
Equation of motion

and vorticity transport
6

6.1 Newton’s second law of motion for a fluid parcel
6.2 Integral momentum balance
6.3 Cauchy’s equation of motion
6.4 Euler and Bernoulli equations
6.5 The Navier–Stokes equation
6.6 Vorticity transport
6.7 Dynamic similitude and the Reynolds number
6.8 Structure of a flow as a function of the Reynolds number
6.9 Dimensionless numbers in fluid dynamics

Fluid flow is established in response to an external action mediated by boundary motion,
by the application of a surface force, or by the presence of a body force. The evolution
of a transient flow and the structure of a steady flow established after an initial start-up
period of time are governed by two fundamental principles of thermodynamics and classical
mechanics: mass conservation, and Newton’s second law for the motion of a fluid parcel.
The implementation of Newton’s law of motion in continuum mechanics leads us to Cauchy’s
equation of motion, which provides us with an expression for the point particle acceleration
in terms of stresses, and to the vorticity transport equation governing the point particle
rotation. The derivation and interpretation of these governing equations in general and
specific terms, and their solution for simple flow configurations are discussed in this chapter.

6.1 Newton’s second law of motion for a fluid parcel

Consider a fluid parcel in motion, as illustrated in Figure 6.1.1. Newton’s second law of
motion requires that the rate of change of the parcel’s linear momentum, Mparcel, must be
equal to the sum of the forces exerted on the parcel at any instant. The forces include the
surface force given in equation (5.1.2) and the body force due to gravity given in equation
(5.1.1),

dMparcel

dt
= Fsurface + Fbody. (6.1.1)
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n f

Figure 6.1.1 Illustration of a fluid parcel in motion, showing the unit normal vector, n, and the
traction vector, f . The motion of the parcel is governed by Newton’s second law of motion.

Expressing the surface force in terms of the traction exerted on the parcel surface, f , and
the body force in terms of the fluid density, ρ, and the acceleration of gravity, g, we obtain

dMparcel

dt
=

∫∫∫
parcel

f dS +

∫∫∫
parcel

ρg dV. (6.1.2)

Expressing the traction in terms of the stress tensor, as shown in (4.2.10), we obtain

dMparcel

dt
=

∫∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.1.3)

where the unit normal vector, n, points into the parcel exterior. Our next task is to relate
the rate of change of the parcel momentum to the fluid density and velocity.

6.1.1 Rate of change of linear momentum

An expression for the linear momentum arises by subdividing a parcel into elementary
subparcels with volume dVparcel and corresponding mass dmparcel = ρdVparcel, and summing
the contributions by integration to obtain

Mparcel =

∫∫∫
parcel

u dm =

∫∫∫
parcel

u ρ dV, (6.1.4)

where u is the fluid velocity. The rate of change of the parcel’s linear momentum is given
by

dMparcel

dt
=

d

dt

∫∫∫
parcel

u dm =
d

dt

∫∫∫
parcel

u ρ dV, (6.1.5)

where the time derivative is taken for a fixed parcel identity.

Because the integral is computed over the volume of the parcel, which is not stationary
but changes in time, switching the order of time differentiation and volume integration on
the right-hand side of (6.1.5) is permissible only if the time derivative is replaced by the
material derivative, D/Dt, under the integral sign, yielding

dMparcel

dt
=

∫∫∫
parcel

D(u dm)

Dt
=

∫∫∫
parcel

( Du

Dt
dm+

Ddm

Dt
u
)
. (6.1.6)
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Mass conservation requires that the material derivative of the elementary mass, dm should
be zero, yielding the simplified expression

dMparcel

dt
=

∫∫∫
parcel

Du

Dt
dm =

∫∫∫
parcel

Du

Dt
ρ dV, (6.1.7)

where Du/Dt is the point particle acceleration. The density may vary over the parcel
volume.

6.1.2 Equation of parcel motion

Substituting the right-hand side of (6.1.7) into the left-hand side of (6.1.3), we obtain the
desired equation of parcel motion,∫∫∫

parcel

Du

Dt
ρ dV =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.1.8)

involving the point particle acceleration, the stress tensor, and the body force. Explicitly,
the x, y, and z components of (6.1.8) are∫∫∫

parcel

Dux

Dt
ρ dV =

∫∫
parcel

(nxσxx + nyσyx + nzσzx) dS +

∫∫∫
parcel

ρ gx dV,

∫∫∫
parcel

Duy

Dt
ρ dV =

∫∫
parcel

(nxσxy + nyσyy + nzσzy) dS +

∫∫∫
parcel

ρ gy dV, (6.1.9)

∫∫∫
parcel

Duz

Dt
ρ dV =

∫∫
parcel

(nxσxz + nyσyz + nzσzz) dS +

∫∫∫
parcel

ρ gz dV.

Equations (6.1.10) are valid irrespective of whether the fluid is compressible or incompress-
ible.

6.1.3 Two-dimensional flow

The counterpart of the parcel equation of motion (6.1.8) for two-dimensional flow in the xy
plane is ∫∫

parcel

Du

Dt
ρ dA =

∮
parcel

n · σ d+

∫∫
parcel

ρg dA, (6.1.10)

where dA is a differential area and d is the differential arc length along the boundary of a
parcel in the xy plane. Explicitly, the x and y components of (6.1.10) are∫∫

parcel

Dux

Dt
ρ dA =

∮
parcel

(nxσxx + nyσyx) d+

∫∫
parcel

ρ gx dA,

(6.1.11)∫∫
parcel

Duy

Dt
ρ dA =

∮
parcel

(nxσxy + nyσyy) d+

∫∫
parcel

ρ gy dA.
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Figure 6.1.2 Illustration of a fluid parcel with a rectangular instantaneous shape, drawn with the solid
line, in a two-dimensional flow. Even though the parcel generally deforms to obtain a warped
shape, drawn with the dashed line, Newton’s second law of motion in its integral form can be
applied over the instantaneous parcel shape.

These equations are valid irrespective of whether the fluid is compressible or incompressible.

A rectangular parcel

As an application, we consider the motion of a fluid parcel with an instantaneous rectangular
shape whose sides are parallel to the x or y axis, as depicted in Figure 6.1.2. The parcel
will remain rectangular only if the fluid exhibits rigid-body motion. Under more general
conditions, the parcel will deform to obtain the warped shape, drawn with the dashed line in
Figure 6.1.1. However, parcel deformation does not prevent us from evaluating the integrals
in (6.1.11) over the instantaneous rectangular shape.

For simplicity, we assume that the density of the fluid is uniform and the acceleration of
gravity is constant over the parcel volume. We note that the unit normal vector is parallel
to the x or y axis over each side, and find that equations (6.1.11) take the simpler forms∫ x2

x1

∫ y2

y1

(
Dux

Dt
− gx) ρ dy dx (6.1.12)

=

∫ y2

y1

[ (σxx)x=x2
− (σxx)x=x1

] dy +

∫ x2

x1

[ (σyx)y=y2
− (σyx)y=y1

] dx

and ∫ x2

x1

∫ y2

y1

(
Duy

Dt
− gy) ρ dy dx (6.1.13)

=

∫ y2

y1

[ (σxy)x=x2
− (σxy)x=x1

] dy +

∫ x2

x1

[ (σyy)y=y2
− (σyy)y=y1

] dx.

The first integral on the right-hand side of (6.1.12) involves normal stresses exerted on the
vertical sides; the second integral involves shear stresses exerted on the horizontal sides; the
converse is true for (6.1.13).



6.1 Newton’s second law of motion for a fluid parcel 365

Steady unidirectional flow

In the case of steady unidirectional flow along the x axis, point particles move along the x
axis with constant velocity and vanishing acceleration, Du/Dt = 0. Setting the left-hand
side of the equation of parcel motion (6.1.10) to zero, we obtain a balance between the
hydrodynamic and the body force,∮

parcel

n · σ d+

∫∫
parcel

ρg dA = 0. (6.1.14)

Now restricting our attention to Newtonian fluids, we use the constitutive equation
shown in Table 4.5.1 and make two key observations:

• In the absence of axial and transverse stretching, ∂ux/∂x = 0 and ∂uy/∂y = 0, the
normal stresses σxx and σyy are equal to the negative of the pressure, σxx = σyy = −p.

• The shear stresses σxy = σyx are independent of streamwise position, x, but may
depend on the lateral position, y.

Subject to these simplifications, the balance equations (6.1.12) and (6.1.13) reduce to∫ y2

y1

( px=x2
− px=x1

) dy − [
(σyx)y=y2

− (σyx)y=y1

]
Δx = ρ gx ΔxΔy (6.1.15)

and ∫ x2

x1

(
py=y2

− py=y1

)
dx = ρ gy ΔxΔy, (6.1.16)

where Δx ≡ x2 − x1 and Δy = y2 − y1.

Equation (6.1.16) is satisfied when

px,y=y2
− px,y=y1

Δy
= ρ gy (6.1.17)

for any x, reflecting the hydrostatic pressure variation. Equation (6.1.15) is satisfied when

px=x2,y − px=x1,y

Δx
= ρ gx − χ (6.1.18)

and

(σyx)x,y=y2
− (σyx)x,y=y1

Δy
= −χ, (6.1.19)

where χ is a free parameter. Physically, the constant χ is determined by the mechanism
driving the flow. Three modular flow configurations can be identified, as discussed next.
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Shear–driven flow

When χ = 0, equation (6.1.18) shows that the pressure variation in the direction of the x axis
is hydrostatic. Equation (6.1.19) shows that the shear stress σyx is constant, independent
of y,

(σyx)x,y=y2
− (σyx)x,y=y1

= 0. (6.1.20)

This is the case of shear-driven flow.

Gravity-driven flow

When the streamwise pressure drop is zero, px=x2,y = px=x1,y, equation (6.1.18) requires
that χ = ρ gx. Equation (6.1.19) shows that the difference in the shear stress is given by

(σyx)x,y=y2
− (σyx)x,y=y1

= −ρ gx Δy. (6.1.21)

This is the case of gravity-driven flow.

Pressure-driven flow

When the flow is horizontal, gx = 0, equation (6.1.18) shows that χ is the negative of the
streamwise pressure gradient. Equation (6.1.19) shows that the difference in the shear stress
is given by

(σyx)x,y=y2
− (σyx)x,y=y1

= −χΔy. (6.1.22)

This is the case of pressure-driven flow.

6.1.1 Body force in terms of a surface integral

Show that the body force expressed by the second integral on the right-hand side of (6.1.8)
can be expressed as a surface integral in the form∫∫

parcel

ρ (g · x)n dS. (6.1.23)

Hint: Use the Gauss divergence theorem (2.6.36).

6.2 Integral momentum balance

Consider the integrand of the rate of change of momentum on the left-hand side of equation
(6.1.8). Using the rules of product differentiation and the continuity equation (2.8.5), we
write

ρ
Du

Dt
=

D(ρu)

Dt
− u

Dρ

Dt
=

D(ρu)

Dt
+ (ρu) (∇ · u), (6.2.1)

Problem
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where

∇ · u ≡ ∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
(6.2.2)

is the divergence of the velocity expressing the rate of the expansion of the fluid. If the fluid
is incompressible, the second term on the right-hand side of (6.2.1) does not appear.

The x component of the vectorial expression (6.2.1) can be manipulated to give

ρ
Dux

Dt
=

D(ρ ux)

Dt
+ (ρ ux) (∇ · u) (6.2.3)

or

ρ
Dux

Dt
=

∂(ρ ux)

∂t
+ u · ∇(ρ ux) + (ρ ux) (∇ · u), (6.2.4)

where the time derivative ∂/∂t is taken keeping the spatial position fixed. More explicitly,

ρ
Dux

Dt
=

∂(ρ ux)

∂t
+ ux

∂(ρ ux)

∂x
+ uy

∂(ρ ux)

∂y
+ uz

∂(ρ ux)

∂z
+ (ρ ux) (∇ · u). (6.2.5)

Combining the last four terms in the last expression, we find that

ρ
Dux

Dt
=

∂(ρ ux)

∂t
+

∂(ρ uxux)

∂x
+

∂(ρ uyux)

∂y
+

∂(ρ uzux)

∂z
. (6.2.6)

This expression applies to incompressible as well as compressible fluids.

Working in a similar fashion with the y and z components of (6.2.1), we derive the
corresponding expressions

ρ
Duy

Dt
=

∂(ρ uy)

∂t
+

∂(ρ uxuy)

∂x
+

∂(ρ uyuy)

∂y
+

∂(ρ uzuy)

∂z
(6.2.7)

and

ρ
Duz

Dt
=

∂(ρ uz)

∂t
+

∂(ρ uxuz)

∂x
+

∂(ρ uyuz)

∂y
+

∂(ρ uzuz)

∂z
. (6.2.8)

These expressions hold true for incompressible as well as compressible fluids.

