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Preface

Ready access to computers has defined a new era in teaching and learning. The opportunity
to extend the subject matter of traditional science and engineering curricula into the realm of
scientific computing has become not only desirable, but also necessary. Thanks to portability
and low overhead and operating cost, experimentation by numerical simulation has become
a viable substitute, and occasionally the only alternative, to physical experimentation.

The new framework has necessitated the writing of texts and monographs from a modern
perspective that incorporates numerical and computer programming aspects as an integral
part of the discourse. Under this modern approach, methods, concepts, and ideas are
presented in a unified fashion that motivates and underlines the urgency of the new elements,
but neither compromises nor oversimplifies the rigor of the classical discourse.

Interfacing fundamental concepts and practical methods of scientific computing can be
implemented at different levels. In one approach, theory and implementation are kept com-
plementary and presented in a sequential fashion. In another approach, the coupling involves
deriving computational methods and simulation algorithms, and translating equations into
computer code instructions immediately following problem formulations. Seamlessly inter-
jecting methods of scientific computing in the traditional discourse offers a powerful venue
for developing analytical skills and obtaining physical insight.

My goal in this book is to offer an introductory course in traditional and modern fluid
mechanics, covering topics in a way that unifies theory, computation, computer program-
ming, and numerical simulation. The approach is truly introductory in that only a few
prerequisites are required. The intended audience includes undergraduate and entry-level
graduate students, as well as a broader class of scientists, engineers, fluid dynamics and
computational science enthusiasts with a general interest in computing. This book should
be especially appealing to those who are making a first excursion into the world of nu-
merical computation and computational fluid dynamics (CFD) beyond the black-box and
drop-down menu approach. This book should be an ideal text for an introductory course in
fluid mechanics and CFD.

The presentation of the material is distinguished by two features. First, solution proce-
dures and algorithms are developed immediately after problem formulations are presented,
and illustrative MATLAB R© codes are listed and discussed in the text. Second, numeri-
cal methods are introduced on a need-to-know basis and in order of ascending difficulty:
function interpolation, function differentiation, function integration, solution of algebraic
equations, finite-difference methods, etc. Computer problems at the end of each section
require performing computation and simulation to study the effect of various parameters
determining a flow.

In concert with the intended usage of this book as a stand-alone introductory text and
as a tutorial on numerical fluid dynamics and scientific computing, only a few references are
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provided in the discussion. Instead, a selected compilation of introductory, advanced, and
specialized texts on fluid dynamics, calculus, numerical methods, and computational fluid
dynamics are listed in Appendix B. The reader who wishes to focus on a particular topic is
directed to these resources for further details.

FDLIB

A major feature of this book is the accompanying fluid dynamics software library Fdlib dis-
cussed in Appendix A. The Fortran 77 and MATLAB programs of Fdlib explicitly illus-
trate how computational algorithms translate into computer instructions. The codes of
Fdlib range from introductory to advanced, and the topics span a broad range of appli-
cations discussed in this text: from laminar channel flows, to vortex flows, to flow past
airfoils. The MATLAB codes of Fdlib combine numerical computation, graphics display,
data visualization and animation.

To run the Fortran 77 codes of Fdlib, a Fortran 77 or Fortran 90 compiler is
required. Free compilers are available thanks to the gnu foundation. The input data is either
entered from the keyboard or read from data files. The output is recorded in output files in
tabular form so that it can be read and displayed using independent graphics, visualization,
and animation applications on any computer platform, including MATLAB.

Third edition

The third edition incorporates significant enhancements and improvements. Further exam-
ples, clarifications, solved problems, and new material have been added for a more compre-
hensive treatment of the various topics. Additional MATLAB programs integrating numeri-
cal computation and graphics visualization are listed and discussed in the text. The revised
text refers to the latest version of the accompanying library Fdlib. The integrated approach
pursued in this book overrides the Graphical User Interface or black-box approach, which
is often misrepresented as an educational or learning tool. The book Internet site is located
at: http://dehesa.freeshell.org/FD3

C. Pozrikidis

http://dehesa.freeshell.org/FD3


Notation

Italic symbols denote scalars. Bold symbols denote vectors, matrices, or tensors. Some
symbols have multiple meanings.

a acceleration vector Bo Bond number
e unit vector E rate-of-deformation tensor
g acceleration of gravity
g acceleration of gravity vector

Jp Bessel function of order p
L characteristic length

p pressure
t time
u fluid velocity U fluid velocity

V boundary velocity
x position vector X position of a point particle

Q flow rate
Re Reynolds number

α rate of expansion
γ surface (interfacial) tension

or strength of a vortex sheet
κ curvature

strength of a point vortex
κm mean curvature
ρ density
μ viscosity
ν viscosity
σ stress tensor Σ hydrodynamic volume force
φ velocity potential
χ projection function
ψ stream function

Ξ vorticity tensor
ω vorticity Ω angular velocity

(x, y, z) Cartesian coordinates
(x, σ, ϕ) Cylindrical polar coordinates
(x, θ, ϕ) Spherical polar coordinates

∇ gradient operator
∇2 Laplacian operator


 arc length or a typical length
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Introduction to kinematics 1
1.1 Fluids and solids
1.2 Fluid parcels and flow kinematics
1.3 Coordinates, velocity, and acceleration
1.4 Fluid velocity
1.5 Point particles and their trajectories
1.6 Material surfaces and elementary motions
1.7 Numerical interpolation

We begin the study of fluid mechanics by pointing out the differences between fluids and
solids and by describing a fluid flow in terms of the motion of elementary fluid parcels. As
the volume of a parcel becomes infinitesimal, the parcel reduces to a point particle and the
average velocity of the parcel reduces to the local fluid velocity computed just before the
molecular nature of the fluid becomes apparent. The study of the motion and deformation
of material lines and surfaces consisting of collections of point particles reveals the nature
and illustrates the diversity of motion in fluid mechanics.

1.1 Fluids and solids

Casual observation of the world around us reveals materials that are classified as solids
and fluids; the second category includes gases and liquids. What are the distinguishing
features of these two groups? The answer can be given on a wide variety of levels: from the
molecular level of the physicist, to the macroscopic level of the engineer or oceanographer,
to the cosmic level of the astronomer.

From the perspective of mainstream fluid mechanics underlying this book, the single
most important difference between fluids and solids is that a fluid must assume the shape of
the container in which it is placed, whereas a solid is able to stand alone, sustaining its own
shape. As a consequence, a body of fluid is not able to resist a shearing force exerted on
its surface parallel to the surface, but must keep deforming in perpetuity when subjected to
it. An example is the motion of water in a lake due to an overpassing wind. In contrast, a
solid is able to deform and assume a new stationary shape. An example is the deformation
of a squeezed sponge.
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2 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Certain materials, such as polymeric melts and solutions, exhibit properties that are
intermediate between those of fluids and solids in that they exhibit viscous and elastic
response. These materials are classified as viscoelastic.

Intermolecular forces

The differences between fluids and solids can be attributed to the intensity of the forces
holding the molecules together to form a coherent piece of material. The inability of a
fluid to assume its own shape is due to the weakness of the potential energy associated
with intermolecular forces relative to the kinetic energy associated with the vibrations of
the individual molecules. The molecules of a fluid are too busy vibrating to hang onto one
another and thus form a long-lived crystalline material.

Fluids can be transformed into solids, and vice versa, by manipulating the relative
magnitude of the potential energy due to intermolecular forces and the kinetic energy due
to thermal motion. In practice, this is done by heating or by changing the pressure of the
ambient environment.

1.1.1 Nature of a liquid/solid suspension

Fluids containing particles, called suspensions, abound in nature, physiology, and technol-
ogy. Examples include (a) blood consisting of a dense suspension of red, white, and other
blood cells, (b) slurry used in the petroleum industry for the hydrodynamic transport of
particulates, (c) toothpaste and dough. Discuss whether a suspension should be classified
as a fluid or solid with reference to the volume fraction of the suspended solid phase.

1.1.2 Water and milk

A glass is filled half way with water, and another glass is filled half way with milk. Half
the water is transfer into the milk glass and the contents of the milk glass are thoroughly
mixed. One third of the diluted milk is then transferred back into the water glass and the
contents of the water glass are thoroughly mixed. What is the volume and constitution of
the liquid in each glass at the end?

1.2 Fluid parcels and flow kinematics

The motion of a non-deformable solid body, called a rigid body, can be described in terms of
the velocity of translation vector, V, and the angular velocity of rotation vector, Ω, where
rotation occurs around a specified center of rotation, as shown in Figure 1.2.1. A rigid body
moves as a whole in the direction of the velocity vector, while rotating as a whole around
the angular velocity vector that is pinned at the designated center of rotation. For example,
a rigid sphere translates with the velocity of its center, while rotating about the center.

In contrast, the motion of a deformable body, such as an elastic solid or a fluid, cannot
generally be described in terms of two vectors alone. A more advanced framework that

Problems



1.2 Fluid parcels and flow kinematics 3

V

Ω

Figure 1.2.1 A rigid body translates with velocity V while rotating with angular velocity Ω around
a specified center of rotation. A fluid exhibits a more general type of motion that involves local
or global deformation in addition to local or global translation and rotation.

Figure 1.2.2 A body of fluid can be divided into small parcels whose relative motion determines
the local fluid flow in a certain neighborhood. The parcels are drawn detached for clarity and
esthetics.

allows for an extended range of motions, in addition to translation and rotation, is required.

Decomposition of a fluid into parcels

To establish the necessary generalized framework, we subdivide a body of fluid into parcels,
as shown in Figure 1.2.2. For simplicity, we assume that all molecules comprising the parcels
are identical, which means that the fluid is homogeneous. Each molecule in a certain parcel
moves with its own highly fluctuating velocity. However, if the parcel exhibits a net motion,
the velocities of the individual molecules are coordinated to reflect or, more accurately, give
rise to the net motion. A molecule of a gas collides frequently with other molecules after
having traveled a distance comparable to the mean free path.

The macroscopic motion of a small fluid parcel can be described in terms of its velocity
of translation, which can be quantified in terms of the average velocity of the individual
molecules, as will be discussed in Section 1.3. If the parcel is sufficiently small, rotation is
neglected as a first approximation.

Relative parcel motion

A key observation is that the motion of a fluid can be described in terms of the relative
motion of the individual fluid parcels. If all parcels move with the same velocity, the relative
parcel velocity is zero and the fluid translates as a rigid body. It is possible that the velocity
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of the parcels is coordinated so that the fluid rotates as a whole like a rigid body about a
designated center of rotation.

As an example, we consider a fluid-filled flexible rubber tube that is closed at both ends,
and assume that the tube is stretched to elongate the fluid. The fluid has undergone neither
translation nor rotation, but a new type of motion that can only be described as deformation.
Combinations of translation, rotation, and deformation whose relative strength varies with
position in the fluid gives rise to a wide variety of fluid motions.

Kinematics as a field of fluid dynamics

Establishing in quantitative terms the relationship between the relative motion of fluid
parcels and the global structure of a flow is the main objective of kinematics. The term
kinematics derives from the Greek work κινησις which means motion. Grammatically, kine-
matics is a singular or plural noun, whereas kinematic is an adjective. The complementary
discipline of dynamics (δυναμικη) addresses the forces exerted on a fluid by an ambient
surface or body force field, such as the gravitational field, as well as the forces developing
inside a fluid as the result of the motion.

1.2.1 Athens, Ohio

A car with 18′′ diameter tires is driven from Athens, Ohio to Athens, Georgia. How many
times have the wheels turned during the journey?

1.2.2 A rolling sphere

A sphere of radius a is rolling down a plane on a rectilinear path. How is the velocity at
the center of the sphere, V , related to the angular velocity of rotation about the center of
the sphere, Ω?

1.3 Coordinates, velocity, and acceleration

To describe the motion of a molecule, we work under the auspices of classical mechanics. We
begin by introducing three mutually orthogonal axes forming a Cartesian coordinate system,
(x, y, z), as illustrated in Figure 1.3.1. Each point in space has an associated position vector
that starts at the common origin of the Cartesian axes and ends at the point. The point is
identified by the values of x, y, and z, defined as the positive or negative projections of the
position vector onto the corresponding axes.

In vector notation, the Cartesian coordinates are expressed by an ordered triplet

x = (x, y, z), (1.3.1)

where x, y, and z take values in the range (−∞,∞). Accordingly, the Cartesian coordinates
of a point have a dual interpretation: they represent a geometrical entity associated with the
position vector, and they also form an ordered triplet of real numbers.

Problem
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0
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y

x

z

Figure 1.3.1 Three mutually orthogonal axes define a Cartesian coordinate system, (x, y, z). The
arrow indicates the position vector corresponding to a point, x.

Unit vectors

The three dimensionless (unit-less) vectors,

ex = (1, 0, 0), ey = (0, 1, 0), ez = (0, 0, 1), (1.3.2)

point in the positive directions of the x, y, or z axis. The end points of these vectors lie on
the x, y, or z axis. We say that the three vectors ex, ey, and ez are mutually orthogonal
Cartesian unit vectors.

Combining these definitions, we express the position vector in the form

x = x ex + y ey + z ez. (1.3.3)

In physical terms, this equation states that, to get to the point x departing from the origin,
we may move along each one of the unit vectors ex, ey, and ez, by respective distances equal
to x, y, and z units of length. The order of motion along the three directions is immaterial.

Velocity

Because a molecule moves with a highly fluctuating velocity, its position changes rapidly in
time. Formally, we say that the coordinates of the molecule are functions of time, t, denoted
by

x = X(t), y = Y (t), z = Z(t). (1.3.4)

To economize our notation, we introduce the vector function

X(t) =
(
X(t), Y (t), Z(t)

)
, (1.3.5)

and consolidate expressions (1.3.4) into the form

x = X(t). (1.3.6)



6 Fluid Dynamics: Theory, Computation, and Numerical Simulation

By definition, the velocity of a molecule is equal to the rate of change of its position, displace-
ment over time elapsed. If the x coordinate of a molecule has changed by an infinitesimal
increment, dX, during an infinitesimal period of time, dt, then, by definition, vx = dX/dt.
Writing the counterparts of this equation for the y and z coordinates, and collecting the
three expressions, we obtain

vx =
dX

dt
, vy =

dY

dt
, vz =

dZ

dt
, (1.3.7)

which can be compiled into an ordered triplet,

( vx, vy, vz ) =
( dX

dt
,

dY

dt
,

dZ

dt

)
. (1.3.8)

In vector notation,

v =
dX

dt
. (1.3.9)

We have demonstrated that the velocity of a molecule is a vector described by its
three Cartesian components, vx, vy, and vz, representing the positive or negative distances
between the projections of the last and first points of the velocity vector onto the x, y, or
z axis. The distances are then multiplied by a scaling factor to acquire units of velocity,
length divided by time. A negative value for vx indicates that the x coordinate of the last
point of the velocity vector is lower than the x value of the first point, and therefore the
motion occurs toward the negative direction of the x axis. Similar interpretations apply to
the y and z components.

In terms of the unit vectors defined in equations (1.3.2), the velocity vector is given by

v = vx ex + vy ey + vz ez. (1.3.10)

It is evident from these definitions that the velocity vector is a free Cartesian vector, which
means that it can be translated in space to any desired location. In contrast, the first point
of the position vector, x, is always pinned to the origin.

Acceleration

The acceleration vector, a, is defined as the rate of change of the velocity vector in time,

a =
dv

dt
=

d2X

dt2
. (1.3.11)

By definition then,

a = ax ex + ay ey + az ez, (1.3.12)

where the Cartesian components of the acceleration vector are given by

ax =
d2X

dt2
, ay =

d2Y

dt2
, az =

d2Z

dt2
. (1.3.13)

If the Cartesian coordinates of a molecule are constant or change linearly in time, the second
time derivatives vanish and the acceleration is zero.
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Figure 1.3.2 Illustration of cylindrical polar coordinates, (x, σ, ϕ), defined with respect to Cartesian
coordinates, (x, y, z), where σ is the distance from the x axis.

1.3.1 Cylindrical polar coordinates

A point in space can be identified by the values of an ordered triplet, (x, σ, ϕ), as illustrated
in Figure 1.3.2, where:

• x is the projection of the position vector onto the straight (rectilinear) x axis passing
through a designated origin, taking values in the range (−∞,+∞).

• σ is the distance of a point of interest from the x axis, taking values in the range
[0,∞).

• ϕ is the azimuthal angle measured around the x axis, taking values in the range [0, 2π).
The value ϕ = 0 corresponds to the first and second quadrants of the xy plane, and
the value ϕ = π corresponds to the third and fourth quadrants.

Using elementary trigonometry, we derive relations between the Cartesian and associated
polar cylindrical coordinates,

y = σ cosϕ, z = σ sinϕ. (1.3.14)

The inverse relations between the polar cylindrical and Cartesian coordinates are

σ =
√
y2 + z2, ϕ = arccos

y

σ
. (1.3.15)

In computing the inverse cosine function, arccos, care must be taken to ensure that the
azimuthal angle, ϕ, is a continuous function of y and σ with reference to a specified branch
cut.
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Unit vectors

Consider an arbitrary point in space and define three dimensionless unit vectors, denoted
by ex, eσ, and eϕ, pointing in the direction of the x axis, normal to the x axis, and in the
azimuthal direction of varying angle ϕ, respectively, as depicted in Figure 1.3.2. Note that
the orientation of the unit vectors eσ and eϕ changes with position in space, whereas the
orientation of the unit vector ex is fixed and independent of position in space.

Position and velocity

In terms of the first two local unit vectors, ex and eσ, the position vector is given by

x = x ex + σ eσ. (1.3.16)

The dependence of the position vector on the azimuthal angle, ϕ, is mediated through the
unit vector eσ on the right-hand side. The absence of eϕ from the right-hand side of (1.3.16)
can be justified by observing that the distance from the origin, expressed by the position
vector x, is perpendicular to the third unit vector, eϕ.

Correspondingly, the velocity vector at a point can be expressed in the form

v = vx ex + vσ eσ + vϕ eϕ, (1.3.17)

where the coefficients vx, vσ, and vϕ are the cylindrical polar components of the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive relations between the Cartesian and cylindrical
polar unit vectors,

eσ = cosϕ ey + sinϕ ez, eϕ = − sinϕ ey + cosϕ ez. (1.3.18)

The inverse relations are

ey = cosϕ eσ − sinϕ eϕ, ez = sinϕ eσ + cosϕ eϕ. (1.3.19)

The corresponding relations for the velocity components are

vσ = cosϕvy + sinϕvz, vϕ = − sinϕvy + cosϕvz (1.3.20)

and

vy = cosϕvσ − sinϕvϕ, vz = sinϕvσ + cosϕvϕ. (1.3.21)

The Cartesian and cylindrical polar components of other vectors transform in similar ways.

Rates of change

The counterparts of expressions (1.3.4) for the cylindrical polar coordinates are

x = X(t), σ = Σ(t), ϕ = Φ(t). (1.3.22)
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The rates of change of the unit vectors following the motion of a molecule are given by the
relations

dex
dt

= 0,
deσ
dt

=
dΦ

dt
eϕ,

deϕ
dt

= −dΦ

dt
eσ. (1.3.23)

Consistent with our earlier observation, the first unit vector, ex, is fixed, while the second
and third unit vectors, eσ and eϕ, change with position in space.

Velocity components

Substituting expressions (1.3.22) into the right-hand side of (1.3.16), taking the time deriva-
tive, and using expressions (1.3.23), we find that

dX

dt
=

d

dt
(X ex +Σ eσ) =

dX

dt
ex +X

dex
dt

+
dΣ

dt
eσ +Σ

deσ
dt

, (1.3.24)

and then

dX

dt
=

dX

dt
ex +

dΣ

dt
eσ +Σ

dΦ

dt
eϕ. (1.3.25)

Comparing this expression with the decomposition (1.3.17), we extract the cylindrical polar
components of the velocity,

vx =
dX

dt
, vσ =

dΣ

dt
, vϕ = Σ

dΦ

dt
. (1.3.26)

Since Φ is a dimensionless function, all three right-hand sides have units of length divided
by time.

Acceleration

Differentiating expression (1.3.25) with respect to time, t, and expanding the derivatives,
we find that

d2X

dt2
=

d

dt

(dX
dt

ex +
dΣ

dt
eσ +Σ

dΦ

dt
eϕ

)
. (1.3.27)

Carrying out the differentiations, we obtain

d2X

dt2
=

d2X

dt2
ex +

d2Σ

dt2
eσ +

dΣ

dt

deσ
dt

+
dΣ

dt

dΦ

dt
eϕ +Σ

d2Φ

dt2
eϕ +Σ

dΦ

dt

deϕ
dt

. (1.3.28)

Now we substitute expressions (1.3.23) and find that

d2X

dt2
=

d2X

dt2
ex +

d2Σ

dt2
eσ +

dΣ

dt

dΦ

dt
eϕ +

dΣ

dt

dΦ

dt
eϕ +Σ

d2Φ

dt2
eϕ − Σ

dΦ

dt

dΦ

dt
eσ.

(1.3.29)
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Figure 1.3.3 Illustration of spherical polar coordinates, (r, θ, ϕ), defined with respect to the Cartesian
coordinates, (x, y, z), and cylindrical polar coordinates, (x, σ, ϕ), where r is the distance from the
origin, θ is the meridional angle, ϕ is the azimuthal angle, and σ is the distance from the x axis.

Finally, we consolidate the terms on the right-hand side and derive the cylindrical polar
components of the acceleration vector,

ax =
d2X

dt2
, aσ =

d2Σ

dt2
− Σ

(
dΦ

dt

)2

,

aϕ = Σ
d2Φ

dt2
+ 2

dΣ

dt

dΦ

dt
=

1

Σ

d

dt

(
Σ2 dΦ

dt

)
.

(1.3.30)

Note that a change in the azimuthal angle determined by the function Φ is accompanied by
radial acceleration, aσ.

1.3.2 Spherical polar coordinates

An arbitrary point in space can be identified by the values of an ordered triplet (r, θ, ϕ), as
illustrated in Figure 1.3.3, where:

• r is the distance from the designated origin taking values in the range [0,∞).

• θ is the meridional angle subtended between the x axis, the origin, and the chosen
point, taking values in the range [0, π].

• ϕ is the azimuthal angle measured around the x axis, taking values in the range [0, 2π).
The value ϕ = 0 corresponds to the first and second quadrants of the xy plane, and
the value ϕ = π corresponds to the third and fourth quadrants.

Using elementary trigonometry, we derive relations between the Cartesian, cylindrical polar,
and spherical polar coordinates,

x = r cos θ, σ = r sin θ, (1.3.31)
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and

y = σ cosϕ = r sin θ cosϕ, z = σ sinϕ = r sin θ sinϕ. (1.3.32)

The inverse relations are

r =
√
x2 + y2 + z2 =

√
x2 + σ2, θ = arccos

x

r
, ϕ = arccos

y

σ
. (1.3.33)

In computing the inverse cosine functions, care must be taken so that θ and ϕ emerge as
continuous functions of x, y, r, and σ.

Unit vectors

Consider a point in space and define three dimensionless unit vectors, er, eθ, and eϕ,
pointing in the radial, meridional, and azimuthal directions, respectively, as illustrated in
Figure 1.3.3. Note that the orientations of all three unit vectors change with position in
space. In contrast the orientations of the Cartesian unit vectors, ex, ey, and ez, are fixed.

Position and velocity

In terms of the local unit vectors er, eθ, and eϕ, the position vector is given by

x = r er. (1.3.34)

The dependence on θ and ϕ is mediated through the unit vector er on the right-hand side.
The absence of eθ and eϕ from the right-hand side of (1.3.34) can be explained by observing
that the distance from the origin, expressed by the position vector x, is perpendicular to
the unit vectors eθ and eϕ.

Correspondingly, the velocity vector is given by

v = vr er + vθ eθ + vϕ eϕ, (1.3.35)

where the coefficients vr, vθ, and vϕ are the spherical polar components of the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive relations between the spherical polar, cylindrical
polar, and Cartesian unit vectors,

er = cos θ ex + sin θ cosϕ ey + sin θ sinϕ ez = cos θ ex + sin θ eσ,

eθ = − sin θ ex + cos θ cosϕ ey + cos θ sinϕ ez = − sin θ ex + cos θ eσ,

eϕ = − sinϕ ey + cosϕ ez. (1.3.36)

The corresponding relations for the velocity components are

vr = cos θ vx + sin θ cosϕvy + sin θ sinϕvz = cos θ vx + sin θ vσ,

vθ = − sin θ vx + cos θ cosϕvy + cos θ sinϕvz = − sin θ vx + cos θ vσ,

vϕ = − sinϕvy + cosϕvz. (1.3.37)
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The Cartesian and polar components of other vectors transform in similar ways.

Rates of change

The counterparts of expressions (1.3.4) for the spherical polar coordinates are

r = R(t), θ = Θ(t), ϕ = Φ(t). (1.3.38)

The rate of change of the unit vectors following the motion of a molecule is given by the
relations

der
dt

=
dΦ

dt
sin θ eϕ +

dΘ

dt
eθ,

deθ
dt

=
dΦ

dt
cos θ eϕ − dΘ

dt
er,

deϕ
dt

= −dΦ

dt
cos θ eθ − dΦ

dt
sin θ er. (1.3.39)

All three unit vectors change with position in space.

Velocity components

Substituting the first expression in (1.3.38) into the right-hand side of (1.3.50), and using
(1.3.39), we obtain

dX

dt
=

dR

dt
er +R

der
dt

=
dR

dt
er +R

dΦ

dt
sin θ eϕ +R

dΘ

dt
eθ. (1.3.40)

Comparing this expression with the decomposition (1.3.35), we derive expressions for the
spherical polar components of the velocity,

vr =
dR

dt
, vθ = R

dΘ

dt
, vϕ = R sin θ

dΦ

dt
. (1.3.41)

Since the functions Θ and Φ are dimensionless, all three right-hand sides have units of length
divided by time.

Acceleration

Differentiating expression (1.3.40) with respect to time, t, and expanding the derivatives,
we find that

d2X

dt2
=
( d2R

dt2
er +

dR

dt

der
dt

)
+
(dR
dt

dΦ

dt
sin θ eϕ +R

d2Φ

dt2
sin θ eϕ (1.3.42)

+R
dΦ

dt
cos θ

dΘ

dt
eϕ +R

dΦ

dt
sin θ

deϕ
dt

)
+
(dR
dt

dΘ

dt
eθ +R

d2Θ

dt2
eθ +R

dΘ

dt

deθ
dt

)
,

where the parentheses enclose terms originating from each term on the right-hand side of
(1.3.40).

Now we substitute expressions (1.3.39) and obtain

d2X

dt2
= A+B+C, (1.3.43)
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where the first contribution to the right-hand side is

A =
d2R

dt2
er +

dR

dt

dΦ

dt
sin θ eϕ +

dR

dt

dΘ

dt
eθ, (1.3.44)

the second contribution is

B =
dR

dt

dΦ

dt
sin θ eϕ +R

d2Φ

dt2
sin θ eϕ +R

dΦ

dt

dΘ

dt
cos θ eϕ,

−R
(dΦ
dt

)2
sin θ(sin θ er + cos θ eθ), (1.3.45)

and the third contribution is

C =
dR

dt

dΘ

dt
eθ +R

d2Θ

dt2
eθ +R

dΦ

dt

dΘ

dt
cos θ eϕ −R

(dΘ
dt

)2
er. (1.3.46)

Consolidating the various terms, we derive the cylindrical polar components of the acceler-
ation vector,

ar =
d2R

dt2
−R

(dΦ
dt

)2
sin2 θ −R

(dΘ
dt

)2
,

aθ = R
d2Θ

dt2
+ 2

dR

dt

dΘ

dt
−R

(dΦ
dt

)2
sin θ cos θ, (1.3.47)

aϕ = R
d2Φ

dt2
sin θ + 2

dR

dt

dΦ

dt
sin θ + 2R

dΘ

dt

dΦ

dt
cos θ =

1

R sin θ

d

dt

(
R2 sin2 θ

dΦ

dt

)
.

Note that a change in the meridional angle described by Θ, or azimuthal angle described by
Φ, is accompanied by radial acceleration.

1.3.3 Plane polar coordinates

A point in the xy plane can be identified by the values of the doublet (r, θ), where r is the
distance from the origin, and θ is the angle subtended between the x axis, the origin, and
the chosen point, measured in the counterclockwise direction, as illustrated in Figure 1.3.4.
The radial distance, r, takes values in the range [0,∞), and the polar angle, θ, takes values
in the range [0, 2π).

Using elementary trigonometry, we derive the following relations between the Cartesian
and plane polar coordinates,

x = r cos θ, y = r sin θ, (1.3.48)

and the inverse relations

r =
√
x2 + y2, θ = arccos

y

r
. (1.3.49)

In computing the inverse cosine function, care must be taken so that θ emerges as a contin-
uous function of y and r.
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0

r
y

eθ
er

x

θ

Figure 1.3.4 Illustration of a system of plane polar coordinates, (r, θ), in the xy plane defined with
respect to Cartesian coordinates, (x, y).

Unit vectors

Consider a point in the xy plane and define two dimensionless unit vectors, er and eθ, point-
ing in the radial or polar direction, as depicted in Figure 1.3.4. Note that the orientations
of these unit vectors change with position in the xy plane, whereas the orientations of the
Cartesian unit vectors ex and ey are fixed.

Position and velocity

In terms of the local unit vectors er and eθ, the position vector is given by

x = r er, (1.3.50)

and the velocity vector is given by

v = vr er + vθ eθ. (1.3.51)

The coefficients vr and vθ are the plane polar components of the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive the following relations between the Cartesian and
plane polar unit vectors,

er = cos θ ex + sin θ ey, eθ = − sin θ ex + cos θ ey, (1.3.52)

and the inverse relations

ex = cos θ er − sin θ eθ, ey = sin θ er + cos θ eθ. (1.3.53)

The corresponding relations for the velocity components are

vr = cos θ vx + sin θ vy, vθ = − sin θ vx + cos θ vy (1.3.54)



1.3 Coordinates, velocity, and acceleration 15

and

vx = cos θ vr − sin θ vθ, vy = sin θ vr + cos θ vθ. (1.3.55)

The Cartesian components of other vectors transform in similar ways.

Rates of change

The counterparts of expressions (1.3.4) for the plane polar coordinates are

r = R(t), θ = Θ(t). (1.3.56)

The rates of change of the unit vectors following the motion of a molecule are given by the
relations

der
dt

=
dΘ

dt
eθ,

deθ
dt

= −dΘ

dt
er. (1.3.57)

Both unit vectors change as we move around the origin.

Velocity components

To derive the velocity components, we substitute the first equation in (1.3.56) into the
right-hand side of (1.3.50), and take the time derivative of the resulting equation. Next, we
identify the left-hand side with the velocity, expand the derivatives of the products on the
right-hand side, and use the first relation in (1.3.57) to eliminate the time derivative of the
radial unit vector, er. Comparing the result with expressions (1.3.51), we obtain the plane
polar components of the velocity,

vr =
dR

dt
, vθ = R

dΘ

dt
. (1.3.58)

Note that the right-hand sides have units of length divided by time.

Acceleration

Working as in the case of the cylindrical polar coordinates, we find that the plane polar
components of the acceleration are given by

ar =
d2R

dt2
−R

(dΘ
dt

)2
,

aθ = R
d2Θ

dt2
+ 2

dR

dt

dΘ

dt
=

1

R

d

dt

(
R2 dΘ

dt

)
. (1.3.59)

Consider a molecule moving on a circular path of radius R centered at the origin, so
that dR/dt = 0. The acceleration components are

ar = R
(dΘ
dt

)2
=

v2θ
R
, aθ = R

d2Θ

dt2
. (1.3.60)
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Note that radial acceleration arises even when a molecule moves at constant polar velocity,
vθ.

1.3.1 Spherical polar coordinates

Derive the inverse of the transformation rules shown in equations (1.3.37). That is, derive
expressions for the Cartesian components of the velocity in terms of the spherical polar
components of the velocity.

1.3.2 Acceleration

Derive the plane polar components of the acceleration given in (1.3.59).

1.4 Fluid velocity

Having prepared the ground for describing the motion of molecules of a fluid in quantitative
terms, we turn to considering the motion of fluid parcels consisting of a large collection of
molecules. For simplicity, we consider a homogeneous fluid parcel consisting of identical
molecules and label the N constituent molecules by an integer index, i for i = 1, . . . , N .

Let v
(i)
x , v

(i)
y , and v

(i)
z be the Cartesian components of the velocity of the ith molecule at

a particular time instant. The corresponding components of the mean velocity are defined
as

vx =
1

N

N∑
i=1

v(i)x , vy =
1

N

N∑
i=1

v(i)y , vz =
1

N

N∑
i=1

v(i)z , (1.4.1)

where a bar over v denotes the average value (arithmetic mean) over all N molecules.
Equations (1.4.1) can be combined into a vector form,

v =
1

N

N∑
i=1

v(i). (1.4.2)

Consider a fluid parcel of interest at a particular time, t, centered at a point, x. As the
size of the parcel becomes decreasingly small, the parcel tends to occupy an infinitesimal
volume in space containing the point x. In this limit, the components of the parcel velocity
defined in equations (1.4.1) reduce to the corresponding components of the fluid velocity,
denoted by ux, uy, and uz, forming an ordered triplet,

u = (ux, uy, uz). (1.4.3)

In terms of the Cartesian unit vectors,

u = ux ex + uy ey + uz ez. (1.4.4)

Polar cylindrical and other curvilinear velocity components can be defined in a similar
fashion, as discussed in Section 1.3.

Problems



1.4 Fluid velocity 17

1.4.1 Continuum approximation

A conceptual difficulty undermines the physical relevance of the fluid velocity: in the limit
as the size of a fluid parcel tends to zero, the number of molecules residing inside the parcel
also tends to zero, and the averages defined in equations (1.4.1) become ill-defined. To see
this, we consider a spherical particle of radius ε. As ε tends to zero, a graph of the average
molecular velocity, vx, plotted against ε, shows strong fluctuations that are manifestations
of random molecular excursions.

To circumvent this difficulty, we adopt the continuum approximation prescribing that,
as the size of a fluid parcel tends to zero, the limit of the average molecular velocity is
computed before the discrete nature of the fluid becomes apparent.

Since different choices for the designated parcel center at difference times produce differ-
ent fluid velocities, the components of the velocity vector, u, may be regarded as functions
of the components of the position vector, x = (x, y, z), and time, t. To signify this de-
pendence, we append to ux, uy, and uz a set of parentheses enclosing four independent
variables, writing

ux(x, y, z, t), uy(x, y, z, t), uz(x, y, z, t). (1.4.5)

In compact notation, we write

ux(x, t), uy(x, t), uz(x, t). (1.4.6)

In full vector notation, we write

u(x, t). (1.4.7)

If a fluid translates as a rigid body in a certain direction, possibly with a time-dependent
velocity, we omit the position vector x in the list of arguments, and write u(t).

For example, the Cartesian components of a certain velocity field are given by the
expressions

ux(x, y, z, t) = a (y2 + z2) + (b+ c t)x3yz + c edxt,

uy(x, y, z, t) = a (z2 + x2) + (b+ c t)xy3z + c edyt, (1.4.8)

uz(x, y, z, t) = a (x2 + y2) + (b+ c t)xyz3 + c edzt,

where a, b, c, and d are four constants. Velocity has units of length over time L/T , and the
position vector has units of length, L. In order for both sides of equations (1.4.8) to have
the same units, the constant a must have dimensions of inverse length-time, 1/(LT ).

1.4.2 Steady flow

If a flow is steady, the components of the fluid velocity are constant in time. Consequently,
t is omitted from the list of arguments in (1.4.5)–(1.4.7), so that u(x).
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1.4.3 Two-dimensional flow

The z component of the fluid velocity in a two-dimensional flow in the xy plane is identically
zero,

uz = 0, (1.4.9)

while the x and y components depend on x and y but not on z,

ux(x, y), uy(x, y). (1.4.10)

The velocity vector lies in the xy plane at every point.

1.4.4 Swirling and axisymmetric flow

Consider the cylindrical polar coordinates depicted in Figure 1.3.2. The cylindrical polar
components of the velocity, uσ and uϕ, are related to the Cartesian components by the
counterparts of equations (1.3.20),

uσ = cosϕuy + sinϕuz, uϕ = − sinϕuy + cosϕuz. (1.4.11)

In a swirling flow, the axial and radial velocity components are identically zero, ux =
0 and uσ = 0, while the azimuthal component, uϕ, is nonzero and independent of the
azimuthal angle, ϕ, that is uϕ(x, σ), Consequently, the velocity vector points in the direction
of the azimuthal angle, ϕ. at every point.

In an axially symmetric flow, also called an axisymmetric flow, the azimuthal velocity
component vanishes at every point,

uϕ = 0, (1.4.12)

while the axial and radial components, ux and uσ, are nonzero but independent of ϕ,

ux(x, σ), uσ(x, σ). (1.4.13)

The velocity vector lies in an azimuthal plane, defined as a plane that passes through the x
axis, at every point in an axisymmetric flow.

Superposing a swirling flow and an axisymmetric flow, we obtain a three-dimensional
flow described as axisymmetric flow with swirling motion. All three velocity components,
ux, uσ, and uϕ, are generally nonzero but independent of the meridional angle ϕ in this
flow.

1.4.5 Velocity vector field, streamlines and stagnation points

Consider a flow at a certain time instant, and draw velocity vectors at a large number of
points distributed in the domain of flow. The collection of these vectors defines a vector field
called the velocity field. Starting at a certain point in the flow, we may draw a line that is
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Figure 1.4.1 Illustration of a velocity vector field and associated streamline pattern in a two-
dimensional flow involving stagnation points marked by circular symbols. Stagnation points may
occur in the interior or at the boundaries of a flow.

tangential to the velocity vector at each point, as illustrated in Figure 1.4.1. This generally
curved three-dimensional line is an instantaneous streamline. A collection of streamlines
composes an instantaneous streamline pattern.

Two or more streamlines may meet at a stagnation point, as illustrated in Figure 1.4.1.
Since the velocity is unique at each point in a flow, all velocity components must necessarily
vanish at a stagnation point. A streamline must be a closed line, extend to infinity, cross a
moving boundary, or terminate at a stagnation point.

1.4.1 Units of coefficients

Deduce the units of the coefficients b, c, and d on the right-hand sides of equations (1.4.8).

1.4.2 Streamline patterns

Sketch the streamline pattern of (a) a two-dimensional flow, (b) a swirling flow, (c) an
axisymmetric flow, and (d) an axisymmetric flow with swirling motion.

1.5 Point particles and their trajectories

As the size of a fluid parcel tends to zero, the parcel reduces to an abstract entity called
a point particle. In the context of continuum mechanics, a point particle is large enough
to contain a large number of molecules whose average velocity is well-defined, but small
enough so that its volume is infinitesimal. This means that the ratio of the volume of a
point particle to the volume of the whole fluid is zero. Two consequences of this idealization
are the following:

Problems



20 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Figure 1.5.1 Illustration of path lines defined as the trajectories of point particles in a steady (time-
independent) or unsteady (time-dependent) flow.

• A finite fluid parcel is comprised of an infinite number of point particles.

• The product of the infinite number of point particles to the infinitesimal volume of
each point particle is finite, nonzero, and equal to the parcel volume.

By definition, the rate of change of the position of a point particle is equal to the velocity of
the fluid evaluated at the instantaneous position of the point particle. If the x coordinate
of a point particle located at the position x = X has changed by the infinitesimal distance,
dX, during an infinitesimal period of time, dt, then ux = dX/dt, where the velocity ux is
evaluated at x = X at the current time, t. Writing the counterparts of this equation for the
y and z components, we obtain

dX

dt
= ux

(
X(t), Y (t), Z(t), t

)
,

dY

dt
= uy

(
X(t), Y (t), Z(t), t

)
,

dZ

dt
= uz

(
X(t), Y (t), Z(t), t

)
.

(1.5.1)

The first set of parentheses on the right-hand side of each equation enclose the four scalar
arguments of the velocity.

1.5.1 Path lines

Since a point particle moves with the local fluid velocity, its coordinates generally change
in time according to equations (1.5.1), even if the flow is steady. Point particles in a fluid
remain stationary only if they lie precisely at a stagnation point in a steady flow, or if the
velocity field vanishes and the fluid is macroscopically quiescent. The trajectory of a point
particle is called a path line. Typical path lines are illustrated in Figure 1.5.1.

Instantaneous streamlines

By definition, a streamline is tangential to the instantaneous velocity vector field at every
point. An instantaneous streamline is the path described by a point particle moving with
the frozen instantaneous velocity field. An instantaneous streamline is physically meaningful
only in the case of steady flow.
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1.5.2 Ordinary differential equations (ODEs)

Equations (1.5.1) comprise a system of three first-order ordinary differential equations
(Odes). If the flow is steady, the system is autonomous, meaning that there is no ex-
plicit time dependence on the right-hand side. If the flow is unsteady, the system is non-
autonomous, exhibiting an explicit time dependence on the right-hand side. The right-hand
side of a non-autonomous system depends on time implicitly through the arguments of the
dependent variables, X(t), Y (t), and Z(t), and explicitly through the possible unsteadiness
of the flow.

Unidirectional flow

For example, the Cartesian velocity components of a steady unidirectional flow with parabolic
velocity profile are given by

ux = ay2 + by + c, uy = 0, uz = 0, (1.5.2)

where a, b, and c are three constants with appropriate units. In this case, the fluid moves
along the x axis with velocity that depends on the y coordinate alone. The trajectory of a
point particle is a straight line described by an autonomous system of Odes,

dX

dt
= aY 2 + bY + c,

dY

dt
= 0,

dZ

dt
= 0. (1.5.3)

The solution of these equations is readily found to be

X(t) = X0 + (aY 2 + bY + c) t, Y (t) = Y0, Z(t) = Z0, (1.5.4)

where X0, Y0, and Z0 are the coordinates of a point particle at the initial instant, t = 0.

Method of integrating factors

Consider a steady three-dimensional flow with velocity components

ux = ξ (x+ y + 3z), uy = −ξ (2y + z), uz = ξz, (1.5.5)

where ξ is a constant with units of inverse time. The trajectory of a point particle is
described by an autonomous system of Odes,

dX

dt
= ξ (X + Y + 3Z),

dY

dt
= −ξ (2Y + Z),

dZ

dt
= ξ Z. (1.5.6)

The third equation can be integrated readily to give

Z(t) = Z0 e
ξt. (1.5.7)

Substituting this expression into the second equation of (1.5.6) and rearranging, we obtain

dY

dt
+ 2 ξY = −ξZ0 e

ξt. (1.5.8)
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This equation can be solved by the method of integrating factors. Multiplying each term
on both sides by the integrating factor exp(2ξt) and rearranging, we obtain

d(Y e2ξt)

dt
= −ξZ0 e

3ξt. (1.5.9)

Integrating in time and enforcing the initial condition Y (0) = Y0, we obtain

Y e2ξt =
1

3
Z0 (1− e3ξt) + Y0, (1.5.10)

and then

Y (t) =
1

3
Z0 (e

−2ξt − eξt) + Y0 e
−2ξt. (1.5.11)

The first equation in (1.5.6) then becomes

dX

dt
− ξX =

1

3
ξZ0 (e

−2ξt + 8 eξt) + ξY0 e
−2ξt. (1.5.12)

Multiplying each term by the integrating factor exp(−ξt), we obtain

d(X e−ξt)

dt
=

1

3
ξZ0 (e

−3ξt + 8) + ξY0 e
−3ξt. (1.5.13)

Integrating in time and enforcing the initial condition X(0) = X0, we obtain

X e−ξt =
1

9
Z0

(
1− e−3ξt + 24 ξt

)
+

1

3
Y0 (1− e−3ξt) +X0, (1.5.14)

and then

X(t) =
1

9
Z0

(
1− e−2ξt + 24 ξt eξt

)
+

1

3
Y0 (e

ξt − e−2ξt) +X0 e
ξt. (1.5.15)

We have managed to derive explicit expressions for the particle position in time.

Steady linear flow

The velocity field of a three-dimensional steady linear flow is given by

ux = A11x+A12y +A13z, uy = A21x+A22y +A23z,

uz = A31x+A32y +A33z, (1.5.16)

where Aij for i, j = 1, 2, 3 are nine constant coefficients. The trajectories of point particles
are described by an autonomous system of Odes,

dX

dt
= A11X +A12Y +A13Z,

dY

dt
= A21X +A22Y +A23Z,

dZ

dt
= A31X +A32Y +A33Z. (1.5.17)
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These equations can be conveniently collected into the matrix form

d

dt

(⎡⎣ X(t)
Y (t)
Z(t)

⎤⎦) =

⎡⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦ ·
⎡⎣ X(t)

Y (t)
Z(t)

⎤⎦ . (1.5.18)

In vector notation,

dX

dt
= A ·X, (1.5.19)

where

X =

⎡⎣ X
Y
Z

⎤⎦ , A =

⎡⎣ A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤⎦ (1.5.20)

is the position vector and a constant 3× 3 matrix. For the velocity field given in (1.5.6),

A = ξ

⎡⎣ 1 1 3
0 −2 −1
0 0 1

⎤⎦ . (1.5.21)

This matrix is classified as upper triangular. The trace of this matrix, defined as the sum
of the three diagonal elements, is zero.

The solution of the ordinary differential equations is given by⎡⎣ X(t)
Y (t)
Z(t)

⎤⎦ = α1

⎡⎢⎣ v
(1)
1

v
(1)
2

v
(1)
3

⎤⎥⎦ eλ1t + α2

⎡⎢⎣ v
(2)
1

v
(2)
2

v
(2)
3

⎤⎥⎦ eλ2t + α3

⎡⎢⎣ v
(3)
1

v
(3)
2

v
(3)
3

⎤⎥⎦ eλ3t, (1.5.22)

where λ1, λ2, and λ3 are the eigenvalues of the matrix A and

v(1) =

⎡⎢⎣ v
(1)
1

v
(1)
2

v
(1)
3

⎤⎥⎦ , v(2) =

⎡⎢⎣ v
(2)
1

v
(2)
2

v
(2)
3

⎤⎥⎦ , v(3) =

⎡⎢⎣ v
(3)
1

v
(3)
2

v
(3)
3

⎤⎥⎦ (1.5.23)

are the corresponding eigenvectors satisfying the equations

A · v(1) = λ1v
(1), A · v(2) = λ1v

(2), A · v(3) = λ1v
(3). (1.5.24)

In vector notation,

X(t) = α1v
(1)eλ1t + α2v

(2)eλ2t + α3v
(3)eλ3t. (1.5.25)

This solution can be confirmed by substituting it into (1.5.19) and using (1.5.24).

The coefficients α1, α2, and α3 are determined by the initial condition,

X(t = 0) = X0, Y (t = 0) = Y0, Z(t = 0) = Z0, (1.5.26)
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requiring that

α1

⎡⎢⎣ v
(1)
1

v
(1)
2

v
(1)
3

⎤⎥⎦+ α2

⎡⎢⎣ v
(2)
1

v
(2)
2

v
(2)
3

⎤⎥⎦+ α3

⎡⎢⎣ v
(3)
1

v
(3)
2

v
(3)
3

⎤⎥⎦ =

⎡⎣ X0

Y0

Z0

⎤⎦ , (1.5.27)

which provides us with a system of linear algebraic equations for α1, α2, and α3,⎡⎢⎣ v
(1)
1 v

(2)
1 v

(3)
1

v
(1)
2 v

(2)
1 v

(3)
1

v
(1)
3 v

(2)
1 v

(3)
1

⎤⎥⎦ ·
⎡⎣ α1

α2

α3

⎤⎦ =

⎡⎣ X0

Y0

Z0

⎤⎦ . (1.5.28)

The solution can be found using, for example, Cramer’s rule.

Exceptions arise in the case of multiple eigenvalues. An example is provided by the
matrix (1.5.21) whose eigenvalues are 1 (twice) and −2 (once). In that case, products of
powers of t with exponential terms arise.

Eigenvalues and eigenvectors

As an example, we consider a steady two-dimensional flow with velocity components

ux = ξ (x+ 3y), uy = ξ (2x− y), (1.5.29)

where ξ a constant shear rate with units of inverse time. In this case, the coefficient matrix
is

A = ξ

[
1 3
2 −1

]
. (1.5.30)

To compute the eigenvalues of A, we formulate the linear system

(A− λ I) · v = 0, (1.5.31)

where v is an eigenvector of A and I is the 2× 2 identity matrix, and compute the roots of
the characteristic polynomial,

det(A− λI) = det

[
ξ − λ 3 ξ
2 ξ −ξ − λ

]
= (ξ − λ)(−ξ − λ)− 6 ξ2 = 0, (1.5.32)

yielding a quadratic equation,

λ2 − 7ξ2 = 0. (1.5.33)

The eigenvalues are

λ1, λ2 = ±
√
7 ξ. (1.5.34)
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Next we compute the eigenvectors by solving the linear system[
ξ ∓√

7ξ 3ξ

2ξ −ξ ∓√
7ξ

]
·
[

v1
v2

]
= 0. (1.5.35)

In fact, because the two equations encapsulated in this system are identical, the system can
be replaced by a single equation,

(1∓
√
7) v1 + 3 v2 = 0. (1.5.36)

Two eigenvectors are found corresponding to the plus or minus sign,

v(1) =
1

3

[
3

−1 +
√
7

]
. v(2) =

1

3

[
3

−1−√
7

]
. (1.5.37)

The solution of the linear system is

X(t) = α1v
(1) eλ1t + α2v

(2)eλ2t =

[
α1v

(1)
1 eλ1t + α2v

(2)
1 eλ2t

α1v
(1)
2 eλ1t + α2v

(2)
2 eλ2t

]
, (1.5.38)

where the coefficients α1 and α2 are determined by the initial condition.

Setting [
X(0)
Y (0)

]
=

1

3

[
3α1 + 3α2

α1(−1 +
√
7) + α2 (−1−√

7)

]
=

[
X0

Y0

]
, (1.5.39)

we obtain a linear system of two equations for α1 and α2,

α1 + α2 = X0, α1(−1 +
√
7) + α2 (−1−

√
7) = 3Y0. (1.5.40)

Using Cramer’s rule, we obtain

α1 =

det

[
X0 1

3Y0 −1−√
7

]
det

[
1 1

−1 +
√
7 −1−√

7

] , α2 =

det

[
1 X0

−1 +
√
7 3Y0

]
det

[
1 1

−1 +
√
7 −1−√

7

] , (1.5.41)

where det denotes the determinant. Evaluating the determinants, we finally obtain

α1 =
1

2
√
7

[
(1 +

√
7)X0 + 3Y0

]
α2 =

1

2
√
7

[
(−1 +

√
7)X0 − 3Y0

]
. (1.5.42)

Families of streamlines can be drawn for different choices of the initial doublet, (X0, Y0).

Steady linear flows with drift

The linear system (1.5.19) can be generalized into the system

dX

dt
= A ·X− b, (1.5.43)
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where b is a constant vector representing a drift velocity. The solution is given by⎡⎣ X(t)
Y (t)
Z(t)

⎤⎦ = α1

⎡⎢⎣ v
(1)
1

v
(1)
2

v
(1)
3

⎤⎥⎦ eλ1t + α2

⎡⎢⎣ v
(2)
1

v
(2)
2

v
(2)
3

⎤⎥⎦ eλ2t + α3

⎡⎢⎣ v
(3)
1

v
(3)
2

v
(3)
3

⎤⎥⎦ eλ3t +

⎡⎣ X̃

Ỹ

Z̃

⎤⎦ , (1.5.44)

where X̃ = (X̃, Ỹ , Z̃) is the fixed point satisfying the linear system

A · X̃ = b. (1.5.45)

In vector notation,

X(t) = α1v
(1)eλ1t + α2v

(2)eλ2t + α3v
(3)eλ3t + X̃ (1.5.46)

where the coefficients α1, α2, and α3 are determined by the initial condition.

As an example, we consider a steady two-dimensional flow with velocity components

ux = ξ (x+ 3y) + Ux, uy = ξ (2x− y) + Uy, (1.5.47)

where ξ a constant shear rate with units of inverse time and Ux, Uy are two constant veloc-
ities. In this example,

A = ξ

[
1 3
2 −1

]
, b = −

[
Ux

Uy

]
. (1.5.48)

The fixed point satisfies the equation[
1 3
2 −1

]
· X̃ = −1

ξ

[
Ux

Uy

]
, (1.5.49)

whose solution is

X̃ =
1

7ξ

[ −Ux − 6Uy

−2Ux + Uy

]
. (1.5.50)

The constants, α1 and α2 are determined by the initial condition.

1.5.3 Explicit Euler method

In general, the solution of system (1.5.1) cannot be found by analytical methods. A numeri-
cal method for generating the trajectory of a point particle can be developed by considering
the change in the position of the point particle over a small time interval, Δt, and replacing
the differential equations (1.5.1) with the algebraic equations

X(t+Δt)−X(t)

Δt
= ux

(
X(t), Y (t), Z(t), t

)
,

Y (t+Δt)− Y (t)

Δt
= uy

(
X(t), Y (t), Z(t), t

)
, (1.5.51)

Z(t+Δt)− Z(t)

Δt
= uz

(
X(t), Y (t), Z(t), t

)
.
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To obtain these equations, we have approximated the time derivatives on the left-hand
sides of equations (1.5.1) with forward finite-difference ratios. Since, by definition, the first
derivative dX/dt is equal to the ratio [X(t + Δt) − X(t)]/Δt in the limit as Δt tends to
zero, we expect that, as long as Δt is sufficiently small, the error introduced by replacing
the derivative with a forward-difference approximation will also be reasonably small.

In fact, performing a Taylor series expansion, we find that the magnitude of the error
associated with the approximate forms (1.5.51) is comparable to the magnitude of Δt. This
means that, if Δt is equal to 0.1 in some units, the error associated with the difference
approximation will be on the order of 0.1 multiplied by a constant whose absolute value
ranges roughly between 0.5 and 5 in corresponding units.

In vector notation, the discrete form of the differential system (1.5.1) expressed by the
algebraic system (1.5.51) takes the form

X(t+Δt)−X(t)

Δt
= u(X(t), t) +O(Δt), (1.5.52)

where the symbol O(Δt) on the right-hand side signifies the order of the error due to the
difference approximation.

Solving the first equation in (1.5.51) for X(t+Δt), the second equation for Y (t+Δt),
and the third equation for Z(t+Δt), we obtain

X(t+Δt) = X(t) + ux

(
X(t), Y (t), Z(t), t

)×Δt,

Y (t+Δt) = Y (t) + uy

(
X(t), Y (t), Z(t), t

)×Δt, (1.5.53)

Z(t+Δt) = Z(t) + uz

(
X(t), Y (t), Z(t), t

)×Δt.

In vector notation,

X(t+Δt) = X(t) + u
(
X(t), t

)×Δt. (1.5.54)

In physical terms, equation (1.5.54) states that the position of a point particle at next
time instant, t + Δt, is equal to the position at the current time instant, t, plus a small
displacement that is equal to the distance traveled over the small time interval Δt. The travel
velocity has been assumed constant and equal to the local fluid velocity at the beginning of
the time step, corresponding to time t, which is a sensible approximation.

Algorithm

Equations (1.5.53) provide us with a numerical scheme for computing the trajectory of a
point particle according to the following algorithm implementing the explicit Euler method:

1. Specify the initial time; for example, set t = 0.

2. Select the size of the time step, Δt.

3. Specify the initial coordinates, X0, Y0, and Z0.
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4. Evaluate the velocity components on the right-hand side of equations (1.5.53),

ux

(
X(t), Y (t), Z(t), t

)
, uy

(
X(t), Y (t), Z(t), t

)
, uz

(
X(t), Y (t), Z(t), t

)
, (1.5.55)

5. Evaluate the right-hand sides of (1.5.53) to obtain the new point particle coordinates,
X(t+Δt), Y (t+Δt), and Z(t+Δt).

6. Reset the time to t+Δt.

7. Stop, if desired, or return to execute Steps 4–6.

The method is explicit in that the new position of a point particle is computed in terms of
the old position using information available exclusively at the old position.

We have mentioned that approximating the derivative dX/dt with a forward difference
introduces an error that is comparable to the magnitude of Δt, as shown in equations
(1.5.52). Accordingly, the error in the position of the point particle after it has traveled for
a time interval Δt is on the order of Δt2. Based on the value of the exponent of Δt, we say
that the explicit Euler method carries a stepwise error of second order with respect to the
time step.

If Nsteps steps are executed from time t = 0 to time t = tfinal, the stepwise error
will accumulate to an amount that is comparable to the product Nsteps × Δt2. Since, by
definition, Nsteps ×Δt = tfinal, the cumulative error will be on the order of

tfinal ×Δt. (1.5.56)

This expression shows that the cumulative error is of first order with respect to the time
step. Unless Δt is sufficiently small, this level of error is hardly acceptable.

1.5.4 Modified Euler method

To reduce the magnitude of the error, we modify the explicit Euler method according to the
following steps:

1. Set the initial time; for example, set t = 0.

2. Select the size of the time step, Δt.

3. Specify the initial coordinates, X(0), Y (0), and Z(0).

4. Evaluate the current velocity components,

ucurrent
x = ux

(
X(t), Y (t), Z(t), t

)
,

ucurrent
y = uy

(
X(t), Y (t), Z(t), t

)
, (1.5.57)

ucurrent
z = uz

(
X(t), Y (t), Z(t), t

)
,

on the right-hand sides of (1.5.53), and save them for future use.

5. Evaluate the right-hand sides of (1.5.53) to obtain the predicted coordinates at time
t+Δt, denoted by Xpred, Y pred, and Zpred.
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6. Evaluate the velocities at the predicted position at time t+Δt,

upred
x = ux(X

pred, Y pred, Zpred, t+Δt),

upred
y = uy(X

pred, Y pred, Zpred, t+Δt), (1.5.58)

upred
z = uz(X

pred, Y pred, Zpred, t+Δt),

7. Compute the average of the current and predicted velocities,

uaver
x =

1

2

(
ucurrent
x + upred

x

)
,

uaver
y =

1

2

(
ucurrent
y + upred

y

)
, (1.5.59)

uaver
z =

1

2

(
ucurrent
z + upred

z

)
.

8. Compute the coordinates of the point particle at time t + Δt by returning to the
position at time t and traveling with the mean velocity computed in Step 7 using the
formulas

X(t+Δt) = X(t) + uaver
x Δt,

Y (t+Δt) = Y (t) + uaver
y Δt, (1.5.60)

Z(t+Δt) = Z(t) + uaver
z Δt.

9. Advance the time to t+Δt.

10. Stop if desired, or return to execute Steps 4–9.

In fact, the modified Euler method is a special implementation of the inclusive second-
order Runge–Kutta method for solving systems of ordinary differential equations. An error
analysis shows that each time step introduces a numerical error in the position of the point
particle that is comparable to the cubic power of time step, Δt3. The cumulative error is
thus on the order of

tfinal ×Δt2, (1.5.61)

which is much smaller than that incurred by the explicit Euler method.

To ensure a smooth particle trajectory, we may specify an approximate travel distance
in each step, Δs, and adjust the time step accordingly using Δt = Δs/u, where u is the
magnitude of the local velocity.

Program path lines

The following MATLAB code entitled path lines, located in directory 04 various of Fdlib,
computes and displays path lines originating from specified initial points. The integration
terminates when a path line escapes the plotting window or returns to the initial position
to form a closed loop:

Nsteps = 400; % number of steps

Ds = 0.01; % spatial step
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xmin = -1.0; xmax = 1.0; % plotting window

ymin = -1.0; ymax = 1.0;

Xstart = [0.1, 0.2, 0.3]; % starting points of path lines

Ystart = [0.1, 0.2, 0.3];

%---

% prepare to plot

%---

figure(1)

hold on

axis equal

set(gca,'fontsize',13)

xlabel('x','fontsize',13)

ylabel('y','fontsize',13)

box on

%---

for n=1:size(Xstart') % run over starting points

%---

X0 = Xstart(n);

Y0 = Ystart(n);

Xsave = X0;

Ysave = Y0;

clear Xplot Yplot

Xplot(1) = X0;

Yplot(1) = Y0;

X = X0; Y = Y0; t = 0;

%--

for i=1:Nsteps

%--

[ux, uy] = path lines vel(X,Y,t);

um = sqrt(ux*ux + uy*uy);

Dt = Ds/um;

X1 = X + ux*Dt;

Y1 = Y + uy*Dt;

t1 = t + Dt;

[ux1, uy1] = path lines vel(X1,Y1,t1);
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X = X + 0.5*Dt*(ux+ux1);

Y = Y + 0.5*Dt*(uy+uy1);

t = t + Dt;

Xplot(i+1) = X;

Yplot(i+1) = Y;

%---

% stopping check for window limits and closed paths

%---

closed = sqrt((X-Xsave)^2+(Y-Ysave)^2);

if(closed < 0.9*Ds | X<xmin |X>xmax | Y<ymin | Y>ymax)

break

end

%--

end

%--

plot(Xplot,Yplot,'k.')

end % of path lines

The velocity components are evaluated by the following user-defined companion MAT-

LAB function entitled path lines vel :

function [ux,uy] = path lines vel(x,y,t)

%----

% evaluate the velocity

%---

Omega = 1.0;

G = 0.5;

alpha = 0.0;

ux = G*x-Omega*y+0.5*alpha*x*exp(-t);

uy = Omega*x-G*y+0.5*alpha*y*exp(t);

%----

% done

%---

return

Running the code path lines generates the patterns shown in Figure 1.5.2. In this case,
point particles move along closed loops.
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Figure 1.5.2 Path lines computed by the code path lines for the velocity field defined in the code.

1.5.5 Description in polar coordinates

The position of a point particle can be described in the cylindrical polar coordinates depicted
in Figure 1.3.2 by three functions,

x = X(t), σ = Σ(t), ϕ = Φ(t). (1.5.62)

Using the transformation rules given in Section 1.3, we derive the differential equations

dX

dt
= ux

(
X(t),Σ(t),Φ(t), t

)
,

dΣ

dt
= uσ

(
X(t),Σ(t),Φ(t), t

)
,

dΦ

dt
=

uϕ

(
X(t),Σ(t),Φ(t), t

)
Σ(t)

. (1.5.63)

Note the implicit and explicit dependence on time on the right-hand sides.

In the spherical polar coordinates depicted in Figure 1.3.3, the position of a point
particle is described by three functions

r = R(t), θ = Θ(t), ϕ = Φ(t). (1.5.64)

Using the transformation rules given in Section 1.3, we derive the differential equations

dR

dt
= ur

(
X(t),Θ(t),Φ(t), t

)
,

dΘ

dt
=

uθ

(
X(t),Θ(t),Φ(t), t

)
R(t)

,

dΦ

dt
=

uϕ

(
X(t),Θ(t),Φ(t), t

)
R(t) sinΘ(t)

. (1.5.65)

Note the implicit and explicit dependence on time on the right-hand sides.
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In the plane polar coordinates depicted in Figure 1.3.4, the position of a point particle
is described by two functions,

r = R(t), θ = Θ(t) (1.5.66)

Using the transformation rules given in Section 1.3, we derive the differential equations

dR

dt
= ur

(
R(t),Θ(t), t

)
,

dΘ

dt
=

uθ

(
R(t),Θ(t), t

)
R(t)

. (1.5.67)

Note the implicit and explicit dependence on time on the right-hand sides.

The systems of differential equations (1.5.63), (1.5.65), or (1.5.67) can be integrated
in time using the methods discussed previously in this section for Cartesian coordinates,
including the Euler method and the modified Euler method. To deduce the position vector
at any time, we use the transformation rules to obtain the Cartesian coordinates in terms
of the chosen polar coordinates.

1.5.6 Streaklines

A streakline emerges by connecting the instantaneous positions of point particles that have
been released or injected into the flow from a stationary or moving source at previous times.
Alternatively, the point particles may have been residing in the fluid at all times, but they
have been colored or tagged as they passed through the tip of a stationary or moving probe.
If the flow is steady and the probe is stationary, a streakline is also a streamline.

To compute a streakline, we solve the differential equations describing the motion of
the point particles after they have entered the flow or passed through the coloring probe
using the methods described in this section for particle paths. Since the motion of point
particles is independent of their relative position, the trajectory of each point particle can be
computed individually and independently, as though each point particle moved in isolation.

1.5.1 Streamlines by analytical integration

Consider a steady two-dimensional flow with velocity components

ux = ξx+ ηy, uy = ηx− ξy. (1.5.68)

Deduce the units of the constants ξ and η and derive analytical expressions for the position
of a point particle similar to those shown in (1.5.4).

1.5.2 Streamlines by analytical integration

Derive analytical expressions for the position of a point particle in a steady three-dimensional
linear flow described by the matrix

A = ξ

⎡⎣ −1 0 0
−3 −2 0
2 1 3

⎤⎦ , (1.5.69)

Problems
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where ξ is a constant shear rate. For obvious reasons, this matrix is classified as lower
triangular.

1.5.3 Path lines by numerical integration

Program path lines, located in directory 04 various of Fdlib, computes and displays path
lines originating from specified initial points, as discussed in the text. Run the program for
the velocity field given in (1.5.68) with η = 0.5 ξ and discuss the nature of the path lines.

1.5.4 Streamlines by numerical integration

Program strml, located in directory 04 various of Fdlib, generates streamlines originating
from a specified set of points. The streamlines are computed by the modified Euler method.

(a) Run the program for three velocity fields of your choice implemented in the code. Gen-
erate and discuss the structure of the streamlines patterns.

(b) Add to the code a new flow of your choice. Generate and discuss the corresponding
streamline pattern.

1.6 Material surfaces and elementary motions

An infinite collection of point particles distributed over a surface that resides inside or at
the boundary of a fluid defined a material surface. A cylindrical material surface in a
two-dimensional flow can be identified by its trace in the xy plane. A material surface
of revolution in an axisymmetric flow can be identified by its trace in an azimuthal plane
corresponding to a certain azimuthal angle, ϕ.

Any patch on the surface of a cup of coffee is a material surface with distinct identity.
Under most conditions, if a material patch lies at the boundary of a fluid at a certain time,
it will remain at the boundary of the fluid at any time. This means that the point particles
comprising the patch are not able to penetrate the fluid.

Material parcels

A closed material surface is the boundary of a material parcel consisting of a fixed amount
of fluid with a permanent identity. Under most conditions, if a material surface is located
at the boundary of a material parcel at a certain time, it will remain at the boundary of the
parcel at any time. To analyze the evolution of a material parcel and visualize its motion,
we may compute the trajectories of the point particles that lie on its boundary by analytical
or numerical methods.

1.6.1 Fluid parcel rotation

Consider a two-dimensional flow in the xy plane with velocity components

ux = −Ω y, uy = Ωx, (1.6.1)
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where Ω is a constant with units of inverse time. In vector notation, equations (1.6.1) are
collected into the form

[ux uy] = [x y] ·
[

0 Ω
−Ω 0

]
. (1.6.2)

According to our discussion in Section 1.5, the trajectory of a point particle with Cartesian
coordinates X(t) and Y (t) is governed by the differential equations

dX

dt
= −ΩY,

dY

dt
= ΩX, (1.6.3)

subject to a specified initial condition, X0 ≡ X(t = 0) and Y0 ≡ Y (t = 0). The solution is
readily found to be

X(t) = cos(Ωt)X0 − sin(Ωt)Y0, Y (t) = sin(Ωt)X0 + cos(Ωt)Y0. (1.6.4)

In vector notation, [
X(t)
Y (t)

]
=

[
cos(Ωt) − sin(Ωt)
sin(Ωt) cos(Ωt)

]
·
[

X0

Y0

]
. (1.6.5)

To deduce the nature of the motion, we refer to plane polar coordinates and find that
the square of the distance of a point particle from the origin,

R2(t) ≡ X2(t) + Y 2(t), (1.6.6)

remains constant in time, equal to the initial distance, R0 ≡ R(t = 0). The polar angle, θ,
defined by the equation tan θ = Y (t)/X(t), increases linearly in time at the rate dθ/dt = Ω,

θ = Ω t+ θ0, (1.6.7)

where θ0 is the polar angle at t = 0. To show this, we write

tan θ =
Y (t)

X(t)
=

sin(Ωt)X0 + cos(Ωt)Y0

cos(Ωt)X0 − sin(Ωt)Y0
, (1.6.8)

yielding

tan θ =
sin(Ωt) cos θ0 + cos(Ωt) sin θ0
cos(Ωt) cos θ0 − sin(Ωt) sin θ0

=
sin(Ωt+ θ0)

cos(Ωt+ θ0)
= tan(Ωt+ θ0). (1.6.9)

Using the relations developed in Section 1.3.3, we find that the radial and polar velocity
components are given by ur = 0 and uθ = Ωr. Applying (1.5.67), we recover R(t) = R0 and
θ = Ω t+ θ0.

The preceding analysis suggests that a circular material line centered at the origin
rotates around the origin as a rigid body with angular velocity Ω while retaining its circular
shape. Accordingly, the velocity field associated with (1.6.1) expresses rigid-body rotation
around the origin of the xy plane.
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Figure 1.6.1 Deformation of a circular material line under the influence of a two-dimensional elon-
gational flow.

1.6.2 Fluid parcel deformation

Now we consider a different type of two-dimensional flow in the xy plane with velocity
components

ux = Gx, uy = −Gy, (1.6.10)

where G is a constant with units of inverse time. In vector–matrix notation,

[ux uy] = [x y] ·
[

G 0
0 −G

]
. (1.6.11)

In this case, the trajectory of a point particle is governed by the differential equations

dX

dt
= GX,

dY

dt
= −GY, (1.6.12)

subject to a specified initial condition. Note that equations (1.6.12) are decoupled, that is,
the first equation contains only X and the second equation contains only Y . The solution
is readily found to be

X(t) = eGt X0, Y (t) = e−Gt Y0. (1.6.13)

In vector–matrix notation,[
X(t)
Y (t)

]
=

[
eGt 0
0 e−Gt

]
·
[

X0

Y0

]
. (1.6.14)

The diagonal matrix elements increase or decrease exponentially in time and the off-diagonal
elements remain zero.

The evolution of a circular material line of radius a centered at the origin is illustrated
in Figure 1.6.1 for a positive value of G. As soon as the motion begins, the circular contour
deforms into an ellipse with major semi-axis

b(t) = a eGt (1.6.15)
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oriented in the x direction, and minor semi-axis

c(t) = a e−Gt (1.6.16)

oriented in the y direction. To show this, we confirm that the coordinates of a point particle
satisfy the equation of the ellipse,

X2(t)

b2(t)
+

Y 2(t)

c2(t)
= 1, (1.6.17)

where X2
0 + Y 2

0 = a2 describes the initial circle. The area enclosed by the deforming circle
remains constant in time, equal to

A(t) = π b(t) c(t) = πa2. (1.6.18)

The preceding analysis suggests that the velocity field described by (1.6.11) describes
pure deformation occurring at an exponential rate in the absence of expansion or contraction;
the constant G is the rate of deformation. The deformation conserves the area of the parcel
enclosed by the continuously deforming ellipse.

1.6.3 Fluid parcel expansion

As a third case study, we consider a two-dimensional flow in the xy plane with velocity
components

ux =
1

2
αx, uy =

1

2
α y, (1.6.19)

where α is a constant with units of inverse time. In vector-matrix notation,

[ux uy] = [x y] ·
[

1
2α 0
0 1

2α

]
. (1.6.20)

The trajectory of a point particle is governed by two decoupled differential equations,

dX

dt
=

1

2
αX,

dY

dt
=

1

2
αY, (1.6.21)

subject to a specified initial condition. The solution is found by elementary methods to be

X(t) = e
1
2 α t X0, Y (t) = e

1
2 α t Y0. (1.6.22)

In vector-matrix notation,[
X(t)
Y (t)

]
=

[
e

1
2 αt 0

0 e
1
2α t

]
·
[

X0

Y0

]
. (1.6.23)

Based on these expressions, we deduce that a circular material line centered at the origin
expands at an exponential rate while retaining its circular shape. Accordingly, the velocity
field associated with equations (1.6.19) expresses isotropic expansion.
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If a(t) is the radius of the circular material line at time t, then

a(t) = a(t = 0) e
1
2 αt, (1.6.24)

where a(t = 0) is the radius at the origin of time. Raising both sides to the second power,
multiplying the result by π, and rearranging, we find that the ratio of the enclosed areas is

πa2(t)

πa2(t = 0)
= eαt. (1.6.25)

Accordingly, the constant α is the rate of areal expansion.

1.6.4 Superposition of rotation, deformation, and expansion

For future convenience, we relabel the Cartesian coordinates from (x, y) to (x′, y′). Su-
perposing the three types of motion discussed in the preceding three sections, we obtain a
compound velocity field with components

[ux′ uy′ ] = [x′ y′] ·
([ 0 Ω

−Ω 0

]
+

[
G 0
0 −G

]
+

[
1
2 α 0
0 1

2 α

])
. (1.6.26)

The three matrices on the right-hand side of (1.6.26) express fluid parcel rotation, pure
deformation, and isotropic expansion. Summing corresponding elements, we obtain the
composite vector form

u′ = x′ ·A, (1.6.27)

where u′ = (ux′ , uy′), x′ = (x′, y′), and the matrix A is defined as

A =

[
G+ 1

2α Ω
−Ω −G+ 1

2α

]
. (1.6.28)

Because the velocity field shown in (1.6.27) depends linearly on the position vector, x′, the
associated flow is linear.

Varying the relative magnitudes of the three adjustable flow parameters, Ω, G, and α,
allows us to alter the character of the flow by forming hybrid forms of the three fundamental
constituents.

1.6.5 Rotated coordinates

Although fluid parcel rotation, deformation, and expansion have been deduced with refer-
ence to the x′y′ system of Cartesian coordinates, expressing the position and velocity vectors
in a different system of coordinates should not affect the physical nature of the motion. Mo-
tivated by this observation, we set out to generalize the velocity field described by equation
(1.6.27) in a way that clarifies further its physical interpretation.

Consider a two-dimensional Cartesian system, x′y′, that has been rotated with respect
to a reference system, xy, by an angle β, as shown in Figure 1.6.2. Note that the angle β is
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xβ

β

y

y’

x’

Figure 1.6.2 A system of Cartesian axes, (x′, y′), arises by rotating another system, (x, y), by an
angle, β. The length of the dotted horizontal segment is y′ sinβ.

positive when the system x′y′ arises from the counterclockwise rotation of xy, and negative
otherwise. The unprimed system, xy, provides us with our working coordinates.

A point in the x′y′ or xy plane can be identified either by its primed coordinates, (x′, y′),
or unprimed coordinates, (x, y). Using elementary trigonometry, we find that the two sets
of coordinates are related by

x = x′ cosβ − y′ sinβ, y = x′ sinβ + y′ cosβ. (1.6.29)

In vector-matrix notation,

[x y] = [x′ y′] ·
[

cosβ sinβ
− sinβ cosβ

]
. (1.6.30)

Note the left-to-right vector-matrix multiplication on the right-hand side.

Rotation matrix

To simplify the analysis, we introduce the rotation matrix

R ≡
[

cosβ sinβ
− sinβ cosβ

]
, (1.6.31)

and express (1.6.30) in the form

x = x′ ·R, (1.6.32)

where x′ = (x′, y′) and x = (x, y).

The rotation matrix has two important properties. First, its determinant is equal to
unity,

det(R) = 1. (1.6.33)
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To explain the second property, we introduce the transpose of R, which arises by inter-
changing the off-diagonal elements R12 and R21, to formulate the new matrix

RT =

[
cosβ − sinβ
sinβ cosβ

]
, (1.6.34)

where the superscript T denotes the transpose. Using the rules of matrix multiplication, we
find that

R ·RT = I, RT ·R = I, (1.6.35)

where I is the unit or identity matrix defined as

I =

[
1 0
0 1

]
. (1.6.36)

The inverse of an arbitrary square matrix, A, is another matrix, denoted as A−1, with
the properties

A ·A−1 = I, A−1 ·A = I. (1.6.37)

If the inverse matrix, A−1, is equal to the matrix transpose, AT, then the matrix A is called
orthogonal. In light of this definition, equations (1.6.35) ensure that the rotation matrix,
R, is orthogonal. Relation (1.6.32) can then be inverted to give

x′ = x ·RT, (1.6.38)

providing us with the primed coordinates in terms of the unprimed coordinates.

Velocities

Working in a similar fashion, we find that the components of the velocity vector in the xy
and x′y′ coordinates are related by the counterparts of relations (1.6.32) and (1.6.38),

u = u′ ·R, u′ = u ·RT, (1.6.39)

where u′ = (ux′ , uy′) and u = (ux, uy).

Having made the necessary preparations, we multiply both sides of equation (1.6.27) by
the rotation matrix, R, and exploit the first orthogonality property in (1.6.35) to obtain

u′ ·R = x′ ·A ·R = x′ · I ·A ·R = x′ ·R ·RTA ·R. (1.6.40)

Using equations (1.6.32) and (1.6.39), we obtain

u = x ·B, (1.6.41)

where

B ≡ RT ·A ·R (1.6.42)
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is a new matrix. Substituting (1.6.28), (1.6.31), and (1.6.34) into the right-hand side of
(1.6.42) and using the trigonometric identities

cos(2β) = cos2 β − sin2 β, sin(2β) = 2 sinβ cosβ, (1.6.43)

we derive the explicit form

B =

[
G cos(2β) + 1

2 α −G sin(2β) + Ω
−G sin(2β)− Ω −G cos(2β) + 1

2 α

]
. (1.6.44)

Note that, when β = 0 or π, the matrixB reduces to the matrixA given in equation (1.6.28).
The four elements of the matrix B are defined in terms of the three flow parameters Ω, G,
and α, and the rotation angle, β.

1.6.6 Fundamental decomposition of a two-dimensional flow

In practice, we are interested in the inverse problem: given the four elements of the matrix
B, obtained by laboratory measurements or numerical computation, we want to evaluate the
four parameters Ω, G, and α, and β, and thereby extract, respectively, the rate of rotation,
the rate of deformation, the rate of expansion, and the direction of deformation.

By way of an example, we consider a linear flow whose velocity components are given
by

ux = ax+ cy, uy = bx+ dy, (1.6.45)

where a, b, c, and d are four constants with units of inverse time. In vector notation,

[ux uy ] = [x y ] ·
[

a b
c d

]
. (1.6.46)

Setting each component of the matrix on the right-hand side of (1.6.46) equal to the cor-
responding component of the matrix B on the right-hand side of (1.6.44), we obtain a
nonlinear system of four trigonometric equations for the four unknowns, Ω, G, α, and β,

G cos(2β) +
1

2
α = a, −G sin(2β) + Ω = b,

−G sin(2β)− Ω = c, −G cos(2β) +
1

2
α = d. (1.6.47)

The solution can be found most readily according to the following steps.

First, we resolve the matrix on the right-hand side of (1.6.46) into three constituents,

B =

[
a b
c d

]
=

1

2

[
0 b− c

c− b 0

]
+

1

2

[
a− d b+ c
c+ b d− a

]
+

1

2

[
a+ d 0
0 a+ d

]
.

(1.6.48)

The first matrix on the right-hand side of (1.6.48) is antisymmetric or skew-symmetric,
which means that the 12 component is equal to the negative of the 21 component. The
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second matrix is symmetric with zero trace.1 The third matrix is diagonal and isotropic,
which means that the two diagonal elements are identical. The decomposition into these
three components is unique by construction.

With reference to the first matrix on the right-hand side of (1.6.48), we identify the rate
of rotation,

Ω =
1

2
(b− c). (1.6.49)

With reference to the third matrix on the right-hand side of (1.6.48), we identify the rate
of expansion,

α = a+ d. (1.6.50)

Eigenvalues and eigenvectors

To extract the remaining two unknowns, G and β, we consider the second matrix on the
right-hand side of (1.6.48), defined as

E =
1

2

[
a− d b+ c
c+ b d− a

]
. (1.6.51)

An eigenvalue of E, denoted by λ, and the corresponding eigenvector, denoted by

w =

[
wx

wy

]
, (1.6.52)

satisfy the equation

E ·w = λw, (1.6.53)

or (
E− λ I

) · f = 0, (1.6.54)

where I is the 2× 2 unit matrix and

E− λ I =
1

2

[
a− d− 2λ b+ c

c+ b d− a− 2λ

]
. (1.6.55)

The eigenvalues of E are found by setting the determinant of the matrix E − λ I to zero,
thereby ensuring that the system (1.6.54) admits a nontrivial solution. Formulating the
determinant, we obtain the quadratic equation( 1

2
(a− d)− λ

) ( 1

2
(d− a)− λ

)− 1

4
(b+ c)2 = 0, (1.6.56)

1The trace of an arbitrary square matrix is defined as the sum of the diagonal elements. For example,
the trace of the N × N identity matrix is equal to N . The trace of a matrix is equal to the sum of its
eigenvalues.
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whose roots are found to be

λ = ± 1

2

√
(a− d)2 + (b+ c)2. (1.6.57)

The corresponding eigenvectors are found by solving the homogeneous system (1.6.54). Hav-
ing computed the eigenvalues and eigenvectors of the matrix E, we recover the constants G
and β by setting

G = λ, (1.6.58)

with the plus or minus sign selected on the right-hand side of (1.6.57), and identifying β
with the angle subtended between the corresponding eigenvector w and the x axis, that is,
we compute the angle β from the equation

tanβ =
wy

wx
. (1.6.59)

A typical linear flow

To be more specific, we consider a two-dimensional linear velocity field with velocity com-
ponents

ux(x, y, t) = ξ(t) (2x− y), uy(x, y, t) = ξ(t) (−3x+ 3y), (1.6.60)

where ξ(t) is an arbitrary function of time with dimensions of inverse time. The four time-
dependent parameters a, b, c, and d introduced in (1.6.46) are specified as

a = 2 ξ(t), b = −3 ξ(t), c = −ξ(t), d = 3 ξ(t). (1.6.61)

Thus,

B = ξ(t)

[
2 −3

−1 3

]
. (1.6.62)

Carrying out the decomposition shown in equation (1.6.48), we find that

B = ξ(t)
(

1

2

[
0 −2
2 0

]
+

1

2

[ −1 −4
−4 1

]
+

1

2

[
5 0
0 5

] )
. (1.6.63)

Using equations (1.6.49) and (1.6.50), we find that the rate of rotation and rate of expansion
are given by

Ω = −ξ(t), α = 5 ξ(t). (1.6.64)

The symmetric matrix E defined in equation (1.6.51) is given by the second term on the
right-hand side of (1.6.63),

E = ξ(t)

[ − 1
2 −2

−2 1
2

]
. (1.6.65)
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The eigenvalues of E are found by setting the determinant of the following matrix to zero:

E− λ I =

[ − 1
2 ξ(t)− λ −2 ξ(t)
−2 ξ(t) 1

2 ξ(t)− λ

]
. (1.6.66)

The roots of the resulting quadratic equation are found to be

λ = ±
√
17

2
ξ(t). (1.6.67)

Either one of these values can be identified with the rate of extension, G, as indicated by
equation (1.6.58).

Substituting expressions (1.6.67) into (1.6.54) we obtain two homogeneous equations,[ − 1
2 (1±

√
17) −2

−2 − 1
2 (−1±√

17)

]
·
[

wx

wy

]
=

[
0
0

]
. (1.6.68)

In fact, the two scalar equations comprising this system are identical; the redundancy un-
derlines the notion of an eigensolution. Using the first equation, we obtain

wy

wx
= −1±√

17

4
. (1.6.69)

Following the instructions given in the paragraph following equation (1.6.57), we finally
obtain

β = − arctan
1±√

17

4
. (1.6.70)

In summary, we have managed to extract the rate of rotation, rate of expansion, two
rates of deformation, and the corresponding eigenvectors in a linear two-dimensional flow.

Simple shear flow

The velocity components of simple shear flow in the xy plane are given by

ux = ξ(t) y, uy = 0, (1.6.71)

where ξ(t) is a constant or time-dependent coefficient with units of inverse time, called the
shear rate, as shown in Figure 1.6.3. The four coefficients, a, b, c, and d, introduced in
(1.6.46) are

a = 0, b = 0, c = ξ(t), d = 0. (1.6.72)

Thus,

B =

[
0 0

ξ(t) 0

]
. (1.6.73)
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y

x

Figure 1.6.3 Illustration of simple shear flow in the xy plane. A circular fluid parcel deforms into
an inclined ellipse as the upper part of the parcel moves forward and the lower part of the parcel
moves backward relative to the parcel center.

Carrying out the decomposition shown in equation (1.6.48), we find that

B =
1

2
ξ(t)

( [ 0 −1
1 0

]
+

[
0 1
0 1

]
+

[
0 0
0 0

] )
. (1.6.74)

Using equations (1.6.49) and (1.6.50), we find that the rate of rotation and rate of expansion
are given by

Ω = − 1

2
ξ(t), α = 0. (1.6.75)

When ξ > 0, a fluid parcel rotates in the clockwise direction, Ω < 0; when ξ < 0, a fluid
parcel rotates in the counterclockwise direction, Ω > 0.

The symmetric matrix E defined in equation (1.6.51) is given by the second term on
the right-hand side of (1.6.74),

E =
1

2
ξ(t)

[
0 1
1 0

]
. (1.6.76)

The eigenvalues of E are found by setting the determinant of the following matrix to zero,

E− λ I =

[ −λ 1
2 ξ(t)

1
2 ξ(t) −λ

]
. (1.6.77)

The roots of the resulting quadratic equation are found readily to be

λ = ± 1

2
ξ(t). (1.6.78)

Either one of these values can be identified with the rate of extension, G, as indicated by
equation (1.6.58).

Substituting the eigenvalues given in (1.6.78) into (1.6.54), we obtain a linear system
for the eigenvector components,[ ∓1 1

1 ∓1

]
·
[

wx

wy

]
=

[
0
0

]
, (1.6.79)
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yielding

wy

wx
= ±1. (1.6.80)

The first eigenvector corresponding to the + sign is inclined by 45◦ with respect to the x
axis. The second eigenvector corresponding to the − sign is inclined at 135◦ with respect to
the x axis. These results are consistent with the physical interpretation of the deformation
of a circular patch, as illustrated in Figure 1.6.3.

1.6.1 Material lines

A collection of point particles distributed along a line in a flow defines a material line.
Explain why, if the flow is steady, a material line that lies at a streamline at a certain time
will remain on the streamline at any time.

1.6.2 Rotation of coordinates

Use elementary trigonometry to derive two equations that relate the old coordinates, (x′, y′),
to the new coordinates, (x, y), and vice versa.

1.6.3 Fundamental decomposition of a flow

Carry out the decomposition of a two-dimensional flow with velocity components

ux(x, y, t) = ξ(t) (2x+ 3y) uy(x, y, t) = ξ(t) (−x− 2y), (1.6.81)

where ξ(t) is a given function of time.

1.7 Numerical interpolation

In practice, the components of the fluid velocity are rarely available in an explicit form, as
shown in equations (1.4.8) and (1.5.2). Instead, they are either measured in the laboratory
with velocity probes or computed by numerical methods at data points inside the domain
of a flow.

Typically, but not always, the data points are located at the nodes of a grid defined
by the intersections of straight or curved lines in two dimensions, or by the intersection of
planar or curved surfaces in three dimensions. The velocity at an arbitrary point is then
obtained by a numerical procedure known as function interpolation.

A Cartesian grid is defined by the intersection of straight lines that are normal to the
x or y axis in two dimensions, and by the intersection of planes that are normal to x, y, or
z axis in three dimensions. A one-dimensional, a two-dimensional, and a three-dimensional
Cartesian grid with evenly spaced grid lines are shown in Figure 1.7.1.

Problems
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Figure 1.7.1 Illustration of (a) a one-dimensional grid with N divisions, (b) a two-dimensional Nx ×
Ny Cartesian grid, and (c) a three-dimensional Nx ×Ny ×Nz Cartesian grid with evenly spaced
grid lines.

1.7.1 Interpolation in one dimension

To prepare the ground for computing the components of the velocity at an arbitrary point
in a flow from specified grid values, we develop methods of interpolating a function, f(x),
of one independent variable, x.

Let us assume that the values of a function, f(x), are available at N + 1 nodes of a
one-dimensional grid, located at xi for i = 1, . . . , N + 1, where x1 < x2 < · · · < xN+1, as
shown in Figure 1.7.1(a). Effectively, we are provided with a three-column table of N + 1
entries listing i, xi, and f(xi); for simplicity, we denote f(xi) by fi, that is,

fi ≡ f(xi). (1.7.1)
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Figure 1.7.2 Local approximation of a function, f(x), with (a) a linear interpolating function rep-
resented by the straight line or (b) a parabolic interpolating function represented by the bold
line.

Our goal is to compute the value of the function f(x) at a point, x, that does not necessarily
coincide with a node.

A set of N + 1 nodes define N intervals, where the ith interval starts at the ith node
and ends at the i+ 1 node. Suppose that the point x lies inside the kth interval subtended
between the nodes xk and xk+1. A simple way of finding the value of k is by computing the
products

pi = (x− xi)(x− xi+1) (1.7.2)

for i = 1, . . . , N . The appropriate value of k is the unique value of i for which pi is negative.

Better and faster methods of finding the label of the host interval, k, are available.
For example, in the method of logarithmic search, we first examine whether the point x
lies on the left or on the right of the mid-point of the interpolation domain (x1, xN+1).
Having found the host half-interval, we repeat the process until the host sub-interval has
been reduced to the kth interval.

Linear interpolation

To compute the value f(x), we may approximate the graph of the function f(x) in the
host interval, (xk, xk+1), with a straight line, and require that the straight line interpolates
through the data points (xk, fk) and (xk+1, fk+1), as illustrated in Figure 1.7.2(a).

In mathematical terms, we approximate the function f(x) inside the interval (xk, xk+1)
with a linear function expressed by the first-degree polynomial

P
(k)
1 (x) = a(k)(x− xk) + b(k), (1.7.3)

where the coefficient a(k) is the slope and the constant b(k) is the intercept. To facilitate
forthcoming algebraic manipulations, we have expressed the polynomial in terms of the
shifted monomial x− xk, rather than in terms of the unshifted monomial, x.
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To compute the constants a(k) and b(k), we enforce the interpolation conditions

P
(k)
1 (xk) = b(k) = fk,

P
(k)
1 (xk+1) = a(k)(xk+1 − xk) + b(k) = fk+1, (1.7.4)

which ensure that the graph of the polynomial passes through the data labeled k and k+1.
Solving the system of the two linear equations (1.7.4) for the two monomial coefficients, we
obtain

a(k) =
fk+1 − fk
xk+1 − xk

, b(k) = fk. (1.7.5)

To compute the linear polynomial P
(k)
1 (x), we first calculate the coefficients a(k) and

b(k) using equations (1.7.5), and then evaluate the right-hand side of (1.7.3) for a desired
value of x that lies between xk and xk+1. The result will be a reasonable approximation to
the desired value, f(x).

Quadratic interpolation

Interpolation based on the straight-line approximation overlooks the curvature of the graph
of the function f(x). For better accuracy, we may approximate the function f(x) with a
parabola defined in the interval (xk, xk+1), as depicted in Figure 1.7.2(b). In mathematical
terms, we approximate the function f(x) with a quadratic function expressed by the second-
degree polynomial

P
(k)
2 (x) = a(k) (x− xk)

2 + b(k)(x− xk) + c(k). (1.7.6)

To simplify the forthcoming algebraic manipulations, we have expressed the polynomial in
terms of the shifted monomial x− xk, rather than the unshifted monomial, x.

To compute the three constants, a(k), b(k), and c(k), we require three equations. First, we
demand that the parabola interpolates through the two data points (xk, fk) and (xk+1, fk+1),
and obtain the interpolation conditions

P
(k)
2 (xk) = c(k) = fk,

P
(k)
2 (xk+1) = a(k)(xk+1 − xk)

2 + b(k)(xk+1 − xk) + c(k) = fk+1. (1.7.7)

One more datum point is required, and we may choose either the backward point, (xk−1, fk−1),
or the forward point, (xk+2, fk+2). The backward choice provides us with the condition

P
(k)
2 (xk−1) = a(k)(xk−1 − xk)

2 + b(k)(xk−1 − xk) + c(k) = fk−1. (1.7.8)

With the choice expressed by equations (1.7.7) and (1.7.8), the coefficients of the bino-
mial are found to be

a(k) =

fk+1 − fk
hk

− fk − fk−1

hk−1

hk + hk−1
, b(k) =

hk−1
fk+1 − fk

hk
+ hk

fk − fk−1

hk−1

hk + hk−1
, c(k) = fk,

(1.7.9)
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where

hk−1 = xk − xk−1, hk = xk+1 − xk (1.7.10)

are the lengths of the backward and forward intervals.

When the data points are spaced evenly, hk−1 = hk ≡ h, we obtain the simplified
expressions

a(k) =
fk+1 − 2fk + fk−1

2h2
, b(k) =

fk+1 − fk−1

2h
, c(k) = fk. (1.7.11)

To compute P
(k)
2 (x), we first calculate the coefficients a(k), b(k), and c(k) using the pre-

ceding equations, and then evaluate the right-hand side of (1.7.6). The result will be an
approximation to f(x) that is improved with respect to that computed by linear interpola-
tion.

1.7.2 Interpolation in two dimensions

Next, we consider a function of two independent variables, x and y. For the present purposes,
a function of two variables is an engine that receives a pair of numbers, x and y, and generates
a new number, f(x, y).

Cartesian grid

Assume that values of a function, f(x, y), are given at the nodes of a two-dimensional
Cartesian grid defined by the intersections of x-level lines xi for i = 1, . . . , Nx + 1, and
y-level lines yj for j = 1, . . . , Ny + 1, as shown in Figure 1.7.1(b). A grid node is identified
by the values of two indices, i and j, forming an ordered integer doublet, (i, j). The value
of the function f(x, y) at the (i, j) node is equal to f(xi, yj). Our goal is to compute the
value of f at a point, (x, y), that is not necessarily a node.

Grid generation

The following function entitled grid 2d, located in directory rec 2d inside directory 02 grids
of Fdlib, generates evenly spaced grid lines and grid points in a rectangular domain in the
xy plane confined between ax ≤ x ≤ bx and ay ≤ y ≤ by, with Nx intervals in the x direction
and Ny intervals in the y direction:

function [glx,gly,gx,gy] = grid 2d (ax,bx,ay,by,Nx,Ny)

%-----

% grid spacing

%-----

Dx = (bx-ax)/Nx;

Dy = (by-ay)/Ny;
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%---

% generate the grid lines

%---

for i=1:Nx+1

glx(i) = ax+(i-1.0)*Dx;

end

for j=1:Ny+1

gly(j) = ay+(j-1.0)*Dy;

end

%---

% generate the grid points

%---

for i=1:Nx+1

for j=1:Ny+1

gx(i,j) = glx(i);

gy(i,j) = gly(j);

end

end

%-----

% done

%-----

return

Suppose that a value of x lies inside the kxth x-interval confined between the xkx
and

xkx+1 x-level lines, and a value of y lies inside the kyth y-interval confined between the yky

and yky+1 y-level lines, as shown in Figure 1.7.3. The values of kx and ky can be found by
the methods discussed in Section 1.7.1 for one-dimensional interpolation.

Bilinear interpolation

A sensible approximation to f(x, y) can be obtained by replacing f(x, y), with a bilinear
function,

Πkx,ky (x, y), (1.7.12)

defined in a rectangular domain that is confined between the x-level lines x = xkx
and

x = xkx+1, and y-level lines y = yky
and y = yky+1. The bilinear function is distinguished

by the following properties:

1. For a fixed value of x, call it x0, the function Πkx,ky (x0, y) varies linearly with respect
to y.

2. For a fixed value of y, call it y0, the function Πkx,ky (x, y0) varies linearly with respect
to x.
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Figure 1.7.3 Bilinear interpolation of a scalar function at a point, (x, y), through a rectangular grid.
The four areas shown determine the interpolation weights.

3. The following four interpolation conditions ensure that the bilinear function reproduces
the neighboring grid values:

Πkx,ky (xkx
, yky

) = f(xkx
, yky

),

Πkx,ky (xkx
, yky+1) = f(xkx

, yky+1),

Πkx,ky (xkx+1, yky
) = f(xkx+1, yky

), (1.7.13)

Πkx,ky (xkx+1, yky+1) = f(xkx+1, yky+1).

The first and second properties require that the bilinear function has the functional form

Πkx,ky (x, y) = (akx,ky
x x+ bkx,ky

x ) (akx,ky
y y + bkx,ky

y ). (1.7.14)

To evaluate the four constants, a
kx,ky
x , b

kx,ky
x , a

kx,ky
y , and b

kx,ky
y , we use the four interpolation

conditions (1.7.13), obtaining

Πkx,ky (x, y) = w
kx,ky

00 (x, y) f(xkx
, yky

) + w
kx,ky

10 (x, y) f(xkx+1, yky
)

+w
kx,ky

01 (x, y) f(xkx
, yky+1) + w

kx,ky

11 (x, y) f(xkx+1, yky+1), (1.7.15)

where

w
kx,ky

00 (x, y) =
A00

A
, w

kx,ky

10 (x, y) =
A10

A
,

w
kx,ky

01 (x, y) =
A01

A
, w

kx,ky

11 (x, y) =
A11

A
.

(1.7.16)

are position-dependent interpolation weights. The numerators, A00, A10, A01, and A11, are
the areas of the four sub-rectangles depicted in Figure 1.7.3, given by

A00 = (xkx+1 − x)(yky+1 − y), A10 = (x− xkx
)(yky+1 − y),

A01 = (xkx+1 − x)(y − yky
), A11 = (x− xkx

)(y − yky
). (1.7.17)
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The common denominator, A, is the area of the interpolation rectangle, given by

A = A00 +A01 +A10 +A11 = (xkx+1 − xkx
)(yky+1 − yky

). (1.7.18)

It is reassuring to observe that the sum of the four interpolation weights given in (1.7.16)
is equal to unity for any x and y,

w
kx,ky

00 (x, y) + w
kx,ky

10 (x, y) + w
kx,ky

01 (x, y) + w
kx,ky

11 (x, y) = 1. (1.7.19)

This property guarantees that, if the four participating grid values are equal,

f(xkx
, yky

) = f(xkx
, yky+1) = f(xkx+1, yky

) = f(xkx+1, yky+1) = φ, (1.7.20)

then bilinear interpolation based on (1.7.15) predicts that

Πkx,ky (x, y) = φ (w
kx,ky

00 + w
kx,ky

10 + w
kx,ky

01 + w
kx,ky

11 ) = φ, (1.7.21)

as required.

1.7.3 Interpolation of the velocity in a two-dimensional flow

Returning to fluid mechanics, we consider a two-dimensional flow in the xy plane and specify
the values of the x and y velocity components, ux and uy, at the nodes of a two-dimensional
Cartesian grid. To obtain the corresponding values at an arbitrary point, (x, y), we employ
bilinear interpolation, finding that

ux(x, y) = w
kx,ky

00 (x, y)ux(xkx
, yky

) + w
kx,ky

10 (x, y)ux(xkx+1, yky
)

+w
kx,ky

01 (x, y)ux(xkx
, yky+1) + w

kx,ky

11 (x, y)ux(xkx+1, yky+1) (1.7.22)

and

uy(x, y) = w
kx,ky

00 (x, y)uy(xkx
, yky

) + w
kx,ky

10 (x, y)uy(xkx+1, yky
)

+w
kx,ky

01 (x, y)uy(xkx
, yky+1) + w

kx,ky

11 (x, y)uy(xkx+1, yky+1). (1.7.23)

The following MATLAB function entitled rec 2d int, residing in directory rec 2d inside
directory 02 grids of Fdlib, performs the interpolation in a rectangular domain confined in
ax ≤ x ≤ bx and ay ≤ y ≤ by:

function [ux,uy] = rec 2d int ...

...

(ax,bx ... % x end points

,ay,by ... % y end points

,Nx,Ny ... % grid size

,glx,gly ... % grid lines

,gux,guy ... % grid velocity
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,x,y ... % interpolation point

)

%======================================

% Bilinear interpolation of the velocity

% at a point, (x, y)

%======================================

%-----------------------------

% locate the x and y intervals

%-----------------------------

for kx=1:Nx

prod = (x-glx(kx))*(x-glx(kx+1));

if(prod<0) break; end

end

for ky=1:Ny

prod = (y-gly(ky))*(y-gly(ky+1));

if(prod<0) break; end

end

%----------------------

% interpolation weights

%----------------------

A00 = (glx(kx+1)-x)*(gly(ky+1)-y);

A01 = (glx(kx+1)-x)*(y-gly(ky));

A10 = (x-glx(kx))*(gly(ky+1)-y);

A11 = (x-glx(kx))*(y-gly(ky));

A = (glx(kx+1)-glx(kx))*(gly(ky+1)-gly(ky));

w00 = A00/A; w01 = A01/A; w10 = A10/A; w11 = A11/A;

%--------------

% interpolation

%--------------

ux = w00 * gux(kx ,ky) + w01 * gux(kx ,ky+1) ...

+ w10 * gux(kx+1,ky) + w11 * gux(kx+1,ky+1);

uy = w00 * guy(kx ,ky) + w01 * guy(kx ,ky+1) ...

+ w10 * guy(kx+1,ky) + w11 * guy(kx+1,ky+1);

%---

% done

%---

return
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The following MATLAB code entitled rec 2d, located in directory 02 grids of Fdlib,
generates a grid and calls this function to display a velocity vector field:

%================================================

% rec 2d: velocity vector field by interpolation

%================================================

ax = -1.3; bx = 1.3; ay = -1.0; by = 1.0;

Nx = 16; Ny = 8; % grid size

%---

% prepare to plot

%---

figure(1)

hold on

axis([ax-0.1, bx+0.1, ay-0.1, by+0.1])

axis equal

xlabel('x','fontsize',14)

ylabel('y','fontsize',14)

set(gca,'fontsize',14)

box on

title('Velocity vector field')

plot([ax, bx, bx, ax, ax],[ay, ay, by, by, ay],'-k')

%-----

% generate the grid

%-----

[ glx,gly,gx,gy ] = grid 2d (ax,bx,ay,by,Nx,Ny);

%---

% specify the grid velocities (typical)

%---

for i=1:Nx+1

for j=1:Ny+1

gux(i,j) = gx(i,j);

guy(i,j) =-gy(i,j);

end

end

%---

% velocity vector field

% in the middle of each cell

%---
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for i=1:Nx

x = 0.5*(glx(i)+glx(i+1));

for j=1:Ny

y = 0.5*(gly(j)+gly(j+1));

plot(x,y,’g.’)

[ux,uy] = rec 2d int ...

...

(ax,bx ... % x end points

,ay,by ... % y end points

,Nx,Ny ... % grid size

,glx,gly ... % grid lines

,gux,guy ... % grid velocity

,x,y ... % interpolation point

);

vector = draw arrow 2d(x,y,ux/Nx,uy/Nx);

plot(vector(:,1),vector(:,2));

end

end

%----

% done

%----

The graphics display generated by the code for the velocity field specified in the code is
shown in Figure 1.7.4.

The following MATLAB function draw arrow 2d, located in directory rec 2d inside di-
rectory 02 grids of Fdlib, is invoked to generate beautiful arrows:

function vector = draw arrow 2d (x1,y1,dx,dy)

%--------------------------------------

% Generate coordinates for plotting

% a five-point arrow starting at the point

% (x1,x2) and ending at the point (x1+dx, y1+dy)

%

% SYMBOLS:

% --------

%

% dx, dy: arrow vector

%

% vector(i,1): x-coordinate of the ith point

% vector(i,2): y-coordinate of the ith point

% where i=1,2,3,4,5

%



1.7 Numerical interpolation 57

% angle: angle of arrow tip in radians

% tip: length of arrow tip sides

% as a fraction of the arrow length

%---------------------------------------

angle = 0.3;

tip = 0.50;

%--------

% prepare

%--------

x2 = x1+dx; y2 = y1+dy;

cs = cos(angle);

sn = sin(angle);

dxi = -dx; dyi = -dy;

%------------

% five points

%------------

vector(1,1) = x1; vector(1,2) = y1;

vector(2,1) = x2; vector(2,2) = y2;

vector(3,1) = x2+( dxi*cs+dyi*sn)*tip;

vector(3,2) = y2+(-dxi*sn+dyi*cs)*tip;

vector(4,1) = x2; vector(4,2) = y2;

vector(5,1) = x2+(dxi*cs-dyi*sn)*tip;

vector(5,2) = y2+(dxi*sn+dyi*cs)*tip;

%-----

% done

%-----

return

MATLAB encapsulates the graphics function quiver that also generates a velocity vector
field over a grid.

1.7.4 Streamlines by interpolation

Our ability to interpolate the velocity components at any point in a flow from specified
grid values allows us to generate particle paths and streamlines in the absence of explicit
expressions for the velocity field. In computational fluid dynamics (CFD), grid values are
computed by solving the equations governing the motion of a fluid using a variety of nu-
merical methods, as discussed in Chapters 3 and 8.

The following MATLAB code entitled rec 2d strml, located in directory rec 2d inside
directory 02 grids of Fdlib, generates and draws streamlines:
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Figure 1.7.4 Bilinear interpolation of a velocity vector field through a Cartesian grid in a two-
dimensional flow.

%=========

% streamlines in a rectangular cavity

%

% confined in ax<x<bx and ay<y<by

%=========

ax = -1.2; bx = 1.2;

ay = -1.0; by = 1.0;

Nx = 16; Ny = 20; % grid size

Nmax = 400; % maximum steps along a streamline

Ds = 0.020; % travel distance in each step

%-----

% prepare to plot

%-----

figure(1)

hold on

axis([ax-0.1, bx+0.1, ay-0.1, by+0.1])

axis equal

xlabel('x','fontsize',14)

ylabel('y','fontsize',14)

set(gca,'fontsize',14)

box on
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%-----

% generate the grid

%-----

[ glx,gly,gx,gy ] = grid 2d(ax,bx,ay,by,Nx,Ny);

%---

% specify the grid velocities (typical)

%---

for i=1:Nx+1

for j=1:Ny+1

gux(i,j) =-gy(i,j);

guy(i,j) = gx(i,j);

end

end

%---------------------------

% initial streamline points

%---------------------------

x0 = [0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2];

Nstr = size(x0');

for i=1:Nstr

y0(i) = 0.001;

end

%----------------------

% loop over streamlines

%---------------------

for l=1:Nstr

xn = x0(l);

yn = y0(l);

xstr(1) = xn; % new point

ystr(1) = yn; % new point

%----

% integrate by the modified Euler method

%----

for i=2:Nmax % step in time

[ux,uy] = rec 2d int ...

...
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(ax,bx ... % x end points

,ay,by ... % y end points

,Nx,Ny ... % grid size

,glx,gly ... % grid lines

,gux,guy ... % grid velocity

,xn,yn ... % interpolation point

);

Umag = sqrt(ux*ux+uy*uy);

Dt = Ds/Umag;

x1 = xn + Dt*ux;

y1 = yn + Dt*uy;

[ux1,uy1] = rec 2d int ...

...

(ax,bx ...

,ay,by ...

,Nx,Ny ...

,glx,gly ...

,gux,guy ...

,x1,y1 ...

);

Dth = 0.5*Dt;

xn = xn + Dth*(ux+ux1);

yn = yn + Dth*(uy+uy1);

xstr(i) = xn;

ystr(i) = yn;

%----

% check for a closed streamline after 5 steps (typical)

%---

if(i>5)

Dist = sqrt((xn-xstr(1))^2+(yn-ystr(1))^2);

if(Dist<Ds)

xstr(i+1) = xstr(1);

ystr(i+1) = ystr(1);

break;

end

end

end % over time

plot(xstr,ystr,'r-')

clear xstr ystr
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Figure 1.7.5 Streamlines of a rotary flow generated by interpolation from an underlying Cartesian
grid.

end % of run over streamlines

%---

% done

%---

axis([ax-0.1, bx+0.1, ay-0.1, by+0.1])

The graphics display generated by the code for the specified velocity field expressing rigid-
body rotation is shown in Figure 1.7.5.

1.7.1 Quadratic interpolation

Solve the linear system of three equations (1.7.7) and (1.7.8) to derive formulas (1.7.9).
Hint : Compute first the coefficient c(k) using the first of equations (1.7.7).

1.7.2 Forward-point parabolic interpolation

Consider the parabolic interpolation of a function of one variable, f(x), as discussed in the
text. Forward interpolation employs the interpolation condition

P
(k)
2 (xk+2) = a(k)(xk+2 − xk)

2 + b(k)(xk+2 − xk) + c(k) = fk+2, (1.7.24)

in place of (1.7.8). Derive expressions for the coefficients a(k), b(k), and c(k) in terms of the
grid values fk, fk+1, and fk+2, and the interval sizes hk and hk+1. Then derive simplified
expressions when hk and hk+1 are both equal to h.

Problems
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1.7.3 Trilinear interpolation

Consider a function of three variables, f(x, y, z). Extend the method of bilinear interpolation
of a function of two variables, discussed in the text, to the method of trilinear interpolation
that generates the value of f at an arbitrary point (x, y, z) using the values of f at the
nodes of a three-dimensional Cartesian grid, as shown in Figure 1.7.1(c). The interpolation
formula should be the counterpart of (1.7.15) with properly defined interpolation weights.

1.7.4 Bilinear interpolation

Run the code rec 2d for a velocity field of your choice. Confirm that the interpolated values
are identical to the specified grid values and prepare a plot of the velocity vector field similar
to that displayed in Figure 1.7.4. Discuss the structure of the flow.

1.7.5 Streamlines by interpolation

Run the code rec 2d strml for a velocity field of your choice. Generate, plot, and discuss
the streamline pattern.
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In this chapter, we continue the study of kinematics by considering in more detail the motion
of fluid parcels, by deriving expressions for the areal, volumetric, and mass flow rates across
lines and surfaces drawn in a fluid, and by developing numerical methods for evaluating
kinematic variables of interest in terms of derivatives and integrals of the velocity field.
Mass conservation and physical conditions imposed at boundaries introduce mathematical
constraints that motivate the description of a flow in terms of ancillary functions that
expedite the mathematical analysis and considerably simplify the numerical computation.

2.1 Fundamental modes of fluid parcel motion

In Chapter 1, we pointed out that the nature of the motion of a small fluid parcel is
determined by the relative motion of point particles residing inside the parcel. If variations
in the point particle velocity are negligible compared to the average point particle velocity,
the parcel exhibits rigid-body translation. Significant variations in the point particle velocity
are responsible further general types of motion, including local rotation, deformation, and
isotropic expansion.

To study the relative motion of point particles in the vicinity of a certain point, x0 =
(x0, y0, z0), we consider differences in the corresponding velocity components evaluated at
a point x = (x, y, z) that lies close to x0, and at the chosen point, x0, as shown in Figure
2.1.1. If the differences are small compared to the distance between the points x and x0,
both measured in proper units, then the relative motion is negligible. If the differences are
substantial, the relative motion is significant and needs to be properly analyzed.
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0

x

x

Figure 2.1.1 Illustration of relative motion of a fluid in the neighborhood of a point, x0. The bold
line represents an actual velocity profile and the straight line represents the linearized velocity
profile.

2.1.1 Function linearization

To prepare the ground for our analysis, we consider a scalar function of three independent
variables that receives a triplet of numbers, (x, y, z), and generates a number, f(x, y, z).
If the function f is locally well behaved, and if the point x lies sufficiently near the point
x0, then we expect that the value f(x, y, z) will be close to the value f(x0, y0, z0). Stated
differently, in the limit as x tends to x0, that is, all three scalar differences x− x0, y − y0,
and z − z0 tend to zero, the difference in the function values,

f(x, y, z)− f(x0, y0, z0), (2.1.1)

will vanish.

The variable point, x, may approach the fixed point, x0, from different directions.
Selecting the direction that is parallel to the x axis, we set x = (x, y0, z0), and consider
the limit of the difference f(x, y0, z0) − f(x0, y0, z0) as x − x0 tends to zero. Because the
function f has been assumed well behaved, the ratio of the differences,

f(x, y0, z0)− f(x0, y0, z0)

x− x0
, (2.1.2)

tends to a finite number, which is defined as the first partial derivative of the function f
with respect to the variable x evaluated at the point x0, and is denoted by (∂f/∂x)(x0).
Elementary calculus ensures that the partial derivative can be computed using the usual
rules of differentiation of a function of one variable with respect to x, regarding all other
independent variables as constant. For example, if f = xyz, then ∂f/∂x = yz, and thus
(∂f/∂x)(x0) = y0z0,
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Setting the fraction shown in (2.1.2) equal to (∂f/∂x)(x0), and solving the resulting
equation for f(x, y0, z0), we obtain

f(x, y0, z0) 	 f(x0, y0, z0) + (x− x0)
(∂f
∂x

)
x0

. (2.1.3)

It is important to bear in mind that this equation is exact only in the limit as Δx ≡ x− x0

tends to zero. For small but non-infinitesimal values of Δx, the difference between the left-
and right-hand sides is on the order of Δx2, which is small compared to Δx. For example,
if Δx is equal to 0.01 is some units, then Δx2 is equal to 0.0001 in corresponding units.

The point x may also approach the point x0 along the y or z axis, yielding the following
counterparts of equation (2.1.3),

f(x0, y, z0) 	 f(x0, y0, z0) + (y − y0)
(∂f
∂y

)
x0

, (2.1.4)

and

f(x0, y0, z) 	 f(x0, y0, z0) + (z − z0)
(∂f
∂z

)
x0

. (2.1.5)

Combining the arguments that led us to equations (2.1.3)–(2.1.5), we let the point x ap-
proach the point x0 from an arbitrary direction and derive the approximation

f(x, y, z) 	 f(x0, y0, z0) + (x− x0)
(∂f
∂x

)
x0

+ (y − y0)
(∂f
∂y

)
x0

+ (z − z0)
(∂f
∂z

)
x0

.

(2.1.6)

We pause to emphasize that relation (2.1.6) is exact only in the limit as all three spatial
differences, Δx = x − x0, Δy = y − y0, and Δz = z − z0, tend to zero. For small but
non-infinitesimal values of any of these differences, the left-hand side of (2.1.6) differs from
the right-hand side by an amount that is generally on the order of the maximum of Δx2,
Δy2, or Δz2.

Taylor series

Equation (2.1.6) can be rendered exact for any value of Δx, Δy, or Δz, by adding to the
right-hand side a term called the remainder. As all three differences Δx, Δy, and Δz, tend
to zero, the remainder vanishes faster than these differences. Elementary calculus shows
that, if Δx, Δy, and Δz are sufficiently small, the remainder can be expressed as an infinite
series involving products of powers of Δx, Δy, and Δz, called the Taylor series of the
function f about the point x0.

The process of deriving (2.1.6) is called linearization of the function f(x) about the
point x0. The linearized form (2.1.6) states that, in the immediate vicinity of a point, x0,
any regular function resembles a linear function of the shifted monomials Δx, Δy, and Δz.
If all three first partial derivatives happen to vanish at the point x0, the function f(x)
behaves like a quadratic function; however, this is a rare exception.
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Gradient of a scalar function

To economize our notation, we introduce the gradient of a function, f , denoted by ∇f ,
defined as the vector of the three partial derivatives,

∇f ≡ ex
∂f

∂x
+ ey

∂f

∂y
+ ez

∂f

∂z
, (2.1.7)

where ex, ey, and ez are the unit vectors along the x, y, or z axes. The symbol ∇ is a vector
operator called the del or gradient operator, defined as

∇ = ex
∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
. (2.1.8)

Unlike a regular vector, ∇ may not stand alone, but must operate on a scalar function
of position from the left to acquire a meaningful interpretation.

Inner vector product

As a second preliminary, we define the inner product of a pair of three-dimensional vectors,

f = (fx, fy, fz), g = (gx, gy, gz), (2.1.9)

as the scalar

f · g = fx gx + fy gy + fz gz. (2.1.10)

In index notation,

f · g ≡ fi gi, (2.1.11)

where summation of the repeated index i is implied over x, y, and z, according to Einstein’s
repeated-index summation convention: if an index appears twice in a product, then summa-
tion of that index is implied over its range. In two dimensions, i is summed over x and y.
An index may not appear more than twice in a product. An index that appears once is a
free index

Interpretation of the inner vector product

It can be shown using the rule of cosines that the inner product defined in (2.1.10) is equal
to the product of (a) the length of the first vector, f , (b) the length of the second vector, g,
and (c) the cosine of the angle subtended between the two vectors, β,

f · g = |f | |g| cosβ. (2.1.12)

If the angle β is equal to 1
2π, which means that the two vectors are orthogonal, the cosine

of the angle is zero and the inner product vanishes. If the angle is zero, which means the
two vectors are parallel, the inner product is equal to the product of the two vector lengths.
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If the angle is equal to π, which means the two vectors are anti-parallel, the inner product
is equal to the negative of the product of the two vector lengths.

If both f and g are unit vectors, that is, their lengths are equal to one unit of length, then
the inner product is equal to the cosine of the angle subtended between the corresponding
directions.

Linearized expansion in compact form

Using the preceding definitions, we state equation (2.1.6) in a compact vector form

f(x) 	 f(x0) + (x− x0) · (∇f)x0
, (2.1.13)

where the subscript x0 signifies that the gradient, ∇f , is evaluated at the point x0. The
second term on the right-hand side of (2.1.13) is the inner product of the distance vector,
x−x0, and the gradient vector, ∇f , evaluated at a point of interest, x0. The magnitude of
this term attains an extreme value when the two vectors are collinear.

2.1.2 Velocity gradient tensor

To derive the linearized form of the velocity field in the vicinity of a point, x0, we identify
the function f(x) with the x, y, or z velocity component, ux, uy, or uz, and obtain the
approximations

ux(x) 	 ux(x0) + (x− x0)
(∂ux

∂x

)
x0

+ (y − y0)
(∂ux

∂y

)
x0

+ (z − z0)
(∂ux

∂z

)
x0

,

uy(x) 	 ux(x0) + (x− x0)
(∂uy

∂x

)
x0

+ (y − y0)
(∂uy

∂y

)
x0

+ (z − z0)
(∂uy

∂z

)
x0

, (2.1.14)

uz(x) 	 uz(x0) + (x− x0)
(∂uz

∂x

)
x0

+ (y − y0)
(∂uz

∂y

)
x0

+ (z − z0)
(∂uz

∂z

)
x0

.

Collecting these equations into a unified vector form, we obtain the vector equation

u(x) 	 u(x0) + (x− x0) · L(x0), (2.1.15)

where L is a 3× 3 matrix called the velocity-gradient tensor, defined as

L ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂ux

∂x

∂uy

∂x

∂uz

∂x

∂ux

∂y

∂uy

∂y

∂uz

∂y

∂ux

∂z

∂uy

∂z

∂uz

∂z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (2.1.16)

The notation L(x0) in (2.1.15) emphasizes that the nine components of the velocity-gradient
tensor are evaluated at the chosen point x0 around which linearization has taken place. An
actual and a linearized velocity profile is shown in Figure 2.1.1.
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Denoting x1 = x, y1 = y, and z1 = x, and also u1 = ux, u2 = uy, and u3 = uz. we
compute the components of the velocity-gradient tensor

Lij =
∂uj

∂xi
(2.1.17)

for i, j = 1, 2, 3 or i, j = x, y, z.

An application

As an example, we consider the velocity field expressed by equations (1.4.8), repeated below
for convenience,

ux(x, y, z, t) = a (y2 + z2) + x3yz (b+ c t) + c edxt,

uy(x, y, z, t) = a (z2 + x2) + xy3z (b+ c t) + c edyt, (2.1.18)

uz(x, y, z, t) = a (x2 + y2) + xyz3 (b+ c t) + c edzt,

where a, b, c, and d are four constants. Applying the rules of partial differentiation, we
obtain the associated velocity-gradient tensor

L =

⎡⎣ 3x2yz (b+ c t) + cdt edxt 2ax+ y3z (b+ c t) 2ax+ yz3(b+ c t)
2ay + x3z (b+ c t) 3y2xz (b+ c t) + cdt edyt 2ay + xz3(b+ c t)
2az + x3y (b+ c t) 2az + xy3 (b+ c t) 3z2xy (b+ c t) + cdt edzt

⎤⎦ .
(2.1.19)

Placing the point x0 along the x axis, that is, setting y0 = 0 and z0 = 0, we find that

L(x0, 0, 0) =

⎡⎣ cdt edx0t 2ax0 2ax0

0 cdt 0
0 0 cdt

⎤⎦ . (2.1.20)

Thus, in the vicinity of the point x0 = (x0, 0, 0), the flow expressed by equations (2.1.18)
can be approximated with a linear flow described by

ux(x, y, z) 	 ux(x0) + cdt edx0t (x− 1),

uy(x, y, z) 	 uy(x0) + 2a (x− 1) + cdt y, (2.1.21)

uz(x, y, z) 	 uz(x0) + 2a (x− 1) + cdt z.

The right-hand sides of equations (2.1.21) are linear functions of the spatial coordinates x,
y, and z, but not necessarily linear functions of time, t.

What is a tensor?

The velocity-gradient tensor is a matrix containing the three first partial derivatives of the
three components of the velocity with respect to x, y, or z, a total of nine scalar elements.
Why have we called this matrix a tensor?

A tensor is a matrix whose elements are physical entities evaluated with reference to a
chosen system of Cartesian coordinates. If the coordinate system is changed, for example,
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by translation or rotation, the elements of the matrix will also change to reflect the new
Cartesian base. This change is analogous to that undergone by the components of the
position or velocity vector when a new system of coordinates is introduced, as discussed in
Section 1.5.

If the elements of the matrix corresponding to the new system are related to the elements
corresponding to the old system by certain rules discussed in texts of matrix calculus and
continuum mechanics mechanics, then the matrix is called a tensor.1 Establishing whether
or not a matrix is a tensor is important in deriving physical laws that relate matrices with
different physical interpretations.

2.1.3 Relative motion of point particles

According to equation (2.1.15), the motion of a point particle near a point, x0, is governed
by the equation

dX

dt
= u(X) 	 u(x0) + (X− x0) · L(x0), (2.1.22)

where X is the position of the point particle and u(X) is the point-particle velocity, which
is equal to the local and instantaneous fluid velocity.

The first term on the right-hand side of (2.1.22) states that a point particle located at
the point X translates with the velocity of the point particle located at the point x0. The
second term expresses the relative motion with respect to the point particle located at x0.
Different velocity-gradient tensors, L(x0), represent different types of relative motion. Our
next goal is to delineate the nature of the relative motion in terms of the components of
L(x0).

2.1.4 Fundamental motions in two-dimensional flow

We begin by considering a two-dimensional flow in the xy plane and introduce the 2 × 2
velocity-gradient tensor

L =

⎡⎢⎢⎣
∂ux

∂x

∂uy

∂x
∂ux

∂y

∂uy

∂y

⎤⎥⎥⎦ . (2.1.23)

In Section 1.6, we studied the velocity field associated with the linear flow expressed by
equation (1.6.46), repeated below for convenience,

[ux uy ] = [x y ] ·
[

a b
c d

]
, (2.1.24)

1Pozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynamics. Second Edition,
Oxford University Press.
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where a, b, c, and d are four constants with units of inverse time. Comparing equations
(2.1.15) and (2.1.23) with equation (2.1.24), we set

a =
∂ux

∂x
, b =

∂uy

∂x
, c =

∂ux

∂y
, d =

∂uy

∂y
, (2.1.25)

where all partial derivatives are evaluated at the point x0.

To study the nature of the linearized flow, we carry out the decomposition shown in
equation (1.6.48), setting

L = Ξ+E+
1

2
α I, (2.1.26)

where

Ξ ≡ 1

2

⎡⎢⎢⎣ 0
∂uy

∂x
− ∂ux

∂y

∂ux

∂y
− ∂uy

∂x
0

⎤⎥⎥⎦ (2.1.27)

is a skew-symmetric matrix with zero trace called the vorticity tensor,

E ≡ 1

2

⎡⎢⎢⎣
∂ux

∂x
− ∂uy

∂y

∂uy

∂x
+

∂ux

∂y

∂ux

∂y
+

∂uy

∂x

∂uy

∂y
− ∂ux

∂x

⎤⎥⎥⎦ (2.1.28)

is a symmetric matrix with zero trace called the rate-of-deformation tensor,

I =

[
1 0
0 1

]
(2.1.29)

is the 2× 2 identity matrix, and the scalar

α =
∂ux

∂x
+

∂uy

∂y
(2.1.30)

is the rate of areal expansion.

Areal expansion

The results of Section 1.6 suggest that a fluid parcel centered at the point x0 expands
isotropically with an areal rate of expansion that is equal to the right-hand side of (2.1.30)
evaluated at x0, as illustrated in Figure 2.1.2.

Rotation

Referring to equation (1.6.49), we find that a fluid parcel centered at the point x0 rotates
in the xy plane around the point x0 with angular velocity

Ω =
1

2

( ∂uy

∂x
− ∂ux

∂y

)
, (2.1.31)



2.1 Fundamental modes of fluid parcel motion 71

Expansion Rotation Deformation

Figure 2.1.2 Expansion, rotation, and deformation of a small discoidal fluid parcel occurring during
an infinitesimal period of time in a two-dimensional flow.

where the right-hand side is evaluated at x0, as shown in Figure 2.1.2. When Ω is positive,
the parcel rotates in the counterclockwise direction; whereas, when Ω is negative, the parcel
rotates in the clockwise direction.

Deformation

Our discussion in Section 1.6 suggests that the flow associated with the rate-of-deformation
tensor, E, expresses pure deformation in the absence of rotation or expansion, as illustrated
in Figure 2.1.2.

To compute the rate of deformation, G, we consider the eigenvalues of E. Denoting
Exx ≡ E11, introducing a similar notation for the other components, and taking into account
that

Exx + Eyy = 0, Exy = Eyx (2.1.32)

by construction, we find the eigenvalues

G = ±
√

E2
xx + E2

xy. (2.1.33)

The corresponding eigenvectors define the principal directions of the rate of deformation,
also called the rate of strain. It can be shown that, because E is symmetric, the two
eigenvectors are mutually orthogonal. An eigenvalue of the rate-of-strain tensor expresses
the rate of deformation of a circular fluid parcel centered at a point, x0, in the direction of
the associated eigenvector.

A theorem of matrix calculus ensures that the sum of the eigenvalues of a matrix is
equal to the sum of the diagonal elements; in the case of the rate-of-deformation tensor, E,
this is equal to zero by construction. Because of this property, the deformation conserves
the area of a fluid parcel during the motion.

2.1.5 Fundamental motions in three-dimensional flow

To generalized the analysis of Section 2.1.4 to three-dimensional flow, we resolve the three-
dimensional velocity-gradient tensor into three parts, as

L = Ξ+E+
1

3
α I, (2.1.34)
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Ξ ≡
1

2

⎡⎢⎢⎢⎢⎢⎣
0

∂uy

∂x
−

∂ux

∂y

∂uz

∂x
−

∂ux

∂z

∂ux

∂y
−

∂uy

∂x
0

∂uz

∂y
−

∂uy

∂z

∂ux

∂z
−

∂uz

∂x

∂uy

∂z
−

∂uz

∂y
0

⎤⎥⎥⎥⎥⎥⎦

E ≡

⎡⎢⎢⎢⎢⎢⎣
∂ux

∂x
−

1

3
α

1

2
(
∂uy

∂x
+

∂ux

∂y
)

1

2
(
∂uz

∂x
+

∂ux

∂z
)

1

2
(
∂ux

∂y
+

∂uy

∂x
)

∂uy

∂y
−

1

3
α

1

2
(
∂uz

∂y
+

∂uy

∂z
)

1

2
(
∂ux

∂z
+

∂uz

∂x
)

1

2
(
∂uy

∂z
+

∂uz

∂y
)

∂uz

∂z
−

1

3
α

⎤⎥⎥⎥⎥⎥⎦
Table 2.1.1 Definition of the vorticity tensor, Ξ, and rate-of-deformation tensor, E, in a three-

dimensional flow; the scalar α ≡ ∇ · u is the volumetric rate of expansion.

where Ξ is the skew-symmetric vorticity tensor, E is the symmetric and traceless rate-of-
deformation tensor,

I =

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ (2.1.35)

is the 3× 3 identity matrix, and the scalar coefficient

α ≡ ∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
(2.1.36)

is the rate of volumetric expansion. Explicit expressions for the vorticity tensor, Ξ, and
rate-of-deformation tensor, E, are given in Table 2.1.1.

The three terms on the right-hand side of (2.1.34) express, respectively, isotropic ex-
pansion, rotation, and pure deformation, as illustrated in Figure 2.1.3. Because of the fun-
damental significance of these motions, these terms merit individual attention in Sections
2.2–2.4.

2.1.6 Gradient in polar coordinates

We have defined the velocity-gradient tensor as the gradient of the velocity vector field. Ex-
pressions for the gradient operator in polar coordinates can be obtained by using geometrical
transformation rules combined with the chain rule of differentiation.
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Expansion Rotation Deformation

Figure 2.1.3 Expansion, rotation, and deformation of a small spherical fluid parcel occurring during
an infinitesimal period of time in a three-dimensional flow.

Cylindrical polar coordinates

In the cylindrical polar coordinates depicted in Figure 1.3.2, the gradient of a scalar function,
f(x), is determined by its cylindrical polar components Fx, Fσ, and Fϕ, as

F ≡ ∇f = Fx ex + Fσ eσ + Fϕ eϕ. (2.1.37)

Using the transformation rules shown in equations (1.3.20), we find that

Fσ = cosϕ
∂f

∂y
+ sinϕ

∂f

∂z
, Fϕ = − sinϕ

∂f

∂y
+ cosϕ

∂f

∂z
. (2.1.38)

To express the derivatives with respect to y and z in terms of derivatives with respect
to cylindrical polar coordinates, we use the chain rule of differentiation along with the
coordinate transformation rules (1.3.14) and (1.3.15), and find that(∂f

∂y

)
x,z

=
(∂f
∂x

)
σ,ϕ

(∂x
∂y

)
x,z

+
(∂f
∂σ

)
x,ϕ

(∂σ
∂y

)
x,z

+
(∂f
∂ϕ

)
x,σ

(∂ϕ
∂y

)
x,z

(2.1.39)

or (∂f
∂y

)
x,z

= cosϕ
(∂f
∂σ

)
x,ϕ

− sinϕ

σ

(∂f
∂ϕ

)
x,σ

, (2.1.40)

and (∂f
∂z

)
x,y

=
(∂f
∂x

)
σ,ϕ

(∂x
∂z

)
x,y

+
(∂f
∂σ

)
x,ϕ

(∂σ
∂z

)
x,y

+
(∂f
∂ϕ

)
x,σ

(∂ϕ
∂z

)
x,y

(2.1.41)

or (∂f
∂z

)
x,y

= sinϕ
(∂f
∂σ

)
x,ϕ

+
cosϕ

σ

(∂f
∂ϕ

)
x,σ

. (2.1.42)

Substituting relations (2.1.40) and (2.1.42) into the right-hand sides of relations (2.1.38),
we find that

Fx =
∂f

∂x
, Fσ =

∂f

∂σ
, Fϕ =

1

σ

∂f

∂ϕ
. (2.1.43)
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Equations (2.1.43) illustrate that the polar components of the gradient are equal to the
partial derivatives with respect to the corresponding coordinates multiplied by an appropri-
ate scaling factor.

