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In this chapter, we continue the study of kinematics by considering in more detail the motion
of fluid parcels, by deriving expressions for the areal, volumetric, and mass flow rates across
lines and surfaces drawn in a fluid, and by developing numerical methods for evaluating
kinematic variables of interest in terms of derivatives and integrals of the velocity field.
Mass conservation and physical conditions imposed at boundaries introduce mathematical
constraints that motivate the description of a flow in terms of ancillary functions that
expedite the mathematical analysis and considerably simplify the numerical computation.

2.1 Fundamental modes of fluid parcel motion

In Chapter 1, we pointed out that the nature of the motion of a small fluid parcel is
determined by the relative motion of point particles residing inside the parcel. If variations
in the point particle velocity are negligible compared to the average point particle velocity,
the parcel exhibits rigid-body translation. Significant variations in the point particle velocity
are responsible further general types of motion, including local rotation, deformation, and
isotropic expansion.

To study the relative motion of point particles in the vicinity of a certain point, x0 =
(x0, y0, z0), we consider differences in the corresponding velocity components evaluated at
a point x = (x, y, z) that lies close to x0, and at the chosen point, x0, as shown in Figure
2.1.1. If the differences are small compared to the distance between the points x and x0,
both measured in proper units, then the relative motion is negligible. If the differences are
substantial, the relative motion is significant and needs to be properly analyzed.
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Figure 2.1.1 Illustration of relative motion of a fluid in the neighborhood of a point, x0. The bold
line represents an actual velocity profile and the straight line represents the linearized velocity
profile.

2.1.1 Function linearization

To prepare the ground for our analysis, we consider a scalar function of three independent
variables that receives a triplet of numbers, (x, y, z), and generates a number, f(x, y, z).
If the function f is locally well behaved, and if the point x lies sufficiently near the point
x0, then we expect that the value f(x, y, z) will be close to the value f(x0, y0, z0). Stated
differently, in the limit as x tends to x0, that is, all three scalar differences x− x0, y − y0,
and z − z0 tend to zero, the difference in the function values,

f(x, y, z)− f(x0, y0, z0), (2.1.1)

will vanish.

The variable point, x, may approach the fixed point, x0, from different directions.
Selecting the direction that is parallel to the x axis, we set x = (x, y0, z0), and consider
the limit of the difference f(x, y0, z0) − f(x0, y0, z0) as x − x0 tends to zero. Because the
function f has been assumed well behaved, the ratio of the differences,

f(x, y0, z0)− f(x0, y0, z0)

x− x0
, (2.1.2)

tends to a finite number, which is defined as the first partial derivative of the function f
with respect to the variable x evaluated at the point x0, and is denoted by (∂f/∂x)(x0).
Elementary calculus ensures that the partial derivative can be computed using the usual
rules of differentiation of a function of one variable with respect to x, regarding all other
independent variables as constant. For example, if f = xyz, then ∂f/∂x = yz, and thus
(∂f/∂x)(x0) = y0z0,
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Setting the fraction shown in (2.1.2) equal to (∂f/∂x)(x0), and solving the resulting
equation for f(x, y0, z0), we obtain

f(x, y0, z0) 	 f(x0, y0, z0) + (x− x0)
(∂f
∂x

)
x0

. (2.1.3)

It is important to bear in mind that this equation is exact only in the limit as Δx ≡ x− x0

tends to zero. For small but non-infinitesimal values of Δx, the difference between the left-
and right-hand sides is on the order of Δx2, which is small compared to Δx. For example,
if Δx is equal to 0.01 is some units, then Δx2 is equal to 0.0001 in corresponding units.

The point x may also approach the point x0 along the y or z axis, yielding the following
counterparts of equation (2.1.3),

f(x0, y, z0) 	 f(x0, y0, z0) + (y − y0)
(∂f
∂y

)
x0

, (2.1.4)

and

f(x0, y0, z) 	 f(x0, y0, z0) + (z − z0)
(∂f
∂z

)
x0

. (2.1.5)

Combining the arguments that led us to equations (2.1.3)–(2.1.5), we let the point x ap-
proach the point x0 from an arbitrary direction and derive the approximation

f(x, y, z) 	 f(x0, y0, z0) + (x− x0)
(∂f
∂x

)
x0

+ (y − y0)
(∂f
∂y

)
x0

+ (z − z0)
(∂f
∂z

)
x0

.

(2.1.6)

We pause to emphasize that relation (2.1.6) is exact only in the limit as all three spatial
differences, Δx = x − x0, Δy = y − y0, and Δz = z − z0, tend to zero. For small but
non-infinitesimal values of any of these differences, the left-hand side of (2.1.6) differs from
the right-hand side by an amount that is generally on the order of the maximum of Δx2,
Δy2, or Δz2.

Taylor series

Equation (2.1.6) can be rendered exact for any value of Δx, Δy, or Δz, by adding to the
right-hand side a term called the remainder. As all three differences Δx, Δy, and Δz, tend
to zero, the remainder vanishes faster than these differences. Elementary calculus shows
that, if Δx, Δy, and Δz are sufficiently small, the remainder can be expressed as an infinite
series involving products of powers of Δx, Δy, and Δz, called the Taylor series of the
function f about the point x0.

The process of deriving (2.1.6) is called linearization of the function f(x) about the
point x0. The linearized form (2.1.6) states that, in the immediate vicinity of a point, x0,
any regular function resembles a linear function of the shifted monomials Δx, Δy, and Δz.
If all three first partial derivatives happen to vanish at the point x0, the function f(x)
behaves like a quadratic function; however, this is a rare exception.
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Gradient of a scalar function

To economize our notation, we introduce the gradient of a function, f , denoted by ∇f ,
defined as the vector of the three partial derivatives,

∇f ≡ ex
∂f

∂x
+ ey

∂f

∂y
+ ez

∂f

∂z
, (2.1.7)

where ex, ey, and ez are the unit vectors along the x, y, or z axes. The symbol ∇ is a vector
operator called the del or gradient operator, defined as

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
. (2.1.8)

Unlike a regular vector, ∇ may not stand alone, but must operate on a scalar function
of position from the left to acquire a meaningful interpretation.

Inner vector product

As a second preliminary, we define the inner product of a pair of three-dimensional vectors,

f = (fx, fy, fz), g = (gx, gy, gz), (2.1.9)

as the scalar

f · g = fx gx + fy gy + fz gz. (2.1.10)

In index notation,

f · g ≡ fi gi, (2.1.11)

where summation of the repeated index i is implied over x, y, and z, according to Einstein’s
repeated-index summation convention: if an index appears twice in a product, then summa-
tion of that index is implied over its range. In two dimensions, i is summed over x and y.
An index may not appear more than twice in a product. An index that appears once is a
free index

Interpretation of the inner vector product

It can be shown using the rule of cosines that the inner product defined in (2.1.10) is equal
to the product of (a) the length of the first vector, f , (b) the length of the second vector, g,
and (c) the cosine of the angle subtended between the two vectors, β,

f · g = |f | |g| cosβ. (2.1.12)

If the angle β is equal to 1
2π, which means that the two vectors are orthogonal, the cosine

of the angle is zero and the inner product vanishes. If the angle is zero, which means the
two vectors are parallel, the inner product is equal to the product of the two vector lengths.
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If the angle is equal to π, which means the two vectors are anti-parallel, the inner product
is equal to the negative of the product of the two vector lengths.

If both f and g are unit vectors, that is, their lengths are equal to one unit of length, then
the inner product is equal to the cosine of the angle subtended between the corresponding
directions.

Linearized expansion in compact form

Using the preceding definitions, we state equation (2.1.6) in a compact vector form

f(x) 	 f(x0) + (x− x0) · (∇f)x0
, (2.1.13)

where the subscript x0 signifies that the gradient, ∇f , is evaluated at the point x0. The
second term on the right-hand side of (2.1.13) is the inner product of the distance vector,
x−x0, and the gradient vector, ∇f , evaluated at a point of interest, x0. The magnitude of
this term attains an extreme value when the two vectors are collinear.

2.1.2 Velocity gradient tensor

To derive the linearized form of the velocity field in the vicinity of a point, x0, we identify
the function f(x) with the x, y, or z velocity component, ux, uy, or uz, and obtain the
approximations

ux(x) 	 ux(x0) + (x− x0)
(∂ux

∂x

)
x0

+ (y − y0)
(∂ux

∂y

)
x0

+ (z − z0)
(∂ux

∂z

)
x0

,

uy(x) 	 ux(x0) + (x− x0)
(∂uy

∂x

)
x0

+ (y − y0)
(∂uy

∂y

)
x0

+ (z − z0)
(∂uy

∂z

)
x0

, (2.1.14)

uz(x) 	 uz(x0) + (x− x0)
(∂uz

∂x

)
x0

+ (y − y0)
(∂uz

∂y

)
x0

+ (z − z0)
(∂uz

∂z

)
x0

.

Collecting these equations into a unified vector form, we obtain the vector equation

u(x) 	 u(x0) + (x− x0) · L(x0), (2.1.15)

where L is a 3× 3 matrix called the velocity-gradient tensor, defined as

L ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂ux

∂x

∂uy

∂x

∂uz

∂x

∂ux

∂y

∂uy

∂y

∂uz

∂y

∂ux

∂z

∂uy

∂z

∂uz

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.1.16)

The notation L(x0) in (2.1.15) emphasizes that the nine components of the velocity-gradient
tensor are evaluated at the chosen point x0 around which linearization has taken place. An
actual and a linearized velocity profile is shown in Figure 2.1.1.
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Denoting x1 = x, y1 = y, and z1 = x, and also u1 = ux, u2 = uy, and u3 = uz. we
compute the components of the velocity-gradient tensor

Lij =
∂uj

∂xi
(2.1.17)

for i, j = 1, 2, 3 or i, j = x, y, z.

An application

As an example, we consider the velocity field expressed by equations (1.4.8), repeated below
for convenience,

ux(x, y, z, t) = a (y2 + z2) + x3yz (b+ c t) + c edxt,

uy(x, y, z, t) = a (z2 + x2) + xy3z (b+ c t) + c edyt, (2.1.18)

uz(x, y, z, t) = a (x2 + y2) + xyz3 (b+ c t) + c edzt,

where a, b, c, and d are four constants. Applying the rules of partial differentiation, we
obtain the associated velocity-gradient tensor

L =

⎡⎣ 3x2yz (b+ c t) + cdt edxt 2ax+ y3z (b+ c t) 2ax+ yz3(b+ c t)
2ay + x3z (b+ c t) 3y2xz (b+ c t) + cdt edyt 2ay + xz3(b+ c t)
2az + x3y (b+ c t) 2az + xy3 (b+ c t) 3z2xy (b+ c t) + cdt edzt

⎤⎦ .

(2.1.19)

Placing the point x0 along the x axis, that is, setting y0 = 0 and z0 = 0, we find that

L(x0, 0, 0) =

⎡⎣ cdt edx0t 2ax0 2ax0

0 cdt 0
0 0 cdt

⎤⎦ . (2.1.20)

Thus, in the vicinity of the point x0 = (x0, 0, 0), the flow expressed by equations (2.1.18)
can be approximated with a linear flow described by

ux(x, y, z) 	 ux(x0) + cdt edx0t (x− 1),

uy(x, y, z) 	 uy(x0) + 2a (x− 1) + cdt y, (2.1.21)

uz(x, y, z) 	 uz(x0) + 2a (x− 1) + cdt z.

The right-hand sides of equations (2.1.21) are linear functions of the spatial coordinates x,
y, and z, but not necessarily linear functions of time, t.

What is a tensor?

The velocity-gradient tensor is a matrix containing the three first partial derivatives of the
three components of the velocity with respect to x, y, or z, a total of nine scalar elements.
Why have we called this matrix a tensor?

A tensor is a matrix whose elements are physical entities evaluated with reference to a
chosen system of Cartesian coordinates. If the coordinate system is changed, for example,
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by translation or rotation, the elements of the matrix will also change to reflect the new
Cartesian base. This change is analogous to that undergone by the components of the
position or velocity vector when a new system of coordinates is introduced, as discussed in
Section 1.5.

If the elements of the matrix corresponding to the new system are related to the elements
corresponding to the old system by certain rules discussed in texts of matrix calculus and
continuum mechanics mechanics, then the matrix is called a tensor.1 Establishing whether
or not a matrix is a tensor is important in deriving physical laws that relate matrices with
different physical interpretations.

2.1.3 Relative motion of point particles

According to equation (2.1.15), the motion of a point particle near a point, x0, is governed
by the equation

dX

dt
= u(X) 	 u(x0) + (X− x0) · L(x0), (2.1.22)

where X is the position of the point particle and u(X) is the point-particle velocity, which
is equal to the local and instantaneous fluid velocity.

The first term on the right-hand side of (2.1.22) states that a point particle located at
the point X translates with the velocity of the point particle located at the point x0. The
second term expresses the relative motion with respect to the point particle located at x0.
Different velocity-gradient tensors, L(x0), represent different types of relative motion. Our
next goal is to delineate the nature of the relative motion in terms of the components of
L(x0).

2.1.4 Fundamental motions in two-dimensional flow

We begin by considering a two-dimensional flow in the xy plane and introduce the 2 × 2
velocity-gradient tensor

L =

⎡⎢⎢⎣
∂ux

∂x

∂uy

∂x
∂ux

∂y

∂uy

∂y

⎤⎥⎥⎦ . (2.1.23)

In Section 1.6, we studied the velocity field associated with the linear flow expressed by
equation (1.6.46), repeated below for convenience,

[ux uy ] = [x y ] ·
[

a b
c d

]
, (2.1.24)

1Pozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynamics. Second Edition,
Oxford University Press.
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where a, b, c, and d are four constants with units of inverse time. Comparing equations
(2.1.15) and (2.1.23) with equation (2.1.24), we set

a =
∂ux

∂x
, b =

∂uy

∂x
, c =

∂ux

∂y
, d =

∂uy

∂y
, (2.1.25)

where all partial derivatives are evaluated at the point x0.

To study the nature of the linearized flow, we carry out the decomposition shown in
equation (1.6.48), setting

L = Ξ+E+
1

2
α I, (2.1.26)

where

Ξ ≡ 1

2

⎡⎢⎢⎣ 0
∂uy

∂x
− ∂ux

∂y

∂ux

∂y
− ∂uy

∂x
0

⎤⎥⎥⎦ (2.1.27)

is a skew-symmetric matrix with zero trace called the vorticity tensor,

E ≡ 1

2

⎡⎢⎢⎣
∂ux

∂x
− ∂uy

∂y

∂uy

∂x
+

∂ux

∂y

∂ux

∂y
+

∂uy

∂x

∂uy

∂y
− ∂ux

∂x

⎤⎥⎥⎦ (2.1.28)

is a symmetric matrix with zero trace called the rate-of-deformation tensor,

I =

[
1 0
0 1

]
(2.1.29)

is the 2× 2 identity matrix, and the scalar

α =
∂ux

∂x
+

∂uy

∂y
(2.1.30)

is the rate of areal expansion.

Areal expansion

The results of Section 1.6 suggest that a fluid parcel centered at the point x0 expands
isotropically with an areal rate of expansion that is equal to the right-hand side of (2.1.30)
evaluated at x0, as illustrated in Figure 2.1.2.

