
Finite-difference methods 8
8.1 Choice of governing equations
8.2 Unidirectional flow; velocity/pressure formulation
8.3 Unidirectional flow; velocity/vorticity formulation
8.4 Unidirectional flow; stream function/vorticity formulation
8.5 Two-dimensional flow; stream function/vorticity formulation
8.6 Velocity/pressure formulation
8.7 Operator splitting and solenoidal projection
8.8 Staggered grids

In previous chapters, we have discussed the equations governing the structure of a steady
flow and the evolution of an unsteady flow, and derived selected solutions for elementary flow
configurations by analytical and simple numerical methods. To generate solutions for arbi-
trary flow conditions and boundary geometries, it is necessary to develop general-purpose
numerical methods. In this chapter, we discuss the choice of governing equations whose
solution is to be found, and the implementation of finite-difference methods for incompress-
ible Newtonian flow. The discourse will reveal a set of conceptual and practical challenges
encountered in the broader context of computational fluid dynamics (CFD).

8.1 Choice of governing equations

General-purpose methods for computing the flow of an incompressible Newtonian fluid can
be classified into two categories distinguished by the choice of governing equations.

In the first class of methods, the flow is described in terms of primary variables, including
the velocity and the pressure. The structure of the velocity and pressure fields in a steady
flow, and the evolution of the velocity and pressure fields in an unsteady flow are computed
by solving the Navier–Stokes equation and the continuity equation, subject to appropriate
boundary conditions, initial conditions, and possibly supplemental constraints.

In the second class of methods, the flow is computed based on the vorticity transport
equation. The numerical procedure involves two stages: first, the structure or evolution
of the vorticity field is computed based on the vorticity transport equation discussed in
Section 6.6; second, the simultaneous structure or evolution of the velocity field is obtained

521© Springer Science + Business Media LLC 2017
C. Pozrikidis, Fluid Dynamics, DOI 10.1007/978-1-4899-7991-9_8

522 Fluid Dynamics: Theory, Computation, and Numerical Simulation

by inverting the equation defining the vorticity as the curl of the velocity,

ω = ∇× u, (8.1.1)

subject to constraints imposed by the continuity equation and boundary conditions. Invert-
ing (8.1.1) involves solving for u in terms of ω. Descendant methods are distinguished by the
particular procedure used to recover the velocity field from a specified vorticity distribution.

The strengths and weaknesses of the aforementioned two classes of methods will become
apparent as we describe their implementation. One appealing feature of the second class
of methods based on the vorticity transport equation is the lack of need to solve for the
pressure. Bypassing the computation of the pressure is desirable when boundary conditions
for the pressure are not directly available but must be derived from the governing equations.
Disadvantages include the need to derive boundary conditions for the vorticity.

8.1.1 Inversion of the vorticity

Show that, if u is a solenoidal velocity field corresponding to a certain vorticity field ω, that
is, ∇ · u = 0, then the velocity field

v = u+∇f (8.1.2)

corresponds to the same vorticity field, where f is an arbitrary smooth scalar function.
Explain why, for the velocity field v to remain solenoidal, ∇ · v = 0, the function f must
be harmonic, that is, it must satisfy Laplace’s equation, ∇2f = 0.

8.2 Unidirectional flow; velocity/pressure formulation

We begin developing finite-difference methods by discussing the velocity/pressure formula-
tion for unidirectional flow in a channel confined between two parallel walls located at y = 0
and y = h, as illustrated in Figure 8.2.1. The lower and upper walls translate parallel to
themselves along the x axis with generally time-dependent velocities, V1(t) and V2(t).

In practice, channel flow occurs under two complementary conditions reflecting the
physical mechanism driving the flow, as follows:

• In the first case, the flow rate along the channel Q(t) is prescribed and the streamwise
pressure gradient ∂p(t)/∂x is computed as part of the solution.

• In the second case, the pressure gradient is specified, and the flow rate is computed
as part of the solution.

In this section and in Section 8.3 we consider the case of flow driven to a specified and
possibly time-dependent pressure gradient. In Section 8.4, we consider the complementary
case of flow subject to a specified flow rate.

Problem

8.2 Unidirectional flow; velocity/pressure formulation 523

����

��������

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

h

0

y

x

3

2

1

1

2

N

+1N

V

V

Figure 8.2.1 A one-dimensional finite-difference grid is used to compute the velocity profile in uni-
directional channel flow.

8.2.1 Governing equations

To set up the mathematical formulation, we consider the x component of the equation of
motion. In the case of unidirectional flow, we obtain the simplified form

∂ux

∂t
= −1

ρ

∂p

∂x
+ ν

∂2ux

∂y2
+ gx, (8.2.1)

where ρ is the fluid density, ν is the kinematic viscosity, and gx is the x component of the
acceleration of gravity. The partial differential equation (8.2.1) is to be solved subject to a
specified initial condition and to the possibly time-dependent velocity boundary conditions

ux(y = 0) = V1(t), ux(y = h) = V2(t), (8.2.2)

enforcing no-slip at the walls.

8.2.2 Explicit finite-difference method

To implement the finite-difference method, we divide the cross-section of the channel ex-
tending over 0 ≤ y ≤ h into N intervals defined by N + 1 grid points, as shown in Figure
8.2.1. For convenience, the x component of the velocity at the i grid point is denoted as

ui(t) ≡ ux(yi, t). (8.2.3)

Next, we evaluate both sides of (8.2.1) at the ith interior grid point at time t for
i = 2, . . . , N , and approximate the time derivative on the left-hand side with a first-order
forward finite difference and the second derivative on the right-hand side with a second-order
centered finite difference. The result is a finite-difference equation (FDE),

ui(t+Δt)− ui(t)

Δt
= −1

ρ

∂p

∂x
(t) + ν

ui−1(t)− 2ui(t) + ui+1(t)

Δy2
+ gx. (8.2.4)

524 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Solving for ui(t+Δt) on the left-hand side, we obtain

ui(t+Δt) = αui−1(t) + (1− 2α)ui(t) + αui+1(t) + Δt
(− 1

ρ

∂p

∂x
(t) + gx

)
(8.2.5)

for i = 2, . . . , N . We have introduced the dimensionless ratio

α ≡ νΔt

Δy2
, (8.2.6)

called the numerical diffusion number.

Equation (8.2.5) allows us to update the velocity at the interior grid points explicitly,
starting from the specified initial condition, subject to the prescribed boundary conditions

u1(t) = V1(t), uN+1(t) = V2(t). (8.2.7)

The following MATLAB code entitled channel ftcs, located in directory channel inside di-
rectory 11 fdm of Fdlib, performs the animation of the evolving velocity profile:

%----

% parameters

%----

h = 1.0;

mu = 0.6; rho = 0.5;

N = 32;

dpdx = -2.0; gx = 0.4;

V1 = 0.0; V2 = 0.0;

al = 0.51; % alpha

nstep = 20000; % number of steps

%---

% prepare

%---

nu = mu/rho; % kinematic viscosity

Dy = h/N;

Dt = al*Dy*Dy/nu;

%---

% grid and initial condition

%---

for i=1:N+1

y(i) = (i-1)*Dy;

u(i) = 0;

end

u(1) = V1;

u(N+1) = V2;

8.2 Unidirectional flow; velocity/pressure formulation 525

t = 0.0;

%---

% time stepping

%---

for step=1:nstep

t = t + Dt;

unew(1) = V1;

for i=2:N

unew(i) = al*u(i-1) + (1-2*al)*u(i) + al*u(i+1) ...

+ Dt*(-dpdx/rho+gx);

end

unew(N+1) = V2;

u = unew;

if(step==1)

Handle1 = plot(u,y,'o-');

set(Handle1, 'erasemode', 'xor');

set(gca,'fontsize',15)

axis([0 0.5 0 h])

xlabel('u','fontsize',15)

ylabel('y','fontsize',15)

else

set(Handle1,'XData',u,'YData',y);

pause(0.02)

drawnow

end

end % of time stepping

Evolving profiles are shown in Figure 8.2.2 for two values of the dimensionless numerical
parameter α.

Numerical stability

Numerical experimentation reveals, and theoretical analysis confirms, that the explicit
method of updating the velocity based on equation (8.2.5) is free of oscillations only when
the time step, Δt, is small enough so that the dimensionless numerical diffusion number
α defined in (8.2.6) is less than 1

2 .
1 For larger time steps, the velocity profile develops

unphysical growing numerical oscillations unrelated to the physics of the motion, as illus-
trated in Figure 8.2.2(b) for α = 0.51. We say that the explicit finite-difference method is
conditionally stable.

1Pozrikidis, C. (2008) Numerical Computation in Science and Engineering. Second Edition, Oxford
University Press.

526 Fluid Dynamics: Theory, Computation, and Numerical Simulation

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

Figure 8.2.2 Evolving profiles of unidirectional flow in a channel computed by an explicit finite-
difference method for numerical diffusion number (a) α = 0.40 and (b) 0.51. The scary oscillations
in the second case are a manifestation of numerical instability.

8.2.3 Implicit finite-difference method

To avoid the restriction on the time step for numerical stability, we implement an implicit
finite-difference method. Evaluating equation (8.2.1) at the ith interior grid point at time
t + Δt for i = 2, . . . , N , and then approximating the time derivative on the left-hand side
with a first-order backward finite difference and the second derivative on the right-hand side
with a second-order centered finite difference, we obtain the difference equation

ui(t+Δt)− ui(t)

Δt
= −1

ρ

∂p

∂x
(t+Δt)

+ν
ui+1(t+Δt)− 2ui(t+Δt) + ui−1(t+Δt)

Δy2
+ gx. (8.2.8)

8.2 Unidirectional flow; velocity/pressure formulation 527

Rearranging, we obtain

−αui−1(t+Δt) + (1 + 2α)ui(t+Δt)− αui+1(t+Δt)

= ui(t)− Δt

ρ

∂p

∂x
(t+Δt) + Δt gx, (8.2.9)

where α is the numerical diffusion number defined in (8.2.6), α ≡ νΔt/Δy2.

Equation (8.2.9) allows us to compute the velocity at the interior grid points at the
time level t + Δt in an implicit fashion, which means that we solve simultaneously for all
unknown grid values, subject to the prescribed boundary conditions ,

u1(t+Δt) = V1(t+Δt), uN+1(t+Δt) = V2(t+Δt). (8.2.10)

To formalize the implicit solution algorithm, we write equation (8.2.9) for i = 2, . . . , N and
enforce the boundary conditions to obtain a system of N−1 linear equations for the velocity
at the N − 1 interior grid points at time t+Δt,

A · u(t+Δt) = u(t) + b. (8.2.11)

We have introduced the tridiagonal coefficient matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2α −α 0 · · · 0 0 0
−α 1 + 2α −α · · · 0 0 0
0 −α 1 + 2α · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + 2α −α 0
0 0 0 · · · −α 1 + 2α −α
0 0 0 · · · 0 −α 1 + 2α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.2.12)

the vector of unknown velocities

u(t+Δt) =

⎡⎢⎢⎢⎢⎢⎣
u2(t+Δt)
u3(t+Δt)

...
uN−1(t+Δt)

uN (t+Δt)

⎤⎥⎥⎥⎥⎥⎦ , (8.2.13)

and the known vectors

u(t) =

⎡⎢⎢⎢⎢⎢⎣
u2(t)
u3(t)

...
uN−1(t)

uN (t)

⎤⎥⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎢⎣

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx + αV1(t+Δt)

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx

...

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx + αV2(t+Δt)

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.2.14)

528 Fluid Dynamics: Theory, Computation, and Numerical Simulation

The numerical method involves solving the linear system (8.2.11) at the current time
instant, t, to obtain the velocity profile at the next time instant, t +Δt, beginning from a
specified initial state. The tridiagonal structure of the matrix A displayed in (8.2.12) allows
us to compute the solution efficiently using the legendary Thomas algorithm discussed in
Section 8.2.4.

Finite-difference code

The following MATLAB code entitled channel btcs, located in directory channel inside di-
rectory 11 fdm of Fdlib, performs the time integration using the implicit method starting
from a specified initial velocity profile:

%-----

% parameters

%-----

h = 1.0; mu = 0.6; rho = 0.5; N = 32; dpdx = -2.0;

gx = 0.4;

V1 = 0.1; V2 = -0.5;

alpha = 0.40; % alpha

nstep = 20000; % number of steps

nu = mu/rho;

Dy = h/N

Dt = alpha*Dy*Dy/nu;

%---

% grid and initial condition

%---

for i=1:N+1

y(i) = (i-1)*Dy;

u(i) = 0.0;

end

u(1) = V1;

u(N+1) = V2;

%---

% formulate the tridiagonal projection matrix

% atr is the diagonal line of the coefficient matrix

% btr is the superdiagonal line of the coefficient matrix

% ctr is the subdiagonal line of the coefficient matrix

%---

for i=1:N-1

atr(i) = 1.0 + 2*alpha;

btr(i) = -alpha;

ctr(i) = -alpha;

end

8.2 Unidirectional flow; velocity/pressure formulation 529

%---

% time stepping

%---

t=0.0;

for step=1:nstep

for i=1:N-1 % right-hand side

s(i) = u(i+1) + Dt*(-dpdx/rho+gx);

end

t = t + Dt;

u(1) = V1;

u(N+1) = V2;

s(1) = s(1) + alpha*u(1);

s(N-1) = s(N-1) + alpha*u(N+1);

sol = thomas(N-1,atr,btr,ctr,s);

for i=2:N

u(i) = sol(i-1);

end

if(step==1)

Handle1 = plot(u,y,'o-');

set(Handle1, 'erasemode', 'xor');

set(gca,'fontsize',15)

axis([min(V1,V2) max(V1,V2)+2.0 0 h])

xlabel('u','fontsize',15)

ylabel('y','fontsize',15)

else

set(Handle1,'XData',u,'YData',y);

pause(0.2)

drawnow

end

end % of time stepping

The code calls the function thomas discussed in Section 8.2.4 to solve a tridiagonal system
of equations.

Numerical stability

Numerical experimentation reveals, and theoretical analysis confirms, that the implicit
method of updating the velocity based on equation (8.2.11) is free of numerical oscilla-
tions irrespective of the size of the time step, Δt. Accordingly, the implicit finite-difference
method is an unconditionally stable and thus highly desirable method.

530 Fluid Dynamics: Theory, Computation, and Numerical Simulation

8.2.4 Thomas algorithm

To formalize Thomas’ algorithm in general terms, we consider a linear system ofK equations
in K unknowns,

D · x = s, (8.2.15)

for an unknown vector, x, where s is a given vector. The K ×K coefficient matrix, D, is
assumed to have the tridiagonal form

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0 0 0
c2 a2 b2 · · · 0 0 0
0 c3 a3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · aK−2 bK−2 0
0 0 0 · · · cK−1 aK−1 bK−1

0 0 0 · · · 0 cK aK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.2.16)

Note that only the diagonal, superdiagonal, and subdiagonal elements of D are nonzero.
Thomas’s algorithm proceeds in two stages.

In the first stage, the tridiagonal system (8.2.15) is transformed into an upper bidiagonal
system,

D′ · x = y, (8.2.17)

involving an upper bidiagonal coefficient matrix with ones along the diagonal,

D′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 d1 0 · · · 0 0 0
0 1 d2 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 dK−2 0
0 0 0 · · · 0 1 dK−1

0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.2.18)

where y is an intermediate solution vector.

In the second stage, the upper bidiagonal system (8.2.17) is solved by backward substi-
tution, which involves solving the last equation for the last unknown, xK = yK , and then
moving upward to compute the rest of the unknowns in a sequential fashion.

