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5.1 Equilibrium of pressure and body forces
5.2 Force exerted on immersed surfaces
5.3 Archimedes’ principle
5.4 Interfacial shapes
5.5 A semi-infinite interface attached to a horizontal plane
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5.11 A sphere straddling an interface
5.12 A three-dimensional meniscus

The simplest state of a fluid is the state of rest. The macroscopically observable velocity
vanishes and the forces developing in the fluid are described in terms of the pressure field
established in response to a body force. The subject of hydrostatics encompasses two main
topics: the computation of forces exerted on immersed surfaces and submerged bodies, and
the study of the shapes of interfaces separating stationary, translating, or rotating fluids.
Although the problem statement and mathematical formulation is straightforward in both
cases, deriving solutions for all but the simplest configurations requires the use of numerical
methods for solving algebraic, ordinary, and partial differential equations.

5.1 Equilibrium of pressure and body forces

Consider a parcel of a stationary fluid, as illustrated in Figure 5.1.1(a). Newton’s second
law of motion requires that, in the absence of macroscopically observable flow, the forces
exerted on the parcel should balance to zero. In Chapter 4, we saw that two kinds of forces
are exerted on a parcel: a body force due to the gravitational or another force field mediated
by long-range molecular interactions, and a surface force associated with the hydrodynamic
traction.

Body force

The body force due to gravity can be expressed as an integral over the volume of the parcel
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Figure 5.1.1 (a) Illustration of a parcel of a stationary fluid showing the outward unit normal vector,
n. (b) A parcel with a rectangular parallelepiped shape serves as a control volume for deriving
the differential equations governing the pressure distribution in hydrostatics.

involving the possibly position-dependent fluid density, ρ, in the form

Fbody =

∫∫∫
parcel

ρg dV, (5.1.1)

where g = (gx, gy, gz) is the acceleration of gravity vector. On the surface of the earth, the
magnitude of g takes the approximate value |g| ≡ g = 9.80665 m/sec2.

Surface force

The surface force can be expressed in terms of the traction exerted on the parcel surface, f ,
in the corresponding form

Fsurface =

∫∫
parcel

f dS. (5.1.2)

In the absence of fluid motion, the traction is due to the pressure, p, alone pushing the parcel
surface toward the interior. If n is the unit vector normal to the parcel surface pointing
outward, as illustrated in Figure 5.1.1(a), then

f = −pn. (5.1.3)

The minus sign on the right-hand side accounts for the opposite orientations of the normal
vector and traction due to the pressure.

Substituting (5.1.3) into (5.1.2), we derive an expression for the surface force in terms
of the pressure,

Fsurface = −
∫∫

parcel

pn dS. (5.1.4)

The integral on the right-hand side can be evaluated by analytical or numerical methods.
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Force equilibrium

Setting the sum of the body force given in (5.1.1) and the surface force given in (5.1.4) to
zero, we obtain a vectorial equilibrium condition,∫∫∫

parcel

ρg dV −
∫∫

parcel

pn dS = 0. (5.1.5)

The three scalar components of this equation are∫∫∫
parcel

ρ gx dV =

∫∫
parcel

p nx dS,

∫∫∫
parcel

ρ gy dV =

∫∫
parcel

p ny dS,∫∫∫
parcel

ρ gz dV =

∫∫
parcel

p nz dS, (5.1.6)

where the unit normal vector, n = (nx, ny, nz), points outward from the parcel, as shown
in Figure 5.1.1(a).

5.1.1 Equilibrium of an infinitesimal parcel

Next, we consider a small fluid parcel in the shape of a rectangular parallelepiped centered
at the origin with six flat sides perpendicular to the x, y, or z axis and edges with length
Δx, Δy, and Δz, as illustrated in Figure 5.1.1(b). Because the size of the parcel is small,
density variations over the parcel volume can be neglected and the volume integrals on the
left-hand side of equations (5.1.6) can be approximated with the products

ρ0 gx ΔV, ρ0 gy ΔV, ρ0 gz ΔV, (5.1.7)

where ρ0 is the density of the fluid at the center of the parcel located at the origin, and
ΔV = ΔxΔy Δz is the parcel volume.

Now we consider the surface integral on the left-hand side of the first equation in (5.1.6).
The x component of the normal vector vanishes on all sides, except on the two sides that
are perpendicular to the x axis, located at x = 1

2Δx, and x = − 1
2Δx, designated as the first

and second side. On the first side nx = 1, and on the second side nx = −1. Because the
parcel size is small, variations in pressure over each side can be neglected and the pressure
over a side can be approximated with the value at the side center.

Subject to this approximation, the surface integral on the right-hand side of the first
equation in (5.1.6) over the first or second side is, respectively,

p
(
x =

1

2
Δx, y = 0, z = 0

)
Δy Δz, −p

(
x = − 1

2
Δx, y = 0, z = 0

)
Δy Δz, (5.1.8)

where the parentheses enclose the arguments of the pressure. Adding these two contribu-
tions, we obtain the net pressure force

Fx ≡ Δpx Δy Δz, (5.1.9)
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where

Δpx ≡ p
(
x =

1

2
Δx, y = 0, z = 0

)− p
(
x = − 1

2
Δx, y = 0, z = 0

)
. (5.1.10)

In the limit as Δx tends to zero, the ratio of the differences in the pressure and corresponding
x positions,

Δpx
1
2Δx− (− 1

2Δx)
=

Δpx
Δx

, (5.1.11)

tends to the partial derivative ∂p/∂x evaluated at the origin. The expression for the net
pressure force then becomes

Fx =
(∂p

∂x

)
0

ΔxΔy Δz =
(∂p

∂x

)
0

ΔV, (5.1.12)

where the partial derivative is evaluated at the origin.

Equations of hydrostatics

Substituting (5.1.12) along with the first approximate form in (5.1.7) into the x component
of the force balance (5.1.6), and simplifying by eliminating ΔV on both sides, we obtain the
differential equation

ρ gx =
∂p

∂x
, (5.1.13)

where the density, ρ, and the partial derivative of the pressure are evaluated at the origin.
However, since the location of the origin is arbitrary, equation (5.1.13) can be applied at
every point in the fluid.

Working in a similar fashion with the second and third hydrostatic equilibrium equations
in (5.1.6), we obtain the corresponding differential equations

ρ gy =
∂p

∂y
, ρ gz =

∂p

∂z
. (5.1.14)

The three scalar equations (5.1.13) and (5.1.14) can be collected into a compact vector form,

ρg = ∇p, (5.1.15)

where

∇p =
( ∂p

∂x
,

∂p

∂y
,

∂p

∂z

)
(5.1.16)

is the pressure gradient. In physical terms, the differential equation (5.1.15) expresses a
balance between the gravitational and the pressure force in hydrostatics, that is, in the
absence of fluid motion.
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Derivation by the Gauss divergence theorem

The differential equilibrium equation (5.1.4) can be derived directly from the force balance
(5.1.5) by applying the Gauss divergence theorem stated in equation (2.6.36),∫∫

S
h · n dS =

∫∫∫
V
∇ · h dV. (5.1.17)

Selecting

hx = φ, hy = 0, hz = 0 (5.1.18)

to formulate the vector function h = (φ, 0, 0), we obtain∫∫
S
φnx dS =

∫∫∫
V

∂φ

∂x
dV, (5.1.19)

where φ is an arbitrary scalar function of position. The complementary choices h = (0, φ, 0)
and h = (0, 0, φ) yield the corresponding identities∫∫

S
φny dS =

∫∫∫
V

∂f

∂y
dV,

∫∫
S
φnz dS =

∫∫∫
V

∂f

∂z
dV. (5.1.20)

Relations (5.1.19) and (5.1.20) can be collected into a vector identity,∫∫
S
φn dS =

∫∫∫
V
∇φ dV, (5.1.21)

where

∇φ =
( ∂φ
∂x

,
∂φ

∂y
,
∂φ

∂z

)
(5.1.22)

is the gradient of φ.

Applying (5.1.21) to the second integral on the left-hand side of (5.1.5) expressing the
surface force due to the pressure, we obtain∫∫∫

parcel

ρg dV −
∫∫∫

parcel

∇p dV = 0. (5.1.23)

The differential equation (5.1.15) follows from the realization that the volume is arbitrary.

Gases and liquids

Equation (5.1.15) provides us with a basis for computing the distributions of pressure and
density in a fluid, subject an additional stipulation concerning the physical properties of
the fluid required by thermodynamics. Specifically, given the density field, or a relation
between the density and the pressure, equation (5.1.15) allows us to compute the associated
pressure and vice versa. To this end, we make a distinction between compressible gases and
incompressible liquids.
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5.1.2 Gases in hydrostatics

The density of a gas, ρ, is related to the pressure, p, and temperature, T , by an equation of
state provided by thermodynamics. For an ideal gas,

ρ =
M

RT
p, (5.1.24)

where M is the molecular mass and R is the ideal-gas constant, as discussed in Section 4.4.
Substituting (5.1.24) into (5.1.15) and rearranging, we obtain a vectorial equation involving
the pressure and temperature,

M

RT
g =

1

p
∇p. (5.1.25)

The x component of this equation reads

M

RT
gx =

1

p

∂p

∂x
=

∂

∂x

(
ln

p

π0

)
, (5.1.26)

where π0 is an unspecified reference pressure.

When the temperature of the fluid is uniform, we may integrate (5.1.26) with respect
to x to obtain

ln
p

π0
=

M

RT
gx x+ fx(y, z), (5.1.27)

where fx(y, z) is an unknown function. Working in a similar fashion with the y and z
components of (5.1.25) under the assumption of uniform temperature, we obtain

ln
p

π0
=

M

RT
gy y + fy(x, z), ln

p

π0
=

M

RT
gz z + fz(x, y), (5.1.28)

where fy(z, x) and fz(x, y) are two unknown functions. Combining the last three equations,
we obtain the pressure distribution

ln
p

π0
=

M

RT
( gx x+ gy y + gz z ). (5.1.29)

The reference pressure π0 is determined by requiring an appropriate boundary condition.

Expressing the term in the parentheses on the right-hand side of (5.1.29) in terms of
the inner product of the gravity vector, g, and the position vector, x, and transferring the
last term to the left-hand side, we obtain the compact form

ln
p

π0
=

M

RT
g · x, (5.1.30)

which describes the pressure distribution in an ideal gas with uniform temperature.
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Pressure distribution in the atmosphere

As an application, we consider the pressure distribution in the atmosphere regarded as
an ideal gas with molar mass M = 28.97 kg/kmole, at temperature 25◦C corresponding to
absolute temperature T = 298 K. In Cartesian coordinates with origin at sea level, where the
y axis points upward and the x and z axes are horizontal, the components of the acceleration
of gravity vector are

gx = 0, gy = −g, gz = 0, (5.1.31)

where g = 9.80665 m/s2. Equation (5.1.30) simplifies to

ln
p

psea
= −Mg

RT
y, (5.1.32)

where psea is the pressure at sea level. Solving for p, we derive an exponentially decaying
field,

p = psea exp
(− Mg

RT
y
)
. (5.1.33)

Taking

psea = 1.0 atm = 1.0133× 105 Pascal = 1.0133× 105kg m−1 sec−2, (5.1.34)

we find that the pressure at the elevation of y = 1 km= 1, 000 m is

p = 1.0 exp
(− 28.97× 9.80665

8.314× 103 × 298
1000

)
atm = 0.892 atm. (5.1.35)

The corresponding density distribution is found by substituting the pressure distribution
(5.1.33) into the right-hand side of the equation of state (5.1.24).

5.1.3 Liquids in hydrostatics

Because liquids at low and moderate pressures are nearly incompressible, their density is a
physical property determined primarily by the prevailing temperature. Working as in the
case of gases but treating the density as a constant, we find that the pressure distribution
is given by the counterpart of equation (5.1.30),

p = ρ (gx x+ gy y + gz z) + π0 (5.1.36)

or, more concisely,

p = ρg · x+ π0, (5.1.37)

where π0 is a constant with units of pressure determined by an appropriate boundary con-
dition.
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Pressure distribution in a pool

As an application, we consider the pressure distribution in a liquid pool with a horizontal
surface. In Cartesian coordinates where the y axis is perpendicular to the pool surface
pointing in the vertical direction upward and the x and z axes are horizontal, the components
of the acceleration of gravity vector are

gx = 0, gy = −g, gz = 0, (5.1.38)

where g is the magnitude of the acceleration of gravity. The general equation (5.1.37) then
simplifies to

p = −ρgy + π0. (5.1.39)

Setting the origin of the y axis at the pool surface where the liquid pressure is equal to the
atmospheric pressure, patm, we find that π0 = patm.

Manometer

The pressure distribution given in (5.1.37) also applies when a contiguous liquid occupies
a convoluted domain. In practice, this property is exploited for computing the pressure
difference across the two ends of a tube in terms of the difference in the levels of a liquid col-
umn placed inside the tube. A simple device serving this purpose is the U-tube manometer
illustrated in Figure 5.1.2.

The pressure distribution in the liquid inside the U-tube manometer is given by equation
(5.1.39). Applying this equation at the two ends of the liquid, located at y = y1 and y2,
and subtracting the resulting expressions, we find that

Δp ≡ p(y1)− p(y2) = ρ g (y2 − y1). (5.1.40)

If the tube is exposed to the atmosphere at the first end, p(y1) = patm, and thus

p(y2) = patm + ρgh, (5.1.41)

where h ≡ y1 − y2 is the readily measurable rise of the liquid column in the manometer.

5.1.1 Hydrostatic pressure distribution

(a) Derive the pressure distribution in an incompressible liquid given in equation (5.1.37).

(b) Derive the pressure distribution in an ideal gas occupying the semi-infinite region y > 0
when the temperature decreases exponentially with distance as

T = T0 −ΔT (1− e−αy), (5.1.42)

where T0, ΔT , and α are three specified constants. The gravity vector points in the negative
direction of the y axis.

Problems
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Figure 5.1.2 Illustration of a U-tube manometer. The pressure distribution in the fluid is described
by the equations of hydrostatics even if the fluid has a convoluted shape, as long as it remains
contiguous and uninterrupted.

5.1.2 Function of an aircraft altimeter

The temperature in the lower part of the troposphere extending 10 km above the surface
of the earth decreases at a nearly linear rate as T = T0 − α y, where T0 is the temperature
at the surface of the earth positioned at y = 0, and α is the lapse rate. In North America,
α = 6.5 K/km.

(a) Assuming that the atmosphere behaves like an ideal gas, derive the atmospheric pressure
distribution

p = π0

(
1− α

T0
y
)β

, (5.1.43)

and evaluate the dimensionless exponent β ≡ Mg/(Rα), where π0 is the pressure at sea
level.

Solving (5.1.43) for the elevation y, we find that

y =
T0

α

(
1−

( p

π0

)1/β )
. (5.1.44)

This equation is used for calibrating an aircraft altimeter, that is, for converting pressure
measured with a barometer into altitude.

(b) Show that, as α tends to zero, in which case the temperature distribution tends to
become constant, the pressure distribution (5.1.43) reduces to that shown in (5.1.33).

5.1.3 How many molecules inside a certain volume of gas?

How many molecules are there inside one cubic centimeter (1 milliliter) of a gas under
atmospheric pressure and temperature 25◦C?
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Figure 5.2.1 Illustration of a surface that (a) contains or (b) is immersed in a stationary fluid.

5.2 Force exerted on an immersed surface

To compute the hydrostatic surface force exerted on a surface that contains or is immersed
in a stationary fluid, as illustrated in Figure 5.2.1, we repeat the arguments the led us to
equation (5.1.4) and obtain

Fsurface = −
∫∫

pn dS, (5.2.1)

where n is the unit vector normal to the surface pointing into the fluid and the integration
is performed over the surface.

To evaluate the integral on the right-hand side of (5.2.1), we must first determine the
pressure distribution in the fluid, as discussed in Section 5.1, and then evaluate the integral
by analytical or numerical methods.

5.2.1 A sphere floating on a flat interface

As an application, we consider the force exerted on a sphere floating on the flat surface
of a liquid pool underneath a zero-density gas, as depicted in Figure 5.2.2. In spherical
polar coordinates with origin at the center of the sphere and the x axis pointing upward,
the circular contact line where the surface of the liquid meets the sphere is located at the
meridional angle θ = β.

Symmetry requires that the horizontal component of the surface force exerted on the
sphere must vanish. The vertical component of the surface force is given by

F surface
x = −

∫∫
p nx dS, (5.2.2)

where nx = cos θ is the x component of the unit normal vector. The pressure distribution
is described by equation (5.1.37) with gravitational acceleration components

gx = −g, gy = 0, gz = 0, (5.2.3)
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Figure 5.2.2 Illustration of a sphere floating in the flat surface of a liquid at floating angle β. The
dashed line represents the horizontal circular contact line.

yielding

p = −ρ g x+ π0. (5.2.4)

To compute the reference pressure π0, we require that the pressure at the contact line is equal
to the atmospheric pressure, p = patm at x = a cosβ, and find that patm = −ρg a cosβ+ π0,
which can be rearranged to give

π0 = ρ g a cosβ + patm, (5.2.5)

where a is the sphere radius. Writing x = a cos θ, we find that the pressure distribution over
the sphere is given by

p = −ρ g a (cos θ − cosβ) + patm. (5.2.6)

Now substituting the pressure distribution (5.2.6) into the integral on the right-hand
side of (5.2.2), we find that the force exerted on the sphere by the liquid is given by

F surface
x =

∫∫ (
ρ g a (cos θ − cosβ)− patm

)
cos θ dS. (5.2.7)

The differential surface area of the sphere can be expressed in the form

dS = (σdϕ)(adθ), (5.2.8)

where σ = a sin θ is the distance of a point on the surface of the sphere from the x axis and
ϕ is the azimuthal angle. Substituting this expression into the right-hand side of (5.2.7) and
integrating with respect to ϕ, we obtain

F surface
x = 2πa2

∫ π

β

(
ρ g a (cos θ − cosβ)− patm

)
cos θ sin θ dθ. (5.2.9)
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Next, we set sin θ dθ = −d cos θ and carry out the integration on the right-hand side with
respect to cos θ to find that

F surface
x = πa2

[
ρ g a

1

3
(2 + 3 cosβ − cos3 β) + patm (1− cos2 β)

]
. (5.2.10)

Working in a similar fashion, we find that the x component of the force due to the
atmospheric pressure exerted on the non-immersed portion of the sphere subtended between
the meridional angles θ = 0 and β is given by

F atm
x = −2πa2

∫ β

0

patm cos θ sin θ dθ = −πa2 patm(1− cos2 β). (5.2.11)

Adding the two contributions expressed by (5.2.10) and (5.2.11), we obtain the buoyancy
force exerted on the sphere,

F buoyancy
x ≡ F surface

x + F atm
x = ρg

(
π

1

3
(2 + 3 cosβ − cos3 β) a3

)
. (5.2.12)

It can be shown using elementary trigonometry that the term enclosed by the large
parentheses on the right-hand side of (5.2.12) is equal to the immersed volume of the sphere
underneath the flat surface of the liquid, which is equal to the volume of fluid displaced by
the sphere, Vdisplaced. For example, if the sphere is completely immersed, β = 0, the term
enclosed by the short parentheses on the right-hand side of (5.2.12) is equal to 4, and the
term enclosed by the large parentheses is equal to the volume of the sphere, Vsphere =

4π
3 a3.

Equation (5.2.12) states that the hydrostatic force exerted on a floating sphere is equal
in magnitude and opposite in direction to the weight of the fluid displaced by the sphere. In
Section 5.3, we will see that this is a more general result applicable to an arbitrarily shaped
floating or immersed object.

Computation of the floating angle

The floating angle, β, is determined by the weight of the sphere: the heavier the sphere,
the smaller the angle; the lighter the sphere, the larger the angle. There is a critical weight
where β becomes equal to zero and the sphere is completely submerged.

To compute the floating angle corresponding to a certain weight, W , we set W equal to
the buoyancy force given in (5.2.12) and rearrange to obtain a cubic equation for cosβ,

cos3 β − 3 cosβ + 2 (2s− 1) = 0, (5.2.13)

where

s ≡ W

ρgVsphere
(5.2.14)

is a dimensionless parameter and Vsphere =
4π
3 a3 is the volume of the sphere. If the sphere

is made of a homogeneous material with density ρs, then s = ρs/ρ is the density ratio. A
neutrally buoyant sphere corresponds to s = 1, in which case cosβ = 1 and β = 0 satisfy
equation (5.2.13), as expected. When s = 1

2 , the floating angle is 1
2π.
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Figure 5.2.3 Graph of the function f(q) defined in equation (5.2.16) whose root, Q, is desired, for
s = 1

4
. To compute the root using Newton’s method, we make an initial guess, q(0), and then

improve the guess by moving along the tangential vector to the graph toward the q axis.

5.2.2 Newton’s method

A variety of numerical methods are available for solving the nonlinear algebraic equation
(5.2.13) for β, given s. Newton’s method, also known as the Newton–Raphson method,
strikes an optimal balance between conceptual simplicity and numerical efficiency. To for-
malize the method, we introduce the variable q ≡ cosβ, and express equation (5.2.13) in
the generic form

f(q) = 0, (5.2.15)

where

f(q) ≡ q3 − 3 q + 2 (2s− 1) (5.2.16)

is the function of interest. A graph of the function f(q) for s = 0.25 is shown in Figure
5.2.3. The requisite value of q, denoted by Q, is located at the intersection of the graph of
f(q) and the q axis, satisfying f(Q) = 0.