Momentum tensor

To recast equations (6.2.6)–(6.2.8) into a unified form, we introduce the momentum tensor,
Mij , defined as

Mij ≡ ρ uiuj , (6.2.9)

where the indices i and j range over x, y, and z or, correspondingly, 1, 2, and 3. In vector
notation, we write

M = ρu⊗ u, (6.2.10)
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where the symbol ⊗ denotes the tensor product. It is evident from the definition (6.2.9)
that the tensor M is symmetric,

Mij = Mji. (6.2.11)

Explicitly, the momentum tensor is given by

M = ρ

⎡⎣ u2
x uxuy uxuz

uyux u2
y uyuz

uzux uzuy u2
z

⎤⎦ . (6.2.12)

Next, we introduce the divergence of the momentum tensor defined as a vector whose
ith component is given by

(∇ ·M)i =
∂Mji

∂xj
=

∂Mij

∂xj
, (6.2.13)

where summation is implied over the repeated index j. For example, the x component of
the divergence of M is

(∇ ·M)x =
∂Mjx

∂xj
=

∂Mxx

∂x
+

∂Myx

∂y
+

∂Mzx

∂z
. (6.2.14)

Subject to these definitions, equations (6.2.6)–(6.2.8) can be compiled into the form

ρ
Dui

Dt
=

∂(ρ ui)

∂t
+

∂Mji

∂xj
(6.2.15)

for i = x, y, z. The corresponding vector form is

ρ
Du

Dt
=

∂(ρu)

∂t
+∇ ·M. (6.2.16)

The right-hand sides of equations (6.2.15) and (6.2.16) involve Eulerian derivatives; that is,
derivatives with respect to time and spatial coordinates.

Equation of parcel motion

Substituting (6.2.16) into the left-hand side of the equation of parcel motion (6.1.8), we
derive the alternative form∫∫∫

parcel

( ∂(ρu)

∂t
+∇ ·M

)
dV =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV. (6.2.17)

We can use the Gauss divergence theorem stated in equation (2.6.36) to convert the volume
integral of the divergence of the momentum tensor into a surface integral over the parcel
volume, obtaining∫∫∫

parcel

∂(ρu)

∂t
dV +

∫∫
parcel

n ·M dS =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.2.18)
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Figure 6.2.1 Illustration of a stationary control volume (cv) in a flow bounded by solid or fluid
surfaces.

where the unit normal vector, n, points outward from the parcel. In index notation,∫∫∫
parcel

∂(ρ ui)

∂t
dV +

∫∫
parcel

njMji dS =

∫∫
parcel

njσji dS +

∫∫∫
parcel

ρ gi dV (6.2.19)

for i = x, y, z, where summation is implied over the repeated index j.

6.2.1 Control volume and integral momentum balance

It is important to bear in mind that equation (6.2.19) originates from Newton’s second law
of motion applied to a fluid parcel. In the process of expressing the material derivative in
terms of Eulerian derivatives taken with respect to time and position in space, the parcel
has lost its significance as a material body and became relevant only insofar as to define the
volume it occupies in space at any instant.

To emphasize the new interpretation, we rewrite the integral momentum balance (6.2.19)
in identical form, except that the volume of integration is now regarded as a control volume
(cv), as shown in Figure 6.2.1.

Using the definition of the momentum tensor shown in (6.2.9), we express the integral
momentum balance in the form∫∫∫

cv

∂(ρ ui)

∂t
dV +

∫∫
cv

ρ ui un dS =

∫∫
cv

nj σji dS +

∫∫∫
cv

ρ gi dV, (6.2.20)

where i = x, y, z is a free index, summation is implied over the repeated index, j, and

un ≡ u · n = ujnj (6.2.21)

is the normal component of the fluid velocity. Equation (6.2.20) expresses an integral mo-
mentum balance, well known to chemical engineers and others in the framework of transport
phenomena.
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Accumulation, convection, boundary and homogeneous forcing

The four integrals on the left- and right-hand sides of (6.2.20) admit the following interpre-
tation with regard to the underlying control volume:

1. The first integral is the rate of change of the ith component of momentum of the fluid
residing inside the control volume. At steady state, this term vanishes.

2. The scalar njuj = n ·u in the second integrand on the left-hand side is the component
of the fluid velocity normal to the boundary of the control volume. The corresponding
integral expresses the rate of convective transport of the ith component of the fluid
momentum across the boundary of the control volume.

3. The first integral on the right-hand side is the ith component of the surface force
exerted on the boundary of the control volume.

4. The second integral on the right-hand side is the ith component of the body force
exerted on the control volume.

It is important to bear in mind that the integral momentum balance has been derived
in Cartesian coordinates. Every term must be rederived when working in polar or other
curvilinear coordinates.

Vector form of the integral momentum balance

In vector notation, the integral momentum balance takes the form∫∫∫
cv

∂(ρu)

∂t
dV +

∫∫
cv

ρn · (u⊗ u) dS =

∫∫
cv

n · σ dS +

∫∫∫
cv

ρg dV. (6.2.22)

The second integral on the left-hand side is given by∫∫
cv

ρn · (u⊗ u) dS =

∫∫
cv

(ρu)un dS, (6.2.23)

where un = n · u is the normal velocity and the symbol ⊗ denotes the tensor product.

Stress-momentum tensor

Combining the second integral integral on the left-hand side with the first integral on the
right-hand side of (6.2.22), we obtain the more compact form∫∫∫

cv

∂(ρu)

∂t
dV =

∫∫
cv

n · τ dS +

∫∫∫
cv

ρg dV, (6.2.24)

where

τ ≡ σ − ρu⊗ u (6.2.25)

is the stress-momentum tensor with components τij = σij − ρ uiuj .
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Figure 6.2.1 Simplified model of flow through a duct with a sudden enlargement. An integral mo-
mentum balance allows us to compute the rise in pressure , p2 − p1, in terms of the inlet and
outlet cross-sectional areas, A1 and A2.

Applications in engineering analysis

Equation (6.2.24) expresses an integral momentum balance a that can be interpreted as an
integral evolution equation or conservation law applied to a chosen control volume. The
solution of practical engineering problems by the use of integral mass, momentum, and
energy balances is discussed in a classical text by Bird, Stewart and Lightfoot.1 Illustrative
examples are presented in the remainder of this section.

6.2.2 Flow through a sudden enlargement

To demonstrate the usefulness of the integral momentum balance in engineering analysis,
we consider steady flow through a duct with a sudden enlargement, as illustrated in Figure
6.2.1.

We begin by introducing a control volume identified with the section of the duct confined
between the vertical planes labeled 1 and 2, and assume that the density of the fluid is
uniform and the velocity profile is flat at the inlet and outlet. The cross-sectional areas at
the inlet and outlet are denoted as A1 and A2.

Neglecting the shear stress at the walls, approximating the normal stress at the inlet and
outlet with the negative of the pressure, assuming that the pressure at the washer-shaped
area is equal to the inlet pressure, and considering the effects of gravity insignificant, we find
that the x component of the integral momentum balance (6.2.20) at steady state simplifies

1Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (2006) Transport Phenomena, Second Edition, Wiley.
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into

ρU2
2A2 − ρU2

1A1 = −p2A2 + p1A1 + p1(A2 −A1). (6.2.26)

The three terms on the right-hand side of (6.2.26) are approximations to the first integral
on the right-hand side of (6.2.20) for the outlet, washer-shaped area, and inlet. Mass
conservation requires that

U1A1 = U2A2. (6.2.27)

Solving for U1 and substituting the result into (6.2.26), we derive the desired expression for
the pressure difference,

p2 − p1 = (β − 1) ρU2
2 , (6.2.28)

where β = A2/A1 is the area ratio, which predicts a rise in pressure for β > 1, in agreement
with laboratory observations.

6.2.3 Isentropic flow through a conduit

In a second application, we consider the flow of a compressible fluid through a conduit with
variable cross-sectional area, A. A mass balance over a control volume confined between
two cross-sections labeled 1 and 2 requires that

ρ1U1A1 = ρ2U2A2. (6.2.29)

The counterpart of equation (6.2.26) is

ρ2U
2
2A2 − ρ1U

2
1A1 = −p2A2 + p1A1 −Dx, (6.2.30)

where Dx is the drag force due to wall friction. In the case of isentropic flow, we use equation
(4.7.23) and find that

p1
ρk1

=
p2
ρk2

(6.2.31)

where k ≡ cp/cv is the ratio of two heat capacities. The last three equations can be used to
compute p2, U2, and Dx, from knowledge of p1, ρ1, and U1.

Energetics

Energy conservation under adiabatic conditions requires that

h1 +
1

2
U2
1 + g y1 = h2 +

1

2
U2
2 + g y2, (6.2.32)

where h is the specific enthalpy and y is the vertical position of the conduit centerline. In
terms of the heat capacity under constant pressure, h = cpT , yielding

cp T1 +
1

2
U2
1 + g y1 = cp T2 +

1

2
U2
2 + g y2, (6.2.33)
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where T is the absolute temperature. This equation relates the velocity to the temperature
to the elevation of the conduit centerline at two stations.

Stagnation-point temperature

At a stagnation point, U2 = 0. Equation (6.2.33) with y1 = y2 and U ≡ U1, T ≡ T1,
T2 ≡ Tsp yields

Tsp − T =
1

2

U2
1

cp
=

1

2

k − 1

k

U2

R
(6.2.34)

or

Tsp − T =
1

2
(k − 1)

U2

c2
T, (6.2.35)

where c is the speed of sound given in (4.7.27). Rearranging, we derive an expression for
the stagnation-point temperature,

Tsp − T

T
=

1

2
(k − 1)M2, (6.2.36)

where

M ≡ U

c
(6.2.37)

is the Mach number. Using the equation of state for isentropic conditions, we obtain

p2
p1

=
(

1

2
(k − 1)M2 + 1

)k/(k−1)

. (6.2.38)

For sufficiently small Mach numbers,

p2
p1

	 1 +
1

2
kM2, (6.2.39)

providing us with a convenient expression for the pressure ratio.

6.2.1 Pressure rise in an ejector pump

A schematic illustration of an ejector pump is shown in Figure 6.2.2. At plane 1, two fluid
streams merge: the first stream with uniform velocity U1 over a cross-sectional area A1,
and the second stream with uniform velocity U0 over a cross sectional area A0. At plane
2, the velocity profile is uniform over the cross-sectional area A2 = A0 + A1. The pressure
is assumed to be uniform over the cross-section of the inlet and outlet, respectively, equal
to p1 and p2. The fluid density is assumed to be uniform throughout the flow. Derive an
expression for the rise in pressure, p2−p1, in terms of ρ, U0, U1, A0, and A1, similar to that
shown in equation (6.2.28).

Problem
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Plane 1 Plane 2
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Figure 6.2.2 Schematic illustration of an ejector pump. The pressure rise between the inlet and
outlet, p2 − p1, can be estimated by performing an integral momentum balance.

6.3 Cauchy’s equation of motion

Equation (6.1.8), repeated below for convenience,∫∫∫
parcel

Du

Dt
ρ dV =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.3.1)

contains one surface integral involving the traction over the boundary of a fluid parcel, and
two volume integrals involving the point particle acceleration and the body force.

If we could manage to convert the surface integral into a volume integral, we would be
able to collect all integrands into a unified integrand. Since the shape and volume of the
parcel is arbitrary, the unified integrand would have to be identically zero, providing us with
a differential equation.

6.3.1 Hydrodynamic volume force

Transforming the surface integral of the traction into a volume integral can be done using
once again the Gauss divergence theorem stated in equation (2.6.36). Identifying the vector
h with each one of the three columns of the stress tensor, we obtain∫∫

parcel

n · σ dS =

∫∫∫
parcel

∇ · σ dV. (6.3.2)

In index notation, the ith component of this equation is∫∫
parcel

nj σji dS =

∫∫∫
parcel

∂ σji

∂xj
dV, (6.3.3)

where summation of the repeated index j is implied.

The divergence of the stress tensor under the integral sign on the right-hand side of
(6.3.2) is a vector denoted by

Σ ≡ ∇ · σ, (6.3.4)
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with Cartesian components

Σx =
∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
, Σy =

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
,

Σz =
∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
. (6.3.5)

Physically, the vector Σ is the hydrodynamic force per differential volume of fluid; in con-
trast, the traction f is the hydrodynamic force per differential surface area of fluid.

6.3.2 Hydrodynamic force on an infinitesimal parcel

To confirm identity (6.3.3), we consider a small fluid parcel in the shape of a rectangular
parallelepiped centered at the origin, as illustrated in Figure 5.1.1(b). The six flat sides of
the parcel are perpendicular to the x, y, or z axis, the lengths of the three edges are equal
to Δx, Δy, and Δz, and the volume of the parcel is equal to ΔV = ΔxΔy Δz.

Consider the surface integral on the left-hand side of equation (6.3.3). Over the sides
that are perpendicular to the x axis, located at x = ±Δx

2 , designated as the first or second
side, the unit normal vector is parallel to the x axis; over the first side nx = 1, and over the
second side nx = −1. Because the size of the parcel is small, the stresses over each side can
be approximated with corresponding values at the center-point.

Subject to this approximation, the surface integral on the left-hand side over the first
side takes the form

F1 ≡ σxi

(
x =

1

2
Δx, y = 0, z = 0

)
Δy Δz, (6.3.6)

while the surface integral over the second side takes the form

F2 ≡ −σxi

(
x = − 1

2
Δx, y = 0, z = 0

)
Δy Δz (6.3.7)

for i = x, y, z, where the parentheses enclose the coordinates of the evaluation point.