Rotation

Referring to equation (1.6.49), we find that a fluid parcel centered at the point x0 rotates
in the xy plane around the point x0 with angular velocity

Ω =
1

2

( ∂uy

∂x
− ∂ux

∂y

)
, (2.1.31)
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Expansion Rotation Deformation

Figure 2.1.2 Expansion, rotation, and deformation of a small discoidal fluid parcel occurring during
an infinitesimal period of time in a two-dimensional flow.

where the right-hand side is evaluated at x0, as shown in Figure 2.1.2. When Ω is positive,
the parcel rotates in the counterclockwise direction; whereas, when Ω is negative, the parcel
rotates in the clockwise direction.

Deformation

Our discussion in Section 1.6 suggests that the flow associated with the rate-of-deformation
tensor, E, expresses pure deformation in the absence of rotation or expansion, as illustrated
in Figure 2.1.2.

To compute the rate of deformation, G, we consider the eigenvalues of E. Denoting
Exx ≡ E11, introducing a similar notation for the other components, and taking into account
that

Exx + Eyy = 0, Exy = Eyx (2.1.32)

by construction, we find the eigenvalues

G = ±
√

E2
xx + E2

xy. (2.1.33)

The corresponding eigenvectors define the principal directions of the rate of deformation,
also called the rate of strain. It can be shown that, because E is symmetric, the two
eigenvectors are mutually orthogonal. An eigenvalue of the rate-of-strain tensor expresses
the rate of deformation of a circular fluid parcel centered at a point, x0, in the direction of
the associated eigenvector.

A theorem of matrix calculus ensures that the sum of the eigenvalues of a matrix is
equal to the sum of the diagonal elements; in the case of the rate-of-deformation tensor, E,
this is equal to zero by construction. Because of this property, the deformation conserves
the area of a fluid parcel during the motion.

2.1.5 Fundamental motions in three-dimensional flow

To generalized the analysis of Section 2.1.4 to three-dimensional flow, we resolve the three-
dimensional velocity-gradient tensor into three parts, as

L = Ξ+E+
1

3
α I, (2.1.34)
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Ξ ≡
1

2

⎡⎢⎢⎢⎢⎢⎣
0

∂uy

∂x
−

∂ux

∂y

∂uz

∂x
−

∂ux

∂z

∂ux

∂y
−

∂uy

∂x
0

∂uz

∂y
−

∂uy

∂z

∂ux

∂z
−

∂uz

∂x

∂uy

∂z
−

∂uz

∂y
0

⎤⎥⎥⎥⎥⎥⎦

E ≡

⎡⎢⎢⎢⎢⎢⎣
∂ux

∂x
−

1

3
α

1

2
(
∂uy

∂x
+

∂ux

∂y
)

1

2
(
∂uz

∂x
+

∂ux

∂z
)

1

2
(
∂ux

∂y
+

∂uy

∂x
)

∂uy

∂y
−

1

3
α

1

2
(
∂uz

∂y
+

∂uy

∂z
)

1

2
(
∂ux

∂z
+

∂uz

∂x
)

1

2
(
∂uy

∂z
+

∂uz

∂y
)

∂uz

∂z
−

1

3
α

⎤⎥⎥⎥⎥⎥⎦
Table 2.1.1 Definition of the vorticity tensor, Ξ, and rate-of-deformation tensor, E, in a three-

dimensional flow; the scalar α ≡ ∇ · u is the volumetric rate of expansion.

where Ξ is the skew-symmetric vorticity tensor, E is the symmetric and traceless rate-of-
deformation tensor,

I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.1.35)

is the 3× 3 identity matrix, and the scalar coefficient

α ≡ ∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
(2.1.36)

is the rate of volumetric expansion. Explicit expressions for the vorticity tensor, Ξ, and
rate-of-deformation tensor, E, are given in Table 2.1.1.

The three terms on the right-hand side of (2.1.34) express, respectively, isotropic ex-
pansion, rotation, and pure deformation, as illustrated in Figure 2.1.3. Because of the fun-
damental significance of these motions, these terms merit individual attention in Sections
2.2–2.4.

2.1.6 Gradient in polar coordinates

We have defined the velocity-gradient tensor as the gradient of the velocity vector field. Ex-
pressions for the gradient operator in polar coordinates can be obtained by using geometrical
transformation rules combined with the chain rule of differentiation.
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Expansion Rotation Deformation

Figure 2.1.3 Expansion, rotation, and deformation of a small spherical fluid parcel occurring during
an infinitesimal period of time in a three-dimensional flow.

Cylindrical polar coordinates

In the cylindrical polar coordinates depicted in Figure 1.3.2, the gradient of a scalar function,
f(x), is determined by its cylindrical polar components Fx, Fσ, and Fϕ, as

F ≡ ∇f = Fx ex + Fσ eσ + Fϕ eϕ. (2.1.37)

Using the transformation rules shown in equations (1.3.20), we find that

Fσ = cosϕ
∂f

∂y
+ sinϕ

∂f

∂z
, Fϕ = − sinϕ

∂f

∂y
+ cosϕ

∂f

∂z
. (2.1.38)

To express the derivatives with respect to y and z in terms of derivatives with respect
to cylindrical polar coordinates, we use the chain rule of differentiation along with the
coordinate transformation rules (1.3.14) and (1.3.15), and find that(∂f

∂y

)
x,z

=
(∂f
∂x

)
σ,ϕ

(∂x
∂y

)
x,z

+
(∂f
∂σ

)
x,ϕ

(∂σ
∂y

)
x,z

+
(∂f
∂ϕ

)
x,σ

(∂ϕ
∂y

)
x,z

(2.1.39)

or (∂f
∂y

)
x,z

= cosϕ
(∂f
∂σ

)
x,ϕ

− sinϕ

σ

(∂f
∂ϕ

)
x,σ

, (2.1.40)

and (∂f
∂z

)
x,y

=
(∂f
∂x

)
σ,ϕ

(∂x
∂z

)
x,y

+
(∂f
∂σ

)
x,ϕ

(∂σ
∂z

)
x,y

+
(∂f
∂ϕ

)
x,σ

(∂ϕ
∂z

)
x,y

(2.1.41)

or (∂f
∂z

)
x,y

= sinϕ
(∂f
∂σ

)
x,ϕ

+
cosϕ

σ

(∂f
∂ϕ

)
x,σ

. (2.1.42)

Substituting relations (2.1.40) and (2.1.42) into the right-hand sides of relations (2.1.38),
we find that

Fx =
∂f

∂x
, Fσ =

∂f

∂σ
, Fϕ =

1

σ

∂f

∂ϕ
. (2.1.43)
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Equations (2.1.43) illustrate that the polar components of the gradient are equal to the
partial derivatives with respect to the corresponding coordinates multiplied by an appropri-
ate scaling factor.

Spherical polar coordinates

In the spherical polar coordinates depicted in Figure 1.3.3, the gradient of a scalar function,
f , is defined by its spherical polar components Fr, Fθ, and Fϕ, as

F ≡ ∇f = Fr er + Fθ eθ + Fϕ eϕ. (2.1.44)

Working as in the case of cylindrical polar coordinates, we obtain

Fr =
∂f

∂r
, Fθ =

1

r

∂f

∂θ
, Fϕ =

1

r sin θ

∂f

∂ϕ
. (2.1.45)

Note that the expression for Fϕ is consistent with that given in the third relation of (2.1.43),
subject to the substitution σ = r sin θ.

Plane polar coordinates

In the plane polar coordinates depicted in Figure 1.3.4, the gradient of a scalar function, f ,
is defined by its plane polar components, Fr and Fθ, as

F ≡ ∇f = Fr er + Fθ eθ. (2.1.46)

Working as in the case of cylindrical coordinates, we obtain

Fr =
∂f

∂r
, Fθ =

1

r

∂f

∂θ
. (2.1.47)

2.1.1 Inner vector product

Prove the interpretation of the inner vector product discussed after equation (2.1.11). Hint:
Use the law of cosines.

2.1.2 Decomposition of a linearized flow

(a) Linearize the velocity described by equations (1.5.2) around the origin of the y axis, and
then decompose the velocity-gradient tensor of the linearized flow into the three constituents
shown on the right-hand side of (2.1.34).

(b) Decompose the velocity gradient-tensor of the linearized flow expressed by equations
(2.1.21) into the three constituents shown on the right-hand side of (2.1.34).

Problems
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2.2 Fluid parcel expansion

The velocity field associated with the third term on the right-hand side of (2.1.34) is de-
scribed by

uexpansion(x) =
1

3
α(x0) (x− x0) ·

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ =
1

3
α(x0) (x− x0). (2.2.1)

Under the influence of this field, a spherical fluid parcel centered at the point x0 expands
when the coefficient α(x0) is positive, or contracts when the coefficient α(x0) is negative,
all the while retaining the spherical shape.

To see this behavior more clearly, we consider the motion of a point particle that lies
at the surface of the spherical parcel. Using (2.2.1), we find that the radius of the parcel,
a(t), is given by

a(t)

a(t = 0)
= e

1
3αt. (2.2.2)

Raising both sides to the third power and multiplying the result by the factor 4π
3 , we find

that the ratio of the instantaneous parcel volume to the initial parcel volume is

4π
3 a3(t)

4π
3 a3(t = 0)

= eαt. (2.2.3)

This result explains why the constant α is called the rate of volumetric expansion.

Divergence of the velocity field

The rate of expansion defined in equation (2.1.36) can be expressed in a compact form that
simplifies the notation. Taking the inner product of the del operator defined in (2.1.8) and
the velocity, we find that

∇ · u ≡ ∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
. (2.2.4)

In index notation,

∇ · u ≡ ∂ui

∂xi
, (2.2.5)

where summation over the repeated index i is implied for x, y, and z. In the case of two-
dimensional flow in the xy plane, the derivative of uz with respect to z does not appear.
Accordingly, we write

α = ∇ · u. (2.2.6)

The right-hand side of (2.2.6) is the divergence of the velocity field.
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Solenoidal velocity fields

We have found that the rate of volumetric expansion at an arbitrary point in a three-
dimensional flow and the rate of areal expansion at a point in a two-dimensional flow are
equal to the divergence of the velocity evaluated at that point. If the divergence of the ve-
locity vanishes everywhere in a flow, with the physical consequence that no parcel undergoes
expansion but only exhibits translation, rotation, and deformation, then the velocity field
is called solenoidal.

2.2.1 Rate of expansion

Derive the rate of expansion of the flow described by equations (2.1.18), and then evaluate
the rate of expansion at the point x0 = (1, 0, 1).

2.3 Fluid parcel rotation and vorticity

The velocity field associated with the first term on the right-hand side of (2.1.34) is given
by

urotation(x, y, z) = (x− x0) ·Ξ(x0), (2.3.1)

where Ξ is the vorticity tensor defined in Table 2.1.1.

A planar fluid parcel in a two-dimensional flow in the xy plane may only rotate around
the z axis. In contrast, a three-dimensional fluid parcel in a three-dimensional flow may
rotate around any arbitrary axis that passes through the designated center of rotation, x0,
and points in any arbitrary direction.

The orientation, magnitude, and direction of rotation define an angular velocity vec-
tor, Ω, whose components can be deduced from the three upper triangular or three lower
triangular entries of the vorticity tensor shown in Table 2.1.1, and are given by

Ωx =
1

2
(
∂uz

∂y
− ∂uy

∂z
), Ωy =

1

2
(
∂ux

∂z
− ∂uz

∂x
), Ωz =

1

2
(
∂uy

∂x
− ∂ux

∂y
), (2.3.2)

where the right-hand sides are evaluated at the designated parcel center, x0. As we look
down into the vector Ω from the tip of its arrow, the fluid rotates in the clockwise direction.

Equation (2.3.1) can be recast into a compact form in terms of the angular velocity
vector as

urotation(x, y, z) = (x− x0) ·
⎡⎣ 0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0

⎤⎦ , (2.3.3)

where Ω derives from the velocity by way of (2.3.2).

Problem
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f

g

gfx

β

Figure 2.3.1 The outer product of two vectors, f and g, is a new vector that is perpendicular to the
plane of f and g.

We note that the three components of the angular velocity vector arise by combining
selected partial derivatives of the components of the velocity field in a particular fashion.
Stated differently, the angular velocity vector field arises from the velocity field by operating
with a differential operator, just as the rate of expansion arises from the velocity field by
operating with the divergence operator (∇·), as discussed in Section 2.2.

Outer vector product

To identify the differential operator that generates the point particle angular velocity field,
Ω, from the velocity field, u, according to equations (2.3.2), we introduce the outer vector
product. Consider a pair of vectors,

f = (fx, fy, fz), g = (gx, gy, gz). (2.3.4)

The outer product of the first vector with the second vector, taken in this particular order,
is a new vector, denoted as f × g, defined as

f × g = (fy gz − fz gy) ex + (fz gx − fx gz) ey + (fx gy − fy gx) ez, (2.3.5)

where ex, ey, and ez are unit vectors along the x, y, or z axis. We find that

f × g = −g × f . (2.3.6)

If the order of the two vectors is switched, a minus sign must be included.

Interpretation of the outer vector product

It can be shown that the outer-product vector f × g is normal to the plane containing the
vectors f and g, as illustrated in Figure 2.3.1. The magnitude of f×g is equal to the product
of (a) the length of the vector f , (b) the length of the vector g, and (c) the absolute value
of the sine of the angle, β, subtended between the two vectors.

The orientation of the outer-product vector f × g is such that, as we look down at the
plane defined by f and g toward the negative direction of f × g, the angle β measured in
the counterclockwise direction from f is less than π. If β is equal to 0 or π, the two vectors
are parallel or anti-parallel, the sine of the angle is zero, and the outer product vanishes.
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The three directions defined by the the triplet of vectors f , g, and f × g, arranged in
this particular order, form a right-handed system of coordinates. This is another way of
saying that f × g arises from f and g according to the right-hand rule.

Now invoking the definition of the cross product, we recast equation (2.3.3) into the
form

urotation(x, y, z) = Ω× (x− x0), (2.3.7)

which describes rigid-body rotation with angular velocity Ω around the point x0, in agree-
ment with the previously stated physical interpretation.

2.3.1 Curl and vorticity

Taking the outer product of the del operator and the velocity field, we obtain the curl of
the velocity defined as the vorticity,

ω ≡ ∇× u = (
∂uz

∂y
− ∂uy

∂z
) ex + (

∂ux

∂z
− ∂uz

∂x
) ey + (

∂uy

∂x
− ∂ux

∂y
) ez. (2.3.8)

Comparing equation (2.3.8) with equations (2.3.2), we find that

Ω =
1

2
ω, (2.3.9)

which shows that the angular-velocity vector is equal to half the vorticity vector, or half the
curl of the velocity.

Irrotational flow

If the curl of a velocity field vanishes at every point in a flow, with the consequence that no
spherical fluid parcel undergoes rotation, then the velocity field is called irrotational. The
properties and computation of irrotational flow will be discussed in Chapter 3, and then
again in Chapter 12 in the context of aerodynamics.

The alternating tensor

The long expression on the right-hand side of equation (2.3.5) defining the outer vector
product is cumbersome. To simplify the notation, we introduce the three-index alternating
tensor, εijk, defined as follows:

1. If i = j, or j = k, or k = i, then εijk = 0. For example, εxxy = εzyz = εzyy = 0.

2. If i, j, and k are all different, then εijk = ±1. The plus sign applies when the triplet
ijk is a cyclic permutation of xyz, and the minus sign applies otherwise. For example,
εxyz = εzxy = εyzx = 1, but εxzy = −1.