To implement Newton’s method, we make an initial guess for the desired root Q, denoted
by q(0), and then generate a sequence of improvements working as follows. Near the point
q(0), the function f(q) can be approximated with a linear function that arises by expanding
f(q) in a Taylor series about q(0). Discarding all nonlinear terms, we obtain the approximate
form

f(q) 	 f(q(0)) +
(df
dq

)
q=q(0)

(q − q(0)). (5.2.17)

Setting f(q) = 0, solving for the q inside the parentheses on the right-hand side of (5.2.17),
and denoting the solution as q(1), we obtain the improved value

q(1) = q(0) −
( f

f ′

)
q=q(0)

, (5.2.18)
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where a prime denotes a derivative with respect to q. The process is then repeated to yield
a sequence of successive approximations based on the recursive formula

q(k+1) = q(k) −
( f

f ′

)
q=q(k)

(5.2.19)

for k = 0, 1, . . . . Erroneously omitting the minus sign on the right-hand side of (5.2.19) is
a common source of frustration. The iterations terminate when the correction falls below a
specified tolerance.

In the case of a floating sphere presently considered,

f ′ = 3 q2 − 3 (5.2.20)

and Newton’s formula takes the form

q ← q − q3 − 3 q + 2 (2s− 1)

3 q2 − 3
=

2

3

q3 − (2s− 1)

q2 − 1
, (5.2.21)

where the arrow stands for replace. The method is implemented in the following MAT-

LAB function

function q = floating sphere(s,q)

tolerance = 0.000001;

itermax = 10;

cf = 2.0*s-1.0;

error = tolerance + 1.0;

iter = 0; % iteration counter

while (error>tolerance & iter<itermax)

iter = iter+1;

qsave = q;

q2 = q*q; q3 = q2*q;

q = 2/3 * (q3-cf)/(q2-1);

error = abs(q-qsave)

end

return

The input field includes the parameter s and the initial guess. For a given s, the solution
satisfying |q| ≤ 1 is accepted; we recall that q = cosβ.

Convergence

Analysis shows that the sequence defined by (5.2.19) converges to Q as long as the initial
guess q(0) is sufficiently close to the root, Q . The rate of convergence depends on the
multiplicity of the root.



5.2 Force exerted on an immersed surface 255

If the graph of the function f(q) is not horizontal at the root, f ′(q = Q) 
= 0, the rate
of convergence is quadratic, which means that

q(k+1) −Q 	 δ (q(k) −Q)2, (5.2.22)

where δ = f ′′(Q)/[2f ′(Q)] is an a priori unknown coefficient. Equation (5.2.22) states that
the magnitude of the error in the current iteration, expressed by the left-hand side, is roughly
equal to the square of the magnitude of the error in the previous iteration multiplied by a
constant. Consequently, if the initial error, q(0) −Q, is sufficiently small, the magnitude of
the error, q(k)−Q, will keep decreasing during the iterations, no matter how large the value
of the coefficient δ. A prerequisite is that the initial guess is close enough to the root so
that (5.2.22) applies.

If the graph of the function f(q) is horizontal at the root, (df/dq)q=Q = 0, the rate of
convergence is linear, which means that

q(k+1) −Q 	 m− 1

m
(q(k) −Q), (5.2.23)

where m is the multiplicity of the root; for a double root, m = 2. Equation (5.2.23) states
that the magnitude of the error at the current iteration, q(k+1)−Q, is roughly equal to that
in the previous iteration, q(k) −Q, multiplied by the positive coefficient (m − 1)/m, which
is less than unity for any m > 1. Consequently, the error |q(k) − Q| will keep decreasing
during the iterations as long as the initial guess is close enough to the root for (5.2.23) to
apply.

5.2.1 Pycnometer

A pycnometer is an antiquated device used to measure the specific gravity of a liquid, defined
as the ratio of the density of the liquid to the density of water. In practice, this is done
by reading the level of the free surface on a scale printed on a vertical tube attached to
a spherical flask floating on the liquid, as illustrated in Figure 5.2.4. Pycnometer derives
from the Greek word πυκνoτητα, which means density. Derive an equation that allows us
to calibrate a pycnometer based on the known density of water.

5.2.2 A sphere straddling the interface between two fluids

Derive the counterpart of expression (5.2.12) for a sphere straddling the interface between
a lower fluid with density ρ2 and an upper fluid with density ρ1.

5.2.3 A floating cylinder

(a) Show that the buoyancy force exerted on a floating cylinder of radius a is given by

F buoyancy
x = ρga2

(
π − β +

1

2
sin 2β

)
, (5.2.24)

where β is the floating angle defined in Figure 5.2.2.

Problems
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Figure 5.2.4 A pycnometer is used to measure the specific gravity of a liquid defined as the ratio
between the density of the liquid to the density of water.

(b) Show that the floating angle of a solid cylinder satisfies the equation

sin(2β)− 2β + 2π(1− s) = 0, (5.2.25)

where s ≡ ρB/ρ is the ratio of the density of the cylinder, ρB, to the density of the liquid, ρ.

5.2.4 Floating sphere

(a) Directory 04 nl eq, located inside directory 01 num meth of Fdlib, includes a program
entitled newton1 2 that implements Newton’s method for solving one nonlinear equation.
Use the program to solve equation (5.2.13) and prepare a plot the floating angle, β, against
the dimensionless parameter s defined in equation (5.2.14). Discuss the convergence of the
iterations in light of equations (5.2.22) and (5.2.23).

(b) Directory 04 nl eq, located inside directory 01 num meth of Fdlib, includes a program
entitled cubic that computes the three roots of a cubic equation using Cardano’s formula.
Use the program to solve equation (5.2.13). Prepare a plot of the floating angle, β, against
the dimensionless parameter, s.

5.3 Archimedes’ principle

Consider the force exerted on a body with arbitrary shape immersed in a stationary fluid.
Using equation (5.2.1), we find that the surface force exerted on the body is given by

Fsurface = −
∫∫

body

pn dS, (5.3.1)

where n is the unit vector normal to the body pointing into the fluid. It would appear that
the computation of the integral on the right-hand side of (5.3.1) requires detailed knowledge
of the shape of the body. In fact, if the fluid is incompressible, the integral can be evaluated
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in a generic fashion, yielding a remarkably simple expression for the force in terms of the
body volume alone.

Substituting the pressure distribution for an incompressible fluid given in (5.1.37) into
the right-hand side of (5.3.1), we find that

Fsurface = −
∫∫

body

(
ρ (gxx+ gyy + gzz) + π0

)
n dS. (5.3.2)

A key observation in evaluating the surface integral is that the integrand is the product of
the unit normal vector, n, and a scalar function that is linear with respect to the components
of the position vector, x = (x, y, z).

Rectangular body

To see how the evaluation of the integral can be simplified, we consider a body having
the shape of a rectangular parallelepiped. The six flat sides of the body are perpendicular
to the x, y, or z axis, the lengths of the edges are equal to Δx, Δy, and Δz, and the
volume of the body is equal to VB = Δx Δy Δz. The unit normal vector is constant over
each of the six sides. For example, over the side that is perpendicular to the x axis and
faces the positive direction of the x axis, n = (1, 0, 0). Taking into consideration this and
similar simplifications, we evaluate the integral on the right-hand side of (5.3.2) without
approximation, finding that

Fsurface = −ρ VB g, (5.3.3)

which expresses Archimedes’ principle, stating that the force exerted on an immersed body
by the ambient fluid is equal in magnitude and opposite in direction to the weight of the fluid
displaced by the body.

Arbitrary body

To compute the integral on the right-hand side of (5.3.2) over an arbitrarily shaped body,
we may subdivide the volume of the body into small rectangular parallelepipeds and ap-
proximate the surface of the body with the collection of the faces of the parallelepipeds that
are in contact with the fluid. Because of cancellations, the sum of the integrals over the
faces of all elementary parallelepipeds is equal to the sum of the integrals of the faces that
are wetted by the fluid. Summing all contributions, we find that the force exerted on the
body is given by (5.3.3) independent of the body shape. We have found that Archimedes’s
principles stands true for arbitrarily shaped bodies. To confirm this intuitive result, we
employ the Gauss divergence theorem.

Gauss divergence theorem

An identity stemming from the Gauss divergence theorem in three dimensions was stated
in equation (5.1.21), ∫∫

S
φn dS =

∫∫∫
V
∇φ dV. (5.3.4)
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Comparing (5.1.21) with (5.3.2), we set

φ = ρ (gx x+ gy y + gz z) + π0, (5.3.5)

compute the gradient

∇φ = ρ
(
gx, gy, gz

)
= ρg, (5.3.6)

and find that the surface force is given by

Fsurface = −
∫∫

body

[
ρ (gx x+ gy y + gz z) + π0

]
n dS = −ρg

∫∫∫
body

dV = −ρVB g, (5.3.7)

which reproduces precisely equation (5.3.3).

5.3.1 Net force on a submerged body

The mass of a body with volume VB made of a homogeneous material with density ρB is
mB = ρB VB, and the weight of the body is

W = ρB VB g, (5.3.8)

where g is the gravitational acceleration. Adding to the weight the buoyancy force given in
(5.3.3), we find that the net force exerted on an immersed body is

F = Fsurface +W = (ρB − ρ)VB g. (5.3.9)

Since the density of a neutrally buoyant body is equal to the density of the ambient fluid,
the right-hand side of (5.3.9) vanishes, yielding a zero net force.

5.3.2 Moments

The moment of the surface force about a chosen point, x0, is found by integrating the
moment of the traction expressed in terms of the pressure,

Msurface =

∫∫
body

(x− x0)× (−pn) dS, (5.3.10)

where × denotes the outer vector product. Substituting the linear hydrostatic pressure
distribution for an incompressible fluid, we obtain

Msurface = −ρ

∫∫
body

(g · x+ π0) (x− x0)× n dS. (5.3.11)

Unlike the force, the moment depends on the particular geometry of the body.

To evaluate the integral on the right-hand side of (5.3.11), we resort once again to the
Gauss divergence theorem in three dimensions stated in equation (2.6.36) for an arbitrary
vector field, h, ∫∫

S
h · n dS =

∫∫∫
V
∇ · h dV. (5.3.12)
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Setting h = a×w, where a is a constant vector and w is a differentiable function, and then
discarding the arbitrary constant a, we obtain the identity∫∫

S
n×w dS =

∫∫∫
V
∇×w dV, (5.3.13)

where ∇×w is the curl of w. Now setting

w = (g · x+ π0)(x− x0), (5.3.14)

we find that

Msurface = ρ

∫∫∫
body

∇× (
(g · x+ π0)(x− x0)

)
dV. (5.3.15)

Using a vector identity, we obtain

Msurface = ρ

∫∫∫
body

(
∇(g · x)× (x− x0) + (g · x+ π0)∇× x

)
dV. (5.3.16)

Noting that ∇(g · x) = g and ∇× x = 0, we obtain the final expression

Msurface = ρg ×
∫∫∫

body

(x− x0) dV. (5.3.17)

We observe that, if the point x0 is identified with the center of mass of a homogeneous fluid
displaced by a body with volume VB, given by

xc =
1

VB

∫∫∫
body

x dV, (5.3.18)

then the surface moment is zero.

The moment exerted on a homogeneous body due to gravity is given by

Mgravity = −g ×
∫∫∫

body

ρB (x− x0) dV, (5.3.19)

and the total moment exerted on the body is

M = Msurface +Mgravity = g

∫∫∫
body

(ρ− ρB) (x− x0) dV, (5.3.20)

which is zero if the point x0 is identified with the center of mass of a homogeneous fluid
displaced by the body, or else if the density of the fluid matches the density of the body.

Equilibrium of an immersed body

The buoyancy force vector passes through the center of mass of the fluid displaced by the
body, whereas the body weight vector passes through the center of mass of the body. If the
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Figure 5.4.1 Illustration of an infinite horizontal interface located at y = yI, separating two stationary
fluids. The pressure distribution is shown on the right.

former lies above the latter, the body is in a state of stable equilibrium and will remain
stationary. In the opposite case, the body will rotate spontaneously to reach a stable
configuration.

5.3.1 Applications of the Gauss divergence theorem

(a) Apply (5.1.21) for a constant function f and discuss the results.

(b) Show that the center of gravity of a homogeneous body can be computed in terms of a
surface integral as

xc =
1

2VB

∫∫
body

(x2 + y2 + z2)n dS. (5.3.21)

5.4 Interfacial shapes

Consider two superposed stationary incompressible fluids separated by an infinite horizontal
interface located at y = yI, as illustrated in Figure 5.4.1. The acceleration of gravity points
against the y axis. The upper fluid is labeled 1 and the lower fluid is labeled 2.

Using the general expression for the pressure distribution in an incompressible liquid,
given in equation (5.1.37), and setting gx = 0, gy = −g, and gz = 0, we find that the
pressure distributions in the two fluids are given by

p(1)(y) = −ρ1gy + π1, p(2)(y) = −ρ2gy + π2. (5.4.1)

The constants π1 and π2 are related by the condition for the jump in the traction across an
interface with uniform surface tension stated in equation (4.5.16).

Problem
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Since in this case the curvature of the interface vanishes, κ = 0, condition (4.5.16)
requires that the pressure is continuous across the interface,

p(1)(y = yI) = p(2)(y = yI). (5.4.2)

Substituting the pressure distributions given in (5.4.1) into (5.4.2), we obtain

−ρ1 g yI + π1 = −ρ2 g yI + π2, (5.4.3)

which can be rearranged to give

π2 = π1 + (ρ2 − ρ1) g yI. (5.4.4)

One of the two reference pressures, π1 and π2, is determined by requiring an appropriate
boundary condition far from the interface, and the other follows from (5.4.4). For example,
if the pressure on the upper side of the interface is equal to the atmospheric pressure patm,
then

π1 = patm + ρ1 g yI, π2 = patm + ρ2 g yI. (5.4.5)

5.4.1 Curved interfaces

In practice, the flat interface depicted in Figure 5.4.1 terminates at a side wall, as illustrated
in Figure 5.4.2. Additional examples of terminated interfaces are depicted in Figure 5.5.1,
illustrating a semi-infinite interface ending at an inclined plate, in Figure 5.6.1, illustrat-
ing an interface confined between two parallel plates, and in Figure 5.7.1, illustrating the
interface of a drop attached to a horizontal plane.

Contact line

The line where two fluids meet on a solid surface is called the contact line. In the case of
a two-dimensional or axisymmetric interface, the contact line is represented by a contact
point, which is the trace of the contact line in the xy or an azimuthal plane, marked by a
circular symbol in Figures 5.5.1, 5.6.1, and 5.7.1.

Contact angle

The angle subtended between (a) the line that is normal to the contact line and tangential
to the solid surface, and (b) the line that is normal to the contact line and tangential to
the interface, measured by convention on the side of fluid labeled 2, as illustrated in Figure
5.4.2, is called the contact angle.

The static contact angle is a physical constant determined by the prevailing physical
conditions and physical properties of the solid and fluids. If fluid 1 wets the solid better
than fluid 2, then the contact angle is less than 1

2π but higher than the minimum possible
value of 0. If fluid 2 wets the solid better than fluid 1, the contact angle is higher than 1

2π
but less than the maximum possible value of π.
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Figure 5.4.2 Illustration of an interface terminating at a contact line on a surface. By convention,
the contact angle, α, is measured on the side of the fluid labeled 2.

If the side-wall illustrated in Figure 5.4.2 is vertical and the static contact angle is equal
to 1

2π, the interface remains flat all the way up to the contact line. Under more general
conditions, the interface assumes a curved shape established spontaneously to satisfy a
physical requirement on the contact angle.

5.4.2 The Laplace-Young equation for a two-dimensional interface

To derive an equation governing the shape of a two-dimensional curved interface separating
two immiscible fluids, we substitute the pressure distributions (5.4.1) into the interfacial
condition (4.5.16),

p(2) − p(1) = γ κ, (5.4.6)

finding

−ρ2 g y + π2 + ρ1 g y − π1 = γ κ, (5.4.7)

where κ is the interfacial curvature and y is the elevation of the interface. Rearranging, we
obtain the Laplace–Young equation governing the shape of a two-dimensional interface in
hydrostatics,

κ = −Δρ g

γ
y +B, (5.4.8)

where Δρ ≡ ρ2 − ρ1 is the density difference and

B ≡ π2 − π1

γ
(5.4.9)

is a constant with units of inverse length. In applications, the constant B is determined by
enforcing an appropriate boundary condition or global constraint.

The Laplace–Young equation (5.4.8) essentially requires that the curvature of an inter-
face is a linear function of the elevation from a reference state, y. An obvious solution is
found by assuming that the elevation y is constant along the interface, y = b, and then set-
ting B = Δρ gb/γ, finding that κ = 0. However, the flat shape of the interface computed in
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this fashion will not necessarily satisfy the boundary condition on the static contact angle;
consequently, the obvious solution will not be admissible. The shape of the interface must
be found so that equation (5.4.8) and a prescribed boundary condition on the contact angle
are both satisfied.

Capillary length

Assuming that the fluids separated by an interface are stably stratified, that is, ρ2 > ρ1 or
Δρ ≡ ρ2 − ρ1 > 0, we introduce the capillary length defined as

λ ≡
( γ

Δρ g

)1/2

. (5.4.10)

For an air-water interface at 20◦ Celsius, γ = 73 dynes/cm = 73 × 10−3 kg/sec2, ρ1 = 0.0
kg/m3, ρ2 = 1000.0 kg/m3, yielding a capillary length of 2.72 mm. Equation (5.4.8) may
now be recast into the compact form

κ = − y

λ2
+B. (5.4.11)

All three terms in this equation have units of inverse length.

Arbitrary orientation

Implicit in (5.4.8) is the assumption that the acceleration of gravity vector, g, points against
the y axis. The general expression for an arbitrary orientation of the gravitational acceler-
ation with respect to the working coordinates is

κ =
Δρ

γ
g · x+B, (5.4.12)

where the point x lies at the interface, the pressure distributions in the two fluids are given
by

p(1)(x) = ρ1g · x+ π1, p(2)(x) = ρ2 g · x+ π2, (5.4.13)

and the constant B is given in (5.4.9).

5.4.3 Three-dimensional and axisymmetric interfaces

The equations derived in Section 5.4.2 for a two-dimensional interface also apply for an
axisymmetric or a genuinely three-dimensional interface, provided that the curvature in the
xy plane is replaced by twice the mean curvature, 2κm. The counterpart of the Laplace–
Young equation (5.4.10) is

2κm = − y

λ2
+B, (5.4.14)

where the constant B is given in (5.4.9). We recall that the mean curvature is the average
of two conjugate curvatures at any point on the interface.
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Figure 5.5.1 Illustration of a semi-infinite interface attached to an inclined plate. Far from the plate,
the interface becomes horizontal.

When gravitational effects are not important, the first term on the right-hand side of
(5.4.14) is insignificant. Consequently, the interface adjusts to obtain a uniform mean-
curvature shape, such as that assumed by a thin soap film attached to a wire frame.

Numerical solutions of the unsimplified Laplace–Young equation for a variety of inter-
facial configurations are discussed in the remainder of this chapter.

5.4.1 Pressure in a layer

Derive expressions for the pressure distribution across a horizontal liquid layer of thickness
h sandwiched between two semi-infinite fluids.

5.4.2 Constant mean curvature

Compile a list of five geometrical shapes with constant mean curvature.

5.5 A semi-infinite interface attached to an inclined plate

We begin the study of two-dimensional interfacial shapes by considering a semi-infinite
interface attached to a flat plate that is inclined by an angle χ with respect to the horizontal
plane, as illustrated in Figure 5.5.1. Far from the plate, as x tends to infinity, the interface
tends to become horizontal. The contact angle subtended between the inclined plate and
the tangent to the interface at the contact point is required to have a prescribed value, α.

It is convenient to set the origin of the y axis at the position of the flat interface far
from the plate, and describe the interface by a function

y = f(x). (5.5.1)

Problem
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As x tends to infinity, the function f(x) decays to zero to yield a flat interface. Since the
interfacial curvature tends to zero far from the plate, the constant B on the right-hand side
of the governing Laplace–Young equation (5.4.10) must be zero, yielding the simpler form

κ = − f

λ2
. (5.5.2)

The curvature is given by expressions (4.3.28) and (4.3.30) as

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
=

1

f ′
d| cos θ|

dx
= −

( f ′√
1 + f ′2

)′
, (5.5.3)

where f ′ = tan θ, as shown in Figure 5.5.1, and a prime denotes a derivative with respect
to x. Substituting the last expression into (5.5.2) and integrating with respect to x, we find
that ( f ′√

1 + f ′2

)
cl
= sin θcl =

1

λ2

∫ ∞

0

f(x) dx, (5.5.4)

where the subscript cl denotes evaluation at the contact line,

θcl = α+ χ. (5.5.5)

The integral on the right-hand side of (5.5.4) is the area of fluid 2 confined between the
meniscus above the flat interface and the vertical line passing through the contact line. The
weight of the corresponding fluid, reduced by the buoyancy force, is balance by the vertical
component of the capillary force.

Substituting the second and third expressions in (5.5.3) into (5.5.2), and rearranging,
we derive a nonlinear differential equation governing the interfacial shape,

d

dx

( 1√
1 + f ′2

)
=

d| cos θ|
dx

= −ff ′

λ2
= − 1

2

(f2)′

λ2
. (5.5.6)

Integrating once with respect to x, we obtain

1√
1 + f ′2 = | cos θ| = − 1

2

f2

λ2
+ C, (5.5.7)

where C is a dimensionless integration constant. Requiring that f decays to zero as x tends
to infinity, and correspondingly θ tends to π, we obtain C = 1.

Capillary rise

At the contact line located at x = 0, the slope angle θ takes the value given in (5.5.5).
Evaluating equation (5.5.7) at x = 0 with C = 1 and rearranging, we obtain an expression
for the positive or negative capillary rise, h ≡ f(0),

1

2

h2

λ2
= 1− | cos(α+ χ)|, (5.5.8)
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which shows that the maximum possible value of |h| occurs when α+χ is a multiple of 1
2π,

and is equal to
√
2λ.