Adding these two contributions and factoring out the common product ΔyΔz expressing
the surface area, we obtain

F1 + F2 =
(
σxi

(
x =

1

2
Δx, y = 0, z = 0

)− σxi

(
x = − 1

2
Δx, y = 0, z = 0

) )
ΔyΔz. (6.3.8)

Next, we observe that, in the limit as Δx tends to zero, the ratio of the differences

σxi(x = Δx
2 , y = 0, z = 0)− σxi(x = −Δx

2 , y = 0, z = 0)
Δx
2 − (−Δx

2 )

=
σxi(x = Δx

2 , y = 0, z = 0)− σxi(x = −Δx
2 , y = 0, z = 0)

Δx
(6.3.9)
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tends to the partial derivative ∂σxi/∂x evaluated at the origin. Correspondingly, the differ-
ence (6.3.8) reduces to

∂σxi

∂x
ΔxΔy Δz =

∂σxi

∂x
ΔV, (6.3.10)

where the derivatives are evaluated at the origin.

Working in a similar fashion with pairs of sides that are perpendicular to the y or z
axis, and summing the three contributions, we find that the left-hand side of (6.3.3) takes
the approximate form (∂σxi

∂x
+

∂σyi

∂y
+

∂σzi

∂z

)
ΔV, (6.3.11)

where the quantity enclosed by the parentheses is evaluated at the origin. Expression (6.3.11)
is an approximation to the volume integral on the right-hand side of (6.3.3).

6.3.3 The equation of motion

Substituting (6.3.2) into (6.1.8), consolidating various terms, and noting that, since the
volume of integration is arbitrary, the combined integrand must vanish, we obtain Cauchy’s
differential equation governing the motion of an incompressible or compressible fluid,

ρ
Du

Dt
= ∇ · σ + ρg. (6.3.12)

In index notation,

ρ
Dui

Dt
=

∂σji

∂xj
+ ρ gi, (6.3.13)

where summation over the repeated index j is implied on the right-hand side, while the
index i is free to vary over x, y, or z.

In terms of the point particle acceleration, a, and the hydrodynamic volume force Σ ≡
∇ · σ defined in (6.3.4), Cauchy’s equation of motion takes the simple form

ρa = Σ+ ρg (6.3.14)

for an incompressible or compressible fluid.

Eulerian form

Using equations (2.8.11) and (6.2.16), we derive two alternative forms of (6.3.12) involving
derivatives with respect to time and position in space,

ρ
( ∂ u

∂t
+ u ·∇u

)
= ∇ · σ + ρg (6.3.15)
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ρ
( ∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

)
=

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ ρ gx

ρ
( ∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
=

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ ρ gy

ρ
( ∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
=

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ ρ gz

Table 6.3.1 The Cartesian components of the equation of motion involving the point particle mo-
mentum, the hydrodynamic volume force, and the body force.

and

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = ∇ · σ + ρg. (6.3.16)

Both equations apply for incompressible as well as compressible fluids.

Explicitly, the three scalar components of (6.3.15) are given in Table 6.3.1. The terms
enclosed by the parentheses on the left-hand sides are the Cartesian components of the point
particle acceleration. The right-hand sides include the Cartesian components of the volume
force due to the hydrodynamic stresses and the components of the body force.

6.3.4 Evolution equations

Given the instantaneous velocity and stress fields, u and σ, we can evaluate the right-hand
sides of (6.3.12) and (6.3.15), as well as the second term on the left-hand side of (6.3.15), and
thereby compute the rates of change Du/Dt and ∂u/∂t. This observation suggests that the
equation of motion (6.3.12) is, in fact, an evolution equation for the point particle velocity,
whereas equation (6.3.15) is an evolution equation for the velocity at a fixed point in the
flow.

A similar evolution equation for the density was derived in Chapter 2 on the basis of
the continuity equation, as shown in (2.7.28). The evolution equations for the density and
velocity originate from two fundamental physical laws: mass conservation, and Newton’s
second law of motion for a deformable medium.

6.3.5 Cylindrical polar coordinates

In the cylindrical polar coordinates defined in Figure 1.3.2, the hydrodynamic volume force
defined in equation (6.3.4) is resolved into corresponding components,

Σ = Σx ex +Σσ eσ +Σϕ eϕ. (6.3.17)
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(a)

Σx =
∂σxx

∂x
+

1

σ

∂(σσσx)

∂σ
+

1

σ

∂σϕx

∂ϕ
, Σσ =

∂σxσ

∂x
+

1

σ

∂(σσσσ)

∂σ
+

1

σ

∂σϕσ

∂ϕ
− 1

σ
σϕϕ

Σϕ =
∂σxϕ

∂x
+

1

σ2

∂(σ2σϕσ)

∂σ
+

1

σ

∂σϕϕ

∂ϕ

(b)

Σr =
1

r2
∂(r2 σrr)

∂r
+

1

r sin θ

∂(σrθ sin θ)

∂θ
+

1

r sin θ

∂σϕr

∂ϕ
− σθθ + σϕϕ

r

Σθ =
1

r2
∂(r2 σrθ)

∂r
+

1

r sin θ

∂(σθθ sin θ)

∂θ
+

1

r sin θ

∂σϕθ

∂ϕ
+

σrθ − σϕϕ cot θ

r

Σϕ =
1

r2
∂(r2 σrϕ)

∂r
+

1

r

∂σθϕ

∂θ
+

1

r sin θ

∂σϕϕ

∂ϕ
+

σrϕ + 2 σθϕ cot θ

r

(c)

Σr =
1

r

∂(rσrr)

∂r
+

1

r

∂σθr

∂θ
− 1

r
σθθ, Σθ =

1

r2
∂(r2σrθ)

∂r
+

1

r

∂σθθ

∂θ

Table 6.3.2 Components of the hydrodynamic volume force in terms of corresponding stress compo-
nents in (a) cylindrical, (b) spherical, and (c) plane polar coordinates.

Using the rules of coordinate transformation and the chain rule of differentiation, we derive
the expressions shown in Table 6.3.2(a).

Equation of motion

The cylindrical polar components of the equation of motion are

ρ ax = Σx + ρ gx, ρ aσ = Σσ + ρ gσ, ρ aϕ = Σϕ + ρ gϕ, (6.3.18)

where ax, aσ, and aϕ are the cylindrical polar components of the point particle acceleration
given in equations (2.8.16). Using the alternative expressions (2.8.17), we obtain

ρ
Dux

Dt
= Σx + ρ gx, ρ

Duσ

Dt
= ρ

u2
ϕ

σ
+Σσ + ρ gσ,

ρ
Duϕ

Dt
= −ρ

uσuϕ

σ
+Σϕ + ρ gϕ.

(6.3.19)

These equations apply for incompressible as well as compressible fluids.



6.3 Cauchy’s equation of motion 379

Centrifugal force

The first term on the right-hand side of the second equation in (6.3.19), ρ u2
ϕ/σ, expresses

an effective volume force in the radial (σ) direction due to fluid motion in the azimuthal (ϕ)
direction, known as the centrifugal force. A centrifugal force arises in the flow generated by
the rotation of a solid circular cylinder about its axis in a viscous liquid, as will be discussed
in Section 7.5.

Coriolis force

The negative of the first term on the right-hand side of third equation in (6.3.19), ρ uσuϕ/σ,
expresses an effective force in the azimuthal (ϕ) direction, known as the Coriolis force,
arising when flow occurs in both the σ and ϕ directions. A Coriolis force is established in
the flow due to a spinning circular disk immersed in a liquid.

6.3.6 Spherical polar coordinates

In the spherical polar coordinates defined in Figure 1.3.3, the hydrodynamic volume force
defined in equation (6.3.4) is described as

Σ = Σr er +Σθ eθ +Σϕ eϕ. (6.3.20)

Using the rules of coordinate transformation and the chain rule of differentiation, we derive
the expressions shown in Table 6.3.2(b).

The spherical polar components of the equation of motion are

ρ ar = Σr + ρ gr, ρ aθ = Σθ + ρ gθ, ρ aϕ = Σϕ + ρ gϕ, (6.3.21)

where ar, aθ, and aϕ are the spherical polar components of the point particle acceleration
given in (2.8.19).

6.3.7 Plane polar coordinates

In the plane polar coordinates defined in Figure 1.3.4, the hydrodynamic volume force
defined in equation (6.3.4) is described as

Σ = Σr er +Σθ eθ. (6.3.22)

Using the coordinate transformation rules and the chain rule of differentiation, we derive
the expressions shown in table 6.3.2(c).

The plane polar components of the equation of motion are

ρ ar = Σr + ρ gr, ρ aθ = Σθ + ρ gθ, (6.3.23)

where ar and aθ are the plane polar components of the point particle acceleration given by
the expressions in (2.8.22). Alternative expressions are

ρ
Dur

Dt
= ρ

u2
θ

r
+Σr + ρ gr, ρ

Duθ

Dt
= −ρ

uruθ

r
+Σθ + ρ gθ, (6.3.24)
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involving, respectively, the centrifugal force and the negative of the Coriolis force on the
right-hand sides, where D/Dt is the material derivative.

6.3.8 Vortex force

Returning to equation (6.3.15), we use identity (2.8.29),

u ·∇u =
1

2
∇u2 − u× ω, (6.3.25)

and obtain an alternative form of the equation of motion,

ρ
( ∂ u

∂t
+

1

2
∇u2 + ω × u

)
= ∇ · σ + ρg, (6.3.26)

where

u2 ≡ u2
x + u2

y + u2
z (6.3.27)

is the square of the magnitude of the velocity. The third term on the left-hand side of
(6.3.26),

ρω × u, (6.3.28)

represents a vortex force established when the vorticity vector is not parallel to the velocity
vector; otherwise, their cross product is identically zero. In a Beltrami flow, the vorticity
vector is parallel to the velocity vector at every point and the vortex force is identically
zero.

6.3.9 Summary of governing equation

In summary, the flow of an incompressible or compressible fluid is governed by the continuity
equation (2.7.13),

∂ρ

∂t
+∇ · (ρu) = 0, (6.3.29)

and Cauchy’s equation of motion expressed by (6.3.15) or (6.3.16). The Cauchy stress tensor
is defined in terms of the velocity and the pressure by means of a constitutive equation, as
discussed in Chapter 4. The five unknowns include the three velocity components, ux, uy,
uz, the density, ρ, and the pressure, p.

The continuity equation and the three components of the equation of motion provide
us with four equations. In the case of incompressible fluids, a fifth equation is provided by
the idealized incompressibility condition, Dρ/Dt = 0. In the case of compressible fluids, a
fifth equation relating the density to the pressure is provided by thermodynamics, as shown
in (4.7.23) for isentropic flow.
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6.3.10 Accelerating frame of reference

The equation of motion is valid for a stationary frame of reference where Newton’s second
law of motion applies. Suppose that the Cartesian axes translate with velocity V(t) in the
absence of rotation. The point particle acceleration in the stationary frame is

astationary = a+
dV

dt
. (6.3.30)

Substituting this expression in the equation of motion (6.3.14) and rearranging, we derive
the equation

ρa = Σ+ ρg − ρ
dV

dt
. (6.3.31)

The last term on the right-hand side represents a fictitious inertial acceleration force. A
more general equation can be written to describe fluid motion in a frame of reference that
undergoes simultaneous steady or unsteady translation and rotation.2

6.3.1 Beltrami flow

Explain why a two-dimensional or axisymmetric flow cannot be a Beltrami flow.

6.3.2 Free fall

A bucket of fluid is moving in free gravitational fall. Write the equation of motion in a
frame of reference attached to the bucket.

6.4 Euler and Bernoulli equations

Euler’s equation arises from the equation of motion (6.3.12) by substituting the simplest
possible constitutive equation for the stress tensor describing an ideal fluid, expressed by
equation (4.6.19). Considering the individual components of the volume force Σ given in
(6.3.5), we obtain

Σ ≡ ∇ · σ = −∇p, (6.4.1)

that is,

Σ = −∂p

∂x
ex − ∂p

∂y
ey − ∂p

∂z
ez, (6.4.2)

where p is the pressure. Cauchy’s equation of motion (6.3.12) then reduces to Euler’s
equation of motion,

ρ
Du

Dt
= −∇p+ ρg. (6.4.3)

2Pozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynamics, Second Edition,
Oxford University Press.

Problems
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ρ
( ∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

)
= −∂p

∂x
+ ρ gx

ρ
( ∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
= −∂p

∂y
+ ρ gy

ρ
( ∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
= −∂p

∂z
+ ρ gz

Table 6.4.1 The three Cartesian components of Euler’s equation describing the motion of a fluid in
the absence of viscous forces.

The associated Eulerian form is

ρ
( ∂u
∂t

+ u ·∇u
)
= −∇p+ ρg. (6.4.4)

The three Cartesian components of (6.4.4) are shown in Table 6.4.1. Euler’s equation applies
for incompressible as well as compressible fluids.

Polar coordinates

The cylindrical, spherical, and plane polar components of Euler’s equation follow readily
from equations (6.3.18), (6.3.21), and (6.3.23), using the constitutive equations given in
Tables 4.7.1–Table 4.7.3 for vanishing fluid viscosity.

Vortex force

Using identity (2.8.29), repeated below for convenience,

u ·∇u =
1

2
∇u2 − u× ω, (6.4.5)

we derive an alternative form of Euler’s equation involving the vortex force,

ρ
( ∂ u

∂t
+

1

2
∇u2 − u× ω

)
= −∇p+ ρg, (6.4.6)

where

u2 ≡ u2
x + u2

y + u2
z (6.4.7)

is the square of the magnitude of the velocity.

6.4.1 Boundary conditions

Euler’s equation is a first-order differential equation for the velocity and pressure in the
domain of flow. To compute a solution, we require one scalar boundary condition or two
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scalar continuity or jump conditions for the velocity or pressure over each boundary of the
flow.