Spherical polar coordinates

In the spherical polar coordinates depicted in Figure 1.3.3, the gradient of a scalar function,
f , is defined by its spherical polar components Fr, Fθ, and Fϕ, as

F ≡ ∇f = Fr er + Fθ eθ + Fϕ eϕ. (2.1.44)

Working as in the case of cylindrical polar coordinates, we obtain

Fr =
∂f

∂r
, Fθ =

1

r

∂f

∂θ
, Fϕ =

1

r sin θ

∂f

∂ϕ
. (2.1.45)

Note that the expression for Fϕ is consistent with that given in the third relation of (2.1.43),
subject to the substitution σ = r sin θ.

Plane polar coordinates

In the plane polar coordinates depicted in Figure 1.3.4, the gradient of a scalar function, f ,
is defined by its plane polar components, Fr and Fθ, as

F ≡ ∇f = Fr er + Fθ eθ. (2.1.46)

Working as in the case of cylindrical coordinates, we obtain

Fr =
∂f

∂r
, Fθ =

1

r

∂f

∂θ
. (2.1.47)

2.1.1 Inner vector product

Prove the interpretation of the inner vector product discussed after equation (2.1.11). Hint:
Use the law of cosines.

2.1.2 Decomposition of a linearized flow

(a) Linearize the velocity described by equations (1.5.2) around the origin of the y axis, and
then decompose the velocity-gradient tensor of the linearized flow into the three constituents
shown on the right-hand side of (2.1.34).

(b) Decompose the velocity gradient-tensor of the linearized flow expressed by equations
(2.1.21) into the three constituents shown on the right-hand side of (2.1.34).

Problems
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2.2 Fluid parcel expansion

The velocity field associated with the third term on the right-hand side of (2.1.34) is de-
scribed by

uexpansion(x) =
1

3
α(x0) (x− x0) ·

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ =
1

3
α(x0) (x− x0). (2.2.1)

Under the influence of this field, a spherical fluid parcel centered at the point x0 expands
when the coefficient α(x0) is positive, or contracts when the coefficient α(x0) is negative,
all the while retaining the spherical shape.

To see this behavior more clearly, we consider the motion of a point particle that lies
at the surface of the spherical parcel. Using (2.2.1), we find that the radius of the parcel,
a(t), is given by

a(t)

a(t = 0)
= e

1
3αt. (2.2.2)

Raising both sides to the third power and multiplying the result by the factor 4π
3 , we find

that the ratio of the instantaneous parcel volume to the initial parcel volume is

4π
3 a3(t)

4π
3 a3(t = 0)

= eαt. (2.2.3)

This result explains why the constant α is called the rate of volumetric expansion.

Divergence of the velocity field

The rate of expansion defined in equation (2.1.36) can be expressed in a compact form that
simplifies the notation. Taking the inner product of the del operator defined in (2.1.8) and
the velocity, we find that

∇ · u ≡ ∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
. (2.2.4)

In index notation,

∇ · u ≡ ∂ui

∂xi
, (2.2.5)

where summation over the repeated index i is implied for x, y, and z. In the case of two-
dimensional flow in the xy plane, the derivative of uz with respect to z does not appear.
Accordingly, we write

α = ∇ · u. (2.2.6)

The right-hand side of (2.2.6) is the divergence of the velocity field.
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Solenoidal velocity fields

We have found that the rate of volumetric expansion at an arbitrary point in a three-
dimensional flow and the rate of areal expansion at a point in a two-dimensional flow are
equal to the divergence of the velocity evaluated at that point. If the divergence of the ve-
locity vanishes everywhere in a flow, with the physical consequence that no parcel undergoes
expansion but only exhibits translation, rotation, and deformation, then the velocity field
is called solenoidal.

2.2.1 Rate of expansion

Derive the rate of expansion of the flow described by equations (2.1.18), and then evaluate
the rate of expansion at the point x0 = (1, 0, 1).

2.3 Fluid parcel rotation and vorticity

The velocity field associated with the first term on the right-hand side of (2.1.34) is given
by

urotation(x, y, z) = (x− x0) ·Ξ(x0), (2.3.1)

where Ξ is the vorticity tensor defined in Table 2.1.1.

A planar fluid parcel in a two-dimensional flow in the xy plane may only rotate around
the z axis. In contrast, a three-dimensional fluid parcel in a three-dimensional flow may
rotate around any arbitrary axis that passes through the designated center of rotation, x0,
and points in any arbitrary direction.

The orientation, magnitude, and direction of rotation define an angular velocity vec-
tor, Ω, whose components can be deduced from the three upper triangular or three lower
triangular entries of the vorticity tensor shown in Table 2.1.1, and are given by

Ωx =
1

2
(
∂uz

∂y
− ∂uy

∂z
), Ωy =

1

2
(
∂ux

∂z
− ∂uz

∂x
), Ωz =

1

2
(
∂uy

∂x
− ∂ux

∂y
), (2.3.2)

where the right-hand sides are evaluated at the designated parcel center, x0. As we look
down into the vector Ω from the tip of its arrow, the fluid rotates in the clockwise direction.

Equation (2.3.1) can be recast into a compact form in terms of the angular velocity
vector as

urotation(x, y, z) = (x− x0) ·
⎡⎣ 0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0

⎤⎦ , (2.3.3)

where Ω derives from the velocity by way of (2.3.2).

Problem



2.3 Fluid parcel rotation and vorticity 77

f

g

gfx

β

Figure 2.3.1 The outer product of two vectors, f and g, is a new vector that is perpendicular to the
plane of f and g.

We note that the three components of the angular velocity vector arise by combining
selected partial derivatives of the components of the velocity field in a particular fashion.
Stated differently, the angular velocity vector field arises from the velocity field by operating
with a differential operator, just as the rate of expansion arises from the velocity field by
operating with the divergence operator (∇·), as discussed in Section 2.2.

Outer vector product

To identify the differential operator that generates the point particle angular velocity field,
Ω, from the velocity field, u, according to equations (2.3.2), we introduce the outer vector
product. Consider a pair of vectors,

f = (fx, fy, fz), g = (gx, gy, gz). (2.3.4)

The outer product of the first vector with the second vector, taken in this particular order,
is a new vector, denoted as f × g, defined as

f × g = (fy gz − fz gy) ex + (fz gx − fx gz) ey + (fx gy − fy gx) ez, (2.3.5)

where ex, ey, and ez are unit vectors along the x, y, or z axis. We find that

f × g = −g × f . (2.3.6)

If the order of the two vectors is switched, a minus sign must be included.

Interpretation of the outer vector product

It can be shown that the outer-product vector f × g is normal to the plane containing the
vectors f and g, as illustrated in Figure 2.3.1. The magnitude of f×g is equal to the product
of (a) the length of the vector f , (b) the length of the vector g, and (c) the absolute value
of the sine of the angle, β, subtended between the two vectors.

The orientation of the outer-product vector f × g is such that, as we look down at the
plane defined by f and g toward the negative direction of f × g, the angle β measured in
the counterclockwise direction from f is less than π. If β is equal to 0 or π, the two vectors
are parallel or anti-parallel, the sine of the angle is zero, and the outer product vanishes.
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The three directions defined by the the triplet of vectors f , g, and f × g, arranged in
this particular order, form a right-handed system of coordinates. This is another way of
saying that f × g arises from f and g according to the right-hand rule.

Now invoking the definition of the cross product, we recast equation (2.3.3) into the
form

urotation(x, y, z) = Ω× (x− x0), (2.3.7)

which describes rigid-body rotation with angular velocity Ω around the point x0, in agree-
ment with the previously stated physical interpretation.

2.3.1 Curl and vorticity

Taking the outer product of the del operator and the velocity field, we obtain the curl of
the velocity defined as the vorticity,

ω ≡ ∇× u = (
∂uz

∂y
− ∂uy

∂z
) ex + (

∂ux

∂z
− ∂uz

∂x
) ey + (

∂uy

∂x
− ∂ux

∂y
) ez. (2.3.8)

Comparing equation (2.3.8) with equations (2.3.2), we find that

Ω =
1

2
ω, (2.3.9)

which shows that the angular-velocity vector is equal to half the vorticity vector, or half the
curl of the velocity.

Irrotational flow

If the curl of a velocity field vanishes at every point in a flow, with the consequence that no
spherical fluid parcel undergoes rotation, then the velocity field is called irrotational. The
properties and computation of irrotational flow will be discussed in Chapter 3, and then
again in Chapter 12 in the context of aerodynamics.

The alternating tensor

The long expression on the right-hand side of equation (2.3.5) defining the outer vector
product is cumbersome. To simplify the notation, we introduce the three-index alternating
tensor, εijk, defined as follows:

1. If i = j, or j = k, or k = i, then εijk = 0. For example, εxxy = εzyz = εzyy = 0.

2. If i, j, and k are all different, then εijk = ±1. The plus sign applies when the triplet
ijk is a cyclic permutation of xyz, and the minus sign applies otherwise. For example,
εxyz = εzxy = εyzx = 1, but εxzy = −1.

Two important properties of the alternating tensor stemming from its definition are

εijk εmjk = 2 δim, (2.3.10)
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where double summation of the repeated indices j and k is implied on the left-hand side,
and

εijk εlmk = δil δjm − δim δjl, (2.3.11)

where summation of the repeated index k is implied on the left-hand side. Kronecker’s delta,
δij , represents the identity matrix: δij = 1 if i = j, or 0 if i 
= j. Additional properties of
the alternating tensor are listed in Problem 2.3.2.

In terms of the alternating tensor, the ith component of the outer vector product f × g

defined in equation (2.3.5) is given by

(f × g)i = εijk fj gk, (2.3.12)

where double summation of the two repeated indices j and k is implied on the right-hand
side.

Using the definition (2.3.8), we find that the ith component of the vorticity is given by

ωi = εijk
∂uk

∂xj
. (2.3.13)

Straightforward manipulation of (2.3.13) provides us with an expression for the vorticity
vector in terms of the vorticity tensor,

ωi =
1

2
(εijk

∂uk

∂xj
+ εijk

∂uk

∂xj
) =

1

2
(εijk

∂uk

∂xj
− εikj

∂uk

∂xj
), (2.3.14)

and then

ωi =
1

2
(εijk

∂uk

∂xj
− εijk

∂uj

∂xk
) = εijk

1

2
(
∂uk

∂xj
− ∂uj

∂xk
) (2.3.15)

or

ωi = εijk Ξjk. (2.3.16)

The inverse relationship is

Ξij =
1

2
εijk ωk (2.3.17)

(Problem 2.3.3).

2.3.2 Two-dimensional flow

Consider a two-dimensional flow in the xy plane. Inspecting the right-hand side of (2.3.8),
we find that the x and y components of the vorticity vanish. The vorticity vector is then
parallel to the z axis, and thus perpendicular to the plane of the flow,

ω = ωz ez, (2.3.18)
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where ez is the unit vector along the z axis. The scalar ωz is the strength of the vorticity,
defined as

ωz =
∂uy

∂x
− ∂ux

∂y
. (2.3.19)

For example, in the case of simple shear flow, ux = ξy, uy = 0, and ωz = −ξ, where the
coefficient ξ is the shear rate.

Using the transformation rules discussed in Section 1.1, we find that the strength of the
vorticity in the plane polar coordinates depicted in Figure 1.1.4 is given by

ωz =
1

r

( ∂(ruθ)

∂r
− ∂ur

∂θ

)
. (2.3.20)

In the case of rigid-body rotation with angular velocity Ω, uθ = Ω r ur = 0, and ωz = 1
2 Ω.

2.3.3 Axisymmetric flow

Consider an axisymmetric flow in the absence of swirling motion and refer to the polar cylin-
drical coordinates (x, σ, ϕ) depicted in Figure 1.1.2 and to the spherical polar coordinates
(r, θ, ϕ) depicted in Figure 1.1.3.

A fluid patch that lies in an azimuthal plane, defined as plane of constant azimuthal angle
ϕ, is able to rotate only around an axis that is perpendicular to this plane. Consequently,
the vorticity vector points in the direction of increasing or decreasing azimuthal angle, ϕ.
This observation suggests that the vorticity vector takes the form

ω = ωϕ eϕ, (2.3.21)

where eϕ is the unit vector in the azimuthal direction and ωϕ is the corresponding vorticity
component given by

ωϕ =
∂uσ

∂x
− ∂ux

∂σ
=

1

r

( ∂(ruθ)

∂r
− ∂ur

∂θ

)
. (2.3.22)

Note that the expression in spherical polar coordinates, (r, θ), given on the right-hand side
of (2.3.22) is identical to that in plane polar coordinates given in (2.3.20).

2.3.1 Properties of the outer vector product

(a) Show that f × g = −g × f , where the outer vector product, denoted by ×, is defined in
equation (2.3.5).

(b) The outer vector product of two vectors, f and g, can be identified with the determinant
of a matrix,

f × g = det
(⎡⎣ ex ey ez

fx fy fz
gx gy gz

⎤⎦). (2.3.23)

Problems
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Confirm that this rule is consistent with the definition of the curl of the velocity in (2.3.8).

2.3.2 Properties of Kronecker’s delta and alternating tensor

Prove the properties

δii = 3, εljk δjk = 0, aj δjk = ak, Alj δjk = Alk, (2.3.24)

where δij is Kronecker’s delta representing the 3×3 identity matrix, a is an arbitrary vector,
A is an arbitrary matrix, and summation is implied over a repeated index.

2.3.3 Relation between the vorticity tensor and vector

Prove relation (2.3.17). Hint: Express the vorticity in terms of the velocity as shown in
(2.3.13), and then use property (2.3.11).

2.3.4 The vorticity field is solenoidal

Show that the divergence of the vorticity is identically zero, ∇ ·ω = 0, that is, the vorticity
field is solenoidal.

2.4 Fluid parcel deformation

The velocity field associated with the second term on the right-hand side of (2.1.34) is

udeformation(x, y, z) = (x− x0) ·E(x0), (2.4.1)

where E is the symmetric and traceless rate-of-deformation tensor defined in Table 2.1.1.

To develop insights into the nature of the motion described by (2.4.1), we consider a
special case where E(x0) is a diagonal matrix,

E(x0) =

⎡⎢⎢⎢⎢⎣
∂ux

∂x
− 1

3
α 0 0

0
∂uy

∂y
− 1

3
α 0

0 0
∂uz

∂z
− 1

3
α

⎤⎥⎥⎥⎥⎦ , (2.4.2)

with the understanding that the derivatives on the right-hand side are evaluated at the point
x0. The trace of the matrix on the right-hand side is zero, as required. The eigenvalues of a
diagonal matrix are equal to the diagonal elements. The corresponding eigenvectors point
along the x, y, or z axes.

Cursory inspection reveals that, under the action of the flow described by (2.4.1), subject
to (2.4.2), a spherical fluid parcel centered at a point, x0, deforms to obtain an ellipsoidal
shape while preserving its volume, as illustrated in Figure 2.1.2. The three eigenvalues of
the rate-of-deformation tensor express the rate of deformation in three principal directions
corresponding to the eigenvectors. If an eigenvalue is negative, the parcel is compressed in
the corresponding direction to obtain an oblate shape.
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More generally, the rate-of-deformation tensor has three real eigenvalues, λ1, λ2, and
λ3, that are found by setting the determinant of the following matrix to zero,

E− λ I =

⎡⎣ Exx − λ Exy Exz

Eyx Eyy − λ Eyz

Ezx Ezy Ezz − λ

⎤⎦ , (2.4.3)

and then computing the roots of the emerging cubic equation for λ, where I is the 3 × 3
identity matrix. It can be shown that, because E is symmetric, all three eigenvalues are
real and each eigenvalue has a distinct corresponding eigenvector. Moreover, the three
eigenvectors are mutually orthogonal, pointing in the principal directions of the rate of
strain.

Under the action of the flow stated in (2.4.1), a spherical fluid parcel centered at the
point x0 deforms to obtain an ellipsoidal shape whose axes are generally inclined with respect
to the x, y, and z axis. The three axes of the ellipsoid are parallel to the eigenvectors of
E, and the respective rates of deformation of the ellipsoid are equal to the corresponding
eigenvalues. A theorem of matrix calculus states that the sum of the eigenvalues is equal
to the sum of the diagonal elements of E, which is zero. Because of this property, the
deformation preserves the parcel volume.

Computation of the rates of strain

Setting the determinant of the matrix (2.4.3) to zero, we obtain a cubic algebraic equation
for λ,

λ3 + a λ2 + b λ+ c = 0, (2.4.4)

where

a = −trace(E) = −(Exx + Eyy + Ezz),

b = (EyyEzz − EyzEzy) + (ExxEzz − ExzEzx) + (ExxEyy − ExyEyx),

c = det(E), (2.4.5)

and det stands for the determinant. Using Cardano’s formulas, we find that the three roots
of (2.4.4) are given by

λ1 = −a

3
+ d cos

χ

3
, λ2,3 = −a

3
− d cos

χ± π

3
, (2.4.6)

where

d = 2
(

1

3
|p|
)1/2

, χ = arccos
(− 1

2

q(
1
3 |p|

)3/2 ) (2.4.7)

and

p = b− 1

3
a2, q = c+

2

27
a3 − 1

3
ab. (2.4.8)
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In general, we may find three real eigenvalues or one real eigenvalue accompanied by a pair
of complex conjugate eigenvalues.

In the case of the rate-of-deformation tensor, because the trace is zero, a = 0, we obtain
the simplified expressions

λ1 = d cos
χ

3
, λ2,3 = −d cos

χ± π

3
, (2.4.9)

where

d = 2
(

1

3
|b|
)1/3

, χ = arccos
(
− 1

2

c(
1
3 |b|

)3/2) (2.4.10)

and b, c can be arbitrary.

Once the eigenvalues have been found, the eigenvectors are computed by solving a ho-
mogeneous system of three equations for three unknowns. For example, the eigenvector

e(1) = (e
(1)
x , e

(1)
y , e

(1)
z ) corresponding to the eigenvalue λ1 is found by solving the homoge-

neous linear system

(E− λ1I) · e(1) = 0, (2.4.11)

which can be restated as

(Exx − λ1) e
(1)
x + Exy e

(1)
y = −Exz e

(1)
z ,

Eyx e(1)x + (Eyy − λ1) e
(1)
y = −Eyz e

(1)
z , (2.4.12)

Ezx e(1)x + Ezy e
(1)
y = −(Ezz − λ1) e

(1)
z .

To solve system (2.4.12), we may assign an arbitrary value to the first component, e
(1)
z ,

evaluate the first two right-hand sides, and solve the first two equations for e
(1)
x and e

(1)
y

using, for example, Cramer’s rule. The solution is guaranteed to also satisfy the third
equation. A solution cannot be found if the eigenvector is perpendicular to the z axis, in

which case e
(1)
z is zero. If this occurs, we simply transfer the term involving e

(1)
x or e

(1)
y to

the right-hand side instead, and solve for the other two components.

2.4.1 Properties of eigenvalues

(a) Confirm that the sum of the three eigenvalues given in (2.4.6) is equal to the trace of E.

(b) Confirm that the product of the three eigenvalues given in (2.4.6) is equal to the deter-
minant of the rate-of-deformation tensor, E.

(c) Confirm that, when E is diagonal, formulas (2.4.6) identify the eigenvalues with the
diagonal elements.

Problems
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2.4.2 Eigenvalues and eigenvectors

Directory 05 eigen, located inside directory 01 num meth of Fdlib, contains a program
entitled eigen33 that computes the eigenvalues of a 3 × 3 matrix. Use the program to
compute the eigenvalues and eigenvectors of the rate of deformation tensor corresponding
to the linearized flow (2.1.21) for a = 1 s−1 and cdt = 2 s−1.

2.5 Numerical differentiation

We have mentioned that, in practice, the components of a velocity field are hardly ever
given in analytical form by way of mathematical expressions. Instead, their values are
either measured in the laboratory with probes, or computed by numerical methods at data
points represented by grid nodes located in the domain of flow. The partial derivatives of
the velocity are then recovered by a numerical procedure called numerical differentiation.

2.5.1 Numerical differentiation in one dimension

As a prelude to computing the partial derivatives of the components of the velocity from
specified grid values, we consider computing the first derivative of a function, f(x), of one
independent variable, x, defined on a grid.

To be more specific, we assume that values of f(x) are given at N + 1 nodes of a
one-dimensional uniform grid with nodes located at xi for i = 1, . . . , N +1, as shown below:

1 N+12 k +1k
x

Our goal is to compute the derivative, df/dx, at a point, x, that lies in the kth interval
subtended between the nodes xk and xk+1.

First-order differentiation

In the simplest approach, the graph of the function f(x) in the interval (xk, xk+1) is approx-
imated with a straight line, as shown in Figure 1.7.2, and the derivative df/dx is approx-
imated with the slope. Using equations (1.7.3) and (1.7.5), we derive the finite-difference
approximation

f ′(x) 	 fk+1 − fk
xk+1 − xk

, (2.5.1)

where a prime denotes a derivative with respect to x.

Now identifying the evaluation point, x, with the grid point, xk, we obtain the forward-
difference approximation

f ′(xk) 	 fk+1 − fk
xk+1 − xk

. (2.5.2)
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The error associated with this approximation is proportional to the interval size, hk =
xk+1 − xk.

Using instead the straight-line approximation for the k − 1 interval, we obtain the
backward-difference approximation

f ′(xk) 	 fk − fk−1

xk − xk−1
. (2.5.3)

Formulas (2.5.2) and (2.5.3) carry a comparable amount of error due to the straight-line
approximation.

To evaluate the derivative at the first point, f ′(x1), we use a forward difference; to
evaluate the derivative at the last point, f ′(xN+1), we use a backward difference; to evaluate
f ′(xi) at an interior grid point, where i = 2, . . . , N , we use either a forward or a backward
difference, whichever is deemed more convenient or appropriate.

Second-order differentiation

Numerical differentiation based on linear interpolation neglects the curvature of the graph of
the function f(x). To improve the accuracy of the interpolation, we approximate f(x) with
a parabolic function defined in the interval (xk, xk+1), as depicted in Figure 1.7.3, and then
approximate the slope of the function, f ′, with the slope of the parabola. Differentiating
(1.7.6), we derive the second-order finite-difference approximation

f ′(x) 	 2 a(k) (x− xk) + b(k), (2.5.4)

where the coefficients a(k) and b(k) are given in (1.7.9).

Now identifying the evaluation point, x, with the grid point, xk, we obtain the centered-
difference approximation

f ′(xk) 	 b(k). (2.5.5)

When the grid points are spaced evenly, xk − xk−1 = xk+1 − xk = h, we obtain the
simple form

f ′(xk) 	 fk+1 − fk−1

2h
, (2.5.6)

where h is the grid spacing. The error associated with this approximation is proportional
to the square of the interval size, h2.

The parabolic approximation allows us to also obtain an estimate for the second deriva-
tive, d2f/dx2. Differentiating (1.7.6) twice with respect to x, we derive the finite-difference
approximation

f ′′(x) 	 2a(k), (2.5.7)

where the coefficient a(k) is given in (1.7.9).
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When the grid points are spaced evenly along the x axis with separation h, we obtain
the simpler formula

f ′′(x) 	 fk+1 − 2fk + fk−1

h2
. (2.5.8)

Identifying the evaluation point, x, with the grid point, xk, we obtain the centered-difference
approximation

f ′′(xk) 	 fk+1 − 2fk + fk−1

h2
. (2.5.9)

The error associated with this approximation is proportional to the square of the interval
size, h2.

2.5.2 Numerical differentiation in two dimensions

Consider the computation of the first partial derivatives of a function of two independent
variables, f(x, y), ∂f/∂x and ∂f/∂y, from given values of the function at the nodes of a
two-dimensional grid defined by the intersection of the x-level lines, xi for i = 1, . . . , Nx+1,
and y-level lines, yj for j = 1, . . . , Ny + 1, as illustrated in Figure 1.7.2(b). The value of x
lies in the kxth x-interval confined between the xkx

and xkx+1 x-level lines, and the value
of y lies in the kyth y-interval confined between the yky

and yky+1 y-level lines.

First-order differentiation

Using the method of bilinear interpolation discussed in Section 1.7, we approximate the first
partial derivatives of the function f(x, y) with the partial derivatives of the bilinear function
defined in equation (1.7.15). Considering the derivative with respect to x, we obtain the
forward-difference approximation(∂f

∂x

)
x,y

	
(∂Πkx,ky

∂x

)
x,y

, (2.5.10)

where Πkx,ky is the bilinear function given in (1.7.15). Performing the differentiation, we
obtain (∂f

∂x

)
x,y

	
(∂wkx,ky

00

∂x

)
x,y

f(xkx
, yky

) +
(∂wkx,ky

10

∂x

)
x,y

f(xkx+1, yky
)

+
(∂wkx,ky

01

∂x

)
x,y

f(xkx
, yky+1) +

(∂wkx,ky

11

∂x

)
x,y

f(xkx+1, yky+1). (2.5.11)

Using expressions (1.7.16) and (1.7.17), we obtain(∂f
∂x

)
x,y

= −yky+1 − y

A
f(xkx

, yky
) +

yky+1 − y

A
f(xkx+1, yky

)

−y − yky

A
f(xkx

, yky+1) +
y − yky

A
f(xkx+1, yky+1). (2.5.12)
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where

A = (xkx+1 − xkx
)(yky+1 − yky

), (2.5.13)

as given in (1.7.18). Using this formula, we derive the first-order, forward-difference approx-
imation at the southwestern grid node,(∂f

∂x

)
xkx

, yky

	 f(xkx+1, yky
)− f(xkx

, yky
)

xkx+1 − xkx

. (2.5.14)

A similar approximation for the y derivative yields(∂f
∂y

)
xkx

, yky

	 f(xkx
, yky+1)− f(xkx

, yky
)

yky+1 − yky

. (2.5.15)

Both formulas express forward-difference approximations with respect to the respective vari-
able, x or y.

Second-order differentiation

Second-order centered-difference formulas for evaluating the first partial derivative of a
function at a grid point can be derived based on the one-dimensional formula (2.5.5). Using
the expression for the coefficient b(k) given in (1.7.9), we obtain

(∂f
∂x

)
xkx

, yky

	
(xkx

− xkx−1)
fkx+1,ky

− fkx,ky

xkx+1 − xkx

+ (xkx+1 − xkx
)
fkx,ky

− fkx−1,ky

xk − xkx−1

xkx+1 − xkx−1
.

(2.5.16)

The corresponding expression for the derivative with respect to y is

(∂f
∂y

)
xkx

, yky

	
(yky

− yky−1)
fkx,ky+1 − fkx,ky

yky+1 − yky

+ (yky+1 − yky
)
fkx,ky

− fkx,ky−1

yky
− yky−1

yky+1 − yky−1
.

(2.5.17)

When the grid lines are spaced evenly,

xkx
− xkx−1 = xkx+1 − xkx

≡ hx, (2.5.18)

and

yky
− yky−1 = yky+1 − yky

≡ hy, (2.5.19)

we obtain the simpler formulas(∂f
∂x

)
xkx ,yky

=
fkx+1,ky

− fkx−1,ky

2hx
(2.5.20)

and (∂f
∂y

)
xkx ,yky

=
fkx,ky+1 − fkx,ky−1

2hy
, (2.5.21)

which express centered-difference approximations in x or y.
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2.5.3 Velocity gradient and related functions

The formulas derived in Section 2.5.2 can be applied to obtain approximations to the ele-
ments of the velocity-gradient tensor, rate-of-deformation tensor, vorticity vector, and rate
of expansion, from specified values of the velocity at grid points. To illustrate the method-
ology, we consider a two-dimensional flow and employ a uniform grid with constant x and
y grid spacings equal to hx and hy.

Using the second-order, centered-difference approximations (2.5.20) and (2.5.21), we
find that the rate of expansion can be approximated with the finite-difference formula

(
∇ · u)

xkx ,yky
	 (ux)kx+1,ky

− (ux)kx−1,ky

2hx
+

(uy)kx,ky+1 − (uy)kx,ky−1

2hy
. (2.5.22)

The corresponding finite-difference approximation for the z component of the vorticity
takes the form

ωz(xkx
, yky

) 	 (uy)kx+1,ky
− (uy)kx−1,ky

2hx
− (ux)kx,ky+1 − (ux)kx,ky−1

2hy
. (2.5.23)

Similar finite-difference approximations can be written for the elements of the rate-of-
deformation tensor, and subsequently used to obtain approximations to its eigenvalues and
eigenvectors.

The following MATLAB function entitled rec 2d vgt, located in directory rec 2d inside
directory 02 grids of Fdlib, computes the velocity gradient tensor at the nodes of a two-
dimensional Cartesian grid:

function [Axx,Axy,Ayx,Ayy] = rec 2d vgt ...

...

(glx,gly,Nx,Ny,gux,guy)

%------------------------------

% compute the velocity gradient

% tensor L ij at the grid points

%-------------------------------

%----------------

% interior points

% compute derivatives by central differences

%----------------

for i=2:Nx

for j=2:Ny

Lxx(i,j) = (gux(i+1,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));

Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));

Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(j+1)-gly(j-1));
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end

end

%----------

% left wall

% compute derivatives by central or forward differences

%----------

i=1;

for j=2:Ny

Lxx(i,j) = (gux(i+1,j)-gux(i,j))/(glx(i+1)-glx(i));

Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));

Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));

Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(j+1)-gly(j-1));

end

%----------

% bottom wall

% compute derivatives by central or forward differences

%----------

j=1;

for i=2:Nx

Lxx(i,j) = (gux(i+1,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));

Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(j+1)-gly(j));

Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(j+1)-gly(j));

end

%----------

% right wall

% compute derivatives by central or backward differences

%----------

i=Nx+1;

for j=2:Ny

Lxx(i,j) = (gux(i,j)-gux(i-1,j))/(glx(i)-glx(i-1));

Lxy(i,j) = (guy(i,j)-guy(i-1,j))/(glx(i)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));

Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(j+1)-gly(j-1));

end

%----------

% top wall

% compute derivatives by central or backward differences

%----------

j=Ny+1;

for i=2:Nx
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Lxx(i,j) = (gux(i+1,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));

Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));

Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));

Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(j)-gly(j-1));

end

%-------------------

% four corner points

%-------------------

i=1; j=1;

Lxx(i,j) = (gux(i+1,j)-gux(i,j))/(glx(i+1)-glx(i));

Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));

Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(j+1)-gly(j));

Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(j+1)-gly(j));

i=Nx+1; j=1;

Lxx(i,j) = (gux(i,j)-gux(i-1,j))/(glx(i)-glx(i-1));

Lxy(i,j) = (guy(i,j)-guy(i-1,j))/(glx(i)-glx(i-1));

Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(j+1)-gly(j));

Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(j+1)-gly(j));

i=Nx+1; j=Ny+1;

Lxx(i,j) = (gux(i,j)-gux(i-1,j))/(glx(i)-glx(i-1));

Lxy(i,j) = (guy(i,j)-guy(i-1,j))/(glx(i)-glx(i-1));

Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));

Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(j)-gly(j-1));

i=1; j=Ny+1;

Lxx(i,j) = (gux(i+1,j)-gux(i,j))/(glx(i+1)-glx(i));

Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));

Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));

Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(j)-gly(j-1));

%-----

% done

%-----

return

The following MATLAB code appended to the code rec 2d discussed in Section 1.10,
residing in directory rec 2d inside directory 02 grids of Fdlib, computes various flow vari-
ables:

%---

% specify the grid velocities

%---

for i=1:Nx+1
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for j=1:Ny+1

px = gx(i,j); py = gy(i,j);

wnx = 2*pi/(bx-ax); wny = 2*pi/(by-ay);

gux(i,j) = cos(wnx*px)*cos(wny*py);

guy(i,j) = sin(wnx*px)*sin(wny*py);

end

end

%---

% velocity gradient tensor

%----

Lxx,Lxy,Lyx,Lyy] = rec 2d vgt (glx,gly,Nx,Ny,gux,guy);

%---

% compute the rate of expansion

% the rate of strain tensor

% the strains

% the vorticity

%---

for i=1:Nx+1

for j=1:Ny+1

roe(i,j) = Lxx(i,j)+Lyy(i,j); % rate of expansion

omega(i,j) = Lxy(i,j)-Lyx(i,j); % vorticity

Exx(i,j) = Lxx(i,j)-0.5*roe(i,j); % rate of deformation

Exy(i,j) = 0.5*(Lxy(i,j)+Lyx(i,j)); % rate of deformation

Eyx(i,j) = Exy(i,j); % rate of deformation

Eyy(i,j) = Lyy(i,j)-0.5*roe(i,j); % rate of deformation

det = 4.0*(Exx(i,j)^2+Exy(i,j)^2); % eigenvalues

srd = sqrt(det);

strain1(i,j) = 0.5*srd;

strain2(i,j) = -0.5*srd;

%---

% compute the eigenvectors of the rate of strain

%---

if(abs(Exy(i,j))<0.0001) % E is diagonal

if(abs(Exx(i,j)-strain1(i,j))>0.0001)

egv1x(i,j) = 0.0; egv1y(i,j) = 1.0;

else

egv1x(i,j) = 1.0; egv1y(i,j) = 0.0;

end

if(abs(Exx(i,j)-strain2(i,j))>0.0001)

egv2x(i,j) = 0.0; egv2y(i,j) = 1.0;

else

egv2x(i,j) = 1.0; egv2y(i,j) = 0.0;
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end

else % E is not diagonal

egv1x(i,j) = 1.0;

egv1y(i,j) = -(Exx(i,j)-strain1(i,j))/Exy(i,j);

egv2x(i,j) = 1.0;

egv2y(i,j) = -(Exx(i,j)-strain2(i,j))/Exy(i,j);

end

%---

% normalize the eigenvectors

%---

fc1 = 1.0/sqrt(egv1x(i,j)^2+egv1y(i,j)^2);

egv1 x(i,j) = fc1*egv1x(i,j); egv1 y(i,j) = fc1*egv1y(i,j);

fc2 = 1.0/sqrt(egv2x(i,j)^2+egv2y(i,j)^2);

egv2 x(i,j) = fc2*egv2x(i,j); egv2 y(i,j) = fc2*egv2y(i,j);

end

end

%---

% plotting

%---

figure

mesh(glx,gly,omega')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel('\omega','fontsize',15)

figure

mesh(glx,gly,roe')

xlabel('x','fontsize',15);

ylabel('y','fontsize',15)

zlabel('\alpha','fontsize',15)

figure

mesh(glx,gly,strain1')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel('s\_1','fontsize',15)

figure

mesh(glx,gly,strain2')

xlabel('x','fontsize',15);

ylabel('y','fontsize',15)
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zlabel('s\_2','fontsize',15)

figure

hold on

[ glx,gly,gx,gy ] = grid 2d (ax,bx,ay,by,Nx,Ny);

for i=1:Nx+1

for j=1:Ny+1

vector = draw arrow 2d ...

(gx(i,j),gy(i,j),egv1x(i,j)/Ny,egv1y(i,j)/Ny);

plot(vector(:,1),vector(:,2));

end

end

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

box on

figure

hold on

[glx,gly,gx,gy] = grid 2d (ax,bx,ay,by,Nx,Ny);

for i=1:Nx+1

for j=1:Ny+1

vector = draw arrow 2d ...

(gx(i,j),gy(i,j),egv2x(i,j)/Ny,egv2y(i,j)/Ny);

plot(vector(:,1),vector(:,2));

end

end

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

The graphics display generated by the code for the velocity field implemented in the code
is shown in Figure 2.5.1.

2.5.1 Numerical differentiation

Use formula (2.5.9) to evaluate the second derivative of the exponential function f(x) = ex

at x = 0 in terms of the values of f(x) at x = −h, 0, h, for h = 0.16, 0.08, 0.04, 0.02, and
0.01. Compute and plot the difference between the numerical value and the exact value
against h on a log-log scale. Assess and discuss the slope of the graph.

2.5.2 Numerical differentiation of a two-dimensional flow

Run the code rec 2d for a velocity field of your choice. Prepare and discuss plots of the
vorticity, eigenvalues, and eigenvectors of the rate-of-strain tensor.

Problems
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Figure 2.5.1 Velocity vector field, rate of expansion, vorticity, principal strains, and principal eigen-
vectors computed by numerical differentiation on a uniform Cartesian grid.
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Figure 2.6.1 Illustration of a stationary open line that starts at a point, A, and ends at another
point, B, used to define the areal flow rate and flux in a two-dimensional flow. When the end
points A and B coincide, we obtain a closed loop.

2.6 Flow rates

Consider a two-dimensional flow in the xy plane and draw a stationary line that resides in
its entirety inside the fluid. At any instant, point particles cross the line generating a net,
positive or negative, areal flow rate in a designated direction. Our goal is to quantify this
flow rate in terms of the shape of the line and the fluid velocity.

Unit tangent and unit normal vectors

First, we consider an open line that starts at a point, A, and ends at another point, B, as
shown in Figure 2.6.1. As a preliminary, we introduce the unit tangent vector, t = (tx, ty),
defined as the vector that is tangential to the line at a point, subject to the normalization
condition

t2x + t2y = 1. (2.6.1)

The direction of t is chosen such that, if we start moving along the line from point A in the
direction of t, we will finally end up at point B.

Next, we introduce the unit normal vector, n = (nx, ny), defined as the unit vector that
is perpendicular to the line at a point. The magnitude of n is equal to unity,

n2
x + n2

y = 1. (2.6.2)

The orientation of n is such that the tangent vector t arises by rotating n around the z axis
in the counterclockwise direction by an angle equal to 1

2 π.

Now we consider an infinitesimal section of the line that starts at a point, x, and ends
at the point x+ dx, where the differential distance, dx = (dx,dy) is parallel to, and points
in the direction of the unit tangent vector, t. The components of the unit tangent vector
and unit normal vector are given by

tx =
dx

d

, ty =

dy

d

(2.6.3)
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and

nx =
dy

d

, ny = −dx

d

, (2.6.4)

where d
 is the differential arc length of the infinitesimal section of the line, given by

d
 =
√
dx2 + dy2 =

√
1 +
(dy
dx

)2
|dx| (2.6.5)

Because t and n are mutually orthogonal, their inner product is zero,

t · n = n · t = 0. (2.6.6)

To confirm this, we merely substitute (2.6.3) and (2.6.4) into the right-hand side of (2.1.10).

Normal and tangential velocities

Next, we consider a group of adjacent point particles distributed along the infinitesimal arc
length, d
, at a particular time instant, t. During an infinitesimal period of time, dt, the
point particles move to a new position, thus allowing other point particles located behind
or in front of them to cross the line into the other side.

To compute the net area of fluid that has crossed the infinitesimal arc length d
, we
resolve the velocity of the point particles into a normal component and a tangential com-
ponent, writing

u = un n+ ut t. (2.6.7)

The normal and tangential velocities, un and ut, can be computed readily in terms of
the inner vector product defined in equation (2.1.10). Taking the inner product of the unit
normal vector with both sides of (2.6.7), and using (2.6.6) and (2.6.2), we obtain

un = u · n = ux nx + uy ny. (2.6.8)

Taking the inner product of the unit tangent vector with both sides of (2.6.7), and using
(2.6.6) and (2.6.1), we obtain

ut = u · t = ux tx + uy ty. (2.6.9)

2.6.1 Areal flow rate and flux

By definition, the local areal flow rate across an infinitesimal section, d
, is the area of fluid,
dAf , that crosses the infinitesimal section during an infinitesimal period of time, dt, given
by

dAf

dt
= un d
, (2.6.10)
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d l dAf

Figure 2.6.2 Two point particles move from the thin line to the bold line over small period of time,
dt, thereby allowing for an areal flow rate, dAf . The particles can be assumed to move first normal
to the bold line (dashed vectors) and then tangential to the line to reach their final destination.

as shown in Figure 2.6.2. To see why we selected the normal component of the velocity on
the right-hand side, we observe that, if the normal component vanishes, the particles move
tangentially to the line and fluid does not cross the line. In general, although point particles
move both in the tangential and normal directions, only the normal motion contributes to
the local areal flow rate.

The corresponding local areal flux, q, is defined as the ratio of the local areal flow rate,
dAf/dt, to the infinitesimal length of the line across which transport takes place,

q ≡ dAf

dt d

= un. (2.6.11)

We have found that the local areal flux is merely the normal component of the fluid velocity.

Substituting expression (2.6.8) for the normal velocity component into (2.6.10), and
using (2.6.4), we obtain

dAf

dt
= un d
 = q d
 (2.6.12)

and then

dAf

dt
= (ux nx + uy ny) d
 = ux dy − uy dx. (2.6.13)

These expressions allow us to evaluate the local areal flow rate in terms of the components
of the velocity.

2.6.2 Areal flow rate across a line

To compute the areal flow rate across the stationary open line depicted in Figure 2.6.1,
denoted by Qareal, we subdivide the line into an infinite collection of infinitesimal sections
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with differential lengths, d
, and add all contributions. In mathematical terms, we integrate
the local areal flux along the line with respect to arc length, finding that

Qareal =

∫ B

A

q d
 =

∫ B

A

dAf

dt d

d
 =

∫ B

A

dAf

dt
=

∫ B

A

(uxnx + uyny) d
, (2.6.14)

and then

Qareal =

∫ B

A

un d
 =

∫ B

A

(
ux dy − uy dx

)
. (2.6.15)

The integral on the right-hand side of (2.6.15) allows us to evaluate Qareal in terms of the
geometry of the line and the two velocity components.

Note that the areal flow rate, Qareal, has units of area divided by time. The associated
volumetric flow rate with units of volume divided by time, is given by

Q = wQareal, (2.6.16)

where w is a chosen width along the z axis.

Parcel expansion

The integral representation for the areal flow rate is also applicable in the case of a closed
line, L, described as a loop, as shown in Figure 2.6.3. In that case, the last point, B, simply
coincides with the first point, A, yielding a closed integral,

Qareal =

∮
L
un d
 =

∮
L

(
ux dy − uy dx

)
. (2.6.17)

In fact, the areal flow rate across a closed loop is equal to the rate of change of the area of
the fluid parcel that is enclosed by the loop at a certain instant, Ap, that is,

dAp

dt
= Qareal. (2.6.18)

The area of the parcel can change only if the fluid occupying the parcel is compressible.

2.6.3 Analytical integration

If a line has a sufficiently simple shape and the components of the velocity are known func-
tions of position with simple forms, the integrals in (2.6.15) can be computed by standard
analytical methods.

As an example, we consider a line that has the shape of a section of a circle of radius
a centered at a point, xc, with end points corresponding to polar angles θA and θB. Points
along the circular arc are described by the equations

x = xc + a cos θ, y = yc + a sin θ. (2.6.19)
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Figure 2.6.3 When the end points of a line coincide, we obtain a closed loop enclosing an area, A.

Differentiating these equations with respect to θ, we obtain

dx = −a sin θ dθ, dy = a cos θ dθ. (2.6.20)

Substituting these expressions into the last integral in (2.6.15), we obtain

Qareal = a

∫ θB

θA

(ux cos θ + uy sin θ ) dθ. (2.6.21)

Substituting the expressions for the velocity components in terms of the angle θ, we obtain
an integral representation in terms of θ.

As an application, we assume that

ux =
α

2π

1

r
cos θ, uy =

α

2π

1

r
sin θ, (2.6.22)

where α is a constant and r is the distance from the origin. The flow rate is given by

Qareal = a
α

2π

1

a

∫ θB

θA

dθ =
α

2π
(θB − θA). (2.6.23)

If the circular segment forms a complete circle and the integration is performed in the
counterclockwise direction from θA = θ0 to θB = 2π − θ0, then Qareal = α, independent of
the radius, a, where θ0 is an arbitrary angle.

2.6.4 Numerical integration

Under most conditions, we will not be able to compute the line integrals in (2.6.15) exactly
by analytical methods and we must resort to numerical computation.

To perform numerical integration, we mark the location of a line with N +1 sequential
nodes denoted by xi for i = 1, . . . , N+1, as depicted in Figure 2.6.4. The first node coincides
with the first end point, A, and the last node coincides with the second end point, B. If the
line is closed, the first node labeled 1 coincides with the last node labeled N + 1.

Next, we approximate the shape of the line between two successive nodes labeled i and
i + 1 with a straight segment that passes through these nodes, denoted by Ei, where E
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Figure 2.6.4 An array of points along a line in the xy plane is introduced to compute the areal flow
rate across a line by numerical methods.

stands for element. The union of the N elements forms a polygonal line, called a polyline,
starting at the first end point, A, and ending at the second end point, B.

Trapezoidal rule

A key step in developing a numerical approximation is the replacement of the line integrals in
(2.6.15) with the sum of integrals over the elements, and the approximation of the velocity
components over each element with the average of the values at the element end points.
With these approximations, the last integral in (2.6.15) takes the form

Qareal =

N∑
i=1

[ ux(xi) + ux(xi+1)

2
(yi+1 − yi)− uy(xi) + uy(xi+1)

2
(xi+1 − xi)

]
. (2.6.24)

Writing out the sum and rearranging, we obtain

Qareal =
1

2

[
ux(x1)(y2 − y1)− uy(x1)(x2 − x1)

]
+

1

2

N∑
i=2

[
ux(xi)(yi+1 − yi−1)− uy(xi)(xi+1 − xi−1)

]
(2.6.25)

+
1

2

[
ux(xN+1)(yN+1 − yN )− uy(xN+1)(xN+1 − xN )

]
.

If the line is closed, nodes labeled 1 and N +1 coincide, and the first and last contribu-
tions on the right-hand side of (2.6.25) combine to yield the simpler form

Qareal =
1

2

N∑
i=1

[
ux(xi)(yi+1 − yi−1)− uy(xi)(xi+1 − xi−1)

]
, (2.6.26)

where the wrapped point labeled 0 coincides with the penultimate point labeled N .
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The computation of the right-hand sides of (2.6.25) and (2.6.26) requires knowledge
of the velocity components at the nodes. In practice, the nodal values are either given
explicitly or computed by interpolation from grid values, as discussed in Section 1.7.

2.6.5 The Gauss divergence theorem in two dimensions

Consider a closed loop in the xy plane, denoted by L, and a vector function of position
h = (hx, hy), where hx(x, y) and hy(x, y) are two scalar functions. The normal component
of h along L is given by the inner vector product

hn ≡ h · n = hx nx + hy ny. (2.6.27)

The divergence of h is a scalar function of position given by

∇ · h ≡ ∂hx

∂x
+

∂hy

∂y
. (2.6.28)

The Gauss divergence theorem states that the line integral of the normal component,
hn, along the loop, L, is equal to the integral of the divergence of h over the area A enclosed
by L, ∮

L
h · n d
 =

∫∫
A
∇ · h dA, (2.6.29)

where n is the unit vector normal to L pointing outward, d
 is a differential arc length, and
dA is a differential area.

Areal flow rate across a loop

Now we consider the areal flow rate across a closed loop, as shown in Figure 2.6.3. Applying
(2.6.29) with h = u, we find that the areal flow rate across this loop is equal to the areal
integral of the divergence of the velocity over the area enclosed by the loop,

Qareal =

∮
L
u · n d
 =

∫∫
A
∇ · u dA, (2.6.30)

where the unit normal vector points outward, as shown in Figure 2.6.3. The expression on
the right-hand side of (2.6.30) allows us to compute the instantaneous areal flow rate across
a closed loop in terms of the integral of the rate of expansion over the enclosed area.

Incompressible fluids

It is clear from expression (2.6.30) that, if the velocity field is solenoidal, that is, the diver-
gence of the velocity vanishes at every point,

∇ · u = 0, (2.6.31)

then the areal flow rate across any closed loop is zero. In physical terms, fluid parcels deform
and rotate but do not expand. As a consequence, the amount of fluid entering an area that
is enclosed by a stationary closed loop is equal to the amount of fluid exiting the loop during
any period of time.
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Figure 2.6.5 (a) Illustration of an open surface, S, in a three-dimensional flow, bounded by a closed
line, C, (b) Illustration of a closed surface, S, enclosing a volume, V.

2.6.6 Flow rate in a three-dimensional flow

The preceding discussion for two-dimensional flow can be extended in a straightforward
fashion to three-dimensional flow. To carry out this extension, we replace the line integrals
along open or closed loops with surface integrals over open or closed surfaces residing inside
the flow. The volumetric flow rate across an open or closed surface, S, is given by the surface
integral

Q =

∫∫
S
u · n dS. (2.6.32)

The unit vector normal to S, denoted by n, and the differential area of a surface element,
dS, are defined in Figure 2.6.5. Note that Q has units of volume divided by time.

If Vp is the volume of a parcel confined by a closed surface, then the rate of change of
the parcel volume is

dVp

dt
= Q. (2.6.33)

Parcel expansion or shrinkage is possible only if the fluid is compressible.

2.6.7 Gauss divergence theorem in three dimensions

Consider a closed surface, S, and a vector function of position, h = (hx, hy, hz). The normal
component of h over S is given by the inner product

hn ≡ h · n = hxnx + hyny + hznz. (2.6.34)

The divergence of h is defined as

∇ · h ≡ ∂hx

∂x
+

∂hy

∂y
+

∂hz

∂z
. (2.6.35)
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The Gauss divergence theorem states that the surface integral of hn over S is equal to the
integral of the divergence of h over the volume V enclosed by S,∫∫

S
h · n dS =

∫∫∫
V
∇ · h dV, (2.6.36)

where n is the unit vector normal to the surface S pointing outward, dS is a differential
surface area and dV is a differential volume.

Flow rate

Now we consider the flow rate across a closed surface V, given in (2.6.32). Applying (2.6.36)
for the fluid velocity, h = u, we obtain

Q =

∫∫
S
u · n dS =

∫∫∫
V
∇ · u dV. (2.6.37)

This expression shows that, if the velocity field is solenoidal, ∇ · u = 0, the volumetric flow
rate across any closed surface enclosing fluid alone must vanish.

2.6.8 Axisymmetric flow

Next, we consider an axisymmetric flow and draw a line that begins at a point, A, and ends
at another point, B, in a azimuthal plane, as illustrated in Figure 2.6.6. The volumetric
flow rate across the axisymmetric surface that arises by rotating the line around the x axis
is given by

Q = 2π

∫ B

A

σ (ux nx + uσ nσ) d
, (2.6.38)

where d
 is the differential arc length along the generating line, ux it the velocity component
along the x axis, and uσ is the velocity component normal to the x axis.

Expression (2.6.38) arises by adding the fluxes across all elementary axisymmetric sur-
faces confined between two parallel planes that are perpendicular to the x axis and are
separated by an infinitesimal distance, dx, corresponding to the arc length, d
, taking into
consideration that the surface area of an elementary surface centered at a ring of radius σ
is equal to 2πσd
.

Substituting the components of the normal vector,

nx =
dσ

d

, nσ = −dx

d

, (2.6.39)

we obtain

Q = 2π

∫ B

A

σ (ux dσ − uσ dx). (2.6.40)
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Figure 2.6.6 Illustration of an axisymmetric surface whose trace in an azimuthal plane is an open
line that begins at a point, A, and ends at another point, B.

2.6.1 Flow rate across an ellipse

Consider a closed loop in the xy plane in the shape of a horizontal ellipse centered at a
point, xc = (xc, yc), with major and minor semi-axes equal to a and b. The elliptical shape
is described in parametric form by the equations

x = xc + a cos η, y = yc + b sin η, (2.6.41)

where η is the native parameter of the ellipse ranging in the interval (0, 2π]. We will assume
that, in plane polar coordinates in the xy plane with origin at the center of the ellipse, (r, θ),
the velocity components are given by

ux =
α

2π

1

r
cos θ, uy =

α

2π

1

r
sin θ, (2.6.42)

where α is a constant. Show that

tan θ =
b

a
tan η (2.6.43)

and derive an expression for the flow rate across the ellipse as an integral with respect to η.

2.6.2 Flow rate across an ellipse

With reference to Problem 2.6.1, write a code that computes the flow rate across the ellipse
using a numerical method based on equation (2.6.26). Perform computations for ellipses
with aspect ratios, a/b = 1, 2, 4, and 8, in each case for N = 8, 16, 32, and 64 numerical
divisions. Discuss the results of your computations.

Problems
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2.7 Mass conservation and the continuity equation

In Section 1.5, we defined a point particle as an idealized entity arising in the limit as the
size of a small fluid parcel becomes decreasingly small and eventually infinitesimal. In this
limit, the ratio between the mass of the parcel and the volume of the parcel tends to a finite,
nonzero, and non-infinite value, which is defined as the fluid density, ρ. To indicate that
the density is a function of position and time in a fluid, we write

ρ(x, t), (2.7.1)

with the understanding that the density at a particular point in a flow is equal to the density
of the point particle that happens to be at that position at the designated time.

2.7.1 Mass flux and mass flow rate

Consider a two-dimensional flow in the xy plane and draw a stationary line that begins at a
point, A, and ends at another point, B, as illustrated in Figure 2.6.1. At any instant, point
particles cross this line, thereby generating a net mass flow rate in a specified direction.
Our goal is to quantify this mass flow rate in terms of the shape of the line and the velocity
and density distributions in the fluid.

Repeating the analysis of Section 2.6, we find that the mass flux across an infinitesimal
section of the line is given by the following counterpart of equation (2.6.11),

qmass = ρ un, (2.7.2)

where un = u · n is the component of the fluid velocity normal to the line. The mass flow
rate across a line that begins at a point, A, and ends at another point, B, is given by the
following counterpart of equation (2.6.15),

Qareal
mass =

∫ B

A

qmass d
 =

∫ B

A

ρu · n d
 =

∫ B

A

ρ
(
ux dy − uy dx

)
. (2.7.3)

Note that Qareal
mass has units of mass divided by length and time. The integrals in (2.7.3) can

be computed by analytical or numerical methods, as discussed in Section 2.6.

2.7.2 Mass flow rate across a closed line

The net mass flow rate outward from a closed line in a two-dimensional flow can be expressed
in terms of a closed line integral in the form

Qareal
mass =

∮
qmass d
 =

∮
ρu · n d
 =

∮
ρ
(
ux dy − uy dx

)
, (2.7.4)

where the unit normal vector, n, points into the exterior of the area enclosed by the closed
line, as depicted in Figure 2.6.3.
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The Gauss divergence theorem expressed by equation (2.6.29) states that the line in-
tegral in (2.7.4) is equal to the integral of the divergence of the velocity multiplied by the
fluid density over the area enclosed by the line, A,

Qareal
mass =

∫∫
A
∇ · (ρu) dx dy, (2.7.5)

where

∇ · (ρu) = ∂(ρ ux)

∂x
+

∂(ρ uy)

∂y
(2.7.6)

is the divergence of the mass velocity, ρu.

For future reference, we expand the derivatives of the products on the left-hand side of
(2.7.6) using the rules of product differentiation, finding that

∇ · (ρu) = ∂ρ

∂x
ux +

∂ux

∂x
ρ+

∂ρ

∂y
uy +

∂uy

∂y
ρ (2.7.7)

or

∇ · (ρu) = u · ∇ρ+ ρ∇ · u. (2.7.8)

We have introduced the vector of the first partial derivatives of the density,

∇ρ = (
∂ρ

∂x
,

∂ρ

∂y
), (2.7.9)

defined as the gradient of the density.

2.7.3 The continuity equation

The first principle of thermodynamics mandates that the rate of change of the mass residing
inside an area, A, that is enclosed by a stationary closed line, L, given by∫∫

A
ρ dA, (2.7.10)

is equal to the mass flow rate inward across the line, which is equal to the negative of the
mass flow rate outward across the line. If the outward mass flow rate is positive, the rate
of the change of mass enclosed by the line is negative, reflecting a reduction in time.

In terms of the mass flow rate defined in equation (2.7.4) and expressed as an areal
integral in equation (2.7.5), mass conservation requires that

d

dt

∫∫
A
ρ dA = −Qareal

mass = −
∮
L
ρu · n d
 = −

∫∫
A
∇ · (ρu) dA. (2.7.11)
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Since the area A is fixed in space, we can interchange the order of the time differentiation
and space integration on the left-hand side of (2.7.11), and then combine the two integrals
to obtain ∫∫

A

( ∂ρ
∂t

+∇ · (ρu) ) dA = 0. (2.7.12)

Since the shape of the area A is arbitrary, the integrand on the right-hand side of (2.7.12)
must be identically zero, yielding a partial differential equation in time-space expressing
mass conservation,

∂ρ

∂t
+∇ · (ρu) = 0, (2.7.13)

called the continuity equation. This terminology emphasizes that, in the absence of singu-
larities in the form of point sources and sinks, mass neither appears nor disappears in the
flow and the fluid must move in a continuous fashion in the available domain of flow.

Combining equations (2.7.8) and (2.7.13), we derive an alternative form of the continuity
equation,

∂ρ

∂t
+ u ·∇ρ+ ρ∇ · u = 0, (2.7.14)

involving the vectorial density gradient, ∇ρ, and the scalar rate of expansion, ∇ · u.

Differential mass balance

It is instructive to derive the continuity equation based on a mass balance over a small
stationary rectangular control area in the xy plane, as shown in Figure 2.7.1. Balancing the
rate of mass accumulation inside the control area with the rates of mass crossing the four
edges, we obtain

d

dt

(
ρ dx dy

)
=
(
ρ uxdy

)
x
− (ρ uxdy

)
x+dx +

(
ρ uydx

)
y
− (ρ uydx

)
y+dy. (2.7.15)

Dividing both sides by dx dy and noting that the variables, x, y, and t are independent, we
obtain

dρ

dt
=

(
ρ ux

)
x
− (ρ ux

)
x+dx

dx
+

(
ρ uydx

)
y
− (ρ uydx

)
y+dy

dy
. (2.7.16)

To derive the continuity equation (2.7.13), we merely invoke the definition of the partial
derivative.

2.7.4 Three-dimensional flow

Our discussion earlier in this section for two-dimensional flow can be generalized in a
straightforward fashion to three-dimensional flow. To carry out this extension, we replace
the line integrals with surface integrals over a closed or open surface. The mass flow rate



108 Fluid Dynamics: Theory, Computation, and Numerical Simulation

dy

y

xd

x

Figure 2.7.1 To derive the continuity equation for two-dimensional flow, we write a mass balance
over an infinitesimal rectangular control area.

across a stationary, open or closed surface S depicted in Figure 2.6.5 is given by the surface
integral

Qmass =

∫∫
S
ρu · n dS, (2.7.17)

involving the normal velocity component, un = u · n.

If the surface is closed and the unit normal vector points outward, as shown in Figure
2.6.5(b), we may use the divergence theorem to convert the surface integral on the right-
hand side of (2.7.17) into an integral of the rate of expansion over the volume V enclosed
by the surface, obtaining

Qmass =

∫∫∫
V
∇ · (ρu) dV. (2.7.18)

The counterpart of the mass balance equation (2.7.11) is∫∫∫
V

∂ρ

∂t
dV = −Qmass = −

∫∫
S
ρu · n dS = −

∫∫∫
V
∇ · (ρu) dV. (2.7.19)

Since the area D is fixed in space, we can interchange the order of

The continuity equation expressed by (2.7.13) or (2.7.14) stands true, with the under-
standing that ∇ρ is the three-dimensional density gradient with components

∇ρ =
( ∂ρ
∂x

,
∂ρ

∂y
,

∂ρ

∂z

)
(2.7.20)

defined over the domain of flow.
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Control volumeu

u
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n
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u

Figure 2.7.2 Illustration of a stationary control volume in a flow (cv) bounded by solid or fluid
surfaces.

2.7.5 Control volume and integral mass balance

In the context of transport phenomena, a volume, V, bounded by a closed surface, S, is
regarded as a control volume (cv), as shown in Figure 2.7.2. Equation (2.7.11) requires that

∫∫∫
cv

∂ρ

∂t
dV +

∫∫
cv

ρu · n dS = 0, (2.7.21)

physically stating that mass accumulation in a stationary control volume is due to convec-
tive motion through the boundaries of the control volume. Equation (2.7.21) expresses an
integral or macroscopic mass balance.

2.7.6 Rigid-body translation

When a fluid translates as a rigid body, the fluid velocity, u, has a constant and possibly
time-dependent value, U(t). In this case, the continuity equation (2.7.13) simplifies to a
linear convection equation,

∂ρ

∂t
+U ·∇ρ = 0. (2.7.22)

Consider a steady flow where U is independent of time. Using equation (2.7.22), we
find that, if ρ0(x) is the density field at t = 0, then

ρ(x, t) = ρ0(x−U t) (2.7.23)

will be the density field at any other time, t. Physically, the density at the point x = x0−U t
at time t is equal to the density at the point x0 at t = 0. We may say that the density field
is convected by the uniform flow.

To confirm (2.7.23), we introduce an auxiliary vector variable, w = x − U t, with
components

wx ≡ x− Ux t, wy ≡ y − Uy t, wz ≡ z − Uz t. (2.7.24)
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Using the chain rule of differentiation, we write

∂ρ

∂t
=

∂ρ0
∂wx

∂wx

∂t
+

∂ρ0
∂wy

∂wy

∂t
+

∂ρ0
∂wz

∂wz

∂t
, (2.7.25)

and then

∂ρ

∂t
=

∂ρ0
∂wx

(−Ux) +
∂ρ0
∂wy

(−Uy) +
∂ρ0
∂wz

(−Uz). (2.7.26)

The proof follows by observing that

∂ρ0
∂wx

=
∂ρ0
∂x

,
∂ρ0
∂wy

=
∂ρ0
∂y

,
∂ρ0
∂wz

=
∂ρ0
∂z

. (2.7.27)

2.7.7 Evolution equation for the density

The continuity equation can be regarded as an evolution equation for the density, determined
by the fluid velocity. To see this, we recast equation (2.7.13) into the form

∂ρ

∂t
= −∇ · (ρu). (2.7.28)

Evaluating the right-hand side of (2.7.28) at a certain point, x, in terms of the local and
instantaneous velocity and density, we obtain an expression for the local and current rate
of change of the density in time.

Temporal discretization

Consider the change in density occurring during a small time interval, Δt, following the
current time t. Evaluating both sides of equation (2.7.28) at a point, x, and approximating
the right-hand side with a first-order forward difference, we obtain

ρ(x, t+Δt)− ρ(x, t)

Δt
= −∇ · (ρu), (2.7.29)

where the right-hand side is evaluated at (x, t). Solving for ρ(x, t+Δt), we obtain

ρ(x, t+Δt) = ρ(x, t)−Δt∇ · (ρu), (2.7.30)

which provides us with an explicit expression for ρ(x, t + Δt) in terms of the density and
velocity at the current time, t.

Finite-difference method

In practice, equation (2.7.28) is solved by numerical methods. Consider an idealized one-
dimensional flow along the x axis representing, for example, the flow along a conduit with
a known axial velocity, u(x, t). The one-dimensional version of the continuity equation
(2.7.28) is

∂ρ

∂t
= −∂(ρ u)

∂x
. (2.7.31)
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The solution must be found inside a specified interval, a ≤ x ≤ b, subject to an initial
condition that specifies the density distribution at the designated origin of time, ρ(x, t = 0),
and a boundary condition that specifies the density at the left end of the solution domain,
x = a.

To develop the numerical method, we divide the solution domain intoN intervals defined
by N + 1 nodes, xi for i = 1, . . . , N + 1, as shown below:

x
32 N1 +1Ni

a b

The first node coincides with the left end point, x = a, and the last node coincides with the
right end point, x = b. Our goal is to generate the values of ρ at the nodes at a sequence
of time instants separated by the time interval Δt. To simplify the notation, we denote the
density at the ith node at the kth time level, corresponding to time tk = kΔt, by ρki .

Evaluating both sides of (2.7.31) at the ith node at the kth time level, and approximating
the time derivative on the left-hand side with a first-order forward difference and the spatial
derivative on the right-hand side with a first-order backward difference, we derive the finite-
difference approximation

ρk+1
i − ρki

Δt
= − (ρu)ki − (ρu)ki−1

xi − xi−1
. (2.7.32)

Solving for ρk+1
i , we obtain the updating formula

ρk+1
i = ρki − Δt

xi − xi−1

[
(ρ u)ki − (ρu)ki−1

]
. (2.7.33)

Algorithm

The numerical method involves the following steps:

1. Specify the initial values ρ0i for i = 1, . . . , N + 1.

2. Use equation (2.7.33) to compute ρ1i for i = 2, . . . , N + 1.

3. Use the left end boundary value to set the value of ρ11.

4. Use equation (2.7.33) to compute ρ2i for i = 2, . . . , N + 1.

5. Use the left end boundary value to set the value of ρ21.

6. Stop, or continue for further steps.

Note that a boundary condition at the right end of the solution domain is not required.
Numerical analysis shows that the success of this method depends on the size of the time
step, Δt, and sign of the convection velocity, u.
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Figure 2.7.2 To derive the continuity equation for axisymmetric flow, we write a mass balance over
an infinitesimal toroidal control volume in cylindrical polar coordinates.

2.7.8 Continuity equation for axisymmetric flow

Consider an axisymmetric flow and introduce cylindrical polar coordinates, (x, σ, ϕ), as
shown in Figure 2.7.2. We will demonstrate that the continuity equation takes the form

∂ρ

∂t
+

∂(ρux)

∂x
+

1

σ

∂ (σρuσ)

∂σ
= 0. (2.7.34)

To derive this equation, we perform a differential mass balance over a toroidal control volume
with two sides parallel sides at x and x+dx and the other two coaxial sides at σ and σ+dσ,
as shown in Figure 2.7.2. The volume of the differential control volume is

dVcv = 2πσ dx dσ (2.7.35)

and the mass of the fluid residing inside the control volume at any instant is dmcv = ρdVcv.

Balancing the rate of accumulation of fluid inside the control volume with the rates of
convection of mass across the four sides, we obtain

d

dt

(
ρ 2πσdx dσ

)
=
(
ρ ux2πσdσ

)
x
− (ρ ux2πσdσ

)
x+dx

+
(
ρ uσ2πσdx

)
σ
− (ρ uσ2πσdx

)
σ+dσ. (2.7.36)

Simplifying, we obtain

σ
d

dt

(
ρ dx dσ

)
= σ

(
ρ uxdσ

)
x
− σ

(
ρ uxdσ

)
x+dx +

(
ρ uσσdx

)
σ
− (ρ uσ2σdx

)
σ+dσ. (2.7.37)

Now dividing both sides by σdxdσ and noting that x, σ, and t are independent variables,
we obtain

dρ

dt
=

(
ρ ux

)
x
− (ρ ux

)
x+dx

dx
+

1

σ

(
σρuσdx

)
σ
− (σρuσdx

)
σ+dσ

dσ
. (2.7.38)
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Figure 2.7.3 To derive the continuity equation for axisymmetric flow, we write a mass balance over
an infinitesimal control volume in spherical polar coordinates.

To derive (2.7.34), we invoke the definition of the partial derivative and transfer all terms
to the left-hand side. Note that the density, ρ, remains inside the derivatives.

In spherical polar coordinates, (r, θ, ϕ), equation (2.7.34) takes the form

∂ρ

∂t
+

1

r2
∂(r2ρ ur)

∂r
+

1

r sin θ

∂(sin θρ uθ)

∂θ
= 0. (2.7.39)

To derive this equation, we perform a differential mass balance over a toroidal control volume
with two faces at r and r + dr and the other two faces at θ and θ + dθ, as shown in Figure
2.7.3.

2.7.1 Convection under constant velocity

Consider the one-dimensional flow discussed in the text where the density field is governed
by (2.7.31) with the velocity u being a constant. Sketch a profile of the density distribution
along the x axis at the initial time, t = 0, and at a subsequent time.

2.7.2 Steady state

Consider a steady one-dimensional flow with a specified velocity distribution, u(x). Derive
an expression for the density distribution at steady state based on (2.7.31). Discuss the
behavior of the density at a point where the velocity is zero.

Problems
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2.7.3 Finite-difference method

Consider a steady, one-dimensional, periodic flow along the x axis with sinusoidal velocity
distribution,

u(x) = U
[
1 + ε cos(2πx/L)

]
, (2.7.40)

where U is a constant velocity, ε is a specified dimensionless constant, and L is the period.
Write a computer program that uses the numerical method discussed in the text to com-
pute the evolution of the density over one spatial period, L, subject to a uniform initial
distribution. Run the program for ε = 0, 0.2, 0.4, and 0.8, prepare graphs of the density
distribution at different times, and discuss the behavior of the solution at long times.

2.8 Properties of point particles

The physical properties of a homogeneous fluid parcel consisting of a single chemical species
are determined by the number of molecules, the kinetic energy, the potential energy, and
the thermal energy of the molecules that comprise the parcel. Each one of these physical
properties is extensive, in that, the larger the parcel volume, the higher the magnitude of
the physical property.

As the size of a parcel tends to zero, the ratio between the value of an extensive property
and the parcel volume tends to a limit that is regarded as an intensive physical property of
the point particle that emerges from the parcel immediately before the molecular nature of
the fluid becomes apparent.

For example, we have already seen that, as the volume of a parcel tends to zero, the
ratio between the mass of the parcel and the volume of the parcel tends to a finite limit that
is defined as the fluid density, ρ. Similarly, the ratio of the number of molecules residing
within the parcel and the volume of the parcel tends to the molecular number density, and
the ratio of the potential energy of the molecules and the volume of the parcel tends to the
specific potential energy.

2.8.1 The material derivative

To prepare the ground for establishing evolution laws governing the motion and physical
state of a fluid, we seek corresponding laws determining the rate of change of physical
and kinematic properties of point particles moving with the local fluid velocity. Kinematic
properties include the point particle velocity and its first time derivative defined as the point
particle acceleration, the vorticity, and the rate of strain.

A key concept is the material derivative, defined as the rate of change of a physical or
kinematic property following a point particle. Our first objective is to derive an expression
for the material derivative in terms of Eulerian derivatives; that is, partial derivatives with
respect to spatial coordinates and time.



2.8 Properties of point particles 115

Taylor series expansion

Consider the material derivative of the density of a point particle which, at a certain time
t,0, is located at the point x0. In three-dimensional flow, the density is a function of
four independent variables, including the three Cartesian coordinates, (x, y, z), determining
position in space, and time, t.

We begin by linearizing the density field, ρ(x, y, z, t), around (x0, y0, z0, t0), as discussed
in Section 2.1. Adding time dependence to equation (2.1.6) and identifying the generic
function f(x, t) with the density, we obtain the linearized form

ρ(x, t) 	 ρ(x0, t0) + (t− t0)
(∂ρ
∂t

)
x0,t0

+(x− x0)
(∂ρ
∂x

)
x0,t0

+ (y − y0)
(∂ρ
∂y

)
x0,t0

+ (z − z0)
(∂ρ
∂z

)
x0,t0

, (2.8.1)

where x0 = (x0, y0, z0). Next, we bring the first term on the right-hand side, ρ(x0), to the
left-hand side, and divide both sides of the resulting equation by the time elapsed, t − t0,
to derive the expression

ρ(x, t)− ρ(x0, t0)

t− t0
=
(∂ρ
∂t

)
x0,t0
+

x− x0

t− t0

(∂ρ
∂x

)
x0,t0
+

y − y0
t− t0

(∂ρ
∂y

)
x0,t0
+

z − z0
t− t0

(∂ρ
∂z

)
x0,t0

,

(2.8.2)

which is applicable at any point, x, in the neighborhood of a chosen point of interest, x0,
and for time t near t0.

Moving with the fluid

The second key step involves the judicious choice of the field point, x. This point is selected
so that, if a point particle is located at the position x0 at time t0, then the same point
particle is located at the position x at a later time, t. By definition then, the left-hand side
of (2.8.2) reduces to the material derivative.

Since the point particle moves with the fluid velocity, the three fractions on the right-
hand side of (2.8.2) are equal the three components of the fluid velocity, ux, uy, and uz.
Denoting the material derivative by D/Dt, we find that(Dρ

Dt

)
x0,t0

=
( ∂ρ

∂t
+ ux

∂ρ

∂x
+ uy

∂ρ

∂y
+ uz

∂ρ

∂z

)
x0,t0

. (2.8.3)

In terms of the density gradient defined in (2.7.20), equation (2.8.3) takes the simpler form

Dρ

Dt
=

∂ρ

∂t
+ u ·∇ρ, (2.8.4)

where both sides are evaluated at the arbitrary point, x0, at an arbitrary time instant, t0.
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Lagrangian and Eulerian derivatives

Equation (2.8.3) allows us to compute the material derivative of the density, sometimes
also called the Lagrangian derivative, in terms of Eulerian derivatives, that is, in terms of
partial derivatives of the density with respect to time and spatial coordinates, x, y, and z. In
numerical practice, the partial derivatives are computed by finite-difference approximations,
as discussed in Section 2.5.

2.8.2 The continuity equation

Comparing equations (2.8.4) and (2.7.14), we find that, in terms of the material derivative
of the density, the continuity equation takes the form

Dρ

Dt
+ ρ∇ · u = 0, (2.8.5)

which reveals that the rate of change of the density of a point particle is determined exclu-
sively by the local rate of expansion, ∇ ·u. However, the inverse interpretation is physically
more appropriate: the structure of the velocity field is determined, in part, by the rate of
change of the density of all point particles.

Consider a small fluid parcel with volume δVp, density ρ, and mass δmp = ρ δVp. Mass
conservation requires that δmp remains constant in time, D δmp/Dt = 0. Expanding the
material derivative, we obtain

D(ρ δVp)

Dt
= δVp

Dρ

Dt
+ ρ

D δVp

Dt
= 0 (2.8.6)

(Problem 2.8.1). Using the continuity equation (2.8.5) and rearranging, we find that

1

δVp

D δVp

Dt
= ∇ · u, (2.8.7)

which reinforces our interpretation of the divergence of the velocity as the rate of volumetric
expansion.

2.8.3 Point particle acceleration

The acceleration of a point particle, a, is defined as the rate of change of the point particle
velocity. Invoking the definition of the material derivative, we find that the x component of
the acceleration is equal to the material derivative of the x component of the point particle
velocity, which is equal to the local fluid velocity, ax = Dux/Dt. Similar arguments reveal
that

ax =
Dux

Dt
, ay =

Duy

Dt
, az =

Duz

Dt
. (2.8.8)

In vector form,

a =
Du

Dt
. (2.8.9)

Not surprisingly, the acceleration vector is the material derivative of the velocity vector.
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Replacing ρ in equation (2.8.4) with ux, uy, or uz, we find that the three Cartesian
components of the point particle acceleration are given by

ax ≡ Dux

Dt
=

∂ux

∂t
+ u ·∇ux =

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z
,

ay ≡ Duy

Dt
=

∂uy

∂t
+ u ·∇uy =

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z
, (2.8.10)

az ≡ Duz

Dt
=

∂uz

∂t
+ u ·∇uz =

∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z
.

The three scalar equations (2.8.10) can be collected conveniently into a vector form,

a ≡ Du

Dt
=

∂u

∂t
+ u · L =

∂u

∂t
+ u ·∇u, (2.8.11)

where L = ∇u is the velocity-gradient tensor defined in equation (2.1.16), with components
Lij = ∂uj/∂xi. In index notation, the jth component of (2.8.11) takes the form

Duj

Dt
=

∂uj

∂t
+ ui

∂uj

∂xi
, (2.8.12)

where summation is implied over the repeated index i.

Linear momentum

The linear momentum of a small fluid parcel is the product of the mass of the parcel,
δmp = ρ δVp, and the parcel velocity, u. Requiring mass conservation, that is, demanding
that δmp remains constant in time, we find that the rate of change of the linear momentum
can be expressed in terms of the point particle acceleration in the form

D (δmpu)

Dt
=

Du

Dt
ρ δVp =

Du

Dt
δmp. (2.8.13)

Thus, the mass of an infinitesimal parcel can be extracted from the material derivative, just
like a constant can be extracted from an ordinary derivative.

Cylindrical polar coordinates

In the cylindrical polar coordinates defined in Figure 1.3.2, the point particle acceleration
is expressed in terms of its cylindrical polar components, ax, aσ, and aϕ, as

a = ax ex + aσ eσ + aϕ eϕ. (2.8.14)

Using the transformation rules shown in (1.3.20), we find that

aσ = cosϕay + sinϕaz, aϕ = − sinϕay + cosϕaz. (2.8.15)

Substituting the right-hand sides of the second and third relations in (2.8.10) into the right-
hand sides of the equations in (2.8.15), and then using the chain rule of differentiation to
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convert derivatives with respect to x, y, and z to derivatives with respect to x, σ, and ϕ in
the resulting equations as well as in the first equation in (2.8.10), we obtain

ax =
∂ux

∂t
+ ux

∂ux

∂x
+ uσ

∂ux

∂σ
+

uϕ

σ

∂ux

∂ϕ
,

aσ =
∂uσ

∂t
+ ux

∂uσ

∂x
+ uσ

∂uσ

∂σ
+

uϕ

σ

∂uσ

∂ϕ
− u2

ϕ

σ
, (2.8.16)

aϕ =
∂uϕ

∂t
+ ux

∂uϕ

∂x
+ uσ

∂uϕ

∂σ
+

uϕ

σ

∂uϕ

∂ϕ
+

uσuϕ

σ
.

Using the expression for the gradient of a function in cylindrical polar coordinates defined in
equations (2.1.37) and (2.1.43), we recast expressions (2.8.16) into compact form involving
the material derivative,

ax =
∂ux

∂t
+ u ·∇ux =

Dux

Dt
,

aσ =
∂uσ

∂t
+ u ·∇uσ − u2

ϕ

σ
=

Duσ

Dt
− u2

ϕ

σ
,

aϕ =
∂uϕ

∂t
+ u ·∇uϕ +

uσuϕ

σ
=

Duσ

Dt
+

uσuϕ

σ
. (2.8.17)

These expressions illustrate that the cylindrical polar components of the acceleration are
not simply equal to the material derivative of the corresponding polar components of the
velocity.

Spherical polar coordinates

In the spherical polar coordinates depicted in Figure 1.3.3, the point particle acceleration is
expressed in terms of its spherical polar components, ar, aθ, and aϕ, as

a = ar er + aθ eθ + aϕ eϕ. (2.8.18)

Working as previously for the cylindrical polar coordinates, we find the somewhat more
involved expressions

ar =
∂ur

∂t
+ ur

∂ur

∂r
+

uθ

r

∂ur

∂θ
+

uϕ

r sin θ

∂ur

∂ϕ
− u2

θ + u2
ϕ

r
,

aθ =
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uϕ

r sin θ

∂uθ

∂ϕ
+

uruθ

r
− u2

ϕ cot θ

r
, (2.8.19)

aϕ =
∂uϕ

∂t
+ ur

∂uϕ

∂r
+

uθ

r

∂uϕ

∂θ
+

uϕ

r sin θ

∂uϕ

∂ϕ
+

uruϕ

r
+

uθuϕ

r
cot θ,

which can be expressed in a more compact form involving the material derivative,

ar =
Dur

Dt
− u2

θ + u2
ϕ

r
, aθ =

Duθ

Dt
+

uruθ

r
− u2

ϕ cot θ

r
,

(2.8.20)

aϕ =
Duθ

Dt
+

uruϕ

r
+

uθuϕ

r
cot θ.
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These expressions illustrate that the spherical polar components of the acceleration are
not simply equal to the material derivative of the corresponding polar components of the
velocity.

Plane polar coordinates

In the system of plane polar coordinates depicted in Figure 1.3.4, the point particle accel-
eration is expressed in terms of its plane polar components, ar and aθ, as

a = ar er + aθ eθ. (2.8.21)

Working in the familiar way, we obtain

ar =
∂ur

∂t
+ ur

∂ur

∂θ
+

uθ

r

∂ur

∂θ
− u2

θ

r
=

Dur

Dt
− u2

θ

r
,

(2.8.22)

aθ =
∂uθ

∂t
+ ur

∂uθ

∂r
+

uθ

r

∂uθ

∂θ
+

uruθ

r
=

Duθ

Dt
+

uruθ

r
.

Note that these components are related to the σ and ϕ components in polar cylindrical
coordinates.

Acceleration at a point with zero vorticity

If all components of the vorticity vector are zero at a certain point in a flow, the velocity
gradient tensor is symmetric at that point. Consequently, selected partial derivatives of the
velocity must be such that the three terms enclosed by the parentheses on the right-hand
side of (2.3.8) are zero,

∂uz

∂y
=

∂uy

∂z
,

∂ux

∂z
=

∂uz

∂x
,

∂uy

∂x
=

∂ux

∂y
. (2.8.23)

The sum of the last three terms on the right-hand side of the first equation in (2.8.10) may
then be written as

ux
∂ux

∂x
+ uy

∂uy

∂x
+ uz

∂uz

∂x
=

1

2

∂u2
x

∂x
+

1

2

∂u2
y

∂x
+

1

2

∂u2
z

∂x
=

1

2

∂(u2
x + u2

y + u2
z)

∂x
. (2.8.24)

Working in a similar fashion with the y and z components, and collecting the derived
expressions into a vector form, we obtain

u ·∇u =
1

2
∇u2 =

( ∂u2

∂x
,

∂u2

∂y
,

∂u2

∂z

)
, (2.8.25)

where

u2 ≡ u2
x + u2

y + u2
z (2.8.26)

is the square of the magnitude of the velocity, and ∇u2 is its gradient. The point particle
acceleration may thus be expressed in the alternative form

a ≡ Du

Dt
=

∂u

∂t
+

1

2
∇u2. (2.8.27)



120 Fluid Dynamics: Theory, Computation, and Numerical Simulation

The first term on the right-hand side of (2.8.27) is zero in a steady flow. The point
particle acceleration is then equal to half the gradient of the square of the magnitude of the
local velocity, which is a measure of the local kinetic energy of the fluid. We conclude that
the acceleration is oriented in the direction of maximum change of kinetic energy indicated
by the gradient.

In Chapter 6, we will see that the simplified expression (2.8.27) serves as a point of
departure for the theoretical analysis and numerical computation of irrotational flows.

2.8.1 Properties of the material derivative

Consider two scalar physical or kinematic fluid properties, such as the density or a compo-
nent of the velocity, denoted, respectively, by f and g. Prove that the following usual rule
of product differentiation applies,

D(fg)

Dt
= g

Df

Dt
+ f

Dg

Dt
, (2.8.28)

where D/Dt is the material derivative.

2.8.2 Point particle acceleration in rotational flow

Show that the counterpart of equation (2.8.25) at a point where the vorticity ω is not
necessarily zero is the inclusive equation

u ·∇u =
1

2
∇u2 − u× ω, (2.8.29)

where u the magnitude of the velocity. How does this expression simplify at a point where
the velocity vector is parallel to the vorticity vector?

2.8.3 Point particle motion in one-dimensional flow

Consider an idealized one-dimensional flow along the x axis with velocity u(x, t) satisfying
the inviscid Burgers equation

∂u

∂t
+ u

∂u

∂x
= 0. (2.8.30)

Explain why point particles in this flow travel with a time-independent velocity that is equal
to the velocity assigned to them at the initial instant; different point particles may travel
with different velocities.

2.9 Incompressible fluids and stream functions

If the volume of a fluid parcel is preserved as the parcel is convected in a flow, the fluid
residing inside the parcel is incompressible. In contrast, if the volume of the parcel is allowed
to change in time, the fluid residing inside the parcel is compressible.

Problems
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Mass conservation requires that the mass of any fluid parcel is conserved irrespective of
whether the fluid is compressible or incompressible.

Since both the mass and the volume of an arbitrary incompressible fluid parcel are
conserved during the motion, the density of the point particles that comprise the parcel
remain constant in time. Using the physical interpretation of the material derivative, D/Dt,
we derive the mathematical statement of incompressibility,

Dρ

Dt
= 0. (2.9.1)

It is important to bear in mind that the density of an incompressible fluid is not neces-
sarily uniform throughout the domain of flow. Different point particles may have different
densities, but the density of each individual point particle is conserved during the motion.

2.9.1 Kinematic consequence of incompressibility

Using the incompressibility condition expressed by equation (2.9.1), we find that the conti-
nuity equation (2.8.5) for an incompressible fluid simplifies to

∇ · u = 0, (2.9.2)

which states that the velocity field should be solenoidal. By definition, the divergence of any
solenoidal vector field is identically zero. Consequently, the rate of expansion α defined in
equation (2.2.6) is identically zero. An incompressible fluid parcel may undergo translation,
rotation, and isochoric (volume-preserving) deformation, but not expansion. The word
isochoric is composed from the Greek words ισoς which means equal, and the word χωρoς
which means volume or space.

It is important to bear in mind that the stipulation (2.9.1) is the defining property
of an incompressible fluid, while the simplified form of the continuity equation (2.9.2) is a
consequence of mass conservation.

2.9.2 Mathematical consequence of incompressibility

Equation (2.9.2) states that the x, y, and z components of the velocity of an incompressible
fluid may not be prescribed arbitrarily, but must be such that the differential constraint im-
posed on them by the requirement that the velocity field be solenoidal is satisfied throughout
the domain of flow at any time. In contrast, the three components of the velocity of a com-
pressible fluid may be arbitrary; the density of the point particles will then adjust to ensure
mass conservation, as dictated by the continuity equation.

A second important consequence of incompressibility is that, because the evolution of
the density is governed by the kinematic constraint (2.9.1), an equation of state relating the
pressure to the density to the temperature is not needed. The important significance of this
consequence will be discussed further in Chapters 4 and 8 in the context of hydrodynamics.
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2.9.3 Stream function for two-dimensional flow

The continuity equation for a two-dimensional flow in the xy plane stated in (2.9.2) takes
the form

∂ux

∂x
+

∂uy

∂y
= 0. (2.9.3)

In computing the velocity field of an incompressible fluid by analytical or numerical methods,
it is convenient to satisfy this constraint at the outset and concentrate on satisfying boundary
conditions and other constraints that arise by balancing forces and torques, as will be
discussed in later chapters.

To achieve this, we may express the two velocity components in terms of a scalar func-
tion, ψ, called the stream function, as

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
. (2.9.4)

If the two velocity components, ux and uy derive from ψ by equations (2.9.4), then the
satisfaction of the incompressibility constraint (2.9.3) is guaranteed. To confirm this, we
substitute (2.9.4) into (2.9.3) and find that

∂2ψ

∂x ∂y
− ∂2ψ

∂y ∂x
= 0. (2.9.5)

Since the order of partial differentiation with respect to the two independent spatial variables
x and y is immaterial, the equality is satisfied.

Extensional flow

As an example, we consider a two-dimensional flow with velocity components

ux = ξx, uy = −ξy (2.9.6)

describing an extensional flow, where ξ is a constant with units of inverse time. It can
be verified readily that the continuity equation is fulfilled, ∇ · u = 0. Substituting these
expressions into (2.9.3), we confirm that the fluid is incompressible. The stream function
corresponding to this flow is given by

ψ = ξxy + c, (2.9.7)

where c is an unspecified and inconsequential constant.

Non-uniqueness of the stream function

The example discussed in the last section illustrates that the stream function of a specified
two-dimensional flow is not unique. Cursory inspection of equation (2.9.4) shows that an
arbitrary constant may be added to a particular stream function to yield another perfectly
acceptable stream function describing the same flow. However, this ambiguity is neither
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essential nor alarming. In performing analytical or numerical computation, the arbitrary
constant simply provides us with one degree of freedom that can be used to simplify numer-
ical and algebraic manipulations.

Physical interpretation

Consider the areal flow rate, Qareal, across a line that begins at a point, A, and ends at
another point, B, as illustrated in Figure 2.6.1. Substituting expressions (2.9.4) into the
right-hand side of the last integral in (2.6.15) for the areal flow rate, we obtain

Qareal =

∫ B

A

( ∂ψ
∂y

dy +
∂ψ

∂x
dx
)
. (2.9.8)

We may then write

Qareal =

∫ B

A

dψ = ψB − ψA, (2.9.9)

where ψA and ψB are the values of the stream function at the end points, A and B.

Equation (2.9.9) shows that the difference in the values of the stream function between
two points is equal to the areal flow rate across any arbitrary line that begins at the first
point and ends at the second point. Because the fluid is incompressible, the flow rate is
independent of the actual shape of the line, provided that the line begins and ends at two
specified points.

Vorticity

The z component of the vorticity of a two-dimensional flow in the xy plane was given in
equation (2.3.19) in terms of selected derivatives of the velocity,

ωz =
∂uy

∂x
− ∂ux

∂y
. (2.9.10)

Substituting expressions (2.9.4), we find that

ωz = −( ∂2ψ

∂x2
+

∂2ψ

∂y2
) ≡ −∇2ψ, (2.9.11)

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
(2.9.12)

is the Laplacian operator in the xy plane, as discussed in Section 3.2. Thus, the z component
of the vorticity is equal to the negative of the Laplacian of the stream function.

If the stream function satisfies Laplace’s equation, ∇2ψ = 0, the velocity field is
solenoidal and the flow is irrotational. A function that satisfies Laplace’s equation is called
harmonic.
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Plane polar coordinates

Departing from equations (2.9.4) and (2.3.19), and using the rules of coordinate transforma-
tion, we derive the velocity components of a two-dimensional flow in plane polar coordinates,
(r, θ), in terms of the stream function,

ur =
1

r

∂ψ

∂θ
, uθ = −∂ψ

∂r
. (2.9.13)

The vorticity is

ωz = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

r2
∂2ψ

∂θ2
≡ −∇2ψ, (2.9.14)

where

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
=

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2
(2.9.15)

is the Laplacian operator in plane polar coordinates.

Expressions (2.9.13) satisfy the continuity equation in plane polar coordinates,

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂r
= 0 (2.9.16)

for any differentiable and single valued stream function, ψ.

2.9.4 Stream function for axisymmetric flow

In the case of axisymmetric flow without swirling motion, we express all dependent and
independent variables in the continuity equation, ∇ ·u = 0, in cylindrical polar coordinates,
(x, σ, ϕ). After carrying out a fair amount of algebra using the chain rule, we find that
the continuity equation takes the form of a constraint on the axial and radial velocity
components, ux and uσ,

∇ · u =
∂ux

∂x
+

1

σ

∂ (σuσ)

∂σ
= 0. (2.9.17)

To ensure the satisfaction of this equation, we express the axial and radial components
of the velocity in terms of an axisymmetric stream function, ψ, also called the Stokes stream
function, defined by the equations

ux =
1

σ

∂ψ

∂σ
, uσ = − 1

σ

∂ψ

∂x
. (2.9.18)

Notice the minus sign in the second expression. Straightforward substitutions confirm that
the velocity components given in (2.9.18) satisfy the continuity equation (2.9.17) for any
regular stream function, ψ.
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Extensional flow

As an example, we consider an axisymmetric flow with velocity components

ux = ξx, uσ = − 1

2
ξσ, (2.9.19)

representing an extensional flow, where ξ is a constant with units of inverse time. Substi-
tuting these expressions into (2.9.17), we confirm that the left-hand side vanishes and the
fluid is incompressible. The corresponding stream function is given by

ψ =
1

2
ξxσ2 + c, (2.9.20)

where c is an unspecified constant.

Physical interpretation

Working as in Section 2.9.3 for two-dimensional flow, we find that the volumetric flow rate
across an axisymmetric surface whose trace in an azimuthal plane of constant angle ϕ starts
at a point, A, and ends at another point, B, as illustrated in Figure 2.6.6, is

Q = ψB − ψA (2.9.21)

(Problem 2.9.2). This result is consistent with the units of the axisymmetric stream function,
velocity multiplied by length squared, evident from equations (2.9.18). In contrast, the
stream function for two-dimensional has units of velocity multiplied by length.

Vorticity

The azimuthal component of the vorticity in an axisymmetric flow was given in equation
(2.3.22) in terms of derivatives of the cylindrical polar components of the velocity,

ωϕ =
∂uσ

∂x
− ∂ux

∂σ
. (2.9.22)

Substituting expressions (2.9.18), we obtain

ωϕ = − 1

σ
E2ψ = − 1

σ

( ∂2ψ

∂x2
+

∂2ψ

∂σ2
− 1

σ

∂ψ

∂σ

)
, (2.9.23)

where E2 is a second-order linear differential operator defined as

E2 ≡ ∂2

∂x2
+

∂2

∂σ2
− 1

σ

∂

∂σ
. (2.9.24)

If the stream function is such that the right-hand side of (2.9.23) is zero throughout the
domain of flow, the flow is irrotational.
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Spherical polar coordinates

Departing from equations (2.9.18) and (2.3.22), and using the rules of coordinate transfor-
mation, we derive the velocity components in spherical polar coordinates, (r, θ, ϕ),

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
. (2.9.25)

The azimuthal component of the vorticity is given by

ωϕ = − 1

r sin θ
E2ψ, (2.9.26)

where E2 is the second-order differential operator defined in (2.9.24). In spherical polar
coordinates,

E2 ≡ ∂2

∂r2
+

sin θ

r2
∂

∂θ

( 1

sin θ

∂

∂θ

)
=

∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ
. (2.9.27)

If the stream function is such that the right-hand side of (2.9.26) is zero throughout the
domain of flow, the flow is irrotational.

2.9.1 Stream function for two-dimensional flow

Derive the Cartesian components of the velocity and the z vorticity component of a two-
dimensional flow whose stream function is (a) ψ = 1

2 ξ y
2 or (b) ψ = 1

2 ξ (x
2 − y2), where ξ

is a constant. Deduce the units of ξ and discuss the nature of each flow.

2.9.2 Stream function of axisymmetric flow

Substitute expressions (2.9.18) into the right-hand side of (2.6.38) and perform the integra-
tion to confirm (2.9.21).

2.10 Kinematic conditions at boundaries

In real life, a flow occurs in a domain that is bounded by stationary or moving surfaces with
different constitutions and physical properties. Examples include the flow in an internal
combustion engine generated by the motion of an engine piston, the flow induced by the
motion of an aircraft or ground vehicle, the flow induced by the sedimentation of an aerosol
particle in the atmosphere, the flow induced by a small bubble rising in a carbonated bev-
erage, and the flow induced by the motion of an elephant running through the Savannah to
escape a mouse.

Types of boundary conditions

In the context of kinematics, boundaries are classified into the following four main categories:

Problems
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1. Impermeable solid boundaries: examples include the surface of a rigid or flexible solid
body, such as a vibrating radio antenna or a swimming microorganism.

2. Permeable solid boundaries: examples include the surface of a porous medium, such as
a rock bed or a biological tissue composed of cells separated by gaps in the intervening
spaces.

3. Sharp interfaces between immiscible fluids: examples include the free surface of the
ocean and the interface between oil and vinegar in an Italian salad dressing.

4. Diffuse interfaces between miscible fluids: examples include the fuzzy edge of a river
discharging into the ocean and the ambiguous edge of a smoke ring rising in still air.

Different boundary conditions are imposed on each of these surfaces according to the pre-
vailing physical context.

2.10.1 The no-penetration boundary condition

By definition, a point particle moving with the fluid velocity may not cross an impermeable
solid boundary or a sharp interface between two immiscible fluids, but is required to lie on
one side of the boundary or interface at all times. As a consequence, the velocity of a point
particle that lies at a stationary or moving impermeable boundary or sharp interface must
be consistent with, but not necessarily equal to, the velocity of the boundary or interface.
To ensure compatibility, the no-penetration boundary condition is required.

Impermeable solid boundaries

Consider a flow that is bounded by an impermeable solid, but not necessarily rigid, boundary
(rubber is a non-rigid, elastic yet solid boundary.) The no-penetration boundary condition
requires that the component of the fluid velocity normal to the boundary is equal to the
component of the boundary velocity normal to its instantaneous shape. The tangential
component of the velocity is left unspecified. If the boundary is stationary, the normal
component of the fluid velocity must vanish.

To derive the mathematical statement of the no-penetration condition, we introduce
the unit vector normal to the boundary at a point, n, and the velocity of the boundary, vB,
where the orientation of n is left unspecified. If the boundary is stationary, the boundary
velocity is zero, vB = 0; if the boundary translates as a rigid body, vB is constant; if the
boundary rotates as a rigid body or exhibits some type of deformation, vB is a function of
position, as will be discussed later in this section.

In all cases, the no-penetration boundary condition requires that

u · n = vB · n, (2.10.1)

where both sides are evaluated at a point on the boundary.
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Rigid-body motion

Consider an impermeable rigid boundary that translates with velocity UB while rotating
with angular velocity ΩB around a specified center of rotation, xR. The angular velocity
vector, ΩB, passes through the center of rotation, xR. The magnitude and orientation of
ΩB express the rate of direction and direction of rotation. As we look down at the angular
velocity vector from above, the body rotates in the counterclockwise direction.

In terms of the velocity of translation and angular velocity of rotation, the velocity at
a point x that lies at the boundary is given by the expression

vB = UB +ΩB × (x− xR), (2.10.2)

where × denotes the outer vector product defined in equation (2.3.5). In component form,

vB = [UB
x +ΩB

y (z − zR)− ΩB
z (y − yR) ] ex

+[UB
y +ΩB

z (x− xR)− ΩB
x (z − zR) ] ey (2.10.3)

+[UB
z +ΩB

x (y − yR)− ΩB
y (x− xR) ] ez,

where ex, ey, and ez are unit vectors along the x, y, or z axes.

In the case of two-dimensional flow in the xy plane, the z velocity component is zero,
UB
z = 0, and the angular velocity vector is parallel to the z axis, ΩB

x = 0 and ΩB
y = 0,

yielding the simplified form

vB =
[
UB
x − ΩB

z (y − yR)
]
ex +

[
UB
y +ΩB

z (x− xR)
]
ey, (2.10.4)

which is linear in x and y.

The no-penetration boundary condition arises by substituting expression (2.10.3) or
(2.10.4) into the right-hand side of (2.10.1), respectively, for three-dimensional or two-
dimensional flow. If the boundary is stationary, vB = 0, we obtain the simple form

u · n = 0, (2.10.5)

where the direction of the unit normal vector, n, is unspecified.

The no-penetration condition in terms of the stream function

Next, we consider an incompressible fluid in a two-dimensional flow and express the veloc-
ity in terms of the stream function, ψ, defined in equations (2.9.4). The no-penetration
boundary condition (2.10.1) requires that

u · n = ux nx + uy ny =
∂ψ

∂y
nx − ∂ψ

∂x
ny = vB · n. (2.10.6)

Substituting expressions (2.6.4) for the components of the normal vector in terms of differ-
ential displacements along the boundary, we obtain

∂ψ

∂y

dy

d

+

∂ψ

∂x

dx

d

=

dψ

d

= vB · n, (2.10.7)
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where d
 is an infinitesimal arc length measured along the boundary from an arbitrary
origin.

If the boundary is stationary, the right-hand side of (2.1.8) is zero, dψ/d
 = 0, and
the stream function is constant over the boundary. The no-penetration boundary condition
takes the simple form

ψ = ψ0, (2.10.8)

where the constant ψ0 is either assigned arbitrarily or computed as part of the solution.

Similar arguments can be made to show that the stream function is constant over an
impermeable stationary boundary in axisymmetric flow (Problem 2.10.2(b)).

Sharp interfaces

Next, we consider the no-penetration condition over a stationary or moving sharp interface
separating two immiscible fluids. Physical arguments suggest that the normal component
of the fluid velocity on one side of the interface must be equal to the normal component of
the velocity on the other side of the interface. However, the tangential velocities may be
different.

To derive the mathematical statement of the no-slip condition, we introduce the velocity
on one side of the interface, denoted by u(1), and the velocity on the other side of the
interface, denoted by u(2), and require that

u(1) · n = u(2) · n, (2.10.9)

where n is the unit vector normal to the interface. Both sides are evaluated at a point at
the interface with an unspecified direction of the unit normal vector, n.

2.10.1 Changing the center of rotation

The center of rotation of a rigid body can be placed at any arbitrary position. Suppose that
we choose a point, x′

R, instead of the point xR discussed in the text. The counterpart of
equation (2.10.2) is

vB = UB′

+ΩB′ × (x− x′
R). (2.10.10)

Set the right-hand side of (2.10.10) equal to the right-hand side of (2.10.2) to derive expres-

sions for UB′

and ΩB′

in terms of UB and ΩB , and vice versa.

2.10.2 Stream functions

(a) Use the no-penetration boundary condition to derive an expression for the stream func-
tion over a translating but non-rotating impermeable boundary in two-dimensional flow.

(b) Show that the no-penetration condition over a stationary boundary in axisymmetric flow
takes the form expressed by (2.10.8).

Problems
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based on kinematics
3

3.1 Flow classification based on kinematics
3.2 Irrotational flow and the velocity potential
3.3 Finite-difference methods
3.4 Linear solvers
3.5 Two-dimensional point sources and point-source dipoles
3.6 Three-dimensional point sources and point-source dipoles
3.7 Point vortices and line vortices

Flows can be classified according to the vorticity distribution as irrotational flows if the
vorticity vanishes or is nearly zero throughout the domain of flow, vortex flows dominated
by the presence of compact regions of concentrated vorticity embedded in an otherwise
irrotational fluid, and rotational flows if the vorticity is significant throughout the domain
of flow. In this chapter, we discuss the kinematic structure and mathematical description
of the simplest and most tractable class of irrotational flows.

Following the mathematical analysis, we will develop finite-difference methods for com-
puting the velocity field from knowledge of the velocity distribution at the boundaries, and
then present a class of elementary irrotational flows that serve as fundamental building
blocks for generating desired solutions. Complementary building blocks associated with el-
ementary vortex flows provide us with additional elementary units that allow us to address
a broader class of irrotational flows where the fluid exhibits circulatory motion.

3.1 Flow classification based on kinematics

In Chapters 1 and 2, we discussed the general kinematic properties of a flow with reference
to the motion of fluid parcels and infinitesimal point particles. To make further progress, we
establish a taxonomy by classifying flows according to sensible criteria. Examples of possible
classifications include internal and external flows, inviscid and viscous flows, subsonic and
supersonic flows.

On the basis of kinematics alone, flows can be classified into three main categories,
including irrotational flows, flows containing compact regions of intense vorticity embedded
in an otherwise perfectly or nearly irrotational fluid, and rotational flows with distributed
vorticity.
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Irrotational flows

The first category includes flows where the vorticity vector vanishes, and the magnitude of
the vorticity is zero throughout the domain of flow. According to our discussion in Chapter
2, small spherical fluid parcels in a three-dimensional irrotational flow and discoidal fluid
parcels in a two-dimensional irrotational flow translate, deform, and expand or contract,
but do not rotate.

A perfectly irrotational flow is a mathematical idealization. In practice, because a
small amount of vorticity is always present, a nominally irrotational flow is nearly but not
perfectly irrotational. An example is high-speed flow past a slender airfoil under conditions
of no-stall, as will be discussed in Chapter 12 in the context of aerodynamics.

Vortex flows

The second category includes flows that contain well-defined compact regions where the
magnitude of the vorticity is significant, embedded in an otherwise irrotational fluid. The
vortical flow regions cannot be neglected without introducing serious discrepancies and
compromising the physics of the flow under consideration. In practice, regions of intense
vorticity appear in the form of narrow layers, thin filaments, wakes behind bluff bodies,
tornadoes and swirls. A vortex flow familiar to the aircraft traveler is the flow associated
with a high-speed jet emerging from a turbine engine.

Rotational flows

The third category includes flows where the vorticity is significant throughout the domain of
flow. The distinction between vortex flows and rotational flows is somewhat vague, as some
flows can be classified into both categories. However, we will see that vortex flows can be
analyzed and computed using a special class of numerical methods, called vortex methods.
The availability of these methods provides us with a practical criterion for the distinction
between vortex and rotational flows.

Flows in nature and technology

The vast majority of flows in nature and technology are rotational. Examples include the
flow due to a small particle settling in the atmosphere, the flow through the engine of a
turbine, and blood flow in the heart and through large blood vessels and small capillaries.
High-speed flows develop regions of concentrated vorticity and are typically classified as
vortex flows. High-speed turbulent flows contain random collections of rapidly evolving
vortices, called eddies or coherent structures, embedded in a low- or moderate-vorticity
background fluid.

Irrotational flows are simplified models of vortex flows that emerge by neglecting the
regions of concentrated vorticity, or else by shifting the actual boundaries of the flow to the
edges of the vortex regions, thereby placing them outside the domain of flow.
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Considerable physical insight and practical experience are necessary to accurately pre-
dict whether a flow will develop to become irrotational, rotational, or vortex flow. Insights
can be gained by studying model flows that are amenable to analytical and simple numerical
methods. Additional insights can be gained by analyzing the laws governing the generation
and evolution of the vorticity field from a given initial state.

Flow computation

The difficulty of computing the structure or evolution of a flow increases sharply as we
transition from irrotational flows, to vortex flows, to rotational flows. Exceptions to this
general rule arise in special cases. Our discussion of analytical and computational methods
for flow computation begins in this chapter by considering the most amenable class of
irrotational flows. In the context of kinematics alone, the problem can be stated as follows:
given the boundary geometry and the velocity distribution over the boundaries, compute
the structure of a steady irrotational flow or the evolution of an unsteady irrotational flow
from a specified initial state.

3.1.1 Flow classification

Suggest a possible way of classifying flows according to sensible criteria apart from the those
discussed in the text.

3.2 Irrotational flow and the velocity potential

The vorticity of a three-dimensional flow was defined in equation (2.3.8) as the curl of the
velocity,

ω ≡ ∇× u. (3.2.1)

The z component of the vorticity of a two-dimensional flow in the xy plane was given in
equation (2.3.19) as

ωz =
∂uy

∂x
− ∂ux

∂y
, (3.2.2)

and the azimuthal component of the vorticity of an axisymmetric flow was given in equation
(2.3.22) as

ωϕ =
∂uσ

∂x
− ∂ux

∂σ
=

1

r

( ∂(ruθ)

∂r
− ∂ur

∂θ

)
. (3.2.3)

If a flow is irrotational, the structure of the velocity field must be such that the right-hand
sides of these equations are zero.

Problem
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3.2.1 Two-dimensional flow

Consider a two-dimensional irrotational flow in the xy plane. Setting the left-hand side of
equation (3.2.2) to zero, we obtain a constraint on selected partial derivatives of the velocity,

∂uy

∂x
=

∂ux

∂y
. (3.2.4)

To describe a two-dimensional irrotational flow, we may attempt to compute the two velocity
components individually, subject to constraints imposed by the continuity equation and
boundary conditions, while ensuring that condition (3.2.4) is fulfilled at every point in
the flow. Alternatively, we may choose to satisfy condition (3.2.4) at the outset and then
concentrate on fulfilling the rest of the requirements.

It should not be surprising that the second approach is more expedient in both theo-
retical analysis and numerical computation.

The velocity potential

The key idea is to introduce a new scalar function, φ, called the velocity potential, such
that the two velocity components of a two-dimensional flow derive from the relations

ux =
∂φ

∂x
, uy =

∂φ

∂y
. (3.2.5)

In vector notation, equations (3.2.5) are collected into the compact form

u = ∇φ, (3.2.6)

where

∇φ =
(∂φ
∂x

,
∂φ

∂y

)
, (3.2.7)

is the two-dimensional gradient of the potential. The velocity, and thus the velocity poten-
tial, φ, is a function of position, x = (x, y, z), and, in the case of unsteady flow, time, t.
Inspection of (3.2.5) reveals that the velocity potential has units of velocity multiplied by
length, which amounts to length squared divided by time.

It is a straightforward exercise to confirm that, if the velocity components derive from
φ in terms of equations (3.2.5), then the irrotationality constraint (3.2.4) is automatically
satisfied. Substituting expressions (3.2.5) into (3.2.4), we obtain

∂2φ

∂x ∂y
=

∂2φ

∂y ∂x
. (3.2.8)

Since the order of partial differentiation with respect to the two independent spatial vari-
ables, x and y, can be interchanged, relation (3.2.4) is satisfied. Accordingly, an irrotational
flow is also a potential flow, and vice versa.
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The velocity potential of a certain irrotational flow is not unique. An arbitrary con-
stant can be added to a particular potential to produce another perfectly acceptable po-
tential. However, this ambiguity is neither essential nor alarming. In performing analytical
or numerical computation, the arbitrary constant is determined by introducing a proper
constraint.

Deriving the potential

Given the velocity field of an irrotational flow, we can derive the corresponding potential by
integrating the system of differential equations (3.2.5), where the left-hand sides are treated
as a known.

As an example, we consider two-dimensional unidirectional streaming (uniform) flow
with velocity components

ux = Ux, uy = Uy, (3.2.9)

where Ux and Uy are two constant velocities. Integrating the first equation in (3.2.5), we
find that the potential must take the form

φ = Uxx+ f(y), (3.2.10)

where f(y) is an unknown function of y. Differentiating both sides of this equation with
respect to y and using the second equation in (3.2.5), we find that df/dy = Uy, which can
be integrated to give f(y) = Uyy + c, where c is an arbitrary constant. Combining these
expressions, we find that the velocity potential corresponding to (3.2.9) is

φ = Uxx+ Uyy + c = U · x+ c. (3.2.11)

In agreement with our previous observation, the velocity potential is defined uniquely up to
an arbitrary constant, c.

Computation of the potential based on kinematics

The automatic satisfaction of the irrotationality constraint (3.2.4) by way of the velocity
potential is helpful, but we still require one equation, or a system of equations, that will
allow us to compute the potential. Normally, these equations would have to be derived
by considering forces and torques exerted on the surfaces and over the volume of small
fluid parcels, as will be discussed in subsequent chapters with reference to the more general
class of rotational flows. Fortunately, this is not necessary in the case of irrotational flow.
Given the boundary distribution of the velocity, an irrotational flow can be computed in the
framework of kinematics alone pivoted on the continuity equation.

3.2.2 Incompressible fluids and the harmonic potential

Mass conservation requires that the velocity field of an incompressible fluid is solenoidal,
which means that the velocity components must satisfy the constraint expressed by the
continuity equation (2.9.2),

∇ · u = 0. (3.2.12)
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In the case of two-dimensional flow, we obtain

∂ux

∂x
+

∂uy

∂y
= 0. (3.2.13)

Substituting expressions (3.2.5) into (3.2.12), we obtain Laplace’s equation in two dimen-
sions,

∂2φ

∂x2
+

∂2φ

∂y2
= 0. (3.2.14)

It is convenient to define the two-dimensional Laplacian operator,

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
, (3.2.15)

and recast (3.2.14) into the more compact form

∇2φ = 0. (3.2.16)

A function that satisfies Laplace’s equation (3.2.16) is called harmonic.

It is instructive to derive Laplace’s equation working in vector notation. Substituting
(3.2.6) into (3.2.12), we find that

∇ · u = ∇ · (∇φ) ≡ ∇2φ = 0, (3.2.17)

which identifies the Laplacian operator with the divergence of the gradient,

∇2 = ∇ ·∇, (3.2.18)

regarded as a differential operator.

Laplace’s equation arises in a broad range of contexts under and beyond the auspices of
fluid mechanics. For example, Laplace’s equation governs the distribution of temperature
at steady state in a conductive material, such as a fin or a cooling plate.

Quasi-steady state

Laplace’s equation (3.2.16) conveys a statement of mass conservation for an incompressible
fluid. Although time does not appear explicitly in this equation, the velocity field, and thus
the velocity potential, may change in time, so that φ(x, t). The absence of explicit time
dependence classifies an the irrotational flow of an incompressible fluid as a quasi-steady
flow. This terminology implies that the instantaneous structure of the flow depends on
the instantaneous boundary geometry and boundary conditions, but is independent of the
motion at previous times. Thus, if all boundaries are stationary at a particular time instant,
the fluid will also be stationary at that instant, independent of the history of the fluid and
boundary motion.
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3.2.3 Three-dimensional flow

The foregoing analysis can be extended in a straightforward fashion to three-dimensional
flow. The velocity components of a three-dimensional flow derive from the velocity potential
by the equations

ux =
∂φ

∂x
, uy =

∂φ

∂y
, uz =

∂φ

∂z
. (3.2.19)

The velocity components, and thus the potential, φ, are functions of position x = (x, y, z)
and time, t, in the case of unsteady flow.

If the fluid is incompressible, the velocity potential satisfies the counterpart of Laplace’s
equation (3.2.17) for three-dimensional flow,

∇ · u = ∇ · (∇φ) ≡ ∇2φ ≡ ∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0, (3.2.20)

where

∇
2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(3.2.21)

is the Laplacian operator in three dimensions.

3.2.4 Boundary conditions

Laplace’s equation for the velocity potential, φ, in two or three dimensions is a second-order,
elliptic partial differential equation. One consequence of this classification is that, in order
to compute the solution, we must specify one scalar boundary condition for φ, one of its
first partial derivatives, or a combination thereof, along each boundary.

Impermeable boundaries

Over an impermeable boundary, we require the no-penetration condition discussed in Section
2.10. If the boundary is stationary, u · n = 0, where n is the unit vector normal to the
boundary pointing either into or outward from the domain of flow. Using equations (3.2.5),
we find that

nx
∂φ

∂x
+ ny

∂φ

∂y
= 0. (3.2.22)

in the case of two-dimensional flow. This is truly a boundary condition for the normal
component of the gradient of the potential, which is equal to the derivative with respect
to distance normal to the boundary, called a Neumann boundary condition. Because the
right-hand side of (3.2.22) is zero, this boundary condition is classified as homogeneous.

Permeable boundaries

Over a permeable boundary, we may specify the tangential component of the velocity and
allow the normal component to arise as part of the solution. To implement this condition in
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the case of two-dimensional flow, we introduce the unit vector tangential to the boundary,
t, defined in equations (2.6.3). The tangential component of the velocity in the direction of
t is given by the inner product

ut ≡ u · t = tx
∂φ

∂x
+ ty

∂φ

∂y
=

dx

d


∂φ

∂x
+

dy

d


∂φ

∂y
=

dφ

d

, (3.2.23)

where 
 is the arc length measured in the direction of t. If the distribution of φ over the
boundary is known, the right-hand side of (3.2.23) can be computed by differentiating the
potential with respect to arc length using analytical or numerical methods.

The last observation suggests that, instead of specifying the tangential component of the
velocity, we may specify the boundary distribution of the potential. A boundary condition
for the distribution of the potential is a Dirichlet boundary condition.

A word of caution is in order. If a flow is bounded by a number of disconnected bound-
aries, replacing the boundary condition for the tangential velocity with a boundary condition
for the distribution of the potential is permissible only over one boundary; otherwise, in-
consistencies may arise.

3.2.5 Cylindrical polar coordinates

Consider a three-dimensional irrotational flow and introduce cylindrical polar coordinates,
(x, σ, ϕ), as shown in Figure 1.3.2. Using expressions (2.1.43), we find that the cylindrical
polar components of the velocity are given by

ux =
∂φ

∂x
, uσ =

∂φ

∂σ
, uϕ =

1

σ

∂φ

∂ϕ
. (3.2.24)

Laplace’s equation for the harmonic potential takes the form

∇2φ ≡ ∂2φ

∂x2
+

1

σ

∂

∂σ

(
σ
∂φ

∂σ

)
+

1

σ2

∂2φ

∂ϕ2
= 0. (3.2.25)

If a flow is axisymmetric, the velocity potential is a function of x and σ but not ϕ, as
required for uϕ to vanish.

3.2.6 Spherical polar coordinates

Consider a three-dimensional irrotational flow and introduce spherical polar coordinates,
(r, θ, ϕ), as shown in Figure 1.3.3. Using relations (2.1.45), we find that the spherical polar
components of the velocity are given by

ur =
∂φ

∂r
, uθ =

1

r

∂φ

∂θ
, uϕ =

1

r sin θ

∂φ

∂ϕ
. (3.2.26)

Laplace’s equation for the harmonic potential takes the form

∇2φ ≡ 1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
= 0. (3.2.27)

If a flow is axisymmetric, the velocity potential is a function of r and θ but not ϕ, as required
for uϕ to vanish.
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3.2.7 Plane polar coordinates

Consider a two-dimensional irrotational flow and introduce plane polar coordinates, (r, θ),
as shown in Figure 1.3.4. Using relations (2.1.47), we find that the plane polar components
of the velocity are

ur =
∂φ

∂r
, uθ =

1

r

∂φ

∂θ
. (3.2.28)

Laplace’s equation for the harmonic potential takes the form

∇2φ ≡ 1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2
∂2φ

∂θ2
= 0. (3.2.29)

Note that this equation derives from (3.2.25) by replacing σ with r and ϕ with θ, and then
discarding the x dependence.

3.2.1 Deriving the velocity potential

(a) Consider a two-dimensional flow with velocity components

ux = U cos(kx) e−ky, uy = −U sin(kx) e−ky, (3.2.30)

where U and k are two constants. Confirm that this flow is irrotational, derive the cor-
responding velocity potential, investigate whether or not the potential is harmonic, and
explain why. Sketch the streamline pattern and discuss the structure of the flow and the
physical interpretation of the constant k.

(b) Consider a three-dimensional flow with velocity components

ux = U
kx
k

cos(kxx) sin(kyy) e
−kz, uy = U

ky
k

sin(kxx) cos(kyy) e
−kz,

uz = −U sin(kxx) sin(kyy) e
−kz, (3.2.31)

where U , kx, and ky, are three constants and k = (k2x+k2y)
1/2. This is the three-dimensional

counterpart of the two-dimensional flow discussed in (a). Confirm that this flow is irrota-
tional, derive the corresponding velocity potential, investigate whether or not the potential is
harmonic, and explain why. Discuss the structure of the flow and the physical interpretation
of the constants kx and ky.

(c) Explain why it is not possible to find a velocity potential for simple shear flow along the
x axis varying along the y axis whose velocity components are given by ux = ξy, uy = 0,
and uz = 0, where ξ is a constant with units of inverse time called the shear rate.

3.2.2 Irrotational flow in cylindrical polar coordinates

Verify by direct substitution that the potential

φ = Ux
(
1 +

1

2

a3

(x2 + σ2)3/2
)

(3.2.32)

Problems
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satisfies Laplace’s equation (3.2.25), where U and a are two constants. Discuss the structure
of the axisymmetric flow described by this potential.

3.2.3 Irrotational flow in spherical polar coordinates

Verify by direct substitution that the potential

φ = Ur cos θ
(
1 +

1

2

a3

r3
)

(3.2.33)

satisfies Laplace’s equation (3.2.27), where U and a are two constants. Discuss the structure
of the axisymmetric flow described by this potential.

3.2.4 Irrotational flow in plane polar coordinates

Verify by direct substitution that the potential

φ = Ur cos θ
(
1 +

a2

r2
)
+

κ

2π
θ, (3.2.34)

satisfies Laplace’s equation (3.2.29), where κ, U , and a are three constants. Discuss the
structure of the two-dimensional flow described by this potential.

3.3 Finite-difference methods

In practice, Laplace’s equation for a harmonic potential, φ, is solved by a variety of numerical
methods. To illustrate the implementation of the finite-difference method, we consider a
two-dimensional potential flow in the xy plane in a rectangular domain confined between
two pairs of parallel straight lines,

ax ≤ x ≤ bx, ay ≤ y ≤ by, (3.3.1)

as illustrated in Figure 3.3.1. The left, bottom, and right walls are impermeable, whereas
the top wall is exposed to an external flow.

3.3.1 Boundary conditions

Before attempting to compute the solution, we must specify boundary conditions for the
scalar potential, φ.

Over the left wall, the unit vector normal to the wall pointing into the fluid is n = (1, 0).
Accordingly, the no-penetration condition (3.2.22) provides us with the Neumann boundary
condition

∂φ

∂x
= 0 at x = ax. (3.3.2)
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Figure 3.3.1 Illustration of a Cartesian grid used to compute the harmonic potential of a two-
dimensional irrotational flow in a rectangular domain. The grid nodes are parametrized by two
indices, i and j, where i = 1, . . . Nx +1 and j = 1, . . . Ny +1. Phantom grid lines are introduced
at i = 0, i = Nx + 2, and j = 0, to implement the Neumann boundary conditions. The solution
is found by solving Laplace’s equation using a finite-difference method. The five-point stencil
indicates the nodal pattern used to approximate the Laplacian at an interior node.

Over the bottom wall, the unit vector normal to the wall pointing into the flow is
n = (0, 1). Accordingly, the no-penetration condition (3.2.22) provides us with the Neumann
boundary condition

∂φ

∂y
= 0 at y = ay. (3.3.3)

Over the right wall, the unit vector normal to the wall pointing into the flow is n =
(−1, 0). Accordingly, the no-penetration condition (3.2.22) provides us with the Neumann
boundary condition

∂φ

∂x
= 0 at x = bx. (3.3.4)
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Over the top wall, we stipulate for the purpose of illustration that the tangential compo-
nent of the velocity is constant and equal to V . Other boundary conditions can be imposed
to reflect different flow conditions. Since the top wall is parallel to the x axis, the unit
tangent vector is t = (1, 0). Accordingly, expression (3.2.23) provides us with the boundary
condition

ut ≡ u · t = ∂φ

∂x
= V at y = by. (3.3.5)

Straightforward integration of (3.3.5) with respect to x shows that this condition is equiva-
lent to a Dirichlet boundary condition,

φ = V x+ c at y = by. (3.3.6)

The constant c can be assigned an arbitrary value that is inconsequential to the structure
of the flow.

The problem formulation is now complete, and we may proceed to compute the solution.
Our task is to solve Laplace’s equation

∂2φ

∂x2
+

∂2φ

∂y2
= 0, (3.3.7)

subject to the four boundary conditions expressed by equations (3.3.2), (3.3.3), (3.3.4), and
(3.3.6).

3.3.2 Finite-difference grid

We begin implementing the finite-difference method by dividing the x interval, [ax, bx], into
Nx evenly spaced sub-intervals separated by the spacing Δx = (bx − ax)/Nx, and draw
vertical grid lines at

xi = ax + (i− 1)Δx (3.3.8)

for i = 1, . . . , Nx + 1, as shown in Figure 3.3.1.

Similarly, we divide the y interval, [ay, by], into Ny evenly spaced sub-intervals separated
by the spacing Δy = (by − ay)/Ny, and draw horizontal grid lines at

yj = ay + (j − 1)Δy (3.3.9)

for j = 1, . . . , Ny + 1, as shown in Figure 3.3.1.

The intersections of vertical and horizontal grid lines define grid points or nodes. For
convenience, we denote the value of the harmonic potential φ at the (i, j) node as

φi,j ≡ φ(xi, yj) (3.3.10)

for i = 1, . . . , Nx + 1 and j = 1, . . . , Ny + 1.
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Dirichlet boundary condition

The Dirichlet boundary condition (3.3.6) provides us with the values

φi,Ny+1 = V xi. (3.3.11)

Without loss of generality, we have made the arbitrary choice c = 0. Our objective is
to compute the remaining unknown values, φi,j , at the grid points i = 1, . . . , Nx + 1 and
j = 1, . . . , Ny, comprising a set of

Nu = (Nx + 1)Ny (3.3.12)

unknowns.

3.3.3 Finite-difference discretization

To build a system of equations for the unknown grid values, we require the satisfaction of
Laplace’s equation (3.2.14) at the (i, j) node, and approximate the second partial derivatives
with finite differences. Introducing the approximations implemented in formula (2.5.9), we
write (∂2φ

∂x2

)
i,j

	 φi−1,j − 2φi,j + φi+1,j

Δx2
(3.3.13)

and (∂2φ

∂y2

)
i,j

	 φi,j−1 − 2φi,j + φi,j+1

Δy2
. (3.3.14)

These approximations transform the differential equation (3.3.7) to an algebraic equation,

φi−1,j − 2φi,j + φi+1,j

Δx2
+

φi,j−1 − 2φi,j + φi,j+1

Δy2
= 0 (3.3.15)

at the (i, j) node. Rearranging the left-hand side, we obtain

φi+1,j − 2 (1 + β)φi,j + φi−1,j + β φi,j+1 + β φi,j−1 = 0, (3.3.16)

where

β ≡ (Δx/Δy)2 (3.3.17)

is the square of the grid spacing ratio. In the case of a square grid, β = 1.

Equation (3.3.15) and its equivalent equation (3.3.16) can be applied at the interior
nodes, i = 2, . . . , Nx and j = 2, . . . Ny, to obtain a system of

Nfde interior = (Nx − 1)(Ny − 1) (3.3.18)
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difference equations. However, equation (3.3.15) cannot be applied at a boundary node, since
one grid point involved in the finite-difference approximation will lie outside the domain of
flow. We must somehow generate

Nu −Nfde interior = (Nx + 1)Ny − (Nx − 1)(Ny − 1) = Nx + 2Ny − 1 (3.3.19)

additional equations.

Neumann boundary condition

The missing equations originate from the Neumann boundary condition at the left, bottom,
and right walls where the no-penetration condition is prescribed. One way of implementing
these boundary conditions with an error that is comparable to that of the finite-difference
approximations (3.3.13) and (3.3.14), is to extend the domain of solution beyond the physical
boundaries of the flow and introduce fictitious or phantom nodes located at

x = x0 = ax −Δx, y = y0 = ay −Δy (3.3.20)

at the left and bottom walls, and

x = xNx+2 = bx +Δx (3.3.21)

at the right wall. Having introduced these extensions, we apply the second-order finite-
difference approximation (2.5.6) to recast the Neumann boundary condition into the discrete
form

φ2,j − φ0,j

2Δx
= 0 (3.3.22)

for j = 1, . . . , Ny, corresponding to the left wall,

φi,2 − φi,0

2Δy
= 0 (3.3.23)

for i = 1, . . . , Nx + 1, corresponding to the bottom wall, and

φNx+2,j − φNx,j

2Δx
= 0 (3.3.24)

for j = 1, . . . , Ny, corresponding to the right wall.

Algebraic balance

To this end, we pause to confirm that the number of unknowns matches the number of
available equations. First, we note that the difference equation (3.3.15) or (3.3.16) may now
be applied at the interior and boundary nodes for i = 1, . . . , Nx + 1 and j = 1, . . . , Ny, to
yield

Nfde = (Nx + 1)Ny (3.3.25)
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equations. Adding to these equations the

Nbc = Nx + 2Ny + 1 (3.3.26)

boundary conditions expressed by(3.3.22), (3.3.23), and (3.3.24), we obtain

Neq = (Nx + 1)(Ny + 1) + 2Ny (3.3.27)

equations. The total number of equations matches the number of unknowns, including the
values of φ at the (Nx + 1)Ny interior and boundary nodes and the values of φ at the
2Ny +Nx + 1 phantom nodes marked with circular symbols in Figure 3.3.1.

3.3.4 Compilation of a linear system

To formalize the method, we collect the interior and boundary unknowns into a long vector,
w, consisting of row-blocks, beginning from the bottom,

w =
[

φ1,1, φ2,1, . . . φNx+1,1,

φ1,2, φ2,2, . . . φNx+1,2,

· · · , (3.3.28)

φ1,Ny−1, φ2,Ny−1, . . . φNx+1,Ny−1,

φ1,Ny
, φ2,Ny

, . . . φNx+1,Ny

]
.

Next, we apply the finite-difference equation (3.3.16) successively at boundary and in-
terior nodes. Without loss of generality, we scan the grid points row-by-row starting from
the bottom; a column-by-column compilation would also be acceptable.

Southwestern corner node

For the southwestern corner node (1, 1), we obtain the finite-difference equation

φ2,1 − 2 (1 + β)φ1,1 + φ0,1 + β φ1,2 + β φ1,0 = 0. (3.3.29)

Boundary condition (3.3.22) for j = 1 requires that φ2,1 = φ0,1, and boundary condition
(3.3.21) for j = 1 requires that φ1,2 = φ1,0. Using these equations to eliminate φ0,1 and φ1,0

in favor of φ2,1 and φ1,2 on the right-hand side of (3.3.29), we obtain

2φ2,1 − 2 (1 + β)φ1,1 + 2β φ1,2 = 0. (3.3.30)

For future reference, we express this equation in the form of the inner product of a vector,
a(1,1), and the vector of unknowns w defined in (3.3.28), as

a(1,1) ·w = 0, (3.3.31)

where

a(1,1) =
[− 2(1 + β), 2, 0, . . . , 0

∣∣∣ 2β, 0, . . . , 0 ∣∣∣ 0, . . . , 0 ∣∣∣ . . . ∣∣∣ 0, . . . , 0 ] (3.3.32)
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is a sparse block vector. Each one of the Ny blocks on the right-hand side of (3.3.32) has
Nx + 1 entries.

Southwestern bordering node

Next, we consider the boundary node (2, 1) and obtain

φ3,1 − 2 (1 + β)φ2,1 + φ1,1 + β φ2,2 + β φ2,0 = 0. (3.3.33)

Boundary condition (3.3.23) applied for i = 2 requires that φ2,2 = φ2,0. Using this equation
to eliminate φ2,0 in favor of φ2,2 on the right-hand side of (3.3.33), we obtain

φ3,1 − 2 (1 + β)φ2,1 + φ1,1 + 2β φ2,2 = 0. (3.3.34)

For future reference, we express this equation in the form of an inner vector product,

a(2,1) ·w = 0. (3.3.35)

where

a(2,1) =
[
1,−2(1 + β), 1, 0, . . . , 0

∣∣∣ 0, 2β, 0, . . . , 0 ∣∣∣ 0, . . . , 0 ∣∣∣ · · · ∣∣∣ 0, . . . , 0 ] (3.3.36)

is a sparse block vector. Each one of the Ny blocks on the right-hand side of (3.3.36) has
Nx + 1 entries.

Other nodes

Continuing in this fashion, we build the rest of the vectors a(i,j) for i = 1, . . . Nx + 1 and
j = 1, . . . Ny − 1, until we have reached the penultimate row corresponding to j = Ny.
In simplifying the finite-difference equations for this row, we take into consideration not
only the Neumann boundary conditions (3.3.22) and (3.3.24) for the side walls, but also the
Dirichlet condition (3.3.11) for the top wall.

For example, considering the northwestern node (1, Ny), we obtain the difference equa-
tion

−2 (1 + β)φ1,Ny
+ 2φ2,Ny

+ β φ1,Ny−1 = −β V x1, (3.3.37)

which can be expressed in the form of the inner product

a(1,Ny) ·w = −β V x1, (3.3.38)

where

a(1,Ny) =
[
0, . . . , 0

∣∣∣ · · · ∣∣∣ 0, . . . , 0 ∣∣∣ β, 0, . . . , 0 ∣∣∣ − 2(1 + β), 2, 0, . . . , 0
]

(3.3.39)

is a sparse block vector. Each one of the Ny blocks on the right-hand side of (3.3.39) has
Nx + 1 entries.



3.3 Finite-difference methods 147

Assembly

Finally, we collect equations (3.3.31), (3.3.35), (3.3.38) and their counterparts for the rest
of the interior and boundary nodes into a large system of equations,

A ·w = b. (3.3.40)

The first row of the matrix A is the vector a(1,1) defined in (3.3.32); the second row is the
vector a(2,1) defined in (3.3.36); subsequent rows have similar identities. The block vector
b on the right-hand side of (3.3.40) is given by

b =
[
0, . . . , 0

∣∣∣ , . . . , ∣∣∣ 0, . . . , 0 ∣∣∣ − β V x1,−β V x2, . . . , −β V xNx+1

]
. (3.3.41)

The coefficient matrix A consists of Ny vertical and Ny horizontal partitions in the block
tridiagonal form

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2D 0 · · · 0 0 0

D T D 0 · · · 0 0

0 D T D 0 · · · 0
...

...
...