Numerical formulation

To compute the shape of the interface, we apply (5.5.7) with C = 1 and rearrange to obtain
a first-order ordinary differential equation,

df

dx
= ±

( 4

(2− φ2)2
− 1

)1/2

= ± φ

2− φ2

√
4− φ2, (5.5.9)

where φ ≡ f/λ is a dimensionless function. The plus or minus sign on the right-hand side
must be selected according to the expected interface shape.

The preceding analysis assumes that the interface has a monotonic shape, which is true
if the angle θcl lies in the range ( 12π,

3
2π). Outside this range, the capillary rise is given by

equation (5.5.8) with the minus sign replaced by a plus sign on the right-hand side.

When the shape of the interface is non-monotonic, the interface becomes vertical at
a point, the function f(x) is multi valued, and the integration of (5.5.9) requires careful
consideration. To bypass this subtlety, we regard the x coordinate along the interface as a
function of the independent variable f , and recast (5.5.9) into the form

dx

df
= ±2− φ2

φ

1√
4− φ2

. (5.5.10)

The solution of (5.5.10) must be found for |f | < |h|, where |h| is the capillary rise computed
from equation (5.5.8).

5.5.1 Numerical method

A numerical solution of (5.5.10) can be computed according to the following steps:

1. Compute the angle θcl from equation (5.5.5).

2. Compute the capillary rise h using the formulas

h√
2λ

=

⎧⎪⎪⎨⎪⎪⎩
(1 + | cos θcl|)1/2 if 0 < θcl <

1
2π,

(1− | cos θcl|)1/2 if 1
2π < θcl < π,

−(1− | cos θcl|)1/2 if π < θcl <
3
2π,

−(1 + | cos θcl|)1/2 if 3
2π < θcl < 2π.

(5.5.11)

3. Integrate the differential equation (5.5.10) from f = h to 0 subject to the initial
condition x(f = h) = 0 using, for example, the explicit Euler method or the modified
Euler method discussed in Section 1.5. If h is negative, use a negative spatial step.

To implement the explicit Euler method, we select a small positive or negative integration
step, Δf = h/N , where N defines the level of numerical discretization, evaluate equation
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(5.5.10) at the point f , and approximate the derivative on the left-hand side with the finite
difference, setting

dx

df
	 x(f +Δf)− x(f)

Δf
. (5.5.12)

Rearranging, we obtain

x(f +Δf) = x(f) + Δf
2− φ2

φ

1√
4− φ2

. (5.5.13)

The repetitive application of this formula starting from f = h where x = 0 generates a
sequence of points distributed over the interface.

Modified Euler method (RK2)

To implement the modified Euler method, we replace formula (5.5.13) with a slightly more
involved formula,

x(f +Δf) = x(f) + Δf
1

2

( 2− φ2

φ

1√
4− φ2

+
2− φ2

tmp

φtmp

1√
4− φ2

tmp

)
, (5.5.14)

where φtmp = φ+Δφ and Δφ = Δf/λ.

The modified Euler method is implemented in the following MATLAB code entitled
men 2d plate residing in directory 03 hydrostat of Fdlib. The program scans tilting angles,
while holding the contact angle α constant, and displays the interfacial profile in animation,
as follows:

%---

% data

%---

gac = 1.0; % acceleration of gravity

rhop = 1.0; % pool density

rhoa = 0.0; % ambient fluid density

gamma = 1.0; % surface tension

chi = 0.01*pi; % plate inclination

alpha = 0.01*pi; % contact angle

ndiv = 2*64; % interface divisions

%---

% prepare

%---

drho = rhop-rhoa;

if(drho<0)

disp ’The density of the pool must be higher than’
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disp ’the density of the ambient fluid’

return

end

capls = gamma/(gac*abs(drho));

capl = sqrt(capls);

dchi = 0.05;

Irepeat = 1;

%========

while (Irepeat==1)

%========

%--------------------------------

% angle theta at the contact line

%--------------------------------

thcl = alpha+chi;

cst = cos(thcl);

%-----------------------------------------

% compute the magnitude of meniscus rise h

%-----------------------------------------

if((thcl>0.5*pi)&(thcl<1.5*pi))

h = sqrt(2.0*capls*(1.0-abs(cst)));

else

h = sqrt(2.0*capls*(1.0+abs(cst)));

end

%---

% sign of meniscus rise

%---

if(thcl<pi)

h = abs(h); % meniscus goes up

else

h =-abs(h); % meniscus goes down

end

%---

% plate position at y=0

%---

xpl = -h/tan(chi);

%------------------------------------------

% integrate meniscus equation dx/df = G(f)
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% from f=h to f=0 using the modified Euler

% method with constant step

%------------------------------------------

df = h/ndiv; % note that df can be positive or negative

dfh = 0.5*df;

y(1) = h;

x(1) = 0.0; % starting point

for i=1:ndiv-1

fred = y(i)/capl;

freds = fred*fred;

xp = (2.0-freds)/sqrt(4.0-freds)/fred;

xsv = x(i); % save

xpsv = xp; % save

y(i+1) = y(i)-df;

x(i+1) = x(i)+xp*df;

fred = y(i+1)/capl;

freds = fred*fred;

xp = (2.0-freds)/(fred*sqrt(4.0-freds));

x(i+1) = xsv+(xpsv+xp)*dfh;

end

%---

% plotting

%---

plot(x,y)

hold on

patch([xpl, 0, x, x(ndiv), (-2-h)/tan(chi)] ...

,[0, h, y,-2, -2],'y');

plot([-1 3 3 -1 -1],[-2 -2 2 2 -2])

plot([-10 10],[-10*tan(chi)+h, 10*tan(chi)+h] ...

,'r','LineWidth',3);

plot([xpl, 10],[0, 0],'c--','LineWidth',1);

hold off

axis equal

xlabel('x','fontsize',15); ylabel('y','fontsize',15);

axis([-1 3 -2 2])

pause(0.1)

%---

% tilt the plate

%---

chi = chi + dchi;

if(chi > 0.99*pi | chi<0.01*pi)
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Figure 5.5.2 A semi-infinite meniscus attached to an inclined plate generated by the Fdlib code
men 2d plate. The plate inclination angles χ are different, but the contact angle α is the same
in both cases.

dchi = -dchi;

end

%====

end

%====

The graphics display generated by the code for two plate inclination angles and a fixed
contact angle is shown in Figure 5.5.2.

5.5.2 A floating cylinder

The flat-plate solution derived in this section can be used to derive a trigonometric equation
governing the floating angle, β, and position of the center of a floating circular cylinder of
radius a, as shown in Figure 5.5.3. In the case of a flat interface, the cylinder center is
located at yc = −a cosβ.

In the chosen system of Cartesian coordinates, the undisturbed interface far from the
floating cylinder is located at y = 0. The contact point on the right side of the cylinder is
located at

xcl = a sinβ, ycl = yc + a cosβ, (5.5.15)

and the local inclination angle is χ = π−β. Setting h = ycl and substituting the expression
for ycl into (5.5.8), we obtain

1

2

(ycl
λ

)2

= 1− | cos(α− β + π)| = 2 sin2
α− β

2
, (5.5.16)



5.5 A semi-infinite interface attached to an inclined plate 271

c

Fluid 1

x

y

a

χ

α

β

α−β
θ

y

ycl

xcl
g

Fluid 2

Figure 5.5.3 Illustration of a cylinder floating at the interface between two immiscible fluids. A
curved meniscus is established on either side of the cylinder.

yielding

ycl = −2λ sin
α− β

2
. (5.5.17)

The hydrostatic pressure distributions in the upper and lower fluid are given by

p(1)(y) = −ρ1gy + π0, p(2)(y) = −ρ2gy + π0, (5.5.18)

where ρ1 is the density of the upper fluid, ρ2 is the density of the lower fluid, g is the gravi-
tational acceleration, and π0 is an inconsequential constant. The buoyancy force exerted by
the fluids on the cylinder is given by

F buoyancy
y = −2

∫ β

0

p(1) ny a dθ − 2

∫ π

β

p(2) ny a dθ, (5.5.19)

where θ is the polar angle defined in Figure 5.5.3, ny = cos θ is the y component of the
outward unit vector, and the factor of 2 accouns for both sides of the cylinder. Substituting
the pressure distributions (5.5.18) and setting y = yc + a cos θ, we obtain

F buoyancy
y = 2ga

(
ρ1

∫ β

0

(yc + a cos θ) cos θ dθ + ρ2

∫ π

β

(yc + a cos θ) cos θ dθ
)
. (5.5.20)

Performing the integration, we find that

F buoyancy
y = ag

(− 2 yc Δρ sinβ + aΔρ
1

2

(
π − 2β − sin(2β)

)
+ πaρ

)
, (5.5.21)

where Δρ = ρ2 − ρ1 and

ρ =
1

2
(ρ1 + ρ2) (5.5.22)

is the mean density of the fluids.
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The y component of the capillary force per unit length of the cylinder, acting on both
sides of the cylinder, is given by

F capillary
y = 2γ sin(α− β). (5.5.23)

Balancing the weight of the cylinder, the buoyancy force, and the capillary force, we obtain
the equilibrium equation

πa2ρb − F buoyancy
y = F capillary

y , (5.5.24)

where ρb is the cylinder (body) density.

Making substitutions, setting yc = ycl − a cosβ, using (5.5.17), and simplifying, we
obtain a trigonometric equation for β,

8λ sin
α− β

2
sinβ + π(1 + τ)− 2β + sin(2β) + 4λ2 sin(α− β) = 0, (5.5.25)

which is also a quadratic equation for the dimensionless variable

λ ≡ λ

a
≡ 1√

Bo
, (5.5.26)

where Bo ≡ (a/λ)2 is a Bond number, and

τ = 2
ρ− ρb
Δρ

(5.5.27)

is a dimensionless density parameter. Given α and τ , equation (5.5.25) can be solved readily
for β using Newton’s method.

5.5.1 Floating cylinder

Show that the buoyancy force exerted on the floating cylinder is given by the alternative
expression

F buoyancy
y = −2a (xc + a cosβ)Δρg sinβ +

1

2
Δρ g (A2 −A1) + ρgA, (5.5.28)

where A1 and A2 are the cylinder areas above and below the horizontal plane passing
through the rectilinear contact lines on either side of the cylinder, and A = πa2 is the
cylinder cross-sectional area. Derive the expressions

A1 = a2
(
β − 1

2
sin(2β)

)
, A2 = a2

(
π − β +

1

2
sin(2β)

)
. (5.5.29)

5.5.2 Semi-infinite meniscus

Run the code men 2d plate to generate a family of shapes corresponding to a fixed plate
inclination angle, β, and various contact angles, α. Generate another family of shapes
corresponding to a fixed contact angle and various plate inclination angles. Discuss the
behavior of the capillary rise in each case.

Problems
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Figure 5.6.1 Illustration of a meniscus between two parallel vertical plates for contact angle (a)
α < 1

2
π and (b) α > 1

2
π. In the second case, the meniscus submerges and the capillary rise h is

negative.

5.6 A meniscus between two parallel plates

Consider a two-dimensional interface between two fluids subtended between two parallel
vertical plates, as illustrated in Figure 5.6.1(a). It is reasonable to assume that the two
contact points are at the same elevation and the interface is symmetric with respect to the
mid-plane located at x = 0.

It is convenient to set the origin of the Cartesian axes at the interface midway between
the plates and describe the position of the interface by a function

y = f(x). (5.6.1)

Outside and far from the plates, the interface assumes a horizontal shape located at y = −h,
where h is the positive or negative capillary rise of the meniscus midway between the plates.

The lower fluid is labeled as fluid 2 and the upper fluid is labeled as fluid 1. The pressure
distributions in the two fluids are given by

p(1)(y) = −ρ1gy + π1, p(2)(y) = −ρ2gy + π2, (5.6.2)

where π1 and π2 are two reference pressures. Our objective is to compute the capillary rise,
h, along with the unknown shape of the meniscus by solving the Laplace–Young equation
(5.4.10),

κ = − f

λ2
+B, (5.6.3)

where B ≡ (π2 − π1)/γ and λ2 ≡ γ/(Δρ g) is the square of the capillary length. We have
assumed that Δρ ≡ ρ2 − ρ1 > 0, so that the fluids are stably stratified.
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Evaluating equation (5.6.3) at a point outside and far from the plates where the cur-
vature of the interface tends to vanish and the interfacial elevation tends to −h, we obtain

B = − h

λ2
. (5.6.4)

The Laplace–Young equation (5.6.3) then becomes

κ = −f + h

λ2
, (5.6.5)

where f + h is the unknown elevation of the curved interface between the plates measured
with respect to the flat interface outside the plates.

The curvature is given by equations (4.3.28) and (4.3.30), repeated below for conve-
nience,

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
= −

( f ′√
1 + f ′2

)′
(5.6.6)

and

κ =
1

tan θ

d cos θ

dx
= −d sin θ

dx
, (5.6.7)

where f ′ = tan θ, the slope angle θ is defined in Figure 5.6.1, and a prime denotes a derivative
with respect to x.

Mid-plane curvature and capillary rise

Our choice of Cartesian axes requires that f = 0 at the mid-plane, x = 0. Equation (5.6.3)
then gives

κ(0) = B. (5.6.8)

Because the interface is symmetric with respect to x = 0, f ′ = 0 at x = 0, the first expression
in (5.6.6) yields

κ(0) = −f ′′(0). (5.6.9)

Combining equations (5.6.8) and (5.6.9), we find that

B = −f ′′(0), (5.6.10)

and thus

h

λ2
= −κ(0) = f ′′(0), (5.6.11)

which shows that the capillary rise is determined by the curvature of the interface at the
mid-plane, and vice versa. If the capillary rise is zero, the curvature of the interface at the
mid-plane is also zero, and vice versa.
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Meniscus height

Substituting the first expression for the curvature in terms of the slope angle θ given in
(5.6.7) into (5.6.5), and recalling that tan θ = f ′, we obtain

d cos θ

dx
= −f + h

λ2
f ′ = − 1

λ2

( 1

2
(f2)′ + hf ′ ). (5.6.12)

Integrating with respect to x from 0 to b, and noting that

θb =
1

2
π − α, cos θb = sinα, (5.6.13)

we obtain a quadratic equation for the meniscus height, d ≡ f(b),

1− sinα =
1

λ2
(
1

2
d+ h ) d, (5.6.14)

where θb = θ(x = 0).

Vertical force balance

Substituting into (5.6.5) the second expression for the curvature in terms of the slope angle
θ given in (5.6.7), and integrating with respect to x from 0 to b, we obtain

cosα =
1

λ2

∫ b

0

(f + h) dx. (5.6.15)

In fact, this equation expresses a balance of the weight of fluid between the plates above or
below the flat interface, the buoyancy force, and the capillary force at the rectilinear contact
lines.

Differential equations

To compute the shape of the interface, we substitute the first expression for the curvature
given in (5.6.6) into the Laplace–Young equation (5.6.5), and rearrange to derive a second-
order ordinary differential equation involving the capillary rise h as an unknown,

f ′′ =
1

λ2
(f + h) (1 + f ′2)3/2. (5.6.16)

The solution must be found in the interval 0 < x < b subject to the boundary conditions

f(0) = 0, f ′(0) = 0, f ′(b) = tan(
1

2
π − α) = cotα. (5.6.17)

The third condition specifies the prescribed value of the contact angle. It is important to
bear in mind that h is an implicit function of the shape function f by way of equation
(5.6.11).

When α = 1
2 π, all three boundary (5.6.17) are homogeneous and the obvious solution

describes a flat, non-elevated and non-submerged interface, h = 0 and f = 0.
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Canonical form

To compute the meniscus shape under general conditions, we recast the second-order differ-
ential equation (5.6.16) involving the unspecified parameter h into the canonical form of a
system of three first-order differential equations. The word canonical derives from the Greek
work κανoνικoς, which means normal. This is done by introducing three new variables,

y1 ≡ f, y2 ≡ f ′, y3 ≡ h. (5.6.18)

Given these definitions, and noting that y′2 = f ′′, we resolve equation (5.6.16) into three
first-order component equations,

dy1
dx

= y2,
dy2
dx

=
1

λ2
(y1 + y3) (1 + y22)

3/2,
dy3
dx

= 0. (5.6.19)

The third equation simply states that y3 ≡ h is a constant. In terms of the new variables,
the boundary conditions (5.6.17) become

y1(0) = 0, y2(0) = 0, y2(b) = cotα. (5.6.20)

If the value of y3(0) = h were known, we would be able to integrate the system (5.6.19) from
x = 0 to b using, for example, the explicit Euler or the modified Euler method discussed in
Sections 1.5 and 5.5.

Explicit Euler method

To implement the explicit Euler method, we recast the system (5.6.19) into the general
symbolic form

dy1
dx

= f1(y1, y2, y3, x),
dy2
dx

= f2(y1, y2, y3, x),
dy3
dx

= f3(y1, y2, y3, x), (5.6.21)

where

f1 ≡ y2, f2 =
1

λ2
(y1 + y3) (1 + y22)

3/2 f3 ≡ 0 (5.6.22)

are the phase-space velocities.

Next, we evaluate equations (5.6.21) at a point, x, choose a small spatial step, Δx,
and approximate the derivatives on the left-hand sides with finite differences writing, for
example,

dy1
dx

=
y1(x+Δx)− y1(x)

Δx
. (5.6.23)

Solving for y1(x+Δx) and repeating for the second and third equation, we obtain⎡⎣ y1(x+Δx)
y2(x+Δx)
y3(x+Δx)

⎤⎦ =

⎡⎣ y1(x)
y2(x)
y3(x)

⎤⎦+

⎡⎣ f1(y1(x), y2(x), y3(x), x)
f2(y1(x), y2(x), y3(x), x)
f3(y1(x), y2(x), y3(x), x)

⎤⎦ Δx. (5.6.24)
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In vector notation,

y(x+Δx) = y(x) + f
(
y(x), x

)
Δx, (5.6.25)

where y ≡ (y1, y2, y3) is the solution vector and f ≡ (f1, f2, f3) is the corresponding phase-
space velocity vector. The repetitive application of formula (5.6.25) starting from x = 0
allows us to generate a sequence of points along the meniscus.

Modified Euler method

To implement the modified Euler method, we replace formula (5.6.25) with a predictor
formula,

ytmp = y(x) + f(y(x), x)Δx, (5.6.26)

followed by a corrector formula,

y(x+Δx) = x(x) +
1

2
[ f(y(x), x) + f(ytmp, x+Δx) ]Δx,

where the superscript “tmp” denotes a preliminary value computed by the explicit Euler
method. The first equation generates a provisional (temporary) value, and the second
equation advances the solution using the initial and provisional values.

The modified Euler method is implemented in the following MATLAB code entitled
men 2d ode, located in directory men 2d inside directory 03 hydrostat of Fdlib:

function [x,y1,y2] = men 2d ode (npts,capls,b,h)

%--------------------------------------------

% Integrate ODEs by the modified Euler method

% Integration interval: (0, b)

% Initial condition y1(0) = 0, y2(0) = 0

%--------------------------------------

%-----------------------

% prepare and initialize

%-----------------------

dx = b/npts; % uniform x step

x(1) = 0.0; y1(1) = 0.0; y2(1) = 0.0;

%---------------------------------------

% integrate by the modified Euler method

%---------------------------------------

for i=1:npts

if(i==1)

y1p = 0.0 % value at mid-plane
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y2p = h/capls % value at mid-plane

else

y1p = y2(i);

y2p = (y1(i)+h)*sqrt( (1.0+y2(i)*y2(i))^3 )/capls;

end

y1sv = y1(i); y2sv = y2(i); % save

y1psv = y1p; y2psv = y2p;

x(i+1) = x(i) + dx;

y1(i+1) = y1(i) + y1p*dx;

y2(i+1) = y2(i) + y2p*dx;

y1p = y2(i+1); % second velocity evaluation

y2p = (y1(i+1)+h)*sqrt((1.0+y2(i+1)^2)^3 )/capls;

y1(i+1) = y1sv + 0.5*(y1psv+y1p)*dx;

y2(i+1) = y2sv + 0.5*(y2psv+y2p)*dx;

end

%-----

% done

%-----

return

Note that the capillary rise, h, is specified in the input field.

The shooting method

Because the value of h is a priori unknown, the starting vector y(0) is not available and
the solution of (5.6.19) must be found by iteration. The shooting method prescribes the
obvious:

1. Guess a value for y3(0) = h.

2. Compute the solution of (5.6.19).

3. Check whether the third condition in (5.6.20) is fulfilled within a specified tolerance;
if not, repeat the computation with an improved guess.

To improve the guess in a systematic fashion that guarantees rapid convergence, we note
that the value of x2(b) computed by solving equations (5.6.19) depends on the guessed value,
y3(0) = h. To signify this dependence, we extend the list of arguments of y2, writing y2(b;h).
The third boundary condition in (5.6.20) requires that

q2(b ;h)− cotα = 0, (5.6.27)

which means that h is a root of an objective function defined as

Q(h) ≡ y2(b ;h)− cotα. (5.6.28)
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The problem has been reduced to computing the solution of the algebraic equation Q(h) = 0,
where the left-hand side is evaluated by integrating equations (5.6.19) with a specified value
of h.

