the provision of family planning supplies and to develop
an information, education and communication (IEC) program to promote family
planning. This program ended in 1999 and cross sectional data were gathered
in 1991, 1994, 1996, and 1999 to evaluate its impact. Chen and Guilkey (2003)
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Table 2.23 Identification tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5 and
Y2 D 0:5: proportion of times that the p-value for the test statistic is less than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Sargan 0.0880 0.1000 0.0900 0.0910 0.1070 0.1210
TSLS_Basmann 0.0860 0.1000 0.0890 0.0910 0.1070 0.1200
LIML_AndersonRubin 0.0840 0.1000 0.0900 0.0910 0.1070 0.1210
LIML_Basmann 0.0820 0.0990 0.0880 0.0900 0.1060 0.1200
GMM_Hansen 0.0900 0.0970 0.0890 0.0950 0.1050 0.1190
BIPROBIT 0.2791 0.3252 0.3439 0.3141 0.3033 0.2464

N D 5,000
TSLS_Sargan 0.0970 0.0890 0.0990 0.0790 0.0820 0.0900
TSLS_Basmann 0.0970 0.0890 0.0990 0.0790 0.0810 0.0900
LIML_AndersonRubin 0.0930 0.0890 0.0990 0.0780 0.0800 0.0900
LIML_Basmann 0.0920 0.0870 0.0990 0.0780 0.0800 0.0880
GMM_Hansen 0.0990 0.0900 0.1010 0.0790 0.0840 0.0920
BIPROBIT 0.1518 0.1436 0.1506 0.4598 0.5172 0.5518

N D 10,000
TSLS_Sargan 0.0960 0.0980 0.1060 0.0860 0.1040 0.0900
TSLS_Basmann 0.0960 0.0980 0.1060 0.0860 0.1040 0.0900
LIML_AndersonRubin 0.0940 0.0980 0.1040 0.0860 0.1040 0.0900
LIML_Basmann 0.0940 0.0980 0.1040 0.0860 0.1040 0.0900
GMM_Hansen 0.1000 0.1000 0.1020 0.0860 0.1040 0.1060
BIPROBIT 0.1443 0.1403 0.1506 0.2385 0.2780 0.3560

provide a comprehensive evaluation of the program’s impact. In this example, we
estimate the impact of having heard a family message from any source on current
contraceptive use. The summary statistics for the sample are found in Table 2.27.

We estimated the two equation models, one for self-reported exposure to a
message and one for current contraceptive use, using all nine methods that were
evaluated in the Monte Carlo experiments. The results of the Monte Carlo experi-
ments suggest that the overidentification tests were reasonably reassuring while the
endogeneity tests were highly inaccurate. The overidentification tests in Bangladesh
for 2SLS, LIML, GMM all fail to reject the null hypothesis that the exclusion
restrictions are valid, the desired result. The results for these tests for Tanzania
were mixed: the p-values were 0.09, 0.09, and 0.21 for 2SLS, LIML, and GMM
respectively and so there is weak evidence to support the null. When we included the
excluded variables in the BIPROBIT models and tested to see if these variables had
direct effects on contraceptive use, we found that two of three exclusion restrictions
were valid for Bangladesh while both exclusion restrictions were valid for Tanzania.
Since the DFM is also identified without exclusion restrictions, we performed the
same test using DFM and found that none of the excluded variables had direct
effects on contraceptive use. Thus, the evidence seems to suggest that the models
are identified.
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Table 2.24 Endogeneity tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:25 and
Y2 D 0:25: proportion of times that the p-value for the test statistic is greater than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Durban 0.8630 0.8010 0.7140 0.8180 0.7930 0.6280
TSLS_Wu 0.8630 0.8020 0.7160 0.8180 0.7950 0.6280
LIML_Hausman 1.0000 1.0000 0.9900 1.0000 1.0000 0.9810
GMM_Hayashi 0.8610 0.8000 0.7060 0.8180 0.7880 0.6240
Residual1 0.8710 0.8180 0.7300 0.8230 0.8000 0.6440
Residual2 0.8330 0.7770 0.6860 0.8970 0.8740 0.7180
BIPROBIT 0.8499 0.7658 0.6690 0.7886 0.8006 0.6640

N D 5,000
TSLS_Durban 0.8750 0.8420 0.7490 0.7860 0.7290 0.5740
TSLS_Wu 0.8750 0.8430 0.7510 0.7860 0.7290 0.5740
LIML_Hausman 1.0000 1.0000 0.9940 1.0000 0.9970 0.9750
GMM_Hayashi 0.8780 0.8390 0.7490 0.7830 0.7280 0.5720
Residual1 0.8770 0.8410 0.7690 0.7910 0.7280 0.5820
Residual2 0.6410 0.6140 0.5590 0.9010 0.8840 0.7870
BIPROBIT 0.7570 0.7090 0.6020 0.8400 0.8220 0.7230

N D 10,000
TSLS_Durban 0.8500 0.7680 0.6740 0.7780 0.7280 0.5860
TSLS_Wu 0.8500 0.7680 0.6740 0.7780 0.7300 0.5860
LIML_Hausman 1.0000 0.9980 0.9780 1.0000 0.9920 0.9620
GMM_Hayashi 0.8460 0.7600 0.6660 0.7720 0.7220 0.5840
Residual1 0.8460 0.7780 0.6780 0.7740 0.7260 0.6020
Residual2 0.4940 0.4660 0.3600 0.8720 0.8940 0.8980
BIPROBIT 0.6300 0.5680 0.4300 0.8040 0.8540 0.8480

We also performed tests of the null hypothesis that having heard a family
planning message is exogenous. The results across the two data sets were consistent
for 2SLS, GMM, Residual1, Residual2, and BIPROBIT: the null hypothesis was
strongly rejected for Tanzania and the tests failed to reject the null hypothesis in
Bangladesh. We did not perform a formal endogeneity test for DFM. However, for
both data sets, the DFM yielded highly significant heterogeneity parameters using a
four point of support model (the same number of points of support employed in the
Monte Carlo experiments) and, as can be seen in the tables below, in both samples
the point estimate of the ATE is quite different for the DFM and models that do not
correct for endogeneity.

Table 2.28 presents the estimated ATE’s across all nine methods along with
standard errors. The ATE’s and standard errors are drawn directly from the
regression results for the linear models while the STATA margins command was
used to obtain the ATE and standard errors for all non-linear models except DFM.
The standard errors for the DFM model were obtained by using a parametric
bootstrap procedure with 10,000 replications using a FORTRAN program.
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Table 2.25 Endogeneity tests for true ATE D 0.2, error correlation D 0.3, Y1 D 0:5 and Y2 D 0:5:
proportion of times that the p-value for the test statistic is greater than 0.1

Normal errors Non-normal errors

�2 D 15 �2 D 25 �2 D 50 �2 D 15 �2 D 25 �2 D 50

N D 1,000
TSLS_Durban 0.8500 0.7980 0.7040 0.8620 0.8110 0.7330
TSLS_Wu 0.8510 0.8040 0.7060 0.8630 0.8130 0.7340
LIML_Hausman 1.0000 0.9980 0.9920 1.0000 0.9980 0.9900
GMM_Hayashi 0.8430 0.8020 0.7080 0.8600 0.8080 0.7300
Residual1 0.8440 0.7980 0.7080 0.8510 0.8090 0.7380
Residual2 0.8410 0.7820 0.6870 0.5760 0.5860 0.5680
BIPROBIT 0.8510 0.7800 0.6680 0.7287 0.6740 0.6210

N D 5,000
TSLS_Durban 0.8010 0.7340 0.6510 0.8240 0.7850 0.6910
TSLS_Wu 0.8010 0.7350 0.6510 0.8240 0.7850 0.6920
LIML_Hausman 1.0000 0.9960 0.9840 1.0000 1.0000 0.9820
GMM_Hayashi 0.8000 0.7280 0.6540 0.8250 0.7840 0.6870
Residual1 0.8020 0.7350 0.6510 0.8220 0.7790 0.6930
Residual2 0.6870 0.6450 0.5670 0.0110 0.0230 0.0350
BIPROBIT 0.7400 0.6760 0.5760 0.0864 0.0590 0.0720

N D 10,000
TSL_Durban 0.6960 0.7080 0.5680 0.8040 0.7220 0.6060
TSLS_Wu 0.6960 0.7080 0.5680 0.8040 0.7240 0.6060
LIML_Hausman 1.0000 0.9960 0.9680 1.0000 0.9940 0.9720
GMM_Hayashi 0.7000 0.7080 0.5640 0.8060 0.7240 0.6140
Residual1 0.6980 0.7280 0.5740 0.8340 0.7440 0.6380
Residual2 0.6060 0.5280 0.4280 0.0000 0.0000 0.0020
BIPROBIT 0.6640 0.5960 0.4540 0.0020 0.0040 0.0040

There is a fairly wide range in estimated ATEs across methods. For Bangladesh,
the DFM has the largest estimated ATE but also the largest standard error. We also
see that LPM and all the methods that assume normality give similar estimated
ATE’s while the three instrumental variables methods give results between these
methods and DFM. For Tanzania, DFM and the three instrumental variables
methods give very consistent results with estimated ATE’s approximately double
what is found for the two methods that do not correct for endogeneity (LPM and
Probit). The residual inclusion methods yield similar point estimates for the ATE as
BIPROBIT which falls above the methods that do not correct for endogeneity and
below the DFM and the instrumental variables methods.

Given the results of the Monte Carlo experiments, one would probably place the
most confidence in the results obtained for the DFM followed by the instrumental
variables methods. None of these methods rely on the assumption of normality
for the error distributions in models and the results of these methods are highly
consistent for Tanzania and least somewhat consistent for Bangladesh.
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Table 2.26 Descriptive statistics for Bangladesh (N D 21;472)

Variable Mean Standard dev.

Endogenous variables
Current user of contraception 0.458 0.498
Recall smiling sun message 0.223 0.417

Exogenous variables
Woman age 20–24 0.179 0.383
Woman age 25–29 0.178 0.383
Woman age 30–34 0.169 0.375
Woman age 35–39 0.140 0.347
Woman age 40–44 0.111 0.314
Woman age 45–49 0.072 0.259
Woman has primary education 0.248 0.432
Woman has secondary education 0.180 0.385
Husband has primary education 0.190 0.392
Husband has secondary education 0.243 0.429
Husband has college education 0.020 0.141
Sum of the number of contraceptive methods

available within 1 km
1.318 2.333

Indicator for 2003 survey 0.406 0.491
Number of facilities within 1 km with

smiling sun posters
0.305 0.542

Household has a radio 0.305 0.461
Household has a television 0.142 0.349

2.6 Conclusion

We conclude with some thoughts regarding the pattern of results presented in
Sect. 2.4. We first note that, when error correlation and instrument strength are low,
the models that we consider that attempt explicitly to correct for the endogeneity of
a binary regressor do not seem to perform as well as alternatives that simply ignore
potential endogeneity. Even BIPROBIT, for which identification ultimately rests on
the assumption of jointly normal errors in Eqs. (2.1) and (2.2) does not perform as
well as LPM under circumstances of weak error correlation and weak instruments,
even when the true error distribution is bivariate normal.

As either instrument strength or error correlation increases, our findings suggest
that the researcher has attractive options relative to the simple methods. As expected,
BIPROBIT performs well under these circumstances when the true error distribution
is bivariate normal. However, Residual2 performs as well or is even slightly better
than BIPROBIT. In addition, even when the true error distribution is bivariate
normal, DFM represents a significant improvement over LPM and performs only
slightly worse than Residual2 and BIPROBIT. When the true error distribution is
non-normal, DFM dominates all other estimators. The only estimation methods that
come close are the linear instrumental variables estimators, which are also robust
to non-normal errors. However, these estimators only approach but do not equal the
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Table 2.27 Descriptive statistics for Tanzania (N D 17;724)

Variable Mean Standard dev.

Endogenous variables
Current user of contraception 0.115 0.319
Recall family planning message 0.387 0.487

Exogenous variables
Woman age 15–19 0.221 0.415
Woman age 20–24 0.196 0.397
Woman age 25–29 0.174 0.379
Woman age 30–34 0.132 0.338
Woman age 35–39 0.113 0.317
Woman age 40–44 0.086 0.280
Woman 1–6 years of education 0.219 0.413
Woman 7 years of education 0.411 0.492
Woman 8 or more years of education 0.017 0.128
Partner 1–6 years of education 0.170 0.376
Partner 7 years of education 0.274 0.446
Partner 8 or more years of education 0.042 0.201
Number of contraceptive methods seen

in stock in facilities within 5 km
1.229 1.702

Household owns a radio 0.347 0.476
Household owns a television 0.002 0.044

Table 2.28 Estimated average treatment effects and standard errors for the two
empirical examples

Bangladesh Tanzania

Method ATE SE ATE SE

LPM 0.0669 0.0082 0.0700 0.0050
Probit 0.0699 0.0082 0.0676 0.0050
TSLS 0.0843 0.0376 0.1327 0.0224
LIML 0.0843 0.0376 0.1329 0.0224
GMM 0.0841 0.0377 0.1320 0.0236
Residual1 0.0840 0.0375 0.1231 0.0243
Residual2 0.0508 0.0358 0.1181 0.0236
BIPROBIT 0.0508 0.0358 0.1178 0.0229
DFM 0.1188 0.0545 0.1361 0.0440
N 21,472 17,724

performance of DFM when both error correlation and instrument strength are high.
Nonetheless, they are a reasonable option for researchers using standard statistical
packages (at least until an implementation of the DFM becomes available within one
of these packages, a project on which the authors have now embarked with STATA).

The superior performance of the DFM and, to some extent, the linear instru-
mental variables estimators when the true error distribution is non-normal is
even more impressive when one considers that the design of our experiments
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involving non-normal errors was likely comparatively favorable to models that
assume normality compared with real world circumstances: our approach to non-
normal errors still retained the unimodality of the joint distribution of the errors
and of the surface of its joint distribution in R3. In some sense this likely gave
even those models explicitly motivated by joint normality some fighting chance
for reasonable fit to the data. Real world circumstances will likely involve multi-
modal distributions, reflecting the presence of combinations of pronounced “types”
within the population. Nonetheless, our results suggest that methods that rely on
the assumption of normally distributed errors are a poor choice relative to the more
robust methods considered in this paper even in the unimodal case. In that sense
they echo the concerns about the fragility of identification by functional form that
have been in the literature in various contexts for nearly three decades (e.g. LaLonde
1986; Manning et al. 1987).

In terms of practical advice for applied researchers, our results thus do suggest
some guidelines. First, less parametric methods, including linear instrumental
variables models if not the DFM itself (the estimation of which is, for the moment,
impractical for most) are preferable to methods that rely on more parametric
assumptions for the joint error distribution: joint normality assumptions work out
particularly well only when the errors are indeed jointly normal (and even then
only when instrument strength and error correlation were high), and this is likely
a heroic assumption in many applied microeconometric applications. Even when
the bivariate probit performs well, it does not necessarily significantly outperform
simpler methods (such as Residual2) that also implicitly rely on joint normality. Put
slightly differently, it is not clear that the explicit functional form assumption of the
bivariate probit model is buying the user much in terms of performance, even under
ideal circumstances.

Second, and perhaps intuitively unsurprisingly in light of the evidence regarding
weak instruments in the setting of continuous outcomes of interest and endogenous
variables (e.g. Stock and Staiger 1997; Bound et al. 1995), instrument strength
matters. Indeed, even in the case of models relying on joint normality assumptions
for the errors when the errors are actually jointly non-normal, increases in instru-
ment strength yield performance benefits. Moreover, it is straightforward to assess
instrument strength.

Overidentification tests proved reasonably reliable in the binary outcome and
binary endogenous variable setting even with linear instrumental variables based
tests. We can offer far less guidance regarding the other key indicator of likely model
performance, tests of endogeneity. Unfortunately, we cannot even say with any
confidence that formal endogeneity tests are, in this setting and with the currently
available set of conventional tests, necessarily any more reliable than informed
theoretical assumptions by applied researchers.

As for future work in the methodological arena, it is clear that nonparametric full-
information maximum likelihood approaches hold great potential promise. Much
remains to be done in this area, including the introduction of routines for estimating
these models as part of standard statistical packages such as STATA, continued
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improvement of estimation methodology and the development and refinement of
tests (such as a formal endogeneity test). Finally, model performance in circum-
stances of heterogeneous treatment effects is now under consideration by the authors
in a follow-up to this manuscript.
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Chapter 3
Stochastic Frontier Models with Bounded
Inefficiency
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3.1 Introduction

The parametric approach to estimate stochastic production frontiers was introduced
by Aigner et al. (1977), Meeusen and van den Broeck (1977), and Battese and
Corra (1977). These approaches specified a parametric production function and
a two-component error term. One component, reflecting the influence of many
unaccountable factors on production as well as measurement error, is considered
“noise” and is usually assumed to be normally distributed. The other component
describes inefficiency and is assumed to have a one-sided distribution, of which the
conventional candidates include the half normal (Aigner et al. 1977), truncated nor-
mal (Stevenson 1980), exponential (Meeusen and van den Broeck 1977) and gamma
(Greene 1980a,b, 1990; Stevenson 1980). This stochastic frontier production func-
tion has become an iconic modeling paradigm in econometric research, rate making
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decisions in regulated industries across the world, in evaluating outcomes of market
reforms in transition economies, and in establishing performance benchmarks for
local, state, and federal governmental activities.

In this paper we propose a new class of parametric stochastic frontier models
with a more flexible specification of the inefficiency term, which we view as
improvement on the basic iconic stochastic frontier production model. Instead of
allowing unbounded support for the distribution of productive (cost) inefficiency
term in the right (left) tail, we introduce an unobservable upper bound to inef-
ficiencies or a lower bound to the efficiencies, which we call the inefficiency
bound. The introduction of the inefficiency bound makes the parametric stochastic
frontier model more appealing for empirical studies in at least two aspects. First,
it is plausible to allow only bounded support in many applications of stochastic
frontier models wherein the extremely inefficient firms in a competitive industry
of market are eliminated by competition. Bounded inefficiency makes sense in
this setting since the extremely inefficient stores will be forced to close and thus
individual production units constitute a truncated sample.1 This is consistent with
the arguments of Alchian (1950) and Stigler (1958) wherein firms are at any
point in time not in a static long run equilibrium, but rather are tending to that
situation as they are buffeted by demand and cost shocks. As a consequence,
even if we correctly specify a family of distributions for the inefficiency term,
the stochastic frontier model may still be misspecified. This particular setting is
one in which the inefficiency bound is informative as an indicator of competitive
pressures and/or the extent of supervisory oversight by direct management or by
corporate boards. In settings in which firms can successfully differentiate their
product, which is the typical market structure and not the exception, or where there
are market concentrations that may reflect collusive behavior or conditions for a
natural monopoly and regulatory oversight, incentives to fully exploit market power
or to instead make satisficing decision are both possible outcomes. Much more likely
is that it is not one or the other but some middle ground between the two extremes
that would be found empirically.2

1In addition, the frequent use of balanced panels in empirical studies would in effect eliminate
those failing firms from the sample and thus would provide more merit to the bounded inefficiency
model.
2“The quiet life hypothesis” (QLH) by Hicks (1935) argues that, due to management’s subjective
cost of reaching the optimal profits, firms use their market power to allow inefficient allocation
of resources. Increasing competitive pressure is likely to force management to work harder to
reach optimal profits. Another hypothesis that relates market power and efficiency is “the efficient
structure hypothesis” (ESH) by Demsetz (1973). ESH argues that firms with superior efficiencies
or technologies have lower costs and therefore higher profits. These firms are assumed to gain
larger market shares which lead to higher concentration. Recently Kutlu and Sickles (2012) have
constructed a model in which the dynamic game is played out and have tested for the alternative
outcomes, finding support for the QLH in certain airlines city-pair markets and the ESH in others.
Orea and Steinbuks (2012) have also explored the use of such a lower bound in their analysis of
market power in the California wholesale electricity market.
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A second justification for our introduction of the inefficiency bound into the
classical stochastic production frontier model is that our model points to an
explanation for the finding of positive skewness in many applied studies using the
traditional stochastic frontier, and thus to the potential of our bounded inefficiency
model to explain these positive (“wrong”) skewness findings.3 Researchers have
often found positive instead of negative skewness in many samples examined in
applied work, which may point to the stochastic frontier being incorrectly specified.
However, we conjecture that the distribution of the inefficiency term may itself be
negatively skewed, which may happen if there is an additional truncation on the right
tail of the distribution. One such specification in which this is a natural consequence
is when the distribution of the inefficiency term is doubly truncated normal, that
is, a normal distribution truncated at a point on the right tail as well as at zero. As
normal distributions are symmetric, the doubly truncated normal distribution may
exhibit negative skewness if the truncation on the right is closer to the mode than
that on the left. We also consider the truncated half normal distribution, which is a
special case of the former, and the truncated exponential distribution. Although these
two distributions are always positively skewed, the fact that there is a truncation on
the right tail makes the skewness very hard to identify empirically. That is to say,
when the true distribution of the one-sided inefficiency error is bounded (truncated),
the extent to which skewness is present in any finite sample may be substantially
reduced, often to the extent that negative sample skewness for the composite error is
not statistically significant. Thus the finding of positive skewness may speak to the
weak identifiability of skewness properties in a bounded frontier model.

In addition to proposing new parametric forms for the classical stochastic
production frontier model, we also show that our models are identifiable, and in
which cases the identification is local or global. Initial consistent estimates are based
on method of moments estimates, based on explicit analytic expressions which we
derive, and which either can be used in a two-step method of scoring or as starting
values in solving the normal equations for the relevant sample likelihood, based
on the parametric density functions whose expressions we also provide. As the
regulatory conditions for maximum likelihood estimation method are satisfied, we
employ it in order to obtain consistent and asymptotically efficient estimates of the
model parameters, including this of the inefficiency bound. We conduct Monte Carlo
experiments to study the finite sample behavior of our estimators. We also extend
the model to the panel data setting and allow for a time-varying inefficiency bound.
By allowing the inefficiency bound to be time-varying, we contribute another time-
varying technical efficiency model to the efficiency literature. Our model differs
from those most commonly used in the literature, e.g., Cornwell et al. (1990),
Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993) in

3The term wrong is set in quotes to point out that the conventional wisdom that positive skewness
is inconsistent with the standard stochastic frontier production model errors skewness is not
necessarily the correct wisdom.
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that, while previous time-varying efficiency models are time-varying in the mean
or intercept of individual effects, our model is time-varying in the lower support of
the distribution of individual effects.

The outline of this paper is as follows. In Sect. 3.2 we present the new models
and derive analytic formula for density functions and expressions that allow us to
evaluate inefficiencies. Section 3.3 deals with the positive skewness issue inherent
in the traditional stochastic frontier model. Section 3.4 discusses the identification
of the new models and the methods of estimation. Section 3.5 presents Monte Carlo
results on the finite sample performance of the bounded inefficiency model vis-a-
vis classical stochastic frontier estimators. The extension of the new models to panel
data settings and specification of the time-varying bound is presented in Sect. 3.6.
In Sect. 3.7 we give an illustrative study of the efficiency of US banking industry in
1984–2009. Section 3.8 concludes.

3.2 The Model

We consider the following Cobb-Douglas production model,

yi D ˛0 C
KX
kD1

˛kxi;k C "i (3.1)

where

"i D vi � ui : (3.2)

For every production unit i , yi is the log output, xik the k-th log input, vi the noise
component, and ui the (nonnegative) inefficiency component. We maintain the usual
assumption that vi is iid N.0; �2v /, ui is iid, and vi and ui are independent from each
other and from regressors. Clearly we can consider other more flexible functional
forms for production (or cost) that are linear or linear in logarithms, such as the
generalized Leontief or the transcendental logarithmic, or ones that are nonlinear.
The only necessary assumption is that the error process "i is additively separable
from the functional forms we employ in the stochastic production (cost) frontier.

As described in the introduction, our model differs from the traditional stochastic
frontier model in that ui is of bounded support. Additional to the lower bound, which
is zero and which is the frontier, we specify an upper bound to the distribution of
ui (in the case of the cost frontier "i D vi C ui ). In particular, we assume that ui is
distributed as doubly truncated normal, the density of which is given by

f .u/ D
1
�u
�.

u��
�u
/

ˆ.
B��
�u
/ �ˆ.��

�u
/
1Œ0;B�.u/; �u > 0;B > 0 (3.3)

where ˆ.�/ and �.�/ are the cdf and pdf of the standard normal distribution,
respectively, and 1Œ0;B� is an indicator function. It is a distribution obtained by
truncating N.�; �2u / at zero and B > 0. The parameter B is the upper bound of
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the distribution of ui and we may call it the inefficiency bound. The inefficiency
bound may be a useful index of competitiveness of a market or an industry.4 In the
banking industry, which we examine in Sect. 3.7, the inefficiency bound may also
represent factors that influence the financial health of the industry. It may be natural
to extend this specification and treat the bound as a function of individual specific
covariates zi , such as exp.ı0zi /, which would allow identification of bank-specific
measures of financial health.

Using the usual nomenclature of stochastic frontier models, we may call the
model described above the normal-doubly truncated normal model, or simply,
the doubly truncated normal model. The doubly truncated normal model is rather
flexible. It nests the truncated normal (B ! 1), half normal (� D 0 and B ! 1),
and truncated half normal models (� D 0). One desirable feature of our model
is that the doubly truncated normal distribution may be positively or negatively
skewed, depending on the truncation parameter B . This feature provides us with
an alternative explanation for the positive skewness problem prevalent in empirical
stochastic frontier studies. This will be made more clear later in the paper. Another
desirable feature of our model is that, like the truncated normal model, it can
describe the scenario that only a few firms in the sector are efficient, a phenomenon
that is described in the business press as “few stars, most dogs”, while in the
truncated half normal model and the truncated exponential model (in which the
distribution of ui is truncated exponential), most firms are implicitly assumed to be
relatively efficient.5

In Table 3.1 we provide detailed properties of our model. In particular, we
present the density functions for the error term "i , which is necessary for maximum
likelihood estimation, and the analytic form forEŒui j"i �, which is the best predictor
of the inefficiency term ui under our assumptions, and the conditional distribution of
ui given "i , which is useful for making inferences on ui . The results for the truncated
half normal model, a special case of the doubly truncated normal model (� D 0), are
also presented. Finally, we also provide results for the truncated exponential model,
in which the inefficiency term ui is distributed according to the following density
function,

f .u/ D 1

�u.1 � e�B=�u/
e� u

�u 1Œ0;B�.u/; �u > 0;B > 0 (3.4)

The truncated exponential distribution can be further generalized to the truncated
gamma distribution, which shares the nice property with the doubly truncated
normal distribution that it may be positively or negatively skewed.

4The inefficiency bound has a natural role in gauging the tolerance for or ruthlessness against
inefficient firms. It is also worth mentioning that, using this bound as the “inefficient frontier,” we
may define “inverted” efficiency scores in the same spirit of “Inverted DEA” described in Entani
et al. (2002).
5We thank C. A. K. Lovell for providing us this link between our econometric methodology and
the business press.
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For the doubly truncated normal model and the truncated half normal model, the
analytic forms of our results use the so-called 
 -parametrization, which specifies

� D
q
�2u C �2v ; 
 D �2u =�

2: (3.5)

By definition 
 2 Œ0; 1�, a compact support, which is desirable for the numerical
procedure of maximum likelihood estimation. Another parametrization initially
employed by Aigner et al. (1977) is the 	-parametrization

� D
q
�2u C �2v ; 	 D �u=�v: (3.6)

We may check that when B ! 1, the density function for "i in the doubly
truncated normal model reduces to that of the truncated normal model introduced
by Stevenson (1980). Furthermore, if� D 0, it reduces to the likelihood function for
the half normal model introduced by Aigner et al. (1977). Similarly, the truncated
exponential model reduces to the exponential model introduced by Meeusen and
van den Broeck (1977).

3.3 The Skewness Issue

A common and important methodological problem encountered when dealing with
empirical implementation of the stochastic frontier model is that the residuals
may be skewed in the wrong direction. In particular, the ordinary least squares
(OLS) residuals may show positive skewness even though the composed error term
v � u should display negative skewness, in keeping with u0s positive skewness.
This problem has important consequences for the interpretation of the skewness
of the error term as a measure of technological inefficiency. It may imply that a
nonrepresentative random sample had been drawn from an inefficiency distribution
possessing the correct population skewness (see Carree 2002; Greene 2007; Simar
and Wilson 2010; Almanidis and Sickles 20116; Feng et al. 2012). This is considered
a finite sample “artifact” and the usual suggestion in the literature and by programs

6This paper goes far beyond the topics covered in Almanidis and Sickles (2011). In this paper we
are concerned with the set identification of the bounded inefficiency model as well as in its use
to better understand the behavior of this lower bound as the banking industry moved towards and
through the financial meltdown. Such a pattern of a lower bound for inefficiency during the period
prior to the meltdown speaks to the industry becoming lax in its allowance of banks that are not
efficient in their provision of intermediation services as they appeared to focus instead on other
off-balance sheet activities for which of course we do not have much credible information, as they
are off-balance sheet operations. Our paper also shows the advantages of specifying a lower bound
and estimating it, along with the other parameters of the model. Our paper is based on substantial
efforts in data construction and uses data that has not appeared yet in the literature. Our paper also
carries out a much more detailed set of MC experiments.
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implementing stochastic frontier models is to treat all firms in the sample as fully
efficient and proceed with straightforward OLS based on the results of Olson et al.
(1980) and Waldman (1982). As this would suggest setting the variance of the
inefficiency term to zero, it would have problematic impacts on estimation and on
inference. Simar and Wilson (2010) suggest a bagging method to overcome the
inferential problems when a half-normal distribution for inefficiencies is specified.
However, a finding of positive skewness in a sample may also indicate that
inefficiencies are in fact drawn from a distribution which has positive skewness.7

Carree (2002) considers one-sided distributions of inefficiencies (ui ) that can
have negative or positive skewness. However, Carree (2002) uses the binomial
distribution, which is a discrete distribution wherein continuous inefficiencies fall
into discrete “inefficiency categories” and which implicitly assumes that only a
very small fraction of the firms attain a level of productivity close to the frontier,
especially when ui is negatively skewed.8

Our model addresses the positive skewness problem in the spirit of Carree (2002),
but with a more appealing distributional specification on the efficiency term. For the

doubly truncated normal model, let �1 D ��
�u

, �2 D B��
�u

, and �k � �k1 �.�1/��k2 �.�2/
ˆ.�2/�ˆ.�1/ ,

k D 0; 1; : : : ; 4. Note that �0 is the inverse Mill’s ratio and it is equal to
p
2= in

the half normal model, and that �1 and �2 are the lower and upper truncation points
of the standard normal density, respectively. The skewness of the doubly truncated
normal distribution is given by

Su D 2�30 � �0.3�1 C 1/C �2�
1 � �20 C �1

�3=2 : (3.7)

It can be checked that when B > 2�, Su is positive and when B < 2�, Su is
negative. Since B > 0 by definition, it is obvious that only when � > 0 is it
possible for ui to be negatively skewed. The larger � is, the larger range of values
B may take such that ui is negatively skewed. Consider the limiting case where a
normal distribution with � ! 1 is truncated at zero and B > 0. An infinitely

7Simar and Wilson (2010) consider inferences on efficiency conditional on composite error. They
propose a bagging method and a bootstrap procedure for interval prediction and show that they are
superior over the conventional methods that are based on the estimated conditional distribution.
The relation of theirs to our paper is that they show that their methods work even when “wrong
skewness” appears, while traditional MLE-based procedures do not. When the latter discovers a
“wrong skewness”, either (i) obtain a new sample, or (ii) re-specify the model (but not like what
we do). What is common between our paper and SW is that both address the skewness problem.
But “wrong skewness” in SW is due to finite sample bad luck, while we argue that it may be due to
model specification. Larger samples would correct finite sample bad luck, but not if the underlying
DGP is doubly truncated as we propose. The skewness problem is not the main issue in SW but
their paper does have implications for it. The SW paper focuses on computational matters, while
our paper concerns econometric specification and estimation.
8A negatively skewed doubly truncated normal inefficiency distribution does not necessarily imply
that there are only few units in the population that operate close to the frontier.
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large � means that there is effectively no truncation on the left at all and that any
finite truncation on the right gives rise to a negative skewness. Finally, for both
the truncated half normal model (� D 0) and the truncated exponential model, the
skewness of ui is always positive.

Consequently, the doubly truncated normal model has a residual that has an
ambiguous sign of the skewness, which depends on an unobservable relationship
between the truncation parameter B and �. We argue that this ambiguity theoret-
ically could explain the prevalence of the positive skewness problem in applied
stochastic frontier research. When the underlying data generating process for ui
is based on the doubly truncated normal distribution, increasing sample size does
not solve the positive skewness problem. The skewness of the OLS residual " may
be positively skewed even when sample size goes to infinity. Hence the positive
skewness problem also may be a large sample problem.9

Based on the above discussion, it is clear that the doubly truncated normal
model generalizes the stochastic frontier model in a way that allows for positive
as well as negative skewness for the residual. In addition, although the truncated
half normal and the truncated exponential models have negative (correct) skewness
in large samples, the existence of the inefficiency bound reduces the identifiability
of negative skewness in finite sample, often to the extent that positive skewness
appears. This implies that finding a positive skewness does not necessarily mean
that the stochastic frontier model is inapplicable. It may be due to a finite sample
“artifact” (Simar and Wilson 2010) or it may be that we are studying a market or an
industry in which firms do not fall below some minimal level of efficiency in order
to remain in the market or industry. In the latter case, the traditional unbounded
support for the inefficiency term would be misspecified and should be substituted
with the model of bounded inefficiency.

3.4 Identification and Estimation

3.4.1 Identification

We utilize the set or partial identification concepts that have been revisited (see, for
example, Tamer 2010) and that were enunciated early in the production setting by
Marschak and Andrews (1944) (see also the critique by Nerlove (1965)). That this
has been the relatively recent interest of many econometricians speaks to a cycle
of classical econometric study that has defined the production frontier portion of

9See Almanidis and Sickles (2011) for more discussion and simulation study on positive skewness
issue in parametric stochastic frontier models.
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Peter Schmidt’s research that our paper develops. We can put it into a historical
perspective by looking at the intellectual development of the production function
by Paul Samuelson (see his 1979 review of his professor Paul Douglas), his student
Lawrence Klein whose classic Textbook of Econometrics (1953) sold at the unheard
price of $6.00 and which provides insights today for those interested in production
econometrics, his student Arthur Goldberger (see, for example, “The Interpretation
and Estimation of Cobb-Douglas Functions”, 1968), his student Jan Kmenta (see,
for example, Zellner et al. 1966), and his student Peter Schmidt, whose work on the
stochastic frontier production function with Dennis Aigner and C. A. Knox Lovell
(1977) is regarded as the seminal research contribution to the field of productive
efficiency econometrics. In turn, each of these legacies arguably can be viewed
as the most successful student of their respective professor. Our contribution is
leveraged by these seminal contributions as well as the selective constraints that
economic theory has imposed on their contributions, which we try to address in our
stochastic frontier model with bounded inefficiency.

Identification using first and second order moments is a well-accepted methodol-
ogy. Our models are not identified by such moments alone and require higher order
moments. The use of higher order moments to identify and estimate econometric
models is well-known and has proven quite important in parametric econometric
modeling (see, for example, Cragg 1997; Dagenais and Dagenais 1997). Identi-
fication strategies that utilize the properties of the underlying joint distribution
function for the exponential class, requiring the identification of distributions
defined by third and forth order moments, have been the mainstay of recent work in
nonparametric identification (Newey and Powell 2003; Matzkin 2012). Alternative
approaches have also been introduced to utilize other types of information, such
as heteroskedastic covariance restrictions to obtain point and set identification for
parametric and semiparametric models (Lewbel 2012). We explore the sensitivity of
the use of such higher order moments restrictions in our Monte Carlo experiments.

Identification of our model may be done in two parts. The first part is concerned
with the parameters describing the technology, and the second part identifies the
distributional parameters using the information contained in the distribution of
the residual. For models without an intercept term the identification conditions
for the first part are well known and are satisfied in most of the cases. The
structural parameters can be consistently obtained by applying straightforward
OLS. However, for models containing an intercept term there is a need to bias
correction it using the distributional parameters since EŒ"� D �EŒu� ¤ 0 (see
Afriat 1972; Richmond 1974). Therefore, the identification of the second part, which
is based on method-of-moments requires a closer examination. Table 3.2 lists the
population (central) moments of ."i / for the doubly truncated normal model and
the truncated exponential model. The moments of the truncated half normal model
can be obtained by setting � D 0 in the doubly truncated normal model. These
results are essential for the discussion of identification and the method of moments
estimation.
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Table 3.2 Central moments of "

Moment Doubly-truncated-normal
 1 ��� �u�0

 2 �2u
�
1� �20 C �1

�C �2v

 3 ��3u
�
2�30 � 3�1�0 � �0 C �2

�

 4 �4u
�
3C 3�1 C �3 � 2�20 � 4�0�2 C 6�20�1 � 3�40

�C 6�2u �
2
v

�
1� �20 C �1

�C 3�4v

 5 �10�2v �3u
�
2�30 � 3�1�0 � �0 C �2

�

��5u
�
�4 C 4�2 � 5�0�3 C 10�20�2 � 10�30�1 C 10�30 � 15�0�1 C 4�50 � 7�0

�

See the text for the definitions of �k , k D 0; : : : ; 4

Truncated-exp.
 1 ��u

�
1� �

e��1

�

 2 �2v C �2u
e2��.�2C2/e�C1

e2��2e�C1

 3 ��3u 2e
3�

�.�3C6/e2�C.6��3/e��2

e3��3e2�C3e��1

 4 �4u
�9e4�C36e3��54e2�C36e��9C6�2e� .e2��2e�C1/C�4e� .e2�Ce�C1/

�e4�C4e3��6e2�C4e��1

C6�2v �2u e
2�

�.�2C2/e�C1

e2��2e�C1
C 3�4v , � D B=�u

To examine the identification of the second part we note that under the assump-
tion of independence of the noise and inefficiency term the following equality holds

E
�
." � E."//4

� � 3 �E �." � E."//2
��2

D  4 � 3 22 D E
�
.u �E.u//4� � 3

�
E
�
.u � E.u//2

��2
(3.8)

This is a measure of excess kurtosis and for the truncated half-normal model is
derived as

 4 � 3 22 D �4u .��3 Q�0 C 3� Q�0 � 4�2 Q�20 � 4 Q�20 � 3�2 Q�20 � 12� Q�30/ (3.9)

where Q�0 D .2/�1=2���.�/
ˆ.�/� 1

2

. Notice that for normal distribution Q�0 D 0 and thus the

excess kurtosis is also zero.
After multiplying (3.9) by  �4=3

3 we eliminate �u and the resulting function,
which we denote by g has only one argument �

g.�/ D ��3 Q�0 C 3� Q�0 � 4�2 Q�20 � 4 Q�20 � 3�2 Q�20 � 12� Q�30�
2 Q�30 � 3� Q�20 � Q�0 C �2 Q�0

��4=3 (3.10)



58 P. Almanidis et al.

The weak law of large numbers implies that

plim
1

n

X
i

O"ki D mk D  k (3.11)

The first order moment is zero by definition and thus is not useful for identifi-
cation purposes. By employing the Slutsky theorem we can specify the following
functionG

g.�/ D m4 � 3m2
2

m4=3

H)

G.�/ D g.�/ � m4 � 3m2
2

m4=3

Similarly, we can derive the function G for the normal-truncated exponential
model with function g expressed by

g.�/ D 36e2� � 24e� � 24e3� C 6e4� � �4e� � 4�4e2� � �4e3� C 6

.6e2� � 4e� � 4e3� C e4� C 1/.� 2e3��.�3C6/e2�C.6��3/e��2
e3��3e2�C3e��1 /4=3

(3.12)

Both the truncated half normal model and the truncated exponential model are
globally identified. To see this, we can examine the monotonicity of the function
G with respect to the parameter � which will allow us to express this parameter
(implicitly) as a function of sample moments and data. This condition provides the
necessary and sufficient condition for global identification ala Rothenberg (1971).
For the truncated half normal model, G is monotonically decreasing and for the
truncated exponential model, G is monotonically increasing. Hence, in both cases,
G is invertible and � can be identified. The identification of other parameters then
follows from the third order moment of least squares residuals. Note, however, that
for large values of � (e.g., � > 5 for the normal-truncated half-normal model and
� > 20 for the normal-truncated exponential model), the curve g.�/ is nearly flat
and gives poor identification. � can be large for two reasons: either �u goes to zero
or the bound parameter is large. In the first case the distribution of the inefficiency
process approaches the Dirac-delta distribution which makes it very hard for the
distributional parameters to be identified. This limiting case is discussed in Wang
and Schmidt (2008). In the second case the distribution of the inefficiency term
becomes unbounded as in the standard stochastic frontier models for which it is
straightforward to show that the model is globally identified (see Aigner et al. 1977;
Olson et al. 1980).

It is not clear, however, that the doubly truncated normal model is globally iden-
tifiable. However, local identification can be verified. We may examine �4=3

3 . 4 �
3 22 / and �5=3

3 . 5�10 2 3/, both of which are functions of �1 and �2 only and we
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denote them as g1.�1; �2/ and g2.�1; �2/, respectively. Let Og1 and Og2 be the sample
versions of g1 and g2, respectively, we have the following system of identification
equations,

G1.�1; �2/ � g1.�1; �2/ � Og1 D 0

G2.�1; �2/ � g2.�1; �2/ � Og2 D 0:

By the implicit function theorem (or Rothenberg 1971), the identification of �1 and
�2 depends on the rank of the matrix

H D
 
@g1
@�1

@g1
@�2

@g2
@�1

@g2
@�2

!
:

If H is of full rank, then �1 and �2 can be written as functions of Og1 and Og2;
the identification of the model then follows. The analytic form of H is very
complicated, but we may examine the invertibility of H by numerically evaluating
g1 and g2 and inferring the sign of each element in H . It can be verified that the
determinant of H is nonzero in neighborhoods within I1, I2, and I4, the definitions
of which are given as follows,

(i) I1 � f.�;B/j� � 0; B > 0g
(ii) I2 � f.�;B/j� > 0;B 2 .0; 2�/g

(iii) I3 � f.�;B/jB D 2� > 0g
(iv) I4 � f.�;B/j� > 0;B > 2�g.

The line I3 � f.�;B/jB D 2� > 0g corresponds to the case whereB D 2� and
 3 D 0, hence the functions g1 and g2 are not continuous and the implicit function
theorem is not applicable. Nonetheless, simulation results in the next section show
that when the true values of B and � satisfy B D 2�, bothB and � are consistently
estimated. This may indicate that the restricted (B D 2�) model may be nested in
the unrestricted model and the model is locally identifiable on I2

S
I3
S
I4.

We may treat the doubly truncated normal model as a collection of different sub-
models corresponding to the different domains of parameters. Treated separately,
each of the sub-models is globally identified. In maximum likelihood estimation, the
separate treatment is easily achieved by constrained optimization on each parameter
subset. For example, on the line of f.�;B/j� D 0; B > 0g � I1, the doubly
truncated normal model reduces to the truncated half normal model. As another
useful example, the line I2 corresponds to a sub-model that has positive skewness
even asymptotically.

3.4.2 Method of Moment Estimation

The method-of-moments (Olson et al. 1980) may be employed to estimate our
model or to obtain initial values for maximum likelihood estimation. In the first
step of this approach, OLS is used to obtain consistent estimates of the parameters
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describing the technology, apart from the intercept. In the second step, using the
distributional assumptions on the residual, equations of moment conditions are
solved to obtain estimates of the parameters describing the distribution of the
residual.

More specifically, we may rewrite the production frontier model in (3.1) and
(3.2) as

yi D .˛0 � Eui /C
KX
kD1

˛kxi;k C "�
i ;

where "�
i D "i C .Eui / has zero mean and constant variance �2" . Hence OLS yields

consistent estimates for "�
i and ˛k , k D 1; : : : ; K . Equating the sample moments of

estimated residuals .O"�
i / to the population moments, one can solve for the parameters

associated with the distribution of ."�
i /.

3.4.3 Maximum Likelihood Estimation

For more efficient estimation, we may use maximum likelihood estimation (MLE).
Note that with the presence of a noise term vi , the range of residual is unbounded and
does not depend on the parameter. No other standard regularity conditions might be
questioned. In the remainder of this section we provide the log-likelihood functions
for the bounded inefficiency model for the three parametric distributions we have
considered. Note that in practice we may also need the gradients of the log likelihood
function. The gradients are complicated in form but straightforward to derive. These
are provided in the appendix.

In addition to the 
 -parametrization discussed earlier, we re-parametrize the
bound parameter with another parameter QB D exp.�B/. Unlike the bound, QB
takes values in compact unit interval which facilitates the numerical procedure of
maximum likelihood estimation as well as establishing the asymptotic normality of
this parameter. When QB lies in the interior of parameter space, the MLE estimator
is asymptotically normal (see Rao 1973; Davidson and MacKinnon 1993 among
others).

The log-likelihood function for the doubly truncated normal model with

 -parameterization is given by

lnL D �n ln

"
ˆ.

� ln QB � �

�u.�; 
/
/ �ˆ. ��

�u.�; 
/
/

#

�n ln � � n

2
ln.2/ �

nX
iD1

."i C �/2

2�2
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C
nX
iD1

ln

(
ˆ

 
.� ln QB C "i /

p

=.1� 
/ � .ln QB C �/

p
.1 � 
/=


�

!

�ˆ
 
"i
p

=.1� 
/� �

p
.1 � 
/=


�

!)
; (3.13)

where "i D yi � xi˛, xi D .1; xik/, and ˛ D .˛0; ˛k/
0.

�u.�; 
/ D �
p

: (3.14)

This can be expressed in terms of the 	-parametrization as in Aigner et al. (1977)
by substituting 
 in (3.13) with


.	/ D 	2

1C 	2
: (3.15)

The log-likelihood function for the truncated half normal model is

lnL D �n ln

 
ˆ

 
� ln QB
�u.�; 
/

!
� 1

2

!
� n ln � � n

2
ln.2/

�
nX
iD1

"2i
2�2

C
nX
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; (3.16)

Again, substituting 
 into (3.16) with 
.	/ in (3.15), we get the logL with
	-parametrization.

Finally, the log-likelihood function for the truncated exponential model with

 -parametrization is given by

lnL D �n
2

ln 
 � n ln � � n ln

�
1 � e

ln QB
�1=2

�

	
C n

2

1 � 
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iD1
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/�1=2

�
C
s
1 � 




!#
; (3.17)

where "i D y � xi˛.
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After estimating the model, we can estimate the composed error term "i :

O"i D yi � Ǫ0 �
X

xi;k Ǫk; i D 1; � � � ; n: (3.18)

From this we can estimate the inefficiency term ui using the formula forE.ui j"i / in
Table 3.1.

One reasonable question is whether or not one can test for the absence or the
presence of the bound (H0 W QB D 0 vs. H1 W QB > 0), which one may wish to
test since this would suggest that the proper specification would be the standard
SF model which assumes no bound as a special case of our more general bounded
SF model. The test procedure is slightly complicated but still feasible. The first
complication arises from the fact that QB lies on the boundary of the parameter space
under the null. Second, it is obvious from the log-likelihood functions provided
above that the bound is not identified in this case and it can be shown that any
finite order derivative of the log-likelihood function with respect to QB is zero. Thus
the conventional Wald and Lagrange Multiplier (LM) statistics are not defined and
the Likelihood Ratio (LR) statistic has a nonstandard asymptotic distribution that
strictly would dominate the �2.1/ distribution. Lee (1993) derives the asymptotic

distribution of such an estimate as a mixture of �2 distributions under the null that its
value is zero, focusing in particular on the SF model under the assumption of half-
normally distributed inefficiencies. Here 	 is globally identified, which can also be
seen using the method-of-moments estimator provided in Aigner et al. (1977). Lee
(1993) provides useful one-to-one reparametrization which transform the singular
information matrix into a nonsingular one. However, since the bound in our model
case is not identified in this situation, there is no such re-parametrization and hence
this procedure cannot be used. An alternative is to apply the bootstrap procedure
proposed by Hansen (1996, 1999) to construct asymptotically equivalent p-values
to make an inference. To implement the test we treat the O"i (i D 1; : : : ; n) as a
sample from which the bootstrap samples O".m/i (i D 1; : : : ; nIm D 1; : : : ;M ) are
drawn with replacement. Using the bootstrap sample we estimate the model under
the null and the alternative of bounded inefficiency and construct the corresponding
LR statistic. We repeat this procedure M times and calculate the percentage of
times the bootstrap LR exceeds the actual one. This provides us with the bootstrap
estimate of the asymptotic p-value of LR under the null.

3.5 Panel Data

In the same spirit as Schmidt and Sickles (1984) and Cornwell et al. (1990), we may
specify a panel data model of bounded inefficiencies:

yit D ˛0 C
KX
kD1

˛kxit;k C "it (3.19)
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where

"it D vi t � ui t : (3.20)

We assume that the inefficiency components .ui t / are positive, independent from
the regressors, and are independently drawn from a time-varying distribution with
upper bound Bt . We may set Bt to be time-invariant. However, it is certainly more
plausible to assume otherwise, as the market or industry may well become more
or less forgiving as time goes by, especially in settings in which market reforms
are being introduced or firms are adjusting to a phased transition from regulation to
deregulation.

Note that since ui t is time-varying, the above panel data model is in effect a time-
varying technical efficiency model. Our model differs from the existing literature in
that, while previous time-varying efficiency models, notably Cornwell et al. (1990),
Kumbhakar (1990), Battese and Coelli (1992), and Lee and Schmidt (1993), are
time-varying in the mean or intercept of individual effects, our model is time-
varying in the upper support of the distribution of inefficiency term ui .

The assumption that ui t is independent over time simplifies estimation and
analysis considerably. In particular, the covariance matrix of "i � ."i1; : : : ; "iT /

0
is diagonal. This enables us to treat the panel model as a collection of cross-section
models in the chronological order. We may certainly impose more structure on the
sample path of the upper bound of ui t , Bt , without incurring heavy costs in terms of
analytic difficulty. For example, we may impose smoothness conditions on Bt . This
is empirically plausible, indeed, since changes in the market competitive conditions
may come gradually. And it is also technically desirable, since imposing smoothness
conditions gives us more degree of freedom in estimation, hence better estimators
of model parameters. A natural way of doing this is to let Bt be a sum of weighted
polynomials,

Bt D
KX
iD0

bi .t=T /
i ; t D 1; : : : ; T; (3.21)

where .bi / are constants. We may also use trigonometric series, splines, among
others, in the modeling of Bt . For an extensive survey of efforts to generalize such
heterogeneities in efficiencies see Sickles et al. (2013).

3.6 Simulations

To examine the finite sample performance of the MLE estimator of the doubly
truncated normal model,10 we run a series of Monte Carlo experiments in the
standard cross-sectional setting. The data generating process is (3.1) and (3.2) with

10The results for the truncated half-normal and truncated exponential models are available upon
the request.
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one regressor x and no constant term and is based on the data generating process
utilized in study 2 of Aigner, Lovell, and Schmidt. We maintain the assumption
that vi is iid N.0; �2v /, ui is iid, and vi and ui are independent from each other
and from regressors. The number of repetitions is 1;000. Throughout we keep the
coefficient ˛ on the single regressor technology parameter set at 0:6 and examine
performances in terms of bias and mean absolute error as we change in each of the
distributional parameters (� , 
 , �, and B). As the SF benchmark we use the singly
truncated normal model (Stevenson 1980) on the simulated data. We report average
estimates and mean absolute errors (MAE) in Tables 3.3–3.6. Each of these sets of
experiments selectively change the distributional parameters. We draw the following
conclusions from these experiments.11

First, all parameters in the doubly truncated normal model appear to be well-
estimated, with biases and MAE’s that fall as sample sizes rise. The biases are
generally small, and the MAE’s of almost all estimates decrease at

p
N rate as N

increases, except that of O� in a couple of particular cases. More specifically, when
� is small (i.e., the variation in the composite error is small), O� does not converge
at the optimal rate as N increases (see Table 3.3). The same happens when B is
large (see Table 3.5). This observation is connected with the well-known difficulty
of identifying � in the singly truncated model (B ! 1) from finite sample. As is
well known, the technological parameter ˛ in the singly truncated normal model is
consistently estimated. However, estimates of distributional parameters in the singly
truncated model are not well-defined and thus we do not calculate the corresponding
MAE’s.

Second, Table 3.3 shows that as � becomes smaller, the MAE of Ǫ is monotone
decreasing, while the MAE’s of O� , O
 , and O� is monotone increasing. To reconcile the
apparent divergence, note that the composite error " is noise for the technological
parameters, but signal for distributional parameters. The effect of � on the MAE of
OB is ambiguous, which decreases at first and then increases as � becomes smaller.

Third, if we mistakenly estimate a singly truncated model on a DGP with double
truncation, we tend to underestimate the average technical efficiency (ATE). This is
understandable since the singly truncated model may treat some extreme (negative)
measurement errors as inefficiencies. Within the doubly truncated model, it is also
clear that as B becomes larger, the ATE decreases (See Table 3.5). However, our
simulation results show that the efficiency ranking would not be affected if we
estimate a misspecified model.

Finally, as is expected, MLE correctly estimates the doubly truncated normal
model when the composite error has positive population skewness. This is evident
in Table 3.6, where the third case (� D 0:3, B D 0:5) corresponds to negative
(positive) skewness in u ("). In all cases, the double truncation in the DGP of
u makes finite-sample positive skewness more probable, resulting in many zero
O
 ’s (super-efficiency) from the misspecified (singly truncated) model. Hence the
average O
 ’s in the misspecified model are generally much lower than the true value.

11We have similar limited Monte Carlo results based on two regressors with varying correlations
and our results are qualitatively similar. Results are available on request.
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3.7 An Empirical Illustration to Analyze US Banking
Industry Dynamics

3.7.1 Empirical Model and Data

We now apply the bounded inefficiency (BIE) model to an analysis of the US
banking industry, which underwent a series of deregulatory reforms in the early
1980s and 1990s, and experienced an adverse economic environment in the last
few turbulent years of 2000s.12 Our analysis covers a lengthy period between 1984
and 2009 and our illustration aims to use the panel variant of our BIE model to
capture efficiency trends of the US banking sector during these years as well as how
the lower bound of inefficiency also changed as the market became more or less
competitive vis-a-vis inefficient firms.

Following Adams et al. (1999) and Kneip et al. (2012), we specify a multi-
output/multi-input stochastic output distance frontier model as13

Yit D Y �
i t

0
 CX 0
i tˇ C vi t � ui t ; (3.22)

where Yit is the log of real estate loans; Xit is the negative of log of inputs,
which include demand deposit (dd), time and savings deposit (dep), labor (lab),
capital (cap), and purchased funds (purf).14 Y �

i t includes the log of commercial and
industrial loans/real estate loans (ciln) and installment loans/real estate loans (inln).
In order to account for the riskiness and heterogeneity of the banks we include the
log of the ratio of equity to total assets (eqrt) which usually measures the risk of
insolvency of the banks in banking literature.15 The lower the ratio the more riskier
a bank is considered. We assume the vi t are i id across i and t , and for each t ,
ui t has a upper bound Bt . Then we can treat this model as a generic panel data
bounded inefficiency model as discussed in Sect. 3.5. Once the individual effects
ui t are estimated, technical efficiency for a particular firm at time t is calculated as
TE D exp.ui t � max1�j�N ujt /.

The output distance function is known as a Young index (ratio of the geometric
mean of the outputs to the geometric mean of the inputs) described in Balk
(2008), which leads to the Cobb-Douglas specification of the distance function

12These deregulations gradually allowed banks in different states to merge with other banks across
the state borders. The Reigle-Neal Act that was passed by the Congress in 1994 also allowed the
branching by banks across the state lines.
13For more discussion on stochastic distance frontiers see Lovell et al. (1994).
14Purchased funds include federal funds purchased and securities sold under agreements to repur-
chase, time deposits in $100,000 denominations, mortgage debt, bank’s liability on acceptances,
and other liabilities that are not demand deposits and retail time and savings deposits.
15We exclude from the sample banks with eqrt less that 0.02. Typically, these banks are close
to failure and estimation of their efficiency scores require special treatments (see Wheelock and
Wilson 2000; Almanidis 2013 for more discussion).
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introduced by Klein (1953). Although this functional form has been criticized for
its separability and curvature properties it remains a reasonable and parsimonious
first-order local approximation to the true function (Coelli 2000) and we use it
in our limited empirical illustration of the bounded stochastic frontier model. We
use the parsimonious Cobb-Douglas model as well to allow comparisons with
the results from our Monte Carlo simulations, which due to the need to estimate
highly nonlinear models, have been somewhat limited by computational and time
constraints to a relatively simple linear in logs specification.16 Translog distance
function estimates, which one may view as more general, have their own attendant
problems due to multicollinearity in the second order terms of the four-output/five-
input technology. This typically is addressed by utilizing additional restrictions,
such as those imposed by cost minimization or profit maximization, in order to be
empirically identify the translog parameters.17 We do not use these side conditions
to empirically identify the parameters due to our use of a stochastic frontier model
that admits to technical inefficiency but does not attempt to trace this inefficiency to
its logical implication in the first order conditions of cost minimization or profit
maximization (the so-called “Greene problem”, Kutlu 2013). Utilization of side
conditions to address errors in the optimization of allocations is beyond the scope
of this paper. That said, our translog estimates have provided qualitatively similar
results, which are available on request.

We use US commercial banking data from 1984 first quarter through 2009 third
quarter. There are several ways in which data can be merged or deleted depending on
whether or not banks continued as independent entities during the sample period we
consider in our illustration of the insights gained by the bounded inefficiency model.

16The empirical illustration is used in part to link the use of the Cobb–Douglas functional form
in expressing the provision of banking intermediation services to Peter Schmidt’s intellectual
predecessors, whom we have discussed above, and who used the Cobb-Douglas functional form
substantially. It also has been the predominate functional form used by the NBER’s Productivity
Program in their seminal work on productivity and growth. We understand the limitations of the
Cobb–Douglas functional form. Indeed, one of the authors has been writing on the topic for 30
years (Guilkey et al. 1983). Recent work on banking efficiency and returns to scale by Wheelock
and Wilson (2012) have fitted local linear and local quadratic estimator with on the order of one
million parameters to a cost relationship and use duality theory to link the cost estimates to the
returns to scale in the banking industry and utilize multi-step bootstrapping methods to assess
significance. It is unclear what has been estimated in such an exercise as standard regularity
conditions for the function to indeed be a cost function have not been checked, nor it is clear
how such a test would be conducted. Obviously, with such an overparameterized model, they
overwhelmingly reject generalizations of the Cobb–Douglas, such as second-order Taylor series
expansions in logs, such as the translog functional form. Without the regularity conditions met by
at least some of the observations their results are meaningless. Moreover, it is not even clear that
their use of the bootstrap in the multi-step algorithms they use is even valid. We find that regularity
conditions are met by a substantial portion of the data we use and do find little qualitative difference
in terms of the efficiency patterns, which is of course what the paper focuses on, between those
generated by the Cobb–Douglas and the translog.
17For an example of the use of such side conditions and with just such justifications in the multi-
output cost function setting see Hughes and Mester (1993).
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One approach is to express the data for a bank on a pro-forma basis that goes back in
time to account for mergers. For example, if a bank in 2008 is the result of a merger
in 2008 then the pre-2008 data is merged on a pro-forma basis wherein the non-
surviving bank’s data is viewed as part of the surviving bank in earlier time periods.
The Federal Reserve uses this approach in estimating risk measurement models,
such as the Charge-off at Risk Model (Frye and Pelz 2008), which is the basis of
risk dashboards used for centralized bank supervision. This sample design reflects
methodologies used by banks in calibrating credit risk models, such as those used
for Basel III and for Comprehensive Capital Analysis and Review (CCAR).18 An
alternative to the retroactive merging in of legacy banks is to utilize an unbalanced
design wherein banks simply attrit from the sample when their ownership changes.
Although at first blush this would seem to address the problem of selection in cases
when weaker banks get taken over, there are also many cases of mergers-of-equals
as well (e.g., JP Morgan and Bank One merger). Roughly 84 % of banks in our
sample ceased their operation due to reasons other than failure, such as merger
or voluntary liquidation, or remained inactive, or were no longer regulated by the
Federal Reserve. Almanidis and Sickles (2012) have proposed a general model that
combines the mixture hazard model with the canonical stochastic frontier model to
investigate the main determinants of the probability and time to failure of a panel of
US commercial banks during the financial distress that began in August of 2007. In
their analysis they focused on banks failures, not on ownership changes or changes
in regulatory oversight that were not due to liquidation due to financial distress.
Unlike the standard hazard model, which would assume that all banks in the sample
eventually experience the event (failure), the mixture hazard model distinguishes
between healthy (long-term survivors) and at-risk banks. Almanidis and Sickles did
not find that selection on banks per se impacted their estimates in any significant
way. Moreover, their formal mixture hazard framework is far removed from the
basic modeling issues addressed in this paper, namely the introduction of a different
stochastic frontier paradigm that acknowledges a lower bound to inefficient firm
operating practices. In order to maintain comparability between our results and
those from many other studies using stochastic frontier analysis and to find some
middle ground between the pro-forma merging algorithm practiced by the Federal
Reserve and the deletion of firms from the sample that attrit and the potential
misspecification due to the many potential ways (unobserved in our sample) in
which such attrition may have occurred, we utilize a balanced panel and study only
firms that have remained in business during our sample period.

The data is a balanced panel of 4,193 commercial banks and was compiled
from the Consolidated Reports of Condition and Income (Call Report) and the
FDIC Summary of Deposits. The data set includes 431,879 observations for 103
quarterly periods. This is a fairly long panel and thus the assumption of time-
invariant inefficiencies does not seem tenable. For this reason we compare the
estimates from our BIE model to the estimates from other time-varying effects

18For more discussion of this issue and the use of similar data in models of risk aggregation see
Inanoglu and Jacobs (2009).
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Table 3.7 Descriptive statistics for bank-specific variables

Variable name Mean Median
Standard
deviation Min Max

Real estate loans 212,968 17,549 4,341,501 145 4.61EC08
Commercial and industrial loans 103,272 4,908 2,143,974 46 1.82EC08
Installment loans 58,869 4,360 1,417,908 86 1.51EC08
Demand deposits 54,913 7,282 912,761 186 1.03EC08
Time and savings deposits 449,003 46,954 1.00EC07 1,446 9.93EC08
Labor 186 29 2,960 4 215,670
Capital 8,196 913 129,778 9 1.16EC07
Purchased funds 163,785 13,698 3,322,838 286 3.37EC08
Ratio of equity to total assets 0.1007 0.0936 0.0312 0.0210 0.7459

models such as CSSW (the within variant of Cornwell et al. (1990)) and BC (Battese
and Coelli 1992) models, along with the baseline fixed effect estimator (FIX) of
Schmidt and Sickles (1984). Descriptive statistics for the bank-level variables are
given in Table 3.7, where all nominal values are converted to reflect 2000 year
values.

3.7.2 Results

Table 3.8 compares the parameter estimates of the bounded inefficiency (BIE)
model with that of FIX, CSSW, and BC.19 The structural parameters are statistically
significant at the 1% level and have the expected sign for all four models. The
adjusted Bera and Premaratne (2001) skewness test statistic is calculated to be
990:26, leading to rejection of the null hypothesis of symmetry at any conventional
significance level. The asymmetry of the least squares residuals is also verified by
quantile-quantile plot representation in Fig. 3.1. The technology parameters from
BIE model are somewhat different from those obtained from other models. The
negative value of the coefficient of the eqrt implies that riskier firms tend to produce
more loans, and especially real estate loans that are considered of high risk. The
positive sign of the estimate of the time trend shows technological progress on
average. There is a slight difference between the distributional parameters of BIE
and BC model which are also statistically significant at any conventional signifi-
cance level. We also tested ( not reported here) other distributional specifications for
BIE discussed above. The distributional parameters obtained from normal-truncated
half-normal model did not differ very much from that reported in the table, but
those obtained from normal-truncated exponential model did. However, this is not a
specific to bounded inefficiency models. Similar differences have been documented
in unbounded SF models as well.

19We estimate the normal-doubly truncated normal model in order to be able to compare it with
the BC model which specifies the inefficiencies to follow the truncated normal distribution.



3 Stochastic Frontier Models with Bounded Inefficiency 73

Table 3.8 Comparisons of various estimators. Estimates and standard errors (in parentheses) for
each model parameters from competing models (FIX, CSSW, BC, BIE)

FIX CSSW BC BIE

ciln 0:2407.0:0015/ 0:2971.0:0014/ 0:2284.0:0013/ 0:2838.0:0012/

inln 0:2206.0:0013/ 0:1715.0:0012/ 0:2043.0:0013/ 0:2609.0:0013/

dd �0:0940.0:0024/ �0:0935.0:0020/ �0:1197.0:0024/ �0:0996.0:0020/
dep �0:3999.0:0048/ �0:4037.0:0051/ �0:4368.0:0048/ �0:4053.0:0034/
lab �0:3104.0:0046/ �0:2219.0:0042/ �0:1610.0:0044/ �0:1892.0:0020/
cap �0:0460.0:0016/ �0:0464.0:0014/ �0:0510.0:0015/ �0:0965.0:0015/
purf �0:1507.0:0034/ �0:1658.0:0029/ �0:1627.0:0034/ �0:1665.0:0031/
time 0:0057.0:0001/ � 0:0020.0:0001/ 0:0021.0:0001/

eqrt �0:1369.0:0045/ �0:1189.0:0041/ �0:0975.0:0044/ �0:1088.0:0039/

 0 0 0:7980.0:0115/ 0:7690.0:0058/

� 0:2210.0:0034/ 0:2070.0:0020/ 0:2733.0:0045/ 0:2712.0:0022/

� � � 0:3240.0:0139/ 0:3518.0:0630/

B � � � 1:5186

ATE 0:5853 0:6470 0:6410 0:6998
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Fig. 3.1 Quantile-quantile plot

We also estimate the time-varying inefficiency bound, B , using two approaches.
First we estimate the bound for the panel data model without imposing any
restriction on its sample path. In the second approach we specify the bound as
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Fig. 3.2 Estimated and smoothed inefficiency bound

a sum of weighted time polynomials. We choose to fit a fifth degree polynomial
the coefficients of which are estimated by MLE along with the rest parameters
of the model.20 Both approaches are illustrated in Fig. 3.2 with their respective
95% confidence intervals. It can be seen that the inefficiency bound has had a
decreasing trend up to year 2005, when the financial crisis (informally) began,
and then it is increasing for the remaining periods through the third quarter of
2009. One interpretation of this trend can be that the deregulations in 1980s and
1990s increased competitive pressures and forced many inefficient banks to exit
the industry, reducing the upper limit of inefficiency that banks could sustain and
still remain in their particular niche market in the larger banking industry. The new
upward trend can be attributed to the adverse economic environment and an increase
in the proportion of banks that are characterized as “too big to fail.”

Of course, for time-varying efficiency models such as CSSW, BC, and BIE, aver-
age efficiencies change over time.21 These are illustrated in Fig. 3.3 along with their

20The choice of degrees of the time polynomial was based on a simple likelihood-ratio (LR) test and
degrees of the polynomial ranging from 1 to 10. The maximum likelihood estimates of coefficients
for this polynomial are given by
b0 D �3:9477e � 007; b1 D 0:0039509�� ; b2 D �15:816��� ; b3 D 31656�� ; b4 D

�3:168e C 007�; b5 D 1:2682e C 010.
21We trimmed the top and bottom 5% of inefficiencies to remove the effects of outliers.
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Fig. 3.3 Averaged efficiencies from each estimator

95% confidence bounds. The BIE averaged efficiencies (panel 4) are significantly
higher than those obtained from the fixed effect time-invariant model. However, the
differences are small compared to BC and CSSW models. These small differences
are not unexpected, however, since the existence of the inefficiency bound implies
that the mean conditional distribution of inefficiencies is also bounded from above,
resulting in higher average efficiencies. Failing to take the bound into account could
possibly yield underestimated mean and individual efficiency scores (see Table 3.1).
We smooth the BIE averaged efficiencies by fitting ninth degree polynomial of time
in order to capture their trend and also to be able to compare them with other two
time-varying averaged efficiency estimates. These are represented by a curve labeled
BIEsmooth. It can be seen that the efficiency trend for the BIE model is in close
agreement with the CSSW model and better reflects the deregulatory reforms and
consolidation of the US commercial banking industry. It is increasing initially and
then falls soon after the saving and loans (S&L) crisis of early 1990s began. It
has the decreasing pace and reaches its minimum in 1993 a year before Congress
passed the Reigle-Neal Act which allowed commercial banks to merge with and
acquire banks across the state lines. This spurred a new era of interstate banking
and branching, which along with the Gramm-Leach-Billey Act that granted broad-
based securities and insurance power to commercial banks, substantially decreased
the number of banks operated in the US from 10,453 in 1994 to 8,315 by the end
of the millennium. After 1994 the banking industry witnessed a rapid increase in
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averaged efficiencies of its institutions due in part to the disappearance of inefficient
banks previously sheltered from competitive pressure and due to the expansion
of large banks that both financially and geographically diversified their products.
The increasing trend continues until the new recessionary period of 2001 and then
steadily falls thereafter until the rapid decline illustrating the effects of the 2007–
2009 crisis. The CSSW model is able to show the weakness of the banking industry
as early as 2005. This weakness is illustrated by the estimated inefficiency bound
from the BIE model. On the other hand, the BC model shows a slight, statistically
non-significant, upward efficiency trend for all these periods (� D 0:0066).

In sum, Figs. 3.2 and 3.3 display an interesting findings: on one hand, an upward
trend is observed for the average efficiency of the industry, presumably benefiting
from the deregulations in the 1980s and 1990s; on the other hand, the industry
appears to be more “tolerant” of less efficient banks in the last decade. Possibly,
these banks have a characteristic that we have not properly controlled for and we are
currently examining this issue. Given the recent experiences in the credit markets
due in part to the poor oversight lending authorities gave in their mortgage and
other lending activities, our results also may be indicative of a backsliding in the
toleration of inefficiency that could have contributed to the problems the financial
services industry faces today.

3.8 Conclusions

In this paper we have introduced a series of parametric stochastic frontier models
that have upper (lower) bounds on the inefficiency (efficiency). The model param-
eters can be estimated by maximum likelihood, including the inefficiency bound.
The models are easily applicable for both cross-section and panel data settings.
In the panel data setting, we set the inefficiency bound to be varying over time,
hence contributing another time-varying efficiency model to the literature. We have
examined the finite sample performance of the maximum likelihood estimator in the
cross-sectional setting. We also have showed how the positive skewness problem
inherent in traditional stochastic frontier model can be avoided when the bound is
taken into account. An empirical illustration focusing on the US banking industry
using the new model revealed intuitive and revealing trends in efficiency scores.
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Appendix

First-Order Derivatives of Log-Likelihood Function

The scores for the normal-doubly-truncated normal model that can either be used
in a generalized method of moments estimation or in standard mle (3.13) under the

 -parametrization and the QB-parametrization are:
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The scores for normal-truncated exponential model are derived from (3.17) as
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Chapter 4
Estimating Consumer Surplus in eBay
Computer Monitor Auctions

Kevin Hasker, Bibo Jiang, and Robin C. Sickles

JEL Classification: C22, C51

4.1 Introduction and Brief Discussion of the Consumer
Surplus Auction Literature

It is well established that eBay is a significant economic marketplace. Economists
have long hailed the price discovery power of auctions, but unfortunately the cost
of establishing a cohesive market place prevented their widespread usage. eBay
overcame this problem by allowing people to auction items over the Internet.
Because of this eBay has become a significant marketplace, and due to the
economies of the marketplace it is likely to remain one in the future. It is still
unclear, however, the degree to which eBay benefits the economy. One measure
of this benefit is the consumer surplus that eBay generates. Our paper measures this
important economic fundamental in the market for computer monitors.

There are, however, important methodological issues that must be addressed in
any empirical study of auctions. As has been shown for second price private-value
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auctions considered in this paper, the standard model is nonparametrically identified
and nonparametric methods can be employed. Our paper employs the technique
proposed in Song (2004) with some adjustments to allow for the semi-nonparametric
estimation of consumer surplus. Estimates of consumer surplus based on semi-
nonparametric estimation of the bidding function also can be analyzed along with
estimates generated from parametric analysis with the same data. Such parametric
models of the bidding function, although not nonparametrically identified, can
utilize a much larger set of our data and they provide a useful robustness check for
our semi-nonparametric results. Fully nonparametric estimates of consumer surplus
also can be derived and yield yet another method of comparison.

Our research also provides a new methodology for estimating consumer surplus.
This methodology relies on a strong assumption of homogeneity in the pool of
potential bidders as new auctions for the same generic product are conducted. This
method is robust to tail probability properties of the underlying and nonparametri-
cally specified distribution of private values. Essentially this methodology considers
a counter factual wherein, if the price setting bidder in auction t 0 won auction t , then
the consumer surplus would be the average over the t 0 that could have won the given
auction. In distribution free estimations this would be the only feasible manner to
estimate consumer surplus. In our paper it provides yet another set of robustness
checks on our estimates.

We thus consider six different methods to calculate the consumer surplus and
consumer share of the total surplus in our auction data. Although there is significant
variation among these estimates, they do provide relatively tight bound for the
consumer surplus for the auctioned good we analyze, computer monitors. According
to our semi-nonparametric analysis, the median consumer surplus per computer
monitor may be as high as $51 or as low as $17 with a median value of $28. The
median lower bound on the consumer share of surplus may be as high as 62.9 % or
as low as 9.5 % with a median value of 19.0 %.

Using a spider program we collected data on over 9,000 computer monitors
auctioned on eBay between February 23, 2000 and June 11, 2000 (Gonzalez 2002;
Gonzalez et al. 2009). Lucking-Reiley et al. (2007) utilized a spider program to
collect eBay data on 461 “U.S. Cent” category auctions held at eBay over a 30-
day period during July and August of 1999.1 Recent methods for accessing data via
“spider” programs have become commonplace.2 We also discuss the data collection
techniques that allowed us to construct our relatively large set of auction data.

Relatively few attempts have been made to estimate consumer surplus in
auction models, although this is presumably one of the arguments in favor of such
mechanisms. Song (2004) constructs an innovative methodology using the second

1Specifically, Lucking-Reiley et al. (2007) focused on U.S. Indian Head pennies minted between
1859 and 1909, auctions in which only one coin was for sale, and the coin was in mint state (MS)
with grades of between 60 and 66 on a 70-point scale.
2See, for example, the website at http://www.baywotch.de/. We thank Rouwen Hahn from the
University of Münster, Germany for this information.

http://www.baywotch.de/
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and third highest bids and estimates the median consumer surplus in university
yearbook auctions at $25.54. With a median price in her study of $22.50, the median
consumer share of the surplus is 53 %. Bapna et al. (2008) also estimates consumer
surplus, utilizing an innovative data collection technique that allows them to directly
observe a bidder’s stated value. With their rather heterogenous data, however,
they cannot estimate a structural bidding function. They do, however, find that
consumers capture around 18:3% of the total surplus. Several other articles estimate
consumer surplus in multi-unit auctions—Carare (2001), Bapna et al. (2003a,b) and
Bapna et al. (2004)—but these papers primarily focus on mechanism design issues
and tend to use ad hoc techniques since the equilibrium bidding function in general
multi-unit auctions is unknown.

eBay has two different auction formats. The common format is an English
auction with a hard stop time. This is the type of auction used in 87 % of our original
data set and the type of auctions on which we focus. When our data was collected,
bidding went from 3 to 10 days and then stopped at a preset time.