Impermeable surfaces

Over an impermeable surface, we require the no-penetration condition requiring that the
normal component of the fluid velocity matches the normal component of the boundary
velocity.

Free surfaces

Over a free surface, we require that the pressure is equal to the ambient pressure increased
or decreased by an amount that is equal to the product of the surface tension and twice the
local mean curvature.

Fluid interfaces

Over a fluid interface, we require a kinematic and a dynamic continuity or jump condition.
The kinematic condition requires that the normal component of the fluid velocity is con-
tinuous across the interface. The dynamic condition requires that the pressure undergoes
a discontinuity by an amount that is equal to the product of the surface tension and twice
the local mean curvature.

6.4.2 Irrotational flow

The third term on the left-hand side of Euler’s equation (6.4.6) disappears in the case of
irrotational flow, since ω = 0 throughout the domain of flow. Expressing the velocity as
the gradient of a velocity potential, φ, as shown in equation (3.2.6) and more explicitly in
equations (3.2.19),

u = ∇φ, (6.4.8)

we find that Euler’s equation (6.4.6) takes the form

ρ
( ∂∇φ

∂t
+

1

2
∇u2

)
= −∇p+ ρg. (6.4.9)

The order of time and space differentiation in the gradient of the potential can be switched
in the first term on the left-hand side.

The acceleration of gravity can be expressed as the gradient of the scalar υ ≡ g · x,

g = ∇υ = ∇(g · x) = ∇(gx x+ gy y + gz z). (6.4.10)

Substituting this expression into (6.4.9), assuming that the density is uniform throughout
the domain of flow, and collecting all terms under the gradient, we find that

∇
(∂ φ

∂t
+

1

2
u2 +

p

ρ
− g · x )

= 0. (6.4.11)
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The curl of the left-hand side is identically zero at every point in the flow.

Bernoulli’s equation for irrotational flow

Since all spatial derivatives of the scalar quantity enclosed by the parentheses on the left-
hand side of (6.4.11) are zero, the quantity must be independent of position, although it
may change in time. Euler’s equation for irrotational flow then provides us with Bernoulli’s
equation describing the irrotational flow of a uniform-density fluid,

∂ φ

∂t
+

1

2
u2 +

p

ρ
− g · x = c(t), (6.4.12)

where c(t) is an unspecified and typically inconsequential function of time.

Evolution of the velocity potential

Bernoulli’s equation (6.4.12) can be regarded as an evolution equation for the harmonic
potential. Given the instantaneous velocity and pressure fields, we can evaluate the second,
third, and fourth terms on the left-hand side, compute the time derivative ∂φ/∂t, and
advance the potential over a small period of time elapsed.

The last term, c(t), causes the potential to increase or decrease uniformly by the same
rate throughout the domain of flow. However, because the velocity is computed by taking
derivatives of the potential with respect to the spatial coordinates, this uniform change is
inconsequential to the velocity.

Lagrangian form

When a flow is bounded by a free surface where the pressure is prescribed on one side, it
is beneficial to convert the Eulerian time derivative ∂φ/∂t on the left-hand side of (6.4.12)
to the material derivative, Dφ/Dt. Expressing the velocity as the gradient of the potential,
u = ∇φ, we obtain

Dφ

Dt
≡ ∂φ

∂t
+ u ·∇φ =

∂φ

∂t
+ u · u =

∂φ

∂t
+ u2, (6.4.13)

where

u2 ≡ u2
x + u2

y + u2
z (6.4.14)

is the square of the magnitude of the velocity. Combining equations (6.4.12) and (6.4.13),
we obtain

Dφ

Dt
=

1

2
u2 − p

ρ
+ g · x− c(t), (6.4.15)

which provides us with the rate of change of the potential following a point particle according
to Bernoulli’s equation for irrotational flow.
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atmp

Figure 6.4.1 Irrotational flow due to the sloshing of a fluid in a container. Bernoulli’s equation
provides us with an evolution equation for the potential following the motion of point particles
distributed over the free surface.

Fluid sloshing in a container

As an application, we consider the sloshing of a fluid inside a container, as illustrated in
Figure 6.4.1. The pressure at the free surface on the side of the liquid, pfs, is related to the
ambient pressure, patm, by the dynamic boundary condition

pfs = patm + γ 2κm, (6.4.16)

where γ is the surface tension and κm is the mean curvature of the free surface.

Applying equation (6.4.15) at a point in the free surface and using equation (6.4.16),
we derive an expression for the rate of change of the potential following a point particle at
the free surface,

Dφ

Dt
=

1

2
u2 − patm + γ 2κm

ρ
+ g · x− c(t). (6.4.17)

Integrating this equation in time by following the motion of interfacial point particles pro-
vides us with a boundary condition for the potential over the free surface.

Steady irrotational flow

The time derivative of the potential on the left-hand side of (6.4.12) disappears at steady
state, yielding the best known version of Bernoulli’s equation,

1

2
u2 +

p

ρ
− g · x = c(t). (6.4.18)

The time-dependent function c(t) on the right-hand side accounts for a possible uniform
change in the pressure throughout the domain of flow.

The three terms on the left-hand side of (6.4.18) express, respectively, the kinetic energy,
the potential energy due to the pressure, and the potential energy due to the body force,
all three per unit mass of the fluid. Bernoulli’s equation requires that the sum of the three
energies is the same at every point in the flow.
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Figure 6.4.2 Illustration of the gravitational drainage of a fluid from a (a) conical or (b) spherical
tank. The exit velocity can be computed from Bernoulli’s equation for irrotational flow, resulting
in Torricelli’s law.

Bernoulli’s equation allows us to perform approximate engineering analysis of a broad
class of internal and external irrotational flows, subject to the underlying assumptions.
Examples are discussed in the remainder of this section.

6.4.3 Torricelli’s law

Consider the gravitational drainage of a fluid from a tank, as illustrated in Figure 6.4.2. If
the rate of drainage is sufficiently slow, the flow can be assumed to be in a quasi-steady
state. This means that the magnitude of the time derivative of the scalar potential is small
compared to the rest of the terms in the unsteady Bernoulli equation (6.4.12), and the
steady version of Bernoulli’s equation (6.4.18) can be employed.

To compute the velocity at the point of drainage, U , we evaluate the left-hand side
of (6.4.18) first at the free surface and then at the point of drainage, and equate the two
expressions. Since the velocity at the free surface is small compared to the drainage velocity,
it can be set to zero to leading-order approximation, yielding

1

2
U2 +

p0
ρ

+ g x0 =
p1
ρ

+ g x1, (6.4.19)

where the pressures p0 and p1 and the elevations x0 and x1, are defined in Figure 6.4.2(a).
Rearranging, we find that

U =
(
2
Δp

ρ
+ 2gh

)1/2

, (6.4.20)

where h = x1 − x0 is the liquid height inside the container and Δp = p1 − p0.
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In the case of an open tank, the pressure at the free surface and the pressure at the
point of drainage are equal to the ambient atmospheric pressure. Setting Δp = 0, and derive
Torricelli’s law expressed by

U =
√

2gh, (6.4.21)

which also describes the velocity of a rigid body in free gravitational fall.

Drainage time

The expression for the velocity in terms of the liquid height, h, can be used to compute the
time it takes for a fluid to drain from a tank with a specified geometry, tdrain. During a
small period of time, dt, the volume of liquid in the tank decreases by

dV = S(x) dh, (6.4.22)

where S(h) is the tank cross-sectional area. Setting this change in volume equal to −UAdt,
where A is the cross-sectional area of the drainage hole, and substituting Torricelli’s law,
we obtain

S(h) dh = −
√
2ghA dt, (6.4.23)

which can be rearranged into

dt

dh
= − 1

A

S(h)√
2gh

. (6.4.24)

Integrating, we obtain an expression for the drainage time,

tdrain =
1

A

∫ h0

0

S(h)√
2gh

dh, (6.4.25)

where h0 is the initial height of the liquid in the container.

Cylindrical tank

In the case of a cylindrical tank with arbitrary cross-section, the cross-sectional area is
constant, S(h) ≡ B, yielding

tdrain =
B

A

1√
2g

∫ h0

0

1√
h
dh =

B

A

(
2
h0

g

)1/2

. (6.4.26)

This functional form could have been predicted at the outset on the basis of dimensional
analysis. In the case of a vertical barrel, B = πb2, where b is the barrel radius.

Conical container

In the case of a conical container illustrated in Figure 6.4.2(a), the radius of the cross-section
at height h is approximately r 	 r0 h/h0, where r0 is the radius of the cross-section at the
initial height, h0. Setting S(h) = πr2, we obtain

tdrain =
B0

Ah2
0

1√
2g

∫ h0

0

h3/2 dh, (6.4.27)
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where B0 = πr20 is the cross-sectional area at height h0, and the origin of the x axis has
been set at the hole. Performing the integration, we obtain

tdrain =
1

5

B0

A

(
2
h0

g

)1/2

, (6.4.28)

B0/A = (r0/a)
2, and r0 is the hole radius. The drainage time is one fifth of that for the

cylindrical container with cross-sectional area B = B0.

Spherical container

In the case of a spherical container of radius a, the height of the liquid can be parametrized
by the meridional angle, θ,

h = (1 + cos θ) a, (6.4.29)

as illustrated in Figure 6.4.2(b). The radius of the cross-section at height h is r = a sin θ
and the corresponding cross-sectional area is S = πa2 sin2 θ. Substituting these expressions
into the master equation (6.4.25), we obtain

tdrain =
πa2

A

( b

2g

)1/2
∫ α

π

sin2 θ√
1 + cos θ

(− sin θ) dθ, (6.4.30)

where α is the initial meridional angle. In the case of a full spherical container, α = 0; in
the case of a full hemispherical container, α = π/2.

Substituting for convenience w = cos θ, we obtain

tdrain =
πa2

A

( a

2g

)1/2
∫ cosα

−1

(1− w)
√
1 + cosw dw. (6.4.31)

Recalling the indefinite integrals∫ √
1 + w dw =

2

3
(1 + w)3/2 (6.4.32)

and ∫
w
√
1 + w dw =

2

15
(3w − 2) (1 + w)3/2, (6.4.33)

we obtain

tdrain =
2

15

πa2

A

( a

2g

)1/2

(1 + cosα)3/2 (7− 3 cosα). (6.4.34)

In the case of a full spherical container, cosα = 1; in the case of a full hemispherical
container, cosα = 0.
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Figure 6.4.3 Illustration of flow in a wind or water tunnel with a contraction that dampens small
perturbations.

6.4.4 Decay of perturbations in a wind or water tunnel

Wind and water tunnels are used extensively in laboratory studies of high-speed flow. To
obtain a desirable uniform velocity profile, the tunnel is designed with a smooth contraction
upstream from a test section where measurement or observation takes place, as illustrated in
Figure 6.4.3. Consider a small perturbation of the otherwise flat upstream velocity profile at
plane 1, as illustrated in Figure 6.4.3. The pressure is nearly uniform over any cross-section
along the contraction.

Applying Bernoulli’s equation (6.4.18) for the fluid outside or inside the perturbed
region, and neglecting the effect of gravity, we find that

1

2
U2
1 +

p1
ρ

=
1

2
U2
2 +

p2
ρ
,

1

2
u2
1 +

p1
ρ

=
1

2
u2
2 +

p2
ρ
. (6.4.35)

Combining these equations to eliminate the pressure and rearranging, we obtain

U2 − u2

U1 − u1
=

U1 + u1

U2 + u2
. (6.4.36)

Because the perturbation has been assumed small, the actual velocities, u1 and u2, can be
replaced with the unperturbed velocities U1 and U2 in the numerator and denominator of
the fraction on the right-hand side of (6.4.36), yielding

U2 − u2

U1 − u1
=

U1

U2
. (6.4.37)

Now combining the approximate mass balance U1A1 = U2A2 with equation (6.4.37) and
rearranging, we obtain

1− u2/U2

1− u1/U1
=

(A2

A1

)2

, (6.4.38)
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Figure 6.4.4 Irrotational free-surface flow of a horizontal stream over a hump.

which shows that the relative magnitude of the perturbation decays like the square of the
contraction ratio, A2/A1, thereby confirming that the contraction promotes a uniform ve-
locity profile.

6.4.5 Flow of a horizontal stream over a hump

In the third application, we consider steady two-dimensional irrotational flow of a horizontal
stream over a gently sloped hump, called the Venturi flume, as illustrated in Figure 6.4.4.
The free surface is located at

y = h(x) + d(x), (6.4.39)

where h(x) is the height of the hump and d(x) is the depth of the stream. As x tends to
infinity on either side, h(x) tends to zero. The profile of the streamwise velocity is assumed
to be uniform across the stream, that is, ux = u(x).

Applying Bernoulli’s equation (6.4.18) first at a point at the free surface located far
upstream and then at an arbitrary point at the free surface, neglecting the y component of
the free-surface velocity and the pressure drop across the free surface due to surface tension,
and noting that the gravitational acceleration vector is given by g = (0,−g), we obtain

1

2
U2
0 +

patm
ρ

+ g d0 =
1

2
u2(x) +

patm
ρ

+ g
(
h(x) + d(x)

)
, (6.4.40)

where U0 is the upstream velocity and d0 ≡ d(x = −∞) is the upstream depth. Combining
the mass conservation equation

U0 d0 = u(x) d(x) (6.4.41)

with equation (6.4.40) to eliminate u(x), and rearranging the resulting expression, we derive

a cubic equation for the scaled layer depth d̂(x) ≡ d(x)/d0,

d̂ 3(x) + d̂ 2(x)
(
ĥ(x)− 1− 1

2
Fr2

)
+

1

2
Fr2 = 0, (6.4.42)
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where ĥ(x) ≡ h(x)/d0 is the scaled height of the hump. We have introduced the dimension-
less ratio

Fr ≡ U0√
g d0

, (6.4.43)

expressing the relative magnitude of inertial and gravitational forces, called the Froude
number.