Secant updates

The secant method provides us with a simple algorithm for solving the targeted nonlinear
algebraic equation, Q(h) = 0, according to the following steps:

1. Select a value for h that approximates the root, h(1), and compute Q(h(1)) by inte-
grating system (5.6.19).

2. Select another value for h that approximates the root, h(2), and compute Q(h(2)) by
integrating (5.6.19).

3. Approximate the graph of the function Q(h) with a straight line passing through the
points computed in Steps 1 and 2. The slope of the approximating straight line is

s(2) =
Q(h(2))−Q(h(1))

h(2) − h(1)
. (5.6.29)

4. Identify the improved value h(3) with the root of the linear function that describes the
approximating straight line. Elementary algebra shows that the root is given by

h(3) = h(2) − Q(h(2))

s(2)
. (5.6.30)

5. Repeat the computation with the pairs h(2) and h(3) until convergence.

A reasonable guess for h can be obtained by assuming that the meniscus has a circular
shape of radius R, which is positive when the interface is concave upward and negative
when the interface is concave downward. Using elementary trigonometry, we find that the
prescribed boundary condition on the contact angle will be satisfied when cosα = b/R.
Rearranging, we derive the approximation

κ 	 − 1

R
= −1

b
cosα. (5.6.31)

Using equation (5.6.11) we obtain the desired educated guess,

h 	 λ2

b
cosα. (5.6.32)

Equation (5.6.32) reveals that the maximum possible value of |h| for a circular interface is
λ2/b.

The shooting method is implemented in the followingMATLAB function entitledmen 2d,
located in directory 03 hydrostat of Fdlib:
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function [Iflag,x,y1,hmen] = men 2d ...

...

(b,gac,gamma,rhop,rhoa ...

,alpha,npts,epsilon,maxiter,tol)

%-------------------------------------------

% Hydrostatic shape of a 2D meniscus between

% two vertical parallel plates computed

% by the shooting method

%-------------------------------------------

Iflag = 0; % flag for success

%-----

% prepare

%----

drho = rhop-rhoa; % density difference

% square of the capillary length:

capls = gamma/(gac*abs(drho));

%----------------------

% initial guess for h

% computed by assuming a circular interface

%---------------------

h(1) = capls*cos(alpha)/b;

if(abs(alpha-0.5*pi)<0.0000001)

cota = 0.0;

else

cota = 1.0/tan(alpha);

end

%---

% compute the first solution of the odes

% to start-up the secant method

%---

Ic = 1; % counter

[x,y1,y2] = men 2d ode(npts,capls,b,h(Ic));

error(Ic) = y2(npts+1)-cota;

%-------------------------

% second start-up solution

%-------------------------
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Ic = 2;

h(2) = h(1)+epsilon;

[x,y1,y2] = men 2d ode(npts,capls,b,h(Ic));

error(Ic) = y2(npts+1)-cota;

%---------------------------------------

% iterate using the secant method

% until convergence

%---------------------------------------

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2; Ica = Ic-1;

dedh = (error(Ica)-error(Icb))/(h(Ica)-h(Icb));

h(Ic) = h(Ica)-error(Ica)/dedh;

[x,y1,y2] = men 2d ode(npts,capls,b,h(Ic));

error(Ic) = y2(npts+1)-cota;

if(abs(error(Ic))<tol)

break

end

%---

end

%---

if(iter==maxiter)

disp(’men 2d: ODE solver failed’)

Iflag=1;

return

end

hmen = h(Ic);

%---

% done

%---

return
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Figure 5.6.2 Shape of a meniscus inside a circular capillary tube generated by the Fdlib code
men 2d.

Results of computations for a contact angle that is lower than 1
2 π and a contact an-

gle that is higher than 1
2 π are shown in Figure 5.6.2. In the second case, the meniscus

submerges below the level of the liquid outside the plates. Scaling all lengths by the plate
half-separation, b, we find that the shape of the meniscus depends on the contact angle, α,
and on the ratio λ/b. As λ/b increases, the meniscus tends to obtain a circular shape.

5.6.1 Meniscus between plates

(a) Run the code men 2d to generate a family of shapes corresponding to fixed plate sepa-
ration and various contact angles. Discuss the behavior of the capillary rise.

(b) Generate another family of shapes corresponding to fixed contact angle and various plate
separations. Discuss the behavior of the capillary rise.

5.7 A two-dimensional drop on a horizontal plane

In the next application, we study the shape of a two-dimensional liquid drop or gas bubble
surrounded by a stationary ambient fluid, resting above or hanging below a horizontal plane,
as shown in Figure 5.7.1. The drop or bubble fluid is labeled 2 and the surrounding fluid is
labeled 1.

The resting drop shown in Figure 5.7.1(a) is called a sessile drop, while the hanging
drop shown in Figure 5.7.1(b) is called a pendant drop.

Problem
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Figure 5.7.1 Illustration of a two-dimensional (a) sessile liquid drop or gas bubble resting on a
horizontal plane and (b) pendant liquid drop or gas bubble hanging below a horizontal plane.

Our objective is to compute the shape of the interface for specified surface tension, γ,
contact angle, α, and drop area, AD. The forthcoming analysis also applies for a gas bubble
regarded as a zero-density drop, ρ2 = 0.

Working coordinates

It is convenient to work in Cartesian coordinates with origin located at the extreme point
of the interface, as shown in Figure 5.7.1 for a sessile or pendant drop. The x axis points
normal to the interface into the ambient fluid. The pressure distribution in the two fluids
is given by

p(1)(x) = −s1ρ1gx+ π1, p(2)(x) = −s1ρ2gx+ π2, (5.7.1)

where π1 and π2 are two reference pressures. The coefficient s1 is equal to 1 for a sessile
drop or −1 for a pendant drop, reflecting the orientation of the gravity with respect to the
positive direction of the x axis.

The shape of the interface is governed by the Laplace–Young equation determining the
jump in pressure across the interface due to surface tension in terms of the curvature,

κ = −s1
Δρ g

γ
x+B, (5.7.2)

where Δρ = ρ2 − ρ1 and B ≡ (π2 − π1)/γ is an a priori unknown constant with dimensions
of inverse length. In terms of the square of the capillary length, λ2 ≡ γ/(|Δρ| g), equation
(5.7.2) takes the compact form

κ = −s1s2
x

λ2
+B, (5.7.3)

where the coefficient s2 is equal to 1 if ρ2 > ρ1 or −1 if ρ2 < ρ1.
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Evaluating equation (5.7.2) at the origin, x = 0, we find that the constant B is equal
to the unknown curvature of the interface at the plane of symmetry located at y = 0,

B = κ0, (5.7.4)

where κ0 ≡ κ(x = 0).

Describing the interface by a function,

y = f(x), (5.7.5)

we obtain the following expressions for the curvature given in (4.3.28),

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
= −

( f ′√
1 + f ′2

)′
, (5.7.6)

where a prime denotes a derivative with respect to x.

Drop height

Substituting the last expression for the curvature given in (5.7.6) into the Young–Laplace
equation (5.7.3), we obtain

−
( f ′√

1 + f ′2

)′
= −s1s2

x

λ2
+B. (5.7.7)

Integrating with respect to x across the height of the drop, from x = −d to 0, as shown in
Figure 5.7.1, we obtain

1− cosα = 2 sin2
α

2
= s1s2

1

2

d2

λ2
+Bd. (5.7.8)

When s1s2 = 1 and the top of the drop is nearly flat due to strong gravitational effects,
Bd 	 0, we find that

d 	 2λ sin
α

2
, (5.7.9)

which is consistent with the capillary height of a semi-infinite meniscus attached to a flat
plate.

Vertical force balance

Substituting into (5.7.3) the second expression for the curvature given in (5.7.6), and mul-
tiplying both sides by f ′, we obtain( 1√

1 + f ′2

)′
= −s1s2

1

λ2

[
(xf)′ − f

]
+Bf ′. (5.7.10)

Integrating with respect to x across the height of the drop from x = −d to 0, we obtain

sinα = s1s2
1

λ2

(
d b− 1

2
AD ) +B b, (5.7.11)
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where

AD = 2

∫ 0

−d

f(x) dx (5.7.12)

is the drop area, b is half the length of the drop base, and d is the drop height, as shown in
Figure 5.7.1. Equation (5.7.11) can be used to compute one of b, d, and B = κ0 from two
of the others.

In fact, equation (5.7.11) expresses a force balance. To demonstrate this directly, we
observe that the additional force exerted on a longitudinal strip of the substrate covering
the base of the drop is

ΔFx = −(2 bw)
(
p(2) − p(1)

)
x=−d

= −(2 bw)
(
s1Δρ gd+Bγ

)
, (5.7.13)

where and w is the width the strip. Adding to this force the capillary force exerted on the
substrate at the contact line due to surface tension, we obtain the total force,

Fx = ΔFx + 2wγ sinα = −s1Δρ g 2 bwd− γ 2w
(
Bb− sinα

)
. (5.7.14)

The first term on the right-hand side is the weight of of a cylindrical slab of fluid with length
2b, width w, and height d, reduced by the buoyancy force. The net force is precisely equal
to the weight of the drop reduced by the buoyancy force,

Fx = −s1Δρ gADw, (5.7.15)

yielding the relation

s1s2 (AD − 2bd) = 2λ2
(
Bb− sinα

)
, (5.7.16)

as given in (5.7.11).

Parametric representation

One important difference between the problem presently considered and those discussed
previously in this chapter, is that, neither the range of x nor the range of y is known over
the span of the drop interface at the outset.

To circumvent this difficulty, we describe the shape of the interface in parametric form
in terms of the slope angle ψ defined in Figure 5.7.1, increasing from zero at the origin to α
at the contact point. Our objective is to compute two scalar functions of ψ such that the x
and y coordinates of a point at the interface are described by the functions

x = X(ψ), y = Y (ψ) (5.7.17)

for 0 ≤ ψ ≤ α. One important advantage of the adopted parametrization is that the
boundary condition for the contact angle at the contact point is satisfied automatically and
can be removed from further discussion. To compute the functions X(ψ) and Y (ψ), we
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require two ordinary differential equations and a suitable number of boundary conditions or
global constraints.

Ordinary differential equations

The first differential equation is the definition of the chosen parameter ψ in terms of the
interface slope,

cotψ = − dY

dX
. (5.7.18)

The second differential equation must originate from the Young–Laplace equation. Referring
to expressions (5.7.6) for the curvature, we set f ′ = dY/dX and find that

κ = − 1

cotψ

d

dX

( 1√
1 + cot2 ψ

)
= − 1

cotψ

d sinψ

dX
= − sinψ

dψ

dX
=

d cosψ

dX
. (5.7.19)

Substituting the penultimate expression into the left-hand side of (5.7.3), we obtain

sinψ
dψ

dX
= −d cosψ

dX
= s1s2

X

λ2
−B, (5.7.20)

which can be rearranged to give the desired parametric dependence

dX

dψ
=

sinψ

Q
, (5.7.21)

where

Q ≡ s1s2
X

λ2
−B. (5.7.22)

To derive a corresponding parametric dependence for Y , we recast (5.7.18) into the form

dY

dψ
= − cotψ

dX

dψ
. (5.7.23)

Substituting (5.7.21) into (5.7.23), we obtain

dY

dψ
= −cosψ

Q
. (5.7.24)

Equations (5.7.21) and (5.7.24) provide us with the desired system of two first-order
differential equations involving an unspecified parameter, B. The boundary conditions
require that X(0) = 0 and Y (0) = 0. The constraint on the drop area requires that

2

∫ 0

−d

Y dx = AD, (5.7.25)

where x = −d describes the position of the plane.
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Shooting method

Because the value of the constant B is a priori unknown, the solution must be found by
iteration. The shooting method combined with the secant method for improving the guess
provides us with an efficient algorithm. The numerical procedure involves the following
steps:

1. Guess a value for B.

2. Integrate the system of equations (5.7.21) and (5.7.24).

3. Compute the integral on the right-hand side of (5.7.25) using the trapezoidal rule and
then evaluate the objective function

Q ≡ 2

∫ 0

−d

y dx−AD. (5.7.26)

4. Improve the guess for B with the goal of driving the objective function Q to zero
using, for example, the secant method discussed in Section 5.6.

Since the constant B is equal to the unknown curvature of the interface at the mid-plane
located at y = 0, a reasonable guess can be obtained by assuming that the interface is a
section of a circle, and then computing the radius of the circle, �, according to specified
values of the contact angle and drop area. Using elementary trigonometry, we find that

� =
( 2AD

2α− sin 2α

)1/2

(5.7.27)

and set B = 1/�.

Fourth-order Runge–Kutta method

The fourth-order Runge–Kutta method (RK4) is an improvement of the modified Euler
method discussed earlier in this section, involving three exploratory steps and one final
step.

The following MATLAB function entitled drop 2d ode, located in directory drop 2d in-
side subdirectory 03 hydrostat of Fdlib, implements the method for solving the system of
equations (5.7.21) and (5.7.24) and simultaneously computing the drop area:

function [x,y,area] = drop 2d ode ...

...

(npts ...

,capls ...

,Isp ...

,dpsi ...

,B ...

)
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%----------------------------------------

% Integrate two ODEs by RK4 with uniform

% step size for the angle psi

%----------------------------------------

%--------

% prepare

%--------

dpsih = 0.5*dpsi;

%----------------

% top of the drop

%----------------

psi = 0.0; x(1) = 0.0; y(1) = 0.0;

%-----------

% integrate

%----------

for i=1:npts

if(i==1)

xp = 0.0; yp = 1.0/B;

else

Q = Isp*x(i)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

end

xp1 = xp; yp1 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

xp2 = xp; yp2 = yp;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

xp3 = xp; yp3 = yp;
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psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsi;

y(i+1) = y(i)+yp*dpsi;

Q = Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

xp4 = xp; yp4 = yp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi/6.0;

y(i+1) = y(i) + (yp1+2*yp2+2*yp3+yp4)*dpsi/6.0;

end

%----------------------------------------

% compute the area of the integrated shape

% by the trapezoidal rule

%----------------------------------------

area = 0.0;

for i=1:npts

area= area+(y(i+1)+y(i))*abs(x(i+1)-x(i));

end

area = 0.5*area; % to account for trapezoidal weights

%---

% double the area to get the full shape

%---

area = 2.0*area

%-----

% done

%-----

return

The following MATLAB function entitled drop 2d, located in directory 03 hydrostat of
Fdlib, implements the secant method:

function [a,Bfinal,x,y] = drop 2d ...

...

(Jsp,gac,gamma,rhod,rhoa,area...

,alpha,npts,epsilon,maxiter,tol)

%--------------------------------------------

% Hydrostatic shape of a two-dimensional

% sessile drop resting on a horizontal plane,
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% or pendant drop hanging underneath

% a horizontal plane, for a specified

% specified area and contact angle

%

% Jsp = 1 for a sessile drop

% Jsp = -1 for a pendant drop

%--------------------------------------------

%--------

% prepare

%--------

Iflag=0; % signals failure

drho = rhod-rhoa; % density difference

% square of the capillary length:

capls = gamma/(gac*abs(drho));

Isp = 1; % Isp is an orientation index

if(drho<0)

Isp = -Isp;

end

if(Jsp==-1)

Isp = -Isp;

end

%----------------------------------

% to start, assume that the drop shape

% is a truncated circle

% and compute the circle radius "a"

% in terms of the drop area and contact angle

%----------------------------------

a = sqrt(area/(alpha-0.5*sin(2.0*alpha)));

B(1) = 1.0/a;

%---

% compute the initial solution of the odes

% to start-up the secant method

%---

dpsi = alpha/npts;

Ic = 1; % counter

[x,y,area_sh] = drop 2d ode ...

...

(npts ...
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,capls ...

,Isp ...

,dpsi ...

,B(Ic) ...

);

error(Ic) = area sh - area;

err = abs(error(Ic));

%-------------------------

% second start-up solution

%-------------------------

Ic=2;

B(2) = B(1)+epsilon;

[x,y,area_sh] = drop 2d ode ...

...

(npts ...

,capls ...

,Isp ...

,dpsi ...

,B(Ic) ...

);

error(Ic) = area sh - area;

err = abs(error(Ic));

%---------------------------------------

% iterate on B using the secant method

% until convergence

%---------------------------------------

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2;

Ica = Ic-1;

dedc = (error(Ica)-error(Icb))/(B(Ica)-B(Icb));

B(Ic) = B(Ica)-error(Ica)/dedc;

[x,y,area_sh] = drop 2d ode ...

...

(npts ...



292 Fluid Dynamics: Theory, Computation, and Numerical Simulation

,capls ...

,Isp ...

,dpsi ...

,B(Ic) ...

);

error(Ic) = area sh - area;

err = abs(error(Ic));

if(err<tol) break; end

%---

end

%---

if(iter==maxiter)

disp(’drop 2d: ODE solver failed’)

Iflag=1; return

end

Bfinal = B(Ic);

%---

% done

%---

return

Families of drop shapes computed using the code are shown in Figure 5.7.2. Gravity squeezes
the sessile drop toward the wall and pulls the pendant drop away from the wall.

5.7.1 Radius of a circular drop

Derive formula (5.7.27) for the radius of a circular drop.

5.7.2 Two-dimensional drop on a horizontal plane

Run the code drop 2d to generate a family of interfacial shapes corresponding to a fixed
value of the drop area and various contact angles. Discuss the computed interfacial shapes.

5.8 A two-dimensional drop on an inclined plane

We proceed to consider the more challenging problem of a two-dimensional drop resting
above or hanging underneath an inclined plane, as shown in Figure 5.8.1. In the working
Cartesian coordinates defined in this figure, the origin of the x axis is set at the inclined
plane at the location of the front or rear contact point.

Problems



5.8 A two-dimensional drop on an inclined plane 293

(a)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.5

0

0.5

1

1.5

2

y/a

x/
a

(b)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

y/a

x/
a

Figure 5.7.2 Shapes of (a) sessile and (b) pendant two-dimensional drops for contact angle α = 3π
4

and different surface tensions computed using the Fdlib code drop 2d. The dotted lines trace
the approximate circular shape established for small drops or high surface tension. The x and y
coordinates have been scaled by the equivalent drop radius, a, defined in terms of the drop area
as AD = πa2.

In the case of the sessile drop, depicted in Figure 5.8.1(a), the contact angle at the first
contact point, α1, is larger than the contact angle at the second contact point, α2. In the
case of the pendant drop, shown in Figure 5.8.1(b), the first contact angle, α1, is smaller
than the second contact angle, α2.

In the inclined system of coordinates depicted in Figure 5.8.1(a, b), the Cartesian com-
ponents of the acceleration of gravity vector are given by

gx = −g cosβ, gy = −g sinβ, (5.8.1)

where β is the plane inclination angle ranging from 0 to 2π.

The pressure distributions in the ambient fluid and inside the drop are given by

p(1)(x, y) = −ρ1g (x cosβ + y sinβ) + π1 (5.8.2)

and

p(2)(x, y) = −ρ2g (x cosβ + y sinβ) + π2, (5.8.3)
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Figure 5.8.1 Illustration of a two-dimensional liquid drop (a) resting above and (b) hanging under-
neath an inclined plane.

where π1 and π2 are two reference pressures. Substituting these expressions into the inter-
facial balance (4.5.16), we obtain

−ρ2 g (X cosβ + Y sinβ) + π2 + ρ1 g (X cosβ + Y sinβ) + π1 = γ κ, (5.8.4)

where (X,Y ) are interfacial coordinates. Rearranging, we obtain the Laplace–Young equa-
tion

κ = −s1
Δρ g

γ
(X cosβ + Y sinβ) + C, (5.8.5)

where Δρ ≡ ρ2 − ρ1 and C ≡ (π2 − π1)/γ. Physically, the constant C represents the
curvature of the interface at the first contact point where X = 0 and Y = 0.

Parametric representation

The interface will be described parametrically in terms of the slope angle, ψ, varying from
−α1 at the first contact point, to α2 at the second contact point, as shown in Figure 5.8.1.
Regarding X and Y as functions of ψ and working as in Section 5.7 for a drop attached to
a horizontal plane, we derive the differential equations

dX

dψ
=

sinψ

Q
,

dY

dψ
= −cosψ

Q
, (5.8.6)

where

Q ≡ s
X cosβ + Y sinβ

λ2
− C, (5.8.7)

and the coefficient s is equal to 1 if ρ2 > ρ1 or −1 if ρ2 < ρ1.

The first contact line boundary condition sets the origin of the Cartesian axes at the
inclined plane,

X(−α1) = 0, Y (−α1) = 0. (5.8.8)
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The second contact line boundary condition requires that

X(α2) = 0. (5.8.9)

The constraint on the drop area, AD, requires that∫ d

0

X dy = AD, (5.8.10)

where y = d marks the position of the second contact line.

5.8.1 First contact angle specified

Given the drop area, AD, we may specify the first contact angle, α1, and compute the second
contact angle, α2, and the constant C to satisfy conditions (5.8.9) and (5.8.10). A shooting
method can be implemented for this purpose according to the following steps:

1. Guess values for C and α2.

2. Integrate the system of equations (5.8.6) with the initial conditions given in (5.8.8).

3. Compute the integral on the right-hand side of (5.8.10) using the trapezoidal rule.

4. Evaluate the two components of an objective function,

F (1) ≡ X(α2), F (2) ≡
∫ d

0

X dy −AD. (5.8.11)

5. Improve the values of C and α2 to drive the two components of the objective function,
F (1) and F (2) to zero,

F (1) = 0, F (2) = 0, (5.8.12)

and return to Step 2.

The following MATLAB function entitled drop 2di1 ode, located in directory drop 2di1
inside directory 03 hydrostat of Fdlib, solves the system of equations (5.8.6) and computes
the first and second components of the objective function, F:

function F = drop 2di1 ode(solution)

%--------------------------------------------

% Two-dimensional drop on an inclined plane.