Our estimation techniques are based on a modification of the methods developed
in Song (2004). As discussed in Bulbul Toklu (2010), there have been several
techniques identified for estimating bidders’ values in online auctions. In order
to nonparametrically identify his model, Adams (2007) assumes exogenous entry
and that entry is not affected by any variables that affect bidders values. Parametric
structural analysis of the bidding function and the entry rule can relax these
assumptions, albeit at the cost of not being nonparametrically identified. Such
structural analysis rejects these assumptions with our data but relies on the strong
assumption that the pool of potential entrants is quite large. Nekipelov (2007)
introduces an endogenous entry rule, wherein a rise in the auction price is assumed
to decrease the probability of entry but increase the average bid conditional on
entry. However, his model relies on the explicit calculation of the equilibrium
bidding function at all parameter values and thus limits the computational appeal
of his approach when there are a reasonable number of covariates. His model also
requires the assumption that all bidders use the nonparametrically identified but
rather opaque and complex equilibrium bidding functions. Nekipelov’s model can
explain both squat bidding (bid early to deter others from bidding: Ely and Hossain
2009) and snipe bidding (bid at the last second to deter counter bidding: Roth and
Ockenfels 2002). In contrast to the complex equilibrium bidding functions used
by Nekipelov (2007) Song (2004) only assumes that the second, some of the third
highest bidders bid their true value. It is known that not all the third bidders will bid
their true value, but her methodology allows one to test which bids should not be
used. Her model also allows for exogenous entry, endogenous entry (for a range of
models), and heterogeneous entry decisions and utilizes a relatively straightforward
rule to determine how much to bid. One weakness of all these models is that they do
not take into consideration the exit value of bidders. In an eBay auction this value
may be significant. The only paper currently in the literature that takes this into
consideration is Sailer (2006). Formally these models must rely on the steady state
hypothesis (Hasker and Sickles 2010) and the distribution is only identified up to a
shift parameter.
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There also several parametric techniques that deserve special mention, though
currently none of these techniques are nonparametrically identified. Bajari and
Hortaçsu (2003) develop a Bayesian methodology, but require that the bidding
functions be linearly scalable. Non-linear simulated least squares, developed by
Laffont et al. (1995) and used in Gonzalez et al. (2009), is another estimation
methodology. This approach overcomes the complexity of calculating the likelihood
function by simulating the auctions, and it is a flexible methodology that can be used
for any bidding model in which revenue equivalence holds.

We organize our discussion of methods to analyze consumer surplus in eBay
auction in the following way. Section 4.2 reviews our econometric methodology.
Section 4.3 describes the data used in our estimation. Section 4.4 discusses our
results. Sections 4.5 and 4.6 develop various measures of Consumer Surplus and
Consumer Share of Surplus generated in our auctions and provides estimates of
these measures. Section 4.7 concludes.

4.2 Econometric Methodology

Athey and Haile (2002, 2005) show that the underlying distribution of private values
is uniquely determined if the distribution of any order statistic with a known number
of bidders is identified. However, in eBay auctions, the number of potential bidders
is generally not observable. Song (2004) addressed this issue by proving that, within
the symmetric independent private values model, observations of any two valuations
whose ranking is known can nonparametrically identify the bidders’ underlying
value distribution. Song goes on to point out that one can use the second and third
highest bids to identify the distribution of bidders’ private values. This approach
is not without attendant problems, however, since whether or not the third highest
bids reflect the third highest bidders’ true private valuations can be questioned. To
deal with this issue, Song suggests that one should use data wherein either the
third highest bidder had a good reason to believe she could win the auction or
the higher bids were submitted late. She develops an econometric test to discover
which third highest bids can be used. We will adopt her methodology to pursue
our nonparametric estimation of consumer surplus from eBay auctions. We also
follow Haile and Tamer (2003) by first assuming that bidders adhere to two intuitive
rules:

1. No bidder ever bids more than he is willing to pay.
2. No bidder allows opponents to win at a price he is willing to pay.

These rules are transparent and appealing, and guarantee that the second highest
bidder will bid his value. Unfortunately the conditions are not sufficient for
identification. As Haile and Tamer (2003) show, there are equilibria in second
price auctions (and eBay auctions) in which these rules do not imply that the
third highest bidder bids his true value. Thus we make a third assumption
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3. A finite number of bids from the third highest bidder reflect the bidders’ true
value.

4. We will thus need to examine which bids are the third highest bidders true value.
We should mention that this is not only a theoretical problem. Empirical evidence
also shows that bidders do not bid their true value on eBay. To give an example
to illustrate, assume that a bidder bids $50 for an item which he values at $80,
and two other bidders immediately bid $100. After observing the higher bid of
$100, this bidder will not update his bid and his final bid will be less than his
value. On the other hand if only one bidder makes a bid higher than $80, and
another bidder bids between $50 and $80, the given bidder will update his bid to
his value $80. In this case the bidder bids more than once. This would not occur
were bidders to bid their values. In other words, the existence of multiple bids
is evidence that bidders are not bidding their value, and in fact there frequently
are multiple bids per active bidder on eBay. Song (2004) points out that if the
two highest bids are submitted right before the end of the auction (for example,
within the last minute of the auction) then the third highest bid will almost
certainly be that bidder’s true value. In this case the third highest bidder must
know that if he raises his bid then he might win the auction and thus his final
bid must be his true value. This approach therefore requires that the third highest
bidders who outbid in the last minute are bidding their value. One then tests
whether or not bidders outbid at earlier times are using the same bidding rule. We
also make a relatively standard assumption about the bidder’s values in our next
condition.

5. Bidders’ values are private, independent, and log-linear in a set of auction specific
characteristics. Private values are given by:

lnVmji D x
0

mˇ C vmji ; (4.1)

with m D 1; : : : ;M; where M is the number of auctions and i D 1; 2 : : : ; Nm,
where Nm is the number of potential bidders in auction m. For the estimation
procedure we outline below, we require the potential number of bidders in any
auction to be greater or equal to 3. We note that the standard assumption of
private values is proscribed for the good under consideration. At the time of data
collection computer monitors were subject to rapid technological development,
thus anyone considering buying a monitor would know that the value of the
monitor would decrease sharply in as little time as 6 months. It is also a relatively
standard good, thus there would not be much information discovery from bids.

Vmj2 and Vmj3 represent the second and third highest bidders’ valuations in
auction m, respectively. We use the second and third highest bids as estimates of
these two valuations. vmj2, and vmj3 are the corresponding error terms. xm is the
control variable including 7 auction specific characteristics that we specify below,
ˇ D Œˇ1; � � � ; ˇ7� is the corresponding vector of coefficients. We consider the
sample counterpart of conditional likelihood function f

�
vmj2 j vmj3

�
specified by

Song (2004), since the full likelihood (the joint density of
�
vmj2; vmj3

�
) requires
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the unknown number of potential bidders. According to the basic theory of order
statistics, the sample likelihood function can be written as:

LM

� Of
�

D 1

M

MX
mD1

ln
2
h
1 � OF �vmj2

�i Of �vmj2
�

h
1 � OF �vmj3

�i2 ; (4.2)

where OF .v/ D R v
c

Of .z/ d z. Here and below, c is the lower bound of bidders’ private
value. We choose c D minmD1;2;:::M

�
log.Vmj3/

�
, since no information about F .v/

for v < c can be observed. The reader should note that with our objective function
this value does not affect our estimates. In order to estimate the unknown distribution
of v we employ the method proposed by Coppejans and Gallant (2002) and use the
hermite series to approximate the unknown distribution. Gallant and Nychka (1987),
Fenton and Gallant (1996) and Coppejans and Gallant (2002) provide details on how
to use this method to approximate the unknown distribution of private values. The
optimal series length varies according to the data set under consideration. Coppejans
and Gallant (2002) proposed a cross-validation strategy by employing the Integrated
Squared Error (ISE) criterion to choose the optimal series length k�. The ISE in their
paper is defined as:

ISE
� Of
�

D
Z

Of 2 .y/ dy � 2
Z

Of .y/ f .y/ dy C
Z
f 2 .y/ dy

D M.1/ � 2M.2/ CM.3/ (4.3)

Here, Of .y/ is an estimator of true density f .y/ of interest.
Here what we are interested is a conditional density. Along the line of Coppejans

and Gallant (2002), we propose Weighted Integrated Squared Error (WISE) which
serves as our criteria in selecting the optimal series length. WISE is defined as
follows:

WISE. Of / D
Z Z

. Of .yjx/ � f .yjx//2f .x/dydx

D
Z Z

Of .yjx/2dyf .x/dx � 2

Z Z
Of .yjx/f .yjx/f .x/dydx

C
Z Z

f .yjx/2dyf .x/dx

D Q1 � 2Q2 CQ3; (4.4)

where Of .yjx/ is an estimator of true conditional density f .yjx/. In implementing
the cross-validation strategy, first, we randomly partition the data set under consider-
ation into 5 groups, denoted by �j , j D 1; : : : ; 5, making the sizes of these groups
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as close to equal as possible. Let Ofj;k.�/ denote the semi-nonparametric estimate
obtained from the sub-sample that remains after deletion of the j ’th group when
k is used as a series length. The cumulative distribution associated with Ofj;k.�/ is
denoted by OFj;k.�/. Since the third term only involves true densities, we only need
to look at the first two terms. The estimates of the two terms are defined as below:

OQ1.k/ D 1=M

5X
jD1

X
.xm;ym/2�j

Z
Œ Ofj;k.yjxm/�2dy (4.5)

OQ2.k/ D 1=M

5X
jD1

X
.xm;ym/2�j

Ofj;k.ymjxm/: (4.6)

We also define

CVH .k/ D OQ1 .k/ � 2 OQ2 .k/ : (4.7)

It is worth mentioning that our criteria is WISE, and hence OQ1.k/ and OQ2.k/

are not the same as what were defined in Song (2004). According to Coppejans and
Gallant (2002), a typical graph of CVH .k/ versus k is that CVH .k/ falls as k
increases when k is small, periodically drops abruptly, and flattens right after the
final abrupt drop. They recommend a choice of k which brings the last abrupt drop
of CVH .k/. Our result is listed in Table 4.9 and shows that the abrupt drop of
CVH .k/ occurs when k changes from 1 to 2. The small increase in CVH.k/when
k changes from 3 to 4 is likely due to overfitting. The CVH approach proposed in
Coppejans and Gallant (2002) is Hold-out-sample Cross-validation. As k increases,
over-fitting the estimation sample can generate a poor estimate of the underlying
distribution and may lead to a higher CVH value.

The density function of vm follows immediately as:

f .vm/ D
h
1C a1

� vm�u
�

�C a2
� vm�u

�

�2i2
� .vmI u; �; c/

R1
c

h
1C a1

�
z�u
�

�C a2
�

z�u
�

�2i2
� .zI u; �; c/ d z

: (4.8)

The nonparametric maximum likelihood estimator is then defined as:

� Ǒ; Oa; Ou; O�
�

D arg max
.ˇ;a1;a2;u/2R10;�2RCC
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M
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ln
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h
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�

h
1 � OF �vmj3

�i2 :

(4.9)
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One criticism of this method is that the third highest bids may not reflect the
bidders’ private values since they utilize the second and third highest bids as
estimates of the second and the third highest bidders’ private values. We follow
Song (2004) by using data in which the first or second highest bidder submitted
a cutoff price greater than the third highest bid late in the auction. To determine
how late is sufficient, Song (2004) provides a method based on the CVH using a
modified formula for OQ1 and OQ2. Following her method, we consider a sequence
of 6 sub data sets, Aw1; � � � ; Aw6; with different window sizes, arbitrarily chosen so
that the size difference between two adjacent subsets is similar. We choose window
sizes as w1 D 5min, w2 D 15min, w3 D 40min, w4 D 2 h, w5 D 3:5 h and
w6 is all. Aw1 represents the auction set in which the first or second highest bidder
submits a bid greater than the third highest bid no earlier than 5min before the
auction ends. Other sub data sets are defined in the similar way. Obviously, we have
Aw1 � Aw2 � � � � � Aw6. It is intuitive that the third highest bids are more likely
to reflect the third highest valuations for auctions in set Aw1 than auctions in other
sub sets. However, Aw1 has the least number of observations and thus a potentially
larger sample variance. Song’s approach considers this trade-off by applying the
same cross-validation strategy that is used for choosing the optimal series length and
suggests choosing the window size which has the smallest CVHwi . For each auction
set Awi , we calculate CVHwi . Corresponding to Eq. (4.7), CVHwi is defined as

CVHwi .k
�/ D OQ1wi

�
k�� � 2 OQ2wi

�
k�� ;

where

OQ1wi .k
�/ D 1=Mwi

5X
jD1

X
.xm;ym/2�j\Awi

Z
Œ Ofj;k�.yjxm/�2dy

OQ2wi .k
�/ D 1=Mwi

5X
jD1

X
.xm;ym/2�j\Awi

Ofj;k�.ymjxm/;

whereMwi is the sample size of subsetAwi . We present the results in Table 4.10. It is
clear that CVHwi decreases when window size increases from w1 to w4. The values
of CVHw4 and CVHw5 are almost identical to each other. The change of window
size from w5 to w6 causes a dramatic increase inCVHwi . Since our analysis is based
on semi-nonparametric and nonparametric methods, we want to keep as much data
as possible. We choose w5 D 3:5 h instead of w4 D 2 h as our optimal window size
since the difference between CVHw4 and CVHw5 is rather small.
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4.3 The Data Set and Our Collection Techniques

At the time our data set was collected, eBay saved all information about closed
auctions on their website for a month after the auction closed. This allowed people
who participated in the auction to verify the outcome and provides the source for
our data set. Our data was collected using a “spider” program which periodically
searches eBay for recently closed computer monitor auctions and downloads the
pages giving the item description and the bid history. Software development
was done in Python—a multi-platform, multi-OS, object-oriented programming
language. It is divided into three parts. It first goes to eBay’s site and collects the
item description page and the bidding history page. It next parses the web pages and
makes a database entry for each closed auction. The final part iterates through the
stored database entries and creates a tab-delimited ASCII file.

The original data processing program did not process all of the data. It provided
us with the core of the data which was augmented with further processing of the raw
html files. Using string searches we have managed to collect extensive descriptive
information for the entire data set. With further data processing we have managed
to collect all of the bidding histories.

Running this program from February 23, 2000 to June 11, 2000 we were able to
capture information on approximately 9,000 English auctions of computer monitors,
effectively all monitors auctioned during that time period. We excluded any non-
working, touch screen, LCD monitors, Apple monitors, or other types of monitors
that are bought for different purposes than the monitors in our sample. Also, if there
were any bid retractions or cancellations (this happened in 7.4 % of the auctions) we
dropped the observation because the retractions might indicate collusion. We also
deleted several auctions in which the auctioneer cancelled the auction early (usually
within 10–15 min of the beginning of the auction.)

Descriptive variables except for monitor size were constructed using string
searches. In Gonzalez et al. (2009) the strings that were used for each variable are
detailed. This allowed us to collect data on whether there was a secret reservation
price, whether it was met, monitor resolutions, dot pitch, whether a warranty was
offered, several different brand names, whether the monitor was new, like-new, or
refurbished, and whether it was a flat screened monitor. “Brand name” is used for
monitors that are from one of the ten largest firms represented in our data set. These
firms are Sony, Compaq, NEC, IBM, Hewlett Packard, Dell, Gateway, Viewsonic,
Sun, and Hitachi in order of size. Sony has close to a 10 % market share while the
smallest have close to a 3 % market share. These ten firms represent 59 % of the
market. Dot pitch and resolution are not reported in all of the auctions. Dot Pitch is
reported in 42 % of the auctions, resolution in 64 %.

Since selecting a relatively homogeneous data set is important in conducting and
interpreting results from nonparametric analysis we dropped all auctions that were
not clearly for 1700 color PC monitors. Monitor size has the most pronounced and
significant effect on bidders’ private values. Since we need information for both
the second and third highest bids in order to estimate the models, we dropped
the auctions that had less than three bidders. As this sample is relatively more



92 K. Hasker et al.

competitive than the original sample, owing to a higher number of bidders, we refer
to this sample as the “competitive” sample. This gives us 476 observations. To make
the data set even more homogeneous, we also drop 12 auctions in which warranties
were offered on the auctioned monitors. Our final data set has 464 observations.

In estimating the distribution of bidders’ private values with the semi-
nonparametric approach, we used the following seven control variables: monitor dot
pitch (0 is used when no dot pitch is reported), dummy for the cases when no dot
pitch is reported, monitor resolution (0 is used when no resolution is reported),
dummy for the cases when no resolution is reported, condition of auctioned items
(2 for new, 1 for like new or refurbished, 0 for no condition report), dummy for flat
screen and dummy for brand name. We use 1 for both “like new” and “refurbished”
because we did not see significant sample mean difference for these two categories
and there are only 17 observations with condition specified as “like new” in our sam-
ple. Descriptive statistics of the variables for the sample are presented in Table 4.8.

Notice that we do not use auctioneer’s feedback rating—a reputation system on
eBay—in our estimates. While this variable may affect entry under the private value
assumption it cannot affect bids conditional on entry.

4.4 Estimates

For the results that follow we choose the optimal hermite series number as k� D 2

and the optimal window size as w5 D 3:5 h, i.e., we choose the auctions where the
first or second highest bidder submitted a bid greater than the third highest bid no
earlier than 3.5 h before the auction ended. This yields a sample of 376 observations
on which to base our semi-nonparametric estimates of consumer surplus. The
estimated parameters are in Table 4.1.

Table 4.1
Semi-nonparametric
estimates

Dot pitch �7:9842a

. (0.1310)
Dummy, no dot pitch �1:9606a

. (0.0347)
Resolution 0:0486a

. (0.0051)
Dummy, no resolution �0:1024a

. (0.0060)
Dummy, brand name �0:0465a

. (0.0005)
Dummy, flat screen �0:0769a

. (0.0004)
Status 0:0568a

. (0.0001)
Number of auctions 376
aSignificant at the 1 % confidence

level
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Table 4.2 Statistics of
estimated distribution

Mean
Standard
deviation

SNP $30.18 $26.77
NP $28.26 $26.63

The coefficients except for the ones on “Brand Name” and “Flat Screen”
dummies have the expected sign and are highly significant. A smaller dot pitch is
better so we expect the coefficient on the log of dot pitch to be negative, likewise
a larger resolution and better condition are both good so those coefficients should
be positive. When no dot pitch or resolution are reported the bidders expect a worse
than average value for these variables. “Brand Name” means popular brand, which
includes ten brands in our data set. There is no consensus on what the sign should be
for the variable “Brand Name”. Both positive and negative results have been seen
in literature. In our study, we find a negative effect of “Brand Name” on bidders’
private value. The coefficient on “Flat Screen” is negative and significant which
does not suit our intuition. However, since the magnitude of the estimate is tiny, we
have a reason to believe that the “Flat dummy” does not play an important role in
determining the bidder’s private. Of course, another possible reason for the incorrect
sign on “Flat dummy” might be because we use semi-nonparametric estimation
method.

Our consumer surplus estimates are based on these coefficients. Because the data
we use for the analysis is relatively homogeneous, we also present nonparametric
results as comparison. In the nonparametric estimation, we use Song’s method
without considering the control variables. The estimated expectation and standard
deviation of bidders’ private valuation are in Table 4.2. SNP and NP denote semi-
nonparametric and nonparametric methods respectively.

In the semi-nonparametric analysis, the mean, standard deviation are computed
with the median values of x1; x2; � � � , and x7.

4.5 Structural Consumer Surplus and Consumer
Share of Surplus

In order to investigate the welfare impact of eBay, we calculate the consumer surplus
and consumer share of surplus. Consumer surplus in auctionm is calculated as:

CSm D Vmj1 � pm; (4.10)

where pm denotes the price the winner paid, which equals to the second highest bid
in eBay auctions. Vmj1 denotes the valuation of the winner. Since we do not observe
Vmj1, we estimate the expected consumer surplus as:

E
�
CSmj OVmj2

�
D ex

0

m
Ǒ
Z 1

Ovmj2

f .v/

1 � F
�Ovmj2

�evdv � pm (4.11)
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Table 4.3 Structural consumer surplus

Mean Median Std. dev. Min Max

SNP $28:32 $28:31 $3:85 $16:94 $51:06
NP $28:57 $28:31 $1:57 $19:28 $39:28
PL $52:54 $39:69 $38:23 $13:51 $210:09

Again, Ovmj2 is the estimator of vmj2 calculated based on model (4.1) with estimated

coefficient Ǒ and xm, which is the vector of the values of control variables in auction
m; and pm is the price. For comparison we include the parametric estimates(PL)
wherein private values are distributed as half-logistic. These preferred estimates are
based on a battery of nonparametric good-of-fit tests of a number of parametric
distributions for private values. The descriptive statistics of expected consumer
surplus from our SNP, NP methods, and PL approaches are presented in Table 4.3.

Notice that the distribution of consumer surplus based on the parametric method
is highly skewed. For this reason here and below we focus on the median values,
not the averages, for comparison among the three methodologies, since for the
SNP and NP estimates the median and mean are quite similar. There could
be at least two reasons for the significant divergence of parametric and semi-
nonparametric and nonparametric estimates. Of course one reason could be the more
flexible distribution of private values in the semi-nonparametric and nonparametric
methodologies. However, it could be because the auctions used for the semi-
nonparametric and nonparametric auctions are more competitive. Since in order to
estimate the semi-nonparametric and nonparametric models, all auctions with less
than three bidders were dropped and thus the average number of bidders in the semi-
nonparametric and nonparametric data subset is 8.1, versus 6.8 for the parametric
data set. Since we use the parametric estimates of the coefficients to estimate the
consumer surplus, the results are still distribution dependent.

While the amount of consumer surplus in an auction is a significant statistic
it reveals only one dimension of the surplus being generated. If the value of the
average monitor is high relative to the surplus even if the size of the surplus is
substantial the fraction of the surplus captured by consumers might be small. A low
share of surplus indicates that auctions under consideration were highly competitive,
and that auctioneers were earning large profits on eBay. Hence, the consumer share
of surplus is another important measure to understand the eBay auction market.
This measure is the fraction of total surplus that is captured by the consumers and is
defined as:

CSSm D CSm

Vmj1 � Vmja
D Vmj1 � pm

Vmj1 � Vmja
: (4.12)

where Vmj1 is the winning bidder’s private valuation in auction m, pm is the price,
and Vmja is the value the auctioneer places on the item auctioned. Although we do
not have a direct measure of Vmja we do know that its lower bound is 0. One could
use the auctioneer’s reservation price to produce a tighter bound. Theoretically this
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Table 4.4 Structural lower bound of consumer share of surplus

Mean ( %) Median ( %) Min ( %) Max ( %)

SNP 20:63 19:03 9:52 62:84

NP 20:83 18:98 9:96 64:91

PL 33:90 30:30 8:70 99:90

Table 4.5 Medians lower bound of consumer
share of surplus

SNP NP PL

MCSS ( %) 18:93 18:98 28:41

should be equal to the auctioneer’s reservation value, but when one looks at the
data one realizes that if that were true almost all auctioneers do not value their
good. Thus using this information would not change much and we obviously do not
have a correct theory for the relationship between reservation prices and reservation
values. Thus it is better to ignore this value, and we can estimate a lower bound for
the consumer share of surplus as:

CSSm D Vmj1 � pm

Vmj1
D 1 � pm

Vmj1
2 Œ0; 1� : (4.13)

We also note that CSSm is less sensitive to outliers than CSm. Although we do not
directly observe CSSm we can derive the expected consumer share of surplus in
auctionm:

E
�
CSSmj OVmj2

�
D 1 � pme�x0

m
Ǒ
Z 1

Ovmj2

f .v/

1 � F �Ovmj2
�e�vdv: (4.14)

Estimates of this expectation are in Table 4.4.
In Table 4.4, PL again represents the parametric method with the assumption

of half-logistic distributed private valuations. The results from SNP and NP are
comparable, however, obviously lower than those from PL except for the minimum.
Again this could be due to differences in methodology or the fact that there were
more bidders on average in the semi-nonparametric and nonparametric data set.

For comparison with other analyses it is useful to substitute and examine the
median values of the lower bounds of the consumer share of surplus. In this analysis
we use the median price and median consumer’s value. In general this is easily
computed from the reported coefficients and descriptive statistics. To construct the
median consumer’s value (if it is not immediately given) one uses the sales price
and the coefficients of the regression. If the median price is pm and xm the median
values of the right hand side variables then with a log linear specification this is
pme

�xm0ˇ . These results are shown in Table 4.5. The median winning price pm is
$120 for the data used in semi-nonparametric and nonparametric methods and $100
for the data used in parametric estimation.
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We can see that the results are very close, although the consumer share of surplus
from SNP and NP are smaller than that from PL. In Song (2004), the consumer share
of surplus for yearbook auctions is 53% if calculated using the same methodology.
Song’s result is significantly higher than all of the results above. The difference can
be explained with competition levels involved. The average number of bidders is 3:6
in Song (2004), which is significantly lower than either subset of monitor auctions.
More competition on the bidders’ side would appear to result in lower consumer
share of surplus.

4.6 Distribution Free Consumer Surplus and Consumer
Share of Surplus

A problem with both parametric and semi-nonparametric and nonparametric estima-
tion is upper tail sensitivity. The parameters determining the weight on the upper tail
are determined by observations at the center of the distribution, thus the upper tail
can be easily too thick or too thin. For extreme value statistics like consumer surplus
this can cause significant problems. It would be desirable to find an alternative
method that is not as sensitive to the underlying distribution.

A secondary problem is that there is no simple method to estimate consumer
surplus if one does not use structural estimation. Thus this important statistic is
often overlooked in empirical analysis. It is possible to estimate consumer surplus
without performing structural estimation but it requires additional assumptions. One
that we pursue in this section is that the set of potential bidders is constant for
all auctions, which is not equivalent to assuming a constant set of active bidders.
Randomizing the entry order over the set of potential bidders would produce a large
variation in the number of active bidders. However, we do require this number to
be nonstochastic and that it does not vary from auction to auction, which is often
implicit in interpreting results from many distribution free auction studies.

In structural estimations the following methodology produces an alternative way
to measure consumer surplus and provides a potentially more robust picture of the
size of the consumer surplus. Let N be the number of potential bidders. Then it
is clear that the distribution of the first order statistic—H.1/ .V jN/—first order
stochastically dominates the distribution of the second order statistic—H.2/ .V jN/.
Utilizing the fact that it is a lower bound for H.1/ .V jN/ one can produce a lower
bound for consumer surplus. Under reasonable assumptions on H.2/ .V jN/ we
know that:

H.2/ .V jN/ D lim
M!1

#
�
m0 2 M jpm0e�x0

m0
Ǒ � V

�

M
: (4.15)

For finite M of course the right hand side is only an alternative estimator for
H.2/ .V jN/. If the potential number of bidders is stochastic or due to simple bad
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Table 4.6 Distribution free consumer surplus

Mean Median Std. dev. Min Max

SNP $44:47 $39:64 $17:36 $0 $119:89
NP $41:48 $37:02 $16:06 $0 $112:50
PL, all data $65:47 $45:69 $53:25 $0 $1;185:82
PL, SNP data $40:88 $36:65 $16:60 $0 $130:63

draws we can have H.2/ .V jN/ <
#

�
m02M jpm0 e

�x0

m0
Ǒ�V

	

M
for some V . As we will

show with our data, it is possible that this estimator has a fatter upper tail than the
structural estimates. We essentially construct the estimator by setting up a counter
factual wherein the price setter in auctionm0 wins auctionm instead. Averaging this
over the m0 that could have won auction m we derive an estimate of the consumer
surplus in auctionm. This statistic can easily be calculated using only the estimated
coefficients and the data. Let 1x be the indicator function which is 1 if x is true,
0 otherwise. Based on Model (4.1) and this estimating approach, consumer surplus
can be derived as:

bCSm D ex
0

m
Ǒ

TP
m0D1

pm0e�x0

m0
Ǒ
1
pm0e

�x0

m0
Ǒ�pme�x0

m Ǒ

#
�
m0 2 T jpm0e�x0

m0
Ǒ � pme�x0

m
Ǒ� � pm: (4.16)

We refer to this as the distribution free consumer surplus because it does not
require nor make use of any estimates of the distribution of the error term. The
descriptive statistics for this estimate of consumer surplus are in Table 4.6.

The minimum consumer surplus is zero by construction. Interestingly, median
estimates of this measure of consumer surplus are higher than those based on
the structural estimates we presented earlier, due to the presence of outliers.
These outliers could either be due to bad draws from the underlying distribution
or due to the number of potential bidders being stochastic. Either problem could
cause a given auction to be quite competitive and result in a relatively high value for
the price setting bidder resulting in larger distribution free estimates of consumer
surplus in every auction. To take account of the outliers we trim both the top and
bottom varying percentages to see how much trimming is necessary to stabilize
the estimated consumer surplus. For the parametric and nonparametric methodolo-
gies we estimates stabilize with 2% total trimming. For the semi-nonparametric
methodology 8% total trimming was necessary. The statistics generated without
any trimming are significantly larger with the difference in medians about $10 for
the semi-nonparametric and nonparametric and $6 for the parametric estimates.

Recall our findings above wherein the parametric structural estimates of con-
sumer surplus where larger than those based on the semi-nonparametric and
nonparametric estimates. These differences have at least two causes. One is that
the parametric methodology is less flexible. Another is that we utilize a more
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Table 4.7 Distribution free, lower bound of consumer share of
surplus

Mean ( %) Median ( %) Min ( %) Max( %)

SNP 28:34 25:16 0 91:05

NP 27:20 23:58 0 91:43

PL, all data 32:42 26:35 0 99:90

PL, SNP data 23:62 19:83 0 90:44

competitive data set for the semi- and nonparametric estimations. The last row in
Table 4.7 above points to the latter rationale. When we estimate the distribution free
consumer surplus using the data set where matching allowed us to utilize the semi-
and nonparametric methods we find that the estimates are a bit lower than the semi-
and nonparametric estimates, but comparable. Indeed, when one compares these
estimates of consumer surplus with those in the row above it is clear that a major
explanation for differences in estimates of consumer surplus are due to selecting a
more competitive data set for the semi- and nonparametric estimates.

The new measure of consumer share of surplus also will be less sensitive to these
outliers and would provide a potentially more robust picture of how much surplus
is being generated. In the consumer share of surplus the value of the counter factual
is always between zero and one and this normalization also makes the statistic less
sensitive to outliers. The statistic is:

1CSSm D 1 � pme
�x0

m
Ǒ

MP
m0D1

1

pm0 e
�x0

m0
Ǒ
1
pm0 e

�x0

m0
Ǒ�pme�x0

m Ǒ

#
�
m0 2 M jpm0e�x0

m0
Ǒ � pme�x0

m
Ǒ� ; (4.17)

Estimates of this new measure of the share of consumer surplus are given in
Table 4.7.

These results are consistent with those in Table 4.6 and indicate that the median
distribution-free semi-nonparametric and nonparametric estimates are somewhat
higher than their structural counterparts, with a difference of about 6% for SNP and
5% for NP. The corresponding consumer share measure based on the parametric
estimates is lower than that its structural counterpart by about 4%. When we use
the parametric model to estimate consumer surplus using the data set based on the
matching needed to employ our semi-nonparametric estimators it is now the lowest
estimate of all, as in Table 4.6, which we would expect as estimated average values
are lower for both consumer surplus and consumer’s share of surplus. This would
suggest that estimates of consumer surplus fall significantly when these statistics
are high and have little impact on them when they are low. Thus if we estimated the
parametric model on the restricted data set it is likely that the consumer’s surplus
and consumer’s share of surplus will be higher.
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The advantages of this particular distribution free methodology are twofold. First
it is easy and immediate to calculate after any estimation. Second it appears to be
relatively robust. Its disadvantage is the assumption that the pool of potential bidders
is the same for each auction.

4.7 Conclusion

In this paper we estimate consumer surplus for eBay computer monitor auctions
with semi-nonparametric and nonparametric methods. We compare our results with
estimates based on parametric assumptions on the distributions of private values. We
also develop a new technique, a distribution free technique, to estimate these impor-
tant statistics. This new technique provides robustness checks for our estimates. We
also develop a new method that places a lower bound on the consumers’ benefit
from these auctions, the consumer share of surplus. This provides more insight into
the degree of competition in these auctions.

The general conclusions from our empirical study is that the market for computer
monitors on eBay was competitive, but not at the extreme, from February 23,
2000 to June 11, 2000. It seems that the median consumer was capturing around
$28 in consumer surplus or 19% of the total surplus available. This suggests that
the auctioneers were capturing at most 81% of the total surplus. While this is a
hefty share this does not take into account the unknown value that auctioneers
place on their computer monitors. It would be interesting to know what share of
the surplus consumers are capturing in a similar market today. Since eBay is an
auction marketplace, high profits will draw more auctioneers to the market and
high consumer surplus will draw more bidders. However, it is much more costly
to become an auctioneer and thus the number of auctioneers per bidder is likely to
have increased over time.

We would like to encourage more analysts to estimate the consumer surplus and
consumer share of surplus generated in online auctions. It would be worthwhile to
develop a more general picture of how much eBay is benefitting our economy. In
this vein we point out that our distribution form methodology does not require the
standard structural assumptions necessary to estimate consumer surplus and seems
to produce estimates that are close to structural estimates, especially if the data is
trimmed by reasonable trimming factors.
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Appendix 1

Tables and Descriptive Statistics

Table 4.8 Descriptive statistics of key variables

Average Median Std. dev. Skewness Maximum Minimum

Sales price 124.27 120 2.12 0.82 355 10.5
Number of

bidders
7.82 7 0.15 0.57 20 3

The length of the
auction

5.30 5 0.10 0.40 10 3

Size 17 17 1 2.73 17 17
Dot pitcha 0.57 1 1.03 0.72 1 0.2
Dummy, dot

pitch not
reported

0.58 1 0.02 �0:32 1 0

Resolutiona 86.74 800 1.17 0.57 1,600 1
Dummy,

resolution not
reported

0.36 0 0.02 0.58 1 0

Dummy, new
monitor

0.08 0 0.010 3.23 1 0

Dummy,
like-new
monitor

0.04 0 0.01 4.79 1 0

Dummy,
refurbished
monitor

0.13 0 0.02 2.19 1 0

Dummy,
warranty on
monitor

0 0 0 0 0 0

Dummy, brand
name monitor

0.59 1 0.02 �0:38 1 0

Dummy, flat
screen
monitor

0.28 0 0.02 1.01 1 0

Seller’s feedback 42.87 57 1.09 0.76 4,344 1
aStatistics for these variables are only for items where a value was reported
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Appendix 2

Tables of Semi-nonparametric Estimation

Table 4.9 Relations between CVH and k

k D 0 k D 1 k D 2 k D 3 k D 4

CVH �3:83 �3:83 �3:89 �3:89 �3:88

Table 4.10 Relations between CVH and window size, k* D 2

w1 � 5min w2 � 15min w3 � 40min w4 � 2 h w5 � 3:5 h w5 D all

CVH �4:65 �4:69 �4:71 �4:72 �4:72 �4:62
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Chapter 5
Inference in Two-Step Panel Data Models
with Time-Invariant Regressors: Bootstrap
Versus Analytic Estimators

Scott E. Atkinson and Christopher Cornwell

5.1 Introduction

Panel data are useful because of the opportunity they afford the researcher to
control for unobserved heterogeneity or effects that do not vary over time. Typically,
exploiting this opportunity means employing the fixed-effects (FE) estimator,
because it produces consistent estimates of the coefficients of time-varying variables
under weak assumptions about their relationship with the effects. As is well-
understood, the FE estimator achieves this through a data transformation that
eliminates the effects. The downside to FE estimation, however, is that this data
transformation also eliminates any time-invariant variables. Consequently, the FE
estimator is sometimes abandoned entirely for a random-effects (RE) approach,
whose requirements for consistency frequently are not satisfied, since unobserved
heterogeneity is often correlated with the regressors.

While the partial effects of time-invariant variables can be recovered in a
second-step regression, this fact is generally omitted in most textbook treatments of
panel-data methods (Wooldridge 2010 is an exception). The practical necessity of
recovering the partial effects of time-invariant variables shows up in many different
empirical contexts. In the familiar exercise of estimating wage regressions, human-
capital variables such as experience and tenure are taken to be correlated with the
unobserved effect, which is commonly interpreted as “ability”. While FE estimation
eliminates such time-invariant unobservables, it also eliminates race, gender and
education (when schooling is completed before the sample period), the effects of
which are of great interest. Similarly, when estimating production relationships,
inputs may be correlated with fixed “environmental” factors, which again would
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swept away by the FE estimator. However, policy-relevant firm characteristics, such
as public or private ownership in the case of electric utilities, would be swept away
as well.

Interest in recovering the partial effects of time-invariant variables may be even
more common in panels of state and country-level aggregates, as with empirical
growth and comparative political-economy studies, where policy-relevant fixed
institutional variables are differenced out of a FE regression. The recovery of these
partial effects motivated the work of Plümper and Troeger (2007), who proposed
a three-step method for estimating the effects of time-invariant variables in linear
panel-data models. Plümper’s and Troeger’s so-called “fixed-effects vector decom-
position” (FEVD) became widely utilized through their Stata program (xtfevd) that
computes the estimator and corresponding standard errors. However, as shown in the
critiques of Breusch et al. (2011) and Greene (2011), the main substantive claims
about the FEVD estimator are false. Importantly, from our perspective, the standard
errors produced by the FEVD estimator are incorrect, because their method does
not estimate the correct asymptotic covariance matrix, which should incorporate the
first-step estimated covariance matrix.

In this paper, we focus on the two-step estimation procedure and compare
conventional inference based on the asymptotic formula to bootstrap alternatives.
Bootstrapping has a natural appeal, because of the complications associated with
estimating the asymptotic covariance matrix and the inherent finite-sample bias
of the resulting standard errors. Our paper contributes to the panel data and boot-
strapping literature in four ways. First, we derive the correct asymptotic covariance
matrix for the second-step coefficient estimators, allowing for heteroskedasticity
and autocorrelation of unknown form. Second, we develop the steps required to
perform bootstrap estimation of the covariance matrix of the second-step estimated
coefficients. Third, we prove that the pairs and wild bootstrap coefficient estimators
are unbiased. This stands in contrast to Flachaire (2005) who asserts that the pairs
is a biased estimator. Unbiasedness implies that the error in rejection probability
(ERP) of corresponding t-tests, measured as the difference between their actual and
nominal size, should be small.

Finally, using Monte Carlo methods, we compare the size and power of
the naive asymptotic estimator, which ignores the first-step estimation error, the
correct asymptotic covariance matrix estimator, which does not, and the bootstrap
alternatives. We consider a variety of panel sizes (N ) and lengths (T ) relevant to the
common large-N , small-T setting. We find that the bootstrap methods consistently
provide more accurate inference than the asymptotic formulae. The performance
gain is largest for N less than 250 and shrinks as N grows. Although a small ERP
remains for the correct asymptotic covariance matrix estimator when N D 1;000,
as N grows to 250 and beyond, both bootstrap estimators generally produce the
correct size. Comparing the two bootstrap methods, the pairs tends to moderately
over-reject and the wild to moderately under-reject for smaller values of N , with
the pairs having a slightly smaller ERP. While we find a slight advantage of the
pairs method over the others in terms of power with N D 250 and T D 5, few
differences are observed with larger values of N .
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The remainder of this paper is organized as follows. Section 5.2 introduces the
model and two-step estimator. Section 5.3 presents the correct asymptotic covari-
ance matrix for the second-step estimator and outlines the bootstrap alternatives for
second-step standard-error estimation. In Sect. 5.4, we review previous studies of the
wild and pairs procedures and prove that they are both unbiased for the problems we
address. Section 5.5 explains our Monte Carlo experiments and reports our findings
on the size and power of t-tests produced by conventional and bootstrap procedures.
Conclusions follow in Sect. 5.6.

5.2 The Two-Step Model and Parameter Estimation

We consider estimation of linear panel-data models of the form

yit D xi tˇ C zi 
 C �it i D 1; : : : ; N I t D 1; : : : ; T; (5.1)

where �it D ci C eit , yit is the dependent variable, xi t is a .1 � K/ vector of
time-varying regressors, zi is a .1 � G/ vector of time-invariant regressors, ci is an
unobserved effect that is fixed for the cross-section unit, and eit is an error term.1

The eit may be heteroscedastic and serially correlated. The coefficient vectors, ˇ
and 
 , are .K�1/ and .G�1/, respectively. For most of the discussion that follows
we work with the form of the model that combines all T observations for each
cross-section unit:

yi D Xiˇ C .jT ˝ zi /
 C CjT ci C ei ; (5.2)

where Xi is .T �K/, jT is a T -vector of ones, and yi and ei are .T � 1/ vectors.
Our interest is in estimating 
 , allowing for the possibility that some or all of the

variables in Xi are correlated with the unobserved effect. Formally, we adopt the
standard FE assumption that

E.eit j Xi ; zi ; ci / D 0; t D 1; : : : ; T: (5.3)

Additionally, we assume

E.ci j zi / D 0; (5.4)

which treats the time-invariant variables as uncorrelated with the unobserved effects.
We invoke (5.4) to focus attention on the transmission of the first-step estimation

1Although the model setup assumes a balanced panel, this is not necessary. The asymptotic
covariance matrix and bootstrap procedures can readily accommodate settings in which the number
of time-series observations varies with the cross-section unit.
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error to the second step, without the confounding influence of endogeneity in zi .
While this is a strong assumption, it is reasonable in some of the empirical contexts
referenced above. For example, in the production relationships category, Agee
et al. (2009, 2012) use directional distance functions to estimate the efficiency of
a household’s production of health and human capital in children. In both cases, all
time-invariant child and household characteristics are treated as exogenous on the
grounds that the characteristics are either fixed by nature (e.g., race and gender) or
by circumstances of the household or the parents. County, state, and country-level
panels provide other examples, many of which come from social science papers
outside of economics (as described in Plümper and Troeger (2007)). A common
practice has been either to include time-invariant variables in a pooled ordinary
least-squares (POLS) or RE regression, or use FE estimation and ignore them.
Knack (1993), which is concerned with the relationship between the prospect
of jury service and voter registration, does both. Over Knack’s two-year panel,
certain state characteristics, like whether there is a senate contest, are time-invariant.
Because the timing of senate contests are fixed by law, this indicator is exogenous.
Knack estimates OLS regressions on each year separately, including the fixed
characteristics, and FE regressions using both years of the panel, dropping these
characteristics.2

In the two-step approach to estimating 
 , we begin by applying FE to (5.1), which
produces

Ǒ
FE D

�X
i

X0
iQTXi

	�1X
i

X0
iQT yi ; (5.5)

where QT D IT � jT .j0
T jT /�1j0

T is the idempotent projection that time de-means the
data. The FE estimator is unbiased and consistent under (5.3).

Next, we take Ǒ
FE and compute individual or group-level residuals,

Oıi D Nyi � Nxi Ǒ
FE; (5.6)

and formulate the second-step regression model

Oıi D zi 
 C ui ; (5.7)

where

ui D N�i � Nxi . Ǒ
FE � ˇ/; (5.8)

2Atkinson and Cornwell (2013) extend the analysis here to allow some of the elements of zi to be
correlated with the unobserved effect.
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N�i D ci C Nei , the over-bar indicates the sample-period mean for unit i (e.g., Nxi D
1
T

P
t xi t ), and the first element of zi is 1. Equation (5.8) is obtained by combining

(5.7), (5.6), and the sample-period mean for unit i of (5.2). We then estimate 
 by
applying OLS to (5.7).3 The resulting estimator, which we label O
FE because it is
derived from Ǒ

FE , can be written as

O
FE D
�X

i

z0
izi

	�1�X
i

z0
i
Oıi
	
: (5.9)

5.3 Second-Step Standard-Error Estimation

In this section, we first derive the asymptotic covariance matrix of O
FE and explain
how to estimate it consistently. Then we outline the procedures for computing the
wild and pairs bootstrap alternatives.

5.3.1 Asymptotic Covariance Matrix

As Wooldridge (2010) points out, the asymptotic covariance matrix for O
FE can be
obtained by applying standard arguments for two-step estimators (see, for example,
Murphy and Topel 1985). We begin by writing the sampling error of O
FE as

O
FE � 
 D
�X

i

z0
izi

	�1�X
i

z0
iui

	
: (5.10)

Then we can show that
p
N. O
FE � 
/ is asymptotically normal with a limiting

covariance matrix that can be expressed as

.Bzz/
�1 A .Bzz/

�1; (5.11)

where, Bzz D plim 1
N

P
i z0
izi . As implied by (5.8)

A D plim
1

N

X
i

N�2i z0
izi C plim

1

N

X
i

z0
i Nxi V Ǒ

FE
Nx0
izi ; (5.12)

where V Ǒ
FE

is the limiting covariance matrix of
p
N. Ǒ

FE � ˇ/.

3As discussed in Atkinson and Cornwell (2013), allowing some of the elements of zi to be
correlated with the unobserved effect leads to the two-step “simple, consistent” instrumental
variables estimator of Hausman and Taylor (1981). From this perspective, you can view our two-
step estimator as an instrumental variables estimator using ŒQT Xi ; .jT ˝ zi /� as instruments.
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A consistent estimator of the asymptotic covariance matrix of O
FE hinges on
the consistent estimation of A. The latter is accomplished by utilizing the robust
covariance matrix estimator of V Ǒ

FE
,

OV Ǒ
FE

D
�X

i

X0
iQTXi

	�1X
i

X0
iQT Oei Oe0

iQTXi

�X
i

X0
iQTXi

	�1
(5.13)

(see Arellano 1987), and extracting an estimator of �i from the group-level version
of (5.1) evaluated at . Ǒ

FE; O
FE/.

5.3.2 Bootstrap Methods

There are two important reasons to prefer bootstrap estimators of standard errors
to estimators based on asymptotic formulae. First, bootstrapping standard errors is
often easier than estimating the asymptotic covariance matrix. Second, bootstrap-
ping often produces better small-sample performance in terms of ERP.

We consider the wild and pairs bootstrap procedures because they produce esti-
mated standard errors that are robust to heteroskedasticity. Davidson and Flachaire
(2008) have shown that the wild bootstrap yields a heteroskedasticity-consistent
covariance matrix estimator when the residuals are divided by hi , the diagonal
element of the projection matrix corresponding to the right-hand-side variables
of the original equation estimated. T. Lancaster (2003, A note on bootstraps and
robustness, unpublished manuscript. Department of Economics, Brown University)
has proven that the pairs bootstrap yields a similar covariance estimator. Below we
outline how each can be adapted to our two-step estimation problem.

Following Cameron and Trivedi (2005), for fixed-T panels, consistent
(as N ! 1) standard errors can be obtained by using cross-sectional resampling.
Hence, we employ this method for both the pairs and wild bootstrap, assuming no
cross-sectional or temporal dependence.4

5.3.2.1 Wild Bootstrap Estimator

The wild bootstrap procedure can the applied to the estimation of the standard errors
of O
FE by executing the following steps.

4Also, see Kapetanios (2008), who shows that if the data do not exhibit cross-sectional dependence
but exhibit temporal dependence, then cross-sectional resampling is superior to block bootstrap
resampling. Further, he shows that cross-sectional resampling provides asymptotic refinements.
Monte Carlo results using these assumptions indicate the superiority of the cross-sectional method.
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1. Compute Ǒ
FE in (5.5).

2. Using Ǒ
FE , compute Oıi in (5.6).

3. Compute O
FE in (5.9).
4. Since �it D ci C eit in (5.1), compute

O�it D yit � xi t Ǒ
FE � zi O
FE; (5.14)

Then define f . O�it / as:

f . O�it / D
O�it

.1� hit /1=2
;

where hit is the diagonal element of the projection matrix corresponding to the
right-hand-side variables of (5.2). Thus, the transformed residual is homoskedas-
tic by definition so long as the error term, �it , is homoskedastic.5

5. We follow Davidson and Flachaire (2008) and MacKinnon (2002) and define �i
as the two-point Rademacher distribution:

�i D
( �1 with probability 1

2

1 with probability 1
2

: (5.15)

This assigns the same value to all T observations for each i . Then, we generate

yw
i t D xi t Ǒ

FE C zi O
FE C �w
i t ; (5.16)

where

�w
i t D f . O�it /�i : (5.17)

Davidson and Flachaire (2008) provide evidence that this version of the wild
bootstrap is superior to other wild methods. This is due to the fact that E.�i / D
0;E.�2i / D 1;E.�3i / D 0; and E.�4i / D 1. Since O�it and �i are independent,
E.�w

i t / D E. O�it /�i# D 0, its variance is that of O�it# , its third moment is zero
(which implies zero skewness in O�it ), but its fourth moment is again that of O�it# .
Thus, the first, second, and fourth moments of O�it# are reproduced exactly in the
wild bootstrap data using (5.15).

6. Compute the FE estimator of Ǒ using the wild bootstrap data:

Ǒw
FE D

�X
i

X0
iQTXi

	�1X
i

X0
iQT yw

i : (5.18)

5Further, this transformation is needed to obtain a heteroskedastic-consistent covariance matrix as
explained above.
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7. Compute the group-mean residuals as

ıw
i D Nyw

i � Nxi Ǒw
FE: (5.19)

Note that in step (5) it was necessary to generate yw
i t rather than time-demeaned

yit , because in the current step one must compute group means to generate the
residuals. Group means cannot be recovered from the time-demeaned data.

8. Formulate the true bootstrap model

ıw
i D zi O
FE C uw

i ; (5.20)

where uw
i is a bootstrap error, and compute the second-step estimator of O
FE

using the bootstrap data:

O
w
FE D

�X
i

z0
izi

	�1X
i

z0
i ı

w
i : (5.21)

9. Iterate steps 5–8 and compute the sample standard deviation of O
w
FE , s O
;w, as an

estimator of the standard error of O
FE , where w denotes the wild procedure.

5.3.2.2 Pairs Bootstrap Estimator

The pairs bootstrap procedure discussed in T. Lancaster (2003, A note on boot-
straps and robustness, unpublished manuscript. Department of Economics, Brown
University) can be extended to our problem as follows:

1. Compute Ǒ
FE in (5.5).

2. Using Ǒ
FE , compute Oıi in (5.6).

3. Compute O
FE in (5.9).
4. Draw randomly with replacement among i D 1; : : : ; N blocks, using all T

observations in the chosen block, with probability 1=T from fyit ; xi t ; zi t g to
obtain fypit ; xpit ; zpitg, where the superscript denotes the pairs estimator. Resam-
pling all variables in this manner preserves the correlation of the corresponding
time-invariant and group-mean variables in the second-step regression with the
first-step variables.

5. For the pairs bootstrap, define �
p
i as a .T � 1/ vector made up of f�pi1; : : : ; �piT g

for observation i . Write the first-step regression model with unknown error term,
�
p
i , as

ypi D Xp
i

Ǒ
FE C .jT ˝ zpi / O
FE C �

p
i : (5.22)

Compute the FE estimator of Ǒ using the pairs bootstrap data .ypi ;X
p
i /
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Ǒp
FE D

�X
i

Xp0

i QTXp
i

	�1X
i

Xp0

i QT ypi : (5.23)

6. Using Ǒp
FE compute the residuals

ı
p
i D Nypi � Nxpi Ǒp

FE: (5.24)

7. Formulate the second-step pairs bootstrap model as

ı
p
i D zpi O
FE C upi ; (5.25)

where upi is the pairs second-step error, then compute the second-step estimator
of O
FE using the bootstrap data:

O
pFE D
�X

i

zp
0

i zpi

	�1X
i

zp
0

i ı
p
i : (5.26)

8. Iterate steps 4–7 and compute the sample standard deviation of O
pFE; s O
;p , as an
estimator of the standard error of O
FE .

5.4 The Size and Power of Bootstrap Estimators

5.4.1 Previous Studies of the Size and Power of Bootstrap
Estimators

We are unaware of any Monte Carlo study that examines the ERP and size
of estimator t-values for two-step panel-data models of the type we consider.
However, there is a substantial literature on bootstrap performance in cross-section
regressions. Horowitz (2001) compares the actual size of the pairs and wild
bootstrap to the size associated with the asymptotic formula for White’s information
matrix test, the t-test in a heteroskedastic regression model, and the t-test in a Box-
Cox regression model. For relatively small sample sizes, he finds that the wild and
pairs dramatically reduce the ERP of the asymptotic formulas, and in many cases
the wild essentially eliminates this error. The wild method outperforms the pairs
and both outperform the jackknife method. Davidson and Flachaire (2008) obtain
similar results when they compare the wild and pairs estimators to those obtained
using the asymptotic formula. Using an Edgeworth expansion, they trace the wild’s
advantage to the fact that the ERPs of the pairs depend on more higher-order raw
moments of the original errors and the bootstrap residuals, which are greater under
heteroskedasticity. With homoskedastic errors, there is little difference between the
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wild and pairs estimators and their ERP is very small. The results we present below
are consistent with this finding. Inference based on the asymptotic formula also
improves, but exhibits a substantially larger ERP.

In summary, for single-equation models with heteroskedastic errors, Monte Carlo
results generally show that the wild bootstrap outperforms the pairs and that both
improve on inference based on the estimator of the asymptotic formula. However,
we are not aware of bootstrap performance comparisons that address the empirical
context of a two-step panel data model, where estimation error from the first step is
the primary complicating factor. Next, we analytically examine the wild and pairs
procedures for the two-step estimation problem, identifying the conditions required
for both to be unbiased.

5.4.2 The Unbiasedness of Our Two-Step Bootstrap Estimators

The unbiasedness of the first and second-step wild estimators follows directly from
the fact that the �i are zero-mean random variables generated independently of �it .
See Theorems 1 and 2 in the Appendix. Flachaire (2005) compares the conditional
expectation of the bootstrap error given the explanatory variables for the wild versus
pairs methods in a simple linear model. In terms of our setup, he asserts that the wild
bootstrap satisfies E.uw

i jzi / D 0, and hence is unbiased.
He also asserts that the pairs does not satisfy E.upi jzpi / ¤ 0, and therefore is

biased (because upi depends on zpi ). Thus, he argues that the wild should produce a
smaller ERP than the pairs estimator. In the Appendix, however, we prove that both
estimators are unbiased given the exogeneity conditions (5.3) and (5.4).

To show that the pairs estimator is unbiased, we need to reformulate it in terms
of the residual of the original model. Since by definition yi equals the fitted model
plus the residual for observation i ,

p
viyi D p

viXi
Ǒ
FE C p

vi .jT ˝ zi / O
FE C p
vi O�i ; (5.27)

where vi specifies number of times (from 0 to N ) that each (yi ;Xi / pair for
observation i is reused in the pairs bootstrap sample. Using .

p
viyi ;

p
viXi / we

obtain an alternative formulation of the pairs first-step estimator as

Ǒp
FE D

�X
i

viX0
iQTXi

	�1X
i

viX0
iQT yi : (5.28)

Hence, (5.28) becomes a weighted regression version of (5.23), where ypi is replaced
by

p
viyi , Xp

i is replaced by
p

viXi , and .jT ˝zpi / is replaced by
p

vi .jT ˝zi /. Again
by definition, reformulate (5.25) as

p
vi ıi D p

vizi O
FE C p
vi Oui : (5.29)
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where Oui is the residual computed from (5.7) and obtain a more useful formulation
of the second-step pairs estimator as

O
pFE D
�X

i

viz0
izi

	�1X
i

viz0
i ıi : (5.30)

Theorem 3 says that the pairs estimator is unbiased in the first step if
E.QT

O�i jvi ;Xi / D 0. This result also applies to any linear, single-equation model
estimated by the pairs estimator. Finally, using (5.30), and assuming that (5.3), (5.4),
and Theorem 3 hold, Theorem 4 shows that in the second step, the pairs estimator
is unbiased for O
FE .

Davidson and MacKinnon (1999) demonstrate that the ERP depends on estimator
bias. Thus, a biased bootstrap estimator should have a larger ERP than an unbiased
estimator assuming that the errors, �i , are i.i.d.6 The size of t-values for both the
second-step wild and pairs estimators should be highly accurate since their biases
are zero, given that the assumptions in (5.3) and (5.4) hold.

5.5 Monte Carlo Estimation

5.5.1 Data Generation

We create the data for the Monte Carlo experiments in the following steps.

1. Generate the xitk and zi tg (k D 1; : : : ; 10I g D 1; : : : ; 3) as multivariate
normal with zero means and unit variances. We set cov.zg; zg0/ D 0:2; g ¤ g0
(implying simple correlations of 0.2), cov.xk; xk0/ D 0:3; k ¤ k0. We also set
cov.xk; zg/ D 0:3 and draw xitk and zi tg: For each g, we then create the group
mean of zi tg and use this for zig (which is time invariant) so that the group means
of xk and zg have correlation of 0.3.

2. Generate ci and eit as i.i.d. normal random variables with mean zero and variance
of 10 and 100, respectively. The large variance for eit guarantees a relatively low
R2 for the first-step regression. This in turn implies a greater difference between
the estimated “naive” and correct asymptotic covariance matrices for the second-
step coefficients.

3. Using the data from steps 1–2, generate yit in Eq. (5.1).

The bootstrap estimators do not require the i.i.d. assumption. As described in
Sect. 5.3.2, they have heteroskedastic-consistent covariance matrices. Using cross-
sectional resampling as defined above, these bootstrap methods will deal with
dependent data by generating correlated errors that exhibit approximately the

6As indicated above, Davidson and Flachaire (2008) find that many other factors in addition to
bias, especially heteroskedasticity, can increase the ERP of bootstrap and asymptotic estimators.
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same pattern of autocorrelation as �it . However, in this paper we focus on the
i.i.d. case (as defined in step two), because our primary interest here is how the
bootstrap estimators handle the transmission of the first-step estimation error to
the second step relative to the analytical alternative in the simplest of contexts. In
Atkinson and Cornwell (2013), we explore the effects, in some cases substantial,
of heteroskedasticity and serial correlation in the �it on the second-step inference
problem.

5.5.2 Monte Carlo Results

We perform a number of Monte Carlo experiments to compare the actual size and
power of the t-statistics derived from four estimators of the covariance matrix of O
–
a “naive” method which is the asymptotic formula without adjusting for the first-step
parameter estimators, the correct asymptotic formula which makes this adjustment,
the pairs bootstrap, and the wild bootstrap. For our size calculations, we assume that
ˇ D 
 D 1 during data generation and test the null that 
 D 1 using a two-sided
equal-tailed 95 % confidence interval, so that the total type-I error is ˛ D 0:05.

We set the number of bootstrap draws, B , to 399 following MacKinnon (2002)
who states that while this number may be smaller than should be used in practice,
any randomness due to B of this size averages out across the replications. We
find this to be true for our experiments where larger values of B did not change
our results on ERP up to three significant digits beyond the decimal point. Within
each of M.m D 1; : : : ;M / Monte Carlo trials, for each bootstrap method, we
estimate the unrestricted model and obtain O
�

m;b;g , the bootstrap estimator of O
m;g ,
b D 1; : : : ; B . For each m, we calculate the actual size of the test-statistic,

t�m;g D . O
m;g � 
g/=s
�
m;g; g D 1; : : : ; G; (5.31)

where s�
m;g is the bootstrap estimator of the standard error of O
m;g , computed as the

standard deviation of O
�
m;b;g over all bootstrap replications. Note that the t�m;g statistic

is not asymptotically pivotal and no asymptotic refinements obtain; however, we
employ it since applied researchers may have difficulty computing the asymptotic
formula. See MacKinnon (2002) for details.

For each Monte Carlo trial, m, we calculate the size for each bootstrap estimator
as the percentage of t�m;g values greater than the nominal level of t �̨=2 D 1:96 or less
than the nominal level of t�1�˛=2 D �1:96, with ˛ D 0:05. We choose M D 1;999,

so that 1
2
˛.M C 1/ is an integer.

For each Monte Carlo trial, we compute the size for the naive and asymptotic
formula methods using

tm;g D . O
m;g � 
g/=s O
m;g ; (5.32)
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Table 5.1 Monte Carlo actual size calculations

T D 5 T D 10 T D 20


1 
2 
3 
1 
2 
3 
1 
2 
3

N D 50

Naive 0.080 0.077 0.088 0.073 0.085 0.085 0.070 0.085 0.084
Asy. 0.069 0.069 0.080 0.070 0.081 0.083 0.070 0.084 0.083
Pairs 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051 0.051
Wild 0.046 0.047 0.046 0.046 0.046 0.046 0.047 0.046 0.046
Avg. 0.062 0.061 0.066 0.060 0.066 0.066 0.059 0.066 0.066

N D 100

Naive 0.067 0.073 0.058 0.057 0.070 0.067 0.067 0.073 0.070
Asy. 0.060 0.069 0.055 0.055 0.069 0.065 0.066 0.072 0.069
Pairs 0.050 0.051 0.050 0.050 0.051 0.051 0.050 0.050 0.050
Wild 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048
Avg. 0.056 0.060 0.053 0.052 0.059 0.058 0.058 0.061 0.059

N D 250

Naive 0.055 0.064 0.055 0.051 0.061 0.064 0.061 0.053 0.055
Asy. 0.053 0.062 0.051 0.051 0.060 0.062 0.061 0.052 0.054
Pairs 0.050 0.049 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wild 0.050 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049
Avg. 0.052 0.056 0.051 0.050 0.055 0.056 0.055 0.051 0.052

N D 500

Naive 0.057 0.050 0.065 0.057 0.060 0.051 0.043 0.056 0.055
Asy. 0.052 0.048 0.062 0.057 0.059 0.050 0.042 0.055 0.053
Pairs 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wild 0.050 0.050 0.049 0.050 0.050 0.049 0.049 0.050 0.050
Avg. 0.052 0.049 0.056 0.053 0.054 0.050 0.046 0.053 0.052

N D 1;000

Naive 0.051 0.054 0.053 0.048 0.045 0.048 0.053 0.047 0.052
Asy. 0.049 0.050 0.050 0.048 0.044 0.048 0.053 0.047 0.051
Pairs 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Wild 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050
Avg. 0.050 0.051 0.050 0.049 0.047 0.049 0.051 0.048 0.051

where s O
m;g for the naive method is the standard error estimator ignoring the
existence of first-step random variables and for the asymptotic method is the square
root of the gth diagonal element of (5.13). Then, we estimate size over all M
observations as the percentage of times that tm;g exceeds the nominal level of
t �̨=2 D 1:96 or is less than the nominal level of t�1�˛=2 D �1:96 for ˛ D 0:05.

Because we are interested in performance under large-N asymptotics, we
consider the following cases: N D 50; 100; 250; 500 and 1;000 crossed with
T D 5; 10 and 20. We compute the actual size, also termed type-I error or rejection
probability (RP), and the absolute value of the ERP. Table 5.1 reports actual RPs,
while Table 5.2 reports the sum over all parameters of the absolute ERPs.
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Table 5.2 Total Monte
Carlo ERP T D 5 T D 10 T D 20

N D 50

Naive 0.095 0.093 0.088
Asy. 0.067 0.083 0.086
Pairs 0.004 0.004 0.003
Wild 0.011 0.012 0.011
Avg. 0.044 0.048 0.047

N D 100

Naive 0.047 0.043 0.059
Asy. 0.034 0.039 0.056
Pairs 0.001 0.001 0.001
Wild 0.005 0.005 0.005
Avg. 0.022 0.022 0.030

N D 250

Naive 0.023 0.025 0.018
Asy. 0.015 0.022 0.017
Pairs 0.001 0.000 0.000
Wild 0.002 0.002 0.003
Avg. 0.010 0.012 0.009

N D 500

Naive 0.022 0.017 0.017
Asy. 0.016 0.016 0.016
Pairs 0.000 0.000 0.000
Wild 0.001 0.001 0.001
Avg. 0.010 0.009 0.009

N D 1;000

Naive 0.007 0.009 0.008
Asy. 0.002 0.010 0.007
Pairs 0.001 0.000 0.000
Wild 0.001 0.001 0.001
Avg. 0.002 0.005 0.004

Table 5.1 shows that the naive and asymptotic methods seriously over-reject for
small values of N , the pairs bootstrap slightly over-rejects, and the wild bootstrap
under-rejects. Both bootstrap methods are considerably more accurate than the non-
bootstrap methods, with the advantage going to the pairs. For N D 50, actual sizes
are 0:051 for the pairs and between 0:046 and 0:047 for the wild, but range from
0:069 to 0:088 for the non-bootstrap methods. Thus, the upward bias of the pairs is
extremely small (2 %); the downward bias of the wild is larger (6–8 %), but still far
smaller than the bias of the conventional methods (at least 40 %).

Increasing N generally improves the accuracy of all methods, but the perfor-
mance rankings do not change. By N of 250, the bootstrap methods produces the
correct, or very close to the correct, size in every case, while the conventional
methods still overstate the significance of t-values by at least 10 % in more than
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half of the cases. Increasing N to 500 and then 1,000 brings actual and nominal
size into alignment in every bootstrap case. However, even when N D 1;000, the
conventional approaches get the size right in only two cases and are off by as much
as 12 % in the others.

The sums of absolute ERPs in Table 5.2 concisely summarize the advantage of
the bootstrap methods. For N > 50, the pairs bootstrap absolute ERP sum never
exceeds 0:001. The wild bootstrap is not as impressive for smaller values of N , but
competes with the pairs when N is at least 250. In contrast, the absolute ERP sums
of conventional methods are often an order of magnitude larger, even for N as large
as 500.

To quantify the roles of N and T in reducing size distortions we regress the
ln(actual size) for each estimated coefficient on the logs of N and T by method,
where the observations are the 15 combinations ofN and T considered in Table 5.3.
Asymptotic t-values are reported in parentheses. The results show that increasingN
by a given percentage affects size to a considerably greater degree than increasing
T by the same percentage. The cross-section dimension effect is also always highly
significant, whereas the panel length is never significant at even the 10- % level.
This makes sense, because T affects second-step estimation only through its effect
on Ǒ

FE and its estimated covariance matrix.
Finally we examine the power of the conventional and bootstrap tests, computed

using level-adjusted sizes. Since both bootstrap methods always reject less fre-
quently than the conventional methods, the former will appear to have less power.
Therefore, we compute power based on level-adjusted t�m;g values, so that critical
values are used for which the actual RP is exactly equal to the nominal RP.7 These
levels, t �̨=2;g and t�1�˛=2;g , are the ˛=2 and 1 � ˛=2 quantiles of the sorted t�m;g . For
each Monte Carlo replication, they are found by first sorting the t�m;g values from
large to small and then taking the .˛=2/.B C 1/ and .1 � ˛=2/.B C 1/ values for
each g. We compute the power curves for 
3 for each method as the alternative
value of 
3 (denoted as ALT in the figures) is increased from �1 to 1 in increments
of .1 by calculating the percentage of the B bootstrap estimates that fall outside the
critical region. For the conventional methods, we use the same range of alternative
parameter values to compute power as the percentage of M Monte Carlo estimates
that falls outside the interval defined by their level-adjusted t-values, computed
using the same sorting method just described.

Figures 5.1–5.3 present the power curves for N D 250; 500, and 1000, where
T D 5 throughout. With N D 250, the pairs method holds a slight advantage in
terms of power. However, with larger values of N , all methods are highly similar.
With N D 250 the power of all methods is quite low relative to N D 1000, where
power has risen to approximately :7 for alternatives of �1 and 1.

7See Davidson and MacKinnon (2006a,b) for further discussion.
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Table 5.3 Regressions
explaining ln (actual size)
(number of observations
D 15)

Intercept ln.N / ln.T / R2

Naive

1 2.5426 �0:1277 �0:0369 0.7180

(15.4134)�� (�5:4644)�� (�0:8293)

2 2.8238 �0:1766 �0:0173 0.8894

(22.2146)�� (�9:8096)�� (�0:5066)

3 2.6794 �0:1550 �0:0073 0.7569

(14.9573)�� (�6:1099)�� (�0:1514)
Avg. 2.6819 �0:1531 �0:0205 0.7881

Asy.

1 2.3006 �0:1128 0.0169 0.6857

(14.7321)�� (�5:1009)�� (0.4023)

2 2.6490 �0:1663 0.0211 0.8702

(20.1923)�� (�8:9502)�� (0.5962)

3 2.5232 �0:1474 0.0282 0.7411

(14.1429)�� (�5:8312)�� (0.5873)
Avg. 2.4910 �0:1422 0.0221 0.7657

Pairs

1 1.6651 �0:0088 �0:0008 0.8064

(188.2853)�� (�7:0626)�� (�0:3330)

2 1.6575 �0:0083 0.0013 0.6901

(146.0756)�� (�5:1508)�� (0.4405)

3 1.6622 �0:0088 0.0000 0.8025

(187.1058)�� (�6:9817)�� (0.0179)
Avg. 1.6616 �0:0086 0.0002 0.7663

Wild

1 1.4655 0.0220 �0:0014 0.7810

(61.5810)�� (6.5375)�� (�0:2115)

2 1.4651 0.0229 �0:0035 0.8314

(69.5469)�� (7.6683)�� (�0:6200)

3 1.4590 0.0228 �0:0009 0.8420

(72.5098)�� (7.9953)�� (�0:1599)
Avg. 1.4632 0.0226 �0:0019 0.8181

** indicates significance of the t-values at the .05 level using a
two-tailed asymptotic-t test.

5.6 Conclusions

The primary advantage of panel data is the ability they provide to control for
unobserved heterogeneity or effects that are time-invariant. The fixed-effects (FE)
estimator is by far the most popular technique for exploiting this advantage,
because it makes no assumption about the relationship between the explanatory
variables in the model and the effects. However, a well-known problem with the
FE estimator is that any time-invariant regressor in the model is swept away by the
data transformation that eliminates the effects. The partial effects of time-invariant
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variables can be estimated in a second-step regression, but this fact is generally
overlooked in textbook discussions of panel-data methods.

In this paper, we have shown how to conduct inference on the coefficients of time-
invariant variables in linear panel-data models, estimated in a two-step framework.
Our estimation framework is rooted in Hausman and Taylor’s (1981) “consistent,
but inefficient” estimator, albeit under weaker FE assumptions. We derive the
asymptotic covariance matrix of the two-step estimator and compare inference
based on the asymptotic standard errors with bootstrap alternatives. Bootstrapping
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has a natural appeal, because of the complications associated with estimating the
asymptotic covariance matrix and the inherent finite-sample bias of the resulting
standard errors. We adapt the pairs and wild bootstrap to this two-step problem.
Then we prove that both bootstrap coefficient estimators are unbiased, a result that is
important since bootstrap ERPs are a function of bias. Using Monte Carlo methods,
we compare the size and power of the naive asymptotic estimator, which ignores
the first-step estimation error, the correct asymptotic covariance matrix estimator,
which does not, and the bootstrap alternatives.

In terms of size, bootstrap methods are the clear winners. For values of N less
than 250, the pairs somewhat over-rejects and the wild somewhat under-rejects, with
the pairs having a small advantage. The positive ERP of the pairs is 2 %, while
the negative ERP of the wild is 6–8 %. In contrast, both are considerably more
accurate than the methods based on asymptotic formulae, which are typically biased
by more than 40 %. For values of N equal to 250 and larger, the bootstrap methods
converge to the correct size and the advantage of the pairs becomes negligible. The
correct asymptotic covariance matrix estimator remains somewhat biased even for
N D 1;000. The pairs bootstrap method slightly out-performs the other methods in
terms of power withN D 250, although power curves are highly similar with larger
values of N .

The Monte Carlo findings are consistent with the results of our analytical
examination of the pairs and wild bootstrap procedures. The implication of these
results is that both bootstrap ERPs should be very close to zero. The bottom line of
both our Monte Carlo exercise and analytical results is that researchers interested
in estimating the effects of time-invariant variables in a two-step framework should
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rely on bootstrapped standard errors. This conclusion holds particularly strongly in
small-N panels like those encountered in cross-state and cross-country studies.

What remains is to consider the advantages to bootstrapping when some of the
second-step regression variables may be correlated with the unobserved effects and
when the true model errors are heteroskedastic and autocorrelated. Atkinson and
Cornwell (2013) extend the work of this paper to that case.

Appendix

Unbiasedness of the Wild First-Step Estimator, Ǒw
FE

Lemma 1: Since �i is drawn independently and E.�i D 0/, E.�w
i jXi / D 0:

Proof of Lemma 1: From (5.17), �w
i D O�i �i# . Thus, E.�w

i jXi / D E. O�i �i#jXi / =
E. O�i jXi /#E.�i jXi / D E. O�i jXi /#E.�i / D 0; since �i is independent of O� i and Xi

and in addition E.�i / D 0 by definition in (5.15). �

Theorem 1: Given the FE conditional-mean assumption in (5.3) and Lemma 1, the
wild bootstrap first-step estimator Ǒw

FE is unbiased for Ǒ
FE .

Proof of Theorem 1: Writing the vector form of (5.16) as yw
i D Xi

Ǒ
FECzi O
FEC�w

i

and substituting into (5.18), the first-step wild estimator can be written as

Ǒw
FE D Ǒ

FE C
�X

i

X0
iQTXi

	�1X
i

X0
iQT �w

i ; (5.33)

where �w
i is a .T � 1/ vector. Then

E. Ǒw
FE jXi / D Ǒ

FE C
�X

i

X0
iQTXi

	�1X
i

X0
iQT E.�

w
i jXi / D Ǒ

FE; (5.34)

using Lemma 1. Further,EŒE. Ǒw
FE jXi /� D E. Ǒw

FE/ D Ǒ
FE . �

Unbiasedness of the Wild Second-Step Estimator, O�w
FE

To show that the second-step wild estimator is unbiased, we substitute (5.19) into
(5.20) to obtain

uw
i D Nyw

i � Nxi Ǒw
FE � zi O
FE: (5.35)
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Now average (5.16) over t to obtain

Nyw
i D Nxi Ǒ

FE C zi O
FE C N�w
i (5.36)

and substitute (5.36) into (5.35) to yield

uw
i D Nxi . Ǒ

FE � Ǒw
FE/C N�w

i : (5.37)

Lemma 2: Since �i is drawn independently and E.�i D 0/, E. N�w
i t jzi ; Nxi / D 0:

Proof of Lemma 2: Use the definition of �w
i t in (5.17) and condition on zi ; Nxi . Then

use the independence of �i from zi ; Nxi . �

Theorem 2: Given Theorem 1 and Lemma 2, the wild second-step estimator, O
w
FE ,

is unbiased for O
FE .

Proof of Theorem 2:

E. O
w
FE jzi ; Nxi / D O
FE C

�X
i

z
0

izi

	�1�X
i

z
0

iE.u
w
i jzi ; Nxi /

	

D O
FE C
�X

i

z
0

izi

	�1�X
i

z
0

iEfŒNxi . Ǒ
FE � Ǒw

FE/C N�w
i �jzi ; Nxi g

	

D O
FE; (5.38)

after substituting from (5.37) for uw
i and then applying Theorem 1 and Lemma 2.

Finally, EŒE. O
w
FE jzi ; Nxi /� D E. O
w

FE/ D O
FE . �

Unbiasedness of the Pairs First-Step Estimator, Ǒp

FE

To show the unbiasedness of the pairs first-step estimator, we need (5.3).

Lemma 3: Given (5.3),E.QT
O�i jvi ;Xi / D 0.