Two important properties of the alternating tensor stemming from its definition are

εijk εmjk = 2 δim, (2.3.10)
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where double summation of the repeated indices j and k is implied on the left-hand side,
and

εijk εlmk = δil δjm − δim δjl, (2.3.11)

where summation of the repeated index k is implied on the left-hand side. Kronecker’s delta,
δij , represents the identity matrix: δij = 1 if i = j, or 0 if i 
= j. Additional properties of
the alternating tensor are listed in Problem 2.3.2.

In terms of the alternating tensor, the ith component of the outer vector product f × g

defined in equation (2.3.5) is given by

(f × g)i = εijk fj gk, (2.3.12)

where double summation of the two repeated indices j and k is implied on the right-hand
side.

Using the definition (2.3.8), we find that the ith component of the vorticity is given by

ωi = εijk
∂uk

∂xj
. (2.3.13)

Straightforward manipulation of (2.3.13) provides us with an expression for the vorticity
vector in terms of the vorticity tensor,

ωi =
1

2
(εijk

∂uk

∂xj
+ εijk

∂uk

∂xj
) =

1

2
(εijk

∂uk

∂xj
− εikj

∂uk

∂xj
), (2.3.14)

and then

ωi =
1

2
(εijk

∂uk

∂xj
− εijk

∂uj

∂xk
) = εijk

1

2
(
∂uk

∂xj
− ∂uj

∂xk
) (2.3.15)

or

ωi = εijk Ξjk. (2.3.16)

The inverse relationship is

Ξij =
1

2
εijk ωk (2.3.17)

(Problem 2.3.3).

2.3.2 Two-dimensional flow

Consider a two-dimensional flow in the xy plane. Inspecting the right-hand side of (2.3.8),
we find that the x and y components of the vorticity vanish. The vorticity vector is then
parallel to the z axis, and thus perpendicular to the plane of the flow,

ω = ωz ez, (2.3.18)
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where ez is the unit vector along the z axis. The scalar ωz is the strength of the vorticity,
defined as

ωz =
∂uy

∂x
− ∂ux

∂y
. (2.3.19)

For example, in the case of simple shear flow, ux = ξy, uy = 0, and ωz = −ξ, where the
coefficient ξ is the shear rate.

Using the transformation rules discussed in Section 1.1, we find that the strength of the
vorticity in the plane polar coordinates depicted in Figure 1.1.4 is given by

ωz =
1

r

( ∂(ruθ)

∂r
− ∂ur

∂θ

)
. (2.3.20)

In the case of rigid-body rotation with angular velocity Ω, uθ = Ω r ur = 0, and ωz = 1
2 Ω.

2.3.3 Axisymmetric flow

Consider an axisymmetric flow in the absence of swirling motion and refer to the polar cylin-
drical coordinates (x, σ, ϕ) depicted in Figure 1.1.2 and to the spherical polar coordinates
(r, θ, ϕ) depicted in Figure 1.1.3.

A fluid patch that lies in an azimuthal plane, defined as plane of constant azimuthal angle
ϕ, is able to rotate only around an axis that is perpendicular to this plane. Consequently,
the vorticity vector points in the direction of increasing or decreasing azimuthal angle, ϕ.
This observation suggests that the vorticity vector takes the form

ω = ωϕ eϕ, (2.3.21)

where eϕ is the unit vector in the azimuthal direction and ωϕ is the corresponding vorticity
component given by

ωϕ =
∂uσ

∂x
− ∂ux

∂σ
=

1

r

( ∂(ruθ)

∂r
− ∂ur

∂θ

)
. (2.3.22)

Note that the expression in spherical polar coordinates, (r, θ), given on the right-hand side
of (2.3.22) is identical to that in plane polar coordinates given in (2.3.20).

2.3.1 Properties of the outer vector product

(a) Show that f × g = −g × f , where the outer vector product, denoted by ×, is defined in
equation (2.3.5).

(b) The outer vector product of two vectors, f and g, can be identified with the determinant
of a matrix,

f × g = det
(⎡⎣ ex ey ez

fx fy fz
gx gy gz

⎤⎦)
. (2.3.23)

Problems
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Confirm that this rule is consistent with the definition of the curl of the velocity in (2.3.8).

2.3.2 Properties of Kronecker’s delta and alternating tensor

Prove the properties

δii = 3, εljk δjk = 0, aj δjk = ak, Alj δjk = Alk, (2.3.24)

where δij is Kronecker’s delta representing the 3×3 identity matrix, a is an arbitrary vector,
A is an arbitrary matrix, and summation is implied over a repeated index.

2.3.3 Relation between the vorticity tensor and vector

Prove relation (2.3.17). Hint: Express the vorticity in terms of the velocity as shown in
(2.3.13), and then use property (2.3.11).

2.3.4 The vorticity field is solenoidal

Show that the divergence of the vorticity is identically zero, ∇ ·ω = 0, that is, the vorticity
field is solenoidal.

2.4 Fluid parcel deformation

The velocity field associated with the second term on the right-hand side of (2.1.34) is

udeformation(x, y, z) = (x− x0) ·E(x0), (2.4.1)

where E is the symmetric and traceless rate-of-deformation tensor defined in Table 2.1.1.

To develop insights into the nature of the motion described by (2.4.1), we consider a
special case where E(x0) is a diagonal matrix,

E(x0) =

⎡⎢⎢⎢⎢⎣
∂ux

∂x
− 1

3
α 0 0

0
∂uy

∂y
− 1

3
α 0

0 0
∂uz

∂z
− 1

3
α

⎤⎥⎥⎥⎥⎦ , (2.4.2)

with the understanding that the derivatives on the right-hand side are evaluated at the point
x0. The trace of the matrix on the right-hand side is zero, as required. The eigenvalues of a
diagonal matrix are equal to the diagonal elements. The corresponding eigenvectors point
along the x, y, or z axes.

Cursory inspection reveals that, under the action of the flow described by (2.4.1), subject
to (2.4.2), a spherical fluid parcel centered at a point, x0, deforms to obtain an ellipsoidal
shape while preserving its volume, as illustrated in Figure 2.1.2. The three eigenvalues of
the rate-of-deformation tensor express the rate of deformation in three principal directions
corresponding to the eigenvectors. If an eigenvalue is negative, the parcel is compressed in
the corresponding direction to obtain an oblate shape.
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More generally, the rate-of-deformation tensor has three real eigenvalues, λ1, λ2, and
λ3, that are found by setting the determinant of the following matrix to zero,

E− λ I =

⎡⎣ Exx − λ Exy Exz

Eyx Eyy − λ Eyz

Ezx Ezy Ezz − λ

⎤⎦ , (2.4.3)

and then computing the roots of the emerging cubic equation for λ, where I is the 3 × 3
identity matrix. It can be shown that, because E is symmetric, all three eigenvalues are
real and each eigenvalue has a distinct corresponding eigenvector. Moreover, the three
eigenvectors are mutually orthogonal, pointing in the principal directions of the rate of
strain.

Under the action of the flow stated in (2.4.1), a spherical fluid parcel centered at the
point x0 deforms to obtain an ellipsoidal shape whose axes are generally inclined with respect
to the x, y, and z axis. The three axes of the ellipsoid are parallel to the eigenvectors of
E, and the respective rates of deformation of the ellipsoid are equal to the corresponding
eigenvalues. A theorem of matrix calculus states that the sum of the eigenvalues is equal
to the sum of the diagonal elements of E, which is zero. Because of this property, the
deformation preserves the parcel volume.

Computation of the rates of strain

Setting the determinant of the matrix (2.4.3) to zero, we obtain a cubic algebraic equation
for λ,

λ3 + a λ2 + b λ+ c = 0, (2.4.4)

where

a = −trace(E) = −(Exx + Eyy + Ezz),

b = (EyyEzz − EyzEzy) + (ExxEzz − ExzEzx) + (ExxEyy − ExyEyx),

c = det(E), (2.4.5)

and det stands for the determinant. Using Cardano’s formulas, we find that the three roots
of (2.4.4) are given by

λ1 = −a

3
+ d cos

χ

3
, λ2,3 = −a

3
− d cos

χ± π

3
, (2.4.6)

where

d = 2
(

1

3
|p|

)1/2

, χ = arccos
(− 1

2

q(
1
3 |p|

)3/2 ) (2.4.7)

and

p = b− 1

3
a2, q = c+

2

27
a3 − 1

3
ab. (2.4.8)
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In general, we may find three real eigenvalues or one real eigenvalue accompanied by a pair
of complex conjugate eigenvalues.

In the case of the rate-of-deformation tensor, because the trace is zero, a = 0, we obtain
the simplified expressions

λ1 = d cos
χ

3
, λ2,3 = −d cos

χ± π

3
, (2.4.9)

where

d = 2
(

1

3
|b|
)1/3

, χ = arccos
(
− 1

2

c(
1
3 |b|

)3/2) (2.4.10)

and b, c can be arbitrary.

Once the eigenvalues have been found, the eigenvectors are computed by solving a ho-
mogeneous system of three equations for three unknowns. For example, the eigenvector

e(1) = (e
(1)
x , e

(1)
y , e

(1)
z ) corresponding to the eigenvalue λ1 is found by solving the homoge-

neous linear system

(E− λ1I) · e(1) = 0, (2.4.11)

which can be restated as

(Exx − λ1) e
(1)
x + Exy e

(1)
y = −Exz e

(1)
z ,

Eyx e(1)x + (Eyy − λ1) e
(1)
y = −Eyz e

(1)
z , (2.4.12)

Ezx e(1)x + Ezy e
(1)
y = −(Ezz − λ1) e

(1)
z .

To solve system (2.4.12), we may assign an arbitrary value to the first component, e
(1)
z ,

evaluate the first two right-hand sides, and solve the first two equations for e
(1)
x and e

(1)
y

using, for example, Cramer’s rule. The solution is guaranteed to also satisfy the third
equation. A solution cannot be found if the eigenvector is perpendicular to the z axis, in

which case e
(1)
z is zero. If this occurs, we simply transfer the term involving e

(1)
x or e

(1)
y to

the right-hand side instead, and solve for the other two components.

2.4.1 Properties of eigenvalues

(a) Confirm that the sum of the three eigenvalues given in (2.4.6) is equal to the trace of E.

(b) Confirm that the product of the three eigenvalues given in (2.4.6) is equal to the deter-
minant of the rate-of-deformation tensor, E.

(c) Confirm that, when E is diagonal, formulas (2.4.6) identify the eigenvalues with the
diagonal elements.

Problems
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2.4.2 Eigenvalues and eigenvectors

Directory 05 eigen, located inside directory 01 num meth of Fdlib, contains a program
entitled eigen33 that computes the eigenvalues of a 3 × 3 matrix. Use the program to
compute the eigenvalues and eigenvectors of the rate of deformation tensor corresponding
to the linearized flow (2.1.21) for a = 1 s−1 and cdt = 2 s−1.

2.5 Numerical differentiation

We have mentioned that, in practice, the components of a velocity field are hardly ever
given in analytical form by way of mathematical expressions. Instead, their values are
either measured in the laboratory with probes, or computed by numerical methods at data
points represented by grid nodes located in the domain of flow. The partial derivatives of
the velocity are then recovered by a numerical procedure called numerical differentiation.

2.5.1 Numerical differentiation in one dimension

As a prelude to computing the partial derivatives of the components of the velocity from
specified grid values, we consider computing the first derivative of a function, f(x), of one
independent variable, x, defined on a grid.

To be more specific, we assume that values of f(x) are given at N + 1 nodes of a
one-dimensional uniform grid with nodes located at xi for i = 1, . . . , N +1, as shown below:

1 N+12 k +1k
x

Our goal is to compute the derivative, df/dx, at a point, x, that lies in the kth interval
subtended between the nodes xk and xk+1.

First-order differentiation

In the simplest approach, the graph of the function f(x) in the interval (xk, xk+1) is approx-
imated with a straight line, as shown in Figure 1.7.2, and the derivative df/dx is approx-
imated with the slope. Using equations (1.7.3) and (1.7.5), we derive the finite-difference
approximation

f ′(x) 	 fk+1 − fk
xk+1 − xk

, (2.5.1)

where a prime denotes a derivative with respect to x.

Now identifying the evaluation point, x, with the grid point, xk, we obtain the forward-
difference approximation

f ′(xk) 	 fk+1 − fk
xk+1 − xk

. (2.5.2)
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The error associated with this approximation is proportional to the interval size, hk =
xk+1 − xk.

Using instead the straight-line approximation for the k − 1 interval, we obtain the
backward-difference approximation

f ′(xk) 	 fk − fk−1

xk − xk−1
. (2.5.3)

Formulas (2.5.2) and (2.5.3) carry a comparable amount of error due to the straight-line
approximation.

To evaluate the derivative at the first point, f ′(x1), we use a forward difference; to
evaluate the derivative at the last point, f ′(xN+1), we use a backward difference; to evaluate
f ′(xi) at an interior grid point, where i = 2, . . . , N , we use either a forward or a backward
difference, whichever is deemed more convenient or appropriate.

Second-order differentiation

Numerical differentiation based on linear interpolation neglects the curvature of the graph of
the function f(x). To improve the accuracy of the interpolation, we approximate f(x) with
a parabolic function defined in the interval (xk, xk+1), as depicted in Figure 1.7.3, and then
approximate the slope of the function, f ′, with the slope of the parabola. Differentiating
(1.7.6), we derive the second-order finite-difference approximation

f ′(x) 	 2 a(k) (x− xk) + b(k), (2.5.4)

where the coefficients a(k) and b(k) are given in (1.7.9).

Now identifying the evaluation point, x, with the grid point, xk, we obtain the centered-
difference approximation

f ′(xk) 	 b(k). (2.5.5)

When the grid points are spaced evenly, xk − xk−1 = xk+1 − xk = h, we obtain the
simple form

f ′(xk) 	 fk+1 − fk−1

2h
, (2.5.6)

where h is the grid spacing. The error associated with this approximation is proportional
to the square of the interval size, h2.

The parabolic approximation allows us to also obtain an estimate for the second deriva-
tive, d2f/dx2. Differentiating (1.7.6) twice with respect to x, we derive the finite-difference
approximation

f ′′(x) 	 2a(k), (2.5.7)

where the coefficient a(k) is given in (1.7.9).
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When the grid points are spaced evenly along the x axis with separation h, we obtain
the simpler formula

f ′′(x) 	 fk+1 − 2fk + fk−1

h2
. (2.5.8)

Identifying the evaluation point, x, with the grid point, xk, we obtain the centered-difference
approximation

f ′′(xk) 	 fk+1 − 2fk + fk−1

h2
. (2.5.9)

The error associated with this approximation is proportional to the square of the interval
size, h2.

2.5.2 Numerical differentiation in two dimensions

Consider the computation of the first partial derivatives of a function of two independent
variables, f(x, y), ∂f/∂x and ∂f/∂y, from given values of the function at the nodes of a
two-dimensional grid defined by the intersection of the x-level lines, xi for i = 1, . . . , Nx+1,
and y-level lines, yj for j = 1, . . . , Ny + 1, as illustrated in Figure 1.7.2(b). The value of x
lies in the kxth x-interval confined between the xkx

and xkx+1 x-level lines, and the value
of y lies in the kyth y-interval confined between the yky

and yky+1 y-level lines.