The combined algorithm, shown in Table 8.2.1, is implemented in the following MAT-

LAB function:

8.2 Unidirectional flow; velocity/pressure formulation 531

Reduction to bidiagonal :[
d1
y1

]
=

1

a1

[
b1
s1

]
Do i = 1,K − 1[

di+1

yi+1

]
=

1

ai+1 − ci+1di

[
bi+1

si+1 − ci+1yi

]
End Do

Backward substitution :

xK = yK

Do i = K − 1, 1 (step = −1)

xi = yi − di xi+1

End Do

Table 8.2.1 Thomas algorithm for solving a system ofK linear equations with a tridiagonal coefficient
matrix.

function x = thomas (n,a,b,c,s)

%==

% Thomas algorithm for a tridiagonal system

%

% n: system size

% a,b,c: diagonal, superdiagonal,

% and subdiagonal elements

% s: right-hand side

%==

%------------------------------

% reduction to upper bidiagonal

%------------------------------

d(1) = b(1)/a(1);

y(1) = s(1)/a(1);

for i=1:n-2

i1 = i+1;

den = a(i1)-c(i1)*d(i);

d(i1) = b(i1)/den;

y(i1) = (s(i1)-c(i1)*y(i))/den;

532 Fluid Dynamics: Theory, Computation, and Numerical Simulation

end

den = a(n)-c(n)*d(n-1);

y(n) = (rhs(n)-c(n)*y(n-1))/den;

%------------------

% back substitution

%------------------

x(n) = y(n);

for i=n-1:-1:1

x(i) = y(i)-d(i)*x(i+1);

end

%-----

% done

%-----

return;

In fact, the Thomas algorithm is a special implementation of the inclusive method of
Gauss elimination discussed in Section 3.4.1 for a general system of linear equations. The
key idea is to bypass idle multiplications by zeros.

8.2.5 Steady state

To obtain the velocity profile of channel flow at steady state, we return to equation (8.2.11)
and set

u(t+Δt) = u(t) = u (8.2.19)

to obtain

(A− I) · u = b, (8.2.20)

where I is the unit matrix. Dividing the individual equations encapsulated in (8.2.20) by α,
we obtain the simpler form

C · u = d, (8.2.21)

involving the tridiagonal coefficient matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.2.22)

8.2 Unidirectional flow; velocity/pressure formulation 533

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������

����

��������������������������������������

0

0

1
2
3

1
2
3

2

1

2N

Fluid 2

Fluid 1

2
y

x

1N + 2

N + 1
N1

1

N +1

V

h

h1

V

Figure 8.2.2 Illustration of a composite finite-difference grid with phantom nodes on either side
an interface used to compute the velocity profile of unidirectional two-fluid channel flow. The
interface is located at y = h1.

the vector of unknown velocities at steady state

u =

⎡⎢⎢⎢⎢⎢⎣
u2

u3

...
uN−1

uN

⎤⎥⎥⎥⎥⎥⎦ , (8.2.23)

and the known vector

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
μ

∂p
∂x + Δy2

ν gx + V1

− 1
μ

∂p
∂x + Δx2

ν gx
...

− 1
μ

∂p
∂x + Δy2

ν gx

− 1
μ

∂p
∂x + Δy2

ν gx + V2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.2.24)

To compute the velocity profile at steady state, we simply solve the system of linear algebraic
equations (8.2.21) using a numerical method.

8.2.6 Two-layer flow

Next, we consider the flow of two superimposed layers in a channel, as illustrated in Figure
8.2.2. The lower layer is labeled 1 and the upper layer is labeled 2. The fluids are separated

534 Fluid Dynamics: Theory, Computation, and Numerical Simulation

by a flat interface located at y = h1, where h1 < h is the lower-layer thickness and h is the
channel width. The upper-layer thickness is h2 = h− h1.

Interfacial conditions

At the interface, we require three conditions: continuity of velocity, continuity of shear
stress, and continuity of normal stress. To satisfy the third condition, we require that the
streamwise pressure gradient, ∂p/∂x, is the same inside both layers. Continuity of velocity
at the interface requires that

u(1)
x (y = h1) = u(2)

x (y = h1) (8.2.25)

and continuity of shear stress requires that

μ1

(∂u(1)
x

∂y

)
y=h1

= μ2

(∂u(2)
x

∂y

)
y=h1

. (8.2.26)

where u
(1)
x is the lower-layer velocity and u

(2)
x is the upper-layer velocity. Using the equation

of motion (8.2.1), we find that, if (8.2.25) is true at the initial instant, it will also be true
at any time provided that

− 1

ρ1

∂p

∂x
+ ν1

(∂2u
(1)
x

∂y2

)
y=h1

= − 1

ρ2

∂p

∂x
+ ν2

(∂2u
(2)
x

∂y2

)
y=h1

, (8.2.27)

where the second partial derivative are evaluated at the interface.

Finite-difference implementation

We begin developing the finite-difference method by dividing the lower layer into N1 evenly

spaced intervals defined by N1+1 grid points, y
(1)
i for i = 1, . . . , N1+1, and the upper layer

into N2 evenly spaced intervals defined by N2 + 1 grid points, y
(2)
i for i = 1, . . . , N2 + 1, as

shown in Figure 8.2.2.

For reasons that will become apparent, we also extend the domain of definition of each
layer into the adjacent layer by one artificial grid point labeled N1 + 2 for the lower layer
or 0 for the upper layer.

To simplify the notation, we denote

u
(1)
i ≡ u(1)

x (y
(1)
i), u

(2)
i ≡ u(2)

x (y
(2)
i). (8.2.28)

Approximating the derivatives in (8.2.26) and (8.2.27) with centered finite differences, we

derive two equations relating the values of the velocity at the extended nodes, u
(1)
N1+2 and

u
(2)
0 ,

μ1

u
(1)
N1+2 − u

(1)
N1

2Δy1
= μ2

u
(2)
2 − u

(2)
0

2Δy2
(8.2.29)

8.2 Unidirectional flow; velocity/pressure formulation 535

and

− 1

ρ1

∂p

∂x
+ ν1

u
(1)
N1+2 − 2u

(1)
N1+1 + u

(1)
N1

Δy21
= − 1

ρ2

∂p

∂x
+ ν2

u
(2)
2 − 2 u

(2)
1 + u

(2)
0

Δy22
, (8.2.30)

where Δy1 ≡ h1/N1 and Δy2 ≡ h2/N2 are the grid spacings. Setting u
(1)
N1+1 = u

(2)
1 and

introducing the ratios

λ ≡ μ2

μ1
, δ ≡ ρ2

ρ1
, γ ≡ ν2

ν1
=

λ

δ
, β ≡ Δy2

Δy1
, (8.2.31)

we recast equations (8.2.29) and (8.2.30) into a system of two linear equations for the velocity
at the extended nodes,

β u
(1)
N1+2 + λu

(2)
0 = β u

(1)
N1

+ λu
(2)
2 (8.2.32)

and

β2 u
(1)
N1+2 − γ u

(2)
0 = 2 (β2 − γ) u

(1)
N1+1 − β2u

(1)
N1

+ γ u
(2)
2 +

Δy22
μ1

(1− 1

δ
)
∂p

∂x
. (8.2.33)

In matrix notation,

⎡⎣ β λ

−β2 γ

⎤⎦ ·

⎡⎢⎣ u
(1)
N1+2

u
(2)
0

⎤⎥⎦ =

⎡⎢⎢⎣
β u

(1)
N1

+ λ u
(2)
2 ,

−2 (β2 − γ)u
(1)
N1+1 + β2u

(1)
N1

− γu
(2)
2 − Δy22

μ1
(1− 1

δ
)
∂p

∂x

⎤⎥⎥⎦ .

(8.2.34)

Solving for the velocity at the lower extended node, we find that

u
(1)
N1+2 = a1 u

(1)
N1

+ a2 u
(1)
N1+1 + a3 u

(2)
2 + a4

∂p

∂x
, (8.2.35)

where

a1 =
γ − βλ

γ + βλ
, a2 = 2λ

β2 − γ

β(γ + βλ)
,

(8.2.36)

a3 =
2 γλ

β(γ + βλ)
, a4 =

λ

β(γ + βλ)

Δy22
μ1

(
1− 1

δ

)
are four constants.

When the physical properties of the layers are matched, λ = γ = δ = 1, and the

lower and upper grid sizes are equal, β = 1, then u
(1)
N1+2 = u

(2)
2 by equation (8.2.35), and

u
(2)
0 = u

(1)
N1

by equation (8.2.32), as required.

536 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Explicit time integration

Working as in the case of single-fluid flow, we derive the explicit finite-difference equation

u
(1)
i (t+Δt) = α1 u

(1)
i+1(t) + (1− 2α1)u

(1)
i (t) + α1 u

(1)
i−1(t)−Δt

(− 1

ρ1

∂p

∂x
(t) + gx

)
(8.2.37)

for the lower layer, and a corresponding equation for the upper layer,

u
(2)
i (t+Δt) = α2 u

(2)
i+1(t) + (1− 2α2)u

(2)
i (t) + α2 u

(2)
i−1(t)−Δt

(− 1

ρ2

∂p

∂x
(t) + gx

)
,

(8.2.38)

where
α1 ≡ ν1Δt

Δy21
, α2 ≡ ν2Δt

Δy22
(8.2.39)

are the numerical diffusion numbers for the lower and upper layer. The numerical procedure
involves the following steps:

1. Initialize the nodal velocities.

2. Compute the velocity at the lower extended node, u
(1)
N1+2, from equation (8.2.35).

3. Use equation (8.2.38) to update the velocity at the grid points in the lower layer for
i = 2, . . . , N1 + 1.

4. Set u
(2)
1 = u

(1)
N1+1.

5. Use equation (8.2.39) to update the velocity at the internal grid nodes in the upper
layer for i = 2, . . . , N2.

6. Use the boundary conditions to update the velocity at the lower and upper walls.

7. Return to Step 2 and repeat the computation for another step.

The method is implemented in the following MATLAB code entitled two layers, located
in directory channel inside directory 11 fdm of Fdlib, performing the animation of the
developing velocity profile:

%---

% parameters

%---

h = 1.0; h1 = 0.25;

N1 = 4; N2 = 32;

mu1 = 1.0; mu2 = 2.0;

rho1 = 1.5; rho2 = 1.0;

dpdx = -1.0; gx = 0.2;

8.2 Unidirectional flow; velocity/pressure formulation 537

alpha = 0.4;

%---

% prepare

%---

h2 = h-h1;

Dy1 = h1/N1;

Dy2 = h2/N2;

lambda = mu2/mu1;

delta = rho2/rho1;

gamma = lambda/delta;

beta = Dy2/Dy1;

tmp = gamma+beta*lambda;

a1 = (gamma-beta*lambda)/tmp;

a2 = 2*lambda*(beta*beta-gamma)/(beta*tmp);

a3 = 2*gamma*lambda/(beta*tmp);

a4 = lambda*Dy2*Dy2*(1-1/delta)/(beta*mu1*tmp);

Dt1 = rho1*alpha*Dy1*Dy1/mu1;

Dt2 = rho2*alpha*Dy2*Dy2/mu2;

Dt = min(Dt1,Dt2)

al1 = Dt*mu1/(Dy1*Dy1*rho1);

al2 = Dt*mu2/(Dy2*Dy2*rho2);

%---

% initialize and define the grid

%---

for i=1:N1+1

u1(i) = 0.0;

y1(i) = (i-1)*Dy1;

end

for i=1:N2+1

u2(i) = 0.0;

y2(i) = (i-1)*Dy2+h1;

end

%---

% time stepping

%---

for step=1:1000

538 Fluid Dynamics: Theory, Computation, and Numerical Simulation

u1(N1+2) = a1*u1(N1)+a2*u1(N1+1)+a3*u2(2)+a4*dpdx;

unew1(1) = V1;

for i=2:N1+1

unew1(i) = al1*u1(i+1)+(1-2*al1)*u1(i)+al1*u1(i-1)...

+Dt*(-dpdx/rho1+gx);

end

unew2(1) = unew1(N1+1);

for i=2:N2

unew2(i) = al2*u2(i+1)+(1-2*al2)*u2(i)+al2*u2(i-1)...

+Dt*(-dpdx/rho2+gx);

end

unew2(N2+1) = V2;

u1 = unew1; u2 = unew2;

%---

% animation

%---

if(step==1)

handle1 = plot(u1,y1,'o-',u2,y2,'o-');

set(gca,'fontsize',15)

axis([0 0.1 0 h])

xlabel('u','fontsize',15)

ylabel('y','fontsize',15)

else

set(handle1,'XData',[u1, u2],'YData',[y1, y2],'Marker','o')

drawnow

pause(0.01)

end

%---

end % of time stepping

%---

Snapshots of an evolving profile are shown in Figure 8.2.3 for two values of α defined as the
minimum of α1 and α2.

8.2.1 Steady state

Derive the system (8.2.20) departing from the explicit finite-difference formula (8.2.4).

Problems

8.2 Unidirectional flow; velocity/pressure formulation 539

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u

y

Figure 8.2.3 Evolving profiles of two-layer flow in a channel, computed by an explicit finite difference
method for (a) α = 0.4 and (b) 0.52, where α is the minimum of α1 and α2. A numerical instability
arises in the second case.

8.2.2 Two-layer channel flow

Derive a system of finite-difference equations governing the velocity profile of a two-layer
channel flow at steady state.

8.2.3 Flow in a circular tube

Develop an explicit finite-difference method based on the velocity/pressure formulation for
computing the velocity profile developing inside a tube with circular cross-section due to a
suddenly imposed constant pressure gradient.

8.2.4 Thomas algorithm

Use the MATLAB function thomas listed in the text to solve a system of equations of your
choice. Verify the accuracy of the solution by confirming that it satisfies the tested system
of equations.

8.2.5 Single-fluid channel flow

(a) Write a code that computes the evolution of the velocity profile in a channel with
stationary walls due to a sinusoidal pressure gradient based on the explicit finite-difference
method discussed in the text. Run the program for fluid properties and flow conditions of
your choice, and for several time step sizes, Δt, corresponding to numerical diffusion number
α that is larger and lower than 0.5. Discuss the performance of the numerical method.

(b) Repeat (a) for the implicit finite-difference method discussed in the text.

8.2.6 Two-layer channel flow

Develop an implicit finite-difference method for computing the evolution of a two-layer flow.
Implement the method in a program that computes the evolution of the velocity profile in a

540 Fluid Dynamics: Theory, Computation, and Numerical Simulation

channel with stationary walls due to the sudden application of a constant pressure gradient.
Run the program for fluid properties and flow conditions of your choice and for several time
step sizes. Discuss the performance of the numerical method.

8.3 Unidirectional flow; velocity/vorticity formulation

The vorticity transport equation for unsteady unidirectional flow along the x axis reduces
to the unsteady diffusion equation for the z component of the vorticity, ωz,

∂ωz

∂t
= ν

∂2ωz

∂y2
, (8.3.1)

where ν is the kinematic viscosity of the fluid. Invoking the definition of the vorticity,
ω = ∇× u, we find that

ωz = −∂ux

∂y
. (8.3.2)

Integrating equation (8.3.2) with respect to y from the lower wall up to an arbitrary point,
we obtain an integral representation for the velocity in terms of the vorticity,

ux(y) = V1 −
∫ y

0

ωz(y
′) dy′. (8.3.3)

Without loss of generality, we have chosen to satisfy the boundary condition at the lower
wall located at y = 0, requiring that ux(0) = V1. It remains to ensure that the no-slip
boundary condition is also satisfied at the upper wall.

The numerical method involves computing the evolution of the vorticity profile from
a specified initial state using (8.3.1), while simultaneously recovering the evolution of the
velocity field based on equation (8.3.2) or its integrated version shown in (8.3.3). Since the
velocity does not appear in equation (8.3.1), the two steps are decoupled.

8.3.1 Boundary conditions for the vorticity

Because the unsteady diffusion equation (8.3.1) is a second-order differential equation with
respect to y, two boundary conditions for the vorticity are required, one at each end of the
solution domain located at y = 0 and h. The boundary conditions must be such that the
integral constraint ∫ h

0

ωz(η) dη = V1 − V2 (8.3.4)

is satisfied so that the right-hand side of (8.3.3) is consistent with the upper-wall no-slip
boundary condition ux(y = h) = V2, and either the flow rate through the channel has a
prescribed value, Q(t), or the streamwise pressure gradient has a prescribed value ∂p(t)/∂x.