In practice, the Venturi flume is used to deduce the flow rate from measurements of the
deflection of the free surface from the horizontal position. As the Froude number tends to
zero, gravitational forces dominate and equation (6.4.42) has the obvious solution d̂(x) =

1 − ĥ(x), which shows that the free surface tends to become flat. As the Froude number
tends to infinity, inertial forces dominate and equation (6.4.42) has an obvious solution,

d̂(x) = 1, which shows that the depth of the stream remains constant and the free surface
follows the topography of the hump. Intermediate values of the Froude number yield free
surface profiles with a downward deflection (Problem 6.4.6).

6.4.6 Steady rotational flow

We return to Euler’s equation (6.4.6) and consider a rotational flow at steady state. The
time derivative on the left-hand side vanishes, yielding

1

2
∇u2 − u× ω = −1

ρ
∇p+ g, (6.4.44)

where

u2 ≡ u2
x + u2

y + u2
z (6.4.45)

is the square of the magnitude of the velocity. The x component of equation (6.4.44) reads

1

2

∂u2

∂x
− uy ωz + uz ωy = −1

ρ

∂p

∂x
+ gx. (6.4.46)

Similar equations can be written for the y and z components.

Next, we place the origin of the Cartesian axes at a point in the fluid, identify the
streamline that passes through that point, and orient the x axis tangentially to the stream-
line and thus parallel to the local velocity, as shown in Figure 6.4.5. By design, the y and
z velocity components are zero at the origin; consequently, the second and third terms on
the left-hand side of equation (6.4.46) vanish. Taking advantage of these simplifications, we
derive the reduced form

∂

∂x

( 1

2
u2 +

p

ρ
− gxx

)
= 0, (6.4.47)

where the left-hand side is evaluated at the origin.
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Figure 6.4.5 A system of Cartesian coordinates with the x axis tangential to a streamline is used to
derive Bernoulli’s equation for steady rotational flow, given in equation (6.4.48).

Equation (6.4.47) states that the rate of change of the quantity enclosed by the parenthe-
ses on the left-hand side with respect to distance along the streamline is zero. Consequently,
the quantity enclosed by the parentheses must remain constant along the streamline,

1

2
u2 +

p

ρ
− g · x = f(x, y, z), (6.4.48)

where the function f(x, y, z) remains constant along a streamline. In a two-dimensional or
axisymmetric flow, f(x, y, z) is a function of the stream function, ψ, which, by definition, is
constant along a streamline.

6.4.7 Flow with uniform vorticity

The velocity field, u, of a two-dimensional flow with uniform vorticity in the xy plane,
ωz = Ω, can be resolved into (a) the velocity field, v, of a simple two-dimensional flow
with uniform vorticity Ω, and (b) the velocity field field of a potential flow expressed by a
harmonic potential φ, such that

u = v +∇φ. (6.4.49)

One example of a simple flow is simple shear flow with velocity

vx = −Ω y, vy = 0. (6.4.50)

A second example is flow expressing rigid-body rotation with velocity

vx = − 1

2
Ω y, vy =

1

2
Ωx. (6.4.51)

Using this decomposition, we derive Bernoulli’s equation

∂φ

∂t
+

1

2
u2 +

p

ρ
− g · x+Ωψ = c(t), (6.4.52)

where ψ is the stream function and u = |u| is the magnitude of the velocity (Problem 6.4.2).
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6.4.1 Flow through a sudden enlargement

Consider the flow through a sudden enlargement depicted in Figure 6.2.1. Use Bernoulli’s
equation to compute the rise in pressure, p2 − p1. Compare your answer to that shown in
equation (6.2.28) obtained by an approximate integral momentum balance.

6.4.2 Flow with uniform vorticity

(a) Derive Bernoulli’s equation (6.4.52) for two-dimensional flow. (b) Derive a similar equa-
tion for axisymmetric flow where the azimuthal component of the vorticity, ωϕ, is propor-
tional to the distance from the axis of symmetry, σ.

6.4.3 Flow due to an unsteady point source or point vortex

(a) Discuss whether the flow due to a two- or three-dimensional point source with time-
dependent strength satisfies the Euler equation for inviscid flow. (b) Repeat (a) for a two-
dimensional point vortex.

6.4.4 Force on a sphere in accelerating potential flow

Consider an unsteady irrotational flow past a sphere that is held stationary in an accel-
erating stream along the x axis with velocity Ux(t). The velocity potential and Cartesian
components of the velocity are given in equations (3.6.13) and (3.6.14). Use Bernoulli’s
equation (6.4.12) to evaluate the pressure and then compute the force exerted on the sphere
by evaluating the surface integral

F = −
∫∫

sphere

pn dS, (6.4.53)

where n = 1
a (x, y, z) is the unit vector normal to the sphere pointing into the fluid. Based

on this result, compute the force exerted on a sphere that is held stationary in a non-
accelerating steady flow. Discuss the physical relevance of the assumption of irrotational
flow.

6.4.5 Drainage from a spheroidal tank

(a) Derive a formula for the time it takes a liquid to drain completely from a vertical
spheroidal tank with axes a and b through a small hole at the bottom, based on Torricelli’s
law. You may assume that the gas pressure is equal to the atmospheric pressure above the
liquid in the tank.

(b) Repeat (a) for a horizontal spheroidal tank.

6.4.6 Flow over a hump

Consider the flow of a horizontal stream over a hump, as illustrated in Figure 6.4.4. The
height of the hump is described by the parabolic shape function

h(x) = h0 ( 1− x̂2 ) (6.4.54)

Problems
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for −1 ≤ x̂ ≤ 1, where h0 is the maximum height, x̂ ≡ x/a is the scaled distance from the
midpoint, and a is the half-length of the hump. Substituting this profile into (6.4.42), we
derive the equation

d̂ 3(x) + d̂ 2(x)
( h0

d0
(1− x̂ 2)− 1− 1

2
Fr2

)
+

1

2
Fr2 = 0 (6.4.55)

for −1 ≤ x̂ ≤ 1. Compute and plot the scaled layer depth d̂ against x̂ for h0/d0 = 0.01,
0.05, and 0.10, and Fr = 0.01, 0.1, 10, and 100. Discuss the free surface shapes.

6.5 The Navier–Stokes equation

The Navier–Stokes equation arises from the equation of motion (6.3.12) by substituting the
constitutive equation for the stress tensor for an incompressible Newtonian fluid, given in
(4.6.6). The hydrodynamic volume force for a fluid with uniform viscosity is given by

Σ ≡ ∇ · σ = ∇ · (−p I+ μ 2E) = −∇p+ μ 2∇ ·E, (6.5.1)

where I is the identity matrix and E is the rate-of-deformation tensor.

Working in index notation, we find that the ith component of twice the divergence of
the rate-of-deformation tensor on the right-hand side is

2
∂Eji

∂xj
= 2

∂

∂xj

[
1

2
(
∂ui

∂xj
+

∂uj

∂xi
)
]
, (6.5.2)

where summation is implied over the repeated index j. Carrying out the differentiations,
we obtain

2
∂Eji

∂xj
=

∂2ui

∂xj∂xj
+

∂2uj

∂xj∂xi
=

∂2ui

∂xj∂xj
+

∂

∂xi

(∂uj

∂xj

)
. (6.5.3)

Because the fluid has been assumed incompressible, the divergence of the velocity in the
last term enclosed by the parentheses is zero. The penultimate term is the Laplacian of the
ith component of the velocity,

∂2ui

∂xj∂xj
=

∂2ui

∂x2
+

∂2ui

∂y2
+

∂2ui

∂z2
≡ ∇2ui. (6.5.4)

Using these results to simplify expression (6.5.1), we find that the hydrodynamic volume
force is given by

Σ ≡ ∇ · σ = −∇p+ μ∇2u. (6.5.5)

Correspondingly, Cauchy’s equation of motion (6.3.12) reduces to the Navier–Stokes
equation,

ρ
Du

Dt
= −∇p+ μ∇2u+ ρg, (6.5.6)
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ρ
( ∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

)
= −

∂p

∂x
+ μ

( ∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2

)
+ ρ gx

ρ
( ∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
= −

∂p

∂y
+ μ

( ∂2uy

∂x2
+

∂2uy

∂y2
+

∂2uy

∂z2

)
+ ρ gy

ρ
( ∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
= −

∂p

∂z
+ μ

( ∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂z2

)
+ ρ gz

Table 6.5.1 Eulerian form of the three Cartesian components of the Navier–Stokes equation applica-
ble to incompressible Newtonian fluids.

which is distinguished from Euler’s equation (6.4.3) by the presence of the viscous force
represented by the product of the viscosity and the Laplacian of the velocity on the right-
hand side.

The Eulerian form of the Navier–Stokes equation involving time and space derivatives
is

ρ
( ∂u
∂t

+ u ·∇u
)
= −∇p+ μ∇2u+ ρg. (6.5.7)

The three Cartesian scalar components of the Navier–Stokes equation are shown in Table
6.5.1.

6.5.1 Pressure and viscous forces

The negative of the pressure gradient on the right-hand side of (6.5.7) represents the pressure
force, −∇p. The Laplacian of the velocity multiplied by the viscosity on the right-hand side
of (6.5.7) represents the viscous force, μ∇2u.

Working in index notation under the assumption that the fluid is incompressible and
therefore the velocity field is solenoidal, ∇ ·u = 0, we find that the Laplacian of the velocity
is equal to the negative of the curl of the vorticity

∇2u = −∇× ω (6.5.8)

(Problem 6.5.1). An important consequence of this identity is that, if the flow is irrotational,
or the vorticity is uniform, or the vorticity field is irrotational, the viscous force vanishes
identically even though the fluid is not inviscid. In that case, the Navier–Stokes equation
reduces to Euler’s equation, which can be integrated to yield Bernoulli’s equation (6.4.12)
for irrotational flow or equation (6.4.48) for steady rotational flow.

6.5.2 A radially expanding or contracting bubble

An example of an irrotational flow with nonzero viscous stresses but vanishing viscous forces
is provided by the flow generated by the radial expansion or contraction of a spherical bubble
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with time-dependent radius, a(t). The induced velocity field can be represented by a three-
dimensional point source with time dependent strength, m(t), placed at the center of the
bubble. In spherical polar coordinates with the origin at the bubble center, the velocity
potential is given by

φ(r, t) = −m(t)
1

4π

1

r
, (6.5.9)

and the radial component of the velocity is given by

ur(r, t) =
∂φ

∂r
= m(t)

1

4π

1

r2
, (6.5.10)

where r is the distance from the bubble center.

The no-penetration condition at the surface of the bubble requires that

da

dt
= ur(r = a), (6.5.11)

which can be rearranged into an expression for the strength of the point source in terms of
the bubble radius,

m(t) = 4πa2(t)
da

dt
. (6.5.12)

Substituting expression (6.5.12) into equations (6.5.9) and (6.5.10), we obtain

φ(r) = −a2(t)
da

dt

1

r
= − 1

3

da3

dt

1

r
(6.5.13)

and

ur(r) =
∂φ

∂r
=

1

3

da3

dt

1

r2
. (6.5.14)

Now referring to Bernoulli’s equation (6.4.12) for unsteady irrotational flow,

∂ φ

∂t
+

1

2
u2 +

p

ρ
− g · x = c(t), (6.5.15)

we compute the first and second terms on the left-hand side,

∂φ

∂t
= − 1

3

d2a3

dt2
1

r
, u2 = u2

r(r) =
1

9

(da3
dt

)2 1

r4
. (6.5.16)

Substituting these expressions into Bernoulli’s equation and solving for the pressure, we
derive the expression

p(r)

ρ
=

1

3

d2a3

dt2
1

r
− 1

18

( da3

dt

)2 1

r4
+ c(t) + g · x. (6.5.17)
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Far from the bubble, the first and second terms on the right-hand side vanish and the
pressure assumes a linear and possibly time-dependent distribution,

p∞(x, t) = ρ
(
c(t) + g · x )

. (6.5.18)

The normal stress, σrr, undergoes a jump across the bubble surface, determined by the
mean curvature and the surface tension, γ. Using the simplified version of the interfacial
condition (4.4.4) for an interface with uniform surface tension, we obtain

σrr(r = a) + pB(t) = γ 2κm = γ
2

a
, (6.5.19)

where pB(t) is the pressure in the bubble interior and κm = 1/a is the mean curvature of
the spherical interface. Substituting the second equation in (6.5.14) into the Newtonian
constitutive equation

σrr = −p+ 2μ
∂ur

∂r
, (6.5.20)

and the resulting expression into (6.5.19), we find that

p(r = a) = pB(t)− 4μ
da

dt

1

a
− γ

2

a
. (6.5.21)

In the last step, we apply expression (6.5.17) at the bubble surface, evaluate the surface
pressure from (6.5.21), neglect hydrostatic variations over the diameter of the bubble, and
rearrange the resulting expression to obtain the generalized Rayleigh equation

ρa
d2a

dt2
+

3

2
ρ
(da
dt

)2

+ 4μ
da

dt

1

a
+ γ

2

a
= pB(t)− p∞(xB, t), (6.5.22)

where xB is the location of the bubble center.