Proof of Lemma 3: First,

E.QT
O�i jvi ;Xi / D E.MiQT � i jvi ;Xi /

D E.QT �i jvi ;Xi /�QTXi

�X
i

X0
iQTXi

	�1
X0
iQT E.QT �i jvi ;Xi /

D 7EfQT Œ.jT ˝ ci /C ei �jvi ;Xi g

� QTXi

�X
i

X0
iQTXi

	�1
X0
iQT EfQT Œ.jT ˝ ci /Cei �

� jvi ;Xi g; (5.39)
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using Mi D IT � QTXi

�P
i X0

iQTXi

	�1
X0
iQT and �i D .jT ˝ ci / C ei . Then,

using (5.3) and the fact that QT eliminates ci completes the proof. �

Theorem 3: Given Lemma 3, the bootstrap pairs first-step estimator, Ǒp
FE; is

unbiased for Ǒ
FE:

Proof of Theorem 3: Substitute QT yi in (5.28) and take expectations. Then

E. Ǒp
FE jvi ;Xi / D Ǒ

FE C
�X

i

viX0
iQTXi

	�1X
i

viX0
iQT E.QT

O�i jvi ;Xi /

D Ǒ
FE; (5.40)

using Lemma 3. �

Unbiasedness of the Pairs Second-Step Estimator, O�p

FE

Theorem 4: Given (5.3), (5.4), and Theorem 3, the pairs second-step estimator,
O
pFE , is unbiased for O
FE .

Proof of Theorem 4: Substituting (5.29) into (5.30) we obtain

O
pFE D O
FE C
�X

i

viz
0

izi

	�1�X
i

viz
0

i Oui
	
: (5.41)

We can relate Oui to ui as follows:

Oui D ui � zi

�X
i

z0
izi

	�1X
i

z0
iui : (5.42)

Then substitute (5.42) into (5.41) to obtain

O
pFE D O
FE C
�X

i

viz
0

izi

	�1X
i

viz
0

iui �
�X

i

z0
izi

	�1X
i

z0
iui (5.43)

Conditioning on .zi ; Nxi ; vi /, we use (5.8) and take the expectation of both sides to
obtain

E.ui jzi ; Nxi ; vi / D E. N�i jzi ; vi /C NxiEŒ. Ǒ
FE � ˇ/jzi ; Nxi ; vi �: (5.44)

The first term on the right-hand-side of (5.44) is zero due to (5.3) and (5.4), while
Ǒ
FE is unbiased for ˇ from Theorem 3. �
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Chapter 6
International Evidence on Cross-Price Effects
of Food and Other Goods

James L. Seale, Jr., Cody P. Dahl, Charles B. Moss, and Anita Regmi

6.1 Introduction

A change in the price of a good affects the demand for that good and for other
goods as well. Understanding and measuring the interaction between the price and
consumption of goods among countries with diverse income levels improve the
ability of researchers and policy makers to project changing consumption patterns
and their effects on rich and poor countries. Price and income elasticities are critical
tools for these analyses, but estimation of these are sometimes hampered by the
lack of data consistent over countries and geographic regions. The International
Comparison Project (ICP) provides such data, making important advancements in
cross-country-demand analyses possible.1 Although cross-country-demand studies

1Kravis et al. (1975) conduct phase I, Kravis et al. (1978, 1982) conduct phases II and III, the
United Nations Statistical Office conducts Phases IV and V, and a consortium coordinated by the
World Bank conducts the 1996 ICP. See Seale and Regmi (2006) for a more thorough discussion of
the data and issues involved in using them to estimate and model cross-country demand systems.
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that do not use ICP data are mentioned, this paper emphasizes those that do. In
particular, the focus of the paper is not on income or own-price elasticities of
demand, but on cross-price elasticities of demand for a large and income diverse
set of countries.

Many cross-country-demand studies calculate and report expenditure or own-
price elasticities of demand. Early international comparison studies fit demand
models to time-series data on a country-by-country basis and report expenditure or
own-price elasticities (e.g., Houthakker 1957; Gamaletsos 1973; Parks and Barten
1973; Selvanathan and Selvanathan 1993; and Chen 1999b). Following Houthakker
(1965), other authors fit demand systems to pooled time-series data and report either
expenditure or own-price elasticities (e.g., Pollack and Wales 1987; Clements and
Selvanathan 1994; Chen 1999a, c; Yu et al. 2003; Reimer 2003; and Clements et al.
2006).

Studies that use ICP data and report own-price elasticities of demand are Finke
et al. (1984), Chen (1994), Clements and Chen (1996), Regmi et al. (2001), Seale
et al. (2003), and Seale and Regmi (2006, 2009). Other studies that use ICP data to
estimate cross-country-demand systems report expenditure or Engel elasticities of
demand but no price elasticities (e.g., Clements et al. 1979; Finke et al. 1983; Theil
et al. 1980; Seale and Theil 1991a; Wang et al. 1997; Cole et al. 1998; Cranfield
et al. 1998a, 2000; Reimer and Hertel 2003; Cranfield et al. 2005, 2007) while others
report no elasticities at all (e.g., Cranfield et al. 1998b, 2003; and Reimer and Hertel
2004; Clements and Chen 2010).

Few studies that fit demand systems to cross-country data calculate and report
cross-price elasticities of demand. Goldberger and Gamaletsos (1970) report and
compare cross-price elasticities of demand for five goods in 11 OECD countries,
but they estimate the sample mean elasticities of each country separately with time-
series data and not as a cross-country-demand system. Lluch and Powell (1975) fit
the linear expenditure system to time-series data of 19 countries for eight goods
and report the cross-price elasticities of seven goods with respect to food price at
sample means. Three studies (i.e., Theil and Finke 1985 (also reported in Theil
1987); Theil et al. 1989; and Seale and Theil 1991b) calculate and report cross-
price elasticities for two goods, food and nonfood, by fitting a demand system to
ICP data. Additionally, Theil and Finke (1985) (also in Theil 1987, Table 2.10,
p. 67) calculate cross-price elasticities of demand for food and nonfood for 13
real (1975) per-capita income levels expressed as a percentage of the United States
(U.S.) level, basing their calculations on parameter estimates of Finke et al. (1983).
TCS fit a 10-good-demand system to pooled ICP data of 1970, 1975 and 1980 and
use their resulting parameter estimates to calculate and report cross-price elasticities
of food and nonfood for 60 countries in 1980. Seale and Theil (1991b) calculate their
reported cross-price elasticities of food and nonfood for 60 countries in 1980 using
parameter estimates of Fiebig et al. (1988) who fit a 10-good-demand system to the
pooled ICP data of the 60 countries for the years 1970, 1975 and 1980.

More recently, Seale et al. (SRB 2003) and Seale and Regmi (SR 2006) fit a
two-stage-demand system to data from the 1996 ICP. Seale and Regmi (SR 2009)
use maximum likelihood (ML) to estimate the parameters of the Florida model and
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correct for group heteroskedasticity.2 SRB and SR (2006) also use the parameter
estimates from the first stage of the two-stage-demand system to calculate the
income elasticities and three own-price elasticities of demand for nine goods. No
one to date, however, calculates the cross-price elasticities of demand using more
than a two-good, cross-country-demand system.

This paper develops a methodology to calculate theoretically consistent cross-
price elasticities of demand by using the parameter estimates of the Florida model
and real income per-capita statistics from a large and diverse set of 114 countries.
The next section presents a review of the literature, followed by a brief discussion of
the ICP data and the methodology for obtaining cross-price elasticities. The details
of the Florida model are presented in Appendix A while the formulae of the cross-
price elasticities are developed in Appendix B. The empirical section reports the
cross-price elasticities of a two-good demand system – food and nonfood – from the
114-country sample, and compares these elasticities with those of TCS (pp. 116–
117) for the 41 countries in both studies. This is followed by the presentation and
discussion of the cross-price elasticities of the nine goods which are reported and
discussed for three income groupings of the 114 countries and for each of the 114
countries. In the conclusions, comments are made and implications drawn.

6.2 Review of Literature

Cross-country demand analysis for goods and services has come a long way since
the pioneering work of Hendrik Houthakker (1957). Clements and Theil (1979) and
Suhm (1979) are first to apply a cross-country-demand system to ICP data by fitting
Working’s (1943) model to 1975 ICP data of 15 countries on four and eight groups
of consumer goods (“goods” hereafter), respectively.3

Working fit his model to U.S. household data by assuming that all households
face the same prices. Accordingly, Working’s model accounts for variation in
income but not in prices. Working’s model is appropriate to use in cross-country-
demand analysis if it is reasonable to assume that the price of goods are the same
in each country. Since consumers in different countries often pay different prices
for the same-type goods, the equal-price assumption is generally too restrictive and
prevents analysis of how, in different countries, the demand for goods changes in
response to a change in the own price or in the price of other goods.

2TCS who developed the model originally referred to it as the Working-PI (preference indepen-
dence) model (TCS, p. 41). Seale et al. (1991) are first to refer to it as the Florida model in the
tradition of naming a demand-system model for its place of origin (e.g., Rotterdam model (Theil
1965), the CBS model (Keller and van Driel 1985), and the NBR model (Neves 1987)). Theil in
later writings also refers to it as the Florida model (Theil 1996. p. 3, 60; 1997). The model is
described in detail in Appendix A.
3Working’s model is an Engel curve model that describes the budget shares of goods as linear
functions of the log of total consumption expenditure (income).
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Theil et al. (TSM 1980) apply the differential approach to consumption theory
to the cross-country Working’s model and add a price term to account for the
substitution effects among goods that result from a price change. TSM fit their
model to data compiled by Suhm (1979) and, adding the constraint of preference
independence among goods (additive utility), estimate the parameters of the model
with ML.

Others successfully apply the TSM model to data from the ICP. Finke et al.
(1983) fit the TSM model to data from 30 countries using the 1975 ICP statistics
on 10 goods.4 Fiebig et al. (1987) disaggregate the 1975 ICP data further into an 11-
good demand system that includes energy. Fiebig et al. (FST 1988) individually
apply the TSM model (with 10 goods) to 15 countries from the 1970 ICP, 30
countries from the 1975 ICP, and 24 (of 30) countries that participate in both Phases
III (1975 ICP) and IV (1980 ICP). FST also pool the data from the 30 countries (in
the 1975 ICP) by linking country data in 1975 to 1970 and 1980 to 1975. Since the
resulting data are stochastically dependent across time, FST extend the TSM model
to incorporate an autoregressive process (AR (1)) that corrects for serial correlation.5

Seale and Theil (1987) extend the analysis of FST in three ways: they increase
the FST sample size from 30 countries to 58 countries by adding the Phase IV
(1980) data of 28 additional countries that did not participate in the ICP prior to
Phase IV; they note that the size of the error covariance matrices, when applying the
TSM model to the data containing the new 28 countries, is about twice the size
of the error covariance matrices of the FST groupings; and, in estimating the
pooled-data parameters, they multiply by two the error covariance matrix with the
new 28 countries in the computations of the ML estimator to correct for group
heteroskedasticity.

TCS modify the TSM model by using a different parameterization of the model.
The resulting model, the Florida model, describes the budget share of a good as a
function of, in addition to an income term and a substitution term, a pure price term.
TCS, using a 10-good classification, fit the new model to the ICP data of Phases II,
III, and IV, individually, and, after a series of tests, fit the new model to the data
pooled across time. TCS estimate all parameters of the Florida model with ML,
including an autoregressive and heteroskedasticity parameters, by an iterative grid
search. In a subsequent paper, Seale et al. (SWK 1991) fit the Florida model to the
TCS data disaggregated into an 11-good system, including energy, and estimate all
parameters with the ML scoring method (Harvey 1990, p. 320). Seale, Regmi and
Bernstein (SRB) and Seale and Regmi (SR 2006, 2009) fit the model to the 1996 ICP

4Kravis et al. (1982) fit the linear expenditure system (LES) to four broad categories of goods, but
a careful reading of their footnote 47, p. 386, makes it clear that their LES analysis is independent
of the ICP multilateral data. They do, however, fit a double-log model to ICP Phase III data for 25
summary categories of goods and for 103 detailed categories of goods in 30 countries.
5If the error term, say, of the food budget share is positive and large for country c in 1970 (Phase
II), it is likely that this country will also have a positive error term for food in 1975 (Phase III). The
AR(1) process is a simple method to account for stable but different preference structures across
countries.
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data of 114 countries for nine goods in the first stage of a two-stage-demand system
and estimate the parameters with a heteroskedastic-corrected-maximum-likelihood
estimator.6 More recently, Clements and Chen (2010) fit the Florida model to ICP
data for the purpose of measuring the affluence of nations based on food budget
shares that allow for difference in food prices, and Seale and Solano (2012) estimate
the cross-country demand for energy with the Florida model.

6.3 Data

When available, cross-country consumption data that include rich and poor coun-
tries are attractive for demand analysis. The variability of consumption, income, and
prices is generally greater than time-series data of a single country or household data
(Selvanathan and Selvanathan 1993). However, using consumption data for a large
number of countries, goods, and services can be challenging. Firstly, international
data are generally reported in national currency units and conversion to a single
currency denomination is required. One possible way is to convert national currency
units into base-country units with official exchange rates. However, doing so is
fraught with problems. One is that conversion by official exchange rates leads
to converted expenditure data that overstate the poverty of low-income countries
(Kravis et al. 1982). Also, expenditure data converted by official exchange rates
can lead to spurious results because of wide fluctuations in official exchange rates
over time that are independent of personal expenditures (Theil et al. 1989). Further,
official exchange rates are not connected to changes in demand for non-traded goods
and services.

The ICP, originally established by Kravis and his colleagues at University of
Pennsylvania, uses a currency-exchange methodology based on purchasing-power
parity (PPP) and provides comparable gross-domestic product and consumption
data based on PPP conversions for a large number of consumption items across
countries (Kravis et al. 1975). PPP is the number of local currency units required
to buy equivalent goods with a unit of base-country currency. The measure converts
different national currencies to a single-base currency based upon the number of
units it takes to purchase the same bundle of goods in the base country. As such,
it more closely relates consumption expenditures across countries than conversion
by official exchange rates. Further, this method is not susceptible to the vagaries of
exchange rate fluctuations, and, unlike official exchange rates, it accounts for both
traded and non-traded goods and services (Reimer and Hertel 2004).

The paper analyzes the 1996 ICP data collected between 1993 and 1996 by six
agencies contracted by the United Nations for countries in Asia, Africa, the Middle

6To differentiate the preference structure in the two stages, these authors refer to the first-stage
(second-stage) model as the Florida-PI (Slutsky) model. In this paper, we forego this differentiation
and simply refer to the preference independent form as the Florida model.



130 J.L. Seale Jr. et al.

East, the Caribbean, Latin America, Organization for Economic Co-Operation
and Development (OECD), and the Commonwealth of Independent States (CIS).7

Price and expenditure data at disaggregate levels are collected in each region.
Real volumes (quantities) are obtained with the Geary-Khamis method and are
expressed in terms of the base-country currency (in most cases the 1996 United
States (U.S.) dollar) that are comparable across countries.8 A major advantage of
the Geary-Khamis method is that the resulting volumes (quantities) are additive in
that subcategory volumes sum to the calculated category volume (United Nations,
1986–1987; World Bank 1993).

Two of the regions, Asia and Latin America, did not express the data relative
to that of the U.S. dollar but relative to currencies of Hong Kong and Mexico,
respectively. To make the data comparable across all countries, SRB (2003)
transform the data in two ways. Because Mexico is included in the OECD-
country data, conversion of the Latin America data to be comparable to the U.S.
is straight forward. Making the Asian data comparable to the other countries is
more challenging. In the first step, SBR re-express the Asian data relative to that
of Japan that are included in the OECD-country data. The resulting transformed
Asian data still have scaling problems. Next, SRB compare the PPP-based per capita
real consumption from the 1996 ICP data to those from the World Bank’s World
Development Indicators (WDI 2001), and they notice a close match for all countries
except those in Asia. Accordingly, they use the WDI rankings as a new scale for the
Asian data. For example, Hong Kong’s PPP real per capita personal consumption in
1996 (according to the WDI 2001) is 79.8% that of the U.S. level, and SR multiply
the real per capita volumes (in 1996 international dollars) of the broad consumption
categories of Asian countries by 79.8 to get real volumes relative to those of the
U.S. This process adequately corrects the scaling problem encountered within the
Asian-country data.

While 115 countries are included in the 1996 ICP, one country, Herzegovina,
does not have associated population data. As all expenditures and real volumes are
converted for analysis on a per capita basis, Herzegovina is omitted from the sample.
The resulting 114 countries are presented in Table 6.1.

The analysis is confined to the consumption component of gross domestic
product and, in particular, to nine consumption categories: food, beverages and
tobacco; clothing and footwear; gross rent, fuel and power; house furnishings and
operations; medical care; transport and communications; recreation; education;
and other items. The food, beverages and tobacco group includes food prepared
and consumed at home plus beverages and tobacco, but it does not include food

7Over the years, the number of countries included in the ICP has increased: 10 countries in the 1970
Phase I (Kravis et al. 1975); 16 countries in the 1970 Phase II (Kravis et al. 1978); 34 countries
in the 1975 Phase III (Kravis et al. 1982); 60 countries in the 1980 Phase IV (United Nations
1986–1987); and 115 countries in 1996.
8See TCS, Appendix A, for a discussion of the Geary-Khamis methodology and how to estimate
PPPs based upon it.
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consumed away from home that is included in recreation. The nine consumption
categories in this analysis are the same aggregate categories of SRB and SR (2009).

The 114 countries are divided into low-, middle-, and high-income countries
based on real income per capita relative to that of the U.S.9 Low-income countries
represent countries with real income per capita less than 15% of the real income per
capita in the U.S. Middle-income countries represent countries with real income per
capita equal to or greater than 15% but less that 45% of the real income per capita
in the U.S., and high-income countries represent those with real income per capita
equal to or greater than 45% of the real income per capita in the U.S. (Table 6.1).
The majority of Sub-Saharan African countries, poor transition economies such as
Mongolia and Turkmenistan, and low-income Middle Eastern and Asian countries
such as Yemen and Nepal fall within the low-income group. High-income countries
include most Western European countries, Australia, New Zealand, Canada, and
the U.S. Middle-income countries include many Latin American countries, North
African countries, and better-off transition economies such as Estonia, Hungary,
and Slovenia.

6.4 Methodology

The purpose of demand analysis is to discover empirical regularities in consumption
patterns. Although single-equation methods have been used in past demand analysis,
it is now generally agreed that a systems approach to demand is more appropriate.
One main reason is that the demands for different goods are related through the
consumer’s budget constraint. If a consumer purchases more of one good, she must
consume less of at least one other good.

The goal of this study is to estimate the effect of a price change of a good
on the quantity demanded of the other remaining goods by calculating cross-price
elasticities of demand. A cross-price elasticity measures the percent change in the
quantity demanded of good i from a 1% change in the price of good j, i not equal to
j. When i is equal to j, the price elasticity is referred to as an own-price elasticity of
demand.

Three prominent types of price elasticities are the Frisch, Slutsky, and Cournot
price elasticities. The three elasticities differ depending upon assumptions concern-
ing income after a price change. After a price change, the Frisch price elasticity
results from compensating the consumer with the amount of income that keeps
the marginal utility of income constant. The Slutsky price elasticity results from
compensating the consumer with the amount of income that keeps real income
constant and is the price elasticity most often used in the measurement of welfare

9Note that this classification is merely done to facilitate analysis and is not based on any generally
accepted criteria for classification. Since the classification is based on the ICP data used in this
analysis, some countries may be in a group with which they normally would not be associated.
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from changes in price. The Cournot price elasticity results from constraining the
nominal income of the consumer to remain unchanged after a change in price.10

Because it is composed of both the substitution effect and the income effect
of a price change, it more closely measures the market response of quantity
demanded when price changes. Cournot elasticities are often used in econometric
and simulation models.

The first step to estimating cross-price elasticities is to fit a demand system to the
data for, in our case, nine aggregate goods for 114 countries. Then, based on esti-
mated parameters, cross-price elasticities may be calculated. We choose the Florida
model for analysis and estimate its parameters with maximum likelihood (ML).11

The Florida model is developed by TCS (1989) for the specific purpose of fitting
their cross-country-demand system to ICP data. It possesses several characteristics
that are important in model choice for cross-country demand analysis. One is that the
model’s marginal shares vary with income levels such that they increase (decrease)
as income levels increase for luxury (necessity) goods. This allows the calculation
of income and price elasticities for individual countries that follow the predictions of
economic theory as opposed to those with constant marginal shares that would result
in elasticities that go against such economic predictions. For example, Engel’s law
predicts that budget shares for necessities such as food decrease as income levels
increase. Accordingly, the budget share for food is expected to be larger for a poor
country such as Tanzania than that of the U.S. Economic theory also suggests that
income and price elasticities of demand for food are larger for a poor country than
for a rich one (Timmer 1981). If a model’s marginal shares are constant as they are
for the linear expenditure system (LES), income and price elasticities of demand
would be smaller for poor countries than for rich ones.

Another reason for choosing the Florida model for analysis is that its price
terms are relative prices instead of absolute prices. While the real volume (quantity)
data of the ICP are measured in international dollars and thus comparable across
countries, price and nominal expenditure data are measured in national currencies.
By proper deflation of absolute prices, the price terms of the Florida model
are relative prices and thus nondenominational. Other popular demand systems
such as the almost ideal demand system (Deaton and Muellbauer 1980) and the
quadratic almost ideal demand system (Banks et al. 1997) have prices expressed
in absolute terms so that they are not suitable for fitting the ICP data. The use of
the Florida model for estimation also facilitates the calculation of three-types of

10The Slutsky and Hicksian price elasticities are sometimes referred to as the compensated price
elasticities. However, the Slutsky and Hicks compensation methods differ. The Slutsky (Hicks)
compensation keeps real income constant after a price change by the amount necessary that
would allow the consumer to continue consuming the same bundle of goods (remain on the same
indifference curve) that existed prior to the price change (Friedman 1976, pp. 50–54). The Cournot
price elasticity is sometimes referred to as the uncompensated or ordinary price elasticity that is
derived from the ordinary or Marshallian demand curve.
11Clements and Chen (2010) point out that the Florida model “is probably the most extensively
applied and assessed in a cross-country context.”
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price elasticities. The details of the Florida model and its derivation are discussed
in Appendix A. Formulae for calculating cross-price elasticities are derived and
presented in Appendix B.

6.5 Empirical Results

SR (2009) calculate and report income and three types of own-price elasticities of
demand for nine goods in 114 countries participating in the 1996 ICP. They do
not report the marginal shares of the 114 countries or the cross-price elasticities
of demand for the nine goods. In this section, we extend the analyses to calculate
and report the marginal shares in the 114 countries for the nine goods. Next, we
examine a two-good-demand system for food (including beverages and tobacco)
and nonfood, calculate the cross-price elasticities using the parameter estimates of
SR (2009), and compare our results with the cross-price elasticities of TCS. Finally,
we calculate and report the Slutsky and Cournot cross-price elasticities of demand
for the nine-good system across 114 countries using Eqs. (6.19a), (6.19b), (6.20a),
and (6.20b). The minimal requirements to calculate the Slutsky and Cournot cross-
price elasticities of demand are parameter estimates of the Florida model and the
natural log of the real income per capita of the 114 countries.

6.5.1 Marginal Shares

Marginal shares sum to one over all goods and measure how consumers allocate
an additional unit of income among, in our case, nine broad categories of goods.
Marginal shares are also used to calculate income and price elasticities. The
marginal shares of all 114 countries are calculated using Eq. (6.16) and are reported
along with the averages of the three-country groupings by income levels in the
Table 6.6. A striking pattern emerges with low-income countries allocating an
additional unit of income at a higher (lower) relative share than do high- and middle-
income countries for necessities (luxuries). For example, if incomes go up by $1
across all countries, the expenditures on food would increase by 54 cents in Tanzania
and by 2 cents in the U.S., a difference in magnitude of 27 times!

An additional dollar of income in Tanzania would increase expenditures on other,
recreation, and medical care by 5 cents, 3 cents, and 4 cents, respectively. In contrast,
an additional dollar in the U.S. would increase expenditure on these three goods
by 18 cents, 9 cents, and 13 cents, respectively, for a difference in magnitudes
of between 3 and 4 times. The difference in the magnitude of spending between
consumers in the two countries is about double for clothing and footwear, gross
rent, fuel and power, housing furnishings and operations, and transportation and
communications while it is only about 1.3 times for education.
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Table 6.2 Parameters from maximum likelihood estimations

Good or parameter (1)
Pooled data, 1980
normalizationa (2)

1996 data, 114
countriesb (3)

Coefficient �
Income flexibility �.723 (.025) �.809 (.021)

Coefficient ˇi

Food, beverage, tobacco �.134 (.009) �.135 (.006)
Clothing, footwear �.004 (.003) �.006 (.002)
Gross rent, fuel and power .018 (.004) .027 (.004)
House furnishings, operations .014 (.003) .012 (.001)
Medical care .022 (.003) .024 (.003)
Transport and communications .030 (.004) .021 (.003)
Recreation .018 (.002) .020 (.002)
Education .005 (.004) .005 (.002)
Other .030 (.003) .032 (.003)

Coefficient ˛i

Food, beverage, tobacco .214 (.015) .151 (.011)
Clothing and footwear .078 (.004) .059 (.004)
Gross rent, fuel and power .146 (.006) .179 (.008)
House furnishings, operations .087 (.004) .077 (.004)
Medical care .089 (.004) .106 (.005)
Transport and communications .126 (.006) .133 (.006)
Recreation .069 (.003) .074 (.004)
Education .066 (.005) .074 (.004)
Other .124 (.005) .147 (.006)

Coefficient Kg

K1 1.606 1.089 (.114)
K2 1.294 (.080)
aColumn (2) figures are from Table 5.4, column 3, page 105, TCS (1989). The
estimate of�.134 for food, beverages, tobacco is simply obtained by summing
TCS’s parameter estimates of food,�.135, and beverages and tobacco, .001
bColumn (3) figures are from Table 12.5, column (4), Seale and Regmi (2009)

6.5.2 Cross-Price Elasticities in a Two-Good-Demand System

In a two-good-demand system, the Slutsky cross-price terms are equal to the nega-
tive of the corresponding Slutsky own-price terms. Cournot cross-price elasticities,
however, are not equal to the negative of the corresponding Cournot own-price
elasticities. Their calculations are based on Eq. (6.20b) or Eq. (6.21b), on the alpha
and beta of food, beverages and tobacco (referred to as food hereafter) and on phi
from column (3), Table 6.2. The alpha and beta for nonfood equal one minus the
alpha of food and the negative of the beta of food, respectively, a result of the
adding-up conditions of Eq. (6.2). The standard deviations for the elasticities are
computed by bootstrapping. Specifically, we draw 10,000 sets of parameters from
the distribution that maximized the likelihood function given the sample. Using
each draw, we then compute the elasticities (both Slutsky and Cournot). Finally,
we compute the standard deviation for this sample of elasticities.
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The calculated cross-price elasticities of the 114 countries in the food and
nonfood demand system (Table 6.3) indicate that the Slutsky cross-price elasticity
of demand for food with respect to a change in nonfood price is higher in the
middle-income countries than in the low- and high-income countries. This result
is consistent with the thinking that middle-income countries lie at the threshold
where consumers are likely to upgrade their consumption patterns. As a Slutsky
price elasticity measures the expenditure response to a price change without any
change in real income, middle-income consumers are free to switch to goods which
may have become relatively cheaper with a change in the price of a given good.
However, low-income consumers with less disposable income may be constrained
by the need to meet their subsistence consumption baskets and are less able to take
advantage of a price change.

The Slutsky cross-price elasticities of demand for food with respect to a change
in nonfood price (food-nonfood elasticities) and for nonfood with respect to a
change in food price (nonfood-food elasticities) are all positive and, except for
those of Luxembourg and U.S., are statistically different from zero (’D .05). When
compared to the point estimates of the U.S., the Slutsky food-nonfood elasticities are
all statistically different except for that of Luxembourg (’D .05), and the Slutsky
nonfood-food elasticities are all statistically different when income is less than that
of Switzerland’s (’D .05). The Slutsky nonfood-food elasticities are larger than the
corresponding ones for food-nonfood elasticities in countries with real income per
capita less than that of Pakistan. Starting with Pakistan and countries thereafter,
the Slutsky food-nonfood elasticity is greater than the nonfood-food elasticity.
Further, quantities demanded for food and nonfood are more sensitive in low- and
middle-income countries to compensated cross-price changes than in high-income
countries. The average food-nonfood elasticities of the group of low- and middle-
income countries equal approximately one and a half times that of the average of the
high-income group of countries. The average nonfood-food elasticities of the low-
income and middle-income countries are six and three times larger, respectively,
than that of the high-income group. The demand for food with respect to a change
in the price of nonfood in Tanzania is about four times more sensitive than that in
the U.S. Most striking is that the demand for nonfood with respect to a change in
the price of food is 42 times more sensitive in Tanzania than in the U.S.

The Cournot cross-price elasticity equals the corresponding Slutsky elasticity
minus a positive income term Eq. (6.21b), and it is markedly different from the
corresponding Slutsky elasticity. For low-income countries with real income per
capita of about 13% or less than that of the U.S., the Cournot food-nonfood
elasticity is positive, indicating that the income effect is smaller than the substitution
effect and that, in these countries, if nonfood price rises, expenditures on food will
increase. However, except for the lowest income countries starting below Senegal,
these positive elasticities are not significantly different from zero (’D .05). For
the other countries, the income effects are larger than the substitution effects, and
the elasticities are negative. Most however are statistically the same as zero until
reaching countries with income greater than Slovakia except for that of Luxembourg
and U.S. which are statistically the same as zero (’D .05). In comparison with
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Fig. 6.1 Nonfood cross-price elasticity with food price change (Source: 1980 from Theil et al.
1989. Forty one countries are listed in order of increasing affluence)

the elasticity estimate of the U.S., countries with income less than Azerbaijan
have Cournot food-nonfood elasticities that are statistically different (’D .05).
All estimated Cournot elasticities are small in magnitude. Considering that food
is a necessity, the relatively inelastic Cournot cross-price elasticity estimates are
consistent with our expectations.

The pattern is markedly different for the nonfood consumption category, since
taken together nonfood is a luxury good. All Cournot nonfood-food elasticities are
negative and statistically different from zero (’D .05). Starting with the poorest
country, Tanzania, and traveling towards richer ones, the Cournot nonfood-food
elasticity gradually declines in absolute value from �.43 in Tanzania to �.16 in
the U.S. This has significant implication on economies rich and poor. When food
price increases, the nonfood sector of an economy will shrink, particularly in poor
countries but also in rich ones. When compared to the point estimate of the U.S.,
countries with income less than France have Cournot nonfood-food elasticities
statistically different (’D .05).

Forty-one countries in this study are also in the study of TCS making a
comparison of cross-price elasticities of food and nonfood possible across time,
1980–1996. Our cross-price elasticities for the 41 countries and those of TCS
(columns (11) and (12) of Table 5.8, pp. 116–117 (TCS)) are plotted in Figs. 6.1
and 6.2. First, it is important to note that real income per capita relative to the U.S.
decreases from 1980 to 1996 for the poorest countries while it increases for the
other more affluent ones. Both studies find that the nonfood-food elasticity decreases
with affluence while the food-nonfood elasticity first increases with affluence before
decreasing. When comparing the Slutsky elasticities over time, they are smaller in
1996 for the countries that increase real income per capita between 1980 and 1996
relative to the U.S., but larger for the others. The finding is reasonable as one expects
price elasticities to become less elastic as income increases (Timmer 1981).

The Cournot nonfood-food elasticities in both studies decrease absolutely with
affluence and all in 1980 are absolutely larger than corresponding ones in 1996.
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Fig. 6.2 Food cross-price elasticity with nonfood price change (Source: 1980 from Theil et al.
1989. Forty one countries are listed in order of increasing affluence)

All Cournot food-nonfood elasticities are negative in 1980 while most are negative
in 1996 except for the poorest countries. Comparisons over time indicate that the
1996 values are generally smaller than the 1980 ones in absolute values. The excep-
tion is again for some of the lowest income countries where the 1996 elasticities are
positive and larger than the negative values of 1980. Despite the differences we note
between the 1996 and 1980 elasticities, the cross-price elasticities for a two-good-
demand system using estimates from 1996 ICP data appear reasonable and offer
sufficient support for estimating cross-price elasticities for the nine-good-demand
system.

6.5.3 Cross-Price Elasticities in a Nine-Good-Demand System
Across Three Income Groupings

While cross-price elasticities are calculated and reported in Tables 6.7, 6.8, 6.9, 6.10,
6.11, 6.12, 6.13, 6.14, and 6.15 on a country-by-country basis for the nine goods,
it is convenient to summarize the results by calculating and reporting averages of
three groupings: low-; middle-; and high-income countries (Tables 6.4 and 6.5).
Within a country grouping, the Slutsky cross-price elasticities of the nine-good-
demand system are bigger in magnitude for more luxurious consumption items
such as recreation than for the two necessity items, food, and clothing and footwear
(Table 6.4). When a price changes with respect to one of the two necessities, the
Slutsky cross-price elasticities of the other eight goods are the greatest among low-
income countries and decrease in magnitude as countries become wealthier. The
opposite is generally the case when price changes with respect to one of the seven
more luxurious goods.

The substitution effects of the eight goods in the low- and middle-income
countries, on average, for a change in the price of food are substantial. For example,
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a 1% increase in the price of food, if real income is unchanged (compensated), will
increase, on average, the demand for the other eight goods between .63% (.24%)
for recreation and .28% (.15%) for clothing and footwear in low- (middle-) income
countries. The substitution effects in the high-income countries are substantially
less. A 1% increase in the price of food, when real income remains constant, will
increase the quantity demanded for clothing and footwear, on average, by .05%, for
recreation by .08%, and for the other six goods by .07% each.

If the price of one of the eight nonfood goods in low-, middle-, and high-income
countries increases, ceteris paribus, by 1%, the average demand for the other eight
goods will increase by .20% or less. The exceptions in low- and high-income
countries are for recreation (.22% and .21%, respectively) when the price of gross
rent, fuel and power changes by 1%.

A comparison of Tables 6.4 and 6.5 indicates that the income effect of a price
change may be large. When price changes for either food or clothing and footwear,
the two necessity goods, all Cournot cross-price elasticities are negative. Negative
Cournot cross-price elasticities also result from a change in the price of education
for all goods in all groups except for food in high-income countries where the
elasticity is zero. In the cases of gross rent, fuel and power, house furnishings
and operations, and transportation and communications, the substitution effect
outweighs the income effect in the low-income group, on average, but, for the
other two income groupings, the opposite is true. For medical care and other, the
substitution effects are larger than the income effects, so that, on average across
the three groupings, the cross-price elasticities are all positive.12 For recreation, all
cross-price elasticities are positive across all groups. The values of these elasticities
for all goods generally tend to be the largest for the poorest countries and decrease
in magnitude as countries become wealthier.

It is of particular interest, given the recent attention to the poverty impacts of
increases in food prices, to look more closely at the Cournot cross-price elasticities
when the price of food changes. An increase in the price of food will have
a depressing impact on the economies of all three income groupings in that it
decreases the demand for all the other eight goods due to the income effects
of the price change being larger than the substitution effects. These cross-price
elasticities are largest, on average, for low-income countries, followed by middle-
income countries, and smallest for high-income countries. The range in elasticities
among the eight other goods is between �.43% (�.25%) for recreation and �.19%
(�.16%) for clothing and footwear in the low- (middle-) income group. In high-
income countries, though smaller, the effects of a food-price change on the other
eight goods is substantial ranging from .19% for recreation to .14% for clothing and
footwear.

12The cross-price elasticities with respect to changes in the price of medical care and other are
positive for all counties except for the two or three wealthiest counties, respectively (Table 6.11
and Table 6.15).



6 International Evidence on Cross-Price Effects of Food and Other Goods 147

The combined substitution and income effects with respect to a price change of
one of the eight nonfood goods in all groups are relatively small, and all respective
Cournot cross-price elasticities are close to zero. The largest negative cross-price
elasticity is for recreation when the price of clothing and footwear changes, and its
value is only �.04. Even in the cases where the substitution effect is larger than the
income effect (e.g., the cross-price elasticities are positive), the values are still close
to zero.

6.5.4 Cross-Price Elasticities in a Nine-Good-Demand System
Across Individual Countries

Cross-price elasticities are calculated on a country-by-country basis, and the stan-
dard deviations for the elasticities are computed by bootstrapping. Specifically, we
draw 10,000 sets of parameters from the distribution that maximized the likelihood
function given the sample. Using each draw, we then compute the elasticities (both
Slutsky and Cournot). Finally, we compute the standard deviation for this sample
of elasticities. Tables 6.7, 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, and 6.15 contain
the Slutsky and Cournot cross-price elasticities of demand for each of the eight of
nine aggregate goods with respect to a change in the price of the ninth good for all
114 countries. Examination of these tables clearly establishes that the cross-price
elasticities with respect to a change in the price of food are largest for all countries,
both in terms of the Slutsky and Cournot cross-price elasticities.

6.5.4.1 Slutsky Cross-Price Elasticities

All Slutsky cross-price elasticities are positive (Tables 6.7, 6.8, 6.9, 6.10, 6.11,
6.12, 6.13, 6.14, and 6.15). The largest among the eight goods are for a change
in the price of food, and almost all of these with respect to a food price change
are statistically different from zero (’D .05). The exceptions are for medical
care, transport and communication, and other among the poorest countries and for
transport and communications and other for the two richest countries, Luxembourg
and the U.S. Additionally, most of the Slutsky cross-price elasticities with respect to
a change in food price are statistically different from the point estimate of the U.S.
The exceptions again are the same commodities and poor countries with elasticities
not significantly different from zero plus some of the richest countries for all eight
commodities. In terms of magnitude, the Slutsky cross-price elasticity for the other
necessity, clothing and footwear, is the smallest among the eight goods in response
to a change in food price (Table 6.7). In Tanzania, the poorest country in the
sample, a 1% increase in the price of food will increase the compensated demand
for clothing and footwear by .41% while it increases the quantities demanded of
medical care and of other items by over 1.0%. For Nigeria, the second poorest
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country, it increases the demand for recreation by 2.6%. As one travels from the
poorest countries to richer ones, the Slutsky cross-price elasticities with respect to
a change in food price decrease. When reaching the U.S., all these elasticities are
small in the order of .02% for gross rent, fuel and power, medical care, transportation
and communications, recreation, and other and .01% for three remaining goods.
Still, except for transportation and communication and other, these elasticities are
statistically different from zero (’D .05). The Slutsky cross-price elasticities of
recreation, the most luxurious good, are largest among the eight goods with respect
to a food price change and range from 2.62 for Nigeria (statistically different from
zero and elasticity estimate of U.S.) to .02 for the U.S. (also statistically different
from zero).

Although smaller, all Slutsky cross-price elasticities with respect to a 1% change
in the price of clothing and footwear, the other necessity, decrease in value as one
travels from the poorest to the richest country (Table 6.8). As with respect to a
change in food price, all these are statistically different from zero except in the case
of medical care, transport and communications, and other for the poorest countries
and for food for Luxembourg and U.S. Also for food with respect to a change in
clothing and footwear, all elasticities are statistically different from that of the U.S.
except for the five next richest countries. The largest elasticities are recreation’s
and while all are statistically different from zero (’D .05), many are statistically
the same as that of the U.S. with the exceptions being the poorest countries with
income less than that of Peru. For Nigeria, the second poorest country, its cross-
price elasticities range from .39% for recreation to .05% for food. Once reaching
the affluence of the U.S., the elasticities range from .06% for recreation to .00%
for food.

The pattern is different for a change in the price of a luxury good when real
income is compensated. In some cases, the values increase initially when traveling
from poor to rich countries before decreasing thereafter, in others the values steadily
increase throughout while in still others they initially decrease before increasing in
value. For example, when the price of gross rent, fuel and power increases by 1%,
the quantity demanded of food will increase in value until reaching Russia where
it decreases in value thereafter until reaching the U.S. Its effect on medical care,
recreation and other items is opposite as the elasticities decrease initially before
reaching a minimum and then increase in value thereafter. The quantity demanded of
recreation is most sensitive to a cross-price change in poor as well as rich countries.
The second most affected good is medical care.

Statistical significance of the Slutsky cross-price elasticities are similar with
respect to a price change of the different luxury goods. Generally, the poorest
countries have elasticity estimates that are not significantly different from zero
(’D .05) for medical care, transport and communications and other, and generally
the food cross-price elasticities are insignificant for Luxembourg and U.S. Statistical
difference in the elasticity estimates from those of the U.S. vary depending on which
luxury good price changes. For example, except for the food cross-price elasticity
with respect to a change in recreation price, those for the seven other goods are not
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statistically different from those of the U.S. The cross-price elasticities with respect
to a change in medical care price are most different from those with respect to a
recreation price change. Most are statistically different from those of the U.S. for the
low- and middle-income countries. Upon reaching the rich countries, all elasticities
except for that of food are statistically the same as those of the U.S. It is noteworthy
that the food cross-price elasticities are most often statistically different from zero
and most often statistically different from the elasticity estimates of the U.S. for
both luxury and necessity goods.

6.5.4.2 Cournot Cross-Price Elasticities

Cournot cross-price elasticities of demand for the other seven goods with respect
to a change in the two necessity goods (i.e., food and clothing and footwear) are all
negative for all countries (Tables 6.7 and 6.8). This occurs when the income effect of
a price change outweighs the substitution effect. Further, most of these elasticities
are statistically different from zero (’D .05), and for food most are statistically
different from those of the U.S. The resulting elasticity estimates show that increases
in the price of these two necessities have depressing effects on the economies of
low-, middle-, and high-income countries. This is particularly true for an increase
in food price as the elasticities with respect to a food price change are absolutely
greater than those with respect to a change in the price of clothing and footwear. A
1% increase in the price of food holding nominal income constant will decrease the
demand for clothing and footwear by .22% in Tanzania and by .13% in the U.S. Its
effects on the luxury goods in all countries are even more depressing with recreation
being the most sensitive. The recreation-food elasticity in Nigeria is �1.51 while it is
�.18 in the U.S. Changes in the quantity demanded for the other six luxury goods in
response to a change in food price are also substantial even for a wealthy country like
the U.S. In particular, medical care expenditures are reduced by .71% in Tanzania
and .17% in the U.S. These results indicate that a food price increase affects health
in all countries beyond the nutritional aspects. Given such large negative effects that
a food price increase has on the entire economy, it is not surprising that high food
prices in recent years contribute to food riots in many parts of the world (Faiola
2008).

Similarly but in smaller magnitude, a price increase for clothing and footwear
will have a depressing effect on a country’s economy. For example, a 1% increase
in the price of clothing and footwear when nominal income is uncompensated will
decrease the demand for the seven luxury goods by .13% (recreation) or less in
Nigeria and by .02% in the U.S. It has the smallest effect on food with an elasticity
of only �.02% in Tanzania and �.00 in the U.S.
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Price changes of the seven luxury goods do not show any particular pattern. In the
case of education which is essentially unitary income elastic, a change in its price
results in all Cournot cross-price elasticities being negative for all the other goods
for all countries in the sample. However, most of these are not statistically different
from zero (’D .05) with the exceptions being the poorest countries, except in the
case of transport and communications and other, and the richest middle-income
and the high-income countries. Also, many of the elasticities are not statistically
different from those of the U.S.

The Cournot cross-price elasticities with respect to a change in the price of
recreation, the most luxurious good, are all positive for all goods and countries.
Most are significantly different than zero (’D .05) except in the cases of the poorest
countries. Except in the case of food, almost all the elasticities are not statistically
different from those of the U.S. Cournot cross-price elasticities with respect to a
change in the price of medical care or other items are all positive except for the
two (medical care) or three (other items) richest countries in the sample where
the cross-price elasticities are negative. While most of the low-income and lower
middle-income countries have elasticities with respect to a change in medical care
price that are statistically different from zero, the higher middle-income and high-
income country elasticities are not. For other, only the low-income countries have
elasticities statistically different from zero. Also, few of these elasticities differ
statistically from those of the U.S. For the remaining three goods (i.e., gross
rent, fuel and power; transportation and communication; and house furnishing
and operations), a price change results in positive Cournot cross-price elasticities
that eventually turn negative when traveling towards the more affluent countries.
However, it should be pointed out that the magnitudes of the cross-price elasticities
with respect to changes in a luxury good’s price are small and many are not
statistically different from zero.

6.6 Conclusions

A simple method for calculating cross-country, cross-price elasticities of demand
is articulated in this paper. Using the method, two types of cross-price elasticities,
Slutsky and Cournot, are calculated for two-good- and nine-good-demand systems
for114 countries. The compensated Slutsky elasticity is calculated holding real
income constant, and the uncompensated Cournot elasticity is calculated holding
nominal income constant after a price change. The consumption categories of
the two-good-demand system are food and nonfood while the categories of the
nine-good-demand system are: food, beverage and tobacco; clothing and footwear;
education; gross rent, fuel and power; house furnishings and operations; medical
care; recreation; transport and communications; and other items.

Comparison of results for the two-good system to those obtained by TCS with
1980 ICP data indicates our elasticities are similar. For countries that witness
income growth over this period relative to that of the U.S., cross-price elasticities
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have become more inelastic over this period. Within both years, Cournot elasticities
are more elastic for poor countries than for rich ones.

An important finding is that, for a necessity, the substitution effects (based on
Slutsky elasticity estimates) are larger in low- and middle-income countries than in
rich ones while the opposite is the case for a price change in the most luxurious
goods. The largest substitution effects (consumers switch to a good that becomes
relatively less expensive) are from a change in food price in poor countries. The two
goods that are most affected by a change in the price of another good are recreation
and medical care.

When both the substitution effect and the income effect of a price change are
considered (based on Cournot elasticities), a different expenditure pattern emerges.
For a price change of a necessity, the cross-price elasticities of all the other goods
in all countries are negative, but the negative effects are greater in poor than in rich
countries. In comparison, the combined effects on quantity demanded are negligible
when the price of a luxury good changes.

Quantity demanded is most affected by a change in food price due to the large
income effect associated with a food-price change. When food price increases, due
to the income effect, the quantity demanded of all goods falls, particularly in poor
countries. Sharp increases in food price therefore have a depressing effect on the
overall economy of both rich and poor countries as consumers cut back spending
on all goods. The largest cross-price elasticities are those of recreation followed by
medical care. Thus food price increases have a detrimental impact on the health of
consumers due to reduced purchases of food as well as reduced spending on medical
care.

The adverse impacts of food-price hikes on the general economy and the health
of poor consumers point to the importance of policy measures which promote
market-based means of lowering the costs of producing and distributing food. These
can include an improved business environment, lower trade restrictions on food
products, a more efficient food supply chain, and greater investment in agricultural
research and development. Technological change, resulting from research and
innovation, lowers the cost of food production and thereby reduces food prices, in
turn positively contributing to the economic well-being of nations.

Finally, the cross-price elasticities and the methodology presented in this paper
are potentially important inputs into other research. For example, the estimates in
this paper, which represent a larger number of countries and consumption categories
than in previous studies, can be used in economic projection models such as
USDA’s Baseline, the GTAP model, IFPRI’s IMPACT model and others (e.g.,
Hertel et al. 2004; Keeney and Hertel 2005; Winters 2005; Hertel and Ivanic 2006;
von Braun 2007; Anderson and Valenzuela 2007; Valenzuela et al. 2008; Hertel
2011). Additionally, the methodology can be used to accommodate other demand
systems such as the AIDADS model (Rimmer and Powell 1992, 1996) that has been
fit successfully to ICP data (e.g., Reimer and Hertel 2003, 2004; Cranfield et al.
1998b, 2000, 2003, 2004). The methodology may also be generalized to out-of-
sample data sets. For example, Cox and Alm (2007) calculate income and own-price
elasticities of demand for a set of countries by using the parameter estimates of SRB
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and applying them to a real income per capita series that links real income in 1996
to that of 2006. In the same way, cross-price elasticities could be estimated as well.

Acknowledgment Partial support for this project is provided by the United States Department of
Agriculture under Agreement No. 58-3000-7-0104

Appendix A: Florida Model

TCS develop the Florida model by incorporating prices in Working’s (1943) model.
TCS began by rewriting Working’s model as a cross-country demand system under
the assumption that all countries face the same price vector,

wic D ˛i C ˇi logEc C "ic (6.1)

where wic D Eic/Ec is the budget share of good i (i D 1, : : : , n) in country
c (c D 1, : : : , N), Eic is expenditure on good i in c, Ec DP n

i D 1Eic is total nominal
consumption expenditure in c, "ic is a random error term, and ˛i and ˇi are
parameters to be estimated. Summing across all n goods, the sum of the budget
shares equals one,

P
iwic D 1, and the parameter estimates satisfy the adding-up

conditions:

nX
iD1

˛i D 1 and
nX
iD1

ˇi D 0: (6.2)

Multiply both sides of Eq. (6.1) by Ec to obtain wicEc D Eic on the left side.
Differentiating the result, Eic D˛icEc CˇicEc log Ec, with respect to Ec and using
Eq. (6.1), we obtain the marginal (budget) share, � ic, which exceeds the budget
share in country c by ˇi,

�ic D dEic

dEc
D ˛i C ˇi .1C logEc/ D wic C ˇi : (6.3)

Both the budget and marginal shares are functions of income such that, when
income changes, wic and � ic change.1

The ratio of the marginal share to the average share equals the income elasticity
of demand for good i in country c, �ic, and in the case of Working’s model,

�ic D �ic

wic
D dEic

dEc

Ec

Eic
D d .logEic/

d .logEc/
D 1C ˇi

wic
: (6.4)

1The exception to this is when a good has unitary elasticity; as income increases, expenditure on
the good increases in the same proportion and wic and � ic are unchanged.
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A necessity (luxury) has an income elasticity of demand less than (greater than)
one. This result shows that a good is a necessity (luxury) if ˇi < 0 (> 0). If ˇi D 0,
the good has unitary elasticity.

Let Qc represent the real income per capita in country c. TCS substitute Qc for Ec

in Eq. (6.1) and, using Eqs. (6.1) and (6.3), conclude that the budget and marginal
shares of good i in c may be written, respectively, as

wic D ˛i C ˇiqc C "ic where qc D logQc (6.5)

�ic D ˛i C ˇiq
�
c where q�

c D 1C qc (6.6)

The next step is to incorporate prices into Eq. (6.5). Let pic and pid represent the
domestic-currency price of good i in country c and in country d, respectively, where
c ¤ d. As domestic-currency prices have different dimensions in different countries,
the absolute prices pic and pid from countries c and d will have different dimensions.
However, for cross-country analyses, one needs to have prices for all countries in the
same dimension. The solution is to use relative instead of absolute prices. Also note
that the price ratio pic/pjc depends on country c and implies that different countries
have different sets of prices. To extend Eq. (6.5) to include prices and still have fixed
parameters (i.e., ˛i and ˇi), one must select a particular set of relative prices. TCS
choose to deflate the absolute price of i in c by the geometric mean price2 of i across
all N countries, that is:

lnpi D 1

N

NX
cD1

logpic: (6.7)

The model that emerges has the budget share on the left and is polynomial in the
parameters:

wic D LINEAR C QUADRATIC C CUBIC C "ic; (6.8)

where

LINEAR D Real-income term,

D ˛i C ˇiqc; (6.8a)

QUADRATIC D Pure-price term,

D .˛i C ˇiqc/

"
log

pic

pi
�
Xn

jD1
�
˛j C ˇj qc

�
log

pjc

pj

#
; (6.8b)

2To justify the above choice of converting the absolute prices into relative prices by dividing each
absolute price by the geometric mean price, Theil and Seale (1987) prove that the geometric mean
price point across countries has a minimum mean-squared distance property.
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CUBIC D Substitution term,

D �
�
˛i C ˇiq

�
c

� "
log

pic

pi
�
Xn

jD1
�
˛j C ˇj q

�
c

�
log

pjc

pj

#
; (6.8c)

and pic is the price of good i in c, pi is the geometric mean price of good i across

all countries such that logpi D 1
N

NX
cD1

logpic , ˛i, ˇi, and � (representing income

flexibility (the inverse of the income elasticity of the marginal utility of income))3

are parameters to be estimated, and "ic is a random error term.
The linear term in the model, Eq. (6.8a), represents the effect of a change in real

(per capita) income (i.e., the per capita volume of total consumption expenditure)
on the budget share. In the case where all countries face the same set of prices, the
quadratic and cubic terms vanish leaving the linear term.4 It is also the budget share
of the Florida model evaluated at geometric mean prices:

wic D ˛i C ˇiqc: (6.9)

The quadratic term, Eq. (6.8b), (quadratic because it contains products of ˛ and
ˇ) is the pure-price term and shows how an increase in price pic results in a higher
budget share on good i, even if the volume of total expenditure stays the same. The
cubic term, Eq. (6.8c), (cubic because it involves the products of ˛i, ˇi, and �)
is the substitution term and recognizes that consumers will not consume the same
quantities, but will react to the higher price by substitution away from good i towards
other (now) relatively cheaper goods. The expressions in brackets in both (6.8b) and
(6.8c) are deflated logarithmic price ratios with the deflators being weighted means
of those logarithmic ratios. The weights, however, are different in (6.8b) and (6.8c).
In the former, the weights are budget shares (wic D ˛i C ˇiqc) of (6.9) while the
latter weights are marginal shares,

�ic D �
˛i C ˇiq

�
c

�
; (6.10)

both evaluated at geometric mean price, pi .
The deflators relate to the Divisia price index,

DP D
X

j
wj d logpj ; (6.11)

3Frisch (1932, p. 15) refers to the reciprocal of � (i.e., �� 1 D (d�/dE)(E/�) where � represents
the marginal utility of money and E is total expenditure) as the flexibility of the marginal utility of
money, or shorter, as money flexibility.
4Deaton and Muellbauer’s (1980) model has the same income term as the Florida model, and its
price terms also vanish if all countries (households) face the same price vector.
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and the Frisch price index,

DP	 D
X

j
�j d logpj ; (6.12)

by substitution of logpj �logpj for d log pj into Eqs. (6.11) and (6.12). The Divisia
price index weights the logarithmic price changes by the budget shares while the
Frisch price index weights the logarithmic price changes by the marginal shares.
The Frisch price index weights luxuries (necessities) more (less) than the Divisia
price index since � j>wj for luxury goods and � j<wj for necessities.

Homogeneity is imposed by subtracting the nth relative price from all other n � 1
relative prices, that is, xic D log pic

pi
� log pnc

pn
, and replacing the relative price terms

in Eq. (6.8) with xic. Under the condition of preference independence, the model has
Slutsky price terms as follows:

ijc D ��ic .1 � �ic/ i D j (6.13a)

D ���ic�jc i ¤ j (6.13b)

with � ic defined in Eq. (6.7) and � as defined in footnote 13. Symmetry of the
Slutsky coefficients is readily seen as

ijc D jic D ���ic�jc i ¤ j: (6.14)

Appendix B: Three Types of Price Elasticities

Three prominent types of price elasticities are the Frisch, Slutsky, and Cournot
price elasticities. Differences among these are due to the way the consumer is
compensated after a price change. For the Frisch (Slutsky) elasticity, the consumer is
compensated such that her marginal utility of income (real income) remains constant
after a price change while the Cournot elasticity results when nominal income is
constrained to remain constant. To calculate any of the elasticities based on the
Florida model, one starts with the parameter estimates of the model (˛s, ˇs,�) and
real income per capita in all countries relative to the real U.S. per capita income that
is normalized to equal one.5 All elasticities are evaluated at geometric mean prices,
pi ,and the budget and marginal shares of good i in country c, written in terms of the
parameters of the Florida model, are, respectively,

wic D ˛i C ˇiqc (6.15)

5See TCS, pp. 110–111, for the derivation of the three types of own-price elasticities.
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and

�ic D wic C ˇi D ˛i C ˇiq
�
c : (6.16)

Using the parameters from the Florida model, the Frisch price elasticity is

Fijc D �
�ic

wic
D �

wic C ˇi

wic
D �

�
˛i C ˇiq

�
c

˛i C ˇiqc

	
i D j (6.17a)

Fijc D 0 i ¤ j (6.17b)

The Frisch own-price elasticity, Fiic,exists but Frisch cross-price elasticities van-
ish because of the assumption of preference independence (TCS, p. 117). However,
one can calculate the Slutsky and Cournot own- and cross-price elasticities of
demand in terms of the Frisch own-price elasticities.

The Florida model does not directly estimate Slutsky price parameters when
preferences are independent, but one can calculate the Slutsky price parameters with
the parameter estimates of the Florida model using Eqs. (6.9a) and (6.16) for each
country, that is:

ijc D �
�
˛i C ˇiq

�
c

� �
1 � �

˛i C ˇiq
�
c

��
i D j (6.18a)

D �� �˛i C ˇiq
�
c

� �
˛j C ˇj q

�
c

�
i ¤ j (6.18b)

The Slutsky price elasticity for good i with respect to a change in the price of
good j in country c is the ratio of the coefficient of the Slutsky matrix and the
corresponding budget share (Frisch 1959; TCS, p. 155). In terms of the Florida
model’s parameters and the Frisch own-price elasticity, the Slutsky own-price and
cross-price elasticities are

Sijc D Fiic

�
1 � �ic

�
D Fiic

�
1 � �

˛i C ˇiq
�
c

��
i D j (6.19a)

D �Fiic�jc D �Fiic
�
˛j C ˇj q

�
c

�
i ¤ j: (6.19b)

The Cournot own-price and cross-price elasticities written in terms of the
parameters of the Florida model and the Frisch own-price elasticity are

Cijc D Fiic

�
1 � �ic

�
� �ic D Fiic

�
1 � �

˛i C ˇiq
�
c

�� � �
˛i C ˇiq

�
c

�
i D j

(6.20a)

D �Fiic� jc � �icwjc
wic

D �Fiic
�
˛i C ˇiq

�
c

� �
�
˛i C ˇiq

�
c

� �
˛j C ˇj qc

�

.˛i C ˇiqc/
i ¤ j;

(6.20b)
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while, in terms of the Slutsky price elasticities, are

D Siic � �
˛i C ˇiq

�
c

�
i D j (6.21a)

D Sijc �
�
˛i C ˇiq

�
c

� �
˛j C ˇj qc

�

.˛i C ˇiqc/
i ¤ j: (6.21b)

As shown in Eqs. (6.21a) and (6.21b), the Cournot price elasticity is equal to
the substitution effect of the Slutsky price elasticity minus a positive income term.
Under preference independence, all Slutsky cross-price elasticities are positive. If
the income effect is greater (smaller) than the substitution effect, the Cournot cross-
price elasticities is negative (positive); if the effects are equal, the elasticities are
zero.
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Chapter 7
Large-N and Large-T Properties of Panel Data
Estimators and the Hausman Test

Seung Chan Ahn and Hyungsik Roger Moon

7.1 Introduction

Error-components models have been widely used to control for unobservable cross-
sectional heterogeneity in panel data with a large number of cross-section units
(N ) and a small number of time-series observations (T ). These models assume
that stochastic error terms have two components: an unobservable time-invariant
individual effect, which captures the unobservable individual heterogeneity, and the
usual random noise. The most popular estimation methods for error-components
models are the within and the generalized least squares (GLS) estimators. A merit
of the within estimator (least squares on data transformed into deviations from
individual means) is that it is consistent even if regressors are correlated with the
individual effect (fixed effects). A drawback, however, is that it cannot estimate the
coefficients of time-invariant regressors.1 Among various alternative estimators for

1Estimation of the effect of a certain time-invariant variable on a dependent variable could be an
important task in a broad range of empirical research. Examples would be the labor studies about
the effects of schooling or gender on individual workers’ earnings, and the macroeconomic studies
about the effect of a country’s geographic location (e.g., whether the country is located in Europe
or Asia) on its economic growth. The within estimator is inappropriate for such studies.
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the coefficients of time-invariant regressors,2 the GLS estimator has been popularly
used in the literature due to its efficiency. Its consistency, however, requires a
strong assumption that no regressor is correlated with the individual effects (random
effects). Because of its restrictiveness, the empirical validity of the random effects
assumption should be tested to justify the use of the GLS estimator. The Hausman
test statistic (1978) has been popularly used for this purpose (e.g., Hausman and
Taylor 1981; Cornwell and Rupert 1988; Baltagi and Khanti-Akom 1990; Ahn and
Low 1996; or Guggenberger 2010).

This paper studies the asymptotic and finite-sample properties of the within
and GLS estimators and the Hausman statistic for a general panel data error-
components model with both large N and T . The GLS estimator has been known
to be asymptotically equivalent to the within estimator for the cases with infinite N
and T (see, for example, Hsiao 1986, Chap. 3; Mátyás and Sevestre 1992, Chap. 4;
Baltagi 1995, Chap. 2). This asymptotic equivalence result has been obtained using
a sequential limit method (T ! 1 followed by N ! 1) and some strong
assumptions such as fixed regressors. This result naturally raises several questions.
First, does the equivalence result hold for more general cases? Second, does the
equivalence result indicate that the Hausman statistic, which is essentially a distance
measure between the within and GLS estimators, should have a degenerating or
nonstandard asymptotic distribution under the random effects assumption? Third,
does the equivalence result also imply that the Hausman test would have low power
to detect any violation of the random effects assumption when T is large? This paper
is concerned with answering these questions.

Panel data with a large number of time-series observations have been increas-
ingly more available in recent years in many economic fields such as international
finance, finance, industrial organization, and economic growth. Furthermore, popu-
lar panel data, such as the Panel Study of Income Dynamics (PSID) and the National
Longitudinal Surveys (NLS), contain increasingly more time-series observations as
they are updated regularly over the years. Consistent with this trend, some recent
studies have examined the large-N and large-T properties of the within and GLS
estimators for error-component models.3 For example, Phillips and Moon (1999)
and Kao (1999) establish the asymptotic normality of the within estimator for

2For example, if only the time-varying regressors are correlated with the individual effects, all of
the coefficients of time-varying and time-invariant regressors can be consistently estimated by a
two-step estimation procedure. At the first step, the coefficients of time-varying regressors can be
consistently estimated by the within estimator. At the second step, the residuals computed with the
within estimator are regressed on the time-invariant regressors. The resulting coefficient estimators
are consistent as long as the time-invariant regressors are uncorrelated with the individual effects.
We thank an anonymous referee for introducing this estimation procedure to us.
3Some other studies have considered different panel data models with large N and large T . For
example, Levin and Lin (1992, 1993), Quah (1994), Im et al. (2003), and Higgins and Zakrajsek
(1999) develop unit-root tests for data with large N and large T . Alvarez and Arellano (2003) and
Hahn and Kuersteiner (2002) examine the large-N and large-T properties of generalized method
of moments (GMM) and within estimators for stationary dynamic panel data models.
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the cases in which regressors follow unit root processes. Extending these studies,
Choi (1998) considers a general random effects model which contains both unit-
root and covariance-stationary regressors. For this model, he derives the asymptotic
distributions of both the within and GLS estimators.

This paper is different from the previous studies in three respects. First, the model
we consider contains both time-varying and time-invariant regressors. The time-
varying regressors are cross-sectionally heterogeneous or homogeneous. Analyzing
this model, we study how cross-sectional heterogeneity and the covariance structure
between the time-varying and time-invariant regressors, as well as time trends in
regressors, would affect the convergence rates of the panel data estimators. Second,
we examine how the large-N and large-T asymptotic equivalence of the within and
GLS estimators influences the asymptotic and finite-sample performances of the
Hausman test. Ahn and Low (1996) have investigated the size and power properties
of the Hausman test for the cases with large N and small T . In this paper, we
reexamine the asymptotic and finite-sample properties of the test in more detail.
In particular, we study how the power of the Hausman test would depend on the
size of T and the covariance structure among regressors. Third, and perhaps less
importantly, we use the joint limit approach developed by Phillips and Moon (1999).

The main findings of this paper are as follows. First, consistent with the previous
studies, we find that the within and GLS estimators of the coefficients of the time-
varying regressors are asymptotically equivalent under quite general conditions.
However, the convergence rates of the two estimators depend on (i) whether means
of time-varying regressors are cross-sectionally heterogenous or homogenous and
(ii) how the time-varying and time-invariant regressors are correlated. Second, if T
is large, the GLS estimators of the coefficients of the time-varying regressors are
consistent even if the random effect assumption is violated. This finding implies
that the choice between within and GLS is irrelevant for the studies focusing on
the effects of time-varying regressors. The choice matters for the studies focusing
on the effects of time-invariant regressors. Third, despite the equivalence between
the GLS and within estimators, the Hausman statistic has well-defined asymptotic
distributions under the random effects assumption and under its local alternatives.
We also find that the power of the Hausman test crucially depends on the covariance
structure between time-varying and time-invariant regressors, the covariance struc-
ture between regressors and the individual effects, and the size of T . The Hausman
test has good power to detect non-zero correlation between the individual effects
and the permanent (individual-specific and time-invariant) components of time-
varying regressors, even if T is small. In contrast, the power of the test is somewhat
limited when the effects are correlated with the time-invariant regressors and/or they
are only correlated with the transitory (time-varying) components of time-varying
regressors. For such cases, the size of T could rather decrease the power of the
Hausman test.

This paper is organized as follows. Section 7.2 introduces the panel model
of interest, and defines the within, between and GLS estimators as well as the
Hausman test. For several simple illustrative models, we derive the asymptotic
distributions of the panel data estimators and the Hausman test statistic. Section 7.3
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reports the results from our Monte Carlo experiments. In Sect. 7.4, we provide our
general asymptotic results. Concluding remarks follow in Sect. 7.5. All the technical
derivations and proofs are presented in the Appendix and the previous version of this
paper.

7.2 Preliminaries

7.2.1 Estimation and Specification Test

The model under discussion here is given:

yit D ˇ0xit C 
 0zi C � C "it D ı0wi t C � C "it I "it D ui C vi t ; (7.1)

where i = 1; : : : ; N denotes cross-sectional (individual) observations, t = 1; : : : ; T
denotes time, wi t D �

x0
i t ; z

0
i

�0
, and ı D .ˇ0; 
 0/0. In model (7.1), xit is a k � 1

vector of time-varying regressors, zi is a g � 1 vector of time-invariant regressors,
� is an overall intercept term, and the error "it contains a time-invariant individual
effect ui and random noise vi t . We consider the cases with both large numbers of
individual and time series observations, so asymptotic properties of the estimators
and statistics for model (7.1) apply as N; T ! 1. The orders of convergence rates
of some estimators can depend on whether or not the model contains an overall
intercept term. This problem will be addressed later.

We assume that data are distributed independently (but not necessarily identi-
cally) across different i , and that the vi t are independently and identically distributed
(i.i.d.) with var.vi t / D �2v . We further assume that ui , xi1; : : : ; xiT and zi are strictly
exogenous with respect to vi t ; that is, E.vi t j ui ; xi1; : : : ; xiT / D 0; for any i and t .
This assumption rules out the cases in which the set of regressors includes lagged
dependent variables or predetermined regressors. Detailed assumptions about the
regressors xi1; : : : ; xiT ; zi will be introduced later.

For convenience, we adopt the following notational rule: For any p � 1 vector
ait , we denote ai D 1

T

P
t ait ; Qait D ait � ai ; a D 1

N

P
i ai ; Qai D ai � a.

Thus, for example, for wi t D �
x0
i t ; z

0
i

�0
, we have wi D .x0

i ; z
0
i /

0; Qwi t D . Qx0
i t ; 01�g/0;

w D .x0; z/I Qwi D ..xi � x/0; .zi � z/0/0.
When the regressors are correlated with the individual effect, the OLS estimator

of ı is biased and inconsistent. This problem has been traditionally addressed by the
use of the within estimator (OLS on data transformed into deviations from individual
means):

Ǒ
w D .

P
i;t Qxit Qx0

i t /
�1P

i;t Qxit Qy0
i t :

Under our assumptions, the variance-covariance matrix of the within estimator is
given:

Var. Ǒ
w/ D �2v .

P
i;t Qxit Qx0

i t /
�1: (7.2)
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Although the within method provides a consistent estimate of ˇ, a serious defect
is its inability to identify 
 , the impact of time-invariant regressors. A popular
treatment of this problem is the random effects (RE) assumption under which the ui
are random and uncorrelated with the regressors:

E.ui j xi1; : : : ; xiT ; zi / D 0: (7.3)

Under this assumption, all of the parameters in model (7.1) can be consistently
estimated. For example, a simple but consistent estimator is the between estimator
(OLS on data transformed into individual means):

Oıb D . Ǒ0
b; O
 0

b/
0 D .

P
i Qwi Qw0

i /
�1P

i Qwi Qyi :

However, as Balestra and Nerlove (1966) suggest, under the RE assumption, an
efficient estimator is the GLS estimator of the following form:

Oıg D Œ
P

i;t Qwi t Qw0
i t C T �2T

P
i Qwi Qwi 0��1ŒPi;t Qwi t Qyi C T �2T

P
i Qwi Qyi �;

where �T D p
�2v =.T�

2
u C �2v /. The variance-covariance matrix of this estimator is

given:

Var. Oıg/ D �2v Œ
P

i;t Qwi t Qw0
i t C T �2T

P
i Qwi Qwi 0��1: (7.4)

For notational convenience, we assume that �2u and �2v are known, while in practice
they must be estimated.4

An important advantage of the GLS estimator over the within estimator is that
it allows researchers to estimate 
 . In addition, the GLS estimator of ˇ is more
efficient than the within estimator of ˇ because ŒVar. Ǒ

w/ � Var. Ǒ
g/� is positive

definite so long as �T > 0. Despite these desirable properties, it is important
to notice that the consistency of the GLS estimator crucially depends on the RE
assumption (7.3). Accordingly, the legitimacy of the RE assumption should be tested
to justify the use of GLS. In the literature, a Hausman test (1978) has been widely
used for this purpose. The statistic used for this test is a distance measure between
the within and GLS estimators of ˇ:

HMNT � . Ǒ
w � Ǒ

g/
0ŒVar. Ǒ

w/ � Var. Ǒ
g/�

�1. Ǒ
w � Ǒ

g/: (7.5)

4There are many different ways to consistently estimate �2v and �2u . One way is to use

O�2v D P
i;t . Qyit � Qxit Ǒw/

2=ŒN.T � 1/�I O�2u D P
i;t . Qyi � Qwi Oıols /2=NT � O�2v ;

where Oıols is the OLS estimator of ı.
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For the cases in which T is fixed andN ! 1, the RE assumption warrants that the
Hausman statistic HMNT is asymptotically �2-distributed with degrees of freedom
equal to k. This result is a direct outcome of the fact that for fixed T , the GLS
estimator Ǒ

g is asymptotically more efficient than the within estimator Ǒ
w, and that

the difference between the two estimators is asymptotically normal; specifically, as
N ! 1,

p
NT . Ǒ

w � Ǒ
g/ H) N.0; plimN!1NT ŒVar. Ǒ

w/� Var. Ǒ
g/�/; (7.6)

where “H)” means “converges in distribution.”
An important condition that guarantees (7.6) is that �T > 0. If �T D 0, then

Ǒ
w and Ǒ

g become identical and the Hausman statistic is not defined. Observing
�T ! 0 as T ! 1, we can thus easily conjecture that Ǒ

w and Ǒ
g should be

asymptotically equivalent as T ! 1. This observation naturally raises two issues
related to the asymptotic properties of the Hausman test as T ! 1. First, since the
Hausman statistic is asymptotically �2�distributed for any fixed T under the RE
assumption, we can conjecture that it should remain asymptotically �2�distributed
even if T ! 1. Thus, we wish to understand the theoretical link between the
asymptotic distribution of the Hausman statistic and the equivalence of the within
and GLS estimators. Second, it is a well-known fact that the GLS estimator Ǒ

g

is a weighted average of the within and between estimators Ǒ
w and Ǒ

b (Maddala
1971). Thus, observing the form of the Hausman statistic, we can conjecture that the
Hausman test should have the power to detect any violation of the RE assumption
that causes biases in Ǒ

b . However, the weight given to Ǒ
b in Ǒ

g decreases with T .
Thus, we wish to understand how the power of the Hausman test would be related
to the size of T . We will address these two issues in the following sections.

What makes it complex to investigate the asymptotic properties of the Hausman
statistic is that its convergence rate crucially depends on data generating processes.
The following subsection considers several simple cases to illustrate this point.

7.2.2 Preliminary Results

This section considers several simple examples demonstrating that the convergence
rate of the Hausman statistic depends on (i) whether or not the time-varying
regressors are cross-sectionally heterogeneous and (ii) how the time-varying and
time-invariant regressors are correlated.

For model (7.1), we can easily show that

Ǒ
w � ˇ D A�1

NT aNT I (7.7)

Ǒ
b � ˇ D .BNT � CNTH

�1
N C 0

NT /
�1ŒbNT � CNTH�1

N cNT �I (7.8)
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Ǒ
g � ˇ D ŒANT C T �2T .BNT � CNTH

�1
N C 0

NT /�
�1

� ŒANT . Ǒ
w � ˇ/C T �2T .BNT � CNTH

�1
N C 0

NT /.
Ǒ
b � ˇ/�I

(7.9)

Ǒ
w � Ǒ

g D ŒANT C T �2T .BNT � CNTH
�1
N CNT /�

�1

� T �2T .BNT � CNTH
�1
N C 0

NT /Œ.
Ǒ
w � ˇ/ � . Ǒ

b � ˇ/�I
(7.10)

Var. Ǒ
w/ � Var. Ǒ

g/ D A�1
NT � ŒANT C T �2T .BNT � CNTH

�1
N C 0

NT /�
�1; (7.11)

where,

ANT D P
i;t Qxit Qx0

i t IBNT D P
i Qxi Qx0

i ICNT D P
i Qxi Qz0

i IHN D P
i Qzi Qz0

i I
aNT D P

i;t Qxitvi t I bNT D P
i Qxi .ui C vi /I cNT D P

i Qzi .ui C vi /:

Equation (7.10) provides some insight into the convergence rate of the Hausman test
statistic. Note that . Ǒ

w � Ǒ
g/ depends on both . Ǒ

w � ˇ/ and . Ǒ
b � ˇ/. Apparently,

the between estimator Ǒ
b exploits only N between-individual variations, while the

within estimator Ǒ
w is computed based on N.T � 1/ within-individual variations.

Accordingly, . Ǒ
b � ˇ/ converges to a zero vector in probability much slower than

. Ǒ
w � ˇ/ does. Thus, we can conjecture that the convergence rate of . Ǒ

w � Ǒ
g/ will

depend on that of . Ǒ
b � ˇ/, not . Ǒ

w � ˇ/. Indeed, we below justify this conjecture.
In this subsection, we only consider a simple model that has a single time-varying

regressor (xit ) and a single time-invariant regressor (zi ). Accordingly, all of the
terms defined in (7.7)–(7.11) are scalars. The within and GLS estimators and the
Hausman test are well defined even if there is no time-invariant regressor. However,
we consider the cases with both time-varying and time-invariant regressors because
the correlation between the two regressors plays an important role in determining
the convergence rate of the Hausman statistic. Asymptotic results for the cases with
a single time-varying regressor only can be easily obtained by setting CNT D 0.

We consider asymptotics under the RE assumption (7.3). The power property of
the Hausman test will be discussed in the following subsection. To save space, we
only consider the estimators of ˇ and the Hausman test. The asymptotic distributions
of the estimators of 
 will be discussed in Sect. 7.4. Throughout the examples below,
we assume that the zi are i:i:d: over different i with N.0; �2z /. In addition, we
introduce a notation eit to denote a white noise component in the time-varying
regressor xit . We assume that the eit are i.i.d. over different i and t with N.0; �2e /,
and are uncorrelated with the zi .

We consider two different cases separately: the cases in which xit and zi are
uncorrelated (CASE A), and the cases in which the regressors are correlated
(CASE B).