8.3 Unidirectional flow; velocity/vorticity formulation 541

Concentrating on flow subject to a specified pressure gradient, we recast the x compo-
nent of the equation of motion for unidirectional flow,

∂ux

∂t
= −1

ρ

∂p

∂x
+ ν

∂2ux

∂y2
+ gx, (8.3.5)

into the form

∂ux

∂t
= −1

ρ

∂p

∂x
− ν

∂ωz

∂y
+ gx. (8.3.6)

Evaluating (8.3.6) at the lower and upper walls and rearranging, we obtain boundary con-
ditions for the slope of the vorticity,(∂ωz

∂y

)
y=0

= −1

ν

dV1

dt
− 1

μ

∂p

∂x
+

1

ν
gx (8.3.7)

and (∂ωz

∂y

)
y=h

= −1

ν

dV2

dt
− 1

μ

∂p

∂x
+

1

ν
gx. (8.3.8)

These equations provide us with Neumann boundary conditions at either end of the solution
domain.

Special attention must be paid to the case of impulsive motion. If a wall is set in motion
suddenly in an impulsive fashion with the velocity changing from one value to another over
an infinitesimal period of time, the corresponding time derivative on the right-hand side
of one or both of equations (8.3.7) and (8.3.8) develops an infinite spike described by the
Dirac delta function discussed in Chapter 11. This singular behavior is too demanding to
be handled by the numerical method.

Next, we investigate whether the vorticity boundary conditions (8.3.7) and (8.3.8) ensure
the satisfaction of the integral constraint (8.3.4), which is necessary for the satisfaction of
the no-slip boundary condition at the upper wall. Integrating (8.3.1) with respect to y
across the channel height, from 0 to h, interchanging the order of the integration and time
differentiation on the left-hand side, and using (8.3.7) to simplify the right-hand side, we
obtain

d

dt

∫ h

0

ωz(y
′) dy′ =

d

dt
(V1 − V2). (8.3.9)

Time-integration of (8.3.9) reproduces (8.3.4) up to a time-independent constant determined
by the initial state. Thus, if (8.3.4) is satisfied at the initial instant, it will also be satisfied
at any subsequent time.

8.3.2 Alternative set of equations

In an alternative approach, we take the derivative of (8.3.2) with respect to y to derive the
second-order equation,

∂2ux

∂y2
= −∂ωz

∂y
≡ −q, (8.3.10)

542 Fluid Dynamics: Theory, Computation, and Numerical Simulation

where q ≡ ∂ωz/∂y is the slope of the vorticity. To compute the velocity, we integrate the
second-order equation (8.3.10) with respect to y using the velocity boundary conditions
ux(y = 0) = V1 and ux(y = h) = V2.

The important benefit stemming from using (8.3.10) instead of (8.3.2), is that, in order
to compute the velocity, the slope of the vorticity q, instead of the vorticity itself, is required.
An evolution equation for q arises by differentiating both sides of (8.3.1) with respect to y,
finding that

∂q

∂t
= ν

∂2q

∂y2
. (8.3.11)

Boundary conditions are provided by equations (8.3.7) and (8.3.8).

In summary, the numerical procedure involves integrating in time equation (8.3.11)
from an initial state subject to the derived boundary conditions (8.3.7) and (8.3.8), while
simultaneously computing the velocity profile by solving the second-order equation (8.3.10)
subject to the velocity boundary conditions, ux(y = 0) = V1 and ux(y = h) = V2.

Explicit finite-difference method

To implement a finite-difference method, we divide the flow domain 0 ≤ y ≤ h into N
intervals separated by N + 1 grid points, as shown in Figure 8.2.1, and evaluate equation
(8.3.11) at time t at the interior nodes for i = 2, . . . , N .

Approximating the time derivative on the left-hand side with a first-order finite dif-
ference and the y derivative on the left-hand side with a second-order finite difference, we
obtain

qi(t+Δt)− qi(t)

Δt
= ν

qi−1(t)− 2 qi(t) + qi+1(t)

Δy2
, (8.3.12)

where we have defined

qi ≡ q(yi). (8.3.13)

Solving for qi(t+Δt) on the left-hand side, we obtain

qi(t+Δt) = α qi−1(t) + (1− 2α) qi(t) + α qi+1(t), (8.3.14)

where α ≡ ν Δt/Δy2 is the numerical diffusion number. Equation (8.3.14) allows us to
update explicitly the values of q at the grid points subject to boundary conditions for q1
and qN+1 given by the right-hand sides of equations (8.3.7) and (8.3.8).

The centered-difference discretization of equation (8.3.10) leads us to the linear system
(8.2.21), where the coefficient matrix C is given in (8.2.22) and the constant vector on the

8.4 Unidirectional flow; stream function/vorticity formulation 543

right-hand side is given by

d =

⎡⎢⎢⎢⎢⎢⎣
Δy2 q2 + V1

Δy2 q3
...
Δy2 qN−1

Δy2 qN + V2

⎤⎥⎥⎥⎥⎥⎦ . (8.3.15)

The linear system can be solved efficiently using the Thomas algorithm.

8.3.3 Comparison with the velocity/pressure formulation

Comparing the velocity/vorticity formulation with the velocity/pressure formulation dis-
cussed in Section 8.2, we find that the latter is significantly simpler in conception and
implementation. While this is undoubtedly true in the case of unidirectional flow presently
considered, the vorticity–velocity formulation is more competitive in the more general case
of two- and three-dimensional flow.

8.3.1 Steady flow

Discuss the implementation of the velocity/vorticity formulation for steady channel flow due
to a specified pressure gradient.

8.3.2 Two-layer flow

Develop a velocity/vorticity formulation for two-layer channel flow discussed in Section 8.2.

8.3.3 Flow in a circular tube

Develop an explicit method based on the velocity/vorticity formulation for computing the
velocity profile developing inside a circular tube due to a suddenly imposed constant pressure
gradient.

8.3.4 Explicit finite-difference method

Write a code that computes the evolution of the velocity profile in a channel with stationary
walls due to the sudden application of a constant pressure gradient based on the explicit
finite-difference method discussed in the text. Run the program for fluid properties and flow
conditions of your choice and several time step sizes corresponding to numerical diffusion
number α that is higher or lower than the critical threshold, 0.5. Discuss the performance
of the numerical method.

8.4 Unidirectional flow; stream function/vorticity formulation

In Sections 8.2 and 8.3, we discussed methods of computing the evolution of the velocity
profile in channel flow subject to a specified pressure gradient. In this section, we consider

Problems

544 Fluid Dynamics: Theory, Computation, and Numerical Simulation

the complementary case of flow subject to a specified flow rate and develop a numerical
method based on the velocity/vorticity formulation.

For reasons that will become apparent, we introduce the stream function, ψ, satisfying
the equation

ux =
∂ψ

∂y
. (8.4.1)

In the case of unidirectional flow, ux, and thus ψ, is a function of position, y, and time, t.
The flow rate across a line that begins and ends at two parallel planes located at y = y1
and y2 is equal to the difference in the corresponding values of the stream function, Q12 =
ψ(y2)−ψ(y1). The flow rate through the entire channel height is Q = ψ(y = h)−ψ(y = 0).

Using equation (8.3.2), we find that the nonzero vorticity component is related to the
stream function by the equation

ωz = −∂2ψ

∂y2
. (8.4.2)

The numerical method involves computing the evolution of the vorticity profile from a
specified initial state using the vorticity transport equation (8.3.1), while simultaneously
recovering the evolution of the stream function using the one-dimensional Poisson equation
(8.4.2). Since the differential equations (8.3.1) and (8.4.2) are of second order with respect
to y, two boundary conditions for the vorticity and two boundary conditions for the stream
function are required, one at each end of the solution domain, y = 0 and h.

Since adding an arbitrary constant to the stream function does not affect the velocity,
the base level of the stream function can be specified at will. Accordingly, we may stipulate
that ψ(y = 0) = 0, finding

ψ(y = h) = Q(t). (8.4.3)

It is now evident that, by introducing the stream function, we have facilitated the imple-
mentation of the condition on the flow rate.

8.4.1 Boundary conditions for the vorticity

The boundary conditions for the vorticity must involve the specified wall velocities, V1 and
V2, by way of the no-slip boundary condition. To illustrate the implementation of this
condition, we divide the flow domain, 0 ≤ y ≤ h, into N intervals defined by N + 1 grid
points, as shown in Figure 8.2.1, and evaluate (8.4.2) at time t at the boundary nodes
corresponding to i = 1 and N + 1. To simplify the notation, we denote

ωi ≡ ωz(yi), ψi ≡ ψ(yi). (8.4.4)

Approximating the y derivative on the right-hand side with a combination of finite differ-
ences, we obtain

ω1 = −
(
∂ψ

∂y
) 1

2 (y1+y2) − (
∂ψ

∂y
)y1

1
2 Δy

= −2

ψ2 − ψ1

Δy
− V1

Δy
(8.4.5)

8.4 Unidirectional flow; stream function/vorticity formulation 545

or

ω1 = 2
ψ1 − ψ2

Δy2
+ 2

V1

Δy
, (8.4.6)

and

ωN+1 = −
(
∂ψ

∂y
)yN+1

− (
∂ψ

∂y
) 1

2 (yN+yN+1)

1
2 Δy

= −2

V2 − ψN+1 − ψN

Δy

Δy
(8.4.7)

or

ωN+1 = 2
ψN+1 − ψN

Δy2
− 2

V2

Δy
. (8.4.8)

It is somewhat distressing to realize that the no-slip condition is implemented indirectly
in terms of the vorticity. Specifically, it is not clear that solving (8.4.2) for the stream
function and subsequently differentiating it to recover the velocity generates a velocity profile
that is consistent with the prescribed boundary velocity. However, a thorough analysis of the
numerical method reveals that this is the case indeed, except under unusual circumstances
associated with singular boundary conditions involving discontinuous functions.

8.4.2 A semi-implicit method

Proceeding with the finite-difference implementation, we apply equation (8.3.1) at the inte-
rior nodes corresponding to i = 2, . . . , N at time t. Approximating the time derivative on
the left-hand side with a first-order finite difference and the y derivative on the right-hand
side with a second-order second finite difference, we obtain

ωi(t+Δt)− ωi(t)

Δt
= ν

ωi−1(t)− 2ωi(t) + ωi+1(t)

Δy2
. (8.4.9)

Solving for ωi(t+Δt), we obtain

ωi(t+Δt) = αωi+1(t) + (1− 2α)ωi(t) + αωi−1(t), (8.4.10)

where α ≡ νΔt/Δy2 is the numerical diffusion number. Equation (8.4.10) allows us to
explicitly update the values of the vorticity at the interior grid points, subject to boundary
conditions for ω1 and ωN+1 given by the right-hand sides of (8.4.6) and (8.4.8); the stream
function at time t is assumed to be known.

The implicit discretization of equation (8.4.2) leads us to a linear system,

C ·ψ(t+Δt) = d(t+Δt), (8.4.11)

where the coefficient matrix C is given in (8.2.22), the vector ψ is defined as

ψ =

⎡⎢⎢⎢⎢⎢⎣
ψ2

ψ3

...
ψN−1

ψN

⎤⎥⎥⎥⎥⎥⎦ , (8.4.12)

546 Fluid Dynamics: Theory, Computation, and Numerical Simulation

and the vector on the right-hand side of (8.4.11) is given by

d =

⎡⎢⎢⎢⎢⎢⎣
Δy2 ω2

Δy2 ω3

...
Δy2 ωN−1

Δy2 ωN +Q

⎤⎥⎥⎥⎥⎥⎦ . (8.4.13)

The system (8.4.11) can be solved efficiently using the Thomas algorithm.

The numerical method involves the following steps:

1. Assign initial values to the stream function and vorticity at all nodes.

2. Compute the vorticity at the boundary nodes using equations (8.4.6) and (8.4.8).

3. Update the vorticity at the internal nodes using equation (8.4.10).

4. Update the stream function at the interior nodes by solving the linear system (8.4.11)
for a known right-hand side.

5. Return to Step 2 and repeat the calculation for another step.

The velocity profile arises by numerically differentiating the stream function with respect
to y.

8.4.1 Steady flow

Develop a finite-difference method based on the stream function/vorticity formulation for
computing the velocity profile of steady channel flow subject to a specified flow rate.

8.4.2 Two-layer flow

Develop a finite-difference method based on the stream function/vorticity formulation for
unsteady two-layer channel flow discussed in Section 8.2.

8.4.3 Flow inside a circular tube

Develop a finite-difference method based on the stream function/vorticity formulation for
computing the velocity profile developing inside a circular tube, subject to a specified flow
rate.

8.4.4 Explicit finite-difference method

Write a code that computes the evolution of the velocity profile in a channel with stationary
walls using an explicit finite-difference method. The flow rate increases gradually toward a
steady value according to the equation

Q(t) = Q0

(
1− exp(−β

νt

h2
)
)
, (8.4.14)

Problems

8.5 Two-dimensional flow; stream function/vorticity formulation 547

where Q0 is the constant flow rate prevailing of long times, a and β is a dimensionless
constant. Run the program for fluid properties and flow conditions of your choice and for
several sizes of the time step corresponding to α higher or lower than 0.5. Discuss the
performance of the numerical method.

8.5 Two-dimensional flow; stream function/vorticity formulation

Having discussed finite-difference methods for unidirectional flow, now we turn our atten-
tion to the more general case of two-dimensional flow where further issues concerning the
satisfaction of the continuity equation and choice of boundary conditions are encountered.
In this section we discuss the stream function/vorticity formulation as an extension of the
corresponding formulation for unidirectional flow discussed in Section 8.4.

Hello world

Texts on computer language programming introduce elementary programming procedures
traditionally by explaining the structure of a program entitled world, which prints the impor-
tant message Hello World. Texts on computational fluid dynamics (CFD) explain numerical
methods by discussing the prototypical example of flow in a two-dimensional cavity driven
by a moving lid, known as the driven-cavity flow. We will follow this time-honored tradition.

8.5.1 Flow in a cavity

Consider flow in a cavity driven by a lid that translates parallel to itself with a generally
time-dependent velocity, V (t), as illustrated in Figure 8.5.1.

We begin developing the stream function/vorticity formulation by introducing the stream
function, ψ, defined from the differential relations

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
, (8.5.1)

where ux and uy are the x and y velocity components. The no-penetration boundary
condition requires that the component of the velocity normal to each of the four walls is
zero. In terms of the stream function,

ψ = 0 over all walls, (8.5.2)

so that the tangential derivative of the stream function, which is equal to the normal com-
ponent of the velocity, is also zero. The zero on the right-hand side of (8.5.2) could have
been replaced by an arbitrary constant without consequences on the numerical solution or
physical structure of the flow.

The no-slip boundary condition requires that the tangential component of the velocity
is zero at the bottom, left, and right walls, and equal to V (t) at the upper wall. In terms of

548 Fluid Dynamics: Theory, Computation, and Numerical Simulation

y

1 2 3
1

2

3

x

V

N

N

Nx+1

by

ay

x

x xa b

Ny
y

+1

i

j

Figure 8.5.1 Illustration of a finite-difference grid used to compute flow in a cavity driven by a sliding
lid.

the stream function,

∂ψ

∂y
= 0 at the bottom,

∂ψ

∂x
= 0 at the sides,

(8.5.3)

∂ψ

∂y
= V (t) at the top.