The evolution of the bubble radius from a given initial state is governed by the second-
order nonlinear ordinary differential equation (6.5.22). To compute the solution, we require
the initial bubble radius, a, the initial rate of expansion, da/dt, the bubble pressure, pB,
and the ambient liquid pressure at infinity, p∞. The bubble pressure may be further related
to the bubble volume by an appropriate equation of state provided by thermodynamics.

6.5.3 Boundary conditions

The Navier–Stokes equation is a second-order differential equation for the velocity with
respect to spatial coordinates. To compute a solution, we require one scalar boundary
condition for each component of the velocity or traction over each boundary of the flow.

Impermeable solid surface

Over an impermeable solid surface, we require the no-penetration boundary condition and
the no-slip or slip boundary condition, as discussed in Sections 2.10 and 4.8.
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Free surface

Over a free surface with uniform surface tension, we require that the tangential component
of the traction vanishes, while the normal component is equal to the negative of the ambient
pressure increased or decreased by the capillary pressure defined as the product of the surface
tension and twice the local mean curvature, as discussed in Section 4.3.

Fluid interface

Over a fluid interface, we require kinematic and dynamic continuity or jump conditions. The
kinematic condition requires that all velocity components are continuous across the interface.
The dynamic condition requires that the normal component of the traction undergoes a
discontinuity by an amount that is equal to the capillary pressure, while the tangential
component of the traction undergoes a discontinuity that is determined by the Marangoni
traction due to variations in surface tension, as discussed in Section 4.3.

6.5.4 Polar coordinates

The cylindrical polar components of the hydrodynamic volume force for a Newtonian fluid
arise by substituting the constitutive relations shown in Table 4.7.1 into the expressions
shown in Table 4.3.1(a). After a fair amount of algebra, we derive the expressions shown
in Table 6.5.2(a). The cylindrical polar components of the Navier–Stokes equation arise by
substituting these relations into the right-hand sides of (6.3.18).

The spherical polar components of the hydrodynamic volume force arise by substituting
the constitutive relations given in Table 4.7.2 into the expressions shown in Table 4.3.1(b).
After a fair amount of algebra, we derive the expressions shown in Table 6.5.2(b). The
Laplacian operator ∇2 in spherical polar coordinates is defined as

∇2φ ≡ 1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
= 0. (6.5.23)

The spherical polar components of the Navier–Stokes equation arise by substituting these
expressions into the right-hand sides of (6.3.21).

The plane polar components of the hydrodynamic volume force arise by substituting
the constitutive relations shown in Table 4.7.3 into the expressions shown in Table 4.3.1(c).
After a fair amount of algebra, we derive the expressions shown in Table 6.5.2(c). The plane
polar components of the Navier–Stokes equation arise by substituting these expressions into
the right-hand sides of (6.3.24).

6.5.1 Viscous force

Prove identity (6.5.8) for an incompressible fluid. Hint: Set the vorticity equal to the curl
of the velocity, express the curl of the vorticity in index notation, and then use identity
(2.3.11).

Problems
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(a)

Σx = −
∂p

∂x
+ μ

(
∂2ux

∂x2
+

1

σ

∂

∂σ

(
σ
∂ux

∂σ

)
+

1

σ2

∂2ux

∂ϕ2

)
Σσ = −

∂p

∂σ
+ μ

(
∂2uσ

∂x2
+

∂

∂σ

(
1

σ

∂(σuσ)

∂σ

)
+

1

σ2

∂2uσ

∂ϕ2
−

2

σ2

∂uϕ

∂ϕ

)
Σϕ = −

1

σ

∂p

∂ϕ
+ μ

(
∂2uϕ

∂x2
+

∂

∂σ

(
1

σ

∂(σ uϕ)

∂σ

)
+

1

σ2

∂2uϕ

∂ϕ2
+

2

σ2

∂uσ

∂ϕ

)
(b)

Σr = −
∂p

∂r
+ μ

(
∇2ur −

2

r2
ur −

2

r2
∂uθ

∂θ
−

2

r2
uθ cot θ −

2

r2 sin θ

∂uϕ

∂ϕ

)
Σθ = −

1

r

∂p

∂θ
+ μ

(
∇2uθ +

2

r2
∂ur

∂θ
−

uθ

r2 sin2 θ
−

2 cos θ

r2 sin2 θ

∂uϕ

∂ϕ

)
Σϕ = −

1

r sin θ

∂p

∂ϕ
+ μ

(
∇2uϕ −

uϕ

r2 sin2 θ
+

2

r2 sin θ

∂ur

∂ϕ
+

2 cos θ

r2 sin2 θ

∂uθ

∂ϕ

)
(c)

Σr = −
∂p

∂r
+ μ

(
∂

∂r

(
1

r

∂(r ur)

∂r

)
+

1

r2
∂2ur

∂θ2
−

2

r2
∂uθ

∂ϕ

)
Σθ = −

1

r

∂p

∂θ
+ μ

(
∂

∂r

(
1

r

∂(r uθ)

∂r

)
+

1

r2
∂2uθ

∂θ2
+

2

r2
∂ur

∂θ

)

Table 6.5.2 Components of the hydrodynamic volume force for a Newtonian fluid in (a) cylindrical,
(b) spherical, and (c) plane polar coordinates. The Laplacian operator ∇2 in spherical polar
coordinates is defined in equation (6.5.23).

6.5.2 Steady flow

Consider a flow at steady state. Explain why it is not generally possible to specify an
arbitrary solenoidal velocity field that satisfies the boundary conditions, and then compute
the pressure by solving the Navier–Stokes equation (6.5.7).

Hint: Consider the conditions for the equation ∇p = F to have a solution for p, where F

is a given vector field. Recall that the curl of the gradient of a scalar function vanishes, as
shown in equation (6.6.20).

6.5.3 Expansion of a bubble

Show that, when the right-hand side of (6.5.22) vanishes and viscous stresses and surface
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tension are both insignificant, an exact solution of equation (6.5.22) is

a(t)

a(t = 0)
=

(
1 +

5

2

t

a(t = 0)

(da
dt

)
t=0

)2/5

. (6.5.24)

Note that both the initial bubble radius and the initial rate of expansion or contraction
must be specified.

6.6 Vorticity transport

In Section 6.3, we interpreted the equation of motion as an evolution equation determining
the rate of change of the velocity (acceleration) of a point particle or the rate of change of the
fluid velocity at a given point in a flow. Descendant evolution equations governing the rate
of change of the spatial derivatives of the velocity comprising the velocity-gradient tensor
and its symmetric and skew-symmetric components comprising the rate-of-deformation and
vorticity tensors can be derived by straightforward differentiation.

Of particular interest is the evolution of the skew-symmetric part of the velocity-gradient
tensor, Ξ, which is related to the vorticity, ω, as shown in (2.3.17),

Ξij =
1

2
εijk ωk, (6.6.1)

where εijk is the alternating tensor. The availability of an evolution equation for the vorticity
allows us to study the rate of change of the angular velocity of small fluid parcels as they
translate and deform while they are convected in a flow.

6.6.1 Two-dimensional flow

We begin by considering the evolution of the z vorticity component in a two-dimensional
flow in the xy plane, defined in terms of the velocity as

ωz =
∂uy

∂x
− ∂ux

∂y
. (6.6.2)

To derive an evolution equation for ωz, we divide both sides of the equation of motion
(6.3.15) by the density, ρ, so as to remove it from the left-hand side, obtaining

∂ u

∂t
+ u · ∇u =

1

ρ
Σ+ g, (6.6.3)

where Σ ≡ ∇ · σ is the hydrodynamic volume force. Taking the y derivative of the x
component of this equation, and then subtracting the result from the x derivative of the
corresponding y component, we derive the vorticity transport equation

∂ωz

∂t
+

∂

∂x
(ux

∂uy

∂x
+ uy

∂uy

∂y
)− ∂

∂y
(ux

∂ux

∂x
+ uy

∂ux

∂y
) =

∂

∂x
(
1

ρ
Σy)− ∂

∂y
(
1

ρ
Σx). (6.6.4)



6.6 Vorticity transport 401

Expanding the derivatives on the left-hand side and using the continuity equation for an
incompressible fluid,

∂ux

∂x
+

∂uy

∂y
= 0, (6.6.5)

we obtain the simpler form

Dωz

Dt
≡ ∂ωz

∂t
+ ux

∂ωz

∂x
+ uy

∂ωz

∂y
=

∂

∂x
(
1

ρ
Σy)− ∂

∂y
(
1

ρ
Σx), (6.6.6)

where D/Dt is the material derivative. The left-hand side of (6.6.6) expresses the material
derivative of the vorticity, which is equal to twice the rate of change of the angular velocity
of a small fluid parcel according to equation (2.3.9).

Next, we expand the derivatives on the right-hand side of (6.6.6) setting, for example,

∂

∂x
(
1

ρ
Σy) =

1

ρ

∂Σy

∂x
− Σy

1

ρ2
∂ρ

∂x
, (6.6.7)

and express the hydrodynamic volume force in terms of the stresses using the definitions

Σx ≡ ∂ σxx

∂x
+

∂ σyx

∂y
, Σy ≡ ∂ σxy

∂x
+

∂ σyy

∂y
. (6.6.8)

The result is a general form of the vorticity transport equation for an incompressible fluid,

Dωz

Dt
=

1

ρ2
(−Σy

∂ρ

∂x
+Σx

∂ρ

∂y
) +

1

ρ

( ∂2σxy

∂x2
− ∂2σxy

∂y2
+

∂2(σyy − σxx)

∂x ∂y

)
. (6.6.9)

We recall that the density is allowed to vary with position inside an incompressible fluid.

Baroclinic production of vorticity

The first term on the right-hand side of (6.6.9),

1

ρ2
(−Σy

∂ρ

∂x
+Σx

∂ρ

∂y
), (6.6.10)

expresses production of vorticity due to density inhomogeneity, known as baroclinic produc-
tion.

To illustrate the physical mechanism underlying this term, we consider a vertical column
of fluid whose density increases upward in the direction of the y axis, so that ∂ρ/∂y > 0, as
shown in Figure 6.6.1. The x component of the hydrodynamic volume force, Σx, causes the
column to accelerate forward in the positive direction of the x axis. Because the density and
thus the inertia of the fluid increases with elevation, the top portion accelerates less than
the bottom portion. As a result, the column buckles backward, exhibiting counterclockwise
rotation expressed by the second term inside the parentheses on the right-hand side of
(6.6.10).
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zω

x

y

Figure 6.6.1 Vorticity is generated when a column of fluid that is heavy at the top buckles in
acceleration under the influence of a horizontal volume force.

A similar interpretation is possible in the case of a horizontal layer whose density in-
creases in the direction of the x axis, so that ∂ρ/∂x > 0. The preceding arguments suggest
that the layer rotates under the influence of a vertical volume force, Σy. The associated
baroclinic production of vorticity is expressed the first term inside the parentheses on the
right-hand side of (6.6.10).

Flow with negligible viscous forces

When viscous forces are insignificant, the shear stresses virtually vanish while the normal
stresses, σxx and σyy, are equal to the negative of the pressure, −p. Consequently, the
term enclosed by the tall parentheses on the right-hand side of (6.6.9) makes a negligible
contribution to the vorticity transport equation.

In the absence of viscous stresses, the hydrodynamic volume force is equal to the negative
of the pressure gradient, Σ = −∇p. Substituting Σx = −∂p/∂x and Σy = −∂p/∂y, we find
that the term expressing baroclinic production of vorticity takes a simple form, yielding the
vorticity transport equation

ρ2
Dωz

Dt
=

∂p

∂y

∂ρ

∂x
− ∂p

∂x

∂ρ

∂y
. (6.6.11)

The right-hand side can be expressed in terms of a triple mixed vector product, yielding

ρ2
Dωz

Dt
= (∇ρ×∇p) · ez, (6.6.12)

where ez is the unit vector along the z axis that is perpendicular to the xy plane of the flow.

In the case of a fluid with uniform density, ∇ρ = 0, equation (6.6.11) predicts that

Dωz

Dt
= 0, (6.6.13)

which shows that a small fluid parcel rotates with constant angular velocity as it moves about
the domain of flow. The physical origin of this remarkably simple result can be traced back
to conservation of angular momentum in the absence of a shearing stress imparting a torque.
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Temperature Water Air
oC cm2/sec cm2 sec

20 1.004× 10−2 15.05× 10−2

40 0.658× 10−2 18.86× 10−2

80 0.365× 10−2 20.88× 10−2

Table 6.6.1 The kinematic viscosity of water and air at three temperatures. Note that the kinematic
viscosity of air is higher than that of water due to its much lower density.

Incompressible Newtonian fluids

Next, we consider the evolution of vorticity in an incompressible Newtonian fluid with uni-
form density and viscosity. Substituting the constitutive equation for the stress tensor shown
in Table 4.5.1 into the right-hand side of (6.6.9), and simplifying the resulting expression
using the continuity equation, we derive the vorticity transport equation

∂ωz

∂t
+ ux

∂ωz

∂x
+ uy

∂ωz

∂y
= ν (

∂2ωz

∂x2
+

∂2ωz

∂y2
), (6.6.14)

where ν ≡ μ/ρ is a physical constant with dimensions of length squared divided by time,
called the kinematic viscosity of the fluid. In compact notation, the vorticity transport
equation reads

Dωz

Dt
≡ ν∇2ωz, (6.6.15)

where D/Dt is the material derivative and ∇2 is the Laplacian operator in the xy plane.