First-order differentiation

Using the method of bilinear interpolation discussed in Section 1.7, we approximate the first
partial derivatives of the function f(x, y) with the partial derivatives of the bilinear function
defined in equation (1.7.15). Considering the derivative with respect to x, we obtain the
forward-difference approximation(∂f

∂x

)
x,y

	
(∂Πkx,ky

∂x

)
x,y

, (2.5.10)

where Πkx,ky is the bilinear function given in (1.7.15). Performing the differentiation, we
obtain (∂f

∂x

)
x,y

	
(∂wkx,ky

00

∂x

)
x,y

f(xkx
, yky

) +
(∂wkx,ky

10

∂x

)
x,y

f(xkx+1, yky
)

+
(∂wkx,ky

01

∂x

)
x,y

f(xkx
, yky+1) +

(∂wkx,ky

11

∂x

)
x,y

f(xkx+1, yky+1). (2.5.11)

Using expressions (1.7.16) and (1.7.17), we obtain(∂f
∂x

)
x,y

= −yky+1 − y

A
f(xkx

, yky
) +

yky+1 − y

A
f(xkx+1, yky

)

−y − yky

A
f(xkx

, yky+1) +
y − yky

A
f(xkx+1, yky+1). (2.5.12)
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where

A = (xkx+1 − xkx
)(yky+1 − yky

), (2.5.13)

as given in (1.7.18). Using this formula, we derive the first-order, forward-difference approx-
imation at the southwestern grid node,(∂f

∂x

)
xkx

, yky

	 f(xkx+1, yky
)− f(xkx

, yky
)

xkx+1 − xkx

. (2.5.14)

A similar approximation for the y derivative yields(∂f
∂y

)
xkx

, yky

	 f(xkx
, yky+1)− f(xkx

, yky
)

yky+1 − yky

. (2.5.15)

Both formulas express forward-difference approximations with respect to the respective vari-
able, x or y.

Second-order differentiation

Second-order centered-difference formulas for evaluating the first partial derivative of a
function at a grid point can be derived based on the one-dimensional formula (2.5.5). Using
the expression for the coefficient b(k) given in (1.7.9), we obtain

(∂f
∂x

)
xkx

, yky

	
(xkx

− xkx−1)
fkx+1,ky

− fkx,ky

xkx+1 − xkx

+ (xkx+1 − xkx
)
fkx,ky

− fkx−1,ky

xk − xkx−1

xkx+1 − xkx−1
.

(2.5.16)

The corresponding expression for the derivative with respect to y is

(∂f
∂y

)
xkx

, yky

	
(yky

− yky−1)
fkx,ky+1 − fkx,ky

yky+1 − yky

+ (yky+1 − yky
)
fkx,ky

− fkx,ky−1

yky
− yky−1

yky+1 − yky−1
.

(2.5.17)

When the grid lines are spaced evenly,

xkx
− xkx−1 = xkx+1 − xkx

≡ hx, (2.5.18)

and

yky
− yky−1 = yky+1 − yky

≡ hy, (2.5.19)

we obtain the simpler formulas(∂f
∂x

)
xkx ,yky

=
fkx+1,ky

− fkx−1,ky

2hx
(2.5.20)

and (∂f
∂y

)
xkx ,yky

=
fkx,ky+1 − fkx,ky−1

2hy
, (2.5.21)

which express centered-difference approximations in x or y.
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2.5.3 Velocity gradient and related functions

The formulas derived in Section 2.5.2 can be applied to obtain approximations to the ele-
ments of the velocity-gradient tensor, rate-of-deformation tensor, vorticity vector, and rate
of expansion, from specified values of the velocity at grid points. To illustrate the method-
ology, we consider a two-dimensional flow and employ a uniform grid with constant x and
y grid spacings equal to hx and hy.

Using the second-order, centered-difference approximations (2.5.20) and (2.5.21), we
find that the rate of expansion can be approximated with the finite-difference formula

(
∇ · u)

xkx ,yky
	 (ux)kx+1,ky

− (ux)kx−1,ky

2hx
+

(uy)kx,ky+1 − (uy)kx,ky−1

2hy
. (2.5.22)

The corresponding finite-difference approximation for the z component of the vorticity
takes the form

ωz(xkx
, yky

) 	 (uy)kx+1,ky
− (uy)kx−1,ky

2hx
− (ux)kx,ky+1 − (ux)kx,ky−1

2hy
. (2.5.23)

Similar finite-difference approximations can be written for the elements of the rate-of-
deformation tensor, and subsequently used to obtain approximations to its eigenvalues and
eigenvectors.

The following MATLAB function entitled rec 2d vgt, located in directory rec 2d inside
directory 02 grids of Fdlib, computes the velocity gradient tensor at the nodes of a two-
dimensional Cartesian grid:

function [Axx,Axy,Ayx,Ayy] = rec 2d vgt ...

...

(glx,gly,Nx,Ny,gux,guy)

%------------------------------

% compute the velocity gradient

% tensor L ij at the grid points

%-------------------------------

%----------------

% interior points

% compute derivatives by central differences

%----------------

for i=2:Nx

for j=2:Ny

Lxx(i,j) = (gux(i+1,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));

Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));

Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(j+1)-gly(j-1));
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end

end

%----------

% left wall

% compute derivatives by central or forward differences

%----------

i=1;

for j=2:Ny

Lxx(i,j) = (gux(i+1,j)-gux(i,j))/(glx(i+1)-glx(i));

Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));

Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));

Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(j+1)-gly(j-1));

end

%----------

% bottom wall

% compute derivatives by central or forward differences

%----------

j=1;

for i=2:Nx

Lxx(i,j) = (gux(i+1,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));

Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(j+1)-gly(j));

Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(j+1)-gly(j));

end

%----------

% right wall

% compute derivatives by central or backward differences

%----------

i=Nx+1;

for j=2:Ny

Lxx(i,j) = (gux(i,j)-gux(i-1,j))/(glx(i)-glx(i-1));

Lxy(i,j) = (guy(i,j)-guy(i-1,j))/(glx(i)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));

Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(j+1)-gly(j-1));

end

%----------

% top wall

% compute derivatives by central or backward differences

%----------

j=Ny+1;

for i=2:Nx
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Lxx(i,j) = (gux(i+1,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));

Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));

Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));

Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(j)-gly(j-1));

end

%-------------------

% four corner points

%-------------------

i=1; j=1;

Lxx(i,j) = (gux(i+1,j)-gux(i,j))/(glx(i+1)-glx(i));

Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));

Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(j+1)-gly(j));

Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(j+1)-gly(j));

i=Nx+1; j=1;

Lxx(i,j) = (gux(i,j)-gux(i-1,j))/(glx(i)-glx(i-1));

Lxy(i,j) = (guy(i,j)-guy(i-1,j))/(glx(i)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(j+1)-gly(j));

Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(j+1)-gly(j));

i=Nx+1; j=Ny+1;

Lxx(i,j) = (gux(i,j)-gux(i-1,j))/(glx(i)-glx(i-1));

Lxy(i,j) = (guy(i,j)-guy(i-1,j))/(glx(i)-glx(i-1));

Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));

Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(j)-gly(j-1));

i=1; j=Ny+1;

Lxx(i,j) = (gux(i+1,j)-gux(i,j))/(glx(i+1)-glx(i));

Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));

Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));

Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(j)-gly(j-1));

%-----

% done

%-----

return

The following MATLAB code appended to the code rec 2d discussed in Section 1.10,
residing in directory rec 2d inside directory 02 grids of Fdlib, computes various flow vari-
ables:

%---

% specify the grid velocities

%---

for i=1:Nx+1
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for j=1:Ny+1

px = gx(i,j); py = gy(i,j);

wnx = 2*pi/(bx-ax); wny = 2*pi/(by-ay);

gux(i,j) = cos(wnx*px)*cos(wny*py);

guy(i,j) = sin(wnx*px)*sin(wny*py);

end

end

%---

% velocity gradient tensor

%----

Lxx,Lxy,Lyx,Lyy] = rec 2d vgt (glx,gly,Nx,Ny,gux,guy);

%---

% compute the rate of expansion

% the rate of strain tensor

% the strains

% the vorticity

%---

for i=1:Nx+1

for j=1:Ny+1

roe(i,j) = Lxx(i,j)+Lyy(i,j); % rate of expansion

omega(i,j) = Lxy(i,j)-Lyx(i,j); % vorticity

Exx(i,j) = Lxx(i,j)-0.5*roe(i,j); % rate of deformation

Exy(i,j) = 0.5*(Lxy(i,j)+Lyx(i,j)); % rate of deformation

Eyx(i,j) = Exy(i,j); % rate of deformation

Eyy(i,j) = Lyy(i,j)-0.5*roe(i,j); % rate of deformation

det = 4.0*(Exx(i,j)^2+Exy(i,j)^2); % eigenvalues

srd = sqrt(det);

strain1(i,j) = 0.5*srd;

strain2(i,j) = -0.5*srd;

%---

% compute the eigenvectors of the rate of strain

%---

if(abs(Exy(i,j))<0.0001) % E is diagonal

if(abs(Exx(i,j)-strain1(i,j))>0.0001)

egv1x(i,j) = 0.0; egv1y(i,j) = 1.0;

else

egv1x(i,j) = 1.0; egv1y(i,j) = 0.0;

end

if(abs(Exx(i,j)-strain2(i,j))>0.0001)

egv2x(i,j) = 0.0; egv2y(i,j) = 1.0;

else

egv2x(i,j) = 1.0; egv2y(i,j) = 0.0;
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end

else % E is not diagonal

egv1x(i,j) = 1.0;

egv1y(i,j) = -(Exx(i,j)-strain1(i,j))/Exy(i,j);

egv2x(i,j) = 1.0;

egv2y(i,j) = -(Exx(i,j)-strain2(i,j))/Exy(i,j);

end

%---

% normalize the eigenvectors

%---

fc1 = 1.0/sqrt(egv1x(i,j)^2+egv1y(i,j)^2);

egv1 x(i,j) = fc1*egv1x(i,j); egv1 y(i,j) = fc1*egv1y(i,j);

fc2 = 1.0/sqrt(egv2x(i,j)^2+egv2y(i,j)^2);

egv2 x(i,j) = fc2*egv2x(i,j); egv2 y(i,j) = fc2*egv2y(i,j);

end

end

%---

% plotting

%---

figure

mesh(glx,gly,omega')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel('\omega','fontsize',15)

figure

mesh(glx,gly,roe')

xlabel('x','fontsize',15);

ylabel('y','fontsize',15)

zlabel('\alpha','fontsize',15)

figure

mesh(glx,gly,strain1')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel('s\_1','fontsize',15)

figure

mesh(glx,gly,strain2')

xlabel('x','fontsize',15);

ylabel('y','fontsize',15)
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zlabel('s\_2','fontsize',15)

figure

hold on

[ glx,gly,gx,gy ] = grid 2d (ax,bx,ay,by,Nx,Ny);

for i=1:Nx+1

for j=1:Ny+1

vector = draw arrow 2d ...

(gx(i,j),gy(i,j),egv1x(i,j)/Ny,egv1y(i,j)/Ny);

plot(vector(:,1),vector(:,2));

end

end

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

box on

figure

hold on

[glx,gly,gx,gy] = grid 2d (ax,bx,ay,by,Nx,Ny);

for i=1:Nx+1

for j=1:Ny+1

vector = draw arrow 2d ...

(gx(i,j),gy(i,j),egv2x(i,j)/Ny,egv2y(i,j)/Ny);

plot(vector(:,1),vector(:,2));

end

end

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

The graphics display generated by the code for the velocity field implemented in the code
is shown in Figure 2.5.1.

2.5.1 Numerical differentiation

Use formula (2.5.9) to evaluate the second derivative of the exponential function f(x) = ex

at x = 0 in terms of the values of f(x) at x = −h, 0, h, for h = 0.16, 0.08, 0.04, 0.02, and
0.01. Compute and plot the difference between the numerical value and the exact value
against h on a log-log scale. Assess and discuss the slope of the graph.

2.5.2 Numerical differentiation of a two-dimensional flow

Run the code rec 2d for a velocity field of your choice. Prepare and discuss plots of the
vorticity, eigenvalues, and eigenvectors of the rate-of-strain tensor.

Problems
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Figure 2.5.1 Velocity vector field, rate of expansion, vorticity, principal strains, and principal eigen-
vectors computed by numerical differentiation on a uniform Cartesian grid.
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Figure 2.6.1 Illustration of a stationary open line that starts at a point, A, and ends at another
point, B, used to define the areal flow rate and flux in a two-dimensional flow. When the end
points A and B coincide, we obtain a closed loop.

2.6 Flow rates

Consider a two-dimensional flow in the xy plane and draw a stationary line that resides in
its entirety inside the fluid. At any instant, point particles cross the line generating a net,
positive or negative, areal flow rate in a designated direction. Our goal is to quantify this
flow rate in terms of the shape of the line and the fluid velocity.

Unit tangent and unit normal vectors

First, we consider an open line that starts at a point, A, and ends at another point, B, as
shown in Figure 2.6.1. As a preliminary, we introduce the unit tangent vector, t = (tx, ty),
defined as the vector that is tangential to the line at a point, subject to the normalization
condition

t2x + t2y = 1. (2.6.1)

The direction of t is chosen such that, if we start moving along the line from point A in the
direction of t, we will finally end up at point B.

Next, we introduce the unit normal vector, n = (nx, ny), defined as the unit vector that
is perpendicular to the line at a point. The magnitude of n is equal to unity,

n2
x + n2

y = 1. (2.6.2)

The orientation of n is such that the tangent vector t arises by rotating n around the z axis
in the counterclockwise direction by an angle equal to 1

2 π.

Now we consider an infinitesimal section of the line that starts at a point, x, and ends
at the point x+ dx, where the differential distance, dx = (dx,dy) is parallel to, and points
in the direction of the unit tangent vector, t. The components of the unit tangent vector
and unit normal vector are given by

tx =
dx

d
, ty =

dy

d
(2.6.3)
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and

nx =
dy

d
, ny = −dx

d
, (2.6.4)

where d is the differential arc length of the infinitesimal section of the line, given by

d =
√
dx2 + dy2 =

√
1 +

(dy
dx

)2

|dx| (2.6.5)

Because t and n are mutually orthogonal, their inner product is zero,

t · n = n · t = 0. (2.6.6)

To confirm this, we merely substitute (2.6.3) and (2.6.4) into the right-hand side of (2.1.10).

Normal and tangential velocities

Next, we consider a group of adjacent point particles distributed along the infinitesimal arc
length, d, at a particular time instant, t. During an infinitesimal period of time, dt, the
point particles move to a new position, thus allowing other point particles located behind
or in front of them to cross the line into the other side.