CASE A: We here consider a case in which the time-varying regressor xit is
stationary without trend. Specifically, we assume:

xit D ‚a;i C‰a;t C eit ; (7.12)
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where ‚a;i and ‰a;t are fixed individual-specific and time-specific effects, respec-
tively. Define ‚a D 1

N

P
i ‚a;i and ‰a D 1

N

P
i ‰i I and let

pa;1 D limN!1‚aIpa;2 D limN!1
1

N

P
i

�
‚a;i �‚a

�2 I

qa;1 D limN!1‰aI qa;2 D limT!1
1

T

P
t

�
‰a;t �‰a

�2
:

We can allow them to be random without changing our results, but at the cost of
analytical complexity. We consider two possible cases: one in which the parameters
‚a;i are heterogeneous, and the other in which they are constant over different
individuals. Allowing the ‚a;i to be different across different individuals, we allow
the means of xit to be cross-sectionally heterogeneous. In contrast, if the ‚a;i are
constant over different i , the means of xit become cross-sectionally homogeneous.
As we show below, the convergence rates of the between estimator and Hausman
test statistic are different in the two cases.

To be more specific, consider the three terms BNT , CNT , and bNT defined below
(7.11). Straightforward algebra reveals that

BNT D P
i .‚a;i �‚a/

2 C 2
P

i .‚a;i �‚a/.ei � e/CP
i .ei � e/2I

CNT D P
i .‚a;i �‚a/.zi � z/CPi .ei � e/.zi � z/I

bNT D P
i .‚a;i �‚a/ui CP

i .ei � e/ui
CP

i .‚a;i �‚a/vi CP
i .ei � e/vi :

It can be shown that the terms including .‚a;i � ‚a/ will be the dominant factors
determining the asymptotic properties of BNT , CNT , and bNT . However, if the
parameters ‚a;i are constant over different individuals so that ‚a;i � ‚a D 0,
none of BNT , CNT , and bNT depend on .‚a;i �‚a/. For this case, the asymptotic
properties of the three terms depend on .ei � e/. This result indicates that the
asymptotic distribution of the between estimator Ǒ

b , which is a function of BNT ,
CNT , and bNT , will depend on whether the parameters ‚a;i are cross-sectionally
heterogeneous or homogeneous.5

We now consider the asymptotic distributions of the within, between, GLS
estimators and the Hausman statistic under the two alternative assumptions about
the parameters‚a;i .

5Somewhat interestingly, however, the distinction between these two cases becomes unimportant
when the model has no intercept term (� D 0) and is estimated with this restriction. For such a
case, BNT , CNT and bNT depend on xi instead of Qxi . With xi , the terms .‚a;i �‚a/ and .ei � e/

in BNT , CNT , and bNT are replaced by ‚a;i and ei , respectively. Thus, the terms containing the
‚a;i remain as a dominating factor whether or not the‚a;i are heterogenous.
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CASE A.1: Assume that the‚a;i vary across different i ; that is, pa;2 ¤ 0. With this
assumption, we can easily show that as .N; T ! 1/6:

p
NT . Ǒ

w � ˇ/ H) N

�
0;

�2v
.qa;2 C �2e /

	
I (7.13)

p
N. Ǒ

b � ˇ/ H) N

�
0;
�2u
pa;2

	
I (7.14)

p
NT . Ǒ

g � ˇ/ D p
NT . Ǒ

w � ˇ/

C 1p
T

�2v
�2u

pa;2

.qa;2 C �2e /

p
N. Ǒ

b � ˇ/C op

�
1p
T

	
I

(7.15)

plimN;T!1NT 2ŒVar. Ǒ
w/� Var. Ǒ

g/� D �4v
�2u

pa;2

.qa;2 C �2e /
2
: (7.16)

Three remarks follow. First, consistent with previous studies, we find from (7.15)
that the within and GLS estimators, Ǒ

w and Ǒ
g; are

p
NT -equivalent in the sense

that . Ǒ
w � Ǒ

g/ is op.
p
NT /. This is so because the second term in the right-

hand side of (7.15) is Op.1=
p
T /. At the same time, (7.15) also implies that

. Ǒ
w � Ǒ

g/ is Op.
p
NT 2/ and asymptotically normal. These results indicate that

the within and GLS estimators are equivalent to each other by the order of
p
NT ,

but not by the order of
p
NT 2. Second, from (7.15) and (7.16), we can see that the

Hausman statistic is asymptotically �2-distributed with the convergence rate equal
to

p
NT 2.7 In particular, (7.15) indicates that the asymptotic distribution of the

Hausman statistic is closely related to the asymptotic distribution of the between
estimator Ǒ

b .
Finally, the above asymptotic results imply some simplified GLS and Hausman

test procedures. From (7.13) and (7.14), it is clear that

p
N. Ǒ

b � Ǒ
w/ D p

N. Ǒ
b � ˇ/ � 1p

T

p
NT . Ǒ

w � ˇ/ D p
N. Ǒ

b � ˇ/C op.1/:

With (7.15), this result indicates that the Hausman test based on the differ-
ence between Ǒ

w and Ǒ
g is asymptotically equivalent to the Wald test based on

the between estimator Ǒ
b for the hypothesis that the true ˇ equals the within

6These result are obtained utilizing the fact that limits of 1
NT
ANT ;

1
N
BN ;

1
N
CN ; and 1

N
HN

are finite, while 1
p

NT
aNT ;

1
p

N
bN ; and 1

p

N
cNT are asymptotically normal. More detailed

calculations can be found from an earlier version of this paper.
7As we can see clearly from (7.15) and (7.16), the Hausman statistic does not depend on

p
NT 2

because it cancels out. Nonetheless, we say that the convergence rate of the Hausman test statistic
equals

p
NT 2 because the asymptotic �2 result for the statistic is obtained based on the fact that

. Ǒw � Ǒ
g/ is

p
NT 2�consistent.
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estimator Ǒ
w. We obtain this result because the convergence rate of Ǒ

w is faster
than that of Ǒ

b . In addition, the GLS estimator of O
g can be obtained by the

between regression treating Ǒ
w as the true ˇ, that is, the regression on the model

Qyi � Qxi Ǒ
w D Qzi 
 C error . An advantage of these alternative procedures is that

GLS and Hausman tests can be conducted without estimating �T . The alternative
procedures would be particularly useful for the analysis of unbalance panel data. For
such data, �T is different over different cross-sectional units. When T is sufficiently
large for individual i ’s, we do not need to estimate these different �T ’s for GLS. The
alternative procedures work out for all of the other cases analyzed below.

CASE A.2: Now, we consider the case in which the‚a;i are constant over different
i (‚a); that is, pa;2 D 0. It can be shown that the asymptotic distributions of the
within and GLS estimators are the same under both CASEs A.1 and A.2. However,
the asymptotic distributions of the between estimator Ǒ

b and the Hausman statistic
are different under CASEs A.1 and A.2.8 Specifically, for CASE A.2, we can show
that as .N; T ! 1/;

r
N

T
. Ǒ
b � ˇ/ H) N

�
0;
�2u
�2e

	
I (7.17)

p
NT 3. Ǒ

w � Ǒ
g/ D ��

2
v

�2u

�2e
.qa;2 C �2e /

r
N

T
. Ǒ
b � ˇ/C op.1/

H) N

�
0;
�4v
�2u

�2e
.qa;2 C �2e /

2

	
I

(7.18)

plimN;T!1NT 3ŒVar. Ǒ
w/� Var. Ǒ

g/� D �4v �
2
e

�2u .qa;2 C �2e /
2
; (7.19)

Several comments follow. First, observe that differently from CASE A.1, the
between estimator Ǒ

b is now
p
N=T -consistent. An interesting result is obtained

whenN=T ! c < 1. For this case, the between estimator is inconsistent although
it is still asymptotically unbiased. This implies that the between estimator is an
inconsistent estimator for the analysis of cross-sectionally homogeneous panel data
unless N is substantially larger than T . Second, the convergence rate of . Ǒ

w � Ǒ
g/;

as well as that of the Hausman statistic, is different between CASEs A.1 and A.2.
Notice that the convergence rate of . Ǒ

w � Ǒ
g/ is

p
NT 3 for CASE A.2, while

it is
p
NT 2 for CASE A.1. Thus, . Ǒ

w � Ǒ
g/ converges in probability to zero

8If the model contains no intercept term (� D 0) and it is estimated with this restriction, all of
the results (7.13)–(7.16) are still valid with ‚2

a replacing pa;2. Thus, the convergence rates of the
within, between, GLS estimators and the Hausman statistic are the same under both CASEs A.1
and A.2.
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much faster in CASE A.2 than in CASE A.1. Nonetheless, the Hausman statistic
is asymptotically �2-distributed in both cases, though with different convergence
rates.

Even if the time-varying regressor xit contains a time trend, we can obtain the
similar results as in CASEs A.1 and A.2. For example, consider a case in which the
time-varying regressor xit contains a time trend of orderm:

xit D ‚b;i t
m C eit ; (7.20)

where the parameters ‚b;i are fixed.9 Not surprisingly, for this case, we can show
that the within and GLS estimators are superconsistent and T m

p
NT -equivalent.

However, the convergence rates of the between estimator Ǒ
b and the Hausman

test statistic crucially depend on whether the parameters ‚b;i are heterogenous
or homogeneous. When, the parameters ‚b;i are heterogeneous over different i ,
the between estimator Ǒ

b is T m
p
N -consistent, while the convergence rate of the

Hausman statistic equals T m
p
NT 2: In contrast, somewhat surprisingly, when the

parameters ‚b;i are heterogeneous over different i , the estimator Ǒ
b is no longer

superconsistent. Instead, it is
p
N=T -consistent as in CASE A.2. The convergence

rate of the Hausman statistic changes to T 2m
p
NT 3.10 This example demonstrates

that the convergence rates of the between estimator and the Hausman statistic
crucially depend on whether means of time-varying regressors are cross-sectionally
heterogenous or not.

CASE B: So far, we have considered the cases in which the time-varying regressor
xit and the time-invariant regressor zi are uncorrelated. We now examine the cases in
which this assumption is relaxed. The degree of the correlation between the xit and
zi may vary over time. As we demonstrate below, the asymptotic properties of the
panel data estimators and the Hausman test statistic depend on how the correlation
varies over time. The basic model we consider here is given by

xit D …i zi =t
m C eit ; (7.21)

where the …i are individual-specific fixed parameters, and m is a non-negative real
number.11 Observe that because of the presence of the…i , the xit are not i.i.d. over

9We can consider a more general case: for example, xit D ai t
mC‚i C‚t Cbi zi Ceit . However,

the same asymptotic results apply to this general model. This is so because the trend term (tm)
dominates asymptotics.
10Detailed asymptotic results can be found from an earlier version of this paper.
11We can consider a more general model:

xit D ‚b;i C‰b;t C…i zi =t
m C eit ;

where the ‚b;i and ‰i are individual- and time-specific fixed parameters, respectively. When the
parameters ‚b;i are cross-sectional heterogeneous, the asymptotic results are essentially the same
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different i .12 The correlation between xit and zi decreases over time if m > 0.
In contrast, m D 0 implies that the correlation remains constant over time. For
CASE B, the within and GLS estimators are always

p
NT -consistent regardless of

the size of m. Thus, we only report the asymptotic results for the between estimator
Ǒ
b and the Hausman statistic.

We examine three possible cases: m 2 .0:5;1�; m D 0:5, and m 2 Œ0; 0:5/. We
do so because, depending on the size of m, one (or both) of the two terms eit and
…izi =tm in xit becomes a dominating factor in determining the convergence rates
of the between estimator Ǒ

b and the Hausman statistic HMTN .

CASE B.1: Assume that m 2 .0:5;1�. This is the case where the correlation
between xit and zi fades away quickly over time. Thus, one could expect that
the correlation between xit and zi (through the term …izi =tm) would not play any
important role in asymptotics. Indeed, straightforward algebra, which is not reported
here, justifies this conjecture: The term eit in xit dominates…izi =tm in asymptotics,
and, thus, this is essentially the same case as CASE A.2.13

CASE B.2: We now assume m D 0:5. For this case, define… D 1
N

P
i …i I

pb;1 D limN!1…Ipb;2 D limN!1
1

N

P
i

�
…i �…�2 ;

and qb D limT!1 1
T 1�m

R 1
0
r�mdr D 1

1�m for m � 0:5. With this notation, a little
algebra shows that as .N; T ! 1/,

r
N

T
. Ǒ
b � ˇ/ H) N

 
0;

�2u

pb;2q
2
b�

2
z C �2e

!
:

Observe that the asymptotic variance of the between estimator Ǒ
b depends on both

the terms �2e and pb;2q2b�
2
z . That is, both the terms eit and …i zi =tm in xit are

important in the asymptotics of the between estimator Ǒ
b . This implies that the

correlation between the xit and zi , when it decreases reasonably slowly over
time, matters for the asymptotic distribution of the between estimator Ǒ

b .

as those we obtain for CASE A.1. This is so because the terms ‚b;i dominate and the terms
…i zi =tm become irrelevant in asymptotics. Thus, we set ‚b;i D 0 for all i . In addition, we set
‰b;t D 0 for all t , because presence of the time effects is irrelevant for convergence rates of panel
data estimators and the Hausman statistic.
12We here assume that the …i are cross-sectionally heterogeneous. For the cases in which the …i

are the same for all i , Ǒ
b does not depend on…i zi =tm; and we obtain exactly the same asymptotic

results as those for CASE A.2. This is due to the fact that the individual mean of the time-varying
regressor xi becomes a linear function of the time invariant regressor zi if the …i are the same for
all i .
13We can obtain this result using the fact that limT!1

1
p

T

P
t t

�m D 0, if m > 0:5.
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Nonetheless, the convergence rate of Ǒ
b is the same as that of Ǒ

b for CASEs A.2
and B.1. We can also show

p
NT 3. Ǒ

w � Ǒ
g/ D ��

2
v

�2u

pb;2q
2
b�

2
z C �2e

�2e

r
N

T
. Ǒ
b � ˇ/C op.1/

H) N

 
0;
�4v
�2u

pb;2q
2
b�

2
z C �2e

�4e

!
I

plimN;T!1NT 3ŒVar. Ǒ
w/� Var. Ǒ

g/� D �4v
�2u

pb;2q
2
b�

2
z C �2e

�4e
;

both of which imply that the Hausman statistic is asymptotically �2-distributed.

CASE B.3: Finally, we consider the case in which m 2 Œ0; 0:5/, where the
correlation between xit and zi decays over time slowly. Note that the correlation
remains constant over time if m D 0. We can show

r
N

T 2m
. Ǒ
b � ˇ/ H) N

 
0;

�2u

pb;2q
2
b�

2
z

!
:

Observe that the asymptotic distribution of Ǒ
b no longer depends on �2e . This implies

that the term …izi =tm in xit dominates eit in the asymptotics for Ǒ
b . Furthermore,

the convergence rate of Ǒ
b now depends on m. Specifically, so long as m < 0:5,

the convergence rate increases as m decreases. In particular, when the correlation
between xit and zi remains constant over time (m D 0), the between estimator Ǒ

b

is
p
N -consistent as in CASE A.1. Finally, the following results indicate that the

convergence rate of the Hausman statistic HMNT also depends on m:

p
NT 2mC2. Ǒ

w � Ǒ
g/ D ��

2
v

�2u

pb;2q
2
b�

2
z

�2e

r
N

T 2m
. Ǒ
b � ˇ/C op .1/

H) N

 
0;
�4v
�2u

pb;2q
2
b�

2
z

�4e

!
I

plimN;T!1NT 2mC2ŒVar. Ǒ
w/ � Var. Ǒ

g/� D �4v
�2u

pb;2q
2
b�

2
z

�4e
:

7.2.3 Asymptotic Power Properties of the Hausman Test

In this section, we consider the asymptotic power properties of the Hausman test
for the special cases discussed in the previous subsection. To do so, we need to
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Table 7.1 Local alternatives and asymptotic results

Case Local alternatives Convergence rate Noncentral parameter

A.1 E.ui j Qxi ; Qzi / D Qxi 	x
p

N
C Qzi 	z

p

N

a p
NT 2

pa;2	
2
x

�2u

A.2 E.ui j Qxi ; Qzi / D p
T Qxi 	x

p

N
C Qzi 	z

p

N

p
NT 3

�2e 	
2
x

�2u

B.1 E.ui j Qxi ; Qzi / D p
T Qxi 	x

p

N
C Qzi 	z

p

N

p
NT 3

�2e 	
2
x

�2u

B.2 E.ui j Qxi ; Qzi / D p
T Qxi 	x

p

N
C Qzi 	z

p

N

p
NT 3

.4pb;2�2z C�2e /	2x
�2u

B.3 E.ui j Qxi ; Qzi / D T m Qxi 	x
p

N
C Qzi 	z

p

N

p
NT 2mC2

�
. 1
1�m /

2
pb;2�

2
z

�
	2x

�2u

aThis sequence of local alternatives can be replaced by

E.ui jxi ; zi / D 	o C xi
	xp
N

C zi
	zp
N
;

where 	o is any constant scalar. The asymptotic results remain the same with this replacement.

specify a sequence of local alternative hypotheses for each case. Among many, we
consider the alternative hypotheses under which the conditional mean of ui is a
linear function of the regressors Qxi and Qzi .

We list in Table 7.1 our local alternatives and asymptotic results for CASEs A.1–
B.3. For all of the cases, we assume that var.ui j Qxi ; Qzi / D �2u for all i . The
parameters 	x and 	z are nonzero real numbers. Notice that for CASEs A.2–
B.3, we use

p
T Qxi or T m Qxi instead of Qxi . We do so because, for those cases,

plimT!1 Qxi D 0: The third column indicates the convergence rates of the Hausman
test, which are the same as those obtained under the RE assumption. Under the
local alternatives, the Hausman statistic asymptotically follows a noncentral �2

distribution. The noncentral parameters for individual cases are listed in the fourth
column of Table 7.1.

A couple of comments follow. First, although the noncentral parameter does not
depend on 	z for any case reported in Table 7.1, it does not mean that the Hausman
test has no power to detect nonzero correlation between the effect ui and the time-
invariant regressor zi . The Hausman test comparing the GLS and within estimators is
not designed to directly detect the correlations between the time-invariant regressors
and the individual effects. Nonetheless, the test has power as long as the individual
effect ui is correlated with the time-varying regressors conditionally on the time-
invariant regressors. To see this, consider a model in which xit and zi have a
common factor fi I that is, xit D fiCeit and zi D fiC�i . (This is the case discussed
below in Assumption 5.) Assume E.ui j fi ; �i ; Nei / D c�i =

p
N: Also assume that

fi ; �i and eit are normal, mutually independent, and i.i.d. over different i and t
with zero means, and variances �2f ; �

2
� ; and �2e , respectively. Note that xit is not

correlated with ui ; while zi is. For this case, however, we can show that

E.ui jxi ; Qzi / D xi
	xp
N

C Qzi 	zp
N
;
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where d D .�2f C �2e =T /.�
2
f C �2� / � �4f ; 	x D �c�2f �2� =d; 	z D c.�2f C

�2e =T /�
2
� =d . Observe that 	x is functionally related to 	z: 	x D 0 if and only if

	z D 0. For this case, it can be shown that the Hausman test has the power to detect
non-zero correlation between ui and Qzi .

Second and more importantly, the results for CASE A show that the large-
T and large-N power properties of the Hausman test may depend on (i) what
components of xit are correlated with the effect ui and (ii) whether the mean of xit is
cross-sectionally heterogeneous. For CASE A, the time-invariant and time-varying
parts of xit ; ‚a;i and eit , can be viewed as permanent and transitory components,
respectively. For fixed T , it does not matter to the Hausman test which of these two
components of xit is correlated with the individual effect ui . The Hausman test has
power to detect any kind of correlations between xit and ui . In contrast, for the cases
with large T , the same test can have power for specific correlations only. To see
why, observe that for CASE A.1, the noncentral parameter of the Hausman statistic
depends only on the variations of the permanent components‚i , not on those of the
transitory components eit . This implies that for CASE A.1 (where the permanent
components‚a;i are cross-sectionally heterogeneous), the Hausman test has power
for nonzero correlation between the effect ui and the permanent component‚a;i ; but
no power for nonzero-correlation between the effect and the temporal component
eit . In contrast, for CASE A.2 (where the permanent components ‚a;i are the
same for all i ), the noncentral parameter depends on the variations in eit . That is,
for CASE A.2, the Hausman test does have power to detect nonzero-correlation
between the effect and the temporal component of xit .14

Similar results are obtained from the analysis of CASE B. The results reported
in the fourth column of Table 7.1 show that when the correlation between xit
and zi decays slowly over time (m � 0:5/, the Hausman test has power to detect
nonzero-correlation between the individual effect and the transitory component of
time-varying regressors, even if T is large. In contrast, when m > 0:5, the same
test has no power to detect such nonzero correlations if T is large. These results
indicate that the asymptotic power of the Hausman test can depend on the size of T:
That is, the Hausman test results based on the entire data set with large T could be
different from those based on subsamples with small T . These findings will be more
elaborated in Sect. 7.3.

14This point can be better presented if we choose the following sequence of local alternative
hypotheses for CASE A:

E .ui j Qxi ; Qzi / D E.Qxi/ 	x;1p
N

C .Qxi � E .Qxi // 	x;2p
N

C Qzi 	zp
N
:

Observe that for CASE A, E.Qxi/ D ‚i , and .Qxi � E .Qxi // D Qei . Under the local alternative
hypotheses, it can be shown that the noncentral parameter of the Hausman test depends on either
	x;1 or 	x;2, but not both. When E.Qxi/ ¤ 0 (CASE A.1), the noncentral parameter of the test
depends only on 	x;1. In contrast, when E.Qxi / D 0, the noncentral parameter depends only on
	x;2:
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7.3 Monte Carlo Experiments

In this section, we investigate the finite-sample properties of the within and GLS
estimators, as well as those of the Hausman test. Consistent with the previous
section, we consider a model with one time-varying regressor xit and one time-
invariant regressor zi . The foundations of our experiments are CASEs A and B
discussed above. For all of our simulations, both the individual effects ui and
random errors vi t are drawn from N.0; 1/.

For the cases in which the two regressors are uncorrelated (CASE A), we
generate xit and zi as follows:

xit D ‚i C �i�t C eit ; (7.22)

zi D �zuui C
q
1 � �2zufi ; (7.23)

where‚i D �xu;1uiC
q
1 � �2xu;1‚

c
i , �i D �xu;2uiC

q
1 � �2xu;2�

c
i , the‚c

i and �ci are

random variables fromN.0; 1/, the eit and fi are drawn from a uniform distribution
in the range .�2; 2/. The term �i�t C eit is the transitory component of xit . The
term �i�t is introduced to investigate the cases with non-zero correlations between
the individual effect and the transitory component of xit . The degrees of correlations
between the individual effects and regressors are controlled by �xu;1, �xu;2 and �zu.
For each of the simulation results reported below, 5,000 random samples are used.

Table 7.2 reports the simulation results from CASE A.1. When regressors are
uncorrelated with the effect ui , both the GLS and within estimators have only small
biases. The Hausman test is reasonably well sized although it is somewhat oversized
when both N and T are small. When the permanent component of xit is correlated
with the effect (Panel I), the GLS estimator of ˇ is biased. However, the size of bias
decreases with T , as we expected. The bias in the within estimator of ˇ is always
small regardless of the sizes ofN and T . The Hausman test has great power to detect
non-zero correlation between the permanent component of xit and ui regardless of
sample size. The power increases with T while the bias in the GLS estimator of ˇ
decreases.

Panel II of Table 7.2 shows the results from the cases in which the effect ui t
and the transitory component of xit are correlated. Our asymptotic results predict
that this type of correlation does not bias the GLS estimates when T is large and
is not detected by the Hausman test. The results reported in Panel II are consistent
with this prediction. Even if T is small, we do not see substantial biases in the GLS
estimates. When T is small, the Hausman test has some limited power to detect the
non-zero correlation between the effect and the transitory component of the time-
varying regressor. However, the power decreases with T .

Table 7.3 reports the results from the cases in which the time-varying regressor
does not have a permanent component (CASE A.2). Similar to those that are
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Table 7.2 Monte Carlo simulation results for CASE A.1

Panel I: �xu;2 D 0 Panel II: �xu;1 D 0

Bias Bias

GLS Within GLS Within

N T �xu;1 ˇ 
 ˇ

Hausman
rejection
rate �xu;2 ˇ 
 ˇ

Hausman
rejection
rate

50 5 0.0 0.001 0.000 0.001 0.063 0.0 0.001 0.000 0.001 0.063
50 0.0 0.000 0.001 0.000 0.054 0.0 0.000 0.001 0.000 0.054

100 0.0 0.000 �0.001 0.000 0.055 0.0 0.000 �0.001 0.000 0.055
100 5 0.0 0.000 0.000 �0.001 0.049 0.0 0.000 0.000 �0.001 0.049

50 0.0 0.000 �0.002 0.000 0.053 0.0 0.000 �0.002 0.000 0.053
100 0.0 0.000 �0.002 0.000 0.053 0.0 0.000 �0.002 0.000 0.053

50 5 0.5 0.046 0.000 0.001 0.753 0.5 0.001 0.000 0.000 0.181
50 0.5 0.005 0.001 0.000 0.960 0.5 0.000 0.001 0.000 0.081

100 0.5 0.003 �0.001 0.000 0.967 0.5 0.000 �0.001 0.000 0.069
100 5 0.5 0.045 0.000 �0.001 0.956 0.5 0.000 0.000 �0.001 0.286

50 0.5 0.005 �0.002 0.000 1.000 0.5 0.000 �0.002 0.000 0.111
100 0.5 0.003 �0.002 0.000 1.000 0.5 0.000 �0.002 0.000 0.080

50 5 1.0 0.110 0.000 0.001 0.999 1.0 0.000 0.000 0.000 0.433
50 1.0 0.013 0.001 0.000 1.000 1.0 0.000 0.001 0.000 0.163

100 1.0 0.006 �0.001 0.000 1.000 1.0 0.000 �0.001 0.000 0.112
100 5 1.0 0.109 0.000 �0.001 1.000 1.0 0.000 0.000 �0.001 0.577

50 1.0 0.012 �0.002 0.000 1.000 1.0 0.000 �0.002 0.000 0.249
100 1.0 0.006 �0.002 0.000 1.000 1.0 0.000 �0.002 0.000 0.164

reported in Panel II of Table 7.2, there is no sign that non-zero correlation between
the effect and the transitory component of xit causes a substantial bias in the GLS
estimator. However, differently from the results reported in Panel II of Table 7.2,
the Hausman test now has better power to detect non-zero correlation between the
effect and the transitory component of xit . The power increases as either N or T
increases.

We now consider the cases in which xit and zi are correlated (CASE B). For
these cases, the xit are generated by

xit D ifi =t
m C �i�t C eit ; (7.24)

where the i are drawn from a uniform distribution in the range .0; 1/. As in (7.22),
the term �i�t is introduced to investigate the cases with non-zero correlations
between the individual effect and the transitory component of xit . Observe that in
(7.24), we use fi , not zi . As we have discussed in the previous section, the Hausman
test would not have any power to detect non-zero correlation between zi and ui
for the cases with large T if zi instead of fi were used for (7.24). We use fi to
investigate the power properties of the Hausman test under more general cases than
the cases we have considered in the previous sections. Under (7.24), the Hausman
test can have power to detect non-zero correlation between zi and ui .
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Table 7.3 Monte Carlo simulation results for CASE A.2

Bias

GLS Within

N T �xu;2 ˇ 
 ˇ

Hausman
rejection
rate

50 5 0.0 0.000 0.001 �0.001 0.052
50 0.0 0.000 0.001 0.000 0.051

100 0.0 0.000 0.001 0.000 0.052

100 5 0.0 0.000 0.002 0.000 0.050
50 0.0 0.000 �0.001 0.000 0.049

100 0.0 0.000 �0.002 0.000 0.055

50 5 0.5 �0.001 0.001 �0.001 0.396
50 0.5 0.000 0.001 0.000 0.448

100 0.5 0.000 0.001 0.000 0.461

100 5 0.5 0.000 0.002 0.000 0.569
50 0.5 0.000 �0.001 0.000 0.626

100 0.5 0.000 �0.002 0.000 0.620

50 5 1.0 �0.002 0.001 �0.002 0.999
50 1.0 0.000 0.001 0.000 1.000

100 1.0 0.000 0.001 0.000 1.000

100 5 1.0 0.000 0.002 0.000 1.000
50 1.0 0.000 �0.001 0.000 1.000

100 1.0 0.000 �0.002 0.000 1.000

Table 7.4 shows our simulation results from the cases in which the time-varying
regressor is correlated with the time-invariant regressor. Panel I reports the results
when the time-invariant regressor zi is correlated with the effect ui . Regardless of
how fast the correlation between xit and zi decays over time, the GLS estimator
of 
 shows some signs of biases. While the biases reported in Panel I appear only
mild, the biases become substantial if we increase the size of �zu further. When
the correlation between xit and zi remains constant over time (m D 0), the GLS
estimator of ˇ is mildly biased. However, the bias becomes smaller as the size of
T increases. When the correlation between xit and zi decays over time (m � 0:5),
no substantial bias is detected in the GLS estimator of ˇ even if T is small. The
Hausman test has some power to detect non-zero correlation between the time-
invariant regressor zi and the effect ui . However, the power appears to be limited
in our simulation exercises: Its power never exceeds 61 %. The power increases
with T when m � 0:5, but the power decreases with T if m > 0:5.

Panel II of Table 7.4 reports the results for the cases in which the transitory
component of xit is correlated with the effect ui . Similarly to those reported in
Table 7.3, both the GLS estimators of ˇ and 
 show no signs of significant biases.
For the cases in which the correlation between xit and zi decays only mildly over
time (m < 0:5), the power of the Hausman test to detect nonzero-correlation
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Table 7.4 Monte Carlo simulation results for CASE B

Panel I: �xu;2 D 0 Panel II: �zu D 0

Bias Bias

GLS Within GLS Within

m N T �zu ˇ 
 ˇ

Hausman
rejection
rate �xu;2 ˇ 
 ˇ

Hausman
rejection
rate

0.0 50 5 0.0 0.001 �0.001 0.001 0.059 0.0 0.001 �0.001 0.001 0.059
50 50 0.0 0.000 �0.001 0.000 0.056 0.0 0.000 �0.001 0.000 0.056
50 100 0.0 0.000 �0.001 0.000 0.057 0.0 0.000 �0.001 0.000 0.057

100 5 0.0 �0.001 0.000 �0.001 0.048 0.0 �0.001 0.000 �0.001 0.048
100 50 0.0 0.000 0.000 0.000 0.051 0.0 0.000 0.000 0.000 0.051
100 100 0.0 0.000 0.000 0.000 0.052 0.0 0.000 0.000 0.000 0.052
50 5 0.5 �0.023 0.046 0.001 0.226 0.5 0.001 �0.001 0.000 0.136
50 50 0.5 �0.002 0.034 0.000 0.344 0.5 0.000 �0.001 0.000 0.067
50 100 0.5 �0.001 0.033 0.000 0.363 0.5 0.000 �0.001 0.000 0.067

100 5 0.5 �0.024 0.046 �0.001 0.385 0.5 �0.001 0.000 �0.001 0.226
100 50 0.5 �0.003 0.034 0.000 0.578 0.5 0.000 0.000 0.000 0.085
100 100 0.5 �0.001 0.033 0.000 0.596 0.5 0.000 0.000 0.000 0.070

0.5 50 5 0.0 0.000 �0.001 0.000 0.054 0.0 0.000 �0.001 0.000 0.054
50 50 0.0 0.000 �0.001 0.000 0.047 0.0 0.000 �0.001 0.000 0.047
50 100 0.0 0.000 �0.001 0.000 0.053 0.0 0.000 �0.001 0.000 0.053

100 5 0.0 �0.001 0.000 0.000 0.050 0.0 �0.001 0.000 0.000 0.050
100 50 0.0 0.000 0.000 0.000 0.049 0.0 0.000 0.000 0.000 0.049
100 100 0.0 0.000 0.000 0.000 0.049 0.0 0.000 0.000 0.000 0.049
50 5 0.5 �0.014 0.038 0.000 0.199 0.5 0.000 0.000 0.000 0.211
50 50 0.5 0.000 0.032 0.000 0.258 0.5 0.000 �0.001 0.000 0.214
50 100 0.5 0.000 0.032 0.000 0.267 0.5 0.000 �0.001 0.000 0.214

100 5 0.5 �0.015 0.038 0.000 0.348 0.5 �0.001 0.000 0.000 0.350
100 50 0.5 �0.001 0.033 0.000 0.451 0.5 0.000 0.000 0.000 0.335
100 100 0.5 0.000 0.033 0.000 0.466 0.5 0.000 0.000 0.000 0.331

2.0 50 5 0.0 0.000 0.000 0.000 0.056 0.0 0.000 0.000 0.000 0.056
50 50 0.0 0.000 �0.001 0.000 0.054 0.0 0.000 �0.001 0.000 0.054
50 100 0.0 0.000 �0.001 0.000 0.050 0.0 0.000 �0.001 0.000 0.050

100 5 0.0 0.000 0.000 0.000 0.052 0.0 0.000 0.000 0.000 0.052
100 50 0.0 0.000 0.000 0.000 0.048 0.0 0.000 0.000 0.000 0.048
100 100 0.0 0.000 0.000 0.000 0.051 0.0 0.000 0.000 0.000 0.051
50 5 0.5 �0.005 0.033 0.000 0.113 0.5 0.000 0.000 0.000 0.323
50 50 0.5 0.000 0.032 0.000 0.065 0.5 0.000 �0.001 0.000 0.437
50 100 0.5 0.000 0.032 0.000 0.058 0.5 0.000 �0.001 0.000 0.442

100 5 0.5 �0.005 0.033 0.000 0.183 0.5 0.000 0.000 0.000 0.512
100 50 0.5 0.000 0.033 0.000 0.076 0.5 0.000 0.000 0.000 0.603
100 100 0.5 0.000 0.033 0.000 0.064 0.5 0.000 0.000 0.000 0.604

between the individual effect and the transitory component of the time-varying
regressor is extremely low, especially when T is large. In contrast, when m � 0:5,
the power of the Hausman test increases with T . These results are consistent with
what the asymptotic results derived in the previous section have predicted.
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Our simulation results can be summarized as follows. First, the finite-
sample properties of the GLS estimators and the Hausman test are generally
consistent with their asymptotic properties. Second, even if time-varying or
time-invariant regressors are correlated with the unobservable individual effects,
the GLS estimators of the coefficients of the time-varying regressors do not
suffer from substantial biases if T is large, although the GLS estimators of the
coefficients on time-invariant regressors could be biased regardless of the size
of T . Third, the Hausman test has great power to detect non-zero correlation
between the unobservable individual effects and the permanent components of
time-varying regressors. In contrast, it has only limited power to detect non-zero
correlations between the effects and transitory components of the time-varying
regressors and between the effects and time-invariant regressors. The power of the
Hausman test crucially depends on both the size of T and the covariance structure
among regressors and the effects.

Both our asymptotic and Monte Carlo results provide empirical researchers
with practical guidance. For the studies that focus on the effects of time-varying
regressors on the dependent variable, the choice between the GLS and within
estimators is an irrelevant issue when T is as large as N . Both the GLS and
within estimators are consistent. For the studies that focus on the effects of time-
invariant regressors, some cautions are required for correct interpretations of the
Hausman test results. One important reason to prefer GLS over within is that it
allows estimation of the effects of time-invariant regressors on dependent variables.
For the consistent estimation of the effects of the time-invariant regressors, however,
it is important to test endogeneity of the regressors. Our results indicate that large-T
data do not necessarily improve the power property of the Hausman test. When the
degrees of correlations between time-varying and time-invariant variables decrease
quickly over time, the Hausman test generally lacks the power to detect endogeneity
of time-invariant regressors. The tests based on subsamples with small T could
provide more reliable test results. The different test results from a large-T sample
and its small-T subsamples may provide some information about how the individual
effect might be correlated with time-varying regressors. The rejection by large-T
data but acceptance by small-T data would indicate that the effect is correlated
with the permanent components of the time-varying regressor, but the degrees of
the correlations are low. In contrast, the acceptance by large-T data but rejection by
small-T data may indicate that the effect is correlated with the temporal components
of the time-varying regressors.

So far, we have considered several simple cases to demonstrate how the
convergence rates of the popular panel data estimators and the Hausman test are
sensitive to data generating processes. For these simple cases, all of the relevant
asymptotics can be obtained in a straightforward manner. In the following section,
we will show that the main results obtained from this section apply to more general
cases in which regressors are serially dependent with arbitrary covariance structures.
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7.4 General Case

This section derives for the general model (7.1) the asymptotic distributions of
the within, between, GLS estimators and the Hausman statistic. In Sect. 7.2, we
have considered independently several simple models in which regressors are of
particular characteristics. The general model we consider in this section contains all
of the different types of regressors analyzed in Sect. 7.2. More detailed assumptions
are introduced below.

From now on, the following notation is repeatedly used. The expression “!p”
means “converges in probability,” while “)” means “converges in distribution” as
in Sect. 7.2.2. For any matrix A, the norm kAk signifies

p
t r.AA0/: When B is

a random matrix with E kBkp < 1, then kBkp denotes
�
E kBkp�1=p . We use

EF .�/ to denote the conditional expectation operator with respect to a sigma field

F . We also define kBkF ;p D �
EF kBkp�1=p : The notation xN 
 aN indicates

that there exists n and finite constants d1 and d2 such that infN�n xNaN � d1 and
supN�n xNaN � d2: We also use the following notation for relevant sigma-fields:
Fxi D �.xi1; : : : ; xiT /; Fzi D � .zi /; Fz D � .Fz1 ; : : : ;FzN /; Fwi D � .Fxi ;Fzi /;
and Fw D � .Fw1 ; : : : ;FwN / : The xit and zi are now k � 1 and g � 1 vectors,
respectively.

As in Sect. 7.2, we assume that the regressors .x0
i1; : : : ; x

0
iT ; z

0
i /

0 are indepen-
dently distributed across different i . In addition, we make the following the
assumption about the composite error terms ui and vi t :

Assumption 1 (about ui and vi t ): For some q > 1,

(i) The ui are independent over different i with supiE jui j4q < 1.
(ii) The vi t are i.i.d. with mean zero and variance �2v across different i and t , and

are independent of xis , zi and ui , for all i , t , and s. Also, kvi tk4q � �v is finite.

Assumption 1(i) is a standard regularity condition for error-components models.
Assumption 1(ii) indicates that all of the regressors and individual effects are strictly
exogenous with respect to the error terms vi t .15

We now make the assumptions about regressors. We here consider three different
types of time-varying regressors: We partition the k�1 vector xit into three subvec-
tors, x1;i t ; x2;i t ; and x3;i t , which are k1�1, k2�1, and k3�1, respectively. The vector
x1;i t consists of the regressors with deterministic trends. We may think of three
different types of trends: (i) cross-sectionally heterogeneous nonstochastic trends
in mean (but not in variance or covariances); (ii) cross-sectionally homogeneous
nonstochastic trends; and (iii) stochastic trends (trends in variance) such as unit-root
time series. In Sect. 7.2, we have considered the first two cases while discussing the
cases related with (7.20). The latter case is materially similar to CASE A.2, except
that the convergence rates of estimators and test statistics are different under these

15As discussed in Sect. 7.2.1, this assumption rules out weakly exogenous or predetermined
regressors.
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two cases. Thus, we here only consider the case (i). We do not cover the cases of
stochastic trends (iii), leaving the analysis of such cases to future study.

The two subvectors x2;i t and x3;i t are random regressors with no trend in mean.
The partition of x2;i t and x3;i t is made based on their correlation with zi . Specifically,
we assume that the x2;i t are not correlated with zi , while the x3;i t are. In addition, in
order to accommodate CASEs A.1 and A.2, we also partition the subvector x2;i t into
x21;i t and x22;i t , which are k21 � 1 and k22 � 1, respectively. Similarly to CASE A.1,
the regressor vector x21;i t is heterogeneous over different i , as well as different t ,
with different means‚21;i t . In contrast, x22;i t is homogeneous cross-sectionally with
means ‚22;t for all i for given t (Case A.2). We also incorporate CASEs B.1–B.3
into the model by partitioning x3;i t into x31;i t ; x32;i t ; and x33;i t , which are k31 �
1; k32�1, and k33�1, respectively, depending on how fast their correlations with zi
decay over time. The more detailed assumptions on the regressors xit and zi follow:

Assumption 2 (about x1;i t ):

(i) For some q > 1, �x1 � supi;t kx1;i t � Ex1;i tk4q < 1.

(ii) Let xh;1;i t be the hth element of x1;i t . Then, Exh;1;i t 
 tmh;1 for all i and h D
1; : : : ; k1; where mh;1 > 0.

Assumption 3 (about x2;i t ): For some q > 1,

(i) E.x21;i t / D ‚21;i t andE.x22;i t / D ‚22;t , where supi;t k‚21;i tk, supt k‚22;tk <
1, and‚21;i t ¤ ‚21;jt if i ¤ j .

(ii) �x2 � supi;t kx2;i t � Ex2;i tk4q < 1.

Assumption 4 (about x3;i t ): For some q > 1,

(i) E .x3;i t / D ‚3;it ; where supi;t k‚3;itk < 1:

(ii) E
�

supi;t
��x3;i t �EFzi

x3;i t
��8q
Fzi ;4q

�
< 1:

(iii) Let xh;3k;i t be the hth element of x3k;i t , where k D 1; 2; 3. Then, conditional on
zi ,

(iii.1)
�
EFzi

xh;31;i t � Exh;31;i t
� 
 t�mh;31 a.s., where 1

2
< mh;31 � 1 for

h D 1; : : : ; k31
(here, mh;31 D 1 implies that EFzi

xh;31;i t � Exh;31;i t D 0 a.s.);

(iii.2)
�
EFzi

xh;32;i t �Exh;32;i t
� 
 t� 1

2 a.s. for h D 1; : : : ; k
32

;
(iii.3)

�
EFzi

xh;33;i t � Exh;33;i t
� 
 t�mh;33 a.s., where 0 � mh;33 <

1
2

for h D
1; : : : ; k33 .

Assumption 5 (about zi ): fzigi is i.i.d. over i with E.zi / D ‚z; and kzik4q < 1
for some q > 1:

Panel data estimators of individual coefficients have different convergence
rates depending on the types of the corresponding regressors. To address these
differences, we define:

Dx;T D diag .D1T ;D2T ;D3T / I
DT D diag

�
Dx;T ; Ig

�
;
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where

D1T D diag .T �m1; : : : ; T �mk1 / I
D2T D diag .D21T ;D22T / D diag

�
Ik21 ;

p
T Ik22

�
I

D3T D diag .D31T ;D32T ;D33T /

D diag
�p

T Ik31 ;
p
T Ik32 ; T

m1;33 ; : : : ; T mk33;33
�
:

Observe that D1T , D2T , and D3T are conformable to regressor vectors x1;i t , x2;i t ,
and x3;i t , respectively, while DT and Ig are to xit and zi , respectively. The diagonal
matrix DT is chosen so that plimN!1 1

N

P
i DT Qwi Qw0

iDT is well defined and finite.
For future use, we also define

Gx;T D diag .D1T ; Ik21 ; Ik22 ; Ik3/ I
Jx;T D diag .Ik1 ; Ik21 ;D22T ;D3T / ;

so that

Dx;T D Gx;T Jx;T :

Using this notation, we make the following regularity assumptions on the uncondi-
tional and conditional means of regressors:

Assumption 6 (convergence as T ! 1): Defining t D ŒT r�, we assume that the
following restrictions hold as T ! 1.

(i) Let �1 .r/ D diag .rm1;1 ; : : : ; rmk1;1 /, where mh;1 is defined in Assumption 2.
Then,

D1T E .x1;i t / ! �1 .r/‚1;i

uniformly in i and r 2 Œ0; 1�, for some ‚1;i D .‚1;1;i ; : : : ; ‚k1;1;i /
0 with

supi k‚1;ik < 1.
(ii) ‚21;i t ! ‚21;i and ‚3;it ! ‚3;i uniformly in i with supi k‚21;ik < 1 and

supi k‚3;ik < 1.
(iii) Uniformly in i and r 2 Œ0; 1�,

D31T

�
EFzi

x31;i t �Ex31;i t
� ! 0k31�1 a.s.;

D32T

�
EFzi

x32;i t � Ex32;i t
� ! 1p

r
Ik32g32;i .zi / a.s.;

D33T

�
EFzi

x33;i t �Ex33;i t
� ! �33 .r/ g33;i .zi / a.s.,

where

g32;i D .g1;32;i ; : : : ; gk32;32;i /
0 Ig33;i D .g1;33;i ; : : : ; gk33;33;i /

0 ;
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and g32;i .zi / and g33;i .zi / are zero-mean functions of zi with

0 < E sup
i

kg3k;i .zi /k4q < 1; forsomeq > 1;

and g3k;i ¤ g3k;j for i ¤ j; and �33 .r/ D diag .r�m1;33 ; : : : r�mk33;33 /.
(iv) There exist Q� .r/ and QGi .zi / such that

kD3T

�
EFzi

x3;i t �Ex3;i t
� k � Q�.r/ QGi.zi /;

where
R Q� .r/4q dr < 1 and E supi QGi .zi /4q < 1 for some q > 1.

(v) Uniformly in .i; j / and r 2 Œ0; 1�;
D31T

�
Ex31;i t � Ex31;jt

� ! 0k31�1;
D32T

�
Ex32;i t � Ex32;jt

� ! 1p
r
Ik32

�
�g32i � �g32j

�
,

D33T

�
Ex33;i t � Ex33;jt

� ! �33 .r/
�
�g33i � �g33j

�
;

with supi k�g32i k; supi k�g33i k < 1:

Some remarks would be useful to understand Assumption 6. First, to have an
intuition about what the assumption implies, we consider, as an illustrative example,
the simple model in CASE 3 in Sect. 7.2.2, in which x3;i t D …i zi =tm C eit ; where
eit is independent of zi and i:i:d: across i: For this case,

D3T

�
EFzi

x3;i t �Ex3;i t
� D D3T…i .zi �Ezi / =t

mI
D3T

�
Ex3;i t �Ex3;jt

� D D3T

�
…iEzi �…jEzj

�
=tm:

Thus,

g3k;i .zi / D …i .zi �Ezi / I
�g3k;i D …iEzi :

Second, Assumption 6(iii) makes the restriction that E supi kg3k;i .zi /k4q is strictly
positive, for k D 2; 3: This restriction is made to warrant that g3k;i .zi / ¤ 0 a.s. If
g3k;i .zi / D 0 a.s.,16 then

D3kTEFzi
.x3k;i t �Ex3k;i t / 
 �3k .r/ g32;i .zi / D 0a:s:;

and the correlations between x3;i t and zi no longer play any important role in
asymptotics. Assumption 6(iii) rules out such cases.

16An example is the case in which x3;it D eit…i zi =tm; where eit is independent of zi with mean
zero.
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Assumption 6 is about the asymptotic properties of means of regressors as
T ! 1. We also need additional regularity assumptions on the means of regressors
that apply as N ! 1. Define

H1 D
Z 1

0

�1.r/dr IH32 D
�Z 1

0

1p
r
dr

	
Ik32 IH33 D

Z 1

0

�33.r/dr I

and

E

2
64
0
@
H32g32;i .zi /
H33g33;i .zi /
zi � Ezi

1
A
0
@
H32g32;i .zi /
H33g33;i .zi /
zi � Ezi

1
A

03
75D

0
B@
�g32;g32;i �g32;g33;i �g32;z;i
� 0
g32;g33;i

�g33;g33;i �g33;z;i

� 0
g32;z;i

� 0
g33;z;i

�zz;i

1
CA :

With this notation, we assume the followings:

Assumption 7 (convergence as N ! 1): Define Q‚1;i D ‚1;i � 1
N

P
i ‚1;i ;

Q‚21;i D ‚21;i � 1
N

P
i ‚21;i ; Q�g32;i D �g32;i � 1

N

P
i �g32;i ; and Q�g33;i D �g33;i �

1
N

P
i �g33;i . As N ! 1,

(i) 1
N

P
i

0
BB@

H1
Q‚1;i

Q‚21;i

H32 Q�g32;i
H33 Q�g33;i

1
CCA

0
BB@

H1
Q‚1;i

Q‚21;i

H32 Q�g32;i
H33 Q�g33;i

1
CCA

0

!

0
BBB@

�‚1;‚1 �‚1;‚21 �‚1;�32 �‚1;�33
� 0
‚1;‚21

�‚21;‚21 �‚21;�32 �‚21;�33

� 0
‚1;�32

� 0
‚21;�32

��32;�32 ��32;�33
� 0
‚1;�33

� 0
‚21;�33

� 0
�32;g33

��33;�33

1
CCCA:

(ii) 1
N

P
i

0
B@
�g32;g32;i �g32;g33;i �g32;z;i
� 0
g32;g33;i

�g33;g33;i �g33;z;i

� 0
g32;z;i

� 0
g33;z;i

�zz;i

1
CA!

0
B@
�g32;g32 �g32;g33 �g32;z
� 0
g32;g33

�g33;g33 �g33;z

� 0
g32;z

� 0
g33;z

�z;z

1
CA.

(iii) The limit of 1
N

P
i ‚1;i‚

0
1;i exists.

Apparently, by Assumptions 6 and 7, we assume the sequential convergence
of the means of regressors as T ! 1 followed by N ! 1. However, this by
no means implies that our asymptotic analysis is a sequential one. Instead, the
uniformity conditions in Assumption 6 allow us to obtain our asymptotic results
using the joint limit approach that applies as .N; T ! 1/ simultaneously.17 Joint
limit results can be obtained under an alternative set of conditions that assume
uniform limits of the means of regressors sequentially as N ! 1 followed by
T ! 1: Nonetheless, we adopt Assumptions 6 and 7 because they are much more
convenient to handle the trends in regressors x1;i t and x3;i t for asymptotics.

The following notation is for conditional or unconditional covariances among
time-varying regressors. Define

�i .t; s/ D Œ�jl;i .t; s/�jl ;

17For the details on the relationship between the sequential and joint approaches, see Apostol
(1974, Theorems 8.39 and 9.16) for the cases of double indexed real number sequences, and
Phillips and Moon (1999) for the cases of random sequences.
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where �jl;i .t; s/ D E
�
xj;i t � EFzi

xj;i t
� �
xl;is � EFzi

xl;is
�
, for j; l D 2; 3.

Essentially, the �i is the unconditional mean of the conditional variance-covariance
matrix of .x0

2;i t ; x
0
3;i t /

0. We also define the unconditional variance-covariance matrix
of .x0

1;i t ; x
0
2;i t ; x

0
3;i t /

0 by

Q�i .t; s/ D Œ Q�jl;i .t; s/�jl ;

where Q�jl;i .t; s/ D E
�
xj;i t � Exj;i t

�
.xl;is � Exl;is/, for j; l D 1; 2; 3: Observe

that �22;i .t; s/ D Q�22;i .t; s/, since x2;i t and zi are independent. With this notation,
we make the following assumption on the convergence of variances and covariances:

Assumption 8 (convergence of covariances): As .N; T ! 1/,

(i) 1
N

P
i
1
T

P
t

P
s

�
�22;i .t; s/ �23;i .t; s/

� 0
23;i .t; s/ �33;i .t; s/

	
!
�
�22 �23
� 0
23 �33

	
:

(ii) 1
N

P
i
1
T

P
t

Q�i .t; t/ ! ˆ.

Note that the variance matrix Œ�jl �j;lD2;3 is the cross section average of the long-
run variance-covariance matrix of

�
x0
2;i t ; x

0
3;i t

�0
. For future use, we partition the

two limits in the assumption conformably to .x0
21;i t ; x

0
22;i t ; x

0
31;i t ; x

0
32;i t ; x

0
33;i t /

0 as
follows:

�
�22 �23
� 0
23 �33

	
D

0
BBBBB@

�21;21 �21;22 �21;31 �21;32 �21;33
� 0
21;22 �22;22 �22;31 �22;32 �22;33

� 0
21;31 �

0
22;31 �31;31 �31;32 �31;33

� 0
21;32 �

0
22;32 �

0
31;32 �32;32 �32;33

� 0
21;33 �

0
22;33 �

0
31;33 �

0
32;33 �33;33

1
CCCCCA

I

ˆ D
0
@
ˆ11 ˆ12 ˆ13
ˆ0
12 ˆ22 ˆ23

ˆ0
13 ˆ

0
23 ˆ33

1
A :

Assumption 9 Let F1
z D � .z1; : : : ; zN ; : : :/ : For a generic constant M that is

independent of N and T; the followings hold:

(i) supi;T
�� 1
T

P
t .x1;i t �Ex1;i t /

��
4
< M;

(ii) supi;T

��� 1p
T

P
t .x2;i t �Ex2;i t /

���
4
< M;

(iii) supi;T

��� 1p
T

P
t

�
x3;i t � EFzi

x3;i t
����
4
< M:

Assumption 9 assumes that the fourth moments of the sums of the regressors
x1;i t ; x2;i t ; and x3;i t are uniformly bounded. This assumption is satisfied under mild
restrictions on the moments of xit and on the temporal dependence of x2;i t and x3;i t :
For sufficient conditions for Assumption 9, refer to Ahn and Moon (2001).
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Finally, we make a formal definition of the random effects assumption, which is
a more rigorous version of (7.3).

Assumption 10 (random effects): Conditional on Fw; fui giD1;:::;N is i.i.d. with
mean zero, variance �2u and finite �u � kuikFw;4

.

To investigate the power property of the Hausman test, we also need to define
an alternative hypothesis that states a particular direction of model misspecification.
Among many alternatives, we here consider a simpler one. Specifically, we consider
an alternative hypothesis under which the conditional mean of ui is a linear function
of DT Qwi . Abusing the conventional definition of fixed effects (that indicates
nonzero-correlations between wi D .x0

i t ; z
0
i /

0 and ui ), we refer to this alternative
as the fixed effects assumption:

Assumption 11 (fixed effects): Conditional on Fw, the fuigiD1;:::;N is i.i.d. with
mean Qw0

iDT 	 and variance �2u , where 	 is a .kCg/�1 nonrandom nonzero vector.

Here, DT Qwi D Œ.Dx;T Qxi /0; Qzi � can be viewed as a vector of detrended regressors.
Thus, Assumption 11 indicates non-zero correlations between the effect ui and
detrended regressors. The term Qw0

iDT 	 can be replaced by 	o C w0
iDT 	, where

	o is any constant scalar. We use the term Qw0
iDT 	 instead of 	o C w0

iDT 	 simply
for convenience.

A sequence of local versions of the fixed effects hypothesis is given:

Assumption 12 (local alternatives to random effects): Conditional on Fw, the
sequence fui giD1;:::;N is i.i.d. with mean Qw0

iDT 	=
p
N , variance �2u , and �4u D

EFw .ui �EFwui /
4 < 1, where 	 ¤ 0.kCg/�1 is a nonrandom vector in R

kCg .

Under this Assumption, E .DT Qwiui / = 1p
N
E
�
DT Qwi Qw0

iDT

�
	 ! 0.kCg/�1, as

.N; T ! 1/. Observe that these local alternatives are of the forms introduced
in Table 7.1

The following assumption is required for identification of the within and between
estimators of ˇ and 
 .

Assumption 13 The matrices ‰x and„ are positive definite.

Two remarks on this assumption follow. First, this assumption is also sufficient
for identification of the GLS estimation. Second, while the positive definiteness
of the matrix „ is required for identification of the between estimators, it is not a
necessary condition for the asymptotic distribution of the Hausman statistic obtained
below. We can obtain the same asymptotic results for the Hausman test even if we
alternatively assume that within estimation can identify ˇ (positive definite‰x) and
between estimation can identify 
 given ˇ (the part of „ corresponding to Qzi is
positive definite).18 Nonetheless, we assume that „ is invertible for convenience.

18This claim can be checked with the following simple example. Consider a simple model with
one time-varying regressor xit and one time invariant regressor zi . Assume that xit D azi C eit ,
where the eit are i.i.d. over different i and t . For this model, it is straightforward to show that the
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We now consider the asymptotic distributions of the within, between and GLS
estimators of ˇ and 
 :

Theorem 1 (asymptotic distribution of the within estimator): Under Assump-
tions 1–8 and 13, as .N; T ! 1/,

p
NTG�1

x;T .
Ǒ
w � ˇ/ ) N

�
0; �2v‰

�1
x

�
:

Theorem 2 (asymptotic distribution of the between estimator): Suppose that
Assumptions 1–8 and 13 hold. As .N; T ! 1/,

(a) Under Assumption 10 (random effects),

D�1
T

p
N

 Ǒ
b � ˇ

O
b � 


!
D
 
D�1
x;T

p
N
� Ǒ

b � ˇ
�

p
N . O
b � 
/

!
) N

�
0; �2u„

�1� I

(b) Under Assumption 12 (local alternatives to random effects),

D�1
T

p
N

 Ǒ
b � ˇ

O
b � 


!
D
 
D�1
x;T

p
N
� Ǒ

b � ˇ
�

p
N . O
b � 
/

!
) N

�
„	; �2u„

�1� :

Theorem 3 (asymptotic distribution of the GLS estimator of ˇ): Suppose that
Assumptions 1–8 and 13 hold.

(a) Under Assumption 12 (local alternatives to random effects),

p
NTG�1

x;T

� Ǒ
g � ˇ

�
D p

NTG�1
x;T

� Ǒ
w � ˇ

�
C op .1/ ;

as .N; T ! 1/ :

(b) Suppose that Assumption 11 (fixed effects) holds. Partition 	 D .	0
x; 	

0
z/

0
conformably to the sizes of xit and zi : Assume that 	x ¤ 0k�1. If N=T !
c < 1 and the included regressors are only of the x22;i t - and x3;i t -types (no
trends and no cross-sectional heterogeneity in xit ), then

p
NTG�1

x;T

� Ǒ
g � ˇ

�
D p

NTG�1
x;T

� Ǒ
w � ˇ

�
C op .1/ :

Theorem 4 (asymptotic distribution of the GLS estimator of 
 ): Suppose that

Assumptions 1–8 and 13 hold. Define l 0z D
�
0g�k

:::Ig

	
: Then, the following

statements hold as .N; T ! 1/ :

matrix „ fails to be invertible. Nonetheless, under the random effects assumption, the Hausman
statistic can be shown to follow a �2 distribution with the degree of freedom equal to one.
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(a) Under Assumption 12 (local alternatives to random effects),

p
N
� O
g � 


� D
 
1

N

X
i

Qzi Qz0
i

!�1  
1p
N

X
i

Qzi Qui
!

C op .1/

) N
��
l 0z„lz

��1
l 0z„	; �2u

�
l 0z„lz

��1�
:

(b) Under Assumption 11 (fixed effects),

� O
g � 

� !p

�
l 0z„lz

��1
l 0z„	:

Several remarks follow. First, all of the asymptotic results given in Theorems 1–4
except for Theorem 3(b) hold as .N; T ! 1/; without any particular restriction on
the convergence rates of N and T . The relative size of N and T does not matter
for the results, so long as both N and T are large. Second, one can easily check
that the convergence rates of the panel data estimates of individual ˇ coefficients
(on the x2;i t - and x3;i t -type regressors) reported in Theorems 1–4 are consistent
with those from Sect. 7.2.2. Third, Theorem 2 shows that under Assumption 10
(random effects), the between estimator of 
 , O
b , is

p
N -consistent regardless of

the characteristics of time-varying regressors. Fourth, both the between estimators
of ˇ and 
 are asymptotically biased under the sequence of local alternatives
(Assumption 12). Fifth, as Theorem 3(a) indicates, the within and GLS estimators
of ˇ are asymptotically equivalent not only under the random effects assumption,
but also under the local alternatives. Furthermore, the GLS estimator of ˇ is
asymptotically unbiased under the local alternatives, while the between estimator
of ˇ is not. The asymptotic equivalence between the within and GLS estimation
under the random effects assumption is nothing new. Previous studies have shown
this equivalence based on a naive sequential limit method (T ! 1 followed by
N ! 1) and some strong assumptions such as fixed regressors. Theorem 3(a) and
(b) confirm the same equivalence result but with more a rigorous joint limit approach
as .N; T ! 1/ simultaneously. It is also intriguing to see that the GLS and within
estimators are equivalent even under the local alternative hypotheses.

Sixth, somewhat surprisingly, as Theorem 3(b) indicates, even under the fixed
effects assumption (Assumption 11), the GLS estimator of ˇ could be asymptot-
ically unbiased (and consistent) and equivalent to the within counterpart, (i) if the
size (N ) of the cross section units does not dominate excessively the size (T ) of time
series in the limit (N=T ! c < 1), and (ii) if the model does not contain trended
or cross-sectionally heterogenous time-varying regressors. This result indicates that
when the two conditions are satisfied, the biases in GLS caused by fixed effects are
generally much smaller than those in the between estimator. If at least one of these
two conditions is violated, that is, if N=T ! 1, or if the other types of regressors
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are included, the limit of . Ǒ
g � Ǒ

w/ is determined by how fast N=T ! 1 and how
fast the trends in the regressors increase or decrease.19

Finally, Theorem 4(a) indicates that under the local alternative hypotheses, the
GLS estimator O
g is

p
N -consistent and asymptotically normal, but asymptotically

biased. The limiting distribution of O
g; in this case, is equivalent to the limiting dis-
tribution of the OLS estimator of 
 in the panel model with the known coefficients
of the time-varying regressors xit (OLS on Qyit �ˇ0 Qxit D 
 0Qzi C .ui C Qvi t /). Clearly,
the GLS estimator O
g is asymptotically more efficient than the between estimator
O
b. On the other hand, under the fixed effect assumption, unlike the GLS estimator
of ˇ; Ǒ

g , the GLS estimator O
g is not consistent as .N; T ! 1/. The asymptotic
bias of O
g is given in Theorem 4(b).

Lastly, the following theorem finds the asymptotic distribution of the Hausman
test statistic under the random effect assumption and the local alternatives:

Theorem 5 Suppose that Assumptions 1–8 and 13 hold. Corresponding to the size
of .x0

i ; z
0
i /

0, partition„ and 	; respectively, as follows:

„ D
�
„xx „xz

„0
xz „zz

	
I	 D

�
	x
	z

	
:

Then, as .N; T ! 1/ ;

(a) Under Assumption 10 (random effects),

HMNT ) �2k I

(b) Under Assumption 12 (local alternatives to random effects),

HMNT ) �2k.�/;

where � D 	0
x.„xx �„xz„

�1
zz „

0
xz/	x=�

2
u is the noncentral parameter.

The implications of the theorem are discussed in Sect. 7.2.3.

7.5 Conclusion

This paper has considered the large-N and large-T asymptotic properties
of the within, between and random effects GLS estimators, as well as those of
the Hausman test statistic. The convergence rates of the between estimator and the

19In this case, without specific assumptions on the convergence rates of N=T and the trends, it is
hard to generalize the limits of the difference of the within and the GLS estimators.
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Hausman test statistic are closely related, and the rates crucially depend on whether
regressors are cross-sectionally heterogeneous or homogeneous. Nonetheless, the
Hausman test is always asymptotically �2-distributed under the random effects
assumption. Our simulation results indicate that our asymptotic results are generally
consistent with the finite-sample properties of the estimators and the Hausman test
even if N and T are small.

Under certain local alternatives (where the conditional means of unobservable
individual effects are linear in the regressors), we also have investigated the
asymptotic power properties of the Hausman test. Regardless of the size of T ,
the Hausman test has power to detect non-zero correlations between unobservable
individual effects and the permanent components of time-varying regressors. In
contrast, the test has no power to detect non-zero correlations between the effects
and the transitory components of time-varying-regressors if T is large and if the
time-varying regressors do have permanent components. The Hausman test has
some (although limited) power to detect non-zero correlations between the effects
and time-invariant regressors when the correlations between time-varying and time-
invariant regressors remain high over time. However, when the correlations decay
quickly over time, the test loses its power.

In this paper, we have restricted our attention to the asymptotic and finite-sample
properties of the existing estimators and tests when panel data contain both large
numbers of cross section and time series observations. No new estimator or test is
introduced. However, this paper makes several contributions to the literature. First,
we have shown that the GLS and within estimators, as well as the Hausman test,
can be used without any adjustment for the data with large T . Second, for the cases
with both large N and T , we provide a theoretical link between the asymptotic
equivalence of the within and GLS estimator and the asymptotic distribution of the
Hausman test. Third, we have shown that cross-sectional heterogeneity in regressors
can play an important role in asymptotics. Previous studies have often assumed
that data are cross-sectionally i.i.d. Our findings suggest that future studies should
pay attention to cross-sectional heterogeneity. Fourth, we find that the power of the
Hausman test depends on T:

Fifth and finally, our results also provide empirical researchers with some useful
guidance. Different Hausman test results from large-T and small-T data can provide
some information about how the individual effect is correlated with time-varying
regressors. The rejection by large-T data but acceptance by small-T data would
indicate that the effect is correlated with the permanent components of the time-
varying regressor, but the degrees of the correlations are low. In contrast, the
acceptance by large-T data but rejection by small-T data may indicate that the
effect is correlated with the temporal components of the time-varying regressors.
Whether the individual effect is correlated with temporal or permanent components
of time-varying regressors is important to determine what instruments should be
used to estimate the coefficients of time-invariant regressors when the random
effects assumption is rejected. For example, as an anonymous referee pointed out,
a key identification requirement of the instrumental variables proposed by Breusch
et al. (1989) is that only the permanent components of the time-varying regressors
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are correlated with the individual effects. If the Hausman test indicates that the
individual effects are only temporally correlated with the time-varying regressors,
the BMS instruments need not be used.

Needless to say, the model we have considered is a restrictive one. Extensions
of our approach to more general models would be useful future research agendas.
First, we have not considered the cases with more general errors; e.g., hetroskedastic
and/or serially correlated errors. It would be useful to extend our approach to such
general cases. Second, we have focused on the large-N and large-T properties of
the panel data estimators and tests that are designed for the models with largeN and
small T . For the models with large N and large T , it may be possible to construct
the estimators and test methods based on large-N and large-T asymptotics that may
have better properties than the estimators and the tests analyzed here. Developing
alternative estimators based on large-T and large-N asymptotics and addressing
the issue of unit roots would be important research agendas. Third, another
possible extension would be the instrumental variables estimation of Hausman and
Taylor (1981), Amemiya and MaCurdy (1986), and Breusch et al. (1989). For an
intermediate model between fixed effects and random effects, these studies propose
several instrumental variables estimators by which both the coefficients on time-
varying and time-invariant regressors can be consistently estimated. It would be
interesting to investigate the large-N and large-T properties of these instrumental
variables estimators as well as those of the Hausman test and other GMM tests based
on these estimators.

Appendix

First, we provide some preliminary lemmas that are useful in proving the main
results in Sect. 7.4. Due to space limitation, we omit the proofs of the lemmas.20

In this section, notation M denotes a generic constant that is finite. Recall that
wi t D �

x0
1;i t ; x

0
2;i t ; x

0
3;i t ; z

0
i

�0
. We also repeatedly use the diagonal matrixDT defined

in Sect. 7.4.

Lemma 6 Under Assumptions 1–8, we obtain the following results as (N; T !
1).

(a) 1
N

P
i
1
T

P
t Gx;T Qxit Qx0

i tGx;T !p ‰xI
(b) 1p

N

P
i

1p
T

P
t Gx;T Qxit Qvi t ) N

�
0; �2v‰x

�
;

where

‰x D

0
B@
R 1
0

�
�1 � R

�1
� �

limN
1
N

P
i ‚1;i‚

0
1;i

� �
�1 � R

�1
�0
dr 0 0

0 ˆ22 ˆ23
0 ˆ32 ˆ33

1
CA :

20Detailed proofs are available from the authors upon request.
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Lemma 7 Suppose that Assumptions 1–8 hold. Define „ D „1 C„2, where

„1 D diag

0
@0k1 ; 0k21;

0
@
�22;22 �22;31 �22;32

� 0
22;31 �31;31 �31;32

� 0
22;32 �

0
31;32 �32;32

1
A ; 0k33; 0kz

1
A I

„2 D

0
BBBBBBBBBBBBBB@

�‚1;‚1 �‚1;‚21 0 0 �‚1;�32 �‚1;�33 0

� 0
‚1;‚21

�‚21;‚21 0 0 �‚21;�32 �‚21;�33 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

� 0
‚1;�32

� 0
‚21;�32

0 0
�g32;g32
C��32;�32

�g32;g33
C��32;�32

�g32;z

� 0
‚1;�33

� 0
‚21;�33

0 0
� 0
g32;g33

C� 0
�32;�32

�g33;g33
C��33;�33

�g33;z

0 0 0 0 � 0
g32;z

� 0
g33;z

�z;z

1
CCCCCCCCCCCCCCA

:

Then, under Assumption 12, as .N; T ! 1/, the followings hold.

(a) 1
N

P
i DT Qwi Qw0

iDT !p „:

(b) supN;T sup1�i�N E kDT Qwik4 < M; for some constantM < 1:

(c) 1p
N

P
i DT Qwi Qvi !p 0:

Lemma 8 Under Assumptions 1–8 and 12 (local alternatives to random effects),
as .N; T ! 1/,

1p
N

P
i DT Qwi Qui ) N

�
„	; �2u„

�
:

Lemma 9 Under Assumptions 1–8 and 11 (fixed effects),

1

N

P
i DT Qwi Qui !p „	;

as .N; T ! 1/ :

Proof of Theorem 1
Theorem 1 follows by Lemma 6(a) and (b). �

Proof of Theorem 2
Theorem 2 holds by Lemmas 7(a), (c) and 8. �
Before we prove the rest of the theorems given in Sect. 7.4, we introduce the

following notation:
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A1 D 1
N

P
i
1
T

P
t .xit � Nxi / .xit � Nxi /0 I

A2 D 1
N

P
i
1
T

P
t .xit � Nxi / .vi t � Nvi / I

A3 D 1
N

P
i Qxi Qx0

i IA4 D 1
N

P
i Qxi Qui IA5 D 1

N

P
i Qxi Qvi I

B3 D 1
N

P
i Qzi Qz0

i IB4 D 1
N

P
i Qzi Qui IB5 D 1

N

P
i Qzi Qvi I

C D 1
N

P
i Qxi Qz0

i I
F1 D A3 � CB�1

3 C 0IF2 D A4 C A5 � CB�1
3 .B4 C B5/ :

(7.25)

Proof of Theorem 3
Using the notation given in .7.25/ ; we can express the GLS estimator Ǒ

g by

p
NTG�1

x;T

� Ǒ
g � ˇ

�

D �
Gx;T A1Gx;T C �2T Gx;T

˚
A3 � CB�1

3 C 0Gx;T
��1

�p
NTGx;T

˚
A2 C �2T

�
.A4 C A5/ � CB�1

3 .B4 C B5/
�
; (7.26)

where �T D p
�2v =.T�

2
u C �2v /:

Part (a): Using Lemma 7(a), we can show that

�2T Gx;T
˚
A3 � CB�1

3 C 0Gx;T D Op
�
�2T
� D op .1/ : (7.27)

Next, from Lemmas 7(c) and 8, under the local alternatives to random effects
(Assumption 12), it is possible to show that

p
NTGx;T

˚
�2T
�
.A4 C A5/�CB�1

3 .B4 CB5/
�DOp

�
1p
T

	
D op.1/ : (7.28)

Substituting (7.27) and (7.28) into (7.26), we have

p
NT . Ǒ

g � ˇ/ D ŒGx;T A1Gx;T C op.1/�
�1Œ

p
NTGx;T A2 C op.1/�

D p
NT . Ǒ

w � ˇ/C op.1/:

The last equality results from Lemma 6(a), (b) and Theorem 1. �

Part (b): Similarly to Part (a), we can easily show that under the assumptions given
in Part (b), the denominator in .7.26/ is

1

NT

X
i

X
t

Gx;T .xit � Nxi / .xit � Nxi /0 Gx;T C op .1/ : (7.29)

Consider the second term of the numerator of (7.26):
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�2
p
TGx;T

8
<
:

1p
N

P
i Qxi .Qui C Qvi /

� � 1
N

P
i Qxi Qz0

i

��
1
N

P
i Qzi Qz0

i

��1� 1p
N

P
i Qzi .Qui C Qvi /

�
9
=
; : (7.30)

Notice that by Lemmas 6, 7, and 9, under the fixed effect assumption (Assump-
tion 11), the first term of .7.30/ is

�2
p
NTGx;T

1

N

X
i

Qxi .Qui C Qvi / D �2
p
NTGx;TD

�1
x;T

1

N

X
i

Dx;T Qxi .Qui C Qvi /

D �2
p
NTGx;TD

�1
x;T

˚
„x	C op .1/


;

where we partition „ D
�
„xx „xz

„zx „zz

	
conformably to the sizes of xit and zi ; and

set „x D .„xx;„xz/ : Similarly, by Lemmas 6, 7, and 9, under the fixed effect
assumption, the second term of (7.30) is

�2T
p
NTGx;TD

�1
x;T

8<
:

 
1

N

X
i

Dx;T Qxi Qz0
i

! 
1

N

X
i

Qzi Qz0
i

!�1 
1

N

X
i

Qzi .Qui C Qvi /
!9=
;

D �2T

p
NTGx;TD

�1
x;T

˚
„xz„

�1
zz „z	C op .1/


:

Therefore, the limit of .7.30/ is

�
�2T

p
NTGx;T D

�1
x;T

� h�
„xx �„xz„

�1
zz „zx

::: 0

�
	C op .1/

i
:

Recall that it is assumed that N
T

! c < 1: Also, recall that under the restrictions

given in the theorem, Gx;T D diag .Ik22 ; Ik3/ and Dx;T D diag
�p

T Ik22 ;D3T

�
:

Then, letting 	max .A/ denote the maximum eigenvalue of matrix A; we can have

	max

�
�2T

p
NTGx;TD

�1
x;T

�
D O .1/

r
N

T
	max

�
1p
T
Ik22 ;D

�1
3T

	
! 0:

Thus, under the assumptions of Part (b), the probability limit of the numerator of
.7.26/ is

1p
NT

X
i

X
t

Gx;T Qxit Qvi t C op .1/ : (7.31)

Combining .7.29/ and .7.31/, we can obtain Part (b). �
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Proof of Theorem 4
Using the notation in .7.25/ ; we can express the GLS estimator O
g by

O
g � 
 D
"
B3 � C 0

�
1

�2T
A1 CA3

	�1
C

#�1

�
"
.B4 CB5/� C 0

�
1

�2T
A1 CA3

	�1 �
1

�2T
A2 C .A4 C A5/

	#
: (7.32)

Part (a): Using Lemmas 6(a) and 7(a), we can show that C 0
�
1

�2T
A1 C A3

��1
C D

op .1/ ; which implies that, as .N; T ! 1/ ; the denominator of .7.32/ is

B3 C op .1/ : (7.33)

Next, under both the random effects assumption (Assumption 10) and the local
alternatives (Assumption 12), it follows from Lemmas 6–8 that the second term
in the numerator of .7.32/ is

C 0
�
1

�2
A1 C A3

	�1 �
1

�2

p
NA2 C p

N .A4 C A5/

	
D op .1/ :

Also, by Lemma 7(c),
p
NB5 D op .1/ : Therefore, the numerator of .7.32/ is

p
NB4 C op .1/ ; (7.34)

as .N; T ! 1/ : In view of (7.32)–(7.34), we have

p
N
� O
g � 


� D
 
1

N

X
i

Qzi Qz0
i

!�1  
1p
N

X
i

Qzi Qui
!

C op .1/ ;

as .N; T ! 1/ : Finally, by Lemmas 7(a) and 8, as .N; T ! 1/ ;

p
N
� O
g � 


� D
 
1

N

X
i

Qzi Qz0
i

!�1  
1p
N

X
i

Qzi Qui
!