The kinematic viscosity of water and air is shown in Table 6.6.1 at three temperatures.
Note that the kinematic viscosity of air is higher than that of water by two or three orders
of magnitude. In contrast, the viscosity of water is higher than that of air by one or two
orders of magnitude. Curiously, air is kinematically more viscous than water due to its lower
density.

The right-hand side of (6.6.14) expresses diffusion of vorticity in the xy plane. Like
temperature or concentration of a species, vorticity spreads from regions of highly rota-
tional flow to regions of irrotational flow; that is, from regions where small spherical parcels
exhibit intense rotation to regions of weakly rotational or irrotational motion. The actual
mechanism by which this occurs will be exemplified in Chapters 7 and 10 with reference to
unsteady and boundary-layer flow.

6.6.2 Axisymmetric flow

Consider an axisymmetric flow in the absence swirling motion and refer to cylindrical polar
coordinates, (x, σ, ϕ), as shown in Figure 6.6.2. Working as previously for two-dimensional
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x
ϕ

ϕ
ω

ω

ϕ

σ

Figure 6.6.2 The vorticity of a point particle in an axisymmetric flow increases as the particle moves
farther away from the axis of symmetry due to vortex stretching.

flow, we derive the vorticity transport equation for an incompressible Newtonian fluid with
uniform density and viscosity,

D

Dt

(ωϕ

σ

)
= ν

1

σ2
E2(σ ωϕ), (6.6.16)

where σ is the distance from the x axis, The second-order linear differential operator E2

on the right-hand side, defined in equations (2.9.24) and (2.9.27), is the counterpart of the
Laplacian operator for two-dimensional flow shown in (6.6.14).

Vortex stretching

When viscous forces are negligible, the right-hand side of (6.6.16) is zero and the resulting
vorticity transport equation takes the simple form

D

Dt

(ωϕ

σ

)
= 0. (6.6.17)

This equation requires that the azimuthal component of the vorticity of a point particle, ωϕ,
is proportional to the distance of the point particle from the axis of symmetry, σ, so that
the ratio between the two is constant in time and equal to the initial value, as illustrated
schematically in Figure 6.6.2. This fundamental evolution law expresses a physical process
known as vortex stretching. The significance of vortex stretching will be discussed in Chapter
11 in the context of vortex flow.

6.6.3 Three-dimensional flow

Generalizing the preceding discussion, we proceed to derive an evolution equation for the
vorticity vector field in a three-dimensional incompressible Newtonian flow. The density
and viscosity are assumed to be uniform throughout the domain of flow.

Our point of departure is the Navier–Stokes equation (6.4.3). Using the expression for
the point particle acceleration shown on the left-hand side of equation (6.3.26), we derive
the following alternative form of the Navier–Stokes equation in terms of the vortex force,

ρ
( ∂ u

∂t
+

1

2
∇u2 + ω × u

)
= −∇p+ μ∇2u+ ρg, (6.6.18)
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where

u2 ≡ u2
x + u2

y + u2
z (6.6.19)

is the square of the magnitude of the velocity.

To derive an evolution equation for the vorticity, we take the curl of both sides of
equation (6.6.18). A vector identity states that the curl of the gradient of a smooth scalar
function of position, f(x), is identically zero,

∇×∇f = 0. (6.6.20)

To prove this identity, we work in index notation and express the ith component of the
left-hand side as

εijk
∂

∂xj

( ∂f

∂xk

)
= εijk

∂2f

∂xj ∂xk
= −εikj

∂2f

∂xk ∂xj
. (6.6.21)

The symmetry of the second derivative on the right-hand side, combined with the inherent
antisymmetry of the alternating tensor, ensures that the right-hand side is identically zero.

Using identity (6.6.20), we find that the curl of the second term on the left-hand side of
(6.6.18), involving the square of the velocity, and the curl of the first term on the right-hand
side of (6.6.18), involving the pressure gradient, are both zero. Invoking the definition of
the vorticity, ω = ∇× u, we obtain the vorticity transport equation for three-dimensional
flow,

∂ ω

∂t
+∇× (ω × u) = ν∇2ω, (6.6.22)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid.

Evolution of the point particle vorticity

The second term on the left-hand side of (6.6.22), denoted by

A ≡ ∇× (ω × u), (6.6.23)

can be manipulated to acquire a precise physical interpretation. In index notation,

Ai = εijk
∂

∂xj
(εklm ωl um) = εijk εklm

∂(ωl um)

∂xj
. (6.6.24)

Rearranging the indices, we obtain

Ai = εijk εlmk
∂(ωl um)

∂xj
. (6.6.25)

Using the property of the alternating tensor

εijk εlmk = δil δjm − δim δjl, (6.6.26)
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we find that

Ai = (δil δjm − δim δjl)
∂(ωl um)

∂xj
=

∂(ωi uj)

∂xj
− ∂(ωj ui)

∂xj
. (6.6.27)

Expanding the product of the derivative on the right-hand side, we obtain

Ai = uj
∂ωi

∂xj
+ ωi

∂uj

∂xj
− ui

∂ωj

∂xj
− ωj

∂ui

∂xj
. (6.6.28)

An identity states that the divergence of the curl of a smooth vector field is zero. A
consequence of this identity is that the vorticity field is solenoidal,

∇ · ω = ∇ · (∇× u) = 0. (6.6.29)

Because the fluid has been assumed incompressible, the velocity field is also solenoidal,
∇ · u = 0. Consequently, the second and third terms on the right-hand side of (6.6.28) are
zero, yielding

Ai = uj
∂ωi

∂xj
− ωj

∂ui

∂xj
. (6.6.30)

Substituting the result back into equation (6.6.22), we derive the targeted vorticity
transport equation

Dωi

Dt
=

∂ ωi

∂t
+ uj

∂ ωi

∂xj
= ωj

∂ui

∂xj
+ ν∇2ωi. (6.6.31)

In vector notation,

Dω

Dt
=

∂ ω

∂t
+ u ·∇ω = ω ·∇u+ ν∇2ω, (6.6.32)

where Dω/Dt is the material derivative of the vorticity expressing the rate of change of the
vorticity vector following the motion of a point particle.

Vorticity rotation and vortex stretching

To understand the nature of the first term on the right-hand side of (6.6.32), ω · ∇u, we
consider a small material vector, dX, and label the first point A and the last point B. Using
a Taylor series expansion, we find that the difference in the velocity across the end points
is

uB − uA 	 dX ·∇u. (6.6.33)

Comparing this expression with the expression of interest ω ·∇u, we find that the vorticity
vector behaves like a material vector convected by the flow. This means that the vorticity
vector rotates and stretches or compresses under the influence of the local flow.
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In the case of two-dimensional flow, because the vorticity vector is normal to the plane
of the flow, neither rotation, nor stretching, nor compression can take place. In the case of
axisymmetric flow, because the vorticity vector points in direction of the azimuthal angle, ϕ,
rotation is prohibited but stretching or compression can take place, as discussed in Section
6.6.2.

Persistence of irrotational motion in am inviscid flow

One important consequence of the vorticity transport equation (6.6.32) is that, if the vor-
ticity of a point particle is zero at the initial instant, it will remain zero at any time.
Thus, volumes of rotational fluid remain rotational, volumes of irrotational fluid remain
irrotational, and the interface between rotational and irrotational fluid remains sharp and
well-defined at any time.

Source of vorticity in viscous flow

In practice, because a fluid flow is always established from the state of rest, the initial
vorticity distribution is zero. Since the right-hand side of the vorticity transport equation
(6.6.32) vanishes throughout the fluid, the initial rate of production of vorticity is also zero,
and this may suggest deceptively that the flow will remain irrotational at any time. In
fact, vorticity, like heat, enters the fluid by diffusion across the boundaries. The precise
mechanism by which this occurs is discussed in Chapters 7 and 10.

6.6.1 Reduction to two-dimensional flow

Show that the vorticity transport equation (6.6.32) reproduces the transport equation
(6.6.14) for the strength of the vorticity, ωz, in a two-dimensional flow in the xy plane.

6.6.2 Convection of vorticity

Prove the identity

ωj
∂ui

∂xj
= ωj

∂uj

∂xi
. (6.6.34)

This identify allows us to express the first term on the left-hand side of (6.6.32) in the
alternative form

ω ·∇u = ∇u · ω. (6.6.35)

Hint: Begin with the identity ω × ω = ω ×∇ × u = 0, and then work in index notation
using identity (2.3.11).

6.7 Dynamic similitude and the Reynolds number

Consider a uniform (streaming) flow along the x axis with velocity U1 past a stationary body
with designated size L1, as illustrated in Figure 6.7.1(a). Also consider another streaming

Problems
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(a) (b)
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Figure 6.7.1 Illustration of flow in two similar domains. If the Reynolds numbers of the two flows
are equal, as shown in equation (6.7.10), the velocity and pressure field of the second flow may
be deduced those in the first flow, and vice versa, by rescaling.

flow along the x axis with velocity U2 past a second body that arises by shrinking or
expanding the first body by a certain factor, α, as illustrated in Figure 6.7.1(b). If the
second body is smaller than the first body, α < 1; if the second body is larger than the first
body, α > 1.

If the surface of the first body is described by an equation of the general form

f1(x1, y1, z1) = 0, (6.7.1)

then the surface of the second body is described by the equation

f2(x2, y2, z2) = f1
( x2

α
,
y2
α
,
z2
α

)
= 0, (6.7.2)

where

α ≡ L2

L1
(6.7.3)

is a scaling factor. Corresponding points on the first and second body are related by x2 =
αx1.

A sphere

For example, if the first body is a sphere of radius L1 centered at a point, xc1 = (xc1 , yc1 , zc1),
then the equation describing the surface of this body is

f1(x1, y1, z1) = (x1 − xc1)
2 + (y1 − yc1)

2 + (z2 − zc1)
2 − L2

1 = 0 (6.7.4)

and the equation describing the surface of the second body is

f2(x2, y2, z2) = f1
( x2

α
,
y2
α
,
z2
α

)
(6.7.5)
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or

f2(x2, y2, z2) =
(x2

α
− xc1

)2

+
(y2
α

− yc1

)2

+
(z2
α

− zc1

)2

− L2
1 = 0. (6.7.6)

Simplifying, we obtain

f2(x2, y2, z2) =
1

α2

(
(x2 − αxc1)

2 + (y2 − α yc1)
2 + (z2 − α zc1)

2 − L2
2

)
= 0, (6.7.7)

which the equation of a sphere of radius L2 = αL1 centered at the point xc2 = αxc1 . We
may set without loss of generality xc1 = 0, in which case both spheres are centered at the
origin.

Reynolds number

Let ρ1 and μ1 be the density and viscosity of the first fluid, and ρ2 and μ2 be the density and
viscosity of the second fluid. Both fluids are assumed to be incompressible and Newtonian.
We will show that, when the values of the four control and physical parameters defining the
first flow,

L1, U1, ρ1, μ1, (6.7.8)

and the corresponding values of the four control and physical parameters defining the second
flow,

L2, U2, ρ2, μ2, (6.7.9)

are related by the equation

ρ1U1L1

μ1
=

ρ2U2L2

μ2
, (6.7.10)

then the structure of the second flow can be inferred from the structure of the first flow, and
vice versa, by a simple computation described as rescaling. The left-hand side of (6.7.10) is
the Reynolds number of the first flow, and the right-hand side of (6.7.10) is the Reynolds
number of the second flow.

Rescaling

To deduce the structure of the second flow from the structure of the first flow, we introduce
the dynamic pressure established due to the flow, defined as the pressure deviation from the
hydrostatic distribution,

ς1 ≡ p1 − ρ1 g · x1, ς2 ≡ p2 − ρ2 g · x2. (6.7.11)

In the absence of flow, the pressure assumes the hydrostatic distribution and the dynamic
pressure vanishes throughout both domains of flow.

Now we consider an arbitrary point in the first flow, x1, and a corresponding point in
the second flow whose coordinates are given by

x2 = αx1. (6.7.12)



410 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Equations (6.7.1) and (6.7.2) ensure that, if the point x1 lies at the surface of the body in
the first flow, then the point x2 will lie at the surface of the body in the second flow.

We will demonstrate that, when relation (6.7.10) is fulfilled, the velocity and dynamic
pressure at the point x2 in the second flow are related to those at the point x1 in the first
flow by the equations

u2(x2) = δ u1(x1), ς2(x2) = β δ2 ς1(x1), (6.7.13)

where δ is the ratio of the velocities of the incident flow and β is the density ratio,

δ ≡ U2

U1
, β ≡ ρ2

ρ1
. (6.7.14)

The equality of the Reynolds numbers expressed by (6.7.10) requires that

βδ = αλ, (6.7.15)

where

λ ≡ μ2

μ1
(6.7.16)

is the viscosity ratio.

Unsteady flow

Relations (6.7.13) are also valid for unsteady flow, provided that the velocity field of the
first flow at the designated origin of time is related to the velocity of the second flow at the
designated origin of time by the first of equations (6.7.13), and the comparison is made at
times t1 and t2 related by

t2 =
δ

α
t1. (6.7.17)

A implicit assumption is that both flows have been started at the same time.