To compute the net area of fluid that has crossed the infinitesimal arc length d, we
resolve the velocity of the point particles into a normal component and a tangential com-
ponent, writing

u = un n+ ut t. (2.6.7)

The normal and tangential velocities, un and ut, can be computed readily in terms of
the inner vector product defined in equation (2.1.10). Taking the inner product of the unit
normal vector with both sides of (2.6.7), and using (2.6.6) and (2.6.2), we obtain

un = u · n = ux nx + uy ny. (2.6.8)

Taking the inner product of the unit tangent vector with both sides of (2.6.7), and using
(2.6.6) and (2.6.1), we obtain

ut = u · t = ux tx + uy ty. (2.6.9)

2.6.1 Areal flow rate and flux

By definition, the local areal flow rate across an infinitesimal section, d, is the area of fluid,
dAf , that crosses the infinitesimal section during an infinitesimal period of time, dt, given
by

dAf

dt
= un d, (2.6.10)
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d l dAf

Figure 2.6.2 Two point particles move from the thin line to the bold line over small period of time,
dt, thereby allowing for an areal flow rate, dAf . The particles can be assumed to move first normal
to the bold line (dashed vectors) and then tangential to the line to reach their final destination.

as shown in Figure 2.6.2. To see why we selected the normal component of the velocity on
the right-hand side, we observe that, if the normal component vanishes, the particles move
tangentially to the line and fluid does not cross the line. In general, although point particles
move both in the tangential and normal directions, only the normal motion contributes to
the local areal flow rate.

The corresponding local areal flux, q, is defined as the ratio of the local areal flow rate,
dAf/dt, to the infinitesimal length of the line across which transport takes place,

q ≡ dAf

dt d
= un. (2.6.11)

We have found that the local areal flux is merely the normal component of the fluid velocity.

Substituting expression (2.6.8) for the normal velocity component into (2.6.10), and
using (2.6.4), we obtain

dAf

dt
= un d = q d (2.6.12)

and then

dAf

dt
= (ux nx + uy ny) d = ux dy − uy dx. (2.6.13)

These expressions allow us to evaluate the local areal flow rate in terms of the components
of the velocity.

2.6.2 Areal flow rate across a line

To compute the areal flow rate across the stationary open line depicted in Figure 2.6.1,
denoted by Qareal, we subdivide the line into an infinite collection of infinitesimal sections
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with differential lengths, d, and add all contributions. In mathematical terms, we integrate
the local areal flux along the line with respect to arc length, finding that

Qareal =

∫ B

A

q d =

∫ B

A

dAf

dt d
d =

∫ B

A

dAf

dt
=

∫ B

A

(uxnx + uyny) d, (2.6.14)

and then

Qareal =

∫ B

A

un d =

∫ B

A

(
ux dy − uy dx

)
. (2.6.15)

The integral on the right-hand side of (2.6.15) allows us to evaluate Qareal in terms of the
geometry of the line and the two velocity components.

Note that the areal flow rate, Qareal, has units of area divided by time. The associated
volumetric flow rate with units of volume divided by time, is given by

Q = wQareal, (2.6.16)

where w is a chosen width along the z axis.

Parcel expansion

The integral representation for the areal flow rate is also applicable in the case of a closed
line, L, described as a loop, as shown in Figure 2.6.3. In that case, the last point, B, simply
coincides with the first point, A, yielding a closed integral,

Qareal =

∮
L
un d =

∮
L

(
ux dy − uy dx

)
. (2.6.17)

In fact, the areal flow rate across a closed loop is equal to the rate of change of the area of
the fluid parcel that is enclosed by the loop at a certain instant, Ap, that is,

dAp

dt
= Qareal. (2.6.18)

The area of the parcel can change only if the fluid occupying the parcel is compressible.

2.6.3 Analytical integration

If a line has a sufficiently simple shape and the components of the velocity are known func-
tions of position with simple forms, the integrals in (2.6.15) can be computed by standard
analytical methods.

As an example, we consider a line that has the shape of a section of a circle of radius
a centered at a point, xc, with end points corresponding to polar angles θA and θB. Points
along the circular arc are described by the equations

x = xc + a cos θ, y = yc + a sin θ. (2.6.19)
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n

tA

L

Figure 2.6.3 When the end points of a line coincide, we obtain a closed loop enclosing an area, A.

Differentiating these equations with respect to θ, we obtain

dx = −a sin θ dθ, dy = a cos θ dθ. (2.6.20)

Substituting these expressions into the last integral in (2.6.15), we obtain

Qareal = a

∫ θB

θA

(ux cos θ + uy sin θ ) dθ. (2.6.21)

Substituting the expressions for the velocity components in terms of the angle θ, we obtain
an integral representation in terms of θ.

As an application, we assume that

ux =
α

2π

1

r
cos θ, uy =

α

2π

1

r
sin θ, (2.6.22)

where α is a constant and r is the distance from the origin. The flow rate is given by

Qareal = a
α

2π

1

a

∫ θB

θA

dθ =
α

2π
(θB − θA). (2.6.23)

If the circular segment forms a complete circle and the integration is performed in the
counterclockwise direction from θA = θ0 to θB = 2π − θ0, then Qareal = α, independent of
the radius, a, where θ0 is an arbitrary angle.

2.6.4 Numerical integration

Under most conditions, we will not be able to compute the line integrals in (2.6.15) exactly
by analytical methods and we must resort to numerical computation.

To perform numerical integration, we mark the location of a line with N +1 sequential
nodes denoted by xi for i = 1, . . . , N+1, as depicted in Figure 2.6.4. The first node coincides
with the first end point, A, and the last node coincides with the second end point, B. If the
line is closed, the first node labeled 1 coincides with the last node labeled N + 1.

Next, we approximate the shape of the line between two successive nodes labeled i and
i + 1 with a straight segment that passes through these nodes, denoted by Ei, where E
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1 2
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+1i

N

+1N
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B

Figure 2.6.4 An array of points along a line in the xy plane is introduced to compute the areal flow
rate across a line by numerical methods.

stands for element. The union of the N elements forms a polygonal line, called a polyline,
starting at the first end point, A, and ending at the second end point, B.

Trapezoidal rule

A key step in developing a numerical approximation is the replacement of the line integrals in
(2.6.15) with the sum of integrals over the elements, and the approximation of the velocity
components over each element with the average of the values at the element end points.
With these approximations, the last integral in (2.6.15) takes the form

Qareal =

N∑
i=1

[ ux(xi) + ux(xi+1)

2
(yi+1 − yi)− uy(xi) + uy(xi+1)

2
(xi+1 − xi)

]
. (2.6.24)

Writing out the sum and rearranging, we obtain

Qareal =
1

2

[
ux(x1)(y2 − y1)− uy(x1)(x2 − x1)

]
+

1

2

N∑
i=2

[
ux(xi)(yi+1 − yi−1)− uy(xi)(xi+1 − xi−1)

]
(2.6.25)

+
1

2

[
ux(xN+1)(yN+1 − yN )− uy(xN+1)(xN+1 − xN )

]
.

If the line is closed, nodes labeled 1 and N +1 coincide, and the first and last contribu-
tions on the right-hand side of (2.6.25) combine to yield the simpler form

Qareal =
1

2

N∑
i=1

[
ux(xi)(yi+1 − yi−1)− uy(xi)(xi+1 − xi−1)

]
, (2.6.26)

where the wrapped point labeled 0 coincides with the penultimate point labeled N .
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The computation of the right-hand sides of (2.6.25) and (2.6.26) requires knowledge
of the velocity components at the nodes. In practice, the nodal values are either given
explicitly or computed by interpolation from grid values, as discussed in Section 1.7.

2.6.5 The Gauss divergence theorem in two dimensions

Consider a closed loop in the xy plane, denoted by L, and a vector function of position
h = (hx, hy), where hx(x, y) and hy(x, y) are two scalar functions. The normal component
of h along L is given by the inner vector product

hn ≡ h · n = hx nx + hy ny. (2.6.27)

The divergence of h is a scalar function of position given by

∇ · h ≡ ∂hx

∂x
+

∂hy

∂y
. (2.6.28)

The Gauss divergence theorem states that the line integral of the normal component,
hn, along the loop, L, is equal to the integral of the divergence of h over the area A enclosed
by L, ∮

L
h · n d =

∫∫
A
∇ · h dA, (2.6.29)

where n is the unit vector normal to L pointing outward, d is a differential arc length, and
dA is a differential area.

Areal flow rate across a loop

Now we consider the areal flow rate across a closed loop, as shown in Figure 2.6.3. Applying
(2.6.29) with h = u, we find that the areal flow rate across this loop is equal to the areal
integral of the divergence of the velocity over the area enclosed by the loop,

Qareal =

∮
L
u · n d =

∫∫
A
∇ · u dA, (2.6.30)

where the unit normal vector points outward, as shown in Figure 2.6.3. The expression on
the right-hand side of (2.6.30) allows us to compute the instantaneous areal flow rate across
a closed loop in terms of the integral of the rate of expansion over the enclosed area.

Incompressible fluids

It is clear from expression (2.6.30) that, if the velocity field is solenoidal, that is, the diver-
gence of the velocity vanishes at every point,

∇ · u = 0, (2.6.31)

then the areal flow rate across any closed loop is zero. In physical terms, fluid parcels deform
and rotate but do not expand. As a consequence, the amount of fluid entering an area that
is enclosed by a stationary closed loop is equal to the amount of fluid exiting the loop during
any period of time.
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Figure 2.6.5 (a) Illustration of an open surface, S, in a three-dimensional flow, bounded by a closed
line, C, (b) Illustration of a closed surface, S, enclosing a volume, V.

2.6.6 Flow rate in a three-dimensional flow

The preceding discussion for two-dimensional flow can be extended in a straightforward
fashion to three-dimensional flow. To carry out this extension, we replace the line integrals
along open or closed loops with surface integrals over open or closed surfaces residing inside
the flow. The volumetric flow rate across an open or closed surface, S, is given by the surface
integral

Q =

∫∫
S
u · n dS. (2.6.32)

The unit vector normal to S, denoted by n, and the differential area of a surface element,
dS, are defined in Figure 2.6.5. Note that Q has units of volume divided by time.

If Vp is the volume of a parcel confined by a closed surface, then the rate of change of
the parcel volume is

dVp

dt
= Q. (2.6.33)

Parcel expansion or shrinkage is possible only if the fluid is compressible.

2.6.7 Gauss divergence theorem in three dimensions

Consider a closed surface, S, and a vector function of position, h = (hx, hy, hz). The normal
component of h over S is given by the inner product

hn ≡ h · n = hxnx + hyny + hznz. (2.6.34)

The divergence of h is defined as

∇ · h ≡ ∂hx

∂x
+

∂hy

∂y
+

∂hz

∂z
. (2.6.35)
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The Gauss divergence theorem states that the surface integral of hn over S is equal to the
integral of the divergence of h over the volume V enclosed by S,∫∫

S
h · n dS =

∫∫∫
V
∇ · h dV, (2.6.36)

where n is the unit vector normal to the surface S pointing outward, dS is a differential
surface area and dV is a differential volume.

Flow rate

Now we consider the flow rate across a closed surface V, given in (2.6.32). Applying (2.6.36)
for the fluid velocity, h = u, we obtain

Q =

∫∫
S
u · n dS =

∫∫∫
V
∇ · u dV. (2.6.37)

This expression shows that, if the velocity field is solenoidal, ∇ · u = 0, the volumetric flow
rate across any closed surface enclosing fluid alone must vanish.

2.6.8 Axisymmetric flow

Next, we consider an axisymmetric flow and draw a line that begins at a point, A, and ends
at another point, B, in a azimuthal plane, as illustrated in Figure 2.6.6. The volumetric
flow rate across the axisymmetric surface that arises by rotating the line around the x axis
is given by

Q = 2π

∫ B

A

σ (ux nx + uσ nσ) d, (2.6.38)

where d is the differential arc length along the generating line, ux it the velocity component
along the x axis, and uσ is the velocity component normal to the x axis.

Expression (2.6.38) arises by adding the fluxes across all elementary axisymmetric sur-
faces confined between two parallel planes that are perpendicular to the x axis and are
separated by an infinitesimal distance, dx, corresponding to the arc length, d, taking into
consideration that the surface area of an elementary surface centered at a ring of radius σ
is equal to 2πσd.

Substituting the components of the normal vector,

nx =
dσ

d
, nσ = −dx

d
, (2.6.39)

we obtain

Q = 2π

∫ B

A

σ (ux dσ − uσ dx). (2.6.40)
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Figure 2.6.6 Illustration of an axisymmetric surface whose trace in an azimuthal plane is an open
line that begins at a point, A, and ends at another point, B.

2.6.1 Flow rate across an ellipse

Consider a closed loop in the xy plane in the shape of a horizontal ellipse centered at a
point, xc = (xc, yc), with major and minor semi-axes equal to a and b. The elliptical shape
is described in parametric form by the equations

x = xc + a cos η, y = yc + b sin η, (2.6.41)

where η is the native parameter of the ellipse ranging in the interval (0, 2π]. We will assume
that, in plane polar coordinates in the xy plane with origin at the center of the ellipse, (r, θ),
the velocity components are given by

ux =
α

2π

1

r
cos θ, uy =

α

2π

1

r
sin θ, (2.6.42)

where α is a constant. Show that

tan θ =
b

a
tan η (2.6.43)

and derive an expression for the flow rate across the ellipse as an integral with respect to η.

2.6.2 Flow rate across an ellipse

With reference to Problem 2.6.1, write a code that computes the flow rate across the ellipse
using a numerical method based on equation (2.6.26). Perform computations for ellipses
with aspect ratios, a/b = 1, 2, 4, and 8, in each case for N = 8, 16, 32, and 64 numerical
divisions. Discuss the results of your computations.

Problems
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2.7 Mass conservation and the continuity equation

In Section 1.5, we defined a point particle as an idealized entity arising in the limit as the
size of a small fluid parcel becomes decreasingly small and eventually infinitesimal. In this
limit, the ratio between the mass of the parcel and the volume of the parcel tends to a finite,
nonzero, and non-infinite value, which is defined as the fluid density, ρ. To indicate that
the density is a function of position and time in a fluid, we write

ρ(x, t), (2.7.1)

with the understanding that the density at a particular point in a flow is equal to the density
of the point particle that happens to be at that position at the designated time.

2.7.1 Mass flux and mass flow rate

Consider a two-dimensional flow in the xy plane and draw a stationary line that begins at a
point, A, and ends at another point, B, as illustrated in Figure 2.6.1. At any instant, point
particles cross this line, thereby generating a net mass flow rate in a specified direction.
Our goal is to quantify this mass flow rate in terms of the shape of the line and the velocity
and density distributions in the fluid.

Repeating the analysis of Section 2.6, we find that the mass flux across an infinitesimal
section of the line is given by the following counterpart of equation (2.6.11),

qmass = ρ un, (2.7.2)

where un = u · n is the component of the fluid velocity normal to the line. The mass flow
rate across a line that begins at a point, A, and ends at another point, B, is given by the
following counterpart of equation (2.6.15),

Qareal
mass =

∫ B

A

qmass d =

∫ B

A

ρu · n d =

∫ B

A

ρ
(
ux dy − uy dx

)
. (2.7.3)

Note that Qareal
mass has units of mass divided by length and time. The integrals in (2.7.3) can

be computed by analytical or numerical methods, as discussed in Section 2.6.

2.7.2 Mass flow rate across a closed line

The net mass flow rate outward from a closed line in a two-dimensional flow can be expressed
in terms of a closed line integral in the form

Qareal
mass =

∮
qmass d =

∮
ρu · n d =

∮
ρ
(
ux dy − uy dx

)
, (2.7.4)

where the unit normal vector, n, points into the exterior of the area enclosed by the closed
line, as depicted in Figure 2.6.3.
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The Gauss divergence theorem expressed by equation (2.6.29) states that the line in-
tegral in (2.7.4) is equal to the integral of the divergence of the velocity multiplied by the
fluid density over the area enclosed by the line, A,

Qareal
mass =

∫∫
A
∇ · (ρu) dx dy, (2.7.5)

where

∇ · (ρu) = ∂(ρ ux)

∂x
+

∂(ρ uy)

∂y
(2.7.6)

is the divergence of the mass velocity, ρu.