) N
��
l 0z„lz

��1 �
l 0z„	

�
;
�
l 0z„lz

��1�
;

as required. �
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Part (b): Under the assumptions in Part (b), as shown for the denominator of
.7.32/ ;

B3 � C 0
�
1

�2T
A1 CA3

	�1
C D 1

N

X
i

Qzi Qz0
i C op .1/ !p l

0
z„lz; (7.35)

as .N; T ! 1/ : Next, consider the numerator of .7.32/ ;

"
.B4 C B5/� C 0

�
1

�2
A1 C A3

	�1 �
1

�2
A2 C .A4 C A5/

	#

D .B4 C B5/

�T �2 �C 0Dx;T

� J�1
x;Tp
T

 
Gx;T A1Gx;T C J�1

x;Tp
T
Dx;T A3Dx;T

J�1
x;Tp
T

!�1

�
 

1p
NT �2

p
NTGx;T A2 C J�1

x;Tp
T
Dx;T .A4 C A5/

!
:

By Lemmas 6 and 7, B5 D op .1/ ;
p
NTGx;T A2 D Op .1/ ; and Dx;T A5 D

Op .1/ : Under the fixed effect assumption (Assumption 11), Lemma 9 implies that

Dx;T A4 D Op .1/ ; as .N; T ! 1/ : Since 1p
NT �2T

D o .1/ and
J�1
x;Tp
T

D o .1/ ; and

T �2
�
C 0Dx;T

� J�1
x;Tp
T

 
Gx;T A1Gx;T C J�1

x;Tp
T
Dx;T A3Dx;T

J�1
x;Tp
T

!�1
D op .1/

(as shown in Part (a)), we have

.B4 C B5/ � C 0
�
1

�2
A1 C A3

	�1 �
1

�2
A2 C .A4 C A5/

	
D B4 C op .1/ : (7.36)

But, according to Lemma 9,

B4 D 1

N

X
i

Qzi Qui !p l
0
z„	: (7.37)

Therefore, (7.32) and (7.35)–(7.37) imply

O
g !p 
 C �
l 0z„lz

��1
l 0z„	;

as .N; T ! 1/ : �
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Proof of Theorem 5
Using the notation in .7.25/, we can express the Hausman test statistic by

HMNT D
h�
A1 C �2T F1

��1 p
NT

�
A2 C �2T F2

� � A�1
1

p
NTA2

i0

�
h
�2vA

�1
1 � �2v

�
A1 C �2T F1

��1i�1

�
h�
A1 C �2T F1

��1 p
NT

�
A2 C �2T F2

� � A�1
1

p
NTA2

i
:

Write

�
A1 C �2T F1

��1 � A�1
1 D ��2T A�1

1 F1A
�1
1 C �4T R1; (7.38)

where R1 D �
A1 C �2T F1

��1
F1A

�1
1 F1A

�1
1 : Define Q D �

A1 C �2T F1
��1 p

NT�
A2 C �2T F2

� � A�1
1

p
NTA2: Then, we can deduce that

Q D��2T
p
NT

�
A�1
1 F1A

�1
1 A2 � A�1

1 F2
� � �4T

p
NTR2; (7.39)

where R2 D A�1
1 F1A

�1
1 F2 � R1

˚
A2 C �2T F2


: Using .7.38/ and .7.39/ ; we now

can rewrite the Hausman statistic HMNT D Q0
h
�2vA

�1
1 � �2v

�
A1 C �2T F1

��1i�1
Q

as

HMNT

D �T
p
NT

"
G1
�
J�1
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where G1 D G�1
x;T A

�1
1 G

�1
x;T . Using Lemmas 6(a), 7(a), and Assumption 13, we can

show that

�2v �
2
T

�
G�1
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�1
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� D Op
�
�2T
� D op .1/ : (7.40)

Also, under the local alternatives (Assumption 12), from Lemmas 6–8 we may
deduce that

�T
p
NT�2TG

�1
x;T R2 D O .1/

�
�2TOp .1/C op .1/

� D op .1/ : (7.41)
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From .7.40/ and .7.41/ ; we now can approximate the Hausman statistic as follows:
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where the last line holds because under the local alternative hypotheses,
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�v
G1
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D Op .�T / D

op .1/ by Lemma 6(a), (b) and Assumption 13. Finally, by Lemma 7(a),
as .N; T ! 1/ ; Dx;T F1Dx;T D Dx;T A3Dx;T � Dx;T CB
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As .N; T ! 1/ ; �T
�v

p
T ! 1

�u
: Therefore, under the hypothesis of random effects,

HMNT ) �2k; a �
2 distribution with the degrees of freedom equal to k: In contrast,

under the local alternative hypotheses,HMNT ) �2k .�/ ;where � is the noncentral
parameter. �
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Chapter 8
Comparison of Stochastic Frontier “Effect”
Models Using Monte Carlo Simulation

Young Hoon Lee and Jinseok Shin

8.1 Introduction

Since Aigner et al. (1977) and Meeusen and van den Broeck (1977) independently
introduced stochastic frontier models, the literature has expanded not only quanti-
tatively but also qualitatively. Stochastic frontier models that examine the technical
efficiency of firms can be categorized into two groups: those that analyze production
functions with input and output variables (Stevenson 1980; Greene 1990; Pitt and
Lee 1981; Schmidt and Sickles 1984; Cornwell et al. 1990; Kumbhakar 1991;
Battese and Coelli 1992; Lee and Schmidt 1993; Cuesta 2000; Lee 2006, 2010; Ahn
et al. 2007), and those that examine the effects of observable characteristics of a firm
on efficiency (so-called stochastic frontier “effect” models, SFEMs) (Reifschneider
and Stevenson 1991; Caudill and Ford 1993; Caudill et al. 1995; Kumbhakar et al.
1991; Huang and Liu 1994; Battese and Coelli 1995; Wang 2002; Wang and
Schmidt 2002).

This paper focuses on the second group, SFEMs. Although various SFEMs
have been proposed, little is known about their comparative performances. This
study applied Monte Carlo simulation techniques and compared three types of
SFEMs. We focused particularly on the biases of the production function param-
eters, the marginal effects of exogenous factors on inefficiency, and the technical
efficiency estimates in the presence of model misspecifications. Following the
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recommendation of Wang and Schmidt (2002), this paper uses a one-step approach1

to examine the models. As explained by Wang and Schmidt (2002), the two-
step approach can lead to biased estimates, including severe bias in Monte Carlo
simulation results.

Alvarez et al. (2006) compared various SFEMs and categorized them based
on the scaling property. This implies that firm characteristics affect the scale of
technical inefficiency but not the shape of the inefficiency distribution. To be
more specific, let u and z be random variables representing technical inefficiency
and observable exogenous variables, respectively, and let u be influenced by z:
u D u(z,ı). Different models specify different distributions of u. Models with the
scaling property specify u as u D s(z,ı)u* where s(z,ı) is a scaling function and
u* is a random variable with one-sided distribution and is independent of z.
Therefore, z influences u only through a deterministic function of s(z,ı), but does
not affect the distribution of u. More specifically, z influences u by changing the
variance of u. The model of Reifschneider and Stevenson (1991), Caudill and Ford
(1993), and Caudill et al. (1995; hereafter, RSCFG) includes the scaling property,
whereas that of Kumbhakar et al. (1991), Huang and Liu (1994), and Battese and
Coelli (1995; KGMHLBC) does not. In particular, Battese and Coelli (1995, BC)
imposed additive decomposition in the inefficiency function u D zıC w, where
u was assumed to have a normal distribution truncated at zero, u 
 NC(zı,�2u).
Therefore, z changes the mean of the pre-truncation normal distribution of u and
then affects u by changing the shape of the inefficiency distribution. RSCFG
and KGMHLBC are identical in the way they require a specific distributional
assumption of inefficiency and a normal distribution of a statistical disturbance term
and then estimate a production function using a maximum likelihood (ML) method.
In addition, both estimate technical inefficiency using the conditional expected value
function on residual values originally derived by Jondrow et al. (1982).

Recently, Lee (2012) proposed an SFEM with panel data that estimates a
production function and the effects of exogenous factors on inefficiency using the
fixed effect (FE) treatment. This model is different from RSCFG and KGMHLBC in
that it does not impose a distributional assumption of inefficiency or an uncorrelation
assumption between inefficiency and input variables. The assumed additive speci-
fication of the inefficiency equation is the same as that of BC, u D zıC w. In this
specification, w � � zı because u � 0. Hence, the w values are correlated to z. BC
assumed a truncated normal distribution of w to free the model from the endogeneity
problem. Lee (2012) took a different approach to escape from the endogeneity
problem. In Lee’s (2012) model, w was treated as fixed, allowing for the correlation
between w and z. Several specifications of w were proposed that were adopted by
previous stochastic frontier models, including wit D ˛i (Schmidt and Sickles 1984),

1The two-step approach estimates a standard stochastic production function first and estimates the
inefficiency equation second, whereas the one-step approach substitutes the inefficiency equation
for the inefficiency term in the production function and then estimates the production function and
the inefficiency equation simultaneously.
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wit D � t˛i (Lee and Schmidt 1993), and wit D �1tı1i C �2tı2i C : : : C �ptıpi (Ahn
et al. 2007). The model becomes similar to the conventional panel data model
with individual effects or multiplicative individual effects and time effects, and the
estimation methods (e.g., the concentrated least squares and the generalized method
of moments) are well developed.

Alvarez et al. (2006) compared KGMHLBC and RSCFG and presented several
advantages of the scaling property. First, the coefficient of z, ı, can be interpreted
independent of the distribution of inefficiency, and the marginal effect (ME) of z
on inefficiency is simpler in RSCFG with the scaling property than in KGMHLBC
without the property in which the ME equation is complicated and dependent upon
the distribution of inefficiency. Second, it is possible for RSCFG to estimate a pro-
duction function by nonlinear least squares analysis; then, no specific distributional
assumption is required. Third, RSCFG may relax the unreasonable assumption
that ujz is independent over time by re-specifying s(z,ı) and u*. For example,
uit D s(zit,ı)u�

i where u* is time invariant, can be considered as a general form, as
described by Battese and Coelli (1992).2 Fourth, Alvarez et al. (2006) argued that
it is intuitively appealing that the scaling property specifies that firms differ in their
mean inefficiency but not in the shape of the inefficiency distribution.

FE also contains the above advantages of RSCFG over KGMHLBC (we will dis-
cuss the case of wit D˛i, but any other specification will follow the same rationale).
The ı itself implies the ME of z on the conditional mean of u, ıD @E[uitjzit, ˛i]/@zit.
Therefore, the relationship between z and u is straightforward in the specification of
FE, which changes the impact of z on inefficiency in a linear fashion. FE does not
require the assumption of uncorrelatedness of inputs and a part of inefficiency (w) or
a specific distribution of the one-sided distribution of technical inefficiency. Unlike
RSCFG and KGMHLBC, FE does not assume a distribution of statistical noise, v.
Instead, it imposes the strict exogeneity assumption for consistency. As the ML
estimation is sensitive to the distribution of technical inefficiency, this relaxation in
FE is expected to yield robust estimates. Additionally, the independence assumption
of u* in RSCFG or of w in KGMHLBC is practically unreasonable since the
efficiency of an individual firm is likely to be more or less consistent over time.
However, the inclusion of the time-invariant unobservable inefficiency ˛i in FE
allows for the time dependence of inefficiency. In other words, this unobservable
inefficiency controls for heterogeneity of efficiency across different firms, as is
observed in the real world.

However, there are two restrictions in FE: (i) z cannot include all or part of x,
and thus input factors can influence output only through a production function.
This restriction can be avoided if we specify a nonlinear inefficiency equation; and
(ii) the time-invariant variables in z and x cannot be included as regressors because
the within-transformation function eliminates all of the time-invariant variables.
The second restriction can also be avoided if we adopt a different specification

2In Battese and Coelli’s model (1992), s(zit ,ı) D exp[�ı(t � T)]. Thus, z is assumed to be
individual-invariant.
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of wit from wit D ˛i. For example, the specification of wit D � t˛i presented by Lee
and Schmidt (1993) allows for the ability to estimate the effect of a time-invariant
regressor on a dependent variable.

The main purpose of this paper is to shed light on the finite sample properties of
the aforementioned three models (KGMHLBC, RSCFG, and FE) using Monte Carlo
simulations. SFEMs aim to analyze the effects of exogenous factors on efficiency
and to precisely estimate technical efficiency based on the characteristics of firms.
We used simulations to compare the estimation performances of the three models by
examining the accuracy of the ME of z on the mean u as well as the rank correlation
between the true inefficiency and inefficiency estimates. The effect parameter ı
has different meanings in different models of KGMHLBC, RSCFG, and FE. For
example, ıD @E[ujz,˛]/@z and is then the marginal effect in FE, whereas ı implies
the degree of the effect of z on the variance of technical inefficiency in RSCFG.
Thus, in our simulation, we compared the estimation performance of ME instead
of ı. We extended the comparison of the three models to plausible cases in which
(i) the variance of technical inefficiency differs, (ii) the forms of the true structure
of inefficiency vary, and (iii) the input factors and environmental factors are allowed
to have an arbitrary degree of correlation.

The remainder of this paper is organized as follows. Section 8.2 discusses the
three different models. Section 8.3 describes the Monte Carlo simulation design and
discusses the simulation results. Finally, Sect. 8.4 presents our conclusions.

8.2 Three Stochastic Frontier Models

The stochastic production frontier model for panel data is defined by

yit D ˛0 C xitˇ C vi t � ui t ; (8.1)

where yit is the dependent variable that represents the logarithm of output at the
period t (t D 1, : : : , T) for firm i (i D 1, : : : , N), xit is the 1 � k vector of functions of
inputs, ˇ is a k � 1 vector of coefficients, and vit is an i.i.d. statistical noise term. The
variable uit is the non-negative “technical inefficiency” error, and the inefficiency
equation is specified as

ui t D u .zi t ; ı/ ; (8.2)

where the 1 � g vector zit is a set of exogenous variables that affect technical
inefficiency, and ı is a g � 1 vector of coefficients. The xit and zit can overlap in
KGMHLBC and RSCFG but not in FE.

Because both KGMHLBC and RSCFG assume a truncated normal distribution
of uit, we note uit 
 NC(�it,�2it) in a general form. Specifically, RSCFG assumes
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�it D 0 and �2it D s(zit,ı), whereas KGMHLBC assumes �it D h(zit,ı) and �2it D �2u.
RSCFG possesses the scaling property, and uit can be expressed as

ui t D s .zi t ; ı/ u�
i t (8.3)

where the scaling function s(zit, ı) is positive, and u�
it � 0 is i.i.d., and then is

uncorrelated with zit.
Caudill et al. (1995, CFG) assumed that u�

it follows a half-normal distribution
and that s(zit, ı) D exp (zitı)0.5. The random variable u�

it represents a firm’s intrinsic
inefficiency level such as unobservable leadership, and s(zit, ı) represents a firm’s
inefficiency that can be explained by observable environmental factors. That is,
the scaling property can be seen as a multiplicative decomposition of uit into two
independent parts. The i.i.d. assumption of u�

it does not seem to be reasonable
because a firm’s intrinsic efficiency is likely to not be independent. However, the
ML estimates are consistent if the model is correctly specified even though u�

it is
not independent (Álvarez et al. 2006). The assumption of uncorrelation between
the unobservable inefficiency u�

it and the observable efficiency determinants is also
not appealing. BC specifies that �it D h(zit,ı) and then uit D zitıC wit , where wit is
normally distributed with truncation at � zitı. Because wit � � zitı, wit and zit must
be correlated.

The two different specifications of BC and CFG have different channels for the
impact of zit on inefficiency. If ı is positive, both models present a positive ME
of zit on inefficiency. An increase in zit in CFG implies larger variance of the pre-
truncation normal distribution of inefficiency, and then the half-normal distribution
has a smaller density near zero and a larger density at a large value. Therefore,
the mean inefficiency level increases. On the other hand, an increase in zit in BC
implies a larger mean of the pre-truncation normal distribution of inefficiency, and
then the mean inefficiency moves toward the right side in the truncated normal at
zero. Specifically, the MEs of the exogenous variable on the mean inefficiency can
be summarized as follows for CFG and BC, respectively:

@E
h
ui t
ˇ̌
ˇzi t
i

@zi t
D ı

�itp
2

D ı

p
exp .zi t ı/p
2

(8.4)

@E
h
ui t
ˇ̌
ˇzi t
i

@zi t
D ı

"
1� 	it

� .	it /

ˆ .	it /
�
�
� .	it /

ˆ .	it /

	2#
; (8.5)

where 	it D zitı/�u and � andˆ are the probability and cumulative density functions
of a standard normal distribution, respectively. Equation (8.4) has the same sign
as that of ı. Wang (2002) showed that the second term on the right-hand side of
Eq. (8.5) is equal to the second moment of uit divided by the variance of the pre-
truncation normal, and then Eq. (8.5) also has the same sign as that of ı. However,
the amount of the ME cannot be measured directly from ı.
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As mentioned above, Lee (2012) proposed a stochastic frontier model that
does not assume any distribution assumption and allows a correlation between
inefficiency and input variables. The inefficiency equation is the same as that in BC:

ui t D zi t ı C wi t : (8.6)

Equation (8.6) splits the inefficiency into a part influenced by zit and an
unobservable random inefficiency. Lee also allowed for correlation between zit and
wit by treating wit as fixed. He proposed specifications for wit to transform the model
into the forms of previous models (Schmidt and Sickles 1984; Cornwell et al. 1990;
Lee and Schmidt 1993; Lee 2006, 2010; Ahn et al. 2007), which are estimated by the
FE treatment. The specifications of Kumbhakar (1991), Battese and Coelli (1992),
and Cuesta (2000) were also accepted because they can also be estimated by the
FE treatment as seen in Han et al. (2005). For example, wit D ˛1i C˛2it C ˛3it2 is
assumed, following Cornwell et al. (1990). Then, when substituting Eq. (8.6) for
(8.1), the model becomes:

yit D ˛0 C xitˇ C vi t � .zi t ı C wi t / D xitˇ � zi t ı � �
˛�
1i C ˛2i t C ˛3i t

2
�C vi t ;

(8.7)

where ˛�
1i D˛1i �˛0. Following Schmidt and Sickles (1984), another example is

wit D˛i. This represents unobservable time-invariant firm-specific inefficiency, and
Eq. (8.7) is changed to

yit D ˛0 C xitˇ C vi t � .zi t ı C wi t / D xitˇ � zi t ı � ˛�
i C vi t ; (8.8)

where ˛�
i D ˛i �˛0. In this specification, the strict exogeneity assumption is

imposed as E[vitjxi,zi,˛i] D 0, t D 1, 2, : : : , T for the consistency of the estimator.
Then, the within estimators of ˇ and ı are consistent as NT ! 1. The inefficiency
estimation also follows the same method of the maximum operator as the previous
models. That is, the best firm in the sample is assumed to be a perfectly efficient
one. In the case of wit D˛i, the inefficiency and efficiency are measured by

_
u i t D maxi;t

�
�zi t

_

ı C _
˛

�
i

	
�
�

�zi t
_

ı C _
˛

�
i

	
; and T

_

Eit D exp
�
�_

u i t
�
:

(8.9)

Unlike CFG and BC, the ME of the exogenous variable on the mean inefficiency
is calculated directly by ı because ıD @E[uitjzit,˛i]/@zit.

Theoretically, FE should be insensitive to the a priori distribution of inefficiency
and statistical disturbance whereas KGMHLBC and RSCFG are not. However,
how sensitive their estimation performances are to misspecification was examined
next. We chose BC and CFG as representative models of KGMHLBC and RSCFG,
respectively, and compared them to FE.
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8.3 Monte Carlo Simulations

To examine the finite sample performance of the ML estimation of BC and CFG
and the within estimation of FE, we conducted a series of Monte Carlo experiments
for the panel data stochastic frontier model. Our simulations were based on a model
with one input factor:

yit D ˛0 C xitˇ1 C vi t � ui t : (8.1)

Throughout, we set ˛0 Dˇ1 D 1. We also had one exogenous factor
(zit D c C �zi C szit) in which szit was drawn from a normal distrivution of N(0,1),
and one unobservable individual effect. �zi was drawn from a uniform distrivution
of U(0,1) and c D 4.0. The regressor xit was generated in an additive form by the
following process: xit D˛xzzit C �xi C sxit, where ˛xz D (0, 0.5, 2), and the time-
invariant components �xi and time-varying components sxit were drawn from U(0,1)
and N(0,1), respectively.

We generated two error terms of uit and vit using several different data-generating
processes (DGPs). The first DGP (DGP1) followed the BC specification. vit was
generated by N(0,�2v) with �v D 1.0 and the inefficiency term uit was generated
by uit 
 NC(zitı1,�2u) where ı1 D 0.5 and �u take several different values of�
1;

p
2;

p
5
�

. These standard deviations of the pre-truncation normal imply the

standard deviations of uit as
p
Var.u/ D .0:96; 1:26; 1:78/ : Note that the mean

of the pre-truncation normal does not contain a constant. When a constant term is
included in zit, the BC estimation results revealed a severe identification problem
between a constant coefficient in xit and a constant in zit. DGP2 followed the CFG
specification. The inefficiency term uit was generated by uit 
 NC(0, exp(ı0 C ı1zit))
where ı1 D 0.5 and ı0 takes several different values (�1, 0, 1) to examine the
estimation performance of the three different models as variance of inefficiency
changes. The (�1, 0, 1) of ı0 implies

p
Var.u/ D (1.13, 1.86, 3.06). The error

vit followed the same DGP as in DGP1. DGP3 followed the FE specification as
uit D ı1zit C˛i where ı1 D 0.5 and ˛i are drawn from a uniform distribution. DGP3
also included several different variances of inefficiency by changing the variance
of ˛i; specifically, we used different intervals for uniform distribution such as
�˛ D (2, 4, 6), which implies

p
Var.u/ D .0:57; 1:15; 1:73/: Because FE assumes

neither an inefficiency distribution nor a statistical disturbance, we chose a uniform
distribution of vit instead of a normal distribution. We also generated additional data
sets of DGP1-1 and 2-1, which had the same values of the inefficiency term uit as
DGP1 and 2, respectively, but vit were generated using uniform distributions. DGP1-
2 and 2-2 were generated to examine the estimation performance of BC and CFG
when xit and zit overlap. They were the same as DGP1 and 2 but zitıD ı1z1it C ı2xit

for BC and zitıD ı0 C ı1z1it C ı2xit for CFG with ı2 D 0.3.
Each of our experiments consisted of 1,000 independent replications. We

considered approximately 50 different DGPs by varying the values of N, T,
˛xz, and the variance of inefficiency. The basic settings were .˛0; ˇ1; ı1; �v;
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�u; ˛xz; N; T / D .1; 1; 0:5; 1;
p
2; 0:5; 100; 10/ in the BC model, (˛0,ˇ1, ı0, ı1,�v,

˛xz, N, T) D (1, 1, 1, 0.5, 1, 0.5, 100, 10) in CFG, and (˛0,ˇ1, ı1,�v,�˛ ,˛xz, N, T) D
(1, 1, 0.5, 1, 4, 0.5, 100, 10) in FE.

We begin by discussing the estimation of production technology and the effect
of exogenous factors on efficiency. The results with DGP1, DGP2, and DGP3 are
reported in Table 8.1 with different levels of correlation between xit and zit. Each
table reports the biases and root mean squared errors (RMSE). The biases are
100 � (mean bias). So, for example, the first entry in Table 8.1, �2.480, indicates
that the mean of b̨0 is 0.975. Because ı1 in the three different models do not have
the same meaning, the estimates are not comparable. Therefore, we report estimates
of all parameters only for a model that is consistent with the true specification. For
example, we do not report estimates of ı1 in CFG or FE when DGP follows the
BC specification. Instead, we present the estimation performance for the ME of an
exogenous variable on mean inefficiency.

Panel A is relevant to the case that xit and zit are uncorrelated to each other.
When the true data follow DGP1, BC is the true specification, and then is expected
to produce the most precise estimates. In fact, BC estimates ˇ1 the most precisely,
but the intercept term is relatively inaccurate with a large RMSE, andb�u has a large
mean bias of �0.065. CFG has a slightly smaller mean bias of ˇ1 than does FE,
but FE estimates ME quite accurately whereas CFG produces a large bias. Staying
with DGP1 and moving to Panels B and C where ˛xz D 0.5 and ˛xz D 2, respectively,
the b̌1 in BC is closer to the true value, but the biases ofbı1 and the ME estimator
become moderately larger. The bias and RMSE of b̌1 and the ME estimator in CFG
begin to snowball as ˛xz increases. FE shows the second best performance as its
biases are slightly larger than those of BC but distinctively smaller than those of
CFG. FE is perfectly insensitive to change in ˛xz with respect to the production
function estimation.

When the true data follow DGP2, the true specification is CFG. BC and CFG
have a smaller bias of b̌1 than does FE, and b̌1 is slightly more accurate in BC than
CFG when ˛xz D 0. However, the estimator of ME has a large mean bias in BC,
whereas both CFG and FE have reasonably small values of bias, and CFG is a little
more accurate than is FE. As ˛xz increases, the bias of b̌1 in BC increases rapidly,
but b̌1 in FE stays constant. Again, for the model with true specifications, CFG
performs the best and FE does the second best in being close to CFG and separating
itself from BC. One intriguing finding that we cannot explain is that under correct
specifications, CFG produced a relatively large bias compared with BC and FE. As
large biases forbı0 andbı1 in CFG were also observed, the inaccuracy in estimating
ME in CFG may be due to difficulty with the correct identification ofbı0 andbı1.

In the case of DGP3 where BC and CFG are misspecified, FE performs the best.
The bias of b̌1 in FE is unexpectedly larger than that in CFG as shown in Panel A
even though the bias gaps are mild, but FE separates itself from BC and CFG with
a distinctively small bias of the ME estimator. BC performs better in estimating
ME than CFG, possibly because BC and FE share the common additive form of
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the inefficiency equation. Moving to Panel B and C, the b̌1 in FE is insensitive to
change in ˛xz, but the bias of the ME estimator increases when ˛xz D 2. Again, BC
produces relatively reasonable estimates, whereas CFG becomes wildly inaccurate
as ˛xz increases.

The results in Table 8.1 suggest the following. First, FE produces the most robust
estimates of ME as well as production technology; this result is not surprising as FE
is insensitive to the a priori distribution, whereas BC and CFG are very sensitive
to misspecification. This implies that it would be good practice to utilize the three
different models and compare their estimates to choose the correct specification
among BC, CFG, and FE. If BC (or CFG) produces estimates that are similar to
those produced by FE, then it is likely that BC (or CFG) is a correct specification.
On the other hand, it is likely that neither BC nor CFG is a correct specification if
all three models produce different estimates. Second, both BC and CFG estimate
ME or the inefficiency equation inaccurately even when they are correctly specified
if xit and zit are closely correlated. Therefore, FE is recommended in this case.

Table 8.2 displays how the different models perform in response to changes in
the variance of inefficiency when we change �u, the variance of the pre-truncation
normal for BC, ı0 for CFG, and �˛ for FE. Panels A and C show the estimation
performances using the smallest and the largest variance of the inefficiency term,
respectively. (Panel B shows that using an intermediate value). Discussing DGP1
first, we can see that the estimators for production technology parameters, ˇ0 and
ˇ1, as well as the inefficiency equation parameter ı1, by BC, the true specification,
do not show any particular trend, but the estimator of ME reduces the mean bias
as the variance increases, whereas the RMSE remains constant. On the other hand,
the other two models (CFG and FE) estimate the production function and ME more
precisely as the variance increases. In particular, the performance of FE in both
estimating production technology and ME surpasses that of BC in Panel C. Moving
to DGP2, CFG with the true specification does not reveal any specific trend in
estimating ˇD (ˇ0,ˇ1) ’ and ıD (ı0,ı1) ’, but both the mean bias and RMSE of
the ME estimate expand as the variance of inefficiency increases. Unlike the case of
DGP1, where a model with misspecification performs better when the inefficiency
variance is large, the other models (BC and FE) perform worse as the inefficiency
variance increases. BC in particular deteriorates rapidly. In the case of DGP3, which
follows the FE specification, FE apparently performs better in estimating ME than
BC and CFG, whereas BC is the next best. In practice, we have to consider the fact
that CFG always estimates ME downward in every DGP as found in Tables 8.1 and
8.2, whereas BC also underestimates ME in most cases.

Tables 8.3 and 8.4 show the results of cases with different sample sizes. We
first changed the number of cross-sectional observations with a fixed time series
(T D 10 and N D 25, 100, and 250; Table 8.3), and then we changed T with a fixed
N (N D 100, T D 5, 25, and 50; Table 8.4). Panel A in Table 8.3 shows the estimation
performance when the sample size is the smallest (N D 25 and T D 10). When the
true data are generated by DGP1, BC is expected to perform the best. However,
the b̌1 of BC had a slightly larger bias than that of FE even though BC estimated
ME a little more accurately than FE. As the sample became larger by increasing
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N, b̌0 and b�u of BC started to have larger biases, but the core parameter, ME,
was estimated more accurately with a smaller RMSE, whereas b̌1 did not have a
particular trend in its performance. The overall estimation performances of CFG and
FE improved except for b̌1 of FE as N increased. In the case of DGP2, CFG was
expected to perform the best among the three models. In the small sample (N D 25
and T D 10), the bias of the ME estimator was the least in FE even though CFG had
the smallest bias of the production function estimates. However, the performance
of CFG improved more rapidly than did that of BC and FE as N increased. In
fact, there was no significant improvement in BC and FE. Therefore, CFG had the
least bias of ME when N was 250. Regarding DGP3, FE performed the best, and
BC did the next best, as expected. As N grew, FE became more accurate, whereas
BC and CFG were constant in their estimation performance. The same simulation
evidence was found in the case of DGP1 and DGP2 in that the well-specified model
performed better with a larger N, whereas the misspecified model performed equally
poorly. Comparing the results in Table 8.4, there was not a significant trend in the
estimation performances of the three models with DGP1. However, CFG improved
in the case of DGP2 as T increased, whereas both BC and FE did not show a
particular trend. With DGP3, FE as well as BC improved moderately as T increases,
but CFG remained constant. In summary, FE is strongly recommended when the
sample size is small given that FE outperformed BC and CFG in small samples
independent of a prior distribution.

Table 8.5 compares the estimation performances when DGP1 and 2 were
modified in that the statistical noise vit was generated by a uniform distribution
instead of a normal distribution (denoted as DGP1-1 and DGP 2-1, respectively).
It can be expected that the performances of BC and CFG will deteriorate because
both impose a normal distribution assumption for statistical noise in their models,
but the extent of deterioration in small samples is not known. First, we discuss the
simulation results with DGP1 and DGP1-1. In DGP1-1, BC was no longer the best
model. It had the least bias of b̌1 only when ˛xz D 0, but the bias ofbı1 was large,
and the mean bias of the ME estimator was about five times as large as that in FE.
When the correlation between xit and zit was increased to ˛xz D 2, FE outperformed
BC significantly in both production function and ME estimation. Comparing the
performances in DGP2 and 2-1, that of CFG was not significantly influenced by
change in the distribution of statistical disturbance. We also conducted simulations
with non-normal distributions of statistical noise for cases of different variances
of inefficiency and different combinations of N and T, as shown in Tables 8.2,
8.3, and 8.4. To save space we will summarize the results (the detailed results are
available upon request). The overall results are consistent with those in Table 8.5.
As theory suggests, FE and CFG are insensitive to the distribution of vit, but BC
becomes worse when the true data of vit do not come from a normal distribution.
This property is another advantage of models with scaling properties. RSCFG is
relatively insensitive to the a priori distribution of statistical noise.

BC and CFG may examine the effects of input factors on technical inefficiency by
zit including a part of xit, but zit and xit cannot overlap in FE where input factors can
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Table 8.6 The case that x and z overlaps

BC CFG BC CFG

Panel A

DGP1 DGP1-2

ˇ0 �1:285.0:24/ �154:974.1:57/ �9:158.0:28/ �141:993.1:44/
ˇ1 0:009.0:05/ �3:182.0:06/ 11:183.0:35/ �36:306.0:37/
ı0

ı1 �0:418.0:05/ �2:369.0:07/
ı2 11:278.0:35/

�u �3:129.0:29/ �33:228.0:74/
MEz �0:180.0:06/ �10:039.0:11/ �2:233.0:07/ �13:692.0:14/
MEx 12:279.0:35/ �32:525.0:33/

Panel B

DGP2 DGP2-2

ˇ0 91:033.0:94/ �0:091.0:21/ 128:682.1:33/ �2:194.0:30/
ˇ1 �9:435.0:12/ 0:071.0:07/ �25:382.0:28/ �0:234.0:12/
ı0 2:693.0:24/ �5:063.1:72/
ı1 �0:671.0:05/ �1:342.0:33/
ı2 �0:919.0:29/
�u

MEz �62:501.0:63/ �1:530.0:10/ �147:563.1:49/ �4:162.0:18/
MEx �38:233.0:44/ 0:537.0:15/

influence output only through the production process. Therefore, it is a significant
advantage of BC and CFG over FE if they are able to produce reasonably accurate
estimates of the ME and production technology. Table 8.6 shows the estimation
performance of BC and CFG when zit and xit overlap. That is, zitıD ı1z1it C ı2xit

for BC (DGP1-2) and zitıD ı0 C ı1z1it C ı2xit for CFG (DGP2-2) with ı2 D 0.3.
Beginning with the true specification of BC (DGP1 and 1-2), not only CFG but
also BC produced large biases when an input factor was included as an exogenous
efficiency determinant. For example, the mean value of b̌1 in BC was close to the
true value of one, and its RMSE was 0.05 when the sample was DGP1, but the
bias and RMSE of b̌1 increased to 0.11 and 0.35, respectively. The biases ofbı1 and
the MEz estimator in BC also increased significantly. In particular,bı2 and the MEx

estimator were extremely inaccurate. The mean value ofbı2 was 0.41 and its RMSE
was 0.35 when the true value was 0.3. According to unreported simulation results,
these problems were aggravated when zit and xit were more closely correlated.
Turning our attention to DGP2 and 2-2, CFG also produced largely biased b̌1 when
zit and xit overlapped, even though the degree of aggravation was less severe than
BC in DGP1-2. In summary, including some input variables in the environmental
variable set does not seem to be an attractive choice for model specification.

Hitherto, we have described the performances of BC, CFG, and FE with respect
to the aim of stochastic frontier effect models that analyze the effects of observable
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environmental factors on technical inefficiency. Another aim is to estimate the level
of technical efficiency by utilizing information on environmental factors. Both BC
and CFG estimate bui t by the conditional expectation of uit on residuals, whereas
FE estimates it by the maximum operator. This difference leads the properties of
the estimators so that bui t in BC and CFG are in absolute values, but bui t values
in FE are relative. Therefore, we compared the rank correlation between the true
rank and the estimated rank; the results are shown in Table 8.7. Overall, FE was
outperformed by BC and CFG in estimating the rank of inefficiency level in most
DGPs. FE produced very high rank correlations following DGP3, but its inefficiency
estimates were not closely correlated to the true rank of inefficiency in other DGPs.
On the other hand, the rank correlations in BC and CFG remained constant in the
range of [0.60, 0.95] in most DGPs. This may imply an advantage of the conditional
expectation over the maximum operator. All three models (BC, CFG, and FE)
produced more accurate estimates of inefficiency rank as the variance of inefficiency
became larger. Generally, changing the correlation between zit and xit makes
little difference in the accuracy of the inefficiency estimates of all three models.
However, CFG deteriorated extremely quickly in its estimation performance for
technical inefficiency when zit and xit were highly correlated and the inefficiency
was misspecified. This result is consistent with our earlier finding in Table 8.1.
CFG produced inaccurate estimates of the inefficiency equation parameters (ı0, ı1).
Therefore, we would recommend against using CFG if zit is closely correlated to xit.

Non-normal distribution of statistical noise caused significant biases in BC esti-
mates of production technology as well as the ME, but the estimation performance
of technical inefficiency did not deteriorate significantly in BC. BC and CFG
produced more or less equally precise estimates when zit and xit overlapped even
though the rank correlation coefficients decreased when the variance of inefficiency
was small.

8.4 Conclusion

We examined stochastic frontier models that analyze the effect of observable
variables on inefficiency. There are three types of these models: KGMHLBC,
RSCFG, and FE. KGMHLBC does not possess the scaling property and is estimated
by ML analysis, and we chose BC as a representative of this model. RSCFG
includes the scaling property in that environmental factors affect the scale of
technical inefficiency but not the shape of the inefficiency distribution, and it is
also estimated by ML. CFG was chosen to represent this model. The inefficiency
equation specification in FE is similar to that in BC, but FE does not impose a
distributional assumption for technical inefficiency or for statistical disturbance. By
treating a time-invariant intrinsic inefficiency as fixed, FE did not have to assume
correlation between efficiency factors (z) and intrinsic inefficiency (w).

We performed Monte Carlo simulations to examine the performances of the
three models. For estimation of the production function and inefficiency equation,
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FE is the most robust and insensitive to various specifications. FE estimated the
ME of environmental factors on technical inefficiency reasonably accurately in the
presence of model misspecifications. On the other hand, BC and CFG are likely
sensitive to the a priori distribution of technical inefficiency and produce large
biases when a model is misspecified. Other notable findings point to practical
advantages of FE: (1) FE showed the best estimation performance for ME when
the sample size was small, (2) the disadvantage that FE cannot incorporate z to
include a part of x was inconsequential because BC and CFG produced inaccurate
estimates of the inefficiency equation when x and z overlapped, and (3) BC and CFG
were also vulnerable when a statistical disturbance term did not follow a normal
distribution. These results are somewhat consistent with those of Gong and Sickles
(1989, 1992, GS), who recommended the within estimator as the preferred estimator
for the stochastic frontier model. However, GS did not consider efficiency factors
and presented only inefficiency estimates.

In the estimation performance of technical inefficiency, FE was the worst,
whereas BC and CFG were the best. We may conclude that there is a slight
superiority of BC over CFG because CFG deteriorated rapidly when the correlation
between x and z was high. This result contrasts with the simulation results of GS.
However, GS adopted the max operator proposed by Schmidt and Sickles (1984)
for efficiency estimates in the ML estimation. A source of the disparity between our
simulation and that of GS with respect to efficiency estimates may be the difference
between the conditional expectation and the max operator approaches. In this case,
using the conditional expectation as the efficiency estimation appears to produce
more accurate estimates than the maximum operator.

We hope that the findings of our Monte Carlo simulation will be informative to
applied researchers interested in the choice of legitimate models for efficiency anal-
ysis. We recommend FE if the research aim is to analyze production technology or
the marginal effects of observable variables on efficiency. However, we recommend
the ML estimations of BC and CFG over FE for the estimation of firm efficiency.
We also found that models with and without the scaling property did not differ in
terms of their estimation performance in our restricted simulation design.
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Chapter 9
Modelling Asymmetric Cointegration
and Dynamic Multipliers in a Nonlinear
ARDL Framework
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9.1 Introduction

The nonlinearity of many macroeconomic variables and processes has long been
recognised. In a famous remark, Keynes (1936, p. 314) noted that “the substitution
of a downward for an upward tendency often takes place suddenly and violently,
whereas there is, as a rule, no such sharp turning point when an upward is substituted
for a downward tendency”. More recently, the joint fields of behavioural finance
and economics associated most notably with Daniel Kahneman, Amos Tversky and
Robert Shiller (e.g. Kahneman and Tversky 1979; Shiller 1993, 2005) have provided
a considerable impetus to the modelling of asymmetry, stressing that nonlinearity is
endemic within the social sciences and that asymmetry is fundamental to the human
condition.
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An expansive literature has developed around the analysis of nonstationary
variables following the pioneering work of Dickey and Fuller (1979), Engle and
Granger (1987), Johansen (1988), Phillips and Hansen (1990), and Kwiatkowski
et al. (1992), to name but a few. Subsequently, since the mid-1990s, a substantial
body of work has considered the joint issues of nonstationarity and nonlinearity.
This field has been dominated by three regime-switching models: the threshold
ECM associated with Balke and Fomby (1997), the Markov-switching ECM of
Psaradakis et al. (2004), and the smooth transition regression ECM developed by
Kapetanios et al. (2006). The development of this literature reflects the belief that
the information revealed by linear models may be insufficiently rich to permit strong
inference or to yield reliable forecasts. More generally, it suggests a general concern
that the assumption of linear adjustment may be excessively restrictive in a wide
range of economically interesting situations, particularly where transaction costs
are non-negligible and where policy interventions are observed in-sample.

The majority of these studies, however, maintain the assumption that the long-run
relationship may be represented as a symmetric linear combination of nonstationary
stochastic regressors. With the notable exceptions of Park and Phillips (2001),
Saikkonen and Choi (2004), Escribano et al. (2006) and Bae and de Jong (2007),
little research effort has been devoted to the analysis of nonlinear cointegration.
Schorderet (2001) has proposed the bivariate asymmetric cointegrating regression of
unemployment on output, where output is decomposed into partial sum processes of
positive and negative changes. On the basis of this piecewise linear specification, he
finds that the impact of recessionary shocks on unemployment is larger in absolute
terms than that of cyclical upturns, indicating an hysteretic relationship. Granger and
Yoon (2002) further develop the notion that the cointegrating relationship may be
defined between the positive and negative components of the underlying variables,
an effect that they term ‘hidden cointegration’.

Partial sum decompositions have been applied with some success to the anal-
ysis of dynamic asymmetry. Examples include Webber’s (2000) analysis of the
relationship between the exchange rate and import prices, the work of Lee (2000)
and Virén (2001) on asymmetries in Okun’s Law and the research of Borenstein
et al. (1997) and Bachmeier and Griffin (2003) focusing on the asymmetric
response of gasoline prices to fluctuations in the oil price. However, most papers
modelling short-run asymmetry employ the two step Engle-Granger technique
which is inherently less efficient than single-step ECM estimation. Moreover, papers
coherently modelling long- and short-run asymmetries jointly are scarce.

Our purpose in this paper is to develop a simple and flexible nonlinear dynamic
framework capable of simultaneously and coherently modelling asymmetries both
in the underlying long-run relationship and in the patterns of dynamic adjust-
ment. We make four principal contributions. Firstly, we derive the dynamic error
correction representation associated with the asymmetric long-run cointegrating
regression, resulting in the nonlinear autoregressive distributed lag (NARDL)
model. Secondly, following Pesaran and Shin (1998) and Pesaran et al. (2001), we
employ a pragmatic bounds-testing procedure for the existence of a stable long-
run relationship which is valid irrespective of whether the underlying regressors
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are I (0), I (1) or mutually cointegrated. Thirdly, we derive asymmetric cumulative
dynamic multipliers that allow us to trace out the asymmetric adjustment patterns
following positive and negative shocks to the explanatory variables. This has
substantial theoretical appeal as it allows us to depict in an intuitive manner the
traverse to a new equilibrium following a perturbation to the system. Such is
the flexibility of our framework that it can readily accommodate the four general
combinations of long- and short-run asymmetry. Finally, we conduct a range of
Monte Carlo experiments which largely validate our estimation and inferential
framework, revealing little bias in estimation and considerable power of the key
test statistics. Moreover, we compute empirical p-values for the cointegration tests
and confidence intervals for our dynamic multipliers by means of a non-parametric
bootstrap. These exercises highlight a further enviable attribute of our proposed
methodology: it is easily estimable by OLS and simple inferential methods provide
a straightforward and reliable means of discriminating between the various forms
and combinations of asymmetries.

We demonstrate the usefulness of the NARDL framework by applying it to the
analysis of the unemployment-output relationship in the US, Canada and Japan
over the period 1982m2–2003m11. We find strong evidence of long-run asymmetry
consistent with the growing consensus that unemployment is more sensitive to
busts than booms. Moreover, particularly in Canada, we find dynamic asymmetries
indicating that firms are quick to fire and slow to hire. Finally, the dynamic
multipliers reveal a pattern that is often obscured in discussions of persistence –
although the half-life of an expansionary shock in the US is smaller than that of
an equivalent recessionary shock, the real impact in terms of jobs created/lost is
larger in the recessionary case. It follows, therefore, that focusing on the half-life of
a shock is insufficient when the long-run relationship is asymmetric as this fails to
convey relevant information about the relative magnitude of the economic response
to the shock in each regime.

Finally, the flexibility and utility of the NARDL technique is reflected in the
growing literature that has adopted our technique for the analysis of a range of
economic issues.1 Van Treeck (2008) has employed the NARDL model in his
analysis of asymmetric wealth effects on US consumption, and has found that
liquidity constraints and loss-aversion can be reconciled inter-temporally, with the
former dominating in the short-run and the latter in the long-run. More recently,
Delatte and López-Villavicencio (2012) have applied the NARDL technique in
their analysis of long-run asymmetries in the pass-through from exchange rates to

1The present version of the paper is a substantially revised version of Shin and Yu (2004), which
has benefited greatly from a sequence of incremental improvements and additions arising from the
constructive comments of conference and seminar participants and from editorial feedback. Earlier
versions of the paper circulated under the titles “An ARDL Approach to an Analysis of Asymmetric
Long-run Cointegrating Relationships” and “Modelling Asymmetric Cointegration and Dynamic
Multipliers in an ARDL Framework”. By virtue of its wide circulation and prolonged availability
as a working paper, our research has informed the development of a subsequent literature that we
now discuss. In all cases, however, the development of the NARDL model is properly credited.
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consumer prices in developed economies. Nguyen and Shin (2010) have estimated
NARDL models on high frequency exchange rate data, revealing interesting patterns
of asymmetry in the pricing impacts of order flow. Lastly, Greenwood-Nimmo
et al. (2013) have estimated NARDL models of the interest rate pass-through
relationship in the USA finding strong evidence of time-varying asymmetry. An
important and relatively common finding in this literature is that the direction of
asymmetry may switch between the short-run and the long-run. For example, a
positive shock may have a larger absolute effect in the short-run while a negative
shock has a larger absolute effect in the long-run (or vice-versa). The simplicity
and flexibility of NARDL renders it an ideal framework with which to model such
complex phenomena.

The paper proceeds as follows. Section 9.2 introduces the asymmetric cointegrat-
ing regression model and derives the associated asymptotic theory. On this basis,
the NARDL model is derived including expressions for the asymmetric cumu-
lative dynamic multipliers, and the associated testing procedures are developed.
Section 9.3 employs a range of Monte Carlo simulations to investigate the finite
sample properties of the proposed estimators and test statistics. Section 9.4 presents
the results of our empirical illustration. Lastly, Sect. 9.5 offers some concluding
remarks, while mathematical proofs are collected in the Appendix.

9.2 Modelling Asymmetries in a Nonlinear
ARDL Framework

The increasing popularity of nonlinear modelling in the context of cointegrating
long-run relationships has led to the proliferation of regime-switching models.
Among existing studies, nonlinearity is typically confined to the error correction
mechanism and estimation proceeds on the basis of either the threshold ECM asso-
ciated with Balke and Fomby (1997), the Markov-Switching ECM of Psaradakis
et al. (2004) or the smooth transition regression ECM developed by Kapetanios et al.
(2006). However, the common assumption that the underlying cointegrating rela-
tionship may be represented as a linear combination of the underlying nonstationary
variables may be excessively restrictive. In general, the long-run (cointegrating)
relationship may also be subject to asymmetry or nonlinearity.2 The three regime-
switching functional forms mentioned above are equally applicable to the case of
long-run asymmetry (Saikkonen and Choi 2004; Escribano et al. 2006).

In principle, it is possible to obtain a unified model capable of combining nonlin-
earities in the long-run relationship and the error correction mechanism coherently.

2The presence of long-run asymmetry will induce a ratchet mechanism if the respective positive
and negative regime probabilities are approximately equal and the shocks under each regime are
of comparable magnitude. In the more general case in which these conditions are not satisfied, no
such simple conclusion may be drawn.
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In practice, however, selection of the regime-switching variables and the transition
functional forms may be non-trivial.3 Hence, the development of an operational
model of this form is likely to be highly challenging (cf. Saikkonen 2008). We
contribute to this literature by developing a nonlinear modelling framework based
on the ARDL approach which provides a simple and flexible vehicle for the analysis
of joint long- and short-run asymmetries.

9.2.1 Nonlinear Asymmetric Cointegration

Before developing the full representation of the NARDL model, we introduce the
following asymmetric long-run regression:

yt D ˇCxC
t C ˇ�x�

t C ut ; (9.1)

�xt D vt ; (9.2)

where yt and xt are scalar I(1) variables, and xt is decomposed as xt D x0CxC
t Cx�

t

where xC
t and x�

t are partial sum processes of positive and negative changes in xt :

xC
t D

tX
jD1

�xC
j D

tX
jD1

max
�
�xj ; 0

�
; x�

t D
tX

jD1
�x�

j D
tX

jD1
min

�
�xj ; 0

�
:

(9.3)

This simple approach to modelling asymmetric cointegration based on partial
sum decompositions has been applied by Schorderet (2001) in the context of the
nonlinear relationship between unemployment and output.4

Granger and Yoon (2002) advance the concept of ‘hidden cointegration’, where
cointegrating relationships may be defined between the positive and negative
components of the underlying variables. They demonstrate the relevance of this

3Consider the threshold ECM as an example, in which case the choice of the transition variable is
of importance both theoretically and empirically. In general, the asymptotic distribution of the test
statistic for the null of linearity or symmetry is not only non-standard but also depends on these
transition variables.
4The concept of asymmetric cointegration is easily conceptualised by use of a simple example.
Consider the output-unemployment relationship. In a standard cointegrating regression, one
models yt and xt subject to a common stochastic trend. As this relationship is assumed to hold
in the long-run, it represents the equilibrium to which the system returns after a perturbation (i.e.
it acts as a global attractor). However, in our framework, the long-run relationship between yt and
xt is modelled as piecewise linear subject to the decomposition of xt . Suppose that jˇCj < jˇ�j
in (9.1). This suggests that the long-run effect of a unit negative change in output will increase
unemployment by a greater amount than a unit positive change would reduce it. Thus, our model
includes a regime-switching cointegrating relationship in which regime transitions are governed
by the sign of�xt . The economic implication of this line of reasoning is that equilibrium need not
be unique in a globally linear sense. The link to the path dependency literature is apparent.
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conceptual framework in the context of the linkage between US short- and long-
term interest rates and the output-unemployment relationship, both of which are
notable for the lack of robust evidence of linear cointegration. Schorderet (2003)
generalises this concept and defines the following stationary linear combination of
the partial sum components:

zt D ˇC
0 y

C
t C ˇ�

0 y
�
t C ˇC

1 x
C
t C ˇ�

1 x
�
t : (9.4)

If zt is stationary, then yt and xt are said to be ‘asymmetrically cointegrated’.
It follows that standard linear (symmetric) cointegration is a special case of
(9.4), obtained only if ˇC

0 D ˇ�
0 and ˇC

1 D ˇ�
1 . Schorderet modifies (9.4) to

analyse hidden cointegration, where only one component of each series appears
in (9.4), developing a model of the asymmetric cointegrating relationship between
bilateral exchange rates as an illustration. Lardic and Mignon (2008) analyse hidden
cointegration between the price of oil and GDP, although they fail to provide any
economically meaningful interpretation of the estimated asymmetric coefficients.

Given the difficulty in interpreting the results of hidden cointegration analysis,
we will focus on (9.1), imposing the restriction ˇC

0 D ˇ�
0 D ˇ0 in (9.4) such that

ˇC D �ˇC
1 =ˇ0 and ˇ� D �ˇ�

1 =ˇ0. To achieve the greatest possible clarity of
exposition, we initially begin with the case of a single regressor decomposed into
the relevant partial sum processes.

Assumption 1 The disturbances ut and vt in (9.1) and (9.2) follow i id processes
with zero means and finite variances, and they are independently distributed.

Theorem 1 Consider the asymmetric cointegrating regression, (9.1) and (9.2).
Under Assumption 1, the OLS estimators of ˇC and ˇ� have the following
asymptotic distributions:

T . ǑC�ˇC/)�
�
���u

�s

	 1
3

R
WQs.r/dWQu.r/�

R
rWQs.r/dr

�
WQu.1/�

R
WQu.r/dr

�
1
3

R
WQs.r/2dr�

�R
rWQs.r/dr

�2 ;

T . Ǒ��ˇ�/ )
�
�C�u

�s

	 1
3

R
WQs.r/dWQu.r/ � R

rWQs.r/dr
�
WQu.1/� R

WQu.r/dr
�

1
3

R
WQs.r/2dr � �R

rWQs.r/dr
�2 ;

where �C WD E ŒmaxŒ0; vt ��, �� WD E ŒminŒ0; vt ��, st D �C .min Œ0; vt � � ��/ �
�� �max Œ0; vt �� �C�, �2u WD Var .ut /, �2s WD Var .st /, and WQs.�/ and WQu.�/ are
two independent standard Brownian motions defined on r 2 Œ0; 1�, and obtained as
the weak limit of partial sum processes, T �1=2PT .�/

jD1 Qst and T �1=2PT .�/
jD1 Qut , with

Qut WD ut =�u and Qst WD st =�s . Furthermore,

T f�C. ǑC � ˇC/C ��. Ǒ� � ˇ�/g D op.1/:
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Remark 1 In the special case when vt follows a symmetric distribution with �C2 D
��2 and Var .maxŒ0; vt �/ D Var .minŒ0; vt �/,5 then we have

T . Ǒ� � ˇ�/; T . ǑC � ˇC/

)
1
3

R
WQs.r/dWQu.r/ � R

rWQs.r/dr
�
WQu.1/� R

WQu.r/dr
�

1
3

R
WQs.r/2dr � �R

rWQs.r/dr
�2 ;

such that T
n
. Ǒ� � ˇ�/C . ǑC � ˇC/

o
D op.1/.

Remark 2 Let ˇ D �
ˇC; ˇ��0, then

T
� Ǒ � ˇ

�
a
 MN .0;V / ; (9.5)

where V D plimT!1T 2
�
X 0X

��1
�2u . Even though xC

t and x�
t are dominated

by the deterministic trends by construction, these leading terms cancel off in
the derivation of

�
X 0X

��1
such that plimT!1T 2

�
X 0X

��1
is well-defined and

standard inference on ˇ remains asymptotically valid.

Remark 3 In a similar manner, when an intercept term is included, we can obtain
the asymptotic distributions of the OLS estimator as follows:

T . ǑC � ˇC/ ) �
�
���u

�s

	

�
1
12

R QWQs.r/dWQu.r/ � �R
.r � 1

2
/ QWQs.r/dr

� �R
.r � 1

2
/dWQu.r/

�
1
12

R QWQs.r/2dr � �R
.r � 1

2
QWQs.r/

�2 I

T . Ǒ� � ˇ�/ )
�
�C�u

�s

	

�
1
12

R QWQs.r/dWQu.r/ � �R
.r � 1

2
/ QWQs.r/dr

� �R
.r � 1

2
/dWQu.r/

�
1
12

R QWQs.r/2dr � �R
.r � 1

2
QWQs.r/

�2 I

and T f�C. ǑC � ˇC/ C ��. Ǒ� � ˇ�/g D oP .1/, where QWQs.r/ WD WQs.r/ �R
WQs.r/dr for r 2 Œ0; 1�.

5In the special case where vt is normally distributed with zero mean and constant variance �2v , it
is well-established that the censored normal variates, vC

t D max Œ0; vt � and v�

t D min Œ0; vt �, will

have E
�

vC

t

�
D �v

p

2
, E

�
v�

t

� D � �v
p

2
, and Var

�
vC

t

�
D Var

�
v�

t

� D �2v
2
�1


. We are grateful

to Jinseo Cho for pointing this issue out and encouraging us to provide a more general result in
Theorem 1.
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9.2.2 The Nonlinear ARDL Model

The simple case presented above is useful for exposition and will certainly cover
some empirical applications. However, it is too restrictive since it does not allow
for weak endogeneity of the regressors and/or serially correlated errors, factors
that will significantly affect both the asymptotic and the small sample properties
of the estimators. In their presence, the OLS estimator in (9.1) may remain
super-consistent but the asymptotic distribution is non-Gaussian. Hence, hypothesis
testing cannot be carried out in the usual manner without removing both the serial
correlation and the endogeneity of the regressors. In particular, the resulting OLS
estimator of the cointegrating parameter will be poorly determined in finite samples.

In the linear cointegration literature, several solutions to these twin problems
have been proposed in the context of the static regression model (Phillips and
Hansen 1990; Saikkonen 1991) and the dynamic regression model (Pesaran and
Shin 1998). Given that our interest is in developing a fully dynamic model, we
naturally choose to extend the ARDL approach popularised by Pesaran and Shin
(1998) and Pesaran et al. (2001), thereby developing a flexible dynamic parametric
framework with which to model relationships that exhibit combined long- and short-
run asymmetries.6

To this end we consider the following nonlinear ARDL.p; q/ model:

yt D
pX
jD1

�j yt�j C
qX

jD0

�
�C0
j xC

t�j C ��0
j x�

t�j
�

C "t ; (9.6)

where xt is a k � 1 vector of multiple regressors defined such that xt D x0 C xC
t C

x�
t , �j is the autoregressive parameter, �C

j and ��
j are the asymmetric distributed-

lag parameters, and "t is an iid process with zero mean and constant variance, �2" .
Throughout this paper we will focus on the case in which xt is decomposed into
xC
t and x�

t around a threshold of zero, thereby distinguishing between positive and
negative changes in the rate of growth of xt . The resulting partial sum processes
maintain an intuitively appealing and economically meaningful interpretation in a
wide range of applications.7

6Notice that the analysis of short-run dynamic asymmetries is not straightforward in the context of
the static regression model employing the semiparametric approach.
7In some cases, most notably where the growth rates of the series in xt are predominantly positive
(negative), the use of a zero threshold may result in one regime containing an undesirably low
number of effective observations. In such situations, an obvious candidate for an alternative
threshold is the mean growth rate. We discuss such issues further in a separate paper (Greenwood-
Nimmo et al. 2012).
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Following Pesaran et al. (2001), it is straightforward to rewrite (9.6) in the error
correction form as

�yt D �yt�1 C �C0xC
t�1 C ��0x�

t�1 C
p�1X
jD1


j�yt�j

C
q�1X
jD0

�
'C0
j �xC

t�j C '�0
j �x�

t�j
�

C "t

D ��t�1 C
p�1X
jD1


j�yt�j C
q�1X
jD0

�
'C0
j �xC

t�j C '�0
j �x�

t�j
�

C "t (9.7)

where � D Pp
jD1 �j � 1, 
j D �Pp

iDjC1 �i for j D 1; : : : ; p � 1, �C DPq
jD0 �C

j , �� D Pq
jD0 ��

j , 'C
0 D �C

0 , 'C
j D �Pq

iDjC1 �
C
j for j D 1; : : : ; q� 1,

'�
0 D ��

0 , '�
j D �Pq

iDjC1 ��
j for j D 1; : : : ; q�1, and �t D yt�ˇC0xC

t �ˇ�0x�
t

is the nonlinear error correction term where ˇC D ��C=� and ˇ� D ���=� are
the associated asymmetric long-run parameters.

To further deal with the possibility of non-zero contemporaneous correlation
between the regressors and the residuals in (9.7) we now consider the following
reduced form data generating process for �xt

8:

�xt D
q�1X
jD1

ƒj�xt�j C vt ; (9.8)

where vt 
 i id .0;†v/, with †v being a k � k positive definite covariance matrix.
Given our focus on conditional modelling, we may express "t conditionally in terms
of vt as:

"t D !0vt C et D !0
0
@�xt �

q�1X
jD1

ƒj�xt�j

1
AC et (9.9)

where et is uncorrelated with vt by construction. Substituting (9.9) into (9.7) and
rearranging it, we finally obtain the following conditional nonlinear ECM:

�yt D ��t�1 C
p�1X
jD1


j�yt�j C
q�1X
jD0

�
�C0
j �xC

t�j C ��0
j �x�

t�j
�

C et (9.10)

where �C
0 D �C

0 C !, ��
0 D ��

0 C !, �C
j D 'C

j � !0ƒj and ��
j D '�

j � !0ƒj

for j D 1; : : : ; q � 1.

8For convenience we employ the same lag order, q. One may also allow for feedback effects from
the lagged �y’s on �xt in (9.8).
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It is clear that (9.10) corrects perfectly for the weak endogeneity of any non-
stationary explanatory variables and that the choice of an appropriate lag structure
will render the model free from residual serial correlation. Our model combines
many of the desirable attributes of the fully-modified and the ARDL-based dynamic
corrections associated respectively with Phillips and Hansen (1990) and Pesaran and
Shin (1998) in a dynamic parametric framework capable of modelling both long-
and short-run asymmetries. Moreover, since our model is linear in all the parameters
including �C, ��, �C

i and ��
i , reliable estimation of (9.10) can be achieved by

standard OLS.
Following the conditions used in the derivations above, we now summarise the

following assumption in the context of the NARDL-based ECM, (9.10):

Assumption 2 (i) et 
 i id.0; �2e /; (ii) xt is a k � 1 vector of I(1) regressors given
by (9.8); (iii) et is uncorrelated with vt through the conditional modelling, (9.9); (iv)
� < 0 guarantees that the model is dynamically stable.

Following Theorems 3.1 and 3.2 in Pesaran and Shin (1998), it is straightforward
to show under Assumption 2 that: (i) the OLS estimators of all the short-run dynamic
parameters in (9.10) are

p
T -consistent and have the asymptotic normal distribution,

and (ii) the OLS estimators of the long-run parameters computed as ǑC D � O�C
= O�

and Ǒ� D � O��
= O�, are T -consistent and follow the mixture normal distribution

as defined in Theorem 1. Hence, the null hypotheses of a symmetric long-run
relationship

�
ˇC D ˇ�� or symmetric short-run coefficients can be tested using the

Wald statistic following an asymptotic �2 distribution. In order to assess the extent
to which these theoretical predictions are validated in both large and small samples,
we will conduct a series of Monte Carlo experiments in Sect. 9.3.

9.2.3 Bounds-Testing the Asymmetric Long-Run Relationship

We develop two operational testing procedures for the existence of an asymmetric
(cointegrating) long-run relationship based on the NARDL ECM, (9.10). If � D 0,
(9.10) reduces to the regression involving only first differences, implying that there
is no long-run relationship between the levels of yt , xC

t and x�
t . We first follow

Banerjee et al. (1998) and propose the t-statistic testing � D 0 against � < 0 in
(9.10). Next, we follow Pesaran et al. (2001) and propose an F-test of the joint null,
� D �C D �� D 0 in (9.10). We denote these tests, tBDM and FPSS , respectively.

The asymptotic distributions of these test statistics are non-standard under their
respective null hypotheses and their exact asymptotic distributions are generally
complicated to derive due to the complex dependence structure between xC

t

and x�
t , especially when the means of �yt and �xt are non-zero.9 In light of

9While the associated critical values can be tabulated easily using stochastic simulation, it is
impractical to provide a meaningful set of critical values covering all possible combinations.
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these difficulties, we propose the use of the pragmatic ‘bounds-testing’ approach
advanced by Pesaran et al. (2001). Two extreme cases can be identified, one in which
the level regressors xC

t and x�
t in (9.10) are all I.1/, and the other in which they

are all I.0/. It follows that critical values tabulated for these two scenarios provide
critical value bounds for all classifications, irrespective of whether the regressors
are I.0/, I.1/ or mutually cointegrated. This is an important property in the current
context due to the various dependence structures (including cointegration) that
may exist between xC

t and x�
t . Following Pesaran et al. (2001), we differentiate

between five cases of (9.10) for the FPSS statistic: (i) without intercept or linear
trend; (ii) with restricted intercept only; (iii) with unrestricted intercept only; (iv)
with intercept and restricted linear trend; and (v) with intercept and unrestricted
linear trend. Similarly, for the tBDM statistic we differentiate between cases (i), (iii)
and (v). Pesaran et al. (2001) tabulate the critical value bounds for both the FPSS
and tBDM statistics under each of these cases for a range of values of k, the number
of regressors entering the long-run relationship.

In the context of the NARDL model, due to the dependence structure that exists
between the partial sum decompositions xC

t and x�
t , the exact value of k is not

clear. In the simplest case where the long-run relationship is defined between yt ,
xC
t and x�

t , it follows that the true value of k lies between 1 and 2.10 In general,
we expect that the test will be modestly undersized using k D 1 and similarly
oversized with k D 2. Employing the k D 1 critical values results in a more
conservative test (a higher critical value) so, at a pragmatic level, rejecting the null
of no long-run relationship using these critical values provides strong evidence of
the existence of a long-run relationship. The mis-sizing of the test can be readily
resolved by bootstrapping, although in practice we find that the pragmatic approach
typically leads to the same conclusion. This observation is reinforced below by a
series of Monte Carlo simulation experiments designed to evaluate the finite sample
properties of the PSS test and the performance of the associated bootstrapping
routine.

9.2.4 Asymmetric Dynamic Multipliers

It is straightforward to derive the asymmetric dynamic multipliers associated with
unit changes in xC

t and x�
t , respectively, on yt . Consider the ARDL-in-levels

representation of (9.10):

� .L/ yt D �C .L/xC
t C �� .L/x�

t C et ; (9.11)

It is generally straightforward, however, to compute the appropriate p-values by means of standard
bootstrap techniques.
10It is straightforward to extend similar reasoning to the more general case with multiple regressors
decomposed into partial sum processes.
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where � .L/ D 1 � Pp�1
iD1 �iLi , �C .L/ D Pq

iD0 �C
i L

i , and �� .L/ DPq
iD0 ��1

i L
i .11 Premultiplying (9.11) by the inverse of � .L/, we obtain:

yt D �C .L/xC
t C �� .L/x�

t�i C Œ� .L/��1 et ; (9.12)

where �C .L/
�
D P1

jD0 �C
j

�
D � .L/�1 �C .L/ and �� .L/

�
D P1

jD0 ��
j

�
D

� .L/�1 �� .L/.12 The cumulative dynamic multiplier effects of xC
t and x�

t on yt
can be evaluated as follows:

mC
h D

hX
jD0

@ytCj
@xC

t

D
hX

jD0
�C
j ; m�

h D
hX

jD0

@ytCj
@x�

t

D
hX

jD0
��
j ; h D 0; 1; 2 : : : (9.13)

Notice that, by construction, as h ! 1, mC
h ! ˇC and m�

h ! ˇ�, where
ˇC D ��C=� and ˇ� D ���=� are the asymmetric long-run coefficients.
There is little reason to believe that the dynamic adjustment patterns summarised
by mC

h and m�
h should generally be symmetric. Therefore, even though we do

not directly model asymmetric error correction (i.e. we do not allow for regime-
dependency of � in (9.10)) we may still observe asymmetric adjustment paths
and/or duration of the disequilibrium. This highlights an important feature of the
NARDL model. In the interest of clarity, when discussing asymmetry we tend to
distinguish only between long- and short-run asymmetries. However, the NARDL
model in fact admits three general forms of asymmetry: (i) long-run or reaction
asymmetry, associated with ˇC 6D ˇ�; (ii) impact asymmetry, associated with the
inequality of the coefficients on the contemporaneous first differences �xC

t and
�x�

t ; (iii) adjustment asymmetry, captured by the patterns of adjustment from initial
equilibrium to the new equilibrium following an economic perturbation (i.e. the
dynamic multipliers). Adjustment asymmetry derives from the interaction of impact
and reaction asymmetries in conjunction with the error correction coefficient, �.

In practice, the patterns of dynamic adjustment will depend on the model
specification. Four distinct cases can be identified: the unrestricted specification,

11The level parameters are obtained as follows:

�1 D �C 1C '1I �i D 'i � 'i�1; i D 2; : : : ; p � 1I �p D �'p�1I
�`0 D �`

0I �`1 D �` � �`
0 C �`

1I �`i D �`
i � �`

i�1; i D 2; : : : ; q � 1I �`q D ��`
q�1; ` D C;�:

12The dynamic multipliers, �
C

j and ��

j for j D 0; 1; : : : ; can be evaluated using the following

recursive relationships in which �`0 D �`0, �j D 0 for j < 1 and �`j D 0 for j < 0:

�`
j D �1�

`
j�1 C �2�

`
j�2 C : : :C �j�1�

`
1 C �j�`0 C �`j ; ` D C;�; j D 1; 2; : : : ;
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(9.10), accommodating asymmetries in both the short- and long-run and three
restricted specifications obtained by imposing short- and long-run symmetry restric-
tions in (9.10), either separately or jointly. An early study by Borenstein et al.
(1997) investigates short-run dynamic asymmetries in the response of retail gasoline
prices to fluctuations in the price of crude oil by implicitly imposing the long-run
symmetry restrictions �C D �� D � such that (9.10) simplifies to13

�yt D �yt�1 C�xt�1C
p�1X
iD1


i�yt�i C
q�1X
iD0

�
�C
i �xC

t�i C ��
i �x�

t�i
�C et : (9.14)

Models of this form have also been employed by Shirvani and Wilbratte (2000) and
Apergis and Miller (2006) in their analysis of short-run asymmetric wealth effects
on consumption due to liquidity constraints.

Short-run symmetry restrictions can take either of two forms: (i) �C
i D ��

i for
all i D 0; : : : ; q�1 or (ii)

Pq�1
iD0 �C

i D Pq�1
iD0 ��

i . When imposing such restrictions
in the presence of an asymmetric long-run relationship, we obtain14:

�yt D �yt�1 C �CxC
t�1 C ��x�

t�1 C
p�1X
iD1


i�yt�i C
q�1X
iD0

� i�xt�i C et : (9.15)

Finally, the most restrictive specification is obtained when assuming linearity of the
long-run relationship in conjunction with symmetric short-run adjustment:

�yt D �yt�1 C �xt�1 C
p�1X
iD1


i�yt�i C
q�1X
iD0

� i�xt�i C et : (9.16)

It is clear that (9.14)–(9.16) are special cases of the unrestricted specification
described by (9.10) and that the long- and short-run symmetry restrictions can
be easily tested in the usual manner following our proposed methodology. Our
early experimentation with the model, as well as the results adduced in Van Treeck
(2008), Nguyen and Shin (2010) and Greenwood-Nimmo et al. (2013), suggest that
the dynamic multipliers obtained from the various cases are generally significantly
different from one-another. Moreover, it is generally the case that the results of

13The final specification in Borenstein et al. (1997) differs slightly from (9.14) as the lagged �yt ’s
on the right hand side are also decomposed into positive and negative changes. However, their
derivation is rather ad hoc.
14Short-run symmetry restrictions (especially the pair-wise restrictions) may be excessively
restrictive in many applications although they may be useful in providing more precise estimation
results, particularly when estimating a long-run asymmetric relationship in small samples. The
additive symmetry restrictions are somewhat weaker and have been discussed in the literature
in terms of assessing the validity of the liquidity constraint where

Pq�1
iD0 �

C

i <
Pq�1

iD0 ��

i (e.g.
Van Treeck 2008).
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linear estimation are profoundly misleading when the underlying relationship is, in
fact, asymmetric. This will become apparent during the discussion of our empirical
illustration in Sect. 9.4.

A simple and useful addition to the general typology developed above is the
extension to the case where a subset of regressors enters the long-run relationship
symmetrically15:

yt D ˇC0xC
t C ˇ�0x�

t C � 0wt C ut ; (9.17)

where xt
�D x0 C xC

t C x�
t

�
is a k � 1 vector of regressors entering the model

asymmetrically and wt is a g � 1 vector of regressors entering symmetrically.
Extending the concept of partial asymmetry to both the long- and short-run within
our NARDL model, we obtain:

�yt D �yt�1 C �CxC
t�1 C ��x�

t�1 C �wwt�1

C
p�1X
iD1


i�yt�i C
q�1X
iD0

�
�C
i �xC

t�i C ��
i �x�

t�i C �w;i�wt�i
�C et : (9.18)

In light of the bounds-testing approach employed above, it follows that estimation
and inference proceed exactly as before, irrespective of whether xt and wt are I (0),
I (1) or mutually cointegrated. Furthermore, it is once again clear that this partially
asymmetric form represents a special case of (9.10).

9.3 Finite Sample Properties

In order to investigate the finite sample properties of the estimators we conduct a
range of Monte Carlo experiments based on the following simple data generating
process (DGP):

�yt D a C �
�
yt�1 � ˇCxC

t�1 � ˇ�x�
t�1
�C 'C�xC

t C '��x�
t C ut ; (9.19)

where �xt D "t ; and .ut ; "t / are serially uncorrelated and are generated according
to the following bivariate normal distribution:

�
ut
"t

	

 N



0;� D

�
1 !

! 1

	�
: (9.20)

15Webber (2000) utilises a similar approach in his analysis of the asymmetric pass-through from
exchange rates, decomposed as the partial sum processes of appreciations and depreciations, to
import prices.
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Notice that when ! ¤ 0, (9.19) can be estimated by:

�yt D a C �yt�1 C �CxC
t�1 C ��x�

t�1 C C�xC
t C ��x�

t C et ; (9.21)

where C D 'C C ! and � D '� C ! and the long run parameters are defined
as ǑC D � O�C= O� and Ǒ� D � O��= O�.

We experiment with a wide variety of parameterisations of (9.19) and (9.20).
Specifically, under the assumptions that a D 0, ˇC D 0:5 and 'C D 0:5,
and denoting ˇ� D ˇC C ıˇ and '� D 'C C ı' , we experiment with an
array of combinations of the following parameters: � 2 .�0:05;�0:1;�0:2/,
ıˇ 2 .0:1; 0:2; 0:25; 0:5/, ı' 2 .0:1; 0:2; 0:25; 0:5/, ! 2 .�0:5; 0; 0:5/, and
T 2 .100; 200; 400/. Due to space constraints, we are unable to report the results of
all of these simulations herein.16 Rather, we summarise the key findings that arise
across these parameterisations and report in detail the results from a baseline case
in which we use � D �0:2, ıˇ D 0:5 and ı' D 0:5, and where ! and T vary over
the ranges defined above.

In Table 9.1 we report a range of summary statistics for the parameter estimates
based on our simulations using 3,000 replications of our baseline case. We note that
the bias and error in the estimation of each of the parameters is largely negligible
(this also holds under the other parameterisations of the DGP that we consider). The
only exception to this generalisation is the error correction parameter, which shows
a modest downward bias especially when T � 100. However, this observation
is not unexpected given the well-documented downward bias associated with the
estimation of AR(1) coefficients in time series models.

We also investigate the finite sample size and power of the Wald statistics for the
null hypothesis of long-run symmetry

�
HS
LR W ˇC D ˇ�� and the null of symmetric

short-run dynamics
�
HS
SR W C D ��. To this end, we consider the model forHS

LR:

�yt D aC � .yt�1 � ˇxt�1/C 'C�xC
t C '��x�

t C ut ; (9.22)

where we set ˇ D ˇC, and the model for HS
SR:

�yt D a C �
�
yt�1 � ˇCxC

t�1 � ˇ�x�
t�1
�C '�xt C ut ; (9.23)

where ' D 'C. In both cases the alternative model is given by (9.19). Finally,
we examine the finite sample size and power of the PSS bounds test of the null
hypothesis of no asymmetric cointegration

�
HPSS W � D ˇC D ˇ� D 0

�
. In this

case, the restricted model is given by:

�yt D aC 'C�xC
t C '��x�

t C ut : (9.24)

16Full results are available on request.
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and, as before, the alternative model is given by (9.19). As noted in Sect. 9.2.3, the
relevant critical value bounds for the PSS test depend on the number of regressors
entering the long-run relationship, k. However, given the dependence between xC

t

and x�
t , the appropriate value of k is unclear. Thus, we propose a pragmatic solution

using two sets of critical values, one for which k is defined by counting the partial
sums as separate I (1) regressors (here, k D 2) and another by counting each set of
partial sums collectively as a single I (1) regressor (here, k D 1). It follows that the
latter approach is the more conservative.