. . .
...

...
...

0 · · · 0 D T D 0

0 0 · · · 0 D T D

0 0 0 · · · 0 D T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.3.42)

The factor two in front of the D block in the first row is due to the Neumann boundary
condition. We have introduced the (Nx + 1)× (Nx + 1) tridiagonal matrix

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2 (1 + β) 2 0 0 · · · 0 0
1 −2 (1 + β) 1 0 · · · 0 0
0 1 −2 (1 + β) 1 · · · 0 0
...

...
...

. . .
...

...
...

...
...

...
...

. . .
...

...
0 0 · · · · · · 1 −2 (1 + β) 1
0 0 · · · · · · 0 2 −2 (1 + β)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.3.43)

and the (Nx + 1)× (Nx + 1) diagonal matrix

D =

⎡⎢⎢⎢⎢⎢⎣
β 0 · · · 0 0
0 β · · · 0 0
...

...
. . .

...
...

0 0 · · · β 0
0 0 · · · 0 β

⎤⎥⎥⎥⎥⎥⎦ . (3.3.44)

Note that the super- and sub-diagonal elements of T are equal to unity, except for the
elements in the first the last rows that are equal to two. The origin of these irregular elements
can be traced back to the Neumann boundary condition. Cursory inspection reveals that all
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elements of the matrix A are zero, except for the elements along five diagonal lines. Because
of the dominant presence of zeros, the matrix A is classified as sparse.

The following MATLAB function entitled cvt 2d fdm, located in directory cvt 2d inside
directory 07 ptf of Fdlib, generates the coefficient matrix A for a specified grid size:

function A = cvt 2d fdm (Nx,Ny,beta)

%-------------------------------

% Generate the coefficient matrix

% of a linear system for the potential

%-------------------------------

N = Ny*(Nx+1); % matrix size

A = zeros(N,N);

cf = -2.0*(1.0+beta);

%-----------------------

% set the five diagonals

%-----------------------

A(1,1) = cf; % first row

A(1,2) = 2.0; A(1,Nx+2) = 2.0*beta;

for i=2:Nx+1 % first block

A(i,i) = cf;

A(i,i+1) = 1.0;

A(i,i-1) = 1.0;

A(i,i+Nx+1) = 2.0*beta;

end

for i=Nx+2:N-Nx-1 % intermediate blocks

A(i,i) = cf;

A(i,i+1) = 1.0;

A(i,i-1) = 1.0;

A(i,i+Nx+1) = beta;

A(i,i-Nx-1) = beta;

end

for i=N-Nx:N-1 % last block

A(i,i) = cf;

A(i,i+1) = 1.0;

A(i,i-1) = 1.0;

A(i,i-Nx-1) = beta;

end

A(N,N) = cf; % last row

A(N,N-1) = 2.0;

A(N,N-Nx-1) = beta;
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%------------------------------

% reset the ones to twos and

% the faulty betas to zeros

%------------------------------

for i=2:Ny % run over horizontal partitions

loc = (i-1)*(Nx+1)+1;

A(loc,loc-1) = 0.0;

A(loc,loc+1) = 2.0;

end

for i=1:Ny-1 % run over horizontal partitions

loc = i*(Nx+1);

A(loc,loc-1) = 2.0;

A(loc,loc+1) = 0.0;

end

%-----

% done

%-----

return

For Nx = 2, Ny = 3, and β = 1, the code generates the matrix:

|-4 2 0 | 2 0 0 | 0 0 0 |

| 1 -4 1 | 0 2 0 | 0 0 0 |

| 0 2 -4 | 0 0 2 | 0 0 0 |

| ------------------------------------- |

| 1 0 0 | -4 2 0 | 1 0 0 |

| 0 1 0 | 1 -4 1 | 0 1 0 |

| 0 0 1 | 0 2 -4 | 0 0 1 |

| ------------------------------------- |

| 0 0 0 | 1 0 0 | -4 2 0 |

| 0 0 0 | 0 1 0 | 1 -4 1 |

| 0 0 0 | 0 0 1 | 0 2 -4 |

which is consistent with the general form displayed in (3.3.42).

Solving the linear system

We have formulated the problem in terms of the linear system of equations (3.3.40) for the
vector w defined in (3.3.28). Our next task is to solve this system by numerical methods.
Once this has been accomplished, the velocity components at the grid nodes arise as partial
derivatives of the potential computed by finite-difference methods.

The following MATLAB code entitled cvt 2d, located in directory 07 ptf of Fdlib, as-
sembles and solves the linear system using a numerical method implemented in an internal
MATLAB function invoked by a vector-by-matrix division:
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ax = 0.0; bx = 1.0;

ay = 0.0; by = 0.4;

veltop = 1.0;

Nx = 16; Ny = 32;

%--------

% prepare

%--------

Dx = (bx-ax)/Nx; % grid spacing

Dy = (by-ay)/Ny; % grid spacing

beta = (Dx/Dy)^2;

N = Ny*(Nx+1); % system size

%------------------

% generate the grid

%------------------

[glx,gly,gx,gy] = grid_2d (ax,bx,ay,by,Nx,Ny);

%-------------------------------------

% specify the potential at the top row

%-------------------------------------

for i=1:Nx+1

phitop(i) = veltop*glx(i);

end

%-------------------

% coefficient matrix

%-------------------

A = cvt 2d fdm (Nx,Ny,beta);

%----------------

% right-hand side

%----------------

for i=1:N-Nx-1

rhs(i) = 0.0;

end

for i=1:Nx+1

rhs(N-Nx-1+i) = -beta*phitop(i);

end

%------------------------

% solve the linear system

%------------------------
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sln = rhs/A’;

%-------------------------

% assign solution to nodes

%-------------------------

Ic = 1; % counter

for j=1:Ny

for i=1:Nx+1

ptl(i,j) = sln(Ic);

Ic = Ic+1;

end

end

for i=1:Nx+1

ptl(i,Ny+1) = phitop(i);

end

%-------------

% surface plot

%-------------

surf(glx,gly,ptl')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel('\phi','fontsize',15)

%-------------------------------------------

% compute the velocity at the internal nodes

% by numerical differentiation

% using central differences

%-------------------------------------------

for i=2:Nx

for j=2:Ny

gux(i,j) = (ptl(i+1,j) -ptl(i-1,j)) ...

/(gx(i+1,j)-gx(i-1,j));

guy(i,j) = (ptl(i,j+1) -ptl(i,j-1)) ...

/(gy(i,j+1)-gy(i,j-1));

end

end

%----------------------------------

% compute the velocity on the walls

% by numerical differentiation

%----------------------------------
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%---

% left wall: i=1

%---

for j=2:Ny

gux(1,j) = 0.0;

guy(1,j) = ( ptl(1,j+1)- ptl(1,j-1)) ...

/(gy(1,j+1)-gy(1,j-1));

end

%---

% bottom wall: j=1

%---

for i=2:Nx

gux(i,1) = ( ptl(i+1,1)- ptl(i-1,1)) ...

/(gx(i+1,1)-gx(i-1,1));

guy(i,1) = 0.0;

end

%---

% right wall: i=Nx+1

%---

for j=2:Ny

gux(Nx+1,j) = 0.0;

guy(Nx+1,j) = ( ptl(Nx+1,j+1) -ptl(Nx+1,j-1)) ...

/(gy(Nx+1,j+1)-gy(Nx+1,j-1));

end

%---

% top wall: j=Ny+1

%---

for i=2:Nx

gux(i,Ny+1) = veltop;

guy(i,Ny+1) = ( ptl(i,Ny+1)- ptl(i,Ny)) ...

/(gy(i,Ny+1)-gy(i,Ny));

end

%---

% four corners

% velocity is zero or singular;

% set it to zero

%---

gux(1 ,1) = 0.0; gux(Nx+1,1) = 0.0;

gux(1 ,Ny+1) = 0.0; gux(Nx+1,Ny+1) = 0.0;

guy(1 ,1) = 0.0; guy(Nx+1,1) = 0.0;
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Figure 3.3.2 (a) Surface plot of the potential and (b) velocity vector field of a two-dimensional
potential flow in a rectangular cavity computed by a finite-difference method.

guy(1 ,Ny+1) = 0.0; guy(Nx+1,Ny+1) = 0.0;

%---

% graphics

%---

figure

hold on

quiver(gx,gy,gux,guy)

axis equal

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

box

The graphics display generated by the code is shown in Figure 3.3.2. The velocity vector
field shown in Figure 3.3.2(b) was visualized by the internal MATLAB graphics function
quiver.
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3.3.1 Explicit form of a linear system

Present the explicit form of the linear system (3.3.40) for discretization levels Nx = 3 and
Ny = 3.

3.3.2 Neumann boundary conditions all around

Derive the counterpart of the linear system (3.3.40) when the no-penetration boundary
condition is applied along all four walls. Specifically, present the components of the unknown
vector w, constant vector b, and coefficient matrix A, in a form that is analogous to that
displayed in (3.3.42). Then confirm that the sum of the elements in each row of the matrix
A is zero. Based on this observation, explain why the matrix A is singular; that is, its
determinant is equal to zero.

3.3.3 Irrotational flow in a cavity

(a) Run the code cvt 2d for a cavity with length to depth ratio equal to unity and discretiza-
tion level as high as you can afford. Plot the velocity vector field and discuss the structure
of the flow.

(b) Repeat (a) for a cavity with length to depth ratio equal to 4.0. Discuss the effect of the
cavity aspect ratio on the structure of the flow.

3.4 Linear solvers

In Section 3.3, we reduced the problem of solving Laplace’s equation for the harmonic
potential in the rectangular domain of a two-dimensional flow to the problem of solving
the linear system of equations (3.3.40) for the values of the potential at the nodes of a
finite-difference grid deployed over the domain of flow. The reduction was carried out by
implementing finite-difference approximations. The solution of the linear system was found
using a internal MATLAB function. Since such systems of linear equations arise in broad
range of applications within and beyond fluid mechanics, in this section, we review pertinent
numerical methods in a generalized framework.

Consider a system of N linear algebraic equations for N unknown scalar variables,
x1, x2, . . . , xN ,

A1,1 x1 +A1,2 x2 + · · ·+A1,N−1 xN−1 +A1,N xN = b1,

A2,1 x1 +A2,2 x2 + · · ·+A2,N−1 xN−1 +A2,N xN = b2,

. . . , (3.4.1)

AN,1 x1 +AN,2 x2 + · · ·+AN,N−1xN−1 +AN,N xN = bN ,

where Ai,j for i, j = 1, . . . , N are given coefficients and bi are given constants. In matrix
notation, the system takes the compact form

A · x = b, (3.4.2)

Problems



3.4 Linear solvers 155

where A is an N ×N coefficient matrix,

A =

⎡⎢⎢⎢⎢⎢⎣
A1,1 A1,2 · · · A1,N−1 A1,N

A2,1 A2,2 · · · A2,N−1 A2,N

...
...

. . .
...

...
AN−1,1 AN−1,2 · · · AN−1,N−1 AN−1,N

AN,1 AN,2 · · · AN,N−1 AN,N

⎤⎥⎥⎥⎥⎥⎦ , (3.4.3)

and b is an N -dimensional vector,

b =

⎡⎢⎢⎢⎢⎢⎣
b1
b2
...
bN−1

bN

⎤⎥⎥⎥⎥⎥⎦ . (3.4.4)

A variety of direct and iterative solution procedures are available.

3.4.1 Gauss elimination

A general procedure for solving system (3.4.2) employs the method of Gauss elimination.
The basic idea is to solve the first equation in (3.4.2) for the first unknown, x1, and use the
expression thus obtained to eliminate x1 from all subsequent equations. We then retain the
first equation as is, and replace all subsequent equations with their descendants that do not
contain x1.

At the second stage, we solve the second equation for the second unknown, x2, and use
the expression thus obtained to eliminate x2 from all subsequent equations. We then retain
the first and second equations, and replace all subsequent equations with their descendants
that do not contain x1 or x2. Continuing in this fashion, we arrive at the last equation,
which contains only the last unknown, xN .

Having completed the elimination, we compute the unknowns by the method of back-
ward substitution. First, we solve the last equation for xN , which thus becomes a known.
Second, we solve the penultimate equation for xN−1, which also becomes a known. Con-
tinuing in the backward direction, we scan the reduced system until we have computed all
unknowns.

Pivoting

Immediately before the mth equation has been solved for the mth unknown, where m =

1, . . . , N − 1, the linear system takes the form shown in Table 3.4.1, where A
(m)
i,j are inter-

mediate coefficients and b
(m)
i are intermediate right-hand sides.

A difficulty arises when the diagonal element, A
(m)
m,m, is nearly or precisely zero, for

then we may no longer solve the mth equation for xm, as required. However, the failure
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

A
(m)
1,1 A

(m)
1,2 · · · · · · · · · A

(m)
1,N

0 A
(m)
2,2 · · · · · · · · · A

(m)
2,N

0 0 · · · · · · · · · · · ·

0 0 A
(m)
m−1,m−1 A

(m)
m−1,m · · · A

(m)
m−1,N

0 · · · 0 A
(m)
m,m · · · A

(m)
m,N

0 · · · 0 · · · · · · · · ·

0 · · · 0 A
(m)
N,m · · · A

(m)
N,N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

...
xN−1

xN

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b
(m)
1

b
(m)
2

b
(m)
3

...

b
(m)
N−1

b
(m)
N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Table 3.4.1 Transient structure of a linear system of equations at the mth stage of Gauss elimination.
The first equation of the transient system is the same as the first equation in the original system
(3.4.2) for any m. Subsequent equations are different, except at the first stage corresponding to
m = 1.

of the method does not imply that the linear system does not have a unique solution. To
circumvent this difficulty, we simply rearrange the equations or relabel the unknowns so as
to bring the mth unknown to the mth equation using the method of pivoting. If there is no
way we can make this happen, the matrix A is singular and the linear system has either no
solution or an infinite number of solutions.

In the method of row pivoting, potential difficulties are bypassed by switching the mth
equation of the transient system displayed in Table 3.4.1 with the subsequent kth equation,

where k > m. The value of k is chosen such that |A(m)
k,m| is the maximum value of the

elements in the mth column below the diagonal, A
(m)
i,m for i ≥ m. If A

(m)
i,m = 0 for all i ≥ m,

the matrixA is singular and the system under consideration does not have a unique solution.

3.4.2 A menagerie of other methods

In practice, the size of system (3.3.40) can be on the order of 104 × 104 or even higher,
corresponding to discretization levels Nx and Ny on the order of 102. For such large systems,
the method of Gauss elimination requires a prohibitive computational time. The practical
need for solving systems of large size has motivated the development of a host of powerful
methods for general or specific applications.1

Iterative methods

Iterative methods are appropriate for sparse systems with large dimensions. The main idea
is to split the coefficient matrix, A, into two matrices, A′ and A′′, writing

A = A′ −A′′, (3.4.5)

and then recast the system (3.4.2) into the form

A′ · x = A′′ · x+ b. (3.4.6)

1Pozrikidis, C. (2008) Numerical Computation in Science and Engineering

University Press.
, Second Edition, Oxford
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The procedure involves guessing the solution, x, computing the right-hand side of (3.4.6),
and solving for x on the left-hand side. The advantage of this approach is that, if the splitting
(3.4.5) is done craftily, it much easier to solve (3.4.6) than (3.4.2) for x on the left-hand
side. The computation is repeated until the value of x used to compute the right-hand side
of (3.4.6) is virtually identical to that arising by solving the linear system (3.4.6). Examples
of iterative methods are the Jacobi, the Gauss–Seidel, and the successive over-relaxation
(SOR) method.

A different class of iterative methods search for the solution vector, x, by making steps
in the N -dimensional space toward craftily designed or optimal directions. The multi-grid
method is another powerful technique for solving systems of linear equations arising from
finite-difference and related discretization.

Directory 03 lin eq inside directory 01 num meth of Fdlib contains programs that im-
plement the conjugate and biconjugate gradients methods.

3.4.1 Gauss elimination

Program gel, located in directory 03 lin eq inside directory 01 num meth of Fdlib, solves
a system of linear equations using the method of Gauss elimination with row pivoting. Use
the program to solve a system of your choice and verify the accuracy of the solution.

3.5 Two-dimensional point sources and point-source dipoles

Laplace’s equation for the harmonic velocity potential–equation (3.2.16) for two-dimensional
flow or equation (3.2.20) for three-dimensional flow–is linear. This means that if φ1 and φ2

are two harmonic potentials representing two elementary flows, any linear combination of
these potentials,

φ = c1 φ1 + c2 φ2, (3.5.1)

will also be a harmonic potential representing a hybrid flow, where c1 and c2 are two arbitrary
coefficients.

3.5.1 Function superposition and fundamental solutions

The linearity of Laplace’s equation allows us to generate exact and approximate solutions by
the method of superposition. The key idea is to introduce a family of harmonic potentials
playing the role of basis functions, also called fundamental solutions, and then use them as
building blocks to generate further solutions.

For example, if φ1 and φ2 are two such fundamental solutions, a desired solution can
be expressed by the right-hand side of (3.5.1), and the two coefficients c1 and c2 can be
adjusted to satisfy the boundary conditions.

Problem
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Various families of fundamental solutions are available for flows in infinite or semi-
infinite domains, and for singly, doubly, or triply periodic flows. The most general class of
fundamental solutions consists of the fundamental singularities of potential flow.

3.5.2 Two-dimensional point source

Imagine that an incompressible fluid is discharged into an infinite pool through the walls of
an infinite perforated cylinder, thereby generating a radial flow in the xy plane outward from
the inlet point. In plane polar coordinates centered at the point of discharge, x0 = (x0, y0),
the radial and polar components of the velocity at an arbitrary field point, x = (x, y), are
given by

ur(r) =
m

2π

1

r
, uθ = 0, (3.5.2)

where

r =
√
(x− x0)2 + (y − y0)2 (3.5.3)

is the distance of the field point, x, from the discharge point, x0, and m is a constant
expressing the rate of areal discharge. The units of m are velocity multiplied by length.

The flow described by equations (3.5.2) is attributed to a two-dimensional point source,
and the rate of areal discharge m is the strength of the point source. If m is negative, we
obtain a point source with negative strength described as a point sink.

The radial velocity of the flow due to a point source decays as the inverse of the dis-
tance from the point of discharge, r, for the following physical reason. Since the fluid is
incompressible, the flow rate Q across any circular loop of arbitrary radius a centered at the
point of discharge must be independent of the loop radius. To verify that the velocity field
(3.5.2) satisfies this constraint, we use expression (2.6.21) and find that

Q = a

∫ 2π

0

ur dθ =
m

2π
a

∫ 2π

0

1

r
dθ =

m

2π
a
1

a

∫ 2π

0

dθ = m, (3.5.4)

as required. If we had set, for example, ur = m/(2πrk), where the exponent k is not equal
to unity, the restriction of constant areal flow rate associated with an incompressible fluid
would not be satisfied.

Singular behavior of the point source

As the distance from the point source r tends to zero, the right-hand side of the radial
velocity in (3.5.2) tends to infinity. This singular behavior is a manifestation of the idealized
nature of the flow due to a point source, and explains why the point source is classified as
a singularity.

In practice, the flow expressed by (3.5.2) is valid only for r > b, where b is the radius of
the perforated cylinder discharging the fluid. Extending the domain of flow inward all the
way up to the center of the cylinder, located at x0, we allow for a mathematical singularity.
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Velocity potential

The velocity potential of a two-dimensional point source, denoted by φ2DPS, is related to
the velocity components according to equations (3.2.28),

ur =
∂φ

∂r

2DPS

=
m

2π

1

r
, uθ =

∂φ

∂θ

2DPS

= 0. (3.5.5)

Integrating the first equation and using the second equation to evaluate the integration
constant, we find that

φ2DPS =
m

2π
ln

r

L =
m

4π
ln

(x− x0)
2 + (y − y0)

2

L2
, (3.5.6)

where L is a specified length introduced to ensure that the argument of the logarithm
is dimensionless, as required. Straightforward differentiation confirms that φ2DPS satisfies
Laplace’s equation in two dimensions at every point,

∇2φ2DPS = 0, (3.5.7)

except at the singular point, x0, where the potential and its derivatives are not defined.

Cartesian velocity components and stream function

To derive the Cartesian components of the velocity due to a point source, we take the partial
derivatives of φ2DPS with respect to x or y, and obtain

u2DPS
x =

∂φ

∂x

2DPS

=
m

2π

x− x0

(x− x0)2 + (y − y0)2
(3.5.8)

and

u2DPS
y =

∂φ

∂y

2DPS

=
m

2π

y − y0
(x− x0)2 + (y − y0)2

. (3.5.9)

The streamlines of the flow due to a point source are radial straight lines emanating from
the singular point, x0. The associated stream function is

ψ2DPS =
m

2π
arctan

y − y0
x− x0

+ ψ0, (3.5.10)

where ψ0 is an inconsequential constant. Note that the stream function is a multi-valued
function of position.

A point source embedded in uniform flow

As an application, consider the superposition of uniform (streaming) flow along the x axis
with velocity Ux, and the flow due to a point source with strength m situated at the origin,
x0 = 0 and y0 = 0. Using the potential φ = Uxx for the streaming flow and the potential
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given in (3.5.6) for the point source, we find that the potential of the composite irrotational
flow is

φ(x) = Ux x+
m

4π
ln

x2 + y2

L2
, (3.5.11)

where L is an arbitrary length. The associated Cartesian components of the velocity are
given by

ux = Ux +
m

2π

x

x2 + y2
, uy =

m

2π

y

x2 + y2
. (3.5.12)

Note the absence of the inconsequential reference length, L.
To study the structure of the flow, we introduce dimensionless variables denoted by a

caret (hat),

x̂ =
x

L , ŷ =
y

L , ûx =
ux

Ux
, ûy =

uy

Ux
, (3.5.13)

and recast equations (3.5.12) into the dimensionless form

ûx = 1 + β
x̂

x̂2 + ŷ2
, ûy = β

ŷ

x̂2 + ŷ2
, (3.5.14)

where

β =
1

2π

m

LUx
(3.5.15)

is a dimensionless parameter expressing the strength of the point source relative to the
magnitude of the incident flow. Equations (3.5.14) demonstrate that the structure of the
flow is determined by the value of the parameter β.

The streamline pattern shown in Figure 3.5.1 for β = 0.25 reveals that the velocity
potential (3.5.11) describes uniform flow along the x axis past a semi-infinite two-dimensional
body whose surface can be identified with two streamlines emanating from a stagnation point
lying on the negative part of the x axis. Using the first equation in (3.5.14), we find that
the x component of the velocity at the x axis is zero when x̂ = −β. Thus, the larger the
value of β, expressing the relative strength of the point source, the farther the stagnation
point is located from the origin.

3.5.3 Two-dimensional point-source dipole

Next, we consider the flow due to the superposition of a point source with strength m
located at a point, (x0 + b, y0), and a point sink with strength −m located at the nearby
point (x0 − b, y0), where b is a specified half distance, as shown in Figure 3.5.2(a).

Using expression (3.5.6), we find that the combined harmonic potential induced by these
singularities is given by

φ(x) =
m

4π
ln

(
x− (x0 + b)

)2
+ (y − y0)

2

b2
− m

4π
ln

(
x− (x0 − b)

)2
+ (y − y0)

2

b2
. (3.5.16)
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Figure 3.5.1 Streamline pattern of the flow due to the superposition of streaming (uniform) flow
along the x axis and the flow due to a two-dimensional point source located at the origin.

Consolidating the logarithms, we obtain

φ(x) =
m

4π
ln

(
x− (x0 + b)

)2
+ (y − y0)

2(
x− (x0 − b)

)2
+ (y − y0)2

. (3.5.17)

The Cartesian components of the fluid velocity are found by differentiation,

ux =
∂φ

∂x
=

m

2π

( x− (x0 + b)(
x− (x0 + b)

)2
+ (y − y0)2

− x− (x0 − b)(
x− (x0 − b)

)2
+ (y − y0)2

)
(3.5.18)

and

uy =
∂φ

∂y
=

m

2π

( y − y0(
x− (x0 + b)

)2
+ (y − y0)2

− y − y0(
x− (x0 − b)

)2
+ (y − y0)2

)
. (3.5.19)

Now we hold the position of the field point (x, y) fixed and decrease the distance between
the two singularities, that is, we let b tend to zero. In this limit, the flow due to the point
sink tends to cancel the flow due to the point source. However, if the strengths of the point
source and the point sink, ±m, also increase in inverse proportion with the distance between
the two singularities, 2b, then a nontrivial flow due to a point source dipole arises in the
limit.

To derive the flow due to a point-source dipole, we recast the expression for the potential
on the right-hand side of (3.5.17) into the form

φ(x) =
m

4π

(
ln
(
1− b

2 (x− x0)− b

(x− x0)2 + (y − y0)2
)− ln

(
1 + b

2 (x− x0) + b

(x− x0)2 + (y − y0)2
) )

, (3.5.20)
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Figure 3.5.2 (a) A point source and a point sink merge to yield a point-source dipole. The depicted

dipole is oriented along the x axis. (b) Streamline pattern due to a two-dimensional dipole pointing
along the x axis.

and then

φ =
m

4π

(
ln(1− ε1)− ln(1 + ε2)

)
, (3.5.21)

where

ε1 ≡ b
2 (x− x0)− b

(x− x0)2 + (y − y0)2
, ε2 ≡ b

2 (x− x0) + b

(x− x0)2 + (y − y0)2
(3.5.22)

are dimensionless variables. As the distance, b, becomes decreasingly smaller than the
distance between the field point, x, and the point x0, both ε1 and ε2 tend to zero.

The Taylor series expansion of the logarithmic function lnw about the point w = 1
provides us with the approximations

ln(1− ε1) = −ε1 + · · · , ln(1 + ε2) = ε2 + · · · . (3.5.23)

Substituting these expressions into the right-hand side of (3.5.21) and neglecting quadratic
and higher-order terms represented by the dots, we obtain the velocity potential due to a
point-source dipole located at the point (x0, y0) and oriented along the x axis,

φ2DPSDx = −m

4π
(ε1 + ε2) (3.5.24)

or

φ2DPSDx = − dx
2π

x− x0

(x− x0)2 + (y − y0)2
, (3.5.25)
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where

dx ≡ 2mb (3.5.26)

is the strength of the dipole.

Now comparing (3.5.6), (3.5.25), and (3.5.26), we obtain

φ2DPSDx = 2b
∂φ

∂x0

2DPS

, (3.5.27)

which shows that the potential due to a point-source dipole oriented along the x axis arises
by differentiating the potential due to a point source with respect to the x coordinate of the
singular point, x0. This property classifies the dipole as a derivative singularity descending
from the point source.

Velocity components and stream function

The velocity components associated with a two-dimensional (2D) point-source dipole (PSD)
oriented along the x axis are given by

u2DPSDx
x =

∂φ

∂x

2DPSDx

= 2b
∂2φ

∂x ∂x0

2DPS

= −2b
∂2φ

∂x2

2DPS

(3.5.28)

and

u2DPSDx
y =

∂φ

∂y

2DPSDx

= 2b
∂2φ

∂y ∂x0

2DPS

= −2b
∂2φ

∂x ∂y

2DPS

. (3.5.29)

Carrying out the differentiations, we obtain

u2DPSDx
x =

dx
2π

(
− 1

(x− x0)2 + (y − y0)2
+ 2

(x− x0)
2(

(x− x0)2 + (y − y0)2
)2 ) (3.5.30)

and

u2DPSDx
y =

dx
2π

2
(x− x0)(y − y0)(

(x− x0)2 + (y − y0)2
)2 . (3.5.31)

The associated streamline pattern is shown in Figure 3.5.2(b). The stream function is given
by

ψ2DPSDx =
dx
2π

y − y0
(x− x0)2 + (y − y0)2

+ ψ0, (3.5.32)

where ψ0 is an inconsequential constant.



164 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Dipole along the y axis

Working in a similar fashion, we derive the flow due to a point-source dipole with strength
dy oriented along the y axis. The associated harmonic potential is

φ2DPSDy = 2b
∂φ

∂y0

2DPS

= − dy
2π

y − y0
(x− x0)2 + (y − y0)2

, (3.5.33)

where dy = 2mb is the strength of the dipole. The corresponding Cartesian components of
the velocity are given by

u2DPSDy
x =

∂φ

∂x

2DPSDy

= 2b
∂2φ

∂x ∂y0

2DPS

= −2b
∂2φ

∂x ∂y

2DPS

(3.5.34)

and

u2DPSDy
y =

∂φ

∂y

2DPSDy

= 2b
∂2φ

∂y ∂y0

2DPS

= −2b
∂2φ

∂y2

2DPS

. (3.5.35)

Carrying out the differentiations, we obtain the explicit expressions

u2DPSDy
x =

dy
2π

2
(x− x0)(y − y0)(

(x− x0)2 + (y − y0)2
)2 (3.5.36)

and

u2DPSDy
x =

dy
2π

(
− 1

(x− x0)2 + (y − y0)2
+ 2

(y − y0)
2(

(x− x0)2 + (y − y0)2
)2 ). (3.5.37)

The streamline pattern is found by rotating the pattern shown in Figure 3.5.2(b) by 90◦

around the location of the dipole. The stream function is given by

ψ2DPSDy = − dy
2π

x− x0

(x− x0)2 + (y − y0)2
+ ψ0, (3.5.38)

where ψ0 is an inconsequential constant.

General dipole orientation

Combining the expressions given in (3.5.25) and (3.5.33), we find that the harmonic potential
due to a potential dipole with vectorial strength d ≡ (dx, dy) located at the point x0 is given
by

φ2DPSD = d ·Φ2DPSD, (3.5.39)

where the vector function Φ2DPSD is defined as

Φ2DPSD ≡ − 1

2π

1

(x− x0)2 + (y − y0)2

[
x− x0

y − y0

]
. (3.5.40)

The velocity field can be expressed in the corresponding form

u = −d ·U2DPSD, (3.5.41)

where U2DPSD is a 2× 2 matrix function of position (Problem 3.5.2).
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3.5.4 Flow past a circular cylinder

As an application, we consider the superposition of uniform (streaming) flow along the x
axis with velocity Ux, and the flow due to a point-source dipole oriented along the x axis
located at the origin. Using the potential φ = Uxx for the streaming flow and the potential
given in (3.5.25) with x0 = 0 and y0 = 0 for the dipole, we derive the potential of the
composite flow,

φ(x, y) = Ux x− dx
2π

x

x2 + y2
= Ux x

(
1− 1

2π

dx
Ux

1

r2
)
, (3.5.42)

where

r =
√

x2 + y2 (3.5.43)

is the distance of the field point, x = (x, y), from the center of the cylinder. In plane polar
coordinates, (r, θ),

φ(r, θ) = Ux

(
r − 1

2π

dx
Ux

1

r

)
cos θ, (3.5.44)

where the polar angle θ is measured in the counterclockwise direction around the center of
the cylinder, defined such that x = r cos θ.

Now using the expression for the radial component of the velocity in terms of the
potential given in the first of equations (3.2.28), we find that

ur =
∂φ

∂r
= Ux

(
1 +

1

2π

dx
Ux

1

r2
)
cos θ. (3.5.45)

The expression inside the parentheses on the right-hand side is zero at the radial distance

r =
(
− 1

2π

dx
Ux

)1/2
, (3.5.46)

where the quantity under the square root is assumed positive. Conversely, if the strength
of the dipole has the value

dx = −2π Ux a
2, (3.5.47)

then the radial velocity will be zero at the radial distance r = a. The negative sign underlines
that the dipole is oriented against the incident streaming flow.

It is evident that the potential (3.5.44) with dx evaluated from expression (3.5.47)
describes uniform flow with velocity Ux past a circular cylinder of radius a centered at
the origin, where the no-penetration condition is satisfied over the surface of the cylinder.
Substituting the value for dx given in (3.5.47) into (3.5.44), we derive the explicit solution

φ = Ux

(
r +

a2

r

)
cos θ. (3.5.48)
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Figure 3.5.3 Streamline pattern of (a) uniform (streaming) flow past a circular cylinder with vanish-

ing circulation around the cylinder, and (b) uniform (streaming) flow past a sphere.

The corresponding Cartesian velocity components are

ux = Ux

(
1 +

a2

r4
− 2

a2

r2
x2
)
, uy = −2Ux

a2

r4
xy. (3.5.49)

The associated streamline pattern is shown in Figure 3.5.3(a). We recall that the origin has
been set at the center of the cylinder and the solution applies in the exterior of the cylinder,
r ≥ a.

3.5.5 Sources and dipoles in the presence of boundaries

When the domain of flow is bounded by an impermeable surface, the flow due to a point
source or point source dipole must be accompanied with a complementary flow whose pur-
pose is to satisfy the no-penetration boundary condition. For simple boundary geometries,
the complementary flow can be identified with the flow generated by singularities located
at image positions.

Directory lgf 2d, located inside directory 07 ptf of Fdlib, contains a collection of sub-
routines that evaluate the harmonic potential and associated velocity field for several bound-
ary geometries. Two examples are discussed in the remainder of this section.

Point source above a wall

In the case of a point source placed above a plane wall located at y = yw, the complementary
flow is generated by reflecting the point source with respect to the wall. If a primary point
source with strength m is located at a point, (x0, y0), then an image point source with equal
strength is located at the point (x0, 2yw − y0). The streamline pattern is shown in Figure
3.5.4(a).
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Figure 3.5.4 Streamline pattern of the flow due to a two-dimensional point source (a) above a plane
wall and (b) in front of a circular cylinder.

Point source outside a circular cylinder

In the case of a point source located outside a circular cylinder of radius a centered at a
point xc = (xc, yc), the complementary flow is generated by two image point sources. The
first image point source is located at the inverse point of the primary point source with
respect to the cylinder. If a primary point source with strength m is located at (x0, y0),
then an image point source with the same strength is located at the point

ximage
0 = xc + (x0 − xc)

a2

|x0 − xc|2 , yimage
0 = yc + (y0 − yc)

a2

|x0 − xc|2 , (3.5.50)

where

|x0 − xc|2 = (x0 − xc)
2 + (y0 − yc)

2 (3.5.51)

is the square of the distance of the primary point source from the center of the cylinder. A
second image point source with strength −m is located at the center of the cylinder. Note
that the sum of the strengths of the image singularities is zero to ensure that a net flow rate
across the surface of the cylinder does not arise. The streamline pattern of the induced flow
is shown in Figure 3.5.4(b).

3.5.1 Oblique streaming flow past a circular cylinder

Derive an expression for the harmonic potential and Cartesian components of the velocity
of oblique streaming flow with uniform velocity, ux = Ux, uy = Uy, past a circular cylinder
of radius a centered at the origin.

Problems
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Figure 3.5.5 Streamline pattern of the flow due to a two-dimensional point source between two
parallel plates.

3.5.2 Flow due to a point-source dipole

Use expressions (3.5.30) and (3.5.36) to derive the explicit form of the matrix U2DPSD

introduced in (3.5.41).

3.5.3 Stream functions

Confirm the stream functions associated with (a) a two-dimensional point source given in
(3.5.10) and (b) a two-dimensional point-source dipole pointing along the x or y axis, given
in (3.5.32) and (3.5.38).

3.5.4 Point source in a semi-infinite rectangular strip

Directory strml, located inside directory 04 various of Fdlib, contains a program that
generates the streamline pattern of the flow induced by a point source for several boundary
geometries. Examples are shown in Figures 3.5.4 and 3.5.5. Run the program to generate
the streamline pattern of the flow due to a point source in a semi-infinite rectangular strip
and discuss the structure of the flow.

3.6 Three-dimensional point sources and point-source dipoles

The fundamental solutions derived in Section 3.5 for two-dimensional potential flow can be
extended in a straightforward fashion to three-dimensional flow.

3.6.1 Three-dimensional point source

The harmonic potential due to a three-dimensional point source with strength m located at
the point x0 = (x0, y0, z0) is

φ3DPS = −m

4π

1

r
, (3.6.1)
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where

r =
√
(x− x0)2 + (y − y0)2 + (z − z0)2 (3.6.2)

is the distance of the field point, x, from the location of the point source, x0. The corre-
sponding Cartesian velocity components are

u3DPS
x =

m

4π

x− x0

r3
, u3DPS

y =
m

4π

y − y0
r3

, u3DPS
z =

m

4π

z − z0
r3

. (3.6.3)

The streamlines are radial straight lines emanating from the singular point, x0. The fluid
moves outward from a point source (m > 0) and inward into a point sink (m < 0).

3.6.2 Three-dimensional point-source dipole

The harmonic potential due to a three-dimensional point-source dipole oriented along the
x, y, or z axis is given, respectively, by

φ3DPSDx = − dx
4π

x− x0

r3
, φ3DPSDy = − dy

4π

y − y0
r3

, φ3DPSDz = − dz
4π

z − z0
r3

, (3.6.4)

where dx, dy, and dz are the directional strengths of the dipole. The corresponding velocity
components are found by straightforward differentiation with respect to x, y, or z.

For a dipole oriented along the x axis, we find that

u3DPSDx
x =

∂φ

∂x

3DPSDx

=
dx
4π

(− 1

r3
+ 3

(x− x0)
2

r5
)
,

u3DPSDx
y =

∂φ

∂y

3DPSDx

=
dx
4π

3
(x− x0)(y − y0)

r5
, (3.6.5)

u3DPSDx
z =

∂φ

∂z

3DPSDx

=
dx
4π

3
(x− x0)(z − z0)

r5
.

The streamline pattern in the xy plane is qualitatively similar, but not identical, to that
shown in Figure 3.5.2(b) for two-dimensional flow.

For a dipole oriented along the y axis, we find that

u3DPSDy
x =

∂φ

∂x

3DPSDy

=
dy
4π

3
(y − y0)(x− x0)

r5
,

u3DPSDy
y =

∂φ

∂y

3DPSDy

=
dy
4π

(− 1

r3
+ 3

(y − y0)
2

r5
)
, (3.6.6)

u3DPSDy
z =

∂φ

∂z

3DPSDy

=
dy
4π

3
(y − y0)(z − z0)

r5
.
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For a dipole oriented along the z axis, we find that

u3D−PSD−z
x =

∂φ

∂x

3DPSDz

=
dz
4π

3
(z − z0)(x− x0)

r5
,

u3D−PSD−z
y =

∂φ

∂y

3DPSDz

=
dz
4π

3
(z − z0)(y − y0)

r5
, (3.6.7)

u3D−PSD−z
z =

∂φ

∂z

3DPSDz

=
dz
4π

(− 1

r3
+ 3

(z − z0)
2

r5
)
.

Expressions (3.6.5)–(3.6.7) can be conveniently placed into a compact vector-matrix form,
as discussed in Problem 3.6.1.

3.6.3 Streaming flow past a sphere

As an application, we consider the superposition of streaming (uniform) flow along the x
axis with velocity Ux, and the flow due to a three-dimensional point-source dipole positioned
at the origin, x0 = 0, y0 = 0, z0 = 0, and pointing along the x axis.

Using the potential φ = Uxx for the streaming flow and the first expression in (3.6.4)
for the point-source dipole, we find that the potential of the composite axisymmetric flow
is given by

φ = Ux x− dx
4π

x

r3
= Ux x

(
1− dx

4πUx

1

r3
)
, (3.6.8)

where r = (x2 + y2 + z2)1/2 is the distance from the origin. Rearranging, we obtain

φ(r, θ) = Ux

(
1− dx

4πUx

1

r3
)
r cos θ, (3.6.9)

where θ is the meridional angle defined such that x = r cos θ.

Using the first expression in (3.2.26), we find that the radial velocity component is given
by

ur =
∂φ

∂r
= Ux

(
1 +

dx
2πUx

1

r3
)
cos θ. (3.6.10)

The sum inside the parentheses on the right-hand side of (3.6.10) is zero at the radial
distance

r =
(
− dx

2πUx

)1/3
. (3.6.11)

Conversely, if the strength of the dipole has the value

dx = −2π Ux a
3, (3.6.12)
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then the radial velocity vanishes at the radial distance r = a.

These observations suggest that the potential (3.6.9) with dx evaluated from expression
(3.6.12) describes uniform flow along the x axis with velocity Ux past a stationary sphere
of radius a centered at the origin. Substituting (3.6.12) into (3.6.9), we obtain an explicit
expression for the potential,

φ = Ux

(
r +

1

2

a3

r2
)
cos θ. (3.6.13)

The corresponding Cartesian velocity components are given by

ux = Ux

(
1 +

1

2
a3
( 1

r3
− 3

x2

r5
))

,

(3.6.14)

uy = − 3

2
Ux a

3 xy

r5
, uz = − 3

2
Ux a

3 xz

r5
.

The streamline pattern in an azimuthal plane is shown in Figure 3.5.3(b). The structure
of the flow is similar to that of flow past a cylinder with zero circulation shown in Figure
3.5.3(a).

3.6.4 Sources and dipoles in the presence of boundaries

To account for the presence of boundaries, we introduce a complementary flow whose purpose
is to ensure the satisfaction of the no-penetration boundary condition, as discussed in Section
3.5.5 for two-dimensional flow. For simple boundary geometries, the complementary flow
can be identified with the flow generated by singularities located at image positions outside
the domain of flow.

Directory lgf 3d, residing inside directory 07 ptf of Fdlib, contains a collection of sub-
routines that evaluate the velocity field for several boundary geometries. The streamline
pattern of the flow due to a point source located above a plane wall is shown in Figure
3.6.1(a). In this case, the complementary flow is due to a reflected point source. The
streamline pattern of the flow due to a point source outside a sphere is shown in Figure
3.6.1(b).

3.6.1 Flow due to a three-dimensional point-source dipole

Express the potential and velocity field of a three-dimensional point source dipole in terms
of (a) the vectorial strength of the dipole, (b) a three-component vector function, Φ3DPSD,
and (c) a 3× 3 matrix function, U3DPSD.

3.6.2 Stream functions

Introduce cylindrical polar coordinates with origin at the location of a three-dimensional
point source or point-source dipole, and derive expressions for the axisymmetric (Stokes)
stream function.

Problems
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Figure 3.6.1 Streamline pattern in a azimuthal plane of the flow due to a three-dimensional point
source (a) above a plane wall or (b) outside a sphere.

3.7 Point vortices and line vortices

Consider a long circular cylinder immersed in an infinite ambient fluid and rotating around
its axis with a constant angular velocity, thereby generating a two-dimensional swirling flow
in the xy plane.

In plane polar coordinates with origin at the center of the cylinder, x0 = (x0, y0), the
radial and angular velocity components are

ur(x) = 0, uθ(x) =
κ

2π

1

r
, (3.7.1)

where

r =
√
(x− x0)2 + (y − y0)2 (3.7.2)

is the distance of the point where the velocity is evaluated, x = (x, y), from the center of
the cylinder, and κ is a constant with units of velocity multiplied by length.

The magnitude κ expresses the strength of the flow due to the rotation of the cylinder,
and the sign of κ expresses the direction of rotation. If κ is positive, point particles in the
flow rotate around the cylinder in the counterclockwise direction. If κ is negative, point
particles in the flow rotate around the cylinder in the clockwise direction.

We note that the magnitude of the polar velocity component, uθ, decays like 1/r. If
the fluid rotated as a rigid body with angular velocity Ω around the point x0, the polar
velocity uθ would increase linearly with respect to radial distance, as uθ = Ωr. It is clear
that the velocity field expressed by (3.7.1) represents a flow that is different than rigid-body
rotation.
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Figure 3.7.1 (a) Two-dimensional and (b) three-dimensional perspectives of a point vortex with
positive strength representing a rectilinear line vortex parallel to the z axis.

Point vortex singularity

The flow described by equations (3.7.1) is physically meaningful only in the exterior of the
cylinder. Neglecting the surface of the cylinder and extending the domain of flow all the
way up to the center of the cylinder, we obtain a singular flow described as the flow due
to a point vortex with strength κ, as illustrated in Figure 3.7.1(a). The singularity occurs
because, as the distance of an observation point from the point vortex, r, tends to zero, the
magnitude of the velocity diverges to infinity.

To confirm that the flow due to a point vortex is irrotational, we substitute expressions
(3.7.1) into (2.3.20), and find that the z component of the vorticity vanishes everywhere in
the flow, except at the location of the point vortex, x0, where a singularity appears. These
properties classify the point vortex as a singularity of two-dimensional irrotational flow.

A seemingly paradoxical behavior should be noted. Because the flow is irrotational
at every point except at the location of the point vortex, small circular fluid parcels not
containing the point vortex translate and deform but do not rotate around their center, and
yet the fluid exhibits net circulatory motion. The apparent but not essential contradiction
serves to underscore that global circulatory motion does not necessarily imply the occurrence
of rotational flow.

3.7.1 The potential of irrotational circulatory flow

The presence of circulation has important implications on our ability to describe a flow
in terms of a velocity potential. To see this, we use equations (3.2.28) and find that the
potential due to a point vortex, denoted by φpv, satisfies the equations

∂φ

∂r

pv

= 0,
1

r

∂φ

∂θ

pv

=
κ

2π

1

r
. (3.7.3)

Integrating these equations, we obtain

φpv =
κ

2π
θ, (3.7.4)
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where θ is the polar angle measured around the point vortex in the counterclockwise direc-
tion. An arbitrary but irrelevant constant can be added to the right-hand side of (3.7.4).
The corresponding stream function is

ψpv = − κ

2π
ln

r

L , (3.7.5)

where L is a specified length.

According to expression (3.7.4), as we move around the point vortex on a circular path
in the counterclockwise direction, the potential increases in proportion to the angle θ. But
then, as we return to the point of departure, because θ has increased by 2π, the potential has
undergone a jump with respect to the initial value, equal to κ. We can continue traveling
around the point vortex for one more turn, only to find that, each time we perform a
complete rotation, the potential undergoes a jump equal to κ. This observation illustrates
that the potential associated with a point vortex is multi-valued. Moreover, since the point
of departure is arbitrary, the potential is multi-valued at every point in the flow.

We have discovered by example that circulatory motion is associated with a multi-valued
potential and vice versa. In practice, a multi-valued potential is too much to handle by
analytical and numerical methods. To circumvent this difficulty, we decompose the potential
into an easy multi-valued part and a harder complementary single-valued part; we specify
the former, and extract the latter by analytical or numerical methods. The implementation
of this method will be discussed in Chapter 12 in the context of aerodynamics.

In an alternative approach, we introduce an artificial boundary residing inside the fluid
called a branch cut, and work under the assumption that the potential has two different
values on either side of the brunch cut. If the flow does not exhibit net circulatory motion,
the two values are identical.

3.7.2 Flow past a circular cylinder

To illustrate the usefulness of the point vortex singularity, we consider streaming (uniform)
flow past a circular cylinder, as discussed in Section 3.5. Equation (3.5.48) provides us with
the single-value harmonic potential in the absence of circulatory motion around the cylinder.

To allow for circulatory motion, we add to the right-hand side of (3.5.48) the potential
due to a point vortex situated at the center of cylinder, given in equation (3.7.4), obtaining

φ = Ux

(
r +

a2

r

)
cos θ +

κ

2π
θ. (3.7.6)

The corresponding Cartesian velocity components are

ux = Ux

(
1 +

a2

r2
− 2

x2

r4
a2
)− κ

2π

y

r2
, uy = −Ux 2

xy

r4
a2 +

κ

2π

x

r2
. (3.7.7)

Since the radial velocity component, ur = ∂φ/∂r, is zero over the surface of the cylinder
located at r = a, the no-penetration condition is satisfied.
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Figure 3.7.2 Streamline pattern of uniform (streaming) flow past a circular cylinder with different
degrees of circulation around the cylinder determined by the dimensionless parameter β defined
in equation (3.7.9); (a) β = 0.5, (b) 1.0, and (c) 1.2. The streamline pattern in the absence of
circulation, β = 0, is shown in Figure 3.5.3(a).

Rearranging (3.7.6), we obtain the dimensionless form

φ = Uxa
(
cos θ (r̂ +

1

r̂
)− 2β θ

)
, (3.7.8)

where r̂ = r/a is the scaled radial distance defined such that r̂ = 1 corresponds to the
cylinder surface, and

β ≡ − κ

4πVxa
(3.7.9)

is a dimensionless circulation parameter. When β = 0, the circulation around the cylinder
vanishes. Expression (3.7.8) reveals that the structure of the flow is determined by the
dimensionless parameter β.

The tangential component of the velocity at the surface of the cylinder is given by

uθ(r = a) = −2Vx sin θ +
κ

2πa
= −2Vx (sin θ + β). (3.7.10)

We note that the magnitude of the velocity is zero when θ = arcsin(−β), and conclude that
stagnation points develop on the surface on the cylinder when −1 ≤ β ≤ 1.

When β = 0, two stagnation points occur in the horizontal mid-plane of the cylinder
located at θ = 0 and π. As β increases from zero to unity, the stagnation points move
downward and finally merge at lowest point of the cylinder, θ = − 1

2π. When β exceeds the
value of unity, the merged stagnation points move off the surface of the cylinder into the
flow. Streamline patterns for β = 0.5, 1.0, and 1.2 illustrating this transition are shown in
Figure 3.7.2.
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Figure 3.7.3 Illustration of reducible and irreducible loops in a two-dimensional flow. The shaded
areas represent flow boundaries.

3.7.3 Circulation

Having discussed the effect of the circulation around a cylinder placed in a uniform flow, we
proceed to extend the concept of circulation to a more general framework.

Consider a two-dimensional flow in the xy plane, and draw a simple closed loop inside
the flow. If the loop encloses fluid alone and no boundaries, the loop is called reducible.
If the loop encloses fluid and one or more boundaries, the loop is called irreducible. The
distinguishing feature of a reducible loop is that it can be shrunk to a point without crossing
flow boundaries. One reducible and three irreducible loops are depicted in Figure 3.7.3.

Next, we select a point on a reducible or irreducible loop and introduce the unit tangent
vector pointing in the counterclockwise direction, t = (tx, ty), as shown in Figure 3.7.3. The
inner product of the velocity and the unit tangent vector is given by

ut = u · t = ux tx + uy ty. (3.7.11)

The circulation around the loop is defined as the line integral of the tangential component
of the velocity with respect to arc length around the loop, 
,

C ≡
∮
L
ut d
 =

∮
L
u · td
, (3.7.12)

where L denotes the loop and d
 =
√

dx2 + dy2 is an infinitesimal arc length around the
loop.

Reducible loops

Stokes’s circulation theorem discussed in Section 11.1 states that, in the absence of point
vortices inside the area enclosed by a reducible loop, the circulation around the loop is equal
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to the strength of the vorticity integrated over the area of fluid enclosed by the loop, D,

C =

∫∫
D
ωz dA. (3.7.13)

In this case, the right-hand sides of (3.7.12) and (3.7.13) are equal.

An important consequence of Stokes’s circulation theorem is that, because the vorticity
of an irrotational flow vanishes at every point, the circulation around any reducible loop
drawn in an irrotational flow is precisely zero. Important implications of this property will
be discussed in Chapter 11 in the context of vortex dynamics.

Reducible loops enclosing point vortices

The circulation around a reducible loop that encloses a collection of N point vortices with
strengths κ1, κ2, . . . , κN is equal to the sum of the strengths of the point vortices,

C =
N∑
i=1

κi. (3.7.14)

If some point vortices have positive strength and other point vortices have negative strength,
so that the sum of the strengths is zero, the circulation around the loop is also zero.

As an example, we consider uniform flow past a circular cylinder described by the
potential shown in (3.7.6). To confirm that the circulation around any loop that encloses
the cylinder is equal to κ, we compute the circulation around a loop of radius b centered at
the cylinder, and find the expected result

C ≡
∮

ut d
 =

∮
uθ b dθ = b

∮
1

r

∂φ

∂θ
dθ = b

1

b

∮
κ

2π
dθ = κ, (3.7.15)

where d
 = bdθ is the arc length around the loop.

Irreducible loops

The circulation around a loop that encloses one boundary or multiple boundaries in a two-
dimensional irrotational flow can be arbitrary. In practice, the amount of circulation is
set up internally during a start up period when the flow develops from the state of rest.
The circulation established spontaneously around a moving body is of central interest in
aerodynamics, as discussed in Chapter 12.

3.7.4 Line vortices in three-dimensional flow

Viewed from a three-dimensional perspective, a point vortex in the xy plane appears like
a rectilinear line vortex parallel to the z axis, as shown in Figure 3.7.1(b). Deforming this
rectilinear line vortex or merging its two ends to form a loop, we obtain a curved three-
dimensional line vortex in a three-dimensional flow. One example familiar to cigar smokers
is a closed line vortex with a circular or wobbly shape, called a line vortex ring.
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(a) (b)

Figure 3.7.4 Illustration of (a) an open and (b) a closed line vortex in a three-dimensional flow.

A line vortex can be infinite, as illustrated in Figure 3.7.4(a), or closed, as illustrated in
Figure 3.7.4(b). However, a line vortex may not end suddenly in the interior of a fluid. In
real life, a fluid is always bounded by a rigid or deformable surface and an otherwise infinite
line vortex inevitably ends at the boundaries.

The analysis and computation of the flow associated with, or induced by a three-
dimensional line vortex constitutes an important field of fluid mechanics with important
applications in turbulent fluid motion and aerodynamics, as discussed in Chapters 11 and
12.

3.7.1 Circulation around a loop in the xy plane

Consider a closed loop in the xy plane performing m turns around a point vortex with
strength κ, where m is an arbitrary integer. Explain why the circulation around this loop
is equal to mκ.

3.7.2 Point vortex dipole

Just as the point-source dipole arises from a point source/sink dipole, as discussed in Section
3.5, a point-vortex dipole arises from a point vortex with positive strength and a point
vortex with negative strength of equal magnitude, in the limit as the distance between the
two point vortices tends to zero while their strength increases by inverse proportion. The
harmonic potential associated with a point vortex dipole oriented along the x or y axis is
given, respectively, by

φPVDx(x, y) = λx
∂φpv

∂x0
, φPVDy(x, y) = λy

∂φpv

∂y0
, (3.7.16)

where λx and λy are the components of the vectorial strength of the point-vortex dipole in
the x and y direction.

Carry out the differentiations on the right-hand sides of (3.7.16) and compare the result-
ing expressions with those shown in equations (3.5.25) and (3.5.33) for the two-dimensional
point-source dipole. Based on this comparison, establish a relationship between the flow
due to a point-vortex dipole and the flow due to a point-source dipole.

Problems
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3.7.3 Irreducible loops in three-dimensional flow

(a) Consider a three-dimensional domain of flow extending to infinity and bounded internally
by a toroidal boundary having the shape of a donut. Show that this flow contains irreducible
loops that may not be shrunk to a point without crossing flow boundaries.

(b) Invent another three-dimensional domain of flow containing irreducible loops.



Forces and stresses 4
4.1 Body forces and surface forces
4.2 Traction and the stress tensor
4.3 Traction jump across a fluid interface
4.4 Force balance at a three-dimensional interface
4.5 Stresses in a fluid at rest
4.6 Constitutive equations
4.7 Pressure in compressible fluids
4.8 Simple non-Newtonian fluids
4.9 Stresses in polar coordinates
4.10 Boundary conditions for the tangential velocity
4.11 Wall stresses in Newtonian fluids
4.12 Interfacial surfactant transport

Previously in this book, we discussed the kinematic structure of a flow but made no reference
to the external action that is necessary to establish a flow or to the physical mechanism
that is necessary to sustain the motion of the fluid. To address these issues, in this chapter
we turn our attention to the hydrodynamic forces developing in a fluid as a result of the
motion and introduce constitutive equations relating the stresses developing at the surface of
infinitesimal fluid parcels to the parcel motion and deformation. The constitutive equations
will then be incorporated into an integrated theoretical framework based on Newton’s law
of motion that will allow us to compute the structure of a steady flow and the evolution of
an unsteady flow from a specified initial configuration.

4.1 Forces acting in a fluid

Two types of forces are exerted on any coherent piece of a material: a homogeneous force
acting on its volume, and a surface force acting on its boundaries.

4.1.1 Body force

A fluid parcel, like any other piece of material, is subject to a force mediated by an ambi-
ent gravitational, electrical, electromagnetic, or any other external force field acting on its
volume. Electrical and electromagnetic forces arise when the fluid is electrically charged or
contains molecules or small particles of a polarized material.
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Under the influence of such fields, the molecules residing inside a fluid parcel are acted
upon individually and independently by a force that may be constant or vary with position
inside the parcel. The sum of the forces exerted on the individual molecules amounts to a
net body force that is proportional to the number of molecules residing inside the parcel,
and thus to the parcel volume.

Gravitational body force

Let δFp be the gravitational force exerted on a small fluid parcel with volume δVp, density
ρ, and mass δmp = ρ δVp. By definition,

δFp = g ρ δVp, (4.1.1)

where g is the acceleration of gravity. The right-hand side of (4.1.1) has units of acceleration
multiplied by mass, which amounts to force.

One distinguishing feature of the body force due to gravity is that it is considered to
be independent of molecular motions. This means that a certain mass of fluid weighs the
same, independent of whether the fluid is stationary or flows.

4.1.2 Surface force

A different type of force arises at the surface of a fluid parcel and at the boundaries of a
flow, such as the surface of a bubble rising through an ambient liquid or the windshield of a
moving vehicle. More generally, a surface force can be defined on any fictitious surface that
is drawn inside the bulk of a fluid or over its boundary.

Understanding the physical origin of the surface force requires consideration of molec-
ular motions and necessitates a distinction between gases and liquids. A key idea is the
equivalence between local hydrodynamic force and rate of exchange of momentum between
adjacent fluid layers due to molecular excursions.

Gases

To understand the origin of surface forces developing in a gas, we draw a surface in the
interior of the gas and consider the momentum of the molecules that cross the surface from
either side. A key realization is that the momentum normal to the surface is responsible for
a normal force.

If the molecules move with different average tangential velocities on either side of the
surface, the net transport of tangential momentum is responsible for a tangential surface
force necessary to accelerate or decelerate the molecules. In the present context, the average
velocity of a molecule can be identified with the velocity of the fluid at the location where
a molecule last underwent a collision with one of its peers. The effective force field due to
the tangential surface force slows down fast-moving molecules as they approach regions of
slower-moving fluid.
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Figure 4.2.1 Illustration of a small section on the surface of a fluid parcel, δS, introduced to define
the hydrodynamic traction exerted on the parcel.

Liquids

The physical origin of surface forces developing in a liquid is somewhat different. The
molecules of a liquid perform oscillatory motion around a mean position with an amplitude
that is determined by their distance from closely spaced neighbors. Occasional excursions
into vacant spots are responsible for momentum transport attributed to the action of a
surface force.

4.1.1 Friction

The friction on a body sliding over a horizontal surface imparts to the body a tangential
surface force that depends on the body weight. Does this frictional force also depend on the
contact area?

4.2 Traction and the stress tensor

Consider a small surface with area δS centered at a point, x = (x, y, z), in a stationary
or moving fluid, as illustrated in Figure 4.2.1. The designated outer side of the surface is
indicated by the direction of the unit vector normal to the surface at the point x, denoted
by n = (nx, ny, nz). According to our discussion in Section 4.1, a body of fluid whose
instantaneous boundary includes the small surface under consideration experiences a surface
force, δFsurface, that may point in any direction; that is, it may have a component normal
to the surface and a component tangential to the surface.

Traction

The ratio between the surface force, δFsurface, and the area of the surface, δS, is the average
stress exerted on the small surface. As the surface area δS becomes infinitesimal, the
average stress tends to a limit defined as the traction exerted on an infinitesimal surface
and is denoted by f . Thus, by definition,

f ≡ δFsurface

δS
(4.2.1)

Problem
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in the limit at δS becomes infinitesimal. The three scalar components of the traction have
units of force per area, which amounts to stress.

Force in terms of traction

Rearranging equation (4.2.1), we obtain an expression for the surface force exerted on an
infinitesimal surface in terms of the traction,

δFsurface = f δS. (4.2.2)

Integrating the traction over a specified surface area, such as the boundary of a fluid parcel,
we obtain a resultant surface force.

Dependence on position and orientation

It is clear from relation (4.2.1) that the traction is defined only when the location and
orientation of an infinitesimal surface upon which the traction is exerted are specified, re-
spectively, in terms of the coordinates of the center-point, x, and orientation of the unit
normal vector, n. This requirement is signified by writing

f(x,n), (4.2.3)

where the parentheses enclose the arguments of the three scalar components of the traction.
If a flow is unsteady, or the position or orientation of the surface change in time, time, t,
should be added to the arguments on the right-hand side of (4.2.3).

The stress tensor

The traction exerted on a small surface that is perpendicular to the x, y, or z axis, is denoted
by

f (x) = [ f (x)
x , f (x)

y , f (x)
z ],

f (y) = [ f (y)
x , f (y)

y , f (y)
z ], (4.2.4)

f (z) = [ f (z)
x , f (z)

y , f (z)
z ],

respectively, where the unit normal vector, n points in the positive directions of these axes,
as depicted in Figure 4.2.2. Stacking these vectors on top of one another in a particular
order, we obtain the 3× 3 stress tensor

σ ≡

⎡⎢⎣ f
(x)
x f

(x)
y f

(x)
z

f
(y)
x f

(y)
y f

(y)
z

f
(z)
x f

(z)
y f

(z)
z

⎤⎥⎦ (4.2.5)

in a three-dimensional flow, and a corresponding 2× 2 tensor in a two-dimensional flow.

Next, we introduce the standard two-index notation for the components of the stress
tensor,

σ =

⎡⎣ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎦ , (4.2.6)
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Figure 4.2.2 Illustration of (a) a triangular fluid parcel in a two-dimensional flow and (b) a tetrahedral
fluid parcel in a three-dimensional fluid. These parcels are used as devices for computing the
traction exerted on an arbitrary surface in terms of (a) the unit vector normal to the surface, and
(b) the stress tensor.

and find that, by definition,

σij ≡ f
(i)
j (4.2.7)

for i, j = x, y, z. The first index of σij indicates the component of the normal vector on
the infinitesimal surface upon which the traction is exerted. The second index indicates the
component of the corresponding traction.

We will see that, in the absence of an externally induced torque, the stress tensor is
symmetric,

σij = σji. (4.2.8)

For example, σxy = σyx.

In the case of two-dimensional flow in the xy plane, the stresses are encapsulated in a
2× 2 stress tensor,

σ =

[
σxx σxy

σyx σyy

]
. (4.2.9)

The five omitted components involving the subscript z are either constant or zero.

Traction in terms of the stress tensor

We will demonstrate that the dependence of the traction on the position vector, x, and
normal vector, n, displayed symbolically in (4.2.3), can be decoupled in a simple fashion,
yielding

f(x,n) = n · σ(x). (4.2.10)
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Specifically,

[
fx, fy, fz

]
=
[
nx, ny, nz

] ·
⎡⎣ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎤⎦ . (4.2.11)

In index notation,

fj(x,n) = ni σij = nx σxj + ny σyj + nz σzj , (4.2.12)

where summation is implied over the repeated index, i, in the middle expression of (4.2.12),
while the index j is free to vary over x, y, or z.

An important consequence of (4.2.10) is that, if the nine components of the stress tensor
are known at a point, then the traction exerted on any infinitesimal surface centered at that
point can be evaluated in terms of the unit normal vector, n, merely by carrying out a
vector-matrix multiplication.

To confirm that expression (4.2.10) is consistent with the foregoing definitions, we choose
n = (1, 0, 0) and carry out the vector-matrix multiplication on the right-hand side of (4.2.12)
to find that f = f (x), as required. Working in a similar fashion with n = (0, 1, 0) and
n = (0, 0, 1), we obtain f = f (y) and f = f (z), as required.

It remains to show that (4.2.10) holds true for general orientations of the unit normal
vector, n. For simplicity, we present the proof for two-dimensional flow in the xy plane with
reference to the 2× 2 stress tensor defined in (4.2.9).

Force balance on a small triangular parcel

Consider a small area of fluid enclosed by an infinitesimal triangle with two sides perpen-
dicular to the x and y axes, as shown in Figure 4.2.2(a). Newton’s second law of motion
requires that the rate of change of the momentum of the fluid enclosed by the triangle is
balanced by the forces exerted on the triangle. The forces include the body force and the
surface force associated with the traction exerted on the three sides.

The momentum of the parcel and the body force exerted on the parcel are both propor-
tional to the area of the triangle, 1

2 ΔxΔy. The surface force exerted on the vertical side

is equal to f (x)Δy, the surface force exerted on the horizontal side is equal to f (y)Δx, and
the surface force exerted on the slanted side is equal to fΔ
, where Δ
 is the length of the
slanted side, Δ
 = (Δx2 +Δy2)1/2.

In the limit as Δx and Δy tend to zero, the fluid momentum and the body force become
negligible compared to the surface force exerted on the sides, and the sum of the three surface
forces must balance to zero. Setting the x and y components of the sum to zero, we obtain

fx Δ
+ σxx Δy + σyx Δx = 0, fy Δ
+ σxy Δy + σyy Δx = 0. (4.2.13)

Using elementary trigonometry, we find that the x and y components of the outward unit
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n

outer side

Figure 4.2.3 Illustration of a thin fluid layer with a designated inner and outer side. The outer side
is indicated by the direction of the unit normal vector, n.

vector normal to the slanted side of the triangle are given by

nx = −Δy

Δ

, ny = −Δx

Δ

. (4.2.14)

Combining equations (4.2.13) and (4.2.14), we find that

fx = nx σxx + ny σyx, fy = nx σxy + ny σyy, (4.2.15)

which are precisely the x and y components of (4.2.10).

To carry out an analogous proof for three-dimensional flow, we consider the forces
exerted on the sides and over the volume of a tetrahedral fluid parcel, as illustrated in
Figure 4.2.2(b), and work in similar ways (Problem 4.2.1).

4.2.1 Traction on either side of a fluid surface

Next, we consider a thin fluid layer with a designated outer side indicated by the direction
of the unit normal vector, n, and a designated inner side indicated by the direction of the
opposite normal vector, ninner = −n, as illustrated in Figure 4.2.3. Balancing the rate of
change of momentum of the fluid residing inside the thin layer with the forces exerted on the
layer, and repeating the preceding arguments on the insignificance of the fluid momentum
and body force compared to the surface force, we derive the force balance equation

fouter + f inner = 0, (4.2.16)

which is a statement of Newton’s third law of action and reaction, stating that the force
exerted on one body by a second body is equal in magnitude and opposite in direction to
the force exerted by the second body on the first body.

It is reassuring to confirm that expression (4.2.10) is consistent with the physical law
expressed by (4.2.16). Substituting the former into the latter, we obtain

n · σ + ninner · σ = 0, (4.2.17)

which is true in light of the definition ninner = −n. More generally, for (4.2.16) to be true,
it must be that

f(x,−n) = −f(x,n), (4.2.18)

which is clearly satisfied by the right-hand side of (4.2.10).
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Figure 4.2.4 Illustration of a thin fluid layer adjacent to a boundary used to define the hydrodynamic
force exerted on the boundary.

4.2.2 Traction on a boundary

Now we consider a small fluid surface residing at the boundary of a flow. The outer side of
the fluid surface is indicated by the unit normal vector noutward pointing into the boundary,
as illustrated in Figure 4.2.4. Newton’s third law of action and reaction requires that the
traction exerted on the surface should balance the traction exerted by the fluid on the
boundary, fboundary, so that

fboundary + noutward · σ = 0. (4.2.19)

In terms of the inward unit normal vector pointing into the fluid, ninward = −noutward, we
obtain

fboundary = ninward · σ. (4.2.20)

Expression (4.2.20) allows us to compute the traction exerted on a boundary in terms of
the stress tensor evaluated at the boundary.

4.2.3 Symmetry of the stress tensor

The torque with respect to a specified point, x0, due to a force, F, applied at a point, x, is
defined by the outer vector product

T(x0) ≡ (x− x0)× F. (4.2.21)

A fundamental law of mechanics originating from Newton’s second law of motion requires
that the rate of change of angular momentum of a fluid parcel should be balanced by the
torque exerted on the fluid parcel, including the torque due to the body force and the torque
due to the surface force.

Applying this law for a rectangular fluid parcel whose sides are parallel to the x, y,
and z, axes, we find, that, in the absence of a body force inducing a torque, the tangential
component of the traction in the jth direction exerted on the side that is perpendicular to
the ith axis must be equal to the tangential component of the traction in the ith direction
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exerted on the side that is perpendicular to the jth axis, otherwise an imbalance will arise
(Problem 4.2.2). Thus,

f
(i)
j = f

(j)
i , (4.2.22)

stating that the stress tensor is symmetric,

σij = σji. (4.2.23)

The diagonal components of the stress tensor can be arbitrary.

It is important to emphasize that the stress tensor is symmetric only in the absence of
an externally induced torque, that is, in the absence of an external force field causing point
particles to spin. This condition is tacitly assumed in the remainder of this book.

4.2.1 Traction in three-dimensional flow

Prove expression (4.2.10) for three-dimensional flow. Hint: Perform a force balance over
the polyhedral volume depicted in Figure 4.2.2(b).

4.2.2 Symmetry of the stress tensor

Demonstrate the symmetry of the stress tensor for two-dimensional flow in the absence of
an externally induced torque.

4.3 Traction jump across a fluid interface

Equation (4.2.16) states that the traction exerted on one side of a surface drawn inside a fluid
is equal in magnitude and opposite in direction to that exerted on the other side. To derive
this relation, we performed a force balance over a thin fluid layer centered at the surface,
considering the force exerted along the edges infinitesimal. If the fluid residing inside this
layer is homogeneous, the edge force scales with the layer thickness and is negligible indeed
compared to the surface force exerted on the two sides.

However, if a thin layer straddles the interface between two different fluids instead
of a regular surface residing inside a homogeneous fluid, differences in the magnitude of
intermolecular forces on either side of the layer generate an effective edge force that does
not scale with the layer thickness.

4.3.1 Interfacial tension

The interfacial edge force can be expressed in terms of the interfacial tension, also called the
surface tension, γ, defined as the tangential force per differential arc length exerted around
the edge of a section of an interface. In fact, the surface tension is the integrated normal
stress exerted in a plane that is normal to the interface over a thin interfacial layer where the

Problems
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Figure 4.3.1 Illustration of forces exerted on a thin fluid layer centered at a two-dimensional interface,
including the hydrodynamic force due to the fluid stresses and the force due to the surface tension.

physical properties of the medium undergo a rapid transition. Interfaces with membrane-like
constitution exhibit tangential as well as normal interfacial tensions and possibly bending
moments. In the most general case, an interface behaves line a thin shell, such as a dome
or an egg shell.

Simple interfaces and surfactants

Consider a simple interface separating two immiscible liquids or a gas from a liquid. The
surface tension pulls the interfacial layer in a direction that is tangential to the interface and
normal to the edges. The magnitude of the surface tension depends on the local temperature
and on the molecular constitution of the interface determined by the concentration of surface
active substances residing over the interface, called surfactants, as will be discussed in
Section 4.10. The higher the temperature or the concentration of a surfactant, the lower
the surface tension.

Surfactants are often added to liquids to lower the surface tension and achieve a desired
effect. A dish or laundry detergent is a common household surfactant used to lower the
strength of the forces anchoring particles to a soiled surface. In engineering applications,
surfactants are used to disperse oil spills.

4.3.2 Force balance at a two-dimensional interface

To illustrate the action of the surface tension, we consider a small section of a two-dimensional
interface with length Δ
, as shown in Figure 4.3.1. Surface tension pulls the layer forward
and backward at the two edges in directions that are tangential to the interface at the two
end points, A and B.

Balancing the surface force exerted on the upper and lower sides due to the stresses in
each fluid and the edge forces, we obtain the vectorial equilibrium condition[

n(1) · σ(1)
]
Δ
+

[
n(2) · σ(2)

]
Δ
+ γA tA − γB tB = 0, (4.3.1)

where the unit normal vector n(1) points into the fluid labeled 1 by convention, while the
unit normal vector n(2) = −n(1) points into the fluid labeled 2.
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Now we express the second normal vector in terms of the first normal vector and rear-
range the resulting expression to obtain

n(1) · (σ(1) − σ(2)) = −γA tA − γB tB

Δ

. (4.3.2)

If the surface tension is uniform across the length of the interfacial element under consider-
ation, then γB = γA. If, in addition, the interface is flat, tB = tA, the vectorial difference
tB − tA is zero and the right-hand side of (4.3.2) vanishes. Equation (4.3.2) then requires
that the traction is continuous across the interface in the absence of a net contribution due
to the surface tension.

As the length of the interfacial segment, Δ
, tends to zero, the fraction on the right-
hand side of (4.3.2) tends to the derivative of the product γt with respect to arc length, 
,
measured in the direction of the tangent vector t from an arbitrary origin, yielding

n(1) · (σ(1) − σ(2)) = −d(γt)

d

. (4.3.3)

Expanding the derivative of the product on the right-hand side, we find that

n(1) · (σ(1) − σ(2)) = −γ
dt

d

− dγ

d

t. (4.3.4)

The second term on the right-hand side contributes a traction discontinuity tangential to
the interface, known as the Marangoni traction. If the surface tension is uniform over the
interface, the Marangoni traction does not appear.

Curvature

To interpret the first term on the right-hand side of (4.3.4), we consider the difference
between the two nearly equal tangential vectors tA and tB. As the arc length, Δ
, tends to
zero, the difference between these vectors tends to a new vector that is directed normal to
the interface. More precisely, in this limit, the ratio (tA − tB)/Δ
 tends to the derivative

dt

d

= −κn(1), (4.3.5)

where κ is the positive or negative curvature of the interface; for the shape shown in Figure
4.3.1, the curvature is positive, κ > 0.

To understand why the derivative dt/d
 is normal to the interface, we approximate the
derivative with the ratio (tA − tB)/Δ
, and rearrange to obtain

tA 	 tB − κn(1). (4.3.6)

The second term on the right-hand side inclines tB against n(1) to generate tA, as shown in
Figure 4.3.1.
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Taking the inner product of both sides of equation (4.3.5) with the unit normal vector
n(1), we derive an expression for the curvature,

κ = −n(1) · dt
d


, (4.3.7)

which can be restated as

κ = −dx

d

n(1) · dt

dx
= −dy

d

n(1) · dt

dy
. (4.3.8)

By definition, κ = 1/R, where R is the positive or negative radius of curvature of the
interface. For the shape shown in Figure 4.3.1, the radius of curvature is positive, R > 0.

Conversely, the derivative of the unit normal vector is parallel to the unit tangential
vector,

dn(1)

d

= κ t, (4.3.9)

yielding

κ = t · dn
(1)

d

. (4.3.10)

Equations (4.3.5) and (4.3.9) comprise the Frenet–Serret relations in differential geometry.

Laplace pressure

Substituting (4.3.5) into (4.3.4) and rearranging, we derive the final expression for the jump
in the interfacial traction across a two-dimensional interface,

Δf ≡ n(1) · (σ(1) − σ(2)) = γκn(1) − dγ

d

t. (4.3.11)

The first term on the right-hand side of (4.3.11) contributes a traction discontinuity normal
to the interface, known as the Laplace pressure; however, bear in mind that the term pressure
is appropriate only in the absence of fluid motion on either side of the interface. If either
the curvature of the interface or the surface tension vanishes, the Laplace pressure is zero
and the normal stress is continuous across the interface.

It is important to bear in mind that the interfacial tension is independent of the radius
of curvature of the interface, except when the radius of curvature is so small that it becomes
comparable to the molecular size. In mainstream engineering applications, the surface
tension is regarded as a genuine physical constant.

Local coordinates

Consider the jump in traction across the curved interface depicted in Figure 4.3.2(a). The
origin of the Cartesian axes lies at a point on the interface, the x axis is tangential to the
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Figure 4.3.2 (a) A local coordinate system with the x axis tangential to a two-dimensional interface
at a point is used to evaluate the jump in the traction across the interface. (b) A differentially
heated interface drives a thermocapillary flow.

interface, and the y axis is normal to the interface pointing into the fluid labeled 1. At the
origin of the Cartesian axes, the components of the unit normal vector, n(1), are

n(1)
x = 0, n(1)

y = 1, (4.3.12)

and the jump in the interfacial traction is given by

Δf ≡ n(1) · (σ(1) − σ(2)) = (σ(1)
yx − σ(2)

yx ) ex + (σ(1)
yy − σ(2)

yy ) ey, (4.3.13)

where ex and ey are unit vectors parallel to the x or y axis.

Applying equation (4.3.11) at the origin and setting t = ex and n(1) = ey, we obtain

Δf = γκ ey − dγ

d

ex. (4.3.14)

Comparing this equation with (4.3.13), we derive an expression for the jump in the shear
stress,

σ(1)
yx − σ(2)

yx = −dγ

d

, (4.3.15)

and another expression for the jump in the normal stress,

σ(1)
yy − σ(2)

yy = γ κ. (4.3.16)

For the configuration shown in Figure 4.3.2(a), the curvature κ is positive

A heated liquid layer

As an application, we consider a liquid layer that is hot at the left end and cold at the right
end, as illustrated in Figure 4.3.2(b). In this case, dT/dx < 0 and therefore dγ/dx > 0,
where T is the temperature. Equation (4.3.15) yields

σ(1)
yx − σ(2)

yx = −dγ

dx
< 0. (4.3.17)
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Figure 4.3.3 Illustration of a circular interface of radius a enclosing a fluid labeled 2, showing the
unit tangent vector, t, and the outward unit normal vector, n.

Because the shear stress is insignificant in the gas above the layer, we can approximate

σ(1)
yx 	 0. (4.3.18)

For a Newtonian fluid,

σ(2)
yx = μ2

dux

dy
> 0, (4.3.19)

where μ2 is the viscosity of the lower fluid, as discussed in Section 4.5. The positive sign of
the slope dux/dy is consistent with the velocity profile drawn in Figure 4.3.2(b). Physically,
the high surface tension at the cold end pulls the fluid against the low surface tension at
the hot end to drive a surface-tension induced flow.

A flow induced by temperature differences causing variations in surface tension is called
a thermocapillary flow.

Curvature of a circle

We have seen that the curvature of an interface determines the jump in the normal compo-
nent of the traction due to surface tension. To gain experience on the computation of the
curvature, we consider a circle of radius a centered at the origin, described in parametric
form by the equations

x = a sinω, y = a cosω, (4.3.20)

where ω is the polar angle measured around the center of the circle in the clockwise direction,
varying from 0 to 2π, as shown in Figure 4.3.3. The components of the unit tangent vector
pointing in the clockwise direction are

tx =
dx

d

, ty =

dy

d

, (4.3.21)
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where d
 = (dx2 +dy2)1/2 is the differential arc length measured in the clockwise direction.
Using the parametric representation, we find that

dx = a cosω dω, dy = −a sin θ dω, d
 = a dω, (4.3.22)

and thus

tx = cosω, ty = − sinω. (4.3.23)

Based on these formulas, we compute

dtx
d


=
d(cosω)

d(aω)
= −1

a
sinω,

dty
d


=
d(− sin θ)

d(aθ)
= −1

a
cosω. (4.3.24)

In unified vector form,

dt

d

= −1

a
n, (4.3.25)

where n = (sinω, cosω) is the unit vector normal to the circle pointing outward, as shown
in Figure 4.3.3. Comparing (4.3.25) with (4.3.5), we confirm that the curvature of the circle
is equal to the inverse of its radius, κ = 1/a.

Formulas for the curvature

The shape of a two-dimensional interface that does not turn upon itself but has a monotonic
shape can be described by a single-valued function,

y = f(x). (4.3.26)

Using elementary geometry, we find that

n(1) =
1

(1 + f ′2)1/2
(−f ′ ex + ey ), t =

1

(1 + f ′2)1/2
(ex + f ′ ey),

d


dx
=
√
1 + f ′2, (4.3.27)

where a prime denotes a derivative with respect to x. Substituting these expressions into
the formula (4.3.7) for the curvature, and simplifying, we derive the expressions

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
= −

( f ′√
1 + f ′2

)′
. (4.3.28)

The slope angle of the interface, θ, is defined by the equation

tan θ = f ′. (4.3.29)

We note that the fraction in the second expression of (4.3.28) is equal to | cos θ| and derive
the alternative expression

κ =
1

f ′
d| cos θ|

dx
. (4.3.30)
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The curvature of an interface that is described parametrically by the functions

x = X(ξ), y = Y (ξ) (4.3.31)

is given by

κ =
Xξξ Yξ − Yξξ Xξ

(X2
ξ + Y 2

ξ )
3/2

, (4.3.32)

where a subscript denotes a derivative with respect to the parametric variable, ξ. Formula
(4.3.28) arises by setting ξ = x.

4.3.1 Curvature of an ellipse

Consider a horizontal ellipse centered at the origin of the xy plane, described in parametric
form by the equations x = a cos η and y = b sin η, where η is the natural parameter of the
ellipse varying between 0 and 2π, and a, b are the ellipse semi-axes. Derive an expression
for the curvature of the ellipse in terms of a, b, and η. Confirm that, as b tends to a, the
curvature of the ellipse reduces to that of a circle.

4.3.2 Computation of the curvature

A line in the xy plane can be described by a set of N + 1 marker points with coordinates
(xi, yi) for i = 1, . . . , N + 1. An approximation to the components of the tangent vector at
the ith point is provided by the central-difference formulas

t(i)x =
xi+1 − xi−1

Δ
i
, t(i)y =

yi+1 − yi−1

Δ
i
, (4.3.33)

where

Δ
i =
[
(xi+1 − xi−1)

2 + (yi+1 − yi−1)
2
]1/2

. (4.3.34)

The derivatives of the components of the tangent vector with respect to arc length can be
approximated with the corresponding formulas

dt
(i)
x

d

=

t
(i+1)
x − t

(i−1)
x

Δ
i
,

dt
(i)
y

d

=

t
(i+1)
y − t

(i−1)
y

Δ
i
. (4.3.35)

The components of the outward normal vector at the marker points are given by

n(i)
x = t(i)y , n(i)

y = −t(i)x . (4.3.36)

Write a computer program that reads or generates the coordinates of a set of marker
points, computes the right-hand sides of (4.3.33)–(4.3.36), and then evaluates the curvature

Problems
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(a) (b)

n
(1)

t

C

n

Fluid 2

r

Fluid 1

Fluid 2

Fluid 1

Figure 4.4.1 (a) Illustration of of a thin fluid layer straddling a three-dimensional interface. The
surface tension pulls the interfacial patch in the direction of the unit tangent vector, t. (b) The
mean curvature of a three-dimensional surface is equal to the average of two directional curvatures
in two perpendicular planes containing the normal vector.

at the marker points from the expression κ = −n · dt/d
. Perform a series of computations
with marker points distributed evenly along a circle, and compare the numerically computed
with the exact curvature.

4.3.3 Motion induced by curvature

Interfaces exhibit a variety of motions under the influence of surface tension. In a simplified
model, point particles distributed along a two-dimensional interface move normal to the
interface with velocity that is proportional to the local curvature. If X(i) is the position
of the ith marker point, then the motion of the marker point is described by the vectorial
differential equation

dX(i)

dt
= κ [n(1)]i, (4.3.37)

where t stands for time, n(1) is the outward normal vector, and κ is the curvature.

Write a computer program that computes the motion of marker points distributed along
an interface using the finite-difference approximations discussed in Problem 4.3.2 and the
modified Euler method for integrating in time the differential equations (4.3.37). Run the
program to compute the evolution of marker points distributed along a circle or an ellipse
with axes ratio equal to two. Discuss the nature of the motion in each case.

4.4 Force balance at a three-dimensional interface

In Section 4.3, we derived a force balance at a two-dimensional interface and discussed
the computation of the curvature. To derive the counterpart of the force balance equation
(4.3.11) for a three-dimensional interface, we consider a thin material patch straddling the
interface, as illustrated in Figure 4.4.1(a).

Let n(1) be the unit vector normal to the interface pointing into fluid labeled 1, and r

be the unit vector tangential to the edge of the patch, C. Surface tension pulls the layer
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in the direction of the unit vector t that is tangential to the interface and normal to both
n(1) and r. Recalling the geometrical interpretation of the outer vector product, discussed
in Section 2.3, we write

t = r× n(1). (4.4.1)

All vectors involved in this equation are unit vectors, that is, they have unit length.

Next, we balance the surface force due to the fluid stresses on either side of the interface
and the edge force due to the surface tension, writing

(n(1) · σ(1) )ΔS + (n(2) · σ(2) )ΔS +

∮
C
γ td
 = 0, (4.4.2)

where ΔS is the surface area of the patch, 
 is the arc length around the edge of the patch, C,
and n(2) is the unit vector normal to the interface pointing into the fluid labeled 2. Equation
(4.4.2) is the three-dimensional counterpart of equation (4.3.1). Setting n(2) = −n(1) and
rearranging, we obtain

Δf ≡ n(1) · (σ(1) − σ(2)) = − 1

ΔS

∮
C
γ td
. (4.4.3)

In the limit as the loop C shrinks to a point and ΔS tends to zero, equation (4.4.3) provides
us with the expression

Δf = γ 2κm n(1) − ∂γ

∂

τ , (4.4.4)

subject to the following definitions:

• κm is the mean curvature of the interface defined in terms of the surface divergence
of the unit normal vector, as discussed in Section 4.4.1.

• τ is the unit vector tangent to the interface pointing in the direction where the surface
tension changes most rapidly.

• 
 is the arc length measured in the direction of the tangential vector τ , and ∂γ/∂
 is
the corresponding maximum rate of change of the surface tension with respect to arc
length.

The first term on the right-hand side of (4.4.4) expresses a discontinuity in the normal di-
rection identified as the Laplace pressure, whereas the second term expresses a discontinuity
in the tangential direction identified as the Marangoni traction.

Tangential coordinates

If the x axis is chosen to be normal to the interface at a point, and correspondingly the yz
plane is tangential to the interface at that point, then

Δf = γ 2κm ex − ∂γ

∂y
ey − ∂γ

∂z
ez, (4.4.5)

where ey and ez are tangential unit vectors along the y and z axes.
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4.4.1 Mean curvature

If the yz plane is tangential to an interface at a point, then the mean curvature at that
point is given by the surface divergence of the normal vector,

2κm ≡ ∇s · n =
∂ny

∂y
+

∂nz

∂z
. (4.4.6)

Requiring that

n2
x + n2

y + n2
z = 1, (4.4.7)

and then

nx
∂nx

∂x
+ ny

∂nx

∂y
+ nz

∂nx

∂z
= 0, (4.4.8)

and setting nx =, ny = 0, and nz = 0, we find that ∂nx/∂x = 0, which shows that the
normal derivative of the normal component of the normal vector is zero. This property
allows us to write the more general expression

2κm ≡ ∇ · n =
∂nx

∂x
+

∂ny

∂y
+

∂nz

∂z
, (4.4.9)

with reference to an arbitrary system of Cartesian coordinates whose axes are not necessarily
tangential or normal to the interface.

Mean curvature of a surface described as F (x, y, z) = 0

A three-dimensional interface can be described implicitly by an equation of the form

F (x, y, z) = 0. (4.4.10)

Given two of the three coordinates, x, y, or z, this equation can be used to compute the third
coordinate by analytical or numerical methods. The unit vector normal to the interface is
given by

n =
1

|∇F | ∇F (4.4.11)

and the mean curvature is given by

2κm = ∇ ·
( 1

|∇F | ∇F
)
=

1

|∇F | ∇
2F − 1

|∇F |3 ∇F · (∇∇F ) ·∇F, (4.4.12)

where ∇∇F ≡ Φ is a symmetric matrix encapsulating the second partial derivatives,

Φij =
∂2F

∂xi∂xj
. (4.4.13)
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Mean curvature of a surface described as z = f(x, y)

For an interface that is described explicitly by a function

z = f(x, y), (4.4.14)

we set F (x, y, z) = z − f(x, y) and derive the formula

2κm = − (1 + f2
y ) fxx − 2fxfyfxy + (1 + f2

x) fyy

(1 + f2
x + f2

y )
3/2

, (4.4.15)

where the subscript x denotes a derivative with respect to x and the subscript y denotes a
derivative with respect to y.

For a nearly flat interface, the partial derivatives are small compared to unity, yielding

2κm 	 −(fxx + fyy). (4.4.16)

The term inside the parentheses is the Laplacian of f(x, y).

Spherical polar coordinates

The unit normal vector for an interface that is described in spherical polar coordinates,
(r, θ, ϕ), as

r = f(θ, ϕ), (4.4.17)

is computed from (4.4.11) with

∇F = er − fθ
r
eθ − fϕ

r sin θ
eϕ, (4.4.18)

where a subscript after f indicates a corresponding partial derivative.

For a nearly spherical interface of radius r, the mean curvature can be approximated
with the linearized expression

2κm 	 2

r
− cot θ

r2
fθ − 1

r2
fθθ − 1

r2 sin2 θ
fϕϕ (4.4.19)

involving first and second partial derivatives.

4.4.2 Directional curvatures

To compute the mean curvature of a three-dimensional interface, we consider the traces of
the interface in two conjugate orthogonal planes that are normal to the interface at a point,
and thus contain the normal vector, as depicted in Figure 4.4.1(b).

If κ1 and κ2 are the curvatures of the two traces at that point, computed using formula
(4.3.5) with the x and y axes residing in each of the two planes, then the mean curvature
of the interface is given by

κm =
1

2
(κ1 + κ2). (4.4.20)



4.4 Force balance at a three-dimensional interface 201

A theorem due to Euler reassures us that the mean value of the conjugate directional
curvatures is independent of the orientation of the two planes, provided that the planes
remain mutually orthogonal.

Principal curvatures

There is a particular orientation of the normal plane corresponding to maximum directional
curvature, κmax, and a conjugate orthogonal orientation corresponding to minimum direc-
tional curvature, κmin. These are the principal curvatures of the interface at the chosen
point. The mean curvature is

κm =
1

2
(κmax + κmin). (4.4.21)

In the case of a sphere, the principal curvatures and the mean curvature are equal.

Euler’s theorem states that the curvature in an arbitrary direction is related to the
principal curvatures by

κ = κmax cos2 α+ κmin sin2 α, (4.4.22)

where α is the angle subtended between (a) the tangential vector pointing in a chosen
direction, and (b) the tangential vector pointing in the direction of maximum curvature.

4.4.3 Axisymmetric interfaces

Next, we consider the geometrical properties of an axisymmetric interface, as shown in
Figure 4.4.2. The mean curvature is the average of the two principal curvatures: one is
the curvature of the trace of the interface in the σx (azimuthal) plane, corresponding to a
certain value of the azimuthal angle, ϕ, denoted by κ1, and the second is the curvature of
the trace of the interface in the conjugate orthogonal plane, denoted by κ2.

Description as σ = w(x)

The shape of an interface in an azimuthal plane can be described by a function,

σ = w(x), (4.4.23)

as shown in Figure 4.4.2(a). The unit normal vector is

n =
1√

1 + w′2 ( eσ − w′ ex ), (4.4.24)

where a prime denotes a derivative with respect to x. The mean curvature is given by the
divergence of the normal vector,

2κm =
∂nx

∂x
+

1

σ

∂(σnσ)

∂σ
. (4.4.25)

Making substitutions, we obtain

2κm = −
( w′
√
1 + w′2

)′
+

1

σ

∂

∂σ

( σ√
1 + w′2

)
. (4.4.26)
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(a) (b)

x

ϕ

nϕ

A B

n

R
2

ζ

x

σ

σ

y

z

R 2

ζ

Figure 4.4.2 Illustration of an axisymmetric interface. (a) The second principal curvature at a point
in the xy plane is the curvature of the line representing the trace of the interface in a plane that is
normal to the interface and normal to the xy plane, drawn as a heavy line. (b) An axisymmetric
interface can be described by a function x = f(σ). The second principal curvature is the curvature
of the line drawn with a heavy line.

Carrying out the differentiations, we find that

2κm = − w′′

(1 + w′2)3/2
+

1

w

1√
1 + w′2 (4.4.27)

or

2κm =
1

ww′

( w√
1 + w′2

)′
. (4.4.28)

The first term on the right-hand side of (4.4.27) is the principal curvature in an azimuthal
plane. The second term is the second principal curvature,

κ2 =
1

R2
, R2 = σ

√
1 + w′2 =

σ

sin ζ
=

σ

nσ
, (4.4.29)

where R2 is the second principal radius of curvature and the angle ζ is defined in Figure
4.4.2(a). We have found that R2 is the signed distance between (a) the point where the
curvature is evaluated and (b) the intersection of the extension of the normal vector with
the x axis. If nσ is negative, R2 is also negative.

In the case of a sphere, points A and B in Figure 4.4.2(a) coincide with the center of
the sphere, and both principal curvatures are equal to the radius of the sphere.

Description as x = f(σ)

Alternatively, the shape of an interface can be described by a function

x = f(σ), (4.4.30)
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as shown in Figure 4.4.2(b). The unit normal vector is given by

n =
1√

1 + f ′2 ( ex − f ′ eσ ), (4.4.31)

where a prime denotes a derivative with respect to σ. The mean curvature is given by the
divergence of the normal vector,

2κm =
∂nx

∂x
+

1

σ

∂(σ nσ)

∂σ
. (4.4.32)

Making substitutions, we obtain

2κm = − 1

σ

( σf ′√
1 + f ′2

)′
. (4.4.33)

Carrying out the differentiations, we find that

2κm = − f ′′

(1 + f ′2)3/2
− 1

σ

f ′√
1 + f ′2 . (4.4.34)

The first term on the right-hand side is the principal curvature in a meridional plane,

κ1 = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
. (4.4.35)

The second term is the second principal curvature,

κ2 =
1

R2
, R2 = − σ

f ′
√
1 + f ′2 =

σ

sin ζ
=

σ

nσ
, (4.4.36)

where R2 is the second principal radius of curvature and the angle ζ is defined in Figure
4.4.2(b).

4.4.1 Mean curvature

(a) Compute the mean curvature of a periodic surface described by the equation

z = a sin(kx) + b sin(ly), (4.4.37)

where a, b, k, and l are given constants. State the units of each constant.

(b) Based on formula (4.4.20) and its accompanying interpretation discussed in the text,
show that the mean curvature of a sphere of radius a is equal to κm = 1/a, whereas the
mean curvature of a circular cylinder of radius a is equal to κm = 1/(2a).

(c) The sphere and the circular cylinder are two shapes with constant mean curvature.
Describe and discuss one additional shape.

4.4.2 Jump in traction in local coordinates

Derive the counterparts of equations (4.3.15) and (4.3.16) for a three-dimensional interface.

Problems
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x

y

p

p

pz

Figure 4.5.1 The traction exerted at the three sides of a cubical parcel of a stationary fluid has only
a normal component defined in terms of the thermodynamic pressure, p.

4.5 Stresses in a fluid at rest

If a fluid does not exhibit macroscopic motion as seen by a stationary observer, that is,
the observable fluid velocity vanishes, the molecules are in a state of dynamic equilibrium
determined by the physical conditions prevailing in their immediate environment.

Consider a small cubic fluid parcel with all six faces perpendicular to the x, y, or z
axis, as illustrated in Figure 4.5.1. In the absence of macroscopic fluid motion, the traction
exerted on the sides that are perpendicular to the x axis must be directed normal to these
side. To demonstrate this by reduction ad absurdum, we note that, if this were not true, a
tangential component pointing in a physically indeterminate direction would arise. In the
notation of Section 4.2,

f (x)
x 
= 0, f (x)

y = 0, f (x)
z = 0, (4.5.1)

where f (x) is the traction exerted on the right side of a face that is perpendicular to the x
axis.

Similar arguments can be made to show that the traction exerted on the sides that are
perpendicular to the y or z axis are directed normal to these sides,

f (y)
x = 0, f (y)

y 
= 0, f (y)
z = 0, (4.5.2)

and

f (z)
x = 0, f (z)

y = 0, f (z)
z 
= 0. (4.5.3)

If the size of the cubic parcel is infinitesimal, the fluid residing inside the parcel is
perfectly or nearly homogeneous and the non-vanishing components of the three tractions,

f
(x)
x , f

(y)
y , and f

(z)
z , must be identical. By definition, the common value of these normal

components is the negative of the pressure, p,

f (x)
x = f (y)

y = f (z)
z ≡ −p. (4.5.4)
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We conclude that, in hydrostatics, the stress tensor introduced in equation (4.2.6) in terms
of three tractions is defined exclusively in terms of the pressure, and is given by

σ =

⎡⎣ −p 0 0
0 −p 0
0 0 −p

⎤⎦ = −p

⎡⎣ 1 0 0
0 1 0
0 0 1

⎤⎦ . (4.5.5)

In compact notation,

σ = −p I, (4.5.6)

where I is the unit or identity matrix shown on the right-hand side of (4.5.5).

Traction on a surface

As an application, we use expression (4.5.6) to evaluate the traction exerted on a surface
that resides inside or at the boundary a stationary fluid. Substituting (4.5.6) into formula
(4.2.10), we find that

f(x,n) = n · (−p I) = −pn · I, (4.5.7)

and then

f(x,n) = −pn. (4.5.8)

The last equation results from the identity n · I = I ·n = n. Equation (4.6.1) shows that the
traction exerted on a surface in hydrostatics is directed normal to the surface and points
against the surface, while the tangential component is identically zero.

Traction on a boundary

Substituting (4.2.20) into expression (4.5.6) to evaluate the traction on a boundary that is
immersed in, or confines a stationary fluid, we obtain

fboundary = ninward · (−p I) = −pninward · I, (4.5.9)

and then

fboundary = −pninward. (4.5.10)

The last equality results from the identity ninward · I = ninward. Thus, the traction exerted
on a fluid boundary in hydrostatics is directed normal to the boundary and points against
the boundary, while the tangential component of the traction is identically zero.

4.5.1 Pressure from molecular motions

The hydrostatic pressure distribution established in a fluid at rest cannot be computed
working exclusively in the context of fluid mechanics. Additional information concerning the
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relationship between the density and the pressure for a particular fluid under consideration
is required.

Gases

Molecular thermodynamics states that the pressure of a small gas parcel is determined by
(a) the number of molecules residing inside the parcel expressed by the local fluid density,
ρ, (b) the kinetic energy of the molecules determined by the absolute temperature, T , and
(c) the nature and intensity of the intermolecular forces due to an intermolecular potential.

For an ideal gas, intermolecular forces are negligible and the pressure derives from the
density and temperature in terms of the ideal gas law,

p =
RT

M
ρ, (4.5.11)

where M is the molecular mass, defined as the mass of one mole comprised of a collection
of NA molecules;

NA = 6.022× 1026 (4.5.12)

is the Avogadro number;

R = 8.314× 103kgm2/(sec2 · kmole ·K) (4.5.13)

is the ideal gas constant; T is Kelvin’s absolute temperature, which is equal to the Celsius
centigrade temperature reduced by 273 units. The gram-molecular mass of an element is
equal to the atomic weight of the element listed in the periodic table, expressed in grams.

Liquids

Because liquids are nearly incompressible, the pressure can be regarded a function of the
density alone, independent of pressure. The computation of the hydrostatic pressure distri-
bution in gases and liquids will be discussed in detail in Chapter 5.

4.5.2 Jump in pressure across an interface in hydrostatics

Equations (4.3.11) and (4.4.4) provide us with expressions for the jump in the traction
across a two- or three-dimensional interface. If the fluids on either side of the interface are
stationary, the corresponding stress tensors are given by (4.5.6) in term of the pressure and
the jump in the traction is given by

Δf ≡ n(1) · (σ(1) − σ(2)) = n(1) · [−p(1) I− (−p(2) I) ], (4.5.14)

where the superscript 1 or 2 denotes the choice of fluid. Simplifying, we obtain

Δf = (p(2) − p(1))n(1). (4.5.15)

Because the jump in traction is normal to the interface, surface tension variations are not
accepted in hydrostatics.
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Comparing the right-hand side of (4.5.15) with the right-hand side of the force equilib-
rium equation (4.3.11) for a two-dimensional interface with uniform surface tension, γ, we
find that

p(2) − p(1) = γ κ, (4.5.16)

where κ is the curvature of the interface. We have shown that the jump in the pressure
across a two-dimensional interface in hydrostatics is equal to the product of the surface
tension and the curvature of the interface.

Working in a similar fashion for a three-dimensional interface, we refer to (4.4.4) and
find that

p(2) − p(1) = γ 2κm, (4.5.17)

where κm is the mean curvature of the interface. We have found that the jump in the
pressure across a three-dimensional interface in hydrostatics is equal to the product of the
surface tension and twice the mean curvature of the interface.

Laplace’s law

As an application, we compute the jump in pressure across a spherical interface of radius
a representing the surface of a liquid drop or bubble. Designating the outer fluid as fluid 1
and the inner fluid as fluid 2, we find that the mean curvature is κm = 1/a. Consequently,
the pressure jump across the spherical interface is given by Laplace’s law,

p(2) − p(1) = 2
γ

a
. (4.5.18)

The pressure inside a drop or bubble is higher than the ambient pressure due to the interfacial
tension by 2γ/a.

4.5.1 Jump in pressure across a circular interface

Derive an expression for the jump in pressure across a circular interface of radius a repre-
senting the trace of a cylindrical thread in the xy plane.

4.5.2 Curvature of a soap film

Explain why the mean curvature of a thin soap film attached to a wire frame must be zero.

4.6 Constitutive equations

In the absence of macroscopically observable fluid motion, the traction exerted on a specified
side of a small fluid surface indicated by the unit normal vector, n, is given by equation
(4.6.1),

f(x,n) = −pn, (4.6.1)

Problems
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(a) (b)
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Figure 4.6.1 (a) Stretching of a liquid bridge between two coaxial cylinders that are pulled apart
along their axes with velocity V . (b) Shear flow in a two-dimensional channel confined between
two parallel plates located at y = 0 and h; the motion is due to the parallel translation of the
upper plate with velocity V .

in terms of the pressure, p. In the presence of macroscopic fluid motion, this equation is
modified in two ways. First, the normal component of the traction is accompanied by a new
contribution that depends on the physical properties of the fluid and the nature of the fluid
motion. Second, a tangential component of the traction is established.

To understand how these new contributions arise from a physical point of view, it is
helpful to consider the tractions developing in two complementary flows: (a) an extensional
flow where the fluid stretches and elongates, and (b) a channel flow where the fluid is sheared
due to boundary motion, as shown in Figure 4.6.1.

Stretching of a thread

In one experiment, a thread of liquid is suspended between two rods forming an axisymmetric
bridge, and the rods are pulled apart with velocity V extending the thread, as illustrated
in Figure 4.6.1(a). A force is required to pull the rods apart and thus overcome the normal
component of the hydrodynamic traction imparted by the fluid to the tips of the rods, so
that

f (x)
x 
= −p, (4.6.2)

where p is the pressure discussed in Section 4.5 in the context of hydrostatics, Our intu-
ition suggests that the faster the rods are pulled apart, the higher the magnitude of the
normal component of the traction. The greater the distance between the rods, the lower the
magnitude of the normal component of the traction.
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For most common fluids, a linear relationship exists between the traction, the velocity
of the rods, and the inverse of their distance, so that

f (x)
x = −p+ 2μext

V

L
, (4.6.3)

where L is half the instantaneous distance between the rods and μext is a physical constant
associated with the fluid called the extensional viscosity of the fluid.

Shearing of a layer

In another experiment, a fluid is placed in a channel confined between two parallel plates.
The upper plate translates in the direction of the x axis parallel to itself with constant
velocity V , while the lower plate is held stationary, as depicted in Figure 4.6.1(b). A force
in the x direction must be exerted on the upper plate to balance the tangential component
of the traction developing due to the fluid motion, so that

f (y)
x 
= 0. (4.6.4)

The faster the velocity of the translating plate, the higher the magnitude of the traction;
the greater the distance between the two plates, the lower the magnitude of the traction.

For most common fluids, a linear relationship exists between the traction, the velocity
of the moving plate, and the inverse of the distance between the plates, h,

f (y)
x = μshear

V

h
, (4.6.5)

where μshear is a physical constant associated with the fluid called the shear viscosity of the
fluid.

4.6.1 Simple fluids

We have demonstrated by example that stresses develop in a fluid as a result of the motion.
To proceed further, we consider the tractions developing at the surface of a small fluid parcel
in motion and argue the following properties characterizing a simple fluid:

• If a fluid parcel translates, rotates, or translates and rotates as a rigid body, tractions
do not develop at the parcel surface.

• Tractions develop only when a parcel deforms.

• The distribution of traction over the parcel surface at any particular time instant
depends only on the type and rate of deformation of the parcel at that particular time
instant.

Our analysis of kinematics in Chapter 2 has revealed that a small spherical fluid parcel in mo-
tion deforms to obtain an ellipsoidal shape whose axes are parallel to the three eigenvectors
of the rate-of-deformation tensor given in Table 2.1.1. The directional rates of deformation
are equal to the corresponding eigenvalues.
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Table 4.6.1 Components of the stress tensor for an incompressible Newtonian fluid in Cartesian

coordinates.

Temperature (◦C) Water (cp) Air (cp)

20 1.002 0.0181
40 0.653 0.0191
80 0.355 0.0209

Table 4.6.2 The viscosity of water and air at three temperatures; cp stands for centipoise, which is
one hundredth of the viscosity unit poise defined as 1 g/(cm sec). Thus, cp≡ 10−2g/(cm sec).

With these observations as a point of departure, we proceed to relate the stress tensor to
the physical properties of the fluid and to the structure of the velocity field by a constitutive
equation.

4.6.2 Incompressible Newtonian fluids

The constitutive equation for an incompressible Newtonian fluid reads

σ = −p I+ μ 2E, (4.6.6)

where p is the pressure, the coefficient μ is the fluid viscosity, sometimes also called the
dynamic viscosity, and E is the rate-of-deformation tensor given in Table 2.1.1. Note that
the Newtonian constitutive relation respects the symmetry of the stress tensor discussed
at the end of Section 4.2. Explicitly, the components of the stress tensor are given by the
matrix equation shown in Table 4.6.1. The viscosity of water and air at three temperatures
is given in Table 4.6.2.

In the absence of flow, we recover the hydrostatic stress tensor defined in equation
(4.5.6), involving the hydrostatic pressure alone.

Unidirectional shear flow

As an example, we consider flow in a two-dimensional channel confined between two parallel
plane walls. The motion of the fluid is generated by the translation of the upper wall, as
shown in Figure 4.6.1(b). Physical intuition suggests that, at low and moderate velocities,
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the fluid will translate along the x axis with a position-dependent velocity ux varying along
the y axis; to signify this dependence, we write ux(y). Using equation (2.1.28), we find that
the rate-of-deformation tensor is given by

E =
1

2

⎡⎢⎣ 0
dux

dy
dux

dy
0

⎤⎥⎦ . (4.6.7)

Substituting this expression into the right-hand side of (4.6.6), we obtain the stress tensor

σ =

⎡⎢⎣ −p μ
dux

dy

μ
dux

dy
−p

⎤⎥⎦ . (4.6.8)

The off-diagonal components involving the local slope of the velocity profile, dux/dy arise
as a result of the fluid motion.

The x component of the traction exerted on a fluid surface that is perpendicular to the
y axis, identified as the shear stress, is

f (y)
x = σyx = μ

dux

dy
. (4.6.9)

Physically, this traction can be attributed to the friction experienced by adjacent fluid layers
as they slide over one another with gradually varying velocities.

4.6.3 Viscosity

Strictly speaking, the viscosity of a Newtonian fluid is a proportionality coefficient relating
the stress tensor to the rate-of-deformation tensor, as shown in equation (4.6.6). However,
it is reassuring to know that this mathematical definition, established by phenomenological
observation, has a firm physical foundation. In fact, the viscosity is a genuine physical
property dependent on the local physical conditions, including the temperature.

As the temperature increases, the viscosity of liquids decreases whereas the viscosity
of gases increases, as shown in Table 4.6.2. This dichotomy is a reflection of the differ-
ent physical mechanisms that are responsible for the development of stresses in these two
complementary classes of fluids.

In the case of liquids, the viscosity is due to occasional molecular excursions from a
mean position to neighboring empty sites. In the cases of gases, the viscosity is due to the
relentless molecular excursions from regions of high velocity to regions of low velocity in the
course of random motion due to thermal fluctuations.

4.6.4 Viscosity of a gas

To demonstrate the relation between molecular and macroscopic fluid motion, we consider
a gas in unidirectional shear flow and derive an expression for the viscosity in terms of
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molecular properties. In the simplest kinetic theory, the molecules are modeled as rigid
spheres moving with the local fluid velocity defined in Section 1.4, and with a randomly
fluctuating velocity. The square of the average magnitude of the fluctuating component is

v2 =
8

π

kBT

M
, (4.6.10)

where kB is the Boltzmann’s constant, T is the absolute temperature, andM is the molecular
mass. In the course of the random motion, two molecules occasionally collide after having
traveled an average distance equal to the mean free path, λ.

Consider a macroscopically stationary gas with vanishing fluid velocity. The number
of molecules crossing an infinitesimal surface area during an infinitesimal time interval as a
result of the fluctuating motion is denoted by ncrossing. Using principles of statistical me-
chanics, we find that ncrossing is proportional to (a) the number of molecules per infinitesimal
volume, defined as the number density n, and (b) the average magnitude of the fluctuating
velocity, v. It can be shown that

ncrossing =
1

4
n v. (4.6.11)

The units of ncrossing are number of particles over time and length squared.

A molecule crossing a surface at a particular instant has collided with another molecule
above or below the surface at an average distance a. Using principles of statistical mechanics,
we find that

a =
2

3
λ, (4.6.12)

where λ is the mean free path. Relations (4.6.11) and (4.6.12) have been derived taking into
consideration that, since the molecules move randomly in all directions, only one component
of the velocity brings them toward the crossing surface under consideration.

Relations (4.6.10)–(4.6.12) also hold true when the fluid exhibits macroscopic motion,
provided that the molecular velocity is computed relative to the average velocity at the
position where a molecule last underwent a collision.

Momentum transport

Shown in Figure 4.6.2 is a schematic illustration of the instantaneous distribution of molecules
in a gas undergoing unidirectional shear flow along the x axis. Without loss of generality,
we have assumed that the fluid velocity increases in the positive direction of the y axis. In
the course of the motion, gas molecules cross a horizontal plane corresponding to a certain
value of y, drawn with the heavy horizontal line, from either side. Because the x velocity of
molecules crossing from above is higher than the x velocity of molecules crossing from below,
x momentum is transferred in the negative direction of the y axis. The rate of transport of x
momentum across a surface that is perpendicular to the y axis amounts to a hydrodynamic

traction, f
(y)
x .
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Figure 4.6.2 A molecular model of a gas in shear flow is used to derive an expression for the viscosity
in terms of molecular properties, as shown in equation (4.6.17).

The rate of momentum transport defined in the last paragraph can be quantified by
setting

f (y)
x = −M (n−

crossingu
−
x − n+

crossingu
+
x ), (4.6.13)

where ux is the fluid velocity and the superscripts + and − indicate that the superscripted
variable is evaluated at a distance equal to a above or below the transport surface. Effec-
tively, the collection of molecules crossing the y plane during an infinitesimal period of time
are represented by model molecules distinguished by the following two important properties:

• The model molecules last underwent a collision at a distance a above or below the y
plane.

• The model molecules move with an average velocity that is equal to the local fluid
velocity evaluated at the position of the last collision.

Because the flow is unidirectional, the mean fluid velocity normal to a horizontal plane is
zero and the number of molecules crossing the y plane from either side during an infinitesimal
time period are equal,

n−
crossing = n+

crossing. (4.6.14)

Combining equations (4.6.11)–(4.6.13), we obtain

f (y)
x = M

1

4
n v

u+
x − u−

x

2a
4

3
λ. (4.6.15)

Since a is small compared to the macroscopic length scale of the shear flow, the fraction on
the right-hand side can be approximated with a derivative, yielding the final result

f (y)
x =

1

3
nMvλ

dux

dy
. (4.6.16)
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Now comparing equations (4.6.16) and (4.6.9), we derive an expression for the viscosity
of a gas in terms of the number density, n, the molecular mass, M , the magnitude of the
fluctuating velocity component, v, and the mean free path, λ,

μ =
1

3
nMvλ. (4.6.17)

The units of the four terms on the right-hand side following the numerical fraction 1
3 are as

follows:

Particle

Volume
× Mass

Particle
× Length

Time
× Length =

Mass

Length Time
, (4.6.18)

as required.

We have derived the Newtonian constitutive equation from molecular considerations
and obtained a prediction for the viscosity of a gas in terms of molecular properties.

4.6.5 Ideal fluids

If the viscosity of a fluid vanishes, the fluid is frictionless and is called ideal. The stress
tensor in an ideal fluid is given by a simplified version of (4.6.6),

σ = −p I. (4.6.19)

However, in practice, no fluid is ideal and the absence of viscosity should be interpreted
strictly as insignificance of hydrodynamic forces or stresses associated with the fluid viscosity.
Viscous stresses are always important near solid boundaries, as discussed in Chapter 10. The
formal requirement for viscous stresses to be negligible will be discussed in Chapter 6 with
reference to the Reynolds number.

4.6.6 Significance of the pressure in an incompressible fluid

The physical interpretation of the pressure in the Newtonian constitutive equation (4.6.6),
or any other constitutive equation, is not entirely clear. Strictly speaking, the pressure is a
mathematical entity defined in terms of the trace of the stress tensor,

p = − 1

3
trace(σ) = − 1

3
(σxx + σyy + σzz). (4.6.20)

All we can say with confidence is that, as a fluid becomes quiescent, the dynamic pres-
sure reduces to the hydrostatic pressure computed from consideration of random molecular
motions.

In the case of compressible gases, an equation relating the pressure to the density to
the temperature can be derived working in the framework of equilibrium thermodynamics,
as discussed in Section 4.7
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4.6.1 Flow in a channel.

Consider steady unidirectional flow in a channel due to the translation of the upper wall, as
depicted in Figure 4.6.1(b).

(a) Perform a force balance over a rectangular fluid layer confined between two y levels to

show that, if the pressure is uniform, the shear stress f
(y)
x must be independent of y.

(b) Having established that f
(y)
x is constant, solve the first-order differential equation (4.6.9)

for ux in terms of y subject to the no-slip boundary conditions ux(y = 0) = 0 and ux(y =

h) = V , and evaluate f
(y)
x in terms of μ, V , and the channel width, h.

4.6.2 Extensional flow

(a) Consider a two-dimensional extensional flow in the xy plane with velocity components

ux = ξx, uy = −ξy, (4.6.21)

where ξ is the rate of extension with units of inverse time. The corresponding pressure field
is uniform throughout the domain of flow. Confirm that the fluid is incompressible, sketch
the streamline pattern, and evaluate the stress tensor.

(b) Repeat (a) for axisymmetric extensional flow with Cartesian velocity components

ux = ξx, uy = − 1

2
ξy, uz = − 1

2
ξ. (4.6.22)

(c) The axisymmetric extensional flow discussed in (b) describes the motion inside the
thread illustrated in Figure 4.6.1(a). Assuming that the fluid is Newtonian, compute the
force necessary to pull the rods apart with velocity V in terms of the half-length of the
thread, L, the fluid viscosity, μ, and the cross-sectional area of the rods, A.

4.7 Pressure in compressible fluids

Consider a small fluid parcel of a compressible gas with volume V . To decrease the volume
of the parcel by a differential amount, dV , we may apply an external pressure, p, by way of
an ideal frictionless piston. The differential work required to carry out this reduction is

δW = −pdV = −p ndv, (4.7.1)

where n is the number of moles contained in the parcel and v is the specific volume defined
as the volume occupied by one mole of gas; by definition,

V = nv. (4.7.2)

In our experiment, dV and dv are both negative due to compression, while δW is positive.
In the case of expansion, dV and dv would be both positive, while δW would be negative,
indicating that energy would be released instead of supplied.

Problems
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The notation δW emphasizes that the differential work can be computed only after the
frictional properties of the piston have been specified. In formal thermodynamics, we say
that δW is an inexact differential.

Part of the work in compression or expansion is spent to increase the temperature of the
parcel, T , by a differential amount, dT , and therefore the internal (thermal) energy of the
parcel, U , by a differential amount, dU . The remainder of the work escapes as a (negative)
process-dependent heat loss, δQ.

Energy conservation for a closed system in the absence of significant kinetic or potential
energy requires that

dU = δW + δQ, (4.7.3)

which can be rearranged as

δW = dU − δQ. (4.7.4)

A certain change in internal energy, dU , can be achieved by different combinations of δW
and δQ satisfying this equation.

Reversible process

To quantify the heat loss in the case of a reversible process, we write

δQrev = T dS, (4.7.5)

and obtain

δWrev = dU − T dS, (4.7.6)

where S is the entropy. Dividing this equation by the number of moles of the gas, n, we
obtain

δwrev = du− T ds, (4.7.7)

where

w =
W

n
, u =

U

n
, s =

S

n
(4.7.8)

are the specific work, specific internal energy, and specific entropy.

Now substituting into (4.7.7) the expression δwrev = −pdv and rearranging, we derive
a process-independent differential relation in the absence of inexact differentials,

du = T ds− pdv. (4.7.9)

If the specific volume of a gas is made to change by the same small amount, dv, according
to two different processes, the corresponding changes in the specific internal energy, du, and
specific entropy, ds, will be such that equation (4.7.9) is satisfied in both cases.
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Ideal gas

The specific internal energy of an arbitrary gas depends on the temperature, T , and specific
volume, v. Due of the absence of intermolecular forces, the specific internal energy of an
ideal gas depends on the temperature alone. The change in the specific internal energy is
given by

du = cv dT, (4.7.10)

where cv is the specific heat capacity under constant volume. Substituting this equation
into the balance equation (4.7.9) and rearranging, we find that

ds =
cv
T

dT +
p

T
dv, (4.7.11)

which shows that

cv
T

=
( ∂s

∂T

)
v
, (4.7.12)

that is, the ratio cv/T is the partial derivative of the specific entropy with respect to the
temperature under constant volume. For a mono-atomic ideal gas, cv = 3

2 R. For a diatomic
ideal gas, cv = 5

2 R.

Change of entropy

Now solving the equation of state for an ideal gas, pv = RT , for the pressure, and substi-
tuting the result into (4.7.1), we find that

δw = −p dv = −RT
dv

v
. (4.7.13)

Substituting this expression into the balance equation(4.7.11), we obtain

−R
dv

v
= cv

dT

T
− ds. (4.7.14)

Rearranging, we derive an expression for the change in the specific entropy,

ds = cv
dT

T
+R

dv

v
, (4.7.15)

applicable for an ideal gas.

Next, we treat cv as a constant and integrate (4.7.15) between two states labeled A and
B to derive an expression for the difference in entropy,

Δs ≡ sB − sA = cv ln
TB

TA
+R ln

vB
vA

, (4.7.16)

which can be rearranged into

Δs ≡ sB − sA = ln
[(TB

TA

)cv(vB
vA

)R]
. (4.7.17)
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For example, in the case of constant pressure, pB = pA, we use the equation of state to
write vB/vA = TB/TA and

Δs = cp ln
TB

TA
, (4.7.18)

where cp = cv +R is the specific heat capacity under constant pressure.

Isentropic compression or expansion

In the case of a constant entropy (isentropic) reversible process, sB = sA, the general
equation (4.7.17) for an ideal gas yields(TB

TA

)cv(vB
vA

)R
= 1, (4.7.19)

and thus

T cvvR = A, (4.7.20)

where A is a constant. This equation provides us with a relation between the specific volume,
v, and the temperature, T . Introducing the density, ρ = M/v, we write

T cv = BρR, (4.7.21)

where M is the molecular weight and B ≡ A/MR is a new constant. Using the ideal gas
law expressed in the form

T =
Mp

Rρ
, (4.7.22)

we eliminate the temperature and thus obtain a relation between the density and the pressure
in an ideal compressible gas in isentropic transition,

p = Dρk, (4.7.23)

where D is a new constant and

k ≡ cv +R

cv
=

cp
cv

(4.7.24)

is the heat capacity ratio.

Speed of sound

The square of the speed of sound, c, is given by the formula

c2 =
(∂p
∂ρ

)
s
. (4.7.25)
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The right-hand side is the derivative of the pressure with respect to the density at constant
entropy. Using (4.7.23), we find that

c2 = Dk ρk−1 = k
p

ρ
, (4.7.26)

and then

c2 = k
RT

M
. (4.7.27)

The higher the temperature, the faster the speed of sound, in agreement with physical
intuition.

4.7.1 Speed of sound in the atmosphere

Use equation (4.7.27) to predict the speed of sound in the atmosphere regarded as an ideal
gas with k = 1.4 and molecular mass M = 28.97 kg/kmole at 25◦ C.

4.8 Simple non-Newtonian fluids

The Newtonian constitutive law for an incompressible fluid, expressed by equation (4.6.6),
describes the stresses developing in a fluid consisting of small molecules. Fluids containing or
consisting of macromolecules, such as polymeric solutions and melts, and fluids containing
suspended rigid or deformable particles, exhibit a more complicated behavior described
by more involved constitutive equations. Examples include pastes, bubbly liquids, and
biological fluids, such as blood.

To derive a constitutive equation for a non-Newtonian fluid, we consider the motion of a
small fluid parcel and seek to establish a relation between the instantaneous traction exerted
on the parcel surface, expressed in terms of the stress tensor, σ, and the entire history of
the parcel deformation. In the simplest class of materials, the traction depends only on the
instantaneous rate of parcel deformation expressed by the rate-of-deformation tensor, E.

A distinguishing feature of a non-Newtonian fluid is that the relation between the stress
tensor, σ, and the rate-of-deformation tensor, E, is nonlinear. In contrast, the corresponding
relation for a Newtonian fluid is linear.

4.8.1 Unidirectional shear flow

In the case of two-dimensional unidirectional shear flow along the x axis, the Newtonian
shear stress, given by

σyx = μ
dux

dy
, (4.8.1)

Problem
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can be generalized by allowing the viscosity to depend on the magnitude of the shear rate,
|dux/dy|, where the vertical bars indicate the absolute value. If the viscosity decreases as the
shear rate increases, the fluid is shear-thinning or pseudo-plastic. If the viscosity increases
as the shear rate increases, the fluid is shear-thickening or dilatant.

Physically, the dependence of the viscosity on the shear rate is attributed to changes
in the configuration of molecules, changes in the shape and relative position of particles
suspended in a fluid, and to the spontaneous formation of internal microstructure due to
intermolecular force fields and other particle interactions.

Power-law fluids

The shear stress developing in a certain class of non-Newtonian fluids in unidirectional
shear flow can be described by the Ostwald-de Waele model. In this model, the viscosity is
proportional to the magnitude of the shear rate raised to a certain power,

μ = μ0

∣∣∣dux

dy

∣∣∣n−1

, (4.8.2)

where μ0 is a reference viscosity and n is the power-law exponent. When n = 1, we obtain
a Newtonian fluid with viscosity μ0; when n < 1, we obtain a shear-thinning fluid; when
n > 1, we obtain a shear-thickening fluid.

Substituting (4.8.2) into expression (4.6.9), we derive an expression for the shear stress,

f (y)
x = σyx = μ0

∣∣∣dux

dy

∣∣∣n−1 dux

dy
. (4.8.3)

When n = 1, we recover the Newtonian shear stress.

4.8.2 Channel flow

As an application, we consider flow in a channel due to the translation of the upper wall with
velocity V , as illustrated in Figure 4.6.1(b). Performing a force balance over a rectangular
fluid layer, we find that, if the pressure is uniform, the shear stress, σyx, is independent of
y and the right-hand side of (4.8.3) is constant (Problem 4.5.1).

The fluid velocity at the upper wall located at y = h is equal to the wall velocity, V ,
while the fluid velocity at the stationary lower wall located at y = 0 is zero. Integrating
equation dux/dy = c, where c is the constant shear rate, and using the aforementioned
boundary conditions, we derive a linear velocity profile with shear rate

dux

dy
=

V

h
, (4.8.4)

independent of the value of the power-law exponent, n.

Although the velocity profile is linear for any value of n, the magnitude of the shear
stress depends on n, as shown in equation (4.8.3). This distinction emphasizes that the
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Figure 4.8.1 Rheological response of a Bingham plastic showing a yield-stress behavior in unidirec-
tional flow.

kinematic appearance of a flow does not necessarily reflect the magnitude of the stresses
developing in the fluid. Two flows that are kinematically identical may support different
stress fields.

4.8.3 Yield-stress fluids

A class of heterogeneous fluids, called Bingham plastics, flow only when the shear stress
established due to the motion exceeds a certain threshold. Examples include pastes and
concentrated suspensions of fine particles. An idealized constitutive equation between stress
and shear rate for this class of materials is

dux

dy
= 0 if |σyx| < τ0 (4.8.5)

and

f (y)
x = σyx = τ0 + μ

dux

dy
if |σyx| > τ0, (4.8.6)

where μ is the viscosity and τ0 is the yield stress. The relation between the shear stress and
the shear rate is represented by the solid line in Figure 4.8.1.

As an application, we consider the familiar unidirectional flow in a channel confined
between two parallel walls, generated by exerting on the upper wall a force, F , parallel to
the x axis. If the fluid is a Bingham plastic whose rheological behavior is described by
equations (4.8.5) and (4.8.6), a shear flow across the entire cross-section of the channel will
be established only if the externally imposed force F over a certain length of the channel,
L, counteracting the shear stress, σyx = F/L, is greater than the yield-stress threshold, τ0.

Assuming that this occurs, we treat σyx as a constant, solve equation (4.8.6) for dux/dy,
and then integrate with respect to y subject to the boundary condition ux(y = 0) = 0 to
obtain a linear velocity profile,

ux =
y

μ
(
F

L
− τ0). (4.8.7)
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The velocity at the upper wall is

ux(y = h) =
h

μ
(
F

L
− τ0) = V. (4.8.8)

In practice, equation (4.8.8) allows us to estimate the values of the physical constants μ and
τ0 from laboratory observations.

4.8.1 Yield-stress fluid

The relation between the shear stress and shear rate for a class of yield-stress fluids in
unidirectional flow is described by the broken line in Figure 4.8.1, where γc is the critical
shear rate.

(a) State the equations describing this rheological behavior.

(b) Compute the shear stress established in a channel with parallel walls, where the upper
wall translates with velocity V while the lower wall is held stationary.

4.9 Stresses in polar coordinates

We have discussed tractions and stresses in Cartesian coordinates. In practice, it is often
convenient to work in cylindrical, spherical, or plane polar coordinates, with the benefit of
reduced algebraic manipulations and ease in the implementation of boundary conditions. In
this section, we define the components of the stress tensor in polar coordinates and relate
them to the pressure and to the corresponding components of the rate-of-deformation tensor
using the constitutive equation for an incompressible Newtonian fluid.

4.9.1 Cylindrical polar coordinates

Consider the cylindrical polar coordinates, (x, σ, ϕ), depicted in Figure 4.9.1(a). The trac-
tion exerted on a small surface that is perpendicular to the x axis, f (x), acting on the side
that faces the positive direction of the x axis, can be resolved into its cylindrical polar
components as

f (x) = f (x)
x ex + f (x)

σ eσ + f (x)
ϕ eϕ, (4.9.1)

where ex, eσ, and eϕ are unit vectors pointing, respectively, in the axial, radial, and az-
imuthal direction. Note that the orientation of ex is constant, whereas the orientations of
eσ and eϕ change with position in the flow.

The traction exerted on a small surface that is perpendicular to the distance from the
x axis, f (σ), and is thus parallel to the axial and azimuthal directions at a designated center
of the surface, can be resolved into corresponding components as

f (σ) = f (σ)
x ex + f (σ)

σ eσ + f (σ)
ϕ eϕ. (4.9.2)

Problem
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(a)
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σϕ

ϕϕ

σ

σ

σ

σ

σσ x

xσ ϕ

xx
σ

ϕσ
σϕx

σxσ

y

ϕ

(b)

σxx = −p+ 2μ
∂ux

∂x
, σxσ = σσx = μ

(
∂ux

∂σ
+

∂uσ

∂x

)
σxϕ = σϕx = μ

(
∂uϕ

∂x
+

1

σ

∂ux

∂ϕ

)
, σσσ = −p+ 2μ

∂uσ

∂σ

σσϕ = σϕσ = μ
(
σ

∂

∂σ

(
uϕ

σ

)
+

1

σ

∂uσ

∂ϕ

)
, σϕϕ = −p+ 2μ

(
1

σ

∂uϕ

∂ϕ
+

uσ

σ

)
Table 4.9.1 (a) Physical depiction of the components of the stress tensor in cylindrical polar coor-

dinates and (b) expressions for the components of the stress tensor in a Newtonian fluid. Note
that the stress tensor remains symmetric in these coordinates.

The traction exerted on a small surface that is normal to the azimuthal direction, f (ϕ),
can be resolved as

f (ϕ) = f (ϕ)
x ex + f (ϕ)

σ eσ + f (ϕ)
ϕ eϕ. (4.9.3)

Stacking the coefficients of the unit vectors on the right-hand sides of (4.9.1)–(4.9.3) on
top of one another in a particular order, we obtain the cylindrical polar components of the
stress tensor,

(σαβ) =

⎛⎜⎝ f
(x)
x f

(x)
σ f

(x)
ϕ

f
(σ)
x f

(σ)
σ f

(σ)
ϕ

f
(ϕ)
x f

(ϕ)
σ f

(ϕ)
ϕ

⎞⎟⎠ , (4.9.4)

where Greek indices stand for x, σ, or ϕ. We have used large parentheses instead of the
square brackets to indicate that the matrix shown in (4.9.4) should not be misinterpreted
as a Cartesian tensor.

Now we define

σαβ ≡ f
(α)
β , (4.9.5)
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where Greek indices stand for x, σ, or ϕ. With the convention expressed by (4.9.5), the
cylindrical polar components of the stress tensor are collected in the matrix

(σαβ) =

⎛⎝ σxx σxσ σxϕ

σσx σσσ σσϕ

σϕx σϕσ σϕϕ

⎞⎠ . (4.9.6)

This matrix should not be misinterpreted as a Cartesian tensor.