Enforcing the boundary conditions for the velocity, we derive simplified expressions for
the boundary values of the only non-vanishing vorticity component in terms of the stream
function,

ωz ≡ −∂ux

∂y
+

∂uy

∂x
. (8.5.4)

For example, recalling that uy = 0, and thus ∂uy/∂x = 0, over the bottom wall, we find
that

ωz = −∂ux

∂y
= −∂2ψ

∂y2
. (8.5.5)

Working in this fashion, we find that

ωz = −∂2ψ

∂y2
at the top and bottom (8.5.6)

and

ωz = −∂2ψ

∂x2
at the sides, (8.5.7)

8.5 Two-dimensional flow; stream function/vorticity formulation 549

which are simplified versions of the more general expression for the vorticity in terms of the
stream function,

ωz = −∂2ψ

∂x2
− ∂2ψ

∂y2
. (8.5.8)

8.5.2 Finite-difference grid

To prepare the ground for the implementation of the finite-difference method, we cover the
rectangular solution domain with a uniform two-dimensional Cartesian grid consisting of
Nx + 1 uniformly spaced vertical lines and Ny + 1 uniformly spaced horizontal lines, as
shown in Figure 8.5.1. Parallel grid lines are separated by intervals Δx or Δy, defining the
grid size.

The intersections of grid lines define grid points or nodes labeled by a pair of integers,
(i, j) for i = 1, . . . , Nx+1 and j = 1, . . . , Ny +1. The vertical side walls correspond to i = 1
and Nx + 1, and the bottom and top walls correspond to j = 1 and Ny + 1.

The goal of the finite-difference method is to generate values of flow variables of interest
at the grid points. To simplify the notation, we denote

ωi,j ≡ ωz(xi, yj), ψi,j ≡ ψ(xi, yj). (8.5.9)

Similar notation is used for other variables.

8.5.3 Unsteady flow

Following the general protocol of methods based on the vorticity transport equation, we
compute the evolution of the flow by advancing the vorticity field using the vorticity trans-
port equation for two-dimensional flow written in the form of an evolution equation for the
vorticity,

∂ωz

∂t
= −ux

∂ωz

∂x
− uy

∂ωz

∂y
+ ν (

∂2ωz

∂x2
+

∂2ωz

∂y2
), (8.5.10)

subject to appropriate derived boundary conditions for the vorticity, while simultaneously
following the evolution of the stream function by solving the Poisson equation

∇2ψ ≡ ∂2ψ

∂x2
+

∂2ψ

∂y2
= −ωz, (8.5.11)

subject to specified boundary conditions for the stream function.

A simple method for computing the evolution of the flow when the lid starts translating
suddenly involves the following steps:

1. At the initial instant, we set the stream function and velocity at all interior and
boundary grid nodes to zero. Then we set the x component of the velocity at the grid
nodes along the lid equal to V (t = 0).

550 Fluid Dynamics: Theory, Computation, and Numerical Simulation

2. At the second step, we differentiate the velocity to obtain the vorticity using the
definition ωz ≡ −∂ux/∂y + ∂uy/∂x.

For the interior grid points, we use centered differences to obtain

ωi,j = − (ux)i,j+1 − (ux)i,j−1

2Δy
+

(uy)i+1,j − (uy)i−1,j

2Δx
. (8.5.12)

For the top wall, we use backward differences to obtain

ωi,Ny+1 	 −
(∂ux

∂y
,
)
i,Ny+1

	 −3V + 4 (ux)i,Ny
− (ux)i,Ny−1

2Δy
, (8.5.13)

involving values at interior grid points.

For the rest of the walls, we use forward or backward differences to obtain

ωi,1 	 −(
∂ux

∂y
)i,1 	 −4 (ux)i,2 + (ux)i,3

2Δy
(8.5.14)

for the bottom wall,

ω1,j 	 (
∂uy

∂x
)1,j 	 4 (uy)2,j − (uy)3,j

2Δx
(8.5.15)

for the left wall, and

ωNx+1,j 	 (
∂uy

∂x
)Nx+1,j 	 −4 (uy)Nx,j + (uy)Nx−1,j

2Δx
(8.5.16)

for the right wall.

3. Now we integrate in time equation (8.5.10) to obtain the vorticity at the interior grid
points at time t+Δt. Using a fully explicit method, we set

ωi,j(t+Δt) = ωi,j(t) +G(i,j)(t), (8.5.17)

where G(i,j)(t) is the right-hand side of (8.5.10) evaluated at the (i, j) grid point at
time t.

To evaluate G(i,j)(t), we approximate the first spatial derivatives and the Laplacian
of the vorticity using centered differences. For example, the Laplacian of the vorticity
can be approximated with the finite-difference formula shown in equation (3.3.15),
written for ωz.

4. Next, we solve the Poisson equation (8.5.11) for the stream function, subject to the
boundary condition ψ = 0, using a slightly generalized version of the finite-difference
method for Laplace’s equation discussed in Section 3.3.

8.5 Two-dimensional flow; stream function/vorticity formulation 551

Approximating the second derivatives with centered differences, we obtain the coun-
terpart of equation (3.3.16),

ψi+1,j − 2 (1 + β)ψi,j + ψi−1,j + β ψi,j+1 + β ψi,j−1 = −Δx2 ωi,j , (8.5.18)

where β ≡ (Δx/Δy)2.

5. Finally, we differentiate the stream function to compute the velocity components at
time t+Δt at the interior grid points.

Having completed one time step, we return to Step 2 and repeat the computation for another
time step.

8.5.4 Steady flow

To compute the steady flow, we follow a somewhat different approach. In this case, the
left-hand side of (8.5.10) vanishes, yielding a differential relation between the velocity and
the vorticity. Solving for the Laplacian of the vorticity, we obtain a Poisson equation for
the vorticity forced by the a priori unknown source function on the right-hand side,

∂2ωz

∂x2
+

∂2ωz

∂y2
=

1

ν

(
ux

∂ωz

∂x
+ uy

∂ωz

∂y

)
. (8.5.19)

Computing the flow in terms of the stream function and vorticity involves simultaneously
solving equations (8.5.11) and (8.5.19) according to the following steps:

1. Guess the distribution of the stream function and associated vorticity distribution.

2. Solve the Poisson equation (8.5.11) for the stream function, ψ

∇2ψ ≡ ∂2ψ

∂x2
+

∂2ψ

∂y2
= −ωz, (8.5.20)

subject to the no-penetration boundary condition, ψ = 0.

3. Compute the right-hand side of (8.5.19).

4. Derive boundary conditions for the vorticity using the stream function obtained in
Step 2.

5. Solve the Poisson equation (8.5.19) for the vorticity.

6. Check whether the vorticity computed in Step 5 agrees with that assigned in Step 1
within a specified tolerance. If not, we replace the latter by the former, return to Step
2, and repeat the calculations for another cycle.

Implementation

The method is implemented according to the following steps:

552 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Step 1

Assign values to the stream function at all (Nx + 1) × (Ny + 1) interior and boundary
grid nodes and to the vorticity at all Nx ×Ny interior grid nodes. A simple choice is to set
them all equal to zero.

Step 2

Solve the Poisson equation (8.5.11), subject to the boundary condition ψ = 0, using an
iterative method. To perform the iterations, we approximate the second derivatives with
centered differences and obtain equation (8.5.18), which we express in the form

Ri,j ≡ ψi+1,j − 2 (1 + β)ψi,j + ψi−1,j + βψi,j+1 + βψi,j−1 +Δx2 ωi,j = 0, (8.5.21)

where Ri,j is a residual. The iterative method involves computing a time-like sequence of
grid values parametrized by an index, , using the formula

ψ
(
+1)
i,j = ψ

(
)
i,j +

�

2 (1 + β)
R(
)

i,j (8.5.22)

for l = 1, 2, . . . , where � is a specified relaxation factor used to control the iterations.

Step 3

Compute the vorticity at the boundary grid nodes taking into consideration the velocity
boundary conditions.

Considering grid nodes at the lid, we expand the stream function in a Taylor series with
respect to y about a top grid node. Evaluating the expansion at the grid node immediately
below, we obtain

ψi,Ny
	 ψi,Ny+1 −Δy

(∂ψ

∂y

)
i,Ny+1

+
1

2
Δy2

(∂2ψ

∂y2

)
i,Ny+1

. (8.5.23)

Setting (∂ψ

∂y

)
i,Ny+1

= V, ωi,Ny+1 = −(∂2ψ

∂y2

)
i,Ny+1

, (8.5.24)

as discussed in the paragraph following equation (8.5.3), and solving for ωi,Ny+1, we obtain

ωi,Ny+1 = 2
ψi,Ny+1 − ψi,Ny

Δy2
− 2

V

Δy
. (8.5.25)

Working in a similar fashion, we derive corresponding expressions for the bottom, left, and
right walls,

ωi,1 = 2
ψi,1 − ψi,2

Δy2
, ω1,j = 2

ψ1,j − ψ2,j

Δy2
, (8.5.26)

8.5 Two-dimensional flow; stream function/vorticity formulation 553

and

ωNx+1,j = 2
ψNx+1,j − ψNx,j

Δy2
. (8.5.27)

More accurate expressions can be derived using higher-order expansions.

Step 4

Differentiate the stream function to generate the velocity at the interior grid nodes, subject
to the no-penetration condition, ψ = 0.

Step 5

Differentiate the vorticity to obtain the x and y derivatives at the interior grid points,
subject to boundary values computed in Step 3.

Step 6

Compute the right-hand side of (8.5.19) at the interior grid nodes.

Step 7

Solve equation (8.5.19) by iteration, as discussed in Step 2. The counterparts of equations
(8.5.21) and (8.5.22) are

Ri,j ≡ ωi+1,j − 2 (1 + β)ωi,j + ωi−1,j + β ωi,j+1 + β ωi,j−1 −Δx2 Ni,j = 0 (8.5.28)

and

ω
(
+1)
i,j = ω

(
)
i,j +

�

2 (1 + β)
R(
)

i,j , (8.5.29)

where Ni,j is the right-hand side of (8.5.19) evaluated at the (i, j) grid point, and � is a
relaxation factor.

The method is implemented in the following MATLAB code entitled cvt sv, located in
directory 11 fdm of Fdlib:

%============

% code cvt sv

%============

%-----

% parameters

%-----

Vlid = 1.0; % lid velocity

Lx = 2.0; Ly = 1.0; % cavity dimensions

554 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Nx = 32; Ny = 16; % grid size

visc = 0.01; % viscosity

rho = 1.0; % density

relax = 0.5; % relaxation parameter

Niteri = 5; % number of inner iterations

Niterg = 100; % number of global iterations

vort init = 0.0; % initial vorticity

%-------

% prepare

%--------

Dx = Lx/Nx; Dy = Ly/Ny;

Dx2 = 2.0*Dx; Dy2 = 2.0*Dy;

Dxs = Dx*Dx;

Dys = Dy*Dy;

beta = Dxs/Dys; beta1 = 2.0*(1.0+beta);

nu = visc/rho; % kinematic viscosity

%---

% generate the grid

% initialize stream function and vorticity

%---

for i=1:Nx+1

for j=1:Ny+1

x(i,j) = (i-1.0)*Dx;

y(i,j) = (j-1.0)*Dy;

psi(i,j) = 0.0; % stream function

vort(i,j) = -vort init;

end

end

%------------------

% global iterations

%------------------

for iter=1:Niterg

save = vort;

%---------------------------------------

% Jacobi updating of the stream function

% at the interior nodes

%---------------------------------------

for iteri=1:Niteri

for j=2:Ny

for i=2:Nx

8.5 Two-dimensional flow; stream function/vorticity formulation 555

res = (psi(i+1,j)+psi(i-1,j)+ beta*psi(i,j+1) ...

+beta*psi(i,j-1)+Dxs*vort(i,j))/beta1-psi(i,j);

psi(i,j) = psi(i,j) + relax*res;

end

end

end

%-------------------------------------

% Compute the vorticity at boundary grid points

% using the velocity boundary conditions

% (lower-order boundary conditions are commented out)

%-------------------------------------

%---

% top and bottom walls

%---

for i=2:Nx

% vort(i,1) = 2.0*(psi(i,1)-psi(i,2))/Dys;

% vort(i,Ny+1) = 2.0*(psi(i,Ny+1)-psi(i,Ny))/Dys-2.0*Vlid/Dys;

vort(i,1) = (7.0*psi(i,1)-8.0*psi(i,2)+psi(i,3))/(2.0*Dys);

vort(i,Ny+1) = (7.0*psi(i,Ny+1)-8.0*psi(i,Ny) ...

+psi(i,Ny-1))/(2.0*Dys)-3.0*Vlid/Dy;

end

%---

% left and right walls

%---

for j=2:Ny

% vort(1,j) = 2.0*(psi(1,j)-psi(2,j))/Dxs;

% vort(Nx+1,j) = 2.0*(psi(Nx+1,j)-psi(Nx,j))/Dxs;

vort(1,j) = (7.0*psi(1,j)-8.0*psi(2,j)+psi(3,j))/(2.0*Dxs);

vort(Nx+1,j) = (7.0*psi(Nx+1,j)-8.0*psi(Nx,j) ...

+psi(Nx-1,j))/(2.0*Dxs);

end

%--------------------------------

% compute the velocity at the interior

% grid points by central differences

%--------------------------------

for j=2:Ny

for i=2:Nx

ux(i,j) = (psi(i,j+1)-psi(i,j-1))/Dy2;

uy(i,j) = - (psi(i+1,j)-psi(i-1,j))/Dx2;

end

end

556 Fluid Dynamics: Theory, Computation, and Numerical Simulation

%---

% iterate on Poisson’s equation for the vorticity

%---

for iteri=1:Niteri

for j=2:Ny

for i=2:Nx

source(i,j) = ux(i,j)*(vort(i+1,j)-vort(i-1,j))/Dx2...

+ uy(i,j)*(vort(i,j+1)-vort(i,j-1))/Dy2;

source(i,j) = -source(i,j)/nu;

res = (vort(i+1,j)+vort(i-1,j) + beta*vort(i,j+1) ...

+beta*vort(i,j-1)+Dxs*source(i,j))/beta1-vort(i,j);

vort(i,j) = vort(i,j) + relax*res;

end

end

end % of iteri

%------------------

% monitor the error

%------------------

cormax = 0.0;

for i=1:Nx+1

for j=1:Ny+1

res = abs(vort(i,j)-save(i,j));

if(res>cormax)

cormax = res;

end

end

end

if(cormax<tol)

break

end

end % of iter

%--

%============

% graphics

%============

for i=1:Nx+1 % set up plotting vectors

xgr(i) = Dx*(i-1);

end

for j=1:Ny+1

ygr(j) = Dy*(j-1);

8.5 Two-dimensional flow; stream function/vorticity formulation 557

end

figure(1)

surf(20*xgr,20*ygr,vort')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel(\verb1'\omega'1,'fontsize',15)

set(gca,'fontsize',15)

axis([0 Lx 0 Ly -10 10])

axis equal

figure(2)

contour(xgr,ygr,psi',32)

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel('\psi','fontsize',15)

axis([0 Lx 0 Ly])

axis equal

The graphics module at the end of the code invokes the internal MATLAB functions surf
and contour.

Vorticity and stream function contour plots for a cavity with aspect ratio Lx/Ly = 2
at Reynolds number Re = V Lx/ν = 1 and 100 are shown in Figure 8.5.2. Stream function
contours are streamlines and particle paths in a two-dimensional flow. As the Reynolds
number increases, the center of the eddy developing inside the cavity is shifted toward the
right wall due to the fluid inertia. Regions of recirculating flow develop at the bottom two
corners, requiring increased spatial resolution.

A local analysis in the context of Stokes flow shows that the shear stress diverges at the
upper two cavity corners and an infinite force is required to slide the lid as a result of the
sharp-corner idealization. It is remarkable that the singular behavior of the vorticity at these
corners due to the discontinuous boundary velocity does not deter the overall performance
of the numerical method.

8.5.5 Summary

In summary, the stream function/vorticity formulation is distinguished by the following
features:

1. Expressing the velocity in terms of the stream function ensures the automatic satis-
faction of the continuity equation.

2. The formulation bypasses the computation of the pressure. If we had to solve for the
pressure, we would have to derive appropriate boundary conditions, as discussed in
Section 8.6.