Table 9.2 summarises the simulation results from our baseline case at a nominal
size of 5 %. For T D 100, the long-run Wald test has very high power and the
short-run Wald and PSS tests have moderate power, although this rapidly improves
as T increases. Indeed, when T D 400 all of the tests achieve close to 100 % power.
The short-run Wald test is well-sized regardless of the value of T while WLR is
slightly oversized in small samples, although this improves rapidly as T increases.
Finally, as expected, we observe some mis-sizing of the PSS F-test dependent on the
selection of k. Importantly, however, we find that the power of the test is satisfactory
even under the conservative case (k D 1).

Table 9.2 also reports the power of the bootstrapped PSS test. For each replication
of the simulation routine, using data generated under the alternative hypothesis, we
generate 500 bootstrap samples non-parametrically using the resampled residuals
from estimation of (9.21) in conjunction with the estimated coefficients from (9.24)
under the assumption that the initial values and the x’s are known. It is then a
simple matter to compute the empirical p-value of the PSS test by estimating (9.21)
on the bootstrap samples and calculating the probability that the bootstrapped test
statistic exceeds its original value. On this basis, we note that the bootstrapping
procedure achieves the desired size correction while retaining admirable power
which increases with T .

One important finding that arises from the other parameterisations of the DGP
is that the power of the long- and short-run Wald tests is positively associated with
the distance between their respective null and alternative hypotheses. Moreover, we
find that the long-run Wald test becomes somewhat over-sized especially when the
distance of the alternative from the null is small, the error correction parameter
is close to zero, and T � 100. These findings reflect the well known limitations
of asymptotic inference under adverse conditions. To overcome these issues, one
could adopt the common practice within the literature and compute empirical
p-values for the short- and long-run Wald statistics by use of a bootstrap. However,
we choose to pursue an alternative and more flexible approach. By computing 95 %
bootstrap confidence intervals for the difference between the asymmetric cumulative
dynamic multipliers defined for positive and negative shocks, respectively, we
are able to convey relevant information about the statistical significance of any
observed asymmetries at any horizon, h. Furthermore, in light of our simulations,
and given the absence of precise asymptotic critical values for the FPSS and tBDM
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test statistics, we choose to provide bootstrapped p-values for these tests in our
empirical application.17

9.4 An Empirical Application: The Asymmetric
Unemployment-Output Relationship

To demonstrate both the simplicity and flexibility of the NARDL approach, we
now present an empirical application focusing on the negative relationship between
changes in the rate of unemployment and the rate of output growth (Okun’s
Law). This remains one of the most commonly cited stylized facts in modern
macroeconomics and is of fundamental importance in monetary policy transmission,
representing the link between unemployment and output which underpins the
mechanism by which inflation targeting monetary policy is thought to operate.18

However, despite its importance, empirical assessments of Okun’s law over the
last three decades have been rather disappointing. The majority of this voluminous
literature adheres to a linear paradigm, reflecting the assumption that cyclical
upturns and downturns have symmetrical effects on unemployment. In general, there
is little reason to believe that the labour market should behave in this simplistic
fashion. If employers dismiss a given quantity of labour after a negative growth
shock, then they may not hire exactly the same amount after a positive shock
of equal magnitude (Lang and de Peretti 2009). This may be discussed in terms
of labour market hysteresis, the idea that cyclical shocks may permanently affect
structural unemployment. In this vein, Blanchard and Summers (1987) explain the
persistently high European unemployment of the 1980s using an insider-outsider
wage setting model. They argue that adverse shocks that reduce the proportion of
insiders (union members) will increase outsider unemployment permanently. There
is, therefore, no tendency for the labour market to return to its initial state even
after economic growth has recovered (see also Hamermesh and Pfann 1996, on the
asymmetric adjustment costs of labour).

In response to these issues, empirical attention is increasingly turning to non-
linear modelling. There is a natural complementarity between the asymmetric

17We employ a non-parametric bootstrapping routine and use 50,000 replications after rejecting
those for which � > �1� 10�4. Full details are available on request.
18Earlier drafts of the paper include an additional illustration which has subsequently been removed
to conserve space. Previously, the NARDL model was used to investigate to the so-called ‘rockets-
and-feathers’ hypothesis associated with Bacon (1991), which describes how retail gasoline prices
tend to react asymmetrically to changes in the price of crude oil (an exhaustive survey is provided
by Grasso and Manera 2007). Working with Korean data spanning the period 1991q1–2007q2, our
results confirm that gasoline prices respond more rapidly to increases in the price of crude oil than
to decreases. Furthermore, our results suggest that the gasoline price is more sensitive to exchange
rate depreciations than to appreciations and that gasoline price adjustments are approximately
symmetric in the long-run. A complete discussion is available from the authors on request.
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analyses of Okun’s Law, the Phillips curve and the preferences of the central
bank which has helped to drive research in the field. Neftci (1984) laid the
foundations for this literature with his early study of business cycle effects on
the patterns of correlation between major US time series, which revealed that
the output-unemployment relationship displays marked asymmetry. Altissimo and
Violante (2001) find evidence of nonlinearity between output and unemployment
using a nonlinear multivariate VAR model. Their results, which they note are
consistent with the majority of existing univariate threshold models, indicate that
shocks in the recessionary regime are considerably less persistent than those in
the expansionary regime. Similarly, Crespo Cuaresma (2003) develops a regime-
dependent specification of Okun’s law and finds that the contemporaneous effect of
output growth on unemployment is asymmetric and significantly larger in recessions
than in expansions, and that shocks to unemployment tend to be more persistent in
the expansionary regime.

Attfield and Silverstone (1998) argue that if output and unemployment are coin-
tegrated and potential output and unemployment are defined by the stochastic trend
components of the variables constructed from the Beveridge-Nelson decomposition,
then Okun’s coefficient can be interpreted as the cointegrating coefficient. However,
the cointegration test results are ambiguous: the single equation residual based
ADF test is unable to reject the null of no cointegration while it is rejected by the
Johansen test. Using a static asymmetric regression of the form of (9.1), Schorderet
(2001) finds that nonlinearity hinders efforts to detect the stationary relationship
between unemployment and output.19 The contention that the appropriate modelling
of nonlinearity strongly affects the cointegration test is one to which we will return
shortly.

In this section, we apply the NARDL technique to the simultaneous analysis
of both long- and short-run nonlinearities in the relationship between output and
unemployment in the US, Canada and Japan.20 This application demonstrates one
of the key strengths of our model: its flexibility and the ease with which it can be
applied to each of the four cases of nonlinearity defined above.

Firstly, to establish a reference point, we estimate the static linear regression
of unemployment on a constant, a time trend and output (Table 9.3a) and a static
asymmetric model of the form of (9.1), the results of which are reported in
Table 9.3b.

In keeping with the findings of Attfield and Silverstone (1998), Schorderet
(2001) and Granger and Yoon (2002), the EG test finds no evidence of linear
cointegration. Moreover, the EG test is unable to reject the null of no cointegration

19Further examples of the use of positive/negative decompositions in the modelling of asymmetry
in the unemployment-output relationship include Lee (2000) and Virén (2001).
20Seasonally-adjusted monthly data for unemployment and industrial production covering the
range 1982m2–2003m11 were collected from the OECD’s Main Economic Indicators. Although
not presented here, ADF testing lends overwhelming support to the hypothesis that all variates are
I(1).
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Table 9.3 Static estimation of the unemployment-output relationship

US Canada Japan

Var. Coeff. S.E. Coeff. S.E. Coeff. S.E.

(a) Static linear regression
Constant 73.16 3.92 74.96 2.94 29.94 1.25
Trend 0.03 0.00 0.03 0.00 0.02 0.00
yt �15.66 0.94 �15.19 0.70 �6.38 0.28
R2 0.77 0.78 0.89
Adj:R2 0.77 0.78 0.89
�2SC 250.84[0.000] 233.28[0.000] 235.08[0.000]
�2H 69.29[0.000] 1.95[0.163] 0.29[0.593]
�2FF 109.11[0.000] 0.21[0.901] 60.72[0.000]
�2N 3.40[0.183] 6.52[0.011] 21.62[0.000]
EGMAX �2.90 �2.42 �2.86

(b) Static asymmetric regression
Const. 7.82 0.10 10.56 0.10 2.55 0.62
y

C

t �10.73 0.51 �13.05 0.48 �4.61 0.28
y�

t �25.83 1.81 �20.38 0.92 �7.70 0.33
R2 0.78 0.81 0.87
Adj:R2 0.77 0.81 0.87
�2SC 248.82[0.000] 231.04[0.000] 240.02[0.000]
�2H 66.99[0.000] 0.31[0.580] 0.16[0.690]
�2FF 110.39[0.000] 0.23[0.892] 57.18[0.000]
�2N 11.23[0.004] 7.97[0.005] 22.69[0.000]
WyC

Dy� 129.20[0.000] 258.10[0.000] 1607.50[0.000]
EGMAX �2.79 �2.60 �2.55

Note: yt denotes the natural logarithm of industrial production and yC

t and y�

t the associated
positive and negative partial sum processes. Note also that in order to accommodate the strong
trending behavior of yt , we include a deterministic time trend in the symmetric case. �2SC , �2H ,
�2FF and �2N denote LM tests for serial correlation, heteroscedasticity, functional form (Ramsey’s
RESET test) and normality, respectively. Figures in square parentheses are the associated p-values.
WyC

Dy� denotes the Wald test of the equality of the coefficients associated with yC

t and y�

t .
EGMAX denotes the largest value of the Engle-Granger residual-based ADF test. The 95 % critical
values of the EG test are �3:42 (panel (a)) and �3:77 (panel (b))

in the static asymmetric case, highlighting the importance of an appropriate dynamic
specification. In all cases, we find a pronounced negative association between output
and unemployment, with the results of asymmetric analysis indicating strong non-
linearity (the Wald tests of the symmetry restrictions reject the null in all cases).
However, the validity of these results is questionable given the evidence of severe
model mis-specifications.

Table 9.4 reports estimation results for the restricted symmetric ARDL regression
of the form of (9.16). Table 9.5 presents the results of the unrestricted NARDL
case allowing for both long- and short-run asymmetry. Notice that the cointegration
tests are unable to reject the null hypothesis in the restricted case but that both the
tBDM and FPSS statistics resoundingly reject the null when long-run asymmetry
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Table 9.4 Dynamic linear estimation of the unemployment-output relationship

US Canada Japan

Var. Coeff. S.E. Var. Coeff. S.E. Var. Coeff. S.E.

ut�1 �0.03 0.01 ut�1 �0.02 0.01 ut�1 0.00 0.01
yt�1 �0.04 0.07 yt�1 �0.09 0.10 yt�1 �0.02 0.06
�ut�1 �0.17 0.06 �ut�2 �0.12 0.06 �ut�1 �0.26 0.06
�ut�11 0.13 0.05 �yt �4.40 1.19 �ut�2 �0.22 0.06
�yt �8.17 1.61 �yt�2 �2.83 1.21 �ut�10 0.16 0.06
�yt�2 �4.73 1.58 �yt�6 �3.01 1.16 �ut�12 �0.18 0.06
�yt�4 �4.04 1.50 Const. 0.57 0.55 �yt�1 �1.37 0.42
Const. 0.38 0.35 �yt�2 �1.27 0.45

�yt�3 �1.30 0.43
�yt�9 �1.16 0.39
Const. 0.09 0.27

Ly �1.66 2.03 Ly �5.68 3.89 Ly 5.57 20.88
R2 0.29 R2 0.13 R2 0.23
NR2 0.27 NR2 0.11 NR2 0.20
�2SC 10.75[0.550] �2SC 9.35[0.673] �2SC 11.95[0.450]
�2FF 1.94[0.163] �2FF 0.26[0.609] �2FF 0.03[0.867]
�2NOR 3.72[0.156] �2NOR 12.35[0.002] �2NOR 0.92[0.632]
�2HET 15.19[0.000] �2HET 0.09[0.770] �2HET 0.41[0.521]
tBDM �2.34[0.136] tBDM �1.27[0.820] tBDM 0.57[1.000]
FPSS 4.69[0.081] FPSS 0.81[0.927] FPSS 0.18[0.890]

Note: ut denotes the rate of unemployment, measured in percentage points. Here we follow the
general-to-specific approach to select the final ARDL specification. The preferred specification is
chosen by starting with maxp D max q D 12 and dropping all insignificant stationary regressors.
tBDM is the BDM t-statistic while FPSS denotes the PSS F-statistic testing the null hypothesis � D
� D 0. The long-run coefficient Ly is defined by Ǒ D � O�= O�. Pesaran et al. (2001) tabulate the 5 %
critical values for k D 1 as follows: tcrit D �3:22; Fcrit D 5:73. Empirical p-values are quoted
for the BDM t-statistic and the PSS F-statistic

is modelled appropriately. This result underscores the importance of correctly
specifying the long-run relationship under scrutiny. Moreover, the finding that the
ECM-based tests are able to detect the asymmetric long-run relationship while
the EG residual-based approach cannot is generally consistent with the works of
Kremers et al. (1992), Hansen (1995), Banerjee et al. (1998) and Pesaran et al.
(2001). This reflects the well-established power-dominance of the ECM-based tests
resulting from their inclusion of potentially valuable information relating to the
correlation between the regressors and the underlying disturbances.

In the restricted symmetric models (Table 9.4), the estimated long-run coef-
ficients for the US, Canada and Japan are �1:66, �5:68 and 5.57, respectively,
although none is statistically significant due to the failure to accurately model the
long-run relationship. Indeed, the counterintuitive finding of a positive long-run
coefficient in the case of Japan reflects the fact that the model misspecification
is so severe in this case that the estimated error correction coefficient is positive,
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Table 9.5 Dynamic asymmetric estimation of the unemployment-output relationship

US Canada Japan

Var. Coeff. S.E. Var. Coeff. S.E. Var. Coeff. S.E.

ut�1 �0.06 0.01 ut�1 �0.07 0.02 ut�1 �0.05 0.01
y

C

t�1 �0.55 0.17 y
C

t�1 �1.27 0.28 y
C

t�1 �0.34 0.10
y�

t�1 �1.62 0.50 y�

t�1 �2.09 0.46 y�

t�1 �0.53 0.14
�ut�1 �0.19 0.06 �ut�2 �0.13 0.06 �ut�1 �0.23 0.06
�ut�11 0.11 0.05 �ut�12 �0.12 0.06 �ut�2 �0.19 0.06
�y

C

t �8.42 2.23 �y
C

t �5.24 1.86 �ut�10 0.13 0.06
�y

C

t�2 �4.82 1.99 �y
C

t�3 3.69 1.86 �ut�12 �0.22 0.06
�y�

t �8.24 4.28 �y�

t �5.15 2.60 �y
C

t�1 �1.61 0.65
�y�

t�4 �9.74 3.77 �y�

t�3 �5.89 2.64 �y
C

t�9 �1.71 0.66
Const. 0.38 0.11 Const. 0.72 0.19 �y�

t �1.80 0.71
Const. 0.16 0.04

LyC �9.76 1.74 LyC �17.26 2.15 LyC �7.28 1.64
Ly� �28.88 6.33 Ly� �28.48 4.04 Ly� �11.26 1.97
R2 0.32 R2 0.20 R2 0.24
NR2 0.30 NR2 0.17 NR2 0.21
�2SC 9.23[0.683] �2SC 8.11[0.777] �2SC 11.85[0.458]
�2FF 0.53[0.466] �2FF 9.74[0.002] �2FF 0.11[0.744]
�2NOR 1.79[0.409] �2NOR 12.62[0.002] �2NOR 0.30[0.861]
�2HET 12.81[0.000] �2HET 0.38[0.537] �2HET 2.77[0.096]
tBDM �3.97[0.007] tBDM �4.12[0.006] tBDM �3.34[0.033]
FPSS 6.98[0.010] FPSS 7.13[0.005] FPSS 5.38[0.038]
WLR 16.33[0.000] WLR 32.49[0.000] WLR 76.69[0.000]
WSR 0.46[0.498] WSR 3.65[0.056] WSR 2.35[0.125]

Note:LyC and Ly� denote the long-run coefficients associated with positive and negative changes
of output, respectively. WLR refers to the Wald test of long-run symmetry (i.e. LyC D Ly� ) while
WSR denotes the Wald test of the additive short-run symmetry condition. Pesaran et al. (2001)
tabulate the 5 % critical values of tBDM as �3:53 and �3:22 for k D 2 and k D 1, respectively,
while the equivalent values for FPSS are 4.85 and 5.73. Empirical p-values are reported for both
tests

indicating explosive instability. By contrast, using the more general unrestricted
model of the form (9.10), the FPSS and tBDM tests both reject their respective null
hypotheses in all cases, even using the conservative critical values for the PSS test
(see Table 9.5). Furthermore, the Wald tests are also able to firmly reject the null
hypothesis of long-run symmetry in all cases. In this case, the estimated long-run
coefficients on yC and y� are �9:76 and �28:88 for the US, �17:26 and �28:48 for
Canada and �7:28 and �11:26 for Japan, respectively. Therefore, we may conclude
that an economic upturn of 10.3 % is necessary to reduce unemployment by 1 %
in the US while an economic downturn of just 3.5 % achieves the opposite. The
associated values for Canada are 5.8 and 3.5 % while in the case of Japan the figures
translate to an economic upturn of 13.7 % and a downturn of 8.9 %. The relatively
muted response of the labour market to output fluctuations in Japan reflects its
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Fig. 9.1 US unemployment-output dynamic multipliers. (a) LR & SR asymmetry. (b) LR
symmetry & SR asymmetry. (c) LR asymmetry & SR symmetry. (d) LR & SR symmetry

restrictive employment policies and unusually long job tenure (Tanaka 2001), and
is comparable to the linear estimation results achieved by Hamanda and Kurosaka
(1984).

Turning to the analysis of short-run dynamic asymmetry, we find that the Wald
test cannot reject the null of (weak-form) summative symmetric adjustment in the
USA or Japan but that it is rejected at the 10 % level in Canada. Consulting the
bootstrap confidence intervals for the difference between the asymmetric dynamic
multipliers reported in Figs. 9.1–9.3 supports this finding. However, as noted earlier,
the pattern of dynamic adjustment depends on a combination of the long-run
parameters, the error correction coefficient and the model dynamics. Therefore,
although we find little evidence of additive short-run asymmetries, we nevertheless
observe apparent asymmetries in the adjustment patterns traced by the dynamic
multipliers.

For the benefit of the reader, Fig. 9.1 presents the dynamic multipliers for the
US under each of the four combinations of long- and short-run asymmetry. Notice
that the imposition of long-run symmetry restrictions fundamentally changes the
shape of the dynamic multipliers, resulting in marked overshooting where none
was previously observed. In conjunction with the results of a battery of diagnostic
tests, we conclude that the imposition of invalid long-run restrictions represents a
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Fig. 9.2 Canadian unemployment-output dynamic multipliers. (a) LR & SR asymmetry. (b) LR
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Fig. 9.3 Japanese unemployment-output dynamic multipliers. (a) LR & SR asymmetry. (b) LR
asymmetry & SR symmetry

severe mis-specification of the model. This underscores the importance of correctly
accounting for inherent nonlinearities in the long-run relationship and cautions
that failure to do so jeopardises the identification of the long-run relationship and
compromises the estimation of the model dynamics. In light of the overwhelming
rejection of the long-run symmetric models, the associated dynamic multipliers are
omitted from Figs. 9.2 and 9.3 to save space.

For the US, the results of both long-run asymmetric models (Fig. 9.1a, c) are
remarkably similar, indicating that the labour market responds rapidly and strongly
to cyclical downturns in the very short-run (correcting one quarter of disequilibrium
within one period) but that full adjustment to the new equilibrium is a relatively
prolonged process. By contrast, the labour market responds only mildly to the boom
phase but full adjustment is achieved within 6 months. This reflects the flexibility
of the US labour market, whereby firms are quick to fire in the short-run in order to
cut costs but are also quick to hire in the knowledge that they can easily and quickly
release the additional labour should the need arise.

Figure 9.2 reveals that the pattern of dynamic adjustment is considerably richer
in the fully asymmetric case in Canada. We again find very rapid labour market
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adjustment in the immediate wake of a contractionary shock, with more than
50 % of the traverse to equilibrium achieved within 6 months. Again, we find that
the remaining disequilibrium error is corrected relatively slowly. By contrast, the
labour market response to the cyclical upswing is more gradual, taking 1 year
to achieve 50 % of the adjustment toward equilibrium. Furthermore, in panel (b),
with the imposition of short-run symmetry, after the initial rapid adjustment to the
contractionary shock the gradient of the cumulative dynamic multiplier is noticeably
steeper than in the case of an economic expansion, as reflected in the upward slope
of the difference curve. In sum, our results suggest that Canadian firms are quick to
fire and slow to hire, reflecting conservatism on the part of their management.

Finally, we find little evidence of short-run asymmetry in Japan. Figure 9.3
reveals that the Japanese labour market exhibits very muted responses to both
booms and busts when compared to the US and Canada, a finding that reflects
the prevalence of restrictive labour market institutions. Focusing on Fig. 9.3b, we
note that 50 % of the equilibrium correction occurs within 10–12 months of either
a positive or a negative shock, and that after this initial phase, convergence upon
long-run equilibrium occurs very slowly.

Despite their superficial differences, a common pattern emerges between
Figs. 9.1–9.3. In general, the labour markets in all countries exhibit relatively rapid
adjustment in the first year with the absolute effect of an economic contraction
being significantly larger than that of an expansion. Following this initial period,
the speed of adjustment slows markedly and, subject to the imposition of short-run
symmetry restrictions, we find that the labour market response to output shocks
remains somewhat more rapid in the contractionary case than in the expansionary
environment in both Canada and Japan. The US can be viewed as a special case
due to the widely discussed flexibility of its labour market which permits very rapid
adjustment to the expansionary shock as firms are eager to hire in the knowledge
that subsequent dismissals are neither difficult nor unduly costly.

The subtle patterns revealed by the dynamic multipliers suggest that the focus
of the literature on the persistence of shocks (Altissimo and Violante 2001; Crespo
Cuaresma 2003) fails to convey important information regarding the magnitude of
the implied adjustments to the labour market. Simply put, the impact of a recession
in terms of jobs lost is greater in both the short- and the long-run than the job
creation associated with an economic expansion of equal magnitude even though
the discussion of the half-life of the shocks in the US may indicate the opposite
(i.e. 50 % of the long-run effect of a contractionary shock is greater than 100 % of
the long-run impact of an expansionary shock of equal magnitude). Focusing on
persistence gives an incomplete picture of the phenomenon under study when the
long-run relationship is asymmetric. This serves to highlight one of the primary
attributes of the asymmetric cumulative dynamic multipliers; they help to shed light
on the traverse between the short-run and the long-run, a property whose usefulness
and theoretical appeal is difficult to overstate. In a traditional ECM, the speed of
adjustment is computed simply as a percentage of the equilibrium error that is
corrected in each period. By contrast, NARDL illuminates the dynamic pattern of
adjustment in a simple and intuitive manner.
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9.5 Concluding Remarks

The investigation of nonstationarity in conjunction with nonlinearity has recently
assumed a prominent role in econometric research. This reflects the realisation that
asymmetry is pervasive within the social sciences and may be inherent in modern
economies. Indeed, the behavioural finance literature can be viewed as an attempt
at formalising this observation. In this paper we have proposed a simple method
of combining asymmetric cointegration with a dynamically flexible ARDL model
and have derived the associated error correction framework. The desirable features
of the NARDL model are threefold. Firstly, the estimation of the ECM in one step
is likely to improve the performance of the model in small samples, particularly in
terms of the power of the cointegration tests. Secondly, the ability to simultaneously
estimate both long- and short-run asymmetries in a computationally simple and
tractable manner reflects the flexibility of our modelling approach. Moreover, our
technique provides a straightforward means of testing both long- and short-run
symmetry restrictions. Finally, the use of asymmetric dynamic multipliers provides
an intuitive and computationally straightforward means of assessing the traverse
between the short- and long-run, a result with significant theoretical appeal. While
the dynamic adjustment in most ECMs is discussed in terms of the percentage of
the disequilibrium error that is corrected in each period, our approach sheds light
on the nature of this dynamic adjustment, mapping the gradual movement of the
process under scrutiny from initial equilibrium through the shock and toward the
new equilibrium.

These key strengths of the NARDL framework have been demonstrated in the
case of the long- and short-run asymmetry of the unemployment-output relationship.
The results suggest that the imposition of long-run symmetry where the underlying
relationship is nonlinear will confound efforts to test for the existence of a stable
long-run relationship and will result in spurious dynamic responses. Similarly, our
results stress the importance of correctly capturing short-run asymmetries in order
to illuminate potentially important differences in the response of economic agents
to positive and negative shocks.

In summary, NARDL represents the simplest method of modelling combined
short- and long-run asymmetries yet developed. At this point, it seems appropriate
to mention three obvious extensions which present themselves. Firstly, the model
can be related to the threshold literature by generalising to the case of one or
more unknown non-zero thresholds for use in the construction of the partial sum
processes. This is the subject of ongoing research by Greenwood-Nimmo et al.
(2012), in which we employ Hansen’s (2000) approach to estimation and inference
in models with unknown threshold parameters. One could further extend research
in this vein by allowing for the state-contingency of the error correction term, �
(i.e. distinguishing between �C and ��). Secondly, although highly challenging,
the development of a system equivalent of our model capable of dealing with
multiple long-run relationships would permit the analysis of a more diverse range
of macroeconomic phenomena. Finally, the extension of the model to the dynamic
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heterogeneous panel context may broaden its appeal further still. The obvious
starting point for such developments is the pooled mean group framework advanced
by Pesaran et al. (1999), which is readily estimable by FIML under the assumption
of long-run homogeneity.

Acknowledgements This is a substantially revised version of an earlier working paper by Shin
and Yu (2004). Earlier versions circulated under the titles “An ARDL Approach to an Analysis of
Asymmetric Long-Run Cointegrating Relationships” and “Modelling Asymmetric Cointegration
and Dynamic Multipliers in an ARDL Framework”. We are grateful to Badi Baltagi, Jinseo Cho,
Ana-Maria Fuertes, Liang Hu, John Hunter, Minjoo Kim, Soyoung Kim, Gary Koop, Kevin
Lee, Camilla Mastromarco, Emi Mise, Viet Nguyen, Neville Norman, Hashem Pesaran, Kevin
Reilly, Laura Serlenga, Ron Smith, Till van Treeck and participants at the ESEM conference
(Vienna 2006), the ICAETE conference (Hyderabad 2009), and research seminars at the IMK,
the Bank of Korea, and the Universities of Bari, Lecce, Leeds, Leicester, Korea and Yonsei for
their helpful comments. This paper has been widely circulated and the methodology adopted by
a number of authors – we are pleased to acknowledge their valuable feedback, comments and
discussion. Shin acknowledges partial financial support from the ESRC (Grant No. RES-000-22-
3161). Yu is grateful for the hospitality of Leeds University Business School during his visit. The
usual disclaimer applies.

Appendix

Proof of Theorem 1

The OLS estimator, Ǒ WD . ǑC; Ǒ�/0, in (9.1) is obtained by
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where �C WD E ŒmaxŒ0; vt �� and �� WD E ŒminŒ0; vt ��, so that
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Here, oP .T 6/ terms are canceled off, and the remaining next-order terms are stated
as above. We now note that
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where �2s WD Var .st /, ) indicates weak convergence, and WQs.r/ is the standard
Brownian motions defined on r 2 Œ0; 1�. Therefore,
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by the CMT (e.g. Eq. (17.3.22) of Hamilton (1994), p. 486). Also notice that
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then it follows that
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by the CMT. Collecting all these results we obtain:
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Next, we consider the asymptotic weak limit of the numerator of ǑC � ˇC. For
this, we note that the OP .T 9=2/ terms cancel off and that the remaining next-order
terms are Op.T 4/ so that
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where we also employ the definition of sj WD �Cw�
j � ��wC

j . Then, by the CMT
(e.g. Eqs. (f) on p. 548 and (17.3.19) on p. 486 of Hamilton (1994), respectively) we
have:
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where WQu.�/ is a standard Brownian motion independent of WQs.�/. Collecting all
these results and (9.28) and plugging them into AT , we obtain by the CMT:
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We now examine the numerator of . Ǒ� � ˇ�/ in a similar manner. That is,
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Combining (9.29) and (9.31) respectively with (9.25) we obtain the main results.
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Next, from (9.26) and (9.30), it is easily seen that

�CAT C ��BT D oP .T
4/;

which proves the final result in Theorem 1.
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Chapter 10
More Powerful Unit Root Tests
with Non-normal Errors

Kyung So Im, Junsoo Lee, and Margie A. Tieslau
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10.1 Introduction

As is well known, traditional unit root tests have relatively low power. As such, the
search for more powerful unit root tests has not been a trivial concern. In this paper,
we suggest new unit root tests that utilize the information contained in non-normal
errors. Our suggested tests show significantly improved power over the traditional
tests that do not utilize the information on non-normal errors. It is common practice
in the literature of unit root tests to ignore the information on non-normal errors. One
of the main reasons might be that the limiting distribution of the usual unit root tests
is not affected by ignoring non-normal errors. For example, the limiting distribution
of the linear DF tests do not hinge on assumptions regarding the distribution of the
error term. However, we argue cautiously that this result does not necessarily imply
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that the information embodied in non-normal errors is useless or that it should be
ignored. If there is a way to utilize the information, the outcome will be fruitful. This
paper clearly shows that utilizing the information on non-normal errors provides an
important source for improving the power of unit root tests. The question of interest
might be how to utilize the information on non-normal errors.

To begin with, we wish to note that it is not uncommon to find non-normality
when dealing with real-world data. Non-normal distributions can occur for a variety
of reasons, and they might not be easy to distinguished from some forms of
non-linearity. For example, many financial time series variables have fat-tailed or
leptokurtic distributions, which often are modeled in a non-linear framework. In
addition, some financial variables are characterized by skewed distributions, which
can occur when an asymmetric relationship exists in the data. Furthermore, some
economic time series variables have a mixture of different distributions, which
typically would be modeled as regime switching models. Clearly, these examples
illustrate that many cases of non-normality are addressed in terms of non-linearity.
If a specific nonlinear form is known, it would be possible to utilize non-linear tests
using the specific information. But one potential difficulty of this approach is that
such information is not easily available, and there is no convenient test that permits
us to choose a proper nonlinear model. Finding a proper density function of the error
term also poses a problem.

A key feature of the new tests that we suggest in this paper is that they do
not require knowledge of a specific density function or a functional form. Instead,
we utilize the non-normality information contained in the higher moments of
the residuals in the testing regression. Specifically, we adopt a simple two-step
procedure based on the “residual augmented least squares” (RALS) methodology,
following the work of Im and Schmidt (2008). While Im and Schmidt (2008)
considered a standard regression model under certain conditions, we consider the
issue of testing for non-stationarity. There is an important practical advantage
in our suggested RALS unit root tests. We do not require nonlinear estimation
techniques since the suggested RALS testing procedure is implemented in a linear
framework that relies on least squares estimation. Our simulation results clearly
show significantly improved power of the suggested RALS tests over the DF tests.
Since the suggested tests utilize only the moment conditions of the residuals, we
may not be able to claim that these new tests can provide improved power in all
possible cases of non-normal errors, but the improved power seems substantial
in many cases without causing any significant size distortions. This is a very
encouraging result.

We first present the theoretical result that the linearized RALS statistics for a
unit root are essentially equivalent to the test statistics based on the generalized
method of moments (GMM) estimators utilizing nonlinear moment conditions.
This result is useful since it permits us to use a simplified testing procedure in a
linear model framework. Indeed, the suggested procedure is based on linear least
squares estimation, although we utilize non-linear moment conditions in the GMM
framework. In short, our RALS-based unit root tests make use of non-linear moment
conditions through a computationally simple procedure. It turns out that the limiting
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distribution of our RALS-based tests is the same as that of Hansen (1995), who
suggested augmenting the unit root testing equation with stationary covariates, if
available, to gain increased power. In so doing, the error variance of the regression
augmented with the stationary covariates will be smaller than that of the usual
Dickey-Fuller regression. His result is in line with the work of Wooldridge (1993)
and Qian and Schmidt (1999) who also noted that it is possible to increase efficiency
of estimation by augmenting the testing equation with variables that are correlated
with the error term. The underlying idea of our suggested RALS test is similar.
To utilize Hansen’s methodology, one needs to find stationary covariates that are
correlated with the error term, but uncorrelated with the regressors. Oftentimes, it
is not easy to find such “external” variables. The main difference of our RALS
tests is that they do not require these external variables but, rather, utilize valuable
information contained in non-normal errors, which usually is ignored. Our RALS-
based tests are useful since we can make use of information contained in the
series itself, rather than having to look for new stationary covariates satisfying the
requirement. Still, if such stationary covariates are available, the RALS-based tests
can additionally utilize them to further increase their power. The RALS-based unit
root tests yield substantial power gains.

The rest of the paper is organized as follows. In next two sections, we propose
the RALS-based unit root tests and provide the asymptotic distribution when the
errors are non-normal. We show that the asymptotic distribution of the linearized
RALS unit root tests is the same as that of the GMM-based unit root tests
utilizing nonlinear moment conditions. In Sect. 10.4, we provide simulation results
to examine the performance of the RALS-based unit root tests and we compare them
with other tests. Section 10.5 provides an empirical example and Sect. 10.6 provides
concluding remarks.

10.2 GMM Unit Root Test

Consider a time series that follows

yt D �yt�1 C "t ; t D 1; 2; : : : ; T; (10.1)

where f"tg1
tD1 is a sequence of innovations. For the unit root hypothesis, we are

interested in testing H0 W � D 1 against the alternative hypothesisHA W � < 1. We
assume:

Assumption 1. "t D Pp
jD1 aj "t�j C et , t D 1; 2; : : : ; T , where fetg1

tD1, is an i id
sequence with zero mean and a finite second moment �2e , and all roots of a.z/ D
1 �Pp

jD1 aj zj lie outside of the unit circle.

Then, one may consider the augmented Dickey-Fuller testing regression

�yt D ˇyt�1 C
pX
jD1

ıj�yt�j C et ; t D 1; 2; : : : ; T; (10.2)
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where �yt D yt � yt�1. Let Ǒ
LS be the least squares estimator of ˇ in regression

(10.2). We denote tLS as its t-statistic. Then it is well known that under the null
hypothesis we have

T Ǒ
LS ) a.1/

�Z 1

0

W.r/2dr

	�1 Z 1

0

W.r/dW.r/; (10.3)

and

tLS )
�Z 1

0

W.r/2dr

	�1=2 Z 1

0

W.r/dW.r/ D DF; (10.4)

where a.1/ D 1 � Pp
jD1 aj , and W.r/ is the standard Brownian motion on r 2

Œ0; 1�.
Let �t D �

�yt�1;�yt�2; : : : ; �yt�p
�0

, and zt D .yt�1; � 0
t /

0. Now, we suppose
that there are moment conditions:

E Œg.et /˝ zt � D 0; t D 1; 2; : : : ; (10.5)

where g.�/ is a J � 1 vector that satisfies the following assumption.

Assumption 2. g.�/ is differentiable and satisfies the first-order Lipshitz condition
jg0
j .x/ � g0

j .y/j < M jx � yj for some constant M for all j , where gj .�/ is the
j -th element of g.�/. Also, E Œg.et /� D 0, the second moment of g.et / exists, and
E Œg0.et /� < 1.

Define C D E Œg.et /g.et /
0� and D D E

h
@g.et /

@et

i
, and  .et / D D0C�1g.et /, for

t D 1; 2; : : : ; T . Also we define the correlation between et and  .et / as

� D � e

� �e
(10.6)

where �2 D Var Œ .et /� D Var
�
D0C�1g.et /

� D D0C�1D, and � e D
E Œ .et /et � D DC�1E Œg.et /et � : Then, we can consider GMM estimators that
utilize the moment restrictions in (10.5). We are interested in the asymptotic
distributions of the GMM estimators as well as their associated t-statistics. We
let Q̌

G denote the GMM estimator using the moments conditions (10.5) in the
ADF regression (10.2). The asymptotic distributions of Q̌

G and its corresponding
t-statistic are as given below.

Theorem 1. Suppose that a time series follows (10.1), and Assumptions 1 and 2
are satisfied. Under the null hypothesis of a unit root,

T Q̌
G ) a.1/

�e� 

�Z 1

0

W1.r/
2dr

	�1 Z 1

0

W1.r/dW2; (10.7)
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where ŒW1.r/;W2.r/�
0 is a bivariate Brownian motion with correlation �. The

corresponding t-statistic is given as tG D Q̌
G=se. Q̌

G/, where

se. Q̌
G/ D Q��1

 

vuuut
0
@

TX
tD1

y2t�1 �
TX
tD1

yt�1�t

 
TX
tD1

�t �
0
t

!�1 TX
tD1

� 0
t yt�1

1
A

�1

;

with Q�2 D QD0 QC�1 QD, QD D T �1PT
tD1 g0. Qet /, and QC D T �1PT

tD1 g. Qet /g. Qet /0I and
where Qet is the residual from GMM estimation of regression (10.2). Then, we have

tG ) �DF C
p
1 � �2Z; (10.8)

where � is defined in (10.6), DF denotes the Dickey-Fuller distribution as defined
in (10.4), and Z signifies the standard normal distribution.

Proof. See the Appendix.

In the case where an intercept is allowed in the model, we use the regression

�yt D ˛1 C ˇyt�1 C
pX
jD1

ıj�yt�j C et ; t D 1; 2; : : : ; T; (10.9)

and we have the additional moment conditions E
�
g.et /˝ .1; zt /

0� D 0. In view of
the expression for the estimator of ˇ in (10.31) of the Appendix, this produces the
GMM estimator that is given by

T Q̌
G;� D

 
�2 T

�2
TX
tD1

Qy2t�1
!�1

T �1
TX
tD1

Qyt�1 .et /C op .1/ ;

where Qyt�1 D yt�1 � T �1PT
tD1 yt�1, t D 1; 2; : : : ; T . Consequently, we have

T Q̌
G;� ) a.1/

� �e

Z 1

0

QW1.r/dW2.r/=

Z 1

0

QW1.r/
2dr; (10.10)

where QW1.r/ is the demeaned Brownian motion: QW1.r/ D W1.r/ � R 1
0
W1.r/dr .

Also, by construction, we have

tG;� ) �DF� C
p
1 � �2Z; (10.11)
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where DF� denotes the limiting distribution of the t-statistic from least squares in
regression (10.9).

Similarly, when the model includes a linear time trend and an intercept, we use
the regression

�yt D ˛1 C ˛2t C ˇyt�1 C
pX
jD1

ıj�yt�j C et ; t D 1; 2; : : : ; T; (10.12)

and this will result in the GMM estimator that follows

T Q̌
G;� ) a.1/

� �e

�Z 1

0

MW1.r/
2dr

	�1 Z 1

0

MW1.r/d MW2.r/; (10.13)

where MW .r/ is the detrended Brownian motion. Again, we have

tG;� ) �DF� C
p
1 � �2Z; (10.14)

where DF� denotes the limiting distribution of the t-statistic for the OLS estimator
of ˇ in the regression (10.12).

Remark 1. Each of the asymptotic distributions of tG , tG;�, and tG;� depends on the
nuisance parameter �. It is interesting to note that the above asymptotic distribution
is equivalent to that of Hansen (1995) who suggested using stationary covariates.
Hansen (1995) reports the critical values of the asymptotic distribution of these t-
statistics for �2 D 0:1 
 1:0, at increments of 0:1. As such, those critical values can
be used for the above GMM based tests.

10.3 RALS Unit Root Test

Now, we wish to consider some useful moment conditions that utilize the informa-
tion in non-normal errors. We first consider the model with an intercept as in (10.9),
and use xt D .1; z0

t /
0: We let g .et / D �

et ; Œh.et / �K�0�0 and consider the moment
condition E Œg .et /˝ xt � D 0. We can split this moment condition into two parts.
The first part is the usual moment condition of least squares estimation

E .et ˝ xt / D 0: (10.15)

The second part involves an additional .J�1/�.p C 2/moment conditions given by

E Œ.h .et /�K/˝ xt � D 0: (10.16)
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Therefore, we have:

C D
�
�2e C

0
21

C21 C22

�
; andD D

�
1

D2

�
; (10.17)

where C21 D E Œeth.et /�, C22 D E Œh.et /h.et /
0�, and D2 D E Œh0 .et /�. Then, we

define

Owt D h. Oet /�K � Oet OD2; t D 1; 2; : : : ; T; (10.18)

where Oet is the OLS residual from regression (10.9),K D 1
T

PT
tD1 h. Oet /, and OD2 D

1
T

PT
tD1 h0. Oet /. We denote the following equation as the residual augmented least

squares (RALS) regression

�yt D ˛1 C ˇyt�1 C
pX
jD1

ıj�yt�j C Ow0
t 
 C vt ; t D 1; 2; : : : ; T: (10.19)

where Owt augments the DF regression. We denote the resulting estimator the “RALS
estimator” since Owt is a function of the residuals obtained from the DF regression.
The RALS estimator of ˇ is denoted as Ǒ

R;�, and the corresponding t-statistic
for ˇ D 0 is denoted as tR;�. Note that the RALS estimator is obtained through
least squares estimation. Although some moment conditions given in g .et / can be
nonlinear, we do not require nonlinear optimization procedures. In the following,
we show that the RALS estimator is asymptotically identical to the GMM estimator
using moment conditions (10.15) and (10.16).

Theorem 2. Suppose that a time series follows (10.1) with � D 1. Under Assump-
tions 1 and 2, the RALS estimator Ǒ

R;� from (10.19) is asymptotically equivalent to

the GMM estimator Ǒ
G;� using moment conditions (10.15) and (10.16). In addition,

the limiting distribution of the RALS-based t-statistic tR;� is the same as that of the
corresponding GMM t-statistic tG;�.

Proof. See the Appendix.

When a linear time trend is included in the regression, we use

�yt D ˛1 C ˛2t C ˇyt�1 C
pX
jD1

ıj�yt�j C Ow0
t 
 C vt ; t D 1; 2; : : : ; T: (10.20)

By construction, the RALS estimator Ǒ
R;� and t-statistic tR;� will have the same

distributions as the corresponding GMM estimator Ǒ
G;� and t-statistic tG;� , which

are given in (10.13) and (10.14), respectively. Note in passing that we can obtain
similar results for the RALS estimator Ǒ

Rand t-statistic tR for the model without a
drift or trend.
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Thus, to obtain the RALS unit root tests, we first estimate the usual DF testing
regression to obtain the residuals from regressions (10.2), (10.9), or (10.12). We
then use these residuals to construct Owt . For example, from (10.9), we have Oet D
�yt � Ǫ1 � Ǒyt�1 � Pp

jD1 Oıj�yt�j . Then, in the second step, the t-statistic on
ˇ D 0 is computed using the augmented RALS regression. We wish to provide
more guidance on how to apply the RALS procedure in practice.

• �2 is estimated by

O�2 D O�2A= O�2;

where O�2 is the usual estimate of the error variance in the standard ADF
regression, and O�2A is the estimate of the error variance in the RALS regression
in (10.19) and (10.20). See the proof of Theorem 2 [Eqs. (10.38) and (10.41)].
Using the estimated value O�2, we can use the critical values reported in Hansen
(1995). Note that our method corresponds to the case where �2 D R2 in Hansen
(1995, p. 1151).

• When the sample size is small (e.g. T � 50), one may impose the restriction
of ˇ D 0 in the first step regression that yields the residuals for the augmented
variables in Owt . According to our simulations, this procedure improves the size
property of the test with only minimal effects on power. When the sample is
relatively big (e.g., T D 100), however, this effect, disappears quickly.

• One may be interested in the asymptotic behavior of the RALS unit root tests
under a local alternative. In light of Theorem 2 and Remark 1, one can see that
the asymptotic distribution of the RALS unit root tests under a local alternative
is the same as that of the unit root tests with stationary covariates. Hansen (1995,
Theorem 3) already has shown the distribution of the DF tests with stationary
covariates. Since wt in (10.18) functions just like a stationary covariate for the
RALS procedure, the asymptotic distribution and the power function of the
RALS tests under a local alternative also would be the same as that of Hansen
(1995) under the same situation. Thus, a lower value of �2 will lead to a higher
local power function. Then one may consider an extended version of the RALS
tests using DF-GLS detrending, as in Elliott and Jansson (2003). It is expected
that the DF-GLS approach against a point alternative with � D .1C c0=T / will
lead to further improved power when the errors are not normal. However, the
optimal value of the parameter c0 will need to be determined to avoid the issue
of nuisance parameter dependency.

• Alternatively, the LM detrending method of Schmidt and Phillips (1992) can be
considered as in Meng et al. (2014). The RALS unit root tests using the LM
detrending method also can gain further improved power. While the LM based
test can be a little less powerful than the DF-GLS based test, it is free of the
nuisance parameter c0. Moreover, it can be practically more useful in extended
models with structural changes.

To implement the RALS unit root tests, we need to choose the moment conditions
in (10.16). One plausible option is to utilize the moment conditions that the second
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and third moments of the errors are not correlated with the lagged dependent
variables. Therefore, we let h. Oet / D � Oe2t ; Oe3t

�0
and we call the resulting tests the

“RALS(2&3)” test.1 Letting mj D T �1PT
tD1 Oejt , for j D 2; 3, for RALS(2&3)

we use

Owt D � Oe2t �m2; Oe3t �m3 � 3m2t Oet
�0
; t D 1; 2; : : : ; T: (10.21)

The first term in Owt is associated with the moment conditionE
��
e2t � �2e

�
yt�1

� D 0

which is the condition of no heteroskedasticity. This condition improves the
efficiency of the estimator of ˇ when the errors are not symmetric. The second term
in Owt improves efficiency unless �4 D 3�4, where �j D E.e

j
t /. In general, higher

moments �jC1 are uninformative if �jC1 D j�2�j�1: This is the redundancy
condition initially identified by MaCurdy (1982) and Breusch et al. (1999). The
normal distribution is the only distribution that satisfies the redundancy condition.
However, if the distribution of the error term is not normal, this condition is
not satisfied. In such cases, we can increase efficiency by augmenting the testing
regression with Owt . As shown in the next section, the increased efficiency will yield
higher power for the RALS unit root tests. Note that it is also possible to utilize
the moment conditions using higher moments of the residuals, although such a
procedure requires the existence of higher moments. Given that the improved power
using the second and third moments already is significant, we did not pursue such
extended tests in this paper. The key advantage of our tests is that we do not need
to specify the functional form or the exact distribution of the error term. By simply
utilizing the information contained in the second and third moments of the residuals,
our tests provide significant advantages.2

10.4 Simulation Results

In this section, we investigate the small sample properties of the RALS unit root
tests. We consider two model specifications given in (10.19) or (10.20). We are
interested in examining the degree to which the RALS method will improve the
power of the DF tests when the former utilizes the information contained in non-
normal errors.

1One might naturally wish to consider a new test, “RALS(2&3&4),” which additionally utilizes
the 4th powered residuals. But, the potential power gain would be made at the cost of size. One
would need larger samples to make use of higher moments to achieve appropriate size. Further
examination might be warranted. We are grateful to an anonymous reviewer for suggesting this.
2A relevant question might be: “Why not use different functions of et for g.:/, other than
RALS(2&3), such as exp(•) or log(•)?” In such cases, we expect that the GMM based test can
differ from the RALS based test. However, it still is possible to consider such nonlinear functions.
We relegate this to future research.
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In our simulations, we also consider a version of the RALS test that imposes the
restrictions that arise from the score of the maximum likelihood procedure when
the error density is assumed to be a t-distribution with 5 degrees of freedom. We
denote this test as the “RALS(t5)” test. As we assume the error term follows a
t-distribution with 5 degrees of freedom, there is a subtle issue on the moments of
the error terms. The fifth and higher moments do not exist for the t distribution with
5 degrees of freedom. The new error term �t D et � w0

t 
 is a linear function of the
augmented term, wt . As a standard linear regression requires the existence of the
second moments of the errors for the validity of inference, we need the existence of
the second moments of both �t and wt . But, in practice, wt is used as a regressor,
and the numerical value of the sum of squares of the residuals from RALS is not
bigger than that from the original DF regression.

The motivation for choosing the t-distribution with 5 degrees of freedom is that
this density function is a popular choice for mimicking a fat-tailed distribution.
Thus, the RALS(t5) test would achieve efficiency gains when the distribution of
the errors has fat-tails. Although we cannot provide a theoretical justification for
using RALS(t5), our simulation results show that the RALS(t5) test performs well.

Another motivation for examining the RALS(t5) test is that we wish to compare
our RALS unit root tests with the tests that are based on the assumption that the true
density function is known a priori. In this case, we have h.et / D .c C 1/ et=.cCe2t /,
and D2 D .c C 1/

�
c � e2t

�
=.c C e2t /

2 with c D 5. There is no compelling reason
behind choosing c D 5. However, it seems that the tests are quite robust to the
selection of different values of c. For example, our simulations that use c D 3,
which are not reported here to save space, indicate that the empirical size and power
of the tests are almost identical to the case when c D 5. Therefore, in this scenario
we have

Owt D 6 Oet
5C Oe2t

� 1

T

TX
tD1

6 Oet
5C Oe2t

� Oet 1
T

TX
tD1

6
�
5 � Oe2t

�

.5C Oe2t /2
(10.22)

To examine the size property, we report the rejection ratio for ˛ D 0:05 when
� D 1 in (10.1). To examine the power, we use � D 0:9. These results are shown in
Tables 10.1 and 10.2. We simulated various cases in small samples with T D 50 and
100. The results in larger samples are more promising but they are omitted here. All
results are based on 5,000 replications. To compute the size and power of the RALS
tests, we used the asymptotic critical values of Hansen (1995), which were obtained
with a sample size of T D 1;000. Thus, we may expect a little size distortion in
small samples for the RALS tests. For the DF tests, we have also used the asymptotic
critical values (with T D 1;000) for a fair comparison. We have considered various
types of distributions: (i) the standard normal distribution, (ii)–(v) the chi-square
distribution with df D 1; 2; 3 and 4, (vi)–(ix) t-distribution with df D 2; 3; 4 and
8, (x) the double exponential distribution with df D 1, symmetric around 0.5, and
(xi) the beta distribution, B(2,2).
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Table 10.1 Five percent rejection ratio of RALS and DF tests (with drift)

Size (¥ D 1) Size-adjusted power (¥ D 0:9)

DGP Model
RALS
(2&3)

RALS
(t5) DF

RALS
(2&3)

RALS
(t5) DF

.T D 25/

1. Normal 0.173 0.114 0.064 0.087 0.084 0.036
2. Chi-square df D 1 0.070 0.044 0.048 0.487 0.114 0.065
3. Chi-square df D 2 0.094 0.067 0.054 0.268 0.089 0.055
4. Chi-square df D 3 0.108 0.080 0.056 0.188 0.080 0.050
5. Chi-square df D 4 0.119 0.086 0.061 0.145 0.080 0.047
6. t dist. df D 2 0.110 0.086 0.071 0.120 0.105 0.038
7. t dist. df D 3 0.125 0.084 0.066 0.083 0.080 0.036
8. t dist. df D 4 0.145 0.098 0.064 0.081 0.075 0.034
9. t dist. df D 8 0.157 0.105 0.062 0.085 0.075 0.035
10. Double exponential 0.135 0.092 0.066 0.075 0.073 0.034
11. Beta (2,2) 0.168 0.116 0.064 0.151 0.132 0.055

.T D 50/

1. Normal 0.054 0.059 0.058 0.132 0.136 0.041
2. Chi-square df D 1 0.057 0.038 0.046 0.879 0.337 0.113
3. Chi-square df D 2 0.067 0.052 0.049 0.679 0.198 0.091
4. Chi-square df D 3 0.074 0.058 0.052 0.524 0.167 0.077
5. Chi-square df D 4 0.078 0.064 0.053 0.410 0.145 0.070
6. t dist. df D 2 0.057 0.065 0.063 0.333 0.397 0.050
7. t dist. df D 3 0.065 0.059 0.062 0.199 0.237 0.044
8. t dist. df D 4 0.077 0.067 0.058 0.147 0.164 0.042
9. t dist. df D 8 0.091 0.070 0.055 0.132 0.133 0.039
10. Double exponential 0.069 0.063 0.058 0.148 0.175 0.040
11. Beta (2,2) 0.115 0.087 0.056 0.397 0.331 0.083

.T D 100/

1. Normal 0.051 0.051 0.053 0.311 0.330 0.106
2. Chi-square df D 1 0.048 0.038 0.049 0.996 0.791 0.320
3. Chi-square df D 2 0.055 0.046 0.048 0.971 0.567 0.257
4. Chi-square df D 3 0.062 0.053 0.054 0.915 0.444 0.213
5. Chi-square df D 4 0.064 0.054 0.051 0.857 0.407 0.189
6. t dist. df D 2 0.045 0.055 0.059 0.791 0.886 0.152
7. t dist. df D 3 0.050 0.052 0.052 0.566 0.642 0.127
8. t dist. df D 4 0.057 0.057 0.053 0.451 0.503 0.121
9. t dist. df D 8 0.060 0.056 0.053 0.357 0.380 0.106
10. Double exponential 0.056 0.056 0.054 0.445 0.533 0.118
11. Beta (2,2) 0.087 0.071 0.054 0.881 0.801 0.227

Note: For the size of the tests, the asymptotic critical values .T D 1;000/ of Hansen (1995) were
used for the RALS tests. Also, for the DF tests, the asymptotic critical values .T D 1;000/ are
used throughout
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Table 10.2 Five percent rejection ratio of RALS and DF tests (with time trend)

Size .¥ D 1/ Size-adjusted power .¥ D 0:9/

DGP Model
RALS
(2&3)

RALS
(t5) DF

RALS
(2&3)

RALS
(t5) DF

.T D 25/

1. Normal 0.188 0.133 0.071 0.085 0.078 0.045
2. Chi-square df D 1 0.073 0.051 0.062 0.489 0.120 0.106
3. Chi-square df D 2 0.100 0.081 0.070 0.254 0.083 0.087
4. Chi-square df D 3 0.118 0.095 0.065 0.188 0.082 0.075
5. Chi-square df D 4 0.128 0.102 0.067 0.161 0.081 0.067
6. t dist. df D 2 0.119 0.097 0.071 0.119 0.100 0.063
7. t dist. df D 3 0.141 0.100 0.072 0.088 0.080 0.053
8. t dist. df D 4 0.153 0.106 0.071 0.080 0.073 0.046
9. t dist. df D 8 0.172 0.123 0.070 0.083 0.076 0.047
10. Double exponential 0.148 0.103 0.075 0.075 0.073 0.046
11. Beta (2,2) 0.182 0.130 0.072 0.146 0.133 0.077

.T D 50/

1. Normal 0.054 0.057 0.058 0.092 0.099 0.038
2. Chi-square df D 1 0.058 0.034 0.055 0.772 0.224 0.172
3. Chi-square df D 2 0.071 0.052 0.056 0.515 0.125 0.119
4. Chi-square df D 3 0.084 0.063 0.058 0.346 0.101 0.093
5. Chi-square df D 4 0.090 0.070 0.061 0.270 0.099 0.079
6. t dist. df D 2 0.066 0.072 0.061 0.207 0.256 0.068
7. t dist. df D 3 0.077 0.068 0.060 0.114 0.136 0.047
8. t dist. df D 4 0.089 0.072 0.061 0.090 0.109 0.041
9. t dist. df D 8 0.116 0.090 0.059 0.079 0.081 0.036
10. Double exponential 0.087 0.072 0.059 0.091 0.109 0.039
11. Beta (2,2) 0.148 0.105 0.059 0.227 0.184 0.095

.T D 100/

1. Normal 0.054 0.055 0.052 0.191 0.206 0.069
2. Chi-square df D 1 0.049 0.035 0.053 0.988 0.650 0.355
3. Chi-square df D 2 0.059 0.047 0.055 0.927 0.383 0.247
4. Chi-square df D 3 0.062 0.052 0.052 0.831 0.293 0.195
5. Chi-square df D 4 0.068 0.056 0.054 0.716 0.260 0.164
6. t dist. df D 2 0.047 0.058 0.056 0.633 0.786 0.135
7. t dist. df D 3 0.053 0.056 0.056 0.384 0.463 0.093
8. t dist. df D 4 0.056 0.056 0.054 0.292 0.334 0.080
9. t dist. df D 8 0.069 0.064 0.054 0.199 0.208 0.067
10. Double exponential 0.056 0.058 0.054 0.271 0.353 0.079
11. Beta (2,2) 0.102 0.080 0.053 0.737 0.632 0.204

Note: For the size of the tests, the asymptotic critical values (T D 1;000) of Hansen (1995) were
used for the RALS tests. Also, for the DF tests, the asymptotic critical values (T D 1;000) are
used throughout
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Table 10.1 reports the simulation results for various cases with 11 different
distributions for the model specification with a constant term but without a linear
trend. As is seen throughout Table 10.1, the sizes of all of the DF, RALS(2&3) and
RALS(t5) tests are quite close to the nominal 5 % size, except for a few cases in
small samples when T D 25 or 50. This outcome is expected since the limiting
distribution of the linear based tests using the DF and RALS regressions will not
be affected by the presence of non-normal errors. We observe non-negligible size
distortions in finite samples with T D 25 or 50, since we used the asymptotic critical
values (which were derived with T = 1;000) throughout. However, in practice, we
often encounter time series with about 25 data points such as annual exchange rates.
Thus, it would be helpful to obtain the finite sample critical values. As such, we have
simulated new critical values using the distributions given in (10.11) and (10.14) for
finite samples of T D 25, 50 and 100, and we report them in the Appendix. These
new critical values can be also used for Hansen’s unit root tests with covariates
in finite samples.3 As such, the second panel of Table 10.1 reports the results
for T D 25 when the finite sample critical values are used. As expected, the
size distortions can be reduced compared to the results in the first panel. For the
remaining simulations for size properties, we have used the asymptotic critical
values.

When the error has a normal distribution (DGP 1), the size-adjusted power of
both RALS tests is close to that of the DF test. However, when the error term follows
a non-normal distribution (DGP 2–11), it is clear that both RALS tests become much
more powerful than the DF test. The improvement in power is highly significant for
both RALS tests especially with skewed distributions when the degrees of freedom
for the chi-square distribution or t-distribution takes on relatively low values. For
example, when the error term follows the chi-square distribution with df D 1 and
T D 100, the power of the RALS(2&3) and RALTS(t5) tests is 0.988 and 0.650,
respectively, while the power of the DF test is 0.172. When the error term follows
a t-distribution with df D 2, the power of the RALS(2&3) and the RALTS(t5)
tests is 0.633 and 0.786, respectively, while the power of the DF test is 0.146. In
other cases with non-normal errors, the RALS tests are still more powerful than
the DF tests. We note that the RALS(2&3) tests are usually more powerful than the
RALS(t5) tests except for the case of a t-distribution. It seems encouraging that the
RALS(t5) test still achieves improved power when the degrees of freedom is not
equal to 5. The RALS(t5) test shows improved power with fat-tailed distributions
when the degrees of freedom for the t-distribution is relatively low. However, the
RALS(t5) tests are less powerful than the RALS(2&3) tests under various types of
chi-square distributions. In general, the RALS(t5) test is marginally better than the
RALS(2&3) test when the density is symmetric. As we can see for the case when
the density is chi-square with 1 degree of freedom, the RALS(2&3) test is generally

3We are grateful to an anonymous reviewer who suggested using the finite critical values since the
size distortions would not be trivial otherwise, as shown in Hansen (1995).
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better than the RALS(t5) test when the error density is skewed. The difference in
power is quite substantial in some cases.

On the other hand, we observe that the power of the DF test decreases slightly
in the presence of various non-normal errors (DGPs 2–11), but we do not see any
significant loss of power. Note that the critical values of the DF tests are driven by
the data following the normal distribution of the error term. Although the DF tests
can remain fairly robust to non-normal errors even under the alternative hypothesis,
the DF tests fail to utilize the valuable information contained in non-normal errors.
Our RALS tests are quite different. The RALS tests remain robust under the null
without inducing any significant size distortions in almost all cases, and they become
much more powerful by utilizing the information in non-normal errors. The overall
pattern of improved power of the RALS tests over the DF test is similar in the model
with a linear trend, as shown in Table 10.2. Both the RALS(2&3) and the RALS(t5)
tests are much more powerful than the DF test.

Next, we examine the performance of the RALS tests when the errors are
serially correlated. There are no particular reasons to believe that autocorrelated
errors will affect the RALS tests differently from the ADF tests. We report the
results in Tables 10.3 and 10.4 for the model with a constant term, when using
a fixed augmentation lag as well as using the Schwarz criteria. For these results,
we continue to use the asymptotic critical values for the RALS tests but we used
the finite sample critical values for the ADF tests. Again, the overall pattern
of the results under non-normal errors is similar. Indeed, the net effects of the
autocorrelation structure on the RALS tests are not much different from those of
the ADF tests when we considered two cases with AR(1) errors and MA(1) errors,
where "t D 0:5"t�1Cet , or "t D et�0:5et�1. The results for the model with a linear
time trend are similar and they are reported in Tables 10.5 and 10.6. The sizes of
all three tests are close to the 5 % nominal size, even when the errors are generated
from a t-distribution with 2 degrees of freedom. Except for the case where the errors
follow a normal distribution, the RALS-based tests are substantially more powerful
than the OLS-based ADF tests, and the RALS(2&3) test compares favorably with
the RALS(t5) test.

One interesting question is how the RALS tests can be compared with the tests
that are based on a specific non-normal distribution. If the true density function
of the error term were known, it is possible to utilize this information to develop
new tests using maximum likelihood estimation or other nonlinear estimation
methods. For example, Cox and Llatas (1991), Lucas (1995) and Shin and So (1999)
examined unit root tests based on nonlinear optimization procedures for some
specific cases where the true density is assumed to be known. This information is
generally unknown a priori. Nonetheless, we are interested in comparing our RALS
tests with those tests. There are a few existing tests that would be interesting to
include in this comparison. We consider the test based on the M-estimate assuming
that the true density is the student-t density with 5 degrees of freedom (denoted
as the “M5” test), as studied by Lucas (1995). We also examine the tests based on
adaptive estimation (denoted as the “AD” test) as examined by Beelder (1996) and
Shin and So (1999). These results are reported in Table 10.7. The overall power
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Table 10.3 Five percent rejection ratio of the tests with AR(1) error (with drift, AR coefficient 0.5)

.T D 50/

ADF RALS(2&3) RALS(t5)

Distributions p D 2 p D 4 SC p D 2 p D 4 SC p D 2 p D 4 SC

Normal ¥ D 1 0.056 0.055 0.071 0.053 0.054 0.061 0.054 0.053 0.067
¥ D 0:9 0.100 0.080 0.116 0.087 0.074 0.097 0.093 0.073 0.110

Cauchy ¥ D 1 0.075 0.079 0.055 0.046 0.053 0.063 0.048 0.059 0.051
¥ D 0:9 0.074 0.074 0.088 0.664 0.599 0.698 0.567 0.504 0.568

Student t ¥ D 1 0.063 0.060 0.056 0.050 0.054 0.064 0.049 0.056 0.055
df D 2 ¥ D 0:9 0.080 0.069 0.089 0.300 0.252 0.326 0.343 0.281 0.341
Double ¥ D 1 0.051 0.053 0.059 0.048 0.050 0.057 0.049 0.051 0.058
Exponential ¥ D 0:9 0.091 0.084 0.109 0.131 0.110 0.150 0.151 0.120 0.161
Chi-square ¥ D 1 0.051 0.058 0.061 0.050 0.045 0.032 0.052 0.051 0.061
4 df ¥ D 0:9 0.094 0.080 0.110 0.260 0.202 0.191 0.091 0.081 0.106
Beta(2,2) ¥ D 1 0.060 0.055 0.073 0.057 0.050 0.059 0.053 0.047 0.060

¥ D 0:9 0.100 0.087 0.121 0.126 0.101 0.133 0.131 0.103 0.149

.T D 100/

ADF RALS(2&3) RALS(t5)

Distributions p D 3 p D 6 SC p D 3 p D 6 SC p D 3 p D 6 SC

Normal ¥ D 1 0.055 0.053 0.061 0.056 0.048 0.052 0.055 0.051 0.056
¥ D 0:9 0.217 0.163 0.243 0.196 0.142 0.217 0.207 0.145 0.230

Cauchy ¥ D 1 0.080 0.076 0.055 0.040 0.042 0.055 0.045 0.050 0.042
¥ D 0:9 0.144 0.125 0.181 0.907 0.852 0.943 0.796 0.775 0.803

Student t ¥ D 1 0.053 0.053 0.050 0.049 0.052 0.067 0.050 0.047 0.049
df D 2 ¥ D 0:9 0.190 0.134 0.220 0.610 0.512 0.678 0.716 0.616 0.740
Double ¥ D 1 0.059 0.053 0.062 0.055 0.050 0.063 0.055 0.047 0.056
Exponential ¥ D 0:9 0.216 0.155 0.246 0.321 0.231 0.362 0.377 0.273 0.400
Chi-square ¥ D 1 0.052 0.048 0.052 0.046 0.048 0.025 0.050 0.045 0.047
df D 4 ¥ D 0:9 0.224 0.156 0.242 0.629 0.480 0.556 0.217 0.157 0.237
Beta(2,2) ¥ D 1 0.057 0.053 0.063 0.048 0.048 0.052 0.050 0.046 0.054

¥ D 0:9 0.216 0.155 0.246 0.324 0.225 0.355 0.343 0.235 0.376

of the AD or M5 tests is fairly comparable to the power of the RALS(2&3) and
RALS(t5) tests. This is an encouraging result. The performance of the RALS(t5)
and M5 tests is similar when the true density is student-t with 3 degrees of freedom,
which is a special case where higher moments do not exist, but RALS still can be
examined via simulations. RALS(t5) is seen as more powerful when the density is
mixture normal. When the true density is a chi-square distribution with 1 degree
of freedom, both the AD and M5 tests are dominated by the RALS(2&3) test. The
bottom line is that the RALS tests perform reasonably well when compared to the
tests that are based on the true distribution. Moreover, the RALS tests achieve much
improved power in the presence of other non-normal errors and yet the RALS tests
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Table 10.4 Five percent rejection ratio of the tests with MA(1) error (with drift, MA coefficient
�0.5)

.T D 50/

ADF RALS(2&3) RALS(t5)

Distributions p D 2 p D 4 SC p D 2 p D 4 SC p D 2 p D 4 SC

Normal ¥ D 1 0.088 0.054 0.095 0.079 0.051 0.079 0.085 0.052 0.091
¥ D 0:9 0.227 0.109 0.231 0.19 0.091 0.182 0.205 0.097 0.208

Cauchy ¥ D 1 0.102 0.077 0.079 0.180 0.092 0.194 0.109 0.068 0.108
¥ D 0:9 0.163 0.087 0.177 0.853 0.712 0.867 0.625 0.557 0.622

Student t ¥ D 1 0.091 0.060 0.079 0.109 0.06 0.123 0.102 0.059 0.101
df D 2 ¥ D 0:9 0.198 0.089 0.199 0.538 0.347 0.547 0.553 0.379 0.539
Double ¥ D 1 0.083 0.053 0.085 0.088 0.050 0.094 0.087 0.054 0.09
Exponential ¥ D 0:9 0.219 0.104 0.216 0.285 0.149 0.289 0.32 0.168 0.313
Chi-square ¥ D 1 0.085 0.050 0.088 0.108 0.054 0.07 0.079 0.051 0.082
df D 4 ¥ D 0:9 0.223 0.102 0.227 0.522 0.282 0.425 0.209 0.098 0.212
Beta(2,2) ¥ D 1 0.095 0.054 0.101 0.086 0.051 0.084 0.087 0.05 0.09

¥ D 0:9 0.237 0.112 0.241 0.259 0.135 0.250 0.276 0.140 0.277

.T D 100/

ADF RALS(2&3) RALS(t5)

Distributions p D 3 p D 6 SC p D 3 p D 6 SC p D 3 p D 6 SC

Normal ¥ D 1 0.05 0.049 0.057 0.052 0.046 0.053 0.05 0.046 0.056
¥ D 0:9 0.26 0.187 0.287 0.23 0.172 0.257 0.246 0.176 0.269

Cauchy ¥ D 1 0.078 0.073 0.049 0.041 0.044 0.057 0.04 0.042 0.036
¥ D 0:9 0.171 0.134 0.207 0.938 0.889 0.962 0.785 0.776 0.796

Student t ¥ D 1 0.053 0.048 0.048 0.05 0.047 0.065 0.048 0.046 0.05
df D 2 ¥ D 0:9 0.235 0.159 0.266 0.682 0.57 0.745 0.771 0.666 0.798
Double ¥ D 1 0.058 0.051 0.059 0.052 0.05 0.058 0.053 0.048 0.054
Exponential ¥ D 0:9 0.263 0.187 0.303 0.379 0.28 0.444 0.44 0.321 0.486
Chi-square ¥ D 1 0.047 0.044 0.05 0.046 0.045 0.027 0.041 0.043 0.045
df D 4 ¥ D 0:9 0.254 0.183 0.293 0.705 0.543 0.65 0.248 0.174 0.286
Beta(2,2) ¥ D 1 0.051 0.047 0.059 0.047 0.046 0.053 0.049 0.045 0.052

¥ D 0:9 0.253 0.186 0.296 0.372 0.265 0.407 0.391 0.28 0.438

do not require knowledge of a specific the density function. Overall, our simulation
results show that the RALS-based unit root tests show significantly improved power
under various forms of non-normal errors.

10.5 An Application of the RALS Unit Root Test

We now present an empirical application of our RALS(2&3) test applied to the CPI
inflation rate series of several member-countries of the Organization for Economic
Co-operation and Development (OECD). Knowledge of the long-run properties of
the inflation rate (or the aggregate price level) is a key issue for policy makers,
applied econometricians and financial analysts who seek to understand or affect
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Table 10.5 Five percent rejection ratio of the tests with AR(1) error (with time trend, AR
coefficient 0.5)

.T D 50/

ADF RALS(2&3) RALS(t5)

Distributions p D 2 p D 4 SC p D 2 p D 4 SC p D 2 p D 4 SC

Normal ¥ D 1 0.053 0.048 0.074 0.049 0.044 0.06 0.05 0.044 0.07
¥ D 0:9 0.08 0.069 0.106 0.069 0.056 0.081 0.077 0.059 0.097

Cauchy ¥ D 1 0.06 0.058 0.055 0.064 0.066 0.078 0.099 0.103 0.094
¥ D 0:9 0.073 0.067 0.067 0.591 0.516 0.631 0.37 0.319 0.383

Student t ¥ D 1 0.057 0.049 0.06 0.054 0.06 0.073 0.058 0.055 0.063
df D 2 ¥ D 0:9 0.078 0.062 0.081 0.252 0.201 0.281 0.248 0.195 0.255
Double ¥ D 1 0.058 0.053 0.075 0.055 0.048 0.074 0.056 0.049 0.071
Exponential ¥ D 0:9 0.083 0.064 0.098 0.106 0.085 0.13 0.115 0.099 0.135
Chi-square ¥ D 1 0.058 0.053 0.073 0.053 0.049 0.032 0.053 0.049 0.065
df D 4 ¥ D 0:9 0.074 0.066 0.094 0.204 0.133 0.128 0.074 0.064 0.091
Beta(2,2) ¥ D 1 0.059 0.05 0.08 0.05 0.044 0.058 0.052 0.044 0.066

¥ D 0:9 0.082 0.065 0.111 0.09 0.072 0.095 0.092 0.072 0.112

.T D 100/

ADF RALS(2&3) RALS(t5)

p D 3 p D 6 SC p D 3 p D 6 SC p D 3 p D 6 SC

Normal ¥ D 1 0.055 0.053 0.061 0.053 0.048 0.057 0.053 0.053 0.058
¥ D 0:9 0.155 0.109 0.175 0.136 0.094 0.153 0.139 0.101 0.167

Cauchy ¥ D 1 0.061 0.055 0.031 0.05 0.057 0.074 0.12 0.12 0.108
¥ D 0:9 0.11 0.1 0.115 0.867 0.8 0.925 0.652 0.627 0.675

Student t ¥ D 1 0.055 0.045 0.042 0.049 0.047 0.071 0.05 0.05 0.051
df D 2 ¥ D 0:9 0.133 0.09 0.145 0.525 0.411 0.608 0.61 0.495 0.644
Double ¥ D 1 0.059 0.049 0.061 0.049 0.045 0.066 0.051 0.044 0.059
Exponential ¥ D 0:9 0.15 0.105 0.177 0.223 0.164 0.276 0.277 0.196 0.305
Chi-square ¥ D 1 0.06 0.049 0.059 0.05 0.046 0.021 0.053 0.044 0.056
df D 4 ¥ D 0:9 0.149 0.102 0.174 0.524 0.37 0.414 0.147 0.1 0.168
Beta(2,2) ¥ D 1 0.052 0.046 0.064 0.042 0.036 0.044 0.043 0.039 0.047

¥ D 0:9 0.157 0.106 0.185 0.235 0.155 0.259 0.239 0.159 0.281

the behavior of the macroeconomy. For example, forecasters who seek to project
expected or future inflation rates must know whether or not inflation rates are
stationary when building their models. Similarly, officials who seek to use monetary
policy to affect the behavior of macroeconomic variables also must have knowledge
of the long-run properties of inflation when constructing optimal commodity price
rules or when engaging in inflation rate targeting. In addition, financial planners
who, for example, rely on the capital asset pricing model also must understand the
long-run behavior of inflation.