Newtonian fluids

The stress components in an incompressible Newtonian fluid derive from the constitutive
equation (4.6.6) as shown in Table 4.9.1(a). To derive these relations, we may write

f (x) = σxx ex + σxy ey + σxz ez, (4.9.7)

for the axial component,

f (σ) = f (y) cosϕ+ f (z) sinϕ (4.9.8)

= (σyx ex + σyy ey + σyz ez) cosϕ+ (σzx ex + σzy ey + σzz ez) sinϕ,

for the radial component, and

f (ϕ) = −f (y) sinϕ+ f (z) cosϕ (4.9.9)

= −(σyx ex + σyy ey + σyz ez) sinϕ+ (σzx ex + σzy ey + σzz ez) cosϕ,

for the azimuthal component. Substituting

ey = eσ cosϕ− eϕ sinϕ, ez = eσ sinϕ+ eϕ cosϕ, (4.9.10)

and consolidating terms multiplying the unit cylindrical polar vectors in (4.9.7), we obtain

σxσ = σxy cosϕ+ σxz sinϕ = μ
(
cosϕ

∂ux

∂y
+ sinϕ

∂ux

∂z

)
+ μ

∂(uy cosϕ+ uz sinϕ)

∂x

(4.9.11)

and

σxϕ = −σxy sinϕ+ σxz cosϕ = μ
(
− sinϕ

∂ux

∂y
+ cosϕ

∂ux

∂z

)
+ μ

∂(−uy sinϕ+ uz cosϕ)

∂x
,

(4.9.12)

which reproduce the second and third relations in Table 4.9.1(b). The rest of the relations
can be derived working in a similar fashion. More expedient methods of deriving these
relations are available.1

1Pozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynamics. Second Edition,
Oxford University Press.
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(
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∂θ

(
uϕ

sin θ

)
+

1

r sin θ

∂uθ
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∂ϕ
+ ur sin θ + uθ cos θ

)
Table 4.9.2 (a) Physical depiction of the components of the stress tensor in spherical polar coordi-

nates and (b) components of the stress tensor in a Newtonian fluid. Note that the stress tensor
remains symmetric in these coordinates.

4.9.2 Spherical polar coordinates

Consider a system of spherical polar coordinates, (r, θ, ϕ), defined in Table 4.9.2(a). The
traction exerted on a small surface that is normal to the distance from the origin, acting on
the side of the surface that faces away from the origin, f (r), can be resolved into its spherical
polar components as

f (r) = f (r)
r er + f

(r)
θ eθ + f (r)

ϕ eϕ, (4.9.13)

where ex, eθ, and eϕ are unit vectors pointing in the radial, meridional, and azimuthal
directions.

The traction exerted on a small surface that is normal to the meridional direction
corresponding to the angle θ, and is thus parallel to the radial and azimuthal directions,
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f (θ), can be resolved as

f (θ) = f (θ)
r er + f

(θ)
θ eθ + f (θ)

ϕ eϕ. (4.9.14)

The traction exerted on a small surface that is normal to the azimuthal direction, and
is thus parallel to the radial and meridional directions, f (ϕ), can be resolved as

f (ϕ) = f (ϕ)
r er + f

(ϕ)
θ eθ + f (ϕ)

ϕ eϕ. (4.9.15)

Stacking the coefficients of the unit vectors on the right-hand sides of (4.9.13)–(4.9.15)
on top of one another in a particular order, we obtain a matrix containing the spherical
polar components of the stress tensor,

(σαβ) =

⎛⎜⎝ f
(r)
r f

(r)
θ f

(r)
ϕ

f
(θ)
r f

(θ)
θ f

(θ)
ϕ

f
(ϕ)
r f

(ϕ)
θ f

(ϕ)
ϕ

⎞⎟⎠ , (4.9.16)

where Greek indices stand for x, σ, or ϕ.

Now we introduce the standard two-index notation for the stress tensor, writing

σαβ ≡ f
(α)
β , (4.9.17)

where Greek indices stand for r, θ, or ϕ. With the convention expressed by (4.9.17), the
matrix containing the spherical polar components of the stress tensor is given by

(σαβ) =

⎛⎝ σrr σrθ σrϕ

σθr σθθ σθϕ

σϕr σϕθ σϕϕ

⎞⎠ . (4.9.18)

This matrix should not be misinterpreted as a Cartesian tensor.

Newtonian fluids

The stress components for an incompressible Newtonian fluid derive from the constitutive
equation (4.6.6) as shown in Table 4.9.2(b).

4.9.3 Plane polar coordinates

Consider a two-dimensional flow in the xy plane and refer to the plane polar coordinates,
(r, θ), depicted in Table 4.9.3(a). The traction exerted on a small segment that is normal
to the distance from the origin, acting on the side facing away from the origin, f (r), can be
resolved into its plane polar components as

f (r) = f (r)
r er + f

(r)
θ eθ, (4.9.19)

where er and eθ are unit vectors pointing in the radial and polar direction.
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Table 4.9.3 (a) Components of the stress tensor in plane polar coordinates (r, θ) and (b) components

of the stress tensor in a Newtonian fluid. Note that the stress tensor remains symmetric in these
coordinates.

The traction exerted on a small surface that is normal to the direction of the polar angle
θ, and is thus parallel to the distance from the origin, f (θ), can be resolved as

f (θ) = f (θ)
r er + f

(θ)
θ eθ. (4.9.20)

Stacking the coefficients of the unit vectors on the right-hand sides of (4.9.19) and
(4.9.20) on top of one another in a particular order, we obtain the plane polar components
of the stress tensor, (

f
(r)
r f

(r)
θ

f
(θ)
r f

(θ)
θ

)
. (4.9.21)

Next, we introduce the familiar two-index notation,

σαβ ≡ f
(α)
β , (4.9.22)

where Greek indices stand for r or θ. With the convention expressed by (4.9.22), the matrix
containing the plane polar components of the stress tensor is given by

(σαβ) =

(
σrr σrθ

σθr σθθ

)
. (4.9.23)

This matrix should not be confused with a Cartesian tensor.
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Newtonian fluids

The stress components for an incompressible Newtonian fluid derive from the constitutive
equation (4.6.6) as shown in Table 4.9.3(b).

4.9.1 Plane polar coordinates

Work as discussed in the text for the cylindrical polar coordinates to derive the Newtonian
constitutive equations in plane polar coordinates shown in Table 4.9.3.

4.10 Boundary conditions for the tangential velocity

In Section 2.10.1, we discussed the no-penetration boundary condition over impermeable
boundaries and interfaces between immiscible fluids, involving the normal component of
the fluid velocity. Viscous fluids obey an additional boundary condition concerning the
tangential component of the fluid velocity.

4.10.1 No-slip boundary condition

Under most conditions, the vast majority of fluids satisfy the no-slip boundary condition
requiring that:

• The tangential component of the fluid velocity over a solid boundary is equal to the
tangential component of the boundary velocity.

• The tangential component of the fluid velocity is continuous across an interface be-
tween two immiscible fluids.

The no-slip boundary condition has been confirmed in the overwhelming majority of appli-
cations and is the standard choice in mainstream fluid dynamics. Combined with the no-slip
condition, the no-penetration condition requires that the fluid velocity is equal to the local
velocity of an impermeable solid boundary and continuous across an interface.

Physical origin

The physical origin of the no-slip boundary condition over a solid surface has not been
established with absolute certainty. One theory argues that the molecules of a fluid next to
a solid surface are adsorbed onto the surface for a short period of time, only to be desorbed
and ejected into the fluid. This relentless process slows down the fluid and effectively renders
the tangential component of the fluid velocity equal to the corresponding component of the
boundary velocity. Another theory argues that the true boundary condition is the condition
of vanishing shear stress, and the no-slip boundary condition arises due to microscopic
boundary roughness. Thus, a perfectly smooth boundary would allow the fluid to slip.

Problem
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4.10.2 Slip boundary condition

Exceptions to the no-slip boundary condition arise in the case of rarefied gas flow, high-
pressure flow of polymer melts, flow near a three-phase contact line where a solid meets
two liquids or a gas and a liquid, and flow past interfaces consisting of dual or multiple
molecular layers that may exhibit relative motion, yielding a discontinuous macroscopic
velocity. The no-slip boundary condition is sometimes relaxed in numerical simulations to
prevent singularities stemming from excessive idealization. One example is the development
of an infinite force on a sharp plate scraping fluid off a flat surface.

Consider steady unidirectional flow in a channel with parallel walls driven by the parallel
translation of the upper wall along the x axis with velocity V , as illustrated in Figure 4.6.1(b).
In this case, we may specify that the fluid slips over the lower wall such that the slip velocity,
ux(y = 0), is related to the wall shear stress by

ux(y = 0) =
L

μβ
σyx(y = 0) =

L

β

(∂ux

∂y

)
y=0

, (4.10.1)

where the constant β is the slip coefficient and L is a reference length identified, for example,
with the channel width. As β tends infinity, the slip velocity tends to zero and the no-slip
boundary condition prevails. The slip length is defined as 
 = L/β.

Rarefied gases

In the case of a rarefied gas, the slip coefficient, β, and slip length, 
, can be rigorously
related to the molecular mean free path, λ, by the Maxwell relation

λ



= βKn =

σ

2− σ
, (4.10.2)

where Kn ≡ λ/L is the Knudsen number and σ is the tangential momentum accommodation
coefficient (TMAC) expressing the fraction of molecules that undergo diffusive instead of
specular reflection. In the limit σ → 2 we recover the no-slip boundary condition, β → ∞.
In the limit σ → 0 we recover the perfect-slip boundary condition, β → 0.

4.10.1 Flow in a channel with slip

In the case of shear-driven channel flow illustrated in Figure 4.6.1(b), the pressure is uniform
and the shear stress σyx is constant, independent of y. Assuming that the slip condition
applies at the upper and lower walls, derive expressions for the shear shear and velocity
profile of a Newtonian fluid in terms of V , h, μ, and the slip length, 
.

4.11 Wall stresses in Newtonian fluids

Combining the no-slip boundary condition discussed in Section 4.10.1 with the no-penetration
boundary condition discussed in Section 2.10.1, we derive remarkably simple expressions for

Problem
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z

y

x

Figure 4.11.1 Flow over a plane wall subject to the no-slip boundary condition. The wall shear stress
is proportional to the slope of the velocity profile with respect to distance normal to the wall, in
this case y. The normal stress is equal to the negative of the pressure.

the Newtonian traction exerted on a solid surface, called the wall stress, amenable to a
simple physical interpretation.

Consider a viscous flow above a stationary flat solid surface located at y = 0, as il-
lustrated in Figure 4.11.1. The no-slip boundary condition requires that the tangential
components of the velocity, and thus their derivatives with respect to z and x, are identi-
cally zero over the surface,

∂ux

∂x
= 0,

∂uz

∂x
= 0,

∂ux

∂z
= 0,

∂uz

∂z
= 0, (4.11.1)

where all partial derivatives are evaluated at y = 0. The no-penetration boundary condition
requires that the normal component of the velocity, and thus its derivatives with respect to
z and x, also vanish over the surface,

∂uy

∂x
= 0,

∂uy

∂z
= 0, (4.11.2)

where all partial derivatives are evaluated at y = 0. Thus, six of the nine components of
the velocity-gradient tensor vanish over the surface.

Shear stress

The two components of the Newtonian shear stress exerted on the surface are given by

σyx = μ
( ∂ux

∂y
+

∂uy

∂x

)
, σyz = μ

( ∂uz

∂y
+

∂uy

∂z

)
(4.11.3)

evaluated at y = 0. Using (4.11.2) to simplify (4.11.3), we find that

σyx = μ
∂ux

∂y
, σyz = μ

∂uz

∂y
(4.11.4)
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evaluated at y = 0. Equations (4.11.4) reveal that the wall shear stress is equal to the slope
of the tangential velocity with respect to distance normal to the wall multiplied by the fluid
viscosity in any flow, not just in a unidirectional flow.

Normal stress

The Newtonian normal stress exerted on a solid surface is given by

σyy = −p+ 2μ
∂uy

∂y
(4.11.5)

evaluated at y = 0, where p is the pressure. Since the fluid has been assumed incompressible,
we may use the continuity equation (2.9.2) to write

∂uy

∂y
= −∂ux

∂x
− ∂uz

∂z
(4.11.6)

evaluated at y = 0, and then invoke the first and fourth equations in (4.11.1) to find that
∂uy/∂y = 0. Expression (4.11.5) thus simplifies to

σyy = −p, (4.11.7)

which shows that the normal stress exerted on a solid surface is equal to the negative of the
pressure.

Generalization

The results displayed in equations (4.11.4) and (4.11.7) apply even when a surface translates
with a constant or time-dependent velocity. Moreover, these results apply when a surface is
curved, provided that the zx plane is tangential to the surface and the y axis is normal to
the surface at the position when the shear and normal stress are evaluated.

4.11.1 Vorticity at a no-slip surface

Show that the component of the vorticity vector normal to an impermeable wall vanishes,
and thus the vortex lines are tangential to the surface. Hint: Use the second and third of
equations (4.11.1).

4.12 Interfacial surfactant transport

An impure interface between two immiscible fluids is sometimes occupied by a molecular
layer of surfactants affecting the local surface tension, γ. Dividing the number of surfactant
molecules residing inside an infinitesimal surface patch centered at a point by the surface
area of the patch, we obtain the surface concentration of the surfactant, Γ. The higher the
surfactant concentration of the surfactant, the lower the surface tension.

Problem
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Figure 4.12.1 Point particles along a two-dimensional interface are identified by a parameter ξ that
increases monotonically but in an otherwise arbitrary fashion along the interface.

Surface equation of state

For small surfactant concentrations, a linear surface equation of state can be assumed re-
lating γ to Γ according to Gibbs’ law,

γ =
γ0

1− β
(1− β

Γ

Γ0
), (4.12.1)

where Γ0 is a reference surfactant concentration and γ0 is the corresponding surface tension.
The dimensionless physical constant

β = RT
Γ0

γc
(4.12.2)

expresses the sensitivity of the surface tension to the surfactant concentration, where R is
the ideal gas constant, T is the absolute temperature, and γc is the surface tension of a
clean interface that is devoid of surfactants. More involved surface equations of state for
moderate and large surfactant concentrations near saturation are available.

Interfacial convection-diffusion

The molecules of an insoluble surfactant are convected and diffuse over the interface, but
do not enter the bulk of the fluid. Our objective in this section is to derive an evolution
equation for the surface surfactant concentration determining the local surface tension and
thus the jump in the traction across an interface.

4.12.1 Two-dimensional interfaces

Consider a chain of material point particles distributed along the inner or outer side of a
two-dimensional interface. We begin by labeling the point particles using a parameter, ξ,
so that their position can be described in parametric form as X(ξ) at any time, as shown
in Figure 4.12.1.

Let 
 be the arc length measured along the interface from an arbitrary point particle
labeled ξ0. The number of surfactant molecules residing inside a material test section of the
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interface confined between ξ0 and ξ is

n(ξ, t) =

∫ 
(ξ,t)


(ξ0,t)

Γ(ξ′, t) d
(ξ′) =
∫ ξ

ξ0

Γ(ξ′, t)
∂


∂ξ′
dξ′, (4.12.3)

where ξ′ is an integration variable. Conservation of the total number of surfactant molecules
inside the test section requires that

∂n

∂t
= q(ξ0)− q(ξ), (4.12.4)

where q(ξ) is the flux of surfactant molecules along the interface due to diffusion, and
the time derivative is taken keeping ξ fixed. Substituting the expression for n from the
last integral in (4.12.3), and transferring the derivative inside the integral as a material
derivative, we obtain ∫ ξ

ξ0

D

Dt

(
Γ(ξ′, t)

∂


∂ξ′

)
dξ′ = q(ξ0)− q(ξ), (4.12.5)

where D/Dt is the material derivative. Now taking the limit as ξ tends to ξ0, we derive a
differential equation,

D

Dt

(
Γ
∂


∂ξ

)
= −∂q

∂ξ
. (4.12.6)

Expanding the material derivative of the product on the left-hand side, we obtain

DΓ

Dt

∂


∂ξ
+ Γ

D

Dt

(∂

∂ξ

)
= −∂q

∂ξ
. (4.12.7)

Interfacial stretching

Next, we use the Pythagorean theorem to write

∂


∂ξ
=
[(∂X

∂ξ

)2
+
(∂Y
∂ξ

)2]1/2
, (4.12.8)

and compute the material derivative

D

Dt

(∂

∂ξ

)
=

1

2

1

∂
/∂ξ

[
2
∂X

∂ξ

D

Dt

(∂X
∂ξ

)
+ 2

∂Y

∂ξ

D

Dt

(∂Y
∂ξ

) ]
. (4.12.9)

Interchanging the material derivative with the ξ derivative, and setting

DX

Dt
= ux

DY

Dt
= uy, (4.12.10)

we find that

D

Dt

(∂

∂ξ

)
=

1

∂
/∂ξ

(∂X
∂ξ

∂ux

∂ξ
+

∂Y

∂ξ

∂uy

∂ξ

)
, (4.12.11)
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where u = (ux, uy) is the fluid velocity. Rearranging, we obtain

D

Dt

(∂

∂ξ

)
=

1

∂
/∂ξ

∂X

∂ξ
· ∂u
∂ξ

=
∂


∂ξ

∂X

∂

· ∂u
∂


=
∂


∂ξ
t · ∂u

∂

, (4.12.12)

where t = ∂X/∂l is the unit tangent vector shown in Figure 4.12.1.

Evolution equation

Substituting the last expression into (4.12.7), we obtain

DΓ

Dt
+ Γ t · ∂u

∂

= −∂q

∂

, (4.12.13)

which is the targeted evolution equation for the surfactant concentration.

Fick’s law

The diffusive flux can be described by Fick’s law,

q = −Ds
∂Γ

∂

, (4.12.14)

where Ds is the surfactant surface diffusivity. Substituting this expression into (4.12.13),
we derive a convection–diffusion equation,

DΓ

Dt
+ Γ t · ∂u

∂

=

∂

∂l

(
Ds

∂Γ

∂


)
. (4.12.15)

In practice, the surfactant diffusivity is typically small.

Stretching and expansion

It is illuminating to resolve the velocity into a tangential and a normal component,

u = ut t+ un n. (4.12.16)

Noting that t · n = 0, t · t = 1, and n · n = 1, and using the Frenet relations (4.3.5) and
(4.3.9),

dt

d

= −κn,

dn

d

= κ t, (4.12.17)

we compute

t · ∂u
∂


=
∂ut

∂

+ un t · ∂n

∂

=

∂ut

∂

+ κun, (4.12.18)

where κ is the interfacial curvature. Substituting this expression into (4.12.15), we obtain
the evolution equation

DΓ

Dt
+ Γ

( ∂ut

∂

+ κun

)
=

∂

∂


(
Ds

∂Γ

∂


)
. (4.12.19)
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The first and second terms inside the parentheses on the left-hand side express, respectively,
the rate of change of the surfactant concentration due to interfacial stretching, and the rate
of change of the surfactant concentration due to interfacial expansion.

Stretching of a flat interface

Consider a flat interface situated along the x axis, stretched uniformly under the influence
of a tangential velocity field, ux(x). Identifying 
 with x and setting κ = 0, we find that the
transport equation (4.12.19) reduces to

DΓ

Dt
+ Γ

∂ux

∂x
=

∂

∂x

(
Ds

∂Γ

∂x

)
. (4.12.20)

The material derivative can be resolved into Eulerian derivatives with respect to x and t,
yielding

∂Γ

∂t
+ ux

∂Γ

∂x
+ Γ

∂ux

∂x
=

∂

∂x

(
Ds

∂Γ

∂x

)
(4.12.21)

or

∂Γ

∂t
+

∂(uxΓ)

∂x
=

∂

∂x

(
Ds

∂Γ

∂x

)
. (4.12.22)

In fact, this equation could have been derived directly by performing a surfactant molecular
balance over a differential control volume along the x axis, taking into consideration the
convective and diffusive flux.

In the case of a uniformly stretched interface, ux = kx, where k is a constant identified
as the rate of extension. If the surfactant concentration is uniform at the initial instant, it
will remain uniform at any time, governed by the linear equation

dΓ

dt
+ k Γ = 0. (4.12.23)

The solution reveals that the surfactant concentration decreases exponentially due to dilu-
tion,

Γ(t) = Γ(t = 0) exp(−kt). (4.12.24)

Expansion of a circular interface

Now consider a cylindrical interface with circular cross-section of radius a centered at the
origin, expanding under the influence of a uniform radial velocity, ur(t), in the absence of
circumferential motion. In plane polar coordinates, (r, θ), the transport equation (4.12.19)
with constant diffusivity becomes

DΓ

Dt
+ Γ

ur

a
=

Ds

a2
∂2Γ

∂θ2
. (4.12.25)
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In this case, the material derivative is the partial derivative with respect to time, yielding

∂Γ

∂t
+ Γ

ur

a
=

Ds

a2
∂2Γ

∂θ2
. (4.12.26)

If the surfactant concentration is uniform at the initial instant, it will remain uniform
at any time, governed by the linear equation

dΓ

dt
+ Γ

ur

a
= 0. (4.12.27)

In the case of expansion, ur > 0, the surfactant concentration decreases exponentially due
to dilution.

Interfacial markers

The material derivative expresses the rate of change of the surfactant concentration following
the motion of material point particles residing on a selected side of an interface. In numerical
practice, it may be expedient to follow the motion of interfacial marker points that move
with the normal component of the fluid velocity and with an arbitrary tangential velocity,
vt. If vt = 0, the marker points move normal to the interface at any instant. The velocity
of a marker point is

v = un n+ vt t. (4.12.28)

By definition,

DΓ

Dt
=

dΓ

dt
+ (ut − vt)

∂Γ

∂

, (4.12.29)

where d/dt is the rate of change of the surfactant concentration following the marker points.
Substituting this expression into (4.12.19), we find that

dΓ

dt
+ (ut − vt)

∂Γ

∂

+ Γ (

∂ut

∂

+ κun ) =

∂

∂


(
Ds

∂Γ

∂


)
, (4.12.30)

which can be restated as

dΓ

dt
+

∂(utΓ)

∂

− vt

∂Γ

∂

+ Γκun =

∂

∂l

(
Ds

∂Γ

∂


)
. (4.12.31)

The second term on the left-hand side is the derivative of the interfacial convective flux.

4.12.2 Axisymmetric interfaces

Next, we consider a chain of material point particles distributed along the inner or outer side
of the trace of an axisymmetric interface in an azimuthal plane, and label the point particles
using a parameter, ξ, so that their position in the chosen azimuthal plane is described in
parametric form at any instant as X(ξ), as shown in Figure 4.12.2.
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Figure 4.12.2 Point particles along the trace of an axisymmetric interface in an azimuthal plane are
identified by a parameter ξ. The angle χ is subtended between the x axis and the straight line
defined by the extension of the normal vector.

Let 
 be the arc length measured along the trace of the interface from an arbitrary point
particle labeled ξ0. To derive an evolution equation for the surface surfactant concentration,
we introduce cylindrical polar coordinates, (x, σ, ϕ), and express the number of surfactant
molecules inside a ring-shaped material section of the interface confined between ξ0 and ξ
as

n(ξ, t) = 2π

∫ 
(ξ,t)


(ξ0,t)

Γ(ξ′, t)σ(ξ′) d
(ξ′) = 2π

∫ ξ

ξ0

Γ(ξ′, t)
∂


∂ξ′
σ(ξ′) dξ′. (4.12.32)

Conservation of the total number of surfactant molecules inside the test section requires
that

∂n

∂t
= 2π

(
σ0 q(ξ0)− σq(ξ)

)
, (4.12.33)

where q is the flux of surfactant molecules along the interface by diffusion, and the time
derivative is taken keeping ξ fixed.

The counterpart of the balance equation (4.12.6) is

D

Dt

(
Γ(ξ, t)σ(ξ, t)

∂


∂ξ

)
= −∂(σq)

∂ξ
, (4.12.34)

and the counterpart of equation (4.12.13) is

DΓ

Dt
+ Γ

(
t · ∂u

∂

+

uσ

σ

)
= − 1

σ

∂(σq)

∂

. (4.12.35)

In deriving this equation, we have set Dσ/Dt = uσ.
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In terms of the normal and tangential velocities, un and ut,

DΓ

Dt
+ Γ (

∂ut

∂

+ κun +

uσ

σ
) = − 1

σ

∂(σq)

∂

, (4.12.36)

where κ is the curvature of the interface in a meridional plane. Substituting

uσ = un sinχ− ut cosχ, (4.12.37)

we find that

DΓ

Dt
+ Γ

( ∂ut

∂

− cosχ

σ
ut + (κ+

sinχ

σ
)un

)
= − 1

σ

∂(σq)

∂

, (4.12.38)

where the angle χ is defined in Figure 4.12.2. The sum of the terms inside the inner
parentheses on the left-hand side is twice the mean curvature of the interface, 2κm. The
first two terms inside the outer parentheses can be consolidated to yield the final form

DΓ

Dt
+ Γ

( 1
σ

∂(σut)

∂

+ 2κm un

)
= − 1

σ

∂(σq)

∂

. (4.12.39)

The first term inside the parentheses on the left-hand side expresses the rate of change of
the surface area of an axisymmetric material ring.

Marker points

An evolution equation for interfacial marker points can be derived working as in Section
4.12.1 for a two-dimensional interface. The result is

dΓ

dt
+ (ut − vt)

∂Γ

d

+ Γ

( 1
σ

∂(σut)

∂

+ 2κm un

)
= − 1

σ

∂(σq)

∂

, (4.12.40)

which can be restated as

dΓ

dt
+

1

σ

∂(σutΓ)

∂

− vt

∂Γ

∂

+ Γ2κm un = − 1

σ

∂(σq)

∂

. (4.12.41)

When the marker points move normal to the interface, vt = 0, the third term on the right-
hand side of (4.12.41) does not appear.

4.12.3 Three-dimensional interfaces

The equations derived previously in this section for two-dimensional and axisymmetric in-
terfaces can be generalized to three-dimensional interfaces.2 The normal component of the
marker-point velocity over a three-dimensional interface must be equal to the normal com-
ponent of the fluid velocity, but the tangential component can be arbitrary. The general
form of marker point velocity is

v = un n+ vtangential, (4.12.42)

2Yon, S. & Pozrikidis, C. (1998) A finite-volume/boundary-element method for interfacial flow in the
presence of surfactants, with applications to shear flow past a viscous drop, Computers & Fluids 27, 879–
902.
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where vtangential is an arbitrary tangential component. When vtangential = 0, the marker
points move with the fluid velocity normal to the interface alone. When vtangential = u−un n,
the marker points are point particles moving with the fluid velocity.

Adopting Fick’s law for the surface diffusion, we find that the evolution of the concen-
tration of an immiscible surfactant following the motion of interfacial marker points takes
the form

dΓ

dt
+∇s · (usΓ)− vtangential ·∇sΓ + Γ2κm u · n = ∇s · (Ds∇sΓ). (4.12.43)

To define the various terms, we introduce the tangential projection matrix, P = I− n⊗ n,
with elements

Pij = δij − ninj , (4.12.44)

where δij is Kronecker’s delta representing the identity matrix and the symbol ⊗ denotes
the tensor product. Subject to this definition,

us = P · u (4.12.45)

is the component of the fluid velocity tangential to the interface and

∇s ≡ P ·∇ (4.12.46)

is the surface gradient.

In the case of two-dimensional flow, depicted in Figure 4.12.1, or axisymmetric flow,
depicted in Figure 4.12.2, equation (4.12.43) reduces to (4.12.41) or (4.12.31) by setting
vtangential = vt t.

4.12.1 Expansing spherical interface

Derive an evolution equation for the surface concentration of a surfactant over a uniformly
expanding spherical interface.

4.12.2 Transport on a flat interface

Simplify equation (4.12.43) for a flat interface in the xy plane.

Problems



Hydrostatics 5
5.1 Equilibrium of pressure and body forces
5.2 Force exerted on immersed surfaces
5.3 Archimedes’ principle
5.4 Interfacial shapes
5.5 A semi-infinite interface attached to a horizontal plane
5.6 A semi-infinite interface attached to an inclined plane
5.7 A meniscus between two parallel plates
5.8 A two-dimensional drop on a horizontal or inclined plane
5.9 Axisymmetric meniscus inside a tube
5.10 Axisymmetric drop on a horizontal plane
5.11 A sphere straddling an interface
5.12 A three-dimensional meniscus

The simplest state of a fluid is the state of rest. The macroscopically observable velocity
vanishes and the forces developing in the fluid are described in terms of the pressure field
established in response to a body force. The subject of hydrostatics encompasses two main
topics: the computation of forces exerted on immersed surfaces and submerged bodies, and
the study of the shapes of interfaces separating stationary, translating, or rotating fluids.
Although the problem statement and mathematical formulation is straightforward in both
cases, deriving solutions for all but the simplest configurations requires the use of numerical
methods for solving algebraic, ordinary, and partial differential equations.

5.1 Equilibrium of pressure and body forces

Consider a parcel of a stationary fluid, as illustrated in Figure 5.1.1(a). Newton’s second
law of motion requires that, in the absence of macroscopically observable flow, the forces
exerted on the parcel should balance to zero. In Chapter 4, we saw that two kinds of forces
are exerted on a parcel: a body force due to the gravitational or another force field mediated
by long-range molecular interactions, and a surface force associated with the hydrodynamic
traction.

Body force

The body force due to gravity can be expressed as an integral over the volume of the parcel

241© Springer Science + Business Media LLC 2017  
C. Pozrikidis, Fluid Dynamics, DOI 10.1007/978-1-4899-7991-9_5
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Figure 5.1.1 (a) Illustration of a parcel of a stationary fluid showing the outward unit normal vector,
n. (b) A parcel with a rectangular parallelepiped shape serves as a control volume for deriving
the differential equations governing the pressure distribution in hydrostatics.

involving the possibly position-dependent fluid density, ρ, in the form

Fbody =

∫∫∫
parcel

ρg dV, (5.1.1)

where g = (gx, gy, gz) is the acceleration of gravity vector. On the surface of the earth, the
magnitude of g takes the approximate value |g| ≡ g = 9.80665 m/sec2.

Surface force

The surface force can be expressed in terms of the traction exerted on the parcel surface, f ,
in the corresponding form

Fsurface =

∫∫
parcel

f dS. (5.1.2)

In the absence of fluid motion, the traction is due to the pressure, p, alone pushing the parcel
surface toward the interior. If n is the unit vector normal to the parcel surface pointing
outward, as illustrated in Figure 5.1.1(a), then

f = −pn. (5.1.3)

The minus sign on the right-hand side accounts for the opposite orientations of the normal
vector and traction due to the pressure.

Substituting (5.1.3) into (5.1.2), we derive an expression for the surface force in terms
of the pressure,

Fsurface = −
∫∫

parcel

pn dS. (5.1.4)

The integral on the right-hand side can be evaluated by analytical or numerical methods.
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Force equilibrium

Setting the sum of the body force given in (5.1.1) and the surface force given in (5.1.4) to
zero, we obtain a vectorial equilibrium condition,∫∫∫

parcel

ρg dV −
∫∫

parcel

pn dS = 0. (5.1.5)

The three scalar components of this equation are∫∫∫
parcel

ρ gx dV =

∫∫
parcel

p nx dS,

∫∫∫
parcel

ρ gy dV =

∫∫
parcel

p ny dS,∫∫∫
parcel

ρ gz dV =

∫∫
parcel

p nz dS, (5.1.6)

where the unit normal vector, n = (nx, ny, nz), points outward from the parcel, as shown
in Figure 5.1.1(a).

5.1.1 Equilibrium of an infinitesimal parcel

Next, we consider a small fluid parcel in the shape of a rectangular parallelepiped centered
at the origin with six flat sides perpendicular to the x, y, or z axis and edges with length
Δx, Δy, and Δz, as illustrated in Figure 5.1.1(b). Because the size of the parcel is small,
density variations over the parcel volume can be neglected and the volume integrals on the
left-hand side of equations (5.1.6) can be approximated with the products

ρ0 gx ΔV, ρ0 gy ΔV, ρ0 gz ΔV, (5.1.7)

where ρ0 is the density of the fluid at the center of the parcel located at the origin, and
ΔV = ΔxΔy Δz is the parcel volume.

Now we consider the surface integral on the left-hand side of the first equation in (5.1.6).
The x component of the normal vector vanishes on all sides, except on the two sides that
are perpendicular to the x axis, located at x = 1

2Δx, and x = − 1
2Δx, designated as the first

and second side. On the first side nx = 1, and on the second side nx = −1. Because the
parcel size is small, variations in pressure over each side can be neglected and the pressure
over a side can be approximated with the value at the side center.

Subject to this approximation, the surface integral on the right-hand side of the first
equation in (5.1.6) over the first or second side is, respectively,

p
(
x =

1

2
Δx, y = 0, z = 0

)
Δy Δz, −p

(
x = − 1

2
Δx, y = 0, z = 0

)
Δy Δz, (5.1.8)

where the parentheses enclose the arguments of the pressure. Adding these two contribu-
tions, we obtain the net pressure force

Fx ≡ Δpx Δy Δz, (5.1.9)
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where

Δpx ≡ p
(
x =

1

2
Δx, y = 0, z = 0

)− p
(
x = − 1

2
Δx, y = 0, z = 0

)
. (5.1.10)

In the limit as Δx tends to zero, the ratio of the differences in the pressure and corresponding
x positions,

Δpx
1
2Δx− (− 1

2Δx)
=

Δpx
Δx

, (5.1.11)

tends to the partial derivative ∂p/∂x evaluated at the origin. The expression for the net
pressure force then becomes

Fx =
(∂p
∂x

)
0

ΔxΔy Δz =
(∂p
∂x

)
0

ΔV, (5.1.12)

where the partial derivative is evaluated at the origin.

Equations of hydrostatics

Substituting (5.1.12) along with the first approximate form in (5.1.7) into the x component
of the force balance (5.1.6), and simplifying by eliminating ΔV on both sides, we obtain the
differential equation

ρ gx =
∂p

∂x
, (5.1.13)

where the density, ρ, and the partial derivative of the pressure are evaluated at the origin.
However, since the location of the origin is arbitrary, equation (5.1.13) can be applied at
every point in the fluid.

Working in a similar fashion with the second and third hydrostatic equilibrium equations
in (5.1.6), we obtain the corresponding differential equations

ρ gy =
∂p

∂y
, ρ gz =

∂p

∂z
. (5.1.14)

The three scalar equations (5.1.13) and (5.1.14) can be collected into a compact vector form,

ρg = ∇p, (5.1.15)

where

∇p =
( ∂p
∂x

,
∂p

∂y
,

∂p

∂z

)
(5.1.16)

is the pressure gradient. In physical terms, the differential equation (5.1.15) expresses a
balance between the gravitational and the pressure force in hydrostatics, that is, in the
absence of fluid motion.
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Derivation by the Gauss divergence theorem

The differential equilibrium equation (5.1.4) can be derived directly from the force balance
(5.1.5) by applying the Gauss divergence theorem stated in equation (2.6.36),∫∫

S
h · n dS =

∫∫∫
V
∇ · h dV. (5.1.17)

Selecting

hx = φ, hy = 0, hz = 0 (5.1.18)

to formulate the vector function h = (φ, 0, 0), we obtain∫∫
S
φnx dS =

∫∫∫
V

∂φ

∂x
dV, (5.1.19)

where φ is an arbitrary scalar function of position. The complementary choices h = (0, φ, 0)
and h = (0, 0, φ) yield the corresponding identities∫∫

S
φny dS =

∫∫∫
V

∂f

∂y
dV,

∫∫
S
φnz dS =

∫∫∫
V

∂f

∂z
dV. (5.1.20)

Relations (5.1.19) and (5.1.20) can be collected into a vector identity,∫∫
S
φn dS =

∫∫∫
V
∇φ dV, (5.1.21)

where

∇φ =
( ∂φ
∂x

,
∂φ

∂y
,
∂φ

∂z

)
(5.1.22)

is the gradient of φ.

Applying (5.1.21) to the second integral on the left-hand side of (5.1.5) expressing the
surface force due to the pressure, we obtain∫∫∫

parcel

ρg dV −
∫∫∫

parcel

∇p dV = 0. (5.1.23)

The differential equation (5.1.15) follows from the realization that the volume is arbitrary.

Gases and liquids

Equation (5.1.15) provides us with a basis for computing the distributions of pressure and
density in a fluid, subject an additional stipulation concerning the physical properties of
the fluid required by thermodynamics. Specifically, given the density field, or a relation
between the density and the pressure, equation (5.1.15) allows us to compute the associated
pressure and vice versa. To this end, we make a distinction between compressible gases and
incompressible liquids.
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5.1.2 Gases in hydrostatics

The density of a gas, ρ, is related to the pressure, p, and temperature, T , by an equation of
state provided by thermodynamics. For an ideal gas,

ρ =
M

RT
p, (5.1.24)

where M is the molecular mass and R is the ideal-gas constant, as discussed in Section 4.4.
Substituting (5.1.24) into (5.1.15) and rearranging, we obtain a vectorial equation involving
the pressure and temperature,

M

RT
g =

1

p
∇p. (5.1.25)

The x component of this equation reads

M

RT
gx =

1

p

∂p

∂x
=

∂

∂x

(
ln

p

π0

)
, (5.1.26)

where π0 is an unspecified reference pressure.

When the temperature of the fluid is uniform, we may integrate (5.1.26) with respect
to x to obtain

ln
p

π0
=

M

RT
gx x+ fx(y, z), (5.1.27)

where fx(y, z) is an unknown function. Working in a similar fashion with the y and z
components of (5.1.25) under the assumption of uniform temperature, we obtain

ln
p

π0
=

M

RT
gy y + fy(x, z), ln

p

π0
=

M

RT
gz z + fz(x, y), (5.1.28)

where fy(z, x) and fz(x, y) are two unknown functions. Combining the last three equations,
we obtain the pressure distribution

ln
p

π0
=

M

RT
( gx x+ gy y + gz z ). (5.1.29)

The reference pressure π0 is determined by requiring an appropriate boundary condition.

Expressing the term in the parentheses on the right-hand side of (5.1.29) in terms of
the inner product of the gravity vector, g, and the position vector, x, and transferring the
last term to the left-hand side, we obtain the compact form

ln
p

π0
=

M

RT
g · x, (5.1.30)

which describes the pressure distribution in an ideal gas with uniform temperature.
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Pressure distribution in the atmosphere

As an application, we consider the pressure distribution in the atmosphere regarded as
an ideal gas with molar mass M = 28.97 kg/kmole, at temperature 25◦C corresponding to
absolute temperature T = 298 K. In Cartesian coordinates with origin at sea level, where the
y axis points upward and the x and z axes are horizontal, the components of the acceleration
of gravity vector are

gx = 0, gy = −g, gz = 0, (5.1.31)

where g = 9.80665 m/s2. Equation (5.1.30) simplifies to

ln
p

psea
= −Mg

RT
y, (5.1.32)

where psea is the pressure at sea level. Solving for p, we derive an exponentially decaying
field,

p = psea exp
(− Mg

RT
y
)
. (5.1.33)

Taking

psea = 1.0 atm = 1.0133× 105 Pascal = 1.0133× 105kg m−1 sec−2, (5.1.34)

we find that the pressure at the elevation of y = 1 km= 1, 000 m is

p = 1.0 exp
(− 28.97× 9.80665

8.314× 103 × 298
1000

)
atm = 0.892 atm. (5.1.35)

The corresponding density distribution is found by substituting the pressure distribution
(5.1.33) into the right-hand side of the equation of state (5.1.24).

5.1.3 Liquids in hydrostatics

Because liquids at low and moderate pressures are nearly incompressible, their density is a
physical property determined primarily by the prevailing temperature. Working as in the
case of gases but treating the density as a constant, we find that the pressure distribution
is given by the counterpart of equation (5.1.30),

p = ρ (gx x+ gy y + gz z) + π0 (5.1.36)

or, more concisely,

p = ρg · x+ π0, (5.1.37)

where π0 is a constant with units of pressure determined by an appropriate boundary con-
dition.
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Pressure distribution in a pool

As an application, we consider the pressure distribution in a liquid pool with a horizontal
surface. In Cartesian coordinates where the y axis is perpendicular to the pool surface
pointing in the vertical direction upward and the x and z axes are horizontal, the components
of the acceleration of gravity vector are

gx = 0, gy = −g, gz = 0, (5.1.38)

where g is the magnitude of the acceleration of gravity. The general equation (5.1.37) then
simplifies to

p = −ρgy + π0. (5.1.39)

Setting the origin of the y axis at the pool surface where the liquid pressure is equal to the
atmospheric pressure, patm, we find that π0 = patm.

Manometer

The pressure distribution given in (5.1.37) also applies when a contiguous liquid occupies
a convoluted domain. In practice, this property is exploited for computing the pressure
difference across the two ends of a tube in terms of the difference in the levels of a liquid col-
umn placed inside the tube. A simple device serving this purpose is the U-tube manometer
illustrated in Figure 5.1.2.

The pressure distribution in the liquid inside the U-tube manometer is given by equation
(5.1.39). Applying this equation at the two ends of the liquid, located at y = y1 and y2,
and subtracting the resulting expressions, we find that

Δp ≡ p(y1)− p(y2) = ρ g (y2 − y1). (5.1.40)

If the tube is exposed to the atmosphere at the first end, p(y1) = patm, and thus

p(y2) = patm + ρgh, (5.1.41)

where h ≡ y1 − y2 is the readily measurable rise of the liquid column in the manometer.

5.1.1 Hydrostatic pressure distribution

(a) Derive the pressure distribution in an incompressible liquid given in equation (5.1.37).

(b) Derive the pressure distribution in an ideal gas occupying the semi-infinite region y > 0
when the temperature decreases exponentially with distance as

T = T0 −ΔT (1− e−αy), (5.1.42)

where T0, ΔT , and α are three specified constants. The gravity vector points in the negative
direction of the y axis.

Problems
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Figure 5.1.2 Illustration of a U-tube manometer. The pressure distribution in the fluid is described
by the equations of hydrostatics even if the fluid has a convoluted shape, as long as it remains
contiguous and uninterrupted.

5.1.2 Function of an aircraft altimeter

The temperature in the lower part of the troposphere extending 10 km above the surface
of the earth decreases at a nearly linear rate as T = T0 − α y, where T0 is the temperature
at the surface of the earth positioned at y = 0, and α is the lapse rate. In North America,
α = 6.5 K/km.

(a) Assuming that the atmosphere behaves like an ideal gas, derive the atmospheric pressure
distribution

p = π0

(
1− α

T0
y
)β

, (5.1.43)

and evaluate the dimensionless exponent β ≡ Mg/(Rα), where π0 is the pressure at sea
level.

Solving (5.1.43) for the elevation y, we find that

y =
T0

α

(
1−
( p

π0

)1/β )
. (5.1.44)

This equation is used for calibrating an aircraft altimeter, that is, for converting pressure
measured with a barometer into altitude.

(b) Show that, as α tends to zero, in which case the temperature distribution tends to
become constant, the pressure distribution (5.1.43) reduces to that shown in (5.1.33).

5.1.3 How many molecules inside a certain volume of gas?

How many molecules are there inside one cubic centimeter (1 milliliter) of a gas under
atmospheric pressure and temperature 25◦C?



250 Fluid Dynamics: Theory, Computation, and Numerical Simulation

(a) (b)

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

n

n

Fluid

Fluid

Figure 5.2.1 Illustration of a surface that (a) contains or (b) is immersed in a stationary fluid.

5.2 Force exerted on an immersed surface

To compute the hydrostatic surface force exerted on a surface that contains or is immersed
in a stationary fluid, as illustrated in Figure 5.2.1, we repeat the arguments the led us to
equation (5.1.4) and obtain

Fsurface = −
∫∫

pn dS, (5.2.1)

where n is the unit vector normal to the surface pointing into the fluid and the integration
is performed over the surface.

To evaluate the integral on the right-hand side of (5.2.1), we must first determine the
pressure distribution in the fluid, as discussed in Section 5.1, and then evaluate the integral
by analytical or numerical methods.

5.2.1 A sphere floating on a flat interface

As an application, we consider the force exerted on a sphere floating on the flat surface
of a liquid pool underneath a zero-density gas, as depicted in Figure 5.2.2. In spherical
polar coordinates with origin at the center of the sphere and the x axis pointing upward,
the circular contact line where the surface of the liquid meets the sphere is located at the
meridional angle θ = β.

Symmetry requires that the horizontal component of the surface force exerted on the
sphere must vanish. The vertical component of the surface force is given by

F surface
x = −

∫∫
p nx dS, (5.2.2)

where nx = cos θ is the x component of the unit normal vector. The pressure distribution
is described by equation (5.1.37) with gravitational acceleration components

gx = −g, gy = 0, gz = 0, (5.2.3)
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Figure 5.2.2 Illustration of a sphere floating in the flat surface of a liquid at floating angle β. The
dashed line represents the horizontal circular contact line.

yielding

p = −ρ g x+ π0. (5.2.4)

To compute the reference pressure π0, we require that the pressure at the contact line is equal
to the atmospheric pressure, p = patm at x = a cosβ, and find that patm = −ρg a cosβ+ π0,
which can be rearranged to give

π0 = ρ g a cosβ + patm, (5.2.5)

where a is the sphere radius. Writing x = a cos θ, we find that the pressure distribution over
the sphere is given by

p = −ρ g a (cos θ − cosβ) + patm. (5.2.6)

Now substituting the pressure distribution (5.2.6) into the integral on the right-hand
side of (5.2.2), we find that the force exerted on the sphere by the liquid is given by

F surface
x =

∫∫ (
ρ g a (cos θ − cosβ)− patm

)
cos θ dS. (5.2.7)

The differential surface area of the sphere can be expressed in the form

dS = (σdϕ)(adθ), (5.2.8)

where σ = a sin θ is the distance of a point on the surface of the sphere from the x axis and
ϕ is the azimuthal angle. Substituting this expression into the right-hand side of (5.2.7) and
integrating with respect to ϕ, we obtain

F surface
x = 2πa2

∫ π

β

(
ρ g a (cos θ − cosβ)− patm

)
cos θ sin θ dθ. (5.2.9)
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Next, we set sin θ dθ = −d cos θ and carry out the integration on the right-hand side with
respect to cos θ to find that

F surface
x = πa2

[
ρ g a

1

3
(2 + 3 cosβ − cos3 β) + patm (1− cos2 β)

]
. (5.2.10)

Working in a similar fashion, we find that the x component of the force due to the
atmospheric pressure exerted on the non-immersed portion of the sphere subtended between
the meridional angles θ = 0 and β is given by

F atm
x = −2πa2

∫ β

0

patm cos θ sin θ dθ = −πa2 patm(1− cos2 β). (5.2.11)

Adding the two contributions expressed by (5.2.10) and (5.2.11), we obtain the buoyancy
force exerted on the sphere,

F buoyancy
x ≡ F surface

x + F atm
x = ρg

(
π

1

3
(2 + 3 cosβ − cos3 β) a3

)
. (5.2.12)

It can be shown using elementary trigonometry that the term enclosed by the large
parentheses on the right-hand side of (5.2.12) is equal to the immersed volume of the sphere
underneath the flat surface of the liquid, which is equal to the volume of fluid displaced by
the sphere, Vdisplaced. For example, if the sphere is completely immersed, β = 0, the term
enclosed by the short parentheses on the right-hand side of (5.2.12) is equal to 4, and the
term enclosed by the large parentheses is equal to the volume of the sphere, Vsphere =

4π
3 a3.

Equation (5.2.12) states that the hydrostatic force exerted on a floating sphere is equal
in magnitude and opposite in direction to the weight of the fluid displaced by the sphere. In
Section 5.3, we will see that this is a more general result applicable to an arbitrarily shaped
floating or immersed object.

Computation of the floating angle

The floating angle, β, is determined by the weight of the sphere: the heavier the sphere,
the smaller the angle; the lighter the sphere, the larger the angle. There is a critical weight
where β becomes equal to zero and the sphere is completely submerged.

To compute the floating angle corresponding to a certain weight, W , we set W equal to
the buoyancy force given in (5.2.12) and rearrange to obtain a cubic equation for cosβ,

cos3 β − 3 cosβ + 2 (2s− 1) = 0, (5.2.13)

where

s ≡ W

ρgVsphere
(5.2.14)

is a dimensionless parameter and Vsphere =
4π
3 a3 is the volume of the sphere. If the sphere

is made of a homogeneous material with density ρs, then s = ρs/ρ is the density ratio. A
neutrally buoyant sphere corresponds to s = 1, in which case cosβ = 1 and β = 0 satisfy
equation (5.2.13), as expected. When s = 1

2 , the floating angle is 1
2π.
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Figure 5.2.3 Graph of the function f(q) defined in equation (5.2.16) whose root, Q, is desired, for
s = 1

4
. To compute the root using Newton’s method, we make an initial guess, q(0), and then

improve the guess by moving along the tangential vector to the graph toward the q axis.

5.2.2 Newton’s method

A variety of numerical methods are available for solving the nonlinear algebraic equation
(5.2.13) for β, given s. Newton’s method, also known as the Newton–Raphson method,
strikes an optimal balance between conceptual simplicity and numerical efficiency. To for-
malize the method, we introduce the variable q ≡ cosβ, and express equation (5.2.13) in
the generic form

f(q) = 0, (5.2.15)

where

f(q) ≡ q3 − 3 q + 2 (2s− 1) (5.2.16)

is the function of interest. A graph of the function f(q) for s = 0.25 is shown in Figure
5.2.3. The requisite value of q, denoted by Q, is located at the intersection of the graph of
f(q) and the q axis, satisfying f(Q) = 0.

To implement Newton’s method, we make an initial guess for the desired root Q, denoted
by q(0), and then generate a sequence of improvements working as follows. Near the point
q(0), the function f(q) can be approximated with a linear function that arises by expanding
f(q) in a Taylor series about q(0). Discarding all nonlinear terms, we obtain the approximate
form

f(q) 	 f(q(0)) +
(df
dq

)
q=q(0)

(q − q(0)). (5.2.17)

Setting f(q) = 0, solving for the q inside the parentheses on the right-hand side of (5.2.17),
and denoting the solution as q(1), we obtain the improved value

q(1) = q(0) −
( f

f ′

)
q=q(0)

, (5.2.18)
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where a prime denotes a derivative with respect to q. The process is then repeated to yield
a sequence of successive approximations based on the recursive formula

q(k+1) = q(k) −
( f

f ′

)
q=q(k)

(5.2.19)

for k = 0, 1, . . . . Erroneously omitting the minus sign on the right-hand side of (5.2.19) is
a common source of frustration. The iterations terminate when the correction falls below a
specified tolerance.

In the case of a floating sphere presently considered,

f ′ = 3 q2 − 3 (5.2.20)

and Newton’s formula takes the form

q ← q − q3 − 3 q + 2 (2s− 1)

3 q2 − 3
=

2

3

q3 − (2s− 1)

q2 − 1
, (5.2.21)

where the arrow stands for replace. The method is implemented in the following MAT-

LAB function

function q = floating sphere(s,q)

tolerance = 0.000001;

itermax = 10;

cf = 2.0*s-1.0;

error = tolerance + 1.0;

iter = 0; % iteration counter

while (error>tolerance & iter<itermax)

iter = iter+1;

qsave = q;

q2 = q*q; q3 = q2*q;

q = 2/3 * (q3-cf)/(q2-1);

error = abs(q-qsave)

end

return

The input field includes the parameter s and the initial guess. For a given s, the solution
satisfying |q| ≤ 1 is accepted; we recall that q = cosβ.

Convergence

Analysis shows that the sequence defined by (5.2.19) converges to Q as long as the initial
guess q(0) is sufficiently close to the root, Q . The rate of convergence depends on the
multiplicity of the root.
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If the graph of the function f(q) is not horizontal at the root, f ′(q = Q) 
= 0, the rate
of convergence is quadratic, which means that

q(k+1) −Q 	 δ (q(k) −Q)2, (5.2.22)

where δ = f ′′(Q)/[2f ′(Q)] is an a priori unknown coefficient. Equation (5.2.22) states that
the magnitude of the error in the current iteration, expressed by the left-hand side, is roughly
equal to the square of the magnitude of the error in the previous iteration multiplied by a
constant. Consequently, if the initial error, q(0) −Q, is sufficiently small, the magnitude of
the error, q(k)−Q, will keep decreasing during the iterations, no matter how large the value
of the coefficient δ. A prerequisite is that the initial guess is close enough to the root so
that (5.2.22) applies.

If the graph of the function f(q) is horizontal at the root, (df/dq)q=Q = 0, the rate of
convergence is linear, which means that

q(k+1) −Q 	 m− 1

m
(q(k) −Q), (5.2.23)

where m is the multiplicity of the root; for a double root, m = 2. Equation (5.2.23) states
that the magnitude of the error at the current iteration, q(k+1)−Q, is roughly equal to that
in the previous iteration, q(k) −Q, multiplied by the positive coefficient (m − 1)/m, which
is less than unity for any m > 1. Consequently, the error |q(k) − Q| will keep decreasing
during the iterations as long as the initial guess is close enough to the root for (5.2.23) to
apply.

5.2.1 Pycnometer

A pycnometer is an antiquated device used to measure the specific gravity of a liquid, defined
as the ratio of the density of the liquid to the density of water. In practice, this is done
by reading the level of the free surface on a scale printed on a vertical tube attached to
a spherical flask floating on the liquid, as illustrated in Figure 5.2.4. Pycnometer derives
from the Greek word πυκνoτητα, which means density. Derive an equation that allows us
to calibrate a pycnometer based on the known density of water.

5.2.2 A sphere straddling the interface between two fluids

Derive the counterpart of expression (5.2.12) for a sphere straddling the interface between
a lower fluid with density ρ2 and an upper fluid with density ρ1.

5.2.3 A floating cylinder

(a) Show that the buoyancy force exerted on a floating cylinder of radius a is given by

F buoyancy
x = ρga2

(
π − β +

1

2
sin 2β

)
, (5.2.24)

where β is the floating angle defined in Figure 5.2.2.

Problems
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Figure 5.2.4 A pycnometer is used to measure the specific gravity of a liquid defined as the ratio
between the density of the liquid to the density of water.

(b) Show that the floating angle of a solid cylinder satisfies the equation

sin(2β)− 2β + 2π(1− s) = 0, (5.2.25)

where s ≡ ρB/ρ is the ratio of the density of the cylinder, ρB, to the density of the liquid, ρ.

5.2.4 Floating sphere

(a) Directory 04 nl eq, located inside directory 01 num meth of Fdlib, includes a program
entitled newton1 2 that implements Newton’s method for solving one nonlinear equation.
Use the program to solve equation (5.2.13) and prepare a plot the floating angle, β, against
the dimensionless parameter s defined in equation (5.2.14). Discuss the convergence of the
iterations in light of equations (5.2.22) and (5.2.23).

(b) Directory 04 nl eq, located inside directory 01 num meth of Fdlib, includes a program
entitled cubic that computes the three roots of a cubic equation using Cardano’s formula.
Use the program to solve equation (5.2.13). Prepare a plot of the floating angle, β, against
the dimensionless parameter, s.

5.3 Archimedes’ principle

Consider the force exerted on a body with arbitrary shape immersed in a stationary fluid.
Using equation (5.2.1), we find that the surface force exerted on the body is given by

Fsurface = −
∫∫

body

pn dS, (5.3.1)

where n is the unit vector normal to the body pointing into the fluid. It would appear that
the computation of the integral on the right-hand side of (5.3.1) requires detailed knowledge
of the shape of the body. In fact, if the fluid is incompressible, the integral can be evaluated
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in a generic fashion, yielding a remarkably simple expression for the force in terms of the
body volume alone.

Substituting the pressure distribution for an incompressible fluid given in (5.1.37) into
the right-hand side of (5.3.1), we find that

Fsurface = −
∫∫

body

(
ρ (gxx+ gyy + gzz) + π0

)
n dS. (5.3.2)

A key observation in evaluating the surface integral is that the integrand is the product of
the unit normal vector, n, and a scalar function that is linear with respect to the components
of the position vector, x = (x, y, z).

Rectangular body

To see how the evaluation of the integral can be simplified, we consider a body having
the shape of a rectangular parallelepiped. The six flat sides of the body are perpendicular
to the x, y, or z axis, the lengths of the edges are equal to Δx, Δy, and Δz, and the
volume of the body is equal to VB = Δx Δy Δz. The unit normal vector is constant over
each of the six sides. For example, over the side that is perpendicular to the x axis and
faces the positive direction of the x axis, n = (1, 0, 0). Taking into consideration this and
similar simplifications, we evaluate the integral on the right-hand side of (5.3.2) without
approximation, finding that

Fsurface = −ρ VB g, (5.3.3)

which expresses Archimedes’ principle, stating that the force exerted on an immersed body
by the ambient fluid is equal in magnitude and opposite in direction to the weight of the fluid
displaced by the body.

Arbitrary body

To compute the integral on the right-hand side of (5.3.2) over an arbitrarily shaped body,
we may subdivide the volume of the body into small rectangular parallelepipeds and ap-
proximate the surface of the body with the collection of the faces of the parallelepipeds that
are in contact with the fluid. Because of cancellations, the sum of the integrals over the
faces of all elementary parallelepipeds is equal to the sum of the integrals of the faces that
are wetted by the fluid. Summing all contributions, we find that the force exerted on the
body is given by (5.3.3) independent of the body shape. We have found that Archimedes’s
principles stands true for arbitrarily shaped bodies. To confirm this intuitive result, we
employ the Gauss divergence theorem.

Gauss divergence theorem

An identity stemming from the Gauss divergence theorem in three dimensions was stated
in equation (5.1.21), ∫∫

S
φn dS =

∫∫∫
V
∇φ dV. (5.3.4)
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Comparing (5.1.21) with (5.3.2), we set

φ = ρ (gx x+ gy y + gz z) + π0, (5.3.5)

compute the gradient

∇φ = ρ
(
gx, gy, gz

)
= ρg, (5.3.6)

and find that the surface force is given by

Fsurface = −
∫∫

body

[
ρ (gx x+ gy y + gz z) + π0

]
n dS = −ρg

∫∫∫
body

dV = −ρVB g, (5.3.7)

which reproduces precisely equation (5.3.3).

5.3.1 Net force on a submerged body

The mass of a body with volume VB made of a homogeneous material with density ρB is
mB = ρB VB, and the weight of the body is

W = ρB VB g, (5.3.8)

where g is the gravitational acceleration. Adding to the weight the buoyancy force given in
(5.3.3), we find that the net force exerted on an immersed body is

F = Fsurface +W = (ρB − ρ)VB g. (5.3.9)

Since the density of a neutrally buoyant body is equal to the density of the ambient fluid,
the right-hand side of (5.3.9) vanishes, yielding a zero net force.

5.3.2 Moments

The moment of the surface force about a chosen point, x0, is found by integrating the
moment of the traction expressed in terms of the pressure,

Msurface =

∫∫
body

(x− x0)× (−pn) dS, (5.3.10)

where × denotes the outer vector product. Substituting the linear hydrostatic pressure
distribution for an incompressible fluid, we obtain

Msurface = −ρ

∫∫
body

(g · x+ π0) (x− x0)× n dS. (5.3.11)

Unlike the force, the moment depends on the particular geometry of the body.

To evaluate the integral on the right-hand side of (5.3.11), we resort once again to the
Gauss divergence theorem in three dimensions stated in equation (2.6.36) for an arbitrary
vector field, h, ∫∫

S
h · n dS =

∫∫∫
V
∇ · h dV. (5.3.12)
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Setting h = a×w, where a is a constant vector and w is a differentiable function, and then
discarding the arbitrary constant a, we obtain the identity∫∫

S
n×w dS =

∫∫∫
V
∇×w dV, (5.3.13)

where ∇×w is the curl of w. Now setting

w = (g · x+ π0)(x− x0), (5.3.14)

we find that

Msurface = ρ

∫∫∫
body

∇× ( (g · x+ π0)(x− x0)
)
dV. (5.3.15)

Using a vector identity, we obtain

Msurface = ρ

∫∫∫
body

(
∇(g · x)× (x− x0) + (g · x+ π0)∇× x

)
dV. (5.3.16)

Noting that ∇(g · x) = g and ∇× x = 0, we obtain the final expression

Msurface = ρg ×
∫∫∫

body

(x− x0) dV. (5.3.17)

We observe that, if the point x0 is identified with the center of mass of a homogeneous fluid
displaced by a body with volume VB, given by

xc =
1

VB

∫∫∫
body

x dV, (5.3.18)

then the surface moment is zero.

The moment exerted on a homogeneous body due to gravity is given by

Mgravity = −g ×
∫∫∫

body

ρB (x− x0) dV, (5.3.19)

and the total moment exerted on the body is

M = Msurface +Mgravity = g

∫∫∫
body

(ρ− ρB) (x− x0) dV, (5.3.20)

which is zero if the point x0 is identified with the center of mass of a homogeneous fluid
displaced by the body, or else if the density of the fluid matches the density of the body.

Equilibrium of an immersed body

The buoyancy force vector passes through the center of mass of the fluid displaced by the
body, whereas the body weight vector passes through the center of mass of the body. If the
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Figure 5.4.1 Illustration of an infinite horizontal interface located at y = yI, separating two stationary
fluids. The pressure distribution is shown on the right.

former lies above the latter, the body is in a state of stable equilibrium and will remain
stationary. In the opposite case, the body will rotate spontaneously to reach a stable
configuration.

5.3.1 Applications of the Gauss divergence theorem

(a) Apply (5.1.21) for a constant function f and discuss the results.

(b) Show that the center of gravity of a homogeneous body can be computed in terms of a
surface integral as

xc =
1

2VB

∫∫
body

(x2 + y2 + z2)n dS. (5.3.21)

5.4 Interfacial shapes

Consider two superposed stationary incompressible fluids separated by an infinite horizontal
interface located at y = yI, as illustrated in Figure 5.4.1. The acceleration of gravity points
against the y axis. The upper fluid is labeled 1 and the lower fluid is labeled 2.

Using the general expression for the pressure distribution in an incompressible liquid,
given in equation (5.1.37), and setting gx = 0, gy = −g, and gz = 0, we find that the
pressure distributions in the two fluids are given by

p(1)(y) = −ρ1gy + π1, p(2)(y) = −ρ2gy + π2. (5.4.1)

The constants π1 and π2 are related by the condition for the jump in the traction across an
interface with uniform surface tension stated in equation (4.5.16).

Problem
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Since in this case the curvature of the interface vanishes, κ = 0, condition (4.5.16)
requires that the pressure is continuous across the interface,

p(1)(y = yI) = p(2)(y = yI). (5.4.2)

Substituting the pressure distributions given in (5.4.1) into (5.4.2), we obtain

−ρ1 g yI + π1 = −ρ2 g yI + π2, (5.4.3)

which can be rearranged to give

π2 = π1 + (ρ2 − ρ1) g yI. (5.4.4)

One of the two reference pressures, π1 and π2, is determined by requiring an appropriate
boundary condition far from the interface, and the other follows from (5.4.4). For example,
if the pressure on the upper side of the interface is equal to the atmospheric pressure patm,
then

π1 = patm + ρ1 g yI, π2 = patm + ρ2 g yI. (5.4.5)

5.4.1 Curved interfaces

In practice, the flat interface depicted in Figure 5.4.1 terminates at a side wall, as illustrated
in Figure 5.4.2. Additional examples of terminated interfaces are depicted in Figure 5.5.1,
illustrating a semi-infinite interface ending at an inclined plate, in Figure 5.6.1, illustrat-
ing an interface confined between two parallel plates, and in Figure 5.7.1, illustrating the
interface of a drop attached to a horizontal plane.

Contact line

The line where two fluids meet on a solid surface is called the contact line. In the case of
a two-dimensional or axisymmetric interface, the contact line is represented by a contact
point, which is the trace of the contact line in the xy or an azimuthal plane, marked by a
circular symbol in Figures 5.5.1, 5.6.1, and 5.7.1.

Contact angle

The angle subtended between (a) the line that is normal to the contact line and tangential
to the solid surface, and (b) the line that is normal to the contact line and tangential to
the interface, measured by convention on the side of fluid labeled 2, as illustrated in Figure
5.4.2, is called the contact angle.

The static contact angle is a physical constant determined by the prevailing physical
conditions and physical properties of the solid and fluids. If fluid 1 wets the solid better
than fluid 2, then the contact angle is less than 1

2π but higher than the minimum possible
value of 0. If fluid 2 wets the solid better than fluid 1, the contact angle is higher than 1

2π
but less than the maximum possible value of π.
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Figure 5.4.2 Illustration of an interface terminating at a contact line on a surface. By convention,
the contact angle, α, is measured on the side of the fluid labeled 2.

If the side-wall illustrated in Figure 5.4.2 is vertical and the static contact angle is equal
to 1

2π, the interface remains flat all the way up to the contact line. Under more general
conditions, the interface assumes a curved shape established spontaneously to satisfy a
physical requirement on the contact angle.

5.4.2 The Laplace-Young equation for a two-dimensional interface

To derive an equation governing the shape of a two-dimensional curved interface separating
two immiscible fluids, we substitute the pressure distributions (5.4.1) into the interfacial
condition (4.5.16),

p(2) − p(1) = γ κ, (5.4.6)

finding

−ρ2 g y + π2 + ρ1 g y − π1 = γ κ, (5.4.7)

where κ is the interfacial curvature and y is the elevation of the interface. Rearranging, we
obtain the Laplace–Young equation governing the shape of a two-dimensional interface in
hydrostatics,

κ = −Δρ g

γ
y +B, (5.4.8)

where Δρ ≡ ρ2 − ρ1 is the density difference and

B ≡ π2 − π1

γ
(5.4.9)

is a constant with units of inverse length. In applications, the constant B is determined by
enforcing an appropriate boundary condition or global constraint.

The Laplace–Young equation (5.4.8) essentially requires that the curvature of an inter-
face is a linear function of the elevation from a reference state, y. An obvious solution is
found by assuming that the elevation y is constant along the interface, y = b, and then set-
ting B = Δρ gb/γ, finding that κ = 0. However, the flat shape of the interface computed in
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this fashion will not necessarily satisfy the boundary condition on the static contact angle;
consequently, the obvious solution will not be admissible. The shape of the interface must
be found so that equation (5.4.8) and a prescribed boundary condition on the contact angle
are both satisfied.

Capillary length

Assuming that the fluids separated by an interface are stably stratified, that is, ρ2 > ρ1 or
Δρ ≡ ρ2 − ρ1 > 0, we introduce the capillary length defined as

λ ≡
( γ

Δρ g

)1/2
. (5.4.10)

For an air-water interface at 20◦ Celsius, γ = 73 dynes/cm = 73 × 10−3 kg/sec2, ρ1 = 0.0
kg/m3, ρ2 = 1000.0 kg/m3, yielding a capillary length of 2.72 mm. Equation (5.4.8) may
now be recast into the compact form

κ = − y

λ2
+B. (5.4.11)

All three terms in this equation have units of inverse length.

Arbitrary orientation

Implicit in (5.4.8) is the assumption that the acceleration of gravity vector, g, points against
the y axis. The general expression for an arbitrary orientation of the gravitational acceler-
ation with respect to the working coordinates is

κ =
Δρ

γ
g · x+B, (5.4.12)

where the point x lies at the interface, the pressure distributions in the two fluids are given
by

p(1)(x) = ρ1g · x+ π1, p(2)(x) = ρ2 g · x+ π2, (5.4.13)

and the constant B is given in (5.4.9).

5.4.3 Three-dimensional and axisymmetric interfaces

The equations derived in Section 5.4.2 for a two-dimensional interface also apply for an
axisymmetric or a genuinely three-dimensional interface, provided that the curvature in the
xy plane is replaced by twice the mean curvature, 2κm. The counterpart of the Laplace–
Young equation (5.4.10) is

2κm = − y

λ2
+B, (5.4.14)

where the constant B is given in (5.4.9). We recall that the mean curvature is the average
of two conjugate curvatures at any point on the interface.



264 Fluid Dynamics: Theory, Computation, and Numerical Simulation

x

y

g
n

(1)

t

α

θ θ

h

Fluid 1

cl

χ

Fluid 2

Figure 5.5.1 Illustration of a semi-infinite interface attached to an inclined plate. Far from the plate,
the interface becomes horizontal.

When gravitational effects are not important, the first term on the right-hand side of
(5.4.14) is insignificant. Consequently, the interface adjusts to obtain a uniform mean-
curvature shape, such as that assumed by a thin soap film attached to a wire frame.

Numerical solutions of the unsimplified Laplace–Young equation for a variety of inter-
facial configurations are discussed in the remainder of this chapter.

5.4.1 Pressure in a layer

Derive expressions for the pressure distribution across a horizontal liquid layer of thickness
h sandwiched between two semi-infinite fluids.

5.4.2 Constant mean curvature

Compile a list of five geometrical shapes with constant mean curvature.

5.5 A semi-infinite interface attached to an inclined plate

We begin the study of two-dimensional interfacial shapes by considering a semi-infinite
interface attached to a flat plate that is inclined by an angle χ with respect to the horizontal
plane, as illustrated in Figure 5.5.1. Far from the plate, as x tends to infinity, the interface
tends to become horizontal. The contact angle subtended between the inclined plate and
the tangent to the interface at the contact point is required to have a prescribed value, α.

It is convenient to set the origin of the y axis at the position of the flat interface far
from the plate, and describe the interface by a function

y = f(x). (5.5.1)

Problem
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As x tends to infinity, the function f(x) decays to zero to yield a flat interface. Since the
interfacial curvature tends to zero far from the plate, the constant B on the right-hand side
of the governing Laplace–Young equation (5.4.10) must be zero, yielding the simpler form

κ = − f

λ2
. (5.5.2)

The curvature is given by expressions (4.3.28) and (4.3.30) as

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
=

1

f ′
d| cos θ|

dx
= −

( f ′√
1 + f ′2

)′
, (5.5.3)

where f ′ = tan θ, as shown in Figure 5.5.1, and a prime denotes a derivative with respect
to x. Substituting the last expression into (5.5.2) and integrating with respect to x, we find
that ( f ′√

1 + f ′2

)
cl
= sin θcl =

1

λ2

∫ ∞

0

f(x) dx, (5.5.4)

where the subscript cl denotes evaluation at the contact line,

θcl = α+ χ. (5.5.5)

The integral on the right-hand side of (5.5.4) is the area of fluid 2 confined between the
meniscus above the flat interface and the vertical line passing through the contact line. The
weight of the corresponding fluid, reduced by the buoyancy force, is balance by the vertical
component of the capillary force.

Substituting the second and third expressions in (5.5.3) into (5.5.2), and rearranging,
we derive a nonlinear differential equation governing the interfacial shape,

d

dx

( 1√
1 + f ′2

)
=

d| cos θ|
dx

= −ff ′

λ2
= − 1

2

(f2)′

λ2
. (5.5.6)

Integrating once with respect to x, we obtain

1√
1 + f ′2 = | cos θ| = − 1

2

f2

λ2
+ C, (5.5.7)

where C is a dimensionless integration constant. Requiring that f decays to zero as x tends
to infinity, and correspondingly θ tends to π, we obtain C = 1.

Capillary rise

At the contact line located at x = 0, the slope angle θ takes the value given in (5.5.5).
Evaluating equation (5.5.7) at x = 0 with C = 1 and rearranging, we obtain an expression
for the positive or negative capillary rise, h ≡ f(0),

1

2

h2

λ2
= 1− | cos(α+ χ)|, (5.5.8)
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which shows that the maximum possible value of |h| occurs when α+χ is a multiple of 1
2π,

and is equal to
√
2λ.

Numerical formulation

To compute the shape of the interface, we apply (5.5.7) with C = 1 and rearrange to obtain
a first-order ordinary differential equation,

df

dx
= ±

( 4

(2− φ2)2
− 1
)1/2

= ± φ

2− φ2

√
4− φ2, (5.5.9)

where φ ≡ f/λ is a dimensionless function. The plus or minus sign on the right-hand side
must be selected according to the expected interface shape.

The preceding analysis assumes that the interface has a monotonic shape, which is true
if the angle θcl lies in the range ( 12π,

3
2π). Outside this range, the capillary rise is given by

equation (5.5.8) with the minus sign replaced by a plus sign on the right-hand side.

When the shape of the interface is non-monotonic, the interface becomes vertical at
a point, the function f(x) is multi valued, and the integration of (5.5.9) requires careful
consideration. To bypass this subtlety, we regard the x coordinate along the interface as a
function of the independent variable f , and recast (5.5.9) into the form

dx

df
= ±2− φ2

φ

1√
4− φ2

. (5.5.10)

The solution of (5.5.10) must be found for |f | < |h|, where |h| is the capillary rise computed
from equation (5.5.8).

5.5.1 Numerical method

A numerical solution of (5.5.10) can be computed according to the following steps:

1. Compute the angle θcl from equation (5.5.5).

2. Compute the capillary rise h using the formulas

h√
2λ

=

⎧⎪⎪⎨⎪⎪⎩
(1 + | cos θcl|)1/2 if 0 < θcl <

1
2π,

(1− | cos θcl|)1/2 if 1
2π < θcl < π,

−(1− | cos θcl|)1/2 if π < θcl <
3
2π,

−(1 + | cos θcl|)1/2 if 3
2π < θcl < 2π.

(5.5.11)

3. Integrate the differential equation (5.5.10) from f = h to 0 subject to the initial
condition x(f = h) = 0 using, for example, the explicit Euler method or the modified
Euler method discussed in Section 1.5. If h is negative, use a negative spatial step.

To implement the explicit Euler method, we select a small positive or negative integration
step, Δf = h/N , where N defines the level of numerical discretization, evaluate equation
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(5.5.10) at the point f , and approximate the derivative on the left-hand side with the finite
difference, setting

dx

df
	 x(f +Δf)− x(f)

Δf
. (5.5.12)

Rearranging, we obtain

x(f +Δf) = x(f) + Δf
2− φ2

φ

1√
4− φ2

. (5.5.13)

The repetitive application of this formula starting from f = h where x = 0 generates a
sequence of points distributed over the interface.

Modified Euler method (RK2)

To implement the modified Euler method, we replace formula (5.5.13) with a slightly more
involved formula,

x(f +Δf) = x(f) + Δf
1

2

( 2− φ2

φ

1√
4− φ2

+
2− φ2

tmp

φtmp

1√
4− φ2

tmp

)
, (5.5.14)

where φtmp = φ+Δφ and Δφ = Δf/λ.

The modified Euler method is implemented in the following MATLAB code entitled
men 2d plate residing in directory 03 hydrostat of Fdlib. The program scans tilting angles,
while holding the contact angle α constant, and displays the interfacial profile in animation,
as follows:

%---

% data

%---

gac = 1.0; % acceleration of gravity

rhop = 1.0; % pool density

rhoa = 0.0; % ambient fluid density

gamma = 1.0; % surface tension

chi = 0.01*pi; % plate inclination

alpha = 0.01*pi; % contact angle

ndiv = 2*64; % interface divisions

%---

% prepare

%---

drho = rhop-rhoa;

if(drho<0)

disp ’The density of the pool must be higher than’
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disp ’the density of the ambient fluid’

return

end

capls = gamma/(gac*abs(drho));

capl = sqrt(capls);

dchi = 0.05;

Irepeat = 1;

%========

while (Irepeat==1)

%========

%--------------------------------

% angle theta at the contact line

%--------------------------------

thcl = alpha+chi;

cst = cos(thcl);

%-----------------------------------------

% compute the magnitude of meniscus rise h

%-----------------------------------------

if((thcl>0.5*pi)&(thcl<1.5*pi))

h = sqrt(2.0*capls*(1.0-abs(cst)));

else

h = sqrt(2.0*capls*(1.0+abs(cst)));

end

%---

% sign of meniscus rise

%---

if(thcl<pi)

h = abs(h); % meniscus goes up

else

h =-abs(h); % meniscus goes down

end

%---

% plate position at y=0

%---

xpl = -h/tan(chi);

%------------------------------------------

% integrate meniscus equation dx/df = G(f)



5.5 A semi-infinite interface attached to an inclined plate 269

% from f=h to f=0 using the modified Euler

% method with constant step

%------------------------------------------

df = h/ndiv; % note that df can be positive or negative

dfh = 0.5*df;

y(1) = h;

x(1) = 0.0; % starting point

for i=1:ndiv-1

fred = y(i)/capl;

freds = fred*fred;

xp = (2.0-freds)/sqrt(4.0-freds)/fred;

xsv = x(i); % save

xpsv = xp; % save

y(i+1) = y(i)-df;

x(i+1) = x(i)+xp*df;

fred = y(i+1)/capl;

freds = fred*fred;

xp = (2.0-freds)/(fred*sqrt(4.0-freds));

x(i+1) = xsv+(xpsv+xp)*dfh;

end

%---

% plotting

%---

plot(x,y)

hold on

patch([xpl, 0, x, x(ndiv), (-2-h)/tan(chi)] ...

,[0, h, y,-2, -2],'y');

plot([-1 3 3 -1 -1],[-2 -2 2 2 -2])

plot([-10 10],[-10*tan(chi)+h, 10*tan(chi)+h] ...

,'r','LineWidth',3);

plot([xpl, 10],[0, 0],'c--','LineWidth',1);

hold off

axis equal

xlabel('x','fontsize',15); ylabel('y','fontsize',15);

axis([-1 3 -2 2])

pause(0.1)

%---

% tilt the plate

%---

chi = chi + dchi;

if(chi > 0.99*pi | chi<0.01*pi)
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Figure 5.5.2 A semi-infinite meniscus attached to an inclined plate generated by the Fdlib code
men 2d plate. The plate inclination angles χ are different, but the contact angle α is the same
in both cases.

dchi = -dchi;

end

%====

end

%====

The graphics display generated by the code for two plate inclination angles and a fixed
contact angle is shown in Figure 5.5.2.

5.5.2 A floating cylinder

The flat-plate solution derived in this section can be used to derive a trigonometric equation
governing the floating angle, β, and position of the center of a floating circular cylinder of
radius a, as shown in Figure 5.5.3. In the case of a flat interface, the cylinder center is
located at yc = −a cosβ.

In the chosen system of Cartesian coordinates, the undisturbed interface far from the
floating cylinder is located at y = 0. The contact point on the right side of the cylinder is
located at

xcl = a sinβ, ycl = yc + a cosβ, (5.5.15)

and the local inclination angle is χ = π−β. Setting h = ycl and substituting the expression
for ycl into (5.5.8), we obtain

1

2

(ycl
λ

)2
= 1− | cos(α− β + π)| = 2 sin2

α− β

2
, (5.5.16)
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Figure 5.5.3 Illustration of a cylinder floating at the interface between two immiscible fluids. A
curved meniscus is established on either side of the cylinder.

yielding

ycl = −2λ sin
α− β

2
. (5.5.17)

The hydrostatic pressure distributions in the upper and lower fluid are given by

p(1)(y) = −ρ1gy + π0, p(2)(y) = −ρ2gy + π0, (5.5.18)

where ρ1 is the density of the upper fluid, ρ2 is the density of the lower fluid, g is the gravi-
tational acceleration, and π0 is an inconsequential constant. The buoyancy force exerted by
the fluids on the cylinder is given by

F buoyancy
y = −2

∫ β

0

p(1) ny a dθ − 2

∫ π

β

p(2) ny a dθ, (5.5.19)

where θ is the polar angle defined in Figure 5.5.3, ny = cos θ is the y component of the
outward unit vector, and the factor of 2 accouns for both sides of the cylinder. Substituting
the pressure distributions (5.5.18) and setting y = yc + a cos θ, we obtain

F buoyancy
y = 2ga

(
ρ1

∫ β

0

(yc + a cos θ) cos θ dθ + ρ2

∫ π

β

(yc + a cos θ) cos θ dθ
)
. (5.5.20)

Performing the integration, we find that

F buoyancy
y = ag

(− 2 yc Δρ sinβ + aΔρ
1

2

(
π − 2β − sin(2β)

)
+ πaρ

)
, (5.5.21)

where Δρ = ρ2 − ρ1 and

ρ =
1

2
(ρ1 + ρ2) (5.5.22)

is the mean density of the fluids.
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The y component of the capillary force per unit length of the cylinder, acting on both
sides of the cylinder, is given by

F capillary
y = 2γ sin(α− β). (5.5.23)

Balancing the weight of the cylinder, the buoyancy force, and the capillary force, we obtain
the equilibrium equation

πa2ρb − F buoyancy
y = F capillary

y , (5.5.24)

where ρb is the cylinder (body) density.

Making substitutions, setting yc = ycl − a cosβ, using (5.5.17), and simplifying, we
obtain a trigonometric equation for β,

8λ sin
α− β

2
sinβ + π(1 + τ)− 2β + sin(2β) + 4λ2 sin(α− β) = 0, (5.5.25)

which is also a quadratic equation for the dimensionless variable

λ ≡ λ

a
≡ 1√

Bo
, (5.5.26)

where Bo ≡ (a/λ)2 is a Bond number, and

τ = 2
ρ− ρb
Δρ

(5.5.27)

is a dimensionless density parameter. Given α and τ , equation (5.5.25) can be solved readily
for β using Newton’s method.

5.5.1 Floating cylinder

Show that the buoyancy force exerted on the floating cylinder is given by the alternative
expression

F buoyancy
y = −2a (xc + a cosβ)Δρg sinβ +

1

2
Δρ g (A2 −A1) + ρgA, (5.5.28)

where A1 and A2 are the cylinder areas above and below the horizontal plane passing
through the rectilinear contact lines on either side of the cylinder, and A = πa2 is the
cylinder cross-sectional area. Derive the expressions

A1 = a2
(
β − 1

2
sin(2β)

)
, A2 = a2

(
π − β +

1

2
sin(2β)

)
. (5.5.29)

5.5.2 Semi-infinite meniscus

Run the code men 2d plate to generate a family of shapes corresponding to a fixed plate
inclination angle, β, and various contact angles, α. Generate another family of shapes
corresponding to a fixed contact angle and various plate inclination angles. Discuss the
behavior of the capillary rise in each case.

Problems
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Figure 5.6.1 Illustration of a meniscus between two parallel vertical plates for contact angle (a)
α < 1

2
π and (b) α > 1

2
π. In the second case, the meniscus submerges and the capillary rise h is

negative.

5.6 A meniscus between two parallel plates

Consider a two-dimensional interface between two fluids subtended between two parallel
vertical plates, as illustrated in Figure 5.6.1(a). It is reasonable to assume that the two
contact points are at the same elevation and the interface is symmetric with respect to the
mid-plane located at x = 0.

It is convenient to set the origin of the Cartesian axes at the interface midway between
the plates and describe the position of the interface by a function

y = f(x). (5.6.1)

Outside and far from the plates, the interface assumes a horizontal shape located at y = −h,
where h is the positive or negative capillary rise of the meniscus midway between the plates.

The lower fluid is labeled as fluid 2 and the upper fluid is labeled as fluid 1. The pressure
distributions in the two fluids are given by

p(1)(y) = −ρ1gy + π1, p(2)(y) = −ρ2gy + π2, (5.6.2)

where π1 and π2 are two reference pressures. Our objective is to compute the capillary rise,
h, along with the unknown shape of the meniscus by solving the Laplace–Young equation
(5.4.10),

κ = − f

λ2
+B, (5.6.3)

where B ≡ (π2 − π1)/γ and λ2 ≡ γ/(Δρ g) is the square of the capillary length. We have
assumed that Δρ ≡ ρ2 − ρ1 > 0, so that the fluids are stably stratified.
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Evaluating equation (5.6.3) at a point outside and far from the plates where the cur-
vature of the interface tends to vanish and the interfacial elevation tends to −h, we obtain

B = − h

λ2
. (5.6.4)

The Laplace–Young equation (5.6.3) then becomes

κ = −f + h

λ2
, (5.6.5)

where f + h is the unknown elevation of the curved interface between the plates measured
with respect to the flat interface outside the plates.

The curvature is given by equations (4.3.28) and (4.3.30), repeated below for conve-
nience,

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
= −

( f ′√
1 + f ′2

)′
(5.6.6)

and

κ =
1

tan θ

d cos θ

dx
= −d sin θ

dx
, (5.6.7)

where f ′ = tan θ, the slope angle θ is defined in Figure 5.6.1, and a prime denotes a derivative
with respect to x.

Mid-plane curvature and capillary rise

Our choice of Cartesian axes requires that f = 0 at the mid-plane, x = 0. Equation (5.6.3)
then gives

κ(0) = B. (5.6.8)

Because the interface is symmetric with respect to x = 0, f ′ = 0 at x = 0, the first expression
in (5.6.6) yields

κ(0) = −f ′′(0). (5.6.9)

Combining equations (5.6.8) and (5.6.9), we find that

B = −f ′′(0), (5.6.10)

and thus

h

λ2
= −κ(0) = f ′′(0), (5.6.11)

which shows that the capillary rise is determined by the curvature of the interface at the
mid-plane, and vice versa. If the capillary rise is zero, the curvature of the interface at the
mid-plane is also zero, and vice versa.
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Meniscus height

Substituting the first expression for the curvature in terms of the slope angle θ given in
(5.6.7) into (5.6.5), and recalling that tan θ = f ′, we obtain

d cos θ

dx
= −f + h

λ2
f ′ = − 1

λ2

( 1

2
(f2)′ + hf ′ ). (5.6.12)

Integrating with respect to x from 0 to b, and noting that

θb =
1

2
π − α, cos θb = sinα, (5.6.13)

we obtain a quadratic equation for the meniscus height, d ≡ f(b),

1− sinα =
1

λ2
(
1

2
d+ h ) d, (5.6.14)

where θb = θ(x = 0).

Vertical force balance

Substituting into (5.6.5) the second expression for the curvature in terms of the slope angle
θ given in (5.6.7), and integrating with respect to x from 0 to b, we obtain

cosα =
1

λ2

∫ b

0

(f + h) dx. (5.6.15)

In fact, this equation expresses a balance of the weight of fluid between the plates above or
below the flat interface, the buoyancy force, and the capillary force at the rectilinear contact
lines.

Differential equations

To compute the shape of the interface, we substitute the first expression for the curvature
given in (5.6.6) into the Laplace–Young equation (5.6.5), and rearrange to derive a second-
order ordinary differential equation involving the capillary rise h as an unknown,

f ′′ =
1

λ2
(f + h) (1 + f ′2)3/2. (5.6.16)

The solution must be found in the interval 0 < x < b subject to the boundary conditions

f(0) = 0, f ′(0) = 0, f ′(b) = tan(
1

2
π − α) = cotα. (5.6.17)

The third condition specifies the prescribed value of the contact angle. It is important to
bear in mind that h is an implicit function of the shape function f by way of equation
(5.6.11).

When α = 1
2 π, all three boundary (5.6.17) are homogeneous and the obvious solution

describes a flat, non-elevated and non-submerged interface, h = 0 and f = 0.
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Canonical form

To compute the meniscus shape under general conditions, we recast the second-order differ-
ential equation (5.6.16) involving the unspecified parameter h into the canonical form of a
system of three first-order differential equations. The word canonical derives from the Greek
work κανoνικoς, which means normal. This is done by introducing three new variables,

y1 ≡ f, y2 ≡ f ′, y3 ≡ h. (5.6.18)

Given these definitions, and noting that y′2 = f ′′, we resolve equation (5.6.16) into three
first-order component equations,

dy1
dx

= y2,
dy2
dx

=
1

λ2
(y1 + y3) (1 + y22)

3/2,
dy3
dx

= 0. (5.6.19)

The third equation simply states that y3 ≡ h is a constant. In terms of the new variables,
the boundary conditions (5.6.17) become

y1(0) = 0, y2(0) = 0, y2(b) = cotα. (5.6.20)

If the value of y3(0) = h were known, we would be able to integrate the system (5.6.19) from
x = 0 to b using, for example, the explicit Euler or the modified Euler method discussed in
Sections 1.5 and 5.5.

Explicit Euler method

To implement the explicit Euler method, we recast the system (5.6.19) into the general
symbolic form

dy1
dx

= f1(y1, y2, y3, x),
dy2
dx

= f2(y1, y2, y3, x),
dy3
dx

= f3(y1, y2, y3, x), (5.6.21)

where

f1 ≡ y2, f2 =
1

λ2
(y1 + y3) (1 + y22)

3/2 f3 ≡ 0 (5.6.22)

are the phase-space velocities.

Next, we evaluate equations (5.6.21) at a point, x, choose a small spatial step, Δx,
and approximate the derivatives on the left-hand sides with finite differences writing, for
example,

dy1
dx

=
y1(x+Δx)− y1(x)

Δx
. (5.6.23)

Solving for y1(x+Δx) and repeating for the second and third equation, we obtain⎡⎣ y1(x+Δx)
y2(x+Δx)
y3(x+Δx)

⎤⎦ =

⎡⎣ y1(x)
y2(x)
y3(x)

⎤⎦+

⎡⎣ f1(y1(x), y2(x), y3(x), x)
f2(y1(x), y2(x), y3(x), x)
f3(y1(x), y2(x), y3(x), x)

⎤⎦ Δx. (5.6.24)
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In vector notation,

y(x+Δx) = y(x) + f
(
y(x), x

)
Δx, (5.6.25)

where y ≡ (y1, y2, y3) is the solution vector and f ≡ (f1, f2, f3) is the corresponding phase-
space velocity vector. The repetitive application of formula (5.6.25) starting from x = 0
allows us to generate a sequence of points along the meniscus.

Modified Euler method

To implement the modified Euler method, we replace formula (5.6.25) with a predictor
formula,

ytmp = y(x) + f(y(x), x)Δx, (5.6.26)

followed by a corrector formula,

y(x+Δx) = x(x) +
1

2
[ f(y(x), x) + f(ytmp, x+Δx) ]Δx,

where the superscript “tmp” denotes a preliminary value computed by the explicit Euler
method. The first equation generates a provisional (temporary) value, and the second
equation advances the solution using the initial and provisional values.

The modified Euler method is implemented in the following MATLAB code entitled
men 2d ode, located in directory men 2d inside directory 03 hydrostat of Fdlib:

function [x,y1,y2] = men 2d ode (npts,capls,b,h)

%--------------------------------------------

% Integrate ODEs by the modified Euler method

% Integration interval: (0, b)

% Initial condition y1(0) = 0, y2(0) = 0

%--------------------------------------

%-----------------------

% prepare and initialize

%-----------------------

dx = b/npts; % uniform x step

x(1) = 0.0; y1(1) = 0.0; y2(1) = 0.0;

%---------------------------------------

% integrate by the modified Euler method

%---------------------------------------

for i=1:npts

if(i==1)

y1p = 0.0 % value at mid-plane
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y2p = h/capls % value at mid-plane

else

y1p = y2(i);

y2p = (y1(i)+h)*sqrt( (1.0+y2(i)*y2(i))^3 )/capls;

end

y1sv = y1(i); y2sv = y2(i); % save

y1psv = y1p; y2psv = y2p;

x(i+1) = x(i) + dx;

y1(i+1) = y1(i) + y1p*dx;

y2(i+1) = y2(i) + y2p*dx;

y1p = y2(i+1); % second velocity evaluation

y2p = (y1(i+1)+h)*sqrt((1.0+y2(i+1)^2)^3 )/capls;

y1(i+1) = y1sv + 0.5*(y1psv+y1p)*dx;

y2(i+1) = y2sv + 0.5*(y2psv+y2p)*dx;

end

%-----

% done

%-----

return

Note that the capillary rise, h, is specified in the input field.

The shooting method

Because the value of h is a priori unknown, the starting vector y(0) is not available and
the solution of (5.6.19) must be found by iteration. The shooting method prescribes the
obvious:

1. Guess a value for y3(0) = h.

2. Compute the solution of (5.6.19).

3. Check whether the third condition in (5.6.20) is fulfilled within a specified tolerance;
if not, repeat the computation with an improved guess.

To improve the guess in a systematic fashion that guarantees rapid convergence, we note
that the value of x2(b) computed by solving equations (5.6.19) depends on the guessed value,
y3(0) = h. To signify this dependence, we extend the list of arguments of y2, writing y2(b;h).
The third boundary condition in (5.6.20) requires that

q2(b ;h)− cotα = 0, (5.6.27)

which means that h is a root of an objective function defined as

Q(h) ≡ y2(b ;h)− cotα. (5.6.28)
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The problem has been reduced to computing the solution of the algebraic equation Q(h) = 0,
where the left-hand side is evaluated by integrating equations (5.6.19) with a specified value
of h.

Secant updates

The secant method provides us with a simple algorithm for solving the targeted nonlinear
algebraic equation, Q(h) = 0, according to the following steps:

1. Select a value for h that approximates the root, h(1), and compute Q(h(1)) by inte-
grating system (5.6.19).

2. Select another value for h that approximates the root, h(2), and compute Q(h(2)) by
integrating (5.6.19).

3. Approximate the graph of the function Q(h) with a straight line passing through the
points computed in Steps 1 and 2. The slope of the approximating straight line is

s(2) =
Q(h(2))−Q(h(1))

h(2) − h(1)
. (5.6.29)

4. Identify the improved value h(3) with the root of the linear function that describes the
approximating straight line. Elementary algebra shows that the root is given by

h(3) = h(2) − Q(h(2))

s(2)
. (5.6.30)

5. Repeat the computation with the pairs h(2) and h(3) until convergence.

A reasonable guess for h can be obtained by assuming that the meniscus has a circular
shape of radius R, which is positive when the interface is concave upward and negative
when the interface is concave downward. Using elementary trigonometry, we find that the
prescribed boundary condition on the contact angle will be satisfied when cosα = b/R.
Rearranging, we derive the approximation

κ 	 − 1

R
= −1

b
cosα. (5.6.31)

Using equation (5.6.11) we obtain the desired educated guess,

h 	 λ2

b
cosα. (5.6.32)

Equation (5.6.32) reveals that the maximum possible value of |h| for a circular interface is
λ2/b.

The shooting method is implemented in the followingMATLAB function entitledmen 2d,
located in directory 03 hydrostat of Fdlib:
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function [Iflag,x,y1,hmen] = men 2d ...

...

(b,gac,gamma,rhop,rhoa ...

,alpha,npts,epsilon,maxiter,tol)

%-------------------------------------------

% Hydrostatic shape of a 2D meniscus between

% two vertical parallel plates computed

% by the shooting method

%-------------------------------------------

Iflag = 0; % flag for success

%-----

% prepare

%----

drho = rhop-rhoa; % density difference

% square of the capillary length:

capls = gamma/(gac*abs(drho));

%----------------------

% initial guess for h

% computed by assuming a circular interface

%---------------------

h(1) = capls*cos(alpha)/b;

if(abs(alpha-0.5*pi)<0.0000001)

cota = 0.0;

else

cota = 1.0/tan(alpha);

end

%---

% compute the first solution of the odes

% to start-up the secant method

%---

Ic = 1; % counter

[x,y1,y2] = men 2d ode(npts,capls,b,h(Ic));

error(Ic) = y2(npts+1)-cota;

%-------------------------

% second start-up solution

%-------------------------
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Ic = 2;

h(2) = h(1)+epsilon;

[x,y1,y2] = men 2d ode(npts,capls,b,h(Ic));

error(Ic) = y2(npts+1)-cota;

%---------------------------------------

% iterate using the secant method

% until convergence

%---------------------------------------

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2; Ica = Ic-1;

dedh = (error(Ica)-error(Icb))/(h(Ica)-h(Icb));

h(Ic) = h(Ica)-error(Ica)/dedh;

[x,y1,y2] = men 2d ode(npts,capls,b,h(Ic));

error(Ic) = y2(npts+1)-cota;

if(abs(error(Ic))<tol)

break

end

%---

end

%---

if(iter==maxiter)

disp(’men 2d: ODE solver failed’)

Iflag=1;

return

end

hmen = h(Ic);

%---

% done

%---

return
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Figure 5.6.2 Shape of a meniscus inside a circular capillary tube generated by the Fdlib code
men 2d.

Results of computations for a contact angle that is lower than 1
2 π and a contact an-

gle that is higher than 1
2 π are shown in Figure 5.6.2. In the second case, the meniscus

submerges below the level of the liquid outside the plates. Scaling all lengths by the plate
half-separation, b, we find that the shape of the meniscus depends on the contact angle, α,
and on the ratio λ/b. As λ/b increases, the meniscus tends to obtain a circular shape.

5.6.1 Meniscus between plates

(a) Run the code men 2d to generate a family of shapes corresponding to fixed plate sepa-
ration and various contact angles. Discuss the behavior of the capillary rise.

(b) Generate another family of shapes corresponding to fixed contact angle and various plate
separations. Discuss the behavior of the capillary rise.

5.7 A two-dimensional drop on a horizontal plane

In the next application, we study the shape of a two-dimensional liquid drop or gas bubble
surrounded by a stationary ambient fluid, resting above or hanging below a horizontal plane,
as shown in Figure 5.7.1. The drop or bubble fluid is labeled 2 and the surrounding fluid is
labeled 1.

The resting drop shown in Figure 5.7.1(a) is called a sessile drop, while the hanging
drop shown in Figure 5.7.1(b) is called a pendant drop.

Problem
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Figure 5.7.1 Illustration of a two-dimensional (a) sessile liquid drop or gas bubble resting on a
horizontal plane and (b) pendant liquid drop or gas bubble hanging below a horizontal plane.

Our objective is to compute the shape of the interface for specified surface tension, γ,
contact angle, α, and drop area, AD. The forthcoming analysis also applies for a gas bubble
regarded as a zero-density drop, ρ2 = 0.

Working coordinates

It is convenient to work in Cartesian coordinates with origin located at the extreme point
of the interface, as shown in Figure 5.7.1 for a sessile or pendant drop. The x axis points
normal to the interface into the ambient fluid. The pressure distribution in the two fluids
is given by

p(1)(x) = −s1ρ1gx+ π1, p(2)(x) = −s1ρ2gx+ π2, (5.7.1)

where π1 and π2 are two reference pressures. The coefficient s1 is equal to 1 for a sessile
drop or −1 for a pendant drop, reflecting the orientation of the gravity with respect to the
positive direction of the x axis.

The shape of the interface is governed by the Laplace–Young equation determining the
jump in pressure across the interface due to surface tension in terms of the curvature,

κ = −s1
Δρ g

γ
x+B, (5.7.2)

where Δρ = ρ2 − ρ1 and B ≡ (π2 − π1)/γ is an a priori unknown constant with dimensions
of inverse length. In terms of the square of the capillary length, λ2 ≡ γ/(|Δρ| g), equation
(5.7.2) takes the compact form

κ = −s1s2
x

λ2
+B, (5.7.3)

where the coefficient s2 is equal to 1 if ρ2 > ρ1 or −1 if ρ2 < ρ1.
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Evaluating equation (5.7.2) at the origin, x = 0, we find that the constant B is equal
to the unknown curvature of the interface at the plane of symmetry located at y = 0,

B = κ0, (5.7.4)

where κ0 ≡ κ(x = 0).

Describing the interface by a function,

y = f(x), (5.7.5)

we obtain the following expressions for the curvature given in (4.3.28),

κ = − f ′′

(1 + f ′2)3/2
=

1

f ′

( 1√
1 + f ′2

)′
= −

( f ′√
1 + f ′2

)′
, (5.7.6)

where a prime denotes a derivative with respect to x.

Drop height

Substituting the last expression for the curvature given in (5.7.6) into the Young–Laplace
equation (5.7.3), we obtain

−
( f ′√

1 + f ′2

)′
= −s1s2

x

λ2
+B. (5.7.7)

Integrating with respect to x across the height of the drop, from x = −d to 0, as shown in
Figure 5.7.1, we obtain

1− cosα = 2 sin2
α

2
= s1s2

1

2

d2

λ2
+Bd. (5.7.8)

When s1s2 = 1 and the top of the drop is nearly flat due to strong gravitational effects,
Bd 	 0, we find that

d 	 2λ sin
α

2
, (5.7.9)

which is consistent with the capillary height of a semi-infinite meniscus attached to a flat
plate.

Vertical force balance

Substituting into (5.7.3) the second expression for the curvature given in (5.7.6), and mul-
tiplying both sides by f ′, we obtain( 1√

1 + f ′2

)′
= −s1s2

1

λ2

[
(xf)′ − f

]
+Bf ′. (5.7.10)

Integrating with respect to x across the height of the drop from x = −d to 0, we obtain

sinα = s1s2
1

λ2

(
d b− 1

2
AD ) +B b, (5.7.11)
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where

AD = 2

∫ 0

−d

f(x) dx (5.7.12)

is the drop area, b is half the length of the drop base, and d is the drop height, as shown in
Figure 5.7.1. Equation (5.7.11) can be used to compute one of b, d, and B = κ0 from two
of the others.

In fact, equation (5.7.11) expresses a force balance. To demonstrate this directly, we
observe that the additional force exerted on a longitudinal strip of the substrate covering
the base of the drop is

ΔFx = −(2 bw)
(
p(2) − p(1)

)
x=−d

= −(2 bw)
(
s1Δρ gd+Bγ

)
, (5.7.13)

where and w is the width the strip. Adding to this force the capillary force exerted on the
substrate at the contact line due to surface tension, we obtain the total force,

Fx = ΔFx + 2wγ sinα = −s1Δρ g 2 bwd− γ 2w
(
Bb− sinα

)
. (5.7.14)

The first term on the right-hand side is the weight of of a cylindrical slab of fluid with length
2b, width w, and height d, reduced by the buoyancy force. The net force is precisely equal
to the weight of the drop reduced by the buoyancy force,

Fx = −s1Δρ gADw, (5.7.15)

yielding the relation

s1s2 (AD − 2bd) = 2λ2
(
Bb− sinα

)
, (5.7.16)

as given in (5.7.11).

Parametric representation

One important difference between the problem presently considered and those discussed
previously in this chapter, is that, neither the range of x nor the range of y is known over
the span of the drop interface at the outset.

To circumvent this difficulty, we describe the shape of the interface in parametric form
in terms of the slope angle ψ defined in Figure 5.7.1, increasing from zero at the origin to α
at the contact point. Our objective is to compute two scalar functions of ψ such that the x
and y coordinates of a point at the interface are described by the functions

x = X(ψ), y = Y (ψ) (5.7.17)

for 0 ≤ ψ ≤ α. One important advantage of the adopted parametrization is that the
boundary condition for the contact angle at the contact point is satisfied automatically and
can be removed from further discussion. To compute the functions X(ψ) and Y (ψ), we
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require two ordinary differential equations and a suitable number of boundary conditions or
global constraints.

Ordinary differential equations

The first differential equation is the definition of the chosen parameter ψ in terms of the
interface slope,

cotψ = − dY

dX
. (5.7.18)

The second differential equation must originate from the Young–Laplace equation. Referring
to expressions (5.7.6) for the curvature, we set f ′ = dY/dX and find that

κ = − 1

cotψ

d

dX

( 1√
1 + cot2 ψ

)
= − 1

cotψ

d sinψ

dX
= − sinψ

dψ

dX
=

d cosψ

dX
. (5.7.19)

Substituting the penultimate expression into the left-hand side of (5.7.3), we obtain

sinψ
dψ

dX
= −d cosψ

dX
= s1s2

X

λ2
−B, (5.7.20)

which can be rearranged to give the desired parametric dependence

dX

dψ
=

sinψ

Q
, (5.7.21)

where

Q ≡ s1s2
X

λ2
−B. (5.7.22)

To derive a corresponding parametric dependence for Y , we recast (5.7.18) into the form

dY

dψ
= − cotψ

dX

dψ
. (5.7.23)

Substituting (5.7.21) into (5.7.23), we obtain

dY

dψ
= −cosψ

Q
. (5.7.24)

Equations (5.7.21) and (5.7.24) provide us with the desired system of two first-order
differential equations involving an unspecified parameter, B. The boundary conditions
require that X(0) = 0 and Y (0) = 0. The constraint on the drop area requires that

2

∫ 0

−d

Y dx = AD, (5.7.25)

where x = −d describes the position of the plane.
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Shooting method

Because the value of the constant B is a priori unknown, the solution must be found by
iteration. The shooting method combined with the secant method for improving the guess
provides us with an efficient algorithm. The numerical procedure involves the following
steps:

1. Guess a value for B.

2. Integrate the system of equations (5.7.21) and (5.7.24).

3. Compute the integral on the right-hand side of (5.7.25) using the trapezoidal rule and
then evaluate the objective function

Q ≡ 2

∫ 0

−d

y dx−AD. (5.7.26)

4. Improve the guess for B with the goal of driving the objective function Q to zero
using, for example, the secant method discussed in Section 5.6.

Since the constant B is equal to the unknown curvature of the interface at the mid-plane
located at y = 0, a reasonable guess can be obtained by assuming that the interface is a
section of a circle, and then computing the radius of the circle, �, according to specified
values of the contact angle and drop area. Using elementary trigonometry, we find that

� =
( 2AD

2α− sin 2α

)1/2
(5.7.27)

and set B = 1/�.

Fourth-order Runge–Kutta method

The fourth-order Runge–Kutta method (RK4) is an improvement of the modified Euler
method discussed earlier in this section, involving three exploratory steps and one final
step.

The following MATLAB function entitled drop 2d ode, located in directory drop 2d in-
side subdirectory 03 hydrostat of Fdlib, implements the method for solving the system of
equations (5.7.21) and (5.7.24) and simultaneously computing the drop area:

function [x,y,area] = drop 2d ode ...

...

(npts ...

,capls ...

,Isp ...

,dpsi ...

,B ...

)



288 Fluid Dynamics: Theory, Computation, and Numerical Simulation

%----------------------------------------

% Integrate two ODEs by RK4 with uniform

% step size for the angle psi

%----------------------------------------

%--------

% prepare

%--------

dpsih = 0.5*dpsi;

%----------------

% top of the drop

%----------------

psi = 0.0; x(1) = 0.0; y(1) = 0.0;

%-----------

% integrate

%----------

for i=1:npts

if(i==1)

xp = 0.0; yp = 1.0/B;

else

Q = Isp*x(i)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

end

xp1 = xp; yp1 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

xp2 = xp; yp2 = yp;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

xp3 = xp; yp3 = yp;
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psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsi;

y(i+1) = y(i)+yp*dpsi;

Q = Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

yp =-cos(psi)/Q;

xp4 = xp; yp4 = yp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi/6.0;

y(i+1) = y(i) + (yp1+2*yp2+2*yp3+yp4)*dpsi/6.0;

end

%----------------------------------------

% compute the area of the integrated shape

% by the trapezoidal rule

%----------------------------------------

area = 0.0;

for i=1:npts

area= area+(y(i+1)+y(i))*abs(x(i+1)-x(i));

end

area = 0.5*area; % to account for trapezoidal weights

%---

% double the area to get the full shape

%---

area = 2.0*area

%-----

% done

%-----

return

The following MATLAB function entitled drop 2d, located in directory 03 hydrostat of
Fdlib, implements the secant method:

function [a,Bfinal,x,y] = drop 2d ...

...

(Jsp,gac,gamma,rhod,rhoa,area...

,alpha,npts,epsilon,maxiter,tol)

%--------------------------------------------

% Hydrostatic shape of a two-dimensional

% sessile drop resting on a horizontal plane,
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% or pendant drop hanging underneath

% a horizontal plane, for a specified

% specified area and contact angle

%

% Jsp = 1 for a sessile drop

% Jsp = -1 for a pendant drop

%--------------------------------------------

%--------

% prepare

%--------

Iflag=0; % signals failure

drho = rhod-rhoa; % density difference

% square of the capillary length:

capls = gamma/(gac*abs(drho));

Isp = 1; % Isp is an orientation index

if(drho<0)

Isp = -Isp;

end

if(Jsp==-1)

Isp = -Isp;

end

%----------------------------------

% to start, assume that the drop shape

% is a truncated circle

% and compute the circle radius "a"

% in terms of the drop area and contact angle

%----------------------------------

a = sqrt(area/(alpha-0.5*sin(2.0*alpha)));

B(1) = 1.0/a;

%---

% compute the initial solution of the odes

% to start-up the secant method

%---

dpsi = alpha/npts;

Ic = 1; % counter

[x,y,area_sh] = drop 2d ode ...

...

(npts ...



5.7 A two-dimensional drop on a horizontal plane 291

,capls ...

,Isp ...

,dpsi ...

,B(Ic) ...

);

error(Ic) = area sh - area;

err = abs(error(Ic));

%-------------------------

% second start-up solution

%-------------------------

Ic=2;

B(2) = B(1)+epsilon;

[x,y,area_sh] = drop 2d ode ...

...

(npts ...

,capls ...

,Isp ...

,dpsi ...

,B(Ic) ...

);

error(Ic) = area sh - area;

err = abs(error(Ic));

%---------------------------------------

% iterate on B using the secant method

% until convergence

%---------------------------------------

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2;

Ica = Ic-1;

dedc = (error(Ica)-error(Icb))/(B(Ica)-B(Icb));

B(Ic) = B(Ica)-error(Ica)/dedc;

[x,y,area_sh] = drop 2d ode ...

...

(npts ...
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,capls ...

,Isp ...

,dpsi ...

,B(Ic) ...

);

error(Ic) = area sh - area;

err = abs(error(Ic));

if(err<tol) break; end

%---

end

%---

if(iter==maxiter)

disp(’drop 2d: ODE solver failed’)

Iflag=1; return

end

Bfinal = B(Ic);

%---

% done

%---

return

Families of drop shapes computed using the code are shown in Figure 5.7.2. Gravity squeezes
the sessile drop toward the wall and pulls the pendant drop away from the wall.

5.7.1 Radius of a circular drop

Derive formula (5.7.27) for the radius of a circular drop.

5.7.2 Two-dimensional drop on a horizontal plane

Run the code drop 2d to generate a family of interfacial shapes corresponding to a fixed
value of the drop area and various contact angles. Discuss the computed interfacial shapes.

5.8 A two-dimensional drop on an inclined plane

We proceed to consider the more challenging problem of a two-dimensional drop resting
above or hanging underneath an inclined plane, as shown in Figure 5.8.1. In the working
Cartesian coordinates defined in this figure, the origin of the x axis is set at the inclined
plane at the location of the front or rear contact point.

Problems
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Figure 5.7.2 Shapes of (a) sessile and (b) pendant two-dimensional drops for contact angle α = 3π
4

and different surface tensions computed using the Fdlib code drop 2d. The dotted lines trace
the approximate circular shape established for small drops or high surface tension. The x and y
coordinates have been scaled by the equivalent drop radius, a, defined in terms of the drop area
as AD = πa2.

In the case of the sessile drop, depicted in Figure 5.8.1(a), the contact angle at the first
contact point, α1, is larger than the contact angle at the second contact point, α2. In the
case of the pendant drop, shown in Figure 5.8.1(b), the first contact angle, α1, is smaller
than the second contact angle, α2.

In the inclined system of coordinates depicted in Figure 5.8.1(a, b), the Cartesian com-
ponents of the acceleration of gravity vector are given by

gx = −g cosβ, gy = −g sinβ, (5.8.1)

where β is the plane inclination angle ranging from 0 to 2π.

The pressure distributions in the ambient fluid and inside the drop are given by

p(1)(x, y) = −ρ1g (x cosβ + y sinβ) + π1 (5.8.2)

and

p(2)(x, y) = −ρ2g (x cosβ + y sinβ) + π2, (5.8.3)
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Figure 5.8.1 Illustration of a two-dimensional liquid drop (a) resting above and (b) hanging under-
neath an inclined plane.

where π1 and π2 are two reference pressures. Substituting these expressions into the inter-
facial balance (4.5.16), we obtain

−ρ2 g (X cosβ + Y sinβ) + π2 + ρ1 g (X cosβ + Y sinβ) + π1 = γ κ, (5.8.4)

where (X,Y ) are interfacial coordinates. Rearranging, we obtain the Laplace–Young equa-
tion

κ = −s1
Δρ g

γ
(X cosβ + Y sinβ) + C, (5.8.5)

where Δρ ≡ ρ2 − ρ1 and C ≡ (π2 − π1)/γ. Physically, the constant C represents the
curvature of the interface at the first contact point where X = 0 and Y = 0.

Parametric representation

The interface will be described parametrically in terms of the slope angle, ψ, varying from
−α1 at the first contact point, to α2 at the second contact point, as shown in Figure 5.8.1.
Regarding X and Y as functions of ψ and working as in Section 5.7 for a drop attached to
a horizontal plane, we derive the differential equations

dX

dψ
=

sinψ

Q
,

dY

dψ
= −cosψ

Q
, (5.8.6)

where

Q ≡ s
X cosβ + Y sinβ

λ2
− C, (5.8.7)

and the coefficient s is equal to 1 if ρ2 > ρ1 or −1 if ρ2 < ρ1.

The first contact line boundary condition sets the origin of the Cartesian axes at the
inclined plane,

X(−α1) = 0, Y (−α1) = 0. (5.8.8)
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The second contact line boundary condition requires that

X(α2) = 0. (5.8.9)

The constraint on the drop area, AD, requires that∫ d

0

X dy = AD, (5.8.10)

where y = d marks the position of the second contact line.

5.8.1 First contact angle specified

Given the drop area, AD, we may specify the first contact angle, α1, and compute the second
contact angle, α2, and the constant C to satisfy conditions (5.8.9) and (5.8.10). A shooting
method can be implemented for this purpose according to the following steps:

1. Guess values for C and α2.

2. Integrate the system of equations (5.8.6) with the initial conditions given in (5.8.8).

3. Compute the integral on the right-hand side of (5.8.10) using the trapezoidal rule.

4. Evaluate the two components of an objective function,

F (1) ≡ X(α2), F (2) ≡
∫ d

0

X dy −AD. (5.8.11)

5. Improve the values of C and α2 to drive the two components of the objective function,
F (1) and F (2) to zero,

F (1) = 0, F (2) = 0, (5.8.12)

and return to Step 2.

The following MATLAB function entitled drop 2di1 ode, located in directory drop 2di1
inside directory 03 hydrostat of Fdlib, solves the system of equations (5.8.6) and computes
the first and second components of the objective function, F:

function F = drop 2di1 ode(solution)

%--------------------------------------------

% Two-dimensional drop on an inclined plane.

% Integrate ODEs by RK4 with uniform

% step size for the slope angle psi

%

% SYMBOLS:

% -------

%

% dpsi: increments in psi

% C: shooting parameter
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% solution(1) = C

% solution(2) = alpha 2

%--------------------------------------------

global area capls Isp npts beta alpha1 alpha2 x y

%--------

% dispense variables

%--------

C = solution(1);

alpha2 = solution(2);

%--------

% prepare

%--------

csb = cos(beta);

snb = sin(beta);

dpsi = (alpha1+alpha2)/npts;

dpsih = 0.5*dpsi;

%----------------

% first contact point

%----------------

psi = -alpha1; x(1) = 0.0; y(1) = 0.0;

%----------

% integrate

%----------

for i=1:npts

Q = Isp*(csb*x(i)+snb*y(i))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp1 = xp; yp1 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp2 = xp; yp2 = yp;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;
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Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp3 = xp; yp3 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsi;

y(i+1) = y(i)+yp*dpsi;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp4 = xp; yp4 = yp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi/6.0;

y(i+1) = y(i) + (yp1+2*yp2+2*yp3+yp4)*dpsi/6.0;

end

F(1) = x(npts+1);

%----------------------------------------

% compute the area of the integrated shape

% by the trapezoidal rule

%----------------------------------------

ar = 0.0;

for i=1:npts

ar = ar+(x(i+1)+x(i))*(y(i+1)-y(i));

end

ar = 0.5*ar; % to account for trapezoidal weights

F(2) = ar-area;

%-----

% done

%-----

return

The improvement in the values of C and α2 in Step 5 of the algorithm can be done
using Newton’s method for solving a system of two nonlinear equations (5.8.12).1 The
method is implemented in the following Fdlib function entitled drop 2di1 newton2, located
in directory drop 2di1 inside directory 03 hydrostat of Fdlib:

function [x,f,Iflag] = drop 2di1 newton2 ...

...

1Pozrikidis, C. (2008) Numerical Computation in Science and Engineering. Second Edition, Oxford
University Press.
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(Niter ...

,eps ...

,x ...

)

%========

% Solve two nonlinear equations by Newton’s method

%

% SYMBOLS:

% --------

%

% x: solution vector

% eps: small number for computing the Jacobian

% by numerical differentiation

% Dx: correction vector

% tol: accuracy

% Iflag: will set equal to 1 if something is wrong

%========

tol = 0.0000001; % tolerance

relax = 1.0;

%-----------

% initialize

%-----------

Iflag = 1;

%---------------------

% start the iterations

%---------------------

for Iter=1:Niter

f = drop 2di1 ode(x);

%---------------------

% compute the Jacobian

% by numerical differentiation

%---------------------

for j=1:2

x(j) = x(j)+eps; % perturb

f1 = drop 2di1 ode(x);

x(j) = x(j)-eps; % reset

for i=1:2

Jac(i,j) = (f1(i)-f(i))/eps;

end

end
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%---

% solve the equation: Jac . Dx = - f

% for the correction vector Dx by Cramer’s rule

%---

b1 = -f(1);

b2 = -f(2);

Det = Jac(1,1)*Jac(2,2)-Jac(1,2)*Jac(2,1);

dx(1) = (b1*Jac(2,2)-Jac(1,2)*b2)/Det;

dx(2) = (b2*Jac(1,1)-Jac(2,1)*b1)/Det;

%--------

% correct

%--------

x(1) = x(1) + relax*dx(1);

x(2) = x(2) + relax*dx(2);

%-------

% escape

%-------

Iescape = 1;

if(abs(dx(1)) > tol) Iescape = 0; end

if(abs(dx(2)) > tol) Iescape = 0; end

if(Iescape==1)

Iflag = 0;

f = drop 2di ode(x);

return

end

%----

end % of iterations

%----

%-----

% done

%-----

return

The overall procedure is implemented in the following MATLAB code entitled drop 2di1,
located in directory drop 2di1 inside directory 03 hydrostat of Fdlib:

%------------------------------------------------------

% Hydrostatic shape of a two-dimensional

% sessile drop resting on an inclined plane
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% or a pendant drop hanging underneath a inclined plane,

% for a specified area and first contact angle

%------------------------------------------------------

global area capls Isp npts beta alpha1 alpha2 x y

gac = 1.0; % acceleration of gravity

rhod = 1.0; % density of the drop

rhoa = 0.0; % density of the ambient fluid

area = pi; % drop area

beta = 0.125*pi; % inclination angle

alpha1 = 0.35*pi; % first contact angle

npts = 64; % number of interfacial markers

%---

% prepare

%---

drho = rhod-rhoa; % density difference

Isp = 1.0; % orientation index

if(drho<0)

Isp = -Isp;

end

csb = cos(beta);

snb = sin(beta);

ROT = [csb, snb; -snb, csb]; % rotation matrix for graphics

%---

% initial guess for a circular interface

%---

a = sqrt(area/(alpha1-0.5*sin(2.0*alpha1)));

Crc = 1.0/a;

solution = [Crc alpha1];

%---

% loop over surface tension and animate

%---

for repeat=1:100

gamma = 10.0-repeat*0.10;

capls = gamma/(gac*abs(drho)); % square of the cap length
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%---

% newton’s method for two equations

%---

Niter = 10; % maximum number of iterations

eps = 0.001; % step for numerical differentiation

[solution,F,Iflag] = drop 2di1 newton2 ...

...

(Niter ...

,eps ...

,solution ...

);

if(Iflag==1) break; end

%---

% dispense the solution

%---

C = solution(1)

alpha2 = solution(2)

xplot = -y;

yplot = x;

for i=1:npts+1

xx = [xplot(i), yplot(i)];

xx = ROT*xx';

xplot(i) = xx(1);

yplot(i) = xx(2);

end

plot(xplot,yplot,'-')

hold on

plot(csb*[0.2,-2.5],snb*[-0.2,2.5],'r','LineWidth',3)

axis equal

hold off

pause(0.1)

if(alpha2<0.05*pi) break; end

if(alpha2>0.95*pi) break; end

end

The shapes of a sessile and a pendant drop for α1 = 0.45π computed using the code are
shown in Figure 5.8.2.
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Figure 5.8.2 Interfacial shapes of (a) a sessile two-dimensional drop for inclination angle β = 0.25π,

and (b) pendant two-dimensional drop for inclination angle β = 1.25π, generated by the
Fdlib code drop 2di1.

Those who can afford access to MATLAB toolboxes may use the internal MATLAB func-
tion fsolve for solving the two nonlinear equations instead of the custom-made function
drop 2di1 newton2. Bear in mind that some programmers consider the usage of a global
statement an anathema.

5.8.2 Specified contact points

Consider a physical experiment where a droplet is placed on a horizontal plane and adjusts
to a symmetric equilibrium shape corresponding to a specified static contact angle at both
contact points, α. The distance between the two contact points is denoted by d, as shown
in Figure 5.8.1.

The plane is now rotated and the drop deforms while both contact points remain pinned
at the plane. Instead, the first and second contact angles, α1 and α2, deviate from the
reference value α in response to the changing orientation of the acceleration of gravity
vector with respect to the inclination of the plane. In the physical world, the contact points
will remain stationary only if the two contact angles are confined inside a contact angle
hysteresis window bounded by the advancing and receding contact lines.

For each plane inclination angle, the three unknowns, C, α1, and α2, must be found as
part of the solution to satisfy (a) the requirement on the drop area expressed by (5.8.10),
and (b) the two second contact point conditions

X(α2) = 0, Y (α2) = d. (5.8.13)

A shooting method can be implemented according to the following steps:
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1. Guess values for C, α1, and α2.

2. Integrate the system of equations (5.8.6) with initial conditions provided in (5.8.8).

3. Compute the integral on the right-hand side of (5.8.10) using the trapezoidal rule.

4. Evaluate the three components of the objective function

F (1) = X(α2), F (2) = Y (α2)− d, F (3) ≡
∫ d

0

X dy −AD. (5.8.14)

5. Improve the values of C, α1, and α2, to drive the three components of the objective
function, F (1), F (2), and F (3), to zero

F (1) = 0, F (2) = 0, F (3) = 0, (5.8.15)

and return to Step 2.

The following MATLAB function entitled drop 2di2 ode, located in directory drop 2di
inside directory 03 hydrostat of Fdlib, solves the system of equations (5.8.6) and computes
the three components of the objective function, F:

function F = drop 2di2 ode (solution)

%--------------------------------------------

% Two-dimensional drop on an inclined plane.

%

% Integrate ODEs by the RK4 method with uniform

% step size for the slope angle psi

%

% SYMBOLS:

% -------

%

% dpsi: increments in psi

% C: shooting parameter

%--------------------------------------------

global area capls Isp npts beta alpha1 alpha2 d x y

%--------

% dispense variables

%--------

C = solution(1);

alpha1 = solution(2);

alpha2 = solution(3);

%--------

% prepare

%--------
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csb = cos(beta);

snb = sin(beta);

dpsi = (alpha1+alpha2)/npts;

dpsih = 0.5*dpsi;

%----------------

% first contact point

%----------------

psi = -alpha1; x(1) = 0.0; y(1) = 0.0;

%----------

% integrate

%----------

for i=1:npts

Q = Isp*(csb*x(i)+snb*y(i))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp1 = xp; yp1 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp2 = xp; yp2 = yp;

x(i+1) = x(i)+xp*dpsih;

y(i+1) = y(i)+yp*dpsih;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp =-cos(psi)/Q;

xp3 = xp; yp3 = yp;

psi = psi +dpsih;

x(i+1) = x(i)+xp*dpsi;

y(i+1) = y(i)+yp*dpsi;

Q = Isp*(csb*x(i+1)+snb*y(i+1))/capls-C;

xp = sin(psi)/Q; yp = -cos(psi)/Q;

xp4 = xp; yp4 = yp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi/6.0;

y(i+1) = y(i) + (yp1+2*yp2+2*yp3+yp4)*dpsi/6.0;

end
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F(1) = x(npts+1);

F(2) = y(npts+1)-d;

%----------------------------------------

% compute the are of the integrated shape

% by the trapezoidal rule

%----------------------------------------

ar = 0.0;

for i=1:npts

ar = ar+(x(i+1)+x(i))*(y(i+1)-y(i));

end

ar = 0.5*ar; % to account for trapezoidal weights

F(3) = ar-area;

%-----

% done

%-----

return

The improvement in the values of C, α1, and α2 in Step 5 of the algorithm can be done
using Newton’s method for solving a system of three nonlinear equations (5.8.12).2 The
method is implemented in the following Fdlib function entitled drop 2di2 newton3, located
in directory drop 2di1 inside directory 03 hydrostat of Fdlib:

function [x,f,Iflag] = drop 2di2 newton3 ...

...

(Niter ...

,eps ...

,x ...

)

%---------------------------------------------

% Newton’s method for three nonlinear equations

%

% SYMBOLS:

% --------

%

% eps: small interval for computing the Jacobian

% by numerical differentiation

% Dx: correction vector

% tol: accuracy

% Iflag: will set equal to 1 if something is wrong

%--------------------------------------------------

2Pozrikidis, C. (2008) Numerical Computation in Science and Engineering. Second Edition, Oxford
University Press.
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tol = 0.0000001;

%-----------

% initialize

%-----------

Iflag = 1;

%---------------------

% start the iterations

%---------------------

for Iter=1:Niter

f = drop 2di2 ode(x);

%---------------------

% compute the Jacobian

% by numerical differentiation

%---------------------

for j=1:3

x(j) = x(j)+eps; % perturb

f1 = drop 2di2 ode(x);

x(j) = x(j)-eps; % reset

for i=1:3

Jac(i,j) = (f1(i)-f(i))/eps;

end

end

%---

% solve the equation: Jac . Dx = - f

% for the correction vector Dx

% by Cramer’s rule

%---

A11 = Jac(1,1); A12 = Jac(1,2); A13 = Jac(1,3);

A21 = Jac(2,1); A22 = Jac(2,2); A23 = Jac(2,3);

A31 = Jac(3,1); A32 = Jac(3,2); A33 = Jac(3,3);

B1 = -f(1);

B2 = -f(2);

B3 = -f(3);

Det = A11*( A22*A33-A23*A32 ) ...

- A12*( A21*A33-A23*A31 ) ...

+ A13*( A21*A32-A22*A31 );
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Det1 = B1*( A22*A33-A23*A32 ) ...

- A12*( B2*A33-A23*B3 ) ...

+ A13*( B2*A32-A22*B3 );

Det2 = A11*( B2 *A33-A23*B3 ) ...

- B1*( A21*A33-A23*A31 ) ...

+ A13*( A21* B3-B2 *A31 );

Det3 = A11*( A22* B3-A32* B2 ) ...

- A12*( A21* B3-A31* B2 ) ...

+ B1*( A21*A32-A22*A31 );

dx(1) = Det1/Det;

dx(2) = Det2/Det;

dx(3) = Det3/Det;

%--------

% correct

%--------

x(1) = x(1)+dx(1);

x(2) = x(2)+dx(2);

x(3) = x(3)+dx(3);

%-------

% escape

%-------

Iescape = 1;

if(abs(dx(1)) > tol) Iescape = 0; end

if(abs(dx(2)) > tol) Iescape = 0; end

if(abs(dx(3)) > tol) Iescape = 0; end

if(Iescape==1)

Iflag = 0;

f = drop 2di2 ode(x);

return

end

%----

end % of iterations

%----

%-----

% done

%-----

return
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The overall method is implemented in the following MATLAB code entitled drop 2di2,
located in directory drop 2di inside directory 03 hydrostat of Fdlib:

%------------------------------------------------------

% Hydrostatic shape of a two-dimensional

% sessile drop resting on an inclined plane

% or a pendant drop hanging underneath a inclined plane,

% for a specified area and first contact points

%

% This code animates interfacial profiles on a

% continuously rotated plane.

%------------------------------------------------------

global area capls Isp npts beta alpha1 alpha2 d x y

Jsp = -1; % pendant

Jsp = 1; % sessile

gac = 1.0; % acceleration of gravity

gamma = 2.0; % surface tension

rhod = 1.0; % density of the drop

rhoa = 0.0; % density of the ambient fluid

area = pi; % drop area

alpha = 0.75*pi; % contact angle on a plane

npts = 32; % number of interfacial markers

epsilon = 0.01; % for the shooting method

maxiter = 16; % on a horizontal plane

tol = 0.000000001; % for the shooting method

%---

% compute the drop shape on a horizontal plane

% rcrc: radius of the circular drop

%---

rcrc = sqrt(area/(alpha-0.5*sin(2.0*alpha)));

B = 1.0/rcrc;

[B,x,y] = drop 2d ...

...

(Jsp,gac,gamma,rhod,rhoa,area ...

,alpha,npts,epsilon,maxiter,tol ...

,B);

%---

% shift to reset the origin at the wall

%---
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shiftx = x(npts+1);

x = x-shiftx;

%---

% position of the contact line

%---

d = 2*y(npts+1);

%---

% prepare to rotate

%---

drho = rhod-rhoa; % density difference

Isp = 1.0; % Isp is an orientation index

if(drho<0) Isp = -1.0; end

capls = gamma/(gac*abs(drho)); % square of the capillary length

npts = 2*npts;

C = B-shiftx/capls;

alpha1 = alpha;

alpha2 = alpha;

%------------

% start rotating

%------------

for repeat=1:1024

beta = 0.002*(repeat-1.0)*pi;

csb = cos(beta); snb = sin(beta);

ROT = [csb, snb; -snb, csb]; % rotation matrix for graphics

solution = [C alpha1 alpha2];

Niter = 10; % number of iterations

eps = 0.001; % step for numerical differentiation

[solution,F,Iflag] = drop 2di2 newton3 ...

...

(Niter ...

,eps ...

,solution ...

);

%---

% distribute the solution

%---

C = solution(1)
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alpha1 = solution(2)

alpha2 = solution(3)

% ---

% plot

% ---

xplot = -y; yplot = y;

for i=1:npts+1

xx = [xplot(i), yplot(i)];

xx = ROT*xx’;

xplot(i) = xx(1);

yplot(i) = xx(2);

end

plot(xplot,yplot,'-')

hold on

plot(csb*[0.5,-2.0],snb*[-0.5,2.0],'r','LineWidth',3)

axis equal

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

hold off

pause(0.1)

end

5.8.1 Two-dimensional drop on a horizontal or inclined plane

Derive a relation between the constant B introduced in (5.7.2) and the constant C introduced
in (5.8.5) for a horizontal plane, β = 0.

5.8.2 Two-dimensional drop on an inclined plane

Write a code that computes interfacial shapes for a fixed drop area and contact points, and
unspecified contact lines.

5.9 Axisymmetric meniscus inside a tube

To compute the shape of an axisymmetric interface, we work as in the case of a two-
dimensional interface discussed previously in this chapter, with some minor differences.
Added considerations include possible subtleties in the computation of the mean curvature
and a more pronounced sensitivity to numerical parameters. The new features will be
illustrated with reference to the axisymmetric versions of the two-dimensional configurations
studied in Sections 5.6 and 5.7.

Problems
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Figure 5.9.1 Illustration of an axisymmetric meniscus inside a vertical circular tube for (a) contact
angle α less than 1

2
π, and (b) α greater than 1

2
π/2.

In this section, we consider the shape of an axisymmetric meniscus inside a vertical
cylindrical tube of radius a, as illustrated in Figure 5.9.1. The axisymmetric meniscus is the
counterpart of the two-dimensional meniscus between two vertical plates shown in Figure
5.6.1.

In cylindrical polar coordinates, (x, σ), the axisymmetric meniscus can be described by
a function,

x = f(σ), (5.9.1)

where the ordered pair (σ, x) comprise Cartesian coordinates in an azimuthal plane with
origin positioned such that f(0) = 0, as shown in Figure 5.9.1. Regularity requires that
f ′(0) = 0, and the condition on the contact angle requires that

f ′(a) = cotα. (5.9.2)

Outside the tube, the interface assumes a flat horizontal shape with vanishing curvature
located at x = −h, where h is positive in Figure 5.9.1(a) and negative in Figure 5.9.1(b).