3. Enforcing the no-penetration and the no-slip boundary condition is done sequentially
rather than simultaneously. The no-penetration condition is enforced when solving for

558 Fluid Dynamics: Theory, Computation, and Numerical Simulation

(a) (b)

0

10

20

30

40

0

10

20

−40

−30

−20

−10

0

10

20

x
y

ω

0 0.5 1 1.5 2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

(c) (d)

0

10

20

30

40

0

10

20

−40

−20

0

20

x
y

ω

0 0.5 1 1.5 2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

Figure 8.5.2 Vorticity and stream function contour plots for flow in a rectangular cavity with aspect
ratio Lx/Ly = 2, at Reynolds number (a, b) Re = V Lx/ν = 1 and (c, d) 100.

the stream function, while the no-slip condition is enforced when deriving boundary
conditions for the vorticity.

Similar simplifications occur when solving for the Stokes stream function describing axisym-
metric flow in the absence of swirling motion.

8.6 Velocity/pressure formulation 559

8.5.1 Computation of the pressure

Show that the pressure distribution in an incompressible fluid satisfies Poisson’s equation

1

2ρ
∇2p =

∂2ψ

∂x2

∂2ψ

∂y2
−
(∂2ψ

∂x∂y

)2

. (8.5.30)

Hint : Take the divergence of the Navier–Stokes equation and use the continuity equation.

8.5.2 Axisymmetric flow

Develop a finite-difference method based on the stream function/vorticity formulation for
steady axisymmetric flow in an annular cavity depressed on a circular cylinder. The flow is
driven by a sleeve sliding along the cylinder surface.

8.5.3 Steady flow in a cavity

(a) Run the code cvt sv and prepare velocity vector plots for the two flows illustrated in
Figure 8.5.2. Discuss the structure of the streamline pattern.

(b) Investigate the performance of the numerical method for a square cavity at high Reynolds
numbers.

(c) Duplicate the results shown in Figure 8.5.2 for a slender cavity with aspect ratio Lx/Ly =
8. Discuss the structure of the flow.

(d) Implement a stopping check so that the computations terminate when the vorticity field
has been computed within a specified accuracy.

(e) Resolve and discuss the structure of the eddies developing near the lower two corners.

8.6 Velocity/pressure formulation

Although the stream function/vorticity formulation discussed in Section 8.5 is simple and
efficient, its extension to three dimensions and its generalization to flow in the presence of
interfaces are cumbersome. To handle arbitrary flow configurations, we develop a direct
formulation in primary variables, including the velocity and the pressure.

Evolution equations

To compute the evolution of an unsteady flow, we require an evolution equation for the
velocity and another evolution equation for the pressure. The former is provided by the
Navier–Stokes equation stated as

∂u

∂t
= N(u)− 1

ρ
∇p+ ν L(u), (8.6.1)

where N(u) is a nonlinear convection operator and L(u) is a linear diffusion operator defined
as

N(u) ≡ −u ·∇u, L(u) ≡ ∇2u. (8.6.2)

Problems

560 Fluid Dynamics: Theory, Computation, and Numerical Simulation

If the fluid were compressible, the continuity equation would provide us with an evo-
lution equation for the density, as shown in equations (2.7.13) and (2.7.14). An evolution
equation for the pressure could then be obtained by introducing an equation of state relating
the density to the local pressure and temperature.

An explicit evolution equation for the pressure developing in a incompressible fluid is
not available. Instead, the continuity equation takes the form a kinematic constraint,

∇ · u = 0, (8.6.3)

which requires that the pressure field evolves so that the rate of expansion, ∇ · u, is zero
throughout the domain of flow at any time.

To convert this requirement into a mathematical restriction, we take the divergence of
the Navier–Stokes equation (8.6.1), interchange the divergence with the time derivative on
the left-hand side, and thus derive an evolution equation for the rate of expansion,

∂∇ · u
∂t

= ∇ ·N(u)− 1

ρ
∇2p+ ν∇ · L(u). (8.6.4)

Note that the divergence operator and the nonlinear operator N on the right-hand side do
not commute, that is,

∇ ·N(u)
= N(∇ · u). (8.6.5)

For simplicity, we have assumed that the density and viscosity are uniform throughout the
domain of flow.

Pressure Poisson equation

Equation (8.6.3) requires that the left-hand side of (8.6.4) vanishes at any time, which will
be true if the pressure satisfies the pressure Poisson equation (PPE),

∇2p = ρ∇ ·N(u) + μ∇ · L(u). (8.6.6)

It could be argued that, since the divergence operator and the linear operator L commute,

∇ · L(u) = L(∇ · u), (8.6.7)

the last term on the right-hand side of (8.6.6) could be set to zero, yielding the simplified
pressure Poisson equation (SPPE),

∇2p = ρ∇ ·N(u). (8.6.8)

However, in practice, the magnitude of the last term on the right-hand side of (8.6.6) is
nonzero due to numerical error associated with the approximation of partial derivatives with
finite differences. It turns out that the complete absence of this term may be detrimental to
the performance of the numerical method by fostering the growth of small oscillations. To
prevent the onset of these oscillations, the PPE is preferred over its simplified counterpart.

8.6 Velocity/pressure formulation 561

8.6.1 Alternative system of governing equations

The preceding discussion suggests a numerical procedure for computing the evolution of an
unsteady flow based on equations (8.6.1) and (8.6.6) or (8.6.8): compute the evolution of
the velocity using (8.6.1), and simultaneously obtain the evolution of the pressure by solving
the Poisson equation (8.6.6) or (8.6.8).

The method is analogous to that employed in the stream function/vorticity formulation
discussed in Section 8.5. One important difference is that, by employing the stream func-
tion, the satisfaction of the continuity equation (8.6.3) is guaranteed, independent of the
magnitude of the numerical error.

To examine whether the velocity/pressure formulation ensures the satisfaction of the
continuity equation (8.6.3), we substitute (8.6.6) into the right-hand side of the pressure
Poison equation (8.6.4) and obtain the expected result

∂ ∇ · u
∂t

= 0, (8.6.9)

which ensures that, if the rate of expansion vanishes at the initial instant by a sensible
choice of the initial condition, it will also vanish at any time.

Substituting (8.6.8) into the right-hand side of the simplified pressure Poison equation
(8.6.4), we obtain an unsteady diffusion equation for the rate of expansion,

∂∇ · u
∂t

= ν∇ · L(u), (8.6.10)

which ensures that, if the rate of expansion vanishes at the initial instant by an appropriate
choice of an initial condition, it will also vanish at any time provided that the boundary
values of the rate of expansion also vanish at any time. The additional condition underlines
the importance of accurately satisfying mass conservation at the boundaries and explains
why (8.6.6) is preferred over its simplified counterpart (8.6.8).

8.6.2 Pressure boundary conditions

To solve the pressure Poisson equation, we require a pressure boundary condition derived
from specified boundary conditions for the velocity. The pressure boundary condition
emerges by evaluating the Navier–Stokes equation (8.6.1) at the boundaries of the flow,
and then taking the inner product of both sides with the unit vector normal to the bound-
aries pointing outward, n. The result is the Neumann boundary condition

n ·∇p = ρn · (− ∂u

∂t
+N(u) + ν L(u)

)
. (8.6.11)

The left-hand side is the derivative of the pressure normal to the boundaries, expressing
the rate of change of the pressure with respect to distance normal to the boundaries. The
right-hand side is then simplified by implementing the no-slip and no-penetration boundary
conditions.

562 Fluid Dynamics: Theory, Computation, and Numerical Simulation

For example, in the case of two-dimensional flow over a horizontal stationary wall located
at y = 0, we require that ux = 0 and uy = 0 at y = 0, and obtain

n ·∇p =
∂p

∂y
= μ

∂2uy

∂y2
(8.6.12)

in a steady or unsteady flow. The left-hand side is the normal derivative of the pressure,
while the right-hand side is the negative of the normal derivative of the vorticity multiplied
by the fluid viscosity.

8.6.3 Compatibility condition for the pressure

The Poisson equation governing the pressure distribution in an incompressible fluid is anal-
ogous to the Poisson equation governing the steady-state temperature distribution in a
conductive medium identified with the domain of flow, subject to a homogeneous heat pro-
duction term expressed by the right-hand side.

The boundary condition (8.6.11) specifies the boundary distribution of the flux in terms
of the instantaneous velocity. Physical reasoning suggests that a steady distribution will
exist only if the total rate of heat production is balanced by the total rate of heat removal
across the boundaries, so that heat neither accumulates to elevate the temperature nor is
depleted to lower the temperature.

In the case of two-dimensional flow, the mathematical expression of this requirement
takes the form of a compatibility condition, stating that the areal integral of the right-hand
side of (8.6.6) or (8.6.8) over the domain of flow should be equal to the line integral of the
right-hand side of (8.6.11) or (8.6.12) over the boundaries. If the compatibility condition is
not fulfilled, a solution for the pressure cannot be found.

In the case of three-dimensional flow, the compatibility condition requires that the
volume integral of the right-hand side of (8.6.6) or (8.6.8) over the domain of flow should be
equal to the surface integral of the right-hand side of (8.6.11) or (8.6.12) over the boundaries.
If the compatibility condition is not fulfilled, a solution for the pressure cannot be found.

In numerical practice, this compatibility condition is enforced implicitly or explicitly
depending on the particulars of the implementation of the numerical method. In some over-
simplified approaches, the compatibility condition is altogether ignored and an approximate
solution is found.

8.6.1 Pressure boundary condition

Derive the pressure boundary condition (8.6.12).

Problem

8.7 Operator splitting and solenoidal projection 563

8.7 Operator splitting and solenoidal projection

In practice, the velocity/pressure formulation is implemented in a way that expedites the
numerical solution and reduces the computational cost. For the purpose of illustration, we
discuss the computation of an evolving two-dimensional flow. Extending the methodology
to three-dimensional flow is straightforward in principle and implementation.

Operator splitting

In the most popular implementation of the velocity/pressure formulation, the Navier–Stokes
equation (8.6.1) is resolved into two constituent equations,

∂u

∂t
= N(u) + ν L(u) (8.7.1)

and

∂u

∂t
= −1

ρ
∇p, (8.7.2)

where the operators N(u) and L(u) are defined in equations (8.6.2),

N(u) ≡ −u ·∇u, L(u) ≡ ∇2u. (8.7.3)

The right-hand sides of equations (8.7.1) and (8.7.2) arise by splitting the full Navier–
Stokes operator on the right-hand side of (8.6.1) into two parts, subject to the following
interpretation.

Consider the change in the velocity field over a small time interval, Δt, following the cur-
rent time, t. The decomposition into (8.7.1) and (8.7.2) is inspired by the idea of updating
the velocity in two sequential stages, where the first update is due to inertia and viscosity,
while the second update is due to the pressure gradient alone. Time is to t +Δt after the
completion of the second stage. We will see that this decomposition significantly simpli-
fies the implementation of the numerical method by allowing the convection–diffusion and
pressure gradient steps to be handled independently using appropriate numerical methods.

Two main issues arise. First, the boundary condition for the velocity to be used for
integrating (8.7.1) cannot be the same as the specified physical boundary condition, oth-
erwise the second step mediated by (8.7.2) will cause a departure. Second, the boundary
condition for the pressure may no longer be computed from (8.6.11), but should be derived
instead using equation (8.7.2).

Projection function

The second observation suggests that p in equation (8.7.2) may no longer be regarded as the
hydrodynamic pressure, p, and should be interpreted instead as a fictitious pressure whose
role is to ensure that the velocity field is solenoidal at the end of the second step. To make
this distinction clear, we replace equation (8.7.2) with the equation

∂u

∂t
= −1

ρ
∇χ, (8.7.4)

564 Fluid Dynamics: Theory, Computation, and Numerical Simulation

where χ is a projection function. Equation (8.7.4) receives the velocity field delivered by the
convection–diffusion equation (8.7.1), which is not necessarily solenoidal, and removes the
non-solenoidal component in a process that can be described as projection into the space of
solenoidal functions.

The choice of boundary conditions for the projection function, χ, has been the subject of
extensive discussion. It can be shown that the homogeneous Neumann boundary condition,
requiring that the derivative of the projection function χ with respect to distance normal to
a boundary vanishes, is appropriate. The associated boundary conditions for the velocity
will be discussed in Section 8.7.3.

Next, we discuss the implementation of numerical methods for performing the convection–
diffusion and projection steps expressed by equations (8.7.1) and (8.7.4).

8.7.1 Convection–diffusion step

To prevent numerical instability, we perform the convection–diffusion step expressed by
equation (8.7.1) by an implicit finite-difference method. This means that updating the
velocity requires solving linear systems of algebraic equations for the velocity at all nodes.

Evaluating the x and y components of equation (8.7.1) at the (i, j) grid point at time
t + Δt, and approximating the time derivatives with backward differences and the spatial
derivatives with differences of our choice, we derive a system of equations for the unknown
velocity vector comprised of the x and y velocity components at the grid points at time
t+Δt. The size of the velocity vector is twice the number of grid points. For a 32×32 grid,
we obtain a velocity vector with nearly 2, 000 unknowns and an equal number of equations
whose solution requires a significant computational cost.

Directional splitting

As an alternative, we split the operator on the right-hand side of (8.7.1) into two spatial
constituents expressing convection–diffusion in the x or y direction, given by

∂u

∂t
= −ux

∂u

∂x
+ ν

∂2u

∂x2
(8.7.5)

and

∂u

∂t
= −uy

∂u

∂y
+ ν

∂2u

∂y2
, (8.7.6)

and advance the velocity over the time interval Δt in a sequential fashion based on this
decomposition.

Crank–Nicolson integration

To achieve second-order accuracy, we discretize equation (8.7.5) using the Crank–Nicolson
method. The implementation involves evaluating (8.7.5) at the (i, j) grid point at time

8.7 Operator splitting and solenoidal projection 565

t+ 1
2 Δt, approximating the time and space derivatives with central differences, and averaging

the space derivatives over the time levels t and t+Δt,

u∗
i,j − ui,j(t)

Δt
= − 1

2
(ux)i,j(t)

[
(
ui+1,j − ui−1,j

2Δx
)(t) +

u∗
i+1,j − u∗

i−1,j

2Δx

]
+

1

2
ν
[
(
ui+1,j − 2ui,j + ui−1,j

Δx2
)(t) +

u∗
i+1,j − 2u∗

i,j + u∗
i−1,j

Δx2

]
. (8.7.7)

An asterisk designates the first intermediate velocity field.

To simplify the notation, we define

un
i,j ≡ ui,j(t), (8.7.8)

where the superscript n denotes the nth time level corresponding to time t. Rearranging
equation (8.7.7), we derive the finite-difference equation

−(cx + 2αx)u
∗
i−1,j + 4(1 + αx)u

∗
i,j + (cx − 2αx)u

∗
i+1,j

= (cx + 2αx)u
n
i−1,j + 4(1− αx)u

n
i,j − (cx − 2αx)u

n
i+1,j ,

(8.7.9)

involving the local x convection number,

cx ≡ (ux)
n
i,j Δt

Δx
, (8.7.10)

and the x diffusion number,

αx ≡ νΔt

Δx2
. (8.7.11)

The right-hand side of (8.7.9) can be computed in terms of the velocity at the grid points
at the nth time level, which is available.

Evaluating (8.7.9) at grid points that lie along y grid lines corresponding to fixed values
of j, we obtain tridiagonal systems of equations for the x and y components of the first
intermediate velocity. The salient advantage of the method of directional splitting is that
these tridiagonal systems can be solved efficiently using the Thomas algorithm discussed in
Section 8.2.4, subject to boundary conditions discussed in Section 8.7.3.

An analogous discretization of (8.7.6) yields

−(cy + 2αy)u
∗∗
i,j−1 + 4(1 + αy)u

∗∗
i,j + (cy − 2αy)u

∗∗
i,j+1

= (cy + 2αy)u
∗
i,j−1 + 4(1− αy)u

∗
i,j − (cy − 2αy)u

∗
i,j+1,

(8.7.12)

where

cy ≡ (uy)
n
i,j Δt

Δy
(8.7.13)

566 Fluid Dynamics: Theory, Computation, and Numerical Simulation

is the local y convection number and

αy ≡ νΔt

Δy2
(8.7.14)

is the y diffusion number. A double asterisk in (8.7.12) designates the second intermediate
velocity field.