For future reference, we expand the derivatives of the products on the left-hand side of
(2.7.6) using the rules of product differentiation, finding that

∇ · (ρu) = ∂ρ

∂x
ux +

∂ux

∂x
ρ+

∂ρ

∂y
uy +

∂uy

∂y
ρ (2.7.7)

or

∇ · (ρu) = u · ∇ρ+ ρ∇ · u. (2.7.8)

We have introduced the vector of the first partial derivatives of the density,

∇ρ = (
∂ρ

∂x
,

∂ρ

∂y
), (2.7.9)

defined as the gradient of the density.

2.7.3 The continuity equation

The first principle of thermodynamics mandates that the rate of change of the mass residing
inside an area, A, that is enclosed by a stationary closed line, L, given by∫∫

A
ρ dA, (2.7.10)

is equal to the mass flow rate inward across the line, which is equal to the negative of the
mass flow rate outward across the line. If the outward mass flow rate is positive, the rate
of the change of mass enclosed by the line is negative, reflecting a reduction in time.

In terms of the mass flow rate defined in equation (2.7.4) and expressed as an areal
integral in equation (2.7.5), mass conservation requires that

d

dt

∫∫
A
ρ dA = −Qareal

mass = −
∮
L
ρu · n d = −

∫∫
A
∇ · (ρu) dA. (2.7.11)
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Since the area A is fixed in space, we can interchange the order of the time differentiation
and space integration on the left-hand side of (2.7.11), and then combine the two integrals
to obtain ∫∫

A

( ∂ρ
∂t

+∇ · (ρu) ) dA = 0. (2.7.12)

Since the shape of the area A is arbitrary, the integrand on the right-hand side of (2.7.12)
must be identically zero, yielding a partial differential equation in time-space expressing
mass conservation,

∂ρ

∂t
+∇ · (ρu) = 0, (2.7.13)

called the continuity equation. This terminology emphasizes that, in the absence of singu-
larities in the form of point sources and sinks, mass neither appears nor disappears in the
flow and the fluid must move in a continuous fashion in the available domain of flow.

Combining equations (2.7.8) and (2.7.13), we derive an alternative form of the continuity
equation,

∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u = 0, (2.7.14)

involving the vectorial density gradient, ∇ρ, and the scalar rate of expansion, ∇ · u.

Differential mass balance

It is instructive to derive the continuity equation based on a mass balance over a small
stationary rectangular control area in the xy plane, as shown in Figure 2.7.1. Balancing the
rate of mass accumulation inside the control area with the rates of mass crossing the four
edges, we obtain

d

dt

(
ρ dx dy

)
=

(
ρ uxdy

)
x
− (

ρ uxdy
)
x+dx +

(
ρ uydx

)
y
− (

ρ uydx
)
y+dy. (2.7.15)

Dividing both sides by dx dy and noting that the variables, x, y, and t are independent, we
obtain

dρ

dt
=

(
ρ ux

)
x
− (

ρ ux

)
x+dx

dx
+

(
ρ uydx

)
y
− (

ρ uydx
)
y+dy

dy
. (2.7.16)

To derive the continuity equation (2.7.13), we merely invoke the definition of the partial
derivative.

2.7.4 Three-dimensional flow

Our discussion earlier in this section for two-dimensional flow can be generalized in a
straightforward fashion to three-dimensional flow. To carry out this extension, we replace
the line integrals with surface integrals over a closed or open surface. The mass flow rate
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dy

y

xd

x

Figure 2.7.1 To derive the continuity equation for two-dimensional flow, we write a mass balance
over an infinitesimal rectangular control area.

across a stationary, open or closed surface S depicted in Figure 2.6.5 is given by the surface
integral

Qmass =

∫∫
S
ρu · n dS, (2.7.17)

involving the normal velocity component, un = u · n.

If the surface is closed and the unit normal vector points outward, as shown in Figure
2.6.5(b), we may use the divergence theorem to convert the surface integral on the right-
hand side of (2.7.17) into an integral of the rate of expansion over the volume V enclosed
by the surface, obtaining

Qmass =

∫∫∫
V
∇ · (ρu) dV. (2.7.18)

The counterpart of the mass balance equation (2.7.11) is∫∫∫
V

∂ρ

∂t
dV = −Qmass = −

∫∫
S
ρu · n dS = −

∫∫∫
V
∇ · (ρu) dV. (2.7.19)

Since the area D is fixed in space, we can interchange the order of

The continuity equation expressed by (2.7.13) or (2.7.14) stands true, with the under-
standing that ∇ρ is the three-dimensional density gradient with components

∇ρ =
( ∂ρ

∂x
,

∂ρ

∂y
,

∂ρ

∂z

)
(2.7.20)

defined over the domain of flow.
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Figure 2.7.2 Illustration of a stationary control volume in a flow (cv) bounded by solid or fluid
surfaces.

2.7.5 Control volume and integral mass balance

In the context of transport phenomena, a volume, V, bounded by a closed surface, S, is
regarded as a control volume (cv), as shown in Figure 2.7.2. Equation (2.7.11) requires that

∫∫∫
cv

∂ρ

∂t
dV +

∫∫
cv

ρu · n dS = 0, (2.7.21)

physically stating that mass accumulation in a stationary control volume is due to convec-
tive motion through the boundaries of the control volume. Equation (2.7.21) expresses an
integral or macroscopic mass balance.

2.7.6 Rigid-body translation

When a fluid translates as a rigid body, the fluid velocity, u, has a constant and possibly
time-dependent value, U(t). In this case, the continuity equation (2.7.13) simplifies to a
linear convection equation,

∂ρ

∂t
+U ·∇ρ = 0. (2.7.22)

Consider a steady flow where U is independent of time. Using equation (2.7.22), we
find that, if ρ0(x) is the density field at t = 0, then

ρ(x, t) = ρ0(x−U t) (2.7.23)

will be the density field at any other time, t. Physically, the density at the point x = x0−U t
at time t is equal to the density at the point x0 at t = 0. We may say that the density field
is convected by the uniform flow.

To confirm (2.7.23), we introduce an auxiliary vector variable, w = x − U t, with
components

wx ≡ x− Ux t, wy ≡ y − Uy t, wz ≡ z − Uz t. (2.7.24)
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Using the chain rule of differentiation, we write

∂ρ

∂t
=

∂ρ0
∂wx

∂wx

∂t
+

∂ρ0
∂wy

∂wy

∂t
+

∂ρ0
∂wz

∂wz

∂t
, (2.7.25)

and then

∂ρ

∂t
=

∂ρ0
∂wx

(−Ux) +
∂ρ0
∂wy

(−Uy) +
∂ρ0
∂wz

(−Uz). (2.7.26)

The proof follows by observing that

∂ρ0
∂wx

=
∂ρ0
∂x

,
∂ρ0
∂wy

=
∂ρ0
∂y

,
∂ρ0
∂wz

=
∂ρ0
∂z

. (2.7.27)

2.7.7 Evolution equation for the density

The continuity equation can be regarded as an evolution equation for the density, determined
by the fluid velocity. To see this, we recast equation (2.7.13) into the form

∂ρ

∂t
= −∇ · (ρu). (2.7.28)

Evaluating the right-hand side of (2.7.28) at a certain point, x, in terms of the local and
instantaneous velocity and density, we obtain an expression for the local and current rate
of change of the density in time.

Temporal discretization

Consider the change in density occurring during a small time interval, Δt, following the
current time t. Evaluating both sides of equation (2.7.28) at a point, x, and approximating
the right-hand side with a first-order forward difference, we obtain

ρ(x, t+Δt)− ρ(x, t)

Δt
= −∇ · (ρu), (2.7.29)

where the right-hand side is evaluated at (x, t). Solving for ρ(x, t+Δt), we obtain

ρ(x, t+Δt) = ρ(x, t)−Δt∇ · (ρu), (2.7.30)

which provides us with an explicit expression for ρ(x, t + Δt) in terms of the density and
velocity at the current time, t.

Finite-difference method

In practice, equation (2.7.28) is solved by numerical methods. Consider an idealized one-
dimensional flow along the x axis representing, for example, the flow along a conduit with
a known axial velocity, u(x, t). The one-dimensional version of the continuity equation
(2.7.28) is

∂ρ

∂t
= −∂(ρ u)

∂x
. (2.7.31)
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The solution must be found inside a specified interval, a ≤ x ≤ b, subject to an initial
condition that specifies the density distribution at the designated origin of time, ρ(x, t = 0),
and a boundary condition that specifies the density at the left end of the solution domain,
x = a.

To develop the numerical method, we divide the solution domain intoN intervals defined
by N + 1 nodes, xi for i = 1, . . . , N + 1, as shown below:

x
32 N1 +1Ni

a b

The first node coincides with the left end point, x = a, and the last node coincides with the
right end point, x = b. Our goal is to generate the values of ρ at the nodes at a sequence
of time instants separated by the time interval Δt. To simplify the notation, we denote the
density at the ith node at the kth time level, corresponding to time tk = kΔt, by ρki .

Evaluating both sides of (2.7.31) at the ith node at the kth time level, and approximating
the time derivative on the left-hand side with a first-order forward difference and the spatial
derivative on the right-hand side with a first-order backward difference, we derive the finite-
difference approximation

ρk+1
i − ρki

Δt
= − (ρu)ki − (ρu)ki−1

xi − xi−1
. (2.7.32)

Solving for ρk+1
i , we obtain the updating formula

ρk+1
i = ρki − Δt

xi − xi−1

[
(ρ u)ki − (ρu)ki−1

]
. (2.7.33)

Algorithm

The numerical method involves the following steps:

1. Specify the initial values ρ0i for i = 1, . . . , N + 1.

2. Use equation (2.7.33) to compute ρ1i for i = 2, . . . , N + 1.

3. Use the left end boundary value to set the value of ρ11.

4. Use equation (2.7.33) to compute ρ2i for i = 2, . . . , N + 1.

5. Use the left end boundary value to set the value of ρ21.

6. Stop, or continue for further steps.

Note that a boundary condition at the right end of the solution domain is not required.
Numerical analysis shows that the success of this method depends on the size of the time
step, Δt, and sign of the convection velocity, u.
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Figure 2.7.2 To derive the continuity equation for axisymmetric flow, we write a mass balance over
an infinitesimal toroidal control volume in cylindrical polar coordinates.

2.7.8 Continuity equation for axisymmetric flow

Consider an axisymmetric flow and introduce cylindrical polar coordinates, (x, σ, ϕ), as
shown in Figure 2.7.2. We will demonstrate that the continuity equation takes the form

∂ρ

∂t
+

∂(ρux)

∂x
+

1

σ

∂ (σρuσ)

∂σ
= 0. (2.7.34)

To derive this equation, we perform a differential mass balance over a toroidal control volume
with two sides parallel sides at x and x+dx and the other two coaxial sides at σ and σ+dσ,
as shown in Figure 2.7.2. The volume of the differential control volume is

dVcv = 2πσ dx dσ (2.7.35)

and the mass of the fluid residing inside the control volume at any instant is dmcv = ρdVcv.

Balancing the rate of accumulation of fluid inside the control volume with the rates of
convection of mass across the four sides, we obtain

d

dt

(
ρ 2πσdx dσ

)
=

(
ρ ux2πσdσ

)
x
− (

ρ ux2πσdσ
)
x+dx

+
(
ρ uσ2πσdx

)
σ
− (

ρ uσ2πσdx
)
σ+dσ. (2.7.36)

Simplifying, we obtain

σ
d

dt

(
ρ dx dσ

)
= σ

(
ρ uxdσ

)
x
− σ

(
ρ uxdσ

)
x+dx +

(
ρ uσσdx

)
σ
− (

ρ uσ2σdx
)
σ+dσ. (2.7.37)

Now dividing both sides by σdxdσ and noting that x, σ, and t are independent variables,
we obtain

dρ

dt
=

(
ρ ux

)
x
− (

ρ ux

)
x+dx

dx
+

1

σ

(
σρuσdx

)
σ
− (

σρuσdx
)
σ+dσ

dσ
. (2.7.38)
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Figure 2.7.3 To derive the continuity equation for axisymmetric flow, we write a mass balance over
an infinitesimal control volume in spherical polar coordinates.

To derive (2.7.34), we invoke the definition of the partial derivative and transfer all terms
to the left-hand side. Note that the density, ρ, remains inside the derivatives.

In spherical polar coordinates, (r, θ, ϕ), equation (2.7.34) takes the form

∂ρ

∂t
+

1

r2
∂(r2ρ ur)

∂r
+

1

r sin θ

∂(sin θρ uθ)

∂θ
= 0. (2.7.39)

To derive this equation, we perform a differential mass balance over a toroidal control volume
with two faces at r and r + dr and the other two faces at θ and θ + dθ, as shown in Figure
2.7.3.

2.7.1 Convection under constant velocity

Consider the one-dimensional flow discussed in the text where the density field is governed
by (2.7.31) with the velocity u being a constant. Sketch a profile of the density distribution
along the x axis at the initial time, t = 0, and at a subsequent time.

2.7.2 Steady state

Consider a steady one-dimensional flow with a specified velocity distribution, u(x). Derive
an expression for the density distribution at steady state based on (2.7.31). Discuss the
behavior of the density at a point where the velocity is zero.

Problems
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2.7.3 Finite-difference method

Consider a steady, one-dimensional, periodic flow along the x axis with sinusoidal velocity
distribution,

u(x) = U
[
1 + ε cos(2πx/L)

]
, (2.7.40)

where U is a constant velocity, ε is a specified dimensionless constant, and L is the period.
Write a computer program that uses the numerical method discussed in the text to com-
pute the evolution of the density over one spatial period, L, subject to a uniform initial
distribution. Run the program for ε = 0, 0.2, 0.4, and 0.8, prepare graphs of the density
distribution at different times, and discuss the behavior of the solution at long times.

2.8 Properties of point particles

The physical properties of a homogeneous fluid parcel consisting of a single chemical species
are determined by the number of molecules, the kinetic energy, the potential energy, and
the thermal energy of the molecules that comprise the parcel. Each one of these physical
properties is extensive, in that, the larger the parcel volume, the higher the magnitude of
the physical property.

As the size of a parcel tends to zero, the ratio between the value of an extensive property
and the parcel volume tends to a limit that is regarded as an intensive physical property of
the point particle that emerges from the parcel immediately before the molecular nature of
the fluid becomes apparent.

For example, we have already seen that, as the volume of a parcel tends to zero, the
ratio between the mass of the parcel and the volume of the parcel tends to a finite limit that
is defined as the fluid density, ρ. Similarly, the ratio of the number of molecules residing
within the parcel and the volume of the parcel tends to the molecular number density, and
the ratio of the potential energy of the molecules and the volume of the parcel tends to the
specific potential energy.

2.8.1 The material derivative

To prepare the ground for establishing evolution laws governing the motion and physical
state of a fluid, we seek corresponding laws determining the rate of change of physical
and kinematic properties of point particles moving with the local fluid velocity. Kinematic
properties include the point particle velocity and its first time derivative defined as the point
particle acceleration, the vorticity, and the rate of strain.