% Integrate ODEs by RK4 with uniform

% step size for the slope angle psi

%

% SYMBOLS:

% -------

%

% dpsi: increments in psi

% C: shooting parameter
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% solution(1) = C

% solution(2) = alpha 2

%--------------------------------------------

global area capls Isp npts beta alpha1 alpha2 x y

%--------

% dispense variables

%--------

C = solution(1);

alpha2 = solution(2);

%--------

% prepare

%--------

csb = cos(beta);

snb = sin(beta);

dpsi = (alpha1+alpha2)/npts;

dpsih = 0.5*dpsi;

%----------------

% first contact point

%----------------

psi = -alpha1; x(1) = 0.0; y(1) = 0.0;

%----------

% integrate

%----------

for i=1:npts

Q = Isp*(csb*x(i)+snb*y(i))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp1 = xp; yp1 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp2 = xp; yp2 = yp;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;
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Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp3 = xp; yp3 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsi;

y(i+1) = y(i)+yp*dpsi;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp4 = xp; yp4 = yp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi/6.0;

y(i+1) = y(i) + (yp1+2*yp2+2*yp3+yp4)*dpsi/6.0;

end

F(1) = x(npts+1);

%----------------------------------------

% compute the area of the integrated shape

% by the trapezoidal rule

%----------------------------------------

ar = 0.0;

for i=1:npts

ar = ar+(x(i+1)+x(i))*(y(i+1)-y(i));

end

ar = 0.5*ar; % to account for trapezoidal weights

F(2) = ar-area;

%-----

% done

%-----

return

The improvement in the values of C and α2 in Step 5 of the algorithm can be done
using Newton’s method for solving a system of two nonlinear equations (5.8.12).1 The
method is implemented in the following Fdlib function entitled drop 2di1 newton2, located
in directory drop 2di1 inside directory 03 hydrostat of Fdlib:

function [x,f,Iflag] = drop 2di1 newton2 ...

...

1Pozrikidis, C. (2008) Numerical Computation in Science and Engineering. Second Edition, Oxford
University Press.
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(Niter ...

,eps ...

,x ...

)

%========

% Solve two nonlinear equations by Newton’s method

%

% SYMBOLS:

% --------

%

% x: solution vector

% eps: small number for computing the Jacobian

% by numerical differentiation

% Dx: correction vector

% tol: accuracy

% Iflag: will set equal to 1 if something is wrong

%========

tol = 0.0000001; % tolerance

relax = 1.0;

%-----------

% initialize

%-----------

Iflag = 1;

%---------------------

% start the iterations

%---------------------

for Iter=1:Niter

f = drop 2di1 ode(x);

%---------------------

% compute the Jacobian

% by numerical differentiation

%---------------------

for j=1:2

x(j) = x(j)+eps; % perturb

f1 = drop 2di1 ode(x);

x(j) = x(j)-eps; % reset

for i=1:2

Jac(i,j) = (f1(i)-f(i))/eps;

end

end
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%---

% solve the equation: Jac . Dx = - f

% for the correction vector Dx by Cramer’s rule

%---

b1 = -f(1);

b2 = -f(2);

Det = Jac(1,1)*Jac(2,2)-Jac(1,2)*Jac(2,1);

dx(1) = (b1*Jac(2,2)-Jac(1,2)*b2)/Det;

dx(2) = (b2*Jac(1,1)-Jac(2,1)*b1)/Det;

%--------

% correct

%--------

x(1) = x(1) + relax*dx(1);

x(2) = x(2) + relax*dx(2);

%-------

% escape

%-------

Iescape = 1;

if(abs(dx(1)) > tol) Iescape = 0; end

if(abs(dx(2)) > tol) Iescape = 0; end

if(Iescape==1)

Iflag = 0;

f = drop 2di ode(x);

return

end

%----

end % of iterations

%----

%-----

% done

%-----

return

The overall procedure is implemented in the following MATLAB code entitled drop 2di1,
located in directory drop 2di1 inside directory 03 hydrostat of Fdlib:

%------------------------------------------------------

% Hydrostatic shape of a two-dimensional

% sessile drop resting on an inclined plane
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% or a pendant drop hanging underneath a inclined plane,

% for a specified area and first contact angle

%------------------------------------------------------

global area capls Isp npts beta alpha1 alpha2 x y

gac = 1.0; % acceleration of gravity

rhod = 1.0; % density of the drop

rhoa = 0.0; % density of the ambient fluid

area = pi; % drop area

beta = 0.125*pi; % inclination angle

alpha1 = 0.35*pi; % first contact angle

npts = 64; % number of interfacial markers

%---

% prepare

%---

drho = rhod-rhoa; % density difference

Isp = 1.0; % orientation index

if(drho<0)

Isp = -Isp;

end

csb = cos(beta);

snb = sin(beta);

ROT = [csb, snb; -snb, csb]; % rotation matrix for graphics

%---

% initial guess for a circular interface

%---

a = sqrt(area/(alpha1-0.5*sin(2.0*alpha1)));

Crc = 1.0/a;

solution = [Crc alpha1];

%---

% loop over surface tension and animate

%---

for repeat=1:100

gamma = 10.0-repeat*0.10;

capls = gamma/(gac*abs(drho)); % square of the cap length
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%---

% newton’s method for two equations

%---

Niter = 10; % maximum number of iterations

eps = 0.001; % step for numerical differentiation

[solution,F,Iflag] = drop 2di1 newton2 ...

...

(Niter ...

,eps ...

,solution ...

);

if(Iflag==1) break; end

%---

% dispense the solution

%---

C = solution(1)

alpha2 = solution(2)

xplot = -y;

yplot = x;

for i=1:npts+1

xx = [xplot(i), yplot(i)];

xx = ROT*xx';

xplot(i) = xx(1);

yplot(i) = xx(2);

end

plot(xplot,yplot,'-')

hold on

plot(csb*[0.2,-2.5],snb*[-0.2,2.5],'r','LineWidth',3)

axis equal

hold off

pause(0.1)

if(alpha2<0.05*pi) break; end

if(alpha2>0.95*pi) break; end

end

The shapes of a sessile and a pendant drop for α1 = 0.45π computed using the code are
shown in Figure 5.8.2.
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Figure 5.8.2 Interfacial shapes of (a) a sessile two-dimensional drop for inclination angle β = 0.25π,

and (b) pendant two-dimensional drop for inclination angle β = 1.25π, generated by the
Fdlib code drop 2di1.

Those who can afford access to MATLAB toolboxes may use the internal MATLAB func-
tion fsolve for solving the two nonlinear equations instead of the custom-made function
drop 2di1 newton2. Bear in mind that some programmers consider the usage of a global
statement an anathema.

5.8.2 Specified contact points

Consider a physical experiment where a droplet is placed on a horizontal plane and adjusts
to a symmetric equilibrium shape corresponding to a specified static contact angle at both
contact points, α. The distance between the two contact points is denoted by d, as shown
in Figure 5.8.1.

The plane is now rotated and the drop deforms while both contact points remain pinned
at the plane. Instead, the first and second contact angles, α1 and α2, deviate from the
reference value α in response to the changing orientation of the acceleration of gravity
vector with respect to the inclination of the plane. In the physical world, the contact points
will remain stationary only if the two contact angles are confined inside a contact angle
hysteresis window bounded by the advancing and receding contact lines.

For each plane inclination angle, the three unknowns, C, α1, and α2, must be found as
part of the solution to satisfy (a) the requirement on the drop area expressed by (5.8.10),
and (b) the two second contact point conditions

X(α2) = 0, Y (α2) = d. (5.8.13)

A shooting method can be implemented according to the following steps:
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1. Guess values for C, α1, and α2.

2. Integrate the system of equations (5.8.6) with initial conditions provided in (5.8.8).

3. Compute the integral on the right-hand side of (5.8.10) using the trapezoidal rule.

4. Evaluate the three components of the objective function

F (1) = X(α2), F (2) = Y (α2)− d, F (3) ≡
∫ d

0

X dy −AD. (5.8.14)

5. Improve the values of C, α1, and α2, to drive the three components of the objective
function, F (1), F (2), and F (3), to zero

F (1) = 0, F (2) = 0, F (3) = 0, (5.8.15)

and return to Step 2.

The following MATLAB function entitled drop 2di2 ode, located in directory drop 2di
inside directory 03 hydrostat of Fdlib, solves the system of equations (5.8.6) and computes
the three components of the objective function, F:

function F = drop 2di2 ode (solution)

%--------------------------------------------

% Two-dimensional drop on an inclined plane.

%

% Integrate ODEs by the RK4 method with uniform

% step size for the slope angle psi

%

% SYMBOLS:

% -------

%

% dpsi: increments in psi

% C: shooting parameter

%--------------------------------------------

global area capls Isp npts beta alpha1 alpha2 d x y

%--------

% dispense variables

%--------

C = solution(1);

alpha1 = solution(2);

alpha2 = solution(3);

%--------

% prepare

%--------
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csb = cos(beta);

snb = sin(beta);

dpsi = (alpha1+alpha2)/npts;

dpsih = 0.5*dpsi;

%----------------

% first contact point

%----------------

psi = -alpha1; x(1) = 0.0; y(1) = 0.0;

%----------

% integrate

%----------

for i=1:npts

Q = Isp*(csb*x(i)+snb*y(i))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp1 = xp; yp1 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp2 = xp; yp2 = yp;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp3 = xp; yp3 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsi;

y(i+1) = y(i)+yp*dpsi;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp = -cos(psi)/Q;

xp4 = xp; yp4 = yp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi/6.0;

y(i+1) = y(i) + (yp1+2*yp2+2*yp3+yp4)*dpsi/6.0;

end
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F(1) = x(npts+1);

F(2) = y(npts+1)-d;

%----------------------------------------

% compute the are of the integrated shape

% by the trapezoidal rule

%----------------------------------------

ar = 0.0;

for i=1:npts

ar = ar+(x(i+1)+x(i))*(y(i+1)-y(i));

end

ar = 0.5*ar; % to account for trapezoidal weights

F(3) = ar-area;

%-----

% done

%-----

return

The improvement in the values of C, α1, and α2 in Step 5 of the algorithm can be done
using Newton’s method for solving a system of three nonlinear equations (5.8.12).2 The
method is implemented in the following Fdlib function entitled drop 2di2 newton3, located
in directory drop 2di1 inside directory 03 hydrostat of Fdlib:

function [x,f,Iflag] = drop 2di2 newton3 ...

...

(Niter ...

,eps ...

,x ...

)

%---------------------------------------------

% Newton’s method for three nonlinear equations

%

% SYMBOLS:

% --------

%

% eps: small interval for computing the Jacobian

% by numerical differentiation

% Dx: correction vector

% tol: accuracy

% Iflag: will set equal to 1 if something is wrong

%--------------------------------------------------

2Pozrikidis, C. (2008) Numerical Computation in Science and Engineering. Second Edition, Oxford
University Press.
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tol = 0.0000001;

%-----------

% initialize

%-----------

Iflag = 1;

%---------------------

% start the iterations

%---------------------

for Iter=1:Niter

f = drop 2di2 ode(x);

%---------------------

% compute the Jacobian

% by numerical differentiation

%---------------------

for j=1:3

x(j) = x(j)+eps; % perturb

f1 = drop 2di2 ode(x);

x(j) = x(j)-eps; % reset

for i=1:3

Jac(i,j) = (f1(i)-f(i))/eps;

end

end

%---

% solve the equation: Jac . Dx = - f

% for the correction vector Dx

% by Cramer’s rule

%---

A11 = Jac(1,1); A12 = Jac(1,2); A13 = Jac(1,3);

A21 = Jac(2,1); A22 = Jac(2,2); A23 = Jac(2,3);

A31 = Jac(3,1); A32 = Jac(3,2); A33 = Jac(3,3);

B1 = -f(1);

B2 = -f(2);

B3 = -f(3);

Det = A11*( A22*A33-A23*A32 ) ...

- A12*( A21*A33-A23*A31 ) ...

+ A13*( A21*A32-A22*A31 );
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Det1 = B1*( A22*A33-A23*A32 ) ...

- A12*( B2*A33-A23*B3 ) ...

+ A13*( B2*A32-A22*B3 );

Det2 = A11*( B2 *A33-A23*B3 ) ...

- B1*( A21*A33-A23*A31 ) ...

+ A13*( A21* B3-B2 *A31 );

Det3 = A11*( A22* B3-A32* B2 ) ...

- A12*( A21* B3-A31* B2 ) ...

+ B1*( A21*A32-A22*A31 );

dx(1) = Det1/Det;

dx(2) = Det2/Det;

dx(3) = Det3/Det;

%--------

% correct

%--------

x(1) = x(1)+dx(1);

x(2) = x(2)+dx(2);

x(3) = x(3)+dx(3);

%-------

% escape

%-------

Iescape = 1;

if(abs(dx(1)) > tol) Iescape = 0; end

if(abs(dx(2)) > tol) Iescape = 0; end

if(abs(dx(3)) > tol) Iescape = 0; end

if(Iescape==1)

Iflag = 0;

f = drop 2di2 ode(x);

return

end

%----

end % of iterations

%----

%-----

% done

%-----

return
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The overall method is implemented in the following MATLAB code entitled drop 2di2,
located in directory drop 2di inside directory 03 hydrostat of Fdlib:

%------------------------------------------------------

% Hydrostatic shape of a two-dimensional

% sessile drop resting on an inclined plane

% or a pendant drop hanging underneath a inclined plane,

% for a specified area and first contact points

%

% This code animates interfacial profiles on a

% continuously rotated plane.

%------------------------------------------------------

global area capls Isp npts beta alpha1 alpha2 d x y

Jsp = -1; % pendant

Jsp = 1; % sessile

gac = 1.0; % acceleration of gravity

gamma = 2.0; % surface tension

rhod = 1.0; % density of the drop

rhoa = 0.0; % density of the ambient fluid

area = pi; % drop area

alpha = 0.75*pi; % contact angle on a plane

npts = 32; % number of interfacial markers

epsilon = 0.01; % for the shooting method

maxiter = 16; % on a horizontal plane

tol = 0.000000001; % for the shooting method

%---

% compute the drop shape on a horizontal plane

% rcrc: radius of the circular drop

%---

rcrc = sqrt(area/(alpha-0.5*sin(2.0*alpha)));

B = 1.0/rcrc;

[B,x,y] = drop 2d ...

...

(Jsp,gac,gamma,rhod,rhoa,area ...

,alpha,npts,epsilon,maxiter,tol ...

,B);

%---

% shift to reset the origin at the wall

%---
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shiftx = x(npts+1);

x = x-shiftx;

%---

% position of the contact line

%---

d = 2*y(npts+1);

%---

% prepare to rotate

%---

drho = rhod-rhoa; % density difference

Isp = 1.0; % Isp is an orientation index

if(drho<0) Isp = -1.0; end

capls = gamma/(gac*abs(drho)); % square of the capillary length

npts = 2*npts;

C = B-shiftx/capls;

alpha1 = alpha;

alpha2 = alpha;

%------------

% start rotating

%------------

for repeat=1:1024

beta = 0.002*(repeat-1.0)*pi;

csb = cos(beta); snb = sin(beta);

ROT = [csb, snb; -snb, csb]; % rotation matrix for graphics

solution = [C alpha1 alpha2];

Niter = 10; % number of iterations

eps = 0.001; % step for numerical differentiation

[solution,F,Iflag] = drop 2di2 newton3 ...

...

(Niter ...

,eps ...

,solution ...

);

%---

% distribute the solution

%---

C = solution(1)
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alpha1 = solution(2)

alpha2 = solution(3)

% ---

% plot

% ---

xplot = -y; yplot = y;

for i=1:npts+1

xx = [xplot(i), yplot(i)];

xx = ROT*xx’;

xplot(i) = xx(1);

yplot(i) = xx(2);

end

plot(xplot,yplot,'-')

hold on

plot(csb*[0.5,-2.0],snb*[-0.5,2.0],'r','LineWidth',3)

axis equal

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

hold off

pause(0.1)

end

5.8.1 Two-dimensional drop on a horizontal or inclined plane

Derive a relation between the constant B introduced in (5.7.2) and the constant C introduced
in (5.8.5) for a horizontal plane, β = 0.

5.8.2 Two-dimensional drop on an inclined plane

Write a code that computes interfacial shapes for a fixed drop area and contact points, and
unspecified contact lines.

5.9 Axisymmetric meniscus inside a tube

To compute the shape of an axisymmetric interface, we work as in the case of a two-
dimensional interface discussed previously in this chapter, with some minor differences.
Added considerations include possible subtleties in the computation of the mean curvature
and a more pronounced sensitivity to numerical parameters. The new features will be
illustrated with reference to the axisymmetric versions of the two-dimensional configurations
studied in Sections 5.6 and 5.7.

Problems
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Figure 5.9.1 Illustration of an axisymmetric meniscus inside a vertical circular tube for (a) contact
angle α less than 1

2
π, and (b) α greater than 1

2
π/2.

In this section, we consider the shape of an axisymmetric meniscus inside a vertical
cylindrical tube of radius a, as illustrated in Figure 5.9.1. The axisymmetric meniscus is the
counterpart of the two-dimensional meniscus between two vertical plates shown in Figure
5.6.1.

In cylindrical polar coordinates, (x, σ), the axisymmetric meniscus can be described by
a function,

x = f(σ), (5.9.1)

where the ordered pair (σ, x) comprise Cartesian coordinates in an azimuthal plane with
origin positioned such that f(0) = 0, as shown in Figure 5.9.1. Regularity requires that
f ′(0) = 0, and the condition on the contact angle requires that

f ′(a) = cotα. (5.9.2)

Outside the tube, the interface assumes a flat horizontal shape with vanishing curvature
located at x = −h, where h is positive in Figure 5.9.1(a) and negative in Figure 5.9.1(b).

The pressure distributions in the two fluids are given by

p(1)(y) = −ρ1gy + π1, p(2)(y) = −ρ2gy + π2, (5.9.3)

where π1 and π2 are two reference pressures.
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Laplace–Young equation

Our main objective is to compute the capillary rise, h, along with the unknown meniscus
shape by solving the Laplace–Young equation (5.4.14). In the present problem, this equation
takes the specific form

2κm = −Δρ g

γ
x+B, (5.9.4)

where κm is the mean curvature, B ≡ (π2 − π1)/γ is a constant, and Δρ ≡ ρ2 − ρ1.

Evaluating equation (5.9.4) at a point outside and far from the tube where the mean
curvature of the interface tends to vanish and the interfacial elevation tends to −h, we obtain
the relation

B = − h

λ2
, (5.9.5)

where h is the capillary rise and λ2 ≡ γ/(Δρ g) is the square of the capillary length, under
the assumption that Δρ ≡ ρ2 − ρ1 > 0.

Combining the last two equations, we obtain the governing equation

2κm = −f + h

λ2
, (5.9.6)

involving the a priori unknown capillary rise, h. The numerator of the fraction on the
right-hand side, f + h, is the elevation of the meniscus with respect to the flat interface
outside the tube.

Mean curvature

The mean curvature is given by formulas (4.4.33) and (4.4.34), repeated below for conve-
nience,

2κm = − 1

σ

(
σ

f ′√
1 + f ′2

)′
= − f ′′

(1 + f ′2)3/2
− 1

σ

f ′√
1 + f ′2 (5.9.7)

and

2κm =
1

f ′

( 1√
1 + f ′2

)′
− 1

σ

f ′√
1 + f ′2 , (5.9.8)

where a prime denotes a derivative with respect to σ.

Applying equation (5.9.6) at the origin, x = 0, where f ′ = 0, we find that

h

λ2
= −2κ0

m = 2f ′′(0) (5.9.9)

where κ0
m = κm(0) is the centerline mean curvature.



5.9 Axisymmetric meniscus inside a tube 313

Meniscus height

Substituting the expression for the mean curvature given in (5.9.8) into the left-hand side
of the Laplace–Young equation (5.9.6), multiplying by f ′, and rearranging, we obtain( 1√

1 + f ′2

)′
− 1

σ

f ′2√
1 + f ′2 = − 1

λ2

[ 1

2
(f2)′ + hf ′ ]. (5.9.10)

Integrating with respect to σ across the tube radius from σ = 0 to a, we obtain

1− sinα =
1

λ2

( 1

2
d+ h

)
d− J , (5.9.11)

where

J ≡
∫ a

0

1

σ

f ′2√
1 + f ′2 dσ. (5.9.12)

The appearance of the integral J , associated with the second principal curvature, distin-
guishes the axisymmetric from the two-dimensional meniscus discussed in Section 5.6.

Vertical force balance

Substituting the first expression for the mean curvature given in (5.9.7) into the left-hand
side of the Laplace–Young equation (5.9.6), and multiplying both sides by σ, we obtain(

σ
f ′√

1 + f ′2

)′
=

f + h

λ2
σ. (5.9.13)

Integrating with respect to σ from 0 to a and noting that f ′(a) = cotα, we obtain

a cosα =
1

λ2

∫ b

0

(f + h)σ dx. (5.9.14)

This equation expresses a balance between the weight of the fluid inside the tube above or
below the flat interface, the buoyancy force, and the capillary force at the circular contact
line.

Differential equations

Substituting the second expression for the mean curvature given in (5.9.7) into the left-
hand side of the Laplace–Young equation (5.9.6), and rearranging, we derive a second-order
differential equation,

f ′′ = (1 + f ′2)
( − f ′

σ
+
√
1 + f ′2 f + h

λ2

)
. (5.9.15)

An equivalent first-order system is

df

dσ
= q,

dq

dσ
= (1 + q2)

( − q

σ
+

√
1 + q2

f + h

λ2

)
. (5.9.16)



314 Fluid Dynamics: Theory, Computation, and Numerical Simulation

The first equation defines the slope function q, and the second equation enforces the Laplace–
Young equation.