The right-hand side of (8.7.12) can be computed in terms of the first intermediate
velocity delivered by equation (8.7.9). Evaluating (8.7.12) at grid points that lie along x
grid lines corresponding to fixed values of i, we obtain tridiagonal systems of equations for
the x and y components of the second intermediate velocity. The solution can be found using
the Thomas algorithm discussed in Section 8.2.4, subject to boundary conditions discussed
in Section 8.7.3.

8.7.2 Projection step

Next, we advance the velocity field using the projection step (8.7.4), where the projection
function is computed to satisfy the continuity equation at the end of this step. Evaluating
(8.7.5) at the (i, j) grid point and approximating the time derivative with a finite difference,
we obtain

ui,j(t+Δt)− u∗∗
i,j

Δt
= −1

ρ
(∇χ)ni,j , (8.7.15)

which can be rearranged to give

ui,j(t+Δt) = u∗∗
i,j −

Δt

ρ
(∇χ)ni,j . (8.7.16)

The gradient on the right-hand side of (8.7.16) can be approximated by centered, forward,
or backward differences.

Now we consider the numerical discretization of the continuity equation, ∇ · u = 0.
Using centered differences, we approximate the rate of expansion at the (i, j) grid point
with the discrete form

Di,j ≡ (∇ · u)i,j 	 (ux)i+1,j − (ux)i−1,j

2Δx
+

(uy)i,j+1 − (uy)i,j−1

2Δy
. (8.7.17)

Evaluating (8.7.17) at the n + 1 time level corresponding to time t + Δt, requiring that
the left-hand side is zero, and using (8.7.16) to express u(t+Δt) on the right-hand side in
terms of the second intermediate velocity denoted by the double asterisk and the projection
function, we obtain the expression

ρ

Δt
(∇ · u∗∗)i,j =

(
∂χ

∂x
)i+1,j − (

∂χ

∂x
)i−1,j

2Δx
+

(
∂χ

∂y
)i,j+1 − (

∂χ

∂y
)i,j−1

2Δy
. (8.7.18)

8.7 Operator splitting and solenoidal projection 567

The right-hand side of (8.7.18) is recognized as the discrete divergence of the gradient of
the projection function χ.

For grid points that are not adjacent to a wall, we approximate the partial derivatives
of the right-hand side of (8.7.18) with centered differences and simplify to obtain

ρ

Δt
(∇ · u∗∗)i,j =

χi−2,j − 2χi,j + χi+2,j

4Δx2
+

χi,j−2 − 2χi,j + χi,j+2

4Δy2
. (8.7.19)

The right-hand side of (8.7.19) is recognized as the finite-difference approximation of the
Laplacian of χ, computed with spatial intervals equal to 2Δx and 2Δy.

For points that are adjacent to a wall, we derive corresponding formulas incorporating
the homogeneous Neumann boundary condition. For example, applying equation (8.7.18)
at the near-corner point i = 2 and j = 2, and setting (∂χ/∂y)2,1 = 0 and (∂χ/∂x)1,2 = 0,
we obtain

ρ

Δt
(∇ · u∗∗)2,2 =

χ4,2 − χ2,2

4Δx2
+

χ2,4 − χ2,2

4Δy2
. (8.7.20)

Returning to (8.7.19), we reduce the intervals of the centered spatial differences to Δx
and Δy, and derive the alternative expression

ρ

Δt
(∇ · u∗∗)i,j =

χi+1,j − 2χi,j + χi−1,j

Δx2
+

χi,j+1 − 2χi,j + χi,j−1

Δy2
, (8.7.21)

which is applicable at all interior grid points. This finite-difference equation could have been
derived directly from (8.7.15) by taking the divergence of both sides and then approximating
the emerging Laplacian of χ on the right-hand side with the five-point formula, as shown in
(8.7.21).

Evaluating (8.7.19) or (8.7.21) at the interior grid points and their counterparts for
the wall-adjacent points, and introducing boundary conditions for χ, we derive a system
of linear equations for the grid values of χ, which is the counterpart of the linear system
descending from the pressure Poisson equation discussed in Section 8.6. Having computed
the grid values of the projection function, we return to equation (8.7.16) and perform the
final step, advancing the velocity to the n+ 1 time level corresponding to time t+Δt.

Because the coefficient matrix of the linear system associated with (8.7.19) or (8.7.21)
is independent of time, we may either compute the matrix inverse at the outset and then
solve the system at each step by simple matrix-vector multiplication, or employ efficient
custom-made iterative solution algorithms.

8.7.3 Boundary conditions for the intermediate velocity

Next, we address the issue of boundary conditions for the intermediate velocities denoted
by a single or double asterisk. The choice of these boundary conditions is pivoted on a
key observation: because of the homogeneous Neumann condition chosen for the projec-
tion function, the projection step introduces a tangential but not a normal component of

568 Fluid Dynamics: Theory, Computation, and Numerical Simulation

the boundary velocity. Accordingly, the boundary conditions for the intermediate velocity
should be such that the tangential velocity introduced in the projection step brings the total
velocity to the specified physical value at the end of a complete step. In practice, this is
done by estimating the magnitude of the intermediate slip velocity and then improving the
guess by iteration, as explained in Section 8.7.4.

8.7.4 Flow in a cavity

The implementation of the numerical method involves further considerations that are best
illustrated with reference to the familiar problem of two-dimensional flow in a cavity driven
by a sliding lid.

Homogeneous Neumann boundary condition for the projection function

Consider the numerical implementation of the condition of zero normal derivative of the
projection function at the boundaries of the cavity illustrated in Figure 8.5.1. Requiring
that ∂χ/∂y = 0 at the bottom and top walls, and approximating the first derivative with a
second-order forward or backward finite difference, we obtain(∂χ

∂y

)
i,1

	 −3χi,1 + 4χi,2 − χi,3

2Δy
= 0 (8.7.22)

and (∂χ
∂y

)
i,Ny+1

	 χi,Ny−1 − 4χi,Ny
+ 3χi,Ny+1

2Δy
= 0. (8.7.23)

Requiring that ∂χ/∂x = 0 at the left and right walls, and approximating the first derivative
with a second-order forward or backward finite-difference, we obtain(∂χ

∂x

)
1,j

	 −3χ1,j + 4χ2,j − χ3,j

2Δx
= 0 (8.7.24)

and (∂χ
∂x

)
Nx+1,j

	 χNx−1,j − 4χNx,j + 3χNx+1,j

2Δx
= 0. (8.7.25)

These difference equations complement those arising from the discretization of the Poisson
equation.

Compatibility condition for system (8.7.19)

The linear system descending from the discrete Poisson equation (8.7.19) accompanied by
the homogeneous Neumann boundary conditions is singular, which means that it has either
no solution or an infinite number of solutions, depending on the right-hand side. If multiple
solutions exist, any particular solution can be offset by an arbitrary constant vector with
equal elements. Correspondingly, the value of the projection function at the grid points can
be offset by a physically irrelevant constant. Reference to (8.7.16) ensures that this constant
has no effect on the structure of the flow.

8.7 Operator splitting and solenoidal projection 569

When the discrete divergence of the second intermediate velocity is computed using
(8.7.17), the discrete form of the compatibility condition discussed at the end of Section 8.6
is fulfilled and the linear system has a multiplicity of solutions. A solution can be found by
assigning an arbitrary value to one of the unknowns, discarding one equation, and solving
the rest of the equations for the remaining unknowns. Unfortunately, the numerical solution
computed in this fashion can be contaminated by artificial oscillations described as odd-even
coupling.

Compatibility condition for system (8.7.21)

The linear system descending from the discrete Poisson equation (8.7.21) accompanied by
the homogeneous Neumann boundary conditions is also singular, reflecting the arbitrary
level of the projection function. Unfortunately, when the discrete divergence of the second
intermediate velocity field is computed using (8.7.17), the discrete form of the compatibility
condition is not satisfied. Consequently, one equation of the linear system cannot be satisfied
to machine precision.

Resisting the temptation to fudge the computation by discarding one arbitrary equation,
we add a small term to the right-hand side of (8.7.21) and then adjust the magnitude of
this term to satisfy the compatibility condition of a modified system of equations. If

A · x = b (8.7.26)

is the linear system corresponding to (8.7.21), then the modified system is

A · x = b+ ε c, (8.7.27)

where ε is an a priori unknown constant and c is a constant vector that emerges by replacing
the left-hand side of (8.7.18) with an arbitrary value, while retaining the linear equations
implementing the homogeneous Neumann boundary conditions.

Our objective is to adjust the value of the constant ε so that the system (8.7.27) has an
infinite number of solutions. In one approach, we work as follows:

1. First, we set the last component of x to zero, discard the last equation ofA·x = b, solve
the remaining equations, and call the solution x(1). Then we evaluate the difference
between the left-hand side and the right-hand of the last equation, r(1).

2. Second, we set the last component of x to zero, discard the last equation of A ·x = c,
solve the remaining equations, and call the solution xref . Then evaluate the difference
between the left-hand side and the right-hand of the last equation, denoted by rref .

3. The desired solution is

x = x(1) + εxref , (8.7.28)

where

ε = −r(1)

rref
. (8.7.29)

570 Fluid Dynamics: Theory, Computation, and Numerical Simulation

A more rigorous approach involves removing from the right-hand side, b, its projection
on the eigenvector corresponding to the null eigenvalue of the transpose of the coefficient
matrix, AT.

Boundary conditions for the intermediate velocity

The boundary conditions for the intermediate velocity must be such that the right-hand
side of (8.7.16) is consistent with the specified physical boundary conditions at time t+Δt.
Requiring that the left-hand side of (8.7.16) is zero over a stationary boundary, we obtain
the boundary condition

u∗∗
i,j =

Δt

ρ
(∇χ)ni,j . (8.7.30)

Because the projection function was required to satisfy the homogeneous Neumann bound-
ary condition, the right-hand side of (8.7.30) has only a tangential component expressing
numerical wall slip.

An apparent difficulty in computing the tangential component of the intermediate ve-
locity is that the right-hand side of (8.7.30) is not available during the convection–diffusion
step. To circumvent this difficulty, we may approximate the projection function with that at
the previous step, proceed with the projection step, and then improve the approximation by
repeating the convection–diffusion step until the slip velocity has fallen below a sufficiently
small threshold.

Code cvp pm

The following MATLAB code entitled cvt pm, located inside directory 11 fdm of Fdlib,
performs the time integration using the projection method discussed in this section and
animates the evolving velocity vector field. The code should be read in two columns on each
page:

close all

clear all

%===================================

% Computation of evolving flow

% in a rectangular cavity

% in primary variables using the

% velocity/pressure formulation

%

% The flow is computed using a

% projection method

%

% SYMBOLS:

%

% x,y: grid nodes

% ux, uy: velocity components

% chi: projection function

% uxi, uyi: intermediate velocity

% (generic)

%===================================

%-----------------------

% settings and parameters

%-----------------------

Lx = 1.0; % cavity length

Ly = 0.5; % cavity depth

Nx = 4*8; % grid size

Ny = 4*4;

Dt = 0.1; % time step

8.7 Operator splitting and solenoidal projection 571

visc = 0.01; % viscosity

dens = 1.0; % density

Vlidamp = 1.0; % lid velocity amplitude

Nstep = 2000; % number of steps

%------------------------------------

% parameters for solving the Poisson

% equation for the projection function

%------------------------------------

itermax = 50000;

tol = 0.000001;

relax = 0.2;

qleft = 0.0; % Neumann bound cond

qright = 0.0;

qbot = 0.0;

qtop = 0.0;

Ishift = 1;

%-----------------------------------

% parameters for slip vel iterations

%-----------------------------------

slipN = 50; % max iteration no

sliptol = 0.00001; % tolerance

sliprel = 1.0; % relaxation

%--------

% prepare

%--------

nu = visc/dens; % kinematic viscosity

Dx = Lx/Nx;

Dy = Ly/Ny;

Dx2 = 2.0*Dx;

Dy2 = 2.0*Dy;

Dxs = Dx*Dx;

Dys = Dy*Dy;

Dtor = Dt/dens;

%--------

% lid velocity

%--------

for i=1:Nx+1

Vlid(i) = Vlidamp;

end

%-----------------------------------

% define grid lines

% initialize velocity (ux, uy)

% and the projection function (chi)

%-----------------------------------

time = 0.0;

for j=1:Ny+1

for i=1:Nx+1

x(i,j) = (i-1.0)*Dx;

y(i,j) = (j-1.0)*Dy;

ux(i,j) = 0.0; % x velocity

uy(i,j) = 0.0; % y velocity

chi(i,j) = 0.0; % projection function

chroma(i,j) = 0.0; % for plotting

end

end

for i=1:Nx+1

ux(i,Ny+1) = Vlid(i);

end

%-----------------------------------

% naive velocity boundary conditions

%-----------------------------------

for i=1:Nx+1

BCxt(i) = Vlid(i); % top wall

BCxb(i) = 0.0; % bottom wall

end

for j=1:Ny+1

BCyl(j) = 0.0; % left wall

BCyr(j) = 0.0; % right wall

end

%--------------

% time stepping

%--------------

572 Fluid Dynamics: Theory, Computation, and Numerical Simulation

%===============

for step=1:Nstep

%===============

%---

% animation

%---

if(step==1)

Handle1 = quiver(x,y,ux,uy,’k’);

set(Handle1, ’erasemode’, ’xor’);

axis ([-0.10,Lx+0.10,-0.10,Ly+0.10])

axis equal

set(gca,’fontsize’,15)

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

hold on

plot([0, Lx, Lx, 0, 0] ...

,[0, 0, Ly, Ly, 0],’k’);

else

set(Handle1,’UData’,ux,’VData’,uy);

pause(0.01)

drawnow

end

%-------------------------------------

% initialize the intermediate velocity

%-------------------------------------

for j=1:Ny+1

for i=1:Nx+1

uxi(i,j) = ux(i,j);

uyi(i,j) = uy(i,j);

end

end

%=============================

% perform inner iterations

% for the projection function

% to satisfy the no-slip

% boundary condition

%=============================

for inner=1:slipN

%---

% zero the tridiagonal matrix

%---

for i=1:Nx-1

atr(i) = 0.0;

btr(i) = 0.0;

ctr(i) = 0.0;

end

%-------------------------------------

% Integrate conv-diff equation in x

% using the Crank-Nicolson method

% Advance the velocity from u^n to u*

%-------------------------------------

Iskip = 0;

if(Iskip==0)

al = nu*Dt/Dxs;

%--------------

for j=2:Ny % run over rows

%----

for i=2:Nx

Rc = ux(i,j)*Dt/Dx;

C1 = Rc + 2.0*al;

C2 = 4.0*(1.0-al);

C3 = -Rc + 2.0*al;

ctr(i-1) = -Rc - 2.0*al;

atr(i-1) = 4.0*(1.0+al);

btr(i-1) = Rc - 2.0*al;

rhsx(i-1) = C1*ux(i-1,j) ...

+ C2*ux(i,j) ...

+ C3*ux(i+1,j);

rhsy(i-1) = C1*uy(i-1,j) ...

+ C2*uy(i,j) ...

+ C3*uy(i+1,j);

end

rhsy(1) = rhsy(1) ...

- ctr(1) *BCyl(j);

rhsy(Nx-1) = rhsy(Nx-1) ...