A key concept is the material derivative, defined as the rate of change of a physical or
kinematic property following a point particle. Our first objective is to derive an expression
for the material derivative in terms of Eulerian derivatives; that is, partial derivatives with
respect to spatial coordinates and time.
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Taylor series expansion

Consider the material derivative of the density of a point particle which, at a certain time
t,0, is located at the point x0. In three-dimensional flow, the density is a function of
four independent variables, including the three Cartesian coordinates, (x, y, z), determining
position in space, and time, t.

We begin by linearizing the density field, ρ(x, y, z, t), around (x0, y0, z0, t0), as discussed
in Section 2.1. Adding time dependence to equation (2.1.6) and identifying the generic
function f(x, t) with the density, we obtain the linearized form

ρ(x, t) 	 ρ(x0, t0) + (t− t0)
(∂ρ
∂t

)
x0,t0

+(x− x0)
(∂ρ
∂x

)
x0,t0

+ (y − y0)
(∂ρ
∂y

)
x0,t0

+ (z − z0)
(∂ρ
∂z

)
x0,t0

, (2.8.1)

where x0 = (x0, y0, z0). Next, we bring the first term on the right-hand side, ρ(x0), to the
left-hand side, and divide both sides of the resulting equation by the time elapsed, t − t0,
to derive the expression

ρ(x, t)− ρ(x0, t0)

t− t0
=

(∂ρ
∂t

)
x0,t0
+

x− x0

t− t0

(∂ρ
∂x

)
x0,t0
+

y − y0
t− t0

(∂ρ
∂y

)
x0,t0
+

z − z0
t− t0

(∂ρ
∂z

)
x0,t0

,

(2.8.2)

which is applicable at any point, x, in the neighborhood of a chosen point of interest, x0,
and for time t near t0.

Moving with the fluid

The second key step involves the judicious choice of the field point, x. This point is selected
so that, if a point particle is located at the position x0 at time t0, then the same point
particle is located at the position x at a later time, t. By definition then, the left-hand side
of (2.8.2) reduces to the material derivative.

Since the point particle moves with the fluid velocity, the three fractions on the right-
hand side of (2.8.2) are equal the three components of the fluid velocity, ux, uy, and uz.
Denoting the material derivative by D/Dt, we find that(Dρ

Dt

)
x0,t0

=
( ∂ρ

∂t
+ ux

∂ρ

∂x
+ uy

∂ρ

∂y
+ uz

∂ρ

∂z

)
x0,t0

. (2.8.3)

In terms of the density gradient defined in (2.7.20), equation (2.8.3) takes the simpler form

Dρ

Dt
=

∂ρ

∂t
+ u ·∇ρ, (2.8.4)

where both sides are evaluated at the arbitrary point, x0, at an arbitrary time instant, t0.
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Lagrangian and Eulerian derivatives

Equation (2.8.3) allows us to compute the material derivative of the density, sometimes
also called the Lagrangian derivative, in terms of Eulerian derivatives, that is, in terms of
partial derivatives of the density with respect to time and spatial coordinates, x, y, and z. In
numerical practice, the partial derivatives are computed by finite-difference approximations,
as discussed in Section 2.5.

2.8.2 The continuity equation

Comparing equations (2.8.4) and (2.7.14), we find that, in terms of the material derivative
of the density, the continuity equation takes the form

Dρ

Dt
+ ρ∇ · u = 0, (2.8.5)

which reveals that the rate of change of the density of a point particle is determined exclu-
sively by the local rate of expansion, ∇ ·u. However, the inverse interpretation is physically
more appropriate: the structure of the velocity field is determined, in part, by the rate of
change of the density of all point particles.

Consider a small fluid parcel with volume δVp, density ρ, and mass δmp = ρ δVp. Mass
conservation requires that δmp remains constant in time, D δmp/Dt = 0. Expanding the
material derivative, we obtain

D(ρ δVp)

Dt
= δVp

Dρ

Dt
+ ρ

D δVp

Dt
= 0 (2.8.6)

(Problem 2.8.1). Using the continuity equation (2.8.5) and rearranging, we find that

1

δVp

D δVp

Dt
= ∇ · u, (2.8.7)

which reinforces our interpretation of the divergence of the velocity as the rate of volumetric
expansion.

2.8.3 Point particle acceleration

The acceleration of a point particle, a, is defined as the rate of change of the point particle
velocity. Invoking the definition of the material derivative, we find that the x component of
the acceleration is equal to the material derivative of the x component of the point particle
velocity, which is equal to the local fluid velocity, ax = Dux/Dt. Similar arguments reveal
that

ax =
Dux

Dt
, ay =

Duy

Dt
, az =

Duz

Dt
. (2.8.8)

In vector form,

a =
Du

Dt
. (2.8.9)

Not surprisingly, the acceleration vector is the material derivative of the velocity vector.
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Replacing ρ in equation (2.8.4) with ux, uy, or uz, we find that the three Cartesian
components of the point particle acceleration are given by

ax ≡ Dux

Dt
=

∂ux

∂t
+ u ·∇ux =

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
,

ay ≡ Duy

Dt
=

∂uy

∂t
+ u ·∇uy =

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z
, (2.8.10)

az ≡ Duz

Dt
=

∂uz

∂t
+ u ·∇uz =

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
.

The three scalar equations (2.8.10) can be collected conveniently into a vector form,

a ≡ Du

Dt
=

∂u

∂t
+ u · L =

∂u

∂t
+ u ·∇u, (2.8.11)

where L = ∇u is the velocity-gradient tensor defined in equation (2.1.16), with components
Lij = ∂uj/∂xi. In index notation, the jth component of (2.8.11) takes the form

Duj

Dt
=

∂uj

∂t
+ ui

∂uj

∂xi
, (2.8.12)

where summation is implied over the repeated index i.

Linear momentum

The linear momentum of a small fluid parcel is the product of the mass of the parcel,
δmp = ρ δVp, and the parcel velocity, u. Requiring mass conservation, that is, demanding
that δmp remains constant in time, we find that the rate of change of the linear momentum
can be expressed in terms of the point particle acceleration in the form

D (δmpu)

Dt
=

Du

Dt
ρ δVp =

Du

Dt
δmp. (2.8.13)

Thus, the mass of an infinitesimal parcel can be extracted from the material derivative, just
like a constant can be extracted from an ordinary derivative.

Cylindrical polar coordinates

In the cylindrical polar coordinates defined in Figure 1.3.2, the point particle acceleration
is expressed in terms of its cylindrical polar components, ax, aσ, and aϕ, as

a = ax ex + aσ eσ + aϕ eϕ. (2.8.14)

Using the transformation rules shown in (1.3.20), we find that

aσ = cosϕay + sinϕaz, aϕ = − sinϕay + cosϕaz. (2.8.15)

Substituting the right-hand sides of the second and third relations in (2.8.10) into the right-
hand sides of the equations in (2.8.15), and then using the chain rule of differentiation to
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convert derivatives with respect to x, y, and z to derivatives with respect to x, σ, and ϕ in
the resulting equations as well as in the first equation in (2.8.10), we obtain

ax =
∂ux

∂t
+ ux

∂ux

∂x
+ uσ

∂ux

∂σ
+

uϕ

σ

∂ux

∂ϕ
,

aσ =
∂uσ

∂t
+ ux

∂uσ

∂x
+ uσ

∂uσ

∂σ
+

uϕ

σ

∂uσ

∂ϕ
− u2

ϕ

σ
, (2.8.16)

aϕ =
∂uϕ

∂t
+ ux

∂uϕ

∂x
+ uσ

∂uϕ

∂σ
+

uϕ

σ

∂uϕ

∂ϕ
+

uσuϕ

σ
.

Using the expression for the gradient of a function in cylindrical polar coordinates defined in
equations (2.1.37) and (2.1.43), we recast expressions (2.8.16) into compact form involving
the material derivative,

ax =
∂ux

∂t
+ u ·∇ux =

Dux

Dt
,

aσ =
∂uσ

∂t
+ u ·∇uσ − u2

ϕ

σ
=

Duσ

Dt
− u2

ϕ

σ
,

aϕ =
∂uϕ

∂t
+ u ·∇uϕ +

uσuϕ

σ
=

Duσ

Dt
+

uσuϕ

σ
. (2.8.17)

These expressions illustrate that the cylindrical polar components of the acceleration are
not simply equal to the material derivative of the corresponding polar components of the
velocity.

Spherical polar coordinates

In the spherical polar coordinates depicted in Figure 1.3.3, the point particle acceleration is
expressed in terms of its spherical polar components, ar, aθ, and aϕ, as

a = ar er + aθ eθ + aϕ eϕ. (2.8.18)

Working as previously for the cylindrical polar coordinates, we find the somewhat more
involved expressions

ar =
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+

uϕ

r sin θ

∂ur

∂ϕ
− u2

θ + u2
ϕ

r
,

aθ =
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uϕ

r sin θ

∂uθ

∂ϕ
+

uruθ

r
− u2

ϕ cot θ

r
, (2.8.19)

aϕ =
∂uϕ

∂t
+ ur

∂uϕ

∂r
+

uθ

r

∂uϕ

∂θ
+

uϕ

r sin θ

∂uϕ

∂ϕ
+

uruϕ

r
+

uθuϕ

r
cot θ,

which can be expressed in a more compact form involving the material derivative,

ar =
Dur

Dt
− u2

θ + u2
ϕ

r
, aθ =

Duθ

Dt
+

uruθ

r
− u2

ϕ cot θ

r
,

(2.8.20)

aϕ =
Duθ

Dt
+

uruϕ

r
+

uθuϕ

r
cot θ.
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These expressions illustrate that the spherical polar components of the acceleration are
not simply equal to the material derivative of the corresponding polar components of the
velocity.

Plane polar coordinates

In the system of plane polar coordinates depicted in Figure 1.3.4, the point particle accel-
eration is expressed in terms of its plane polar components, ar and aθ, as

a = ar er + aθ eθ. (2.8.21)

Working in the familiar way, we obtain

ar =
∂ur

∂t
+ ur

∂ur

∂θ
+

uθ

r

∂ur

∂θ
− u2

θ

r
=

Dur

Dt
− u2

θ

r
,

(2.8.22)

aθ =
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r
=

Duθ

Dt
+

uruθ

r
.

Note that these components are related to the σ and ϕ components in polar cylindrical
coordinates.

Acceleration at a point with zero vorticity

If all components of the vorticity vector are zero at a certain point in a flow, the velocity
gradient tensor is symmetric at that point. Consequently, selected partial derivatives of the
velocity must be such that the three terms enclosed by the parentheses on the right-hand
side of (2.3.8) are zero,

∂uz

∂y
=

∂uy

∂z
,

∂ux

∂z
=

∂uz

∂x
,

∂uy

∂x
=

∂ux

∂y
. (2.8.23)

The sum of the last three terms on the right-hand side of the first equation in (2.8.10) may
then be written as

ux
∂ux

∂x
+ uy

∂uy

∂x
+ uz

∂uz

∂x
=

1

2

∂u2
x

∂x
+

1

2

∂u2
y

∂x
+

1

2

∂u2
z

∂x
=

1

2

∂(u2
x + u2

y + u2
z)

∂x
. (2.8.24)

Working in a similar fashion with the y and z components, and collecting the derived
expressions into a vector form, we obtain

u ·∇u =
1

2
∇u2 =

( ∂u2

∂x
,

∂u2

∂y
,

∂u2

∂z

)
, (2.8.25)

where

u2 ≡ u2
x + u2

y + u2
z (2.8.26)

is the square of the magnitude of the velocity, and ∇u2 is its gradient. The point particle
acceleration may thus be expressed in the alternative form

a ≡ Du

Dt
=

∂u

∂t
+

1

2
∇u2. (2.8.27)
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The first term on the right-hand side of (2.8.27) is zero in a steady flow. The point
particle acceleration is then equal to half the gradient of the square of the magnitude of the
local velocity, which is a measure of the local kinetic energy of the fluid. We conclude that
the acceleration is oriented in the direction of maximum change of kinetic energy indicated
by the gradient.

In Chapter 6, we will see that the simplified expression (2.8.27) serves as a point of
departure for the theoretical analysis and numerical computation of irrotational flows.

2.8.1 Properties of the material derivative

Consider two scalar physical or kinematic fluid properties, such as the density or a compo-
nent of the velocity, denoted, respectively, by f and g. Prove that the following usual rule
of product differentiation applies,

D(fg)

Dt
= g

Df

Dt
+ f

Dg

Dt
, (2.8.28)

where D/Dt is the material derivative.

2.8.2 Point particle acceleration in rotational flow

Show that the counterpart of equation (2.8.25) at a point where the vorticity ω is not
necessarily zero is the inclusive equation

u ·∇u =
1

2
∇u2 − u× ω, (2.8.29)

where u the magnitude of the velocity. How does this expression simplify at a point where
the velocity vector is parallel to the vorticity vector?

2.8.3 Point particle motion in one-dimensional flow

Consider an idealized one-dimensional flow along the x axis with velocity u(x, t) satisfying
the inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0. (2.8.30)

Explain why point particles in this flow travel with a time-independent velocity that is equal
to the velocity assigned to them at the initial instant; different point particles may travel
with different velocities.

2.9 Incompressible fluids and stream functions

If the volume of a fluid parcel is preserved as the parcel is convected in a flow, the fluid
residing inside the parcel is incompressible. In contrast, if the volume of the parcel is allowed
to change in time, the fluid residing inside the parcel is compressible.

Problems
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Mass conservation requires that the mass of any fluid parcel is conserved irrespective of
whether the fluid is compressible or incompressible.

Since both the mass and the volume of an arbitrary incompressible fluid parcel are
conserved during the motion, the density of the point particles that comprise the parcel
remain constant in time. Using the physical interpretation of the material derivative, D/Dt,
we derive the mathematical statement of incompressibility,

Dρ

Dt
= 0. (2.9.1)

It is important to bear in mind that the density of an incompressible fluid is not neces-
sarily uniform throughout the domain of flow. Different point particles may have different
densities, but the density of each individual point particle is conserved during the motion.

2.9.1 Kinematic consequence of incompressibility

Using the incompressibility condition expressed by equation (2.9.1), we find that the conti-
nuity equation (2.8.5) for an incompressible fluid simplifies to

∇ · u = 0, (2.9.2)

which states that the velocity field should be solenoidal. By definition, the divergence of any
solenoidal vector field is identically zero. Consequently, the rate of expansion α defined in
equation (2.2.6) is identically zero. An incompressible fluid parcel may undergo translation,
rotation, and isochoric (volume-preserving) deformation, but not expansion. The word
isochoric is composed from the Greek words ισoς which means equal, and the word χωρoς
which means volume or space.

It is important to bear in mind that the stipulation (2.9.1) is the defining property
of an incompressible fluid, while the simplified form of the continuity equation (2.9.2) is a
consequence of mass conservation.

2.9.2 Mathematical consequence of incompressibility

Equation (2.9.2) states that the x, y, and z components of the velocity of an incompressible
fluid may not be prescribed arbitrarily, but must be such that the differential constraint im-
posed on them by the requirement that the velocity field be solenoidal is satisfied throughout
the domain of flow at any time. In contrast, the three components of the velocity of a com-
pressible fluid may be arbitrary; the density of the point particles will then adjust to ensure
mass conservation, as dictated by the continuity equation.