Parametric representation

It is expedient to describe the shape of the interface in parametric form in terms of the slope
angle θ, varying from 0 at the centerline of the tube to the value 1

2π − α at the inner wall
of the tube, defined by

f ′ = tan θ, (5.9.17)

where α is the contact angle, as shown in Figure 5.9.1. The axial and radial positions of a
point at the interface are described by the functions

x = X(θ), σ = Σ(θ). (5.9.18)

In terms of the slope angle, the mean curvature is given by the expressions

2κm =
1

tan θ

d

dσ

( 1√
1 + tan2 θ

)
− sin θ

σ
=

1

tan θ

d cos θ

dσ
− sin θ

σ
(5.9.19)

and

2κm = − cos θ
dθ

dσ
− sin θ

σ
. (5.9.20)

In the case of a raised meniscus depicted in Figure 5.9.1(a), the angle θ is positive and
the second principal radius of curvature is negative, R2 < 0. In the case of a submerged
meniscus depicted in Figure 5.9.1(b), θ is negative and R2 > 0.

Substituting expression (5.9.20) into the left-hand side of the Laplace–Young equation
(5.9.6) and rearranging, we obtain the differential equation

dΣ

dθ
=

cos θ

Q
, (5.9.21)

where

Q ≡ X + h

λ2
− sin θ

Σ
. (5.9.22)

Equation (5.9.21) governs the parametric representation of the radial position, σ = Σ(θ), in
terms of the slope angle, θ. To derive a corresponding equation for the axial position X, we
combine the definition

f ′ = tan θ =
dX

dΣ
(5.9.23)

with equation (5.9.21), and obtain

dX

dθ
=

sin θ

Q
. (5.9.24)
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The boundary conditions require that Σ = 0 and X = 0 at θ = 0, and Σ = a at θ = 1
2π−α.

Evaluation at the origin

An apparent difficulty is encountered when we attempt to evaluate the function Q defined
in (5.9.22) at θ = 0, corresponding to the centerline, Σ = 0, as the second fraction on the
right-hand side becomes undefined.

However, using the l’Hôpital rule, we find that, as θ tends to zero, this ratio reduces to
the derivative dθ/dΣ. Substituting this asymptotic limit into (5.9.22) and the result into
(5.9.21) and (5.9.24), we derive the regularized initial conditions(dΣ

dθ

)
θ=0

= 2
λ2

h
,

(dX
dθ

)
θ=0

= 0, (5.9.25)

which are used to start up the integration.

Computer code

The following MATLAB function entitled men ax ode, located in directory men ax inside
subdirectory 03 hydrostat of Fdlib, integrates the differential equations using the modified
Euler method subject to a given value for h provided in the input:

function [x,s] = men ax ode (npts,capls,a,dthet,h)

%--------------------------------------------

% Integrate the ODEs for an axisymmetric meniscus

% by the modified Euler method

%

% npts: number of integration intervals

% cpls: square of the capillary length

%--------------------------------------------

%--------

% prepare

%--------

dtheth = 0.5*dthet;

%-----------

% centerline

%-----------

thet = 0.0; s(1) = 0.0; x(1) = 0.0;

%---

for i=1:npts

%---
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if(i==1)

sp = 2.0*capls/h;

xp = 0.0D0;

else

cs = cos(thet);

sn = sin(thet);

Q = (x(i)+h)/capls-sn/s(i);

xp = sn/Q;

sp = cs/Q;

end

xsv = x(i); % save

ssv = s(i); % save

xpsv = xp;

spsv = sp;

thet = thet+dthet;

x(i+1) = x(i)+xp*dthet;

s(i+1) = s(i)+sp*dthet;

cs = cos(thet);

sn = sin(thet);

Q = (x(i+1)+h)/capls-sn/s(i+1);

xp = sn/Q;

sp = cs/Q;

x(i+1) = xsv + (xpsv+xp)*dtheth;

s(i+1) = ssv + (spsv+sp)*dtheth;

%---

end

%---

%-----

% done

%-----

return

Solution by iteration

Since the value of the capillary rise, h, is a priori unknown, the solution must be found
by iteration. A shooting method for computing h can be implemented according to the
following steps:

1. Guess a value for h.

2. Solve equations (5.9.21) and (5.9.24) subject to the initial conditions Σ = 0 and X = 0
at θ = 0.
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3. Check whether the condition Σ = a at θ = 1
2π − α is satisfied. If not, improve the

guess using, for example, the secant method discussed in Section 5.7.

A reasonable guess for h at Step 1 can be obtained by assuming that the meniscus has a
spherical shape consistent with the prescribed contact angle, α. Using elementary trigonom-
etry, we find that

h 	 2
λ2

a
cosα. (5.9.26)

Note that, when α > 1
2π, the predicted rise is negative, in agreement with physical intuition.

The improvement in Step 3 can be made using the secant method discussed in Section
5.6.1 for the corresponding problem in two dimensions.

The algorithm is implemented in the following MATLAB function entitled men ax lo-
cated in directory 03 hydrostat of Fdlib:

function [Iflag,x,s,hout] = men ax ...

...

(a,gac,gamma,rhop,rhoa ...

,alpha,npts ...

,epsilon,maxiter,tol ...

,hin ...

)

%-----------------------------------

% shape of an axisymmetric meniscus

% inside a tube of radius computed

% by a shooting method for h

%

% hin: initial guess for h

%-----------------------------------

Iflag = 0; % flag for success

%----

% prepare

%----

drho = rhop-rhoa ; % density difference

% square of the capillary length:

capls = gamma/(gac*abs(drho));

npts1 = npts+1;

dthet = (0.5*pi-alpha)/npts;

%---------------------
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% initial guess for h

%---------------------

h(1) = hin;

%---

% compute the first solution of the odes

% to start-up the secant method

%---

Ic = 1; % counter

[x,s] = men ax ode(npts,capls,a,dthet,h(Ic));

error(Ic) = s(npts1)-a;

%-------------------------

% second start-up solution

%-------------------------

Ic = 2;

h(2) = h(1)+epsilon;

[x,s] = men ax ode(npts,capls,a,dthet,h(Ic));

error(Ic) = s(npts1)-a;

%---------------------------------------

% iterate using the secant method

% until convergence

%---------------------------------------

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2;

Ica = Ic-1;

dedh = (error(Ica)-error(Icb))/(h(Ica)-h(Icb));

h(Ic) = h(Ica) - error(Ica)/dedh;

[x,s] = men ax ode(npts,capls,a,dthet,h(Ic));

error(Ic) = s(npts1)-a;

if(abs(error(Ic))<tol)
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Figure 5.9.2 Shape of a meniscus inside a vertical tube generated by the Fdlib code men ax for
two contact angles.

break

end

%---

end

%---

if(iter==maxiter)

disp(’men ax: ODE solver failed’)

Iflag=1;

return

end

hout = h(Ic);

%---

% done

%---

return

Results of computations for a contact angle that is lower than 1
2π and a contact angle

that is higher than 1
2π are shown in Figure 5.9.2. In the second case, the meniscus submerges

below the level of the liquid outside the tube.

Scaling all lengths by the tube radius, a, we find that the shape of the meniscus depends
on the contact angle, α, and ratio λ/a. As λ/a increases, the meniscus tends to obtain a
spherical shape.
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Figure 5.10.1 Illustration of (a) an axisymmetric sessile liquid drop resting on a horizontal plane and
(b) an axisymmetric pendant liquid drop hanging under a horizontal plate.

5.9.1 Axisymmetric meniscus

Run the code men ax to generate a family of shapes corresponding to a fixed tube radius
and various contact angles. Generate another family of shapes corresponding to a contact
angle and various tube radii. Discuss the behavior of the capillary rise in each case.

5.10 Axisymmetric drop on a horizontal plane

Consider an axisymmetric drop of a fluid labeled 2 resting above or hanging underneath a
horizontal plane, as shown in Figure 5.10.1. The drop is surrounded by an ambient fluid
labeled 1. The resting drop shown in Figure 5.10.1(a) is a sessile drop, while the hanging
drop shown in Figure 5.10.1(b) is a pendant drop.

Our objective is to compute the shape of the interface for specified surface tension, γ,
contact angle, α, and drop volume, VD. The forthcoming analysis also applies for a gas
bubble regarded as a zero-density drop, ρ2 = 0.

The pressure distribution in the two fluids is given by the familiar expressions

p(1)(x) = −s1ρ1gx+ π1, p(2)(x) = −s1ρ2gx+ π2, (5.10.1)

where π1 and π2 are two reference pressures. The coefficient s1 is equal to 1 for a sessile drop
or −1 for a pendant drop, reflecting the orientation of gravity with respect to the positive
direction of the x axis. The shape of the interface is governed by the Laplace–Young equation
stated in (5.4.14),

2κm = −s1
Δρ g

γ
x+B, (5.10.2)

Problem
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where κm is the mean curvature of the interface, Δρ = ρ2−ρ1, and B ≡ (π2−π1)/γ is an a
priori constant with units of inverse length. In terms of the square of the capillary length,
λ2 ≡ γ/(|Δρ| g), equation (5.10.2) takes the compact form

2κm = −s1s2
x

λ2
+B, (5.10.3)

where the coefficient s2 is equal to 1 if ρ2 > ρ1 or −1 if ρ2 < ρ1.

Applying equation (5.10.2) at the origin, we find that the constant B is equal to twice
the mean curvature of the interface at the centerline,

B = 2κ0
m, (5.10.4)

where we have denoted κ0
m = κm(0).

Mean curvature

In Section 4.3, we saw that, if the position of the drop surface is described by a function

σ = w(x), (5.10.5)

then the mean curvature is given by the expressions

2κm = − w′′

(1 + w′2)3/2
+

1

w

1√
1 + w′2 = −

( w′
√
1 + w′2

)′
+

1

w

1√
1 + w′2 (5.10.6)

and

2κm =
1

ww′

( w√
1 + w′2

)′
, (5.10.7)

where a prime denotes a derivative with respect to x.

Drop height

Substituting the second expression for the mean curvature given in (5.10.6) into the Young–
Laplace equation (5.10.3), we obtain

−
( w′
√
1 + w′2

)′
+

1

w

1√
1 + w′2 = −s1s2

x

λ2
+B. (5.10.8)

Integrating with respect to x across the height of the drop from x = −d to 0, we obtain

1− cosα = 2 sin2
α

2
= s1s2

1

2

d2

λ2
+B d− J , (5.10.9)

where

J ≡
∫ 0

−d

1

w

dx√
1 + w′2 =

∫ 0

−d

sinψ

σ
dx, (5.10.10)
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and the slope angle, ψ, is defined by the equation

w′ = − cotψ, (5.10.11)

as shown in Figure 5.10.1. The appearance of the integral J associated with the second
principal curvature distinguishes the axisymmetric from the two-dimensional drop discussed
in Section 5.7.

When s1s2 = 1, the top of the drop is nearly flat due to dominant gravitational effects,
Bd 	 0. Under these conditions, the integral J can be approximated by integrating around
the sides of the drop where w 	 b. Using the two-dimensional meniscus equation (5.5.10),
we obtain

w′ 	 1

φ

2− φ2√
4− φ2

(5.10.12)

and approximate

J 	 λ

2 b

∫ d/λ

0

φ
√

4− φ2 dφ =
1

6

λ

b

(
8−

(
4− d2

λ2

)3/2 )
, (5.10.13)

where ξ ≡ x+ d is the distance of the interface from the support and φ = ξ/λ. For a nearly
flat drop, equation (5.10.9) then gives

2 sin2
α

2
	 1

2

d2

λ2
+

1

6

λ

b

[
8−

(
4− d2

λ2

)3/2 ]
, (5.10.14)

which provides us with a relation between the drop height, b, and the radius of the base, b.
When the ratio d/λ is small, we obtain

d 	 2λ sin
α

2
, (5.10.15)

consistent with the elevation of a semi-infinite meniscus attached to a vertical plate.

Vertical force balance

Substituting the expression for the curvature given in (5.10.7) into the Young–Laplace equa-
tion (5.10.3), and rearranging, we obtain( w√

1 + w′2

)′
= −s1s2

1

2

1

λ2

[
(xw2)′ − w2

]
+B

1

2
(w2)′. (5.10.16)

Integrating with respect to x across the height of the drop from x = −d to 0, we obtain

b sinα = s1s2
1

2

1

λ2

(
d b2 − 1

π
VD ) +

1

2
B b2, (5.10.17)

where

VD = π

∫ 0

−d

w2(x) dx (5.10.18)
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is the drop volume and d is the drop height, as shown in Figure 5.10.1. Given α and VD,
equation (5.10.17) can be used to compute b, d, or B = 2κ0

m, from knowledge of two others.

In fact, equation (5.10.17) expresses a force balance. To demonstrate this, we note that
the additional force exerted on the plane due to the drop is

ΔFx = −(πb2) (p(2) − p(1))x=−d = −(πb2)
(
s1Δρ gd+Bγ

)
. (5.10.19)

Adding to this force the capillary force around the circular contact line, we obtain the total
vertical force

Fx = ΔFx + 2πbγ sinα = −s1Δρ g πb2d− γ πb
(
Bb− 2 sinα

)
. (5.10.20)

The first term on the right-hand side is the weight of of a cylindrical column of fluid with
radius b and height d reduced by the buoyancy force. This force is precisely equal to the
weight of the drop reduced by the buoyancy force,

Fx = −s1Δρ gVD, (5.10.21)

yielding the relation

s1s2 (VD − πd b2) = πb λ2
(
Bb− 2 sinα

)
, (5.10.22)

which is precisely equation (5.10.17).

Parametric representation

Working as in Section 5.7 for a two-dimensional drop, we describe the interface parametri-
cally in terms of the slope angle ψ defined in Figure 5.10.1 as

x = X(ψ), σ = Σ(ψ), (5.10.23)

where

cotψ = − dΣ

dX
. (5.10.24)

Substituting these expressions into (5.10.7), we obtain

2κm = − 1

cotψ

d

dX

( 1

(1 + cot2 ψ)1/2

)
+

sinψ

Σ
= − 1

cotψ

d sinψ

dX
+

sinψ

Σ
(5.10.25)

and

2κm = − sinψ
dψ

dX
+

sinψ

Σ
=

d cosψ

dX
+

sinψ

Σ
. (5.10.26)

Substituting these expressions into the Young–Laplace equation (5.10.2), we obtain

sinψ
dψ

dX
− sinψ

Σ
= −d cosψ

dX
− sinψ

Σ
= s1

Δρ g

γ
X −B. (5.10.27)
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Rearranging, we obtain

sinψ
dψ

dX
= s1

Δρ g

γ
X −B +

sinψ

Σ
, (5.10.28)

which provides us with the differential equations

dX

dψ
=

sinψ

Q
,

dΣ

dψ
= −cosψ

Q
, (5.10.29)

where

Q ≡ sinψ

Σ
+ s1s2

X

λ2
−B. (5.10.30)

We observe that the shape of a bubble on a flat plate, s1 = 1 and s2 = −1, is similar to
that of a drop underneath a flat plate, s1 = −1 and s2 = 1.

Since the origin of the x axis is set at the a priori unknown highest elevation of the
interface where ψ = 0,

X(0) = 0, Σ(0) = 0. (5.10.31)

The constraint on the drop volume, VD, takes the form

π

∫ 0

−d

Σ2 dx = VD, (5.10.32)

where x = −d describes the position of the plane, as shown in Figure 5.10.1. At the axis of
symmetry located at σ = 0, equations (5.10.29) are replaced by the regularized equations(dΣ

dψ

)
ψ=0

=
2

B
,

(dX
dψ

)
ψ=0

= 0, (5.10.33)

arising from Taylor series expansions.

Equations (5.10.29) can be solved by the shooting method discussed in Section 5.7 for
the corresponding problem in two dimensions. A reasonable guess for the constant B can
be obtained by assuming that the interface is a section of a sphere, and then computing
the radius of the sphere, �, to satisfy the constraints on the contact angle and drop volume.
Using elementary trigonometry, we find that

� =
( 3VD/π

2 + cos3 α− 3 cosα

)1/3

, (5.10.34)

and set B = 2/�.

A numerical method for solving the boundary-value problem is implemented in a code
entitled drop ax, located in directory 03 hydrostat of Fdlib, not listed in the text. The
algorithm incorporates minor modifications of the code drop 2d listed in Section 5.7.
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Figure 5.10.2 Shapes of (a) a sessile and (b) a pendant drops for contact angle α = 3
4
π and α = 1

4
π

computed by code drop ax of Fdlib. The dotted lines show the approximate spherical shape
arising for small drops or large surface tension.

Drop shapes computed using this code are shown in Figure 5.10.2 where the x and y
coordinates are scaled by the equivalent drop radius, a, defined by the equation VD = 4πa3/3.
Gravity squeezes the sessile drop toward the wall and pulls the pendant drop away from the
wall.

Solution space

The numerical method described earlier in this section fails when the drop develops a re-
entrant shape near the base. The reason is that, when this occurs, the functions X(ψ) and
Σ(ψ) cease to be single valued.

To address this difficulty, we integrate the parametric differential equations from ψ = 0
up to a specified maximum value ψmax < α, and then continue the integration regarding
the radial distance as a function of the axial position, σ = w(x). To perform the integration
with respect to x, we substitute the expression for the mean curvature given in (5.10.6) into
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the Laplace–Young equation and obtain

− w′′

(1 + w′2)3/2
+

1

σ

1√
1 + w′2 = −Δρ g

γ
x+B, (5.10.35)

where a prime denotes a derivative with respect to x. Rearranging, we derive the second-
order differential equation,

w′′ = (1 + w′2)
( 1

w
+
√
1 + w′2 (s1s2

x

λ2
−B)

)
, (5.10.36)

which can be resolved into a system of two first-order equations,

dw

dx
= q,

dq

dx
= (1 + q2)

( 1

w
+
√
1 + q′2

(
s1s2

x

λ2
−B

) )
. (5.10.37)

Initial conditions are provided by the values computed at the end of the integration domain
with respect to ψ.

The following MATLAB function entitled drop ax1 ode, located in directory drop ax
inside directory 03 hydrostat of Fdlib, integrates successively the two sets of differential
equations:

function [x,s,Ntot,vlm,slope] = drop ax1 ode ...

...

(npts1 ... % number of steps using the psi parametrization

,capls ... % square of the capillary length

,Isp ...

,psi max ...

,B ...

,ratio ... % grading of psi integration intervals

,Next ... % determines the x position of the drop base

,npts2 ... % number of steps using the x parametrization

)

%--------------------------------------------

% Integrate ODEs using RK4

% Return the interfacial profile (x, s)

% total number of divisions (Ntot)

% volume of the drop (vlm)

% slope at the base (slope)

%--------------------------------------------

%==============

% first section

%==============

%---------

% set the step size vector dpsi

% so that it increases geometrically
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% by the factor "ratio"

%---------

if(ratio==1)

alp = 1.0;

factor = 1.0/npts1;

else

texp = 1/(npts1-1);

alp = ratio^texp1;

factor = (1.0-alp)/(1.0-alp^npts1);

end

dpsi(1) = psi max*factor;

for i=2:npts1

dpsi(i) = dpsi(i-1)*alp;

end

%----------------

% top of the drop

%----------------

psi = 0.0;

x(1) = 0.0;

s(1) = 0.0;

%----------

% integrate

%----------

for i=1:npts1

dpsih(i) = 0.5*dpsi(i);

if(i==1)

xp = 0.0;

sp = 2.0/B;

else

Q = sin(psi)/s(i)+Isp*x(i)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

end

xp1 = xp;

sp1 = sp;

psi = psi +dpsih(i);

x(i+1) = x(i)+xp*dpsih(i);

s(i+1) = s(i)+sp*dpsih(i);
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Q = sin(psi)/s(i+1)+Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

xp2 = xp;

sp2 = sp;

x(i+1) = x(i)+xp*dpsih(i);

s(i+1) = s(i)+sp*dpsih(i);

Q = sin(psi)/s(i+1)+Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

xp3 = xp;

sp3 = sp;

psi = psi +dpsih(i);

x(i+1) = x(i)+xp*dpsi(i);

s(i+1) = s(i)+sp*dpsi(i);

Q = sin(psi)/s(i+1)+Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

xp4 = xp;

sp4 = sp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi(i)/6.0;

s(i+1) = s(i) + (sp1+2*sp2+2*sp3+sp4)*dpsi(i)/6.0;

end

Ntot = npts1;

%==============

% continue the integration with a uniform step "dx"

% using the x parametrization up to x = Next*x(npts1+1)

%==============

dx = Next*x(npts1+1)/npts2;

%---

% initial slope

%---

Q = sin(psi)/s(npts1+1)+Isp*x(npts1+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

q(npts1+1) = xp/sp; % dx/dsigma
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%---

% integrate

%---

for i=npts1+1:npts1+npts2+2

dsdx = q(i);

tmp = 1+q(i)*q(i);

dqdx = tmp*( 1/s(i)+sqrt(tmp)*(Isp*x(i)/capls-B) );

dsdx1 = dsdx;

dqdx1 = dqdx;

x(i+1) = x(i)+0.5*dx;

s(i+1) = s(i)+0.5*dx*dsdx;

q(i+1) = q(i)+0.5*dx*dqdx;

dsdx = q(i+1);

tmp = 1+q(i+1)*q(i+1);

dqdx = tmp*( 1/s(i+1)+sqrt(tmp)*(Isp*x(i+1)/capls-B) );

dsdx2 = dsdx;

dqdx2 = dqdx;

x(i+1) = x(i)+0.5*dx;

s(i+1) = s(i)+0.5*dx*dsdx;

q(i+1) = q(i)+0.5*dx*dqdx;

dsdx = q(i+1);

tmp = 1+q(i+1)*q(i+1);

dqdx = tmp*( 1/s(i+1)+sqrt(tmp)*(Isp*x(i+1)/capls-B) );

dsdx3 = dsdx;

dqdx3 = dqdx;

x(i+1) = x(i)+dx;

s(i+1) = s(i)+dx*dsdx;

q(i+1) = q(i)+dx*dqdx;

dsdx = q(i+1);

tmp = 1+q(i+1)*q(i+1);

dqdx = tmp*( 1/s(i+1)+sqrt(tmp)*(Isp*x(i+1)/capls-B) );

dsdx4 = dsdx;

dqdx4 = dqdx;

s(i+1) = s(i)+dx*(dsdx1+2.0*dsdx2+2.0*dsdx3+dsdx4)/6.0;

q(i+1) = q(i)+dx*(dqdx1+2.0*dqdx2+2.0*dqdx3+dqdx4)/6.0;

Ntot = Ntot+1;

if(s(i+1)<0) break; end

end
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slope = q(i+1);

%-------------------------------------------

% compute the volume of the integrated shape

% by the trapezoidal rule

%-------------------------------------------

vlm = 0.0;

for i=1:Ntot

vlm = vlm+(s(i+1)*s(i+1)+s(i)*s(i))*abs(x(i+1)-x(i));

end

vlm = 0.5*vlm; % to account for trapezoidal weights

vlm = pi*vlm;

%-----

% done

%-----

return

Families of shapes parametrized by the constant B can be generated by specifying the
capillary length, λ, and then computing the numerical parameter Next to ensure a specified
drop volume. The constant B determines the contact angle implicitly, while the parameter
Next determines the location of the drop base explicitly. Finding the proper value of Next
can be done using the secant method.