- btr(Nx-1)*BCyr(j);

% x component:

solx = thomas(Nx-1,atr,btr,ctr,rhsx);

% y component:

soly = thomas(Nx-1,atr,btr,ctr,rhsy);

for k=1:Nx-1

8.7 Operator splitting and solenoidal projection 573

uxi(k+1,j) = solx(k);

uyi(k+1,j) = soly(k);

end

%---

end % End of running over rows

%-----------

for i=1:Nx-1 % reset

atr(i) = 0.0;

btr(i) = 0.0;

ctr(i) = 0.0;

end

end % of skip

%-------------------------------------

% Integrate Conv-Diff equation in y

% using the Crank-Nicolson method

% Advance the velocity from u* to u**

%-------------------------------------

Iskip = 0;

if(Iskip==0)

al = nu*Dt/Dys;

%---

for i=2:Nx % run over columns

%---

for j=2:Ny % from bottom to top

Rc = uy(i,j)*Dt/Dy;

C1 = Rc +2.0*al;

C2 = 4.0*(1.0-al);

C3 = -Rc +2.0*al;

ctr(j-1) = -Rc -2.0*al;

atr(j-1) = 4.0*(1.0+al);

btr(j-1) = Rc -2.0*al;

rhsx(j-1) = C1*uxi(i,j-1) ...

+ C2*uxi(i,j) ...

+ C3*uxi(i,j+1);

rhsy(j-1) = C1*uyi(i,j-1) ...

+ C2*uyi(i,j) ...

+ C3*uyi(i,j+1);

end

rhsx(1) = rhsx(1) ...

- ctr(1) *BCxb(i);

rhsx(Ny-1) = rhsx(Ny-1) ...

- btr(Ny-1)*BCxt(i);

solx = thomas (Ny-1,atr,btr,ctr,rhsx);

soly = thomas (Ny-1,atr,btr,ctr,rhsy);

for k=1:Ny-1

uxi(i,k+1) = solx(k);

uyi(i,k+1) = soly(k);

end

%---

end % of run over columns

%---

end % of skip

%-------------------------------------

% Compute intermediate compressibility

% by centered differences

%

% Divus = Div u**

%-------------------------------------

% initialize

for j=1:Ny+1

for i=1:Nx+1

Divus(i,j) = 0.0;

end

end

% interior nodes

for i=2:Nx

for j=2:Ny

DuDx = (uxi(i+1,j)-uxi(i-1,j))/Dx2;

DvDy = (uyi(i,j+1)-uyi(i,j-1))/Dy2;

Divus(i,j) = DuDx+DvDy;

end

end

% left wall

for j=1:Ny+1

DuDx = (-3.0*uxi(1,j) ...

+4.0*uxi(2,j)-uxi(3,j))/Dx2;

DvDy = 0.0;

Divus(1,j) = DuDx+DvDy;

end

% save for corners:

574 Fluid Dynamics: Theory, Computation, and Numerical Simulation

save11l = Divus(1,j);

save12l = Divus(1,Ny+1);

% bottom wall

for i=1:Nx+1

DuDx = 0.0;

DvDy = (-3.0*uyi(i,1) ...

+4.0*uyi(i,2)-uyi(i,3))/Dy2;

Divus(i,1) = DuDx+DvDy;

end

% save for corners:

save11b = Divus(1,1);

save21b = Divus(Nx+1,1);

% right wall

for j=1:Ny+1

DuDx = (3.0*uxi(Nx+1,j) ...

-4.0*uxi(Nx,j) ...

+uxi(Nx-1,j))/Dx2;

DvDy = 0.0;

Divus(Nx+1,j) = DuDx+DvDy;

end

% save for corners:

save21r = Divus(Nx+1,1);

save22r = Divus(Nx+1,Ny+1);

% top wall

for i=1:Nx+1

DuDx = 0.0;

DvDy = (3.0*uyi(i,Ny+1) ...

-4.0*uyi(i,Ny) ...

+uyi(i,Ny-1))/Dy2;

Divus(i,Ny+1) = DuDx+DvDy;

end

% save for corners:

save12t = Divus(1, Ny+1);

save22t = Divus(Nx+1,Ny+1);

% corners by averaging

Divus(1, 1) ...

= 0.5*(save11l+save11b);

Divus(1, Ny+1) ...

= 0.5*(save12l+save12t);

Divus(Nx+1, 1) ...

= 0.5*(save21b+save21r);

Divus(Nx+1,Ny+1) ...

= 0.5*(save22r+save22t);

%----------------------------------

% Solve for the projection function

% by Gauss-Seidel (GS) iterations

%----------------------------------

Iskip = 0;

if(Iskip==0)

%---

% source term

%-----

for i=1:Nx+1

for j=1:Ny+1

source(i,j) = -Divus(i,j)/Dtor;

end

end

[chi,iter,Iflag] = pois_gs_nnnn ...

...

(Nx,Ny,Dx,Dy,source ...

,itermax,tol,relax ...

,qleft,qright,qbot,qtop,chi,Ishift);

if(Iflag==0)

disp "cvt_pm: Poisson solver ...

did not converge"

break

end

%----------------------------------

% project the velocity at all nodes

% except at the corner nodes

%----------------------------------

%---

% interior nodes

%----

for i=2:Nx

for j=2:Ny

DchiDx = (chi(i+1,j)-chi(i-1,j))/Dx2;

DchiDy = (chi(i,j+1)-chi(i,j-1))/Dy2;

8.7 Operator splitting and solenoidal projection 575

uxi(i,j) = uxi(i,j) - Dtor*DchiDx;

uyi(i,j) = uyi(i,j) - Dtor*DchiDy;

end

end

%--------------

% lower boundary

%

% Use forward differences with special

% treatment of the near-corner nodes

%--------------

for i=2:Nx

DchiDy = 0.0;

if(i==2)

DchiDx = (-3.0*chi(2,1) ...

+4.0*chi(3,1)-chi(4,1))/Dx2;

elseif(i==Nx)

DchiDx =-(-3.0*chi(Nx,1) ...

+4.0*chi(Nx-1,1) ...

-chi(Nx-2,1))/Dx2;

else

DchiDx ...

= (chi(i+1,1)-chi(i-1,1))/Dx2;

end

uxi(i,1) = BCxb(i) - Dtor*DchiDx;

uyi(i,1) = - Dtor*DchiDy;

end

%--------------

% upper boundary

%

% Use backward difference with special

% treatment of the near-corner nodes

%--------------

for i=2:Nx

DchiDy = 0.0;

if(i==2)

DchiDx = (-3.0*chi(2,Ny+1) ...

+4.0*chi(3,Ny+1) ...

-chi(4,Ny+1))/Dx2;

elseif(i==Nx)

DchiDx =-(-3.0*chi(Nx,Ny+1) ...

+4.0*chi(Nx-1,Ny+1) ...

-chi(Nx-2,Ny+1))/Dx2;

else

DchiDx = (chi(i+1,Ny+1) ...

-chi(i-1,Ny+1))/Dx2;

end

uxi(i,Ny+1) = BCxt(i) - Dtor*DchiDx;

uyi(i,Ny+1) = - Dtor*DchiDy;

end

%-------------

% left boundary

%

% Use forward differences with special

% treatment of the near-corner nodes

%-------------

for j=2:Ny

DchiDx = 0.0;

if(j==2)

DchiDy = (-3.0*chi(1,2) ...

+4.0*chi(1,3) ...

-chi(1,4))/Dy2;

elseif(j==Ny)

DchiDy =-(-3.0*chi(1,Ny) ...

+4.0*chi(1,Ny-1) ...

-chi(1,Ny-2))/Dy2;

else

DchiDy ...

= (chi(1,j+1)-chi(1,j-1))/Dy2;

end

uxi(1,j) = - Dtor*DchiDx;

uyi(1,j) = BCyl(j) - Dtor*DchiDy;

end

%--------------

% right boundary

%

% Use backward difference with special

% treatment of the near-corner nodes

%--------------

for j=2:Ny

DchiDx = 0.0;

if(j==2)

DchiDy = (-3.0*chi(Nx+1,2) ...

+4.0*chi(Nx+1,3) ...

-chi(Nx+1,4))/Dy2;

elseif(j==Ny)

DchiDy =-(-3.0*chi(Nx+1,Ny) ...

+4.0*chi(Nx+1,Ny-1) ...

-chi(Nx+1,Ny-2))/Dy2;

else

DchiDy = (chi(Nx+1,j+1) ...

576 Fluid Dynamics: Theory, Computation, and Numerical Simulation

-chi(Nx+1,j-1))/Dy2;

end

uxi(Nx+1,j) = - Dtor*DchiDx;

uyi(Nx+1,j) = BCyr(j) - Dtor*DchiDy;

end

end % of Iskip

%--------------------------------------

% Compute the wall slip velocity

%

% and modify the boundary conditions

% for the intermediate (star) velocities

%--------------------------------------

slipmax = 0.0;

% top and bottom:

for i=1:Nx+1

cor = uxi(i,Ny+1)-Vlid(i);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCxt(i) = BCxt(i)-sliprel*cor;

cor = uxi(i,1);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCxb(i) = BCxb(i)-sliprel*cor;

end

% left and right:

for j=1:Ny+1

cor = uyi(1,j);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCyl(j) = BCyl(j)-sliprel*cor;

corr = uyi(Nx+1,j);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCyr(j) = BCyr(j)-sliprel*cor;

end

slipmax

if(slipmax<sliptol) break; end

%=============================

end % of inner iterations

%=============================

%-----------------------------------

% update velocity to the final value

%-----------------------------------

for j=1:Ny+1

for i=1:Nx+1

ux(i,j) = uxi(i,j);

uy(i,j) = uyi(i,j);

end

end

%------------

% update time

%------------

time = time + Dt

%===========

end % of time stepping

%===========

figure(2)

mesh(x,y,ux);

set(gca,’fontsize’,15)

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

zlabel(’u_x’,’fontsize’,15)

set(gca,’fontsize’,15)

box

figure(3)

mesh(x,y,uy);

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

zlabel(’u_y’,’fontsize’,15)

set(gca,’fontsize’,15)

box

figure(4)

mesh(x,y,chi,chroma);

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

zlabel(’\chi’,’fontsize’,15)

set(gca,’fontsize’,15)

box

8.7 Operator splitting and solenoidal projection 577

The code calls the function thomas listed in Section 8.2.4 to solve tridiagonal systems
of equations using the Thomas algorithm.

The code also calls the following MATLAB function entitled pois gs nnnn to solve the
Poisson equation for the projection function, subject to the Neumann boundary condition
along the four sides:

function [f,iter,Iflag] = pois gs nnnn ...

...

(Nx,Ny,Dx,Dy,g ...

,itermax,tol,relax,qleft ...

,qright,qbot,qtop,f,Ishift)

%--

% Solution of Poisson’s equation

% in a rectangular domain

% with the uniform Neumann boundary condition

% along the four sides:

%

% bottom: df/dy = qbot

% top: df/dy = -qtop

% left: df/dx = qleft

% right: df/dx = -qright

%

% The solution is found by

% point Gauss--Seidel iterations

%--

%--------

% prepare

%--------

Dx2 = 2.0*Dx;

Dy2 = 2.0*Dy;

Dxs = Dx*Dx;

Dys = Dy*Dy;

beta = Dxs/Dys;

beta1 = 2.0*(beta+1.0);

Iflag = 0; % convergence flag, 1 indicates convergence

%------------------------

% Gauss-Seidel iterations

%------------------------

for iter=1:itermax

%------------------------

% update nodes row-by-row

%------------------------

578 Fluid Dynamics: Theory, Computation, and Numerical Simulation

fsv = f;

cormax = 0.0;

%---

% interior nodes

%---

for j=2:Ny

for i=2:Nx

res = (f(i+1,j)+f(i-1,j)+beta*(f(i,j+1)+f(i,j-1)) ...

+ Dxs*g(i,j))/beta1-f(i,j);

f(i,j) = f(i,j) + relax*res;

end

end

%--------------

% left boundary

%--------------

i=1;

for j=2:Ny

res = (2*f(i+1,j)-Dx2*qleft+beta*(f(i,j+1)+f(i,j-1)) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = f(i,j) + relax*res;

end

end

% corner points:

j=1;

res = (2*f(i+1,j)-Dx2*qleft ...

+beta*(f(i,j+1)+f(i,j+1)-Dy2*qbot) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

j=Ny+1;

res = (2*f(i+1,j)-Dx2*qleft ...

+beta*(f(i,j-1)+f(i,j-1)-Dy2*qtop) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

%---------------

% right boundary

%---------------

i=Nx+1;

for j=2:Ny

res = (2*f(i-1,j)+-Dx2*qright+beta*(f(i,j+1)+f(i,j-1)) ...

8.7 Operator splitting and solenoidal projection 579

+Dxs*g(i,j))/beta1 -f(i,j);

f(i,j) = fsave(i,j) + relax*res;

end

% corner points:

j=1;

res = (2*f(i-1,j)-Dx2*qright ...

+beta*(f(i,j+1)+f(i,j+1)-Dy2*qbot) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

j=Ny+1;

res = (2*f(i-1,j)-Dx2*qright)+beta*(2*f(i,j-1)-Dy2*qtop) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

%----------------

% bottom boundary

%----------------

j=1;

for i=2:Nx

res = (f(i+1,j)+f(i-1,j)+beta*(2*f(i,j+1)-Dy2*qbot) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

end

%-------------

% top boundary

%-------------

j=Ny+1;

for i=2:Nx

res = (f(i+1,j)+f(i-1,j)+beta*(2*f(i,j-1)-Dy2*qtop) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

end

%------

% shift

%------

if(Ishift==1)

shift = f(Nx/2,Ny/2);

for i=1:Nx+1

for j=1:Ny+1

f(i,j) = f(i,j)-shift;

end

580 Fluid Dynamics: Theory, Computation, and Numerical Simulation

end

end

%-------------------

% maximum correction

%-------------------

cormax = 0;

for i=1:Nx+1

for j=1:Ny+1

cor = abs(f(i,j)-fsv(i,j));

if(abs(cor)>cormax) cormax = cor; end

end

end

%-----

% stopping check

%-----

if(cormax<tol)

Iflag = 1;

break

end

%---

end % of iterations

%---

%-----

% done

%-----

return

The graphics display generated by the code for the parameter values implemented in
the code is shown in Figure 8.7.1. In the early stages of the motion, the flow is similar to
that generated by the impulsive translation of a plate in a semi-infinite fluid. At later times,
a fully developed recirculating flow is established.

8.7.5 Computation of the pressure

Two methods are available for extracting the pressure field, if desired. The first method
involves combining equations (8.7.9), (8.7.12), and (8.7.16)–or any other appropriate set
of equations–to derive a relationship between u(t) and u(t + Δt). Requiring that this
relationship reduces to a spatially discretized version of the Navier–Stokes equation in the
limit as Δt tends to zero, we derive an expression for an effective pressure. If the boundary
conditions satisfied by the effective pressure are consistent with the Neumann boundary

8.7 Operator splitting and solenoidal projection 581

(a) (b)

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xy

u x

(c) (d)

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

−0.2

0

0.2

xy

u y

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

−0.5

0

0.5

1

xy

χ

Figure 8.7.1 Flow in a rectangular cavity computed by a projection method. The graphs show (a)
the velocity vector field, (b) the x velocity component, (c) the y velocity component, and (d) the
projection function at steady state.

condition satisfied by the physical pressure, then the effective pressure can be accepted as
an approximation to the physical pressure.

The second method involves substituting the computed velocity field into the Navier–
Stokes equation and solving the resulting equation for the pressure subject to the Neumann
boundary condition, as discussed in Section 8.6.2.

8.7.1 Singular system for the projection function

Show that equation (8.7.28) provides us with a solution of (8.7.27), subject to the homoge-
neous Neumann boundary condition.

Problems

582 Fluid Dynamics: Theory, Computation, and Numerical Simulation

8.7.2 Developing flow in a cavity

Run the code cvt pm located in directory 11 fdm of Fdlibfor a cavity with aspect ratio
Lx/Ly = 8 and other parameter values of your choice. Prepare velocity vector fields and
discuss the structure of the flow and the performance of the numerical method.

8.8 Staggered grids

The derivation of explicit boundary conditions for the pressure can be bypassed by using a
staggered grid consisting of two superposed displaced grids whose intersections define nodes
where the velocity components or pressure is defined. The methodology is illustrated in this
section with reference to steady two-dimensional Stokes flow in a rectangular cavity driven
by a moving lid.