A second important consequence of incompressibility is that, because the evolution of
the density is governed by the kinematic constraint (2.9.1), an equation of state relating the
pressure to the density to the temperature is not needed. The important significance of this
consequence will be discussed further in Chapters 4 and 8 in the context of hydrodynamics.
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2.9.3 Stream function for two-dimensional flow

The continuity equation for a two-dimensional flow in the xy plane stated in (2.9.2) takes
the form

∂ux

∂x
+

∂uy

∂y
= 0. (2.9.3)

In computing the velocity field of an incompressible fluid by analytical or numerical methods,
it is convenient to satisfy this constraint at the outset and concentrate on satisfying boundary
conditions and other constraints that arise by balancing forces and torques, as will be
discussed in later chapters.

To achieve this, we may express the two velocity components in terms of a scalar func-
tion, ψ, called the stream function, as

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
. (2.9.4)

If the two velocity components, ux and uy derive from ψ by equations (2.9.4), then the
satisfaction of the incompressibility constraint (2.9.3) is guaranteed. To confirm this, we
substitute (2.9.4) into (2.9.3) and find that

∂2ψ

∂x ∂y
− ∂2ψ

∂y ∂x
= 0. (2.9.5)

Since the order of partial differentiation with respect to the two independent spatial variables
x and y is immaterial, the equality is satisfied.

Extensional flow

As an example, we consider a two-dimensional flow with velocity components

ux = ξx, uy = −ξy (2.9.6)

describing an extensional flow, where ξ is a constant with units of inverse time. It can
be verified readily that the continuity equation is fulfilled, ∇ · u = 0. Substituting these
expressions into (2.9.3), we confirm that the fluid is incompressible. The stream function
corresponding to this flow is given by

ψ = ξxy + c, (2.9.7)

where c is an unspecified and inconsequential constant.

Non-uniqueness of the stream function

The example discussed in the last section illustrates that the stream function of a specified
two-dimensional flow is not unique. Cursory inspection of equation (2.9.4) shows that an
arbitrary constant may be added to a particular stream function to yield another perfectly
acceptable stream function describing the same flow. However, this ambiguity is neither
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essential nor alarming. In performing analytical or numerical computation, the arbitrary
constant simply provides us with one degree of freedom that can be used to simplify numer-
ical and algebraic manipulations.

Physical interpretation

Consider the areal flow rate, Qareal, across a line that begins at a point, A, and ends at
another point, B, as illustrated in Figure 2.6.1. Substituting expressions (2.9.4) into the
right-hand side of the last integral in (2.6.15) for the areal flow rate, we obtain

Qareal =

∫ B

A

( ∂ψ
∂y

dy +
∂ψ

∂x
dx

)
. (2.9.8)

We may then write

Qareal =

∫ B

A

dψ = ψB − ψA, (2.9.9)

where ψA and ψB are the values of the stream function at the end points, A and B.

Equation (2.9.9) shows that the difference in the values of the stream function between
two points is equal to the areal flow rate across any arbitrary line that begins at the first
point and ends at the second point. Because the fluid is incompressible, the flow rate is
independent of the actual shape of the line, provided that the line begins and ends at two
specified points.

Vorticity

The z component of the vorticity of a two-dimensional flow in the xy plane was given in
equation (2.3.19) in terms of selected derivatives of the velocity,

ωz =
∂uy

∂x
− ∂ux

∂y
. (2.9.10)

Substituting expressions (2.9.4), we find that

ωz = −( ∂2ψ

∂x2
+

∂2ψ

∂y2
) ≡ −∇2ψ, (2.9.11)

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
(2.9.12)

is the Laplacian operator in the xy plane, as discussed in Section 3.2. Thus, the z component
of the vorticity is equal to the negative of the Laplacian of the stream function.

If the stream function satisfies Laplace’s equation, ∇2ψ = 0, the velocity field is
solenoidal and the flow is irrotational. A function that satisfies Laplace’s equation is called
harmonic.
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Plane polar coordinates

Departing from equations (2.9.4) and (2.3.19), and using the rules of coordinate transforma-
tion, we derive the velocity components of a two-dimensional flow in plane polar coordinates,
(r, θ), in terms of the stream function,

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (2.9.13)

The vorticity is

ωz = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2
∂2ψ

∂θ2
≡ −∇2ψ, (2.9.14)

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
(2.9.15)

is the Laplacian operator in plane polar coordinates.

Expressions (2.9.13) satisfy the continuity equation in plane polar coordinates,

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂r
= 0 (2.9.16)

for any differentiable and single valued stream function, ψ.

2.9.4 Stream function for axisymmetric flow

In the case of axisymmetric flow without swirling motion, we express all dependent and
independent variables in the continuity equation, ∇ ·u = 0, in cylindrical polar coordinates,
(x, σ, ϕ). After carrying out a fair amount of algebra using the chain rule, we find that
the continuity equation takes the form of a constraint on the axial and radial velocity
components, ux and uσ,

∇ · u =
∂ux

∂x
+

1

σ

∂ (σuσ)

∂σ
= 0. (2.9.17)

To ensure the satisfaction of this equation, we express the axial and radial components
of the velocity in terms of an axisymmetric stream function, ψ, also called the Stokes stream
function, defined by the equations

ux =
1

σ

∂ψ

∂σ
, uσ = − 1

σ

∂ψ

∂x
. (2.9.18)

Notice the minus sign in the second expression. Straightforward substitutions confirm that
the velocity components given in (2.9.18) satisfy the continuity equation (2.9.17) for any
regular stream function, ψ.
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Extensional flow

As an example, we consider an axisymmetric flow with velocity components

ux = ξx, uσ = − 1

2
ξσ, (2.9.19)

representing an extensional flow, where ξ is a constant with units of inverse time. Substi-
tuting these expressions into (2.9.17), we confirm that the left-hand side vanishes and the
fluid is incompressible. The corresponding stream function is given by

ψ =
1

2
ξxσ2 + c, (2.9.20)

where c is an unspecified constant.

Physical interpretation

Working as in Section 2.9.3 for two-dimensional flow, we find that the volumetric flow rate
across an axisymmetric surface whose trace in an azimuthal plane of constant angle ϕ starts
at a point, A, and ends at another point, B, as illustrated in Figure 2.6.6, is

Q = ψB − ψA (2.9.21)

(Problem 2.9.2). This result is consistent with the units of the axisymmetric stream function,
velocity multiplied by length squared, evident from equations (2.9.18). In contrast, the
stream function for two-dimensional has units of velocity multiplied by length.

Vorticity

The azimuthal component of the vorticity in an axisymmetric flow was given in equation
(2.3.22) in terms of derivatives of the cylindrical polar components of the velocity,

ωϕ =
∂uσ

∂x
− ∂ux

∂σ
. (2.9.22)

Substituting expressions (2.9.18), we obtain

ωϕ = − 1

σ
E2ψ = − 1

σ

( ∂2ψ

∂x2
+

∂2ψ

∂σ2
− 1

σ

∂ψ

∂σ

)
, (2.9.23)

where E2 is a second-order linear differential operator defined as

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
. (2.9.24)

If the stream function is such that the right-hand side of (2.9.23) is zero throughout the
domain of flow, the flow is irrotational.
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Spherical polar coordinates

Departing from equations (2.9.18) and (2.3.22), and using the rules of coordinate transfor-
mation, we derive the velocity components in spherical polar coordinates, (r, θ, ϕ),

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
. (2.9.25)

The azimuthal component of the vorticity is given by

ωϕ = − 1

r sin θ
E2ψ, (2.9.26)

where E2 is the second-order differential operator defined in (2.9.24). In spherical polar
coordinates,

E2 ≡ ∂2

∂r2
+

sin θ

r2
∂

∂θ

( 1

sin θ

∂

∂θ

)
=

∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ
. (2.9.27)

If the stream function is such that the right-hand side of (2.9.26) is zero throughout the
domain of flow, the flow is irrotational.

2.9.1 Stream function for two-dimensional flow

Derive the Cartesian components of the velocity and the z vorticity component of a two-
dimensional flow whose stream function is (a) ψ = 1

2 ξ y
2 or (b) ψ = 1

2 ξ (x
2 − y2), where ξ

is a constant. Deduce the units of ξ and discuss the nature of each flow.

2.9.2 Stream function of axisymmetric flow

Substitute expressions (2.9.18) into the right-hand side of (2.6.38) and perform the integra-
tion to confirm (2.9.21).

2.10 Kinematic conditions at boundaries

In real life, a flow occurs in a domain that is bounded by stationary or moving surfaces with
different constitutions and physical properties. Examples include the flow in an internal
combustion engine generated by the motion of an engine piston, the flow induced by the
motion of an aircraft or ground vehicle, the flow induced by the sedimentation of an aerosol
particle in the atmosphere, the flow induced by a small bubble rising in a carbonated bev-
erage, and the flow induced by the motion of an elephant running through the Savannah to
escape a mouse.

Types of boundary conditions

In the context of kinematics, boundaries are classified into the following four main categories:

Problems
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1. Impermeable solid boundaries: examples include the surface of a rigid or flexible solid
body, such as a vibrating radio antenna or a swimming microorganism.

2. Permeable solid boundaries: examples include the surface of a porous medium, such as
a rock bed or a biological tissue composed of cells separated by gaps in the intervening
spaces.

3. Sharp interfaces between immiscible fluids: examples include the free surface of the
ocean and the interface between oil and vinegar in an Italian salad dressing.

4. Diffuse interfaces between miscible fluids: examples include the fuzzy edge of a river
discharging into the ocean and the ambiguous edge of a smoke ring rising in still air.

Different boundary conditions are imposed on each of these surfaces according to the pre-
vailing physical context.

2.10.1 The no-penetration boundary condition

By definition, a point particle moving with the fluid velocity may not cross an impermeable
solid boundary or a sharp interface between two immiscible fluids, but is required to lie on
one side of the boundary or interface at all times. As a consequence, the velocity of a point
particle that lies at a stationary or moving impermeable boundary or sharp interface must
be consistent with, but not necessarily equal to, the velocity of the boundary or interface.
To ensure compatibility, the no-penetration boundary condition is required.

Impermeable solid boundaries

Consider a flow that is bounded by an impermeable solid, but not necessarily rigid, boundary
(rubber is a non-rigid, elastic yet solid boundary.) The no-penetration boundary condition
requires that the component of the fluid velocity normal to the boundary is equal to the
component of the boundary velocity normal to its instantaneous shape. The tangential
component of the velocity is left unspecified. If the boundary is stationary, the normal
component of the fluid velocity must vanish.

To derive the mathematical statement of the no-penetration condition, we introduce
the unit vector normal to the boundary at a point, n, and the velocity of the boundary, vB,
where the orientation of n is left unspecified. If the boundary is stationary, the boundary
velocity is zero, vB = 0; if the boundary translates as a rigid body, vB is constant; if the
boundary rotates as a rigid body or exhibits some type of deformation, vB is a function of
position, as will be discussed later in this section.

In all cases, the no-penetration boundary condition requires that

u · n = vB · n, (2.10.1)

where both sides are evaluated at a point on the boundary.
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Rigid-body motion

Consider an impermeable rigid boundary that translates with velocity UB while rotating
with angular velocity ΩB around a specified center of rotation, xR. The angular velocity
vector, ΩB, passes through the center of rotation, xR. The magnitude and orientation of
ΩB express the rate of direction and direction of rotation. As we look down at the angular
velocity vector from above, the body rotates in the counterclockwise direction.

In terms of the velocity of translation and angular velocity of rotation, the velocity at
a point x that lies at the boundary is given by the expression

vB = UB +ΩB × (x− xR), (2.10.2)

where × denotes the outer vector product defined in equation (2.3.5). In component form,

vB = [UB
x +ΩB

y (z − zR)− ΩB
z (y − yR) ] ex

+[UB
y +ΩB

z (x− xR)− ΩB
x (z − zR) ] ey (2.10.3)

+[UB
z +ΩB

x (y − yR)− ΩB
y (x− xR) ] ez,

where ex, ey, and ez are unit vectors along the x, y, or z axes.

In the case of two-dimensional flow in the xy plane, the z velocity component is zero,
UB
z = 0, and the angular velocity vector is parallel to the z axis, ΩB

x = 0 and ΩB
y = 0,

yielding the simplified form

vB =
[
UB
x − ΩB

z (y − yR)
]
ex +

[
UB
y +ΩB

z (x− xR)
]
ey, (2.10.4)

which is linear in x and y.

The no-penetration boundary condition arises by substituting expression (2.10.3) or
(2.10.4) into the right-hand side of (2.10.1), respectively, for three-dimensional or two-
dimensional flow. If the boundary is stationary, vB = 0, we obtain the simple form

u · n = 0, (2.10.5)

where the direction of the unit normal vector, n, is unspecified.

The no-penetration condition in terms of the stream function

Next, we consider an incompressible fluid in a two-dimensional flow and express the veloc-
ity in terms of the stream function, ψ, defined in equations (2.9.4). The no-penetration
boundary condition (2.10.1) requires that

u · n = ux nx + uy ny =
∂ψ

∂y
nx − ∂ψ

∂x
ny = vB · n. (2.10.6)

Substituting expressions (2.6.4) for the components of the normal vector in terms of differ-
ential displacements along the boundary, we obtain

∂ψ

∂y

dy

d
+

∂ψ

∂x

dx

d
=

dψ

d
= vB · n, (2.10.7)
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where d is an infinitesimal arc length measured along the boundary from an arbitrary
origin.

If the boundary is stationary, the right-hand side of (2.1.8) is zero, dψ/d = 0, and
the stream function is constant over the boundary. The no-penetration boundary condition
takes the simple form

ψ = ψ0, (2.10.8)

where the constant ψ0 is either assigned arbitrarily or computed as part of the solution.

Similar arguments can be made to show that the stream function is constant over an
impermeable stationary boundary in axisymmetric flow (Problem 2.10.2(b)).

Sharp interfaces

Next, we consider the no-penetration condition over a stationary or moving sharp interface
separating two immiscible fluids. Physical arguments suggest that the normal component
of the fluid velocity on one side of the interface must be equal to the normal component of
the velocity on the other side of the interface. However, the tangential velocities may be
different.

To derive the mathematical statement of the no-slip condition, we introduce the velocity
on one side of the interface, denoted by u(1), and the velocity on the other side of the
interface, denoted by u(2), and require that

u(1) · n = u(2) · n, (2.10.9)

where n is the unit vector normal to the interface. Both sides are evaluated at a point at
the interface with an unspecified direction of the unit normal vector, n.

2.10.1 Changing the center of rotation

The center of rotation of a rigid body can be placed at any arbitrary position. Suppose that
we choose a point, x′

R, instead of the point xR discussed in the text. The counterpart of
equation (2.10.2) is

vB = UB′

+ΩB′ × (x− x′
R). (2.10.10)

Set the right-hand side of (2.10.10) equal to the right-hand side of (2.10.2) to derive expres-

sions for UB′

and ΩB′

in terms of UB and ΩB , and vice versa.

2.10.2 Stream functions

(a) Use the no-penetration boundary condition to derive an expression for the stream func-
tion over a translating but non-rotating impermeable boundary in two-dimensional flow.

(b) Show that the no-penetration condition over a stationary boundary in axisymmetric flow
takes the form expressed by (2.10.8).

Problems
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