The numerical procedure is implemented in the following MATLAB function entitled
drop ax1, located in directory drop ax inside directory 03 hydrostat of Fdlib:

%----

% Solution branches of a sessile or pendant drop

%----

a = 1.0; % drop radius

Isp = -1; % pendant drop

psi max = 0.25*pi;

npts1 = 24;

npts2 = 48;

ratio = 0.9;

maxiter = 10; % for secant iterations

tol = 0.0000001; % for secant iterations

%---

% prepare

%---

volume = 1.0*4*pi*a^3/3;
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%---

% family parameters

%---

capls = 2.0;

Nloop = 2*2*2*2*2*2*128;

Bmin = 1.00;

Bmax = 4.0;

DB = 0.0020;

Nplot = 32; % will plot after Nplot shapes

%---

% prepare to plot

%---

figure(1)

hold on

xlabel('y/a','fontsize',15)

ylabel('x/a','fontsize',15)

set(gca,'fontsize',15)

axis equal

box on

xwall(1) =-1.8; ywall(1) = 0;

xwall(2) = 1.8; ywall(2) = 0;

if(Isp==1)

patch([xwall xwall(2) xwall(1)], ...

[ywall ywall(2)-0.2 ywall(1)-0.2],'g')

else

patch([xwall xwall(2) xwall(1)], ...

[ywall ywall(2)+0.2 ywall(1)+0.2],'g')

end

plot(xwall,ywall,'k')

%---

% prepare to loop

%---

B = Bmin;

Next(1) = 2.0;

Iplot = Nplot;

%============

for Iloop=1:Nloop % loop over B

%============

B = B+DB;
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Ic = 1; % counter

[ x,s,Ntot,vlm,slope ] = drop ax1 ode ...

...

(npts1 ...

,capls ...

,Isp ...

,psi max ...

,B ...

,ratio ...

,Next(1) ...

,npts2 ...

);

error(Ic) = vlm-volume;

Ic = 2;

Next(Ic) = Next(Ic-1)+0.10;

[x,s,Ntot,vlm,slope] = drop ax1 ode ...

...

(npts1 ...

,capls ...

,Isp ...

,psi max ...

,B ...

,ratio ...

,Next(2) ...

,npts2 ...

);

error(Ic) = vlm-volume;

%---------------------------------------

% iterate on Next using the secant method

% until convergence

%---------------------------------------

Iconverged = 0;

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2;
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Ica = Ic-1;

dedc = (error(Ica)-error(Icb))/(Next(Ica)-Next(Icb));

Next(Ic) = Next(Ica)-error(Ica)/dedc;

[x,s,Ntot,vlm,slope] = drop ax1 ode ...

...

(npts1 ...

,capls ...

,Isp ...

,psi max ...

,B ...

,ratio ...

,Next(Ic) ...

,npts2 ...

);

error(Ic) = vlm-volume;

err = abs(error(Ic));

if(err<tol)

Iconverged = 1;

break;

end

%----

end

%----

Next(1) = Next(Ic);

if(Iplot==Nplot)

figure(1)

x = x-x(Ntot+1); % shift the profile

plot( s,Isp*x,'k-')

plot(-s,Isp*x,'k-')

Iplot = 0;

end

Iplot = Iplot+1;

if(B>Bmax) break; end

%============

end

%============

A family of shapes generated by the code is shown in Figure 5.10.2. We observe interesting
compact, light-bulb, and hourglass interfacial contours. However, not all of these shapes are
stable and therefore expected to occur in practice.
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Figure 5.10.2 A family of axisymmetric drop shapes corresponding to a fixed capillary length and
varying contact angle.

5.10.1 Drop on a plane

(a) Derive the regularized expressions (5.10.33) departing from equations (5.10.29) and
(5.10.30). (b) Derive formula (5.10.34).

5.10.2 Axisymmetric drops

Run the code drop ax to generate a family of shapes corresponding to a fixed value drop
volume and various contact angles. Generate another family of shapes corresponding to a
fixed contact angle and various drop volumes.

5.11 A sphere straddling an interface

In Section 5.2.1, we discussed the equilibrium position of a spherical particle floating on a
flat interface. The flat interfacial shape is established under specific conditions, or else when
the capillary length, λ, is much smaller than the particle size. A more sophisticated analysis
is required under more general circumstances.

Shown in Figure 5.11.1 is a floating sphere of radius a straddling an axisymmetrically
deformed and otherwise flat interface. The origin of the x axis is set at the position of the
flat interface far from the sphere. The center of the sphere is located at x = xc and the
circular contact line is located at the axial and radial positions

xcl = xc + a cosβ, σcl = a sinβ, (5.11.1)

where the floating angle, β, varies in the range [0, π]. In the case of a flat interface, xcl = 0
and xc = −a cosβ.

Problems
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Figure 5.11.1 Illustration of a sphere straddling a curved axisymmetric interface between two fluids.

The shape of the axisymmetric meniscus can be described by a function,

x = f(σ). (5.11.2)

Working as in Section 5.9 for an axisymmetric meniscus, and requiring that the mean
curvature of the interface decays to zero far from the particle, as σ tends to infinity, we
derive a system of two first-order differential equations,

df

dσ
= q,

dq

dσ
= (1 + q2)

(− q

σ
+
√
1 + q2

f

λ2

)
, (5.11.3)

where λ2 = γ/(Δρg) is the square of the capillary length and Δρ = ρ2 − ρ1 is the density
difference between the lower and upper fluids. A Bond number can be defined in the terms
of the capillary length as

Bo =
Δρga2

γ
=

(a
λ

)2

. (5.11.4)

Physically, the Bond number is a measure of the extent of the interfacial deformation around
the contact line.

The contact line condition requires that

f(σcl) = xcl, q(σcl) = tan(α− β), (5.11.5)

and the far-field condition requires that

f(∞) = 0, (5.11.6)

where α is the contact angle, as shown in Figure 5.11.1.

The following MATLAB function entitled flsphere ode, located in directory flsphere in-
side directory 03 hydrostat of Fdlib, integrates the differential equations (5.11.3) using the
fourth-order Runge–Kutta method:
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function [f,s,q] = flsphere ode (ndiv,smax,capls,xcl,scl,slope);

%=====================================================

% solve ODEs for a semi-infinite axisymmetric meniscus

% by the RK4 method

%

% scl: sigma of contact line

%

% will integrate from scl to smax

%=====================================================

dsg = (smax-scl)/ndiv;

dsgh = 0.5*dsg;

s(1) = scl; % starting point

f(1) = xcl;

q(1) = slope;

%---

% integrate

%---

for i=1:ndiv

fp = q(i);

tmp = 1+q(i)*q(i);

tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i) + f(i)*tmg);

fp1 = fp;

qp1 = qp;

s(i+1) = s(i)+ dsgh;

f(i+1) = f(i)+fp*dsgh;

q(i+1) = q(i)+qp*dsgh;

fp2 = fp;

qp2 = qp;

fp = q(i+1);

tmp = 1+q(i+1)*q(i+1);

tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i+1) + f(i+1)*tmg);

fp3 = fp;

qp3 = qp;

f(i+1) = f(i)+fp*dsgh;

q(i+1) = q(i)+qp*dsgh;

fp = q(i+1);

tmp = 1+q(i+1)*q(i+1);
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tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i+1) + f(i+1)*tmg);

s(i+1) = s(i)+ dsg;

f(i+1) = f(i)+fp*dsg;

q(i+1) = q(i)+qp*dsg;

fp = q(i+1);

tmp = 1+q(i+1)*q(i+1);

tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i+1) + f(i+1)*tmg);

fp4 = fp;

qp4 = qp;

f(i+1) = f(i) + (fp1+2*fp2+2*fp3+fp4)*dsg/6.0;

q(i+1) = q(i) + (qp1+2*qp2+2*qp3+qp4)*dsg/6.0;

end

%---

% done

%---

return

Note that the interfacial slope, q(σcl), is provided in the last argument of the input.

Force exerted on the sphere

To compute the force exerted on the sphere, we note that the pressure distribution in the
upper or lower fluid is given by

p(1)(x) = −ρ1 g x+ π0, p(2)(x) = −ρ2 g x+ π0, (5.11.7)

where π0 is the interfacial pressure far from the sphere. By symmetry, the y and z compo-
nents of the buoyancy force exerted on the sphere are identically zero. The x component of
the buoyancy force is given by

F buoyancy
x = −

∫∫
p nx dS, (5.11.8)

where nx = cos θ is the x component of the unit vector normal to the sphere and θ is the
meridional angle defined in Figure 5.11.1. Writing

dS = (σ dϕ)(a dθ), σ = a sin θ, (5.11.9)

and thus

dS = a2 sin θ dθ dϕ, (5.11.10)
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and integrating with respect to the azimuthal angle, ϕ, we find that

F buoyancy
x = 2πa2

( ∫ β

0

p(1)(θ) cos θ d cos θ +

∫ π

β

p(2)(θ) cos θ d cos θ
)
. (5.11.11)

Next, we substitute the expressions for the pressure, set x = xc + a cos θ, and simplify to
obtain

F buoyancy
x = −2πa2g

(
ρ1

∫ β

0

(xc + a cos θ) cos θ d cos θ + ρ2

∫ π

β

(xc + a cos θ) cos θ d cos θ
)
.

(5.11.12)

As expected on physical grounds, the constant π0 does not make a net contribution to the
force. Carrying out the integration, we find that

F buoyancy
x = −2πga2

(
ρ1 xc

cos2 β − 1

2
+ ρ1 a

cos3 β − 1

3

+ρ2 xc
1− cos2 β

2
− ρ2 a

1 + cos3 β

3

)
. (5.11.13)

Rearranging, we obtain

F buoyancy
x = πga2

(
xc Δρ (cos2 β − 1) +

2

3
aΔρ cos3 β +

4

3
a ρ

)
, (5.11.14)

where

ρ =
1

2
(ρ1 + ρ2) (5.11.15)

is the mean fluid density. When ρ1 = ρ2 = ρ, only the last term survives, yielding the
buoyancy force on a submerged sphere.

Surface tension pulls the sphere tangentially to the interface at the contact line. Inte-
grating the tension along the circular contact line, we derive the resultant x component of
the capillary force,

F capillary
x = γ (2πσcl) sin(α− β) = 2πaγ sinβ sin(α− β), (5.11.16)

where σcl = a sinβ is the radius of the circular contact line.

Force equilibrium requires that

F buoyancy
x + F capillary

x = W, (5.11.17)

where W is the weight of the sphere. We may set W = 4π
3 a3ρsg, where ρs is the actual or

effective density of the sphere. Simplifying, we derive a force equilibrium equation,

xc

a
sin2 β =

2

3
cos3 β +

2

3
κ+ 2

λ2

a2
sinβ sin(α− β), (5.11.18)
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where

κ = 2
ρ− ρs
Δρ

(5.11.19)

is a dimensionless parameter. The limits κ → −1 or 1 correspond to ρs = ρ2 or ρ1, where
the sphere is neutrally buoyant in the lower or upper fluid.

Far-field meniscus

Far from the sphere, the interfacial slope is small. Linearizing the Laplace–Young equation,
we obtain the zeroth-order Bessel equation,

f ′′ = −f ′

σ
+

f

λ2
. (5.11.20)

An acceptable solution that decays at infinity is proportional to the modified Bessel function
of zeroth order, K0,

f(σ) 	 ξ aK0(σ/λ), (5.11.21)

where ξ is a dimensionless constant. It is beneficial to eliminate the constant ξ by formulating
the ratio between the shape function f and its derivative, finding

f(σ) + λ
K0(σ/λ)

K1(σ/λ)
f ′(σ) 	 0, (5.11.22)

where K1 is the first-order modified Bessel function. This condition can be applied at
a sufficiently large value of σ in place of the far-field condition (5.11.6) to improve the
performance of the numerical methods.

Flat interface solution

In the case of a flat interface, xc = −a cosβ, the expression for the buoyancy force simplifies
to

F buoyancy,flat
x = πga3Δρ cosβ (1− 1

3
cos2 β) +

2

3
πga3 (ρ2 + ρ1). (5.11.23)

The contact angle is equal to the contact line aperture, α = β, the capillary force vanishes,
and the trigonometric equation (5.11.18) simplifies to a cubic equation for cosβ,

cos3 β − 3 cosβ − 2κ = 0. (5.11.24)

A solution for cosβ in the admissible range [−1, 1] exists only when |κ| < 1.

Solution algorithm

When |κ| < 1, equation (5.11.18) and the accompanying Laplace–Young equation admit a
solution in a limited range of sufficiently high capillary lengths. A numerical method for
computing hydrostatic shapes can be implemented according to the following steps:
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1. Begin by considering a flat interface, solve the cubic equation (5.11.24) for cosβ, and
recover an approximation to β.

2. Choose a value for the contact angle, α 	 β.

3. Solve equation (5.11.18) for xc to satisfy the vertical force balance.

4. Integrate the system of differential equations (5.11.3) from σ = σcl up to a specified
distance, σ = σmax, and check whether f(σmax) = 0. If not, we adjust β to make it
so. The adjustment can be done using the secant or Newton’s method.

5. Change the contact angle, α, and return to Step 3 to obtain a new configuration.

The procedure ensures that a good initial guess is available for the shooting method, obtained
by parameter continuation.

The numerical method is implemented in a MATLAB function entitled flsphere, located
in directory 03 hydrostat of Fdlib:

function [s,x,q,beta,alpha,xc,xcl,scl ...

,beta flat,xc flat ...

,al scan,bt scan,xc scan] ...

...

= flsphere(a,capl,rho1,rho2,kappa,alphain ...

,smax,ndiv ...

,mincut,maxcut ...

,iplot shape)

%===================================================

% Compute families of floating sphere configurations

%

% alphain: targeted value of alpha

% (will stop when alpha = alphain)

%===================================================

%-----------

% parameters

%-----------

eps = 0.0000001; % for Newton’s method

tol = 0.0000001; % for Newton’s method

%---

% will scan the contact angle space with step dal

% that depends on the capillary length

%---

dal = -0.005;

if(capl<1.5) dal = -0.002; end
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if(capl<0.9) dal = -0.001; end

if(capl<0.8) dal = -0.0005; end

Nmax = 2*abs(floor(pi/dal)) % to prevent run off

%----

% prepare

%---

Drho = rho2-rho1;

Brho = 0.5*(rho1+rho2); % mean fluid density

rhos = Brho-0.5*kappa*Drho; % density of the sphere

capls = capl^2; % square of the capillary number

%----

% flat interface solution

%

% computed by solving a cubic equation using

% the "roots" matlab function (internal)

%---

C(1) = 1.0;

C(2) = 0.0;

C(3) = -3.0;

C(4) = -2*kappa;

cosbeta = roots(C); % roots() is an internal matlab function

if(abs(cosbeta(1))<1)

beta = acos(cosbeta(1));

elseif(abs(cosbeta(2))<1)

beta = acos(cosbeta(2));

elseif(abs(cosbeta(3))<1)

beta = acos(cosbeta(3));

end

xc = -a*cos(beta);

beta flat = beta; xc flat = xc;

%---

% prepare to scan the contact angle (alpha)

%---

Ido = 1;

Iflag = 0;

Icount = 0; % counter

Jcount = 0; % counter

Irecord = 1; % recording flag

alpha = beta; % flat plate contact angle
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%---

while(Ido==1) % loop over contact angles

%---

Icount = Icount+1;

itermax = 20;

for iter=1:itermax

%---

% solve for beta using Newton’s method

%---

cs = cos(beta);

sn = sin(beta);

amb = alpha-beta;

xc = (2/3*cs^3 + 2/3*kappa + 2*capls/a^2*sn*sin(amb))/sn^2;

xcl = xc+a*cs;

scl = a*sn;

slope = tan(amb);

[x,s,q] = flsphere ode(ndiv,smax,capls,xcl,scl,slope);

% obj = x(ndiv+1); % primary far-field

arg = s(ndiv+1)/capl; % far-field from asymptotics

obj = x(ndiv+1) + capl*besselk(0,arg) ...

/besselk(1,arg)*q(ndiv+1);

if(abs(obj)<tol) break; end

beta = beta+eps;

cs = cos(beta);

sn = sin(beta);

amb = alpha-beta;

xc = (2/3*cs^3 + 2/3*kappa + 2*capls/a^2*sn*sin(amb))/sn^2;

xcl = xc+a*cs;

scl = a*sn;

slope = tan(amb);

[x1,s1,q1] = flsphere ode(ndiv,smax,capls,xcl,scl,slope);

% obj1 = x1(ndiv+1); % primary far-field

arg1 = s1(ndiv+1)/capl; % far-field from asymptotics

obj1 = x1(ndiv+1) + capl*besselk(0,arg) ...

/besselk(1,arg)*q1(ndiv+1);
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beta = beta-eps; % reset

der = (obj1-obj)/eps;

correction = -obj/der;

beta = beta+correction;

if(abs(correction)<0.0000001) break; end

end % of Newton iterations

if(iter==itermax)

disp("flsphere: Newton iterations did not converge")

return

end

cs = cos(beta);

sn = sin(beta);

amb = alpha-beta;

xc = (2/3*cs^3 + 2/3*kappa + 2*capls/a^2*sn*sin(amb))/sn^2;

%==============

% plotting session

%==============

%---

if(iplot shape==1)

%---

figure(10)

hold on

xlabel(’y/a’,’fontsize’,15)

ylabel(’x/a’,’fontsize’,15)

%---

% plot the interface profile

%---

plot(s,x,’k’);

plot(-s,x,’k’);

axis equal

%---

% plot the particle contour

%---

ncrc=64;

for i=1:ncrc+1

tht = (i-1)*2*pi/ncrc;

xcrc(i) = xc+a*cos(tht);
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scrc(i) = a*sin(tht);

end

plot(scrc,xcrc,’k’);

patch(scrc,xcrc,’y’);

pause(0.001)

%======

end % of plotting

%======

if(Irecord==1)

Jcount = Jcount +1;

al scan(Jcount) = alpha/pi;

bt scan(Jcount) = beta/pi;

xc scan(Jcount) = xc/a;

end

if(Iflag==1)

break;

end

alpha = alpha+dal;

%-------

% change alpha scanning direction or lock

%-------

if(alpha<0.01*pi)

dal = abs(dal);

alpha = alpha + dal;

elseif(alpha>0.99*pi)

dal = -abs(dal);

alpha = alpha+dal;

elseif(abs(alpha-alphain)<1.0*abs(dal)) % lock on alphain

alpha = alphain + 0.00;

Iflag = 1;

end

if(Icount>Nmax) break; end

%---

end

%---

return

Nondimensionalizing lengths by the sphere radius, a, we find that the interfacial profile
depends on the ratio of the capillary length to the sphere radius, λ/a, the density difference
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Figure 5.11.2 Axisymmetric interfacial profiles attached to a floating sphere for λ/a = 1 and (a)
κ = 0.5, α = 0.98π, or (b) κ = −0.5, α = 0.0242π.

ratio, κ, and the contact angle, α. Two interfacial shapes are shown in Figure 5.11.2(a, b).
In Figure 5.11.2(a), a heavy hydrophobic particle is kept afloat. In Figure 5.11.2(b), a light
hydrophilic particle is held captive.

Graphs of the particle center position against the contact angle, α, are shown in Figure
5.11.3 for κ = 0 and 1

2 . When κ = 0 and the contact angle is α = 1
2π, the interface is

flat and the particle is divided equally between the upper and lower fluids, independent of
the capillary length. When κ = 1

2 , the interface is flat at a certain contact angle that is
insensitive to the capillary length. The particle center position for κ = − 1

2 is the mirror
image of that for κ = 1

2 , subject to a reflection in the contact angle. As λ/a increases, the
particle center becomes independent of κ and is given by xc = −a cosα.

Spheroidal particle

As a straightforward generalization, we consider the equilibrium position of a floating
spheroidal particle whose axis revolution is parallel to the acceleration of gravity, as shown
in Figure 5.11.4. The origin of the x axis is set at the position of the infinite flat interface
far from the particle.