At sufficiently low Reynolds numbers, the motion of the fluid is governed by the equa-
tions of Stokes flow, including the continuity equation and the Stokes equation,

∇ · u = 0, −∇p+ μ∇2u+ ρg = 0, (8.8.1)

where g is the acceleration of gravity imparting a body force.

Pressure and velocity nodes

The staggered grid consists of two interwoven grids parametrized by two pairs of indices,
(i, j) and (i′, j′), as illustrated in Figure 8.8.1 where the primed indices are printed in bold.
The grid lines of the primary grid are represented by the solid lines and the grid lines of the
secondary grid are represented by the broken lines. Note that the secondary grid conforms
with the physical boundaries of the flow.

Discrete values of the pressure are assigned to the primary nodes, (i, j), defined by the
intersection of the solid lines, shown as circles.

Discrete values of the x component of the velocity are defined at the intersection of
horizontal primary grid lines and vertical secondary grid lines, (i′, j), shown as horizontal
arrows. The x-velocity node labeled (2, 2) is shown with a circled horizontal arrow in Figure
8.8.1.

Discrete values of the y component of the velocity are defined at the intersection of
vertical primary grid lines and horizontal secondary grid lines, (i, j′), shown as vertical
arrows. The y-velocity node labeled (2, 2) is shown with a circled vertical arrow in Figure
8.8.1.

Finite-difference equations

A distinguishing feature of the staggered grid method is that the governing equations are
enforced at different nodes. For convenience, we denote ux by u and uy by v.

8.8 Staggered grids 583

y+1

2 3
x

2

3

y

+1y

y +2

3

2

1

yN

N

N

1 2 N Nx +1x +2x

NN

N

V
N

x +1

j

N

j’

i’1
1

3

x

y

i

Figure 8.8.1 Illustration of a staggered grid for computing two-dimensional flow in a rectangular
cavity. The pressure is defined at nodes indicated by the circles, the x velocity component is
defined at nodes indicated by the horizontal arrows, and the y velocity component is defined at
nodes indicated by the vertical arrows.

Applying the x component of the Stokes equation at the (i, j) interior x-velocity node
and introducing similar difference approximations, we obtain

pi+1,j − pi,j
Δx

= μ (
ui−1,j − 2ui,j + ui+1,j

Δx2
+

ui,j−1 − 2ui,j + ui,j+1

Δy2
) (8.8.2)

for i = 2, . . . , Nx and j = 2, . . . , Ny + 1, providing us with (Nx − 1)×Ny equations.

Applying the y component of the Stokes equation at the (i, j) interior y-velocity nodes
and working in a similar fashion, we obtain

pi,j+1 − pi,j
Δy

= μ (
vi−1,j − 2 vi,j + vi+1,j

Δx2
+

vi,j−1 − 2 vi,j + vi,j+1

Δy2
) (8.8.3)

for i = 2, . . . , N + 1 and j = 2, . . . , N , providing us with Nx × (Ny − 1) equations.

Enforcing the continuity equation at the (i, j) pressure node and approximating the
partial derivative with central differences, we obtain

ui,j − ui−1,j

Δx
+

vi,j − ui,j−1

Δy
= 0 (8.8.4)

584 Fluid Dynamics: Theory, Computation, and Numerical Simulation

for i = 2, . . . , Nx + 1 and j = 2, . . . , Ny + 1, providing us with Nx ×Ny equations.

We have derived a total of

N = (Nx − 1)Ny +Nx(Ny − 1) +NxNy (8.8.5)

difference equations involving interior and phantom exterior velocity nodes, as shown with
arrows in Figure 8.8.1.

Boundary conditions

Unphysical x velocity components are required at the horizontal lines j = 1 and j = Ny +2
for computing the second y derivative of u near the top and bottom boundaries. Corre-
sponding unphysical y velocity components are required at the vertical levels i = 1 and
Nx+2 for computing the second x derivative of v near the left and right boundaries. These
exterior velocities are computed by extrapolation to satisfy the boundary conditions at the
physical levels i′ = 1, i′ = Nx + 1, j′ = 1, and j′ = Ny + 1.

For example, approximating u with a parabola near the lid located at y = by, and
enforcing the no-slip boundary condition u = V , we obtain

u = V +A (y − by)
2 +B (y − by), (8.8.6)

where V is the lid velocity and A, B are unknown coefficients. Applying this expression at
three neighboring grid levels, we obtain,

ui,Ny
= V +A

9

4
h2 −B

3

2
h, ui,Ny+1 = V +A

1

4
h2 −B

1

2
h,

ui,Ny+2 = V +A
1

4
h2 +B

1

2
h, (8.8.7)

where h = Δy. Eliminating A and B, we obtain the velocity at the exterior node,

ui,Ny+2 =
1

3
(8V − 6ui,Ny+1 + ui,Ny

). (8.8.8)

Similar expressions can be derived for the other x and y external velocities.

Code

The preceding difference equations provide us with a complete system of linear algebraic
equations for the nodal velocities and pressures. The system can be compiled and solved
at once, as illustrated in the following MATLAB code entitled cvt stag, located in directory
11 fdm of Fdlib:

%==========

% steady Stokes flow in a rectangular cavity

% occupying 0<x<Lx, 0<y<Ly

% computed on a staggered Cartesian grid

%======

8.8 Staggered grids 585

Lx = 1.0;

Ly = 0.75;

Nx = 24; % x divisions

Ny = 16; % y divisions

visc = 1.0; % viscosity

Vlid = 1; % lid velocity

%---

% prepare

%---

Dx = ax/Nx; Dy = ay/Ny;

Dxs = Dx*Dx; Dys = Dy*Dy;

%---

% initialize

%---

% matrix size (no of eqs):

mats = (Nx-1)*Ny + Nx*(Ny-1) + Nx*Ny;

u = zeros(Nx+1,Ny+1); % impulse matrix for ux

v = zeros(Nx+1,Ny+1); % impulse matrix for uy

p = zeros(Nx+1,Ny+1); % impulse matrix for p

%=======

% compile the coefficient matrix (MAT)

%=======

Jc = 0; % counter of impulses

%---

for ipass=1:3 % impulse for u,v,p

%---

if(ipass==1)

klim = Nx; llim = Ny+1; % u vel

elseif(ipass==2)

klim = Nx+1; llim = Ny; % v vel

elseif(ipass==3)

klim = Nx+1; llim = Ny+1; % pressure

end

%---

for l=2:llim % scan

for k=2:klim

Jc=Jc+1;

%---

586 Fluid Dynamics: Theory, Computation, and Numerical Simulation

if(ipass==1); % impulse

u(k,l) = 1.0;

elseif(ipass==2);

v(k,l) = 1.0;

elseif(ipass==3);

p(k,l) = 1.0;

end

%---

% boundary conditions

%---

for ii=2:Nx

u(ii,1)= (-6*u(ii,2)+u(ii,3))/3.0;

u(ii,Ny+2) = (-6*u(ii,Ny+1)+u(ii,Ny))/3.0;

end

for jj=2:Ny

v(1,jj) = (-6*v(2,jj)+v(3,jj))/3.0;

v(Nx+2,jj) = (-6*v(Nx+1,jj)+v(Nx,jj))/3.0;

end

%---

Ic=0; % counter of equations

for j=2:Ny+1

for i=2:Nx % x Stokes

Ic = Ic+1;

MAT(Ic,Jc) = -(p(i+1,j)-p(i,j))/Dx ...

+visc*(u(i-1,j)-2*u(i,j)+u(i+1,j))/Dxs ...

+visc*(u(i,j-1)-2*u(i,j)+u(i,j+1))/Dys;

MAT(Ic,Jc) = MAT(Ic,Jc)*Dxs;

end

end

for j=2:Ny

for i=2:Nx+1 % y Stokes

Ic = Ic+1;

MAT(Ic,Jc) = -(p(i,j+1)-p(i,j))/Dy ...

+visc*(v(i-1,j)-2*v(i,j)+v(i+1,j))/Dxs ...

+visc*(v(i,j-1)-2*v(i,j)+v(i,j+1))/Dys;

MAT(Ic,Jc) = MAT(Ic,Jc)*Dxs;

end

end

for j=2:Ny+1

for i=2:Nx+1 % continuity

Ic = Ic+1;

MAT(Ic,Jc) = (u(i,j)-u(i-1,j))/Dx ...

+(v(i,j)-v(i,j-1))/Dy;

8.8 Staggered grids 587

MAT(Ic,Jc) = MAT(Ic,Jc)*Dx;

end

end

u = zeros(Nx+1,Ny+1); % reset

v = zeros(Nx+1,Ny+1);

p = zeros(Nx+1,Ny+1);

end % of for k

end % of for l

end % of ipass

%====

% set the right-hand side

%===

for i=1:mats

rhs(i) = 0.0;

end

Ic = (Ny-1)*(Nx-1);

for i=2:Nx % x Stokes

Ic = Ic+1;

rhs(Ic) = rhs(Ic)-8.0*visc*Vlid*Dxs/3/Dys;

end

%====

% set p=0 at the last node

% and find the solution

%====

SOL = rhs(1:mats-1)/MAT(1:mats-1,1:mats-1)’;

SOL(mats) = 0.0;

%====

% distribute the solution

%====

Ic = 0;

for j=2:Ny+1

for i=2:Nx

Ic = Ic+1;

uvel(i,j) = SOL(Ic);

end

end

for j=2:Ny

for i=2:Nx+1

588 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Ic=Ic+1;

vvel(i,j) = SOL(Ic);

end

end

for j=2:Ny+1

for i=2:Nx+1

Ic = Ic+1;

pressure(i,j) = SOL(Ic);

end

end

%=====

% interpolate the velocity field at the pressure nodes

% for plotting purposes

%=====

for j=2:Ny+1

uvel(1,j) = 0;

uvel(Nx+1,j) = 0;

for i=2:Nx+1

uint(i,j) = 0.5*(uvel(i,j)+uvel(i-1,j));

end

end

for i=2:Nx+1

vvel(i,1) = 0;

vvel(i,Ny+1) = 0;

for j=2:Ny+1

vint(i,j) = 0.5*(vvel(i,j)+vvel(i,j-1));

end

end

%====

% prepare a velocity vector plot

%====

figure(1)

hold on

plot([0 Lx Lx 0 0],[0 0 Ly Ly 0])

axis([-0.1*Lx 1.1*Lx, -0.1*Lx 1.1*Lx])

axis equal

xlabel('x'); ylabel('y')

for j=2:Ny+1

ylevel = 0.5*Dy+(j-2)*Dy;

for i=2:Nx+1

xlevel = 0.5*Dx+(i-2)*Dx;

xarrow = 0.75*Dx*uint(i,j)/Vlid;

8.8 Staggered grids 589

yarrow = 0.75*Dx*vint(i,j)/Vlid;

arrow = arrow cp(xlevel,ylevel,xarrow,yarrow);

plot(arrow(:,1),arrow(:,2));

end

end

Velocity vector fields generated by the code for cavities with different aspect ratios are shown
in Figure 8.8.2.

Particulars of the implementation

The implementation of the numerical procedure features the following particulars:

• The linear system is compiled so that the first block of equations encapsulates the x
component of the Stokes equation, the second block encapsulates the y component of
the Stokes equation, and the third block encapsulates the continuity equation.

• The first block of unknowns encapsulates the x velocity components, the second block
encapsulates the y velocity components, and the third block encapsulates the pressure.

• To generate the coefficient matrix of the linear system, we sequentially set one nodal
value of the x velocity component, y velocity component, or pressure to unity, while
holding all other values to zero. The corresponding column of the coefficient matrix is
given by the residual of the governing equations scanned in the aforementioned order.

• Since the pressure field is defined up to an arbitrary constant, the pressure is set
arbitrarily to zero at the last pressure node. One equation expressing the discrete
implementation of the continuity equation is then discarded to balance the number of
equations to the number of unknowns.

After the computation has been completed, the code calls the custom-made function ar-
row cp near the end to draw nice-looking arrows.

Summary

By using a staggered grid, we have been able to circumvent the explicit derivation of bound-
ary conditions for the pressure. A careful analysis shows that implicit in the numerical
formulation is the Neumann boundary condition that arises by projecting the equation of
motion normal to the boundaries.

Unfortunately, the staggered-grid method becomes considerably more involved and pro-
hibitively expensive when applied to grids defined in general curvilinear coordinates.

8.8.1 Coefficient matrix

(a) Present a pictorial depiction of the coefficient matrix arising from the difference equations
and identify large non-zero blocks.

Problems

590 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Figure 8.8.2 Velocity vector fields of two-dimensional Stokes flow in cavities with different aspect
ratios driven by a sliding lid computed on a staggered grid using the Fdlib code cvt stag.

(b) Verify that the coefficient matrix of the linear system is singular.

8.8.2 Pressure distribution

Modify the graphics portion of code cvt stag to visualize the pressure field. Present and
discuss contour plots of the pressure field for flow in a square cavity.

	Chapter 8 Finite-difference methods
	8.1 Choice of governing equations
	Problem
	8.1.1 Inversion of the vorticity

	8.2 Unidirectional flow; velocity/pressure formulation
	8.2.1 Governing equations
	8.2.2 Explicit finite-difference method
	Numerical stability

	8.2.3 Implicit finite-difference method
	Finite-difference code
	Numerical stability

	8.2.4 Thomas algorithm
	8.2.5 Steady state
	8.2.6 Two-layer flow
	Interfacial conditions
	Finite-difference implementation
	Explicit time integration

	Problems
	8.2.1 Steady state
	8.2.2 Two-layer channel flow
	8.2.3 Flow in a circular tube
	8.2.4 Thomas algorithm
	8.2.5 Single-fluid channel flow
	8.2.6 Two-layer channel flow

	8.3 Unidirectional flow; velocity/vorticity formulation
	8.3.1 Boundary conditions for the vorticity
	8.3.2 Alternative set of equations
	Explicit finite-difference method

	8.3.3 Comparison with the velocity/pressure formulation
	Problems
	8.3.1 Steady flow
	8.3.2 Two-layer flow
	8.3.3 Flow in a circular tube
	8.3.4 Explicit finite-difference method

	8.4 Unidirectional flow; stream function/vorticity formulation
	8.4.1 Boundary conditions for the vorticity
	8.4.2 A semi-implicit method
	Problems
	8.4.1 Steady flow
	8.4.2 Two-layer flow
	8.4.3 Flow inside a circular tube
	8.4.4 Explicit finite-difference method

	8.5 Two-dimensional flow; stream function/vorticity formulation
	Hello world
	8.5.1 Flow in a cavity
	8.5.2 Finite-difference grid
	8.5.3 Unsteady flow
	8.5.4 Steady flow
	Implementation

	8.5.5 Summary
	Problems
	8.5.1 Computation of the pressure
	8.5.2 Axisymmetric flow
	8.5.3 Steady flow in a cavity

	8.6 Velocity/pressure formulation
	Evolution equations
	Pressure Poisson equation
	8.6.1 Alternative system of governing equations
	8.6.2 Pressure boundary conditions
	8.6.3 Compatibility condition for the pressure
	Problem
	8.6.1 Pressure boundary condition

	8.7 Operator splitting and solenoidal projection
	Operator splitting
	Projection function
	8.7.1 Convection–diffusion step
	Directional splitting
	Crank–Nicolson integration

	8.7.2 Projection step
	8.7.3 Boundary conditions for the intermediate velocity
	8.7.4 Flow in a cavity
	Homogeneous Neumann boundary condition for the projection function
	Compatibility condition for system (8.7.19)
	Compatibility condition for system (8.7.21)
	Boundary conditions for the intermediate velocity
	Code cvp pm

	8.7.5 Computation of the pressure
	Problems
	8.7.1 Singular system for the projection function
	8.7.2 Developing flow in a cavity

	8.8 Staggered grids
	Pressure and velocity nodes
	Finite-difference equations
	Boundary conditions
	Code
	Particulars of the implementation
	Summary
	Problems
	8.8.1 Coefficient matrix
	8.8.2 Pressure distribution