The pressure distributions in the two fluids are given by

p(1)(y) = −ρ1gy + π1, p(2)(y) = −ρ2gy + π2, (5.9.3)

where π1 and π2 are two reference pressures.
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Laplace–Young equation

Our main objective is to compute the capillary rise, h, along with the unknown meniscus
shape by solving the Laplace–Young equation (5.4.14). In the present problem, this equation
takes the specific form

2κm = −Δρ g

γ
x+B, (5.9.4)

where κm is the mean curvature, B ≡ (π2 − π1)/γ is a constant, and Δρ ≡ ρ2 − ρ1.

Evaluating equation (5.9.4) at a point outside and far from the tube where the mean
curvature of the interface tends to vanish and the interfacial elevation tends to −h, we obtain
the relation

B = − h

λ2
, (5.9.5)

where h is the capillary rise and λ2 ≡ γ/(Δρ g) is the square of the capillary length, under
the assumption that Δρ ≡ ρ2 − ρ1 > 0.

Combining the last two equations, we obtain the governing equation

2κm = −f + h

λ2
, (5.9.6)

involving the a priori unknown capillary rise, h. The numerator of the fraction on the
right-hand side, f + h, is the elevation of the meniscus with respect to the flat interface
outside the tube.

Mean curvature

The mean curvature is given by formulas (4.4.33) and (4.4.34), repeated below for conve-
nience,

2κm = − 1

σ

(
σ

f ′√
1 + f ′2

)′
= − f ′′

(1 + f ′2)3/2
− 1

σ

f ′√
1 + f ′2 (5.9.7)

and

2κm =
1

f ′

( 1√
1 + f ′2

)′
− 1

σ

f ′√
1 + f ′2 , (5.9.8)

where a prime denotes a derivative with respect to σ.

Applying equation (5.9.6) at the origin, x = 0, where f ′ = 0, we find that

h

λ2
= −2κ0

m = 2f ′′(0) (5.9.9)

where κ0
m = κm(0) is the centerline mean curvature.
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Meniscus height

Substituting the expression for the mean curvature given in (5.9.8) into the left-hand side
of the Laplace–Young equation (5.9.6), multiplying by f ′, and rearranging, we obtain( 1√

1 + f ′2

)′
− 1

σ

f ′2√
1 + f ′2 = − 1

λ2

[ 1

2
(f2)′ + hf ′ ]. (5.9.10)

Integrating with respect to σ across the tube radius from σ = 0 to a, we obtain

1− sinα =
1

λ2

( 1

2
d+ h

)
d− J , (5.9.11)

where

J ≡
∫ a

0

1

σ

f ′2√
1 + f ′2 dσ. (5.9.12)

The appearance of the integral J , associated with the second principal curvature, distin-
guishes the axisymmetric from the two-dimensional meniscus discussed in Section 5.6.

Vertical force balance

Substituting the first expression for the mean curvature given in (5.9.7) into the left-hand
side of the Laplace–Young equation (5.9.6), and multiplying both sides by σ, we obtain(

σ
f ′√

1 + f ′2

)′
=

f + h

λ2
σ. (5.9.13)

Integrating with respect to σ from 0 to a and noting that f ′(a) = cotα, we obtain

a cosα =
1

λ2

∫ b

0

(f + h)σ dx. (5.9.14)

This equation expresses a balance between the weight of the fluid inside the tube above or
below the flat interface, the buoyancy force, and the capillary force at the circular contact
line.

Differential equations

Substituting the second expression for the mean curvature given in (5.9.7) into the left-
hand side of the Laplace–Young equation (5.9.6), and rearranging, we derive a second-order
differential equation,

f ′′ = (1 + f ′2)
( − f ′

σ
+
√
1 + f ′2 f + h

λ2

)
. (5.9.15)

An equivalent first-order system is

df

dσ
= q,

dq

dσ
= (1 + q2)

( − q

σ
+
√
1 + q2

f + h

λ2

)
. (5.9.16)
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The first equation defines the slope function q, and the second equation enforces the Laplace–
Young equation.

Parametric representation

It is expedient to describe the shape of the interface in parametric form in terms of the slope
angle θ, varying from 0 at the centerline of the tube to the value 1

2π − α at the inner wall
of the tube, defined by

f ′ = tan θ, (5.9.17)

where α is the contact angle, as shown in Figure 5.9.1. The axial and radial positions of a
point at the interface are described by the functions

x = X(θ), σ = Σ(θ). (5.9.18)

In terms of the slope angle, the mean curvature is given by the expressions

2κm =
1

tan θ

d

dσ

( 1√
1 + tan2 θ

)
− sin θ

σ
=

1

tan θ

d cos θ

dσ
− sin θ

σ
(5.9.19)

and

2κm = − cos θ
dθ

dσ
− sin θ

σ
. (5.9.20)

In the case of a raised meniscus depicted in Figure 5.9.1(a), the angle θ is positive and
the second principal radius of curvature is negative, R2 < 0. In the case of a submerged
meniscus depicted in Figure 5.9.1(b), θ is negative and R2 > 0.

Substituting expression (5.9.20) into the left-hand side of the Laplace–Young equation
(5.9.6) and rearranging, we obtain the differential equation

dΣ

dθ
=

cos θ

Q
, (5.9.21)

where

Q ≡ X + h

λ2
− sin θ

Σ
. (5.9.22)

Equation (5.9.21) governs the parametric representation of the radial position, σ = Σ(θ), in
terms of the slope angle, θ. To derive a corresponding equation for the axial position X, we
combine the definition

f ′ = tan θ =
dX

dΣ
(5.9.23)

with equation (5.9.21), and obtain

dX

dθ
=

sin θ

Q
. (5.9.24)



5.9 Axisymmetric meniscus inside a tube 315

The boundary conditions require that Σ = 0 and X = 0 at θ = 0, and Σ = a at θ = 1
2π−α.

Evaluation at the origin

An apparent difficulty is encountered when we attempt to evaluate the function Q defined
in (5.9.22) at θ = 0, corresponding to the centerline, Σ = 0, as the second fraction on the
right-hand side becomes undefined.

However, using the l’Hôpital rule, we find that, as θ tends to zero, this ratio reduces to
the derivative dθ/dΣ. Substituting this asymptotic limit into (5.9.22) and the result into
(5.9.21) and (5.9.24), we derive the regularized initial conditions(dΣ

dθ

)
θ=0

= 2
λ2

h
,

(dX
dθ

)
θ=0

= 0, (5.9.25)

which are used to start up the integration.

Computer code

The following MATLAB function entitled men ax ode, located in directory men ax inside
subdirectory 03 hydrostat of Fdlib, integrates the differential equations using the modified
Euler method subject to a given value for h provided in the input:

function [x,s] = men ax ode (npts,capls,a,dthet,h)

%--------------------------------------------

% Integrate the ODEs for an axisymmetric meniscus

% by the modified Euler method

%

% npts: number of integration intervals

% cpls: square of the capillary length

%--------------------------------------------

%--------

% prepare

%--------

dtheth = 0.5*dthet;

%-----------

% centerline

%-----------

thet = 0.0; s(1) = 0.0; x(1) = 0.0;

%---

for i=1:npts

%---
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if(i==1)

sp = 2.0*capls/h;

xp = 0.0D0;

else

cs = cos(thet);

sn = sin(thet);

Q = (x(i)+h)/capls-sn/s(i);

xp = sn/Q;

sp = cs/Q;

end

xsv = x(i); % save

ssv = s(i); % save

xpsv = xp;

spsv = sp;

thet = thet+dthet;

x(i+1) = x(i)+xp*dthet;

s(i+1) = s(i)+sp*dthet;

cs = cos(thet);

sn = sin(thet);

Q = (x(i+1)+h)/capls-sn/s(i+1);

xp = sn/Q;

sp = cs/Q;

x(i+1) = xsv + (xpsv+xp)*dtheth;

s(i+1) = ssv + (spsv+sp)*dtheth;

%---

end

%---

%-----

% done

%-----

return

Solution by iteration

Since the value of the capillary rise, h, is a priori unknown, the solution must be found
by iteration. A shooting method for computing h can be implemented according to the
following steps:

1. Guess a value for h.

2. Solve equations (5.9.21) and (5.9.24) subject to the initial conditions Σ = 0 and X = 0
at θ = 0.
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3. Check whether the condition Σ = a at θ = 1
2π − α is satisfied. If not, improve the

guess using, for example, the secant method discussed in Section 5.7.

A reasonable guess for h at Step 1 can be obtained by assuming that the meniscus has a
spherical shape consistent with the prescribed contact angle, α. Using elementary trigonom-
etry, we find that

h 	 2
λ2

a
cosα. (5.9.26)

Note that, when α > 1
2π, the predicted rise is negative, in agreement with physical intuition.

The improvement in Step 3 can be made using the secant method discussed in Section
5.6.1 for the corresponding problem in two dimensions.

The algorithm is implemented in the following MATLAB function entitled men ax lo-
cated in directory 03 hydrostat of Fdlib:

function [Iflag,x,s,hout] = men ax ...

...

(a,gac,gamma,rhop,rhoa ...

,alpha,npts ...

,epsilon,maxiter,tol ...

,hin ...

)

%-----------------------------------

% shape of an axisymmetric meniscus

% inside a tube of radius computed

% by a shooting method for h

%

% hin: initial guess for h

%-----------------------------------

Iflag = 0; % flag for success

%----

% prepare

%----

drho = rhop-rhoa ; % density difference

% square of the capillary length:

capls = gamma/(gac*abs(drho));

npts1 = npts+1;

dthet = (0.5*pi-alpha)/npts;

%---------------------
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% initial guess for h

%---------------------

h(1) = hin;

%---

% compute the first solution of the odes

% to start-up the secant method

%---

Ic = 1; % counter

[x,s] = men ax ode(npts,capls,a,dthet,h(Ic));

error(Ic) = s(npts1)-a;

%-------------------------

% second start-up solution

%-------------------------

Ic = 2;

h(2) = h(1)+epsilon;

[x,s] = men ax ode(npts,capls,a,dthet,h(Ic));

error(Ic) = s(npts1)-a;

%---------------------------------------

% iterate using the secant method

% until convergence

%---------------------------------------

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2;

Ica = Ic-1;

dedh = (error(Ica)-error(Icb))/(h(Ica)-h(Icb));

h(Ic) = h(Ica) - error(Ica)/dedh;

[x,s] = men ax ode(npts,capls,a,dthet,h(Ic));

error(Ic) = s(npts1)-a;

if(abs(error(Ic))<tol)
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Figure 5.9.2 Shape of a meniscus inside a vertical tube generated by the Fdlib code men ax for
two contact angles.

break

end

%---

end

%---

if(iter==maxiter)

disp(’men ax: ODE solver failed’)

Iflag=1;

return

end

hout = h(Ic);

%---

% done

%---

return

Results of computations for a contact angle that is lower than 1
2π and a contact angle

that is higher than 1
2π are shown in Figure 5.9.2. In the second case, the meniscus submerges

below the level of the liquid outside the tube.

Scaling all lengths by the tube radius, a, we find that the shape of the meniscus depends
on the contact angle, α, and ratio λ/a. As λ/a increases, the meniscus tends to obtain a
spherical shape.
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Figure 5.10.1 Illustration of (a) an axisymmetric sessile liquid drop resting on a horizontal plane and
(b) an axisymmetric pendant liquid drop hanging under a horizontal plate.

5.9.1 Axisymmetric meniscus

Run the code men ax to generate a family of shapes corresponding to a fixed tube radius
and various contact angles. Generate another family of shapes corresponding to a contact
angle and various tube radii. Discuss the behavior of the capillary rise in each case.

5.10 Axisymmetric drop on a horizontal plane

Consider an axisymmetric drop of a fluid labeled 2 resting above or hanging underneath a
horizontal plane, as shown in Figure 5.10.1. The drop is surrounded by an ambient fluid
labeled 1. The resting drop shown in Figure 5.10.1(a) is a sessile drop, while the hanging
drop shown in Figure 5.10.1(b) is a pendant drop.

Our objective is to compute the shape of the interface for specified surface tension, γ,
contact angle, α, and drop volume, VD. The forthcoming analysis also applies for a gas
bubble regarded as a zero-density drop, ρ2 = 0.

The pressure distribution in the two fluids is given by the familiar expressions

p(1)(x) = −s1ρ1gx+ π1, p(2)(x) = −s1ρ2gx+ π2, (5.10.1)

where π1 and π2 are two reference pressures. The coefficient s1 is equal to 1 for a sessile drop
or −1 for a pendant drop, reflecting the orientation of gravity with respect to the positive
direction of the x axis. The shape of the interface is governed by the Laplace–Young equation
stated in (5.4.14),

2κm = −s1
Δρ g

γ
x+B, (5.10.2)

Problem
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where κm is the mean curvature of the interface, Δρ = ρ2−ρ1, and B ≡ (π2−π1)/γ is an a
priori constant with units of inverse length. In terms of the square of the capillary length,
λ2 ≡ γ/(|Δρ| g), equation (5.10.2) takes the compact form

2κm = −s1s2
x

λ2
+B, (5.10.3)

where the coefficient s2 is equal to 1 if ρ2 > ρ1 or −1 if ρ2 < ρ1.

Applying equation (5.10.2) at the origin, we find that the constant B is equal to twice
the mean curvature of the interface at the centerline,

B = 2κ0
m, (5.10.4)

where we have denoted κ0
m = κm(0).

Mean curvature

In Section 4.3, we saw that, if the position of the drop surface is described by a function

σ = w(x), (5.10.5)

then the mean curvature is given by the expressions

2κm = − w′′

(1 + w′2)3/2
+

1

w

1√
1 + w′2 = −

( w′
√
1 + w′2

)′
+

1

w

1√
1 + w′2 (5.10.6)

and

2κm =
1

ww′

( w√
1 + w′2

)′
, (5.10.7)

where a prime denotes a derivative with respect to x.

Drop height

Substituting the second expression for the mean curvature given in (5.10.6) into the Young–
Laplace equation (5.10.3), we obtain

−
( w′
√
1 + w′2

)′
+

1

w

1√
1 + w′2 = −s1s2

x

λ2
+B. (5.10.8)

Integrating with respect to x across the height of the drop from x = −d to 0, we obtain

1− cosα = 2 sin2
α

2
= s1s2

1

2

d2

λ2
+B d− J , (5.10.9)

where

J ≡
∫ 0

−d

1

w

dx√
1 + w′2 =

∫ 0

−d

sinψ

σ
dx, (5.10.10)
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and the slope angle, ψ, is defined by the equation

w′ = − cotψ, (5.10.11)

as shown in Figure 5.10.1. The appearance of the integral J associated with the second
principal curvature distinguishes the axisymmetric from the two-dimensional drop discussed
in Section 5.7.

When s1s2 = 1, the top of the drop is nearly flat due to dominant gravitational effects,
Bd 	 0. Under these conditions, the integral J can be approximated by integrating around
the sides of the drop where w 	 b. Using the two-dimensional meniscus equation (5.5.10),
we obtain

w′ 	 1

φ

2− φ2√
4− φ2

(5.10.12)

and approximate

J 	 λ

2 b

∫ d/λ

0

φ
√

4− φ2 dφ =
1

6

λ

b

(
8−
(
4− d2

λ2

)3/2 )
, (5.10.13)

where ξ ≡ x+ d is the distance of the interface from the support and φ = ξ/λ. For a nearly
flat drop, equation (5.10.9) then gives

2 sin2
α

2
	 1

2

d2

λ2
+

1

6

λ

b

[
8−
(
4− d2

λ2

)3/2 ]
, (5.10.14)

which provides us with a relation between the drop height, b, and the radius of the base, b.
When the ratio d/λ is small, we obtain

d 	 2λ sin
α

2
, (5.10.15)

consistent with the elevation of a semi-infinite meniscus attached to a vertical plate.

Vertical force balance

Substituting the expression for the curvature given in (5.10.7) into the Young–Laplace equa-
tion (5.10.3), and rearranging, we obtain( w√

1 + w′2

)′
= −s1s2

1

2

1

λ2

[
(xw2)′ − w2

]
+B

1

2
(w2)′. (5.10.16)

Integrating with respect to x across the height of the drop from x = −d to 0, we obtain

b sinα = s1s2
1

2

1

λ2

(
d b2 − 1

π
VD ) +

1

2
B b2, (5.10.17)

where

VD = π

∫ 0

−d

w2(x) dx (5.10.18)
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is the drop volume and d is the drop height, as shown in Figure 5.10.1. Given α and VD,
equation (5.10.17) can be used to compute b, d, or B = 2κ0

m, from knowledge of two others.

In fact, equation (5.10.17) expresses a force balance. To demonstrate this, we note that
the additional force exerted on the plane due to the drop is

ΔFx = −(πb2) (p(2) − p(1))x=−d = −(πb2)
(
s1Δρ gd+Bγ

)
. (5.10.19)

Adding to this force the capillary force around the circular contact line, we obtain the total
vertical force

Fx = ΔFx + 2πbγ sinα = −s1Δρ g πb2d− γ πb
(
Bb− 2 sinα

)
. (5.10.20)

The first term on the right-hand side is the weight of of a cylindrical column of fluid with
radius b and height d reduced by the buoyancy force. This force is precisely equal to the
weight of the drop reduced by the buoyancy force,

Fx = −s1Δρ gVD, (5.10.21)

yielding the relation

s1s2 (VD − πd b2) = πb λ2
(
Bb− 2 sinα

)
, (5.10.22)

which is precisely equation (5.10.17).

Parametric representation

Working as in Section 5.7 for a two-dimensional drop, we describe the interface parametri-
cally in terms of the slope angle ψ defined in Figure 5.10.1 as

x = X(ψ), σ = Σ(ψ), (5.10.23)

where

cotψ = − dΣ

dX
. (5.10.24)

Substituting these expressions into (5.10.7), we obtain

2κm = − 1

cotψ

d

dX

( 1

(1 + cot2 ψ)1/2

)
+

sinψ

Σ
= − 1

cotψ

d sinψ

dX
+

sinψ

Σ
(5.10.25)

and

2κm = − sinψ
dψ

dX
+

sinψ

Σ
=

d cosψ

dX
+

sinψ

Σ
. (5.10.26)

Substituting these expressions into the Young–Laplace equation (5.10.2), we obtain

sinψ
dψ

dX
− sinψ

Σ
= −d cosψ

dX
− sinψ

Σ
= s1

Δρ g

γ
X −B. (5.10.27)
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Rearranging, we obtain

sinψ
dψ

dX
= s1

Δρ g

γ
X −B +

sinψ

Σ
, (5.10.28)

which provides us with the differential equations

dX

dψ
=

sinψ

Q
,

dΣ

dψ
= −cosψ

Q
, (5.10.29)

where

Q ≡ sinψ

Σ
+ s1s2

X

λ2
−B. (5.10.30)

We observe that the shape of a bubble on a flat plate, s1 = 1 and s2 = −1, is similar to
that of a drop underneath a flat plate, s1 = −1 and s2 = 1.

Since the origin of the x axis is set at the a priori unknown highest elevation of the
interface where ψ = 0,

X(0) = 0, Σ(0) = 0. (5.10.31)

The constraint on the drop volume, VD, takes the form

π

∫ 0

−d

Σ2 dx = VD, (5.10.32)

where x = −d describes the position of the plane, as shown in Figure 5.10.1. At the axis of
symmetry located at σ = 0, equations (5.10.29) are replaced by the regularized equations(dΣ

dψ

)
ψ=0

=
2

B
,

(dX
dψ

)
ψ=0

= 0, (5.10.33)

arising from Taylor series expansions.

Equations (5.10.29) can be solved by the shooting method discussed in Section 5.7 for
the corresponding problem in two dimensions. A reasonable guess for the constant B can
be obtained by assuming that the interface is a section of a sphere, and then computing
the radius of the sphere, �, to satisfy the constraints on the contact angle and drop volume.
Using elementary trigonometry, we find that

� =
( 3VD/π

2 + cos3 α− 3 cosα

)1/3
, (5.10.34)

and set B = 2/�.

A numerical method for solving the boundary-value problem is implemented in a code
entitled drop ax, located in directory 03 hydrostat of Fdlib, not listed in the text. The
algorithm incorporates minor modifications of the code drop 2d listed in Section 5.7.
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Figure 5.10.2 Shapes of (a) a sessile and (b) a pendant drops for contact angle α = 3
4
π and α = 1

4
π

computed by code drop ax of Fdlib. The dotted lines show the approximate spherical shape
arising for small drops or large surface tension.

Drop shapes computed using this code are shown in Figure 5.10.2 where the x and y
coordinates are scaled by the equivalent drop radius, a, defined by the equation VD = 4πa3/3.
Gravity squeezes the sessile drop toward the wall and pulls the pendant drop away from the
wall.

Solution space

The numerical method described earlier in this section fails when the drop develops a re-
entrant shape near the base. The reason is that, when this occurs, the functions X(ψ) and
Σ(ψ) cease to be single valued.

To address this difficulty, we integrate the parametric differential equations from ψ = 0
up to a specified maximum value ψmax < α, and then continue the integration regarding
the radial distance as a function of the axial position, σ = w(x). To perform the integration
with respect to x, we substitute the expression for the mean curvature given in (5.10.6) into
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the Laplace–Young equation and obtain

− w′′

(1 + w′2)3/2
+

1

σ

1√
1 + w′2 = −Δρ g

γ
x+B, (5.10.35)

where a prime denotes a derivative with respect to x. Rearranging, we derive the second-
order differential equation,

w′′ = (1 + w′2)
( 1

w
+
√
1 + w′2 (s1s2

x

λ2
−B)

)
, (5.10.36)

which can be resolved into a system of two first-order equations,

dw

dx
= q,

dq

dx
= (1 + q2)

( 1

w
+
√
1 + q′2

(
s1s2

x

λ2
−B

) )
. (5.10.37)

Initial conditions are provided by the values computed at the end of the integration domain
with respect to ψ.

The following MATLAB function entitled drop ax1 ode, located in directory drop ax
inside directory 03 hydrostat of Fdlib, integrates successively the two sets of differential
equations:

function [x,s,Ntot,vlm,slope] = drop ax1 ode ...

...

(npts1 ... % number of steps using the psi parametrization

,capls ... % square of the capillary length

,Isp ...

,psi max ...

,B ...

,ratio ... % grading of psi integration intervals

,Next ... % determines the x position of the drop base

,npts2 ... % number of steps using the x parametrization

)

%--------------------------------------------

% Integrate ODEs using RK4

% Return the interfacial profile (x, s)

% total number of divisions (Ntot)

% volume of the drop (vlm)

% slope at the base (slope)

%--------------------------------------------

%==============

% first section

%==============

%---------

% set the step size vector dpsi

% so that it increases geometrically
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% by the factor "ratio"

%---------

if(ratio==1)

alp = 1.0;

factor = 1.0/npts1;

else

texp = 1/(npts1-1);

alp = ratio^texp1;

factor = (1.0-alp)/(1.0-alp^npts1);

end

dpsi(1) = psi max*factor;

for i=2:npts1

dpsi(i) = dpsi(i-1)*alp;

end

%----------------

% top of the drop

%----------------

psi = 0.0;

x(1) = 0.0;

s(1) = 0.0;

%----------

% integrate

%----------

for i=1:npts1

dpsih(i) = 0.5*dpsi(i);

if(i==1)

xp = 0.0;

sp = 2.0/B;

else

Q = sin(psi)/s(i)+Isp*x(i)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

end

xp1 = xp;

sp1 = sp;

psi = psi +dpsih(i);

x(i+1) = x(i)+xp*dpsih(i);

s(i+1) = s(i)+sp*dpsih(i);
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Q = sin(psi)/s(i+1)+Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

xp2 = xp;

sp2 = sp;

x(i+1) = x(i)+xp*dpsih(i);

s(i+1) = s(i)+sp*dpsih(i);

Q = sin(psi)/s(i+1)+Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

xp3 = xp;

sp3 = sp;

psi = psi +dpsih(i);

x(i+1) = x(i)+xp*dpsi(i);

s(i+1) = s(i)+sp*dpsi(i);

Q = sin(psi)/s(i+1)+Isp*x(i+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

xp4 = xp;

sp4 = sp;

x(i+1) = x(i) + (xp1+2*xp2+2*xp3+xp4)*dpsi(i)/6.0;

s(i+1) = s(i) + (sp1+2*sp2+2*sp3+sp4)*dpsi(i)/6.0;

end

Ntot = npts1;

%==============

% continue the integration with a uniform step "dx"

% using the x parametrization up to x = Next*x(npts1+1)

%==============

dx = Next*x(npts1+1)/npts2;

%---

% initial slope

%---

Q = sin(psi)/s(npts1+1)+Isp*x(npts1+1)/capls-B;

xp = sin(psi)/Q;

sp =-cos(psi)/Q;

q(npts1+1) = xp/sp; % dx/dsigma
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%---

% integrate

%---

for i=npts1+1:npts1+npts2+2

dsdx = q(i);

tmp = 1+q(i)*q(i);

dqdx = tmp*( 1/s(i)+sqrt(tmp)*(Isp*x(i)/capls-B) );

dsdx1 = dsdx;

dqdx1 = dqdx;

x(i+1) = x(i)+0.5*dx;

s(i+1) = s(i)+0.5*dx*dsdx;

q(i+1) = q(i)+0.5*dx*dqdx;

dsdx = q(i+1);

tmp = 1+q(i+1)*q(i+1);

dqdx = tmp*( 1/s(i+1)+sqrt(tmp)*(Isp*x(i+1)/capls-B) );

dsdx2 = dsdx;

dqdx2 = dqdx;

x(i+1) = x(i)+0.5*dx;

s(i+1) = s(i)+0.5*dx*dsdx;

q(i+1) = q(i)+0.5*dx*dqdx;

dsdx = q(i+1);

tmp = 1+q(i+1)*q(i+1);

dqdx = tmp*( 1/s(i+1)+sqrt(tmp)*(Isp*x(i+1)/capls-B) );

dsdx3 = dsdx;

dqdx3 = dqdx;

x(i+1) = x(i)+dx;

s(i+1) = s(i)+dx*dsdx;

q(i+1) = q(i)+dx*dqdx;

dsdx = q(i+1);

tmp = 1+q(i+1)*q(i+1);

dqdx = tmp*( 1/s(i+1)+sqrt(tmp)*(Isp*x(i+1)/capls-B) );

dsdx4 = dsdx;

dqdx4 = dqdx;

s(i+1) = s(i)+dx*(dsdx1+2.0*dsdx2+2.0*dsdx3+dsdx4)/6.0;

q(i+1) = q(i)+dx*(dqdx1+2.0*dqdx2+2.0*dqdx3+dqdx4)/6.0;

Ntot = Ntot+1;

if(s(i+1)<0) break; end

end
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slope = q(i+1);

%-------------------------------------------

% compute the volume of the integrated shape

% by the trapezoidal rule

%-------------------------------------------

vlm = 0.0;

for i=1:Ntot

vlm = vlm+(s(i+1)*s(i+1)+s(i)*s(i))*abs(x(i+1)-x(i));

end

vlm = 0.5*vlm; % to account for trapezoidal weights

vlm = pi*vlm;

%-----

% done

%-----

return

Families of shapes parametrized by the constant B can be generated by specifying the
capillary length, λ, and then computing the numerical parameter Next to ensure a specified
drop volume. The constant B determines the contact angle implicitly, while the parameter
Next determines the location of the drop base explicitly. Finding the proper value of Next
can be done using the secant method.

The numerical procedure is implemented in the following MATLAB function entitled
drop ax1, located in directory drop ax inside directory 03 hydrostat of Fdlib:

%----

% Solution branches of a sessile or pendant drop

%----

a = 1.0; % drop radius

Isp = -1; % pendant drop

psi max = 0.25*pi;

npts1 = 24;

npts2 = 48;

ratio = 0.9;

maxiter = 10; % for secant iterations

tol = 0.0000001; % for secant iterations

%---

% prepare

%---

volume = 1.0*4*pi*a^3/3;
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%---

% family parameters

%---

capls = 2.0;

Nloop = 2*2*2*2*2*2*128;

Bmin = 1.00;

Bmax = 4.0;

DB = 0.0020;

Nplot = 32; % will plot after Nplot shapes

%---

% prepare to plot

%---

figure(1)

hold on

xlabel('y/a','fontsize',15)

ylabel('x/a','fontsize',15)

set(gca,'fontsize',15)

axis equal

box on

xwall(1) =-1.8; ywall(1) = 0;

xwall(2) = 1.8; ywall(2) = 0;

if(Isp==1)

patch([xwall xwall(2) xwall(1)], ...

[ywall ywall(2)-0.2 ywall(1)-0.2],'g')

else

patch([xwall xwall(2) xwall(1)], ...

[ywall ywall(2)+0.2 ywall(1)+0.2],'g')

end

plot(xwall,ywall,'k')

%---

% prepare to loop

%---

B = Bmin;

Next(1) = 2.0;

Iplot = Nplot;

%============

for Iloop=1:Nloop % loop over B

%============

B = B+DB;
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Ic = 1; % counter

[ x,s,Ntot,vlm,slope ] = drop ax1 ode ...

...

(npts1 ...

,capls ...

,Isp ...

,psi max ...

,B ...

,ratio ...

,Next(1) ...

,npts2 ...

);

error(Ic) = vlm-volume;

Ic = 2;

Next(Ic) = Next(Ic-1)+0.10;

[x,s,Ntot,vlm,slope] = drop ax1 ode ...

...

(npts1 ...

,capls ...

,Isp ...

,psi max ...

,B ...

,ratio ...

,Next(2) ...

,npts2 ...

);

error(Ic) = vlm-volume;

%---------------------------------------

% iterate on Next using the secant method

% until convergence

%---------------------------------------

Iconverged = 0;

for iter=1:maxiter

Ic = Ic+1;

%---

% secant updating

%---

Icb = Ic-2;
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Ica = Ic-1;

dedc = (error(Ica)-error(Icb))/(Next(Ica)-Next(Icb));

Next(Ic) = Next(Ica)-error(Ica)/dedc;

[x,s,Ntot,vlm,slope] = drop ax1 ode ...

...

(npts1 ...

,capls ...

,Isp ...

,psi max ...

,B ...

,ratio ...

,Next(Ic) ...

,npts2 ...

);

error(Ic) = vlm-volume;

err = abs(error(Ic));

if(err<tol)

Iconverged = 1;

break;

end

%----

end

%----

Next(1) = Next(Ic);

if(Iplot==Nplot)

figure(1)

x = x-x(Ntot+1); % shift the profile

plot( s,Isp*x,'k-')

plot(-s,Isp*x,'k-')

Iplot = 0;

end

Iplot = Iplot+1;

if(B>Bmax) break; end

%============

end

%============

A family of shapes generated by the code is shown in Figure 5.10.2. We observe interesting
compact, light-bulb, and hourglass interfacial contours. However, not all of these shapes are
stable and therefore expected to occur in practice.
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Figure 5.10.2 A family of axisymmetric drop shapes corresponding to a fixed capillary length and
varying contact angle.

5.10.1 Drop on a plane

(a) Derive the regularized expressions (5.10.33) departing from equations (5.10.29) and
(5.10.30). (b) Derive formula (5.10.34).

5.10.2 Axisymmetric drops

Run the code drop ax to generate a family of shapes corresponding to a fixed value drop
volume and various contact angles. Generate another family of shapes corresponding to a
fixed contact angle and various drop volumes.

5.11 A sphere straddling an interface

In Section 5.2.1, we discussed the equilibrium position of a spherical particle floating on a
flat interface. The flat interfacial shape is established under specific conditions, or else when
the capillary length, λ, is much smaller than the particle size. A more sophisticated analysis
is required under more general circumstances.

Shown in Figure 5.11.1 is a floating sphere of radius a straddling an axisymmetrically
deformed and otherwise flat interface. The origin of the x axis is set at the position of the
flat interface far from the sphere. The center of the sphere is located at x = xc and the
circular contact line is located at the axial and radial positions

xcl = xc + a cosβ, σcl = a sinβ, (5.11.1)

where the floating angle, β, varies in the range [0, π]. In the case of a flat interface, xcl = 0
and xc = −a cosβ.

Problems
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Figure 5.11.1 Illustration of a sphere straddling a curved axisymmetric interface between two fluids.

The shape of the axisymmetric meniscus can be described by a function,

x = f(σ). (5.11.2)

Working as in Section 5.9 for an axisymmetric meniscus, and requiring that the mean
curvature of the interface decays to zero far from the particle, as σ tends to infinity, we
derive a system of two first-order differential equations,

df

dσ
= q,

dq

dσ
= (1 + q2)

(− q

σ
+
√
1 + q2

f

λ2

)
, (5.11.3)

where λ2 = γ/(Δρg) is the square of the capillary length and Δρ = ρ2 − ρ1 is the density
difference between the lower and upper fluids. A Bond number can be defined in the terms
of the capillary length as

Bo =
Δρga2

γ
=
(a
λ

)2
. (5.11.4)

Physically, the Bond number is a measure of the extent of the interfacial deformation around
the contact line.

The contact line condition requires that

f(σcl) = xcl, q(σcl) = tan(α− β), (5.11.5)

and the far-field condition requires that

f(∞) = 0, (5.11.6)

where α is the contact angle, as shown in Figure 5.11.1.

The following MATLAB function entitled flsphere ode, located in directory flsphere in-
side directory 03 hydrostat of Fdlib, integrates the differential equations (5.11.3) using the
fourth-order Runge–Kutta method:



336 Fluid Dynamics: Theory, Computation, and Numerical Simulation

function [f,s,q] = flsphere ode (ndiv,smax,capls,xcl,scl,slope);

%=====================================================

% solve ODEs for a semi-infinite axisymmetric meniscus

% by the RK4 method

%

% scl: sigma of contact line

%

% will integrate from scl to smax

%=====================================================

dsg = (smax-scl)/ndiv;

dsgh = 0.5*dsg;

s(1) = scl; % starting point

f(1) = xcl;

q(1) = slope;

%---

% integrate

%---

for i=1:ndiv

fp = q(i);

tmp = 1+q(i)*q(i);

tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i) + f(i)*tmg);

fp1 = fp;

qp1 = qp;

s(i+1) = s(i)+ dsgh;

f(i+1) = f(i)+fp*dsgh;

q(i+1) = q(i)+qp*dsgh;

fp2 = fp;

qp2 = qp;

fp = q(i+1);

tmp = 1+q(i+1)*q(i+1);

tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i+1) + f(i+1)*tmg);

fp3 = fp;

qp3 = qp;

f(i+1) = f(i)+fp*dsgh;

q(i+1) = q(i)+qp*dsgh;

fp = q(i+1);

tmp = 1+q(i+1)*q(i+1);
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tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i+1) + f(i+1)*tmg);

s(i+1) = s(i)+ dsg;

f(i+1) = f(i)+fp*dsg;

q(i+1) = q(i)+qp*dsg;

fp = q(i+1);

tmp = 1+q(i+1)*q(i+1);

tmg = sqrt(tmp)/capls;

qp = tmp*(-fp/s(i+1) + f(i+1)*tmg);

fp4 = fp;

qp4 = qp;

f(i+1) = f(i) + (fp1+2*fp2+2*fp3+fp4)*dsg/6.0;

q(i+1) = q(i) + (qp1+2*qp2+2*qp3+qp4)*dsg/6.0;

end

%---

% done

%---

return

Note that the interfacial slope, q(σcl), is provided in the last argument of the input.

Force exerted on the sphere

To compute the force exerted on the sphere, we note that the pressure distribution in the
upper or lower fluid is given by

p(1)(x) = −ρ1 g x+ π0, p(2)(x) = −ρ2 g x+ π0, (5.11.7)

where π0 is the interfacial pressure far from the sphere. By symmetry, the y and z compo-
nents of the buoyancy force exerted on the sphere are identically zero. The x component of
the buoyancy force is given by

F buoyancy
x = −

∫∫
p nx dS, (5.11.8)

where nx = cos θ is the x component of the unit vector normal to the sphere and θ is the
meridional angle defined in Figure 5.11.1. Writing

dS = (σ dϕ)(a dθ), σ = a sin θ, (5.11.9)

and thus

dS = a2 sin θ dθ dϕ, (5.11.10)
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and integrating with respect to the azimuthal angle, ϕ, we find that

F buoyancy
x = 2πa2

( ∫ β

0

p(1)(θ) cos θ d cos θ +

∫ π

β

p(2)(θ) cos θ d cos θ
)
. (5.11.11)

Next, we substitute the expressions for the pressure, set x = xc + a cos θ, and simplify to
obtain

F buoyancy
x = −2πa2g

(
ρ1

∫ β

0

(xc + a cos θ) cos θ d cos θ + ρ2

∫ π

β

(xc + a cos θ) cos θ d cos θ
)
.

(5.11.12)

As expected on physical grounds, the constant π0 does not make a net contribution to the
force. Carrying out the integration, we find that

F buoyancy
x = −2πga2

(
ρ1 xc

cos2 β − 1

2
+ ρ1 a

cos3 β − 1

3

+ρ2 xc
1− cos2 β

2
− ρ2 a

1 + cos3 β

3

)
. (5.11.13)

Rearranging, we obtain

F buoyancy
x = πga2

(
xc Δρ (cos2 β − 1) +

2

3
aΔρ cos3 β +

4

3
a ρ
)
, (5.11.14)

where

ρ =
1

2
(ρ1 + ρ2) (5.11.15)

is the mean fluid density. When ρ1 = ρ2 = ρ, only the last term survives, yielding the
buoyancy force on a submerged sphere.

Surface tension pulls the sphere tangentially to the interface at the contact line. Inte-
grating the tension along the circular contact line, we derive the resultant x component of
the capillary force,

F capillary
x = γ (2πσcl) sin(α− β) = 2πaγ sinβ sin(α− β), (5.11.16)

where σcl = a sinβ is the radius of the circular contact line.

Force equilibrium requires that

F buoyancy
x + F capillary

x = W, (5.11.17)

where W is the weight of the sphere. We may set W = 4π
3 a3ρsg, where ρs is the actual or

effective density of the sphere. Simplifying, we derive a force equilibrium equation,

xc

a
sin2 β =

2

3
cos3 β +

2

3
κ+ 2

λ2

a2
sinβ sin(α− β), (5.11.18)
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where

κ = 2
ρ− ρs
Δρ

(5.11.19)

is a dimensionless parameter. The limits κ → −1 or 1 correspond to ρs = ρ2 or ρ1, where
the sphere is neutrally buoyant in the lower or upper fluid.

Far-field meniscus

Far from the sphere, the interfacial slope is small. Linearizing the Laplace–Young equation,
we obtain the zeroth-order Bessel equation,

f ′′ = −f ′

σ
+

f

λ2
. (5.11.20)

An acceptable solution that decays at infinity is proportional to the modified Bessel function
of zeroth order, K0,

f(σ) 	 ξ aK0(σ/λ), (5.11.21)

where ξ is a dimensionless constant. It is beneficial to eliminate the constant ξ by formulating
the ratio between the shape function f and its derivative, finding

f(σ) + λ
K0(σ/λ)

K1(σ/λ)
f ′(σ) 	 0, (5.11.22)

where K1 is the first-order modified Bessel function. This condition can be applied at
a sufficiently large value of σ in place of the far-field condition (5.11.6) to improve the
performance of the numerical methods.

Flat interface solution

In the case of a flat interface, xc = −a cosβ, the expression for the buoyancy force simplifies
to

F buoyancy,flat
x = πga3Δρ cosβ (1− 1

3
cos2 β) +

2

3
πga3 (ρ2 + ρ1). (5.11.23)

The contact angle is equal to the contact line aperture, α = β, the capillary force vanishes,
and the trigonometric equation (5.11.18) simplifies to a cubic equation for cosβ,

cos3 β − 3 cosβ − 2κ = 0. (5.11.24)

A solution for cosβ in the admissible range [−1, 1] exists only when |κ| < 1.

Solution algorithm

When |κ| < 1, equation (5.11.18) and the accompanying Laplace–Young equation admit a
solution in a limited range of sufficiently high capillary lengths. A numerical method for
computing hydrostatic shapes can be implemented according to the following steps:
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1. Begin by considering a flat interface, solve the cubic equation (5.11.24) for cosβ, and
recover an approximation to β.

2. Choose a value for the contact angle, α 	 β.

3. Solve equation (5.11.18) for xc to satisfy the vertical force balance.

4. Integrate the system of differential equations (5.11.3) from σ = σcl up to a specified
distance, σ = σmax, and check whether f(σmax) = 0. If not, we adjust β to make it
so. The adjustment can be done using the secant or Newton’s method.

5. Change the contact angle, α, and return to Step 3 to obtain a new configuration.

The procedure ensures that a good initial guess is available for the shooting method, obtained
by parameter continuation.

The numerical method is implemented in a MATLAB function entitled flsphere, located
in directory 03 hydrostat of Fdlib:

function [s,x,q,beta,alpha,xc,xcl,scl ...

,beta flat,xc flat ...

,al scan,bt scan,xc scan] ...

...

= flsphere(a,capl,rho1,rho2,kappa,alphain ...

,smax,ndiv ...

,mincut,maxcut ...

,iplot shape)

%===================================================

% Compute families of floating sphere configurations

%

% alphain: targeted value of alpha

% (will stop when alpha = alphain)

%===================================================

%-----------

% parameters

%-----------

eps = 0.0000001; % for Newton’s method

tol = 0.0000001; % for Newton’s method

%---

% will scan the contact angle space with step dal

% that depends on the capillary length

%---

dal = -0.005;

if(capl<1.5) dal = -0.002; end



5.11 A sphere straddling an interface 341

if(capl<0.9) dal = -0.001; end

if(capl<0.8) dal = -0.0005; end

Nmax = 2*abs(floor(pi/dal)) % to prevent run off

%----

% prepare

%---

Drho = rho2-rho1;

Brho = 0.5*(rho1+rho2); % mean fluid density

rhos = Brho-0.5*kappa*Drho; % density of the sphere

capls = capl^2; % square of the capillary number

%----

% flat interface solution

%

% computed by solving a cubic equation using

% the "roots" matlab function (internal)

%---

C(1) = 1.0;

C(2) = 0.0;

C(3) = -3.0;

C(4) = -2*kappa;

cosbeta = roots(C); % roots() is an internal matlab function

if(abs(cosbeta(1))<1)

beta = acos(cosbeta(1));

elseif(abs(cosbeta(2))<1)

beta = acos(cosbeta(2));

elseif(abs(cosbeta(3))<1)

beta = acos(cosbeta(3));

end

xc = -a*cos(beta);

beta flat = beta; xc flat = xc;

%---

% prepare to scan the contact angle (alpha)

%---

Ido = 1;

Iflag = 0;

Icount = 0; % counter

Jcount = 0; % counter

Irecord = 1; % recording flag

alpha = beta; % flat plate contact angle
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%---

while(Ido==1) % loop over contact angles

%---

Icount = Icount+1;

itermax = 20;

for iter=1:itermax

%---

% solve for beta using Newton’s method

%---

cs = cos(beta);

sn = sin(beta);

amb = alpha-beta;

xc = (2/3*cs^3 + 2/3*kappa + 2*capls/a^2*sn*sin(amb))/sn^2;

xcl = xc+a*cs;

scl = a*sn;

slope = tan(amb);

[x,s,q] = flsphere ode(ndiv,smax,capls,xcl,scl,slope);

% obj = x(ndiv+1); % primary far-field

arg = s(ndiv+1)/capl; % far-field from asymptotics

obj = x(ndiv+1) + capl*besselk(0,arg) ...

/besselk(1,arg)*q(ndiv+1);

if(abs(obj)<tol) break; end

beta = beta+eps;

cs = cos(beta);

sn = sin(beta);

amb = alpha-beta;

xc = (2/3*cs^3 + 2/3*kappa + 2*capls/a^2*sn*sin(amb))/sn^2;

xcl = xc+a*cs;

scl = a*sn;

slope = tan(amb);

[x1,s1,q1] = flsphere ode(ndiv,smax,capls,xcl,scl,slope);

% obj1 = x1(ndiv+1); % primary far-field

arg1 = s1(ndiv+1)/capl; % far-field from asymptotics

obj1 = x1(ndiv+1) + capl*besselk(0,arg) ...

/besselk(1,arg)*q1(ndiv+1);
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beta = beta-eps; % reset

der = (obj1-obj)/eps;

correction = -obj/der;

beta = beta+correction;

if(abs(correction)<0.0000001) break; end

end % of Newton iterations

if(iter==itermax)

disp("flsphere: Newton iterations did not converge")

return

end

cs = cos(beta);

sn = sin(beta);

amb = alpha-beta;

xc = (2/3*cs^3 + 2/3*kappa + 2*capls/a^2*sn*sin(amb))/sn^2;

%==============

% plotting session

%==============

%---

if(iplot shape==1)

%---

figure(10)

hold on

xlabel(’y/a’,’fontsize’,15)

ylabel(’x/a’,’fontsize’,15)

%---

% plot the interface profile

%---

plot(s,x,’k’);

plot(-s,x,’k’);

axis equal

%---

% plot the particle contour

%---

ncrc=64;

for i=1:ncrc+1

tht = (i-1)*2*pi/ncrc;

xcrc(i) = xc+a*cos(tht);
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scrc(i) = a*sin(tht);

end

plot(scrc,xcrc,’k’);

patch(scrc,xcrc,’y’);

pause(0.001)

%======

end % of plotting

%======

if(Irecord==1)

Jcount = Jcount +1;

al scan(Jcount) = alpha/pi;

bt scan(Jcount) = beta/pi;

xc scan(Jcount) = xc/a;

end

if(Iflag==1)

break;

end

alpha = alpha+dal;

%-------

% change alpha scanning direction or lock

%-------

if(alpha<0.01*pi)

dal = abs(dal);

alpha = alpha + dal;

elseif(alpha>0.99*pi)

dal = -abs(dal);

alpha = alpha+dal;

elseif(abs(alpha-alphain)<1.0*abs(dal)) % lock on alphain

alpha = alphain + 0.00;

Iflag = 1;

end

if(Icount>Nmax) break; end

%---

end

%---

return

Nondimensionalizing lengths by the sphere radius, a, we find that the interfacial profile
depends on the ratio of the capillary length to the sphere radius, λ/a, the density difference



5.11 A sphere straddling an interface 345

(a) (b)

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y/a

x/
a

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

y/a

x/
a

Figure 5.11.2 Axisymmetric interfacial profiles attached to a floating sphere for λ/a = 1 and (a)
κ = 0.5, α = 0.98π, or (b) κ = −0.5, α = 0.0242π.

ratio, κ, and the contact angle, α. Two interfacial shapes are shown in Figure 5.11.2(a, b).
In Figure 5.11.2(a), a heavy hydrophobic particle is kept afloat. In Figure 5.11.2(b), a light
hydrophilic particle is held captive.

Graphs of the particle center position against the contact angle, α, are shown in Figure
5.11.3 for κ = 0 and 1

2 . When κ = 0 and the contact angle is α = 1
2π, the interface is

flat and the particle is divided equally between the upper and lower fluids, independent of
the capillary length. When κ = 1

2 , the interface is flat at a certain contact angle that is
insensitive to the capillary length. The particle center position for κ = − 1

2 is the mirror
image of that for κ = 1

2 , subject to a reflection in the contact angle. As λ/a increases, the
particle center becomes independent of κ and is given by xc = −a cosα.

Spheroidal particle

As a straightforward generalization, we consider the equilibrium position of a floating
spheroidal particle whose axis revolution is parallel to the acceleration of gravity, as shown
in Figure 5.11.4. The origin of the x axis is set at the position of the infinite flat interface
far from the particle.

The elliptical particle contour in an azimuthal plane is described by the equations

x = xc + a cos ζ, σ = b sin ζ, (5.11.25)

where xc describes the location of the particle center, a and b are the particle semi-axes, and
the parameter ζ varies from 0 at the top of the particle to π at the bottom of the particle,
as shown in Figure 5.11.4. The parameter ζ should not be confused with the meridional
angle, θ. They are equal only in the case of a spherical particle.
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Figure 5.11.3 Floating spherical particle center position for λ/a = 0.5 (bold lines), 1.0, 2.0, and
4.0, and (a) κ = 0 or (b) 0.5.

xc

n

n

y

z

g

a

b
α

β

σ

ϕ

x

ζ

θ

ω
Fluid 2

Fluid 1

Figure 5.11.4 Illustration of a spheroidal particle floating at the interface between two immiscible
fluids. The axis of revolution is normal to the plane of the undisturbed interface.

The circular contact line is located at the axial position

xcl = xc + a cosβ (5.11.26)

and at the radial position

σcl = b sinβ, (5.11.27)

where the parameter β varies in the range [0, π]. In the case of a flat interface, xcl = 0 and
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xc = −a cosβ. The shape of the meniscus is governed by the equations described previously
in this section for a spherical particle.

Buoyancy force

The vertical component of the force exerted on the spheroidal particle is given in equation
(5.11.8),

F buoyancy
x = −

∫∫
p nx dS, (5.11.28)

where nx is the x component of the unit vector normal to the spheroid. Introducing the arc
length around the particle contour, 
, measured in the direction of increasing parameter ζ,
setting

dS = 2πσd
, nx =
dσ

d

, nx dS = 2π dσ, (5.11.29)

and performing the integration around the axis of revolution, we derive an expression for
the x component of the buoyancy force,

F buoyancy
x = −πb2

∫ π

0

p sin 2ζ dζ. (5.11.30)

Now we recall that ζ = β marks the location of the contact line in the two fluids and write

F buoyancy
x = −πb2

(∫ β

0

p(1) sin 2ζ dζ +

∫ π

β

p(2) sin 2ζ dζ
)
. (5.11.31)

Substituting the expressions for the pressure, and setting x = xc + a cos ζ, we obtain

F buoyancy
x = −2πb2g

(
ρ1

∫ β

0

(xc + a cos ζ) cos ζ d cos ζ

+ρ2

∫ π

β

(xc + a cos ζ) cos ζ d cos ζ
)
. (5.11.32)

Carrying out the integration, we find that

F buoyancy
x = 2πgb2

(
ρ1xc

sin2 β

2
− ρ1a

cos3 β − 1

3

−ρ2xc
sin2 β

2
+ ρ2a

1 + cos3 β

3

)
. (5.11.33)

Rearranging, we obtain

F buoyancy
x = πgb2

(− xc Δρ sin2 β +
2

3
aΔρ cos3 β +

4

3
a ρ
)

(5.11.34)

involving the a priori unknown particle center position, xc.
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Capillary force

The x component of the capillary force is given by

F capillary
x = γ (2πσcl) sin(α− ω), (5.11.35)

where ω is the angle subtended between the tangent vector and the σ axis at the contact
line, as shown in Figure 5.11.4, given by

ω = arctan(
b

a
tanβ). (5.11.36)

Substituting σcl = b sinβ, we obtain

F capillary
x = 2πbγ sinβ sin(α− λ). (5.11.37)

Vertical force balance

Now substituting into the force equilibrium equation

F buoyancy
x + F capillary

x = W (5.11.38)

the expression

W =
4π

3
b2aρsg (5.11.39)

for the particle weight, and simplifying, we obtain the governing equation

xc

a
sin2 β =

2

3
cos3 β +

2

3
κ+ 2

λ2

ab
sinβ sin(α− λ). (5.11.40)

In the case of a flat interface, xc = −a cosβ, the expression for the buoyancy force
simplifies to

F buoyancy
x = πgb2aΔρ cosβ

(
1− 1

3
cos2 β

)
+

4

3
πgb2 a ρ, (5.11.41)

the contact angle is equal to the contact line aperture angle, α = ω, the capillary force
vanishes, and the trigonometric equation (5.11.40) simplifies to (5.11.24).

The particle position and meniscus shape can be found by a modification of the method
discussed previously in this section for a spherical particle (Problem 5.11.3).

5.11.1 Flat interface

Prove that a solution of (5.11.24) for cos β in the admissible range [−1, 1] exists only when
|κ| < 1.

Problems
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Figure 5.12.1 Illustration of a three-dimensional particle straddling the interface between two im-
miscible fluids.

5.11.2 Floating position of a spherical particle

Prepare the counterparts of the graphs shown in Figure 5.11.3 for κ = 0.1 and 0.9. Discuss
the physical interpretation of the results.

5.11.3 Spheroidal particle

Modify the code given in the text for a spherical particle to compute the floating position
of a spheroidal particle. Prepare the counterparts of the graphs shown in Figure 5.11.3 for
particle aspect ratio a/b = 0.5 and 0.1.

5.12 A three-dimensional meniscus

Having discussed two-dimensional and axisymmetric interfacial configurations, now we con-
sider a genuinely three-dimensional configuration with reference to the shape of a meniscus
developing around a small particle with an arbitrary shape straddling the interface between
two stationary immiscible fluids, as shown in Figure 5.12.1. The upper fluid is labeled 1 and
the lower fluid is labeled 2. The fluids are assumed to be stably stratified, that is, ρ2 > ρ1
or Δρ ≡ ρ2 − ρ1 > 0.

The interface meets the particle around a closed contact line and becomes horizontal
far from the contact line. The contact angle, α, is given by

α = arccos(np · n), (5.12.1)

where 0 < α < π, np is the unit vector normal to the particle, n is the unit vector normal
to the interface, and the left-hand side is evaluated at a point x around the contact line.

Laplace–Young equation

The working Cartesian system is defined such that the x axis points against the acceleration
of gravity and passes through a designated particle center. The shape of the interface can
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be described by a function of two variables, y and z, as

x = ζ(y, z). (5.12.2)

Far from the particle, as y and z tend to infinity, the function ζ decays to zero, yielding a
planar shape. The Laplace–Young equation requires that

2κm = − ζ

λ2
, (5.12.3)

where λ2 = γ/(Δρ g) is the square of the capillary length, γ is the surface tension, g is
the magnitude of the acceleration of gravity, and κm is the mean curvature reckoned to be
positive when the interface is downward concave. the absence of a constant on the right-
hand side of (5.12.3) guarantees that the mean curvature vanishes far from the contact line
where ζ decays to zero.

Substituting into the Laplace–Young equation the expression for the mean curvature
given in (4.4.15) with appropriate changes in the notation,

2κm = − (1 + ζ2z ) ζyy − 2 ζy ζz ζyz + (1 + ζ2y ) ζzz

(1 + ζ2y + ζ2z )
3/2

, (5.12.4)

we derive a nonlinear partial differential equation,

∇2ζ + ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz − (1 + |∇ζ|2)3/2 ζ

λ2
= 0, (5.12.5)

where ∇ is the gradient and ∇2 is the Laplacian operator in the yz plane, a subscript y
denotes a partial derivative with respect to y, and a subscript z denotes a partial derivative
with respect to z. We will assume that the elevation of the contact line around the contact
line is specified in lieu of a Dirichlet boundary condition.

5.12.1 Elliptic coordinates

Consider a configuration where the projection of the contact line in the yz plane is an ellipse
arising by rotating a circle, as shown in Figure 5.12.2(a). To solve equation (5.12.5) in the
exterior of the ellipse, we introduce elliptic coordinates, (u, ϕ), defined by the conformal
mapping function

y + i z = A sinh(u+ iϕ), (5.12.6)

where i is the imaginary unit, i2 = −1, and A is a real constant. Resolving the mapping
function into its real and imaginary parts, we obtain

y = A sinhu cosϕ, z = A coshu sinϕ. (5.12.7)

The variable u ranges from a certain value u0 around the ellipse to infinity far from the
ellipse. The variable ϕ varies in the range [0, 2π] around the contact line. Note that ϕ
is not the meridional angle measured around the vertical x axis. As u tends to infinity,
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Figure 5.12.2 (a) Illustration of grid lines based on orthogonal elliptic coordinates. (b) Hydrostatic
shape of a meniscus attached to a rotated circle computed in the elliptic coordinates.

the contour lines of constant u tend to become circles, as shown in Figure 5.12.2(a). The
elliptic coordinates (u, ϕ) are orthogonal in the yz plane but not over the three-dimensional
interface.

To accommodate the elliptical shape of the projection of the contact line onto the yz
plane, we set

b = A sinhu0, c = A coshu0, (5.12.8)

where b and c are the ellipse semi-axes along the y and z axes. Solving for A and u0, we
find that

A =
b

sinhu0
, tanhu0 =

b

c
. (5.12.9)

The magnitude of the gradient in the yz plane is given by

|∇ζ| = 1

h
|∇̂ζ| (5.12.10)

and the Laplacian is given by

∇2ζ =
1

h2
∇̂2ζ, (5.12.11)

where a caret (hat) indicates differentiation with respect to the elliptic coordinates (u, ϕ),
and h is the metric coefficient of the transformation given by

h = A | cosh(u+ iϕ)| = A

√
cosh2 u− sin2 ϕ. (5.12.12)
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The Laplace–Young equation (5.12.5) takes the form

1

h2
∇̂2ζ + ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz − (1 + |∇ζ|2)3/2 ζ

λ2
= 0, (5.12.13)

which can be regarded as a nonlinear Poisson-like equation, forced by an a priori unknown
source term involving the interfacial elevation.

5.12.2 Finite-difference method

The solution of (5.12.13) can be found numerically using a finite-difference method in elliptic
coordinates with evenly spaced grid lines. The second-order finite-difference representation
of (5.12.13) at the (i, j) interior grid point in the uϕ plane is

1

h2
i,j

(ζi−1,j − 2 ζi,j + ζi+1,j

Δu2
+

ζi,j−1 − 2 ζi,j + ζi,j+1

Δϕ2

)
+
(
ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz

)
i,j

− (1 + |∇ζ|2)3/2i,j

ζi,j
λ2

= 0. (5.12.14)

To implement Gauss–Seidel iterations, we rearrange to obtain

ζi,j =
1

G

[ 1

h2
i,j

(ζi−1,j + ζi+1,j

Δu2
+

ζi,j−1 + ζi,j+1

Δϕ2

)
+
(
ζ2z ζyy − 2 ζy ζz ζyz + ζ2y ζzz

)
i,j

]
, (5.12.15)

where

G =
2

h2
i,j

( 1

Δu2
+

1

Δϕ2

)
+

1

λ2
(1 + |∇ζ|2)3/2i,j . (5.12.16)

The iterations proceed by guessing grid values, and then replacing the guesses with the
right-hand side of (5.12.15) at each grid point.

The first derivatives of ζ with respect to y and z can be computed from derivatives with
respect to u and ϕ by solving a system of 2× 2 equations arising from the chain rule,[

∂y/∂u ∂z/∂u
∂y/∂ϕ ∂z/∂ϕ

] [
∂ζ/∂y
∂ζ/∂z

]
=

[
∂ζ/∂u
∂ζ/∂ϕ

]
. (5.12.17)

The derivatives with respect to u and ϕ on the right-hand side can be computed by numerical
differentiation. The second derivatives can be computed by a similar method.

The numerical method is implemented in the following MATLAB code entitled men 3d,
residing inside directory 03 hydrostat of Fdlib:

%=================

% meniscus in the exterior of an ellipse
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% in the yz plane

%=================

b = 0.5;

c = 1.0;

capl = 0.75; % capillary length

xcline = 0.5; % height of the contact line

tol = 0.000001; % iteration tolerance

Niter = 1000;

%----------

% divisions

%----------

Nu = 32; Nphi = 32;

%---

% prepare

%---

Dphi = 2*pi/Nphi;

capls = capl*capl;

Dphi2 = 2.0*Dphi;

u0 = atanh(b/c);

snhu0 = sinh(u0);

cshu0 = cosh(u0);

A = b/snhu0;

umax = log(32.0*b/A);

Du = (umax-u0)/Nu;

Du2 = 2.0*Du;

%---

% grid

%---

for i=1:Nu+1

u(i) = u0+(i-1)*Du;

snhu(i) = sinh(u(i));

cshu(i) = cosh(u(i));

for j=1:Nphi+1

phi(j) = (j-1)*Dphi;

csphi(j) = cos(phi(j));

snphi(j) = sin(phi(j));

y(i,j) = A*snhu(i)*csphi(j);

z(i,j) = A*cshu(i)*snphi(j);

h(i,j) = A*sqrt(cshu(i)^2-snphi(j)^2);

end

end
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%---

% plot the grid

%---

figure(1)

hold on

axis square

axis([-2 2 -2 2 -2 2])

view(140,30)

xlabel('y','fontsize',15);

ylabel('z','fontsize',15);

zlabel('x','fontsize',15);

set(gca,'fontsize',15)

for i=1:Nu+1

plot(y(i,:),z(i,:),'k')

end

for j=1:Nphi

plot(y(:,j),z(:,j),'k')

end

%---

% initialize the interfacial elevation

%---

for i=1:Nu+1

for j=1:Nphi+2

x(i,j) = 0.0;

end

end

%---

% boundary conditions

%---

for j=1:Nphi+1

x(1,j) = xcline*y(1,j);

x(Nu+1,j) = 0.0;

end

x(1,Nphi+2) = x(1,2);

x(Nu+1,Nphi+2) = 0.0;

%---

% iterations

%---
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for iterations=1:Niter

%---

% compute the first derivatives: dx/dy and dx/dz

%---

% interior nodes:

for i=2:Nu

for j=2:Nphi+1

MAT(1,1) = A*cshu(i)*csphi(j);

MAT(1,2) = A*snhu(i)*snphi(j);

MAT(2,1) = -A*snhu(i)*snphi(j);

MAT(2,2) = A*cshu(i)*csphi(j);

RHS(1) = (x(i+1,j)-x(i-1,j))/Du2;

RHS(2) = (x(i,j+1)-x(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdy(i,j) = SOL(1);

dxdz(i,j) = SOL(2);

end

dxdy(i,1) = dxdy(i,Nphi+1);

dxdz(i,1) = dxdz(i,Nphi+1);

dxdy(i,Nphi+2) = dxdy(i,2);

dxdz(i,Nphi+2) = dxdz(i,2);

end

% boundary nodes by one-sided differences:

for j=1:Nphi+2

dxdy(1,j) = 2.0*dxdy(2,j)-dxdy(3,j);

dxdy(Nu+1,j) = 2.0*dxdy(Nu,j)-dxdy(Nu-1,j);

dxdz(1,j) = 2.0*dxdz(2,j)-dxdz(3,j);

dxdz(Nu+1,j) = 2.0*dxdz(Nu,j)-dxdz(Nu-1,j);

end

%---

% compute the second derivatives

%---

for i=2:Nu

for j=2:Nphi+1

MAT(1,1) = A*cshu(i)*csphi(j);

MAT(1,2) = A*snhu(i)*snphi(j);

MAT(2,1) = -A*snhu(i)*snphi(j);

MAT(2,2) = A*cshu(i)*csphi(j);

RHS(1) = (dxdy(i+1,j)-dxdy(i-1,j))/Du2;

RHS(2) = (dxdy(i,j+1)-dxdy(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdyy(i,j) = SOL(1);



356 Fluid Dynamics: Theory, Computation, and Numerical Simulation

dxdyz(i,j) = SOL(2);

RHS(1) = (dxdz(i+1,j)-dxdz(i-1,j))/Du2;

RHS(2) = (dxdy(i,j+1)-dxdy(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdyy(i,j) = SOL(1);

dxdyz(i,j) = SOL(2);

RHS(1) = (dxdz(i+1,j)-dxdz(i-1,j))/Du2;

RHS(2) = (dxdz(i,j+1)-dxdz(i,j-1))/Dphi2;

SOL = RHS/MAT’;

dxdzy(i,j) = SOL(1);

dxdzz(i,j) = SOL(2);

end

end

%------

% scan the grid points

%------

errr = 0.0;

for i=2:Nu

for j=2:Nphi+1

H = h(i,j); HS = H*H;

tmp = 1.0+dxdy(i,j)^2+dxdz(i,j)^2;

G = 2.0*(1.0/Du^2+1.0/Dphi^2)/HS + tmp^(3/2)/capls;

xnew = (x(i+1,j)+x(i-1,j))/(HS*Du^2) ...

+(x(i,j+1)+x(i,j-1))/(HS*Dphi^2);

xnew = xnew + dxdz(i,j)^2 * dxdyy(i,j);

xnew = xnew - 2.0*dxdy(i,j)*dxdz(i,j)*dxdyz(i,j);

xnew = xnew + dxdy(i,j)^2 * dxdzz(i,j);

xnew=xnew/G;

corr = abs(xnew-x(i,j));

x(i,j) = xnew;

if(corr>errr) errr = corr; end

end

end

for i=2:Nu+1

x(i,1) = x(i,Nphi+1);

x(i,Nphi+2) = x(i,2);

end

if(errr<tol) break; end

%--

end % of iterations

%--

if(errr>tol)
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disp('the iterations did not converge')

errr

return

end

%---

% plotting

%---

figure(2)

hold on

xlabel('y','fontsize',15);

ylabel('z','fontsize',15);

zlabel('x','fontsize',15);

axis square

axis([-1 1 -1 1 -1 1])

view(162, 12)

for i=1:Nu

for j=1:Nphi

patch([y(i,j), y(i,j+1), y(i+1,j+1), y(i+1,j)], ...

[z(i,j), z(i,j+1), z(i+1,j+1), z(i+1,j)], ...

[x(i,j), x(i,j+1), x(i+1,j+1), x(i+1,j)], ...

[x(i,j), x(i,j+1), x(i+1,j+1), x(i+1,j)]);

end

end

A solution subject to the boundary condition for the contact angle elevation implemented
in the code, reflecting a rotating circle, is shown in Figure 5.12.2(b).

5.12.3 Capillary force and torque

Surface tension pulls the particle around the contact line in a direction that is tangential
to the interface and lies in a plane that is normal to the contact line at each point. The
resultant capillary force is given by

Fcapillary = γ

∮
r× n d
, (5.12.18)

where n is the unit vector normal to the interface given by

n =
1∣∣∣∂x

∂u
× ∂x

∂ϕ

∣∣∣
∂x

∂u
× ∂x

∂ϕ
, (5.12.19)

r is the unit vector tangential to the contact line, as shown in Figure 5.12.1, 
 is the arc
length around the contact line, and the integration is performed around the contact line.



358 Fluid Dynamics: Theory, Computation, and Numerical Simulation

The resultant capillary torque with respect to an arbitrary point, x0, is given by

Tcapillary = γ

∮
(x− x0)× (r× n) d
. (5.12.20)

Using a vector identity, we may express the capillary torque in the form

Tcapillary = γ

∮ (
[ (x− x0) · n ] r− [ (x− x0) · r ]n

)
d
. (5.12.21)

Once the computation of the meniscus shape has been concluded, the capillary force
and torque can be obtained using the following module:

%---

% compute dxdu, dxdphi,

% the surface normal and tension vector

% around the contact line

%---

x0 = 0.0; y0 = 0.0; z0 = 0.0;

for j=1:Nphi+1

dxdu(j) = (-x(3,j)+4.0*x(2,j)-3.0*x(1,j))/Du2;

dydu(j) = A*cshu0*csphi(j);

dzdu(j) = A*snhu0*snphi(j);

dmdu(j) = sqrt(dxdu(j)^2+dydu(j)^2+dzdu(j)^2);

if(j==1)

dxdphi(j) = (x(1,2)-x(1,Nphi))/Dphi2;

else

dxdphi(j) = (x(1,j+1)-x(1,j-1))/Dphi2;

end

dydphi(j) =-A*snhu0*snphi(j);

dzdphi(j) = A*cshu0*csphi(j);

dmdphi(j) = sqrt(dxdphi(j)^2+dydphi(j)^2+dzdphi(j)^2);

vnx(j) = dydu(j)*dzdphi(j)-dzdu(j)*dydphi(j);

vny(j) = dzdu(j)*dxdphi(j)-dxdu(j)*dzdphi(j);

vnz(j) = dxdu(j)*dydphi(j)-dydu(j)*dxdphi(j);

vnm(j) = sqrt(vnx(j)^2+ vny(j)^2+vnz(j)^2);

vnx(j) = vnx(j)/vnm(j); vny(j) = vny(j)/vnm(j);

vnz(j) = vnz(j)/vnm(j);

tngx(j) = dydphi(j)*vnz(j)-dzdphi(j)*vny(j);

tngy(j) = dzdphi(j)*vnx(j)-dxdphi(j)*vnz(j);

tngz(j) = dxdphi(j)*vny(j)-dydphi(j)*vnx(j);

crsx(j) = (y(1,j)-y0)*tngz(j)-(z(1,j)-z0)*tngy(j);

crsy(j) = (z(1,j)-z0)*tngx(j)-(x(1,j)-x0)*tngz(j);

crsz(j) = (x(1,j)-x0)*tngy(j)-(y(1,j)-y0)*tngx(j);
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end

%---

% force and torque

%---

forcex = 0.0; forcey = 0.0; forcez = 0.0;

torqux = 0.0; torquy = 0.0; torquz = 0.0;

for j=1:Nphi

forcex = forcex+tngx(j);

forcey = forcey+tngy(j);

forcez = forcez+tngz(j);

torqux = torqux+crsx(j);

torquy = torquy+crsy(j);

torquz = torquz+crsz(j);

end

forcex = forcex*Dphi;

forcey = forcey*Dphi;

forcez = forcez*Dphi;

torqux = torqux*Dphi;

torquy = torquy*Dphi;

torquz = torquz*Dphi;

5.12.1 Convergence of iterations

Consider a meniscus originating from a horizontal elliptical contact line. Study the shape
of the meniscus for several contact line elevations and capillary lengths. Investigate the
convergence of the Gauss–Seidel iterations.

Problem
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Fluid flow is established in response to an external action mediated by boundary motion,
by the application of a surface force, or by the presence of a body force. The evolution
of a transient flow and the structure of a steady flow established after an initial start-up
period of time are governed by two fundamental principles of thermodynamics and classical
mechanics: mass conservation, and Newton’s second law for the motion of a fluid parcel.
The implementation of Newton’s law of motion in continuum mechanics leads us to Cauchy’s
equation of motion, which provides us with an expression for the point particle acceleration
in terms of stresses, and to the vorticity transport equation governing the point particle
rotation. The derivation and interpretation of these governing equations in general and
specific terms, and their solution for simple flow configurations are discussed in this chapter.

6.1 Newton’s second law of motion for a fluid parcel

Consider a fluid parcel in motion, as illustrated in Figure 6.1.1. Newton’s second law of
motion requires that the rate of change of the parcel’s linear momentum, Mparcel, must be
equal to the sum of the forces exerted on the parcel at any instant. The forces include the
surface force given in equation (5.1.2) and the body force due to gravity given in equation
(5.1.1),

dMparcel

dt
= Fsurface + Fbody. (6.1.1)
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n f

Figure 6.1.1 Illustration of a fluid parcel in motion, showing the unit normal vector, n, and the
traction vector, f . The motion of the parcel is governed by Newton’s second law of motion.

Expressing the surface force in terms of the traction exerted on the parcel surface, f , and
the body force in terms of the fluid density, ρ, and the acceleration of gravity, g, we obtain

dMparcel

dt
=

∫∫∫
parcel

f dS +

∫∫∫
parcel

ρg dV. (6.1.2)

Expressing the traction in terms of the stress tensor, as shown in (4.2.10), we obtain

dMparcel

dt
=

∫∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.1.3)

where the unit normal vector, n, points into the parcel exterior. Our next task is to relate
the rate of change of the parcel momentum to the fluid density and velocity.

6.1.1 Rate of change of linear momentum

An expression for the linear momentum arises by subdividing a parcel into elementary
subparcels with volume dVparcel and corresponding mass dmparcel = ρdVparcel, and summing
the contributions by integration to obtain

Mparcel =

∫∫∫
parcel

u dm =

∫∫∫
parcel

u ρ dV, (6.1.4)

where u is the fluid velocity. The rate of change of the parcel’s linear momentum is given
by

dMparcel

dt
=

d

dt

∫∫∫
parcel

u dm =
d

dt

∫∫∫
parcel

u ρ dV, (6.1.5)

where the time derivative is taken for a fixed parcel identity.

Because the integral is computed over the volume of the parcel, which is not stationary
but changes in time, switching the order of time differentiation and volume integration on
the right-hand side of (6.1.5) is permissible only if the time derivative is replaced by the
material derivative, D/Dt, under the integral sign, yielding

dMparcel

dt
=

∫∫∫
parcel

D(u dm)

Dt
=

∫∫∫
parcel

( Du

Dt
dm+

Ddm

Dt
u
)
. (6.1.6)
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Mass conservation requires that the material derivative of the elementary mass, dm should
be zero, yielding the simplified expression

dMparcel

dt
=

∫∫∫
parcel

Du

Dt
dm =

∫∫∫
parcel

Du

Dt
ρ dV, (6.1.7)

where Du/Dt is the point particle acceleration. The density may vary over the parcel
volume.

6.1.2 Equation of parcel motion

Substituting the right-hand side of (6.1.7) into the left-hand side of (6.1.3), we obtain the
desired equation of parcel motion,∫∫∫

parcel

Du

Dt
ρ dV =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.1.8)

involving the point particle acceleration, the stress tensor, and the body force. Explicitly,
the x, y, and z components of (6.1.8) are∫∫∫

parcel

Dux

Dt
ρ dV =

∫∫
parcel

(nxσxx + nyσyx + nzσzx) dS +

∫∫∫
parcel

ρ gx dV,

∫∫∫
parcel

Duy

Dt
ρ dV =

∫∫
parcel

(nxσxy + nyσyy + nzσzy) dS +

∫∫∫
parcel

ρ gy dV, (6.1.9)

∫∫∫
parcel

Duz

Dt
ρ dV =

∫∫
parcel

(nxσxz + nyσyz + nzσzz) dS +

∫∫∫
parcel

ρ gz dV.

Equations (6.1.10) are valid irrespective of whether the fluid is compressible or incompress-
ible.

6.1.3 Two-dimensional flow

The counterpart of the parcel equation of motion (6.1.8) for two-dimensional flow in the xy
plane is ∫∫

parcel

Du

Dt
ρ dA =

∮
parcel

n · σ d
+

∫∫
parcel

ρg dA, (6.1.10)

where dA is a differential area and d
 is the differential arc length along the boundary of a
parcel in the xy plane. Explicitly, the x and y components of (6.1.10) are∫∫

parcel

Dux

Dt
ρ dA =

∮
parcel

(nxσxx + nyσyx) d
+

∫∫
parcel

ρ gx dA,

(6.1.11)∫∫
parcel

Duy

Dt
ρ dA =

∮
parcel

(nxσxy + nyσyy) d
+

∫∫
parcel

ρ gy dA.
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Figure 6.1.2 Illustration of a fluid parcel with a rectangular instantaneous shape, drawn with the solid
line, in a two-dimensional flow. Even though the parcel generally deforms to obtain a warped
shape, drawn with the dashed line, Newton’s second law of motion in its integral form can be
applied over the instantaneous parcel shape.

These equations are valid irrespective of whether the fluid is compressible or incompressible.

A rectangular parcel

As an application, we consider the motion of a fluid parcel with an instantaneous rectangular
shape whose sides are parallel to the x or y axis, as depicted in Figure 6.1.2. The parcel
will remain rectangular only if the fluid exhibits rigid-body motion. Under more general
conditions, the parcel will deform to obtain the warped shape, drawn with the dashed line in
Figure 6.1.1. However, parcel deformation does not prevent us from evaluating the integrals
in (6.1.11) over the instantaneous rectangular shape.

For simplicity, we assume that the density of the fluid is uniform and the acceleration of
gravity is constant over the parcel volume. We note that the unit normal vector is parallel
to the x or y axis over each side, and find that equations (6.1.11) take the simpler forms∫ x2

x1

∫ y2

y1

(
Dux

Dt
− gx) ρ dy dx (6.1.12)

=

∫ y2

y1

[ (σxx)x=x2
− (σxx)x=x1

] dy +

∫ x2

x1

[ (σyx)y=y2
− (σyx)y=y1

] dx

and ∫ x2

x1

∫ y2

y1

(
Duy

Dt
− gy) ρ dy dx (6.1.13)

=

∫ y2

y1

[ (σxy)x=x2
− (σxy)x=x1

] dy +

∫ x2

x1

[ (σyy)y=y2
− (σyy)y=y1

] dx.

The first integral on the right-hand side of (6.1.12) involves normal stresses exerted on the
vertical sides; the second integral involves shear stresses exerted on the horizontal sides; the
converse is true for (6.1.13).
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Steady unidirectional flow

In the case of steady unidirectional flow along the x axis, point particles move along the x
axis with constant velocity and vanishing acceleration, Du/Dt = 0. Setting the left-hand
side of the equation of parcel motion (6.1.10) to zero, we obtain a balance between the
hydrodynamic and the body force,∮

parcel

n · σ d
+

∫∫
parcel

ρg dA = 0. (6.1.14)

Now restricting our attention to Newtonian fluids, we use the constitutive equation
shown in Table 4.5.1 and make two key observations:

• In the absence of axial and transverse stretching, ∂ux/∂x = 0 and ∂uy/∂y = 0, the
normal stresses σxx and σyy are equal to the negative of the pressure, σxx = σyy = −p.

• The shear stresses σxy = σyx are independent of streamwise position, x, but may
depend on the lateral position, y.

Subject to these simplifications, the balance equations (6.1.12) and (6.1.13) reduce to∫ y2

y1

( px=x2
− px=x1

) dy − [ (σyx)y=y2
− (σyx)y=y1

]
Δx = ρ gx ΔxΔy (6.1.15)

and ∫ x2

x1

(
py=y2

− py=y1

)
dx = ρ gy ΔxΔy, (6.1.16)

where Δx ≡ x2 − x1 and Δy = y2 − y1.

Equation (6.1.16) is satisfied when

px,y=y2
− px,y=y1

Δy
= ρ gy (6.1.17)

for any x, reflecting the hydrostatic pressure variation. Equation (6.1.15) is satisfied when

px=x2,y − px=x1,y

Δx
= ρ gx − χ (6.1.18)

and

(σyx)x,y=y2
− (σyx)x,y=y1

Δy
= −χ, (6.1.19)

where χ is a free parameter. Physically, the constant χ is determined by the mechanism
driving the flow. Three modular flow configurations can be identified, as discussed next.
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Shear–driven flow

When χ = 0, equation (6.1.18) shows that the pressure variation in the direction of the x axis
is hydrostatic. Equation (6.1.19) shows that the shear stress σyx is constant, independent
of y,

(σyx)x,y=y2
− (σyx)x,y=y1

= 0. (6.1.20)

This is the case of shear-driven flow.

Gravity-driven flow

When the streamwise pressure drop is zero, px=x2,y = px=x1,y, equation (6.1.18) requires
that χ = ρ gx. Equation (6.1.19) shows that the difference in the shear stress is given by

(σyx)x,y=y2
− (σyx)x,y=y1

= −ρ gx Δy. (6.1.21)

This is the case of gravity-driven flow.

Pressure-driven flow

When the flow is horizontal, gx = 0, equation (6.1.18) shows that χ is the negative of the
streamwise pressure gradient. Equation (6.1.19) shows that the difference in the shear stress
is given by

(σyx)x,y=y2
− (σyx)x,y=y1

= −χΔy. (6.1.22)

This is the case of pressure-driven flow.

6.1.1 Body force in terms of a surface integral

Show that the body force expressed by the second integral on the right-hand side of (6.1.8)
can be expressed as a surface integral in the form∫∫

parcel

ρ (g · x)n dS. (6.1.23)

Hint: Use the Gauss divergence theorem (2.6.36).

6.2 Integral momentum balance

Consider the integrand of the rate of change of momentum on the left-hand side of equation
(6.1.8). Using the rules of product differentiation and the continuity equation (2.8.5), we
write

ρ
Du

Dt
=

D(ρu)

Dt
− u

Dρ

Dt
=

D(ρu)

Dt
+ (ρu) (∇ · u), (6.2.1)

Problem
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where

∇ · u ≡ ∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
(6.2.2)

is the divergence of the velocity expressing the rate of the expansion of the fluid. If the fluid
is incompressible, the second term on the right-hand side of (6.2.1) does not appear.

The x component of the vectorial expression (6.2.1) can be manipulated to give

ρ
Dux

Dt
=

D(ρ ux)

Dt
+ (ρ ux) (∇ · u) (6.2.3)

or

ρ
Dux

Dt
=

∂(ρ ux)

∂t
+ u · ∇(ρ ux) + (ρ ux) (∇ · u), (6.2.4)

where the time derivative ∂/∂t is taken keeping the spatial position fixed. More explicitly,

ρ
Dux

Dt
=

∂(ρ ux)

∂t
+ ux

∂(ρ ux)

∂x
+ uy

∂(ρ ux)

∂y
+ uz

∂(ρ ux)

∂z
+ (ρ ux) (∇ · u). (6.2.5)

Combining the last four terms in the last expression, we find that

ρ
Dux

Dt
=

∂(ρ ux)

∂t
+

∂(ρ uxux)

∂x
+

∂(ρ uyux)

∂y
+

∂(ρ uzux)

∂z
. (6.2.6)

This expression applies to incompressible as well as compressible fluids.

Working in a similar fashion with the y and z components of (6.2.1), we derive the
corresponding expressions

ρ
Duy

Dt
=

∂(ρ uy)

∂t
+

∂(ρ uxuy)

∂x
+

∂(ρ uyuy)

∂y
+

∂(ρ uzuy)

∂z
(6.2.7)

and

ρ
Duz

Dt
=

∂(ρ uz)

∂t
+

∂(ρ uxuz)

∂x
+

∂(ρ uyuz)

∂y
+

∂(ρ uzuz)

∂z
. (6.2.8)

These expressions hold true for incompressible as well as compressible fluids.

Momentum tensor

To recast equations (6.2.6)–(6.2.8) into a unified form, we introduce the momentum tensor,
Mij , defined as

Mij ≡ ρ uiuj , (6.2.9)

where the indices i and j range over x, y, and z or, correspondingly, 1, 2, and 3. In vector
notation, we write

M = ρu⊗ u, (6.2.10)
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where the symbol ⊗ denotes the tensor product. It is evident from the definition (6.2.9)
that the tensor M is symmetric,

Mij = Mji. (6.2.11)

Explicitly, the momentum tensor is given by

M = ρ

⎡⎣ u2
x uxuy uxuz

uyux u2
y uyuz

uzux uzuy u2
z

⎤⎦ . (6.2.12)

Next, we introduce the divergence of the momentum tensor defined as a vector whose
ith component is given by

(∇ ·M)i =
∂Mji

∂xj
=

∂Mij

∂xj
, (6.2.13)

where summation is implied over the repeated index j. For example, the x component of
the divergence of M is

(∇ ·M)x =
∂Mjx

∂xj
=

∂Mxx

∂x
+

∂Myx

∂y
+

∂Mzx

∂z
. (6.2.14)

Subject to these definitions, equations (6.2.6)–(6.2.8) can be compiled into the form

ρ
Dui

Dt
=

∂(ρ ui)

∂t
+

∂Mji

∂xj
(6.2.15)

for i = x, y, z. The corresponding vector form is

ρ
Du

Dt
=

∂(ρu)

∂t
+∇ ·M. (6.2.16)

The right-hand sides of equations (6.2.15) and (6.2.16) involve Eulerian derivatives; that is,
derivatives with respect to time and spatial coordinates.

Equation of parcel motion

Substituting (6.2.16) into the left-hand side of the equation of parcel motion (6.1.8), we
derive the alternative form∫∫∫

parcel

( ∂(ρu)

∂t
+∇ ·M

)
dV =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV. (6.2.17)

We can use the Gauss divergence theorem stated in equation (2.6.36) to convert the volume
integral of the divergence of the momentum tensor into a surface integral over the parcel
volume, obtaining∫∫∫

parcel

∂(ρu)

∂t
dV +

∫∫
parcel

n ·M dS =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.2.18)
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Figure 6.2.1 Illustration of a stationary control volume (cv) in a flow bounded by solid or fluid
surfaces.

where the unit normal vector, n, points outward from the parcel. In index notation,∫∫∫
parcel

∂(ρ ui)

∂t
dV +

∫∫
parcel

njMji dS =

∫∫
parcel

njσji dS +

∫∫∫
parcel

ρ gi dV (6.2.19)

for i = x, y, z, where summation is implied over the repeated index j.

6.2.1 Control volume and integral momentum balance

It is important to bear in mind that equation (6.2.19) originates from Newton’s second law
of motion applied to a fluid parcel. In the process of expressing the material derivative in
terms of Eulerian derivatives taken with respect to time and position in space, the parcel
has lost its significance as a material body and became relevant only insofar as to define the
volume it occupies in space at any instant.

To emphasize the new interpretation, we rewrite the integral momentum balance (6.2.19)
in identical form, except that the volume of integration is now regarded as a control volume
(cv), as shown in Figure 6.2.1.

Using the definition of the momentum tensor shown in (6.2.9), we express the integral
momentum balance in the form∫∫∫

cv

∂(ρ ui)

∂t
dV +

∫∫
cv

ρ ui un dS =

∫∫
cv

nj σji dS +

∫∫∫
cv

ρ gi dV, (6.2.20)

where i = x, y, z is a free index, summation is implied over the repeated index, j, and

un ≡ u · n = ujnj (6.2.21)

is the normal component of the fluid velocity. Equation (6.2.20) expresses an integral mo-
mentum balance, well known to chemical engineers and others in the framework of transport
phenomena.
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Accumulation, convection, boundary and homogeneous forcing

The four integrals on the left- and right-hand sides of (6.2.20) admit the following interpre-
tation with regard to the underlying control volume:

1. The first integral is the rate of change of the ith component of momentum of the fluid
residing inside the control volume. At steady state, this term vanishes.

2. The scalar njuj = n ·u in the second integrand on the left-hand side is the component
of the fluid velocity normal to the boundary of the control volume. The corresponding
integral expresses the rate of convective transport of the ith component of the fluid
momentum across the boundary of the control volume.

3. The first integral on the right-hand side is the ith component of the surface force
exerted on the boundary of the control volume.

4. The second integral on the right-hand side is the ith component of the body force
exerted on the control volume.

It is important to bear in mind that the integral momentum balance has been derived
in Cartesian coordinates. Every term must be rederived when working in polar or other
curvilinear coordinates.

Vector form of the integral momentum balance

In vector notation, the integral momentum balance takes the form∫∫∫
cv

∂(ρu)

∂t
dV +

∫∫
cv

ρn · (u⊗ u) dS =

∫∫
cv

n · σ dS +

∫∫∫
cv

ρg dV. (6.2.22)

The second integral on the left-hand side is given by∫∫
cv

ρn · (u⊗ u) dS =

∫∫
cv

(ρu)un dS, (6.2.23)

where un = n · u is the normal velocity and the symbol ⊗ denotes the tensor product.

Stress-momentum tensor

Combining the second integral integral on the left-hand side with the first integral on the
right-hand side of (6.2.22), we obtain the more compact form∫∫∫

cv

∂(ρu)

∂t
dV =

∫∫
cv

n · τ dS +

∫∫∫
cv

ρg dV, (6.2.24)

where

τ ≡ σ − ρu⊗ u (6.2.25)

is the stress-momentum tensor with components τij = σij − ρ uiuj .
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Figure 6.2.1 Simplified model of flow through a duct with a sudden enlargement. An integral mo-
mentum balance allows us to compute the rise in pressure , p2 − p1, in terms of the inlet and
outlet cross-sectional areas, A1 and A2.

Applications in engineering analysis

Equation (6.2.24) expresses an integral momentum balance a that can be interpreted as an
integral evolution equation or conservation law applied to a chosen control volume. The
solution of practical engineering problems by the use of integral mass, momentum, and
energy balances is discussed in a classical text by Bird, Stewart and Lightfoot.1 Illustrative
examples are presented in the remainder of this section.

6.2.2 Flow through a sudden enlargement

To demonstrate the usefulness of the integral momentum balance in engineering analysis,
we consider steady flow through a duct with a sudden enlargement, as illustrated in Figure
6.2.1.

We begin by introducing a control volume identified with the section of the duct confined
between the vertical planes labeled 1 and 2, and assume that the density of the fluid is
uniform and the velocity profile is flat at the inlet and outlet. The cross-sectional areas at
the inlet and outlet are denoted as A1 and A2.

Neglecting the shear stress at the walls, approximating the normal stress at the inlet and
outlet with the negative of the pressure, assuming that the pressure at the washer-shaped
area is equal to the inlet pressure, and considering the effects of gravity insignificant, we find
that the x component of the integral momentum balance (6.2.20) at steady state simplifies

1Bird, R. B., Stewart, W. E. & Lightfoot, E. N. (2006) Transport Phenomena, Second Edition, Wiley.
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into

ρU2
2A2 − ρU2

1A1 = −p2A2 + p1A1 + p1(A2 −A1). (6.2.26)

The three terms on the right-hand side of (6.2.26) are approximations to the first integral
on the right-hand side of (6.2.20) for the outlet, washer-shaped area, and inlet. Mass
conservation requires that

U1A1 = U2A2. (6.2.27)

Solving for U1 and substituting the result into (6.2.26), we derive the desired expression for
the pressure difference,

p2 − p1 = (β − 1) ρU2
2 , (6.2.28)

where β = A2/A1 is the area ratio, which predicts a rise in pressure for β > 1, in agreement
with laboratory observations.

6.2.3 Isentropic flow through a conduit

In a second application, we consider the flow of a compressible fluid through a conduit with
variable cross-sectional area, A. A mass balance over a control volume confined between
two cross-sections labeled 1 and 2 requires that

ρ1U1A1 = ρ2U2A2. (6.2.29)

The counterpart of equation (6.2.26) is

ρ2U
2
2A2 − ρ1U

2
1A1 = −p2A2 + p1A1 −Dx, (6.2.30)

where Dx is the drag force due to wall friction. In the case of isentropic flow, we use equation
(4.7.23) and find that

p1
ρk1

=
p2
ρk2

(6.2.31)

where k ≡ cp/cv is the ratio of two heat capacities. The last three equations can be used to
compute p2, U2, and Dx, from knowledge of p1, ρ1, and U1.

Energetics

Energy conservation under adiabatic conditions requires that

h1 +
1

2
U2
1 + g y1 = h2 +

1

2
U2
2 + g y2, (6.2.32)

where h is the specific enthalpy and y is the vertical position of the conduit centerline. In
terms of the heat capacity under constant pressure, h = cpT , yielding

cp T1 +
1

2
U2
1 + g y1 = cp T2 +

1

2
U2
2 + g y2, (6.2.33)
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where T is the absolute temperature. This equation relates the velocity to the temperature
to the elevation of the conduit centerline at two stations.

Stagnation-point temperature

At a stagnation point, U2 = 0. Equation (6.2.33) with y1 = y2 and U ≡ U1, T ≡ T1,
T2 ≡ Tsp yields

Tsp − T =
1

2

U2
1

cp
=

1

2

k − 1

k

U2

R
(6.2.34)

or

Tsp − T =
1

2
(k − 1)

U2

c2
T, (6.2.35)

where c is the speed of sound given in (4.7.27). Rearranging, we derive an expression for
the stagnation-point temperature,

Tsp − T

T
=

1

2
(k − 1)M2, (6.2.36)

where

M ≡ U

c
(6.2.37)

is the Mach number. Using the equation of state for isentropic conditions, we obtain

p2
p1

=
(

1

2
(k − 1)M2 + 1

)k/(k−1)

. (6.2.38)

For sufficiently small Mach numbers,

p2
p1

	 1 +
1

2
kM2, (6.2.39)

providing us with a convenient expression for the pressure ratio.

6.2.1 Pressure rise in an ejector pump

A schematic illustration of an ejector pump is shown in Figure 6.2.2. At plane 1, two fluid
streams merge: the first stream with uniform velocity U1 over a cross-sectional area A1,
and the second stream with uniform velocity U0 over a cross sectional area A0. At plane
2, the velocity profile is uniform over the cross-sectional area A2 = A0 + A1. The pressure
is assumed to be uniform over the cross-section of the inlet and outlet, respectively, equal
to p1 and p2. The fluid density is assumed to be uniform throughout the flow. Derive an
expression for the rise in pressure, p2−p1, in terms of ρ, U0, U1, A0, and A1, similar to that
shown in equation (6.2.28).

Problem



374 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Plane 1 Plane 2
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U
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2

2

x

01

y

1

2

1

0

A

A

Ap

p

Figure 6.2.2 Schematic illustration of an ejector pump. The pressure rise between the inlet and
outlet, p2 − p1, can be estimated by performing an integral momentum balance.

6.3 Cauchy’s equation of motion

Equation (6.1.8), repeated below for convenience,∫∫∫
parcel

Du

Dt
ρ dV =

∫∫
parcel

n · σ dS +

∫∫∫
parcel

ρg dV, (6.3.1)

contains one surface integral involving the traction over the boundary of a fluid parcel, and
two volume integrals involving the point particle acceleration and the body force.

If we could manage to convert the surface integral into a volume integral, we would be
able to collect all integrands into a unified integrand. Since the shape and volume of the
parcel is arbitrary, the unified integrand would have to be identically zero, providing us with
a differential equation.

6.3.1 Hydrodynamic volume force

Transforming the surface integral of the traction into a volume integral can be done using
once again the Gauss divergence theorem stated in equation (2.6.36). Identifying the vector
h with each one of the three columns of the stress tensor, we obtain∫∫

parcel

n · σ dS =

∫∫∫
parcel

∇ · σ dV. (6.3.2)

In index notation, the ith component of this equation is∫∫
parcel

nj σji dS =

∫∫∫
parcel

∂ σji

∂xj
dV, (6.3.3)

where summation of the repeated index j is implied.

The divergence of the stress tensor under the integral sign on the right-hand side of
(6.3.2) is a vector denoted by

Σ ≡ ∇ · σ, (6.3.4)
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with Cartesian components

Σx =
∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
, Σy =

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
,

Σz =
∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
. (6.3.5)

Physically, the vector Σ is the hydrodynamic force per differential volume of fluid; in con-
trast, the traction f is the hydrodynamic force per differential surface area of fluid.

6.3.2 Hydrodynamic force on an infinitesimal parcel

To confirm identity (6.3.3), we consider a small fluid parcel in the shape of a rectangular
parallelepiped centered at the origin, as illustrated in Figure 5.1.1(b). The six flat sides of
the parcel are perpendicular to the x, y, or z axis, the lengths of the three edges are equal
to Δx, Δy, and Δz, and the volume of the parcel is equal to ΔV = ΔxΔy Δz.

Consider the surface integral on the left-hand side of equation (6.3.3). Over the sides
that are perpendicular to the x axis, located at x = ±Δx

2 , designated as the first or second
side, the unit normal vector is parallel to the x axis; over the first side nx = 1, and over the
second side nx = −1. Because the size of the parcel is small, the stresses over each side can
be approximated with corresponding values at the center-point.

Subject to this approximation, the surface integral on the left-hand side over the first
side takes the form

F1 ≡ σxi

(
x =

1

2
Δx, y = 0, z = 0

)
Δy Δz, (6.3.6)

while the surface integral over the second side takes the form

F2 ≡ −σxi

(
x = − 1

2
Δx, y = 0, z = 0

)
Δy Δz (6.3.7)

for i = x, y, z, where the parentheses enclose the coordinates of the evaluation point.

Adding these two contributions and factoring out the common product ΔyΔz expressing
the surface area, we obtain

F1 + F2 =
(
σxi

(
x =

1

2
Δx, y = 0, z = 0

)− σxi

(
x = − 1

2
Δx, y = 0, z = 0

) )
ΔyΔz. (6.3.8)

Next, we observe that, in the limit as Δx tends to zero, the ratio of the differences

σxi(x = Δx
2 , y = 0, z = 0)− σxi(x = −Δx

2 , y = 0, z = 0)
Δx
2 − (−Δx

2 )

=
σxi(x = Δx

2 , y = 0, z = 0)− σxi(x = −Δx
2 , y = 0, z = 0)

Δx
(6.3.9)
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tends to the partial derivative ∂σxi/∂x evaluated at the origin. Correspondingly, the differ-
ence (6.3.8) reduces to

∂σxi

∂x
ΔxΔy Δz =

∂σxi

∂x
ΔV, (6.3.10)

where the derivatives are evaluated at the origin.

Working in a similar fashion with pairs of sides that are perpendicular to the y or z
axis, and summing the three contributions, we find that the left-hand side of (6.3.3) takes
the approximate form (∂σxi

∂x
+

∂σyi

∂y
+

∂σzi

∂z

)
ΔV, (6.3.11)

where the quantity enclosed by the parentheses is evaluated at the origin. Expression (6.3.11)
is an approximation to the volume integral on the right-hand side of (6.3.3).

6.3.3 The equation of motion

Substituting (6.3.2) into (6.1.8), consolidating various terms, and noting that, since the
volume of integration is arbitrary, the combined integrand must vanish, we obtain Cauchy’s
differential equation governing the motion of an incompressible or compressible fluid,

ρ
Du

Dt
= ∇ · σ + ρg. (6.3.12)

In index notation,

ρ
Dui

Dt
=

∂σji

∂xj
+ ρ gi, (6.3.13)

where summation over the repeated index j is implied on the right-hand side, while the
index i is free to vary over x, y, or z.

In terms of the point particle acceleration, a, and the hydrodynamic volume force Σ ≡
∇ · σ defined in (6.3.4), Cauchy’s equation of motion takes the simple form

ρa = Σ+ ρg (6.3.14)

for an incompressible or compressible fluid.

Eulerian form

Using equations (2.8.11) and (6.2.16), we derive two alternative forms of (6.3.12) involving
derivatives with respect to time and position in space,

ρ
( ∂ u

∂t
+ u ·∇u

)
= ∇ · σ + ρg (6.3.15)
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ρ
( ∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

)
=

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ ρ gx

ρ
( ∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
=

∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ ρ gy

ρ
( ∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
=

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ ρ gz

Table 6.3.1 The Cartesian components of the equation of motion involving the point particle mo-
mentum, the hydrodynamic volume force, and the body force.

and

∂ (ρu)

∂t
+∇ · (ρu⊗ u) = ∇ · σ + ρg. (6.3.16)

Both equations apply for incompressible as well as compressible fluids.

Explicitly, the three scalar components of (6.3.15) are given in Table 6.3.1. The terms
enclosed by the parentheses on the left-hand sides are the Cartesian components of the point
particle acceleration. The right-hand sides include the Cartesian components of the volume
force due to the hydrodynamic stresses and the components of the body force.

6.3.4 Evolution equations

Given the instantaneous velocity and stress fields, u and σ, we can evaluate the right-hand
sides of (6.3.12) and (6.3.15), as well as the second term on the left-hand side of (6.3.15), and
thereby compute the rates of change Du/Dt and ∂u/∂t. This observation suggests that the
equation of motion (6.3.12) is, in fact, an evolution equation for the point particle velocity,
whereas equation (6.3.15) is an evolution equation for the velocity at a fixed point in the
flow.

A similar evolution equation for the density was derived in Chapter 2 on the basis of
the continuity equation, as shown in (2.7.28). The evolution equations for the density and
velocity originate from two fundamental physical laws: mass conservation, and Newton’s
second law of motion for a deformable medium.

6.3.5 Cylindrical polar coordinates

In the cylindrical polar coordinates defined in Figure 1.3.2, the hydrodynamic volume force
defined in equation (6.3.4) is resolved into corresponding components,

Σ = Σx ex +Σσ eσ +Σϕ eϕ. (6.3.17)
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(a)

Σx =
∂σxx

∂x
+

1

σ

∂(σσσx)

∂σ
+

1

σ

∂σϕx

∂ϕ
, Σσ =

∂σxσ

∂x
+

1

σ

∂(σσσσ)

∂σ
+

1

σ

∂σϕσ

∂ϕ
− 1

σ
σϕϕ

Σϕ =
∂σxϕ

∂x
+

1

σ2

∂(σ2σϕσ)

∂σ
+

1

σ

∂σϕϕ

∂ϕ

(b)

Σr =
1

r2
∂(r2 σrr)

∂r
+

1

r sin θ

∂(σrθ sin θ)

∂θ
+

1

r sin θ

∂σϕr

∂ϕ
− σθθ + σϕϕ

r

Σθ =
1

r2
∂(r2 σrθ)

∂r
+

1

r sin θ

∂(σθθ sin θ)

∂θ
+

1

r sin θ

∂σϕθ

∂ϕ
+

σrθ − σϕϕ cot θ

r

Σϕ =
1

r2
∂(r2 σrϕ)

∂r
+

1

r

∂σθϕ

∂θ
+

1

r sin θ

∂σϕϕ

∂ϕ
+

σrϕ + 2 σθϕ cot θ

r

(c)

Σr =
1

r

∂(rσrr)

∂r
+

1

r

∂σθr

∂θ
− 1

r
σθθ, Σθ =

1

r2
∂(r2σrθ)

∂r
+

1

r

∂σθθ

∂θ

Table 6.3.2 Components of the hydrodynamic volume force in terms of corresponding stress compo-
nents in (a) cylindrical, (b) spherical, and (c) plane polar coordinates.

Using the rules of coordinate transformation and the chain rule of differentiation, we derive
the expressions shown in Table 6.3.2(a).

Equation of motion

The cylindrical polar components of the equation of motion are

ρ ax = Σx + ρ gx, ρ aσ = Σσ + ρ gσ, ρ aϕ = Σϕ + ρ gϕ, (6.3.18)

where ax, aσ, and aϕ are the cylindrical polar components of the point particle acceleration
given in equations (2.8.16). Using the alternative expressions (2.8.17), we obtain

ρ
Dux

Dt
= Σx + ρ gx, ρ

Duσ

Dt
= ρ

u2
ϕ

σ
+Σσ + ρ gσ,

ρ
Duϕ

Dt
= −ρ

uσuϕ

σ
+Σϕ + ρ gϕ.

(6.3.19)

These equations apply for incompressible as well as compressible fluids.
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Centrifugal force

The first term on the right-hand side of the second equation in (6.3.19), ρ u2
ϕ/σ, expresses

an effective volume force in the radial (σ) direction due to fluid motion in the azimuthal (ϕ)
direction, known as the centrifugal force. A centrifugal force arises in the flow generated by
the rotation of a solid circular cylinder about its axis in a viscous liquid, as will be discussed
in Section 7.5.

Coriolis force

The negative of the first term on the right-hand side of third equation in (6.3.19), ρ uσuϕ/σ,
expresses an effective force in the azimuthal (ϕ) direction, known as the Coriolis force,
arising when flow occurs in both the σ and ϕ directions. A Coriolis force is established in
the flow due to a spinning circular disk immersed in a liquid.

6.3.6 Spherical polar coordinates

In the spherical polar coordinates defined in Figure 1.3.3, the hydrodynamic volume force
defined in equation (6.3.4) is described as

Σ = Σr er +Σθ eθ +Σϕ eϕ. (6.3.20)

Using the rules of coordinate transformation and the chain rule of differentiation, we derive
the expressions shown in Table 6.3.2(b).

The spherical polar components of the equation of motion are

ρ ar = Σr + ρ gr, ρ aθ = Σθ + ρ gθ, ρ aϕ = Σϕ + ρ gϕ, (6.3.21)

where ar, aθ, and aϕ are the spherical polar components of the point particle acceleration
given in (2.8.19).

6.3.7 Plane polar coordinates

In the plane polar coordinates defined in Figure 1.3.4, the hydrodynamic volume force
defined in equation (6.3.4) is described as

Σ = Σr er +Σθ eθ. (6.3.22)

Using the coordinate transformation rules and the chain rule of differentiation, we derive
the expressions shown in table 6.3.2(c).

The plane polar components of the equation of motion are

ρ ar = Σr + ρ gr, ρ aθ = Σθ + ρ gθ, (6.3.23)

where ar and aθ are the plane polar components of the point particle acceleration given by
the expressions in (2.8.22). Alternative expressions are

ρ
Dur

Dt
= ρ

u2
θ

r
+Σr + ρ gr, ρ

Duθ

Dt
= −ρ

uruθ

r
+Σθ + ρ gθ, (6.3.24)
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involving, respectively, the centrifugal force and the negative of the Coriolis force on the
right-hand sides, where D/Dt is the material derivative.

6.3.8 Vortex force

Returning to equation (6.3.15), we use identity (2.8.29),

u ·∇u =
1

2
∇u2 − u× ω, (6.3.25)

and obtain an alternative form of the equation of motion,

ρ
( ∂ u

∂t
+

1

2
∇u2 + ω × u

)
= ∇ · σ + ρg, (6.3.26)

where

u2 ≡ u2
x + u2

y + u2
z (6.3.27)

is the square of the magnitude of the velocity. The third term on the left-hand side of
(6.3.26),

ρω × u, (6.3.28)

represents a vortex force established when the vorticity vector is not parallel to the velocity
vector; otherwise, their cross product is identically zero. In a Beltrami flow, the vorticity
vector is parallel to the velocity vector at every point and the vortex force is identically
zero.

6.3.9 Summary of governing equation

In summary, the flow of an incompressible or compressible fluid is governed by the continuity
equation (2.7.13),

∂ρ

∂t
+∇ · (ρu) = 0, (6.3.29)

and Cauchy’s equation of motion expressed by (6.3.15) or (6.3.16). The Cauchy stress tensor
is defined in terms of the velocity and the pressure by means of a constitutive equation, as
discussed in Chapter 4. The five unknowns include the three velocity components, ux, uy,
uz, the density, ρ, and the pressure, p.

The continuity equation and the three components of the equation of motion provide
us with four equations. In the case of incompressible fluids, a fifth equation is provided by
the idealized incompressibility condition, Dρ/Dt = 0. In the case of compressible fluids, a
fifth equation relating the density to the pressure is provided by thermodynamics, as shown
in (4.7.23) for isentropic flow.
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6.3.10 Accelerating frame of reference

The equation of motion is valid for a stationary frame of reference where Newton’s second
law of motion applies. Suppose that the Cartesian axes translate with velocity V(t) in the
absence of rotation. The point particle acceleration in the stationary frame is

astationary = a+
dV

dt
. (6.3.30)

Substituting this expression in the equation of motion (6.3.14) and rearranging, we derive
the equation

ρa = Σ+ ρg − ρ
dV

dt
. (6.3.31)

The last term on the right-hand side represents a fictitious inertial acceleration force. A
more general equation can be written to describe fluid motion in a frame of reference that
undergoes simultaneous steady or unsteady translation and rotation.2

6.3.1 Beltrami flow

Explain why a two-dimensional or axisymmetric flow cannot be a Beltrami flow.

6.3.2 Free fall

A bucket of fluid is moving in free gravitational fall. Write the equation of motion in a
frame of reference attached to the bucket.

6.4 Euler and Bernoulli equations

Euler’s equation arises from the equation of motion (6.3.12) by substituting the simplest
possible constitutive equation for the stress tensor describing an ideal fluid, expressed by
equation (4.6.19). Considering the individual components of the volume force Σ given in
(6.3.5), we obtain

Σ ≡ ∇ · σ = −∇p, (6.4.1)

that is,

Σ = −∂p

∂x
ex − ∂p

∂y
ey − ∂p

∂z
ez, (6.4.2)

where p is the pressure. Cauchy’s equation of motion (6.3.12) then reduces to Euler’s
equation of motion,

ρ
Du

Dt
= −∇p+ ρg. (6.4.3)

2Pozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynamics, Second Edition,
Oxford University Press.

Problems



382 Fluid Dynamics: Theory, Computation, and Numerical Simulation

ρ
( ∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

)
= −∂p

∂x
+ ρ gx

ρ
( ∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
= −∂p

∂y
+ ρ gy

ρ
( ∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
= −∂p

∂z
+ ρ gz

Table 6.4.1 The three Cartesian components of Euler’s equation describing the motion of a fluid in
the absence of viscous forces.

The associated Eulerian form is

ρ
( ∂u
∂t

+ u ·∇u
)
= −∇p+ ρg. (6.4.4)

The three Cartesian components of (6.4.4) are shown in Table 6.4.1. Euler’s equation applies
for incompressible as well as compressible fluids.

Polar coordinates

The cylindrical, spherical, and plane polar components of Euler’s equation follow readily
from equations (6.3.18), (6.3.21), and (6.3.23), using the constitutive equations given in
Tables 4.7.1–Table 4.7.3 for vanishing fluid viscosity.

Vortex force

Using identity (2.8.29), repeated below for convenience,

u ·∇u =
1

2
∇u2 − u× ω, (6.4.5)

we derive an alternative form of Euler’s equation involving the vortex force,

ρ
( ∂ u

∂t
+

1

2
∇u2 − u× ω

)
= −∇p+ ρg, (6.4.6)

where

u2 ≡ u2
x + u2

y + u2
z (6.4.7)

is the square of the magnitude of the velocity.

6.4.1 Boundary conditions

Euler’s equation is a first-order differential equation for the velocity and pressure in the
domain of flow. To compute a solution, we require one scalar boundary condition or two
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scalar continuity or jump conditions for the velocity or pressure over each boundary of the
flow.

Impermeable surfaces

Over an impermeable surface, we require the no-penetration condition requiring that the
normal component of the fluid velocity matches the normal component of the boundary
velocity.

Free surfaces

Over a free surface, we require that the pressure is equal to the ambient pressure increased
or decreased by an amount that is equal to the product of the surface tension and twice the
local mean curvature.

Fluid interfaces

Over a fluid interface, we require a kinematic and a dynamic continuity or jump condition.
The kinematic condition requires that the normal component of the fluid velocity is con-
tinuous across the interface. The dynamic condition requires that the pressure undergoes
a discontinuity by an amount that is equal to the product of the surface tension and twice
the local mean curvature.

6.4.2 Irrotational flow

The third term on the left-hand side of Euler’s equation (6.4.6) disappears in the case of
irrotational flow, since ω = 0 throughout the domain of flow. Expressing the velocity as
the gradient of a velocity potential, φ, as shown in equation (3.2.6) and more explicitly in
equations (3.2.19),

u = ∇φ, (6.4.8)

we find that Euler’s equation (6.4.6) takes the form

ρ
( ∂∇φ

∂t
+

1

2
∇u2

)
= −∇p+ ρg. (6.4.9)

The order of time and space differentiation in the gradient of the potential can be switched
in the first term on the left-hand side.

The acceleration of gravity can be expressed as the gradient of the scalar υ ≡ g · x,

g = ∇υ = ∇(g · x) = ∇(gx x+ gy y + gz z). (6.4.10)

Substituting this expression into (6.4.9), assuming that the density is uniform throughout
the domain of flow, and collecting all terms under the gradient, we find that

∇
(∂ φ

∂t
+

1

2
u2 +

p

ρ
− g · x ) = 0. (6.4.11)
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The curl of the left-hand side is identically zero at every point in the flow.

Bernoulli’s equation for irrotational flow

Since all spatial derivatives of the scalar quantity enclosed by the parentheses on the left-
hand side of (6.4.11) are zero, the quantity must be independent of position, although it
may change in time. Euler’s equation for irrotational flow then provides us with Bernoulli’s
equation describing the irrotational flow of a uniform-density fluid,

∂ φ

∂t
+

1

2
u2 +

p

ρ
− g · x = c(t), (6.4.12)

where c(t) is an unspecified and typically inconsequential function of time.

Evolution of the velocity potential

Bernoulli’s equation (6.4.12) can be regarded as an evolution equation for the harmonic
potential. Given the instantaneous velocity and pressure fields, we can evaluate the second,
third, and fourth terms on the left-hand side, compute the time derivative ∂φ/∂t, and
advance the potential over a small period of time elapsed.

The last term, c(t), causes the potential to increase or decrease uniformly by the same
rate throughout the domain of flow. However, because the velocity is computed by taking
derivatives of the potential with respect to the spatial coordinates, this uniform change is
inconsequential to the velocity.

Lagrangian form

When a flow is bounded by a free surface where the pressure is prescribed on one side, it
is beneficial to convert the Eulerian time derivative ∂φ/∂t on the left-hand side of (6.4.12)
to the material derivative, Dφ/Dt. Expressing the velocity as the gradient of the potential,
u = ∇φ, we obtain

Dφ

Dt
≡ ∂φ

∂t
+ u ·∇φ =

∂φ

∂t
+ u · u =

∂φ

∂t
+ u2, (6.4.13)

where

u2 ≡ u2
x + u2

y + u2
z (6.4.14)

is the square of the magnitude of the velocity. Combining equations (6.4.12) and (6.4.13),
we obtain

Dφ

Dt
=

1

2
u2 − p

ρ
+ g · x− c(t), (6.4.15)

which provides us with the rate of change of the potential following a point particle according
to Bernoulli’s equation for irrotational flow.
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atmp

Figure 6.4.1 Irrotational flow due to the sloshing of a fluid in a container. Bernoulli’s equation
provides us with an evolution equation for the potential following the motion of point particles
distributed over the free surface.

Fluid sloshing in a container

As an application, we consider the sloshing of a fluid inside a container, as illustrated in
Figure 6.4.1. The pressure at the free surface on the side of the liquid, pfs, is related to the
ambient pressure, patm, by the dynamic boundary condition

pfs = patm + γ 2κm, (6.4.16)

where γ is the surface tension and κm is the mean curvature of the free surface.

Applying equation (6.4.15) at a point in the free surface and using equation (6.4.16),
we derive an expression for the rate of change of the potential following a point particle at
the free surface,

Dφ

Dt
=

1

2
u2 − patm + γ 2κm

ρ
+ g · x− c(t). (6.4.17)

Integrating this equation in time by following the motion of interfacial point particles pro-
vides us with a boundary condition for the potential over the free surface.

Steady irrotational flow

The time derivative of the potential on the left-hand side of (6.4.12) disappears at steady
state, yielding the best known version of Bernoulli’s equation,

1

2
u2 +

p

ρ
− g · x = c(t). (6.4.18)

The time-dependent function c(t) on the right-hand side accounts for a possible uniform
change in the pressure throughout the domain of flow.

The three terms on the left-hand side of (6.4.18) express, respectively, the kinetic energy,
the potential energy due to the pressure, and the potential energy due to the body force,
all three per unit mass of the fluid. Bernoulli’s equation requires that the sum of the three
energies is the same at every point in the flow.
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Figure 6.4.2 Illustration of the gravitational drainage of a fluid from a (a) conical or (b) spherical
tank. The exit velocity can be computed from Bernoulli’s equation for irrotational flow, resulting
in Torricelli’s law.

Bernoulli’s equation allows us to perform approximate engineering analysis of a broad
class of internal and external irrotational flows, subject to the underlying assumptions.
Examples are discussed in the remainder of this section.

6.4.3 Torricelli’s law

Consider the gravitational drainage of a fluid from a tank, as illustrated in Figure 6.4.2. If
the rate of drainage is sufficiently slow, the flow can be assumed to be in a quasi-steady
state. This means that the magnitude of the time derivative of the scalar potential is small
compared to the rest of the terms in the unsteady Bernoulli equation (6.4.12), and the
steady version of Bernoulli’s equation (6.4.18) can be employed.

To compute the velocity at the point of drainage, U , we evaluate the left-hand side
of (6.4.18) first at the free surface and then at the point of drainage, and equate the two
expressions. Since the velocity at the free surface is small compared to the drainage velocity,
it can be set to zero to leading-order approximation, yielding

1

2
U2 +

p0
ρ

+ g x0 =
p1
ρ

+ g x1, (6.4.19)

where the pressures p0 and p1 and the elevations x0 and x1, are defined in Figure 6.4.2(a).
Rearranging, we find that

U =
(
2
Δp

ρ
+ 2gh

)1/2
, (6.4.20)

where h = x1 − x0 is the liquid height inside the container and Δp = p1 − p0.
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In the case of an open tank, the pressure at the free surface and the pressure at the
point of drainage are equal to the ambient atmospheric pressure. Setting Δp = 0, and derive
Torricelli’s law expressed by

U =
√

2gh, (6.4.21)

which also describes the velocity of a rigid body in free gravitational fall.

Drainage time

The expression for the velocity in terms of the liquid height, h, can be used to compute the
time it takes for a fluid to drain from a tank with a specified geometry, tdrain. During a
small period of time, dt, the volume of liquid in the tank decreases by

dV = S(x) dh, (6.4.22)

where S(h) is the tank cross-sectional area. Setting this change in volume equal to −UAdt,
where A is the cross-sectional area of the drainage hole, and substituting Torricelli’s law,
we obtain

S(h) dh = −
√
2ghA dt, (6.4.23)

which can be rearranged into

dt

dh
= − 1

A

S(h)√
2gh

. (6.4.24)

Integrating, we obtain an expression for the drainage time,

tdrain =
1

A

∫ h0

0

S(h)√
2gh

dh, (6.4.25)

where h0 is the initial height of the liquid in the container.

Cylindrical tank

In the case of a cylindrical tank with arbitrary cross-section, the cross-sectional area is
constant, S(h) ≡ B, yielding

tdrain =
B

A

1√
2g

∫ h0

0

1√
h
dh =

B

A

(
2
h0

g

)1/2
. (6.4.26)

This functional form could have been predicted at the outset on the basis of dimensional
analysis. In the case of a vertical barrel, B = πb2, where b is the barrel radius.

Conical container

In the case of a conical container illustrated in Figure 6.4.2(a), the radius of the cross-section
at height h is approximately r 	 r0 h/h0, where r0 is the radius of the cross-section at the
initial height, h0. Setting S(h) = πr2, we obtain

tdrain =
B0

Ah2
0

1√
2g

∫ h0

0

h3/2 dh, (6.4.27)
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where B0 = πr20 is the cross-sectional area at height h0, and the origin of the x axis has
been set at the hole. Performing the integration, we obtain

tdrain =
1

5

B0

A

(
2
h0

g

)1/2
, (6.4.28)

B0/A = (r0/a)
2, and r0 is the hole radius. The drainage time is one fifth of that for the

cylindrical container with cross-sectional area B = B0.

Spherical container

In the case of a spherical container of radius a, the height of the liquid can be parametrized
by the meridional angle, θ,

h = (1 + cos θ) a, (6.4.29)

as illustrated in Figure 6.4.2(b). The radius of the cross-section at height h is r = a sin θ
and the corresponding cross-sectional area is S = πa2 sin2 θ. Substituting these expressions
into the master equation (6.4.25), we obtain

tdrain =
πa2

A

( b

2g

)1/2 ∫ α

π

sin2 θ√
1 + cos θ

(− sin θ) dθ, (6.4.30)

where α is the initial meridional angle. In the case of a full spherical container, α = 0; in
the case of a full hemispherical container, α = π/2.

Substituting for convenience w = cos θ, we obtain

tdrain =
πa2

A

( a

2g

)1/2 ∫ cosα

−1

(1− w)
√
1 + cosw dw. (6.4.31)

Recalling the indefinite integrals∫ √
1 + w dw =

2

3
(1 + w)3/2 (6.4.32)

and ∫
w
√
1 + w dw =

2

15
(3w − 2) (1 + w)3/2, (6.4.33)

we obtain

tdrain =
2

15

πa2

A

( a

2g

)1/2
(1 + cosα)3/2 (7− 3 cosα). (6.4.34)

In the case of a full spherical container, cosα = 1; in the case of a full hemispherical
container, cosα = 0.
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Figure 6.4.3 Illustration of flow in a wind or water tunnel with a contraction that dampens small
perturbations.

6.4.4 Decay of perturbations in a wind or water tunnel

Wind and water tunnels are used extensively in laboratory studies of high-speed flow. To
obtain a desirable uniform velocity profile, the tunnel is designed with a smooth contraction
upstream from a test section where measurement or observation takes place, as illustrated in
Figure 6.4.3. Consider a small perturbation of the otherwise flat upstream velocity profile at
plane 1, as illustrated in Figure 6.4.3. The pressure is nearly uniform over any cross-section
along the contraction.

Applying Bernoulli’s equation (6.4.18) for the fluid outside or inside the perturbed
region, and neglecting the effect of gravity, we find that

1

2
U2
1 +

p1
ρ

=
1

2
U2
2 +

p2
ρ
,

1

2
u2
1 +

p1
ρ

=
1

2
u2
2 +

p2
ρ
. (6.4.35)

Combining these equations to eliminate the pressure and rearranging, we obtain

U2 − u2

U1 − u1
=

U1 + u1

U2 + u2
. (6.4.36)

Because the perturbation has been assumed small, the actual velocities, u1 and u2, can be
replaced with the unperturbed velocities U1 and U2 in the numerator and denominator of
the fraction on the right-hand side of (6.4.36), yielding

U2 − u2

U1 − u1
=

U1

U2
. (6.4.37)

Now combining the approximate mass balance U1A1 = U2A2 with equation (6.4.37) and
rearranging, we obtain

1− u2/U2

1− u1/U1
=
(A2

A1

)2
, (6.4.38)
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Figure 6.4.4 Irrotational free-surface flow of a horizontal stream over a hump.

which shows that the relative magnitude of the perturbation decays like the square of the
contraction ratio, A2/A1, thereby confirming that the contraction promotes a uniform ve-
locity profile.

6.4.5 Flow of a horizontal stream over a hump

In the third application, we consider steady two-dimensional irrotational flow of a horizontal
stream over a gently sloped hump, called the Venturi flume, as illustrated in Figure 6.4.4.
The free surface is located at

y = h(x) + d(x), (6.4.39)

where h(x) is the height of the hump and d(x) is the depth of the stream. As x tends to
infinity on either side, h(x) tends to zero. The profile of the streamwise velocity is assumed
to be uniform across the stream, that is, ux = u(x).

Applying Bernoulli’s equation (6.4.18) first at a point at the free surface located far
upstream and then at an arbitrary point at the free surface, neglecting the y component of
the free-surface velocity and the pressure drop across the free surface due to surface tension,
and noting that the gravitational acceleration vector is given by g = (0,−g), we obtain

1

2
U2
0 +

patm
ρ

+ g d0 =
1

2
u2(x) +

patm
ρ

+ g
(
h(x) + d(x)

)
, (6.4.40)

where U0 is the upstream velocity and d0 ≡ d(x = −∞) is the upstream depth. Combining
the mass conservation equation

U0 d0 = u(x) d(x) (6.4.41)

with equation (6.4.40) to eliminate u(x), and rearranging the resulting expression, we derive

a cubic equation for the scaled layer depth d̂(x) ≡ d(x)/d0,

d̂ 3(x) + d̂ 2(x)
(
ĥ(x)− 1− 1

2
Fr2
)
+

1

2
Fr2 = 0, (6.4.42)
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where ĥ(x) ≡ h(x)/d0 is the scaled height of the hump. We have introduced the dimension-
less ratio

Fr ≡ U0√
g d0

, (6.4.43)

expressing the relative magnitude of inertial and gravitational forces, called the Froude
number.

In practice, the Venturi flume is used to deduce the flow rate from measurements of the
deflection of the free surface from the horizontal position. As the Froude number tends to
zero, gravitational forces dominate and equation (6.4.42) has the obvious solution d̂(x) =

1 − ĥ(x), which shows that the free surface tends to become flat. As the Froude number
tends to infinity, inertial forces dominate and equation (6.4.42) has an obvious solution,

d̂(x) = 1, which shows that the depth of the stream remains constant and the free surface
follows the topography of the hump. Intermediate values of the Froude number yield free
surface profiles with a downward deflection (Problem 6.4.6).

6.4.6 Steady rotational flow

We return to Euler’s equation (6.4.6) and consider a rotational flow at steady state. The
time derivative on the left-hand side vanishes, yielding

1

2
∇u2 − u× ω = −1

ρ
∇p+ g, (6.4.44)

where

u2 ≡ u2
x + u2

y + u2
z (6.4.45)

is the square of the magnitude of the velocity. The x component of equation (6.4.44) reads

1

2

∂u2

∂x
− uy ωz + uz ωy = −1

ρ

∂p

∂x
+ gx. (6.4.46)

Similar equations can be written for the y and z components.

Next, we place the origin of the Cartesian axes at a point in the fluid, identify the
streamline that passes through that point, and orient the x axis tangentially to the stream-
line and thus parallel to the local velocity, as shown in Figure 6.4.5. By design, the y and
z velocity components are zero at the origin; consequently, the second and third terms on
the left-hand side of equation (6.4.46) vanish. Taking advantage of these simplifications, we
derive the reduced form

∂

∂x

( 1

2
u2 +

p

ρ
− gxx

)
= 0, (6.4.47)

where the left-hand side is evaluated at the origin.
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Figure 6.4.5 A system of Cartesian coordinates with the x axis tangential to a streamline is used to
derive Bernoulli’s equation for steady rotational flow, given in equation (6.4.48).

Equation (6.4.47) states that the rate of change of the quantity enclosed by the parenthe-
ses on the left-hand side with respect to distance along the streamline is zero. Consequently,
the quantity enclosed by the parentheses must remain constant along the streamline,

1

2
u2 +

p

ρ
− g · x = f(x, y, z), (6.4.48)

where the function f(x, y, z) remains constant along a streamline. In a two-dimensional or
axisymmetric flow, f(x, y, z) is a function of the stream function, ψ, which, by definition, is
constant along a streamline.

6.4.7 Flow with uniform vorticity

The velocity field, u, of a two-dimensional flow with uniform vorticity in the xy plane,
ωz = Ω, can be resolved into (a) the velocity field, v, of a simple two-dimensional flow
with uniform vorticity Ω, and (b) the velocity field field of a potential flow expressed by a
harmonic potential φ, such that

u = v +∇φ. (6.4.49)

One example of a simple flow is simple shear flow with velocity

vx = −Ω y, vy = 0. (6.4.50)

A second example is flow expressing rigid-body rotation with velocity

vx = − 1

2
Ω y, vy =

1

2
Ωx. (6.4.51)

Using this decomposition, we derive Bernoulli’s equation

∂φ

∂t
+

1

2
u2 +

p

ρ
− g · x+Ωψ = c(t), (6.4.52)

where ψ is the stream function and u = |u| is the magnitude of the velocity (Problem 6.4.2).
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6.4.1 Flow through a sudden enlargement

Consider the flow through a sudden enlargement depicted in Figure 6.2.1. Use Bernoulli’s
equation to compute the rise in pressure, p2 − p1. Compare your answer to that shown in
equation (6.2.28) obtained by an approximate integral momentum balance.

6.4.2 Flow with uniform vorticity

(a) Derive Bernoulli’s equation (6.4.52) for two-dimensional flow. (b) Derive a similar equa-
tion for axisymmetric flow where the azimuthal component of the vorticity, ωϕ, is propor-
tional to the distance from the axis of symmetry, σ.

6.4.3 Flow due to an unsteady point source or point vortex

(a) Discuss whether the flow due to a two- or three-dimensional point source with time-
dependent strength satisfies the Euler equation for inviscid flow. (b) Repeat (a) for a two-
dimensional point vortex.

6.4.4 Force on a sphere in accelerating potential flow

Consider an unsteady irrotational flow past a sphere that is held stationary in an accel-
erating stream along the x axis with velocity Ux(t). The velocity potential and Cartesian
components of the velocity are given in equations (3.6.13) and (3.6.14). Use Bernoulli’s
equation (6.4.12) to evaluate the pressure and then compute the force exerted on the sphere
by evaluating the surface integral

F = −
∫∫

sphere

pn dS, (6.4.53)

where n = 1
a (x, y, z) is the unit vector normal to the sphere pointing into the fluid. Based

on this result, compute the force exerted on a sphere that is held stationary in a non-
accelerating steady flow. Discuss the physical relevance of the assumption of irrotational
flow.

6.4.5 Drainage from a spheroidal tank

(a) Derive a formula for the time it takes a liquid to drain completely from a vertical
spheroidal tank with axes a and b through a small hole at the bottom, based on Torricelli’s
law. You may assume that the gas pressure is equal to the atmospheric pressure above the
liquid in the tank.

(b) Repeat (a) for a horizontal spheroidal tank.

6.4.6 Flow over a hump

Consider the flow of a horizontal stream over a hump, as illustrated in Figure 6.4.4. The
height of the hump is described by the parabolic shape function

h(x) = h0 ( 1− x̂2 ) (6.4.54)

Problems
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for −1 ≤ x̂ ≤ 1, where h0 is the maximum height, x̂ ≡ x/a is the scaled distance from the
midpoint, and a is the half-length of the hump. Substituting this profile into (6.4.42), we
derive the equation

d̂ 3(x) + d̂ 2(x)
( h0

d0
(1− x̂ 2)− 1− 1

2
Fr2
)
+

1

2
Fr2 = 0 (6.4.55)

for −1 ≤ x̂ ≤ 1. Compute and plot the scaled layer depth d̂ against x̂ for h0/d0 = 0.01,
0.05, and 0.10, and Fr = 0.01, 0.1, 10, and 100. Discuss the free surface shapes.

6.5 The Navier–Stokes equation

The Navier–Stokes equation arises from the equation of motion (6.3.12) by substituting the
constitutive equation for the stress tensor for an incompressible Newtonian fluid, given in
(4.6.6). The hydrodynamic volume force for a fluid with uniform viscosity is given by

Σ ≡ ∇ · σ = ∇ · (−p I+ μ 2E) = −∇p+ μ 2∇ ·E, (6.5.1)

where I is the identity matrix and E is the rate-of-deformation tensor.

Working in index notation, we find that the ith component of twice the divergence of
the rate-of-deformation tensor on the right-hand side is

2
∂Eji

∂xj
= 2

∂

∂xj

[
1

2
(
∂ui

∂xj
+

∂uj

∂xi
)
]
, (6.5.2)

where summation is implied over the repeated index j. Carrying out the differentiations,
we obtain

2
∂Eji

∂xj
=

∂2ui

∂xj∂xj
+

∂2uj

∂xj∂xi
=

∂2ui

∂xj∂xj
+

∂

∂xi

(∂uj

∂xj

)
. (6.5.3)

Because the fluid has been assumed incompressible, the divergence of the velocity in the
last term enclosed by the parentheses is zero. The penultimate term is the Laplacian of the
ith component of the velocity,

∂2ui

∂xj∂xj
=

∂2ui

∂x2
+

∂2ui

∂y2
+

∂2ui

∂z2
≡ ∇2ui. (6.5.4)

Using these results to simplify expression (6.5.1), we find that the hydrodynamic volume
force is given by

Σ ≡ ∇ · σ = −∇p+ μ∇2u. (6.5.5)

Correspondingly, Cauchy’s equation of motion (6.3.12) reduces to the Navier–Stokes
equation,

ρ
Du

Dt
= −∇p+ μ∇2u+ ρg, (6.5.6)
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ρ
( ∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
+ uz

∂ux

∂z

)
= −

∂p

∂x
+ μ
( ∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2

)
+ ρ gx

ρ
( ∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
+ uz

∂uy

∂z

)
= −

∂p

∂y
+ μ
( ∂2uy

∂x2
+

∂2uy

∂y2
+

∂2uy

∂z2

)
+ ρ gy

ρ
( ∂uz

∂t
+ ux

∂uz

∂x
+ uy

∂uz

∂y
+ uz

∂uz

∂z

)
= −

∂p

∂z
+ μ
( ∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂z2

)
+ ρ gz

Table 6.5.1 Eulerian form of the three Cartesian components of the Navier–Stokes equation applica-
ble to incompressible Newtonian fluids.

which is distinguished from Euler’s equation (6.4.3) by the presence of the viscous force
represented by the product of the viscosity and the Laplacian of the velocity on the right-
hand side.

The Eulerian form of the Navier–Stokes equation involving time and space derivatives
is

ρ
( ∂u
∂t

+ u ·∇u
)
= −∇p+ μ∇2u+ ρg. (6.5.7)

The three Cartesian scalar components of the Navier–Stokes equation are shown in Table
6.5.1.