6.7.1 Dimensional analysis

To prove relations (6.7.13), we consider the Navier–Stokes equation (6.5.7),

ρ
( ∂u
∂t

+ u · ∇u
)
= −∇p+ μ∇2u+ ρg, (6.7.18)

and the continuity equation for an incompressible fluid,

∇ · u = 0, (6.7.19)

governing the structure and dynamics of each flow with appropriate physical constants
corresponding to the two fluids, subject to appropriate far-field and boundary conditions,
and work in three stages.
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First flow

In the first stage, we consider the first flow and introduce the dimensionless independent
variables

x̂1 =
x1

L1
, ŷ1 =

y1
L1

, ẑ1 =
z1
L1

, t̂1 =
t1 U1

L1
, (6.7.20)

and the dimensionless dependent variables

ûx1
=

ux1

U1
, ûy1

=
uy1

U1
, ûz1 =

uz1

U1
, ς̂1 =

ς1
ρ1U2

1

, (6.7.21)

all indicated by a caret (hat). Solving for the dimensional variables in terms of their dimen-
sionless counterparts, and substituting the result into the Navier–Stokes equation and the
continuity equation, we obtain

∂ û1

∂t̂1
+ û1 · ∇̂1û1 = −∇̂1 ς̂1 +

1

Re1
∇̂2

1 û1 (6.7.22)

and

∇̂1 · û1 = 0, (6.7.23)

where

Re1 ≡ ρ1U1L1

μ1
(6.7.24)

is the Reynolds number of the first flow, as shown on the left-hand side of (6.7.10). We have
introduced the dimensionless gradient and associated Laplacian operator

∇̂1 ≡ (
∂

∂x̂1
,

∂

∂ŷ1
,

∂

∂ẑ1
), ∇̂2

1 ≡ ∂̂2

∂x̂2
1

+
∂̂2

∂ŷ21
+

∂̂2

∂ẑ21
. (6.7.25)

The far-field condition requires that, far from the body, the dimensionless velocity
components ûx1

tends to unity, whereas ûy1
and ûz1 decay to zero. The no-slip and no-

penetration boundary conditions require that the velocity vanishes at points (x1, y1, z1) that
satisfy equation (6.7.1) or, equivalently, points (x̂1, ŷ1, ẑ1) that satisfy the equation

f1(L1x̂1, L1ŷ1, L1ẑ1) = 0 (6.7.26)

in dimensionless space.

Second flow

In the second stage, we consider the second flow and introduce the dimensionless independent
variables

x̂2 =
x2

L2
, ŷ2 =

y2
L2

, ẑ2 =
z2
L2

, t̂2 =
t2 U2

L2
, (6.7.27)
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and the dimensionless dependent variables

ûx2
=

ux2

U2
, ûy2

=
uy2

U2
, ûz2 =

uz2

U2
, ς̂2 =

ς2
ρ2U2

2

. (6.7.28)

Solving for the dimensional variables in terms of their dimensionless counterparts, and sub-
stituting the result into the Navier–Stokes and continuity equation, we find that

∂ û2

∂t̂2
+ û2 · ∇̂2û2 = −∇̂2 ς̂2 +

1

Re2
∇̂2

2 û2 (6.7.29)

and

∇̂2 · û2 = 0, (6.7.30)

where

Re2 ≡ ρ2U2L2

μ2
(6.7.31)

is the Reynolds number of the second flow, as shown on the right-hand side of (6.7.10). We
have introduced the dimensionless gradient and associated Laplacian operator

∇̂2 ≡ (
∂

∂x̂2
,

∂

∂ŷ2
,

∂

∂ẑ2
), ∇̂2

2 ≡ ∂̂2

∂x̂2
2

+
∂̂2

∂ŷ22
+

∂̂2

∂ẑ22
. (6.7.32)

The far-field condition requires that the dimensionless velocity component ûx2
tends to

unity, whereas ûy2
and ûz2 decay to zero far from the body. The no-slip and no-penetration

boundary conditions require that the velocity vanishes at points (x2, y2, z2) that satisfy
equation (6.7.2) or, equivalently, points (x̂2, ŷ2, ẑ2) that satisfy the equation

f1(L1x̂2, L1ŷ2, L1ẑ2) = 0 (6.7.33)

in dimensionless space.

Comparison

In the third stage, we compare one by one corresponding equations and boundary conditions
governing the two flows in the dimensionless variables indicated by a hat, and draw four
important conclusions:

1. The Navier–Stokes equation (6.7.22) is identical to the Navier–Stokes equation (6.7.29),
provided that the two Reynolds numbers are equal, Re1 = Re2, as stated in (6.7.10).

2. The continuity equation (6.7.23) is identical to the continuity equation (6.7.30) inde-
pendent of the Reynolds numbers.

3. The far-field conditions are identical: both dimensionless velocities designated by a
caret tend to [1, 0, 0] far from the body.
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4. The boundary conditions on the first body described by (6.7.26) are identical to the
boundary conditions on the second body described by (6.7.33).

These results demonstrate that, when the Reynolds numbers of the two flows are equal, val-
ues of the dimensionless dependent variables in the two flows at corresponding dimensionless
times and dimensionless positions are the same. For example, setting

ς̂1(x̂1) = ς̂2(x̂2) (6.7.34)

and using the definitions (6.7.21) and (6.7.28), we derive the second relation in (6.7.13),
subject to the definitions given in (6.7.14).

An important implication of the scaling analysis is that a flow of interest in a large
domain, such as the flow past an aircraft, can be studied conveniently in a miniaturized
geometry. Conversely, a flow of interest in a small domain, such as the flow over a small pit
due to surface corrosion, can be studied conveniently in an enlarged domain.

6.7.1 Reynolds number

Compute the Reynolds number of (a) an ant crawling, (b) a person running, (c) a car moving
at 100 km per hour, and (d) an elephant running across a plain at maximum speed.

6.8 Structure of a flow as a function of the Reynolds number

Consider the flow of an incompressible fluid in a domain with characteristic length L, identify
an appropriate characteristic velocity, U , and compute the Reynolds number

Re ≡ ρLU

μ
=

LU

ν
, (6.8.1)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid. Next, introduce the dimensionless
independent variables

x̂ =
x

L
, ŷ =

y

L
, ẑ =

z

L
, t̂ =

t U

L
, (6.8.2)

and the dimensionless dependent variables

ûx =
ux

U
, ûy =

uy

U
, ûz =

uz

U
, ς̂ =

ς

ρU2
, (6.8.3)

where ς is the dynamic pressure excluding variations in hydrostatics. Solving for the dimen-
sional variables in terms of their dimensionless counterparts and substituting the result into
the Navier–Stokes equation and the continuity equation, we obtain the dimensionless forms

∂ û

∂t̂
+ û · ∇̂û = −∇̂ς̂ +

1

Re
∇̂2û (6.8.4)

Problem
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and

∇̂ · û = 0. (6.8.5)

These dimensionless forms reveal that, given the boundary shape, the structure of a flow is
determined by L, U , ρ, and μ collectively through the dimensionless Reynolds number rather
than individually, in the sense of the dynamic similitude expressed by equations (6.7.13) and
(6.7.14).

Velocity and length scales

The choice of characteristic velocity, U , and length scale, L, is not always apparent. Sub-
tleties arise when the domain of flow contains an intrinsic length scale or a multitude of
length scales. Examples include the flow of a suspension of small particles and the flow
established spontaneously due to a hydrodynamic instability, in the absence of external
forcing.

For the successful choices of L and U , all terms in the dimensionless Navier–Stokes
equation (6.8.4), with the possible exception of the pressure gradient term, are of order unity.
The Reynolds number then expresses the relative importance of inertial forces, assumed to
scale with ρU2/L, and viscous forces, assumed to scale with μU/L2. Their ratio is precisely
the Reynolds number defined in (6.8.1).

6.8.1 Stokes flow

If the Reynolds number is small, viscous forces dominate in that the left-hand side of the
dimensionless Navier–Stokes equation (6.8.4) makes a negligible contribution to the underly-
ing balance. Although the dimensionless pressure gradient also appears to make a negligible
contribution, this is only a mathematical illusion.

To see this, we observe that the dimensionless pressure arose from the arbitrary scaling
shown in the equation in (6.8.3), which can be contrasted with the physical scaling of the
position vector and velocity in terms of the unambiguous length and velocity scales, L and U .
As a consequence, the dimensionless pressure gradient may become singular as the Reynolds
number tends to zero, requiring an alternative scaling. To prevent this failure, we retain
the pressure gradient in the dimensionless form of the Navier–Stokes equation irrespective
of the Reynolds number.

Reverting to dimensional variables, we find that the Navier–Stokes equation reduces to
the Stokes equation,

0 = −∇p+ μ∇2u+ ρg, (6.8.6)

which describes steady or unsteady creeping flow with negligible inertial forces. Cursory
inspection reveals that the pressure scales with μU/L rather than ρU2. The analysis and
computation of creeping flow will be the exclusive topic of Chapter 9.
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6.8.2 Flows at high Reynolds numbers

Inspecting (6.8.4), we find that, when the Reynolds number is high, viscous forces can be
neglected, provided that the velocity does not change rapidly over a small distance across
a fluid layer that is thin compared to the global size of the boundaries. Otherwise, the
standard scaling with respect to U and L may cease to be valid.

Thin layers supporting large velocity differences typically occur along flow boundaries
or interfaces between two adjacent streams of the same fluid or different fluids. In Chapter
10, we will see that viscous forces are significant inside these layers, even though the bulk
of the flow may occur at high Reynolds numbers.

6.8.3 Laminar and turbulent flow

When the Reynolds number exceeds a certain threshold, an unsteady small-scale motion
characterized by rapid fluctuations in the velocity and vorticity fields is spontaneously es-
tablished. In practice, turbulent motion is often superposed on a steady or unsteady macro-
scopic or large-scale flow that evolves at a slower rate. A flow below the critical Reynolds
number is called laminar to indicate that the streamlines are smooth, whereas a flow above
the critical Reynolds number is called turbulent to indicate that the streamlines are highly
convoluted.

Transition to turbulence

The transition from laminar to turbulent flow may occur by several venues, including the
amplification of spontaneous internal waves. The critical Reynolds number where transition
occurs can be estimated theoretically by carrying out a stability analysis, as discussed in
Chapter 10. The dynamics of turbulent motion can be studied by several methods, including
statistical analysis, nonlinear dynamical systems theory, and vortex dynamics.

6.8.1 Characteristic scales

Identify the characteristic velocity scale, U , length scale, L, and Reynolds number of (a)
simple shear flow past a stationary body, (b) flow due to the settling of a small particle in
the atmosphere, and (c) flow due to a breaking wave in the ocean.

6.9 Dimensionless numbers in fluid dynamics

We have demonstrated that two geometrically related flows occurring at the same Reynolds
number are similar, in that one flow can be deduced from the other by rescaling. Arguments
have been made for a flow that is bounded by a solid surface over which the no-slip and
no-penetration boundary conditions apply. A time-independent velocity field was imposed
in the far field as a driving mechanism.

Problems
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If the driving mechanism is time dependent or the flow is bounded by fluid interfaces
and free surfaces, additional conditions for dynamic similitude requiring the equality of fur-
ther dimensionless numbers are necessary. These dimensionless numbers enter the problem
formulation either through the governing equations or through boundary and interfacial
conditions.

Frequency number for a time-dependent flow

Let us consider an externally forced time-dependent flow and identify a velocity scale, U , a
length scale, L, and a time scale, T . In the case of periodic flow with angular frequency ω
due, for example, to an oscillating pressure gradient, T can be identified with the period,
T = 2π/ω. The relative importance of inertial and viscous forces in the equation of motion
is expressed by the dimensionless frequency parameter

β ≡ L2

νT
, (6.9.1)

where ν is the kinematic viscosity of the fluid. In the case of an intrinsically time-dependent
flow, T = L/U , the frequency parameter reduces to the Reynolds number β = Re = LU/ν.

Froude number

Consider flow in the ocean due to the propagation of water waves. The relative importance
of inertial and gravitational forces is determined by the Froude number,

Fr ≡ U√
gL

, (6.9.2)

where g is the magnitude of the acceleration of gravity. In the case of flow over a hump
discussed in Section 6.4, the Froude number takes the specific form shown in equation
(6.4.43).

Bond number

The relative importance of gravitational forces and surface tension in a fluid that is confined
by a free surface or fluid interface is determined by the Bond number,

Bo ≡ ρ gL2

γ
, (6.9.3)

where γ is the surface tension (Problem 6.9.1).

Weber number

The relative importance of inertial forces and surface tension in a flow that is confined by a
free surface or fluid interface is determined by the Weber number,

We ≡ ρU2L

γ
. (6.9.4)
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For example, the Weber number determines the deformation and structure of the flow around
a gas bubble rising or convected at high speed through an ambient liquid.

Capillary number

The relative importance of viscous forces and surface tension in a fluid bounded by a free
surface or fluid interface is determined by the capillary number,

Ca ≡ μU

γ
. (6.9.5)

For example, the capillary number determines the deformation and thus the structure of
the flow around a liquid droplet immersed in a shear flow.

6.9.1 Bond number in hydrostatics

Explain how the Bond number arises from the scaling of the Laplace-Young equation (5.4.8)
in hydrostatics.

6.9.2 Ratio of two numbers

What is the ratio between the Weber number and the capillary number?

Problems
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