Yet the question of whether or not the inflation rate is stationary still is widely
disputed in the literature. Numerous researchers employing various methodologies
applied to the inflation rates of several different countries have found this series
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Table 10.6 Five percent rejection ratio of the tests with MA(1) error (with time trend, MA
coefficient �0.5)

.T D 50/

ADF RALS(2&3) RALS(t5)

Distributions p D 2 p D 4 SC p D 2 p D 4 SC p D 2 p D 4 SC

Normal ¥ D 1 0.111 0.054 0.127 0.091 0.046 0.096 0.096 0.051 0.108
¥ D 0:9 0.176 0.076 0.191 0.145 0.067 0.148 0.157 0.072 0.170

Cauchy ¥ D 1 0.102 0.061 0.085 0.262 0.125 0.270 0.130 0.094 0.126
¥ D 0:9 0.138 0.080 0.126 0.784 0.608 0.801 0.423 0.346 0.424

Student t ¥ D 1 0.101 0.055 0.099 0.147 0.076 0.166 0.115 0.066 0.120
df D 2 ¥ D 0:9 0.158 0.071 0.157 0.441 0.263 0.467 0.401 0.245 0.397
Double ¥ D 1 0.114 0.059 0.119 0.116 0.057 0.124 0.120 0.061 0.125
Exponential ¥ D 0:9 0.177 0.082 0.184 0.226 0.109 0.237 0.250 0.122 0.248
Chi-square ¥ D 1 0.111 0.059 0.118 0.144 0.059 0.087 0.102 0.052 0.108
df D 4 ¥ D 0:9 0.168 0.071 0.171 0.420 0.183 0.295 0.153 0.071 0.154
Beta(2,2) ¥ D 1 0.121 0.055 0.135 0.101 0.052 0.099 0.101 0.051 0.108

¥ D 0:9 0.181 0.076 0.199 0.186 0.086 0.179 0.201 0.091 0.211

.T D 100/

ADF RALS(2&3) RALS(t5)

p D 3 p D 6 SC p D 3 p D 6 SC p D 3 p D 6 SC

Normal ¥ D 1 0.089 0.052 0.134 0.080 0.048 0.122 0.083 0.051 0.130
¥ D 0:9 0.260 0.123 0.396 0.230 0.112 0.336 0.243 0.119 0.359

Cauchy ¥ D 1 0.081 0.056 0.067 0.156 0.075 0.310 0.134 0.111 0.144
¥ D 0:9 0.188 0.111 0.306 0.934 0.839 0.972 0.658 0.620 0.680

Student t ¥ D 1 0.079 0.044 0.105 0.098 0.050 0.195 0.090 0.052 0.133
df D 2 ¥ D 0:9 0.233 0.106 0.360 0.684 0.473 0.823 0.745 0.556 0.820
Double ¥ D 1 0.093 0.052 0.135 0.084 0.048 0.152 0.086 0.048 0.136
Exponential ¥ D 0:9 0.261 0.125 0.396 0.371 0.185 0.533 0.436 0.228 0.570
Chi-square ¥ D 1 0.085 0.049 0.127 0.095 0.048 0.091 0.080 0.049 0.120
df D 4 ¥ D 0:9 0.268 0.128 0.397 0.708 0.429 0.725 0.253 0.121 0.373
Beta(2,2) ¥ D 1 0.084 0.048 0.136 0.077 0.040 0.113 0.078 0.040 0.125

¥ D 0:9 0.265 0.135 0.400 0.362 0.189 0.483 0.377 0.192 0.519

to be non-stationary (see, for example, Crowder and Hoffman 1996; Rapach and
Weber 2004; Crowder and Phengpis 2007). At the same time, several authors have
concluded that inflation is stationary (see, for example, Baillie et al. 1996; Costantini
and Lupi 2007). This contradiction in the empirical results on the inflation rate might
be due, in part, to the low power of traditional unit root tests. We wish to examine
whether or not accounting for non-normality in the series will make a difference.
Since our test will be more powerful in the face of departures from normality or
apparent non-linearities, we seek to shed light on the issue of whether or not inflation
is stationary through the application of our more powerful tests.
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Table 10.7 Five percent rejection ratio of adaptive estimation and M-tests

Size .¥ D 1/ Power .¥ D 0:9/

Model AD M5 AD M5

With drift
.T D 50/

Normal 0.043 0.094 0.091 0.198
Chi-square df D 1 0.048 0.058 0.360 0.332
t dist. df D 3 0.045 0.052 0.197 0.291
Mixture normal 0.040 0.178 0.790 0.217

.T D 100/

Normal 0.049 0.069 0.263 0.346
Chi-square df D 1 0.047 0.036 0.796 0.666
t dist.df D 3 0.067 0.037 0.535 0.649
Mixture normal 0.049 0.130 0.991 0.281

With time trend
.T D 50/

Normal 0.025 0.148 0.049 0.204
Chi-square df D 1 0.026 0.064 0.251 0.277
t dist. df D 3 0.026 0.062 0.120 0.231
Mixture normal 0.024 0.292 0.628 0.258

.T D 100/

Normal 0.035 0.078 0.129 0.251
Chi-square df D 1 0.038 0.048 0.647 0.506
t dist. df D 3 0.039 0.036 0.386 0.495
Mixture normal 0.027 0.192 0.981 0.255

Note: The 5 % significance level was used. AD denotes the test based on the adaptive MLE of Shin
and So (1999) and M5 is the test of Lucas (1995) using the M-estimate assuming that the error
density is the student-t with 5 degrees of freedom
Note: Mixture normal is 0.5N(�3,1) C 0.5N(3,1). This case was not considered in Tables 10.1
and 10.2. Our simulation results for the DF and RALS tests are as follows

Size .¥ D 1/ Power .¥ D 0:9/

Model RALS(23) RALS(t5) DF RALS(23) RALS(t5) DF

No trend T D 50 0.044 0.045 0.055 0.850 0.916 0.145
T D 100 0.045 0.044 0.058 0.995 0.998 0.361

Time trend T D 50 0.042 0.044 0.054 0.669 0.784 0.097
T D 100 0.042 0.043 0.053 0.981 0.996 0.219

The series used in our analysis are the first-differences of the log of the monthly
consumer price index series (all items) for 12 OECD countries.4 The data were taken
from the International Monetary Fund’s “International Financial Statistics” CD rom

4The countries are: Belgium, Canada, Finland, France, Italy, Japan, Luxembourg, the Netherlands,
Norway, Spain, the UK and the USA.
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(July 2009), and span the period from January of 1957 through April of 2009.
We analyze these inflation rates applying the RALS(2&3) test to both (10.19) and
(10.20). The first step of the procedure begins by conducting the traditional Dickey-
Fuller unit root test while choosing the optimal number of augmentation terms to
ensure non-correlated errors in the testing equation.5 The OLS residuals from this
equation are then retained for use in the second step. The second step involves
estimation of the RALS unit root testing equation, which is an augmented version
of the original Dickey-Fuller equation.

The results of the RALS unit root test are presented in Table 10.8. In the case
where the testing equation includes only an intercept, the RALS unit root test rejects
the null of a unit root in 8 out of 12 cases, while the Dickey-Fuller unit root test
rejects the null in only 3 of 12 cases. Similarly, when allowing for both a constant
and a trend in the testing equation, the RALS unit root test rejects the null in 7 of
12 cases, while the Dickey-Fuller test rejects the null in only 2 cases. The ability
of the RALS unit root test to reject the null in more cases may lend support to the
notion that our test is better able to distinguish non-normality from non-stationarity.
However, as is shown in Kim et al. (2012) and others, the effects of time varying
persistence and time varying volatility, such as the period of the great moderation,
may need to be taken into account when testing for unit root in inflation rates. We
might conjecture that the null could be rejected for more series if the RALS tests
could be modified further to control these nonlinear effects. We relegate this issue
to further study.6 The estimated values of O�2 are somewhat higher than we expected.
We might expect more rejections of the null if these values are lower. When O�2 is
close to 1, the RALS test becomes the usual DF test and no power gain is expected.
In general, the efficiency gain of RALS will be large, at least asymptotically, when
O�2 is lower.

10.6 Summary and Concluding Remarks

This paper proposes new unit root tests that are more powerful when the error
term follows a non-normal distribution. The improved power is gained by utilizing
more moment conditions through a computationally simple procedure. Specifically,

5One may choose the optimal lag length following the usual practice. For example, one can
determine the optimal number of augmentation terms using the sequential t-test, following Ng and
Perron (1995), or through use of the traditional Akaike Information Criteria or Schwarz Criteria,
or other similar methods. In our application, we followed the procedure of Ng and Perron (1995)
with a maximum of 12 lags.
6We thank an anonymous referee who brought to our attention the influence of the great moderation
on unit root tests applied to inflation rates. In addition, we expect that the null could be rejected for
more cases if the RALS procedure could be modified to account for conditional heteroskedasticity.
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Table 10.8 Empirical application: inflation rates

Country RALS (2&3) O�2 RALS 5 % cv ADF

With drift
Belgium �2.967a 0.90 �2.810 �2.642
Canada �2.167 0.92 �2.817 �2.013
Finland �3.161a 0.78 �2.745 �2.240
France �3.303a 0.76 �2.740 �3.296a

Italy �4.544a 0.77 �2.741 �1.943
Japan �6.346a 0.81 �2.758 �2.430
Luxembourg �2.331 0.80 �2.752 �2.482
Netherlands �3.140 0.59 �2.637 �3.201a

Norway �3.359a 0.77 �42.745 �3.261a

Spain �3.527a 0.83 �2.772 �2.311
UK �3.746a 0.80 �2.754 �2.305
USA �2.326 0.82 �2.764 �2.330

With linear trend
Belgium �3.160 0.91 �3.338 �2.838
Canada �2.324 0.92 �3.348 �2.189
Finland �3.099 0.78 �3.246 �2.578
France �3.328a 0.76 �3.235 �3.255
Italy �4.424a 0.77 �3.244 �2.100
Japan �6.329a 0.83 �3.287 �3.350
Luxembourg �2.365 0.80 �3.268 �2.599
Netherlands �3.867a 0.59 �3.079 �3.466a

Norway �3.540a 0.77 �3.245 �3.594a

Spain �3.774a 0.83 �3.290 �2.582
UK �3.974a 0.80 �3.266 �2.528
USA �2.302 0.82 �3.282 �2.401
aSignificant at 5 %. The critical value for the ADF test is �2.87

we adopt the residual augmented least squares (RALS) estimator suggested by Im
and Schmidt (2008) in order to use the information implied by non-normal errors
when testing for a unit root. We show that the asymptotic distribution of our simple
RALS-based estimator is the same as that of the GMM estimator as well as the
test of Hansen (1995) who suggested including stationary covariates. Our Monte
Carlo simulation results show that the size of the RALS-based unit root tests is
quite close to the asymptotic size, and the power is improved significantly over
the usual Dickey-Fuller tests when the error is not normal. As such, our findings
show significant efficiency gains, although this information is ignored in traditional
unit root tests. It seems promising to consider some extensions of our tests using
different detrending methods, as in Meng et al. (2014). Also, our suggested tests can
be applied to more general models including panel data and cointegration models.
We leave this work for future research.
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Appendix

Lemma 1. We let zt D .yt�1; � 0
t /

0, as defined previously in Eq. (10.5). We define

a .p C 1/ � .p C 1/ matrix, ‡T D diag
�
T;

p
T ; : : : ;

p
T
�

. Assume that

Assumptions 1 and 2 hold. Then, we have under the null hypothesis

TX
tD1

�
g0.et /˝ ‡�1

T zt z
0
t‡

�1
T

� ) D ˝
Z

zz0; (10.23)

TX
tD1

g.et /g.et /
0 ˝ ‡�1

T zt z
0
t‡

�1
T ) C ˝

Z
zz0; (10.24)

where
R

zz0 D diag
�
a.1/�2�2e

R 1
0
W1 .r/

2 dr; E
�
�t �

0
t

��
, and C and D are defined

in (10.17). Also, we have

TX
tD1

 .et /‡
�1
T zt D

�
T �1PT

tD1  .et /yt�1
T �1=2PT

tD1  .et /�t

�
)
"
� �e
a.1/

R 1
0
W1.r/dW2.r/

�

#
;

(10.25)

where � is a p�p multivariate normal variable with covariance matrix �2 E
�
�t �

0
t

�
.

Proof. Lucas (1995, Lemma 1 in Appendix). See also Hansen (1995, Lemma).

Lemma 2. � is defined as in Eq. (10.6). Then,

� D 1

�e� 
: (10.26)

Also,

1

�2 
D �2e � �

C21 � �2e D2

�0 �
C22 C �2e D2D

0
2 � C21D

0
2 �D2C

0
21

��1 �
C21 � �2eD2

�
:

(10.27)

Proof. The first result follows from routine matrix algebra using the partitioned
inverse lemma. For the second result, straightforward algebra gives

�
D0C�1D

��1 D �2e

�
1C �

C21 � �2e D2

�0 �
�2e C22 � C21C

0
21

��1 �
C21 � �2e D2

���1
;

which is the same as 1=�2 ; see Amemiya (1985, p. 461, Lemma 20).

Proof of Theorem 1: We note that the entire proof follows immediately from Lucas
(1995, Theorem 1) since the GMM estimator is obtained by solving the scorePT

tD1
�
DC�1g.et /zt

� D PT
tD1 Œ .et /zt � D 0, and this score could be viewed as
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that of the M-estimate. Here, we provide more details. Let � D �
ˇ; ı1; ı2; : : : ; ıp

�0
.

The GMM estimator is obtained by solving

min
�

TX
tD1

Œg.et /˝ zt �
0 Qƒ�1

TX
tD1

Œg.et /˝ zt � ; (10.28)

where Qƒ D
�PT

tD1 g. Qet /g. Qet /0 ˝ zt z0
t

�
, and Qet is the residual from an initial

consistent estimator of � . Taking the derivative with respect to � , we obtain the
score

TX
tD1

�
g0. Qet /˝ zt z

0
t

�0 Qƒ�1
TX
tD1

Œg. Qet /˝ zt � D 0; (10.29)

where Qet D �yt � zt Q� , and Q� is the GMM estimator. The Taylor series expansion of
the term

PT
tD1 Œg. Qet /˝ zt � with respect to the true disturbance et and premultipli-

cation of IJ ˝ ‡�1
T yields

TX
tD1

�
g. Qet /˝ ‡�1

T zt
�

D
TX
tD1

h
g.et /˝ ‡�1

T zt � g0.et /˝‡�1
T zt z

0
t‡

�1
T ‡T

� Q� � �
�i

C op .1/: (10.30)

Solving (10.29) with respect to ‡T
� Q� � �

�
, after substituting (10.30) into (10.29),

we obtain
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8
<
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C op.1/: (10.31)
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Noting that

TX
tD1

˚�
g0. Qet /� g0.et /

�˝ ‡�1
T zt z

0
t‡

�1
T

 D op .1/ ;

and

TX
tD1

˚�
g. Qet /g. Qet /0 � g.et /g.et /

0�˝ ‡�1
T zt z

0
t‡

�1
T

 D op .1/ ;

we have, from Lemma 1

T Q̌
G ) a.1/

� �e

�Z 1

0

W1.r/
2dr

	�1 Z 1

0

W1.r/dW2.r/; (10.32)

where ŒW1.r/;W2.r/� is a bivariate Brownian motion with correlation �. Then, we
have for the t-statistic

tG )
�Z 1

0

W1.r/
2dr

	�1=2 Z 1

0

W1.r/dW2.r/; (10.33)

which is a mixture of the Dickey-Fuller and the standard normal distribution as
described in (10.8). To see this, note

T �1=2
ŒrT �X
tD1

�
et

 .et /

�
)
�
�eW1 .r/

� W2 .r/

�
; (10.34)

where ŒrT � denotes the integer part of rT . Noting that W1 .r/ and W2 .r/ are
standard normal variables with correlation �, we may define a new standard normal
variable,W3.r/, which is independent of W1.r/, such that

W2 .r/ D �W1 .r/C
p
1 � �2W3 .r/ ; (10.35)

This result follows if we note that

�Z 1

0

W1.r/
2d.r/

	�1=2 Z 1

0

W1.r/dW3.r/

is standard normal.

Proof of Theorem 2: Define a variable as a function of true disturbances

wt D h.et / �K � etD2; t D 1; 2; : : : ; T;
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where K D E.h .et //. The variables in wt are not observable, but we momentarily
assume that they are observed. Then we show that the augmentation of wt or Owt
asymptotically yields the same estimator of ˇ. Consider a regression

�yt D ˛1 C ˇyt�1 C
pX
jD1

ıj�yt�j C w0
t 
 C vt ; t D 1; 2; : : : ; T: (10.36)

Therefore,

et D w0
t 
 C vt ; t D 1; 2; : : : ; T: (10.37)

Let Ǒ�
A be the least squares estimator of ˇ from regression (10.36),�2v DVar.vt /, and

	 D �ev

�e�v
D �v

�e
; (10.38)

where �ev D E.etvt /. The second equality of (10.38) follows since wt and vt are
not correlated, so that �ev D �2v . From Hansen (1995, Theorems 2 and 3), we have

T Ǒ�
A ) �v

�e

�Z 1

0

W4.r/
2

	�1 Z 1

0

W4.r/dW5.r/; (10.39)

and for the t-statistic

t�A D 	DF� C
p
1 � 	2N.0; 1/; (10.40)

where ŒW4.r/;W5.r/�
0 is the bivariate Brownian motion with correlation 	. Next,

we will show that

� D 	: (10.41)

Note that 
 D E.wtw0
t /
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Also, E.w0
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0
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21.

Therefore,
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C22 C �2e D2D
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2 �D2C

0
21

��1 �
C21 � �2e D2

�
;

which becomes 1=�2 from Lemma 1. Therefore, we have � D 	.
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Now we let Ǒ
A be the OLS estimator of ˇ in the regression (10.19). The proof

is complete if we show that T Ǒ
A and T Ǒ�

A are identical asymptotically. Let O�t D� O� 0
t ; Ow0

t

�0
, where O�t D �t � T �1PT

tD1 �t . Also, we let Oyt�1 be the demeaned or

detrended series for the model with drift or trend, respectively. Then we have
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However, using a Taylor expansion, one can see
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Table 10.9 Critical values of the RALS unit root tests in finite samples

Drift Trend

T �2 1 % 5 % 10 % 1 % 5 % 10 %

25 0.1 �2.909 �2.256 �1.912 �2.974 �2.304 �1.938
0.2 �3.091 �2.469 �2.146 �3.256 �2.565 �2.211
0.3 �3.194 �2.616 �2.291 �3.422 �2.770 �2.413
0.4 �3.254 �2.706 �2.411 �3.585 �2.919 �2.581
0.5 �3.301 �2.775 �2.511 �3.764 �3.078 �2.724
0.6 �3.279 �2.828 �2.579 �3.901 �3.191 �2.846
0.7 �3.246 �2.846 �2.619 �4.041 �3.316 �2.961
0.8 �3.213 �2.851 �2.657 �4.166 �3.423 �3.067
0.9 �3.099 �2.816 �2.663 �4.256 �3.527 �3.159

50 0.1 �2.989 �2.312 �1.966 �2.970 �2.297 �1.949
0.2 �3.217 �2.570 �2.228 �3.223 �2.564 �2.205
0.3 �3.353 �2.732 �2.412 �3.375 �2.748 �2.391
0.4 �3.447 �2.879 �2.556 �3.506 �2.887 �2.547
0.5 �3.564 �2.985 �2.686 �3.686 �3.027 �2.688
0.6 �3.633 �3.079 �2.792 �3.797 �3.136 �2.813
0.7 �3.680 �3.174 �2.897 �3.883 �3.236 �2.913
0.8 �3.737 �3.244 �2.980 �3.970 �3.341 �3.018
0.9 �3.750 �3.303 �3.053 �4.037 �3.423 �3.102

100 0.1 �2.774 �2.100 �1.746 �2.950 �2.295 �1.947
0.2 �2.957 �2.289 �1.933 �3.224 �2.547 �2.208
0.3 �3.061 �2.402 �2.060 �3.377 �2.727 �2.384
0.4 �3.177 �2.516 �2.175 �3.523 �2.881 �2.545
0.5 �3.247 �2.596 �2.266 �3.632 �3.005 �2.682
0.6 �3.279 �2.662 �2.337 �3.734 �3.112 �2.791
0.7 �3.344 �2.732 �2.419 �3.832 �3.215 �2.903
0.8 �3.391 �2.781 �2.465 �3.898 �3.304 �2.991
0.9 �3.444 �2.845 �2.529 �3.979 �3.384 �3.076

Note: These critical values can be used in finite samples for the RALS-DF tests. They can be also
for the unit root tests with covariates of Hansen (1995) in finite samples

but,

T �1X Oyt�1. Oet � et /h0 .et / D T
� Ǒ � ˇ

�
T �2X Qy2t�1h0.et /C op.1/; (10.44)

T �1X Oyt�1. Oet � et / OD2 D OD2T
� Ǒ � ˇ

�
T �2X Oy2t�1 C op.1/; (10.45)

and

T �1X Oyt�1et
� OD2 �D2

�
D op.1/: (10.46)

The two terms (10.44) and (10.45) cancel each other in the limit in (10.43), so the
proof is complete.
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Chapter 11
More Powerful LM Unit Root Tests
with Non-normal Errors

Ming Meng, Kyung So Im, Junsoo Lee, and Margie A. Tieslau

11.1 Introduction

A recent paper of Im et al. (2014) adopts the Residual Augmented Least Squares
(RALS) estimation procedure of Im and Schmidt (2008) in order to improve the
power of the traditional Dickey and Fuller (1979, DF) unit root tests. We refer to
this test as the RALS-DF unit root test since it is an extension of the traditional
DF test. The RALS procedure utilizes the information that exists when the errors
in the testing equation exhibit any departures from normality, such as non-linearity,
asymmetry, or fat-tailed distributions. The underlying idea of the RALS procedure
is appealing because it is intuitive and easy to implement. If the errors are non-
normal, the higher moments of the residuals contain the information on the nature
of the non-normality. The RALS procedure conveniently utilizes these moments in
a linear testing equation without the need for a priori information on the nature of
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the non-normality, such as the density function or the precise functional form of any
non-linearity. The power gain over the usual DF tests is considerable when the error
term is asymmetric or has a fat-tailed distribution.

This paper extends the work of Im et al. (2014), and considers the Lagrange
Multiplier (LM) version of the RALS unit root tests. We refer to them as the RALS-
LM tests. We provide the relevant asymptotic distribution of these new tests and
their corresponding critical values. The LM unit toot tests were initially suggested
by Schmidt and Phillips (1992, SP). To begin with, consider an unobserved
components model,

yt D  C �t C xt ; xt D ˇxt�1 C et : (11.1)

The unit root null hypothesis implies ˇD 1, against the alternative that ˇ< 1.
Here, the parameters and � will denote level and deterministic trend, respectively,
regardless of whether yt contains a unit root (ˇD 1) or not. The key difference
between the LM and the DF procedures is found in the detrending method. For
the LM version tests, the coefficients of the deterministic trend components are
estimated from the regression in differences of�yt on�zt with zt D [1,t]0. Denoting
the ML estimates from the LM procedure as Q and Q� , SP (1992) suggest using the
detrended form of yt,

Qyt D yt � Q � Q�t: (11.2)

On the other hand, the DF test is based on the estimates of the coefficients from
the regression of yt in levels on (1,t).1 The LM tests show improved power over
the DF tests. This paper shows that the same feature will carry-over to the RALS
version tests; the RALS-LM tests show improved power over the RALS-DF tests.

The main advantage of the LM tests of SP (1992) is that they are less sensitive to
the parameters related to structural changes. In particular, they are free of nuisance
parameters in models with level shift, as we will explain in more detail in the next
section. However, the DF version tests do not have this property. As such, there
are operating advantages of using the LM version of the unit root test for models
with structural changes, and the same feature can be utilized in the RALS-LM tests
with level-shifts, although it would be difficult to consider the RALS-DF tests with
breaks. The rest of the paper is organized as follows. In Sect. 11.2, we discuss the

1We note that the GLS tests of Hwang and Schmidt (1996), and the DF-GLS tests of Elliott et al.
(1996) adopt a detrending method similar to that of the LM test. For the GLS tests, the coefficients
of the deterministic trend components are estimated from the regression in quasi-differences of
�y�

t (D yt � (1 � c/T)yt � 1) on �z�

t (D zt � (1 � c/T)zt � 1), where c is a nuisance parameter that
takes on some small value. The GLS tests of Hwang and Schmidt (1996) use a fixed value c/T
which is given a priori as a small value, such that c/T D 0.02 and �y�

t D yt � 0.98yt � 1. The DF-
GLS tests search for the optimal small value of c/T that maximizes the power under the local
alternative. When c/T is zero, these GLS-based tests are identical to the LM tests of SP (1992). In
reality, the difference in the power of the LM tests and the GLS tests is not significant. The main
source of the power gain for the GLS tests is its use of the LM type detrending procedure, although
searching for the optimal value of c/T can lead to a marginal improvement in power.
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LM procedure and propose the RALS-LM tests. In Sect. 11.3, we examine the
size and power properties and compare them with those of the RALS-DF tests.
Section 11.4 provides concluding remarks.

11.2 LM and RALS-LM Tests

We are interested in testing the unit root null hypothesis H0 :ˇD 1 against the
stationary alternative hypothesis Ha :ˇ < 1. We let zt denote the deterministic terms,
including structural changes, and rewrite the data generating process (DGP) in
(11.1) as

yt D z0
t ı C xt ; xt D ˇxt�1 C et : (11.3)

For example, if zt D [1,t]0, we have the usual no-break LM test of SP (1992).
To consider a model with level shift where a break occurs at t D TB, we may add a
dummy variable, Dt, where Dt D 1 if t � TB C 1 and Dt D 0 if t � TB. Then, we have

yt D  C �t C dDt C xt ; xt D ˇxt�1 C et : (11.4)

Again, the parameter d is estimated from the regression in differences of �yt on
�zt, where zt D [1,t,Dt]0. Here, the estimated value of d will denote the magnitude
of the level shift in a consistent manner, regardless of whether yt contains a unit root
or not. We do not need to assume that d D 0 under the null, and the critical values
of the test will not change for different values of d. More importantly, the LM tests
will not depend on the nuisance parameter, œ(DTB/T), which denotes the location
of the break, as shown in Amsler and Lee (1995). As such, the same critical values
of the usual LM test (without breaks) can be used even in the presence of multiple
level shifts. By contrast, Perron’s (1989) tests with level shifts depend on œ, and
different critical values need to be obtained for all different combinations of the
break locations in the case of multiple level shifts.

While the dependency on œ might be matter of minor inconvenience for the
exogenous tests of Perron (1989), the issue becomes complicated in the case of
endogenous-break unit root tests for which the location of the break is determined
from the data where the t-statistic on the unit root hypothesis is minimized, or
the F-statistic on the dummy coefficients is maximized. The popular endogenous-
break unit root tests based on the DF version models can exhibit spurious rejections
unless the parameters in d, which denote the magnitude of the structural breaks
(either in level-shifts or trend-shifts), take on zero values. Such an approach leads
to a conceptual difficulty of not allowing for breaks under the null of a unit root.
Therefore, rejections of the unit root null hypothesis will not necessarily imply
trend-stationarity since the possibility of a unit root with break(s) still remains; see
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Nunes et al. (1997) and Lee and Strazicich (2001) for details. The LM-based tests,
on the other hand, are free of this problem in models with level-shift. In light of
this, the LM tests with two endogenous breaks are considered in Lee and Strazicich
(2003) who allow for breaks both under the null and alternative hypotheses in a
consistent manner.

It also is possible to allow for multiple breaks by employing additional dummy
variables for multiple level shifts with zt D [1, t, D1t : : : , DRt], where Djt D 1 for
t � TBj C 1, j D 1, : : : , R, and zero otherwise; R is the number of structural breaks.
The invariance feature of the LM tests with level-shifts is useful for extending the
univariate LM tests to a panel setting. To that end, Im et al. (2005) suggest panel LM
unit root tests with level breaks. Without the invariance feature of the LM tests, the
panel test statistic would not be feasible since the test would depend on the nuisance
parameters indicating the location of the breaks. This is particularly true when each
cross-section unit is likely to experience a different number and location of breaks.

This paper shows that the same invariance feature in the LM tests also will hold in
the RALS-LM tests with level-shifts. In this case, the RALS-LM tests with multiple
level-shifts will have the same distribution as the RALS-LM tests without breaks.2

This is one main advantage of the RALS-LM tests. Without the invariance feature of
the LM tests, it would be difficult to construct valid critical values for RALS-based
tests, since the RALS procedure will induce an additional nuisance parameter. Thus,
it would be extremely difficult to construct valid RALS-DF tests with breaks.

We now explain details of the RALS-LM procedure. In general, following the
LM (score) principle, the LM unit root test statistic can be obtained from the
following regression:

�yt D ı0�zt C � Qyt�1 C et (11.5)

where Qyt D yt � Q � zt Qı, t D 2, : : : , T; Qı is the vector of coefficients in the
regression of �yt on �zt, and Q is the restricted MLE of  given by y1 � z1 Qı;
and, y1 and z1 denote the first observation of y1 and zt, respectively. To control for
autocorrelated errors, one can include the terms � Qyt�j , j D 1,.., p in (11.5), and the
testing regression is given as:

�yt D ı0�zt C � Qyt�1 C
pX
jD1

cj� Qyt�j C et (11.6)

2The invariance property of the LM tests does not hold in models with trend-shifts where
zt D [1, t, Dt, tDt]0 is used. However, the LM based tests are much less sensitive to the parameters of
trend-breaks than the DF version tests. For example, Nunes (2004) found that the critical values do
not change much in the models with trend-shifts and considered a method using the same critical
values regardless of different values of œ; see also Nunes and Rodrigues (2011). However, the LM
tests still depend on the nuisance parameter in these models, and using the same critical values can
lead to mild size distortions.
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Then, the LM test statistic is given by:

Q�LM D t -statistic testing the null hypothesis �D 0.

Next, we explain how to utilize the information on non-normal errors in order to
improve upon the power of the unit root test, making use of the RALS estimation
procedure as suggested in Im and Schmidt (2008), and Im et al. (2014). To
begin with, we define �t D �

� Qyt�1;� Qyt�2;; : : : ; � Qyt�p
�0

, ft D � Qyt�1; � 0
t

�0
and

Ft D (�z
0

t , f
0

t)
0. Suppose we have the following moment conditions:

E Œg .et /˝ Ft � D 0; t D 1; 2; ::::; T (11.7)

where g(et) is a function defined as g(et) D (et,[h(et) � K]0)0 with K D E(et), and
h(et) is a nonlinear function of the error term et. Then the moment condition
becomes:

E Œet ˝ Ft � D 0 (11.8)

E Œ.h .et / �K/˝ Ft � D 0 (11.9)

The first part is the usual moment condition of least squares estimation and the
second part involves an additional moment conditions based on nonlinear functions
of et. We letbet denote the residuals from the usual LM regression (11.6). Following
Im and Schmidt (2008), we define the following term

bwt D h .bet /� bK �betbD2 (11.10)

where h .bet / D
h
be2t ;be3t

i0
, bK D 1

T

XT

tD1h .bet /, and bD2 D 1
T

XT

tD1h
0 .bet /. Using

mj D T �1XT

tD1be
j
t , we define the augmented terms

bwt D
h
be2t �m2;be3t �m3 � 3m2bet

i0
(11.11)

The RALS-LM procedure involves augmenting the testing regression (11.6)
with bwt . The first term in bwt is associated with the moment condition
E
��
e2t � �2e

� Qyt�1
� D 0, which is the condition of no heteroskedasticity. This

condition improves the efficiency of the estimator of � when the error terms are
not symmetric. The second term in bwt improves efficiency unless m4 D 3�4. It is

possible to use higher moments using h .bet / D
h
be2t ;be3t ;be4t ; ::;bekt

i0
with k> 3, and

the properly defined bwt in (11.11) that corresponds to the higher moments. The
additional efficiency gain is expected, unless mk C 1 D k�2mk � 1 which holds only
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for the normal distribution.3 Thus, when the distribution of the error term is not
normal, one may increase efficiency by augmenting the testing regression with bwt ,
as follows.

�yt D ı0�zt C � Qyt�1 C
pX
jD1

gj� Qyt�j Cbw0
t 
 C et (11.12)

The RALS-LM statistic is obtained through the usual least squares estimation
procedure applied to (11.12). We denote the corresponding t-statistic for �D 0 as
�RLM . We adopt Assumption 1 and Assumption 2 of Im et al. (2014) for the error
term et, and g(et) in (11.7), respectively. Then it can be shown that the asymptotic
distribution of �RLM is given as follows.

Lemma 1 Suppose that we consider the usual t-statistic on �D 0 in Eq. (11.12).
Then, under the null, the limiting distribution of the RALS-LM t-statistic �RLM can
be derived as

�RLM ! ��LM C
p
1 � �2 N .0; 1/ (11.13)

where �LM denotes the limiting distribution of the t-statistic for the usual LM
estimator in regression (11.6), and � is the correlation between et and  (et)

� D � e

� �e
(11.14)

Where  (et) D D0C� 1g(et), �2§ D Var [ (et)] D Var [D0C� 1g(et)] D D0C� 1D,
and � e D E[ (et)et] D DC� 1E [g(et)et].

Proof See the Appendix.

These results are essentially similar to those given in Im et al. (2012). Also,
the RALS-LM tests are asymptotically identical to the GMM estimators using
the same moment conditions in (11.8) and (11.9). It is interesting to see that the
limiting distribution of £LM is similar to that of the unit root tests with stationary
covariates, as advocated by Hansen (1995).4 The difference is how the parameter �2

is estimated. We have a special case of Hansen’s models and �2 can be estimated by

b�2 D b�2A=b�2; (11.15)

whereb�2 is the usual estimate of the error variance in the LM regression (11.6), and
b�2A is the estimate of the error variance in the RALS-LM regression in (11.12).

3However, we do not pursue this direction further and leave it as future research. This extension
requires the assumption that the higher moments exist. In any case, the power gain is already
significant enough when using the augmented terms in (11.11).
4A similar asymptotic result also is advocated in Guo and Phillips (1998, 2001).
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Note that the asymptotic distribution of the RALS-LM test statistic �RLM does not
depend on the break location parameter œj in the model with level-shifts, following
the results of Amsler and Lee (1995). Thus, we do not need to simulate new
critical values, regardless of the number of level-shifts and all possible different
combinations of break locations. From a practical perspective, it likely would be
infeasible to obtain all possible different critical values corresponding to different
break locations and values of �2. For a finite number of level-shifts, we only need
one set of critical values since they are asymptotically invariant to both the break
magnitude and location.

Note that when �2D1, we have �RLM D �LM , so that the critical value for the usual
LM test can be used. In Table 11.1, we report the asymptotic critical values of the
RALS-LM tests, for different values of �2 D 0, 0.1, : : : , 1.0 and T D 50, 100, 300
and 1,000, respectively. All of these critical values are obtained via Monte Carlo
simulations using 100,000 replications. These critical values can be used even when
multiple level breaks occur in the data. To see this we provide the empirical critical
values of the RALS-LM tests when the number of level-shifts is 1 and 2. The results
in Table 11.2 are virtually identical to the critical values of the RALS-LM tests
without breaks, as reported in Table 11.1.

11.3 Simulations

In this section, we investigate the finite small sample properties of the RALS-LM
unit root tests. Our goal is to verify the theoretical results presented above and
examine the performance of the tests. Pseudo-iid N(0,1) random numbers were
generated using the RATS procedure %RAN(1) and all results were obtained via
simulations in WinRATS. The DGP was given in (11.4), and the initial values x0

and e0 are assumed to be random. In order to examine the power when non-normal
error exists, we consider seven types of non-normal errors which include (i) a chi-
square distribution with df D 1, 2, 3, 4, and (ii) a t-distribution with df D 2, 3, 4. For
purposes of comparison, we also examined the case when the error term follows a
standard normal distribution. The size and power properties are examined with two
different DGPs; (a) no break with zt D [1,t]0 and ı0 D (0,1), and (b) one level shift
with zt D [1,t,Dt]0 and ı0 D (0,1,5). We also let œD TB/T denote the fraction of the
series before the break occurs at t D TB C 1. For all of these cases, we have used
the same critical values in Table 11.1 of the usual RALS-LM tests without breaks.
All simulation results are calculated using 10,000 replications for the sample size,
T D 100 by using the 5% significance level.5

In Table 11.3, we report the size and power properties of the RALS-LM tests,
and compare them with the usual LM tests, the DF tests and the RALS-DF tests.
We begin by examining the model with no breaks. From Panel A in Table 11.3, we

5Results for the larger sample sizes with T D 300 and 1,000 are omitted. They show a similar
pattern with greatly improved power properties. They are available with upon request.
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Table 11.3 Size, power and size-adjusted power with no break (T D 100)

Distribution of the error term

ˇ Tests �21 �22 �23 �24 t2 t3 t4 N(0,1)

Panel A. Size
1 RALS-LM 0.057 0.059 0.060 0.064 0.045 0.042 0.052 0.086

LM 0.038 0.042 0.044 0.047 0.037 0.043 0.046 0.052
DF 0.046 0.051 0.046 0.049 0.053 0.049 0.052 0.051

Panel B. Power
0.8 RALS-LM 0.997 0.995 0.991 0.985 0.948 0.887 0.856 0.780

LM 0.770 0.757 0.763 0.765 0.789 0.755 0.762 0.754
DF 0.656 0.648 0.654 0.650 0.637 0.651 0.645 0.643

0.9 RALS-LM 0.977 0.929 0.870 0.809 0.664 0.474 0.393 0.341
LM 0.244 0.254 0.255 0.254 0.236 0.253 0.248 0.268
DF 0.170 0.181 0.180 0.182 0.161 0.180 0.183 0.193

Panel C. Size-adjusted power
0.8 RALS-LM 0.998 0.996 0.992 0.985 0.962 0.918 0.864 0.659

LM 0.817 0.789 0.787 0.776 0.848 0.787 0.779 0.745
DF 0.688 0.645 0.670 0.654 0.609 0.657 0.635 0.638

0.9 RALS-LM 0.976 0.925 0.858 0.784 0.705 0.515 0.389 0.227
LM 0.294 0.286 0.282 0.266 0.296 0.282 0.265 0.260
DF 0.187 0.178 0.190 0.185 0.150 0.183 0.177 0.190

Panel D. Size and size-adjusted power of RALS-DF tests
1.0 RALS-DF 0.049 0.059 0.062 0.068 0.047 0.053 0.056 0.054
0.9 RALS-DF 0.988 0.927 0.831 0.716 0.633 0.384 0.292 0.191

observe that, in all cases, none of the three tests shows any serious size distortions.
The RALS-LM tests show significantly improved power over the usual LM tests
when the errors are non-normal with either a chi-square or t-distribution. The
results in Panel C for the size-adjusted power are more relevant. The gain in power
of the RALS-LM tests is greater when the degrees of freedom of the chi-square
distribution is smaller, implying more asymmetric patterns of the error distribution.
For example, when ˇD 0.9 and the error term follows a �2(1) distribution, the size-
adjusted power of the RALS-LM test is 0.976, while the power of the usual LM test
is 0.294 (and 0.187 for the DF test). Also, the gain is larger when the degrees of
freedom of the t-distribution is smaller, implying fatter-tails of the error term.6 In
Fig. 11.1, we have provided a graph to show these results.

6The question of interest is the effect of using the estimated values ofb�2 D b�2A=b�2 in (11.15)
on the size and power property of the tests. The true value of �2 is unknown, but it depends on
the type and degree of non-normal errors. It seems clear that the size property is fair in all cases
that we examined. The power gain would be larger when the value of �2 is small. This occurs
when the degrees of freedom of the chi-square distribution is smaller, implying more asymmetric
patterns, and when the degrees of freedom of the t-distribution is smaller, implying fatter-tails. Our
simulation results are consistent with our expectations.
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Fig. 11.1 Size-adjusted power, T D 100

When the error term follows a normal distribution, the LM tests are more
powerful than the RALS-LM tests. However, the difference in power is rather small.
These results prove that the RALS-LM tests have good size and power properties
even when the sample size is relatively small. In Panel D of Table 11.3, we report
the size and size-adjusted power of the RALS-DF tests of Im et al. (2014). It seems
clear that the RALS-LM tests are generally more powerful than the RALS-DF tests.
The difference is as expected since the LM tests are usually more powerful than the
DF tests.

Next, we examine the property of these tests when the DGP includes a structural
break where the size and power properties are examined for œD 0.25 and œD 0.5.
In this case, it is not useful to consider the RALS-DF test since the distribution of
the test depends on œ. The results for the RALS-LM and traditional LM tests are
presented in Table 11.4. Note that we use the same critical values for the traditional
LM tests without breaks and the RALS-LM tests without breaks. Again, we do not
observe any significant size distortions under the null, even when the critical values
of the tests without breaks are used for the models with breaks. Regardless of the
locations of breaks with either œD 0.25, or œD 0.5, the results on the size, power
and size-adjusted power do not change appreciably. This outcome clearly shows
the invariance results for both the LM and the RALS-LM tests. Also, we observe
significant power gains for the RALS-LM tests when the error term follows a non-
normal distribution.
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Table 11.4 Size, power, and size-adjusted power with level break (T D 100)

Distribution of the error term

ˇ 	 Tests �21 �22 �23 �24 t2 t3 t4 N(0,1)

Panel A. Size
1 0.25 RALS-LM 0.056 0.054 0.057 0.062 0.046 0.044 0.051 0.083

LM 0.040 0.046 0.045 0.046 0.037 0.043 0.047 0.053
0.50 RALS-LM 0.055 0.056 0.057 0.062 0.046 0.041 0.051 0.083

LM 0.040 0.045 0.043 0.047 0.035 0.041 0.049 0.052

Panel B. Power
0.8 0.25 RALS-LM 0.996 0.993 0.987 0.979 0.934 0.871 0.833 0.753

LM 0.743 0.730 0.735 0.733 0.764 0.727 0.732 0.724
0.50 RALS-LM 0.996 0.993 0.987 0.978 0.934 0.869 0.832 0.755

LM 0.739 0.727 0.738 0.739 0.761 0.731 0.732 0.726
0.9 0.25 RALS-LM 0.971 0.919 0.851 0.788 0.653 0.463 0.385 0.327

LM 0.235 0.248 0.251 0.250 0.227 0.247 0.246 0.260
0.50 RALS-LM 0.971 0.918 0.853 0.786 0.653 0.462 0.389 0.329

LM 0.235 0.249 0.251 0.249 0.231 0.243 0.246 0.256

Panel C. Size-adjusted power
0.8 0.25 RALS-LM 0.997 0.994 0.989 0.979 0.951 0.898 0.839 0.643

LM 0.785 0.748 0.758 0.752 0.822 0.760 0.744 0.715
0.50 RALS-LM 0.996 0.994 0.988 0.978 0.950 0.901 0.843 0.645

LM 0.788 0.758 0.768 0.758 0.829 0.770 0.737 0.719
0.9 0.25 RALS-LM 0.971 0.918 0.842 0.766 0.688 0.498 0.379 0.228

LM 0.281 0.266 0.272 0.266 0.285 0.275 0.257 0.252
0.50 RALS-LM 0.970 0.915 0.842 0.761 0.689 0.508 0.388 0.235

LM 0.275 0.273 0.277 0.262 0.293 0.283 0.251 0.250

11.4 Concluding Remarks

This paper develops new RALS based LM unit root tests. These new RALS-LM
tests show improved power gains over the corresponding RALS-DF tests, and the
power of both RALS-DF and RALS-LM tests can increase drastically when the
error term is highly asymmetric or has fat-tails with unknown forms of non-normal
distributions. Also, the RALS-LM tests have the feature that they are invariant to the
nuisance parameter in the models with multiple level shifts, and it is expected that
they can be more useful in extended models with other types of structural changes.

Overall, we conclude that the RALS-LM tests show improved performance over
the corresponding RALS-DF tests. However, we should note that the power gain of
the LM version tests (and also the DF-GLS version tests) will disappear when the
initial value is large. In such cases, the RALS-DF version tests are more powerful
than the RALS-LM version tests. As such, one may consider a fair balance between
the RALS-LM and the RALS-DF tests in the presence of non-normal errors; it is
incorrect to say that one version would dominate uniformly over the other. Clearly,
the main advantage of the RALS-LM tests lies in the invariance feature that the
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distribution does not depend on the nuisance parameter in the presence of level-
breaks, and that they are less sensitive in other extended break models. On the other
hand, the RALS-DF version tests can be more useful in standard models without
breaks, especially when the initial value is large.

Appendix

Proof of Lemma 1. Consider the regression (11.12). We letb�t D
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t ;bw0
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Apply the lemma from Hansen (1995),
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and T�D � ca(1). The test statistics under the null of �D 0 can be obtained as
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Chapter 12
Efficiency Selection Procedures for Capacity
Utilization Estimation

William C. Horrace and Kurt E. Schnier

12.1 Introduction

A critical aspect of fisheries management is the ability to understand the
performance of fishing vessels within managed waters. Since overcapacity is cited
as one of the primary causes of over-fishing (Food and Agriculture Organization
1998), estimating the productive capacity and capacity utilization of fishing vessels
has become an important policy initiative. Capacity utilization in fisheries is
traditionally estimated using data envelop analysis (Pascoe et al. 2001; Felthoven
2002; Kirkley et al. 2003; Tingley and Pascoe 2005) or stochastic production
frontier modeling (Kirkley et al. 2002, 2004). It is defined as the ratio of observed
total output to the maximal or potential output that could be produced (Kirkley et al.
2002, 2004). All the estimation complexity is in obtaining appropriate measures of
maximal or potential output. If observed total output (production) for a fishery is
y, then maximal output (ymax) is the production resulting from maximal utilization
of some or all variable inputs (labor, time at sea, etc.) for each vessel in the fishery.
Potential output is defined as the technically efficient production level (yTE) and is
often called efficiency adjusted production (Kirkley et al. 2002, 2004). Calculating
potential output is typically an exercise in imputing maximal efficiency to all vessels
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in the fishery regardless of how inefficient they may be.1 However, how realistic is
it that highly inefficient vessels will actually attain efficiency? Perhaps, all things
being equal, there are subsets of vessels that would almost never attain maximal
efficiency. If so, what levels of efficiency might they reasonably attain, and how can
we adjust our estimate of potential output to account for this? These are multivariate
statistical inference questions, which we propose to answer at the cost of requiring
an inferential error rate. Low error tolerance returns the usual efficiency adjusted
estimate of potential output, while larger tolerances return estimates based on
classes of vessels at sub-maximal levels. The results have immediate implications
for U.S. fishery policy.

We use selection theory (Gupta 1956, 1965) to estimate efficiency subsets (tiers)
for n D 12 vessels in the U.S. Bering Sea flat fish fishery over a 9-year period,
T D 9. That is, we calculate the Gupta subset of efficient vessels at a pre-specific
error rate to construct a first-best efficiency subset. The first-best subset contains
the most efficient vessel with probability equal to one minus the error rate. Then,
from the remaining inefficient vessels, a second-best Gupta subset is constructed.
This procedure is continued until the set of vessels is exhausted, and J � n subsets
are constructed. Then, rather than impute maximal efficiency to all vessels, we
impute maximal efficiency within each efficiency subset. Therefore, only the vessels
in the first-best efficient subset are imputed maximal efficiency in the calculation
of potential output, because their efficiency estimates cannot be distinguished in
a statistical sense from the (unknown) most efficient vessel in the fishery. The
potential output of vessels in the lower efficiency subsets are calculated based on
lower values of maximal efficiency within each tier. Notice, that this procedure nests
the traditional practice of imputing the maximal efficiency to all vessels, because the
first-best efficiency subset may contain all vessels in the fleet. Thus, the pre-specified
error rate is an important policy variable, because it controls the cardinality of the
subsets and, if set low enough, produces a single subset containing all vessels in the
fishery. In the sequel, it is shown that the error rate can be interpreted as a measure
of policy-maker risk preference or as a sensitivity parameter that a policy-maker
could use to analyze alternative harvesting strategy scenarios.

Since vessel-level production efficiency is estimated from a regression model of
production, the efficiency estimates are necessarily correlated through input corre-
lations (regressor correlations). The lack of independence necessitates calculation
of critical values from an 11-dimensional probability integral which we ultimately
simulate using the algorithm in Horrace (1998). It has been argued that simulation
of critical values in political economy applications is acceptable in the sense that

1This presumes the existence of technical inefficiency, where different vessels employing the same
inputs, technology, and ‘luck’ may have different output.
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economic experiments need not be exactly reproducible to be meaningful (Horrace
and Schmidt 2000, p. 5).2 We control the overall error rate of the sequential subset
procedure with the Bonferroni inequality.

The proposed technique is a unique application of Gupta’s selection procedures,
which have received limited attention in the political economy literature. The
technique has immediate policy implications for fisheries managers who estimate
capacity utilization. The next section is a brief explanation of the methodology.
Section 12.3 is the data description and the analysis. Section 12.4 summarizes and
concludes.

12.2 Methodology

What follows is a brief explanation of production estimation for panel data in the
style of Schmidt and Sickles (1984). It is not intended to serve as a comprehensive
survey, nor is it intended to be a complete discussion of the nuances and difficulties
associated with production function estimation in general. Therefore, we take the
ability to specify and estimate a production function as given, and ultimately focus
our attention on the application of selection theory to the production function
estimates. Suppose that fishery production can be modeled as a linear fixed-effect
model for panel data,

yit D ˛ C xitˇ C vi t � ui D ˛i C xitˇ C vi t ; (12.1)

where i D 1, : : : , n indexes vessels in the fleet, and t D 1, : : : , T indicates any
appropriate time period (years in our case). If inputs and outputs are in logarithms,
then the linear specification may represent a Cobb-Douglas or a translog production
function. Scalar yit represents catch (fish landed), xit is a row vector of fixed and
variable inputs of production such as vessel net-tonnage, horsepower, crew size,
or time at sea. The parameters, ˛i, are individual effects that embody unobserved,
time-invariant technical efficiency (see Schmidt and Sickles 1984). The larger the
value of ˛i, the more efficient is vessel i. In Eq. (12.1), all production heterogeneity
is captured in the vessel-level fixed-effect, ˛i.3 An alternative specification might
allow marginal products, ˇ, to vary across vessels. Flores-Lagunes et al. (2007)
estimate a latent class regression in a maximum likelihood setting to identify a

2Numerical approximation of critical values is also an option. See Hsu 1996, Sect. 7.2.1 and
Appendix A.
3Since the differences in the fixed-effects are the usual measure of inefficiencies (see Schmidt and
Sickles 1984), inefficiency in the sole source of production heterogeneity in this simple model.

http://dx.doi.org/10.1007/978-1-4899-8008-3_7
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separate ˇ for different groups of vessels. Alternative methods of incorporating
heterogeneity are within the realm of possibilities, depending on what one is willing
to assume about production.4

Under a weak exogeneity assumption on scalar error vit, unbiased and consistent
estimation of ˇ proceeds by the “within transformation” and ordinary least-squares.
That is,

b̌D
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i tKx�

i t

!�1  NX
i

TX
t

x�
i tKy�

i t

!

y�
i t D yit � T �1

TX
tD1

yit ; x
�
i t D xit � T �1

TX
tD1

xit ; v�
i t D vi t � T �1

TX
tD1

vi t ;

is unbiased and consistent (n ! 1 or T ! 1) for ˇ. Define the residualsbvi t D
yit �xitb̌, then b̨i D T �1X

t
bvi t is unbiased and consistent (T ! 1) for ˛i. Let the

set of vessel indices be N D f1, : : : ,ng. Per Schmidt and Sickles (1984), an estimate
of technical inefficiency isbui D maxs2Nb̨s �b̨i , and a normalized vessel efficiency
estimate is exp f�bui g 2 .0; 1�, i 2 N. The reader is referred to Schmidt and Sickles
(1984) and Feng and Horrace (2012) for this and alternative measures of technical
efficiency for panel data. In the environmental and resource economics literature,
vessel efficiency is often referred to as “unobserved heterogeneity in skipper skill”
and is associated with “the good captain hypothesis,” which posits that a fleet
may have captains that systematically outperform all other captains, ceteris paribus
(Kirkley et al. 1998; Pascoe and Coglan 2002; Sharma and Leung 1998; Squires and
Kirkley 1999; Viswanathan et al. 2002).

Maximal output estimation is a fishery-wide forecast of production based on
maximal variable input for each vessel (assuming that output is increasing in each
input). That is, let xmaxit be the vector of variable inputs for each vessel i in year t,
such that one or several variable inputs are at their maximal sample values over all t.
Then maximal output for vessel i in year t is bymax

i t D b̨i C xmax
i t
b̌, and maximal

production for the fleet in year t is bymax
t D

X
i
bymax
i t . If observed production in

year t is yt D
X

i
yit , then capacity utilization in year t is yt =bymax

t .5 This estimate
assumes that vessel-specific output is maximized through maximal use of inputs.
Efficiency adjusted production or potential output for the fleet imputes the maximal

b̨i to each vessel: byTEt D
X

i

�
maxs2Nb̨s C xitb̌

�
. This production estimate

4Our purpose here is not to discuss specification issues, but to demonstrate a unique application
of selection procedures, so for parsimony we consider only the most restrictive specification in
Eq. (12.1).
5It is also possible to calculate aggregate or average maximal output over the entire period, but the
annual calculation seems more intuitive, particularly if interest centers on how capacity utilization
changes over time.
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assumes each vessel is operating at maximal relative efficiency (inefficiency equal
to zero). It is as if all vessels are being piloted by the best skipper in the fleet or that
each vessel’s captain obtains the skill and knowledge of the best captain in the fleet.
Then capacity utilization in year t is yt=byTEt . This is the current state-of-the-art for
capacity utilization based on potential output.

We now propose an alternative potential output estimate based on Gupta
subsets that allows for heterogeneous risk preferences for policy-makers (through
a preselected error rate). Assume that b̨i ; i 2 N are normally distributed with
ranked means ˛[n] >˛[n � 1] > : : : >˛[1].6 Then for error rate 
 2 [0, 0.5), the first-
best efficient subset of vessel indices, S1 � N, satisfies the probability statement:

Pr fŒn� 2 S1g � 1 � 
: (12.2)

Subset S1 can be constructed using Gupta (1956, 1965) for the multivariate
normal distribution (details are in the next section). Once S1 is formed, let N � S1

be the set of remaining indices with cardinality n1. Let the ranked means associated
with the indices in N � S1 be: ˛Œn1�� > ˛Œn1�1�� > � � � > ˛Œ1��. Then, the second-best
efficient subset, S2 � N � S1, satisfies the probability statement:

Pr
˚�
n1

�� 2 S2
 � 1 � 
;

with remaining indices in N � (S1 [ S2). This process can be repeated J times until
the subsets S1, S2, : : : , SJ partition N. For small J the Bonferroni inequality controls
for the overall error rate of the iterative procedure. In our examples J D 2, so the
overall error rate is no more than 2
 .7 Let the maximal estimate of b̨i associated
with each subset be b̨max

.j / D maxs2Sj b̨s , j D 1, : : : , J. Then, b̨max
.1/ > b̨max

.2/ > � � � >
b̨max
.J / , and proposed potential output is:

byt .
/ D
JX
jD1

X
i2Sj

�
b̨max
.j / C xitb̌

�
:

Notice that potential output is now a function of the error rate andbyt .
/ �byTEt .
It is through our estimates b̨max

.1/ > b̨max
.2/ > � � � > b̨max

.J / that our model generates
the alternative estimate. By allowing vessels to be grouped together based on the
efficient subsets, we are defining the frontier for each subset by the maximal b̨i

6This will be true if, say, the errors vit are normal. Relaxing this assumption is not beyond the
realm of possibilities. In particular bootstrapping the procedure seems like a promising alternative.
However, we leave that for future research.
7It would be useful to develop a procedure that automatically controls for the error rate. For large
J the Bonferroni inequality will be too conservative and the procedure will not work well.
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within each subset.8 Also, notice that for sufficiently small 
 or 
 D 0, Eq. (12.2)
implies that S1 D N, J D 1, and byt .
/ D byt .0/ D byTEt . Therefore, the traditional
estimate of potential output is a special case of the proposed estimate. Also, byt .
/
is decreasing in 
 , and capacity utilization yt=byt .
/ 2 .0; 1� is increasing in 
 . As
such, the error rate (or risk tolerance) is an important policy variable that can be
interpreted as a policy-maker risk preference or sensitivity parameter. For example,
if a policy-maker is risk-averse, then she has a low tolerance for errors and selects a
small 
 . Therefore, J is small, andbyt .
/ Š byTEt . Also, capacity utilization is small,
so for a risk-averse policy-maker the fishery is far from full-utilization, and the
potential for heavy depletion in fish stocks is large. Hence, fishery policy might be
aimed at conservation efforts. A risk-loving policy-maker will have a high tolerance
for errors and selects a large 
 , causingbyt .
/ to be small (not close to upper-bound
byTEt ), and capacity utilization will be close to 100 %. For a risk-loving policy-maker
the fishery is close to full-utilization, so the potential for heavy stock depletion is
small. Therefore, resource conservation policy may not be justified.

In practice, risk preferences are unknown, so an alternative interpretation of 

is that it represents a “sensitivity parameter” that allows policy-makers to estimate
a range of capacity estimates based on the level of conservatism they exhibit for
the resource.9 By changing the value of 
 a policy-maker is in essence defining
the upper and lower bound on their capacity estimates. This notion of upper
and lower bounds is consistent with how policy-makers project future biomass
levels conditional on different harvesting strategies. Examples of future harvesting
strategies are harvesting at maximum allowable biological catch or not harvesting at
all. Much as these estimates provide bounds on expected future population levels, a
policy maker’s selection of 
 provides bounds on their estimates of capacity.

12.3 Example

Data are compiled from weekly production reports for vessels operating in the
flatfish fishery collected by the National Marine Fisheries Service (NMFS). Weekly
production reports contain information on the complete composition of fish landed
within a week, vessel characteristics, crew sizes, number of gear deployments
(hauls), and length of time the gear is in the water over the course of the week.
To ensure a balanced panel, weekly data were aggregated to the year; this was done
simply for computational convenience.10 Further, we limit attention only to vessels

8Note that this is not an exercise in modeling and estimating heterogeneous frontiers for a single
fishery; we are simply proposing an alternative estimator of potential output that incorporates
statistical noise though the error rate and that nests the usual estimate.
9We would like to thank an anonymous referee for pointing out this alternative interpretation of 
 .
10An unbalanced panel has t D 1,.., Ti for every i, and introduces estimation computational
complexities that are beyond the scope of this exercise.
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Table 12.1 Production
estimation

Variable
Coefficient
(t-statistics)

Net � tons �0.0729
(�1.32)

Crew 1.1369
(6.48)

Duration 0.2363
(1.87)

R2 0.335

using identical production technology (bottom-trawlers) and only those vessels with
100 % of their production activities observed by the NMFS (some smaller vessels
are not always required to report catch). This was done to ensure a reasonable level
of ex ante homogeneity in the analysis. The final sample is 12 vessels observed over
9 years (1995–2003).11

To identify ˛i in our ‘within’ estimation exercise, all variables were divided
by the time-varying annual hauls variable, making them time-varying rates. This
identification strategy is in the spirit of Wooldridge (2002, p. 269) and is employed
in the fishery production literature by Horrace and Schnier (2010). Output is the
aggregation of all species caught (and retained) per haul.12 The inputs (regressors)
are the vessel’s net-tonnage per haul (Net-tons), the average crew-size per haul
(crew), and the average amount of time the nets were deployed during the year
per haul (duration). Therefore, output is a catch rate, and inputs are rates of input
utilization. All variables (input and output) are log transformed.

Table 12.1 contains the results for within estimation of Eq. (12.1), which indicate
that variable inputs (crew and duration) are the most important inputs to production.
The negative coefficient on vessel net-tons is a theoretical curvature violation, but it
is not statistically significant and, hence, has a neutral effect on production.13 Again,
a more sophisticated production function could have been estimated, however our
focus is on the selection procedures that follow and how they may be used to
calculate potential output.

Table 12.2 contains the estimates of b̨i and their standard errors. All parameters
are significantly different from zero. It also contains the results of the first iteration
of the subset selection procedure. Using the estimated variance-covariance matrix
and a multivariate normality assumption on b̨i , one-sided multivariate critical values
at 
 D 0.05 and 
 D 0.10 were simulated using the algorithm in Horrace (1998), but
with a general covariance structure. These are in the last two columns of Table 12.2.

11In practice a capacity utilization exercise might include all vessels, but then specification of the
production function becomes difficult. This is beyond the scope of this exercise.
12An alternative specification would explicitly account for different species. See, for example Orea
et al. (2005) or Felthoven (2002).
13For maximal and potential output estimation, the net-tons coefficient is set to zero.
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Table 12.2 First iteration of selection procedure

b̨i Estimate Standard error
Gupta critical
value 
 D 0.05

Gupta critical
value 
 D 0.10

˛1 2.272 0.302 2.361a 2.065a

˛2 2.329 0.256 2.469 2.179
˛3 1.950 0.264 2.478a 2.201a

˛4 2.546 0.297 2.283 1.960
˛5 2.617 0.372 2.196 1.850
˛6 2.312 0.250 2.471 2.179
˛7 2.319 0.251 2.481 2.183
˛8 2.482 0.280 2.367 2.089
˛9 2.242 0.257 2.478 2.183
˛10 2.356 0.266 2.462 2.164
˛11 2.323 0.296 2.304 1.992a

˛12 2.188 0.244 2.474 2.182a

aIndicates a negative “multiple comparison with a control” upper bound and
exclusion from S1

For 
 D 0.05, S1 D f2, 4, 5, 6, 7, 8, 9, 10, 11, 12g
For 
 D 0.10, S1 D f2, 4, 5, 6, 7, 8, 9, 10g

Using these critical values and the covariance structure of the b̨i , upper-bounds
for multiple comparisons with a control (MCC) were calculated for each vessel
(see Dunnett 1955). That is, let k 2 N be a control index. Then simultaneous upper-
bounds were calculated for ˛k �˛i, for all i ¤ k. The rule for subset membership is:
k 2 S1 if all MCC upper-bounds are non-negative. In Table 12.2, vessels that violate
the selection rule are indicated with an a for each error rate. Therefore, the index
[n] 2 N associated with the largest ˛i is in the first-best subset: f2, 4, 5, 6, 7, 8, 9,
10, 11, 12g with probability at least 95 %. With probability at least 90 %, the index
associated with the largest ˛i is in first-best subset: f2, 4, 5, 6, 7, 8, 9, 10g.

Table 12.3 contains the results of the second and final iteration of the selection
procedure. Using the same procedure as the first iteration (but with smaller dimen-
sionality), critical values and MCC upper-bounds were calculated at each error rate,

 D 0.05 and 
 D 0.10. At both error rates only vessel 3 violates the selection rule
of no non-negative MCC upper-bounds, so it is the only index in S3. The inference
suggests that [n1 *] D 1 with probability at least 95 %. With probability at least
90 %, the index [n1 *] associated with the largest ˛i, i 2 N � S1, is in second-best
subset: f1, 11, 12g. Based on the three subsets and the Bonferroni inequality, the
conclusion is that ˛max.1/ D˛5 D 2.617, ˛max.2/ D ˛1 D 2.272, and ˛max.3/ D˛3 D 1.950
with probability at least 90 %. (Since J D 2, the overall error rate is at most
2
 .) Alternatively,˛max.1/ D ˛5 D 2.617,˛max.2/ D˛11 D 2.323, and ˛max.3/ D˛3 D 1.950
with probability at least 80 %. From an efficiency frontier perspective, the values of
˛max.j/ for each error rate represent different efficiency tiers within the fishery: the
first-best tier, the second-best tier, and the third-best tier.
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Table 12.3 Second (final) iteration of selection procedure

b̨i Estimate
Standard
error

Gupta critical
value 
 D 0.05

Gupta critical
value 
 D 0.10

˛1 2.272 0.302 1.646 1.693
˛3 1.950 0.264 1.647a 1.716a

˛11 2.322 0.296 – 1.673
˛12 2.188 0.244 – 1.687
aIndicates a negative “multiple comparison with a control” upper bound and
exclusion from S2

For 
 D 0.05, S2 D f1g; S3 D f3g
For 
 D 0.10, S2 D f1, 11, 12g; S3 D f3g

Table 12.4 2003 capacity utilization estimates in metric tons of fish

Error Potential Potential Potential Potential Capacity utilization
rate 
 output S1 output S2 output S3 outputbyT .
/ yT =byT .
/
0.00 90,551 – – 90,551 0.856
0.05 72,884 4,311 5,941 83,136 0.933
0.10 58,638 15,145 5,941 79,723 0.973

Total observed output in 2003 D 77,555 metric tons

Table 12.4 contains capacity utilization based on the proposed potential output
byT .0:05/ and byT .0:10/, where T D 2003 is the last year in the sample.14 The
traditional estimates byT .0/ D byTET are also in the table for comparison purposes.
It is worth repeating that if 
 D 0, then J D 1, and S1 D N, so that all vessels are in
a single efficiency subset. We couch our discussion in terms of policy-maker risk
preference. For 
 D 0, the largest ˛5 D 2.617 is imputed to all vessels for nominal
inputs in year 2003 (the coefficient on Net-tons is set to 0 in this exercise). This
yields potential output of 90,551 metric tons of fish and conservative capacity
utilization of 85.6 %. The potential output increase in a worst case scenario is
90,551–77,555D 12,996 metric tons, a relatively large increase in production. For

 D 0.05 the most efficient subset of vessels, S1, has the potential for 72,884 tons
of fish, the second most efficient subset, S2, has the potential for 4,311 tons of fish,
and the least efficient subset, consisting of only vessel 3, will stay at its predicted
nominal level of 5,941 tons of output. This yields a less conservative potential
output of 83,136< 90,551 tons of fish, a less conservative capacity utilization
of 93.3 %> 85.6 %, and a worst case scenario output increase of only 83,136–
77,555 D 5,581 tons. The 
 D 0.10 case has a capacity utilization of close to one:
97.3 %. Hence, the capacity for increased output is close to zero (2.7 %).

14Maximal output results are available from the authors. Standard errors on the capacity measures
could be bootstrapped without much complication, but we do not attempt that here.
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12.4 Conclusions

The proposed potential output and capacity utilization measures account for dif-
ferences in fisheries managers’ risk behavior through selection of the inferential
error rate. One motivation for fisheries managers to be conservative in selection of
this rate is dynamic stock uncertainty. Some fisheries exhibit cyclical dynamics that
make it particularly difficult to predict future stock levels and, more importantly,
spawning stock biomass. Therefore, managers may wish to adopt smaller error rates
to hedge this uncertainty. This being the case, one could also view the error rate as a
proxy for stock predictability. Although a more comprehensive analysis is required
before the proposed techniques could be used to directly influence fishery policy,
our results are informative and illustrate the empirical benefits of using selection
procedures in this setting. The selection technique could prove useful in guiding
policies that focus on vessel buybacks or input restrictions to manage the natural
resource.
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Chapter 13
Bartlett-Type Correction of Distance Metric Test

Wanling Huang and Artem Prokhorov

JEL Classification: C12

13.1 Introduction

The Distance Metric (DM) test of Newey and West (1987) is commonly used in
econometrics to assess competing specifications. This is a simple test – the DM test
statistic is usually calculated as the sample size times the difference in the criterion
function evaluated at the restricted and the unrestricted estimate. At the same time,
the test has several advantages over other classical tests. It is invariant to different
but equivalent formulations of the restriction unlike, e.g., the Wald test (see, e.g.,
Breusch and Schmidt 1988), and robust to autocorrelation and heteroskedasticity
of unknown form provided that the criterion function uses a heteroskedasticity-
consistent estimate of the covariance matrix (see, e.g., Newey and McFadden 1994).
This makes the test popular among applied researchers. For example, this test has
been widely used in covariance structure analysis in the context of asymptotic
distribution-free estimation (see, e.g., Browne 1984; Satorra and Bentler 2001, for
the theory of ADF estimation).
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It is well known that the DM test statistic asymptotically has the chi-square
distribution with r degrees of freedom, where r is the number of restrictions
(see, e.g., Newey and McFadden 1994). However, the sampling distribution of the
test statistic is poorly approximated by the asymptotic distribution if samples are
small (see, e.g., Clark 1996). Edgeworth expansions can deal with this problem
by expanding the sampling density of test statistics around the asymptotic density
in decreasing powers of N� 1

2 , with N being the sample size. This may improve
the accuracy of the asymptotic approximation. Surveys of Edgeworth expansion
methods, including the theory of their validity, are provided by Phillips (1977,
1978), Kallenberg (1993), Rothenberg (1984), Reid (1991), and Sargan and Satchell
(1986), among others.

However, Edgeworth expansion methods have not yet been applied to the most
general version of the DM test. Most of known results concern the LR, Wald and
the score test (see, e.g., Cribari-Neto and Cordeiro 1996; Phillips and Park 1988;
Magee 1989; Linton 2002; Hausman and Kuersteiner 2008). Hansen (2006) is the
only application (known to us) of the Edgeworth correction to the DM test but it
is restricted to the setting of a normal linear regression with a single constraint.
Moreover, it is well known that Edgeworth expansions do not always improve the
quality of first-order asymptotic approximations (see, e.g., Phillips 1983). The main
contribution of the paper is that we derive the Edgeworth correction, also known
as the Bartlett-type correction, for the DM test in its general form and illustrate in
simulations that this corrected approximation does work better, often surprisingly
better, than the uncorrected test.

We do not consider alternative ways to remedy the inaccuracy of first-order
asymptotic approximations. Such alternatives include resampling techniques and
other types of asymptotic approximations, e.g., saddle-point (tilted Edgeworth) or
Cornish-Fisher expansions. Validity of the former is usually based on existence of
an asymptotic approximation in the first place (see, e.g., Hall 1992) and the various
forms of the latter are substantially more complicated than the classical Edgeworth
expansion (see, e.g., Barndorff-Nielsen and Cox 1979).

The paper can be viewed as a generalization of the results by Hansen (2006),
who obtained the DM test correction in the setting of linear regressions with one
restriction, to most of the extremum and minimum distance estimators and to
multiple linear and nonlinear restrictions. We also draw on the results by Phillips
and Park (1988) and Kollo and Rosen (2005). Phillips and Park (1988) investigate
how higher-order terms in the asymptotic approximation of the Wald test are
affected by various formulations of the null hypothesis. The DM test is invariant
to such reformulations. However, their theorem on asymptotic expansion of the
distribution provides a useful shortcut that substantially facilitates our proof. Kollo
and Rosen (2005) provide general forms of Taylor series expansions for vector-
valued functions, applicable in our setting.

In the application section, we consider a covariance structure model of Abowd
and Card (1989). We address the question at what sample sizes would the proposed
asymptotic correction make a difference for the empirical conclusions of that paper.
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It turns out that this happens at sample sizes as large as 900–1,000 observations. An
interesting by-product of the application is that it explains the old puzzle in labor
economics that longer panels reverse the original inference.

The DM test statistic is defined in Sect. 13.2. In Sect. 13.3 we derive the
asymptotic expansion to order Op.N�1/ of the DM test statistic, and in Sect. 13.4
we give the higher-order approximation of its distribution. Simple simulations
are provided in Sect. 13.5, and an empirical illustration is presented in Sect. 13.6.
Section 13.7 contains brief concluding remarks.

13.2 Distance Metric Test

For a family of distributions fP� ; � 2 ‚ � R
pg, ‚ compact, consider the test

H0 W g.�/ D 0;

H1 W g.�/ ¤ 0;

where g W Rp ! Rr is a continuously differentiable function with the first derivative
defined by

A.�/
p�r

� dg.�/

d�
:

Let A.�o/ be denoted by A.
We assume that underlying the test is a parametric model that can be written in

terms of the moment condition

Em.Zi ; �/ D 0 iff � D �0; (13.1)

wherem.�; �/ is a continuous k-valued function,Zi is a vector of data, independently
distributed over i D 1; : : : ; N , and �0 is the true value of the parameter vector. We
assume that the moments identify �0. In covariance structure models, for example,
m.Zi ; �/ D vechZiZ0

i � vech†.�/, where vech denotes vertical vectorization of
the lower triangle of a matrix and †.�/ is a model for the covariance matrix, in
which k � p.

For some positive definite weighting matrix WN , define the criterion function

�QN.�/ � 1

2
m0
N .�/WN mN.�/; (13.2)

where mN.�/
k�1

� 1
N

NP
iD1

m.Zi ; �/. The estimator that minimizes this function is

known in econometrics as the Generalized Method of Moments (GMM) estimator
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(see, e.g., Hansen 1982). In psychometric literature this estimator is also known
as the asymptotically distribution free (ADF) or weighted least squared (WLS)
estimator (see, e.g., Browne 1984). It is well known that efficient weighting ofm.�; �/
requires that

WN
k�k

p�! W � ˚
EŒm.Zi ; �0/m

0.Zi ; �0/�
�1

:

We assume efficient weighting. What this means for our expansions will be clarified
below.

The independence assumption on Zi can be relaxed to the weak dependence
assumption. This would mean that W would need to be replaced with the inverse of
the so called long run variance matrix of m.Zi ; �0/. As long as we assume efficient
weighting this would have no influence on the results that follow.

The test statistic we consider is based on the value of QN.�/ for two competing
models, one that satisfies H0 and the other that is unrestricted. Let N� and O� denote
the corresponding estimators:

N� D arg max
�2‚ QN.�/; subject to g.�/ D 0I

O� D arg max
�2‚ QN.�/:

Then, the DM test statistic is defined (see, e.g., Newey and McFadden 1994,
p. 2222) as

DM � �2N ŒQN . N�N /�QN. O�N /�: (13.3)

Throughout, we assume that the standard regularity conditions are satisfied (see,
e.g., Newey and McFadden 1994, conditions of Theorems 2.6, 3.4, 4.5, and 9.1).

13.3 Stochastic Expansion of DM Test Statistic

Let

MN .�/ D W
1=2
N mN .�/:

Assume that MN .�/ is three-times continuously differentiable. We follow Kollo
and Rosen (2005, Definition 1.4.1) and define the derivative matrices recursively as
follows

GN .�/
p�p

� @M0
N .�/

@�
;
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DN .�/
p�p2

� @vec0GN .�/
@�

;

CN .�/
p�p3

� @vec0DN.�/

@�
:

Let G D EŒGN .�0/�, D D EŒDN .�0/�, and C D EŒCN .�0/�. In simulations, our
focus is on covariance structure models for which the moment conditions have the
form m.Zi ; �/ D r.Zi / C h.�/, for some functions r.�/ and h.�/. In this case,
GN.�0/, DN.�0/, and CN .�0/ are nonrandom matrices.

The quadratic form in (13.2) becomes

�QN.�/ D 1

2
M

0
N .�/MN .�/;

and the DM test statistic in (13.3) can be written as follows

DM D NŒM0
N .

N�/MN . N�/� M
0
N .

O�/MN . O�/�: (13.4)

Note that, due to the efficient weighting,

�p
NMN .�0/ � qN

d�! Nq
k�1


 N.0; I/: (13.5)

Following Hansen (2006) and Phillips and Park (1988), we derive higher order
expansions of the DM test under the stronger assumption that we have carried out
the standardizing transformation and that

�p
NMN .�o/ � Nq 
 N.0; I/: (13.6)

We further assume that

p
N. O�N � �0/ � Qq 
 N.0;�1/; (13.7)

p
N. N�N � O�N / � Oq 
 N.0;�2/: (13.8)

The usual first order asymptotic expansions of the constrained and unconstrained
GMM (Newey and McFadden 1994, p. 2219) imply that

Qq D B�1G Nq;
Oq D �HG Nq;

where H
p�p � B�1A.A0B�1A/�1A0B�1 and B�1 D .GG0/�1. So �1 D B�1 and

�2 D H.
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Assumptions (13.6)–(13.8) substantially simplify derivations by disregarding
possibly important higher order terms of Nq, Qq and Oq. In the OLS setting, this
would correspond to Hansen’s (2006) assumption that the regression error is
homoskedastic and has exact normal distribution. As noted by Hansen (2006), this
places focus on nonlinearity. In our setting, this is the nonlinearity of the test statistic
as a function of moment conditions and of parameter estimates.

It is in principle possible to generalize our results as in Phillips and Park (1988,
Appendix B) to the more general case of only (13.5), by carrying additional higher
order terms involved in Nq and in the transformations using WN , B , G and H.
That is, it is possible in principle that Nq, Qq and Oq come from any distribution that
admits a valid Edgeworth expansion, not only normal. Aside from allowing for non-
normality in finite samples, this would correct for the difference between the sample
and population versions of the weighting matricesW , B , G and H and would allow
for the optimal weighting matrix W to depend explicitly on � as in the CU-GMM
estimator of Hansen et al. (1996) or in a two-step GMM procedure. However, for
reasons to be discussed next we do not pursue such a generalization here.

We follow Hansen (2006) and Phillips and Park (1988) and disregard the
approximation inherent in the first order asymptotic result (13.5). We do so for
several reasons. First, we wish to focus on the nonlinearity of the test statistic
as a function of moment conditions. This type of nonlinearity distinguishes this
test from, e.g., the Wald test statistic, which depends on the nonlinearity of the
restrictions.

Second, for the class of models we focus on, the derivatives of the moment
functions with respect to the parameters are not random functions. That is, they are
fixed functions of � and so, given � , there is no difference between the sample and
population version of these matrices. In other words, given � , estimation of weights
B , G and H does not add estimation error for this class of models.