6.5.1 Pressure and viscous forces

The negative of the pressure gradient on the right-hand side of (6.5.7) represents the pressure
force, −∇p. The Laplacian of the velocity multiplied by the viscosity on the right-hand side
of (6.5.7) represents the viscous force, μ∇2u.

Working in index notation under the assumption that the fluid is incompressible and
therefore the velocity field is solenoidal, ∇ ·u = 0, we find that the Laplacian of the velocity
is equal to the negative of the curl of the vorticity

∇2u = −∇× ω (6.5.8)

(Problem 6.5.1). An important consequence of this identity is that, if the flow is irrotational,
or the vorticity is uniform, or the vorticity field is irrotational, the viscous force vanishes
identically even though the fluid is not inviscid. In that case, the Navier–Stokes equation
reduces to Euler’s equation, which can be integrated to yield Bernoulli’s equation (6.4.12)
for irrotational flow or equation (6.4.48) for steady rotational flow.

6.5.2 A radially expanding or contracting bubble

An example of an irrotational flow with nonzero viscous stresses but vanishing viscous forces
is provided by the flow generated by the radial expansion or contraction of a spherical bubble
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with time-dependent radius, a(t). The induced velocity field can be represented by a three-
dimensional point source with time dependent strength, m(t), placed at the center of the
bubble. In spherical polar coordinates with the origin at the bubble center, the velocity
potential is given by

φ(r, t) = −m(t)
1

4π

1

r
, (6.5.9)

and the radial component of the velocity is given by

ur(r, t) =
∂φ

∂r
= m(t)

1

4π

1

r2
, (6.5.10)

where r is the distance from the bubble center.

The no-penetration condition at the surface of the bubble requires that

da

dt
= ur(r = a), (6.5.11)

which can be rearranged into an expression for the strength of the point source in terms of
the bubble radius,

m(t) = 4πa2(t)
da

dt
. (6.5.12)

Substituting expression (6.5.12) into equations (6.5.9) and (6.5.10), we obtain

φ(r) = −a2(t)
da

dt

1

r
= − 1

3

da3

dt

1

r
(6.5.13)

and

ur(r) =
∂φ

∂r
=

1

3

da3

dt

1

r2
. (6.5.14)

Now referring to Bernoulli’s equation (6.4.12) for unsteady irrotational flow,

∂ φ

∂t
+

1

2
u2 +

p

ρ
− g · x = c(t), (6.5.15)

we compute the first and second terms on the left-hand side,

∂φ

∂t
= − 1

3

d2a3

dt2
1

r
, u2 = u2

r(r) =
1

9

(da3
dt

)2 1

r4
. (6.5.16)

Substituting these expressions into Bernoulli’s equation and solving for the pressure, we
derive the expression

p(r)

ρ
=

1

3

d2a3

dt2
1

r
− 1

18

( da3

dt

)2 1

r4
+ c(t) + g · x. (6.5.17)
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Far from the bubble, the first and second terms on the right-hand side vanish and the
pressure assumes a linear and possibly time-dependent distribution,

p∞(x, t) = ρ
(
c(t) + g · x ). (6.5.18)

The normal stress, σrr, undergoes a jump across the bubble surface, determined by the
mean curvature and the surface tension, γ. Using the simplified version of the interfacial
condition (4.4.4) for an interface with uniform surface tension, we obtain

σrr(r = a) + pB(t) = γ 2κm = γ
2

a
, (6.5.19)

where pB(t) is the pressure in the bubble interior and κm = 1/a is the mean curvature of
the spherical interface. Substituting the second equation in (6.5.14) into the Newtonian
constitutive equation

σrr = −p+ 2μ
∂ur

∂r
, (6.5.20)

and the resulting expression into (6.5.19), we find that

p(r = a) = pB(t)− 4μ
da

dt

1

a
− γ

2

a
. (6.5.21)

In the last step, we apply expression (6.5.17) at the bubble surface, evaluate the surface
pressure from (6.5.21), neglect hydrostatic variations over the diameter of the bubble, and
rearrange the resulting expression to obtain the generalized Rayleigh equation

ρa
d2a

dt2
+

3

2
ρ
(da
dt

)2
+ 4μ

da

dt

1

a
+ γ

2

a
= pB(t)− p∞(xB, t), (6.5.22)

where xB is the location of the bubble center.

The evolution of the bubble radius from a given initial state is governed by the second-
order nonlinear ordinary differential equation (6.5.22). To compute the solution, we require
the initial bubble radius, a, the initial rate of expansion, da/dt, the bubble pressure, pB,
and the ambient liquid pressure at infinity, p∞. The bubble pressure may be further related
to the bubble volume by an appropriate equation of state provided by thermodynamics.

6.5.3 Boundary conditions

The Navier–Stokes equation is a second-order differential equation for the velocity with
respect to spatial coordinates. To compute a solution, we require one scalar boundary
condition for each component of the velocity or traction over each boundary of the flow.

Impermeable solid surface

Over an impermeable solid surface, we require the no-penetration boundary condition and
the no-slip or slip boundary condition, as discussed in Sections 2.10 and 4.8.
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Free surface

Over a free surface with uniform surface tension, we require that the tangential component
of the traction vanishes, while the normal component is equal to the negative of the ambient
pressure increased or decreased by the capillary pressure defined as the product of the surface
tension and twice the local mean curvature, as discussed in Section 4.3.

Fluid interface

Over a fluid interface, we require kinematic and dynamic continuity or jump conditions. The
kinematic condition requires that all velocity components are continuous across the interface.
The dynamic condition requires that the normal component of the traction undergoes a
discontinuity by an amount that is equal to the capillary pressure, while the tangential
component of the traction undergoes a discontinuity that is determined by the Marangoni
traction due to variations in surface tension, as discussed in Section 4.3.

6.5.4 Polar coordinates

The cylindrical polar components of the hydrodynamic volume force for a Newtonian fluid
arise by substituting the constitutive relations shown in Table 4.7.1 into the expressions
shown in Table 4.3.1(a). After a fair amount of algebra, we derive the expressions shown
in Table 6.5.2(a). The cylindrical polar components of the Navier–Stokes equation arise by
substituting these relations into the right-hand sides of (6.3.18).

The spherical polar components of the hydrodynamic volume force arise by substituting
the constitutive relations given in Table 4.7.2 into the expressions shown in Table 4.3.1(b).
After a fair amount of algebra, we derive the expressions shown in Table 6.5.2(b). The
Laplacian operator ∇2 in spherical polar coordinates is defined as

∇2φ ≡ 1

r2
∂

∂r

(
r2

∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ2
= 0. (6.5.23)

The spherical polar components of the Navier–Stokes equation arise by substituting these
expressions into the right-hand sides of (6.3.21).

The plane polar components of the hydrodynamic volume force arise by substituting
the constitutive relations shown in Table 4.7.3 into the expressions shown in Table 4.3.1(c).
After a fair amount of algebra, we derive the expressions shown in Table 6.5.2(c). The plane
polar components of the Navier–Stokes equation arise by substituting these expressions into
the right-hand sides of (6.3.24).

6.5.1 Viscous force

Prove identity (6.5.8) for an incompressible fluid. Hint: Set the vorticity equal to the curl
of the velocity, express the curl of the vorticity in index notation, and then use identity
(2.3.11).

Problems
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(a)

Σx = −
∂p

∂x
+ μ
(
∂2ux

∂x2
+

1

σ

∂

∂σ

(
σ
∂ux

∂σ

)
+

1

σ2

∂2ux

∂ϕ2

)
Σσ = −

∂p

∂σ
+ μ
(
∂2uσ

∂x2
+

∂

∂σ

(
1

σ

∂(σuσ)

∂σ

)
+

1

σ2

∂2uσ

∂ϕ2
−

2

σ2

∂uϕ

∂ϕ

)
Σϕ = −

1

σ

∂p

∂ϕ
+ μ
(
∂2uϕ

∂x2
+

∂

∂σ

(
1

σ

∂(σ uϕ)

∂σ

)
+

1

σ2

∂2uϕ

∂ϕ2
+

2

σ2

∂uσ

∂ϕ

)
(b)

Σr = −
∂p

∂r
+ μ
(
∇2ur −

2

r2
ur −

2

r2
∂uθ

∂θ
−

2

r2
uθ cot θ −

2

r2 sin θ

∂uϕ

∂ϕ

)
Σθ = −

1

r

∂p

∂θ
+ μ
(
∇2uθ +

2

r2
∂ur

∂θ
−

uθ

r2 sin2 θ
−

2 cos θ

r2 sin2 θ

∂uϕ

∂ϕ

)
Σϕ = −

1

r sin θ

∂p

∂ϕ
+ μ
(
∇2uϕ −

uϕ

r2 sin2 θ
+

2

r2 sin θ

∂ur

∂ϕ
+

2 cos θ

r2 sin2 θ

∂uθ

∂ϕ

)
(c)

Σr = −
∂p

∂r
+ μ
(

∂

∂r

(
1

r

∂(r ur)

∂r

)
+

1

r2
∂2ur

∂θ2
−

2

r2
∂uθ

∂ϕ

)
Σθ = −

1

r

∂p

∂θ
+ μ
(

∂

∂r

(
1

r

∂(r uθ)

∂r

)
+

1

r2
∂2uθ

∂θ2
+

2

r2
∂ur

∂θ

)

Table 6.5.2 Components of the hydrodynamic volume force for a Newtonian fluid in (a) cylindrical,
(b) spherical, and (c) plane polar coordinates. The Laplacian operator ∇2 in spherical polar
coordinates is defined in equation (6.5.23).

6.5.2 Steady flow

Consider a flow at steady state. Explain why it is not generally possible to specify an
arbitrary solenoidal velocity field that satisfies the boundary conditions, and then compute
the pressure by solving the Navier–Stokes equation (6.5.7).

Hint: Consider the conditions for the equation ∇p = F to have a solution for p, where F

is a given vector field. Recall that the curl of the gradient of a scalar function vanishes, as
shown in equation (6.6.20).

6.5.3 Expansion of a bubble

Show that, when the right-hand side of (6.5.22) vanishes and viscous stresses and surface
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tension are both insignificant, an exact solution of equation (6.5.22) is

a(t)

a(t = 0)
=
(
1 +

5

2

t

a(t = 0)

(da
dt

)
t=0

)2/5
. (6.5.24)

Note that both the initial bubble radius and the initial rate of expansion or contraction
must be specified.

6.6 Vorticity transport

In Section 6.3, we interpreted the equation of motion as an evolution equation determining
the rate of change of the velocity (acceleration) of a point particle or the rate of change of the
fluid velocity at a given point in a flow. Descendant evolution equations governing the rate
of change of the spatial derivatives of the velocity comprising the velocity-gradient tensor
and its symmetric and skew-symmetric components comprising the rate-of-deformation and
vorticity tensors can be derived by straightforward differentiation.

Of particular interest is the evolution of the skew-symmetric part of the velocity-gradient
tensor, Ξ, which is related to the vorticity, ω, as shown in (2.3.17),

Ξij =
1

2
εijk ωk, (6.6.1)

where εijk is the alternating tensor. The availability of an evolution equation for the vorticity
allows us to study the rate of change of the angular velocity of small fluid parcels as they
translate and deform while they are convected in a flow.

6.6.1 Two-dimensional flow

We begin by considering the evolution of the z vorticity component in a two-dimensional
flow in the xy plane, defined in terms of the velocity as

ωz =
∂uy

∂x
− ∂ux

∂y
. (6.6.2)

To derive an evolution equation for ωz, we divide both sides of the equation of motion
(6.3.15) by the density, ρ, so as to remove it from the left-hand side, obtaining

∂ u

∂t
+ u · ∇u =

1

ρ
Σ+ g, (6.6.3)

where Σ ≡ ∇ · σ is the hydrodynamic volume force. Taking the y derivative of the x
component of this equation, and then subtracting the result from the x derivative of the
corresponding y component, we derive the vorticity transport equation

∂ωz

∂t
+

∂

∂x
(ux

∂uy

∂x
+ uy

∂uy

∂y
)− ∂

∂y
(ux

∂ux

∂x
+ uy

∂ux

∂y
) =

∂

∂x
(
1

ρ
Σy)− ∂

∂y
(
1

ρ
Σx). (6.6.4)
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Expanding the derivatives on the left-hand side and using the continuity equation for an
incompressible fluid,

∂ux

∂x
+

∂uy

∂y
= 0, (6.6.5)

we obtain the simpler form

Dωz

Dt
≡ ∂ωz

∂t
+ ux

∂ωz

∂x
+ uy

∂ωz

∂y
=

∂

∂x
(
1

ρ
Σy)− ∂

∂y
(
1

ρ
Σx), (6.6.6)

where D/Dt is the material derivative. The left-hand side of (6.6.6) expresses the material
derivative of the vorticity, which is equal to twice the rate of change of the angular velocity
of a small fluid parcel according to equation (2.3.9).

Next, we expand the derivatives on the right-hand side of (6.6.6) setting, for example,

∂

∂x
(
1

ρ
Σy) =

1

ρ

∂Σy

∂x
− Σy

1

ρ2
∂ρ

∂x
, (6.6.7)

and express the hydrodynamic volume force in terms of the stresses using the definitions

Σx ≡ ∂ σxx

∂x
+

∂ σyx

∂y
, Σy ≡ ∂ σxy

∂x
+

∂ σyy

∂y
. (6.6.8)

The result is a general form of the vorticity transport equation for an incompressible fluid,

Dωz

Dt
=

1

ρ2
(−Σy

∂ρ

∂x
+Σx

∂ρ

∂y
) +

1

ρ

( ∂2σxy

∂x2
− ∂2σxy

∂y2
+

∂2(σyy − σxx)

∂x ∂y

)
. (6.6.9)

We recall that the density is allowed to vary with position inside an incompressible fluid.

Baroclinic production of vorticity

The first term on the right-hand side of (6.6.9),

1

ρ2
(−Σy

∂ρ

∂x
+Σx

∂ρ

∂y
), (6.6.10)

expresses production of vorticity due to density inhomogeneity, known as baroclinic produc-
tion.

To illustrate the physical mechanism underlying this term, we consider a vertical column
of fluid whose density increases upward in the direction of the y axis, so that ∂ρ/∂y > 0, as
shown in Figure 6.6.1. The x component of the hydrodynamic volume force, Σx, causes the
column to accelerate forward in the positive direction of the x axis. Because the density and
thus the inertia of the fluid increases with elevation, the top portion accelerates less than
the bottom portion. As a result, the column buckles backward, exhibiting counterclockwise
rotation expressed by the second term inside the parentheses on the right-hand side of
(6.6.10).
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zω

x

y

Figure 6.6.1 Vorticity is generated when a column of fluid that is heavy at the top buckles in
acceleration under the influence of a horizontal volume force.

A similar interpretation is possible in the case of a horizontal layer whose density in-
creases in the direction of the x axis, so that ∂ρ/∂x > 0. The preceding arguments suggest
that the layer rotates under the influence of a vertical volume force, Σy. The associated
baroclinic production of vorticity is expressed the first term inside the parentheses on the
right-hand side of (6.6.10).

Flow with negligible viscous forces

When viscous forces are insignificant, the shear stresses virtually vanish while the normal
stresses, σxx and σyy, are equal to the negative of the pressure, −p. Consequently, the
term enclosed by the tall parentheses on the right-hand side of (6.6.9) makes a negligible
contribution to the vorticity transport equation.

In the absence of viscous stresses, the hydrodynamic volume force is equal to the negative
of the pressure gradient, Σ = −∇p. Substituting Σx = −∂p/∂x and Σy = −∂p/∂y, we find
that the term expressing baroclinic production of vorticity takes a simple form, yielding the
vorticity transport equation

ρ2
Dωz

Dt
=

∂p

∂y

∂ρ

∂x
− ∂p

∂x

∂ρ

∂y
. (6.6.11)

The right-hand side can be expressed in terms of a triple mixed vector product, yielding

ρ2
Dωz

Dt
= (∇ρ×∇p) · ez, (6.6.12)

where ez is the unit vector along the z axis that is perpendicular to the xy plane of the flow.

In the case of a fluid with uniform density, ∇ρ = 0, equation (6.6.11) predicts that

Dωz

Dt
= 0, (6.6.13)

which shows that a small fluid parcel rotates with constant angular velocity as it moves about
the domain of flow. The physical origin of this remarkably simple result can be traced back
to conservation of angular momentum in the absence of a shearing stress imparting a torque.
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Temperature Water Air
oC cm2/sec cm2 sec

20 1.004× 10−2 15.05× 10−2

40 0.658× 10−2 18.86× 10−2

80 0.365× 10−2 20.88× 10−2

Table 6.6.1 The kinematic viscosity of water and air at three temperatures. Note that the kinematic
viscosity of air is higher than that of water due to its much lower density.

Incompressible Newtonian fluids

Next, we consider the evolution of vorticity in an incompressible Newtonian fluid with uni-
form density and viscosity. Substituting the constitutive equation for the stress tensor shown
in Table 4.5.1 into the right-hand side of (6.6.9), and simplifying the resulting expression
using the continuity equation, we derive the vorticity transport equation

∂ωz

∂t
+ ux

∂ωz

∂x
+ uy

∂ωz

∂y
= ν (

∂2ωz

∂x2
+

∂2ωz

∂y2
), (6.6.14)

where ν ≡ μ/ρ is a physical constant with dimensions of length squared divided by time,
called the kinematic viscosity of the fluid. In compact notation, the vorticity transport
equation reads

Dωz

Dt
≡ ν∇2ωz, (6.6.15)

where D/Dt is the material derivative and ∇2 is the Laplacian operator in the xy plane.

The kinematic viscosity of water and air is shown in Table 6.6.1 at three temperatures.
Note that the kinematic viscosity of air is higher than that of water by two or three orders
of magnitude. In contrast, the viscosity of water is higher than that of air by one or two
orders of magnitude. Curiously, air is kinematically more viscous than water due to its lower
density.

The right-hand side of (6.6.14) expresses diffusion of vorticity in the xy plane. Like
temperature or concentration of a species, vorticity spreads from regions of highly rota-
tional flow to regions of irrotational flow; that is, from regions where small spherical parcels
exhibit intense rotation to regions of weakly rotational or irrotational motion. The actual
mechanism by which this occurs will be exemplified in Chapters 7 and 10 with reference to
unsteady and boundary-layer flow.

6.6.2 Axisymmetric flow

Consider an axisymmetric flow in the absence swirling motion and refer to cylindrical polar
coordinates, (x, σ, ϕ), as shown in Figure 6.6.2. Working as previously for two-dimensional
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x
ϕ

ϕ
ω

ω

ϕ

σ

Figure 6.6.2 The vorticity of a point particle in an axisymmetric flow increases as the particle moves
farther away from the axis of symmetry due to vortex stretching.

flow, we derive the vorticity transport equation for an incompressible Newtonian fluid with
uniform density and viscosity,

D

Dt

(ωϕ

σ

)
= ν

1

σ2
E2(σ ωϕ), (6.6.16)

where σ is the distance from the x axis, The second-order linear differential operator E2

on the right-hand side, defined in equations (2.9.24) and (2.9.27), is the counterpart of the
Laplacian operator for two-dimensional flow shown in (6.6.14).

Vortex stretching

When viscous forces are negligible, the right-hand side of (6.6.16) is zero and the resulting
vorticity transport equation takes the simple form

D

Dt

(ωϕ

σ

)
= 0. (6.6.17)

This equation requires that the azimuthal component of the vorticity of a point particle, ωϕ,
is proportional to the distance of the point particle from the axis of symmetry, σ, so that
the ratio between the two is constant in time and equal to the initial value, as illustrated
schematically in Figure 6.6.2. This fundamental evolution law expresses a physical process
known as vortex stretching. The significance of vortex stretching will be discussed in Chapter
11 in the context of vortex flow.

6.6.3 Three-dimensional flow

Generalizing the preceding discussion, we proceed to derive an evolution equation for the
vorticity vector field in a three-dimensional incompressible Newtonian flow. The density
and viscosity are assumed to be uniform throughout the domain of flow.

Our point of departure is the Navier–Stokes equation (6.4.3). Using the expression for
the point particle acceleration shown on the left-hand side of equation (6.3.26), we derive
the following alternative form of the Navier–Stokes equation in terms of the vortex force,

ρ
( ∂ u

∂t
+

1

2
∇u2 + ω × u

)
= −∇p+ μ∇2u+ ρg, (6.6.18)
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where

u2 ≡ u2
x + u2

y + u2
z (6.6.19)

is the square of the magnitude of the velocity.

To derive an evolution equation for the vorticity, we take the curl of both sides of
equation (6.6.18). A vector identity states that the curl of the gradient of a smooth scalar
function of position, f(x), is identically zero,

∇×∇f = 0. (6.6.20)

To prove this identity, we work in index notation and express the ith component of the
left-hand side as

εijk
∂

∂xj

( ∂f

∂xk

)
= εijk

∂2f

∂xj ∂xk
= −εikj

∂2f

∂xk ∂xj
. (6.6.21)

The symmetry of the second derivative on the right-hand side, combined with the inherent
antisymmetry of the alternating tensor, ensures that the right-hand side is identically zero.

Using identity (6.6.20), we find that the curl of the second term on the left-hand side of
(6.6.18), involving the square of the velocity, and the curl of the first term on the right-hand
side of (6.6.18), involving the pressure gradient, are both zero. Invoking the definition of
the vorticity, ω = ∇× u, we obtain the vorticity transport equation for three-dimensional
flow,

∂ ω

∂t
+∇× (ω × u) = ν∇2ω, (6.6.22)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid.

Evolution of the point particle vorticity

The second term on the left-hand side of (6.6.22), denoted by

A ≡ ∇× (ω × u), (6.6.23)

can be manipulated to acquire a precise physical interpretation. In index notation,

Ai = εijk
∂

∂xj
(εklm ωl um) = εijk εklm

∂(ωl um)

∂xj
. (6.6.24)

Rearranging the indices, we obtain

Ai = εijk εlmk
∂(ωl um)

∂xj
. (6.6.25)

Using the property of the alternating tensor

εijk εlmk = δil δjm − δim δjl, (6.6.26)
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we find that

Ai = (δil δjm − δim δjl)
∂(ωl um)

∂xj
=

∂(ωi uj)

∂xj
− ∂(ωj ui)

∂xj
. (6.6.27)

Expanding the product of the derivative on the right-hand side, we obtain

Ai = uj
∂ωi

∂xj
+ ωi

∂uj

∂xj
− ui

∂ωj

∂xj
− ωj

∂ui

∂xj
. (6.6.28)

An identity states that the divergence of the curl of a smooth vector field is zero. A
consequence of this identity is that the vorticity field is solenoidal,

∇ · ω = ∇ · (∇× u) = 0. (6.6.29)

Because the fluid has been assumed incompressible, the velocity field is also solenoidal,
∇ · u = 0. Consequently, the second and third terms on the right-hand side of (6.6.28) are
zero, yielding

Ai = uj
∂ωi

∂xj
− ωj

∂ui

∂xj
. (6.6.30)

Substituting the result back into equation (6.6.22), we derive the targeted vorticity
transport equation

Dωi

Dt
=

∂ ωi

∂t
+ uj

∂ ωi

∂xj
= ωj

∂ui

∂xj
+ ν∇2ωi. (6.6.31)

In vector notation,

Dω

Dt
=

∂ ω

∂t
+ u ·∇ω = ω ·∇u+ ν∇2ω, (6.6.32)

where Dω/Dt is the material derivative of the vorticity expressing the rate of change of the
vorticity vector following the motion of a point particle.

Vorticity rotation and vortex stretching

To understand the nature of the first term on the right-hand side of (6.6.32), ω · ∇u, we
consider a small material vector, dX, and label the first point A and the last point B. Using
a Taylor series expansion, we find that the difference in the velocity across the end points
is

uB − uA 	 dX ·∇u. (6.6.33)

Comparing this expression with the expression of interest ω ·∇u, we find that the vorticity
vector behaves like a material vector convected by the flow. This means that the vorticity
vector rotates and stretches or compresses under the influence of the local flow.
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In the case of two-dimensional flow, because the vorticity vector is normal to the plane
of the flow, neither rotation, nor stretching, nor compression can take place. In the case of
axisymmetric flow, because the vorticity vector points in direction of the azimuthal angle, ϕ,
rotation is prohibited but stretching or compression can take place, as discussed in Section
6.6.2.

Persistence of irrotational motion in am inviscid flow

One important consequence of the vorticity transport equation (6.6.32) is that, if the vor-
ticity of a point particle is zero at the initial instant, it will remain zero at any time.
Thus, volumes of rotational fluid remain rotational, volumes of irrotational fluid remain
irrotational, and the interface between rotational and irrotational fluid remains sharp and
well-defined at any time.

Source of vorticity in viscous flow

In practice, because a fluid flow is always established from the state of rest, the initial
vorticity distribution is zero. Since the right-hand side of the vorticity transport equation
(6.6.32) vanishes throughout the fluid, the initial rate of production of vorticity is also zero,
and this may suggest deceptively that the flow will remain irrotational at any time. In
fact, vorticity, like heat, enters the fluid by diffusion across the boundaries. The precise
mechanism by which this occurs is discussed in Chapters 7 and 10.

6.6.1 Reduction to two-dimensional flow

Show that the vorticity transport equation (6.6.32) reproduces the transport equation
(6.6.14) for the strength of the vorticity, ωz, in a two-dimensional flow in the xy plane.

6.6.2 Convection of vorticity

Prove the identity

ωj
∂ui

∂xj
= ωj

∂uj

∂xi
. (6.6.34)

This identify allows us to express the first term on the left-hand side of (6.6.32) in the
alternative form

ω ·∇u = ∇u · ω. (6.6.35)

Hint: Begin with the identity ω × ω = ω ×∇ × u = 0, and then work in index notation
using identity (2.3.11).

6.7 Dynamic similitude and the Reynolds number

Consider a uniform (streaming) flow along the x axis with velocity U1 past a stationary body
with designated size L1, as illustrated in Figure 6.7.1(a). Also consider another streaming

Problems
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(a) (b)
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Figure 6.7.1 Illustration of flow in two similar domains. If the Reynolds numbers of the two flows
are equal, as shown in equation (6.7.10), the velocity and pressure field of the second flow may
be deduced those in the first flow, and vice versa, by rescaling.

flow along the x axis with velocity U2 past a second body that arises by shrinking or
expanding the first body by a certain factor, α, as illustrated in Figure 6.7.1(b). If the
second body is smaller than the first body, α < 1; if the second body is larger than the first
body, α > 1.

If the surface of the first body is described by an equation of the general form

f1(x1, y1, z1) = 0, (6.7.1)

then the surface of the second body is described by the equation

f2(x2, y2, z2) = f1
( x2

α
,
y2
α
,
z2
α

)
= 0, (6.7.2)

where

α ≡ L2

L1
(6.7.3)

is a scaling factor. Corresponding points on the first and second body are related by x2 =
αx1.

A sphere

For example, if the first body is a sphere of radius L1 centered at a point, xc1 = (xc1 , yc1 , zc1),
then the equation describing the surface of this body is

f1(x1, y1, z1) = (x1 − xc1)
2 + (y1 − yc1)

2 + (z2 − zc1)
2 − L2

1 = 0 (6.7.4)

and the equation describing the surface of the second body is

f2(x2, y2, z2) = f1
( x2

α
,
y2
α
,
z2
α

)
(6.7.5)
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or

f2(x2, y2, z2) =
(x2

α
− xc1

)2
+
(y2
α

− yc1

)2
+
(z2
α

− zc1

)2
− L2

1 = 0. (6.7.6)

Simplifying, we obtain

f2(x2, y2, z2) =
1

α2

(
(x2 − αxc1)

2 + (y2 − α yc1)
2 + (z2 − α zc1)

2 − L2
2

)
= 0, (6.7.7)

which the equation of a sphere of radius L2 = αL1 centered at the point xc2 = αxc1 . We
may set without loss of generality xc1 = 0, in which case both spheres are centered at the
origin.

Reynolds number

Let ρ1 and μ1 be the density and viscosity of the first fluid, and ρ2 and μ2 be the density and
viscosity of the second fluid. Both fluids are assumed to be incompressible and Newtonian.
We will show that, when the values of the four control and physical parameters defining the
first flow,

L1, U1, ρ1, μ1, (6.7.8)

and the corresponding values of the four control and physical parameters defining the second
flow,

L2, U2, ρ2, μ2, (6.7.9)

are related by the equation

ρ1U1L1

μ1
=

ρ2U2L2

μ2
, (6.7.10)

then the structure of the second flow can be inferred from the structure of the first flow, and
vice versa, by a simple computation described as rescaling. The left-hand side of (6.7.10) is
the Reynolds number of the first flow, and the right-hand side of (6.7.10) is the Reynolds
number of the second flow.

Rescaling

To deduce the structure of the second flow from the structure of the first flow, we introduce
the dynamic pressure established due to the flow, defined as the pressure deviation from the
hydrostatic distribution,

ς1 ≡ p1 − ρ1 g · x1, ς2 ≡ p2 − ρ2 g · x2. (6.7.11)

In the absence of flow, the pressure assumes the hydrostatic distribution and the dynamic
pressure vanishes throughout both domains of flow.

Now we consider an arbitrary point in the first flow, x1, and a corresponding point in
the second flow whose coordinates are given by

x2 = αx1. (6.7.12)
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Equations (6.7.1) and (6.7.2) ensure that, if the point x1 lies at the surface of the body in
the first flow, then the point x2 will lie at the surface of the body in the second flow.

We will demonstrate that, when relation (6.7.10) is fulfilled, the velocity and dynamic
pressure at the point x2 in the second flow are related to those at the point x1 in the first
flow by the equations

u2(x2) = δ u1(x1), ς2(x2) = β δ2 ς1(x1), (6.7.13)

where δ is the ratio of the velocities of the incident flow and β is the density ratio,

δ ≡ U2

U1
, β ≡ ρ2

ρ1
. (6.7.14)

The equality of the Reynolds numbers expressed by (6.7.10) requires that

βδ = αλ, (6.7.15)

where

λ ≡ μ2

μ1
(6.7.16)

is the viscosity ratio.

Unsteady flow

Relations (6.7.13) are also valid for unsteady flow, provided that the velocity field of the
first flow at the designated origin of time is related to the velocity of the second flow at the
designated origin of time by the first of equations (6.7.13), and the comparison is made at
times t1 and t2 related by

t2 =
δ

α
t1. (6.7.17)

A implicit assumption is that both flows have been started at the same time.

6.7.1 Dimensional analysis

To prove relations (6.7.13), we consider the Navier–Stokes equation (6.5.7),

ρ
( ∂u
∂t

+ u · ∇u
)
= −∇p+ μ∇2u+ ρg, (6.7.18)

and the continuity equation for an incompressible fluid,

∇ · u = 0, (6.7.19)

governing the structure and dynamics of each flow with appropriate physical constants
corresponding to the two fluids, subject to appropriate far-field and boundary conditions,
and work in three stages.
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First flow

In the first stage, we consider the first flow and introduce the dimensionless independent
variables

x̂1 =
x1

L1
, ŷ1 =

y1
L1

, ẑ1 =
z1
L1

, t̂1 =
t1 U1

L1
, (6.7.20)

and the dimensionless dependent variables

ûx1
=

ux1

U1
, ûy1

=
uy1

U1
, ûz1 =

uz1

U1
, ς̂1 =

ς1
ρ1U2

1

, (6.7.21)

all indicated by a caret (hat). Solving for the dimensional variables in terms of their dimen-
sionless counterparts, and substituting the result into the Navier–Stokes equation and the
continuity equation, we obtain

∂ û1

∂t̂1
+ û1 · ∇̂1û1 = −∇̂1 ς̂1 +

1

Re1
∇̂2

1 û1 (6.7.22)

and

∇̂1 · û1 = 0, (6.7.23)

where

Re1 ≡ ρ1U1L1

μ1
(6.7.24)

is the Reynolds number of the first flow, as shown on the left-hand side of (6.7.10). We have
introduced the dimensionless gradient and associated Laplacian operator

∇̂1 ≡ (
∂

∂x̂1
,

∂

∂ŷ1
,

∂

∂ẑ1
), ∇̂2

1 ≡ ∂̂2

∂x̂2
1

+
∂̂2

∂ŷ21
+

∂̂2

∂ẑ21
. (6.7.25)

The far-field condition requires that, far from the body, the dimensionless velocity
components ûx1

tends to unity, whereas ûy1
and ûz1 decay to zero. The no-slip and no-

penetration boundary conditions require that the velocity vanishes at points (x1, y1, z1) that
satisfy equation (6.7.1) or, equivalently, points (x̂1, ŷ1, ẑ1) that satisfy the equation

f1(L1x̂1, L1ŷ1, L1ẑ1) = 0 (6.7.26)

in dimensionless space.

Second flow

In the second stage, we consider the second flow and introduce the dimensionless independent
variables

x̂2 =
x2

L2
, ŷ2 =

y2
L2

, ẑ2 =
z2
L2

, t̂2 =
t2 U2

L2
, (6.7.27)
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and the dimensionless dependent variables

ûx2
=

ux2

U2
, ûy2

=
uy2

U2
, ûz2 =

uz2

U2
, ς̂2 =

ς2
ρ2U2

2

. (6.7.28)

Solving for the dimensional variables in terms of their dimensionless counterparts, and sub-
stituting the result into the Navier–Stokes and continuity equation, we find that

∂ û2

∂t̂2
+ û2 · ∇̂2û2 = −∇̂2 ς̂2 +

1

Re2
∇̂2

2 û2 (6.7.29)

and

∇̂2 · û2 = 0, (6.7.30)

where

Re2 ≡ ρ2U2L2

μ2
(6.7.31)

is the Reynolds number of the second flow, as shown on the right-hand side of (6.7.10). We
have introduced the dimensionless gradient and associated Laplacian operator

∇̂2 ≡ (
∂

∂x̂2
,

∂

∂ŷ2
,

∂

∂ẑ2
), ∇̂2

2 ≡ ∂̂2

∂x̂2
2

+
∂̂2

∂ŷ22
+

∂̂2

∂ẑ22
. (6.7.32)

The far-field condition requires that the dimensionless velocity component ûx2
tends to

unity, whereas ûy2
and ûz2 decay to zero far from the body. The no-slip and no-penetration

boundary conditions require that the velocity vanishes at points (x2, y2, z2) that satisfy
equation (6.7.2) or, equivalently, points (x̂2, ŷ2, ẑ2) that satisfy the equation

f1(L1x̂2, L1ŷ2, L1ẑ2) = 0 (6.7.33)

in dimensionless space.

Comparison

In the third stage, we compare one by one corresponding equations and boundary conditions
governing the two flows in the dimensionless variables indicated by a hat, and draw four
important conclusions:

1. The Navier–Stokes equation (6.7.22) is identical to the Navier–Stokes equation (6.7.29),
provided that the two Reynolds numbers are equal, Re1 = Re2, as stated in (6.7.10).

2. The continuity equation (6.7.23) is identical to the continuity equation (6.7.30) inde-
pendent of the Reynolds numbers.

3. The far-field conditions are identical: both dimensionless velocities designated by a
caret tend to [1, 0, 0] far from the body.
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4. The boundary conditions on the first body described by (6.7.26) are identical to the
boundary conditions on the second body described by (6.7.33).

These results demonstrate that, when the Reynolds numbers of the two flows are equal, val-
ues of the dimensionless dependent variables in the two flows at corresponding dimensionless
times and dimensionless positions are the same. For example, setting

ς̂1(x̂1) = ς̂2(x̂2) (6.7.34)

and using the definitions (6.7.21) and (6.7.28), we derive the second relation in (6.7.13),
subject to the definitions given in (6.7.14).

An important implication of the scaling analysis is that a flow of interest in a large
domain, such as the flow past an aircraft, can be studied conveniently in a miniaturized
geometry. Conversely, a flow of interest in a small domain, such as the flow over a small pit
due to surface corrosion, can be studied conveniently in an enlarged domain.

6.7.1 Reynolds number

Compute the Reynolds number of (a) an ant crawling, (b) a person running, (c) a car moving
at 100 km per hour, and (d) an elephant running across a plain at maximum speed.

6.8 Structure of a flow as a function of the Reynolds number

Consider the flow of an incompressible fluid in a domain with characteristic length L, identify
an appropriate characteristic velocity, U , and compute the Reynolds number

Re ≡ ρLU

μ
=

LU

ν
, (6.8.1)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid. Next, introduce the dimensionless
independent variables

x̂ =
x

L
, ŷ =

y

L
, ẑ =

z

L
, t̂ =

t U

L
, (6.8.2)

and the dimensionless dependent variables

ûx =
ux

U
, ûy =

uy

U
, ûz =

uz

U
, ς̂ =

ς

ρU2
, (6.8.3)

where ς is the dynamic pressure excluding variations in hydrostatics. Solving for the dimen-
sional variables in terms of their dimensionless counterparts and substituting the result into
the Navier–Stokes equation and the continuity equation, we obtain the dimensionless forms

∂ û

∂t̂
+ û · ∇̂û = −∇̂ς̂ +

1

Re
∇̂2û (6.8.4)

Problem
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and

∇̂ · û = 0. (6.8.5)

These dimensionless forms reveal that, given the boundary shape, the structure of a flow is
determined by L, U , ρ, and μ collectively through the dimensionless Reynolds number rather
than individually, in the sense of the dynamic similitude expressed by equations (6.7.13) and
(6.7.14).

Velocity and length scales

The choice of characteristic velocity, U , and length scale, L, is not always apparent. Sub-
tleties arise when the domain of flow contains an intrinsic length scale or a multitude of
length scales. Examples include the flow of a suspension of small particles and the flow
established spontaneously due to a hydrodynamic instability, in the absence of external
forcing.

For the successful choices of L and U , all terms in the dimensionless Navier–Stokes
equation (6.8.4), with the possible exception of the pressure gradient term, are of order unity.
The Reynolds number then expresses the relative importance of inertial forces, assumed to
scale with ρU2/L, and viscous forces, assumed to scale with μU/L2. Their ratio is precisely
the Reynolds number defined in (6.8.1).

6.8.1 Stokes flow

If the Reynolds number is small, viscous forces dominate in that the left-hand side of the
dimensionless Navier–Stokes equation (6.8.4) makes a negligible contribution to the underly-
ing balance. Although the dimensionless pressure gradient also appears to make a negligible
contribution, this is only a mathematical illusion.

To see this, we observe that the dimensionless pressure arose from the arbitrary scaling
shown in the equation in (6.8.3), which can be contrasted with the physical scaling of the
position vector and velocity in terms of the unambiguous length and velocity scales, L and U .
As a consequence, the dimensionless pressure gradient may become singular as the Reynolds
number tends to zero, requiring an alternative scaling. To prevent this failure, we retain
the pressure gradient in the dimensionless form of the Navier–Stokes equation irrespective
of the Reynolds number.

Reverting to dimensional variables, we find that the Navier–Stokes equation reduces to
the Stokes equation,

0 = −∇p+ μ∇2u+ ρg, (6.8.6)

which describes steady or unsteady creeping flow with negligible inertial forces. Cursory
inspection reveals that the pressure scales with μU/L rather than ρU2. The analysis and
computation of creeping flow will be the exclusive topic of Chapter 9.
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6.8.2 Flows at high Reynolds numbers

Inspecting (6.8.4), we find that, when the Reynolds number is high, viscous forces can be
neglected, provided that the velocity does not change rapidly over a small distance across
a fluid layer that is thin compared to the global size of the boundaries. Otherwise, the
standard scaling with respect to U and L may cease to be valid.

Thin layers supporting large velocity differences typically occur along flow boundaries
or interfaces between two adjacent streams of the same fluid or different fluids. In Chapter
10, we will see that viscous forces are significant inside these layers, even though the bulk
of the flow may occur at high Reynolds numbers.

6.8.3 Laminar and turbulent flow

When the Reynolds number exceeds a certain threshold, an unsteady small-scale motion
characterized by rapid fluctuations in the velocity and vorticity fields is spontaneously es-
tablished. In practice, turbulent motion is often superposed on a steady or unsteady macro-
scopic or large-scale flow that evolves at a slower rate. A flow below the critical Reynolds
number is called laminar to indicate that the streamlines are smooth, whereas a flow above
the critical Reynolds number is called turbulent to indicate that the streamlines are highly
convoluted.

Transition to turbulence

The transition from laminar to turbulent flow may occur by several venues, including the
amplification of spontaneous internal waves. The critical Reynolds number where transition
occurs can be estimated theoretically by carrying out a stability analysis, as discussed in
Chapter 10. The dynamics of turbulent motion can be studied by several methods, including
statistical analysis, nonlinear dynamical systems theory, and vortex dynamics.

6.8.1 Characteristic scales

Identify the characteristic velocity scale, U , length scale, L, and Reynolds number of (a)
simple shear flow past a stationary body, (b) flow due to the settling of a small particle in
the atmosphere, and (c) flow due to a breaking wave in the ocean.

6.9 Dimensionless numbers in fluid dynamics

We have demonstrated that two geometrically related flows occurring at the same Reynolds
number are similar, in that one flow can be deduced from the other by rescaling. Arguments
have been made for a flow that is bounded by a solid surface over which the no-slip and
no-penetration boundary conditions apply. A time-independent velocity field was imposed
in the far field as a driving mechanism.

Problems
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If the driving mechanism is time dependent or the flow is bounded by fluid interfaces
and free surfaces, additional conditions for dynamic similitude requiring the equality of fur-
ther dimensionless numbers are necessary. These dimensionless numbers enter the problem
formulation either through the governing equations or through boundary and interfacial
conditions.

Frequency number for a time-dependent flow

Let us consider an externally forced time-dependent flow and identify a velocity scale, U , a
length scale, L, and a time scale, T . In the case of periodic flow with angular frequency ω
due, for example, to an oscillating pressure gradient, T can be identified with the period,
T = 2π/ω. The relative importance of inertial and viscous forces in the equation of motion
is expressed by the dimensionless frequency parameter

β ≡ L2

νT
, (6.9.1)

where ν is the kinematic viscosity of the fluid. In the case of an intrinsically time-dependent
flow, T = L/U , the frequency parameter reduces to the Reynolds number β = Re = LU/ν.

Froude number

Consider flow in the ocean due to the propagation of water waves. The relative importance
of inertial and gravitational forces is determined by the Froude number,

Fr ≡ U√
gL

, (6.9.2)

where g is the magnitude of the acceleration of gravity. In the case of flow over a hump
discussed in Section 6.4, the Froude number takes the specific form shown in equation
(6.4.43).

Bond number

The relative importance of gravitational forces and surface tension in a fluid that is confined
by a free surface or fluid interface is determined by the Bond number,

Bo ≡ ρ gL2

γ
, (6.9.3)

where γ is the surface tension (Problem 6.9.1).

Weber number

The relative importance of inertial forces and surface tension in a flow that is confined by a
free surface or fluid interface is determined by the Weber number,

We ≡ ρU2L

γ
. (6.9.4)
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For example, the Weber number determines the deformation and structure of the flow around
a gas bubble rising or convected at high speed through an ambient liquid.

Capillary number

The relative importance of viscous forces and surface tension in a fluid bounded by a free
surface or fluid interface is determined by the capillary number,

Ca ≡ μU

γ
. (6.9.5)

For example, the capillary number determines the deformation and thus the structure of
the flow around a liquid droplet immersed in a shear flow.

6.9.1 Bond number in hydrostatics

Explain how the Bond number arises from the scaling of the Laplace-Young equation (5.4.8)
in hydrostatics.

6.9.2 Ratio of two numbers

What is the ratio between the Weber number and the capillary number?

Problems



Channel, tube, and film flow 7
7.1 Steady flow in a two-dimensional channel
7.2 Steady film flow down an inclined plane
7.3 Steady flow through a circular tube
7.4 Steady flow through an annular tube
7.5 Steady flow in channels and tubes
7.6 Steady swirling flows
7.7 Transient channel flows
7.8 Oscillatory channel flows
7.9 Transient and oscillatory flow in a circular tube

In previous chapters, we derived the differential equations governing the motion of an incom-
pressible Newtonian fluid by requiring mass conservation and enforcing Newton’s second law
of motion for infinitesimal fluid parcels. The governing equations are accompanied by ini-
tial, boundary, and interfacial conditions, as required. In this chapter, we proceed to derive
analytical and semi-analytical solutions for an important class of steady and unsteady flows
with rectilinear or circular streamlines. The engineering significance of these flows, com-
bined with their ability to demonstrate the salient mechanisms of momentum and vorticity
transport at steady or unsteady state, justify a extensive consideration.

7.1 Steady flow in a two-dimensional channel

We begin by considering flow in a two-dimensional channel confined between two parallel
plane walls that are separated by distance 2a and are inclined by an angle β with respect
to the horizontal plane, as illustrated in Figure 7.1.1.

In the inclined system of Cartesian coordinates defined in Figure 7.1.1, the x axis
is parallel to the walls and the y axis is perpendicular to the walls. The corresponding
Cartesian components of the acceleration of gravity vector are

gx = g sinβ, gy = −g cosβ, (7.1.1)

where g is the magnitude of the acceleration of gravity. The lower wall translates parallel to
itself with constant velocity V1, and the upper wall translates parallel to itself with constant
velocity V2.

419© Springer Science + Business Media LLC 2017  
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Figure 7.1.1 Illustration of steady unidirectional flow through a two-dimensional inclined channel
confined between two parallel walls located at y = ±a.

The motion of the fluid is governed by the Navier–Stokes equation (6.5.6) whose Carte-
sian components are displayed in Table 6.5.1.

Unidirectional and fully developed flow

Our analysis will be based on the assumption of steady unidirectional flow, requiring that
the y and z velocity components vanish, uy = 0 and uz = 0, while the x component remains
constant in time, ∂ux/∂t = 0. This assumption precludes the occurrence of turbulent motion
where small-scale three-dimensional fluctuations are observed, as discussed in Chapter 10.
The continuity equation for two-dimensional flow,

∂ux

∂x
+

∂uy

∂y
= 0, (7.1.2)

requires that ∂ux/∂x = 0, which states that the flow is fully developed. Thus, the axial
velocity, ux, is a function of position across the channel, y, alone, that is, ux(y).

Governing equations and pressure field

Simplifying the x and y components of the equation of motion shown in Table 6.5.1 by
discarding terms that are identically zero, we obtain

0 = −∂p

∂x
+ μ

d2ux

dy2
+ ρgx (7.1.3)

and

0 = −∂p

∂y
+ ρgy. (7.1.4)

In fact, equation (7.1.4) determines the pressure distribution in hydrostatics.
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It is convenient to screen out the hydrostatic variations in the direction normal to the
flow by expressing the pressure in the form

p(x, y) = −χx+ ρgyy + π0, (7.1.5)

where π0 is a reference pressure and

χ ≡ −∂p

∂x
(7.1.6)

is the negative of the pressure gradient (derivative) along the x axis.

Velocity profile

The simplified equation of motion (7.1.3) takes the form of a second-order linear ordinary
differential equation,

d2ux

dy2
= −χ+ ρgx

μ
. (7.1.7)

Integrating twice with respect to y, we derive the parabolic velocity profile

ux(y) = − 1

2

χ+ ρgx
μ

y2 +By +A, (7.1.8)

where A and B are two constants.

To evaluate the constants A and B, we enforce the no-slip boundary condition at the
two walls by requiring that the fluid velocity is equal to the wall velocity. Referring to the
Cartesian coordinates defined in Figure 7.1.1, we require that

ux = V1 at y = −a (7.1.9)

and

ux = V2 at y = a, (7.1.10)

yielding

− 1

2

χ+ ρgx
μ

a2 ±Ba+A = 0. (7.1.11)

Equations (7.1.11) provide us with two linear equations for two unknowns. Solving for A
and B by adding or subtracting the equations for ±, and substituting the result back into
(7.1.8), we derive the velocity profile

ux(y) = V1 +
V2 − V1

2

y + a

a
+

1

2

χ+ ρgx
μ

(a2 − y2) (7.1.12)

for −a ≤ y ≤ a.
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Function chan 2d, located in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile given in (7.1.12).

Boundary- pressure- and gravity-driven flow

It is instructive to identify three special cases of the general flow expressed by equation
(7.1.12), corresponding to different physical flow configurations:

1. When χ+ ρgx = 0, the last term on the right-hand side of (7.1.12) disappears and the
flow is driven by boundary motion in a shear or boundary-driven mode; this is the
case of plane Couette flow.

2. When V1 = 0, V2 = 0, and the channel is horizontal, gx = 0, the flow is driven by
an imposed pressure gradient along the x axis, which is equal to the negative of the
constant χ, in a pressure-driven mode; this is the case of Hagen or plane Poiseuille
flow, also called the Hagen–Poiseuille flow.

3. When V1 = 0, V2 = 0, and in the absence of pressure variation along the x axis at any
y position, χ = 0, we obtain gravity-driven flow. This flow occurs when both ends of
a channel are open to the atmosphere.

Mixed cases of boundary-, pressure-, and gravity-driven flow can be obtained by linear
superposition.

Shear stress

The shear stress, σxy, arises by differentiating the velocity profile (7.1.12) with respect to
y, finding

σxy = μ
dux

dy
= μ

V2 − V1

2 a
− (χ+ ρ gx) y. (7.1.13)

In Couette flow, the shear stress is a constant determined by the difference between the
velocities of the two walls and the distance between the walls, 2a. In gravity- and pressure-
driven flow, the shear stress varies linearly with position across the channel walls.

Flow rate

The flow rate along the x axis per unit width of the channel is found by integrating the
velocity profile across the channel cross-section,

Q =

∫ a

−a

ux(y) dy. (7.1.14)

Substituting the velocity profile and performing the integration, we obtain

Q = (V1 + V2) a+
2

3

χ+ ρgx
μ

a3. (7.1.15)
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Figure 7.1.2 Illustration of steady unidirectional flow through a two-dimensional channel confined
between two inclined parallel walls located at y = 0 and h. The x axis is attached to the lower
wall.

Note the dependence on a or a3 in the two terms on the right-hand side. The mean velocity
is defined as

umean ≡ Q

2a
=

V1 + V2

2
+

1

3

χ+ ρgx
μ

a2. (7.1.16)

In Couette flow, the mean velocity is the mean of the wall velocities.

7.1.1 Alternative coordinates

Expressions for the velocity profile, shear stress, flow rate, and mean velocity can be derived
in the alternative coordinates defined in Figure 7.1.2 where the walls are located at y = 0
and h. Substituting in the preceding expressions

a → 1

2
h, y → y − 1

2
h, (7.1.17)

where h = 2a is the wall separation, we obtain the velocity profile

ux(y) = V1 + (V2 − V1)
y

h
+

1

2

χ+ ρgx
μ

y (h− y) (7.1.18)

for 0 ≤ y ≤ h. The shear stress is given by

σxy = μ
dux

dy
= μ

V2 − V1

h
− (χ+ ρgx) (y − 1

2
h). (7.1.19)

for 0 ≤ y ≤ h. The flow rate is given by

Q ≡
∫ h

0

ux dy =
V1 + V2

2
h+

1

12

χ+ ρgx
μ

h3 (7.1.20)

and the mean velocity is given by

umean ≡ Q

h
=

V1 + V2

2
+

1

12

χ+ ρgx
μ

h. (7.1.21)
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Figure 7.1.3 Flow inside a long horizontal channel that is closed at both ends. A pressure gradient
is established spontaneously to satisfy the condition of vanishing flow rate.

x

L

Fluid

y

h

V
Sliding plane

Figure 7.1.4 Illustration of a plate sliding over a stationary surface fitted with vertical plates. The
space between the plates is filled with a viscous fluid.

Flow in a slender cavity

As an application, we consider flow in a slender rectangular cavity that is closed at the left
and right ends so that the flow rate is zero, Q = 0, as shown in Figure 7.1.3. Physically, the
flow is driven by the translation of two moving belts identified with the lower and upper
walls.

Equation (7.1.20) shows that a pressure gradient is established for the right-hand side
to vanish. Setting Q = 0, we obtain

−χ ≡ ∂p

∂x
= 6μ

V1 + V2

h2
+ ρgx. (7.1.22)

This pressure gradient generates a back-flow that ensures the condition of vanishing flow
rate. In the case of a horizontal cavity, as shown in Figure 7.1.3, gx = 0.

Motion of a plane sliding over surface fitted with plates

In a related application, we consider a plane sliding with velocity V over a horizontal surface
that is fitted with vertical plates, as shown in Figure 7.1.4. The space between the plates is
filled with a viscous fluid. We are interested in calculating the force necessary to sustain the
translation of the plane, F , terms of the height of the vertical plates, h, the sliding velocity,
V , and the fluid viscosity, μ.
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We may assume as an approximation that the flow inside the slender space between two
consecutive plates is unidirectional flow between two horizontal plates. The velocity profile
sufficiently far from the vertical plates is found by setting V1 = 0, V2 = V , and gx = 0 in
(7.1.18), yielding

ux(y) = V
y

h
+

1

2

χ+ ρgx
2μ

y (h− y). (7.1.23)

The corresponding flow rate calculated from (7.1.20) is

Q =
1

2
V h+

1

12

χ+ ρgx
μ

h3. (7.1.24)

Since fluid cannot escape each cell, Q = 0 and

−χ ≡ ∂p

∂x
= 6

μV

h2
+ ρgx. (7.1.25)

Substituting this expression into (7.1.23), we obtain the velocity profile

ux(y) = V
y

h

(
3
y

h
− 2
)
. (7.1.26)

The shear stress distribution is

σxy = μ
∂ux

∂y
= 2

μV

h

(
3
y

h
− 1
)
. (7.1.27)

The shear stress at the sliding plate is

σxy(y = h) = 4
μV

h
, (7.1.28)

and the corresponding resistive force for each plate spacing is

Fchannel = 4
μV L

h
, (7.1.29)

where L is the separation between the plates. If the vertical plates are in contact with
the sliding plane, an additional frictional force will be exerted on the sliding plane by each
vertical plate, Ffric.

More important, an additional hydrodynamic force is exerted on the plane due to the
local fluid flow deep inside each corner formed between the sliding plane and each vertical
plate. A local analysis shows that, if the translating plane is in perfect contact with the plates
and the corners are perfectly sharp, the magnitude of this force is infinite. To overcome this
singularity, the plane will float over a thin fluid layer extending a small distance above the
vertical plates.
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Figure 7.1.5 Illustration of steady two-layer flow through an inclined channel confined between two
parallel walls located at y = ±a.

7.1.2 Two-layer flow

Next, we consider the flow of two superimposed layers with generally different viscosities
and densities, as illustrated in Figure 7.1.5. The lower layer is labeled 1 and the upper layer
is labeled 2. In the inclined system of coordinates depicted in Figure 7.1.5, the interface is
located at y = yI.

Working as in the case of single-fluid flow, we derive the pressure field inside each layer
corresponding to (7.1.5),

p(1)(x, y) = −χx+ ρ1gy (y − yI) + π0 (7.1.30)

and

p(2)(x, y) = −χx+ ρ2gy (y − yI) + π0, (7.1.31)

where π0 is an unspecified reference pressure. Note that the negative of the pressure gradient,
χ ≡ −∂p/∂x, must be the same in both fluids. Otherwise, the interfacial condition requiring
continuity of normal stress, which amounts to continuity of pressure, cannot be satisfied at
every downstream position, x.

The velocity profile across each layer is governed by the counterparts of equation (7.1.7)
for each fluid,

d2u
(1)
x

dy2
= −χ+ ρ1gx

μ1
,

d2u
(2)
x

dy2
= −χ+ ρ2gx

μ2
. (7.1.32)

To facilitate the forthcoming algebraic manipulations, we integrate equations (7.1.32) twice
with respect to y and express the solution in the form

u(1)
x (y) = − 1

2

χ+ ρ1gx
μ1

(y − yI)
2 + ξ1 (y − yI) + uI (7.1.33)
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and

u(2)
x (y) = − 1

2

χ+ ρ2gx
μ2

(y − yI)
2 + ξ2 (y − yI) + uI, (7.1.34)

where uI is the common interfacial velocity and

ξ1 ≡
(du(1)

x

dy

)
y=yI

, ξ2 ≡
(du(2)

x

dy

)
y=yI

(7.1.35)

are the interfacial shear rates expressing the slope of the velocity profile on either side of
the interface.

To compute the three unknowns,uI, ξ1, and ξ2, we enforce the no-slip boundary condition
at the lower and upper walls,

u(1)
x (y = −a) = V1, u(2)

x (y = a) = V2, (7.1.36)

and also require that the shear stress is continuous across the interface,

μ1ξ1 = μ2 ξ2. (7.1.37)

After a fair amount of algebra, we derive the expressions

uI =
1

2μ1

h1h2

λ+ r

[
(1 + r)χ+ ρ1gx (1 + α r)

]
+

r V1 + λV2

r + λ
(7.1.38)

and

ξ1 = − 1

2

χ+ ρ1 gx
μ1

h1 +
uI − V1

h1
, ξ2 =

1

2

χ+ ρ2 gx
μ2

h2 − uI − V2

h2
, (7.1.39)

where

h1 = a+ yI, h2 = a− yI (7.1.40)

are the lower and upper layer thicknesses satisfying h1 + h2 = 2a. We have introduced the
viscosity ratio, the density ratio, and the layer thickness ratio,

λ ≡ μ2

μ1
, α ≡ ρ2

ρ1
, r ≡ h2

h1
. (7.1.41)

Function chan 2d 2l, located in directory 04 various of Fdlib, not listed in the text,
evaluates the interfacial velocity, shear rates, velocity profile across the two layers, and the
corresponding flow rates.
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Figure 7.1.6 Illustration of steady flow of N layers through an inclined channel confined between
two parallel walls located at y = ±a. The interfacial labels are printed on the left and the layer
labels are printed on the right.

7.1.3 Multi-layer flow

Generalizing the two-layer flow discussed in Section 7.1.2, now we consider the flow of an
arbitrary number of N superimposed layers, as illustrated in Figure 7.1.6. The bottom layer
is labeled 1 and the top layer is labeled N . The N − 1 interfaces separating the layers are
located at positions

y = y
(i)
I (7.1.42)

for i = 1, . . . , N − 1. In the case of two layers, N = 2, we obtain a single interface, as
discussed in Section 7.1.2.

Governing equations

The velocity profile across the ith layer is governed by equation (7.1.7) with corresponding
fluid viscosity, ρi, and density, μi,

d2u
(i)
x

dy2
= −χ+ ρigx

μi

(7.1.43)

for i = 1, . . . , N . Integrating this second-order ordinary differential equation twice with
respect to y, we derive a parabolic profile,

u(i)
x (y) = − 1

2

χ+ ρigx
μi

y2 +B(i)y +A(i), (7.1.44)

where A(i) and B(i) are unknown constants to be determined by enforcing three conditions:
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1. The no-slip boundary condition at the lower and upper walls.

2. Continuity of velocity at the interfaces expressed by the matching condition(
u(i)
x

)
y=y

(i)
I

=
(
u(i+1)
x

)
y=y

(i)
I

(7.1.45)

for i = 1, . . . , N − 1.

3. Continuity of shear stress at the interfaces expressed by the matching condition

μi

(du(i)
x

dy

)
y=y

(i)

I

= μi+1

(du(i+1)
x

dy

)
y=y

(i)

I

(7.1.46)

for i = 1, . . . , N − 1.

Substituting the velocity profiles (7.1.44) into (7.1.46), and solving for the coefficient
B(i), we derive the recursive relation

B(i) =
χ+ ρigx

μi
y
(i)
I +

μi+1

μi

(
B(i+1) − χ+ ρi+1gx

μi+1
y
(i)
I

)
(7.1.47)

for i = 1, . . . , N − 1.

It is convenient to introduce the shear rate in the top layer at the upper wall,

α ≡
(du(N)

x

dy

)
y=a

. (7.1.48)

Differentiating the profile (7.1.44) with respect to y for i = N , and evaluating the derivative
at the upper wall, y = a, we obtain

B(N) = α+
χ+ ρNgx

μN
a. (7.1.49)

If we knew the value of α, we would be able to compute the coefficient B(N) from (7.1.49),
and then evaluate the rest of the coefficients, B(i) for i = N − 1, . . . , 1, using the recursion
relation (7.1.47). Once this has been accomplished, we would be able to compute the
coefficient A(1) to satisfy the no-slip condition at the bottom wall using the equation

u(1)
x (y = −a) = − 1

2

χ+ ρ1gx
μ1

a2 −B(1)a+A(1) = V1, (7.1.50)

yielding

A(1) = V1 +
1

2

χ+ ρ1gx
μ1

a2 +B(1)a, (7.1.51)

and then compute the rest of the coefficients, A(i), by requiring continuity of velocity across
each interface expressed by (7.1.45). At the end, the no-slip boundary condition at the
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upper wall would surely be satisfied. Unfortunately, the value of α is a priori unknown and
must be found as part of the solution.

Numerical method

An expedient method of evaluating the constant α and simultaneously computing the un-
known coefficients of the velocity profiles can be devised based on the no-slip boundary
condition at the upper wall. We begin by expressing this condition in the form

f(α) ≡ u(N)
x (y = a)− V2 = 0, (7.1.52)

where f(α) is an objective function. Substituting the expression for the velocity in the top
layer, we obtain

f(α) = − 1

2

χ+ ρNgx
μN

a2 +B(N) a+A(N) − V2 = 0. (7.1.53)

A key observation is that, because f(α) is a linear function of α, it can be expressed in the
form

f(α) = Cα+D, (7.1.54)

where

C = f(1)− f(0), D = f(0). (7.1.55)

The linear dependence becomes evident by observing that, if a certain value of α is assumed,
then the procedure described in the paragraph following equation (7.1.49) can be used to
evaluate the coefficients of the velocity profile across each layer, and the left-hand side of
(7.1.53) can be computed by linear algebraic manipulations.

Combining equations (7.1.54) and (7.1.55), we find that the desired value of α, satisfying
f(α) = 0, is given by

α = −D

C
=

f(0)

f(0)− f(1)
. (7.1.56)

The algorithm involves evaluating f(0) and f(1), and then using (7.1.56) to extract α.

The numerical method is coded in a function entitled chan 2d ml, located in directory
04 various of Fdlib. The MATLAB implementation is listed below:

function [Q,u,xi1,xi2,yI,uI] = chan 2d ml ...

(NLR,a,thick ...

,visc,den,gac ...

,V1,V2,chi,beta ...

,y)
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%==============================================

% Multi-layer flow through a channel confined

% between two parallel plane walls located at y = +-a

%

% Layer numbered 1 is adjacent to the lower wall

% Layer numbered NLR is adjacent to the upper wall

%

% The velocity profile in the ith layer is given by:

%

% u(i) = af(i) + bf(i)*y - gf(i)*y^2

%

% SYMBOLS:

% --------

%

% NLR: Number of layers

% thick: layer thicknesses

% yI(i): y position of the ith interface

% uI(i): velocity of the ith interface

% xi1(i): shear rate on lower side of the ith interface

% xi2(i): shear rate on upper side of the ith interface

% Q(i): flow rate of the ith layer

% th0: plane inclination angle

% gac: magnitude of the acceleration of gravity

% chi: negative of the pressure gradient

%==============================================

%----------------------------

% set the interface positions

%----------------------------

yI(1) = -a + thick(1);

for i=2:NLR

yI(i) = yI(i-1) + thick(i);

end

%-----------------------------------------

% the velocity in the ith layer is given by:

% u(i) = af(i) + bf(i)*y - gf(i)*y^2

% compute gf(i)

%-----------------------------------------

fc = gac*sin(beta);

for i=1:NLR

gf(i) = 0.5*(chi+fc*den(i))/visc(i);

end
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%---------------------------------------------------

% In the first pass,

% we set the shear rate at upper wall "alpha" to zero

% and compute the residual of the upper wall boundary

% condition: error0

%

% In the second pass,

% we set the shear rate at upper wall "alpha" to one

% and compute the residual of the upper wall boundary

% condition: error1

%

% In the third pass,

% we set the proper shear rate:

% alpha = error0/(error0-error1)

%-------------------

alpha = 0.0;

for Ipass=1:3

%---

% specified upper wall shear stress

%---

bf(NLR) = alpha + 2.0*gf(NLR)*a;

%---

% compute bf(i) by recursion starting from the top

% and requiring continuity of shear stress

% across the interfaces

%---

for i=NLR-1:-1:1

bf(i) = 2.0*gf(i)*yI(i) ...

+ visc(i+1)/visc(i)*(bf(i+1)-2.0*gf(i+1)*yI(i));

end

%---

% compute af(1) to satisfy the non-slip condition

% at the lower wall

%---

af(1) = V1+(bf(1)+gf(1)*a)*a;

%---

% compute af(i), i=2,...,NLR by recursion

% starting from the bottom

% and requiring continuity of velocity

%---
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for i=1:NLR-1

af(i+1) = af(i)+((bf(i)-bf(i+1)) ...

-(gf(i)-gf(i+1))*yI(i))*yI(i);

end

%---

% error in the no-slip condition on the upper wall

% error = u(y=a)-V2

%---

if(Ipass==1)

error0 = af(NLR)+(bf(NLR)-gf(NLR)*a)*a-V2;

alpha = 1.0;

elseif(Ipass==2)

error1 = af(NLR)+(bf(NLR)-gf(NLR)*a)*a-V2;

alpha = error0/(error0-error1);

end

%---

end % of Ipass

%---

%---

% compute interfacial velocities and shear rates

%---

for i=1:NLR-1

uI(i) = af(i)+( bf(i)-gf(i)*yI(i) ) * yI(i);

xi1(i) = bf(i) - 2.0*gf(i)*yI(i);

xi2(i) = bf(i+1)-2.0*gf(i+1)*yI(i);

end

%----

% compute the flow rates

% the ith layer is confined between

% the i-1 and i interfaces

%----

yI0 = -a;

Q(1) = af(1)*(yI(1)-yI0) ...

+bf(1)*(yI(1)^2-yI0^2)/2.0 ...

-gf(1)*(yI(1)^3-yI0^3)/3.0;

for i=2:NLR

Q(i) = af(i)*(yI(i)-yI(i-1)) ...

+bf(i)*(yI(i)^2-yI(i-1)^2)/2.0 ...

-gf(i)*(yI(i)^3-yI(i-1)^3)/3.0;

end
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Figure 7.1.7 Velocity profile across six layers in channel flow between two inclined walls generated
by code chan 2d ml.

%--------------------------

% compute the velocity at y

%--------------------------

% identify the host layer:

for i=1:NLR

if(y<yI(i)) break; end

end

if(i>NLR) i=NLR; end

%---

% evaluate the velocity

%---

u = af(i) + (bf(i)-gf(i)*y)*y;

%-----

% done

%-----

return

The velocity profile for a configuration with six layers in an inclined channel is shown in
Figure 7.1.7.
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7.1.4 Power-law fluids

Next, we derive the counterpart of the single-layer velocity profile (7.1.12) for a power-law
fluid whose viscosity is a function of the shear rate according to the constitutive equation
(4.8.2),

μ = μ0

∣∣∣dux

dy

∣∣∣n−1

, (7.1.57)

where μ0 is a constant, n is the power-law exponent, and the vertical bars enclose the
absolute value. When n < 1, we obtain a shear-thinning fluid; whereas, when n > 1, we
obtain a shear-thickening fluid.

Governing equations

The x component of the equation of motion for steady unidirectional flow requires that

0 = χ+
dσxy

dy
+ ρgx, (7.1.58)

where χ = −∂p/∂x is the negative of the streamwise pressure gradient. Integrating with
respect to y, we find that the shear stress is a linear function of position,

σxy = A− (χ+ ρgx) y, (7.1.59)

where A is a constant. Substituting the expression for the shear stress from the constitutive
equation, we obtain a nonlinear equation,

μ0

∣∣∣dux

dy

∣∣∣n−1 dux

dy
= A− (χ+ ρgx) y. (7.1.60)

The evaluation of the absolute value requires careful consideration.

Velocity profile

When dux/dy > 0, we obtain the governing equation

μ0

(dux

dy

)n
= A− (χ+ ρgx) y, (7.1.61)

yielding

dux

dy
=

1

μ
1/n
0

(
A− (χ+ ρgx) y

)1/n
, (7.1.62)

where the positive nth root is implied. Assuming that χ+ ρgx 
= 0, we integrate the shear
rate with respect to y and derive the velocity profile

ux(y) = − n

n+ 1

1

χ+ ρgx

1

μ
1/n
0

(
A− (χ+ ρgx) y

)(n+1)/n

+B, (7.1.63)
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where B is a new constant.

When dux/dy < 0, we find that

dux

dy
= − 1

μ
1/n
0

(
(χ+ ρgx) y −A

)1/n
, (7.1.64)

where the positive nth root is implied. Assuming that χ+ ρgx 
= 0, we integrate the shear
rate with respect to y and derive the velocity profile

ux(y) = − n

n+ 1

1

χ+ ρgx

1

μ
1/n
0

(
(χ+ ρgx) y −A

)(n+1)/n

+B. (7.1.65)

Combining the two cases, we obtain the unified form

ux(y) = − n

n+ 1

1

χ+ ρgx

1

μ
1/n
0

∣∣A− (χ+ ρgx) y
∣∣(n+1)/n

+B. (7.1.66)

The constants A and B are determined by the no-slip boundary condition at the two
walls. For a channel confined between two walls located at y = ±a, as shown in Figure
7.1.1, we require that

ux(−a) = V1, ux(a) = V2. (7.1.67)

Subtracting these equations to eliminate the constant B, and rearranging, we obtain∣∣∣(χ+ ρgx) a+A
∣∣∣(n+1)/n

−
∣∣∣(χ+ ρgx) a−A

∣∣∣(n+1)/n

=
n+ 1

n
(χ+ ρgx)μ

1/n
0 (V2 − V1), (7.1.68)

which is a nonlinear algebraic equation for A for any power-law exponent n 
= 1. For n = 1,
corresponding to a Newtonian fluid, the solution is A = (V2 − V1)/(2a).

Pressure- and gravity-driven flow

In the case of pressure- and gravity-driven flow,

V1 = 0, V2 = 0, χ+ ρ gx > 0, (7.1.69)

the velocity profile is symmetric with respect to the centerline, y = 0. Requiring that
dux/dy = 0 at y = 0, we find that A = 0.

Equation (7.1.63) applies at the lower half of the channel, y < 0, whereas equation
(7.1.65) applies at the upper half of the channel y > 0. Requiring that ux = 0 at y = ±a to
satisfy the no-slip boundary condition at the two walls, we obtain

B =
n

n+ 1

1

χ+ ρgx

1

μ
1/n
0

(
(χ+ ρ gx) a

)(n+1)/n

. (7.1.70)
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The velocity profile is given by

ux(y) =
n

n+ 1

( χ+ ρgx
μ0

)1/n(
a(n+1)/n − |y|(n+1)/n

)
. (7.1.71)

When n = 1, we recover the expressions derived previously in Section 7.1.1 for Newtonian
flow.

Couette flow

In the case of Couette (shear-driven) flow, χ+ ρ gx = 0, we find that

σxy = A = ±μ0

∣∣∣V2 − V1

2a

∣∣∣n. (7.1.72)

Even though the shear stress depends on the power-law exponent, n, the velocity profile is
identical to the linear profile of a Newtonian fluid.

Newton’s method

Equation (7.1.68) can be solved for A under general conditions using Newton’s method
discussed in Section 5.2.2. As a preliminary, we restate equation (7.1.68) as

f(A) = 0, (7.1.73)

where

f(A) =
∣∣∣(χ+ ρgx) a+A

∣∣∣(n+1)/n

−
∣∣∣(χ+ ρgx) a−A

∣∣∣(n+1)/n

−n+ 1

n
(χ+ ρgx)μ

1/n
0 (V2 − V1) (7.1.74)

is the function whose root is desired. The derivative, f ′(A), can be computed conveniently
by numerical differentiation, setting f ′(A) 	 (f(A + ε) − f(A))/ε, where ε is a sufficiently
small increment. The initial guess for A can be set equal to that for a Newtonian fluid,
A = (V2 − V1)/(2a).

Newton’s method is implemented in the following function entitled chan pl, located in
directory 04 various of Fdlib:

function [A,f,Iflag] = chan pl ...

...

(chi ...

,rho ...

,gx ...

,a ...

,mu0 ...

,n ...

,V1 ...

,V2 ...
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,Niter ...

,eps ...

,A ...

,tol ... % tolerance

,italk ...

)

%-----------------------------------

% Solve one nonlinear equation by the

% for the channel flow of a power-law fluid

% by the second-order Newton method

%-----------------------------------

Iflag = 1;

for i=1:Niter

f = chan pl fun(chi,rho,gx,a,mu0,n,V1,V2,A);

A1 = A + eps; % derivative by finite differences

f1 = chan pl fun(chi,rho,gx,a,mu0,n,V1,V2,A1);

Df = (f1-f)/eps;

DA = -f/Df; % correction

A = A+DA;

if(italk==1)

format long

disp([A,f])

end

iescape = 1;

if(abs(DA) > tol) iescape = 0; end

if(iescape==1)

Iflag = 0;

f = chan pl fun(chi,rho,gx,a,mu0,n,V1,V2,A);

return

end

end

%---

% done

%---

return

The main function calls the following auxiliary function entitled chan pl fun to evaluate
f(A):
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Figure 7.1.8 Velocity profiles for a typical configurations with power-law exponent n = 0.5 (broken
line), 1 (solid line), and 2 (connected circular symbols). The velocity has been scaled with the
mean velocity of a Newtonian fluid.

function f = chan pl fun(chi,rho,gx,a,mu0,n,V1,V2,A)

tmp = chi+rho*gx;

f = abs(tmp*a+A)^(1+1/n) - abs(tmp*a-A)^(1+1/n) ...

-(n+1)/n * tmp *mu0^(1/n) *(V2-V1);

return

Once the constant A is available, the constant B can be evaluated by applying the boundary
condition at the upper or lower wall.

The effect of the power-law exponent, n, on the velocity profile is illustrated in Figure
7.1.8 for two typical sets of conditions. As n decreases from unity, the velocity profile
becomes increasingly flat around the maximum. As n increases from unity, the velocity
profile becomes increasingly blunt around the maximum.

7.1.1 Integral momentum balance

Verify that the shear stress given in (7.1.13) satisfies the integral momentum balance over
the rectangular fluid parcel drawn with the solid line in Figure 6.1.1.

7.1.2 Reduction of multi-layer to single-layer flow

(a) Verify that, when λ = 1 and β = 1, expressions (7.1.38) and (7.1.39) are consistent with
the velocity profile (7.1.12) for single-fluid flow.

(b) Confirm that, when the densities and viscosities of all layers are the same, the coefficients
A(i) and B(i) introduced in (7.1.44) are equal to those for single-fluid flow.

Problems



440 Fluid Dynamics: Theory, Computation, and Numerical Simulation

x

y

h

g

p
atm

β

Figure 7.2.1 Illustration of gravity-driven flow of a liquid film down an inclined plane. The shear
stress is zero at the free surface and the velocity profile is half-parabolic.

7.1.3 Multi-layer flow

Use program chan 2d ml to compute and plot the velocity profile of a three-layer pressure-
driven flow of your choice. Investigate and discuss the effect of the viscosity of each layer.

7.1.4 Non-Newtonian flow

Prepare graphs of the velocity profile expressed by (7.1.71) for n = 0.5, 1, and 2. Discuss
the effect of the power-law exponent, n.

7.2 Steady film flow down an inclined plane

Gravity-driven flow of a liquid film down an inclined surface is encountered in a broad range
of technological applications. Examples include the coating of paper, photographic film,
electronics, magnetic recording media components, and other materials. In the simplest
configuration, a liquid film of thickness h flows down a plane that is inclined by an angle β
with respect to the horizontal plane, as illustrated in Figure 7.2.1.

Governing equations

The motion of the fluid in steady unidirectional flow is governed by a simplified equation of
motion whose x and y components are given in (7.1.3) and (7.1.4). The no-slip boundary
condition requires that the velocity is zero at the plane located at y = 0,

ux = 0 at y = 0. (7.2.1)

The free-surface condition requires that the shear stress is zero at the film surface located
at y = h,

dux

dy
= 0 at y = h. (7.2.2)
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Pressure field

The pressure distribution is given by (7.1.5) with χ = 0, yielding

p(y) = ρ gy y + π0, (7.2.3)

where gy = −g cosβ is the y component of the gravitational acceleration. Setting the
pressure at the free surface equal to the ambient atmospheric pressure, we obtain patm =
ρ gyh+ π0, which can be rearranged to give π0 = patm − ρ gyh. The final expression for the
pressure is

p(y) = ρ g cosβ (h− y) + patm. (7.2.4)

Velocity profile

Working as in Section 7.1 for channel flow, we obtain the Nusselt parabolic streamwise
velocity profile,

ux(y) =
1

2

ρg

μ
sinβ (2h− y) y. (7.2.5)

This semi-parabolic profile is half the complete parabolic profile in pressure- or gravity-
driven flow through a two-dimensional channel with width 2h, where the free surface is
located at the channel centerline.

The shear stress varies linearly from a certain value at the wall to the required value of
zero at the free surface.

Flow rate

The flow rate per unit width arises by integrating the velocity profile across the film, ob-
taining

Q ≡
∫ h

0

ux(y) dy =
1

3

g

ν
h3 sinβ =

2

3
hux(h), (7.2.6)

where ν = μ/ρ is the kinematic viscosity of the fluid and ux(h) is the maximum velocity
occurring at the free surface. The mean velocity, umean ≡ Q/h, is equal to two thirds the
free surface velocity.

Function film, located in directory 04 various of Fdlib, not listed in the text, evaluates
the velocity profile and flow rate given in (7.2.5) and (7.2.6).

7.2.1 Multi-film flow

Consider the gravity-driven flow of an arbitrary number of N superposed films down an
inclined plane, as illustrated in Figure 7.2.2. The bottom film is labeled 1 and the top film
is labeled N . The N − 1 interfaces separating the films are located at

y = y
(i)
I (7.2.7)
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Figure 7.2.2 Illustration of gravity-driven multi-film flow down a plane that is inclined by an angle
β with respect to the horizontal. The interfacial labels are printed on the left and the film labels
are printed on the right.

for i = 1, . . . , N − 1, and the free surface is located at

y = y
(N)
I = h, (7.2.8)

where h is the total film thickness. In photographic film manufacturing, as many as thirteen
films may flow down an inclined plane to be deposited onto a moving support.

Velocity profile

The velocity profile across the ith film is governed by the simplified equations of motion
(7.1.3) with ∂p/∂x = 0. Integrating the first equation twice with respect to y, we derive the
parabolic profile

u(i)
x (y) = − 1

2

ρigx
μi

y2 +B(i)y +A(i), (7.2.9)

where A(i) and B(i) are unknown constants determined by enforcing the following conditions:

1. The no-slip boundary condition at the plane.

2. Continuity of velocity at the interfaces expressed by the equation(
u(i)
x

)
y=y

(i)
I

=
(
u(i+1)
x

)
y=y

(i)
I

(7.2.10)

for i = 1, . . . , N − 1.

3. Continuity of shear stress at the interfaces expressed by the equation

μi

(du(i)
x

dy

)
y=y

(i)
I

= μi+1

(du(i+1)
x

dy

)
y=y

(i)
I

(7.2.11)

for i = 1, . . . , N − 1.
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4. The condition of zero shear stress at the free surface requiring that

α ≡
(du(N)

x

dy

)
y=h

= 0. (7.2.12)

Knowledge of the shear stress at the free surface allows us to evaluate the coefficients B(i)

and A(i), working as described in the paragraph following equation (7.1.48) for multi-layer
channel flow.

The numerical method is implemented in function films, located in directory 04 various
of Fdlib. The MATLAB implementation is listed below:

function [Q,u,yI,uI] = films ...

...

(NLR,thick ...

,visc,den,gac ...

,beta ...

,y)

%=========================================

% Multi-film flow down an inclined plane

% located at y=0

%

% Film numbered 1 is adjacent to the plane

% The velocity in the ith film is given by:

%

% u(i) = af(i) + bf(i)*y - gf(i)*y^2

%

% SYMBOLS:

% -------

%

% NLR: Number of films

% yI(i): y-position of the ith interface

% uI(i): velocity at the ith interface

% Q(i); flow rate of ith film

% beta: plane inclination angle

% gac: magnitude of the acceleration of gravity

%=========================================

%----------------------------

% set the interface positions

%----------------------------

yI(1) = thick(1);

for i=2:NLR

yI(i) = yI(i-1)+thick(i);

end
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%-----------------------------------------

% The velocity in the ith film is given by:

% u(i) = af(i) + bf(i)*y - gf(i)*y^2

% compute gf(i)

%-----------------------------------------

fc = 0.5*gac*sin(beta);

for i=1:NLR

gf(i) = fc*den(i)/visc(i);

end

%---

% compute bf(i) by recursion starting from

% the top and requiring continuity of shear stress

%---

bf(NLR) = 2.0*gf(NLR)*yI(NLR);

for i=NLR-1:-1:1

bf(i) = 2.0*gf(i)*yI(i) ...

+ visc(i+1)/visc(i)*(bf(i+1)-2.0*gf(i+1)*yI(i));

end

%---

% compute af(i) by recursion

% starting from the bottom

% and requiring continuity of velocity

%---

af(1) = 0.0;

for i=1:NLR-1

af(i+1) = af(i)+( (bf(i)-bf(i+1)) ...

-(gf(i)-gf(i+1))*yI(i)) * yI(i);

end

%---

% compute the interfacial velocities

%---

for i=1:NLR

uI(i) = af(i) + (bf(i)-gf(i)*yI(i)) * yI(i);

end

%----

% compute the flow rates in the ith film

% is confined between interfaces labeled i-1 and i

%----
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yI0 = 0.0;

Q(1) = af(1)*(yI(1)-yI0) ...

+bf(1)*(yI(1)^2-yI0^2)/2.0 ...

-gf(1)*(yI(1)^3-yI0^3)/3.0;

for i=2:NLR

Q(i) = af(i)*(yI(i)-yI(i-1)) ...

+bf(i)*(yI(i)^2-yI(i-1)^2)/2.0 ...

-gf(i)*(yI(i)^3-yI(i-1)^3)/3.0;

end

%--------------------------

% compute the velocity at y

%--------------------------

% identify the host film:

for i=1:NLR

if(y<yI(i)) break; end

end

if(i>NLR) i = NLR; end

%---

% evaluate the velocity

%---

u = af(i) + (bf(i)-gf(i)*y)*y

%-----

% Done

%-----

return

The velocity profile across a configuration with four films with different physical properties
is shown in Figure 7.2.3.

Wall shear stress

One interesting feature of the multi-film flow is that the wall shear stress and the velocity
profile across the first film that is adjacent to the wall are independent of the viscosities of
the rest of the films. To see this, we write the velocity profile (7.2.9) for i = 1 and require the
no-slip boundary condition to find A(1) = 0. To compute the coefficient B(1), we perform a
force balance over a section of the multi-layered film confined between two planes at x = x1

and x2. The balance requires that the x component of the force exerted by the shear stress
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Figure 7.2.3 Velocity profile across four films with different physical properties down an inclined
plane, generated by code films.

at the wall and at the free surface counterbalance the x component of the weight of the fluid
residing inside the control volume. We note that the shear stress is zero at the free surface
and obtain

σ(1)
xy (y = 0) =

N∑
i=1

ρigx (y
(i)
I − y

(i−1)
I ), (7.2.13)

with the understanding that y
(0)
I = 0. Using the profile (7.2.9) for i = 1, we find that

σ(1)
xy (y = 0) = μ1

(∂u(1)
x

∂y

)
y=0

= μ1B
(1). (7.2.14)

Setting the right-hand sides of the last two equations equal, solving for B(1), and substituting
the result into the profile (7.2.9) for i = 1 proves the alleged independence of the first velocity
profile and wall shear stress on the viscosity of the overlying fluids.

7.2.2 Power-law fluids

Next, we derive the counterpart of the velocity profile (7.2.5) for a power-law fluid whose
viscosity depends on the shear rate, as shown in equation (4.8.2). We note that the x velocity
component increases from zero at the wall, because of the no-slip boundary condition, to a
maximum at the free surface, and conclude that dux/dy > 0.

Working as in Section 7.1.4 for channel flow, we obtain the shear rate

dux

dy
=
(A− ρgxy

μ0

)1/n
, (7.2.15)

where A is a constant. Integrating with respect to y, we obtain

ux(y) = − n

n+ 1

1

ρgx

1

μ
1/n
0

(A− ρgxy)
(n+1)/n +B, (7.2.16)

where B is a new constant.
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The constants A and B are found by enforcing the boundary conditions (7.2.1) and
(7.2.2). Applying (7.2.2) and using expression (7.2.15) for the shear rate, we obtain

A = ρgxh. (7.2.17)

Applying (7.2.1), we obtain

B =
n

n+ 1

1

ρgx

1

μ
1/n
0

(ρgxh)
(n+1)/n. (7.2.18)

Substituting these expressions into (7.2.16), we derive the velocity profile

ux(y) = − n

n+ 1

(ρgx
μ0

)1/n(
h(n+1)/n − (h− y)(n+1)/n

)
. (7.2.19)

When n = 1, we recover the familiar parabolic profile for Newtonian flow.

7.2.1 Multi-film flow

Confirm that the wall shear stress is independent of the viscosity of the films that are not
adjacent to the wall on the basis of (a) the recursion relation (7.1.47) for gravity-driven flow,
and (b) the free-surface condition expressed by (7.1.49) with α = 0.

7.2.2 Computation of multi-film flow

Use the code filmsin directory 04 various of Fdlib to compute and plot the velocity profile
of a three-film configuration of your choice. Investigate and discuss the effect of the film
densities.

7.2.3 Non-Newtonian film flow

Prepare a graph of the velocity profile expressed by (7.2.19) for n = 0.5, 1, and 2. Discuss
the effect of the power-law exponent, n.

7.3 Steady flow through a circular tube

Having discussed steady two-dimensional channel and film flow, we proceed to consider
unidirectional flow through a horizontal or inclined cylindrical tube with circular cross-
section of radius a, as shown in Figure 7.3.1.

To derive the velocity profile, we introduce cylindrical polar coordinates, (x, σ, ϕ), where
the x axis coincides with the tube centerline. The radial and meridional velocity components
are identically zero in steady unidirectional flow, uσ = 0 and uϕ = 0, while the x velocity
component depends on the distance from the tube centerline alone, ux(σ).

Problems
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Figure 7.3.1 Illustration of steady unidirectional flow through a horizontal or inclined circular tube.

Pressure field

It is convenient to screen out the hydrostatic pressure variations normal to the x axis by
expressing the pressure in the form

p = −χx+ ρ (gyy + gzz) + π0, (7.3.1)

where χ = −∂p/∂x is a constant identified with the negative of the streamwise pressure
gradient and π0 is an inconsequential constant.

Governing equations

Inspecting the individual terms on the left-hand side of the x component of the equation of
motion shown in the first equation in (6.3.18),

ρ ax = Σx + ρ gx, (7.3.2)

where ax is the streamwise component of the point particle acceleration, we find that the
left-hand side is identically zero. Substituting the expression for the x component of the
hydrodynamic volume force given in the first entry of Table 6.5.2(a) for axisymmetric flow,

Σx = −∂p

∂x
+ μ

1

σ

∂

∂σ

(
σ
∂ux

∂σ

)
, (7.3.3)

and rearranging, we derive the simplified equation of motion

1

σ

d

dσ

(
σ
dux

dσ

)
= −χ+ ρgx

μ
, (7.3.4)

where

gx = g cosβ, (7.3.5)

β is the inclination angle of the tube generators with respect to a horizontal plane, and g is
the magnitude of the acceleration of gravity. Equation (7.3.4) is the counterpart of equation
(7.1.7) for two-dimensional channel flow.
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The solution must satisfy the no-slip boundary condition at the tube surface, ux = 0 at
σ = a, and a regularity condition ensuring that ux is finite at the centerline, σ = 0.

Velocity profile

Integrating equation (7.3.4) once with respect to σ, we obtain

σ
dux

dσ
= − 1

2

χ+ ρgx
μ

σ2 +B, (7.3.6)

where B is a constant. Integrating once more, we obtain the velocity profile involving a
quadratic and a logarithmic term,

ux(σ) = − 1

4

χ+ ρgx
μ

σ2 +B ln
σ

a
+A, (7.3.7)

where A is another constant. For the velocity to be finite at the centerline, σ = 0, where
the logarithmic term diverges, the constant B must be zero.

To evaluate the constant A, we enforce the no-slip boundary condition at the tube
surface, ux(a) = 0, and derive the parabolic Poiseuille flow profile

ux(σ) =
1

4

χ+ ρgx
μ

(a2 − σ2). (7.3.8)

The maximum velocity occurs at the tube centerline, σ = 0, and is given by

umax = ux(0) =
1

4

χ+ ρgx
μ

a2. (7.3.9)

We observe that doubling the tube radius, while holding the pressure gradient constant,
quadruples the maximum velocity.

Function tube crc, located in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile described by (7.3.8).

Shear stress

The shear stress, σσx, arises from (7.3.6) as

σσx = μ
dux

dσ
= − 1

2
(χ+ ρgx)σ. (7.3.10)

We see that the shear stress is proportional to the distance from the centerline, σ, and
therefore reaches a maximum at the tube wall where σ = a.

Integral momentum balance

It is instructive to verify that the derived expression for the shear stress satisfies an integral
momentum balance over an annular control volume confined between two arbitrary parallel
planes located at x = x1 and x2, and two arbitrary cylindrical surfaces located at σ = σ1
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and σ2. Because the flow is steady, the rate of change of the x momentum of the fluid inside
the control volume is zero.

Balancing the normal force exerted on the planar sides, the shear force exerted at the
cylindrical sides, and the body force, and observing that the normal viscous stress is zero
while the normal stress is equal to the negative of the pressure over the planar sides, we find
that

2π

∫ σ2

σ1

(− (p)x=x2
+ (p)x=x1

)
σ dσ + F1 + F2 + Fg = 0, (7.3.11)

where

F1 = −(σσx)σ=σ1
2πσ1 (x2 − x1), F2 = (σσx)σ=σ2

2πσ2 (x2 − x1) (7.3.12)

are the forces due to the shear stress and

Fg = ρ gxπ (σ2
2 − σ2

1) (x2 − x1). (7.3.13)

is the force due to gravity. Now using (7.3.1) to express the pressure difference in terms of
the negative of the pressure gradient, χ, we obtain

πχ (σ2
2 − σ2

1) (x2 − x1) + F1 + F2 + Fg = 0. (7.3.14)

Setting σ1 = 0 and solving for (σσx)σ=σ2
, we recover precisely expression (7.3.10) evaluated

at σ = σ2.

Flow rate and Poiseuille’s law

The flow rate through the tube is computed by integrating the velocity profile over the tube
cross-section, finding

Q ≡
∫ 2π

0

∫ a

0

ux(σ)σ dσ dϕ = 2π

∫ a

0

ux(σ)σ dσ. (7.3.15)

Substituting the velocity profile and performing the integration, we derive the expression

Q =
1

8

χ+ ρgx
μ

πa4. (7.3.16)

Equation (7.3.16) expresses Poiseuille’s law, first established by laboratory observation of
blood flow at a time when the equations governing fluid flow had not been established. The
data suggested that the flow rate through a circular tube subject to a constant pressure
drop is proportional to the fourth power of the tube diameter.

In terms of the maximum velocity occurring at the tube centerline, umax = ux(0), the
flow rate is given by

Q =
1

2
umax (πa

2). (7.3.17)
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Figure 7.3.2 Bifurcation of a tube of radius a into two descendant tubes with equal radii, a1. The
flow rate is assumed to be split into two equal parts.

The mean velocity is defined as the ratio of the flow rate to the tube cross-sectional area,

umean ≡ Q

πa2
=

1

2
umax. (7.3.18)

We observe that the mean velocity is equal to half the maximum velocity occurring at the
centerline.

Tube bifurcation

As an application, we consider flow through a circular blood vessel with radius a, bifurcating
into two vessels with equal radii, a1, as shown in Figure 7.3.2. The flow through each vessel
satisfies the equations of Poiseuille tube flow.

It has been theorized that blood vessels in the human circulation bifurcate such that the
wall shear stress is constant and the endothelial cells lining the capillary walls experience
the same hydrodynamic stimulus. Using expression (7.3.10) for the shear stress, we obtain

(χ+ ρgx) a = (χ1 + ρgx) a1. (7.3.19)

The flow rate is assumed to be split into two equal parts. Mass conservation requires
that Q = 2Q1. Substituting Poiseuille’s law and simplifying, we find that

(χ+ ρgx) a
4 = 2 (χ1 + ρgx) a

4
1. (7.3.20)

Combining the last two equations, we obtain

a1
a

=
1

21/3
	 0.794, (7.3.21)

which suggests that the diameter of a daughter tube is approximately 80% that of a parent
tube.
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Figure 7.3.3 Illustration of a bifurcating tube in a network. The dashed lines represent other tube
segments.

Tube network

Poiseuille’s flow can be used to derive a system of linear algebraic equations relating the
nodal pressures of a tube network at bifurcation points, such as that occurring in the mi-
crocirculation of blood flow.

Consider flow through a particular bifurcation, as illustrated in Figure 7.3.3. Our ob-
jective is to derive expressions for the flow rates, Q1, Q2, and Q3, in terms of the tube radii,
a1, a2, and a3, tube lengths, L1, L2, and L3, and inlet and outlet pressures, p1, p2, and p3.

Neglecting gravitational effects, substituting Poiseuille’s law for the individual segments
in the mass balance equation

Q1 = Q2 +Q3, (7.3.22)

and approximating the pressure gradient with the ratio of the pressure difference over the
tube lengths, we obtain

p1 − p0
L1

1

8

π

μ
a41 =

p0 − p2
L2

1

8

π

μ
a42 +

p0 − p3
L3

1

8

π

μ
a43. (7.3.23)

Solving for the central pressure, p0, and substituting the result back into each fraction
provides us with the requisite flow rates.

Wall slip

The fluid may slip over the tube wall so that the wall velocity is proportional to the wall
shear stress or wall shear rate,

ux = −

( dux

dσ

)
σ=a

, (7.3.24)

where 
 is a specified slip length. The minus sign is motivated by the expected negative
slope of the velocity profile at the wall.
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Substituting expressions (7.3.6) and (7.3.7) with A = 0 into (7.3.24), we obtain an
equation involving the integration constant B,

− 1

4

χ+ ρgx
μ

a2 +B = 

1

2

χ+ ρgx
μ

a. (7.3.25)

Solving for B, we find that

B =
1

4

χ+ ρgx
μ

a (a+ 2 
). (7.3.26)

The velocity profile is given by

ux(σ) =
1

4

χ+ ρgx
μ

(
a (a+ 2 
)− σ2

)
. (7.3.27)

We note that the wall shear stress is independent of the slip length, 
, so that the shear
force balances the force exerted on the fluid due to gravity or an imposed pressure gradient.

The flow rate through the tube arises by integrating the velocity distribution over the
tube cross-section. Since the velocity is constant over a small annular area of radius σ, we
obtain

Q = 2π

∫ a

0

ux σ dσ =
1

8

χ+ ρgx
μ

πa3 (a+ 2 
). (7.3.28)

When 
 = 0, we recover the no-slip boundary condition and obtain Poiseuille’s law. Not
surprising, slip increases the flow rate.

7.3.1 Multi-layer tube flow

As a generalization, we consider axisymmetric multi-layer pressure- and gravity-driven flow
through a circular tube, as illustrated in Figure 7.3.4. For the interfaces between the annular
layers to remain concentric, the tube must be vertical or else the fluid densities must be
matched. If these conditions are not met, hydrostatic pressure variations cause the onset of
a non-axisymmetric configuration.

The interior of the tube is occupied by a core fluid labeled 1 and N − 1 annular layers,
where the outermost layer, labeled N , is coated on the interior tube surface. The N − 1
interfaces separating the layers are located at radial positions

σ = σ
(i)
I (7.3.29)

for i = 1, . . . , N − 1. When N = 2, we obtain a core–annular flow.

The velocity profile across the ith layer is given by equation (7.3.7) with corresponding
fluid density ρi and viscosity μi,

u(i)
x (σ) = − 1

4

χ+ ρgx
μi

σ2 +B(i) ln
σ

a
+A(i) (7.3.30)

for i = 1, . . . , N , where the coefficients A(i) and B(i) are determined by enforcing the
following conditions:
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Figure 7.3.4 Illustration of multi-layer flow through a circular tube. The interface labels are shown
on the left and the layer labels are shown on the right.

1. Regularity at the tube axis requiring that u
(1)
x (0) is finite and thus B(1) = 0.

2. Continuity of velocity at the interfaces expressed by the matching condition(
u(i)
x

)
σ=σ

(i)

I

=
(
u(i+1)
x

)
σ=σ

(i)

I

(7.3.31)

for i = 1, . . . , N − 1.

3. Continuity of shear stress at the interfaces expressed by the matching condition

μi

(du(i)
x

dσ

)
σ=σ

(i−1)
I

= μi−1

(du(i−1)
x

dσ

)
σ=σ

(i−1)
I

(7.3.32)

for i = 2, . . . , N .

4. The no-slip boundary condition at the tube wall requiring that

u(N)
x (σ = a) = − 1

4

χ+ ρgx
μN

a2 +A(N) = 0. (7.3.33)

Substituting the velocity profiles (7.3.30) into (7.3.32) and solving for the coefficient
B(i), we derive the recursive relation

B(i) =
1

2

χ+ ρigx
μi

σ
(i−1)2

I +
μi−1

μi

(
B(i−1) − 1

2

χ+ ρi−1gx
μi−1

σ
(i−1)2

I

)
(7.3.34)

for i = 2, . . . , N , where B(1) = 0. At the second stage, the coefficients A(i) = 0 are computed
by backward recursion based on equation (7.3.31), starting with

A(N) =
1

4

χ+ ρgx
μN

a2. (7.3.35)

The algorithm is implemented in a function entitled tube crc ml, located in directory
04 various of Fdlib. The MATLAB implementation is listed next:
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function [sI,uI,xi1,xi2,Q,u] = tube crc ml ...

...

(NLR,a,thick,visc,den ...

,gac,chi,beta ...

,s)

%=============================================

% Multi-layer core-annular flow through a circular tube

%

% Film numbered 1 is at the centerline

% Film numbered NLR is adjacent to the tube surface

% The velocity in the ith film is given by:

%

% u(i) = af(i) + bf(i)*ln(sigma/a) - gf(i)*sigma^2

%

% SYMBOLS

% ------

%

% NLR: Number of layers

% a: tube radius

% thick(i): thickness of the ith layer

% sI(i): position of the ith interface

% uI(i): velocity of the ith interface

% xi1(i): shear rate on lower side of the ith interface

% xi2(i): shear rate on upper side of the ith interface

% Q(i): flow rate of ith layer

% beta: tube inclination angle

% gac: magnitude of the acceleration of gravity

% chi: negative of the pressure gradient

%=============================================

%---

% set the interface positions

%---

sI(1) = thick(1);

for i=2:NLR

sI(i) = sI(i-1)+thick(i);

end

%-----------------------------------------

% The velocity in the ith layer is given by:

%

% u(i) = af(i) + bf(i)*ln(sigma/a) - gf(i)*sigma^2

%

% compute gf(i)

%-----------------------------------------
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fc = gac*sin(beta);

for i=1:NLR

gf(i) = 0.25*(chi+fc*den(i))/visc(i);

end

%---

% compute bf(i) by recursion

% starting from the centerline and

% by requiring continuity of shear stress

% across the interfaces

bf(1) = 0.0;

for i=2:NLR

bf(i) = 2.0*gf(i)*sI(i-1)^2 ...

+ visc(i-1)/visc(i) * (bf(i-1)-2.0*gf(i-1)*sI(i-1)^2);

end

%---

% compute af(i) by recursion

% starting from the tube wall and

% and requiring continuity of velocity

%---

af(NLR) = gf(NLR)*a^2;

for i=NLR-1:-1:1

af(i) = af(i+1)+(bf(i+1)-bf(i))*log(sI(i)/a) ...

-(gf(i+1)-gf(i))*sI(i)^2;

end

%---

% compute interfacial velocities

% and shear rates

%---

for i=1:NLR-1

uI(i) = af(i) + bf(i)*log(sI(i)/a) - gf(i)*sI(i)^2;

xi1(i) = bf(i) /sI(i) - 2.0*gf(i) *sI(i);

xi2(i) = bf(i+1)/sI(i) - 2.0*gf(i+1)*sI(i);

end

%----

% compute the flow rates

% the ith film is confined between i-1 and i interfaces

%----
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sI1s = sI(1)^2;

Q(1) = af(1)*sI1s/2.0 ...

+ bf(1)*0.5*sI1s*(log(sI(1)/a)-0.5)-gf(1)*sI1s^2/4.0;

Q(1) = 2.0*pi*Q(1);

for i=2:NLR

sIis = sI(i)^2;

sIias = sI(i-1)^2;

Q(i) = af(i)*(sIis-sIias)/2.0 ...

+bf(i)*0.5*(sIis *(log(sI(i)/a)-0.5D0) ...

-sIias*(log(sI(i-1)/a)-0.5D0)) ...

-gf(i)*(sIis^2-sIias^2)/4.0;

Q(i) = 2.0*pi*Q(i);

end

%--------------------------

% compute the velocity at s

%--------------------------

% identify the host layer

for i=1:NLR

if(s<sI(i)) break; end

end

if(i>NLR) i = NLR; end

%---

% evaluate the velocity at s

%---

if(s>0.000001)

u = af(i) + bf(i)*log(s/a) - gf(i)*s^2;

else

u = af(i)-gf(i)*s^2;

end

%-----

% Done

%-----

return

The velocity profile across a core fluid and four annular layers with different viscosities and
densities is shown in Figure 7.3.5.
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Figure 7.3.5 Velocity profile across a five-fluid configuration in axisymmetric multi-layer tube flow
involving a core fluid and four annular layers.

7.3.2 Flow due to a translating sector

We have discussed pressure- and gravity-driven flow through a circular tube. Now we
consider a case where the axial pressure gradient is zero, the tube is horizontal, and the flow
is driven exclusively by boundary motion.

If the entire surface of the tube translates parallel to itself with constant velocity, the
fluid inside the tube will also translate with the same uniform velocity in a plug-flow mode.
However, if only a sector of the tube confined inside a window, −α ≤ ϕ ≤ α, translates with
velocity V , and the remainder of the tube surface is stationary, a distributed velocity field
will be established, as illustrated in Figure 7.3.6(a).

Governing equations and boundary conditions

Assuming that the flow is unidirectional and fully-developed, we set the radial and azimuthal
velocity components to zero, uσ = 0 and uϕ = 0, and regard the axial component, ux, as
a function of distance from the tube centerline, σ, and azimuthal angle, ϕ, ux(σ, ϕ). The
no-slip boundary condition at the surface of the tube requires that

ux(σ = a, ϕ) = V (7.3.36)

for −α < ϕ < α, and ux(σ = a, ϕ) = 0 otherwise.

Consideration of the individual terms on the left-hand side of the x component of the
equation of motion (6.3.18) reveals that the entire left-hand side is identically zero. Using the
expression for the x component of the hydrodynamic volume force shown in Table 6.5.2(a)
with constant pressure and zero pressure gradient, we derive Laplace’s equation for ux,

∇2ux =
1

σ

∂

∂σ

(
σ
∂ux

∂σ

)
+

1

σ2

∂2ux

∂ϕ2
= 0, (7.3.37)
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Figure 7.3.6 (a) Illustration of unidirectional flow through a circular tube due to the translation
of a sector with semi-angle α. (b) Discretization of the tube cross-section for the purpose of
computing the flow rate using the mid-point rule.

where ∇2 is the Laplacian operator in the yz plane, which is normal to the tube axis,
expressed in cylindrical polar coordinates.

Solution by the Poisson integral formula Poisson integral formula.

The solution can be found using a powerful method for solving Laplace’s equation in two
dimensions in the interior or exterior of a circle, subject to specified boundary conditions for
the unknown function, expressed by the Poisson integral formula. For the problem under
consideration, we find the velocity distribution

ux(σ, ϕ) =
V

π

(
arctan

(a+ σ

a− σ
tan

α− ϕ

2

)
+ arctan

(a+ σ

a− σ
tan

α+ ϕ

2

) )
. (7.3.38)

Examining the right-hand side, we confirm that, as the semi-angle of the translating sector,
α, tends to π, the fluid tends to translate with uniform velocity in a plug-flow mode (Problem
7.3.2).

Program tube crc sec, located in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile given in (7.3.38).

Flow rate

The flow rate through the tube arises by integrating the velocity distribution over the tube
cross-section,

Q ≡
∫ 2π

0

∫ a

0

ux(σ, ϕ)σ dσ dϕ. (7.3.39)

The double integral on the right-hand side cannot be found by analytical methods.
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To obtain a numerical approximation, we divide the integration domain with respect to
ϕ and σ into Nϕ or Nσ evenly spaced intervals with equal size,

Δϕ =
2π

Nϕ
, Δσ =

a

Nσ
. (7.3.40)

The divisions define elemental cross-sectional areas, as shown in Figure 7.3.6(b). The velocity
over each elemental area can be approximated with the value at the center-point. Replacing
the double integral in (7.3.39) with a double sum, we find that

Q 	 ΔϕΔσ

Nϕ∑
i=1

Nσ∑
j=1

ux(σj , ϕi)σj , (7.3.41)

where

ϕi = (i− 1

2
)Δϕ, σj = (j − 1

2
)Δσ. (7.3.42)

Equation (7.3.41) implements the mid-point rule for two-dimensional integration in a plane.

7.3.1 Flow in a tube due to a translating sector

Demonstrate that, as the translating sector semi-angle α tends to π, the right-hand side of
(7.3.38) tends to the wall velocity, V , everywhere inside the tube.

7.3.2 Axisymmetric film flow

A liquid film drains due to gravity downward over the exterior surface of a vertical circular
rod of radius a. Show that, in cylindrical polar coordinates where the x axis is coaxial with
the rod pointing upward, the velocity profile across the film is given by

ux =
g

4ν

(
σ2 − a2 − 2 (a+ h)2 ln

σ

a

)
, (7.3.43)

where h is the film thickness.

7.3.3 Flow in a circular tube due to a translating sector

Prepare a graph of the dimensionless mean velocity, ûmean ≡ Q/(πa2V ), against the scaled
semi-angle, α/π, using the numerical approximation implemented in (7.3.41). The numerical
results should be accurate to the third significant figure. Deduce the slope of the graph at
the origin, α = 0.

7.3.4 Multi-layer flow through a tube

(a) Outline and explain the numerical procedure implemented in the code tube crc ml.

(b) Plot the velocity profile for a three-layer configuration of your choice. Investigate and
discuss the effect of the layer viscosities.

Problems
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Figure 7.4.1 Illustration of unidirectional pressure- or gravity-driven flow through an annular tube
with translating walls.

7.4 Steady flow through an annular tube

The velocity profile of unidirectional flow through an annular tube confined between two
coaxial cylinders with radii a1 and a2 can be derived by a straightforward generalization
of the analysis presented in Section 7.3 for a circular tube. A new feature is that the two
cylinders are allowed to translate parallel to themselves along the x axis with respective
velocities V1 and V2, as illustrated in Figure 7.4.1.

Velocity profile and flow rate

Integrating the governing equation (7.3.4) with respect to σ, we find that the axial compo-
nent of the velocity is given by

ux(σ) = − 1

4

χ+ ρgx
μ

σ2 +B ln
σ

a1
+A, (7.4.1)

where A and B are two constants. To evaluate these constants, we enforce the no-slip
condition at the two walls,

ux(σ = a1) = V1, ux(σ = a2) = V2, (7.4.2)

and derive the velocity profile

ux(σ) = V2 + (V1 − V2)
ln(a2/σ)

ln(a2/a1)
+

χ+ ρgx
4μ

(
a22 − σ2 − (a22 − a21)

ln(a2/σ)

ln(a2/a1)

)
. (7.4.3)

The flow rate along the tube arises by integrating the velocity profile over the annular
cross-section confined between the two concentric cylinders,

Q ≡ 2π

∫ a2

a1

ux(σ)σ dσ. (7.4.4)
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Performing the integration, we obtain

Q = π (V2 a
2
2 − V1 a

2
1)−

π

2
(V2 − V1)

a22 − a21
ln(a2/a1)

+π
χ+ ρgx

8μ
(a22 − a21) (a

2
2 + a21 −

a22 − a21
ln(a2/a1)

). (7.4.5)

Program tube ann, located in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile given in (7.4.3) and the flow rate given in (7.4.5).

7.4.1 Small gaps

When the clearance of the annular channel is small compared to the inner cylinder radius,
a2−a1 < a1, the curvature of the cylindrical surfaces is insignificant. Equations (7.4.3) and
(7.4.5) then are expected to reduce to equations (7.1.12) and (7.1.15) for unidirectional flow
in a channel with parallel-sided walls separated by distance 2a = a2 − a1, where

y = σ − 1

2
(a1 + a2) = σ − (a1 + a) = σ − (a2 − a) (7.4.6)

is the radial distance from the midway position.

To demonstrate this reduction, we introduce a small dimensionless number,

ε =
a2 − a1

a1
= 2

a

a1
� 1, (7.4.7)

and write

a2
a1

= 1 + ε, ln
a2
a1

= ln(1 + ε) 	 ε− 1

2
ε2. (7.4.8)

Next, we write

ln
a2
σ

= − ln
σ

a2
= − ln(

σ

a1

a1
a2

) = − ln
σ

a1
− ln

a1
a2

= − ln
σ

a1
+ ln

a2
a1

(7.4.9)

and

ln
σ

a1
= ln

y + a1 + a

a1
= ln

(
1 + η

) 	 η − 1

2
η2, (7.4.10)

where

η ≡ y + a

a1
(7.4.11)

is a scaled dimensionless distance from the inner cylinder. Combining these asymptotic
expressions, we find that

ln(a2/σ)

ln(a2/a1)
= − ln(σ/a1)

ln(a2/a1)
+ 1 	 −η (1− 1

2 η)

ε (1− 1
2 ε)

+ 1, (7.4.12)
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and then

ln(a2/σ)

ln(a2/a1)
	 −η

ε
(1− 1

2
η) (1 +

1

2
ε) + 1 	 1− η

ε
(1− 1

2
η +

1

2
ε). (7.4.13)

We have omitted cubic terms in ε and η. Note that the ratio η/ε is of order unity.

Continuing with the analysis, we obtain the approximations

a22 − a21 = (a2 + a1)(a2 − a1) = 4 (a1 + a) a = a21 (2 + ε) ε (7.4.14)

and

a22 − σ2 = (a2 + σ)(a2 − σ) = a21 (2 + ε+ η)(ε− η). (7.4.15)

Substituting expressions (7.4.13), (7.4.14), and (7.4.15) into (7.4.3), we find that

ux(σ) 	 V2 + (V1 − V2) (1− η

ε
)

+
χ+ ρgx

4μ
a21

(
(2 + ε+ η)(ε− η)− (2 + ε)[ε− η (1− 1

2
η +

1

2
ε)]
)
, (7.4.16)

which can be rearranged into

ux(σ) 	 V2 + (V1 − V2)
ε− η

ε

+
χ+ ρgx

4μ
a21

(
2 (ε− η) + ε2 − η2 − (2 + ε)[ε− η +

η

2
(η − ε)]

)
. (7.4.17)

Neglecting cubic terms in ε and η, we obtain

ux(σ) 	 V2 + (V1 − V2)
a− y

2a

+
χ+ ρgx

4μ
a21

(
2 (ε− η) + ε2 − η2 − 2 (ε− η)− η (η − ε)− ε (ε− η)

)
, (7.4.18)

and then

ux(σ) 	 V2 + (V1 − V2)
a− y

2a
+

χ+ ρgx
2μ

a21 η (ε− η). (7.4.19)

After further simplifications, we obtain

ux(y) 	 V2 + (V1 − V2)
a− y

2a
+

χ+ ρgx
2μ

(a+ y) (a− y), (7.4.20)

which is precisely the profile for channel flow given in (7.1.12).

Flow rate

To recover the expression for the flow rate in channel flow, we substitute into (7.4.5) the
expressions

a22 = a21 (1 + ε)2, ln
a2
a1

= ln(1 + ε) 	 ε− 1

2
ε2 +

1

3
ε3, (7.4.21)
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Figure 7.4.2 Illustration of unidirectional annular flow through an annular tube with translating walls
for N = 3 layers. The interface labels are shown on the left and the layer labels are shown on the
right.

and find that

Q 	 π a21
(
V2 (1 + ε)2 − V1

)− π
1

2
(V2 − V1) a

2
1

ε (2 + ε)

ε(1− 1
2 ε)

+π
χ+ ρgx

8μ
a41 ε (2 + ε)

(
(1 + ε)2 + 1− ε (2 + ε)

ε(1− 1
2ε+

1
3ε

2)

)
. (7.4.22)

Rearranging, we obtain

Q 	 π a21 (V2 (1 + ε)2 − V1)− π
1

2
(V2 − V1) a

2
1 (2 + ε)(1 +

1

2
ε)

+π
χ+ ρ gx

8μ
a41 ε (2 + ε)

[
(1 + ε)2 + 1− (2 + ε)(1 +

1

2
ε− 1

12
ε2)
]
, (7.4.23)

which simplifies to

Q 	 π a21
(
V2 + V1

)
ε+ π

χ+ ρ gx
8μ

a41
4

3
ε3 (7.4.24)

or

Q = 2πa1
(
(V2 + V1) a+

2

3

χ+ ρgx
μ

a3
)
. (7.4.25)

The product 2πa1 is the circumference of the inner cylinder, and the expression inside the
tall parentheses is the flow rate of channel flow.

7.4.2 Multi-layer annular flow

As a generalization, we consider axisymmetric pressure-, gravity-, or boundary-driven an-
nular flow of of N concentric fluids through an annular tube, as illustrated in Figure 7.4.2
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for three fluids. For the interfaces to remain concentric, the tube must be vertical or else
the fluid densities must be the same. If these conditions are not met, hydrostatic pressure
variations will cause a non-axisymmetric displacement.

A numerical method similar to that discussed in Section 7.1 for multi-layer channel flow
can be developed for computing the velocity profile. The algorithm is implemented in the
function tube ann ml, located in directory 04 various of Fdlib. The MATLAB implementa-
tion is listed below:

function [sI,uI,xi1,xi2,Q,u] = tube ann ml ...

...

(NLR,a1,a2,thick ...

,visc,den,gac ...

,V1,V2,chi,beta ...

,s ...

)

%==========================================

% Multi-layer core-annular flow through an annular tube

%

% Layer numbered 1 is adjacent to the inner cylinder

% Layer numbered NLR is adjacent to the outer cylinder

%

% The velocity in the ith layer is given by:

%

% u(i) = af(i) + bf(i)*ln(sigma/a1) - gf(i)*sigma^2

%

% SYMBOLS:

% --------

%

% NLR: Number of layers

% thick(i): thickness of the ith layer

% sI(i): sigma position of the ith interface

% uI(i): velocity of the ith interface

% xi1(i): shear rate on lower side of the ith interface

% xi2(i): shear rate on upper side of the ith interface

% Q(i): flow rate of ith layer

% beta: tube inclination angle

% gac: magnitude of the acceleration of gravity

% chi: negative of the pressure gradient

% s: velocity evaluation radial position (sigma)

%==========================================

%---

% interface radial positions

%---

sI(1) = a1+thick(1);



466 Fluid Dynamics: Theory, Computation, and Numerical Simulation

for i=2:NLR

sI(i) = sI(i-1)+thick(i);

end

%-----------------------------------------

% the velocity in the ith layer is given by:

% u(i) = af(i) + bf(i)*ln(sigma/a1) - gf(i)*sigma^2

% compute gf(i)

%-----------------------------------------

fc = gac*sin(beta);

for i=1:NLR

gf(i) = 0.25D0*(chi+fc*den(i))/visc(i);

end

%==========================================

% In the first pass, set bf(1) equal to 0

% and compute the residual of the inner cylinder

% boundary condition: error0

%

% In the second pass, set bf(1) equal to 1

% and compute the residual of the inner cylinder

% boundary condition: error1

%

% In the third pass, set the proper value:

%

% bf(1) = error0/(error0-error1)

%==========================================

bf(1) = 0.0;

for Ipass=1:3

%---

% compute bf(i) by recursion

% starting from the inner tube and

% requiring continuity of shear stress

% across the interfaces

%---

for i=2:NLR

bf(i) = 2.0*gf(i) *sI(i-1)^2 ...

+ visc(i-1)/visc(i)*(bf(i-1)-2.0*gf(i-1)*sI(i-1)^2);

end

%---

% compute af(NLR) to satisfy the non-slip condition

% at the outer cylinder
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%---

af(NLR) = V2 - bf(NLR)*log(a2/a1) + gf(NLR)*a2^2;

%---

% compute af(i) by recursion

% starting from the outer tube and

% requiring continuity of velocity

% across the interfaces

%---

for i=NLR-1:-1:1

af(i) = af(i+1)+(bf(i+1)-bf(i))*log(sI(i)/a1) ...

-(gf(i+1)-gf(i))*sI(i)^2;

end

%---

% error in the no-slip condition on the inner wall

% error = u(s=a1)-V1

%---

if(Ipass==1)

error0 = af(1) - gf(1)*a1^2 - V1;

bf(1) = 1.0;

elseif(Ipass==2)

error1 = af(1) - gf(1)*a1^2 - V1;

bf(1) = error0/(error0-error1);

end

%---

end % of Ipass

%---

%---

% compute the interfacial velocities

% and shear rates

%---

for i=1:NLR-1

uI(i) = af(i) + bf(i)*log(sI(i)/a1) - gf(i)*sI(i)^2;

xi1(i) = bf(i)/sI(i)-2.0*gf(i) *sI(i);

xi2(i) = bf(i+1)/sI(i)-2.0*gf(i+1)*sI(i);

end

%----

% compute the flow rates

% the ith layer is confined between i-1 and i interfaces

%----
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sI1s = sI(1)^2;

sI1as = a1^2;

Q(1) = af(1)*(sI1s-sI1as)/2.0 ...

+bf(1)*0.5*(sI1s *(log(sI(1)/a1)-0.5)+0.5*sI1as) ...

-gf(1)*(sI1s^2-sI1as^2)/4.0;

Q(1) = 2.0*pi*Q(1);

for i=2:NLR

ia = i-1;

sIis = sI(i)^2;

sIias = sI(ia)^2;

Q(i) = af(i)*(sIis-sIias)/2.0 ...

+bf(i)*0.5*( sIis *(log(sI(i )/a1)-0.5)...

-sIias*(log(sI(ia)/a1)-0.5))...

-gf(i)*(sIis^2-sIias^2)/4.0;

Q(i) = 2.0*pi*Q(i);

end

%--------------------------

% compute the velocity at s

%--------------------------

%---

% identify the host layer

%---

for i=1:NLR

if(s<sI(i))

break

end

end

if(i>NLR) i=NLR; end

%---

% evaluate the velocity at s

%---

u = af(i) + bf(i)*log(s/a1) - gf(i)*s^2;

%---

% Done

%---

return

The velocity profile across three annular layers with different viscosities and densities is
shown in Figure 7.4.3.
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Figure 7.4.3 Velocity profile across three annular layers with different physical properties between
two concentric cylinders in axial flow.

7.4.1 Multi-layer annular flow

(a) Outline and explain the numerical procedure implemented in code tube ann ml.

(b) Plot and discuss the velocity profile of a three-layer configuration of your choice. Inves-
tigate and discuss the effect of the layer viscosities.

7.5 Steady flow through channels and tubes

Previously in this chapter, we considered flow through channels confined between parallel
plates and tubes confined by concentric circular cylinders. Now we proceed to consider flow
through channels or tubes with more general cross-sectional shapes where the streamwise ve-
locity is a function of two spatial coordinates determining the position over a cross-sectional
plane, ux(y, z).

Without loss of generality, we may assume that the acceleration of gravity lies in the
xy plane, so that gz = 0. The assumption of unidirectional flow allows us to simplify the x,
y, and z components of the equation of motion displayed in Table 6.5.1, obtaining

0 = −∂p

∂x
+ μ

( ∂2ux

∂y2
+

∂2ux

∂z2
)
+ ρgx (7.5.1)

for the streamwise component, and

0 = −∂p

∂y
+ ρgy, 0 = −∂p

∂z
(7.5.2)

for the lateral components.

Problem
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Figure 7.5.1 Illustration of steady unidirectional flow through a tube with elliptical cross-section.

The y and z components of the equation of motion stated in (7.5.2) are satisfied by the
pressure distribution given in (7.1.5),

p = −χx+ ρgyy + π0, (7.5.3)

where χ = −∂p/∂x is the negative of the streamwise pressure gradient and π0 is a reference
pressure.

To satisfy the x component of the equation of motion, we require that the streamwise
velocity component satisfies the second-order partial differential equation

∇2ux ≡ ∂2ux

∂y2
+

∂2ux

∂z2
= −χ+ ρgx

μ
, (7.5.4)

where

∇2 ≡ ∂2

∂y2
+

∂2

∂z2
(7.5.5)

is the Laplacian operator in the yz plane. Equation (7.5.4) is a Poisson equation with a
constant right-hand side. In fact, this partial differential equation is a generalization of the
ordinary differential equation (7.1.7) for two-dimensional flow and of equation (7.3.4) for
axisymmetric flow.

In the remainder of this section, we derive exact solutions of (7.5.4) for selected cross-
sectional tube shapes.

7.5.1 Elliptical tube

First, we consider flow through a cylindrical tube with elliptical cross-sectional shape whose
contour in the yz plane is described by the equation of the ellipse,

f(y, z) ≡ y2

a2
+

z2

b2
− 1 = 0, (7.5.6)
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where a and b are the ellipse semi-axes, as illustrated in Figure 7.5.1. The Cartesian coordi-
nates of a point at the elliptical contour can be identified by a parameter, η, taking values
in the range [0, 2π), defined such that

y = a cos η, z = b sin η. (7.5.7)

The no-slip boundary condition requires that ux(y, z) = 0 for cooridnate pairs, (y, z), gen-
erated by (7.5.7) and thus satisfying the equation f(y, z) = 0 according to (7.5.6) for any
η.

Because f(y, z) is a quadratic function of y and z, its Laplacian defined in (7.5.5) is
constant. Motivated by this observation, we express the velocity in the form

ux(y, z) = c f(y, z) (7.5.8)

to guarantee the satisfaction of the no-slip boundary condition, and adjust the coefficient c
to satisfy the Poisson equation (7.5.4). The result is a quadratic velocity distribution,

ux(y, z) =
1

2

χ+ ρgx
μ

a2b2

a2 + b2

(
1− y2

a2
− z2

b2

)
. (7.5.9)

The maximum velocity occurs at the tube centerline located at y = 0 and z = 0.

Flow rate

To compute the flow rate, we take advantage of the symmetry of the velocity profile with
respect to the xy and xz planes, we express the axial flow rate as an integral of the velocity
over the first quadrant,

Q =

∫∫
ellipse

ux(y, z) dy dz = 4

∫ a

0

∫ zmax

0

ux(y, z) dz dy, (7.5.10)

where zmax is computed by solving equation (7.5.6) for z, yielding

zmax = b
√

1− y2/a2. (7.5.11)

Substituting the velocity profile (7.5.9) into the integrand, and performing the integration
with respect to z, we obtain

Q = 2
χ+ ρgx

μ

a2b2

a2 + b2

∫ a

0

(
1− y2

a2
− 1

3

z2max

b2
)
zmax dy. (7.5.12)

Substituting the expression for zmax, we obtain

Q =
4

3

χ+ ρgx
μ

a2b3

a2 + b2

∫ a

0

(
1− y2

a2
)3/2

dy. (7.5.13)

Now setting y/a = cos η, we obtain

Q =
4

3

χ+ ρgx
μ

a3b3

a2 + b2

∫ π/2

0

cos4 η dξ. (7.5.14)
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Figure 7.5.2 Illustration of steady unidirectional flow through a tube with equilateral triangular cross-
sectional shape. Cross-section of a triangular tube carrying fluid in pressure- or gravity-driven flow.

Performing the integration by elementary analytical methods, or else referring to standard
tables of integrals, we find that the last integral in (7.5.14) is equal to 3

16π. The final
expression for the flow rate is

Q = π
1

4

χ+ ρgx
μ

a3b3

a2 + b2
. (7.5.15)

Program tube ell, located in directory 04 various of Fdlib, not listed in the text, eval-
uates the velocity profile and flow rate given by (7.5.9) and (7.5.15).

As the second semi-axis, b, tends to become equal to the first semi-axis, a, the cross-
section of the tube tends to become circular and the expressions for the velocity distribution
and flow rate reduce to those shown in equations (7.3.8) and (7.3.16) for Poiseuille flow.

7.5.2 Equilateral triangular tube

In the second case study, we consider pressure- or gravity-driven flow through a tube whose
cross-section is an equilateral triangular with side-length a, as illustrated in Figures 7.5.2. In
the yz Cartesian coordinates defined in Figure 7.5.2 over the tube cross-section. the origin
is located at the centroid of the triangle and the y axis is parallel to the lower (horizontal)
side of the triangle. The horizontal side of the triangle is described by the equation

2
√
3 z + a = 0, (7.5.16)

the left side is described by the equation

√
3 z − 3 y − a = 0, (7.5.17)
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and the right side is described by the equation

√
3 z + 3 y − a = 0. (7.5.18)

The following velocity distribution satisfies the Poisson equation (7.5.4) and is consistent
with the no-slip boundary condition along the three sides of the tube,

ux(y, z) =
1

36

χ+ ρgx
μa

(2
√
3 z + a) (

√
3 z + 3 y − a) (

√
3 z − 3 y − a). (7.5.19)

Since each factor on the right-hand side describes one side, the velocity is zero along all
three sides.

Flow rate

To compute the flow rate, we introduce plane polar coordinates, (r, θ), defined such that

y = r cos θ, z = r sin θ, (7.5.20)

and describe the right side of the triangle by the equation r = aφ(θ) for −π/6 ≤ θ ≤ π/2,
as shown in Figure 7.5.2. Substituting expressions (7.5.20) into (7.5.18), we find that the
right side is described by the equation

√
3 r sin θ + 3 r cos θ − a = 0. (7.5.21)

Solving for r, we obtain

φ(θ) ≡ 1√
3 sin θ + 3 cos θ

=
1

2
√
3

1

cos(θ − π
6 )

(7.5.22)

Now integrating the velocity over the tube cross-section, we derive an expression for the
flow rate. In plane polar coordinates,

Q = 3

∫ π/2

−π/6

(∫ aφ(θ)

0

ux r dr
)
dθ, (7.5.23)

where the factor of three accounts for the three-fold symmetry of the cross-sectional shape.
Using expressions (7.5.20), we obtain

Q =
1

12

χ+ ρgx
μ

a4
∫ π/2

−π/6

(∫ φ(θ)

0

Φ(w, θ) dw
)
dθ. (7.5.24)

where

Φ(w, θ) ≡ (2
√
3w sin θ + 1)

(
w (

√
3 sin θ + 3 cos θ)− 1

) (
w (

√
3 sin θ − 3 cos θ)− 1

)
w

(7.5.25)
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is a quartic polynomial in w ≡ r/a. Performing the integration, we find that

Q =
√
3

320

χ+ ρgx
μ

a4. (7.5.26)

The dependence of the flow rate on the fourth power of a linear tube dimension, in this case
the side length, a is typical of pressure-driven tube flow.

Alternative coordinates

The alternative ξη Cartesian coordinates defined in Figure 7.5.2(b) are related to the xy
coordinates by

ξ = y +
1

2
a, η = z +

1

2
√
3
a. (7.5.27)

The three sides of the triangle are described by the equations

η = 0, η −
√
3 a+

√
3 ξ = 0. η −

√
3 ξ = 0. (7.5.28)

The velocity distribution is given by

ux(ξ, η) =
√
3

6

χ+ ρgx
μa

η (η −
√
3 a+

√
3 ξ ) (η −

√
3 ξ ). (7.5.29)

To compute the flow rate, we introduce plane polar coordinates, (τ, ψ), defined such
that

ξ = τ cosψ, η = τ sinψ. (7.5.30)

Substituting these expressions into the expression given in in (7.5.28), we find that the
inclined side opposite the origin is described by the equation

τ sinψ −
√
3 (a− τ cosψ) = 0 (7.5.31)

for 0 ≤ ψ ≤ π/3. Solving for τ , we obtain τ = a f(ψ), where

f(ψ) ≡
√
3

sinψ +
√
3 cosψ

. (7.5.32)

The flow rate is given by

Q =

∫ π/3

0

(∫ af(ψ)

0

ux τ dτ
)
dψ. (7.5.33)

Using expressions (7.5.30), we obtain

Q =
√
3

6

χ+ ρgx
μ

a4
∫ π/3

0

Ψ(ψ) (sinψ −
√
3 cosψ ) sinψ dψ, (7.5.34)
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Figure 7.5.3 (a) Illustration of steady unidirectional flow through a rectangular tube or duct. (b)
Velocity distribution over a tube with aspect ratio b/a = 2.

where

Ψ(ψ) ≡
∫ f(ψ)

0

(w sinψ −
√
3 +

√
3w cosψ )w3 dw (7.5.35)

and w = τ/a. Performing the inner integration, we obtain

Ψ(ψ) =
(

1

5
f(ψ)

(
sinψ +

√
3 cosψ

)− √
3

4

)
f4(ψ). (7.5.36)

The definite integral on the right-hand of (7.5.34) is equal to 3/160, yielding expression
(7.5.26) for the flow rate.

7.5.3 Rectangular tube

Next, we consider flow through a tube whose cross-section is a rectangle with side-lengths
equal to 2a and 2b, as illustrated in Figure 7.5.3(a).

A standard method of solving the Poisson equation (7.5.4) involves resolving the solution
for the velocity into two constituents:

1. A particular solution that satisfies the Poisson equation (7.5.4) but not all boundary
conditions, denoted as up

x(y, z).

2. A homogeneous solution, uh
x(y, z), that satisfies Laplace’s equation,

∇2uh
x = 0, (7.5.37)

subject to boundary conditions that arise by requiring that the physical velocity,

ux = up
x + uh

x, (7.5.38)

satisfies the no-slip boundary condition along the four walls.
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A convenient particular solution is

up
x(y, z) =

1

2

χ+ ρgx
μ

(b2 − z2). (7.5.39)

Requiring that up
x = −uh

x along the four channel walls, we derive boundary conditions for
the homogeneous solution,

uh
x(y = ±a, z) = −up

x(y = ±a, z) = − 1

2

χ+ ρgx
μ

(b2 − z2) (7.5.40)

and

uh
x(y, z = ±b) = −up

x(y, z = ±b) = 0. (7.5.41)

Since a solution cannot be found in closed form, we resort to a Fourier series representation.