The elliptical particle contour in an azimuthal plane is described by the equations

x = xc + a cos ζ, σ = b sin ζ, (5.11.25)

where xc describes the location of the particle center, a and b are the particle semi-axes, and
the parameter ζ varies from 0 at the top of the particle to π at the bottom of the particle,
as shown in Figure 5.11.4. The parameter ζ should not be confused with the meridional
angle, θ. They are equal only in the case of a spherical particle.
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Figure 5.11.3 Floating spherical particle center position for λ/a = 0.5 (bold lines), 1.0, 2.0, and
4.0, and (a) κ = 0 or (b) 0.5.
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Figure 5.11.4 Illustration of a spheroidal particle floating at the interface between two immiscible
fluids. The axis of revolution is normal to the plane of the undisturbed interface.

The circular contact line is located at the axial position

xcl = xc + a cosβ (5.11.26)

and at the radial position

σcl = b sinβ, (5.11.27)

where the parameter β varies in the range [0, π]. In the case of a flat interface, xcl = 0 and
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xc = −a cosβ. The shape of the meniscus is governed by the equations described previously
in this section for a spherical particle.

Buoyancy force

The vertical component of the force exerted on the spheroidal particle is given in equation
(5.11.8),

F buoyancy
x = −

∫∫
p nx dS, (5.11.28)

where nx is the x component of the unit vector normal to the spheroid. Introducing the arc
length around the particle contour, 
, measured in the direction of increasing parameter ζ,
setting

dS = 2πσd
, nx =
dσ

d

, nx dS = 2π dσ, (5.11.29)

and performing the integration around the axis of revolution, we derive an expression for
the x component of the buoyancy force,

F buoyancy
x = −πb2

∫ π

0

p sin 2ζ dζ. (5.11.30)

Now we recall that ζ = β marks the location of the contact line in the two fluids and write

F buoyancy
x = −πb2

(∫ β

0

p(1) sin 2ζ dζ +

∫ π

β

p(2) sin 2ζ dζ
)
. (5.11.31)

Substituting the expressions for the pressure, and setting x = xc + a cos ζ, we obtain

F buoyancy
x = −2πb2g

(
ρ1

∫ β

0

(xc + a cos ζ) cos ζ d cos ζ

+ρ2

∫ π

β

(xc + a cos ζ) cos ζ d cos ζ
)
. (5.11.32)

Carrying out the integration, we find that

F buoyancy
x = 2πgb2

(
ρ1xc

sin2 β

2
− ρ1a

cos3 β − 1

3

−ρ2xc
sin2 β

2
+ ρ2a

1 + cos3 β

3

)
. (5.11.33)

Rearranging, we obtain

F buoyancy
x = πgb2

(− xc Δρ sin2 β +
2

3
aΔρ cos3 β +

4

3
a ρ

)
(5.11.34)

involving the a priori unknown particle center position, xc.
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Capillary force

The x component of the capillary force is given by

F capillary
x = γ (2πσcl) sin(α− ω), (5.11.35)

where ω is the angle subtended between the tangent vector and the σ axis at the contact
line, as shown in Figure 5.11.4, given by

ω = arctan(
b

a
tanβ). (5.11.36)

Substituting σcl = b sinβ, we obtain

F capillary
x = 2πbγ sinβ sin(α− λ). (5.11.37)

Vertical force balance

Now substituting into the force equilibrium equation

F buoyancy
x + F capillary

x = W (5.11.38)

the expression

W =
4π

3
b2aρsg (5.11.39)

for the particle weight, and simplifying, we obtain the governing equation

xc

a
sin2 β =

2

3
cos3 β +

2

3
κ+ 2

λ2

ab
sinβ sin(α− λ). (5.11.40)

In the case of a flat interface, xc = −a cosβ, the expression for the buoyancy force
simplifies to

F buoyancy
x = πgb2aΔρ cosβ

(
1− 1

3
cos2 β

)
+

4

3
πgb2 a ρ, (5.11.41)

the contact angle is equal to the contact line aperture angle, α = ω, the capillary force
vanishes, and the trigonometric equation (5.11.40) simplifies to (5.11.24).

The particle position and meniscus shape can be found by a modification of the method
discussed previously in this section for a spherical particle (Problem 5.11.3).

5.11.1 Flat interface

Prove that a solution of (5.11.24) for cos β in the admissible range [−1, 1] exists only when
|κ| < 1.

Problems
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Figure 5.12.1 Illustration of a three-dimensional particle straddling the interface between two im-
miscible fluids.

5.11.2 Floating position of a spherical particle

Prepare the counterparts of the graphs shown in Figure 5.11.3 for κ = 0.1 and 0.9. Discuss
the physical interpretation of the results.

5.11.3 Spheroidal particle

Modify the code given in the text for a spherical particle to compute the floating position
of a spheroidal particle. Prepare the counterparts of the graphs shown in Figure 5.11.3 for
particle aspect ratio a/b = 0.5 and 0.1.

5.12 A three-dimensional meniscus

Having discussed two-dimensional and axisymmetric interfacial configurations, now we con-
sider a genuinely three-dimensional configuration with reference to the shape of a meniscus
developing around a small particle with an arbitrary shape straddling the interface between
two stationary immiscible fluids, as shown in Figure 5.12.1. The upper fluid is labeled 1 and
the lower fluid is labeled 2. The fluids are assumed to be stably stratified, that is, ρ2 > ρ1
or Δρ ≡ ρ2 − ρ1 > 0.

The interface meets the particle around a closed contact line and becomes horizontal
far from the contact line. The contact angle, α, is given by

α = arccos(np · n), (5.12.1)

where 0 < α < π, np is the unit vector normal to the particle, n is the unit vector normal
to the interface, and the left-hand side is evaluated at a point x around the contact line.

Laplace–Young equation

The working Cartesian system is defined such that the x axis points against the acceleration
of gravity and passes through a designated particle center. The shape of the interface can
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be described by a function of two variables, y and z, as

x = ζ(y, z). (5.12.2)

Far from the particle, as y and z tend to infinity, the function ζ decays to zero, yielding a
planar shape. The Laplace–Young equation requires that

2κm = − ζ

λ2
, (5.12.3)

where λ2 = γ/(Δρ g) is the square of the capillary length, γ is the surface tension, g is
the magnitude of the acceleration of gravity, and κm is the mean curvature reckoned to be
positive when the interface is downward concave. the absence of a constant on the right-
hand side of (5.12.3) guarantees that the mean curvature vanishes far from the contact line
where ζ decays to zero.

Substituting into the Laplace–Young equation the expression for the mean curvature
given in (4.4.15) with appropriate changes in the notation,

2κm = − (1 + ζ2z ) ζyy − 2 ζy ζz ζyz + (1 + ζ2y ) ζzz

(1 + ζ2y + ζ2z )
3/2

, (5.12.4)

we derive a nonlinear partial differential equation,

∇2ζ + ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz − (1 + |∇ζ|2)3/2 ζ

λ2
= 0, (5.12.5)

where ∇ is the gradient and ∇2 is the Laplacian operator in the yz plane, a subscript y
denotes a partial derivative with respect to y, and a subscript z denotes a partial derivative
with respect to z. We will assume that the elevation of the contact line around the contact
line is specified in lieu of a Dirichlet boundary condition.

5.12.1 Elliptic coordinates

Consider a configuration where the projection of the contact line in the yz plane is an ellipse
arising by rotating a circle, as shown in Figure 5.12.2(a). To solve equation (5.12.5) in the
exterior of the ellipse, we introduce elliptic coordinates, (u, ϕ), defined by the conformal
mapping function

y + i z = A sinh(u+ iϕ), (5.12.6)

where i is the imaginary unit, i2 = −1, and A is a real constant. Resolving the mapping
function into its real and imaginary parts, we obtain

y = A sinhu cosϕ, z = A coshu sinϕ. (5.12.7)

The variable u ranges from a certain value u0 around the ellipse to infinity far from the
ellipse. The variable ϕ varies in the range [0, 2π] around the contact line. Note that ϕ
is not the meridional angle measured around the vertical x axis. As u tends to infinity,
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Figure 5.12.2 (a) Illustration of grid lines based on orthogonal elliptic coordinates. (b) Hydrostatic
shape of a meniscus attached to a rotated circle computed in the elliptic coordinates.

the contour lines of constant u tend to become circles, as shown in Figure 5.12.2(a). The
elliptic coordinates (u, ϕ) are orthogonal in the yz plane but not over the three-dimensional
interface.

To accommodate the elliptical shape of the projection of the contact line onto the yz
plane, we set

b = A sinhu0, c = A coshu0, (5.12.8)

where b and c are the ellipse semi-axes along the y and z axes. Solving for A and u0, we
find that

A =
b

sinhu0
, tanhu0 =

b

c
. (5.12.9)

The magnitude of the gradient in the yz plane is given by

|∇ζ| = 1

h
|∇̂ζ| (5.12.10)

and the Laplacian is given by

∇2ζ =
1

h2
∇̂2ζ, (5.12.11)

where a caret (hat) indicates differentiation with respect to the elliptic coordinates (u, ϕ),
and h is the metric coefficient of the transformation given by

h = A | cosh(u+ iϕ)| = A

√
cosh2 u− sin2 ϕ. (5.12.12)
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The Laplace–Young equation (5.12.5) takes the form

1

h2
∇̂2ζ + ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz − (1 + |∇ζ|2)3/2 ζ

λ2
= 0, (5.12.13)

which can be regarded as a nonlinear Poisson-like equation, forced by an a priori unknown
source term involving the interfacial elevation.

5.12.2 Finite-difference method

The solution of (5.12.13) can be found numerically using a finite-difference method in elliptic
coordinates with evenly spaced grid lines. The second-order finite-difference representation
of (5.12.13) at the (i, j) interior grid point in the uϕ plane is

1

h2
i,j

(ζi−1,j − 2 ζi,j + ζi+1,j

Δu2
+

ζi,j−1 − 2 ζi,j + ζi,j+1

Δϕ2

)
+
(
ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz

)
i,j

− (1 + |∇ζ|2)3/2i,j

ζi,j
λ2

= 0. (5.12.14)

To implement Gauss–Seidel iterations, we rearrange to obtain

ζi,j =
1

G

[ 1

h2
i,j

(ζi−1,j + ζi+1,j

Δu2
+

ζi,j−1 + ζi,j+1

Δϕ2

)
+
(
ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz

)
i,j

]
, (5.12.15)

where

G =
2

h2
i,j

( 1

Δu2
+

1

Δϕ2

)
+

1

λ2
(1 + |∇ζ|2)3/2i,j . (5.12.16)

The iterations proceed by guessing grid values, and then replacing the guesses with the
right-hand side of (5.12.15) at each grid point.

The first derivatives of ζ with respect to y and z can be computed from derivatives with
respect to u and ϕ by solving a system of 2× 2 equations arising from the chain rule,[

∂y/∂u ∂z/∂u
∂y/∂ϕ ∂z/∂ϕ

] [
∂ζ/∂y
∂ζ/∂z

]
=

[
∂ζ/∂u
∂ζ/∂ϕ

]
. (5.12.17)

The derivatives with respect to u and ϕ on the right-hand side can be computed by numerical
differentiation. The second derivatives can be computed by a similar method.

The numerical method is implemented in the following MATLAB code entitled men 3d,
residing inside directory 03 hydrostat of Fdlib:

%=================

% meniscus in the exterior of an ellipse



5.12 A three-dimensional meniscus 353

% in the yz plane

%=================

b = 0.5;

c = 1.0;

capl = 0.75; % capillary length

xcline = 0.5; % height of the contact line

tol = 0.000001; % iteration tolerance

Niter = 1000;

%----------

% divisions

%----------

Nu = 32; Nphi = 32;

%---

% prepare

%---

Dphi = 2*pi/Nphi;

capls = capl*capl;

Dphi2 = 2.0*Dphi;

u0 = atanh(b/c);

snhu0 = sinh(u0);

cshu0 = cosh(u0);

A = b/snhu0;

umax = log(32.0*b/A);

Du = (umax-u0)/Nu;

Du2 = 2.0*Du;

%---

% grid

%---

for i=1:Nu+1

u(i) = u0+(i-1)*Du;

snhu(i) = sinh(u(i));

cshu(i) = cosh(u(i));

for j=1:Nphi+1

phi(j) = (j-1)*Dphi;

csphi(j) = cos(phi(j));

snphi(j) = sin(phi(j));

y(i,j) = A*snhu(i)*csphi(j);

z(i,j) = A*cshu(i)*snphi(j);

h(i,j) = A*sqrt(cshu(i)^2-snphi(j)^2);

end

end



354 Fluid Dynamics: Theory, Computation, and Numerical Simulation

%---

% plot the grid

%---

figure(1)

hold on

axis square

axis([-2 2 -2 2 -2 2])

view(140,30)

xlabel('y','fontsize',15);

ylabel('z','fontsize',15);

zlabel('x','fontsize',15);

set(gca,'fontsize',15)

for i=1:Nu+1

plot(y(i,:),z(i,:),'k')

end

for j=1:Nphi

plot(y(:,j),z(:,j),'k')

end

%---

% initialize the interfacial elevation

%---

for i=1:Nu+1

for j=1:Nphi+2

x(i,j) = 0.0;

end

end

%---

% boundary conditions

%---

for j=1:Nphi+1

x(1,j) = xcline*y(1,j);

x(Nu+1,j) = 0.0;

end

x(1,Nphi+2) = x(1,2);

x(Nu+1,Nphi+2) = 0.0;

%---

% iterations

%---
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for iterations=1:Niter

%---

% compute the first derivatives: dx/dy and dx/dz

%---

% interior nodes:

for i=2:Nu

for j=2:Nphi+1

MAT(1,1) = A*cshu(i)*csphi(j);

MAT(1,2) = A*snhu(i)*snphi(j);

MAT(2,1) = -A*snhu(i)*snphi(j);

MAT(2,2) = A*cshu(i)*csphi(j);

RHS(1) = (x(i+1,j)-x(i-1,j))/Du2;

RHS(2) = (x(i,j+1)-x(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdy(i,j) = SOL(1);

dxdz(i,j) = SOL(2);

end

dxdy(i,1) = dxdy(i,Nphi+1);

dxdz(i,1) = dxdz(i,Nphi+1);

dxdy(i,Nphi+2) = dxdy(i,2);

dxdz(i,Nphi+2) = dxdz(i,2);

end

% boundary nodes by one-sided differences:

for j=1:Nphi+2

dxdy(1,j) = 2.0*dxdy(2,j)-dxdy(3,j);

dxdy(Nu+1,j) = 2.0*dxdy(Nu,j)-dxdy(Nu-1,j);

dxdz(1,j) = 2.0*dxdz(2,j)-dxdz(3,j);

dxdz(Nu+1,j) = 2.0*dxdz(Nu,j)-dxdz(Nu-1,j);

end

%---

% compute the second derivatives

%---

for i=2:Nu

for j=2:Nphi+1

MAT(1,1) = A*cshu(i)*csphi(j);

MAT(1,2) = A*snhu(i)*snphi(j);

MAT(2,1) = -A*snhu(i)*snphi(j);

MAT(2,2) = A*cshu(i)*csphi(j);

RHS(1) = (dxdy(i+1,j)-dxdy(i-1,j))/Du2;

RHS(2) = (dxdy(i,j+1)-dxdy(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdyy(i,j) = SOL(1);
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dxdyz(i,j) = SOL(2);

RHS(1) = (dxdz(i+1,j)-dxdz(i-1,j))/Du2;

RHS(2) = (dxdy(i,j+1)-dxdy(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdyy(i,j) = SOL(1);

dxdyz(i,j) = SOL(2);

RHS(1) = (dxdz(i+1,j)-dxdz(i-1,j))/Du2;

RHS(2) = (dxdz(i,j+1)-dxdz(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdzy(i,j) = SOL(1);

dxdzz(i,j) = SOL(2);

end

end

%------

% scan the grid points

%------

errr = 0.0;

for i=2:Nu

for j=2:Nphi+1

H = h(i,j); HS = H*H;

tmp = 1.0+dxdy(i,j)^2+dxdz(i,j)^2;

G = 2.0*(1.0/Du^2+1.0/Dphi^2)/HS + tmp^(3/2)/capls;

xnew = (x(i+1,j)+x(i-1,j))/(HS*Du^2) ...

+(x(i,j+1)+x(i,j-1))/(HS*Dphi^2);

xnew = xnew + dxdz(i,j)^2 * dxdyy(i,j);

xnew = xnew - 2.0*dxdy(i,j)*dxdz(i,j)*dxdyz(i,j);

xnew = xnew + dxdy(i,j)^2 * dxdzz(i,j);

xnew=xnew/G;

corr = abs(xnew-x(i,j));

x(i,j) = xnew;

if(corr>errr) errr = corr; end

end

end

for i=2:Nu+1

x(i,1) = x(i,Nphi+1);

x(i,Nphi+2) = x(i,2);

end

if(errr<tol) break; end

%--

end % of iterations

%--

if(errr>tol)
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disp('the iterations did not converge')

errr

return

end

%---

% plotting

%---

figure(2)

hold on

xlabel('y','fontsize',15);

ylabel('z','fontsize',15);

zlabel('x','fontsize',15);

axis square

axis([-1 1 -1 1 -1 1])

view(162, 12)

for i=1:Nu

for j=1:Nphi

patch([y(i,j), y(i,j+1), y(i+1,j+1), y(i+1,j)], ...

[z(i,j), z(i,j+1), z(i+1,j+1), z(i+1,j)], ...

[x(i,j), x(i,j+1), x(i+1,j+1), x(i+1,j)], ...

[x(i,j), x(i,j+1), x(i+1,j+1), x(i+1,j)]);

end

end

A solution subject to the boundary condition for the contact angle elevation implemented
in the code, reflecting a rotating circle, is shown in Figure 5.12.2(b).

5.12.3 Capillary force and torque

Surface tension pulls the particle around the contact line in a direction that is tangential
to the interface and lies in a plane that is normal to the contact line at each point. The
resultant capillary force is given by

Fcapillary = γ

∮
r× n d
, (5.12.18)

where n is the unit vector normal to the interface given by

n =
1∣∣∣∂x

∂u
× ∂x

∂ϕ

∣∣∣
∂x

∂u
× ∂x

∂ϕ
, (5.12.19)

r is the unit vector tangential to the contact line, as shown in Figure 5.12.1, 
 is the arc
length around the contact line, and the integration is performed around the contact line.
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The resultant capillary torque with respect to an arbitrary point, x0, is given by

Tcapillary = γ

∮
(x− x0)× (r× n) d
. (5.12.20)

Using a vector identity, we may express the capillary torque in the form

Tcapillary = γ

∮ (
[ (x− x0) · n ] r− [ (x− x0) · r ]n

)
d
. (5.12.21)

Once the computation of the meniscus shape has been concluded, the capillary force
and torque can be obtained using the following module:

%---

% compute dxdu, dxdphi,

% the surface normal and tension vector

% around the contact line

%---

x0 = 0.0; y0 = 0.0; z0 = 0.0;

for j=1:Nphi+1

dxdu(j) = (-x(3,j)+4.0*x(2,j)-3.0*x(1,j))/Du2;

dydu(j) = A*cshu0*csphi(j);

dzdu(j) = A*snhu0*snphi(j);

dmdu(j) = sqrt(dxdu(j)^2+dydu(j)^2+dzdu(j)^2);

if(j==1)

dxdphi(j) = (x(1,2)-x(1,Nphi))/Dphi2;

else

dxdphi(j) = (x(1,j+1)-x(1,j-1))/Dphi2;

end

dydphi(j) =-A*snhu0*snphi(j);

dzdphi(j) = A*cshu0*csphi(j);

dmdphi(j) = sqrt(dxdphi(j)^2+dydphi(j)^2+dzdphi(j)^2);

vnx(j) = dydu(j)*dzdphi(j)-dzdu(j)*dydphi(j);

vny(j) = dzdu(j)*dxdphi(j)-dxdu(j)*dzdphi(j);

vnz(j) = dxdu(j)*dydphi(j)-dydu(j)*dxdphi(j);

vnm(j) = sqrt(vnx(j)^2+ vny(j)^2+vnz(j)^2);

vnx(j) = vnx(j)/vnm(j); vny(j) = vny(j)/vnm(j);

vnz(j) = vnz(j)/vnm(j);

tngx(j) = dydphi(j)*vnz(j)-dzdphi(j)*vny(j);

tngy(j) = dzdphi(j)*vnx(j)-dxdphi(j)*vnz(j);

tngz(j) = dxdphi(j)*vny(j)-dydphi(j)*vnx(j);

crsx(j) = (y(1,j)-y0)*tngz(j)-(z(1,j)-z0)*tngy(j);

crsy(j) = (z(1,j)-z0)*tngx(j)-(x(1,j)-x0)*tngz(j);

crsz(j) = (x(1,j)-x0)*tngy(j)-(y(1,j)-y0)*tngx(j);
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end

%---

% force and torque

%---

forcex = 0.0; forcey = 0.0; forcez = 0.0;

torqux = 0.0; torquy = 0.0; torquz = 0.0;

for j=1:Nphi

forcex = forcex+tngx(j);

forcey = forcey+tngy(j);

forcez = forcez+tngz(j);

torqux = torqux+crsx(j);

torquy = torquy+crsy(j);

torquz = torquz+crsz(j);

end

forcex = forcex*Dphi;

forcey = forcey*Dphi;

forcez = forcez*Dphi;

torqux = torqux*Dphi;

torquy = torquy*Dphi;

torquz = torquz*Dphi;

5.12.1 Convergence of iterations

Consider a meniscus originating from a horizontal elliptical contact line. Study the shape
of the meniscus for several contact line elevations and capillary lengths. Investigate the
convergence of the Gauss–Seidel iterations.

Problem
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