Third, our setup implicitly allows for W to depend on � . We achieve this by
using the weighted function MN .�/ instead of mN.�/ – if W depends on � in a
known manner then the derivativesG;D;C will be different and this will change our
correction factor. This does not explicitly account for the estimation error inherent
in replacing W by WN but this does account for the estimation error inherent in
replacing �0 inW by an estimate and for the nonlinearity of MN .�/ as a function of
parameter estimates.1

Finally, the expansions for the general case quickly become hard to manage
using matrix notation. As an alternative we study the effect of non-normality and
nonlinearity by simulations and find that, at least for the models we consider, our
correction works very well. We argue that the correction works for non-normal
distributions, inspite of the limitations imposed by assuming (13.6)–(13.8), when
the deviations of the sampling distribution of the test statistics from the first-order

1As noted by a referee this means that we ignore the estimation error in WN , or more precisely,
that we assume that estimation error, coupled with some nonlinearities we disregard, has, in some
sense, no bigger effect than the estimation error in O� and the nonlinearities we focus on.
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asymptotics remain relatively small. This feature of Edgeworth corrections has been
noted in previous literature (see, e.g., Phillips and Park 1988).

Using the above notation and Theorem 3.1.1 of Kollo and Rosen (2005, p. 280),
which we provide in Appendix 1 for reference, the Taylor expansion of MN . N�N /
about O�N can be written as follows

MN . N�N / D MN . O�N /CG0
N .

O�N /. N�N � O�N /

C1

2
ŒIk ˝ . N�N � O�N /0�D0

N .
O�N /. N�N � O�N /C op.N

�1/: (13.9)

Substituting (13.9) into (13.4), we obtain

DM D Nq0G0
HGN . O�N /G0

N .
O�N /HG Nq

C M
0
N .

O�N /.Ik ˝ Nq0G0
H/D0

N .
O�N /HG Nq

�N�1=2 Nq0G0
HGN . O�N /.Ik ˝ Nq0G0

H/D0
N .

O�N /HG Nq

C 1

4
N�1 Nq0G0

HDN . O�N /.Ik ˝ HG Nq/.Ik ˝ Nq0G0
H/D0

N .
O�N /HG Nq C op.N

�2/:
(13.10)

We will now expand at �0 all functions of O�N contained in (13.10). We wish to
use Theorem 3.1.1 of Kollo and Rosen (2005) to do that. So we will transform the
current representation into the one based on vector functions. Specifically, we need
the vectorized versions of matrices GN . O�N / and DN. O�N /. Using the facts that

vec.ABC/ D .C 0 ˝A/vecB;

.A˝ B/0 D A0 ˝B 0;

we obtain the following equations

Nq0G0
HGN. O�N / D vec0GN . O�N /.Ik ˝ HG Nq/;

D0
N .

O�N /HG Nq D .Ipk ˝ Nq0G0
H/vecDN . O�N /:

Equation (13.10) can now be rewritten as

DM D vec0GN . O�N /M1vecGN . O�N /
C M

0
N .

O�N /M2vecDN . O�N /
�N�1=2vec0GN. O�N /M3vecDN . O�N /

CN�1 1
4

vec0DN . O�N /M4vecDN . O�N /C op; (13.11)



378 W. Huang and A. Prokhorov

where

M1 D .Ik ˝ HG Nq/.Ik ˝ Nq0G0
H/;

M2 D Ik ˝ Nq0G0
H ˝ Nq0G0

H;

M3 D .Ik ˝ HG Nq/.Ik ˝ Nq0G0
H ˝ Nq0G0

H/;

M4 D Ik ˝ HG Nq Nq0G0
H ˝ HG Nq Nq0G0

H:

Substituting the Taylor expansions at �0 of MN . O�N /, vecGN . O�N / and vecDN . O�N /
into (13.11) gives the asymptotic expansion of the DM test statistic, which is
summarized in the following theorem.

Theorem 1. The asymptotic expansion of the DM test statistic is given by

DM D Nq0P Nq CN�1=2u. Nq/CN�1v. Nq/C op; (13.12)

where

P
k�k � G0

HG;

u. Nq/ D u1. Nq/C u2. Nq/C u3. Nq/;
v. Nq/ D v1. Nq/C v2. Nq/C v3. Nq/C v4. Nq/; (13.13)

with ui . Nq/ .i D 1; 2; 3/ and vi . Nq/ .i D 1; 2; 3; 4/ specified by

u1. Nq/ D 2 Nq0G0B�1DM1vecG; (13.14)

u2. Nq/ D Nq0.G0B�1G � Ik/M2vecD; (13.15)

u3. Nq/ D �vec0GM3vecDI (13.16)

v1. Nq/ D Nq0G0B�1DM1D
0B�1G Nq C Nq0G0B�1C.Ipk ˝ B�1G Nq/M1vecG;

(13.17)

v2. Nq/ D Nq0.G0B�1G � Ik/M2C
0B�1G Nq C 1

2
Nq0G0B�1D.Ik ˝ B�1G Nq/M2vecD;

(13.18)

v3. Nq/ D � Nq0G0B�1CM 0
3vecG � Nq0G0B�1DM3vecD; (13.19)

v4. Nq/ D 1

4
vec0DM4vecD: (13.20)

Proof. See Appendix 2 for all proofs.
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13.4 Distribution of DM Test Statistic

In this section we follow Phillips and Park (1988) and use the Taylor expansion
of DM to derive the Edgeworth expansion of its distribution to order O.N�1/.
Theorem 2.4 of Phillips and Park (1988) allows us to skip intermediate steps in
deriving the expansion for the distribution from the expansion of the test statistics.
Hansen (2006) used this approach for a single restriction DM test in a normal linear
regression with known error variance.

In order to use Phillips and Park’s results, we first show that u. Nq/ and v. Nq/ can be
written in terms of Kronecker products of Nq and Nq Nq0. This is done in the following
lemma.

Lemma 1. u. Nq/ and v. Nq/ in Theorem 1 can be written as

u. Nq/ D vec0J. Nq ˝ Nq ˝ Nq/;
v. Nq/ D t rŒL. Nq Nq0 ˝ Nq Nq0/�;

where vecJ D vecJ1 C vecJ2 C vecJ3 with

vecJ1 D 2.G0
HG ˝G0

H ˝G0B�1/vecD;

vecJ2 D Œ.G0B�1G � Ik/˝G0
H ˝G0

H�vecD;

vecJ3 D �.G0
HG ˝G0

H ˝G0
H/vecDI

and

L D L1 C L2 C L3 C L4; (13.21)

with

L1 D .G0
H˝G0B�1/VD.HG˝B�1G/C.G0

H˝G0B�1/MV .Ik˝HG/; (13.22)

L2 D .G0
H ˝G0

H/MVI C 1

2
.G0

H ˝G0
H/VD.B

�1G ˝ B�1G/; (13.23)

L3 D �.G0
H˝G0

H/MV .Ik ˝HG/� .G0
H˝G0

H/VD.HG˝B�1G/; (13.24)

L4 D 1

4
.G0

H ˝G0
H/VD.HG ˝ HG/; (13.25)

where VD , MV andMVI are given in Appendix 2.

We can now follow Hansen (2006, Theorem 3) and apply the result of Phillips
and Park (1988, pp. 1069–1072). Specifically, we can obtain the characteristic
function of the DM test statistic:
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CDM.t/ D .1 � 2it/�r=2f1C 1

N
Œ.a0 � 1

4
b1/i t

C .a1 C 1

4
b1 � 1

4
b2/i t.1 � 2it/�1

C .a2 C 1

4
b2 � 1

4
b3/.1 � 2it/�2

C 1

4
b3i t.1 � 2it/�3�g C op.N

�1/;

where ai , i D 0; 1; 2, and bj , j D 1; 2; 3, are defined in Appendix 2. Note that
the first term .1 � 2it/�r=2 is the characteristic function for a �2r variate, reflecting
the first order asymptotics. Then, using the Fourier transform, we can derive the
distribution of the DM test statistic. This is done in Theorem 2.

Theorem 2. The asymptotic expansion to O.N�1/ of the distribution function of
DM is given by

FDM.x/ D Fr
�
x �N�1.˛1x C ˛2x

2 C ˛3x
3/
�C o.N�1/ (13.26)

where Fr denotes the distribution function of a �2r variate and

˛1 D .4a1 � b2/=4r;
˛2 D .4a2 C b2 � b3/=4r.r C 2/;

˛3 D b3=4r.r C 2/.r C 4/;

with ai .i D 1; 2/ and bi .i D 1; 2; 3/ defined in Appendix 2.

The Edgeworth correction factor that follows from (13.26) can be written as

1 �N�1.˛1 C ˛2DM C ˛3DM
2/ (13.27)

where DM is the original (uncorrected) DM test statistic. If multiplied by the
correction factor, the DM test statistic should be better approximated by the �2r
distribution than the uncorrected statistic. Strictly speaking, the correction cannot
be called “Bartlett” because it depends on the uncorrected statistic DM . However,
it is common to call such corrections Bartlett-type due to their similarity to the
classical (Bartlett 1937) correction (see, e.g., Cribari-Neto and Cordeiro 1996, for a
review of Bartlett and Bartlett-type corrections of common tests).

The unknown ˛’s ultimately depend on the number of restrictions r and on the
expected derivative matricesG;D;C; evaluated at �0. Since the DM test is invariant
to alternative formulations of the restriction g.�/ D 0, so are the ˛’s (see, e.g.,
Hansen 2006, p. 15). It is standard to estimate the unknown quantities using a
consistent estimate of �0 and, if needed, sample averages in place of expected values.

Note that increasing the number of restrictions r does not necessarily result in a
bigger correction factor because ˛i .i D 1; 2; 3/ may be negative. Moreover, it is
important to note that, even if the restrictions are linear, the Bartlett-type correction
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factor in (13.27) will be different from one so long as MN .�/ is nonlinear in
parameters. The theorem imposes no constraint on the number of restrictions tested
or on the specific estimator represented by the moment condition (13.1).

Edgeworth expansions do not always improve the quality of asymptotic approx-
imations. It has been documented that their performance is parameter dependent
and that they fail when deviations of the sampling distribution from the first order
asymptotic distribution are large (see, e.g., Phillips 1983). We cannot expect the
correction in (13.27) to work in all circumstances but when it does work, the quality
of the correction can be expected to depend on nonlinearities (through matrices J
and L), the size of the model (through the number of restrictions r), the sample size
N and the true distribution (through Nq). We now demonstrate the behavior of the
correction along some of these dimensions.

13.5 Illustrative Simulations

In this section, we use simulations to illustrate the theoretical results obtained in
Sect. 13.4 in the settings of a simple covariance structure model. Consider a random
vector Z 2 Z � R

q from P�0 , �0 2 ‚ � R
p . Assume that EŒZ� D 0, EfkZk4g <

1 and EŒZZ0� D †.�0/. The matrix function †.�/ may come from a variety
of models, e.g., LISREL, MIMIC, factor model, random effects or simultaneous
equations model. For a random sample .Z1; � � � ; ZN /, let

Si � ZiZ
0
i

and

S � 1

N

NX
iD1

Si :

Then, S satisfies a central limit theorem:
p
N.vechS � vech†.�0// ! N.0;�.�0//;

where

�.�0/ D V.vechSi / D EŒvechSivech
0Si � � vech†.�0/vech

0†.�0/:

Assume p � 1
2
q.q C 1/. Then, in terminology of covariance structure literature,

the degrees of freedom of the model are equal to q.qC1/
2

� p, and they will be
increased by one for each independent restriction imposed on †.�/ by the model.
We can write all distinct sample moment functions as follows

mN.�/
1
2 q.qC1/�1

� 1

N

NX
iD1

m.Zi ; �/ D vechS � vech†.�/
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where

m.Zi ; �/
1
2 q.qC1/�1

D vechSi � vech†.�/:

The sample covariance matrix of the moments is

W �1
N .�/

1
2 q.qC1/� 1

2 q.qC1/
D 1

N

NX
iD1
Œm.Zi ; �/m

0.Zi ; �/�

D 1

N

NX
iD1
ŒvechSi vech

0Si � vechSivech
0†.�/

� vech†.�/vech0Si C vech†.�/vech0†.�/�:

In practice, either the restricted or the unrestricted estimate of � will be used in these
infeasible expressions.

We are interested in testing H0 W †.�o/ D †.c/ against H1 W †.�o/ ¤ †.c/,
where c is a constant vector. This type of test is fundamental in covariance structure
analysis. Known as the ADF test in the covariance structure literature, it has been
studied by Korin (1968), Sugiura (1969), Nagarsenker and Pillai (1973), Browne
(1984), Chou et al. (1991), Muthen and Kaplan (1992), Yuan and Bentler (1997),
Satorra and Bentler (2001), Yanagihara et al. (2004), among others. Ogasawara
(2009) provides an asymptotic expansion similar to ours for the ADF test statistic
in the setting of covariance structure models. The literature has focused on three
dimensions of the test behavior: (1) what is the effect of the sample size; (2) how
the sample size requirements change for different nonnormal distributions; (3) how
the sample size requirements change for models of different size. We wish to apply
our Bartlett-type correction to the DM test of this restriction and study its behavior
along the same dimensions.

For simplicity, we consider a bivariate problem (i.e. q D 2) in which

†.�/ D
"
�21 �12

�12 �
2
2

#
;

� 0 D .�1; �12; �2/, c0 D .1; 0; 1/ and p D k D r D 3. So the parameter vector is
completely specified under the null and there are no parameters to estimate in the
restricted model. Write the null hypothesis as

H0 W g.�/
3�1

D 0; where g.�/ D vech†.�/ � vech†.c/ D

2
64
�21 � 1
�12 � 0

�22 � 1

3
75 :
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Fig. 13.1 Quantiles of chi-square and bootstrap distribution of uncorrected and corrected DM test
statistics for various sample sizes; q D 2. (a) N D 25 (b) N D 35 (c) N D 65 (d) N D 200

In order to demonstrate the effect of the Bartlett-type correction, we generate
samples of varying size from normal, Student-t and uniform distributions and
compute the uncorrected and corrected versions of the DM test statistic. This is
done 1,000 times. Then we plot the quantiles of the resulting bootstrap distributions.
These are displayed on Figs. 13.1–13.3. The quantile curve of the chi-square
distribution, marked “chi^2”, is drawn as a reference. The uncorrected and corrected
versions of the DM test statistic are marked “DM” and “DM_star,” respectively.

All figures show severe over-rejection of the uncorrected DM test statistic. The
fact that the size of the DM test is substantially greater in small samples than the
asymptotic size is well documented (see, e.g., Clark 1996), and our results agree
with that. Our corrected statistic performs much better for all distributions and all
sample sizes. Of course, the corrected distribution is not identical to the chi-square
distribution and the corrected test exhibits over- and under-rejection at times, but the
deviations are substantially smaller than for the uncorrected test. It is notable how
much improvement one can obtain using the corrected statistic in the area close to
the 95th percentile, which corresponds to the commonly used 5 % significance level.
At that level, the correction is almost perfect.

Figure 13.1 shows the quantiles for various sample sizes from N .0; 1/. One can
clearly see from the figure how the uncorrected curve deviates from the chi-square
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Fig. 13.2 Quantiles of chi-square and bootstrap distribution of uncorrected and corrected DM test
statistics for two data distributions and two sample sizes; q D 2. (a) N D 25, Student-t with 9 df.
(b) N D 65, Student-t with 9 df. (c) N D 25, Uniform (d) N D 65, Uniform

quantiles as the sample size decreases while the degree of model complexity does
not change (q D 2). At the same time, the corrected curve consistently provides a
great deal of improvement.

In Fig. 13.2 we show the behavior of the corrected and uncorrected test statistics
for two distributions, Student-t and uniform, and two sample sizes, N D 25 and
N D 65. As expected, the test, being distribution-free, exhibits similar behavior
under the two distributions. The correction works very well for the non-normal
distributions. The figures also show that the benefit of a larger sample size varies
for the two distributions. For other distributions (not reported here), the sample
size needed to obtain a similar level of approximation accuracy as in panel (d) was
several hundred observations. For some distributions, the correction may be trivial
even when samples are small while for others it may produce a large correction even
when samples are large.

In Fig. 13.3, in addition to the bivariate case, we consider a univariate (q D 1)
model in which †.�/ D �2. The null is � D c, and the restricted model has one
degree of freedom. This is done to show how model size (as measured by the degrees
of freedom of the model) affects the performance of the test statistics. In the larger
model (q D 2), the gap between the sampling and asymptotic �23 distribution is
much larger than between the sampling and the asymptotic �21 distribution in the
smaller model. It is interesting to note that the model size plays as important a
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Fig. 13.3 Quantiles of chi-square and bootstrap distribution of uncorrected and corrected DM test
statistics for two values of q and two sample sizes. (a) q D 1, N D 25 (b) q D 2, N D 25

(c) q D 1, N D 65 (d) q D 2, N D 65

role in accuracy of asymptotic approximations as the sample size: we more than
double the sample size between panel (b) and panel (d), and this has a similar effect
on the larger model accuracy as replacing it by a model with 2 fewer degrees of
freedom. This is consistent with the findings of Hoogland and Boomsma (1998) that
the chi-square statistics are sensitive to model size (as measured by the degrees of
freedom of the model). A bigger model requires a larger sample size to ensure good
behavior of the statistics. At the same time, for the smaller models (panels (a) and
(c)), larger sample sizes do not improve the asymptotic approximation by much –
the approximation error is small to start with. The corrected statistic displays an
improved behavior for both model sizes and both sample sizes.

The sampling distributions we see in the simulations are all farely close to
the asymptotic limits. We have not discovered any cases in our simulations when
the corrected distribution was farther away from the asymptotic distribution than the
sampling distribution, at least visually. It is difficult to predict how the correction
will behave in cases when the sampling distribution drastically deviates from
the asymptotics or when the models are very large. Yet, based on the presented
simulations we should expect the correction to work well for small models as
measured by the degrees of freedom and for standard “well behaved” non-normal
distributions.
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13.6 Empirical Illustration

In this section, we study applicability of the Bartlett-type correction to a covariance
structure model of earnings. This type of model has been a focus of many papers in
labor economics (see, e.g., MaCurdy 1982; Abowd and Card 1987, 1989; Topel and
Ward 1992; Baker 1997; Baker and Solon 2003). Among other things, the literature
has been concerned with the puzzling observation that the use of longer panels
results in a reversal of the original inference (see, e.g., Baker 1997, p. 358). Longer
panels are usually used to estimate higher-order autocovariances. However, the cost
of longer balanced panels is a smaller number of individuals. For example, the
sample sizes used by Baker (1997) in 10-year panels are 992 and 1,331 individuals
for the periods 1967–1976 and 1977–1986, respectively; his 20-year panel contains
only 534. On the other hand, as the panel gets longer (q increases), degrees of
freedom grow. As mentioned earlier, this generally requires larger sample sizes for
the DM statistic to remain close to the asymptotic approximation. In this section, we
use parts of the sample of earnings used by Abowd and Card (1989) to demonstrate
how the Bartlett-type correction affects the outcomes of a hypothesis test for various
sample sizes.

The earnings data are from the Panel Study of Income Dynamics (PSID),
conducted by Survey Research Center at University of Michigan. The sample
consists of male heads of household, who were between the ages of 21 and 64
in the period 1969 to 1974 and who reported positive earnings in each year. The
sample we use – a subsample of the data used by Abowd and Card (1989) –
contains 1,578 individuals. Individuals with average hourly earnings greater than
$100 or those who reported annual hours worked greater than 4,680 were excluded.
A detailed description of the PSID variables is given in Appendix 3. Covariances
and correlations between demeaned changes in log of real annual earnings (in 1967
dollars) are displayed in Table 13.1. Covariances are presented below the diagonal,
while correlations and their two-tailed p-values are presented above the diagonal.

Table 13.1 Covariances (below diagonal) and correlations (above diagonal) between changes in
log-earnings: PSID Males 1967–1974

Covariance/correlation(with two-tailed p-value) of:
With : � ln e 69–70 � ln e 70–71 � ln e 71–72 � ln e 72–73 � ln e 73–74

� ln e 69–70 0.228 �0.204 �0.006 0.018 �0.006
(0) (0.827) (0.463) (0.823)

� ln e 70–71 �0.04418 0.205 �0.415 �0.082 0
(0) (0.001) (0.994)

� ln e 71–72 �0:00117 �0.08345 0.197 �0.347 �0.041
(0) (0.101)

� ln e 72–73 0.003442 �0.01447 �0.06 0.152 �0:305
(0)

� ln e 73–74 �0.00102 �0.0000303 �0.00697 �0.04518 0.144
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A generic population covariance matrix for Table 13.1 can be written as

†.�/ D

2
666664

�21 �12 �13 �14 �15
�21 �

2
2 �23 �24 �25

�31 �32 �
2
3 �34 �35

�41 �42 �43 �
2
4 �45

�51 �52 �53 �54 �
2
5

3
777775
; (13.28)

where � D .�1; �21; �31; �41; �51; �2; �32; �42; �52; �3; �43; �53; �4; �54; �5/
0.

The question Abowd and Card (1989) ask is whether the information in the
covariance matrix in Table 13.1 could be adequately summarized by some relatively
simple statistical model. Specifically, they ask whether an MA(2) process (possibly
nonstationary) can serve as the model. Indeed, there are very few covariances
(correlations) that are large or statistically significant at lags greater than two. In
order to address this concern, two tests were performed using the DM test statistic.

The first one is to test for a nonstationary MA(2) representation of the changes in
earnings. The changes in earnings have a nonstationary MA(2) representation if the
covariances at lags greater than two are zero. The null is H0: changes in earnings
are nonstationary MA(2), and the alternative is H1: changes in earnings are not
nonstationary MA(2). Equivalently, the null can be rewritten as

H0 W
2
4
�41

�51
�52

3
5 D 0

3�1: (13.29)

The second one is to test for a stationary MA(2) representation of the changes in
earnings. By a stationary MA(2) representation, we mean (i) cov.� ln et ;� ln et�j /
depends only on j and does not change over t , and (ii) cov.� ln et ;� ln et�j / is
zero for jj j > 2. The null is H0: changes in earnings are stationary MA(2), and the
alternative is H1: changes in earnings are not stationary MA(2). Equivalently, the
null can be rewritten as

H0 W
2
4
�41

�51
�52

3
5 D 0

3�1;

�1 D �2 D �3 D �4 D �5;

�21 D �32 D �43 D �54;

�31 D �42 D �53: (13.30)

The test results are presented in Table 13.2. The values of the uncorrected and
corrected DM test statistic (and the corresponding p-values) are very close for both
tests. Not surprisingly, the corrections for this relatively large sample are minor to
none. We now demonstrate the effect of the Bartlett-type correction as the sample
size becomes smaller.
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Table 13.2 Goodness-of-fit tests for changes in earnings: PSID males 1967–1974

DM test statistic Asy. p-valueGoodness-of-fit test
N D 1,578 Uncorrected Corrected Uncorrected Corrected

I. Nonstationary MA(2) 0.3325 0.3320 0.9538 0.9539
.df D 3/

II. Stationary MA(2) 19.9889 19.6262 0.0673 0.0745
.df D 12/

Table 13.3 Testing stationary MA(2) for changes in earnings: PSID males 1967–1974

DM test statistic Asy. p-value

Sample size Uncorrected Corrected Uncorrected Corrected

N D 1,400 22.21 21.64 0.035 0.042
N D 1,200 24.15 22.83 0.019 0.029
N D 1,000 25.46 22.12 0.012 0.036
N D 900 25.99 20.35 0.010 0.061

As expected, when the sample size becomes smaller the Bartlett-type correction
becomes more important. Consider the second test as an example. The results
for that test are presented in Table 13.3. We randomly select increasingly smaller
subsamples of data. As the sample size decreases from N D 1,400 to 900, the
correction becomes larger to the point at which the outcome of the test is reversed at
conventional significance levels. For example, if N D 900, the corrected test does
not reject at the 5 % level while the uncorrected test does.

We conclude from this table that, for the current number of degrees of freedom,
cross sections as large as 900 are not large enough to justify application of the
uncorrected first-order asymptotic approximation to this covariance structure model.
If used against the asymptotic critical values, the uncorrected DM test severely
over-rejects.

This conclusion is based on the assumption that the corrected DM statistic
approximates the asymptotic distribution better than the uncorrected one. We have
no way of verifying this assumption. However, even though this model features a
larger covariance matrix than considered in simulations, the model has three degrees
of freedom – a model size which is not much larger than that used in simulations.
We assume the correction works for models of this size.

13.7 Concluding Remarks

This paper provides a Bartlett-type correction of the DM test statistic. Our setting
covers linear and nonlinear restrictions and all extremum and minimum distance
estimators that can be stated in terms of moment conditions, although we focus on
covariance structure models. The expansions used to obtained the correction are
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based on several normality assumptions that can be relaxed using methods similar
to Phillips and Park (1988, Appendix B). The correction may work better if we do
so but we leave this general case for future work.

We also provide some simulation evidence about the behavior of the corrected
test statistic in a fairly general class of covariance structure models. Given the poor
performance of Edgeworth approximations documented in settings when the error
in the first order asymptotics is large, we present simulations where the errors are
relatively small. We find that the correction works extremely well in such settings.

In practice, it is often necessary to consider a very large (as measured by the
degrees of freedom of the model) covariance structure model (see, e.g., Herzog
et al. 2007; Kenny and McCoach 2003), which makes it difficult to maintain good
properties of the DM test and of our correction even in large samples. Moreover, the
available data are often very non-normal. In such cases, the correction may perform
worse and larger samples may be needed before the correction performs better.

We illustrate using an example from labor economics how in a setting where our
correction is likely to work well, the initial inference is reversed after the correction.
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Appendix 1

Theorem 3.1.1 of Kollo and Rosen (2005)

Let fxng and f"ng be sequences of random p-vectors and positive numbers,
respectively, and let xn � x0 D op."n/, where "n ! 0 as n ! 1. If the function
f .x/ from R

p to R
s has continuous partial derivatives up to the order .M C 1/ in a

neighborhood D of a point x0, then the function f .x/ can be expanded at the point
x0 into the Taylor series

f .x/ D f .x0/C
MX
kD1

1

kŠ

�
Is ˝ .x � x0/

˝.k�1/�0
 
dkf .x/

dxk

!0

xDx0
.x�x0/Co.�M.x; x0//;

where the Kroneckerian power A˝k for any matrix A is given by A˝k D
A˝ � � � ˝ A„ ƒ‚ …

k times

with A˝0 D 1, �.:; :/ is the Euclidean distance in R
p , and the
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matrix derivative for any matrices Y and X is given by dkY

dXk
D d

dX

�
dk�1Y

dXk�1

�
with

dY
dX

� dvec0Y
dvecX ; and

f .xn/ D f .x0/C
MX
kD1

1

kŠ

�
Is ˝ .xn � x0/˝.k�1/�0

�
�
dkf .xn/

dxkn

	0

xnDx0
.xn � x0/C op."

M
n /:

Appendix 2

Proofs

Proof of Theorem 1: Write (13.11) as

DM Š 1DM C 2DM C 3DM C 4DM ; (13.31)

where,

1DM D vec0GN . O�N /M1vecGN . O�N /;
2DM D M

0
N .

O�N /M2vecDN . O�N /;
3DM D �N�1=2vec0GN . O�N /M3vecDN . O�N /;

4DM D N�1 1
4

vec0DN . O�N /M4vecDN . O�N /:

Taking Taylor expansions of MN . O�N /, vec GN . O�N / and vec DN . O�N / about �0 and
using (13.5) and (13.7), we have

MN . O�N /
k�1

D MN .�0/CG0. O�N � �0/C 1

2
ŒIk ˝ . O�N � �0/

0�D0. O�N � �0/C op.N
�1/

D �N�1=2 Nq CN�1=2G0B�1G Nq CN�1 1

2
.Ik ˝ Nq0G0B�1/D0B�1G Nq C op.N

�1/;

vec GN . O�N /
pk�1

D vecG CD0. O�N � �0/C 1

2
ŒIpk ˝ . O�N � �0/

0�C 0. O�N � �0/C op.N
�1/

D vecG CN�1=2D0B�1G Nq CN�1 1

2
.Ipk ˝ Nq0G0B�1/C 0B�1G Nq C op.N

�1/;

vec DN . O�N /
p2k�1

D vecD C C 0. O�N � �0/C op.N
�1=2/

D vecD CN�1=2C 0B�1G Nq C op.N
�1=2/:
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Note that we do not need to expand vecDN . O�N / further for our purpose. Substituting
these expressions into the terms of (13.31) gives:

1DM D vec0GN . O�N /M1vecGN . O�N /
D vec0GM1vecG CN�1=22 Nq0G0B�1DM1vecG

CN�1Œ Nq0G0B�1DM1D
0B�1G Nq C Nq0G0B�1C.Ipk ˝ B�1G Nq/M1vecG�

C op.N
�1/

D Nq0P Nq CN�1=2u1. Nq/CN�1v1. Nq/C op.N
�1/; (13.32)

where

P
k�k � G0

HG

is a projection matrix, and

u1. Nq/ D 2 Nq0G0B�1DM1vecG;

v1. Nq/ D Nq0G0B�1DM1D
0B�1G Nq C Nq0G0B�1C.Ipk ˝ B�1G Nq/M1vecGI

2DM D M
0
N .

O�N /M2vecDN . O�N /
D �N�1=2 Nq0M2vecD �N�1 Nq0M2C

0B�1G Nq
CN�1=2 Nq0G0B�1GM2vecD CN�1 Nq0G0B�1GM2C

0B�1G Nq

CN�1 1
2

Nq0G0B�1D.Ik ˝ B�1G Nq/M2vecD C op.N
�1/

D N�1=2. Nq0G0B�1M2vecD � Nq0M2vecD/

CN�1Œ Nq0G0B�1GM2C
0B�1G Nq � Nq0M2C

0B�1G Nq

C1

2
Nq0G0B�1D.Ik ˝B�1G Nq/M2vecD�C op.N

�1/

D N�1=2u2. Nq/CN�1v2. Nq/C op.N
�1/; (13.33)

where

u2. Nq/ D Nq0G0B�1GM2vecD � Nq0M2vecD

D Nq0.G0B�1G � Ik/M2vecD;

v2. Nq/ D Nq0G0B�1GM2C
0B�1G Nq � Nq0M2C

0B�1G Nq

C 1

2
Nq0G0B�1D.Ik ˝B�1G Nq/M2vecD

D Nq0.G0B�1G � Ik/M2C
0B�1G Nq C 1

2
Nq0G0B�1D.Ik ˝ B�1G Nq/M2vecDI
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3DM D �N�1=2vec0GN . O�N /M3vecDN . O�N /
D �N�1=2vec0GM3vecD�N�1vec0GM3C

0B�1G Nq
�N�1 Nq0G0B�1DM3vecD C op.N

�1/

D N�1=2u3. Nq/CN�1v3. Nq/C op.N
�1/; (13.34)

and

u3. Nq/ D �vec0GM3vecD;

v3. Nq/ D �vec0GM3C
0B�1G Nq � Nq0G0B�1DM3vecD

D � Nq0G0B�1CM 0
3vecG � Nq0G0B�1DM3vecDI

4DM D N�1 1
4

vec0DN . O�N /M4vecDN . O�N /

D N�1 1
4

vec0DM4vecD C op.N
�1/

D N�1v4. Nq/C op.N
�1/; (13.35)

where

v4. Nq/ D 1

4
vec0DM4vecD:

Finally, collecting the terms (13.32)–(13.35) gives Eq. (13.12). ut
Proof of Lemma 1: From Theorem 1, if ui . Nq/ (i D 1; 2; 3) and vi . Nq/ (i D 1; 2; 3; 4)
could be rewritten as

ui . Nq/ D vec0Ji . Nq ˝ Nq ˝ Nq/; (13.36)

vi . Nq/ D t rŒLi . Nq Nq0 ˝ Nq Nq0/�; (13.37)

then,

u. Nq/ D vec0J. Nq ˝ Nq ˝ Nq/;
v. Nq/ D t rŒL. Nq Nq0 ˝ Nq Nq0/�;

where

vecJ D vecJ1 C vecJ2 C vecJ3;

and

L D L1 C L2 C L3 CL4:

Therefore, the proof is reduced to showing (13.36) and (13.37).
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Using

.A˝ C/.B ˝D/ D .AB/˝ .CD/;

Kp;qvecA D vec.A0/;

A˝ B D Kp;r .B ˝A/Ks;q;

for A W p � q and B W r � s where K is the commutation matrix, we can rewrite
(13.14):

u1. Nq/ D 2 Nq0G0B�1D.Ik ˝ HG Nq/vec. Nq0G0
HG/

D 2 Nq0G0
HG.Ik ˝ Nq0G0

H/. Nq0G0B�1 ˝ Ipk/vec.D
0/

D 2 Nq0G0
HG.Ik ˝ Nq0G0

H/.Ipk ˝ Nq0G0B�1/vecD

D 2. Nq0G0
HG ˝ Nq0G0

H ˝ Nq0G0B�1/vecD

D 2. Nq0 ˝ Nq0 ˝ Nq0/.G0
HG ˝G0

H ˝G0B�1/vecD

D vec0J1. Nq ˝ Nq ˝ Nq/; (13.38)

where

vecJ1 D 2.G0
HG ˝G0

H ˝G0B�1/vecD: (13.39)

Let

R1 D .HG ˝ B�1G/. Nq Nq0 ˝ Nq Nq0/.G0
H ˝G0B�1/; (13.40)

partition vecD as

vecD
p2k�1

D

2
6664

VD1
VD2
:::

VDk

3
7775 (13.41)

where each subvector VDi is p2 � 1, and let

VD D VD1V
0
D1 C VD2V

0
D2 C � � � C VDkV

0
Dk: (13.42)

Then, since

.Ik ˝ Nq0G0
H/D0B�1G Nq D .Ik ˝ Nq0G0

H/. Nq0G0B�1 ˝ Ipk/vec.D
0/

D .Ik ˝ Nq0G0
H/.Ipk ˝ Nq0G0B�1/vecD

D .Ik ˝ Nq0G0
H ˝ Nq0G0B�1/vecD;
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the first term of v1. Nq/ in (13.17) becomes

Nq0G0B�1D.Ik ˝ HG Nq/.Ik ˝ Nq0G0
H/D0B�1G Nq

D vec0D.Ik ˝ HG Nq ˝ B�1G Nq/.Ik ˝ Nq0G0
H ˝ Nq0G0B�1/vecD

D vec0D.Ik ˝R1/vecD

D �
V 0
D1 V

0
D2 � � � V 0

Dk

�
2
6664

R1 0

R1
: : :

0 R1

3
7775

2
6664

VD1
VD2
:::

VDk

3
7775

D V 0
D1R1VD1 C V 0

D2R1VD2 C � � � C V 0
DkR1VDk

D t rŒ.VD1V
0
D1 C VD2V

0
D2 C � � � C VDkV

0
Dk/R1�

D t rŒVD.HG ˝ B�1G/. Nq Nq0 ˝ Nq Nq0/.G0
H ˝G0B�1/�

D t rŒ.G0
H ˝G0B�1/VD.HG ˝ B�1G/. Nq Nq0 ˝ Nq Nq0/�: (13.43)

Similarly, let

R2 D .HG ˝ B�1G/. Nq ˝ Nq/; (13.44)

R3 D Nq0G0
H; (13.45)

partition G0B�1C and vecG as

G0B�1C
k�p2k

D �
MGC1 MGC2 � � � MGCk

�
; (13.46)

vecG
pk�1

D

2
6664

VG1
VG2
:::

VGk

3
7775 ; (13.47)

whereMGCi and VGi are k � p2 and p � 1 respectively, and let

MV D M 0
GC1 ˝ V 0

G1 CM 0
GC2 ˝ V 0

G2 C � � � CM 0
GCk ˝ V 0

Gk: (13.48)

Then, since

Nq0m Nq0M. Nq ˝ Nq/ D m0 Nq Nq0M. Nq ˝ Nq/
D Œ. Nq ˝ Nq/0M 0 ˝m0�vec. Nq Nq0/

D . Nq ˝ Nq/0.M 0 ˝m0/. Nq ˝ Nq/
D t rŒ.M 0 ˝m0/. Nq Nq0 ˝ Nq Nq0/�
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for some vector m and matrix M of appropriate sizes, the second term of v1. Nq/ in
(13.17) becomes

Nq0G0B�1C.Ipk ˝ B�1G Nq/.Ik ˝ HG Nq/.Ik ˝ Nq0G0
H/vecG

D Nq0G0B�1C.Ik ˝R2/.Ik ˝R3/vecG

D Nq0 �MGC1 MGC2 � � � MGCk

�
2
6664

R2 0

R2
: : :

0 R2

3
7775

2
6664

R3 0

R3
: : :

0 R3

3
7775

2
6664

VG1
VG2
:::

VGk

3
7775

D
kX
iD1
. Nq0MGCiR2R3VGi /

D t r

kX
iD1
Œ Nq0MGCi .HG ˝ B�1G/. Nq ˝ Nq/ Nq0G0

HVGi �

D t r

kX
iD1
Œ Nq0G0

HVGi Nq0MGCi .HG ˝ B�1G/. Nq ˝ Nq/�

D t r

kX
iD1

˚fŒ.G0
H ˝G0B�1/M 0

GCi �˝ V 0
GiHGg. Nq Nq0 ˝ Nq Nq0/



D t r

kX
iD1
Œ.G0

H ˝G0B�1/.M 0
GCi ˝ V 0

Gi /.Ik ˝ HG/. Nq Nq0 ˝ Nq Nq0/�

D t rŒ.G0
H ˝G0B�1/MV .Ik ˝ HG/. Nq Nq0 ˝ Nq Nq0/�: (13.49)

From (13.43) and (13.49), (13.17) can be rewritten as

v1. Nq/ D t rŒL1. Nq Nq0 ˝ Nq Nq0/�; (13.50)

where

L1 D .G0
H˝G0B�1/VD.HG˝B�1G/C.G0

H˝G0B�1/MV .Ik˝HG/: (13.51)

Similar to u1. Nq/, u2. Nq/ in (13.15) can be rewritten as

u2. Nq/ D Nq0.G0B�1G � Ik/.Ik ˝ Nq0G0
H ˝ Nq0G0

H/vecD

D . Nq0 ˝ Nq0 ˝ Nq0/Œ.G0B�1G � Ik/˝G0
H ˝G0

H�vecD

D vec0J2. Nq ˝ Nq ˝ Nq/; (13.52)
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where

vecJ2 D Œ.G0B�1G � Ik/˝G0
H ˝G0

H�vecD: (13.53)

The first term of v2. Nq/ in (13.18) can be written as

Nq0G0B�1C.Ik ˝ HG Nq ˝ HG Nq/.G0B�1G � Ik/ Nq:
Since

.G0B�1G � Ik/ Nq D vecŒ Nq0.G0B�1G � Ik/�
D .Ik ˝ Nq0/vec.G0B�1G � Ik/;

and vec.G0B�1G � Ik/ can be partitioned as

vec.G0B�1G � Ik/ D

2
6664

VGI1
VGI2
:::

VGIk

3
7775 (13.54)

where VGIi is k � 1, we may mimic the second term of v1. Nq/ and rewrite the first
term of v2. Nq/ further as

t r

kX
iD1
Œ Nq0MGCi .HG ˝ HG/. Nq ˝ Nq/ Nq0VGIi �

D t rŒ.G0
H ˝G0

H/MVI . Nq Nq0 ˝ Nq Nq0/�;

(13.55)

where

MVI D M 0
GC1 ˝ V 0

GI1 CM 0
GC2 ˝ V 0

GI2 C � � � CM 0
GCk ˝ V 0

GIk: (13.56)

Similar to the first term of v1. Nq/, since

Nq0G0B�1D D vec0. Nq0G0B�1D/ D vec0D.Ipk ˝B�1G Nq/;

the second term of v2. Nq/ in (13.18) can be rewritten as

1

2
vec0D.Ik ˝ B�1G Nq ˝ B�1G Nq/.Ik ˝ Nq0G0

H ˝ Nq0G0
H/vecD

D 1

2
trŒVD.B

�1G ˝ B�1G/. Nq Nq0 ˝ Nq Nq0/.G0
H ˝G0

H/�

D t rŒ
1

2
.G0

H ˝G0
H/VD.B

�1G ˝B�1G/. Nq Nq0 ˝ Nq Nq0/�: (13.57)
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From (13.55) and (13.57), we have

v2. Nq/ D t rŒL2. Nq Nq0 ˝ Nq Nq0/�; (13.58)

where

L2 D .G0
H ˝G0

H/MVI C 1

2
.G0

H ˝G0
H/VD.B

�1G ˝ B�1G/: (13.59)

Since

vec0G.Ik ˝ HG Nq/
D Œ.Ik ˝ Nq0G0

H/vecG�0

D Nq0G0
HG;

(13.16) becomes

u3. Nq/ D � Nq0G0
HG.Ik ˝ Nq0G0

H ˝ Nq0G0
H/vecD

D �. Nq0 ˝ Nq0 ˝ Nq0/.G0
HG ˝G0

H ˝G0
H/vecD

D vec0J3. Nq ˝ Nq ˝ Nq/; (13.60)

where

vecJ3 D �.G0
HG ˝G0

H ˝G0
H/vecD: (13.61)

Similar to the second term of v1. Nq/, the first term of v3. Nq/ in (13.19) can be
rewritten as

� Nq0G0B�1C.Ik ˝ HG Nq ˝ HG Nq/.Ik ˝ Nq0G0
H/vecG

D t r

kX
iD1
Œ� Nq0MGCi .HG ˝ HG/. Nq ˝ Nq/ Nq0G0

HVGi �

D t rŒ�.G0
H ˝G0

H/MV .Ik ˝ HG/. Nq Nq0 ˝ Nq Nq0/�: (13.62)

Similar to the second term of v2. Nq/, the second term of v3. Nq/ in (13.19) can be
rewritten as

� Nq0G0B�1D.Ik ˝ HG Nq/.Ik ˝ Nq0G0
H ˝ Nq0G0

H/vecD

D �vec0D.Ipk ˝ B�1G Nq/.Ik ˝ HG Nq/.Ik ˝ Nq0G0
H ˝ Nq0G0

H/vecD

D �vec0D.Ik ˝ HG Nq ˝B�1G Nq/.Ik ˝ Nq0G0
H ˝ Nq0G0

H/vecD

D t rŒ�VD.HG ˝ B�1G/. Nq Nq0 ˝ Nq Nq0/.G0
H ˝G0

H/�

D t rŒ�.G0
H ˝G0

H/VD.HG ˝ B�1G/. Nq Nq0 ˝ Nq Nq0/�: (13.63)
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From (13.62) and (13.63), we have

v3. Nq/ D t rŒL3. Nq Nq0 ˝ Nq Nq0/�; (13.64)

where

L3 D �.G0
H˝G0

H/MV .Ik ˝HG/� .G0
H˝G0

H/VD.HG˝B�1G/: (13.65)

Similar to the first term of v1. Nq/, v4. Nq/ in (13.20) can be easily rewritten as

v4. Nq/ D 1

4
trŒVD.HG ˝ HG/. Nq Nq0 ˝ Nq Nq0/.G0

H ˝G0
H/�

D t rŒ
1

4
.G0

H ˝G0
H/VD.HG ˝ HG/. Nq Nq0 ˝ Nq Nq0/�

D t rŒL4. Nq Nq0 ˝ Nq Nq/�; (13.66)

where

L4 D 1

4
.G0

H ˝G0
H/VD.HG ˝ HG/: (13.67)

By using (13.38), (13.50), (13.52), (13.58), (13.60), (13.64) and (13.66), we
obtain (13.36) and (13.37), thus finishing the proof. ut
Proof of Theorem 2: First, ai and bi are defined (Phillips and Park 1988) as

ai D t r.Ai / .i D 0; 1; 2/; (13.68)

where

A0 D LŒ.I CKk;k/. NP ˝ NP/C vec NP vec0 NP �;
A1 D LŒ.I CKk;k/. NP ˝ P C P ˝ NP/C vec NP vec0P C vecP vec0 NP �;
A2 D LŒ.I CKk;k/.P ˝ P/C vecP vec0P �I

bi D vec0JBivecJ .i D 1; 2; 3/; (13.69)

where

B0 D H. NP ˝ NP ˝ NP/CH. NP ˝ vec NP vec0 NP /H
C NP ˝Kk;k. NP ˝ NP/CKk;k. NP ˝ NP /˝ NP
CKk;k2 Œ NP ˝Kk;k. NP ˝ NP/�Kk2;k D C0. NP/; say;
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B1 D H.P ˝ NP ˝ NP /H
CH.P ˝ vec NP vec0 NP C NP ˝ vecP vec0 NP C NP ˝ vec NP vec0P/H

C P ˝Kk;k. NP ˝ NP /C NP ˝Kk;k.P ˝ NP/
C NP ˝Kk;k. NP ˝ P/CKk;k.P ˝ NP/˝ NP
CKk;k. NP ˝ NP/˝ NP CKk;k. NP ˝ NP/˝ P

CKk;k2fŒP ˝Kk;k. NP ˝ NP /�C Œ NP ˝Kk;k.P ˝ NP /�
C Œ NP ˝Kk;k. NP ˝ P/�gKk2;k D C1. NP ;P /; say;

B2 D C1.P; NP /;
B3 D C0.P /;

with

H D I CKk;k2 CKk2;k;

NP � I � P:

Secondly, from (13.68),

a0 D t r.A0/ D t rfLŒ.I CKk;k/. NP ˝ NP/C vec NP vec0 NP �g
D t rŒ. NP ˝ NP /L.I CKk;k/C vec0 NPLvec NP �
D t rŒ. NP ˝ NP /L.I CKk;k/�C t r.vec0 NPLvec NP /: (13.70)

Using (13.13) and NP � I � P , we have

.A0B�1G/ NP D 0; (13.71)

NP .G0B�1A/ D 0: (13.72)

Therefore, by (13.21)–(13.25),

. NP ˝ NP/L D 0; (13.73)

and

.HG ˝B�1G/vec NP D vec.B�1G NPGH/ D 0; (13.74)

.Ik ˝ HG/vec NP D vec.HG NP / D 0: (13.75)

Combining (13.74) and (13.75) with (13.22) yields

L1vec NP D 0: (13.76)



400 W. Huang and A. Prokhorov

Similarly,

L3vec NP D 0; (13.77)

L4vec NP D 0; (13.78)

and

vec0 NPL2 D .L0
2vec NP /0 D 0: (13.79)

From (13.76)–(13.79),

t r.vec0 NPLvec NP / D 0: (13.80)

Substituting (13.73) and (13.80) into (13.70) gives

a0 D 0: (13.81)

Also, from (13.69),

b1 D vec0JB1vecJ

D vec0JH.P ˝ NP ˝ NP/HvecJ

C vec0JH.P ˝ vec NP vec0 NP C NP ˝ vecP vec0 NPC NP ˝ vec NP vec0P/HvecJ

C vec0J ŒP ˝Kk;k. NP ˝ NP /C NP ˝Kk;k.P ˝ NP /�vecJ
C vec0J Œ NP ˝Kk;k. NP ˝ P/CKk;k.P ˝ NP /˝ NP �vecJ
C vec0J ŒKk;k. NP ˝ NP /˝ NP CKk;k. NP ˝ NP /˝ P �vecJ

C vec0JKk;k2fŒP ˝Kk;k. NP ˝ NP/�C Œ NP ˝Kk;k.P ˝ NP/�
CŒ NP ˝Kk;k. NP ˝ P/�gKk2;kvecJ: (13.82)

Using

Kp;qvecA D vec.A0/;

A˝ B D Kp;r .B ˝ A/Ks;q;

for A W p � q and B W r � s where K is the commutation matrix, the following
equations are obtained:

Kk;k2vecJ1 D 2.G0B�1 ˝G0
HG ˝G0

H/vec.D0/; (13.83)

Kk;k2vecJ2 D ŒG0
H ˝ .G0B�1G � Ik/˝G0

H�vec.D0/; (13.84)

Kk;k2vecJ3 D �.G0
H ˝G0

HG ˝G0
H/vec.D0/I (13.85)
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Kk2;kvecJ1 D 2.G0
H ˝G0B�1 ˝G0

HG/Kp2;kvecD; (13.86)

Kk2;kvecJ2 D ŒG0
H ˝G0

H ˝ .G0B�1G � Ik/�Kp2;kvecD; (13.87)

Kk2;kvecJ3 D �.G0
H ˝G0

H ˝G0
HG/Kp2;kvecD: (13.88)

Then, substituting (13.83)–(13.88) into (13.82), and using

vec.ABC/ D .C 0 ˝ A/vecB;

.A˝ B/0 D A0 ˝ B 0;

.A˝ C/.B ˝D/ D .AB/˝ .CD/;

together with (13.71) and (13.72) yield

b1 D 0: (13.89)

Given (13.81) and (13.89), the proof of Theorem 2.4 in Phillips and Park (1988)
establishes the conclusion of Theorem 2. ut

Appendix 3

Data Description

The earnings data used are drawn from the Panel Study of Income Dynamics
(PSID), available at http://psidonline.isr.umich.edu/

The sample consists of men who were heads of household from 1969 to 1974,
between the ages of 21 (not inclusive) and 64 (not inclusive), and who reported
positive earnings in each year. Individuals with average hourly earnings greater than
$100 or reported annual hours greater than 4680 were excluded.

Variables V7492, V7490, V0313, V0794, V7460, V7476, V7491 listed on p.443
of Abowd and Card (1989) are not available now on the PSID website. The variables
for sex listed on that page are not consistent with those on the PSID website. The
following are the PSID variables used here:

• ANNUAL EARNINGS: V1196, V1897, V2498, V3051, V3463, V3863;
• ANNUAL HOURS: V1138, V1839, V2439, V3027, V3423, V3823;
• SEX: ER32000;
• AGE: ER30046.

http://psidonline.isr.umich.edu/


402 W. Huang and A. Prokhorov

References

Abowd JM, Card D (1987) Intertemporal labor supply and long-term employment contracts. Am
Econ Rev 77:50–68

Abowd JM, Card D (1989) On the Covariance structure of earnings and hours changes. Economet-
rica 57:411–445

Baker M (1997) Growth-rate heterogeneity and the covariance structure of life-cycle earnings.
J Labor Econ 15:338–375

Baker M, Solon G (2003) Earnings dynamics and inequality among Canadian men, 1976–1992:
evidence from longitudinal income tax records. J Labor Econ 21:289–321

Barndorff-Nielsen O, Cox DR (1979) Edgeworth and saddle-point approximations with statistical
applications. J R Stat Soc B (Methodol) 41:279–312

Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond A Math Phys
Sci 160:268–282

Breusch TS, Schmidt P (1988) Alternative forms of the Wald test: how long is a piece of string?
Commun Stat Theory Methods 17:2789–2795

Browne MW (1984) Asymptotically distribution-free methods for the analysis of covariance
structures. Br J Math Stat Psychol 37:62–83

Chou C-P, Bentler PM, Satorra A (1991) Scaled test statistics and robust standard errors for non-
normal data in covariance structure analysis: a Monte Carlo study. Br J Math Stat Psychol
44:347–357

Clark TE (1996) Small-sample properties of estimators of nonlinear models of covariance
structure. J Bus Econ Stat 14:367–373

Cribari-Neto F, Cordeiro GM (1996) On Bartlett and Bartlett-type corrections. Econ Rev
15:339–367

Hall P (1992) The bootstrap and the edgeworth expansion. Springer, New York
Hansen LP (1982) Large sample properties of generalized method of moments estimators.

Econometrica 50:1029–1054
Hansen BE (2006) Edgeworth Expansions for the Wald and GMM statistics for nonlinear

restrictions. In: Corbae D, Durlauf SN, Hansen BE (eds) Econometric theory and practice:
frontiers of analysis and applied research. Cambridge University Press, Cambridge/New York,
pp 9–35

Hansen L, Heaton J, Yaron A (1996) Finite-sample properties of some alternative GMM estimators.
J Bus Econ Stat 14:262–280

Hausman J, Kuersteiner G (2008) Difference in difference meets generalized least squares: higher
order properties of hypotheses tests. J Econ 144:371–391

Herzog W, Boomsma A, Reinecke S (2007) The model-size effect on traditional and modified tests
of covariance structures. Struct Equ Model Multidisciplinary J 14:361–390

Hoogland JJ, Boomsma A (1998) Robustness studies in covariance structure modeling: an
overview and a meta-analysis. Sociol Methods Res 26:329–367

Kallenberg WCM (1993) Interpretation and manipulation of Edgeworth expansions. Ann Inst Stat
Math 45:341–351

Kenny DA, McCoach DB (2003) Effect of the number of variables on measures of fit in structural
equation modeling. Struct Equ Model Multidisciplinary J 10:333–351

Kollo T, von Rosen D (2005) Advanced multivariate statistics with matrices. Springer, Dordrecht
Korin BP (1968) On the distribution of a statistic used for testing a covariance matrix. Biometrika

55:171–178
Linton O (2002) Edgeworth approximations for semiparametric instrumental variable estimators

and test statistics. J Econom 106:325–368
MaCurdy TE (1982) The use of time series processes to model the error structure of earnings in a

longitudinal data analysis. J Econom 18:83–114
Magee L (1989) An Edgeworth test size correction for the linear model with AR(1) errors.

Econometrica 57:661–674



13 Bartlett-Type Correction of Distance Metric Test 403

Muthen B, Kaplan D (1992) A comparison of some methodologies for the factor analysis of
non-normal Likert variables: a note on the size of the model. Br J Math Stat Psychol 45:19–30

Nagarsenker BN, Pillai KCS (1973) Distribution of the likelihood ratio criterion for testing a
hypothesis specifying a covariance matrix. Biometrika 60:359–364

Newey W, McFadden D (1994) Large sample estimation and hypothesis testing. In: Handbook of
econometrics, vol IV. North-Holland, Amsterdam, pp 2113–2241

Newey WK, West KD (1987) Hypothesis testing with efficient method of moments estimation. Int
Econ Rev 28:777–787

Ogasawara H (2009) Asymptotic expansions of the distributions of the chi-square statistic based
on the asymptotically distribution-free theory in covariance structures. J Stat Plan Inference
139:3246–3261

Phillips PCB (1977) A general theorem in the theory of asymptotic expansions as approximations
to the finite sample distributions of econometric estimators. Econometrica 45:1517–1534

Phillips PCB (1978) Edgeworth and saddlepoint approximations in the first-order noncircular
autoregression. Biometrika 65:91–98

Phillips PCB (1983) ERA’s: a new approach to small sample theory. Econometrica 51:1505–1525
Phillips PCB, Park JY (1988) On the formulation of Wald tests of nonlinear restrictions.

Econometrica 56:1065–1083
Reid N (1991) Approximations and asymptotics. In: Hinkley D, Reid N, Snell E (eds) Statistical

theory and modeling: in honour of Sir David Cox, FRS. Chapman and Hall, London
Rothenberg T (1984) Approximating the distributions of econometric estimators and test statistics.

In: Griliches Z, Intriligator MD (eds) Handbook of econometrics, vol II. North-Holland,
Amsterdam, pp 881–935

Sargan JD, Satchell SE (1986) A theorem of validity for edgeworth expansions. Econometrica
54:189–213

Satorra A, Bentler P (2001) A scaled difference chi-square test statistic for moment structure
analysis. Psychometrika 66:507–514

Sugiura N (1969) Asymptotic expansions of the distributions of the likelihood ratio criteria for
covariance matrix. Ann Math Stat 40:2051–2063

Topel RH, Ward MP (1992) Job mobility and the careers of young men. Q J Econ 107:439–479
Yanagihara H, Matsumoto C, Tonda T (2004) Asymptotic expansion of the null distribution of the

modified normal likelihood ratio criterion for testing † D †0 under nonnormality. Hiroshima
Math J 34:81–100

Yuan K-H, Bentler PM (1997) Mean and covariance structure analysis: theoretical and practical
improvements. J Am Stat Assoc 92:767–774



Index

A
Abowd, J.M., 372, 386
Adams, C.P., 85
Adams, R.M., 69
Agee, M.D., 106
Ahn, S.C., 3, 221, 243
Aigner, D.J., 47, 259
Alchian, A.A., 48
Almanidis, P., 2, 47–78
Alm, R., 209
Altissimo, F., 300
Álvarez, A., 260, 261
Alvarez, J., 220
Amemiya, T., 250, 336
Amsler, C., 345, 349
Anderson, T., 8
Andrews, W.H., 55
Apergis, N., 293
Apostol, T., 243
Applicability, 2, 6, 7, 386
Arellano, M., 220
Asymmetric cointegrating relationships, 286
Asymmetric dynamic multipliers, 291–294,

304, 307
Asymptotic covariance, 3, 104, 105, 107–108,

113, 119, 120
Asymptotic expansion, 372, 373, 375, 378,

380, 382
Athey, S., 86
Atkinson, S.E., 3, 103–123
Attfield, C.L.F., 300
Average treatment effect (ATE), 7–11, 16–32,

40–43, 64–68, 73

B
Bachmeier, L.J., 282
Bacon, R.W., 299

Bae, Y., 282
Bajari, P., 85
Baker, M., 386
Balestra, P., 223
Balk, B.M., 69
Balke, N.S., 282, 284
Banerjee, A., 290, 302
Banking effciency, 70
Bapna, R., 85
Bartlett-type correction, 371–401
Battese, G.E., 47, 260, 261, 264
Beelder, O., 328
Bentler, P.M., 382
Bera, A.K., 72
Bernstein, J., 127, 128, 130, 133, 209
Binary indicators, 2, 7, 37
Binary outcome variable, 5–45
Bivariate probit (BIPROBIT), 6, 10, 17–44
Blanchard, O.J., 299
Bollen, K., 9
Boomsma, A., 385
Bootstrap, 3, 40, 54, 62, 70, 103–123, 283,

291, 297, 304, 383–385
Borenstein, S., 282, 293
Bounded inefficiency, 2, 47–78
Breusch, T.S., 104, 249, 250, 323, 371
Browne, M.W., 382
Bulbul, T., 85

C
Cameron, A.C., 108
Carare, O., 85
Card, D., 372, 386
Carree, M.A., 54
Caudill, S.B., 260, 263
Chen, D., 126, 129, 134

R.C. Sickles and W.C. Horrace (eds.), Festschrift in Honor of Peter Schmidt:
Econometric Methods and Applications, DOI 10.1007/978-1-4899-8008-3,
© Springer ScienceCBusiness Media New York 2014

405



406 Index

Chen, S., 33
Choi, I., 221, 282
Cho, J., 287
Chou, C.-P., 382
Clements, K.W., 126, 127, 129, 134
Coelli, T.J., 49, 260, 261, 264
The Conference in Honor of Peter Schmidt, 1
Consumer share of surplus, 84, 86, 93–99
Consumer surplus, 2, 83–101
Coppejans, M., 88
Cornwell, C., 3, 49, 103–123, 264
Corra, G., 47
Cox, D.D., 328
Cox, W.M., 209
Crespo Cuaresma, J., 300
Cross-country demand, 125–127, 129, 134,

210
Cross-price elasticities, 3, 25, 126, 127,

133–147, 149–165, 172, 178, 184, 190,
196, 202, 208–210, 214

Cuesta, R.A., 264

D
Dahl, C.P., 3
Data generating process (DGP), 7, 12–16, 22,

23, 54, 55, 63, 64, 224, 238, 265–277,
289, 294, 295, 297, 325–328, 345, 349,
353

Davidson, R., 108, 109, 111, 113, 117
Deaton, A.S., 212
de Jong, R.M., 282
Delatte, A.L., 283
Demsetz, H., 48
Dickey, D.A., 282, 343
Discrete factor model (DFM), 10–11, 17–37,

39–44
Distance metric, 4, 371–401
Doubly truncated normal, 49–60, 63–68, 72,

77
Durbin, J., 8

E
eBay auction, 2, 85, 86, 93, 94
Elliott, G., 322
Ely, J.C., 85
Engle, R.F., 282
Entani, T., 51
Escribano, A., 282

F
Felthoven, R.G., 365
Feng, Q., 362

Fiebig, D.G., 126, 128
Finke, R., 126, 128
Fishery policy, 360, 364, 368
Flachaire, E., 104, 108, 109, 111–113
Fleishman, A., 13
Flores-Lagunes, A., 361
Florida model, 126–129, 134, 135, 210–214
Fomby, T.B., 282, 284
Food, 3, 125–215, 359
Ford, J.M., 260
Frisch, R., 212
Fuller, W.A., 282, 343

G
Gallant, A.R., 88
Gamaletsos, T., 126
Generalized least squares (GLS) estimator,

219–221, 223–230, 234–236, 238, 239,
246–249, 252, 254

Generalized methods of moments (GMM),
4, 8, 17, 43, 77–40, 220, 250, 261,
316–321, 323, 335–337, 348, 373, 375,
376

Goldberger, A.S., 56, 126
Gong, B.H., 278
Gonzalez, R., 91
Gonzeles, 86
Granger, C.W.J., 282, 285, 300
Greene, W.H., 104
Greenwood-Nimmo, M.J., 3, 281–312
Griffin, J.M., 282
Guilkey, D.K., 2, 5–45
Guo, B., 348
Gupta, S.S., 363

H
Hahn, J., 220
Haile, P.A., 86
Hamanda, K., 304
Hamilton, J.D., 310, 311
Han, C., 264
Hansen, B.E., 62, 282, 290, 302, 307, 317, 320,

322, 324–327, 335, 336, 339, 341, 348,
355, 356, 372

Hansen, L., 8
Hasker, K., 2, 83–101
Hausman, J.A., 8, 107, 119, 220, 221, 250
Hausman test, 3, 8, 33, 219–257
Heckman, J., 10
Hicks, J.R., 48
Higgins, M., 220
Hoogland, J.J., 385



Index 407

Horowitz, J., 111
Horrace, W.C., 1–4, 359–368
Hortaçsu, A., 85
Hossain, T., 85
Houthakker, H.S., 126, 127
Hsu, J.C., 361
Huang, C.J., 4, 260
Huang, W., 371–401
Hughes, J.P., 70
Hutchinson, P., 33
Hwang, J., 344

I
Im, K.S., 3, 220, 315–341, 343–356
Inanoglu, H., 71
Inefficiency specification, 2, 48–51, 54, 62,

72
Instrumental variables, 6–9, 17, 19, 24–27, 32,

33, 41–44, 107, 249, 250
International comparison project, 3, 125–131,

133–135, 138, 141, 208, 209,

J
Jacobs, M., Jr., 71
Jansson, M., 322
Jiang, B., 2, 83–101
Johansen, S., 282
Jondrow, J., 260

K
Kahneman, D., 281
Kallenberg, W.C.M., 372
Kao, C., 220
Kapetanios, G., 108, 282, 284
Kaplan, D., 382
Keynes, J.M., 281
Kim, C., 334
Klein, L., 56, 70
Kmenta, J., 56
Knack, S., 106
Kneip, A., 69
Kollo, T., 372
Korin, B.P., 382
Kravis, I.B., 125, 128
Kremers, J.J.M., 302
Kuersteiner, G., 220
Kumbhakar, S.C., 49, 260, 264
Kurosaka, Y., 304
Kutlu, L., 48
Kuvinka, R., 77
Kwiatkowski, D., 282

L
Laffont, J.J., 86
Lagrange multiplier (LM), 4, 62, 344
Lance, P.M., 2, 5–45
Lardic, S., 286
Large N, 3, 104, 115, 219–257
Large T, 3, 219–257
Lee, J., 282, 300, 315–341, 343–356
Lee, L., 3, 62
Lee, Y.H., 3, 49, 259–278
Level breaks, 346, 349, 351, 354
Levin, A., 220
Lin, C.-F., 220
Linear predictor, 9
Linear probability model (LPM), 8, 9, 17,

21–32, 41–43
Liu, J.T., 260
Llatas, I., 328
Lluch, C., 126
López-Villavicencio, A., 283
Lovell, C.A.K., 51
Low, S., 221
Lucas, A., 328, 333, 336
Lucking-Reiley, D., 84

M
MacKinnon, J.G., 109, 113, 114, 117
MaCurdy, T.E., 250, 323
Marschak, J., 55
Maurelli, V., 13
Meeusen, W., 47
Meng, M., 4, 322, 335, 343–356
Mester, L.J., 70
Mignon, V., 286
Miller, S., 293
Monte Carlo simulation, 3, 65–68, 70,

235–237, 259–278, 284, 291, 296, 298,
335, 349

Moon, H.R., 3, 220, 221, 243
Moss, C.B., 3
Mroz, T., 10
Muellbauer, J., 212
Multiple comparisons, 4, 366, 367
Murphy, K.M., 107
Muthen, B., 382
Mwaikambo, L., 5

N
Nagarsenker, B.N., 382
Neftci, S.H., 300
Nekipelov, D., 85
Nerlove, M., 55, 223



408 Index

Newey, W.K., 371
Ng, S., 334
Nguyen, V.H., 284, 293
Nonlinear ARDL (NARDL) ECM-based

estimation and tests, 3, 281–312
Nonlinear unemployment-output relationship,

283, 299–307
Non-normality, 316, 332, 334, 343, 344, 376
Nonparametric estimation, 86, 93, 96, 98
Nunes, L., 346
Nychka, D.W., 88

O
Ockenfels, A., 85
Ogasawara, H., 382
Olson, J.A., 54
Orea, L., 48, 365

P
Pairs, 104, 105, 107, 108, 110–118, 120,

122–123
Panel data, 3, 49, 50, 62–63, 69, 73, 76,

103–123, 219–257
Park, J.Y., 282, 372
Partial sum decomposition approach, 3
Perfection, 1
Perron, P., 334, 345
Perseverance, 1
Personal, 2, 129, 130
Personal relationships, 2
Pesaran, M.H., 282, 288–291, 302, 303, 308
Phillips, P.C.B., 220, 221, 243, 282, 290, 322,

344, 348, 372
Pillai, K.C.S., 382
Pischke, J., 9
Play and play hard, 1
Plümper, T., 104, 106
Positive attitude, 1
Powell, A.A., 126
Premaratne, G., 72
Probit, 5, 6, 8, 9, 11, 13, 15–37, 41, 44
Prokhorov, A., 4, 371–401
Psaradakis, Z., 282, 284

Q
Qian, H., 317
Qian, J., 2, 47–78
Quah, D., 220

R
Regmi, A., 3, 125–215
Reid, N., 372

Reifschneider, D., 260
Residual augmented least squares (RALS), 3,

4, 316, 317, 320–335, 341, 343, 344,
346, 347, 354

Residual models, 9
Rivers, D., 9
Rodrigues, P., 346
Rosen, D., 372
Roth, A.E., 85
Rothenberg, T.J., 58, 372
Rubin, H., 8

S
Saikkonen, P., 282
Sailer, K., 85
Sample size, 12–13, 16–19, 27, 33, 37, 55, 64,

90, 111, 128, 234, 268, 272, 278, 295,
322, 324, 349, 353, 371–373, 381–388

Samuelson, P., 56
Sargan, J.D., 372
Satchell, S.E., 372
Satorra, A., 382
Schmidt, P., 1, 49, 58, 260, 262, 264, 278, 316,

317, 322, 335, 343, 344, 347, 361, 362,
371

Schnier, K.E., 4, 359–368
Schorderet, Y., 282, 284, 286, 300
Seale, J.L., Jr., 3, 125–215
Semi-nonparametric estimation, 84, 93, 96, 98,

101
Shiller, R., 281
Shin, D.W., 328, 333
Shin, J., 3
Shin, Y., 281–312
Shirvani, H., 293
Sickles, R.C., 1–4, 47–78, 83–101, 264, 278,

361, 362
Silverstone, B., 300
Simar, L., 54
Singer, B., 10
So, B.S., 328, 333
Solano, A.A., 129
Song, U., 84
STATA, 6, 8, 10, 13, 17, 40, 43, 44, 104
Steinbuks, J., 48
Stevenson, R.E., 53, 260
Stigler, G.S., 48
Stochastic frontier, 2, 3, 47–78, 259–278
Stochastic production frontier, 47, 49, 262,

359
Strazicich, M., 346
Subset selection, 365
Sugiura, N., 382



Index 409

Suhm, F.E., 127, 128
Summers, L.H., 299

T
Tamer, E.T., 55, 86
Taylor, W.E., 107, 119, 250
Technical efficiency, 49, 63, 69, 259, 262, 276,

361, 362
Terza, J., 9
Theil, H., 126–128, 211
Tieslau, M.A., 3, 315–341, 343–356
Time-varying technical efficiency, 49, 63
Topel, R.H., 107
Trivedi, P.K., 108
Troeger, V.E., 104, 106
Truncated exponential, 49, 51–53, 55, 56, 58,

61, 63
Truncated half normal, 49, 51–53, 55–59, 61,

63
Tversky, A., 281
Two-step estimation, 104, 108, 112, 220

U
Unit root test, 3, 4, 220, 315–341, 343–356

V
Vale, C., 13

van den Broeck, J., 47, 259
Van Treeck, T., 283, 293
Violante, G., 300

Virén, M., 282, 300
Vuong, Q., 9

W
Wald, L.R., 372
Waldman, D.M., 54
Wang, H.J., 260, 263
Wang, W.S., 58
Webber, A.G., 282, 294
West, K.D., 371
Wheelock, D.C., 70
Wilbratte, B., 293
Wild, 104, 105, 107–118, 120–122
Wilson, P.W., 54
Within estimator, 219–225, 232, 234, 238, 246,

247, 249, 264, 278
Wooldridge, J.M., 107, 317, 365
Working, H., 127, 210
Wu, G.L., 8

Y
Yanagihara, H., 382
Yoon, G., 282, 285, 300
Yuan, K.-H., 382
Yu, B., 281–312
Yu, W., 3

Z
Zakrajsêk, E., 220


	Contents
	Contributors
	Chapter 1: Introduction
	References

	Chapter 2: Program Impact Estimation with Binary Outcome Variables: Monte Carlo Results for Alternative Estimators and Empirical Examples
	2.1 Introduction
	2.2 Model and Estimation Methods
	2.2.1 Linear Probability Model (LPM)
	2.2.2 Probit
	2.2.3 Instrumental Variables
	2.2.4 Linear Predictor and Residual Models
	2.2.5 Bivariate Probit (BIPROBIT)
	2.2.6 Semi-parametric Maximum Likelihood Estimation (DFM)

	2.3 Data Generating Process
	2.3.1 Sample Sizes and Behavioral Parameter Values
	2.3.2 Drawing X and Z
	2.3.3 The Mechanics of the Data Generating Process

	2.4 Monte Carlo Results
	2.5 Empirical Examples
	2.6 Conclusion
	References

	Chapter 3: Stochastic Frontier Models with Bounded Inefficiency
	3.1 Introduction
	3.2 The Model
	3.3 The Skewness Issue
	3.4 Identification and Estimation
	3.4.1 Identification
	3.4.2 Method of Moment Estimation
	3.4.3 Maximum Likelihood Estimation

	3.5 Panel Data
	3.6 Simulations
	3.7 An Empirical Illustration to Analyze US Banking Industry Dynamics
	3.7.1 Empirical Model and Data
	3.7.2 Results

	3.8 Conclusions
	Appendix
	First-Order Derivatives of Log-Likelihood Function


	Chapter 4: Estimating Consumer Surplus in eBay ComputerMonitor Auctions
	4.1 Introduction and Brief Discussion of the Consumer Surplus Auction Literature
	4.2 Econometric Methodology
	4.3 The Data Set and Our Collection Techniques
	4.4 Estimates
	4.5 Structural Consumer Surplus and Consumer Share of Surplus
	4.6 Distribution Free Consumer Surplus and Consumer Share of Surplus
	4.7 Conclusion
	Appendix 1
	Tables and Descriptive Statistics

	Appendix 2
	Tables of Semi-nonparametric Estimation

	References

	Chapter 5: Inference in Two-Step Panel Data Models with Time-Invariant Regressors: Bootstrap Versus Analytic Estimators
	5.1 Introduction
	5.2 The Two-Step Model and Parameter Estimation 
	5.3 Second-Step Standard-Error Estimation
	5.3.1 Asymptotic Covariance Matrix
	5.3.2 Bootstrap Methods
	5.3.2.1 Wild Bootstrap Estimator
	5.3.2.2 Pairs Bootstrap Estimator


	5.4 The Size and Power of Bootstrap Estimators
	5.4.1 Previous Studies of the Size and Power of Bootstrap Estimators
	5.4.2 The Unbiasedness of Our Two-Step Bootstrap Estimators

	5.5 Monte Carlo Estimation
	5.5.1 Data Generation
	5.5.2 Monte Carlo Results

	5.6 Conclusions
	Appendix
	Unbiasedness of the Wild First-Step Estimator,  wFE
	Unbiasedness of the Wild Second-Step Estimator,  wFE
	Unbiasedness of the Pairs First-Step Estimator,  pFE 
	Unbiasedness of the Pairs Second-Step Estimator,  FEp


	Chapter 6: International Evidence on Cross-Price Effects of Food and Other Goods
	6.1 Introduction
	6.2 Review of Literature
	6.3 Data
	6.4 Methodology
	6.5 Empirical Results
	6.5.1 Marginal Shares
	6.5.2 Cross-Price Elasticities in a Two-Good-Demand System
	6.5.3 Cross-Price Elasticities in a Nine-Good-Demand System Across Three Income Groupings
	6.5.4 Cross-Price Elasticities in a Nine-Good-Demand System Across Individual Countries
	6.5.4.1 Slutsky Cross-Price Elasticities
	6.5.4.2 Cournot Cross-Price Elasticities


	6.6 Conclusions
	Appendix A: Florida Model
	Appendix B: Three Types of Price Elasticities

	Chapter 7: Large-N and Large-T Properties of Panel Data Estimators and the Hausman Test
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Estimation and Specification Test
	7.2.2 Preliminary Results
	7.2.3 Asymptotic Power Properties of the Hausman Test

	7.3 Monte Carlo Experiments
	7.4 General Case
	7.5 Conclusion
	Appendix

	Chapter 8: Comparison of Stochastic Frontier “Effect” Models Using Monte Carlo Simulation
	8.1 Introduction
	8.2 Three Stochastic Frontier Models
	8.3 Monte Carlo Simulations
	8.4 Conclusion
	References

	Chapter 9: Modelling Asymmetric Cointegration and Dynamic Multipliers in a Nonlinear ARDL Framework
	9.1 Introduction
	9.2 Modelling Asymmetries in a Nonlinear ARDL Framework
	9.2.1 Nonlinear Asymmetric Cointegration
	9.2.2 The Nonlinear ARDL Model
	9.2.3 Bounds-Testing the Asymmetric Long-Run Relationship
	9.2.4 Asymmetric Dynamic Multipliers

	9.3 Finite Sample Properties
	9.4 An Empirical Application: The Asymmetric Unemployment-Output Relationship
	9.5 Concluding Remarks
	Appendix
	Proof of Theorem 1


	Chapter 10: More Powerful Unit Root Tests with Non-normal Errors
	10.1 Introduction
	10.2 GMM Unit Root Test
	10.3 RALS Unit Root Test
	10.4 Simulation Results
	10.5 An Application of the RALS Unit Root Test
	10.6 Summary and Concluding Remarks
	Appendix
	References

	Chapter 11: More Powerful LM Unit Root Tests with Non-normal Errors
	11.1 Introduction
	11.2 LM and RALS-LM Tests
	11.3 Simulations
	11.4 Concluding Remarks
	Appendix

	Chapter 12: Efficiency Selection Procedures for CapacityUtilization Estimation
	12.1 Introduction
	12.2 Methodology
	12.3 Example
	12.4 Conclusions
	References

	Chapter 13: Bartlett-Type Correction of Distance Metric Test
	13.1 Introduction
	13.2 Distance Metric Test
	13.3 Stochastic Expansion of DM Test Statistic
	13.4 Distribution of DM Test Statistic
	13.5 Illustrative Simulations
	13.6 Empirical Illustration
	13.7 Concluding Remarks
	Appendix 1
	Theorem 3.1.1 of kollo/rosen:05

	Appendix 2
	Proofs

	Appendix 3
	Data Description


	Index