Fourier expansion

The homogeneous solution can be expanded in a cosine Fourier series with respect to z,

uh
x(y, z) =

∞∑
n=1

fn(y) cos(αn
z

b
), (7.5.42)

where fn(y) are position-dependent Fourier coefficients. To satisfy the boundary conditions
(7.5.41), we set

αn = (n− 1

2
)π. (7.5.43)

The functions fn(y) will be computed so that the right-hand side of (7.5.42) satisfies
Laplace’s equation and conforms with the boundary conditions (7.5.40).

Taking the Laplacian of (7.5.42), we obtain

∇2uh
x(y, z) =

∞∑
n=1

( d2fn(y)
dy2

− α2
n

b2
fn(y)

)
cos(αn

z

b
). (7.5.44)

For the infinite sum on the right-hand side to be zero for any y or z, each term enclosed by
the parentheses must be zero, yielding the ordinary differential equation

d2fn(y)

dy2
− α2

n

b2
fn(y) = 0. (7.5.45)

The general solution is

fn(y) = An cosh(αn
y

b
) +Bn sinh(αn

y

b
), (7.5.46)

where An and Bn are constant coefficients. Discarding the hyperbolic sines by setting
Bn = 0 to ensure that the functions fn(y) are even, and therefore the velocity profile is



7.5 Steady flow through channels and tubes 477

symmetric with respect to the mid-plane y = 0, and substituting the result into (7.5.42),
we obtain

uh
x(y, z) =

∞∑
n=1

An cosh(αn
y

b
) cos(αn

z

b
). (7.5.47)

This expression satisfies Laplace’s equation for any coefficients, An.

To satisfy the remaining boundary conditions (7.5.40), we require that

∞∑
n=1

An cosh(αn
a

b
) cos(αn

z

b
) = − 1

2

χ+ ρ gx
μ

(b2 − z2). (7.5.48)

The left-hand side of (7.5.48) is the Fourier series with respect to z of the quadratic function
on the right-hand side.

Fourier orthogonality

The solution follows readily using the trigonometric identity∫ b

−b

cos(αn
z

b
) cos(αm

z

b
) dz =

{
b if n = m,
0 if n 
= m.

(7.5.49)

Multiplying both sides of (7.5.48) by cos(αm z/b), integrating with respect to z from −b to
b, using (7.5.49) to compute the integrals on the left-hand side, and then renaming m to n,
we obtain

An = − 1

2

1

cosh(αn a/b)

χ+ ρgx
μ

1

b

∫ b

−b

(b2 − z2) cos(αn
z

b
) dz. (7.5.50)

Defining η ≡ αnz/b, we obtain

An = − 1

2

1

cosh(αn a/b)

χ+ ρgx
μ

b2
1

αn

∫ αn

−αn

(1− η2

α2
n

) cos η dη. (7.5.51)

The definite integral on the right-hand side is given by∫ αn

−αn

(1− η2

α2
n

) cos η dη =
[
sin η +

(2− η2) sin η − 2η cos η

α2
n

]αn

−αn

. (7.5.52)

Noting that cosαn = 0 and sinαn = −(−1)n, we obtain

An = (−1)n
2

cosh(αn a/b)

χ+ ρgx
μ

b2
1

α3
n

(7.5.53)

for n ≥ 1.
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Finally, we substitute expression (7.5.53) into (7.5.47) and add the homogeneous to the
particular solution expressed by (7.5.39) to obtain the velocity distribution in the form of a
Fourier series,

ux(y, z) =
1

2

χ+ ρgx
μ

b2
(
1− z2

b2
+ 4

∞∑
n=1

(−1)n
1

α3
n

cosh(αn y/b)

cosh(αn a/b)
cos(αn

z

b
)
)
. (7.5.54)

The velocity distribution over a tube with aspect ratio b/a = 2 is shown in Figure
7.5.3(b).

Flow rate

The flow rate arises by integrating the velocity distribution over the tube cross-section in
the yz plane,

Q ≡
∫ a

−a

∫ b

−b

ux(y, z) dy dz. (7.5.55)

Substituting expression (7.5.54) and carrying out the integration, we obtain

Q =
4

3

χ+ ρgx
μ

ab3
(
1− 6

b

a

∞∑
n=1

1

α5
n

tanh(αn
a

b
)
)
. (7.5.56)

By symmetry, we also have that

Q =
4

3

χ+ ρgx
μ

a3b
(
1− 6

a

b

∞∑
n=1

1

α5
n

tanh(αn
b

a
)
)
. (7.5.57)

Comparing the last two expressions, we derive the identity

1− 6
1

γ

∞∑
n=1

1

α5
n

tanh(γαn) = γ2
(
1− 6 γ

∞∑
n=1

1

α5
n

tanh(
1

γ
αn)
)
. (7.5.58)

where γ = a/b is the aspect ratio.

Program tube rec, located inside directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile, the flow rate, and the maximum velocity occurring at the tube
centerline.

7.5.4 Rectangular duct

Consider unidirectional gravity-driven flow through a tilted rectangular duct with side-
lengths equal to 2a and 2b, as illustrated in Figure 7.5.3(a). The top of the duct is open to
the atmosphere and the free surface is assumed to be flat. The fluid velocity at the bottom,
left, and right walls, and the shear stress at the top free surface are required to be zero.
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Working as in Section 7.5.3 for a rectangular tube in the absence of a streamwise pressure
gradient, we express the solution in the deliberate form

ux(y, z) =
1

2

μgx
ρ

(a2 − y2) +
∞∑

n=1

An cosh
(
αn

b− z

a
) cos(αn

y

a
), (7.5.59)

where

αn = (n− 1

2
)π (7.5.60)

and An are Fourier coefficients. This representation satisfies the governing equation and
three boundary conditions,

ux(y = ±a, z) = 0, u′
x(y, z = b) = 0, (7.5.61)

where a prime denotes a partial derivative with respect to z. To satisfy the fourth boundary
condition, ux(y, z = −b) = 0, we require that

∞∑
n−1

An cosh( 2
b

a
αn) cos(αn

y

a
) =

1

2

μgx
ρ

(y2 − a2). (7.5.62)

Working as in Section 7.5.3 and using the orthogonality property∫ a

−a

cos(αn
y

a
) cos(αm

y

a
) dy =

{
a if n = m,
0 if n 
= m,

(7.5.63)

we find that

An = (−1)n
2

cosh(2 b
a αn)

ρgx
μ

a2
1

α3
n

(7.5.64)

for n ≥ 1. The velocity profile is thus given by

ux(y, z) =
1

2

ρgx
μ

a2
(
1− y2

a2
+ 4

∞∑
n=1

(−1)n
1

α3
n

cosh[αn(b− z)/a]

cosh(2 b
aαn)

cos(αn
y

a
)
)
. (7.5.65)

If the duct is inclined at an angle β with respect to the horizontal, gx = g sinβ.

The flow rate is found by straightforward integration over the duct cross-section as in
the case of tube flow,

Q(a, b) =
4

3

ρgx
μ

a3b
(
1− 3

a

b

∞∑
n=1

tanh(2 b
a αn)

α5
n

)
. (7.5.66)

Since the velocity profile for duct flow is the same as half the profile for tube flow with
twice as large b, the flow rate for tube flow given in (7.5.57) arises from that for duct flow
as Qtube = 2Qduct(a,

b
2 ).
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Figure 7.5.4 Illustration of steady unidirectional flow between two parallel plates sliding over a plane
wall regarded as a painted surface.

7.5.5 Semi-infinite rectangular channel

Next, we consider flow between two semi-infinite parallel plates that slide with velocity V
against a stationary flat surface, as illustrated in Figure 7.5.4. The motion of the plates
generates a unidirectional flow along the x axis, which can be regarded as a model of the
flow occurring between two hairs of an idealized two-dimensional paint brush moving over
a flat surface.

In the absence of a pressure gradient and significant gravitational forces, the x compo-
nent of the velocity satisfies Laplace’s equation,

∇2ux = 0, (7.5.67)

which arises from (7.5.4) by setting the right-hand side to zero. The no-slip boundary
condition requires that the velocity is zero over the flat surface located at z = 0, and takes a
constant value, V , over the sliding plates located at y = ±a. Far from the painted surface,
the fluid moves with the plate velocity V in a plug-flow mode.

Fourier expansion

To compute the solution, we expand the streamwise velocity in a Fourier series, as discussed
in Section 7.5.3 for flow through a tube with rectangular cross-section. Requiring that ux

tends to V as z tends to infinity, we obtain the counterpart of (7.5.47),

ux(y, z) = V +
∞∑

n=1

An exp(−αn
z

a
) cos(αn

y

a
), (7.5.68)

where

αn = (n− 1

2
)π. (7.5.69)
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The expansion given in (7.5.68) satisfies the no-slip boundary condition at the side walls for
any Fourier coefficients, An.

To also satisfy the no-slip condition at the painted surface, we require that

ux(y, z = 0) = V +

∞∑
n=1

An cos(αn
y

a
) = 0. (7.5.70)

Working as previously for flow in a rectangular duct and using the trigonometric identity
(7.5.63), we find that

An = −V

a

∫ a

−a

cos(αn
y

a
) dy = −2

V

αn
sinαn = 2 (−1)n

V

αn
. (7.5.71)

Substituting this expression into (7.5.68), we obtain the desired velocity distribution

ux(y, z) = V
(
1 + 2

∞∑
n=1

(−1)n
1

αn
exp(−αn

z

a
) cos(αn

y

a
)
)
. (7.5.72)

Flow rate

As the two plates travel over the stationary surface, they dispense an amount of fluid with
flow rate

Q =

∫ ∞

0

∫ a

−a

(
V − ux(y, z)

)
dy dz. (7.5.73)

Substituting the velocity profile, we find that

Q = −2V
∞∑

n=1

(−1)n
1

αn

∫ ∞

0

∫ a

−a

exp(−αn
z

a
) cos(αn

y

a
) dy dz. (7.5.74)

Performing the integration, we obtain

Q = 4V a2
∞∑

n=1

1

α3
n

	 1.085V a2. (7.5.75)

The dependence of the flow rate on the second power of a linear boundary dimension, in
this case, a, is typical of boundary-driven flow.

Program chan brush, located inside directory 04 various of Fdlib, not listed in the text,
evaluates the velocity field and flow rate given by equations (7.5.72) and (7.5.75).

7.5.1 Area and perimeter of an ellipse

Show that the area of an ellipse with semi-axes a and b is equal to πab.

Problems
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7.5.2 Wall shear stress around an elliptical tube

Derive an expression for the wall shear stress around an elliptical tube in terms of the
parameter η.

7.5.3 Flow through a triangular tube

Compute the ratio of the flow rate through a circular tube to that through a triangular
equilateral tube with the same cross-sectional area, subject to the same pressure gradient.

7.5.4 An elliptical hose

Using the parametrization (7.5.7), we find that the differential arc length along the contour
of an ellipse is given by

d
 ≡
√

dx2 + dy2 =

√
a2 sin2 η + b2 cos2 η dη, (7.5.76)

which can be restated as

d
 =
√

a2 − (a2 − b2) cos2 η dη = a
√

1− k2 cos2 η dη, (7.5.77)

where k2 ≡ 1− b2/a2. For convenience and without loss of generality, we have assumed that
b ≤ a.

The arc length of the perimeter of the ellipse is given by

L =

∮
d
 = 4 a

∫ π/2

0

√
1− k2 cos2 η dη = 4 a

∫ π/2

0

√
1− k2 sin2 η dη. (7.5.78)

The last integral in (7.5.78) is known as the complete elliptic integral of the second kind.
When a = b, we find that k2 = 0 and recover the well-known result for the perimeter of a
circle, L = 2πa.

In Section 11.5.1, we will see that the complete elliptic integral of the first or second
kind can be evaluated using an efficient iterative method. As an alternative, we may use
the mid-point rule to approximate the integral with a sum,

L 	 4 a
π

2

N∑
i=1

√
1− k2 sin2 ηi, (7.5.79)

where N is a specified discretization level and ηi = (i− 1
2 )

π
2N are interval mid-points.

(a) Prepare a graph of the dimensionless scaled perimeter arc length, L/a, against the axes
ratio, b/a, where 0 < b/a ≤ 1. The value of N in (7.5.79) should be large enough for the
perimeter arc length to be accurate at the third decimal place.

(b) A gardener delivers water through a circular hose made of a flexible but inextensible
material. By pinching the end of the hose, she is able to generate elliptical shapes with
variable cross-section, while the cross-sectional perimeter of the hose remains constant.
Prepare and discuss a plot of the delivered flow rate against the aspect ratio of the cross-
section for a certain pressure gradient.



7.6 Steady swirling flows 483
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Figure 7.6.1 Illustration of swirling flow between two rotating concentric cylinders. When the gap
between the cylinders in small, we obtain Couette flow between two translating parallel plates in
the absence of a pressure gradient.

7.6 Steady swirling flows

We have discussed steady unidirectional flows with rectilinear streamlines. Because point
particles travel with constant velocity along straight paths, inertial forces are identically
zero and the flow is governed by a linear equation of motion expressing a balance between
the pressure gradient, the viscous force, and the body force. In this section, we turn our
attention to swirling flows with circular streamlines where centrifugal forces arise.

7.6.1 Annular flow

We begin by considering steady swirling flow between two infinite concentric cylinders with
radii a1 and a2 rotating around their common axis with angular velocities Ω1 and Ω2, as
illustrated in Figure 7.6.1. The induced circular Couette flow is the counterpart of the plane
Couette flow with rectilinear streamlines discussed in Section 7.1.

It is natural to introduce cylindrical polar coordinates where the x axis is coaxial with
the cylinders. Our analysis will be based on two key assumptions:

• The axial and radial velocity components vanish, ux = 0 and uσ = 0.

• The azimuthal velocity component, uϕ, does not vary in the direction of the azimuthal
angle ϕ, that is, ∂uϕ/∂ϕ = 0.

As a consequence of these assumptions, Duϕ/Dt = 0, and uϕ depends only on the distance
from the x axis, σ, where D/Dt is the material derivative.

The no-slip boundary condition at the cylinder surfaces requires that

uϕ = Ω1a1 at σ = a1 (7.6.1)
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and

uϕ = Ω2a2 at σ = a2. (7.6.2)

Governing equations

In the case of flow with circular streamlines, the cylindrical polar components of the equation
of motion displayed in equations (6.3.19) assume the simplified forms

0 = −∂p

∂x
+ ρgx, 0 = ρ

u2
ϕ

σ
− ∂p

∂σ
+ ρgσ, (7.6.3)

and

0 = − 1

σ

∂p

∂ϕ
+ μ

d

dσ
(
1

σ

d(σuϕ)

dσ
) + ρgϕ. (7.6.4)

To remove the inconsequential hydrostatic pressure variation, we introduce the dynamic
pressure defined as

p̃ ≡ p− ρ (gx x+ gy y + gz z), (7.6.5)

and reduce the three differential equations (7.6.3) and (7.6.4) to two ordinary differential
equations,

dp̃

dσ
= ρ

u2
ϕ

σ
,

d

dσ

( 1

σ

d (σuϕ)

dσ

)
= 0. (7.6.6)

Velocity and pressure profiles

Straightforward integration of the second equation in (7.6.6) with respect to σ, subject to
the boundary conditions (7.6.1) and (7.6.2), provides us with the velocity profile

uϕ(σ) =
Ω2 − αΩ1

1− α
σ − Ω2 − Ω1

1− α

a21
σ
, (7.6.7)

where

α ≡
(a1
a2

)2
< 1. (7.6.8)

The first term on the right-hand side of (7.6.7) expresses rigid-body rotation. The second
term expresses swirling motion due to a point vortex situated at the cylinder axis.

The pressure distribution follows by substituting (7.6.7) into the first of equations (7.6.6)
and carrying out the integration with respect to σ.

Shear stress and torque

The shear stress exerted on a cylindrical surface of radius σ is given by

σσϕ(σ) = μ
(duϕ

dσ

)
σ
. (7.6.9)
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The torque exerted on either cylinder is given by

T ≡ 2πσ σσϕ(σ) (7.6.10)

for any σ. Performing the differentiation, we obtain

T = −4πμ
a21

1− α
(Ω2 − Ω1). (7.6.11)

When the cylinders rotate with the same angular velocity, the fluid rotates as a rigid body
and the torque is zero.

Program tube ann sw, residing in directory 04 various of Fdlib, evaluates the velocity
profile given in (7.6.7).

Rigid-body rotation

Equation (7.6.7) confirms that when, Ω1 = Ω2 = Ω, or when the inner cylinder is absent,
a1 = 0, the fluid rotates as a rigid body with angular velocity Ω. In this case, the modified
pressure distribution is readily found to be

p̃RBR =
1

2
ρΩ2σ2 + π0, (7.6.12)

where π0 is a reference pressure and the subscript RBR denotes rigid-body rotation. Thus,
rigid-body rotation is associated with a quadratic pressure distribution with respect to the
radial position, σ, established to counteract the inertial centrifugal force.

Small gaps

When the clearance of the channel is small compared to the inner cylinder radius, a2−a1 <
a1, the circular Couette flow reduces to plane Couette in a channel with parallel-sided walls,
as discussed in Section 7.6.1.

To demonstrate this reduction, we substitute Ω1 = V1/a1 and Ω2 = V2/a2 into (7.6.7),
and thus obtain

uϕ(σ) =
V2/a2 − αV1/a1

1− α
σ − V2/a2 − V1/a1

1− α

a21
σ
. (7.6.13)

Next, we define the gap, 2a = a2− a1, introduce the scaled distance from the inner cylinder

η ≡ y + a

a1
, (7.6.14)

and write

a2 = a1 + 2a, ε =
2a

a1
,

a2
a1

= 1 + ε,
σ

a1
= η + 1, (7.6.15)



486 Fluid Dynamics: Theory, Computation, and Numerical Simulation

where ε is a small parameter and y is the distance from the midway position. The velocity
profile becomes

uϕ(σ) =
1

a2

V2 − α (1 + ε)V1

1− α
σ − 1

a2

V2 − (1 + ε)V1

1− α

a21
σ
, (7.6.16)

which can be rearranged into

uϕ(σ) =
(
[V2 − α (1 + ε)V1]

σ

a1
− [V2 − (1 + ε)V1

] a1
σ

) a1
a2

1

1− α
. (7.6.17)

By definition,

α =
1

(1 + ε)2
	 1

1 + 2ε
	 1− 2ε (7.6.18)

and

1− α = 1− 1

(1 + ε)2
=

(1 + ε)2 − 1

(1 + ε)2
	 2 ε

(1 + ε)2
, (7.6.19)

and thus

uϕ(σ) 	
( [

V2 − (1− 2ε) (1 + ε)V1

]
(1 + η)− [V2 − (1 + ε)V1

]
(1− η)

) 1 + ε

2 ε
. (7.6.20)

Linearizing the product (1− 2 ε) (1 + ε), we obtain

uϕ(σ) 	
( [

V2 − (1− ε)V1

]
(1 + η)− [V2 − (1 + ε)V1

]
(1− η)

) 1 + ε

2 ε
. (7.6.21)

Linearizing the expression inside the large parentheses, we obtain

uϕ(σ) 	
(
(V2 − V1) 2 η + 2 ε V1

) 1

2 ε
= (V2 − V1)

η

ε
+ V1, (7.6.22)

which is precisely the linear velocity profile of plane Couette flow.

7.6.2 Multi-layer swirling flow

Next, we consider the multi-layer swirling flow of N annular layers between two concentric
cylinders, as illustrated in Figure 7.6.2(a). For the interfaces to remain concentric, either
the tube must be vertical or all fluid densities must be the same. If these conditions are
not met, hydrostatic pressure variations will cause an interfacial misalignment from the
axisymmetric configuration.

A numerical method similar to that discussed in Section 7.1 for multi-layer channel
flow can be developed for computing the velocity profile of multi-layer rotating flow. The
algorithm is implemented in the function tube ann sw ml located in directory 04 various of
Fdlib. The MATLAB implementation is listed below:
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N

Ω2

Figure 7.6.2 (a) Illustration of multi-layer annular swirling flow between two rotating concentric
cylinders. (b) Velocity profile across five annular layers.

function [sI,uI,xi1,xi2,Q,u] = tube ann sw ml ...

...

(NLR ...

,a1,a2 ...

,thick ...

,visc ...

,Omega1, Omega2 ...

,s)

%===========================================

% Multi-layer swirling flow inside an annular tube

%

% Layer numbered 1 is adjacent to the inner cylinder

% Layer numbered NLR is adjacent to outer cylinder

%

% The velocity in the ith film is given by:

%

% u(i) = bf(i)/sigma + cf(i)*sigma

%

% SYMBOLS

% -------

%

% a1: inner tube radius

% a2: outer tube radius

% Omega1: inner tube angular velocity

% Omega2: outer tube angular velocity

% NLR: Number of layers

% thick(i): thickness of the ith layer

% sI(i): radial position of the ith interface



488 Fluid Dynamics: Theory, Computation, and Numerical Simulation

% uI(i): velocity of the ith interface

% xi1(i): shear rate on lower side of the ith interface

% xi2(i): shear rate on upper side of the ith interface

% Q(i): flow rate of ith layer

%===========================================

%---

% set the radial interface positions

%---

sI(1) = a1+thick(1);

for i=2:NLR

sI(i) = sI(i-1)+thick(i);

end

%-----------------------------------------

% The velocity in the ith layer is given by:

%

% u(i) = bf(i)/sigma + cf(i)*sigma

%

% In the first pass, set bf(1)=0

% and compute the residual of the inner cylinder

% boundary condition: error0

%

% In the second pass, set bf(1)=1

% and compute the residual of the inner cylinder

% boundary condition: error1

%

% In the third pass, set the proper value:

%

% bf(1) = error0/(error0-error1)

%-----------------------------------------

bf(1) = 0.0;

%---

for Ipass=1:3

%---

%---

% compute bf(i) by recursion

% starting from the inner cylinder by requiring

% continuity of shear stress across the interfaces

%

% The sigma-phi shear stress is given by:

%

% shear stress = sigma d(u/sigma)/d(sigma)

%---
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for i=1:NLR-1

bf(i+1) = visc(i)/visc(i+1)*bf(i);

end

%---

% compute cf(i) by recursion

% to satisfy continuity of velocity across the interfaces

%---

cf(1) = (Omega1*a1-bf(1)/a1)/a1;

for i=1:NLR-1

cf(i+1) = cf(i) + (bf(i)-bf(i+1))/sI(i)^2;

end

%---

% error in the no-slip condition on the inner wall

% error = u(s=a1)-V1

%---

if(Ipass==1)

error0 = bf(NLR)/a2 + cf(NLR)*a2 - Omega2*a2;

bf(1) = 1.0;

elseif(Ipass==2)

error1 = bf(NLR)/a2 + cf(NLR)*a2 - Omega2*a2;

bf(1) = error0/(error0-error1);

end

%---

end % of Ipass

%---

%---

% compute interfacial velocities

% and shear rates

%---

for i=1:NLR-1

uI(i) = bf(i)/sI(i) + cf(i)*sI(i);

xi1(i) = -2.0*bf(i) /sI(i)^3;

xi2(i) = -2.0*bf(i+1)/sI(i)^3;

end

%--------------------------------------------------

% compute the flow rates

% ith film is confined between i-1 and i interfaces

%--------------------------------------------------
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Q(1) = bf(1)*(log(sI(1)/a1)) ...

+ cf(1)*0.5D0*(sI(1)^2-a1^2);

for i=2:NLR

Q(i) = bf(i)*log(sI(i)/sI(i-1)) ...

+ cf(i)*0.5*(sI(i)^2-sI(i-1)^2);

end

%--------------------------

% compute the velocity at s

%--------------------------

%---

% identify the host layer

%---

for i=1:NLR

if(s<sI(i))

break

end

end

if(i>NLR) i=NLR; end

%---

% evaluate the velocity at s

%---

u = bf(i)/s+cf(i)*s;

%-----

% Done

%-----

return

The velocity profile across five annular layers with different viscosities and densities is shown
in Figure 7.6.2(b).

7.6.1 Free surface of a rotating liquid.

A certain volume of a liquid is placed inside a vertical cylindrical container that is closed at
the bottom and rotates with angular velocity Ω about the x axis, which points against the
direction of gravity. Using equation (7.6.12), we find that the pressure distribution in the

Problems
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liquid is given by

p =
1

2
ρΩ2 + ρ gxx+ π0, (7.6.23)

where π0 is a reference pressure.

(a) Show that, when surface tension is insignificant, the shape of the free surface is described
by the equation

x =
1

2

Ω2

g
σ2 + c, (7.6.24)

where c is a constant and g is the magnitude of the acceleration of gravity. This equation
reveals that the shape of the free surface is parabolic.

(b) Derive a differential equation governing the shape of the free surface in the presence of
surface tension.

7.6.2 Multi-layer swirling flow

(a) Outline and explain the numerical procedure implemented in the code tube ann sw ml.

(b) Plot and discuss the velocity profile of a three-layer configuration of your choice.

7.7 Transient channel flows

Having investigated the structure of steady unidirectional flows with rectilinear or circular
streamlines, now we turn our attention to corresponding unsteady flows generated by sudden
or oscillatory boundary motion, tilting, or by the application of a time-dependent pressure
gradient. Our analysis will continue to be based on the assumption of unidirectional flow
with rectilinear or circular streamlines.

7.7.1 Couette flow

We begin by considering flow in a two-dimensional channel with parallel walls separated by
distance h, as illustrated in Figure 7.7.1. The upper wall is held stationary, while the lower
wall is set in motion suddenly parallel to itself along the x axis with constant velocity, V .

Working as in Section 7.1, we find that, in the absence of a pressure gradient along the
x axis other than that due to gravity,

∂p

∂x
= ρgx, (7.7.1)

which shows that the pressure distribution assumes the hydrostatic profile. The x component
of the equation of motion provides us with a partial differential equation in time, t, and
transverse position, y, for the x velocity component,

ρ
∂ux

∂t
= μ

∂2ux

∂y2
, (7.7.2)
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Figure 7.7.1 Transient Couette flow in a channel with parallel walls due to the impulsive translation
of the lower wall. Profiles are shown at dimensionless times νt/h2 = 0.001, 0.005, 0.010, 0.020,
0.030, . . ., 0.14, and 0.15. The straight line is the linear profile established at long times.

subject to the initial condition

ux = 0 for 0 < y ≤ h (7.7.3)

at t = 0, and the no-slip boundary conditions

ux(y = 0) = V, ux(y = h) = 0, (7.7.4)

at any t ≥ 0. At steady state, the solution is given by the linear Couette velocity profile

usteady
x (y) = V

(
1− y

h

)
, (7.7.5)

as discussed in Section 7.1.

Fourier expansion

To compute the solution of (7.7.2), we consider the deviation of the transient velocity profile
from the linear profile established at steady state. Expanding the difference in a Fourier
series with respect to y, we obtain

ux(y, t) = usteady
x (y) +

∞∑
n=1

An(t) sin
nπy

h
. (7.7.6)

The argument of the trigonometric functions on the right-hand side was designed to satisfy
the boundary conditions (7.7.4) at any time.
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To compute the functions An(t), we substitute expansion (7.7.6) into the governing
equation (7.7.2), and carry out the differentiation with respect to t and y to obtain

∞∑
n=1

(
ρ
dAn(t)

dt
+ μ

(nπ
h

)2
An(t)

)
sin

nπy

h
= 0. (7.7.7)

To ensure the satisfaction of this equation for any y, we set the expression enclosed by the
outer tall parentheses to zero and obtain a first-order linear differential equation for An(t)
whose solution is

An(t) = bn exp(−n2π2ν

h2
t), (7.7.8)

where ν = μ/ρ is the kinematic viscosity of the fluid and bn is a constant.

Now substituting expression (7.7.8) into (7.7.6), we obtain

ux(y, t) = usteady
x (y) +

∞∑
n=1

bn exp(−n2π2ν

h2
t) sin

nπy

h
. (7.7.9)

To compute the constants bn, we require that the velocity profile (7.7.9) is consistent
with the initial condition (7.7.3), and obtain

ux(y, t = 0) = V
(
1− y

h

)
+

∞∑
n=1

bn sin
nπy

h
= 0 (7.7.10)

for 0 ≤ y ≤ h. The solution follows readily using the trigonometric identity

∫ h

0

sin
nπy

h
sin

mπy

h
dy =

⎧⎨⎩
0 if n = 0 or m = 0,
1
2h if n = m 
= 0,
0 if n 
= m.

(7.7.11)

Multiplying (7.7.10) by sin(mπy/h) for an arbitrary integer, m, integrating with respect to
y from 0 to h, using identity (7.7.11), and then switching m to n, we obtain

bn = −2
V

h

∫ h

0

(1− y

h
) sin

nπy

h
dy. (7.7.12)

Performing the integration, we obtain

bn = − 2

nπ
V. (7.7.13)

The velocity profile (7.7.9) takes the final form

ux(y, t) = V
(
1− y

h
− 2

π

∞∑
n=1

1

n
exp(−n2π2ν

h2
t) sin

nπy

h

)
. (7.7.14)
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Program chan 2d imp, located in directory 04 various of Fdlib, evaluates the velocity
profile given in (7.7.14). A sequence of developing profiles of the scaled velocity ux/V
illustrating the approach to steady state is shown in Figure 7.7.1.

Approach to steady state

At long times, the summed terms on the right-hand side of (7.7.14) decay at an exponential
rate and the linear profile of the steady Couette flow expressed by the first two terms inside
the angular brackets on the right-hand side dominates. The elapsed time where steady
flow has virtually been established, ts, can be estimated by setting the magnitude of the
argument of the exponential term on the right-hand side of (7.7.14) equal to unity for the
lowest possible value n = 1, obtaining

ts 	 1

π2

h2

ν
. (7.7.15)

Apart from the numerical factor 1/π2 in the denominator, this estimate could have been
deduced on the basis of dimensional analysis at the outset.

Diffusion of vorticity

The only non-vanishing vorticity component in unidirectional flow is the component that is
perpendicular to the plane of the flow,

ωz = −∂ux

∂y
. (7.7.16)

Differentiating (7.7.2) with respect to y, we find that the evolution of the vorticity is governed
by equation (7.7.2), provided that ux is replaced by ωz on both sides.

ρ
∂ωz

∂t
= μ

∂2ωz

∂y2
. (7.7.17)

The profiles shown in Figure 7.7.1 illustrate that, as soon as the lower wall starts
translating, a thin layer of highly rotational flow is established. The vorticity then diffuses
away from the wall to occupy the clearance of the channel. At steady state, the vorticity
takes the uniform value V/h. This process exemplifies how vorticity enters a fluid across a
boundary during a period of transient flow.

7.7.2 Impulsive motion of a plate in a semi-infinite fluid

A detailed analysis of the transient Couette flow at short times can be carried out by
neglecting the presence of the upper stationary wall and concentrating on the behavior of
the flow near the lower moving wall. In principle, this can be done by setting h = ∞ in
the initial condition (7.7.3) and boundary conditions (7.7.4) to obtain a semi-infinite flow.
However, cursory inspection reveals that the Fourier series solution (7.7.14) is no longer
useful in this limit.
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Similarity solution

The absence of a length scale in a semi-infinite flow suggests that the time and space
dependencies must combine into a unified variable, which can be nondimensionalized by the
kinematic viscosity of the fluid, ν. Recalling that the kinematic viscosity has units of length
squared over time, we introduce the dimensionless variable

η ≡ y√
νt

, (7.7.18)

which ranges from zero to infinity, and express the velocity in the form

ux(y, t) = V f(η), (7.7.19)

where f(η) is a function of a single variable. This functional form implies that the fluid
velocity as seen by an observer who finds herself at the position y =

√
ν t, and is thus

traveling upward with velocity dy/dt =
√

ν/(4t), remains constant in time.

The initial and boundary conditions are satisfied, provided that the function f(η) obeys
the boundary condition f(η = 0) = 1 and the far-field condition f(η = ∞) = 0.

Substituting the similarity solution (7.7.19) into the governing equation (7.7.2), we
obtain

ρ
∂ux

∂t
= ρ V

df

dη

∂η

∂t
= μV

∂2ux

∂y2
= μV

∂

∂y
(
∂η

∂y

df

dη
). (7.7.20)

Rearranging, we obtain

1

ν

df

dη

∂η

∂t
=

∂

∂y
(

1√
νt

df

dη
) =

1√
νt

d2f

dη2
∂η

∂y
=

1

νt

d2f

dη2
. (7.7.21)

We note that

∂η

∂t
= − 1

2

1

ν1/2
y

t3/2
, (7.7.22)

and derive a second-order nonlinear ordinary differential equation,

d2f

dη2
= − 1

2
η
df

dη
. (7.7.23)

To compute the solution, we recast (7.7.23) into the form

d

dη
(ln

df

dη
) = − 1

2
η. (7.7.24)

Integrating, we obtain

df

dη
= A exp(− 1

4
η2), (7.7.25)
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Figure 7.7.2 Graphs of the error function (solid line) and complementary error function (broken line)
defined in equations (7.7.26) and (7.7.27).

where A is an integration constant. Carrying out a second integration, we find that

f(η) = A

∫ η

0

exp(− 1

4
q2) dq +B = 2A

∫ η/2

0

exp(−v2) dv +B, (7.7.26)

where B is a new integration constant, q is an auxiliary integration variable, and v ≡ 1
2q.

Error function

The integral on the right-hand side of (7.7.26) is not available in analytical form. To
formalize the solution, we introduce the error function, defined as

erf(w) ≡ 2√
π

∫ w

0

exp(−v2) dv, (7.7.27)

and the complementary error function, defined as

erfc(w) = 1− erf(w). (7.7.28)

Graphs of these functions are shown in Figure 7.7.2. As w tends to infinity, the error function
tends to the asymptotic value of unity; correspondingly, the complementary error function
tends to zero.

The frequent occurrence of the error function in various branches of mathematical
physics has motivated its tabulation and representation by various algebraic approxima-
tions. Program error f, residing in directory 99 spec fnc inside directory 01 num meth of
Fdlib, evaluates the error function and the complementary error function using an accurate
algebraic approximation.



7.7 Transient channel flows 497

Velocity and vorticity profiles

Now returning to (7.7.26), we express the right-hand side in terms of the error function and
require that f(η = 0) = 1 and f(η = ∞) = 0 to obtain

A = − 1√
π

B = 1, (7.7.29)

yielding the velocity profile

ux(y, t) = V f(η) = V erfc(
1

2
η ). (7.7.30)

The accompanying vorticity profile is

ωz(y, t) = −∂ux

∂y
= −V

df

dη

∂η

∂y
. (7.7.31)

Performing the differentiations, we obtain the Gaussian distribution

ωz(y, t) =
V√
πνt

exp(− 1

4

y2

νt
). (7.7.32)

This expression illustrates explicitly the singular nature of the vorticity at the initial instant,
t = 0, and the spreading of the vorticity away from the moving wall due to viscous diffusion
at later times.

Wall shear stress

The wall shear stress is given by

σxy(y = 0, t) = μ
(∂ux

∂u

)
y=0

= −μ
V√
πνt

. (7.7.33)

This expression illustrates that an unphysical singularity occurs at the initial instant, t = 0,
as soon as the plate is set in motion.

In real life, a plate cannot start moving with constant velocity in an impulsive fashion.
Instead, the plate velocity must increase gradually from zero to the final value over a non-
infinitesimal period of time.

7.7.3 Pressure- and gravity-driven flow

As a second case study, we consider flow in a channel with stationary walls separated by
distance h, located at y = 0 and h. The motion of the fluid is due to the sudden application
of a constant pressure gradient or sudden tilting.

The x component of the equation of motion provides us with a partial differential
equation for the x velocity component,

ρ
∂ux

∂t
= χ+ μ

∂2ux

∂y2
+ ρgx, (7.7.34)
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where χ = −∂p/∂x is a constant. The pressure field is given in equation (7.1.5).

The velocity profile satisfies the initial condition

ux(y, t = 0) = 0 for 0 ≤ y ≤ h, (7.7.35)

and the no-slip boundary conditions

ux(y = 0, t) = 0, ux(y = h, t) = 0 (7.7.36)

for t ≥ 0. At steady state, we obtain the parabolic Hagen velocity profile,

usteady
x (y) =

1

2

χ+ ρgx
μ

y (h− y), (7.7.37)

as discussed in Section 7.1.

Fourier series solution

To compute the evolution of the flow, we consider the deviation of the transient velocity
profile from the parabolic profile established at steady state. Expanding the difference in a
Fourier series with respect to y, we obtain

ux(y, t) = usteady
x (y) +

∞∑
n=1

An(t) sin
nπy

h
. (7.7.38)

The arguments of the trigonometric functions on the right-hand side have been designed to
satisfy the wall boundary conditions at any time.

To compute the functions An(t), we substitute the Fourier expansion into the governing
equation (7.7.34) and carry out the differentiation with respect to t and x to find that

∞∑
n=1

(
ρ
dAn(t)

dt
+ μ

(nπ
h

)2
An(t)

)
sin

nπy

h
= 0. (7.7.39)

To ensure that this equation is satisfied for any y, we set the expression enclosed by the
outer tall parentheses to zero, and thus obtain a first-order linear differential equation for
An(t) whose solution is

An(t) = bn exp(−n2π2ν

h2
t), (7.7.40)

where ν = μ/ρ is the kinematic viscosity of the fluid and bn is a constant. Substituting this
expression into (7.7.38), we obtain

ux(y, t) = usteady
x (y) +

∞∑
n=1

bn exp(−n2π2ν

h2
t) sin

nπy

h
. (7.7.41)

This expression satisfies the governing equations for any set of Fourier coefficients, bn.
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To compute the coefficients bn, we require that the solution given in (7.7.41) satisfies
the initial condition (7.7.35), so that

ux(y, t = 0) =
χ+ ρgx

μ
1

2
y (h− y) +

∞∑
n=1

bn sin
nπy

h
= 0 (7.7.42)

for 0 ≤ y ≤ h. The solution follows readily from the trigonometric identity

∫ h

0

sin
nπy

h
sin

mπy

h
dy =

⎧⎨⎩
0 if n = 0 or m = 0,

1
2h if n = m 
= 0,
0 if n 
= m.

(7.7.43)

Multiplying the middle and right-hand sides of (7.7.42) by sin(mπy/h), where m is an
arbitrary integer, integrating with respect to y from 0 to h, and using identity (7.7.43), we
find that

χ+ ρgx
μ

1

2

∫ h

0

y (h− y) sin
mπy

h
dy + bm

1

2
h = 0, (7.7.44)

yielding

bm = −χ+ ρgx
μ

1

h

∫ h

0

y (h− y) sin
mπy

h
dy. (7.7.45)

Manipulating the integral, we obtain

bm =
χ+ ρgx

μ

1

mπ

∫ h

0

y (h− y) d cos
mπy

h
, (7.7.46)

and then

bm =
χ+ ρgx

μ

1

mπ

([
y(h− y) cos

mπy

h

]h
0
−
∫ h

0

cos
mπy

h
(h− 2y) dy

)
. (7.7.47)

Finally, we compute

bm =
χ+ ρgx

μ

2

mπ

∫ h

0

cos
mπy

h
y dy = h

χ+ ρgx
μ

2

π2m2

∫ h

0

y d sin
mπy

h
, (7.7.48)

yielding

bm = −h
χ+ ρgx

μ

2

π2m2

∫ h

0

sin
mπy

h
dy = h2 χ+ ρgx

μ

2

π3m3

[
cos

mπy

h

]h
0
. (7.7.49)

The term [
cos

mπy

h

]h
0
= cos

mπh

h
− 1 (7.7.50)
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Figure 7.7.3 Transient velocity profiles in a channel with parallel walls separated by distance h, due
to the sudden application of a constant pressure gradient or sudden tilting. Profiles are shown at
dimensionless times νt/h2 = 0.001, 0.005, 0.01, 0.02, 0.03, . . . . The dashed line describes the
parabolic profile of the Hagen flow with centerline velocity U established at long times.

is equal to 2 when m is odd, or 0 if m is even. Substituting the expression for bm into
(7.7.42) provides us with the transient velocity profile

ux(y, t) =
1

2

χ+ ρgx
μ

(
y (h− y)− 8

π3
h2

∞∑
n=1,3,...

1

n3
exp(−n2π2ν

h2
t) sin

nπy

h

)
. (7.7.51)

Program chan 2d trans, located in directory 04 various of Fdlib, evaluates the velocity
profile at a specified time. A sequence of developing profiles of the scaled velocity ux/U is
shown in Figure 7.7.3, where U is the maximum velocity of the steady Hagen flow established
at long times.

7.7.1 Flow due to a constant shear stress

Show that the velocity profile due to the application of a constant shear stress with magni-
tude τ at the planar boundary of a semi-infinite fluid occupying the upper half-space, y ≥ 0,
is given by

u(y, t) =
τ

μ

√
νt
( 2√

π
exp(− 1

4
η2)− η erfc(

1

2
η)
)
, (7.7.52)

where η ≡ y/
√
νt is a dimensionless similarity variable. Discuss the asymptotic behavior of

the flow at long times.

Problem
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7.8 Oscillatory channel flows

In Section 7.7, we discussed transient Couette flow and transient pressure- or gravity-driven
channel flow. We found that, in all cases, vorticity enters the flow through the boundaries
and then diffuses to occupy the entire domain of flow. In this section, we consider cor-
responding configurations for oscillatory flow. An important new feature is that, because
vorticity of alternating sign enters the fluid across the boundaries of the flow, cancellation
of vorticity by diffusion prevents the establishment of significant motion sufficiently far from
the boundaries of the flow.

7.8.1 Oscillatory Couette flow

Suppose that the lower wall of a two-dimensional channel oscillates parallel to itself with
velocity

v = V cos(Ωt), (7.8.1)

while the upper wall is stationary, thereby generating the unsteady unidirectional flow il-
lustrated in Figure 7.8.1, where V is the amplitude and Ω is the angular frequency of the
oscillations. The lower wall is located at y = 0 and the upper wall is located at y = h, where
h is the channel width.

The induced velocity field is governed by the unsteady diffusion equation (7.7.2), subject
to the no-slip boundary condition requiring that

ux(y = 0) = V cos(Ωt), ux(y = h) = 0 (7.8.2)

for t ≥ 0.

Thanks to the linearity of the governing equations, the flow will be periodic in time.
The velocity can be expressed in the form

ux(y, t) = V
[
fR(y) cos(Ωt) + fI(y) sin(Ωt)

]
, (7.8.3)

where fR(y) and fI(y) are two a priori unknown functions, the subscript R stands for real,
and the subscript I stands for imaginary.

Governing equations

To compute the functions fR(y) and fI(y), we substitute expression (7.8.3) into (7.7.2), carry
out the time differentiation, collect the coefficients of the sines and cosines, and then set the
compiled expressions to zero to obtain two coupled linear ordinary differential equations,

d2fR
dy2

=
Ω

ν
fI,

d2fI
dy2

= −Ω

ν
fR, (7.8.4)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid.
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Figure 7.8.1 Periodic velocity profiles of oscillatory Couette flow in a two-dimensional channel con-
fined between two parallel walls at phase angles Ωt/π = 0 (dashed lines), 0.25, 0.50 (dotted
lines), 0.75, 1.0, 1.25, 1.50, 1.75, and 2.0, and Womersley number (a) Wo = 1, (b) 3, (c) 10,
and (d) 20. In the first case, Wo = 1, the flow is nearly quasi-steady. As Wo increases, a Stokes
boundary layer is established over the oscillating lower plate.

Formulation in complex variables

To expedite the solution, we introduce the imaginary unit, i, defined such that i2 = −1, and
define the complex function

f(y) ≡ fR(y) + i fI(y). (7.8.5)

The two equations in (7.8.4) can be collected into a single complex form,

d2f

dy2
= −i

Ω

ν
f. (7.8.6)

The real and imaginary parts of the complex equation (7.8.6) are equal, respectively, to the
first and second equation in (7.8.4).
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Now using the Euler decomposition

exp(−i Ω t) = cos(Ω t)− i sin(Ω t), (7.8.7)

we find that ux is given by the real part of the complex function

w(y, t) ≡ V f(y) exp(−iΩt). (7.8.8)

The imaginary part of w(y, t) also satisfies the governing equation (7.7.2).

The solution of (7.8.6) is readily found to be

f(y) = A exp
(
y
√
−i Ω/ν

)
+B exp

(
− y
√
−i Ω/ν

)
, (7.8.9)

where A and B are two complex constants, with the understanding that

exp(
√−i) = exp(e3πi/4) = exp

(−1 + i√
2

)
. (7.8.10)

Using the Euler decomposition, we obtain

exp(
√−i) = exp

(− 1√
2

)[
cos
( 1√

2

)
+ i sin

( 1√
2

) ]
. (7.8.11)

The no-slip boundary conditions (7.8.2) require that f(0) = 1 and f(h) = 0. Using
these equations to evaluate the constants A and B, we find that

A =
exp(−h

√−iΩ/ν )

exp(−h
√

−iΩ/ν )− exp(h
√

−iΩ/ν )
=

1

1− exp(2h
√

−iΩ/ν )
(7.8.12)

and B = 1 − A. Substituting these expressions into (7.8.8) and rearranging, we derive the
targeted complex function

f(y) =
exp(y

√−iΩ/ν )− exp[(2h− y)
√−iΩ/ν ]

1− exp(2h
√

−iΩ/ν )
. (7.8.13)

The real and imaginary parts of this function provide us with the velocity according to
(7.8.3).

Stokes boundary layer

It is useful to introduce the Stokes boundary-layer thickness,

δ ≡
√

2ν

Ω
, (7.8.14)

and write

f(y) =
exp(y

√−2i/δ )− exp[(2h− y)
√−2i/δ ]

1− exp(2h
√−2i/δ )

. (7.8.15)
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In terms of the scaled position and channel width,

ŷ ≡ y/δ, ĥ ≡ h/δ, (7.8.16)

we obtain

f(y) =
exp[−(1− i)ŷ]− exp[−(1− i)(2ĥ− ŷ) ]

1− exp[−(1− i) 2ĥ ]
. (7.8.17)

The physical significance of the Stokes boundary-layer thickness will be discussed in Section
7.8.2.

Program chan 2d osc, residing in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile for a specified angular frequency and scaled temporal phase
angle, Ω t.

Womersley number

The argument of the exponential term on the right-hand side of (7.8.13) suggests that the
structure of the flow is determined by the dimensionless Womersley number

Wo ≡ 1

2
h

√
Ω

ν
=

1√
2

h

δ
, (7.8.18)

which expresses a properly scaled angular frequency. Profiles of the scaled velocity, ux/V ,
are shown in Figure 7.8.1 at a sequence of dimensionless phase angles, Ωt/π, for Wo = 1, 3,
10, and 20.

When the Womersley number is small, the flow evolves in quasi-steady fashion and the
velocity profile is almost linear with respect to y at any time, as shown in Figure 7.8.1(a). As
the Womersley number increases, the motion tends to be confined inside a boundary layer
that is attached to the oscillating wall, while the rest of the fluid is virtually stationary, as
shown in Figure 7.8.1(d).

7.8.2 Rayleigh’s oscillating plate

To investigate the behavior at high frequencies, Ω, or large channel widths, h, we consider
the structure of the flow at large values of the Womersley number. In this limit, the second
term in the numerator and the second term in the denominator on the right-hand side of
(7.8.13) become exponentially small, yielding the simplified form

f(y) 	 exp
(
y
√
−i Ω/ν

)
. (7.8.19)

Resolving the right-hand side into its real and imaginary parts, we obtain

f(y) 	 [ cos (y√Ω/(2ν)
)
+ i sin

(
y
√
Ω/(2ν)

)
] exp

(− y
√

Ω/(2ν)
)
. (7.8.20)

The associated velocity profile is

ux(y, t) = V
(
cos(Ωt) cos

(
y
√

Ω/(2ν)
)
+ sin(Ωt) sin

(
y
√

Ω/(2ν)
) )

× exp
(− y

√
Ω/(2ν)

)
. (7.8.21)
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Figure 7.8.2 Velocity profiles due to the in-plane oscillation of a plate in a semi-infinite viscous fluid
at phase angles Ωt/π = 0 (dashed line), 0.25 (dashed-dotted line), 0.50 (dotted line), 0.75, 1.0,
1.25, 1.50, 1.75, and 2.0. The y coordinate is scaled by the Stokes boundary layer thickness, δ,
defined in (7.8.14).

Combining the two terms in the tall parentheses, we obtain

ux(y, t) = V cos
(
Ωt− y

√
Ω/(2ν)

)
exp
(− y

√
Ω/(2ν)

)
. (7.8.22)

In terms of the dimensionless position, ŷ ≡ y/δ, the velocity profile is given by

ux(y, t) = V cos(Ωt− ŷ) e−ŷ, (7.8.23)

where δ is the Stokes boundary-layer thickness defined in (7.8.14).

Program plate osc, residing in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile at a specified time. A sequence of profiles corresponding to
those shown in Figure 7.8.1 is shown in Figure 7.8.2.

Stokes boundary layer

Expression (7.8.22) shows that the magnitude of the velocity decays exponentially with
respect to distance normal to the oscillating plate. The region where substantial fluid
motion occurs is identified as the Stokes boundary layer.

A rough measure of the thickness of the boundary layer is the distance where the
magnitude of the argument of the exponential term on the right-hand side of (7.8.22) is
equal to unity, which is given by the Stokes boundary-layer thickness δ defined in (7.8.14).
Apart from the factor of two in the numerator, the expression for δ could have been deduced
on the basis of dimensional analysis at the outset.
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Wall shear stress

The shear stress exerted on an oscillating plate is given by

σxy(y = 0, t) = μ
(∂u
∂y

)
y=0

= V
√
μρΩ cos(Ωt− 3π

4
). (7.8.24)

In terms of the Stokes boundary-layer thickness,

σxy(y = 0, t) =
μV

δ

√
2 cos(Ω t− 3π

4
). (7.8.25)

This expression reveals that the wall shear stress lags behind the wall velocity by the phase
angle 3π/4, independent of the angular frequency.

7.8.3 Pulsating pressure-driven flow

In the last case study, we consider pulsating flow in a channel due to an oscillatory pressure
gradient given by

∂p

∂x
= ρgx − ζ sin(Ωt), (7.8.26)

where ζ is a specified amplitude and Ω is the angular frequency of the oscillations. The
streamwise velocity component satisfies the differential equation

ρ
∂ux

∂t
= ζ sin(Ωt) + μ

∂2ux

∂y2
. (7.8.27)

The no-slip boundary condition requires that the velocity is zero at the two walls located
at y = 0 and h, ux(0) = 0 and ux(h) = 0

Working as in the case of oscillatory Couette flow, we express the velocity in the form

ux(y, t) =
ζ

ρΩ

(
fR(y) cos(Ωt) + fI(y) sin(Ωt)

)
, (7.8.28)

and introduce the complex function

f(y) = fR(y) + i fI(y), (7.8.29)

where i is the imaginary unit. The velocity ux is given by the real part of the complex
function

w(y, t) =
ζ

ρΩ
f(y) e−iΩt, (7.8.30)

satisfying the governing equation

ρ
∂w

∂t
= i ζe−iΩt + μ

∂2w

∂y2
. (7.8.31)
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In fact, the real part of this complex equation is the governing equation (7.8.27). Substi-
tuting expression (7.8.30) into (7.8.31) and simplifying, we obtain an ordinary differential
equation,

d2f

dy2
= − iΩ

ν
(f + 1). (7.8.32)

The no-slip boundary condition at the two channel walls requires that f(0) = 0 and f(h) = 0.
The solution is

f(y) =
cosh

[
(y − 1

2h)
√−iΩ/ν

]
cosh( 12h

√−iΩ/ν)
− 1. (7.8.33)

The hyperbolic cosine of a complex argument on the right-hand side can be resolved into
exponential functions by invoking the definition

cosh z ≡ 1

2
(ez + e−z). (7.8.34)

Using (7.8.11), we obtain

f(y) =
cosh

[
(−1 + i)(ŷ − 1

2 ĥ)
]

cosh
[
(−1 + i) 1

2 ĥ
] − 1, (7.8.35)

where ŷ ≡ y/δ, ĥ ≡ h/δ, and δ ≡ (2ν/Ω)1/2 is the Stokes boundary-layer thickness.

Program chan 2d wom, located in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile from the preceding expressions. A time sequence of profiles of
the scaled velocity ux/U is shown in Figure 7.8.3, where U is the centerline velocity of the
steady Hagen flow.

Low frequencies

At low frequencies, the motion is quasi-steady, which means that the velocity profile is
nearly parabolic throughout each cycle. To demonstrate this behavior, we approximate the
hyperbolic cosines in (7.8.33) with quadratic functions using the Maclaurin series expansion

f(y) =
1− i 1

2 (y − 1
2h)

2 Ω
ν + · · ·

1− i 1
8 h2 Ω

ν + · · · − 1, (7.8.36)

yielding

f(y) =
[
1− i

1

2
(y − 1

2
h)2

Ω

ν
+ · · · ][1 + i

1

8
h2 Ω

ν
+ · · · ]− 1. (7.8.37)

Carrying out the multiplication on the right-hand side and keeping only linear terms in Ω,
we obtain the approximation

f(y) = −i
1

2
(y − 1

2
h)2

Ω

ν
+ i

1

8
h2 Ω

ν
+ · · · = i

1

2
y (h− y)

Ω

ν
+ · · · . (7.8.38)
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Figure 7.8.3 Velocity profiles of pulsating pressure-driven flow in a two-dimensional channel confined
between two parallel walls at phase angles Ω t/π = 0 (dashed lines), 0.25 (dashed-dotted lines),
0.50 (dotted lines), 0.75, 1.0, 1.25, 1.50, 1.75, and 2.0, for Womersley number (a) Wo = 1/2
and (b) 3.0.

Now substituting into (7.8.28) the approximations

fR = 0, fI =
1

2
y(h− y)

Ω

ν
, (7.8.39)

we obtain the expression

ux(y, t) =
1

2

ζ

μ
sin(Ωt) y (h− y) + · · · , (7.8.40)

which describes the quasi-steady parabolic profile of the Hagen flow.

High frequencies

At high frequencies, the flow consists of a core that oscillates in a plug-flow mode, and two
Stokes boundary layers, one attached to each wall (Problem 7.8.2). One interesting feature
of the motion is that, under certain conditions, the amplitude of the velocity at the edges
of the boundary layers may exceed that in the central core.

7.8.1 Shear stress on an oscillating plate

(a) Derive expression (7.8.24).

(b) We have noted that the wall shear stress lags behind the wall velocity by the phase angle
3π/4, independent of the angular frequency, Ω. Does a similar independence arise in the
case of channel flow where the velocity profile is given by (7.8.3), (7.8.5), and (7.8.13)?

Problems
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Figure 7.9.1 Transient unidirectional flow in a circular tube of radius a due to the sudden application
of a constant pressure gradient or sudden tilting. Velocity profiles are shown at dimensionless times
νt/a2 = 0.001, 0.005, 0.010, 0.020, 0.030, . . . . The dashed parabolic line corresponds to the
Poiseuille flow established at long times; U is the corresponding centerline velocity.

7.8.2 Oscillatory channel flow at high frequencies

Show that, at high values of the Womersley number, the function f(y) defined in (7.8.33)
takes the approximate form

f(y) 	 1− exp(y
√

−iΩ/ν)− exp
[
(h− y)

√
−iΩ/ν

]
. (7.8.41)

This expression confirms the development of a plug-flow core and two Stokes boundary
layers, one attached to each wall.

7.9 Transient and oscillatory flow in a circular tube

Our study of transient and oscillatory channel flow in Sections 7.7 and 7.8 has revealed
the physical mechanisms by which momentum is transmitted and vorticity diffuses away
from planar boundaries in an unsteady flow. In this section, we consider corresponding
mechanisms for curved boundaries by studying the structure of unsteady unidirectional and
swirling tube flows.

7.9.1 Transient Poiseuille flow

Consider transient unidirectional flow through a cylindrical tube of radius a due to the
sudden application of a pressure gradient or tilting, as illustrated in Figure 7.9.1. The
motion of the fluid will be described in cylindrical polar coordinates, (x, σ, ϕ), where the x
axis coincides with the tube centerline.
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The radial and azimuthal velocity components are identically zero, uσ = 0 and uϕ = 0,
while the axial component is a function of distance from the x axis and time, ux(σ, t).
The no-slip boundary condition requires that the velocity vanishes at the tube surface at
any time, ux(σ = a, t) = 0. At the initial instant, the fluid is assumed to be quiescent,
ux(σ, t = 0) = 0.

Governing equations

The pressure field is given by equation (7.3.1),

p = −χx+ ρ (gyy + gzz) + π0, (7.9.1)

with a constant axial pressure gradient, ∂p/∂x = −χ. Simplifying the x component of the
equation of motion written in cylindrical polar coordinates, we obtain a partial differential
equation for the axial velocity,

ρ
∂ux

∂t
= χ+ μ

( ∂2ux

∂σ2
+

1

σ

∂ux

∂σ

)
+ ρgx. (7.9.2)

When the flow reaches a steady state, the velocity profile assumes the parabolic distribution
described by the Poiseuille solution given in (7.3.8),

usteady
x (σ) =

1

4

χ+ ρgx
μ

(a2 − σ2). (7.9.3)

To compute the solution of (7.9.2), we resolve the velocity profile into the steady
Poiseuille profile and a transient profile that decays at long times, vx(σ, t),

ux(σ, t) = usteady
x (σ) + vx(σ, t). (7.9.4)

Substituting (7.9.4) into (7.9.2), we find that the transient profile satisfies a homogeneous
partial differential equation,

∂vx
∂t

= ν
( ∂2vx
∂σ2

+
1

σ

∂vx
∂σ

)
, (7.9.5)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid.

Separation of variables

Equation (7.9.5) can be solved by separation of variables implemented by the expansion

vx(σ, t) =

∞∑
n=1

cn φn(σ)ψn(t), (7.9.6)

where φn(σ) and ψn(t) are a priori unknown functions of their respective arguments, and
cn are constant coefficients. Substituting this expansion into (7.9.5), carrying out the dif-
ferentiations, and rearranging, we obtain

∞∑
n=1

cn φn(σ)ψn(t)
( 1

ψn

dψn

dt
− ν

φn
(
d2φn

dσ2
+

1

σ

dφn

dσ
)
)
= 0. (7.9.7)



7.9 Transient and oscillatory flow in a circular tube 511

For this equality to hold true at any position, σ, and time, t, the expression enclosed by the
tall parentheses on the right-hand side must be identically zero, yielding

1

ψn

dψn

dt
=

ν

φn
(
d2φn

dσ2
+

1

σ

dφn

dσ
) = −ν b2n, (7.9.8)

where b2n is a positive constant to be determined as part of the solution. The right-hand
side of (7.9.8) was designed to facilitate forthcoming algebraic manipulations.

Rearranging the two equalities in (7.9.8), we derive two ordinary differential equations,

dψn

dt
= −ν b2n ψn (7.9.9)

and

d2φn

dσ2
+

1

σ

dφn

dσ
+ b2nφn = 0. (7.9.10)

The solution of (7.9.9) is readily found to be

ψn(t) = exp(−b2n νt), (7.9.11)

which reveals that the transient flow decays exponentially in time.

Bessel functions

To derive the solution of (7.9.10), we introduce the Bessel function of the first kind, J0(z),
satisfying the zeroth-order Bessel equation

z
d

dz

(
z
dJ0(z)

dz

)
+ z2 J0(z) = z2

d2J0(z)

dz2
+ z

dJ0(z)

dz
+ z2 J0(z) = 0. (7.9.12)

A graph of J0(z) is shown with the solid line in Figure 7.9.2. The frequent occurrence of the
Bessel functions in various branches of mathematical physics has motivated their tabulation
and representation in terms of infinite series and algebraic approximations.

Program bess J0, located in directory 99 spec fnc inside directory 01 num meth of
Fdlib, not listed in the text, evaluates the Bessel function J0 using an accurate algebraic
approximation.

Now replacing z in Bessel’s equation (7.9.12) with bnσ and simplifying, we find that the
function

φn(σ) = J0(bnσ) (7.9.13)

satisfies equation (7.9.10), and is thus the desired solution. To satisfy the no-slip boundary
condition, we require that

φn(a) = J0(bna) = 0, (7.9.14)
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Figure 7.9.2 Graphs of the Bessel functions J0(z) and J1(z) drawn with the solid or broken line,
respectively, necessary for the computation of transient tube flow.

which shows that bna is a zero of J0(z), denoted by αn. The first seven zeros are

α1 = 2.4048, α2 = 5.5201, α3 = 8.6537, α4 = 11.7915,

α5 = 14.9309, α6 = 18.0711, α7 = 21.2116, (7.9.15)

to shown accuracy. Accordingly, we set

bn =
αn

a
. (7.9.16)

Substituting (7.9.16) into (7.9.13) and (7.9.11), and the result into (7.9.6), we derive the
expansion

vx(σ, t) =
∞∑

n=1

cn J0(αn
σ

a
) exp(−α2

n

νt

a2
). (7.9.17)

This representation clearly satisfies the requirement that the transient flow decays to zero
at long times.

To also satisfy the initial condition, ux(σ, t = 0) = 0, we evaluate the decomposition
(7.9.4) at t = 0 and use (7.9.3) and (7.9.17) to obtain

∞∑
n=1

cn J0(
αn σ

a
) = − 1

4

χ+ ρgx
μ

(a2 − σ2). (7.9.18)

The coefficients cn must be such that this representation holds true for any value of σ. In
fact, the left-hand side is the Bessel series representation of the quadratic function on the
right-hand side.
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Orthogonality of the zeroth-order Bessel functions

To extract the coefficients cn from (7.9.18), we use the following orthogonality property of
the Bessel functions,∫ 1

0

z J0(αnz) J0(αmz) dz =

{
1
2 J

2
1(αn) if n = m,
0 if n 
= m,

(7.9.19)

where J1(z) is the Bessel function of the first kind. By definition, J1(z) satisfies the differ-
ential equation

z2
d2J1(z)

dz2
+ z

dJ1(z)

dz
+ (z2 − 1) J1(z) = 0, (7.9.20)

and is required to be finite for any value of z between, and including, zero and infinity. A
graph of J1(z) is shown with the dashed line in Figure 7.9.2.

Replacing z in identity (7.9.19) with σ/a, and rearranging, we obtain∫ a

0

σ J0(αn
σ

a
) J0(αm

σ

a
) dσ =

{
1
2 a

2J21(αn) if n = m,
0 if n 
= m.

(7.9.21)

Inspired by this identity, we multiply both sides of (7.9.18) by σ J0(αmσ/a), integrate with
respect to σ from 0 to a, use the orthogonality property (7.9.21), and then switch m to n
to obtain

cn = − 1

2

χ+ ρgx
μa2

1

J21(αn)

∫ a

0

J0(
αn σ

a
) (a2 − σ2)σ dσ, (7.9.22)

which can be rearranged into

cn = − 1

2

χ+ ρgx
μa2

1

J21(αn)

∫ 1

0

J0(αn v) (1− v2) v dv, (7.9.23)

where v ≡ σ/a. To compute the last integral, we replace z in Bessel’s equation (7.9.12) with
αnv, and simplify to obtain

α2
n v J0(αn v) = − d

dv

(
v
dJ0(αnv)

dv

)
. (7.9.24)

Note that the left- and thus the right-hand side of (7.9.24) vanishes when v = 0 or 1.
Integrating (7.9.24) with respect to v from 0 to 1, we obtain

α2
n

∫ 1

0

J0(αn v) v dv = −
[
v
dJ0(αnv)

dv
)
]
v=1

+
[
v
dJ0(αnv)

dv
)
]
v=0

. (7.9.25)

Now using the identity dJ0(z)/dz = −J1(z), we obtain∫ 1

0

J0(αn v) v dv =
1

αn
J1(αn). (7.9.26)
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A similar computation yields

α2
n

∫ 1

0

J0(αn v) v
3 dv = −

∫ 1

0

v2
d

dv
(v

dJ0(αnv)

dv
) dv

= −(v3
dJ0(αnv)

dv
)v=1 + (v3

dJ0(αnv)

dv
)v=0 + 2

∫ 1

0

v2
dJ0(αnv)

dv
dv (7.9.27)

= αnJ1(αn) + 2
[
v2 J0(αnv)

]
v=1

− 2
[
v2 J0(αnv)

]
v=0

− 4

∫ 1

0

v J0(αnv) dv

= (αn − 4

αn
) J1(αn).

Substituting (7.9.26) and (7.9.27) into (7.9.23), we obtain the desired result,

cn = − 1

J1(αn)

2

α3
n

χ+ ρgx
μ

a2. (7.9.28)

Finally, we substitute (7.9.28) into (7.9.17) and then into (7.9.4), and thereby derive the
velocity profile

ux(σ, t) =
1

4

χ+ ρgx
μ

(
a2 − σ2 − 8 a2

∞∑
n=1

1

α3
n

J0(αn σ/a)

J1(αn)
exp(−α2

n

ν t

a2
)
)
. (7.9.29)

Program tube crc trans, located in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity described by (7.9.29). A sequence of profiles evolving toward the
parabolic profile established at steady state is illustrated in Figure 7.9.1.

7.9.2 Pulsating pressure-driven flow

Next, we consider pulsating flow inside a circular tube of radius a due to an oscillatory
pressure gradient, as illustrated in Figure 7.9.3. The axial pressure gradient is given by

∂p

∂x
= ρgx − ζ sin(Ωt), (7.9.30)

where ζ is the amplitude of the pressure gradient and Ω is the angular frequency of the
oscillations. The streamwise velocity component satisfies the differential equation

ρ
∂ux

∂t
= ζ sin(Ωt) + μ

( ∂2ux

∂σ2
+

1

σ

∂ux

∂σ

)
. (7.9.31)

The no-slip boundary condition requires that the velocity is zero at the tube surface, that
is, ux(σ = a) = 0.

Working as in Section 7.8.3 for pulsating channel flow, we express the velocity in the
form

ux(σ, t) =
ζ

ρΩ

[
fR(σ) cos(Ωt) + fI(σ) sin(Ωt)

]
(7.9.32)
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Figure 7.9.3 Velocity profiles of oscillatory pressure-driven flow in a circular tube at phase angles
Ωt/π = 0 (dashed lines), 0.25 (dash-dotted lines), 0.50 (dotted lines), 0.75, 1.0, 1.25, 1.50, 1.75,
and 2.0, for Womersley number (a) Wo = 1 and (b) 6.

and introduce the complex function

f(σ) ≡ fR(σ) + i fI(σ), (7.9.33)

where i is the imaginary unit, i2 = −1. The velocity ux is given by the real part of the
complex function

w(σ, t) =
ζ

ρΩ
f(y) e−iΩt, (7.9.34)

satisfying the governing equation

ρ
∂w

∂t
= i ζe−iΩt + μ

( ∂2w

∂σ2
+

1

σ

∂w

∂σ

)
. (7.9.35)

The real part of this complex equation is the real equation (7.9.31).

Substituting expression (7.9.34) into (7.9.35), and simplifying, we obtain an ordinary
differential equation,

d2f

dσ2
+

1

σ

df

dσ
= − iΩ

ν
(f + 1). (7.9.36)

The no-slip boundary condition at the wall requires that f(a) = 0. The solution is

f(σ) =
J∗0(σ

√
−iΩ/ν)

J∗0(a
√−iΩ/ν)

− 1, (7.9.37)

where J0(z) a Bessel function of the first kind and an asterisk denotes the complex conjugate.
If β is a real positive number, then

J0(β
√−i) = J0(β e3πi/4) = ber0(β) + i bei0(β), (7.9.38)
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Figure 7.9.4 Graphs of the Kelvin functions ber0(z) and bei0(z) plotted, respectively, with the solid
and broken line, arising in the computation of pulsating tube flow.

where ber0, beii are the zeroth-order Kelvin functions displayed in Figure 7.9.4. In terms
of these functions,

f(σ) =
ber0(σ

√
Ω/ν)− i bei0(σ

√
Ω/ν)

ber0(a
√

Ω/ν)− i bei0(a
√
Ω/ν)

− 1. (7.9.39)

Program ber bei 0, located in directory 99 spec fnc inside directory 01 num meth of
Fdlib, not listed in the text, evaluates the Kelvin functions using algebraic approximations.

In terms of the Stokes boundary-layer thickness, δ = (2ν/Ω)1/2, the velocity profile can
be expressed in the compact form

ux(σ, t) =
ζ

ρΩ
Real

{( J∗0[−(1− i) σ̂]

J∗0[−(1− i) â]
− 1
)
exp(−iΩt)

}
, (7.9.40)

where σ̂ = σ/δ is the scaled radial position and â = a/δ.

Small frequencies

For small values of their arguments, the Kelvin functions behave as

ber0(β) = 1− 1

64
β4 + · · · , bei0(β) =

1

4
β2 − 1

2304
β6 + · · · , (7.9.41)

yielding

f(σ) 	 1− 1
4 iσ

2Ω/ν

1− 1
4 i a

2Ω/ν
− 1 	 (1− i

1

4
σ2Ω

ν

)(
1 + i

1

4
a2

Ω

ν

)− 1 (7.9.42)
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and then

f(σ) 	 i
1

4
(a2 − σ2)

Ω

ν
. (7.9.43)

Substituting fR = 0 and fI = 1
4 (a

2 − σ2) Ω
ν into (7.9.32), we recover the quasi-steady

parabolic profile of Hagen–Poiseuille flow,

ux(σ, t) =
ζ

4μ
sin(Ωt) (a2 − σ2) + · · · . (7.9.44)

Womersley number

The functional form of the arguments of the Bessel functions on the right-hand side of
(7.9.37) suggests that the structure of the flow is determined by a scaled angular frequency
expressed by the Womersley number

Wo ≡ a

√
Ω

ν
, (7.9.45)

which is the counterpart of the Womersley number for channel flow defined in (7.8.18).

Program tube crc wom, located in directory 04 various of Fdlib, not listed in the text,
evaluates the velocity profile using the expressions derived in this section. Profiles at two
frequencies are shown in Figure 7.9.3.

At low frequencies, the flow is nearly quasi-steady, which means that velocity profile is
nearly parabolic. At high frequencies, the flow consists of a central core that oscillates in
a plug-flow mode and a Stokes boundary layer attached to the cylindrical wall. As in the
case of channel flow, the amplitude of the velocity at the edge of the boundary layer may
exceed that in the central core.

7.9.3 Transient circular Couette flow

The azimuthal velocity component of an unsteady swirling flow with circular streamlines,
uϕ, satisfies a linear partial differential equation,

∂uϕ

∂t
= ν

( ∂2uϕ

∂σ2
+

1

σ

∂uϕ

∂σ
− uϕ

σ2

)
, (7.9.46)

where ν ≡ μ/ρ is the kinematic viscosity of the fluid.

Consider transient flow inside a hollow circular cylinder with inner radius a that is filled
with a fluid. At the origin of time, the cylinder starts rotating suddenly around its axis with
constant angular velocity, Ω. Working as in the case of axial flow, we derive the transient
velocity profile

uϕ(σ, t) = Ω
(
σ + 2 a

∞∑
n=1

1

αn

J1(αnσ/a)

J0(αn)
exp(−α2

n

ν t

a2
)
)
, (7.9.47)
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where αn are the positive zeros of the first-order Bessel function, J1. At long times, the
summed terms on the right-hand side of (7.9.47) vanish, leaving behind a velocity profile
that expresses rigid-body rotation.

Program tube crc sw trans, located in directory 04 various of Fdlib, not listed in the
text, evaluates the velocity profile described by equation (7.9.47).

7.9.4 Orthogonality of Bessel functions

We have seen that Bessel functions are encountered in the computation of flow in an ax-
isymmetric domain. In concluding this section, we state an orthogonality property that is
useful in evaluating the coefficients of Bessel expansions; an example is shown in (7.9.16).

By definition, the pth-order Bessel function of the first kind, Jp(z), satisfies the Bessel
equation

z
d

dz

(
z
dJp(z)

dz

)
+ (z2 − p2) Jp(z) = 0, (7.9.48)

and is required to be finite at every value of z between, and including, zero and infinity.
Expanding the derivative, we find that the Bessel equation can be restated as

z2
d2Jp(z)

dz2
+ z

dJp(z)

dz
+ (z2 − p2) Jp(z) = 0. (7.9.49)

The particular cases p = 0 and 1 are shown in equations (7.9.12) and (7.9.20).

The orthogonality property of the Bessel functions states that, if αn and αm are two
zeros of Jp(z), then

2

∫ 1

0

z Jp(αnz) Jp(αmz) dz =

{
J2p+1(αn) = J2p−1(αn) = J

′2

p (αn) if n = m,
0 if n 
= m.

(7.9.50)

The orthogonality property of the Bessel functions is analogous to the Fourier orthogonality
property of trigonometric functions, as shown, for example, in equations (7.5.49).

7.9.1 Pulsating pressure-driven flow

Derive the velocity profile described by equations (7.9.32)–(7.9.37).

7.9.2 Transient circular Couette flow

Derive the velocity profile given in equation (7.9.47).

Problems
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7.9.3 Transient swirling flow

Consider transient flow outside a circular cylinder of radius a immersed in an infinite liquid.
At the origin of time, the cylinder starts rotating suddenly around its axis with constant
angular velocity, Ω. Derive the transient velocity profile.

7.9.4 Transient circular Couette flow

Compute and plot profiles of the transient circular Couette flow at a sequence of times.
Discuss the effect of truncation of the infinite sum on the right-hand side of (7.9.47).



Finite-difference methods 8
8.1 Choice of governing equations
8.2 Unidirectional flow; velocity/pressure formulation
8.3 Unidirectional flow; velocity/vorticity formulation
8.4 Unidirectional flow; stream function/vorticity formulation
8.5 Two-dimensional flow; stream function/vorticity formulation
8.6 Velocity/pressure formulation
8.7 Operator splitting and solenoidal projection
8.8 Staggered grids

In previous chapters, we have discussed the equations governing the structure of a steady
flow and the evolution of an unsteady flow, and derived selected solutions for elementary flow
configurations by analytical and simple numerical methods. To generate solutions for arbi-
trary flow conditions and boundary geometries, it is necessary to develop general-purpose
numerical methods. In this chapter, we discuss the choice of governing equations whose
solution is to be found, and the implementation of finite-difference methods for incompress-
ible Newtonian flow. The discourse will reveal a set of conceptual and practical challenges
encountered in the broader context of computational fluid dynamics (CFD).

8.1 Choice of governing equations

General-purpose methods for computing the flow of an incompressible Newtonian fluid can
be classified into two categories distinguished by the choice of governing equations.

In the first class of methods, the flow is described in terms of primary variables, including
the velocity and the pressure. The structure of the velocity and pressure fields in a steady
flow, and the evolution of the velocity and pressure fields in an unsteady flow are computed
by solving the Navier–Stokes equation and the continuity equation, subject to appropriate
boundary conditions, initial conditions, and possibly supplemental constraints.

In the second class of methods, the flow is computed based on the vorticity transport
equation. The numerical procedure involves two stages: first, the structure or evolution
of the vorticity field is computed based on the vorticity transport equation discussed in
Section 6.6; second, the simultaneous structure or evolution of the velocity field is obtained

521© Springer Science + Business Media LLC 2017  
C. Pozrikidis, Fluid Dynamics, DOI 10.1007/978-1-4899-7991-9_8
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by inverting the equation defining the vorticity as the curl of the velocity,

ω = ∇× u, (8.1.1)

subject to constraints imposed by the continuity equation and boundary conditions. Invert-
ing (8.1.1) involves solving for u in terms of ω. Descendant methods are distinguished by the
particular procedure used to recover the velocity field from a specified vorticity distribution.

The strengths and weaknesses of the aforementioned two classes of methods will become
apparent as we describe their implementation. One appealing feature of the second class
of methods based on the vorticity transport equation is the lack of need to solve for the
pressure. Bypassing the computation of the pressure is desirable when boundary conditions
for the pressure are not directly available but must be derived from the governing equations.
Disadvantages include the need to derive boundary conditions for the vorticity.

8.1.1 Inversion of the vorticity

Show that, if u is a solenoidal velocity field corresponding to a certain vorticity field ω, that
is, ∇ · u = 0, then the velocity field

v = u+∇f (8.1.2)

corresponds to the same vorticity field, where f is an arbitrary smooth scalar function.
Explain why, for the velocity field v to remain solenoidal, ∇ · v = 0, the function f must
be harmonic, that is, it must satisfy Laplace’s equation, ∇2f = 0.

8.2 Unidirectional flow; velocity/pressure formulation

We begin developing finite-difference methods by discussing the velocity/pressure formula-
tion for unidirectional flow in a channel confined between two parallel walls located at y = 0
and y = h, as illustrated in Figure 8.2.1. The lower and upper walls translate parallel to
themselves along the x axis with generally time-dependent velocities, V1(t) and V2(t).

In practice, channel flow occurs under two complementary conditions reflecting the
physical mechanism driving the flow, as follows:

• In the first case, the flow rate along the channel Q(t) is prescribed and the streamwise
pressure gradient ∂p(t)/∂x is computed as part of the solution.

• In the second case, the pressure gradient is specified, and the flow rate is computed
as part of the solution.

In this section and in Section 8.3 we consider the case of flow driven to a specified and
possibly time-dependent pressure gradient. In Section 8.4, we consider the complementary
case of flow subject to a specified flow rate.

Problem
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Figure 8.2.1 A one-dimensional finite-difference grid is used to compute the velocity profile in uni-
directional channel flow.

8.2.1 Governing equations

To set up the mathematical formulation, we consider the x component of the equation of
motion. In the case of unidirectional flow, we obtain the simplified form

∂ux

∂t
= −1

ρ

∂p

∂x
+ ν

∂2ux

∂y2
+ gx, (8.2.1)

where ρ is the fluid density, ν is the kinematic viscosity, and gx is the x component of the
acceleration of gravity. The partial differential equation (8.2.1) is to be solved subject to a
specified initial condition and to the possibly time-dependent velocity boundary conditions

ux(y = 0) = V1(t), ux(y = h) = V2(t), (8.2.2)

enforcing no-slip at the walls.

8.2.2 Explicit finite-difference method

To implement the finite-difference method, we divide the cross-section of the channel ex-
tending over 0 ≤ y ≤ h into N intervals defined by N + 1 grid points, as shown in Figure
8.2.1. For convenience, the x component of the velocity at the i grid point is denoted as

ui(t) ≡ ux(yi, t). (8.2.3)

Next, we evaluate both sides of (8.2.1) at the ith interior grid point at time t for
i = 2, . . . , N , and approximate the time derivative on the left-hand side with a first-order
forward finite difference and the second derivative on the right-hand side with a second-order
centered finite difference. The result is a finite-difference equation (FDE),

ui(t+Δt)− ui(t)

Δt
= −1

ρ

∂p

∂x
(t) + ν

ui−1(t)− 2ui(t) + ui+1(t)

Δy2
+ gx. (8.2.4)
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Solving for ui(t+Δt) on the left-hand side, we obtain

ui(t+Δt) = αui−1(t) + (1− 2α)ui(t) + αui+1(t) + Δt
(− 1

ρ

∂p

∂x
(t) + gx

)
(8.2.5)

for i = 2, . . . , N . We have introduced the dimensionless ratio

α ≡ νΔt

Δy2
, (8.2.6)

called the numerical diffusion number.

Equation (8.2.5) allows us to update the velocity at the interior grid points explicitly,
starting from the specified initial condition, subject to the prescribed boundary conditions

u1(t) = V1(t), uN+1(t) = V2(t). (8.2.7)

The following MATLAB code entitled channel ftcs, located in directory channel inside di-
rectory 11 fdm of Fdlib, performs the animation of the evolving velocity profile:

%----

% parameters

%----

h = 1.0;

mu = 0.6; rho = 0.5;

N = 32;

dpdx = -2.0; gx = 0.4;

V1 = 0.0; V2 = 0.0;

al = 0.51; % alpha

nstep = 20000; % number of steps

%---

% prepare

%---

nu = mu/rho; % kinematic viscosity

Dy = h/N;

Dt = al*Dy*Dy/nu;

%---

% grid and initial condition

%---

for i=1:N+1

y(i) = (i-1)*Dy;

u(i) = 0;

end

u(1) = V1;

u(N+1) = V2;
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t = 0.0;

%---

% time stepping

%---

for step=1:nstep

t = t + Dt;

unew(1) = V1;

for i=2:N

unew(i) = al*u(i-1) + (1-2*al)*u(i) + al*u(i+1) ...

+ Dt*(-dpdx/rho+gx);

end

unew(N+1) = V2;

u = unew;

if(step==1)

Handle1 = plot(u,y,'o-');

set(Handle1, 'erasemode', 'xor');

set(gca,'fontsize',15)

axis([0 0.5 0 h])

xlabel('u','fontsize',15)

ylabel('y','fontsize',15)

else

set(Handle1,'XData',u,'YData',y);

pause(0.02)

drawnow

end

end % of time stepping

Evolving profiles are shown in Figure 8.2.2 for two values of the dimensionless numerical
parameter α.

Numerical stability

Numerical experimentation reveals, and theoretical analysis confirms, that the explicit
method of updating the velocity based on equation (8.2.5) is free of oscillations only when
the time step, Δt, is small enough so that the dimensionless numerical diffusion number
α defined in (8.2.6) is less than 1

2 .
1 For larger time steps, the velocity profile develops

unphysical growing numerical oscillations unrelated to the physics of the motion, as illus-
trated in Figure 8.2.2(b) for α = 0.51. We say that the explicit finite-difference method is
conditionally stable.

1Pozrikidis, C. (2008) Numerical Computation in Science and Engineering. Second Edition, Oxford
University Press.
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Figure 8.2.2 Evolving profiles of unidirectional flow in a channel computed by an explicit finite-
difference method for numerical diffusion number (a) α = 0.40 and (b) 0.51. The scary oscillations
in the second case are a manifestation of numerical instability.

8.2.3 Implicit finite-difference method

To avoid the restriction on the time step for numerical stability, we implement an implicit
finite-difference method. Evaluating equation (8.2.1) at the ith interior grid point at time
t + Δt for i = 2, . . . , N , and then approximating the time derivative on the left-hand side
with a first-order backward finite difference and the second derivative on the right-hand side
with a second-order centered finite difference, we obtain the difference equation

ui(t+Δt)− ui(t)

Δt
= −1

ρ

∂p

∂x
(t+Δt)

+ν
ui+1(t+Δt)− 2ui(t+Δt) + ui−1(t+Δt)

Δy2
+ gx. (8.2.8)
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Rearranging, we obtain

−αui−1(t+Δt) + (1 + 2α)ui(t+Δt)− αui+1(t+Δt)

= ui(t)− Δt

ρ

∂p

∂x
(t+Δt) + Δt gx, (8.2.9)

where α is the numerical diffusion number defined in (8.2.6), α ≡ νΔt/Δy2.

Equation (8.2.9) allows us to compute the velocity at the interior grid points at the
time level t + Δt in an implicit fashion, which means that we solve simultaneously for all
unknown grid values, subject to the prescribed boundary conditions ,

u1(t+Δt) = V1(t+Δt), uN+1(t+Δt) = V2(t+Δt). (8.2.10)

To formalize the implicit solution algorithm, we write equation (8.2.9) for i = 2, . . . , N and
enforce the boundary conditions to obtain a system of N−1 linear equations for the velocity
at the N − 1 interior grid points at time t+Δt,

A · u(t+Δt) = u(t) + b. (8.2.11)

We have introduced the tridiagonal coefficient matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 + 2α −α 0 · · · 0 0 0
−α 1 + 2α −α · · · 0 0 0
0 −α 1 + 2α · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 + 2α −α 0
0 0 0 · · · −α 1 + 2α −α
0 0 0 · · · 0 −α 1 + 2α

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.2.12)

the vector of unknown velocities

u(t+Δt) =

⎡⎢⎢⎢⎢⎢⎣
u2(t+Δt)
u3(t+Δt)

...
uN−1(t+Δt)

uN (t+Δt)

⎤⎥⎥⎥⎥⎥⎦ , (8.2.13)

and the known vectors

u(t) =

⎡⎢⎢⎢⎢⎢⎣
u2(t)
u3(t)

...
uN−1(t)

uN (t)

⎤⎥⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎢⎣

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx + αV1(t+Δt)

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx

...

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx

−Δt
ρ

∂p
∂x (t+Δt) + Δt gx + αV2(t+Δt)

⎤⎥⎥⎥⎥⎥⎥⎦ . (8.2.14)
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The numerical method involves solving the linear system (8.2.11) at the current time
instant, t, to obtain the velocity profile at the next time instant, t +Δt, beginning from a
specified initial state. The tridiagonal structure of the matrix A displayed in (8.2.12) allows
us to compute the solution efficiently using the legendary Thomas algorithm discussed in
Section 8.2.4.

Finite-difference code

The following MATLAB code entitled channel btcs, located in directory channel inside di-
rectory 11 fdm of Fdlib, performs the time integration using the implicit method starting
from a specified initial velocity profile:

%-----

% parameters

%-----

h = 1.0; mu = 0.6; rho = 0.5; N = 32; dpdx = -2.0;

gx = 0.4;

V1 = 0.1; V2 = -0.5;

alpha = 0.40; % alpha

nstep = 20000; % number of steps

nu = mu/rho;

Dy = h/N

Dt = alpha*Dy*Dy/nu;

%---

% grid and initial condition

%---

for i=1:N+1

y(i) = (i-1)*Dy;

u(i) = 0.0;

end

u(1) = V1;

u(N+1) = V2;

%---

% formulate the tridiagonal projection matrix

% atr is the diagonal line of the coefficient matrix

% btr is the superdiagonal line of the coefficient matrix

% ctr is the subdiagonal line of the coefficient matrix

%---

for i=1:N-1

atr(i) = 1.0 + 2*alpha;

btr(i) = -alpha;

ctr(i) = -alpha;

end
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%---

% time stepping

%---

t=0.0;

for step=1:nstep

for i=1:N-1 % right-hand side

s(i) = u(i+1) + Dt*(-dpdx/rho+gx);

end

t = t + Dt;

u(1) = V1;

u(N+1) = V2;

s(1) = s(1) + alpha*u(1);

s(N-1) = s(N-1) + alpha*u(N+1);

sol = thomas(N-1,atr,btr,ctr,s);

for i=2:N

u(i) = sol(i-1);

end

if(step==1)

Handle1 = plot(u,y,'o-');

set(Handle1, 'erasemode', 'xor');

set(gca,'fontsize',15)

axis([min(V1,V2) max(V1,V2)+2.0 0 h])

xlabel('u','fontsize',15)

ylabel('y','fontsize',15)

else

set(Handle1,'XData',u,'YData',y);

pause(0.2)

drawnow

end

end % of time stepping

The code calls the function thomas discussed in Section 8.2.4 to solve a tridiagonal system
of equations.

Numerical stability

Numerical experimentation reveals, and theoretical analysis confirms, that the implicit
method of updating the velocity based on equation (8.2.11) is free of numerical oscilla-
tions irrespective of the size of the time step, Δt. Accordingly, the implicit finite-difference
method is an unconditionally stable and thus highly desirable method.
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8.2.4 Thomas algorithm

To formalize Thomas’ algorithm in general terms, we consider a linear system ofK equations
in K unknowns,

D · x = s, (8.2.15)

for an unknown vector, x, where s is a given vector. The K ×K coefficient matrix, D, is
assumed to have the tridiagonal form

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 0 · · · 0 0 0
c2 a2 b2 · · · 0 0 0
0 c3 a3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · aK−2 bK−2 0
0 0 0 · · · cK−1 aK−1 bK−1

0 0 0 · · · 0 cK aK

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.2.16)

Note that only the diagonal, superdiagonal, and subdiagonal elements of D are nonzero.
Thomas’s algorithm proceeds in two stages.

In the first stage, the tridiagonal system (8.2.15) is transformed into an upper bidiagonal
system,

D′ · x = y, (8.2.17)

involving an upper bidiagonal coefficient matrix with ones along the diagonal,

D′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 d1 0 · · · 0 0 0
0 1 d2 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 1 dK−2 0
0 0 0 · · · 0 1 dK−1

0 0 0 · · · 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.2.18)

where y is an intermediate solution vector.

In the second stage, the upper bidiagonal system (8.2.17) is solved by backward substi-
tution, which involves solving the last equation for the last unknown, xK = yK , and then
moving upward to compute the rest of the unknowns in a sequential fashion.

The combined algorithm, shown in Table 8.2.1, is implemented in the following MAT-

LAB function:
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Reduction to bidiagonal :[
d1
y1

]
=

1

a1

[
b1
s1

]
Do i = 1,K − 1[

di+1

yi+1

]
=

1

ai+1 − ci+1di

[
bi+1

si+1 − ci+1yi

]
End Do

Backward substitution :

xK = yK

Do i = K − 1, 1 (step = −1)

xi = yi − di xi+1

End Do

Table 8.2.1 Thomas algorithm for solving a system ofK linear equations with a tridiagonal coefficient
matrix.

function x = thomas (n,a,b,c,s)

%==================================================

% Thomas algorithm for a tridiagonal system

%

% n: system size

% a,b,c: diagonal, superdiagonal,

% and subdiagonal elements

% s: right-hand side

%==================================================

%------------------------------

% reduction to upper bidiagonal

%------------------------------

d(1) = b(1)/a(1);

y(1) = s(1)/a(1);

for i=1:n-2

i1 = i+1;

den = a(i1)-c(i1)*d(i);

d(i1) = b(i1)/den;

y(i1) = (s(i1)-c(i1)*y(i))/den;
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end

den = a(n)-c(n)*d(n-1);

y(n) = (rhs(n)-c(n)*y(n-1))/den;

%------------------

% back substitution

%------------------

x(n) = y(n);

for i=n-1:-1:1

x(i) = y(i)-d(i)*x(i+1);

end

%-----

% done

%-----

return;

In fact, the Thomas algorithm is a special implementation of the inclusive method of
Gauss elimination discussed in Section 3.4.1 for a general system of linear equations. The
key idea is to bypass idle multiplications by zeros.

8.2.5 Steady state

To obtain the velocity profile of channel flow at steady state, we return to equation (8.2.11)
and set

u(t+Δt) = u(t) = u (8.2.19)

to obtain

(A− I) · u = b, (8.2.20)

where I is the unit matrix. Dividing the individual equations encapsulated in (8.2.20) by α,
we obtain the simpler form

C · u = d, (8.2.21)

involving the tridiagonal coefficient matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (8.2.22)
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Figure 8.2.2 Illustration of a composite finite-difference grid with phantom nodes on either side
an interface used to compute the velocity profile of unidirectional two-fluid channel flow. The
interface is located at y = h1.

the vector of unknown velocities at steady state

u =

⎡⎢⎢⎢⎢⎢⎣
u2

u3

...
uN−1

uN

⎤⎥⎥⎥⎥⎥⎦ , (8.2.23)

and the known vector

d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
μ

∂p
∂x + Δy2

ν gx + V1

− 1
μ

∂p
∂x + Δx2

ν gx
...

− 1
μ

∂p
∂x + Δy2

ν gx

− 1
μ

∂p
∂x + Δy2

ν gx + V2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (8.2.24)

To compute the velocity profile at steady state, we simply solve the system of linear algebraic
equations (8.2.21) using a numerical method.

8.2.6 Two-layer flow

Next, we consider the flow of two superimposed layers in a channel, as illustrated in Figure
8.2.2. The lower layer is labeled 1 and the upper layer is labeled 2. The fluids are separated
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by a flat interface located at y = h1, where h1 < h is the lower-layer thickness and h is the
channel width. The upper-layer thickness is h2 = h− h1.

Interfacial conditions

At the interface, we require three conditions: continuity of velocity, continuity of shear
stress, and continuity of normal stress. To satisfy the third condition, we require that the
streamwise pressure gradient, ∂p/∂x, is the same inside both layers. Continuity of velocity
at the interface requires that

u(1)
x (y = h1) = u(2)

x (y = h1) (8.2.25)

and continuity of shear stress requires that

μ1

(∂u(1)
x

∂y

)
y=h1

= μ2

(∂u(2)
x

∂y

)
y=h1

. (8.2.26)

where u
(1)
x is the lower-layer velocity and u

(2)
x is the upper-layer velocity. Using the equation

of motion (8.2.1), we find that, if (8.2.25) is true at the initial instant, it will also be true
at any time provided that

− 1

ρ1

∂p

∂x
+ ν1

(∂2u
(1)
x

∂y2

)
y=h1

= − 1

ρ2

∂p

∂x
+ ν2

( ∂2u
(2)
x

∂y2

)
y=h1

, (8.2.27)

where the second partial derivative are evaluated at the interface.

Finite-difference implementation

We begin developing the finite-difference method by dividing the lower layer into N1 evenly

spaced intervals defined by N1+1 grid points, y
(1)
i for i = 1, . . . , N1+1, and the upper layer

into N2 evenly spaced intervals defined by N2 + 1 grid points, y
(2)
i for i = 1, . . . , N2 + 1, as

shown in Figure 8.2.2.

For reasons that will become apparent, we also extend the domain of definition of each
layer into the adjacent layer by one artificial grid point labeled N1 + 2 for the lower layer
or 0 for the upper layer.

To simplify the notation, we denote

u
(1)
i ≡ u(1)

x (y
(1)
i ), u

(2)
i ≡ u(2)

x (y
(2)
i ). (8.2.28)

Approximating the derivatives in (8.2.26) and (8.2.27) with centered finite differences, we

derive two equations relating the values of the velocity at the extended nodes, u
(1)
N1+2 and

u
(2)
0 ,

μ1

u
(1)
N1+2 − u

(1)
N1

2Δy1
= μ2

u
(2)
2 − u

(2)
0

2Δy2
(8.2.29)
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and

− 1

ρ1

∂p

∂x
+ ν1

u
(1)
N1+2 − 2u

(1)
N1+1 + u

(1)
N1

Δy21
= − 1

ρ2

∂p

∂x
+ ν2

u
(2)
2 − 2 u

(2)
1 + u

(2)
0

Δy22
, (8.2.30)

where Δy1 ≡ h1/N1 and Δy2 ≡ h2/N2 are the grid spacings. Setting u
(1)
N1+1 = u

(2)
1 and

introducing the ratios

λ ≡ μ2

μ1
, δ ≡ ρ2

ρ1
, γ ≡ ν2

ν1
=

λ

δ
, β ≡ Δy2

Δy1
, (8.2.31)

we recast equations (8.2.29) and (8.2.30) into a system of two linear equations for the velocity
at the extended nodes,

β u
(1)
N1+2 + λu

(2)
0 = β u

(1)
N1

+ λu
(2)
2 (8.2.32)

and

β2 u
(1)
N1+2 − γ u

(2)
0 = 2 (β2 − γ) u

(1)
N1+1 − β2u

(1)
N1

+ γ u
(2)
2 +

Δy22
μ1

(1− 1

δ
)
∂p

∂x
. (8.2.33)

In matrix notation,

⎡⎣ β λ

−β2 γ

⎤⎦ ·

⎡⎢⎣ u
(1)
N1+2

u
(2)
0

⎤⎥⎦ =

⎡⎢⎢⎣
β u

(1)
N1

+ λ u
(2)
2 ,

−2 (β2 − γ)u
(1)
N1+1 + β2u

(1)
N1

− γu
(2)
2 − Δy22

μ1
(1− 1

δ
)
∂p

∂x

⎤⎥⎥⎦ .
(8.2.34)

Solving for the velocity at the lower extended node, we find that

u
(1)
N1+2 = a1 u

(1)
N1

+ a2 u
(1)
N1+1 + a3 u

(2)
2 + a4

∂p

∂x
, (8.2.35)

where

a1 =
γ − βλ

γ + βλ
, a2 = 2λ

β2 − γ

β(γ + βλ)
,

(8.2.36)

a3 =
2 γλ

β(γ + βλ)
, a4 =

λ

β(γ + βλ)

Δy22
μ1

(
1− 1

δ

)
are four constants.

When the physical properties of the layers are matched, λ = γ = δ = 1, and the

lower and upper grid sizes are equal, β = 1, then u
(1)
N1+2 = u

(2)
2 by equation (8.2.35), and

u
(2)
0 = u

(1)
N1

by equation (8.2.32), as required.



536 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Explicit time integration

Working as in the case of single-fluid flow, we derive the explicit finite-difference equation

u
(1)
i (t+Δt) = α1 u

(1)
i+1(t) + (1− 2α1)u

(1)
i (t) + α1 u

(1)
i−1(t)−Δt

(− 1

ρ1

∂p

∂x
(t) + gx

)
(8.2.37)

for the lower layer, and a corresponding equation for the upper layer,

u
(2)
i (t+Δt) = α2 u

(2)
i+1(t) + (1− 2α2)u

(2)
i (t) + α2 u

(2)
i−1(t)−Δt

(− 1

ρ2

∂p

∂x
(t) + gx

)
,

(8.2.38)

where
α1 ≡ ν1Δt

Δy21
, α2 ≡ ν2Δt

Δy22
(8.2.39)

are the numerical diffusion numbers for the lower and upper layer. The numerical procedure
involves the following steps:

1. Initialize the nodal velocities.

2. Compute the velocity at the lower extended node, u
(1)
N1+2, from equation (8.2.35).

3. Use equation (8.2.38) to update the velocity at the grid points in the lower layer for
i = 2, . . . , N1 + 1.

4. Set u
(2)
1 = u

(1)
N1+1.

5. Use equation (8.2.39) to update the velocity at the internal grid nodes in the upper
layer for i = 2, . . . , N2.

6. Use the boundary conditions to update the velocity at the lower and upper walls.

7. Return to Step 2 and repeat the computation for another step.

The method is implemented in the following MATLAB code entitled two layers, located
in directory channel inside directory 11 fdm of Fdlib, performing the animation of the
developing velocity profile:

%---

% parameters

%---

h = 1.0; h1 = 0.25;

N1 = 4; N2 = 32;

mu1 = 1.0; mu2 = 2.0;

rho1 = 1.5; rho2 = 1.0;

dpdx = -1.0; gx = 0.2;
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alpha = 0.4;

%---

% prepare

%---

h2 = h-h1;

Dy1 = h1/N1;

Dy2 = h2/N2;

lambda = mu2/mu1;

delta = rho2/rho1;

gamma = lambda/delta;

beta = Dy2/Dy1;

tmp = gamma+beta*lambda;

a1 = (gamma-beta*lambda)/tmp;

a2 = 2*lambda*(beta*beta-gamma)/(beta*tmp);

a3 = 2*gamma*lambda/(beta*tmp);

a4 = lambda*Dy2*Dy2*(1-1/delta)/(beta*mu1*tmp);

Dt1 = rho1*alpha*Dy1*Dy1/mu1;

Dt2 = rho2*alpha*Dy2*Dy2/mu2;

Dt = min(Dt1,Dt2)

al1 = Dt*mu1/(Dy1*Dy1*rho1);

al2 = Dt*mu2/(Dy2*Dy2*rho2);

%---

% initialize and define the grid

%---

for i=1:N1+1

u1(i) = 0.0;

y1(i) = (i-1)*Dy1;

end

for i=1:N2+1

u2(i) = 0.0;

y2(i) = (i-1)*Dy2+h1;

end

%---

% time stepping

%---

for step=1:1000
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u1(N1+2) = a1*u1(N1)+a2*u1(N1+1)+a3*u2(2)+a4*dpdx;

unew1(1) = V1;

for i=2:N1+1

unew1(i) = al1*u1(i+1)+(1-2*al1)*u1(i)+al1*u1(i-1)...

+Dt*(-dpdx/rho1+gx);

end

unew2(1) = unew1(N1+1);

for i=2:N2

unew2(i) = al2*u2(i+1)+(1-2*al2)*u2(i)+al2*u2(i-1)...

+Dt*(-dpdx/rho2+gx);

end

unew2(N2+1) = V2;

u1 = unew1; u2 = unew2;

%---

% animation

%---

if(step==1)

handle1 = plot(u1,y1,'o-',u2,y2,'o-');

set(gca,'fontsize',15)

axis([0 0.1 0 h])

xlabel('u','fontsize',15)

ylabel('y','fontsize',15)

else

set(handle1,'XData',[u1, u2],'YData',[y1, y2],'Marker','o')

drawnow

pause(0.01)

end

%---

end % of time stepping

%---

Snapshots of an evolving profile are shown in Figure 8.2.3 for two values of α defined as the
minimum of α1 and α2.

8.2.1 Steady state

Derive the system (8.2.20) departing from the explicit finite-difference formula (8.2.4).

Problems
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Figure 8.2.3 Evolving profiles of two-layer flow in a channel, computed by an explicit finite difference
method for (a) α = 0.4 and (b) 0.52, where α is the minimum of α1 and α2. A numerical instability
arises in the second case.

8.2.2 Two-layer channel flow

Derive a system of finite-difference equations governing the velocity profile of a two-layer
channel flow at steady state.

8.2.3 Flow in a circular tube

Develop an explicit finite-difference method based on the velocity/pressure formulation for
computing the velocity profile developing inside a tube with circular cross-section due to a
suddenly imposed constant pressure gradient.

8.2.4 Thomas algorithm

Use the MATLAB function thomas listed in the text to solve a system of equations of your
choice. Verify the accuracy of the solution by confirming that it satisfies the tested system
of equations.

8.2.5 Single-fluid channel flow

(a) Write a code that computes the evolution of the velocity profile in a channel with
stationary walls due to a sinusoidal pressure gradient based on the explicit finite-difference
method discussed in the text. Run the program for fluid properties and flow conditions of
your choice, and for several time step sizes, Δt, corresponding to numerical diffusion number
α that is larger and lower than 0.5. Discuss the performance of the numerical method.

(b) Repeat (a) for the implicit finite-difference method discussed in the text.

8.2.6 Two-layer channel flow

Develop an implicit finite-difference method for computing the evolution of a two-layer flow.
Implement the method in a program that computes the evolution of the velocity profile in a
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channel with stationary walls due to the sudden application of a constant pressure gradient.
Run the program for fluid properties and flow conditions of your choice and for several time
step sizes. Discuss the performance of the numerical method.

8.3 Unidirectional flow; velocity/vorticity formulation

The vorticity transport equation for unsteady unidirectional flow along the x axis reduces
to the unsteady diffusion equation for the z component of the vorticity, ωz,

∂ωz

∂t
= ν

∂2ωz

∂y2
, (8.3.1)

where ν is the kinematic viscosity of the fluid. Invoking the definition of the vorticity,
ω = ∇× u, we find that

ωz = −∂ux

∂y
. (8.3.2)

Integrating equation (8.3.2) with respect to y from the lower wall up to an arbitrary point,
we obtain an integral representation for the velocity in terms of the vorticity,

ux(y) = V1 −
∫ y

0

ωz(y
′) dy′. (8.3.3)

Without loss of generality, we have chosen to satisfy the boundary condition at the lower
wall located at y = 0, requiring that ux(0) = V1. It remains to ensure that the no-slip
boundary condition is also satisfied at the upper wall.

The numerical method involves computing the evolution of the vorticity profile from
a specified initial state using (8.3.1), while simultaneously recovering the evolution of the
velocity field based on equation (8.3.2) or its integrated version shown in (8.3.3). Since the
velocity does not appear in equation (8.3.1), the two steps are decoupled.

8.3.1 Boundary conditions for the vorticity

Because the unsteady diffusion equation (8.3.1) is a second-order differential equation with
respect to y, two boundary conditions for the vorticity are required, one at each end of the
solution domain located at y = 0 and h. The boundary conditions must be such that the
integral constraint ∫ h

0

ωz(η) dη = V1 − V2 (8.3.4)

is satisfied so that the right-hand side of (8.3.3) is consistent with the upper-wall no-slip
boundary condition ux(y = h) = V2, and either the flow rate through the channel has a
prescribed value, Q(t), or the streamwise pressure gradient has a prescribed value ∂p(t)/∂x.
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Concentrating on flow subject to a specified pressure gradient, we recast the x compo-
nent of the equation of motion for unidirectional flow,

∂ux

∂t
= −1

ρ

∂p

∂x
+ ν

∂2ux

∂y2
+ gx, (8.3.5)

into the form

∂ux

∂t
= −1

ρ

∂p

∂x
− ν

∂ωz

∂y
+ gx. (8.3.6)

Evaluating (8.3.6) at the lower and upper walls and rearranging, we obtain boundary con-
ditions for the slope of the vorticity,( ∂ωz

∂y

)
y=0

= −1

ν

dV1

dt
− 1

μ

∂p

∂x
+

1

ν
gx (8.3.7)

and ( ∂ωz

∂y

)
y=h

= −1

ν

dV2

dt
− 1

μ

∂p

∂x
+

1

ν
gx. (8.3.8)

These equations provide us with Neumann boundary conditions at either end of the solution
domain.

Special attention must be paid to the case of impulsive motion. If a wall is set in motion
suddenly in an impulsive fashion with the velocity changing from one value to another over
an infinitesimal period of time, the corresponding time derivative on the right-hand side
of one or both of equations (8.3.7) and (8.3.8) develops an infinite spike described by the
Dirac delta function discussed in Chapter 11. This singular behavior is too demanding to
be handled by the numerical method.

Next, we investigate whether the vorticity boundary conditions (8.3.7) and (8.3.8) ensure
the satisfaction of the integral constraint (8.3.4), which is necessary for the satisfaction of
the no-slip boundary condition at the upper wall. Integrating (8.3.1) with respect to y
across the channel height, from 0 to h, interchanging the order of the integration and time
differentiation on the left-hand side, and using (8.3.7) to simplify the right-hand side, we
obtain

d

dt

∫ h

0

ωz(y
′) dy′ =

d

dt
(V1 − V2). (8.3.9)

Time-integration of (8.3.9) reproduces (8.3.4) up to a time-independent constant determined
by the initial state. Thus, if (8.3.4) is satisfied at the initial instant, it will also be satisfied
at any subsequent time.

8.3.2 Alternative set of equations

In an alternative approach, we take the derivative of (8.3.2) with respect to y to derive the
second-order equation,

∂2ux

∂y2
= −∂ωz

∂y
≡ −q, (8.3.10)
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where q ≡ ∂ωz/∂y is the slope of the vorticity. To compute the velocity, we integrate the
second-order equation (8.3.10) with respect to y using the velocity boundary conditions
ux(y = 0) = V1 and ux(y = h) = V2.

The important benefit stemming from using (8.3.10) instead of (8.3.2), is that, in order
to compute the velocity, the slope of the vorticity q, instead of the vorticity itself, is required.
An evolution equation for q arises by differentiating both sides of (8.3.1) with respect to y,
finding that

∂q

∂t
= ν

∂2q

∂y2
. (8.3.11)

Boundary conditions are provided by equations (8.3.7) and (8.3.8).

In summary, the numerical procedure involves integrating in time equation (8.3.11)
from an initial state subject to the derived boundary conditions (8.3.7) and (8.3.8), while
simultaneously computing the velocity profile by solving the second-order equation (8.3.10)
subject to the velocity boundary conditions, ux(y = 0) = V1 and ux(y = h) = V2.

Explicit finite-difference method

To implement a finite-difference method, we divide the flow domain 0 ≤ y ≤ h into N
intervals separated by N + 1 grid points, as shown in Figure 8.2.1, and evaluate equation
(8.3.11) at time t at the interior nodes for i = 2, . . . , N .

Approximating the time derivative on the left-hand side with a first-order finite dif-
ference and the y derivative on the left-hand side with a second-order finite difference, we
obtain

qi(t+Δt)− qi(t)

Δt
= ν

qi−1(t)− 2 qi(t) + qi+1(t)

Δy2
, (8.3.12)

where we have defined

qi ≡ q(yi). (8.3.13)

Solving for qi(t+Δt) on the left-hand side, we obtain

qi(t+Δt) = α qi−1(t) + (1− 2α) qi(t) + α qi+1(t), (8.3.14)

where α ≡ ν Δt/Δy2 is the numerical diffusion number. Equation (8.3.14) allows us to
update explicitly the values of q at the grid points subject to boundary conditions for q1
and qN+1 given by the right-hand sides of equations (8.3.7) and (8.3.8).

The centered-difference discretization of equation (8.3.10) leads us to the linear system
(8.2.21), where the coefficient matrix C is given in (8.2.22) and the constant vector on the
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right-hand side is given by

d =

⎡⎢⎢⎢⎢⎢⎣
Δy2 q2 + V1

Δy2 q3
...
Δy2 qN−1

Δy2 qN + V2

⎤⎥⎥⎥⎥⎥⎦ . (8.3.15)

The linear system can be solved efficiently using the Thomas algorithm.

8.3.3 Comparison with the velocity/pressure formulation

Comparing the velocity/vorticity formulation with the velocity/pressure formulation dis-
cussed in Section 8.2, we find that the latter is significantly simpler in conception and
implementation. While this is undoubtedly true in the case of unidirectional flow presently
considered, the vorticity–velocity formulation is more competitive in the more general case
of two- and three-dimensional flow.

8.3.1 Steady flow

Discuss the implementation of the velocity/vorticity formulation for steady channel flow due
to a specified pressure gradient.

8.3.2 Two-layer flow

Develop a velocity/vorticity formulation for two-layer channel flow discussed in Section 8.2.

8.3.3 Flow in a circular tube

Develop an explicit method based on the velocity/vorticity formulation for computing the
velocity profile developing inside a circular tube due to a suddenly imposed constant pressure
gradient.

8.3.4 Explicit finite-difference method

Write a code that computes the evolution of the velocity profile in a channel with stationary
walls due to the sudden application of a constant pressure gradient based on the explicit
finite-difference method discussed in the text. Run the program for fluid properties and flow
conditions of your choice and several time step sizes corresponding to numerical diffusion
number α that is higher or lower than the critical threshold, 0.5. Discuss the performance
of the numerical method.

8.4 Unidirectional flow; stream function/vorticity formulation

In Sections 8.2 and 8.3, we discussed methods of computing the evolution of the velocity
profile in channel flow subject to a specified pressure gradient. In this section, we consider

Problems
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the complementary case of flow subject to a specified flow rate and develop a numerical
method based on the velocity/vorticity formulation.

For reasons that will become apparent, we introduce the stream function, ψ, satisfying
the equation

ux =
∂ψ

∂y
. (8.4.1)

In the case of unidirectional flow, ux, and thus ψ, is a function of position, y, and time, t.
The flow rate across a line that begins and ends at two parallel planes located at y = y1
and y2 is equal to the difference in the corresponding values of the stream function, Q12 =
ψ(y2)−ψ(y1). The flow rate through the entire channel height is Q = ψ(y = h)−ψ(y = 0).

Using equation (8.3.2), we find that the nonzero vorticity component is related to the
stream function by the equation

ωz = −∂2ψ

∂y2
. (8.4.2)

The numerical method involves computing the evolution of the vorticity profile from a
specified initial state using the vorticity transport equation (8.3.1), while simultaneously
recovering the evolution of the stream function using the one-dimensional Poisson equation
(8.4.2). Since the differential equations (8.3.1) and (8.4.2) are of second order with respect
to y, two boundary conditions for the vorticity and two boundary conditions for the stream
function are required, one at each end of the solution domain, y = 0 and h.

Since adding an arbitrary constant to the stream function does not affect the velocity,
the base level of the stream function can be specified at will. Accordingly, we may stipulate
that ψ(y = 0) = 0, finding

ψ(y = h) = Q(t). (8.4.3)

It is now evident that, by introducing the stream function, we have facilitated the imple-
mentation of the condition on the flow rate.

8.4.1 Boundary conditions for the vorticity

The boundary conditions for the vorticity must involve the specified wall velocities, V1 and
V2, by way of the no-slip boundary condition. To illustrate the implementation of this
condition, we divide the flow domain, 0 ≤ y ≤ h, into N intervals defined by N + 1 grid
points, as shown in Figure 8.2.1, and evaluate (8.4.2) at time t at the boundary nodes
corresponding to i = 1 and N + 1. To simplify the notation, we denote

ωi ≡ ωz(yi), ψi ≡ ψ(yi). (8.4.4)

Approximating the y derivative on the right-hand side with a combination of finite differ-
ences, we obtain

ω1 = −
(
∂ψ

∂y
) 1

2 (y1+y2) − (
∂ψ

∂y
)y1

1
2 Δy

= −2

ψ2 − ψ1

Δy
− V1

Δy
(8.4.5)
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or

ω1 = 2
ψ1 − ψ2

Δy2
+ 2

V1

Δy
, (8.4.6)

and

ωN+1 = −
(
∂ψ

∂y
)yN+1

− (
∂ψ

∂y
) 1

2 (yN+yN+1)

1
2 Δy

= −2

V2 − ψN+1 − ψN

Δy

Δy
(8.4.7)

or

ωN+1 = 2
ψN+1 − ψN

Δy2
− 2

V2

Δy
. (8.4.8)

It is somewhat distressing to realize that the no-slip condition is implemented indirectly
in terms of the vorticity. Specifically, it is not clear that solving (8.4.2) for the stream
function and subsequently differentiating it to recover the velocity generates a velocity profile
that is consistent with the prescribed boundary velocity. However, a thorough analysis of the
numerical method reveals that this is the case indeed, except under unusual circumstances
associated with singular boundary conditions involving discontinuous functions.

8.4.2 A semi-implicit method

Proceeding with the finite-difference implementation, we apply equation (8.3.1) at the inte-
rior nodes corresponding to i = 2, . . . , N at time t. Approximating the time derivative on
the left-hand side with a first-order finite difference and the y derivative on the right-hand
side with a second-order second finite difference, we obtain

ωi(t+Δt)− ωi(t)

Δt
= ν

ωi−1(t)− 2ωi(t) + ωi+1(t)

Δy2
. (8.4.9)

Solving for ωi(t+Δt), we obtain

ωi(t+Δt) = αωi+1(t) + (1− 2α)ωi(t) + αωi−1(t), (8.4.10)

where α ≡ νΔt/Δy2 is the numerical diffusion number. Equation (8.4.10) allows us to
explicitly update the values of the vorticity at the interior grid points, subject to boundary
conditions for ω1 and ωN+1 given by the right-hand sides of (8.4.6) and (8.4.8); the stream
function at time t is assumed to be known.

The implicit discretization of equation (8.4.2) leads us to a linear system,

C ·ψ(t+Δt) = d(t+Δt), (8.4.11)

where the coefficient matrix C is given in (8.2.22), the vector ψ is defined as

ψ =

⎡⎢⎢⎢⎢⎢⎣
ψ2

ψ3

...
ψN−1

ψN

⎤⎥⎥⎥⎥⎥⎦ , (8.4.12)
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and the vector on the right-hand side of (8.4.11) is given by

d =

⎡⎢⎢⎢⎢⎢⎣
Δy2 ω2

Δy2 ω3

...
Δy2 ωN−1

Δy2 ωN +Q

⎤⎥⎥⎥⎥⎥⎦ . (8.4.13)

The system (8.4.11) can be solved efficiently using the Thomas algorithm.

The numerical method involves the following steps:

1. Assign initial values to the stream function and vorticity at all nodes.

2. Compute the vorticity at the boundary nodes using equations (8.4.6) and (8.4.8).

3. Update the vorticity at the internal nodes using equation (8.4.10).

4. Update the stream function at the interior nodes by solving the linear system (8.4.11)
for a known right-hand side.

5. Return to Step 2 and repeat the calculation for another step.

The velocity profile arises by numerically differentiating the stream function with respect
to y.

8.4.1 Steady flow

Develop a finite-difference method based on the stream function/vorticity formulation for
computing the velocity profile of steady channel flow subject to a specified flow rate.

8.4.2 Two-layer flow

Develop a finite-difference method based on the stream function/vorticity formulation for
unsteady two-layer channel flow discussed in Section 8.2.

8.4.3 Flow inside a circular tube

Develop a finite-difference method based on the stream function/vorticity formulation for
computing the velocity profile developing inside a circular tube, subject to a specified flow
rate.

8.4.4 Explicit finite-difference method

Write a code that computes the evolution of the velocity profile in a channel with stationary
walls using an explicit finite-difference method. The flow rate increases gradually toward a
steady value according to the equation

Q(t) = Q0

(
1− exp(−β

νt

h2
)
)
, (8.4.14)

Problems
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where Q0 is the constant flow rate prevailing of long times, a and β is a dimensionless
constant. Run the program for fluid properties and flow conditions of your choice and for
several sizes of the time step corresponding to α higher or lower than 0.5. Discuss the
performance of the numerical method.

8.5 Two-dimensional flow; stream function/vorticity formulation

Having discussed finite-difference methods for unidirectional flow, now we turn our atten-
tion to the more general case of two-dimensional flow where further issues concerning the
satisfaction of the continuity equation and choice of boundary conditions are encountered.
In this section we discuss the stream function/vorticity formulation as an extension of the
corresponding formulation for unidirectional flow discussed in Section 8.4.

Hello world

Texts on computer language programming introduce elementary programming procedures
traditionally by explaining the structure of a program entitled world, which prints the impor-
tant message Hello World. Texts on computational fluid dynamics (CFD) explain numerical
methods by discussing the prototypical example of flow in a two-dimensional cavity driven
by a moving lid, known as the driven-cavity flow. We will follow this time-honored tradition.

8.5.1 Flow in a cavity

Consider flow in a cavity driven by a lid that translates parallel to itself with a generally
time-dependent velocity, V (t), as illustrated in Figure 8.5.1.

We begin developing the stream function/vorticity formulation by introducing the stream
function, ψ, defined from the differential relations

ux =
∂ψ

∂y
, uy = −∂ψ

∂x
, (8.5.1)

where ux and uy are the x and y velocity components. The no-penetration boundary
condition requires that the component of the velocity normal to each of the four walls is
zero. In terms of the stream function,

ψ = 0 over all walls, (8.5.2)

so that the tangential derivative of the stream function, which is equal to the normal com-
ponent of the velocity, is also zero. The zero on the right-hand side of (8.5.2) could have
been replaced by an arbitrary constant without consequences on the numerical solution or
physical structure of the flow.

The no-slip boundary condition requires that the tangential component of the velocity
is zero at the bottom, left, and right walls, and equal to V (t) at the upper wall. In terms of
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Figure 8.5.1 Illustration of a finite-difference grid used to compute flow in a cavity driven by a sliding
lid.

the stream function,

∂ψ

∂y
= 0 at the bottom,

∂ψ

∂x
= 0 at the sides,

(8.5.3)

∂ψ

∂y
= V (t) at the top.

Enforcing the boundary conditions for the velocity, we derive simplified expressions for
the boundary values of the only non-vanishing vorticity component in terms of the stream
function,

ωz ≡ −∂ux

∂y
+

∂uy

∂x
. (8.5.4)

For example, recalling that uy = 0, and thus ∂uy/∂x = 0, over the bottom wall, we find
that

ωz = −∂ux

∂y
= −∂2ψ

∂y2
. (8.5.5)

Working in this fashion, we find that

ωz = −∂2ψ

∂y2
at the top and bottom (8.5.6)

and

ωz = −∂2ψ

∂x2
at the sides, (8.5.7)
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which are simplified versions of the more general expression for the vorticity in terms of the
stream function,

ωz = −∂2ψ

∂x2
− ∂2ψ

∂y2
. (8.5.8)

8.5.2 Finite-difference grid

To prepare the ground for the implementation of the finite-difference method, we cover the
rectangular solution domain with a uniform two-dimensional Cartesian grid consisting of
Nx + 1 uniformly spaced vertical lines and Ny + 1 uniformly spaced horizontal lines, as
shown in Figure 8.5.1. Parallel grid lines are separated by intervals Δx or Δy, defining the
grid size.

The intersections of grid lines define grid points or nodes labeled by a pair of integers,
(i, j) for i = 1, . . . , Nx+1 and j = 1, . . . , Ny +1. The vertical side walls correspond to i = 1
and Nx + 1, and the bottom and top walls correspond to j = 1 and Ny + 1.

The goal of the finite-difference method is to generate values of flow variables of interest
at the grid points. To simplify the notation, we denote

ωi,j ≡ ωz(xi, yj), ψi,j ≡ ψ(xi, yj). (8.5.9)

Similar notation is used for other variables.

8.5.3 Unsteady flow

Following the general protocol of methods based on the vorticity transport equation, we
compute the evolution of the flow by advancing the vorticity field using the vorticity trans-
port equation for two-dimensional flow written in the form of an evolution equation for the
vorticity,

∂ωz

∂t
= −ux

∂ωz

∂x
− uy

∂ωz

∂y
+ ν (

∂2ωz

∂x2
+

∂2ωz

∂y2
), (8.5.10)

subject to appropriate derived boundary conditions for the vorticity, while simultaneously
following the evolution of the stream function by solving the Poisson equation

∇2ψ ≡ ∂2ψ

∂x2
+

∂2ψ

∂y2
= −ωz, (8.5.11)

subject to specified boundary conditions for the stream function.

A simple method for computing the evolution of the flow when the lid starts translating
suddenly involves the following steps:

1. At the initial instant, we set the stream function and velocity at all interior and
boundary grid nodes to zero. Then we set the x component of the velocity at the grid
nodes along the lid equal to V (t = 0).
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2. At the second step, we differentiate the velocity to obtain the vorticity using the
definition ωz ≡ −∂ux/∂y + ∂uy/∂x.

For the interior grid points, we use centered differences to obtain

ωi,j = − (ux)i,j+1 − (ux)i,j−1

2Δy
+

(uy)i+1,j − (uy)i−1,j

2Δx
. (8.5.12)

For the top wall, we use backward differences to obtain

ωi,Ny+1 	 −
( ∂ux

∂y
,
)
i,Ny+1

	 −3V + 4 (ux)i,Ny
− (ux)i,Ny−1

2Δy
, (8.5.13)

involving values at interior grid points.

For the rest of the walls, we use forward or backward differences to obtain

ωi,1 	 −(
∂ux

∂y
)i,1 	 −4 (ux)i,2 + (ux)i,3

2Δy
(8.5.14)

for the bottom wall,

ω1,j 	 (
∂uy

∂x
)1,j 	 4 (uy)2,j − (uy)3,j

2Δx
(8.5.15)

for the left wall, and

ωNx+1,j 	 (
∂uy

∂x
)Nx+1,j 	 −4 (uy)Nx,j + (uy)Nx−1,j

2Δx
(8.5.16)

for the right wall.

3. Now we integrate in time equation (8.5.10) to obtain the vorticity at the interior grid
points at time t+Δt. Using a fully explicit method, we set

ωi,j(t+Δt) = ωi,j(t) +G(i,j)(t), (8.5.17)

where G(i,j)(t) is the right-hand side of (8.5.10) evaluated at the (i, j) grid point at
time t.

To evaluate G(i,j)(t), we approximate the first spatial derivatives and the Laplacian
of the vorticity using centered differences. For example, the Laplacian of the vorticity
can be approximated with the finite-difference formula shown in equation (3.3.15),
written for ωz.

4. Next, we solve the Poisson equation (8.5.11) for the stream function, subject to the
boundary condition ψ = 0, using a slightly generalized version of the finite-difference
method for Laplace’s equation discussed in Section 3.3.
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Approximating the second derivatives with centered differences, we obtain the coun-
terpart of equation (3.3.16),

ψi+1,j − 2 (1 + β)ψi,j + ψi−1,j + β ψi,j+1 + β ψi,j−1 = −Δx2 ωi,j , (8.5.18)

where β ≡ (Δx/Δy)2.

5. Finally, we differentiate the stream function to compute the velocity components at
time t+Δt at the interior grid points.

Having completed one time step, we return to Step 2 and repeat the computation for another
time step.

8.5.4 Steady flow

To compute the steady flow, we follow a somewhat different approach. In this case, the
left-hand side of (8.5.10) vanishes, yielding a differential relation between the velocity and
the vorticity. Solving for the Laplacian of the vorticity, we obtain a Poisson equation for
the vorticity forced by the a priori unknown source function on the right-hand side,

∂2ωz

∂x2
+

∂2ωz

∂y2
=

1

ν

(
ux

∂ωz

∂x
+ uy

∂ωz

∂y

)
. (8.5.19)

Computing the flow in terms of the stream function and vorticity involves simultaneously
solving equations (8.5.11) and (8.5.19) according to the following steps:

1. Guess the distribution of the stream function and associated vorticity distribution.

2. Solve the Poisson equation (8.5.11) for the stream function, ψ

∇2ψ ≡ ∂2ψ

∂x2
+

∂2ψ

∂y2
= −ωz, (8.5.20)

subject to the no-penetration boundary condition, ψ = 0.

3. Compute the right-hand side of (8.5.19).

4. Derive boundary conditions for the vorticity using the stream function obtained in
Step 2.

5. Solve the Poisson equation (8.5.19) for the vorticity.

6. Check whether the vorticity computed in Step 5 agrees with that assigned in Step 1
within a specified tolerance. If not, we replace the latter by the former, return to Step
2, and repeat the calculations for another cycle.

Implementation

The method is implemented according to the following steps:
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Step 1

Assign values to the stream function at all (Nx + 1) × (Ny + 1) interior and boundary
grid nodes and to the vorticity at all Nx ×Ny interior grid nodes. A simple choice is to set
them all equal to zero.

Step 2

Solve the Poisson equation (8.5.11), subject to the boundary condition ψ = 0, using an
iterative method. To perform the iterations, we approximate the second derivatives with
centered differences and obtain equation (8.5.18), which we express in the form

Ri,j ≡ ψi+1,j − 2 (1 + β)ψi,j + ψi−1,j + βψi,j+1 + βψi,j−1 +Δx2 ωi,j = 0, (8.5.21)

where Ri,j is a residual. The iterative method involves computing a time-like sequence of
grid values parametrized by an index, 
, using the formula

ψ
(
+1)
i,j = ψ

(
)
i,j +

�

2 (1 + β)
R(
)

i,j (8.5.22)

for l = 1, 2, . . . , where � is a specified relaxation factor used to control the iterations.

Step 3

Compute the vorticity at the boundary grid nodes taking into consideration the velocity
boundary conditions.

Considering grid nodes at the lid, we expand the stream function in a Taylor series with
respect to y about a top grid node. Evaluating the expansion at the grid node immediately
below, we obtain

ψi,Ny
	 ψi,Ny+1 −Δy

( ∂ψ

∂y

)
i,Ny+1

+
1

2
Δy2

( ∂2ψ

∂y2

)
i,Ny+1

. (8.5.23)

Setting ( ∂ψ

∂y

)
i,Ny+1

= V, ωi,Ny+1 = −( ∂2ψ

∂y2

)
i,Ny+1

, (8.5.24)

as discussed in the paragraph following equation (8.5.3), and solving for ωi,Ny+1, we obtain

ωi,Ny+1 = 2
ψi,Ny+1 − ψi,Ny

Δy2
− 2

V

Δy
. (8.5.25)

Working in a similar fashion, we derive corresponding expressions for the bottom, left, and
right walls,

ωi,1 = 2
ψi,1 − ψi,2

Δy2
, ω1,j = 2

ψ1,j − ψ2,j

Δy2
, (8.5.26)
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and

ωNx+1,j = 2
ψNx+1,j − ψNx,j

Δy2
. (8.5.27)

More accurate expressions can be derived using higher-order expansions.

Step 4

Differentiate the stream function to generate the velocity at the interior grid nodes, subject
to the no-penetration condition, ψ = 0.

Step 5

Differentiate the vorticity to obtain the x and y derivatives at the interior grid points,
subject to boundary values computed in Step 3.

Step 6

Compute the right-hand side of (8.5.19) at the interior grid nodes.

Step 7

Solve equation (8.5.19) by iteration, as discussed in Step 2. The counterparts of equations
(8.5.21) and (8.5.22) are

Ri,j ≡ ωi+1,j − 2 (1 + β)ωi,j + ωi−1,j + β ωi,j+1 + β ωi,j−1 −Δx2 Ni,j = 0 (8.5.28)

and

ω
(
+1)
i,j = ω

(
)
i,j +

�

2 (1 + β)
R(
)

i,j , (8.5.29)

where Ni,j is the right-hand side of (8.5.19) evaluated at the (i, j) grid point, and � is a
relaxation factor.

The method is implemented in the following MATLAB code entitled cvt sv, located in
directory 11 fdm of Fdlib:

%============

% code cvt sv

%============

%-----

% parameters

%-----

Vlid = 1.0; % lid velocity

Lx = 2.0; Ly = 1.0; % cavity dimensions
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Nx = 32; Ny = 16; % grid size

visc = 0.01; % viscosity

rho = 1.0; % density

relax = 0.5; % relaxation parameter

Niteri = 5; % number of inner iterations

Niterg = 100; % number of global iterations

vort init = 0.0; % initial vorticity

%-------

% prepare

%--------

Dx = Lx/Nx; Dy = Ly/Ny;

Dx2 = 2.0*Dx; Dy2 = 2.0*Dy;

Dxs = Dx*Dx;

Dys = Dy*Dy;

beta = Dxs/Dys; beta1 = 2.0*(1.0+beta);

nu = visc/rho; % kinematic viscosity

%-----------------------------------------

% generate the grid

% initialize stream function and vorticity

%-----------------------------------------

for i=1:Nx+1

for j=1:Ny+1

x(i,j) = (i-1.0)*Dx;

y(i,j) = (j-1.0)*Dy;

psi(i,j) = 0.0; % stream function

vort(i,j) = -vort init;

end

end

%------------------

% global iterations

%------------------

for iter=1:Niterg

save = vort;

%---------------------------------------

% Jacobi updating of the stream function

% at the interior nodes

%---------------------------------------

for iteri=1:Niteri

for j=2:Ny

for i=2:Nx
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res = (psi(i+1,j)+psi(i-1,j)+ beta*psi(i,j+1) ...

+beta*psi(i,j-1)+Dxs*vort(i,j))/beta1-psi(i,j);

psi(i,j) = psi(i,j) + relax*res;

end

end

end

%-------------------------------------

% Compute the vorticity at boundary grid points

% using the velocity boundary conditions

% (lower-order boundary conditions are commented out)

%-------------------------------------

%---

% top and bottom walls

%---

for i=2:Nx

% vort(i,1) = 2.0*(psi(i,1)-psi(i,2))/Dys;

% vort(i,Ny+1) = 2.0*(psi(i,Ny+1)-psi(i,Ny))/Dys-2.0*Vlid/Dys;

vort(i,1) = (7.0*psi(i,1)-8.0*psi(i,2)+psi(i,3))/(2.0*Dys);

vort(i,Ny+1) = (7.0*psi(i,Ny+1)-8.0*psi(i,Ny) ...

+psi(i,Ny-1))/(2.0*Dys)-3.0*Vlid/Dy;

end

%---

% left and right walls

%---

for j=2:Ny

% vort(1,j) = 2.0*(psi(1,j)-psi(2,j) )/Dxs;

% vort(Nx+1,j) = 2.0*(psi(Nx+1,j)-psi(Nx,j))/Dxs;

vort(1,j) = (7.0*psi(1,j)-8.0*psi(2,j)+psi(3,j))/(2.0*Dxs);

vort(Nx+1,j) = (7.0*psi(Nx+1,j)-8.0*psi(Nx,j) ...

+psi(Nx-1,j))/(2.0*Dxs);

end

%--------------------------------

% compute the velocity at the interior

% grid points by central differences

%--------------------------------

for j=2:Ny

for i=2:Nx

ux(i,j) = (psi(i,j+1)-psi(i,j-1))/Dy2;

uy(i,j) = - (psi(i+1,j)-psi(i-1,j))/Dx2;

end

end
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%-------------------------------------------------

% iterate on Poisson’s equation for the vorticity

%-------------------------------------------------

for iteri=1:Niteri

for j=2:Ny

for i=2:Nx

source(i,j) = ux(i,j)*(vort(i+1,j)-vort(i-1,j))/Dx2...

+ uy(i,j)*(vort(i,j+1)-vort(i,j-1))/Dy2;

source(i,j) = -source(i,j)/nu;

res = (vort(i+1,j)+vort(i-1,j) + beta*vort(i,j+1) ...

+beta*vort(i,j-1)+Dxs*source(i,j))/beta1-vort(i,j);

vort(i,j) = vort(i,j) + relax*res;

end

end

end % of iteri

%------------------

% monitor the error

%------------------

cormax = 0.0;

for i=1:Nx+1

for j=1:Ny+1

res = abs(vort(i,j)-save(i,j));

if(res>cormax)

cormax = res;

end

end

end

if(cormax<tol)

break

end

end % of iter

%--

%============

% graphics

%============

for i=1:Nx+1 % set up plotting vectors

xgr(i) = Dx*(i-1);

end

for j=1:Ny+1

ygr(j) = Dy*(j-1);
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end

figure(1)

surf(20*xgr,20*ygr,vort')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel(\verb1'\omega'1,'fontsize',15)

set(gca,'fontsize',15)

axis([0 Lx 0 Ly -10 10])

axis equal

figure(2)

contour(xgr,ygr,psi',32)

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

zlabel('\psi','fontsize',15)

axis([0 Lx 0 Ly])

axis equal

The graphics module at the end of the code invokes the internal MATLAB functions surf
and contour.

Vorticity and stream function contour plots for a cavity with aspect ratio Lx/Ly = 2
at Reynolds number Re = V Lx/ν = 1 and 100 are shown in Figure 8.5.2. Stream function
contours are streamlines and particle paths in a two-dimensional flow. As the Reynolds
number increases, the center of the eddy developing inside the cavity is shifted toward the
right wall due to the fluid inertia. Regions of recirculating flow develop at the bottom two
corners, requiring increased spatial resolution.

A local analysis in the context of Stokes flow shows that the shear stress diverges at the
upper two cavity corners and an infinite force is required to slide the lid as a result of the
sharp-corner idealization. It is remarkable that the singular behavior of the vorticity at these
corners due to the discontinuous boundary velocity does not deter the overall performance
of the numerical method.

8.5.5 Summary

In summary, the stream function/vorticity formulation is distinguished by the following
features:

1. Expressing the velocity in terms of the stream function ensures the automatic satis-
faction of the continuity equation.

2. The formulation bypasses the computation of the pressure. If we had to solve for the
pressure, we would have to derive appropriate boundary conditions, as discussed in
Section 8.6.

3. Enforcing the no-penetration and the no-slip boundary condition is done sequentially
rather than simultaneously. The no-penetration condition is enforced when solving for
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Figure 8.5.2 Vorticity and stream function contour plots for flow in a rectangular cavity with aspect
ratio Lx/Ly = 2, at Reynolds number (a, b) Re = V Lx/ν = 1 and (c, d) 100.

the stream function, while the no-slip condition is enforced when deriving boundary
conditions for the vorticity.

Similar simplifications occur when solving for the Stokes stream function describing axisym-
metric flow in the absence of swirling motion.
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8.5.1 Computation of the pressure

Show that the pressure distribution in an incompressible fluid satisfies Poisson’s equation

1

2ρ
∇2p =

∂2ψ

∂x2

∂2ψ

∂y2
−
( ∂2ψ

∂x∂y

)2
. (8.5.30)

Hint : Take the divergence of the Navier–Stokes equation and use the continuity equation.

8.5.2 Axisymmetric flow

Develop a finite-difference method based on the stream function/vorticity formulation for
steady axisymmetric flow in an annular cavity depressed on a circular cylinder. The flow is
driven by a sleeve sliding along the cylinder surface.

8.5.3 Steady flow in a cavity

(a) Run the code cvt sv and prepare velocity vector plots for the two flows illustrated in
Figure 8.5.2. Discuss the structure of the streamline pattern.

(b) Investigate the performance of the numerical method for a square cavity at high Reynolds
numbers.

(c) Duplicate the results shown in Figure 8.5.2 for a slender cavity with aspect ratio Lx/Ly =
8. Discuss the structure of the flow.

(d) Implement a stopping check so that the computations terminate when the vorticity field
has been computed within a specified accuracy.

(e) Resolve and discuss the structure of the eddies developing near the lower two corners.

8.6 Velocity/pressure formulation

Although the stream function/vorticity formulation discussed in Section 8.5 is simple and
efficient, its extension to three dimensions and its generalization to flow in the presence of
interfaces are cumbersome. To handle arbitrary flow configurations, we develop a direct
formulation in primary variables, including the velocity and the pressure.

Evolution equations

To compute the evolution of an unsteady flow, we require an evolution equation for the
velocity and another evolution equation for the pressure. The former is provided by the
Navier–Stokes equation stated as

∂u

∂t
= N(u)− 1

ρ
∇p+ ν L(u), (8.6.1)

where N(u) is a nonlinear convection operator and L(u) is a linear diffusion operator defined
as

N(u) ≡ −u ·∇u, L(u) ≡ ∇2u. (8.6.2)

Problems
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If the fluid were compressible, the continuity equation would provide us with an evo-
lution equation for the density, as shown in equations (2.7.13) and (2.7.14). An evolution
equation for the pressure could then be obtained by introducing an equation of state relating
the density to the local pressure and temperature.

An explicit evolution equation for the pressure developing in a incompressible fluid is
not available. Instead, the continuity equation takes the form a kinematic constraint,

∇ · u = 0, (8.6.3)

which requires that the pressure field evolves so that the rate of expansion, ∇ · u, is zero
throughout the domain of flow at any time.

To convert this requirement into a mathematical restriction, we take the divergence of
the Navier–Stokes equation (8.6.1), interchange the divergence with the time derivative on
the left-hand side, and thus derive an evolution equation for the rate of expansion,

∂∇ · u
∂t

= ∇ ·N(u)− 1

ρ
∇2p+ ν∇ · L(u). (8.6.4)

Note that the divergence operator and the nonlinear operator N on the right-hand side do
not commute, that is,

∇ ·N(u) 
= N(∇ · u). (8.6.5)

For simplicity, we have assumed that the density and viscosity are uniform throughout the
domain of flow.

Pressure Poisson equation

Equation (8.6.3) requires that the left-hand side of (8.6.4) vanishes at any time, which will
be true if the pressure satisfies the pressure Poisson equation (PPE),

∇2p = ρ∇ ·N(u) + μ∇ · L(u). (8.6.6)

It could be argued that, since the divergence operator and the linear operator L commute,

∇ · L(u) = L(∇ · u), (8.6.7)

the last term on the right-hand side of (8.6.6) could be set to zero, yielding the simplified
pressure Poisson equation (SPPE),

∇2p = ρ∇ ·N(u). (8.6.8)

However, in practice, the magnitude of the last term on the right-hand side of (8.6.6) is
nonzero due to numerical error associated with the approximation of partial derivatives with
finite differences. It turns out that the complete absence of this term may be detrimental to
the performance of the numerical method by fostering the growth of small oscillations. To
prevent the onset of these oscillations, the PPE is preferred over its simplified counterpart.



8.6 Velocity/pressure formulation 561

8.6.1 Alternative system of governing equations

The preceding discussion suggests a numerical procedure for computing the evolution of an
unsteady flow based on equations (8.6.1) and (8.6.6) or (8.6.8): compute the evolution of
the velocity using (8.6.1), and simultaneously obtain the evolution of the pressure by solving
the Poisson equation (8.6.6) or (8.6.8).

The method is analogous to that employed in the stream function/vorticity formulation
discussed in Section 8.5. One important difference is that, by employing the stream func-
tion, the satisfaction of the continuity equation (8.6.3) is guaranteed, independent of the
magnitude of the numerical error.

To examine whether the velocity/pressure formulation ensures the satisfaction of the
continuity equation (8.6.3), we substitute (8.6.6) into the right-hand side of the pressure
Poison equation (8.6.4) and obtain the expected result

∂ ∇ · u
∂t

= 0, (8.6.9)

which ensures that, if the rate of expansion vanishes at the initial instant by a sensible
choice of the initial condition, it will also vanish at any time.

Substituting (8.6.8) into the right-hand side of the simplified pressure Poison equation
(8.6.4), we obtain an unsteady diffusion equation for the rate of expansion,

∂∇ · u
∂t

= ν∇ · L(u), (8.6.10)

which ensures that, if the rate of expansion vanishes at the initial instant by an appropriate
choice of an initial condition, it will also vanish at any time provided that the boundary
values of the rate of expansion also vanish at any time. The additional condition underlines
the importance of accurately satisfying mass conservation at the boundaries and explains
why (8.6.6) is preferred over its simplified counterpart (8.6.8).

8.6.2 Pressure boundary conditions

To solve the pressure Poisson equation, we require a pressure boundary condition derived
from specified boundary conditions for the velocity. The pressure boundary condition
emerges by evaluating the Navier–Stokes equation (8.6.1) at the boundaries of the flow,
and then taking the inner product of both sides with the unit vector normal to the bound-
aries pointing outward, n. The result is the Neumann boundary condition

n ·∇p = ρn · (− ∂u

∂t
+N(u) + ν L(u)

)
. (8.6.11)

The left-hand side is the derivative of the pressure normal to the boundaries, expressing
the rate of change of the pressure with respect to distance normal to the boundaries. The
right-hand side is then simplified by implementing the no-slip and no-penetration boundary
conditions.
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For example, in the case of two-dimensional flow over a horizontal stationary wall located
at y = 0, we require that ux = 0 and uy = 0 at y = 0, and obtain

n ·∇p =
∂p

∂y
= μ

∂2uy

∂y2
(8.6.12)

in a steady or unsteady flow. The left-hand side is the normal derivative of the pressure,
while the right-hand side is the negative of the normal derivative of the vorticity multiplied
by the fluid viscosity.

8.6.3 Compatibility condition for the pressure

The Poisson equation governing the pressure distribution in an incompressible fluid is anal-
ogous to the Poisson equation governing the steady-state temperature distribution in a
conductive medium identified with the domain of flow, subject to a homogeneous heat pro-
duction term expressed by the right-hand side.

The boundary condition (8.6.11) specifies the boundary distribution of the flux in terms
of the instantaneous velocity. Physical reasoning suggests that a steady distribution will
exist only if the total rate of heat production is balanced by the total rate of heat removal
across the boundaries, so that heat neither accumulates to elevate the temperature nor is
depleted to lower the temperature.

In the case of two-dimensional flow, the mathematical expression of this requirement
takes the form of a compatibility condition, stating that the areal integral of the right-hand
side of (8.6.6) or (8.6.8) over the domain of flow should be equal to the line integral of the
right-hand side of (8.6.11) or (8.6.12) over the boundaries. If the compatibility condition is
not fulfilled, a solution for the pressure cannot be found.

In the case of three-dimensional flow, the compatibility condition requires that the
volume integral of the right-hand side of (8.6.6) or (8.6.8) over the domain of flow should be
equal to the surface integral of the right-hand side of (8.6.11) or (8.6.12) over the boundaries.
If the compatibility condition is not fulfilled, a solution for the pressure cannot be found.

In numerical practice, this compatibility condition is enforced implicitly or explicitly
depending on the particulars of the implementation of the numerical method. In some over-
simplified approaches, the compatibility condition is altogether ignored and an approximate
solution is found.

8.6.1 Pressure boundary condition

Derive the pressure boundary condition (8.6.12).

Problem
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8.7 Operator splitting and solenoidal projection

In practice, the velocity/pressure formulation is implemented in a way that expedites the
numerical solution and reduces the computational cost. For the purpose of illustration, we
discuss the computation of an evolving two-dimensional flow. Extending the methodology
to three-dimensional flow is straightforward in principle and implementation.

Operator splitting

In the most popular implementation of the velocity/pressure formulation, the Navier–Stokes
equation (8.6.1) is resolved into two constituent equations,

∂u

∂t
= N(u) + ν L(u) (8.7.1)

and

∂u

∂t
= −1

ρ
∇p, (8.7.2)

where the operators N(u) and L(u) are defined in equations (8.6.2),

N(u) ≡ −u ·∇u, L(u) ≡ ∇2u. (8.7.3)

The right-hand sides of equations (8.7.1) and (8.7.2) arise by splitting the full Navier–
Stokes operator on the right-hand side of (8.6.1) into two parts, subject to the following
interpretation.

Consider the change in the velocity field over a small time interval, Δt, following the cur-
rent time, t. The decomposition into (8.7.1) and (8.7.2) is inspired by the idea of updating
the velocity in two sequential stages, where the first update is due to inertia and viscosity,
while the second update is due to the pressure gradient alone. Time is to t +Δt after the
completion of the second stage. We will see that this decomposition significantly simpli-
fies the implementation of the numerical method by allowing the convection–diffusion and
pressure gradient steps to be handled independently using appropriate numerical methods.

Two main issues arise. First, the boundary condition for the velocity to be used for
integrating (8.7.1) cannot be the same as the specified physical boundary condition, oth-
erwise the second step mediated by (8.7.2) will cause a departure. Second, the boundary
condition for the pressure may no longer be computed from (8.6.11), but should be derived
instead using equation (8.7.2).

Projection function

The second observation suggests that p in equation (8.7.2) may no longer be regarded as the
hydrodynamic pressure, p, and should be interpreted instead as a fictitious pressure whose
role is to ensure that the velocity field is solenoidal at the end of the second step. To make
this distinction clear, we replace equation (8.7.2) with the equation

∂u

∂t
= −1

ρ
∇χ, (8.7.4)



564 Fluid Dynamics: Theory, Computation, and Numerical Simulation

where χ is a projection function. Equation (8.7.4) receives the velocity field delivered by the
convection–diffusion equation (8.7.1), which is not necessarily solenoidal, and removes the
non-solenoidal component in a process that can be described as projection into the space of
solenoidal functions.

The choice of boundary conditions for the projection function, χ, has been the subject of
extensive discussion. It can be shown that the homogeneous Neumann boundary condition,
requiring that the derivative of the projection function χ with respect to distance normal to
a boundary vanishes, is appropriate. The associated boundary conditions for the velocity
will be discussed in Section 8.7.3.

Next, we discuss the implementation of numerical methods for performing the convection–
diffusion and projection steps expressed by equations (8.7.1) and (8.7.4).

8.7.1 Convection–diffusion step

To prevent numerical instability, we perform the convection–diffusion step expressed by
equation (8.7.1) by an implicit finite-difference method. This means that updating the
velocity requires solving linear systems of algebraic equations for the velocity at all nodes.

Evaluating the x and y components of equation (8.7.1) at the (i, j) grid point at time
t + Δt, and approximating the time derivatives with backward differences and the spatial
derivatives with differences of our choice, we derive a system of equations for the unknown
velocity vector comprised of the x and y velocity components at the grid points at time
t+Δt. The size of the velocity vector is twice the number of grid points. For a 32×32 grid,
we obtain a velocity vector with nearly 2, 000 unknowns and an equal number of equations
whose solution requires a significant computational cost.

Directional splitting

As an alternative, we split the operator on the right-hand side of (8.7.1) into two spatial
constituents expressing convection–diffusion in the x or y direction, given by

∂u

∂t
= −ux

∂u

∂x
+ ν

∂2u

∂x2
(8.7.5)

and

∂u

∂t
= −uy

∂u

∂y
+ ν

∂2u

∂y2
, (8.7.6)

and advance the velocity over the time interval Δt in a sequential fashion based on this
decomposition.

Crank–Nicolson integration

To achieve second-order accuracy, we discretize equation (8.7.5) using the Crank–Nicolson
method. The implementation involves evaluating (8.7.5) at the (i, j) grid point at time
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t+ 1
2 Δt, approximating the time and space derivatives with central differences, and averaging

the space derivatives over the time levels t and t+Δt,

u∗
i,j − ui,j(t)

Δt
= − 1

2
(ux)i,j(t)

[
(
ui+1,j − ui−1,j

2Δx
)(t) +

u∗
i+1,j − u∗

i−1,j

2Δx

]
+

1

2
ν
[
(
ui+1,j − 2ui,j + ui−1,j

Δx2
)(t) +

u∗
i+1,j − 2u∗

i,j + u∗
i−1,j

Δx2

]
. (8.7.7)

An asterisk designates the first intermediate velocity field.

To simplify the notation, we define

un
i,j ≡ ui,j(t), (8.7.8)

where the superscript n denotes the nth time level corresponding to time t. Rearranging
equation (8.7.7), we derive the finite-difference equation

−(cx + 2αx)u
∗
i−1,j + 4(1 + αx)u

∗
i,j + (cx − 2αx)u

∗
i+1,j

= (cx + 2αx)u
n
i−1,j + 4(1− αx)u

n
i,j − (cx − 2αx)u

n
i+1,j ,

(8.7.9)

involving the local x convection number,

cx ≡ (ux)
n
i,j Δt

Δx
, (8.7.10)

and the x diffusion number,

αx ≡ νΔt

Δx2
. (8.7.11)

The right-hand side of (8.7.9) can be computed in terms of the velocity at the grid points
at the nth time level, which is available.

Evaluating (8.7.9) at grid points that lie along y grid lines corresponding to fixed values
of j, we obtain tridiagonal systems of equations for the x and y components of the first
intermediate velocity. The salient advantage of the method of directional splitting is that
these tridiagonal systems can be solved efficiently using the Thomas algorithm discussed in
Section 8.2.4, subject to boundary conditions discussed in Section 8.7.3.

An analogous discretization of (8.7.6) yields

−(cy + 2αy)u
∗∗
i,j−1 + 4(1 + αy)u

∗∗
i,j + (cy − 2αy)u

∗∗
i,j+1

= (cy + 2αy)u
∗
i,j−1 + 4(1− αy)u

∗
i,j − (cy − 2αy)u

∗
i,j+1,

(8.7.12)

where

cy ≡ (uy)
n
i,j Δt

Δy
(8.7.13)



566 Fluid Dynamics: Theory, Computation, and Numerical Simulation

is the local y convection number and

αy ≡ νΔt

Δy2
(8.7.14)

is the y diffusion number. A double asterisk in (8.7.12) designates the second intermediate
velocity field.

The right-hand side of (8.7.12) can be computed in terms of the first intermediate
velocity delivered by equation (8.7.9). Evaluating (8.7.12) at grid points that lie along x
grid lines corresponding to fixed values of i, we obtain tridiagonal systems of equations for
the x and y components of the second intermediate velocity. The solution can be found using
the Thomas algorithm discussed in Section 8.2.4, subject to boundary conditions discussed
in Section 8.7.3.

8.7.2 Projection step

Next, we advance the velocity field using the projection step (8.7.4), where the projection
function is computed to satisfy the continuity equation at the end of this step. Evaluating
(8.7.5) at the (i, j) grid point and approximating the time derivative with a finite difference,
we obtain

ui,j(t+Δt)− u∗∗
i,j

Δt
= −1

ρ
(∇χ)ni,j , (8.7.15)

which can be rearranged to give

ui,j(t+Δt) = u∗∗
i,j −

Δt

ρ
(∇χ)ni,j . (8.7.16)

The gradient on the right-hand side of (8.7.16) can be approximated by centered, forward,
or backward differences.

Now we consider the numerical discretization of the continuity equation, ∇ · u = 0.
Using centered differences, we approximate the rate of expansion at the (i, j) grid point
with the discrete form

Di,j ≡ (∇ · u)i,j 	 (ux)i+1,j − (ux)i−1,j

2Δx
+

(uy)i,j+1 − (uy)i,j−1

2Δy
. (8.7.17)

Evaluating (8.7.17) at the n + 1 time level corresponding to time t + Δt, requiring that
the left-hand side is zero, and using (8.7.16) to express u(t+Δt) on the right-hand side in
terms of the second intermediate velocity denoted by the double asterisk and the projection
function, we obtain the expression

ρ

Δt
(∇ · u∗∗)i,j =

(
∂χ

∂x
)i+1,j − (

∂χ

∂x
)i−1,j

2Δx
+

(
∂χ

∂y
)i,j+1 − (

∂χ

∂y
)i,j−1

2Δy
. (8.7.18)
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The right-hand side of (8.7.18) is recognized as the discrete divergence of the gradient of
the projection function χ.

For grid points that are not adjacent to a wall, we approximate the partial derivatives
of the right-hand side of (8.7.18) with centered differences and simplify to obtain

ρ

Δt
(∇ · u∗∗)i,j =

χi−2,j − 2χi,j + χi+2,j

4Δx2
+

χi,j−2 − 2χi,j + χi,j+2

4Δy2
. (8.7.19)

The right-hand side of (8.7.19) is recognized as the finite-difference approximation of the
Laplacian of χ, computed with spatial intervals equal to 2Δx and 2Δy.

For points that are adjacent to a wall, we derive corresponding formulas incorporating
the homogeneous Neumann boundary condition. For example, applying equation (8.7.18)
at the near-corner point i = 2 and j = 2, and setting (∂χ/∂y)2,1 = 0 and (∂χ/∂x)1,2 = 0,
we obtain

ρ

Δt
(∇ · u∗∗)2,2 =

χ4,2 − χ2,2

4Δx2
+

χ2,4 − χ2,2

4Δy2
. (8.7.20)

Returning to (8.7.19), we reduce the intervals of the centered spatial differences to Δx
and Δy, and derive the alternative expression

ρ

Δt
(∇ · u∗∗)i,j =

χi+1,j − 2χi,j + χi−1,j

Δx2
+

χi,j+1 − 2χi,j + χi,j−1

Δy2
, (8.7.21)

which is applicable at all interior grid points. This finite-difference equation could have been
derived directly from (8.7.15) by taking the divergence of both sides and then approximating
the emerging Laplacian of χ on the right-hand side with the five-point formula, as shown in
(8.7.21).

Evaluating (8.7.19) or (8.7.21) at the interior grid points and their counterparts for
the wall-adjacent points, and introducing boundary conditions for χ, we derive a system
of linear equations for the grid values of χ, which is the counterpart of the linear system
descending from the pressure Poisson equation discussed in Section 8.6. Having computed
the grid values of the projection function, we return to equation (8.7.16) and perform the
final step, advancing the velocity to the n+ 1 time level corresponding to time t+Δt.

Because the coefficient matrix of the linear system associated with (8.7.19) or (8.7.21)
is independent of time, we may either compute the matrix inverse at the outset and then
solve the system at each step by simple matrix-vector multiplication, or employ efficient
custom-made iterative solution algorithms.

8.7.3 Boundary conditions for the intermediate velocity

Next, we address the issue of boundary conditions for the intermediate velocities denoted
by a single or double asterisk. The choice of these boundary conditions is pivoted on a
key observation: because of the homogeneous Neumann condition chosen for the projec-
tion function, the projection step introduces a tangential but not a normal component of
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the boundary velocity. Accordingly, the boundary conditions for the intermediate velocity
should be such that the tangential velocity introduced in the projection step brings the total
velocity to the specified physical value at the end of a complete step. In practice, this is
done by estimating the magnitude of the intermediate slip velocity and then improving the
guess by iteration, as explained in Section 8.7.4.

8.7.4 Flow in a cavity

The implementation of the numerical method involves further considerations that are best
illustrated with reference to the familiar problem of two-dimensional flow in a cavity driven
by a sliding lid.

Homogeneous Neumann boundary condition for the projection function

Consider the numerical implementation of the condition of zero normal derivative of the
projection function at the boundaries of the cavity illustrated in Figure 8.5.1. Requiring
that ∂χ/∂y = 0 at the bottom and top walls, and approximating the first derivative with a
second-order forward or backward finite difference, we obtain(∂χ

∂y

)
i,1

	 −3χi,1 + 4χi,2 − χi,3

2Δy
= 0 (8.7.22)

and (∂χ
∂y

)
i,Ny+1

	 χi,Ny−1 − 4χi,Ny
+ 3χi,Ny+1

2Δy
= 0. (8.7.23)

Requiring that ∂χ/∂x = 0 at the left and right walls, and approximating the first derivative
with a second-order forward or backward finite-difference, we obtain(∂χ

∂x

)
1,j

	 −3χ1,j + 4χ2,j − χ3,j

2Δx
= 0 (8.7.24)

and (∂χ
∂x

)
Nx+1,j

	 χNx−1,j − 4χNx,j + 3χNx+1,j

2Δx
= 0. (8.7.25)

These difference equations complement those arising from the discretization of the Poisson
equation.

Compatibility condition for system (8.7.19)

The linear system descending from the discrete Poisson equation (8.7.19) accompanied by
the homogeneous Neumann boundary conditions is singular, which means that it has either
no solution or an infinite number of solutions, depending on the right-hand side. If multiple
solutions exist, any particular solution can be offset by an arbitrary constant vector with
equal elements. Correspondingly, the value of the projection function at the grid points can
be offset by a physically irrelevant constant. Reference to (8.7.16) ensures that this constant
has no effect on the structure of the flow.
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When the discrete divergence of the second intermediate velocity is computed using
(8.7.17), the discrete form of the compatibility condition discussed at the end of Section 8.6
is fulfilled and the linear system has a multiplicity of solutions. A solution can be found by
assigning an arbitrary value to one of the unknowns, discarding one equation, and solving
the rest of the equations for the remaining unknowns. Unfortunately, the numerical solution
computed in this fashion can be contaminated by artificial oscillations described as odd-even
coupling.

Compatibility condition for system (8.7.21)

The linear system descending from the discrete Poisson equation (8.7.21) accompanied by
the homogeneous Neumann boundary conditions is also singular, reflecting the arbitrary
level of the projection function. Unfortunately, when the discrete divergence of the second
intermediate velocity field is computed using (8.7.17), the discrete form of the compatibility
condition is not satisfied. Consequently, one equation of the linear system cannot be satisfied
to machine precision.

Resisting the temptation to fudge the computation by discarding one arbitrary equation,
we add a small term to the right-hand side of (8.7.21) and then adjust the magnitude of
this term to satisfy the compatibility condition of a modified system of equations. If

A · x = b (8.7.26)

is the linear system corresponding to (8.7.21), then the modified system is

A · x = b+ ε c, (8.7.27)

where ε is an a priori unknown constant and c is a constant vector that emerges by replacing
the left-hand side of (8.7.18) with an arbitrary value, while retaining the linear equations
implementing the homogeneous Neumann boundary conditions.

Our objective is to adjust the value of the constant ε so that the system (8.7.27) has an
infinite number of solutions. In one approach, we work as follows:

1. First, we set the last component of x to zero, discard the last equation ofA·x = b, solve
the remaining equations, and call the solution x(1). Then we evaluate the difference
between the left-hand side and the right-hand of the last equation, r(1).

2. Second, we set the last component of x to zero, discard the last equation of A ·x = c,
solve the remaining equations, and call the solution xref . Then evaluate the difference
between the left-hand side and the right-hand of the last equation, denoted by rref .

3. The desired solution is

x = x(1) + εxref , (8.7.28)

where

ε = −r(1)

rref
. (8.7.29)
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A more rigorous approach involves removing from the right-hand side, b, its projection
on the eigenvector corresponding to the null eigenvalue of the transpose of the coefficient
matrix, AT.

Boundary conditions for the intermediate velocity

The boundary conditions for the intermediate velocity must be such that the right-hand
side of (8.7.16) is consistent with the specified physical boundary conditions at time t+Δt.
Requiring that the left-hand side of (8.7.16) is zero over a stationary boundary, we obtain
the boundary condition

u∗∗
i,j =

Δt

ρ
(∇χ)ni,j . (8.7.30)

Because the projection function was required to satisfy the homogeneous Neumann bound-
ary condition, the right-hand side of (8.7.30) has only a tangential component expressing
numerical wall slip.

An apparent difficulty in computing the tangential component of the intermediate ve-
locity is that the right-hand side of (8.7.30) is not available during the convection–diffusion
step. To circumvent this difficulty, we may approximate the projection function with that at
the previous step, proceed with the projection step, and then improve the approximation by
repeating the convection–diffusion step until the slip velocity has fallen below a sufficiently
small threshold.

Code cvp pm

The following MATLAB code entitled cvt pm, located inside directory 11 fdm of Fdlib,
performs the time integration using the projection method discussed in this section and
animates the evolving velocity vector field. The code should be read in two columns on each
page:

close all

clear all

%===================================

% Computation of evolving flow

% in a rectangular cavity

% in primary variables using the

% velocity/pressure formulation

%

% The flow is computed using a

% projection method

%

% SYMBOLS:

%

% x,y: grid nodes

% ux, uy: velocity components

% chi: projection function

% uxi, uyi: intermediate velocity

% (generic)

%===================================

%-----------------------

% settings and parameters

%-----------------------

Lx = 1.0; % cavity length

Ly = 0.5; % cavity depth

Nx = 4*8; % grid size

Ny = 4*4;

Dt = 0.1; % time step
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visc = 0.01; % viscosity

dens = 1.0; % density

Vlidamp = 1.0; % lid velocity amplitude

Nstep = 2000; % number of steps

%------------------------------------

% parameters for solving the Poisson

% equation for the projection function

%------------------------------------

itermax = 50000;

tol = 0.000001;

relax = 0.2;

qleft = 0.0; % Neumann bound cond

qright = 0.0;

qbot = 0.0;

qtop = 0.0;

Ishift = 1;

%-----------------------------------

% parameters for slip vel iterations

%-----------------------------------

slipN = 50; % max iteration no

sliptol = 0.00001; % tolerance

sliprel = 1.0; % relaxation

%--------

% prepare

%--------

nu = visc/dens; % kinematic viscosity

Dx = Lx/Nx;

Dy = Ly/Ny;

Dx2 = 2.0*Dx;

Dy2 = 2.0*Dy;

Dxs = Dx*Dx;

Dys = Dy*Dy;

Dtor = Dt/dens;

%--------

% lid velocity

%--------

for i=1:Nx+1

Vlid(i) = Vlidamp;

end

%-----------------------------------

% define grid lines

% initialize velocity (ux, uy)

% and the projection function (chi)

%-----------------------------------

time = 0.0;

for j=1:Ny+1

for i=1:Nx+1

x(i,j) = (i-1.0)*Dx;

y(i,j) = (j-1.0)*Dy;

ux(i,j) = 0.0; % x velocity

uy(i,j) = 0.0; % y velocity

chi(i,j) = 0.0; % projection function

chroma(i,j) = 0.0; % for plotting

end

end

for i=1:Nx+1

ux(i,Ny+1) = Vlid(i);

end

%-----------------------------------

% naive velocity boundary conditions

%-----------------------------------

for i=1:Nx+1

BCxt(i) = Vlid(i); % top wall

BCxb(i) = 0.0; % bottom wall

end

for j=1:Ny+1

BCyl(j) = 0.0; % left wall

BCyr(j) = 0.0; % right wall

end

%--------------

% time stepping

%--------------
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%===============

for step=1:Nstep

%===============

%---

% animation

%---

if(step==1)

Handle1 = quiver(x,y,ux,uy,’k’);

set(Handle1, ’erasemode’, ’xor’);

axis ([-0.10,Lx+0.10,-0.10,Ly+0.10])

axis equal

set(gca,’fontsize’,15)

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

hold on

plot([0, Lx, Lx, 0, 0] ...

,[0, 0, Ly, Ly, 0],’k’);

else

set(Handle1,’UData’,ux,’VData’,uy);

pause(0.01)

drawnow

end

%-------------------------------------

% initialize the intermediate velocity

%-------------------------------------

for j=1:Ny+1

for i=1:Nx+1

uxi(i,j) = ux(i,j);

uyi(i,j) = uy(i,j);

end

end

%=============================

% perform inner iterations

% for the projection function

% to satisfy the no-slip

% boundary condition

%=============================

for inner=1:slipN

%---

% zero the tridiagonal matrix

%---

for i=1:Nx-1

atr(i) = 0.0;

btr(i) = 0.0;

ctr(i) = 0.0;

end

%-------------------------------------

% Integrate conv-diff equation in x

% using the Crank-Nicolson method

% Advance the velocity from u^n to u*

%-------------------------------------

Iskip = 0;

if(Iskip==0)

al = nu*Dt/Dxs;

%--------------

for j=2:Ny % run over rows

%----

for i=2:Nx

Rc = ux(i,j)*Dt/Dx;

C1 = Rc + 2.0*al;

C2 = 4.0*(1.0-al);

C3 = -Rc + 2.0*al;

ctr(i-1) = -Rc - 2.0*al;

atr(i-1) = 4.0*(1.0+al);

btr(i-1) = Rc - 2.0*al;

rhsx(i-1) = C1*ux(i-1,j) ...

+ C2*ux(i,j) ...

+ C3*ux(i+1,j);

rhsy(i-1) = C1*uy(i-1,j) ...

+ C2*uy(i,j) ...

+ C3*uy(i+1,j);

end

rhsy(1) = rhsy(1) ...

- ctr(1) *BCyl(j);

rhsy(Nx-1) = rhsy(Nx-1) ...

- btr(Nx-1)*BCyr(j);

% x component:

solx = thomas(Nx-1,atr,btr,ctr,rhsx);

% y component:

soly = thomas(Nx-1,atr,btr,ctr,rhsy);

for k=1:Nx-1
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uxi(k+1,j) = solx(k);

uyi(k+1,j) = soly(k);

end

%---

end % End of running over rows

%-----------

for i=1:Nx-1 % reset

atr(i) = 0.0;

btr(i) = 0.0;

ctr(i) = 0.0;

end

end % of skip

%-------------------------------------

% Integrate Conv-Diff equation in y

% using the Crank-Nicolson method

% Advance the velocity from u* to u**

%-------------------------------------

Iskip = 0;

if(Iskip==0)

al = nu*Dt/Dys;

%---

for i=2:Nx % run over columns

%---

for j=2:Ny % from bottom to top

Rc = uy(i,j)*Dt/Dy;

C1 = Rc +2.0*al;

C2 = 4.0*(1.0-al);

C3 = -Rc +2.0*al;

ctr(j-1) = -Rc -2.0*al;

atr(j-1) = 4.0*(1.0+al);

btr(j-1) = Rc -2.0*al;

rhsx(j-1) = C1*uxi(i,j-1) ...

+ C2*uxi(i,j) ...

+ C3*uxi(i,j+1);

rhsy(j-1) = C1*uyi(i,j-1) ...

+ C2*uyi(i,j) ...

+ C3*uyi(i,j+1);

end

rhsx(1) = rhsx(1) ...

- ctr(1) *BCxb(i);

rhsx(Ny-1) = rhsx(Ny-1) ...

- btr(Ny-1)*BCxt(i);

solx = thomas (Ny-1,atr,btr,ctr,rhsx);

soly = thomas (Ny-1,atr,btr,ctr,rhsy);

for k=1:Ny-1

uxi(i,k+1) = solx(k);

uyi(i,k+1) = soly(k);

end

%---

end % of run over columns

%---

end % of skip

%-------------------------------------

% Compute intermediate compressibility

% by centered differences

%

% Divus = Div u**

%-------------------------------------

% initialize

for j=1:Ny+1

for i=1:Nx+1

Divus(i,j) = 0.0;

end

end

% interior nodes

for i=2:Nx

for j=2:Ny

DuDx = (uxi(i+1,j)-uxi(i-1,j))/Dx2;

DvDy = (uyi(i,j+1)-uyi(i,j-1))/Dy2;

Divus(i,j) = DuDx+DvDy;

end

end

% left wall

for j=1:Ny+1

DuDx = (-3.0*uxi(1,j) ...

+4.0*uxi(2,j)-uxi(3,j))/Dx2;

DvDy = 0.0;

Divus(1,j) = DuDx+DvDy;

end

% save for corners:
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save11l = Divus(1,j);

save12l = Divus(1,Ny+1);

% bottom wall

for i=1:Nx+1

DuDx = 0.0;

DvDy = (-3.0*uyi(i,1) ...

+4.0*uyi(i,2)-uyi(i,3))/Dy2;

Divus(i,1) = DuDx+DvDy;

end

% save for corners:

save11b = Divus(1,1);

save21b = Divus(Nx+1,1);

% right wall

for j=1:Ny+1

DuDx = (3.0*uxi(Nx+1,j) ...

-4.0*uxi(Nx,j) ...

+uxi(Nx-1,j))/Dx2;

DvDy = 0.0;

Divus(Nx+1,j) = DuDx+DvDy;

end

% save for corners:

save21r = Divus(Nx+1,1);

save22r = Divus(Nx+1,Ny+1);

% top wall

for i=1:Nx+1

DuDx = 0.0;

DvDy = (3.0*uyi(i,Ny+1) ...

-4.0*uyi(i,Ny) ...

+uyi(i,Ny-1))/Dy2;

Divus(i,Ny+1) = DuDx+DvDy;

end

% save for corners:

save12t = Divus(1, Ny+1);

save22t = Divus(Nx+1,Ny+1);

% corners by averaging

Divus(1, 1) ...

= 0.5*(save11l+save11b);

Divus(1, Ny+1) ...

= 0.5*(save12l+save12t);

Divus(Nx+1, 1) ...

= 0.5*(save21b+save21r);

Divus(Nx+1,Ny+1) ...

= 0.5*(save22r+save22t);

%----------------------------------

% Solve for the projection function

% by Gauss-Seidel (GS) iterations

%----------------------------------

Iskip = 0;

if(Iskip==0)

%---

% source term

%-----

for i=1:Nx+1

for j=1:Ny+1

source(i,j) = -Divus(i,j)/Dtor;

end

end

[chi,iter,Iflag] = pois_gs_nnnn ...

...

(Nx,Ny,Dx,Dy,source ...

,itermax,tol,relax ...

,qleft,qright,qbot,qtop,chi,Ishift);

if(Iflag==0)

disp "cvt_pm: Poisson solver ...

did not converge"

break

end

%----------------------------------

% project the velocity at all nodes

% except at the corner nodes

%----------------------------------

%---

% interior nodes

%----

for i=2:Nx

for j=2:Ny

DchiDx = (chi(i+1,j)-chi(i-1,j))/Dx2;

DchiDy = (chi(i,j+1)-chi(i,j-1))/Dy2;
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uxi(i,j) = uxi(i,j) - Dtor*DchiDx;

uyi(i,j) = uyi(i,j) - Dtor*DchiDy;

end

end

%--------------

% lower boundary

%

% Use forward differences with special

% treatment of the near-corner nodes

%--------------

for i=2:Nx

DchiDy = 0.0;

if(i==2)

DchiDx = (-3.0*chi(2,1) ...

+4.0*chi(3,1)-chi(4,1))/Dx2;

elseif(i==Nx)

DchiDx =-(-3.0*chi(Nx,1) ...

+4.0*chi(Nx-1,1) ...

-chi(Nx-2,1))/Dx2;

else

DchiDx ...

= (chi(i+1,1)-chi(i-1,1))/Dx2;

end

uxi(i,1) = BCxb(i) - Dtor*DchiDx;

uyi(i,1) = - Dtor*DchiDy;

end

%--------------

% upper boundary

%

% Use backward difference with special

% treatment of the near-corner nodes

%--------------

for i=2:Nx

DchiDy = 0.0;

if(i==2)

DchiDx = (-3.0*chi(2,Ny+1) ...

+4.0*chi(3,Ny+1) ...

-chi(4,Ny+1))/Dx2;

elseif(i==Nx)

DchiDx =-(-3.0*chi(Nx,Ny+1) ...

+4.0*chi(Nx-1,Ny+1) ...

-chi(Nx-2,Ny+1))/Dx2;

else

DchiDx = (chi(i+1,Ny+1) ...

-chi(i-1,Ny+1))/Dx2;

end

uxi(i,Ny+1) = BCxt(i) - Dtor*DchiDx;

uyi(i,Ny+1) = - Dtor*DchiDy;

end

%-------------

% left boundary

%

% Use forward differences with special

% treatment of the near-corner nodes

%-------------

for j=2:Ny

DchiDx = 0.0;

if(j==2)

DchiDy = (-3.0*chi(1,2) ...

+4.0*chi(1,3) ...

-chi(1,4))/Dy2;

elseif(j==Ny)

DchiDy =-(-3.0*chi(1,Ny) ...

+4.0*chi(1,Ny-1) ...

-chi(1,Ny-2))/Dy2;

else

DchiDy ...

= (chi(1,j+1)-chi(1,j-1))/Dy2;

end

uxi(1,j) = - Dtor*DchiDx;

uyi(1,j) = BCyl(j) - Dtor*DchiDy;

end

%--------------

% right boundary

%

% Use backward difference with special

% treatment of the near-corner nodes

%--------------

for j=2:Ny

DchiDx = 0.0;

if(j==2)

DchiDy = (-3.0*chi(Nx+1,2) ...

+4.0*chi(Nx+1,3) ...

-chi(Nx+1,4))/Dy2;

elseif(j==Ny)

DchiDy =-(-3.0*chi(Nx+1,Ny) ...

+4.0*chi(Nx+1,Ny-1) ...

-chi(Nx+1,Ny-2))/Dy2;

else

DchiDy = (chi(Nx+1,j+1) ...



576 Fluid Dynamics: Theory, Computation, and Numerical Simulation

-chi(Nx+1,j-1))/Dy2;

end

uxi(Nx+1,j) = - Dtor*DchiDx;

uyi(Nx+1,j) = BCyr(j) - Dtor*DchiDy;

end

end % of Iskip

%--------------------------------------

% Compute the wall slip velocity

%

% and modify the boundary conditions

% for the intermediate (star) velocities

%--------------------------------------

slipmax = 0.0;

% top and bottom:

for i=1:Nx+1

cor = uxi(i,Ny+1)-Vlid(i);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCxt(i) = BCxt(i)-sliprel*cor;

cor = uxi(i,1);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCxb(i) = BCxb(i)-sliprel*cor;

end

% left and right:

for j=1:Ny+1

cor = uyi(1,j);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCyl(j) = BCyl(j)-sliprel*cor;

corr = uyi(Nx+1,j);

if(abs(cor)>slipmax) ...

slipmax = cor; end

BCyr(j) = BCyr(j)-sliprel*cor;

end

slipmax

if(slipmax<sliptol) break; end

%=============================

end % of inner iterations

%=============================

%-----------------------------------

% update velocity to the final value

%-----------------------------------

for j=1:Ny+1

for i=1:Nx+1

ux(i,j) = uxi(i,j);

uy(i,j) = uyi(i,j);

end

end

%------------

% update time

%------------

time = time + Dt

%===========

end % of time stepping

%===========

figure(2)

mesh(x,y,ux);

set(gca,’fontsize’,15)

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

zlabel(’u_x’,’fontsize’,15)

set(gca,’fontsize’,15)

box

figure(3)

mesh(x,y,uy);

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

zlabel(’u_y’,’fontsize’,15)

set(gca,’fontsize’,15)

box

figure(4)

mesh(x,y,chi,chroma);

xlabel(’x’,’fontsize’,15)

ylabel(’y’,’fontsize’,15)

zlabel(’\chi’,’fontsize’,15)

set(gca,’fontsize’,15)

box
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The code calls the function thomas listed in Section 8.2.4 to solve tridiagonal systems
of equations using the Thomas algorithm.

The code also calls the following MATLAB function entitled pois gs nnnn to solve the
Poisson equation for the projection function, subject to the Neumann boundary condition
along the four sides:

function [f,iter,Iflag] = pois gs nnnn ...

...

(Nx,Ny,Dx,Dy,g ...

,itermax,tol,relax,qleft ...

,qright,qbot,qtop,f,Ishift)

%------------------------------------------

% Solution of Poisson’s equation

% in a rectangular domain

% with the uniform Neumann boundary condition

% along the four sides:

%

% bottom: df/dy = qbot

% top: df/dy = -qtop

% left: df/dx = qleft

% right: df/dx = -qright

%

% The solution is found by

% point Gauss--Seidel iterations

%------------------------------------------

%--------

% prepare

%--------

Dx2 = 2.0*Dx;

Dy2 = 2.0*Dy;

Dxs = Dx*Dx;

Dys = Dy*Dy;

beta = Dxs/Dys;

beta1 = 2.0*(beta+1.0);

Iflag = 0; % convergence flag, 1 indicates convergence

%------------------------

% Gauss-Seidel iterations

%------------------------

for iter=1:itermax

%------------------------

% update nodes row-by-row

%------------------------
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fsv = f;

cormax = 0.0;

%---

% interior nodes

%---

for j=2:Ny

for i=2:Nx

res = (f(i+1,j)+f(i-1,j)+beta*(f(i,j+1)+f(i,j-1)) ...

+ Dxs*g(i,j))/beta1-f(i,j);

f(i,j) = f(i,j) + relax*res;

end

end

%--------------

% left boundary

%--------------

i=1;

for j=2:Ny

res = (2*f(i+1,j)-Dx2*qleft+beta*(f(i,j+1)+f(i,j-1)) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = f(i,j) + relax*res;

end

end

% corner points:

j=1;

res = (2*f(i+1,j)-Dx2*qleft ...

+beta*(f(i,j+1)+f(i,j+1)-Dy2*qbot) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

j=Ny+1;

res = (2*f(i+1,j)-Dx2*qleft ...

+beta*(f(i,j-1)+f(i,j-1)-Dy2*qtop) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

%---------------

% right boundary

%---------------

i=Nx+1;

for j=2:Ny

res = (2*f(i-1,j)+-Dx2*qright+beta*(f(i,j+1)+f(i,j-1)) ...
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+Dxs*g(i,j))/beta1 -f(i,j);

f(i,j) = fsave(i,j) + relax*res;

end

% corner points:

j=1;

res = (2*f(i-1,j)-Dx2*qright ...

+beta*(f(i,j+1)+f(i,j+1)-Dy2*qbot) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

j=Ny+1;

res = (2*f(i-1,j)-Dx2*qright)+beta*(2*f(i,j-1)-Dy2*qtop) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

%----------------

% bottom boundary

%----------------

j=1;

for i=2:Nx

res = (f(i+1,j)+f(i-1,j)+beta*(2*f(i,j+1)-Dy2*qbot) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

end

%-------------

% top boundary

%-------------

j=Ny+1;

for i=2:Nx

res = (f(i+1,j)+f(i-1,j)+beta*(2*f(i,j-1)-Dy2*qtop) ...

+Dxs*g(i,j))/beta1 - f(i,j);

f(i,j) = fsave(i,j) + relax*res;

end

%------

% shift

%------

if(Ishift==1)

shift = f(Nx/2,Ny/2);

for i=1:Nx+1

for j=1:Ny+1

f(i,j) = f(i,j)-shift;

end
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end

end

%-------------------

% maximum correction

%-------------------

cormax = 0;

for i=1:Nx+1

for j=1:Ny+1

cor = abs(f(i,j)-fsv(i,j));

if(abs(cor)>cormax) cormax = cor; end

end

end

%-----

% stopping check

%-----

if(cormax<tol)

Iflag = 1;

break

end

%---

end % of iterations

%---

%-----

% done

%-----

return

The graphics display generated by the code for the parameter values implemented in
the code is shown in Figure 8.7.1. In the early stages of the motion, the flow is similar to
that generated by the impulsive translation of a plate in a semi-infinite fluid. At later times,
a fully developed recirculating flow is established.

8.7.5 Computation of the pressure

Two methods are available for extracting the pressure field, if desired. The first method
involves combining equations (8.7.9), (8.7.12), and (8.7.16)–or any other appropriate set
of equations–to derive a relationship between u(t) and u(t + Δt). Requiring that this
relationship reduces to a spatially discretized version of the Navier–Stokes equation in the
limit as Δt tends to zero, we derive an expression for an effective pressure. If the boundary
conditions satisfied by the effective pressure are consistent with the Neumann boundary
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Figure 8.7.1 Flow in a rectangular cavity computed by a projection method. The graphs show (a)
the velocity vector field, (b) the x velocity component, (c) the y velocity component, and (d) the
projection function at steady state.

condition satisfied by the physical pressure, then the effective pressure can be accepted as
an approximation to the physical pressure.

The second method involves substituting the computed velocity field into the Navier–
Stokes equation and solving the resulting equation for the pressure subject to the Neumann
boundary condition, as discussed in Section 8.6.2.

8.7.1 Singular system for the projection function

Show that equation (8.7.28) provides us with a solution of (8.7.27), subject to the homoge-
neous Neumann boundary condition.

Problems
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8.7.2 Developing flow in a cavity

Run the code cvt pm located in directory 11 fdm of Fdlibfor a cavity with aspect ratio
Lx/Ly = 8 and other parameter values of your choice. Prepare velocity vector fields and
discuss the structure of the flow and the performance of the numerical method.

8.8 Staggered grids

The derivation of explicit boundary conditions for the pressure can be bypassed by using a
staggered grid consisting of two superposed displaced grids whose intersections define nodes
where the velocity components or pressure is defined. The methodology is illustrated in this
section with reference to steady two-dimensional Stokes flow in a rectangular cavity driven
by a moving lid.

At sufficiently low Reynolds numbers, the motion of the fluid is governed by the equa-
tions of Stokes flow, including the continuity equation and the Stokes equation,

∇ · u = 0, −∇p+ μ∇2u+ ρg = 0, (8.8.1)

where g is the acceleration of gravity imparting a body force.

Pressure and velocity nodes

The staggered grid consists of two interwoven grids parametrized by two pairs of indices,
(i, j) and (i′, j′), as illustrated in Figure 8.8.1 where the primed indices are printed in bold.
The grid lines of the primary grid are represented by the solid lines and the grid lines of the
secondary grid are represented by the broken lines. Note that the secondary grid conforms
with the physical boundaries of the flow.

Discrete values of the pressure are assigned to the primary nodes, (i, j), defined by the
intersection of the solid lines, shown as circles.

Discrete values of the x component of the velocity are defined at the intersection of
horizontal primary grid lines and vertical secondary grid lines, (i′, j), shown as horizontal
arrows. The x-velocity node labeled (2, 2) is shown with a circled horizontal arrow in Figure
8.8.1.

Discrete values of the y component of the velocity are defined at the intersection of
vertical primary grid lines and horizontal secondary grid lines, (i, j′), shown as vertical
arrows. The y-velocity node labeled (2, 2) is shown with a circled vertical arrow in Figure
8.8.1.

Finite-difference equations

A distinguishing feature of the staggered grid method is that the governing equations are
enforced at different nodes. For convenience, we denote ux by u and uy by v.
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Figure 8.8.1 Illustration of a staggered grid for computing two-dimensional flow in a rectangular
cavity. The pressure is defined at nodes indicated by the circles, the x velocity component is
defined at nodes indicated by the horizontal arrows, and the y velocity component is defined at
nodes indicated by the vertical arrows.

Applying the x component of the Stokes equation at the (i, j) interior x-velocity node
and introducing similar difference approximations, we obtain

pi+1,j − pi,j
Δx

= μ (
ui−1,j − 2ui,j + ui+1,j

Δx2
+

ui,j−1 − 2ui,j + ui,j+1

Δy2
) (8.8.2)

for i = 2, . . . , Nx and j = 2, . . . , Ny + 1, providing us with (Nx − 1)×Ny equations.

Applying the y component of the Stokes equation at the (i, j) interior y-velocity nodes
and working in a similar fashion, we obtain

pi,j+1 − pi,j
Δy

= μ (
vi−1,j − 2 vi,j + vi+1,j

Δx2
+

vi,j−1 − 2 vi,j + vi,j+1

Δy2
) (8.8.3)

for i = 2, . . . , N + 1 and j = 2, . . . , N , providing us with Nx × (Ny − 1) equations.

Enforcing the continuity equation at the (i, j) pressure node and approximating the
partial derivative with central differences, we obtain

ui,j − ui−1,j

Δx
+

vi,j − ui,j−1

Δy
= 0 (8.8.4)
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for i = 2, . . . , Nx + 1 and j = 2, . . . , Ny + 1, providing us with Nx ×Ny equations.

We have derived a total of

N = (Nx − 1)Ny +Nx(Ny − 1) +NxNy (8.8.5)

difference equations involving interior and phantom exterior velocity nodes, as shown with
arrows in Figure 8.8.1.

Boundary conditions

Unphysical x velocity components are required at the horizontal lines j = 1 and j = Ny +2
for computing the second y derivative of u near the top and bottom boundaries. Corre-
sponding unphysical y velocity components are required at the vertical levels i = 1 and
Nx+2 for computing the second x derivative of v near the left and right boundaries. These
exterior velocities are computed by extrapolation to satisfy the boundary conditions at the
physical levels i′ = 1, i′ = Nx + 1, j′ = 1, and j′ = Ny + 1.

For example, approximating u with a parabola near the lid located at y = by, and
enforcing the no-slip boundary condition u = V , we obtain

u = V +A (y − by)
2 +B (y − by), (8.8.6)

where V is the lid velocity and A, B are unknown coefficients. Applying this expression at
three neighboring grid levels, we obtain,

ui,Ny
= V +A

9

4
h2 −B

3

2
h, ui,Ny+1 = V +A

1

4
h2 −B

1

2
h,

ui,Ny+2 = V +A
1

4
h2 +B

1

2
h, (8.8.7)

where h = Δy. Eliminating A and B, we obtain the velocity at the exterior node,

ui,Ny+2 =
1

3
(8V − 6ui,Ny+1 + ui,Ny

). (8.8.8)

Similar expressions can be derived for the other x and y external velocities.

Code

The preceding difference equations provide us with a complete system of linear algebraic
equations for the nodal velocities and pressures. The system can be compiled and solved
at once, as illustrated in the following MATLAB code entitled cvt stag, located in directory
11 fdm of Fdlib:

%==========

% steady Stokes flow in a rectangular cavity

% occupying 0<x<Lx, 0<y<Ly

% computed on a staggered Cartesian grid

%======
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Lx = 1.0;

Ly = 0.75;

Nx = 24; % x divisions

Ny = 16; % y divisions

visc = 1.0; % viscosity

Vlid = 1; % lid velocity

%---

% prepare

%---

Dx = ax/Nx; Dy = ay/Ny;

Dxs = Dx*Dx; Dys = Dy*Dy;

%---

% initialize

%---

% matrix size (no of eqs):

mats = (Nx-1)*Ny + Nx*(Ny-1) + Nx*Ny;

u = zeros(Nx+1,Ny+1); % impulse matrix for ux

v = zeros(Nx+1,Ny+1); % impulse matrix for uy

p = zeros(Nx+1,Ny+1); % impulse matrix for p

%=======

% compile the coefficient matrix (MAT)

%=======

Jc = 0; % counter of impulses

%---

for ipass=1:3 % impulse for u,v,p

%---

if(ipass==1)

klim = Nx; llim = Ny+1; % u vel

elseif(ipass==2)

klim = Nx+1; llim = Ny; % v vel

elseif(ipass==3)

klim = Nx+1; llim = Ny+1; % pressure

end

%---

for l=2:llim % scan

for k=2:klim

Jc=Jc+1;

%---



586 Fluid Dynamics: Theory, Computation, and Numerical Simulation

if(ipass==1); % impulse

u(k,l) = 1.0;

elseif(ipass==2);

v(k,l) = 1.0;

elseif(ipass==3);

p(k,l) = 1.0;

end

%---

% boundary conditions

%---

for ii=2:Nx

u(ii,1)= (-6*u(ii,2)+u(ii,3))/3.0;

u(ii,Ny+2) = (-6*u(ii,Ny+1)+u(ii,Ny))/3.0;

end

for jj=2:Ny

v(1,jj) = (-6*v(2,jj)+v(3,jj))/3.0;

v(Nx+2,jj) = (-6*v(Nx+1,jj)+v(Nx,jj))/3.0;

end

%---

Ic=0; % counter of equations

for j=2:Ny+1

for i=2:Nx % x Stokes

Ic = Ic+1;

MAT(Ic,Jc) = -(p(i+1,j)-p(i,j))/Dx ...

+visc*(u(i-1,j)-2*u(i,j)+u(i+1,j))/Dxs ...

+visc*(u(i,j-1)-2*u(i,j)+u(i,j+1))/Dys;

MAT(Ic,Jc) = MAT(Ic,Jc)*Dxs;

end

end

for j=2:Ny

for i=2:Nx+1 % y Stokes

Ic = Ic+1;

MAT(Ic,Jc) = -(p(i,j+1)-p(i,j))/Dy ...

+visc*(v(i-1,j)-2*v(i,j)+v(i+1,j))/Dxs ...

+visc*(v(i,j-1)-2*v(i,j)+v(i,j+1))/Dys;

MAT(Ic,Jc) = MAT(Ic,Jc)*Dxs;

end

end

for j=2:Ny+1

for i=2:Nx+1 % continuity

Ic = Ic+1;

MAT(Ic,Jc) = (u(i,j)-u(i-1,j))/Dx ...

+(v(i,j)-v(i,j-1))/Dy;
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MAT(Ic,Jc) = MAT(Ic,Jc)*Dx;

end

end

u = zeros(Nx+1,Ny+1); % reset

v = zeros(Nx+1,Ny+1);

p = zeros(Nx+1,Ny+1);

end % of for k

end % of for l

end % of ipass

%====

% set the right-hand side

%===

for i=1:mats

rhs(i) = 0.0;

end

Ic = (Ny-1)*(Nx-1);

for i=2:Nx % x Stokes

Ic = Ic+1;

rhs(Ic) = rhs(Ic)-8.0*visc*Vlid*Dxs/3/Dys;

end

%====

% set p=0 at the last node

% and find the solution

%====

SOL = rhs(1:mats-1)/MAT(1:mats-1,1:mats-1)’;

SOL(mats) = 0.0;

%====

% distribute the solution

%====

Ic = 0;

for j=2:Ny+1

for i=2:Nx

Ic = Ic+1;

uvel(i,j) = SOL(Ic);

end

end

for j=2:Ny

for i=2:Nx+1
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Ic=Ic+1;

vvel(i,j) = SOL(Ic);

end

end

for j=2:Ny+1

for i=2:Nx+1

Ic = Ic+1;

pressure(i,j) = SOL(Ic);

end

end

%=====

% interpolate the velocity field at the pressure nodes

% for plotting purposes

%=====

for j=2:Ny+1

uvel(1,j) = 0;

uvel(Nx+1,j) = 0;

for i=2:Nx+1

uint(i,j) = 0.5*(uvel(i,j)+uvel(i-1,j));

end

end

for i=2:Nx+1

vvel(i,1) = 0;

vvel(i,Ny+1) = 0;

for j=2:Ny+1

vint(i,j) = 0.5*(vvel(i,j)+vvel(i,j-1));

end

end

%====

% prepare a velocity vector plot

%====

figure(1)

hold on

plot([0 Lx Lx 0 0],[0 0 Ly Ly 0])

axis([-0.1*Lx 1.1*Lx, -0.1*Lx 1.1*Lx])

axis equal

xlabel('x'); ylabel('y')

for j=2:Ny+1

ylevel = 0.5*Dy+(j-2)*Dy;

for i=2:Nx+1

xlevel = 0.5*Dx+(i-2)*Dx;

xarrow = 0.75*Dx*uint(i,j)/Vlid;
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yarrow = 0.75*Dx*vint(i,j)/Vlid;

arrow = arrow cp(xlevel,ylevel,xarrow,yarrow);

plot(arrow(:,1),arrow(:,2));

end

end

Velocity vector fields generated by the code for cavities with different aspect ratios are shown
in Figure 8.8.2.

Particulars of the implementation

The implementation of the numerical procedure features the following particulars:

• The linear system is compiled so that the first block of equations encapsulates the x
component of the Stokes equation, the second block encapsulates the y component of
the Stokes equation, and the third block encapsulates the continuity equation.

• The first block of unknowns encapsulates the x velocity components, the second block
encapsulates the y velocity components, and the third block encapsulates the pressure.

• To generate the coefficient matrix of the linear system, we sequentially set one nodal
value of the x velocity component, y velocity component, or pressure to unity, while
holding all other values to zero. The corresponding column of the coefficient matrix is
given by the residual of the governing equations scanned in the aforementioned order.

• Since the pressure field is defined up to an arbitrary constant, the pressure is set
arbitrarily to zero at the last pressure node. One equation expressing the discrete
implementation of the continuity equation is then discarded to balance the number of
equations to the number of unknowns.

After the computation has been completed, the code calls the custom-made function ar-
row cp near the end to draw nice-looking arrows.

Summary

By using a staggered grid, we have been able to circumvent the explicit derivation of bound-
ary conditions for the pressure. A careful analysis shows that implicit in the numerical
formulation is the Neumann boundary condition that arises by projecting the equation of
motion normal to the boundaries.

Unfortunately, the staggered-grid method becomes considerably more involved and pro-
hibitively expensive when applied to grids defined in general curvilinear coordinates.

8.8.1 Coefficient matrix

(a) Present a pictorial depiction of the coefficient matrix arising from the difference equations
and identify large non-zero blocks.

Problems
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Figure 8.8.2 Velocity vector fields of two-dimensional Stokes flow in cavities with different aspect
ratios driven by a sliding lid computed on a staggered grid using the Fdlib code cvt stag.

(b) Verify that the coefficient matrix of the linear system is singular.

8.8.2 Pressure distribution

Modify the graphics portion of code cvt stag to visualize the pressure field. Present and
discuss contour plots of the pressure field for flow in a square cavity.



Low-Reynolds-number flow 9
9.1 Flow in narrow channels
9.2 Film flow on a horizontal or inclined wall
9.3 Multi-film flow on a horizontal or inclined wall
9.4 Two-layer channel flow
9.5 Flow due to the motion of a sphere
9.6 Point forces and point sources in Stokes flow
9.7 Two-dimensional Stokes flow
9.8 Local solutions

Newton’s second law of motion stipulates that the rate of change of momentum of a fluid
parcel must be balanced by the body force exerted over the parcel volume and by the
surface force exerted on the parcel boundary. Under certain conditions, the rate of change
of momentum of the parcel is small compared to the body and surface force, and can be
neglected without introducing serious error. The flow is then governed by a balance between
the body force and the surface force.

Physically, the fluid momentum is insignificant when the fluid viscosity is high, when
the fluid density is small, when the velocity changes rapidly over a small distance yielding a
sharp spatial gradient, or when the convection velocity of a fluid parcel is sufficiently small.
The formal requirement for fluid inertia to be negligible is that a properly defined Reynolds
number is sufficiently small. How small it should be depends on the particular problem
under consideration.

In this chapter, we consider a family of flows occurring at low Reynolds numbers and
discuss the solution of simplified systems of governing equations that arise by dropping
the inertial terms in the Navier–Stokes equation. The simplification allows us to tackle
successfully a multitude of physical and engineering problems and derive solutions by a host
of analytical and numerical methods.

9.1 Flow in a narrow channel

We begin by considering steady, nearly unidirectional flow in a two-dimensional channel
confined between a gently sloped upper wall and a perfectly flat lower wall, as illustrated
in Figure 9.1.1. The flow is driven by the translation of the upper wall parallel to itself
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Figure 9.1.1 Lubrication flow in a slider bearing with a flat lower wall and a curved upper wall.

with velocity V , and possibly by a pressure drop imposed across the length of the channel
extending between x = 0 and L. In the Cartesian system of coordinates depicted in Figure
9.1.1, the lower wall is located at y = 0 and the upper wall is located at y = h(x). If the
channel height were constant, we would obtain steady unidirectional flow in a channel with
parallel walls discussed in Section 7.1.

Our objective is to compute the velocity and pressure fields, and then evaluate the force
exerted on the lower wall for an arbitrary upper wall profile.

9.1.1 Governing equations

The motion of the fluid is governed by the continuity equation,

∂ux

∂x
+

∂uy

∂y
= 0, (9.1.1)

and by the steady version of the Navier–Stokes equation for an incompressible fluid whose
x and y components are

ρ (ux
∂ux

∂x
+ uy

∂ux

∂y
) = −∂p

∂x
+ μ

(∂2ux

∂x2
+

∂2ux

∂y2
)
+ ρgx, (9.1.2)

and

ρ (ux
∂uy

∂x
+ uy

∂uy

∂y
) = −∂p

∂y
+ μ

(∂2uy

∂x2
+

∂2uy

∂y2
)
+ ρgy. (9.1.3)

Our first task is to show that, under certain conditions, several terms in equations
(9.1.2) and (9.1.3) are negligible compared to other terms and can be discarded, yielding a
simplified system of governing equations, which are known as the equations of lubrication
flow.
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9.1.2 Scaling

We begin the analysis by considering the term ∂ux/∂x on the left-hand side of (9.1.2). If the
upper wall were perfectly flat and parallel to the lower wall, the flow would be unidirectional
and this term would be identically zero.

More generally, suppose that Ux(x1) is the maximum of the magnitude of the x velocity
component at a particular location, x = x1, and Ux(x2) is the corresponding maximum
at another location, x = x2, where the maximum is defined with respect to y. Common
sense suggests that the magnitude of the term ∂ux/∂x will be comparable to the ratio
[Ux(x2)− Ux(x1)]/(x2 − x1).

Now we identify the distance x2−x1 with the length necessary for the difference Ux(x2)−
Ux(x1) to become comparable to Ux(x1), and scale the partial derivative ∂ux/∂x with the
ratio Ux(x1)/(x2 − x1). If the upper wall were perfectly flat and parallel to the lower wall,
the distance x2 − x1 would be infinite and this ratio would vanish.

Similar arguments can be made to show that the term ∂ux/∂y evaluated at x = x1 scales
with Ux(x1)/h(x1), the term ∂2ux/∂x

2 evaluated at x = x1 scales with Ux(x1)/(x2 − x1)
2,

and the term ∂2ux/∂y
2 evaluated at x = x1 scales with Ux(x1)/h

2(x1).

Continuity equation

Next, we consider the continuity equation (9.1.1) and scale the partial derivative ∂uy/∂y
evaluated at x = x1 with Uy(x1)/h(x1), where Uy(x1) is the maximum of the magnitude of
the y velocity component at x = x1. The continuity equation requires that the magnitude
of ∂uy/∂y is comparable to the magnitude of ∂ux/∂x, which was found to be of order
Ux(x1)/(x2 − x1). This can be true only if Uy(x1) scales with Ux(x1)h(x1)/(x2 − x1).

Relative magnitudes

Using the preceding arguments, we find the following:

• The ratio of the magnitude of the first term on the left-hand side of (9.1.2) to the
magnitude of the penultimate term on the right-hand side is

ρUx(x1)
Ux(x1)

x2 − x1

μ
Ux(x1)

h2(x1)

=
ρ h(x1)Ux(x1)

μ

h(x1)

x2 − x1
. (9.1.4)

• The ratio of the magnitude of the second term on the left-hand side of (9.1.2) to the
magnitude of the penultimate term on the right-hand side is

ρ h(x1)
Ux(x1)

x2 − x1

Ux(x1)

h(x1)

μ
Ux(x1)

h2(x1)

=
ρ h(x1)Ux(x1)

μ

h(x1)

x2 − x1
. (9.1.5)
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• The ratio of the magnitude of the second term on the right-hand side of (9.1.2) to the
magnitude of the penultimate term on the right-hand side is

μ
Ux(x1)

(x2 − x1)2

μ
Ux(x1)

h2(x1)

=
( h(x1)

x2 − x1

)2
. (9.1.6)

9.1.3 Equations of lubrication flow

The first fraction on the right-hand sides of equations (9.1.4) and (9.1.5) is the local Reynolds
number of the flow, defined with respect to the local channel height. If the magnitude of
the local Reynolds number and the magnitude of the ratio h(x1)/(x2 − x1) are such that
the right-hand sides of equations (9.1.4), (9.1.5), and (9.1.6) are much smaller than unity,
the first and penultimate terms on the right-hand side of (9.1.2) dominate the x component
of the equation of motion, leading us to the simplified equation of motion

0 = −∂p

∂x
+ μ

∂2ux

∂y2
+ ρ gx, (9.1.7)

which describes locally unidirectional flow.

Pressure field

Equation (9.1.7) requires that the magnitude of the term −∂p/∂x + ρ gx is comparable to
the magnitude of the term μ∂2ux/∂y

2, which scales with μUx(x1)/h
2(x1).

Consideration of the individual terms on both sides of the y component of the equation
of motion (9.1.3) shows that the term −∂p/∂y+ ρ gy scales with μUx(x1)/[(x2 − x1)h(x1)].
It is evident then that, when the ratio h(x1)/(x2 − x1) is small, non-hydrostatic pressure
variations are negligible along the y axis. Accordingly, the y component of the equation of
motion (9.1.3) reduces to

0 = −∂p

∂y
+ ρ gy. (9.1.8)

Differentiating this equation once with respect to x, we find that the axial pressure gradient,
∂p/∂x, is independent of the lateral position, y, and depends only on the streamwise position,
x.

Physically, the flow can be assumed to be locally unidirectional and parallel to the x
axis. At every x station, the upper and lower walls appear to be parallel, separated by a
distance that is equal to the local channel height, h(x).

9.1.4 Lubrication flow in a slider bearing

As an application, we consider flow in the lubrication zone of a slider bearing, as illustrated
in Figure 9.1.2. The lower wall is horizontal while the the upper planar wall is sloped gently
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Figure 9.1.2 Lubrication flow in a slider bearing with a a flat lower wall and a planar inclined upper
surface.

by an angle, α. The pressure is specified at both ends of the lubrication zone extending from
x = 0 to L. If the fluid at an end of the lubrication zone is exposed to the atmosphere, then
the pressure at that end is equal to the pressure of the atmosphere. Hydrostatic pressure
variations in the y direction are assumed negligibly small.

Reviewing the scaling arguments discussed in Sections 9.1.2 and 9.1.3, we identify the
distance x2 − x1 with the length of the lubrication zone, L. A special case arises when the
two walls are parallel, as the distance x2 − x1 becomes infinite and no error is introduced
by dropping the inertial terms in the equation of motion.

Velocity and flow rate

To simplify the analysis, we introduce the approximation tanα 	 α and express the local
clearance of the channel as

h(x) = h0 − αx, (9.1.9)

where h0 ≡ h(x = 0) is the clearance of the channel at the beginning of the lubrication zone.

Next, we use the velocity profile derived in Section 7.1 for flow in a two-dimensional
channel with parallel-sided walls, and find that the solution of the lubrication equation
(9.1.7) is given by

ux(x, y) = V
(
1− y

h(x)

)− 1

2μ
y
(
h(x)− y

) dp
dx

. (9.1.10)

The position-dependent streamwise pressure gradient, (dp/dx)(x), is an unknown that must
be computed as part of the solution. The local flow rate along the channel corresponding
to the velocity profile (9.1.10) is

Q ≡
∫ h(x)

0

ux(x, y) dy =
1

2
V h(x)− 1

12

h3(x)

μ

dp

dx
. (9.1.11)

Note the linear or cubic dependence on the local film thickness, h(x), on the right-hand side.
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A key observation is that, because in a stationary frame of reference the flow is steady,
the flow rate, Q(x), is not only constant in time, but also independent of the streamwise
position, x. To confirm this assertion, we perform a mass balance over a control area confined
between two cross-sections of the channel separated by an infinitesimal distance, and note
that fluid neither enters nor escapes from the control volume through the bottom or top.

Computation of the pressure

Solving equation (9.1.11) for the axial pressure gradient and substituting h(x) = h0 − αx
for the channel height, we obtain

dp

dx
= 6μ

V

(h0 − αx)2
− 12μ

Q

(h0 − αx)3
. (9.1.12)

Integrating the pressure gradient with respect to x should produce a specified pressure drop
across the lubrication zone. This mathematical condition reflects the physical environment
under which the lubrication flow takes place. Performing the integration, we find that

Δp ≡ p0 − pL = −
∫ L

0

dp

dx
dx = 6μ

∫ L

0

( − V

(h0 − αx)2
+ 2

Q

(h0 − αx)3
)
dx, (9.1.13)

where p0 = p(x = 0) and pL = p(x = L). Expression (9.1.13) relates the flow rate, Q, to
the pressure at the two ends of the lubrication zone.

Vanishing pressure drop

If the two end pressures are equal, Δp = 0. Carrying out the integration on the right-hand
side of (9.1.13), solving for Q and simplifying, we derive the expression

Q = V
h0 hL

h0 + hL
, (9.1.14)

where hL = h0 − αL is the clearance of the channel at the end of the lubrication zone. If
either h0 or hL is zero, in which case the channel is closed at one end, the flow rate is also
zero.

Substituting the expression given in (9.1.14) for the flow rate into the right-hand side
of (9.1.12), and carrying out the integration, we derive the desired pressure distribution,

p(x) = p0 +

∫ x

0

dp

dξ
dξ = p0 + 6μV

α

h0 + hL

1

(h0 − αx)2
x (L− x). (9.1.15)

It is reassuring to confirm that the second term on the right-hand side of (9.1.15) vanishes
at x = L, yielding the zero specified pressure drop.

It is convenient to introduce the dimensionless geometrical factor

κ ≡ h0

αL
, (9.1.16)
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taking values in the range (−∞, 0) or (1,∞). A negative value corresponds to an upper
wall that slopes upward, whereas a positive value corresponds to an upper wall that slopes
downward, as shown in Figure 9.1.2. Values of κ in the range [0, 1] are prohibited by the
requirement that the upper wall does not slope downward so much as to touch the lower
wall before the end of the lubrication zone. When κ = 1, the two walls meet at x = L and
the channel is closed at the right end.

The y component of the hydrodynamic force exerted on the upper sloped surface can
be approximated with the integral

Fy =

∫ L

0

p(x) dx. (9.1.17)

Substituting the pressure distribution (9.1.15) and carrying out the integration, we obtain

Fy = p0 L+ 6μV
L2

h2
0

κ2
(
ln

h0

hL
− 2

h0 − hL

h0 + hL

)
. (9.1.18)

We note the divergence of the logarithmic term for zero end-point channel height.

We have derived expressions for the flow rate, pressure distribution, and normal force
given, respectively, by equations (9.1.14), (9.1.15), and (9.1.18). The derivations of these
expressions concludes the main goal of our analysis.

Lift coefficient

To interpret the results in physical terms, we restate expression (9.1.18) as

Fy = p0 L+ 6μV
( L

h0

)2
G(κ), (9.1.19)

where the function G(κ), expressing the hydrodynamic lift or load force, is given by

G(κ) ≡ κ2 ln
κ

κ− 1
− 2

κ2

2κ− 1
. (9.1.20)

A graph of G(κ) in its domain of definition is shown in Figure 9.1.3.

The results show that the lubrication force is positive when the lower wall moves toward
the minimum gap, and negative when the lower wall moves towards the maximum gap. In
the first case, the lift force will be able to balance the weight of an overlying object whose
lower surface is represented by the inclined plane, provided that κ is sufficiently close to
unity. In the second case, the lubrication force pulls the object toward the plane wall, closing
the gap and choking the flow.

9.1.5 Flow in a wavy channel

The preceding analysis can be extended in a straightforward fashion to arbitrary channel
geometries. A fundamental assumption is that the conditions for the right-hand sides of
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Figure 9.1.3 Graph of the function G(κ) expressing the hydrodynamic lift force exerted on the
inclined plane shown in Figure 9.1.2.
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Figure 9.1.4 Lubrication flow in a furrowed channel confined between a translating plane wall and a
stationary wavy wall.

(9.1.4)–(9.1.6) to be small are satisfied. This means that the local Reynolds number and
the ratio h(x1)/(x2 − x1) must both be small.

As an example, we consider flow in a periodic channel confined between a plane and
a wavy wall, as illustrated in Figure 9.1.4. The local channel height is described by the
equation

h(x) = h0 + a cos kx, (9.1.21)

where h0 is the average channel height, L is the period, k = 2π/L is the wave number, and
a is the amplitude of the corrugations. The streamwise velocity and flow rate are described
by equations (9.1.10) and (9.1.11), where h(x) given in (9.1.21).
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The counterpart of equation (9.1.12) is

dp

dx
= 6μ

V

(h0 + a cos kx)2
− 12μ

Q

(h0 + a cos kx)3
. (9.1.22)

The pressure drop over one period is

Δp ≡ p0 − pL = −
∫ L

0

dp

dx
dx, (9.1.23)

yielding

Δp = 6μ

∫ L

0

(
− V

(h0 + a cos kx)2
+ 2

Q

(h0 + a cos kx)3

)
dx. (9.1.24)

Solving for Q, we obtain

Q =
1

2J3

(Δp

6μ
+ V J2), (9.1.25)

where

Jm =

∫ L

0

dx

(h0 + a cos kx)m
. (9.1.26)

We have derived an expression for the flow rate in terms of the specified wall velocity and
pressure drop.

Numerical integration

The definite integral in (9.1.26) is best computed by numerical methods. Interestingly,
because the integrand is periodic in x, the best results are obtained by using the simplest
algorithm of numerical integration expressed by the trapezoidal rule. The method involves
dividing the integration domain, (0, L), into N intervals of equal length, Δx = L/N , and
introducing the approximation

Jm 	 Δx

N∑
i=1

1

(h0 + a cos kxi)m
, (9.1.27)

where xi = (i − 1)Δx are the interval end points. The Euler–Maclaurin theorem ensures
that, as the number of divisions increases, the difference between the left- and right-hand
side of (9.1.27), defined as the numerical error, decreases faster than any power of 1/N ,
which allows for rapid convergence.

Once the flow rate has been found, the result can be substituted into the right-hand side
of (9.1.24), and the expression thus obtained can be integrated by analytical or numerical
methods to yield the pressure distribution along the channel. The velocity then follows from
(9.1.10).
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Figure 9.1.5 A two-dimensional body presses against a sliding wall under the influence of its weight
or another normal force. The lubrication force developing between the body and the wall lifts the
body away from the wall.

9.1.6 Dynamic lifting

A generalization of the lubrication analysis allows us to develop a method of simulating the
lateral motion of a two-dimensional body pressing against a horizontal wall that translates
along the x axis with velocity V , as illustrated in Figure 9.1.5. The clearance between
the body and the translating wall is filled with a lubricating fluid. This configuration is a
two-dimensional model of the flow between a piston ring pressing against the cylinder of a
combustion chamber in an internal combustion engine of a vehicle, such as the last American
sedan.

In the configuration shown in Figure 9.1.5, the origin of the x axis is set at the point of
minimum clearance. Flow in the lubrication zone, extending from x = −b to a, generates
a pressure field. The associated lift force causes the body to move along the y axis with
velocity

VB =
dc

dt
, (9.1.28)

where c is the minimum film thickness defined as the minimum clearance between the body
and the translating wall. Our objective is to compute the evolution of the function c(t) from
a specified initial state. Hydrostatic pressure variations in the y direction are assumed to
be negligibly small.

Governing equations

A mass balance for the lubricating fluid requires that

dc

dt
= −∂Q

∂x
. (9.1.29)

Evaluating the flow rate, Q(x, t), from the right-hand side of (9.1.11), and rearranging, we
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derive a partial-differential equation for the pressure,

∂

∂x

( h3

μ

∂p

∂x

)
= 6V

∂h

∂x
+ 12

dc

dt
, (9.1.30)

subject to an a priori unknown velocity dc/dt, which is to be solved subject to the specified,
possibly time-dependent, boundary condition

p(x = −b) = pleft(t), p(x = a) = pright(t), (9.1.31)

where pleft(t) and pright(t) are two specified functions.

The vertical velocity of the body, VB, is determined by a balance between the weight of
the body, W , and the lubrication lift force due to the pressure,∫ a

−b

p(x, t) dx = W (9.1.32)

at any instant.

Numerical method

The solution can be computed using the following algorithm:

1. Solve the following redacted version of equation (9.1.30) for a first modular pressure
function, π1(x),

∂

∂x
(
h3

μ

∂π1

∂x
) = 6V

∂h

∂x
, (9.1.33)

subject to the required boundary conditions (9.1.31).

2. Solve the following redacted version of equation (9.1.30) for a second modular pressure
function, π2(x),

∂

∂x
(
h3

μ

∂π2

∂x
) = 12, (9.1.34)

subject to the homogeneous boundary conditions p(x = −b) = 0 and p(x = a) = 0.

3. Set

p(x) = π1(x) +
dc

dt
π2(x). (9.1.35)

Straightforward substitution shows that the pressure distribution (9.1.35) satisfies the
governing equation (9.1.30) and conforms with the pressure boundary conditions at
both ends.
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4. Substitute the pressure distribution (9.1.35) into (9.1.32) to obtain∫ a

−b

π1(x) dx+
dc

dt

∫ a

−b

π2(x) dx = W, (9.1.36)

and carry out the integration to extract dc/dt.

5. Having evaluated dc/dt, update the minimum clearance, c, over a small time step, Δt.

6. Return to Step 1 and repeat the calculations for another time step.

Finite-difference solution for the pressure

A finite-difference method can implemented for computing the modular pressure distribu-
tions, π1 and π2, in the lubrication zone. In the numerical implementation, the lubrication
zone is divided into N intervals separated by N + 1 nodes, xi, as shown in Figure 9.1.5.
The derivatives with respect to x in equations (9.1.33) and (9.1.34) are approximated with
finite differences, yielding tridiagonal systems of algebraic equations for the nodal pressures
with the same coefficient matrix.

For example, with reference to equation (9.1.33), we define for convenience

F(x) ≡ ∂

∂x

( h3

μ

∂π1

∂x

)
=

∂

∂x

( h3

μ
)
∂π1

∂x
+

h3

μ

∂2π1

∂x2
, (9.1.37)

and use central differences to approximate

F(xi) 	 ∂

∂x

( h3

μ

)
i

(π1)i+1 − (π1)i−1

2Δx
+

h3
i

μ

(π1)i+1 − 2 (π1)i − (π1)i−1

Δx2
(9.1.38)

at the ith interior node for i = 2, . . . , N , where (π1)1 = pleft, (πN+1)1 = pright, and Δx =
(a + b)/N . Enforcing equation (9.1.33) at the ith node provides us with the difference
equation

ci (π1)i−1 + ai (π1)i + bi (π1)i+1 = 6V Δx2
(∂h
∂x

)
i
, (9.1.39)

where

ci =
h3
i

μ
− Δx

2

∂

∂x

( h3

μ

)
i
, ai = −2

h3
i

μ
, bi =

h3
i

μ
+

Δx

2

∂

∂x

( h3

μ

)
i
, (9.1.40)

subject to the definition hi ≡ h(xi). The solution can be found using the Thomas algorithm
discussed in Section 8.2.4.

The following function entitled bear 2d press, located in directory bear 2d inside di-
rectory 05 lub of Fdlib, generates the tridiagonal systems of equations and computes the
modular pressure distributions π1 and π2:
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function [pi1,pi2] = bear 2d pressure ...

...

(visc ...

,x ...

,h ...

,dhdx ...

,Dx ...

,V ...

,N ...

,pleft,prite ...

)

%==================================

% Solve the lubrication equation for the pressure

% using a finite-difference method

%

% Solutions are generated for

% longitudinal motion (press1)

% and normal motion (press2)

%

% x(i): grid nodes

% h(i): gap

% visc: viscosity

% pi1: left-end pressure

% pi2: right-end pressure

% act, btr, ctr: tridiagonal entries

% rhs: right-hand side

% sln: solution for the pressure

%===================================

%---

% prepare

%---

Dxh = 0.5*Dx;

Dx2 = 2.0*Dx;

Dxs = Dx^2;

%---

% auxiliary

%---

for i=1:N+1

q(i) = h(i)^3/visc;

end

dqdx(1) = (q(2)-q(1))/Dx; % forward difference

for i=2:N
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dqdx(i) = (q(i+1)-q(i-1))/Dx2; % central difference

end

dqdx(N+1) = (q(N+1)-q(N))/Dx; % backward difference

%---

% compute a particular solution

% with exact boundary conditions (pleft and prite)

%

% act, btr, ctr are the tridiagonal entries

% of the coefficient matrix

%---

factor = 6.0*V*Dxs;

atr(1) = -2.0*q(2);

tmp = dqdx(2)*Dxh;

btr(1) = q(2)+tmp;

rhs(1) = factor*dhdx(2) - pleft*(q(2)-tmp);

for i=3:N-1

atr(i-1) = -2.0*q(i);

tmp = dqdx(i)*Dxh;

btr(i-1) = q(i)+tmp;

ctr(i-1) = q(i)-tmp;

rhs(i-1) = factor*dhdx(i);

end

atr(N-1) = -2.0*q(N);

ctr(N-1) = q(N)-tmp;

rhs(N-1) = factor*dhdx(N)-prite*(q(N)+tmp);

%---

% solve N-1 equations by the Thomas algorithm

%---

sln = thomas ...

...

(N-1 ...

,atr,btr,ctr ...

,rhs ...

);

pi(1) = pleft; % end node

pi(N+1) = prite; % end node

for i=1:N-1

pi(i+1) = sln(i);

end
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%---

% compute a homogeneous solution with dcdt=1.0

% and homogeneous boundary conditions

%---

cns = 12.0*Dxs;

for i=1:N-1

rhs(i) = cns;

end

%---

% solve N-1 equations with the new rhs

%---

sln = thomas ...

...

(N-1 ...

,atr,btr,ctr ...

,rhs ...

);

pi2(1) = 0.0; % end node

pi2(N+1) = 0.0; % end node

for i=1:N-1

pi2(i+1) = sln(i);

end

%---

% Done

%---

return

The following code entitled bear 2d, located in directory 05 lub of Fdlib, performs the
simulation

%---

% parameters

%---

a = 0.25; % lubrication zone

b = 0.75; % lubrication zone

delta = 0.05; % parabolicity delta

c = 0.01; % initial minimum film thickness c

pleft = 0.0; % pressure at left end
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prite =-50.0; % pressure at right end

visc = 1.0; % viscosity

Wload = 20.0; % normal load

V = 5.0; % velocity of translation V

Dt = 0.020; % time step

N = 2*2*32; % discretization level

Nstep = 100; % number of time steps

%---

% prepare

%---

Dx = (a+b)/N;

Dx2 = 2.0*Dx;

%---

% prepare to plot

%---

figure(1)

hold on

xlabel('x','fontsize',15)

ylabel('pressure','fontsize',15)

set(gca,'fontsize',15)

box on

axis([-b a -4000 4000])

%----------------------------

% Define nodes

% extending from x = -b to a

%----------------------------

for i=1:N+1

x(i) = -b+(i-1.0)*Dx;

h(i) = c+delta*(x(i)/a)^2;

end

%---------------------------

% Compute dh/dx at interior nodes

% using central differences

%---------------------------

for i=2:N

dhdx(i) = (h(i+1)-h(i-1))/Dx2;

end

%===============

for Istep=1:Nstep % time stepping

%===============
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time(Istep) = (Istep-1)*Dt;

gap(Istep) = c; % c for plotting

%---

% solve for the pressures

%----

[pi1,pi2] = bear 2d pressure ...

...

(visc ...

,x ...

,h ...

,dhdx ...

,Dx ...

,V ...

,N ...

,pleft,prite ...

);

%--------------------------------------------

% Integrate the pressure by the trapezoidal

% rule to obtain the normal force exerted on the body

%--------------------------------------------

F1 = 0.5*(pi1(1)+pi1(N+1));

F2 = 0.5*(pi2(1)+pi1(N+1));

for i=2:N

F1 = F1 + pi1(i);

F2 = F2 + pi2(i);

end

F1 = F1*Dx;

F2 = F2*Dx;

%---

% Compute dc/dt to balance the load

% using the equation:

%

% F1 + F2 * dcdt = Wload

%---

dcdt = (Wload-F1)/F2;

%---

% recover the physical pressure;

%---
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for i=1:N+1

press(i) = pi1(i) + dcdt*pi2(i);

end

figure(1)

if(Istep==1)

plot(x,press,'r.-')

else

plot(x,press,'k-')

end

%---

% advance c and update the profile h(i)

%---

dc = dcdt*Dt

c = c + dc;

for i=1:N+1

h(i) = h(i)+dc;

end

%===

end % of time stepping

%===

figure(2)

hold on

plot(time,gap,'k')

xlabel('time','fontsize',15)

ylabel('c','fontsize',15)

set(gca,'fontsize',15)

box on

Results of numerical simulations for the conditions implemented in the code are presented
in Figure 9.1.6.

9.1.1 Lubrication in a slider bearing

Confirm that the function G(κ) defined in (9.1.20) satisfies the symmetry property

G(κ− 1

2
) = −G(

1

2
− κ). (9.1.41)

Explain the underlying physical reason.

Problems
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Figure 9.1.6 Evolution of (a) the pressure distribution and (b) the lubrication gap, computed by
the numerical method implemented in the code bear 2d. The initial distribution is plotted by
connected dots in (a).

9.1.2 Flow in a symmetric channel

Consider pressure-drive flow in a symmetric channel with stationary wavy walls located at

y = h(x) = ±(h0 + a cos kx). (9.1.42)

Derive an expression for the flow rate in terms of the pressure drop over one period.

9.1.3 Flow in a wavy channel

(a) Consider flow in a channel confined between a plane wall and a wavy wall, as discussed
in the text, driven by an imposed pressure drop with V = 0. Prepare a graph of the
dimensionless flow rate

Q̂ ≡ 12μLQ/(h3
0 Δp) (9.1.43)

against the scaled amplitude a/h0, and discuss its functional form. The integral on the right-
hand side of (9.1.25) should be computed using the trapezoidal rule, as shown in equation
(9.1.27).

(b) Repeat (a) for flow driven by boundary motion, Δp = 0. Prepare a graph of the
dimensionless flow rate

Q̂ ≡ 2Q/(V h0) (9.1.44)

against the scaled amplitude a/h0, and discuss its functional form.

9.1.4 Dynamical simulation of the lifting of a body due to lubrication

Run the code bear 2d for a set of conditions of your choice. Prepare a graph of the minimum
film thickness, c, against time and discuss the results.
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Figure 9.2.1 Illustration of a viscous film flowing down an inclined plane. The motion of the fluid is
governed by the simplified equations of lubrication flow.

9.2 Film flow on a horizontal or inclined wall

One distinguishing feature of the flow in narrow channels discussed in Section 9.1 is that
the velocity profile can be approximated locally with the parabolic profile of unidirectional
flow in a channel confined between two parallel plane walls. An analogous simplification
is possible in the case of a liquid film bounded by a free surface where the shear stress is
required to vanish, discussed in this section, as well as in the case of a liquid layer bounded by
a fluid interface where the shear stress is required to be continuous on either side, discussed
in Section 9.3.

9.2.1 Thin-film flow

Consider a liquid film evolving on a horizontal wall or inclined plane, as illustrated in Figure
9.2.1. In the inclined system of coordinates depicted in this figure, the wall is located at
y = 0 and the free surface is located at y = h(x, t). The components of the acceleration of
gravity vector are given by

gx = g sin θ0, gy = −g cos θ0, (9.2.1)

where g is the magnitude of the acceleration of gravity and β is the inclination angle of the
wall. If the wall is horizontal, β = 0; if the wall is vertical, β = π/2. The pressure above the
film is assumed to be uniform and equal to the atmospheric pressure, patm. Our objective is
to derive a differential equation governing the evolution of the film thickness, h(x, t), from
a specified initial profile.

Governing equations

Repeating the scaling arguments of Section 9.1 for lubrication flow, we find that, if the
free surface is sloped gently, the magnitude of the streamwise derivative ∂h/∂x is uniformly
small and the x and y components of the equation of motion reduce to the equations of
lubrication flow stated in (9.1.7) and (9.1.8).
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Integrating equation (9.1.8) with respect to y from an arbitrary location up to the
location of the free surface, we obtain

p(x, y, t) = pfs − ρ gy (h− y), (9.2.2)

where pfs ≡ p(x, y = h(t), t) is the pressure on the side of the liquid at the free surface.

The simple form of the lubrication equation (9.1.7) allows us to pretend that the flow is
locally unidirectional, parallel to the x axis. Approximating the velocity profile across the
uneven film with the Nusselt parabolic profile across a flat film bounded by a planar free
surface, given in equation (7.2.5), we obtain

ux(x, y, t) =
(− ∂p

∂x
+ ρ gx

) 1

2μ
y (2h− y). (9.2.3)

Note that the x dependence enters the problem formulation parametrically by way of the
pressure gradient along the free surface, ∂p/∂x(x). The term enclosed by the first set of
parentheses on the right-hand side of (9.2.3) incorporates the combined effects of gravity
and streamwise pressure gradient due to surface tension, as will be discussed shortly.

The flow rate across a plane that is normal to the x axis is given by

Q(x, t) ≡
∫ h(x,t)

0

ux(x, y, t) dy. (9.2.4)

Performing the integration, we obtain

Q(x, t) = (−∂p

∂x
+ ρ gx)

1

3μ
h3(x, t). (9.2.5)

Further analysis involves two key steps.

Evaluation of the pressure gradient

The normal stress undergoes a jump across the interface due to the surface tension, γ,
according to the interfacial condition (4.3.4). In the case of locally unidirectional flow, the
normal stress can be approximated with the negative of the pressure, yielding the pressure
jump condition

pfs = patm + γ κ, (9.2.6)

where κ is the interfacial curvature. The curvature of a nearly planar free surface can be
approximated with the linear form

κ(x) 	 −∂2h

∂x2
. (9.2.7)

Substituting (9.2.7) into (9.2.6) and the result into (9.2.2), we obtain an expression for the
pressure distribution inside the film in terms of the film thickness,

p(x, y, t) 	 patm − ρ gy (h− y)− γ
∂2h

∂x2
. (9.2.8)
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Substituting further (9.2.8) into the right-hand side of (9.2.5), we derive an expression for
the flow rate in terms of the film thickness,

Q(x, t) =
ρ

3μ
h3
(
gx + gy

∂h

∂x
+

γ

ρ

∂3h

∂x3

)
. (9.2.9)

A net local flow normal to the wall occurs in the case of a sloped interface, ∂h/∂x 
= 0.

Mass balance

Next, we perform a mass balance over a control area that is confined by (a) the wall, (b) two
parallel planes that are normal to the inclined plane and are separated by an infinitesimal
distance, (c) the corresponding section of the evolving free surface. The mass balances
requires that the rate of volumetric accumulation in the control volume is equal to the
difference in the flow rates into and out from the control volume. In differential form,

∂h

∂t
= −∂Q

∂x
. (9.2.10)

The minus sign is justified by observing that, if ∂Q/∂x is negative, the rate of change,
∂h/∂t, is positive, in agreement with physical intuition.

Evolution equation for the film thickness

To complete the mathematical formulation, we substitute the right-hand side of (9.2.9) into
the right-hand side of (9.2.10), and thus obtain a first-order partial differential equation in
time governing the evolution of the film thickness,

∂h

∂t
+

ρ

3μ

∂

∂x

(
h3 (gx + gy

∂h

∂x
+

γ

ρ

∂3h

∂x3
)
)
= 0. (9.2.11)

The products of the film thickness, h, and its spatial derivatives renders equation (9.2.11) a
highly nonlinear partial differential equation. To compute the solution, an initial condition
for h(x, t = 0) at the origin of computational time must be specified.

Carrying out the differentiation with respect to x on the left-hand side, we find that
the fourth derivative, ∂4h/∂x4, emerges from the term involving the surface tension. Since
(9.2.11) is a fourth-order equation, two boundary conditions at each end of the solution
domain, involving h, ∂h/∂x, or ∂2h/∂x2, are required. If the film is periodic, the bound-
ary conditions are replaced by periodicity conditions for the film thickness and its spatial
derivatives.

In the absence of surface tension, γ = 0, we obtain a second-order differential equation.
In that case, only one boundary condition at each end of the solution domain, involving
h or ∂h/∂x, is required. If the film is periodic, the boundary conditions are replaced by
periodicity conditions.
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Steady state

At steady state, ∂h/∂t = 0, the shape of the free surface is described by the nonlinear
ordinary differential equation

d

dx

(
h3(gx + gy

dh

dx
+

γ

ρ

d3h

dx3
)
)
= 0, (9.2.12)

which admits the flat-film Nusselt solution derived in Section 7.2 for constant and uniform
film thickness.

9.2.2 Numerical methods

A variety of numerical methods are available for solving the differential equation (9.2.11),
including finite-difference, finite-volume, finite-element, and spectral methods. A finite-
difference method will be discussed in Section 9.3 in the context of multi-layer film flow.
To illustrate an alternative, in this section we discuss the implementation of an entry-level
finite-volume method.

Finite-volume method

We are interested in computing the evolution of a film that is, and remains, spatially peri-
odic with period L. To implement the finite-volume method, we divide the computational
domain, extending from x = 0 to L, into N intervals of equal length Δx = L/N , also called
finite volumes, as illustrated in Figure 9.2.2. The end points of the ith interval are denoted
as

xE
i = (i− 1)Δx (9.2.13)

and the mid-point is denoted as

xM
i = (i− 1

2
)Δx (9.2.14)

for i = 1, . . . , N . Values of the film-thickness corresponding to xE
i and xM

i are denoted,
respectively, by hE

i and hM
i .

A distinguishing feature of the finite-volume method is that the governing equation
(9.2.11) is integrated over the length of each element to reduce the order of the highest
derivative. Considering the ith element, we write∫ xE

i+1

xE
i

∂h

∂t
dx+

ρ

3μ

(
h3(gx + gy

∂h

∂x
+

γ

ρ

∂3h

∂x3
)
)
xE
i+1

− ρ

3μ

(
h3 (gx + gy

∂h

∂x
+

γ

ρ

∂3h

∂x3
)
)
xE
i

= 0. (9.2.15)

Using the mid-point rule to approximate the integral on the left-hand side of (9.2.15), we
obtain ∫ xE

i+1

xE
i

∂h

∂t
dx 	

(∂h
∂t

)
xM
i

Δx. (9.2.16)
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Figure 9.2.2 A finite-volume grid used to compute the evolution of a periodic film down an inclined
plane.

Approximating further the time derivative on the right-hand side of (9.2.16) with a first-
order forward-difference, we obtain( ∂h

∂t

)
xM
i

	
( h(t+Δt)− h(t)

Δt

)
xM
i

. (9.2.17)

Next, we substitute (9.2.17) into (9.2.16) and the result into (9.2.15). Solving the emerging
expression for h(xM

i , t+Δt), we obtain

h(xM
i , t+Δt) = h(xM

i , t)− Δt

Δx

ρ

3μ

(
h3(gx + gy

∂h

∂x
+

γ

ρ

∂3h

∂x3
)
)
xE
i+1

+
Δt

Δx

ρ

3μ

(
h3(gx + gy

∂h

∂x
+

γ

ρ

∂3h

∂x3
)
)
xE
i

, (9.2.18)

where the right-hand side is evaluated at t.

Finally, we express the values of the function h and its spatial derivatives at the element
end points in terms of values at the mid-points using a combination of averaging and finite-
difference approximations. For example, we write

h(xE
i+1) 	

1

2

[
h(xM

i ) + h(xM
i+1)

]
,

(∂h
∂x

)
xE
i+1

	 h(xM
i+1)− h(xM

i )

Δx
,

(∂3h

∂x3

)
xE
i+1

	 h(xM
i+2)− 3h(xM

i+1) + 3h(xM
i )− h(xM

i−1)

Δx3
. (9.2.19)

The periodicity condition requires that

h(xM
−1) = h(xM

N−1), h(xM
0 ) = h(xM

N ),

(9.2.20)

h(xM
N+1) = h(xM

1 ), h(xM
N+2) = h(xM

2 ).

These relations allow us to evaluate of the right-hand sides of equation (9.2.19) at the ends
of the computational domain extending over period.
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The numerical procedure for simulating the evolution of the film from a given initial
condition involves the following steps:

1. Specify the values of hM
i at the origin of computational time.

2. Choose a time step, Δt.

3. Evaluate expressions (9.2.19) and (9.2.20) at the element end points.

4. Compute the right-hand side of (9.2.18), and thereby obtain updated values of the
film thickness at the mid-points.

5. Return to Step 3 and repeat the calculation for another step.

The method requires a small time step, Δt, to prevent the onset of numerical instability.
Implicit methods where the second and third terms on the right-hand side of (9.2.18) are
evaluated at time t+Δt overcome this limitation at the expense of having to solve a system
of nonlinear equations.

9.2.1 Finite-volume method

Write a computer code that uses the finite-volume method discussed in the text to simulate
the evolution of a periodic film resting on a horizontal wall or flowing down an inclined
plane. Compute the evolution of a film with an initially sinusoidal free surface resting on a
horizontal wall. Investigate by numerical experimentation and discuss the effect of surface
tension.

9.3 Multi-film flow on a horizontal or inclined wall

Extending the flow configuration discussed in Section 9.2, now we consider the more general
case of an arbitrary number of N superimposed films flowing down an inclined plane, as
illustrated in Figure 9.3.1. For the multi-layer configuration to be stable, the density of the
films must be constant or decrease with distance from the wall; otherwise, a gravitational
instability due to unstable density stratification, known as the Rayleigh–Taylor instability,
will arise. Multi-layer flow is encountered in the manufacturing of photographic films during
the process of slide coating.

To generalize the discussion, we allow the inclined wall to exhibit small-amplitude pe-
riodic corrugations around a mean value. In the inclined system of coordinates defined in
Figure 9.3.1, the wall is described by a function, y = yw(x), and the interfaces are described
by the N functions,

y = yi(x, t) (9.3.1)

for i = 1, . . . , N , where the Nth interface is the free surface. The ith film is confined between
the interfaces labeled i−1 and i, with the understanding that the zeroth interface represents
the wall.

Problem
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Figure 9.3.1 Illustration of multi-film flow down an inclined wall with periodic corrugations. The
interface labels are shown in the left and the film labels are shown on the right. The top interface
is a free surface.

Equations of lubrication flow

When the wall and interfaces are nearly flat, that is, |∂yw/∂x| < 1 and |∂yi/∂x| < 1 for
i = 0, . . . N , the flow inside each layer is locally nearly unidirectional along the x axis. The
x and y components of the equation of motion simplify into the equations of lubrication
flow,

∂p(i)

∂x
= μi

∂2u
(i)
x

∂y2
+ ρi gx,

∂p(i)

∂y
= ρi gy (9.3.2)

for i = 1, . . . , N , where μi and ρi is the viscosity and density of the ith layer, and u
(i)
x (y) is

the corresponding velocity profile. The no-slip boundary condition at the wall requires that

u(1)
x (y = yw) = 0. (9.3.3)

Kinematic and dynamic interfacial conditions are required at the interfaces and at the free
surface.

Interfacial conditions

Continuity of velocity across the interfaces requires that

u(i)
x (y = yi) = u(i+1)

x (y = yi) (9.3.4)

for i = 1, . . . , N − 1.
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Continuity of shear stress across the interfaces requires that

μi

( ∂u
(i)
x

∂y

)
y=yi

= μi+1

( ∂u
(i+1)
x

∂y

)
y=yi

(9.3.5)

for i = 1, . . . , N , with the understanding that μN+1 = 0, which ensures that the shear stress
vanishes at the free surface.

Balancing the normal stresses on either side of the ith interface involving the corre-
sponding interfacial tension, γi, we obtain

(p(i))y=yi
= (p(i+1))y=yi

+ γi κi (9.3.6)

for i = 1, . . . , N , where κi is the curvature of the ith interface or free surface, with the
understanding that p(N+1) = patm.

The statement of the problem is now complete. A procedure for computing the solution
will be outlined.

Pressure gradient

Our first task is to compute the pressure gradient on either side of each interface. We begin
by integrating the second equation in (9.3.2) with respect to y from the ith interface up to
an arbitrary point, and use the interfacial condition (9.3.6), finding

p(i)(x, y) =
(
p(i+1)

)
y=yi(x)

(x) + γi κi + ρi gy [ y − yi(x) ] (9.3.7)

for i = 1, . . . , N . Note that the first term on the right-hand side depends explicitly and
implicitly on x but is independent of y.

Next, we differentiate equation (9.3.7) with respect to x, and use the chain rule of
differentiation to write

∂p(i)

∂x
=

∂p(i+1)

∂x
+

∂p(i+1)

∂y

∂yi
∂x

+ γi
∂κi

∂x
− ρi gy

∂yi
∂x

(9.3.8)

under the assumption of uniform surface tension, γi. Evaluating the derivative ∂p(i+1)/∂y
from the second equation in (9.3.2), we obtain

∂p(i)

∂x
=

∂p(i+1)

∂x
+ γi

∂κi

∂x
+ (ρi+1 − ρi) gy

∂yi
∂x

, (9.3.9)

with the understanding that ρN+1 = 0. Applying this equation at the interfaces numbered
i, i+ 1, . . . , N , and adding corresponding sides, we obtain

∂p(i)

∂x
=

N∑
j=i

(
γj

∂κj

∂x
+ (ρj+1 − ρj) gy

∂yj
∂x

)
. (9.3.10)
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Finally, we introduce the familiar approximation for the curvature of the jth interface,
κj 	 −∂2yj/∂x

2, and obtain

∂p(i)

∂x
=

N∑
j=i

(− γj
∂3yj
∂x3

+ (ρj+1 − ρj) gy
∂yj
∂x

)
(9.3.11)

for i = 1, . . . , N . The right-hand side of (9.3.11) can be evaluated from knowledge of the
instantaneous interfacial profiles.

Velocity profiles

The velocity profile across the ith layer arises by integrating the first equation in (9.3.2)
with respect to y, obtaining

u(i)
x = Ai(x) +Bi(x) y −Gi(x) y

2, (9.3.12)

where

Gi(x) ≡ 1

2μi

(− ∂p(i)

∂x
+ ρi gx

)
. (9.3.13)

To compute the unknown functions Ai(x) and Bi(x), we enforce the wall no-slip condition
(9.3.3) to obtain

A1(x) +B1(x) yw −G1(x) y
2
w = 0, (9.3.14)

and the velocity continuity condition (9.3.4) to obtain

Ai(x) +Bi(x) yi −Gi(x) y
2
i = Ai+1(x) +Bi+1(x) yi −Gi+1(x) y

2
i (9.3.15)

for i = 1, . . . , N − 1. Continuity of shear stress expressed by (9.3.5) requires that

BN (x) = 2GN (x) yN (9.3.16)

and

μi

(
Bi(x)− 2Gi(x) yi

)
= μi+1

(
Bi+1(x)− 2Gi+1(x) yi

)
(9.3.17)

for i = 1, . . . , N − 1. Rearranging (9.3.17), we obtain

Bi(x) = 2Gi(x) yi +
μi+1

μi

(
Bi+1(x)− 2Gi+1(x) yi

)
. (9.3.18)

Equations (9.3.16) and (9.3.18) provide us with expressions for evaluating the coefficients
Bi(x). Once these expressions are available, A1(x) follows from (9.3.14) and the rest of the
coefficients Ai(x) follow from the velocity continuity condition (9.3.15). Note that the
coefficients Ai are computed recursively from bottom to top, whereas the coefficients Bi are
computed recursively from top to bottom.
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Successive substitutions for Bi allow us to replace the recursion relation (9.3.18) with
the explicit formula

Bi(x) = 2Gi(x) yi + 2

N∑
k=i+1

μk

μi
Gk(x) (yk − yk−1) (9.3.19)

for i = 1, . . . , N − 1, subject to (9.3.16).

9.3.1 Evolution equations

The counterpart of the mass balance equation (9.2.10) for the ith film is

∂hi

∂t
=

∂(yi − yi−1)

∂t
=

∂yi
∂t

− ∂yi−1

∂t
= −∂Qi

∂x
, (9.3.20)

where hi is the film thickness, and

Qi(x, t) ≡
∫ yi−1

yi

u(i) dy (9.3.21)

is the local flow rate in the ith film. Substituting the velocity profile and integrating, we
obtain

Qi(x, t) = Ai(x) (yi − yi−1) +
1

2
Bi(x) (y

2
i − y2i−1)− 1

3
Gi(x) (y

3
i − y3i−1) (9.3.22)

for i = 1, . . . , N . Applying equation (9.3.20) for i = 1, . . . , N and combining the expressions
thus obtained, we derive the evolution equations

∂yi
∂t

= −
i∑

j=1

∂Qj

∂x
(9.3.23)

for i = 1, . . . , N . Substituting equation (9.3.11) into (9.3.13), the result into (9.3.22), and
the outcome into (9.3.23), we derive a system of fourth-order nonlinear partial differential
equations governing the evolution of the N − 1 interfaces and free surface.

One layer

In the case of one layer, N = 1, and a plane wall located at yw = 0, equations (9.3.16)
and (9.3.14) yield B1(x) = 2G1(x) y1 and A1(x) = 0. The evolution equation (9.3.23) then
reduces to (9.2.11) for single-film flow.

Two layers

In the case of two layers, N = 2, and a plane wall located at yw = 0, we find that

B2(x) = 2G2(x) y2, B1(x) = 2G1(x) y1 + 2λ1 G2(x) (y2 − y1), (9.3.24)

A1(x) = 0, A2(x) = G1(x) y
2
1 +G2(x) y1

(
2λ1 (y2 − y1)− 2 y2 + y1

)
,
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where λ1 ≡ μ2/μ1 is the viscosity ratio. Using (9.3.11) and (9.3.13), we obtain

G2(x) =
1

2

ρ2
μ2

(
gx + gy

∂y2
∂x

+
γ2
ρ2

∂3y2
∂x3

)
(9.3.25)

and

G1(x) =
1

2

ρ2
μ2

λ1

( 1

β1
gx + gy (

1

β1
− 1)

∂y1
∂x

+ gy
∂y2
∂x

+
γ1
ρ2

∂3y1
∂x3

+
γ2
ρ2

∂3y2
∂x3

)
, (9.3.26)

where β1 ≡ ρ2/ρ1 is the density ratio. The evolution of the interfaces is governed by two
coupled differential equations,

∂y1
∂t

= −∂Q1

∂x
,

∂y2
∂t

= −∂Q1

∂x
− ∂Q2

∂x
, (9.3.27)

subject to a specified initial condition.

9.3.2 Numerical methods

The solution of equation (9.3.23) for i = 1, . . . N can be found by a standard finite-difference
method. In the numerical implementation, one period of the flow is covered by a uniform
grid, and the spatial derivatives in the differential equations are approximated with finite
differences at the grid nodes.

The following MATLAB function films pde, located in directory films inside directory
05 lub of Fdlib, evaluates the rates of evolution, ∂yi/∂t, for an arbitrary number of layers:

function dydt = films pde ...

...

(NLR,NSG,Dx,wall,y,rho,mu,gamma,gx,gy,ICU)

%---------------------------------------

% Compute the rate of change of y position

% of the interfaces:

% dy i/dt, for i=1,...,NLR

%

% NLR: number of layers

% NSG: number of segments

% Dx: x finite-difference interval

% wall: wall profile

% y(i): position of the ith interface

% ICU = 1 for central differences

% ICU = 2 for backward differences

%---------------------------------------

%---

% prepare

%---
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Dx2 = 2.0*Dx;

%---

% compute derivatives

%---

for i=1:NLR % run over interfaces

%---

% first derivative

%---

y1(1,i) = (y(2,i)-y(NSG,i))/Dx2;

for k=2:NSG

y1(k,i) = (y(k+1,i)-y(k-1,i))/Dx2;

end

y1(NSG+1,i) = y1(1,i);

%---

% second derivative

%---

y2(1,i) = (y1(2,i)-y1(NSG,i))/Dx2;

for k=2:NSG

y2(k,i) = (y1(k+1,i)-y1(k-1,i))/Dx2;

end

y2(NSG+1,i) = y2(1,i);

%---

% third derivative

%---

y3(1,i) = (y2(2,i)-y2(NSG,i))/Dx2;

for k=2:NSG

y3(k,i) = (y2(k+1,i)-y2(k-1,i))/Dx2;

end

y3(NSG+1,i) = y3(1,i);

%---

end

%---

%--------------------------------------

% Compute the effective pressure drop G

%--------------------------------------

for i=1:NLR % over interfaces

for k=1:NSG % over points

dpdx = 0.0;
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for j=i:NLR

dpdx = dpdx - gamma(j)*y3(k,j) ...

+ gy*(rho(j+1)-rho(j))*y1(k,j);

end

G(k,i) = 0.50*(-dpdx + rho(i)*gx)/mu(i);

end

end

%----------------------------

% Compute the coefficients B

%----------------------------

for k=1:NSG

B(k,NLR) = 2.0*G(k,NLR)*y(k,NLR);

end

for i=NLR-1:-1:1

for k=1:NSG

B(k,i) = 2.0*G(k,i)*y(k,i) ...

+mu(i+1)/mu(i)*(B(k,i+1)-2.0*G(k,i+1)*y(k,i));

end

end

%----------------------------

% Compute the coefficients A

%----------------------------

for k=1:NSG

A(k,1) = wall(k)*(wall(k)*G(k,1)-B(k,1));

end

for i=1:NLR-1

for k=1:NSG

A(k,i+1) = A(k,i)+(B(k,i)-B(k,i+1))*y(k,i) ...

-(G(k,i)-G(k,i+1))*y(k,i)*y(k,i);

end

end

%--------------------------

% Compute the flow rates Q

%--------------------------

for k=1:NSG

Q(k,1) = A(k,1)*(y(k,1)-wall(k)) ...

+0.5*B(k,1)*(y(k,1)*y(k,1)-wall(k)*wall(k));

-G(k,1)*(y(k,1)^3-wall(k)^3)/3.0;

end

Q(NSG+1,1) = Q(1,1);
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for i=2:NLR

for k=1:NSG

Q(k,i) = A(k,i)*(y(k,i)-y(k,i-1)) ...

+0.5*B(k,i)*(y(k,i)*y(k,i)-y(k,i-1)*y(k,i-1)) ...

-G(k,i)*(y(k,i)^3-y(k,i-1)^3)/3.0;

end

Q(NSG+1,i) = Q(1,i);

end

%---

% compute dQ/dx

%

% by central differences (ICU = 1)

% or upwind differences (ICU ne 1)

%---

%---

if(ICU==1) % central differences

%---

for i=1:NLR

dQdx(1,i) = (Q(2,i)-Q(NSG,i))/Dx2;

for k=2:NSG

dQdx(k,i) = (Q(k+1,i)-Q(k-1,i))/Dx2;

end

end

%---

else % backward differences

%---

for i=1:NLR

dQdx(1,i) = (Q(1,i)-Q(NSG,i))/Dx;

for k=2:NSG

dQdx(k,i) = (Q(k,i)-Q(k-1,i))/Dx;

end

end

%---

end

%---

%---

% finally compute dydt

%---

for i=1:NLR

for k=1:NSG

dydt(k,i) = 0.0;
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for j=1:i

dydt(k,i) = dydt(k,i)-dQdx(k,j);

end

dydt(NSG+1,i) = dydt(1,i);

end

end

%---

% Done

%---

return

An explicit finite-difference method can be implemented by approximating the time
derivative on the left-hand side of (9.3.23) at a grid point with a forward difference using a
sufficiently small time step, Δt, and then advancing the position of the interfaces.

The method is implemented in following code entitled films, located in directory 05 lub
of Fdlib:

%---

% input data

%---

NLR = 2; % number of layers

L = 2.0; % wave length

Dt = 0.01; % time step

Nstep = 128*2*128; % number of steps

beta = 0.125*pi; % inclination angle

gac = 1.0; % acceleration of gravity

NSG = 2*16; % number of divisions (segments)

ICU = 2; % backward differences

ICU = 1; % central differences

mu(1) = 1.0; rho(1) = 1.0; gamma(1) = 0.000; % first layer

rho(2) = 0.5; mu(2) = 1.0; gamma(2) = 0.00; % second layer

%---

% prepare

%---

rho(NLR+1) = 0.0;

cs0 = cos(beta);

sn0 = sin(beta);

gx = gac*sn0;

gy = -gac*cs0;

ROT = [cs0,sn0;-sn0,cs0]; % rotation matrix
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%---

% wall and initial profiles

%---

Dx = L/NSG;

for k=1:NSG+1

x(k) = (k-1)*Dx;

arg = 2*pi*x(k)/L;

wall(k) = 0.0;

y(k,1) = 0.2+0.1*cos(arg);

if(NLR>=2)

y(k,2) = 0.4+0.1*cos(arg);

end

if(NLR>=3)

y(k,3) = 0.6+0.1*cos(arg);

end

end

%-----

% time stepping

%-----

for step=1:Nstep

dydt = films pde ...

...

(NLR,NSG,Dx,wall,y,rho,mu,gamma,gx,gy,ICU);

y = y+dydt*Dt;

%-----

% plotting

%-----

for k=1:NSG+1

xx = ROT*[x(k) wall(k)]’;

xplot0(k) = xx(1)/L; yplot0(k) = xx(2)/L;

xx = ROT*[x(k) y(k,1)]’;

xplot1(k) = xx(1)/L; yplot1(k) = xx(2)/L;

if(NLR>=2)

xx = ROT*[x(k) y(k,2)]’;

xplot2(k) = xx(1)/L; yplot2(k) = xx(2)/L;

end

if(NLR>=3)

xx = ROT*[x(k) y(k,3)]’;

xplot3(k) = xx(1)/L; yplot3(k) = xx(2)/L;

end

end
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if(step==1)

Handle0 = plot(xplot0,yplot0,'k');

hold on

Handle1 = plot(xplot1,yplot1,'r.-');

if(NLR>=2)

Handle2 = plot(xplot2,yplot2,'r.-');

end

if(NLR>=3)

Handle3 = plot(xplot3,yplot3,'r.-');

end

xlabel('x/L','fontsize',15)

ylabel('y/L','fontsize',15)

end

set(Handle0,'XData',xplot0,'YData',yplot0)

set(Handle1,'XData',xplot1,'YData',yplot1)

if(NLR>=2)

set(Handle2,'XData',xplot2,'YData',yplot2)

end

if(NLR>=3)

set(Handle3,'XData',xplot3,'YData',yplot3)

end

drawnow

end

A sequence of evolving profiles for a two-layer flow, N = 2, is shown in Figure 9.3.2. The
result confirm that the free surface and the interface flatten in time due to the combined
action of gravity and surface tension.

9.3.1 Two-layer film flow

Consider a two-layer film flow with fluids of equal viscosity and density in the absence of
interfacial tension, λ1 = 1, β1 = 1, and γ1 = 0. Show that the second evolution equation in
(9.3.27) reduces to (9.2.11) for single-film flow. Discuss the significance of the first evolution
equation in (9.3.27).

9.3.2 Multi-film flow

Run the code films for a two-layer configuration of your choice on a horizontal or inclined
wall. Investigate and discuss the significance of the interfacial tensions.

Problems
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Figure 9.3.2 Snapshots of an evolving two-layer film down an inclined plane generated by code films.
The interface and the free surface tend flatten under the combined action of gravity and interfacial
tensions.

9.4 Two-layer channel flow

Multi-layer channel flows are encountered in polymer co-extrusion and in the manufacturing
of composite and laminated materials. In this section we study the flow of two superposed
layers in a channel confined between two parallel plane walls separated by distance 2a, as
illustrated in Figure 9.4.1. The lower layer is labeled 1, and the upper layer is labeled 2. The
flow is driven partly by the parallel translation of the lower or upper wall with velocity V1 or
V2, partly by a pressure gradient imposed along the x axis, and partly by the gravitational
body force.

The velocity profile corresponding to steady unidirectional flow with a flat interface was
discussed in Section 7.1.2. Our present goal is to derive an evolution equation for the layer
thickness when the interface is gently sloped, also accounting for the presence of an insoluble
surfactant causing variations in the surface tension, γ.
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Figure 9.4.1 Illustration of flow of two layers in a channel confined between two parallel plane walls
driven by gravity, boundary motion, or an imposed pressure gradient.

Equations of lubrication flow

We begin by assuming that the flow in each layer is governed by the simplified x and y
components of the equation of motion arising from the assumptions of lubrication flow,

0 = −∂p(1)

∂x
+ μ1

∂2u
(1)
x

∂y2
+ ρ1gx, 0 = −∂p(1)

∂y
+ ρ1gy (9.4.1)

for the lower layer, and

0 = −∂p(2)

∂x
+ μ2

∂2u
(2)
x

∂y2
+ ρ2gx, 0 = −∂p(2)

∂y
+ ρ2gy (9.4.2)

for the upper layer. The components of the acceleration of gravity, gx and gy, are given by
gx = g sin θ0 and gy = −g cos θ0. The y component of the equation of motion states that
the pressure in each layer changes in the y direction, normal to the walls, only because of
gravity according to the layer densities.

Velocity profiles

Next, we refer to the inclined coordinates defined in Figure 9.4.1 and describe the position
of the interface by the equation y = yI(x, t), where the walls are located at y = ±a.
Integrating the first equations in (9.4.1) and (9.4.2) twice with respect to y, subject to a
constant streamwise pressure gradient, we obtain the parabolic velocity profile

u(1)
x (y, t) = − 1

2μ1

( − ∂p(1)

∂x
+ ρ1gx

)
(y − yI)

2 + ξ1 (y − yI) + uI (9.4.3)
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in the lower fluid, −a < y < yI(x), and

u(2)
x (y, t) = − 1

2μ2

( − ∂p(2)

∂x
+ ρ2gx

)
(y − yI)

2 + ξ2 (y − yI) + uI (9.4.4)

in the upper fluid, yI(x) < y < a, where uI is the a priori unknown streamwise velocity at
the position of the interface, and

ξ1 ≡
(∂u(1)

x

∂y

)
y=yI

, ξ2 ≡
(∂u(2)

x

∂y

)
y=yI

(9.4.5)

are a priori unknown shear rates evaluated on either side of the interface.

If the interface were flat and the surface tension were constant, uI, ξ1, and ξ2 would be
given by expressions (7.1.38) and (7.1.39) without any approximation.

Interfacial shear rates

To compute the interfacial shear rates, we enforce the no-slip boundary condition at the
upper and lower wall by requiring that

u(1)
x (y = −a) = V1, u(2)

x (y = a) = V2. (9.4.6)

Evaluating the velocity from (9.4.3) and (9.4.4) and solving for the shear rates, we obtain

ξ1 = − 1

2

h1

μ1

( − ∂p(1)

∂x
+ ρ1gx

)
+

uI − V1

h1
,

ξ2 =
1

2

h2

μ2

( − ∂p(2)

∂x
+ ρ2gx

)− uI − V2

h2
,

(9.4.7)

where

h1(x, t) = a+ yI(x, t), h2(x, t) = a− yI(x, t) (9.4.8)

are the local and instantaneous layer thicknesses.

In the case of a flat interface with uniform surface tension, the streamwise pressure
gradients are equal and expressions (9.4.7) reduce to those given in (7.1.39) with ∂p(1)/∂x =
∂p(2)/∂x = −χ.

Interfacial velocity

Next, we substitute the right-hand sides of equations (9.4.7) into the tangential interfacial
stress balance

μ1 ξ1 = μ2 ξ2 +
∂γ

∂x
, (9.4.9)
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and solve for the interfacial velocity to obtain the expression

uI =
1

δ + λ

(
1

2

h1h2

μ1

( − ∂p(1)

∂x
− δ

∂p(2)

∂x
+ ρ1gx (1 + β δ)

)
+δ V1 + λV2 +

h2

μ1

∂γ

∂x

)
, (9.4.10)

where γ is the surface tension,

λ ≡ μ2

μ1
, α ≡ ρ2

ρ1
, δ ≡ h2

h1
. (9.4.11)

In the case of a flat interface with uniform surface tension, the streamwise pressure
gradients are equal. Consequently, expression (9.4.10) reduces to that given in (7.1.38) with
∂p(1)/∂x = ∂p(2)/∂x = −χ.

Streamwise pressure field

The pressure undergoes a jump across the interface due to the surface tension, γ, so that

p(1)(x, y = yI) = p(2)(x, y = yI) + γ κ, (9.4.12)

where κ is the interfacial curvature. Adopting the familiar approximation

κ(x) 	 −∂2yI
∂x2

, (9.4.13)

and differentiating (9.4.12) with respect to x using the chain rule, we obtain

∂p(1)

∂x
+

∂p(1)

∂y

∂yI
∂x

=
∂p(2)

∂x
+

∂p(2)

∂y

∂yI
∂x

− ∂γ

∂x

∂2h

∂x2
− γ

∂3h

∂x3
, (9.4.14)

where both sides are evaluated at the interface.

Now using the second equations in (9.4.1) and (9.4.2) to evaluate the derivative of the
pressure with respect to y, we obtain

∂p(1)

∂x
+ ρ1gy

∂yI
∂x

=
∂p(2)

∂x
+ ρ2gy

∂yI
∂x

− ∂γ

∂x

∂2h

∂x2
− γ

∂3h

∂x3
. (9.4.15)

Rearranging, we obtain

∂p(2)

∂x
=

∂p(1)

∂x
+ (ρ1 − ρ2) gy

∂yI
∂x

+
∂γ

∂x

∂2h

∂x2
+ γ

∂3h

∂x3
. (9.4.16)

Substituting this expression into (9.4.10) to eliminate ∂p(2)/∂x in favor of ∂p(1)/∂x, we
derive an alternative expression for the interfacial velocity,

uI =
1

δ + λ

( 1

2

h1h2

μ1

(
− (1 + δ)

∂p(1)

∂x
− δ
[
(ρ1 − ρ2) gy

∂yI
∂x

+ γ
∂3h

∂x3

+
∂γ

∂x

∂2h

∂x2

]
+ ρ1 gx (1 + α δ)

)
+ δ V1 + λV2 +

h2

μ1

∂γ

∂x

)
,

(9.4.17)
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involving the pressure gradient in the lower layer and the instantaneous shape of the inter-
face.

Flow rates and mass conservation

We proceed by integrating the velocity profiles (9.4.3) and (9.4.4) with respect to y over
their respective domain of definition, and thereby derive expressions for the streamwise flow
rate in the lower layer,

Q1 ≡
∫ yI

−h

u(1)
x dy = − 1

6

h3
1

μ1

(− ∂p(1)

∂x
+ ρ1gx

)− 1

2
ξ1 h

2
1 + uI h1, (9.4.18)

and in the upper layer,

Q2 ≡
∫ h

yI

u(2)
x dy = − 1

6

h3
2

μ2

(− ∂p(2)

∂x
+ ρ2gx

)
+

1

2
ξ2 h

2
2 + uI h2. (9.4.19)

Using expressions (9.4.7) to eliminate the shear rates, ξ1 and ξ2, from the right-hand sides,
we find that

Q1 =
1

12

h3
1

μ1

(− ∂p(1)

∂x
+ ρ1gx

)
+

1

2
(uI + V1)h1, (9.4.20)

and

Q2 =
1

12

h3
2

μ2

(− ∂p(2)

∂x
+ ρ2gx

)
+

1

2
(uI + V2)h2, (9.4.21)

involving the unknown interfacial velocity.

A mass balance over a control area confined by (a) two parallel planes that are normal
to the channel walls and are separated by an infinitesimal distance, (b) the enclosed sections
of the walls, and (c) the enclosed section of the evolving interface, requires that the rate of
accumulation of mass of each layer inside this control area should be equal to the difference
in the mass flow rates into and out from the control volume. In differential form,

∂h1

∂t
=

∂yI
∂t

= −∂Q1

∂x
(9.4.22)

and

∂h2

∂t
= −∂yI

∂t
= −∂Q2

∂x
. (9.4.23)

Since h1 + h2 = 2a is constant, ∂h1/∂t+ ∂h2/∂t = 0 and

∂Q1

∂x
+

∂Q2

∂x
= 0 (9.4.24)

or

Q1 +Q2 =
1

μ1
f(t), (9.4.25)

where f(t) is an unspecified function of time.
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To compute the function f(t), we use the expressions for the flow rates and interfacial
velocity given in equations (9.4.20), (9.4.21), and (9.4.17). Eliminating the pressure gradient
in the second layer using expression (9.4.16), we find that

∂p(1)

∂x
=

N + f(t)

D
, (9.4.26)

where

N = −(ρ1 − ρ2) gy (h2 + 6
λ

λ+ δ
a)h2

2

∂h1

∂x
− γ (h2 + 6

λ

λ+ δ
a)h2

2

∂3h1

∂x3

+ρ1 gx(λh
3
1 + αh3

2 + 12
λ

λ+ δ

1 + λδ

1 + δ
a2 h2) + 12μ2 a (

V1 + δ V2

1 + δ
+

δ V1 + λV2

λ+ δ
)

+h2

(
12

λ

δ + λ
a− h2 (6

λ

δ + λ
a+ h2)

∂2yI
∂x2

) ∂γ

∂x
(9.4.27)

and

D = λh3
1 + h3

2 + 12
λ

λ+ δ
a2 h2. (9.4.28)

Note that

1

1 + δ
=

1

2

h1

a
. (9.4.29)

Integrating (9.4.26) with respect to x over a length, L, and solving for f(t), we obtain

f(t) =

Δp/μ1 −
∫ L

0

N

D
dx∫ L

0

1

D
dx

, (9.4.30)

where

Δp ≡ p(x = L)− p(x = 0) (9.4.31)

is the negative of the pressure drop over the length L.

The integrals on the right-hand side of (9.4.30) can be computed using elementary
numerical methods from knowledge of the instantaneous interfacial shape.

Evolution equation

Having obtained the function f(t), we evaluate the streamwise pressure gradient from
(9.4.26), compute the interfacial velocity from (9.4.17), recover the flow rate Q1 from equa-
tion (9.4.20), and use equation (9.4.22) to derive an expression for the rate of change of the
lower film thickness or interface position. Symbolically, we write

∂yI
∂t

= F
(
yI, y

′
I, y

′′
I , y

′′′
I , y′′′′I

)
, (9.4.32)
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where a prime denotes a partial derivative with respect to x and F is a nonlinear function
of its arguments defined implicitly in terms of the aforementioned substitutions.

Evolution of the concentration of an insoluble surfactant

The concentration of an insoluble surfactant is governed by the convection–diffusion equation
(4.12.22),

∂Γ

∂t
+

∂(uI Γ)

∂x
=

∂

∂x

(
Ds

∂Γ

∂x

)
, (9.4.33)

where Ds is the interfacial surfactant diffusivity. An initial condition describing the initial
surfactant distribution must be specified.

The two evolution equations (9.4.32) and (9.4.33) can be integrated in time using a
standard finite-difference method on a one-dimensional grid whose nodes are distributed
inside one period of the flow along the x axis.

Explicit numerical integration

To implement an explicit method, we apply equation (9.4.32) at a grid node at time t and
approximate the time derivative on the left-hand side with a forward finite difference over
a small time step, Δt, obtaining

yI(x, t+Δt)− yI(x, t)

Δt
= F (t). (9.4.34)

Evaluating the right-hand side by numerical differentiation and solving for yI(x, t+Δt), we
obtain the position of the interface at the new time level, t+Δt.

The numerical method for uniform and constant surface tension, γ, that is, in the
absence of surfactants, is implemented in the following code entitled chan2l exp, residing in
directory 05 lub of Fdlib,

a = 0.2:

beta = 0.125*pi; % inclination angle

L = 1.0; % wave length

yIunp = 0.0; % unperturbed position

aI0 = 0.1; % initial amplitude of the interface

rho1 = 1.0; % densities

rho2 = 1.0;

vs1 = 1.0; % viscosities

vs2 = 0.4;

gamma = 0.4; % surface tension

V1 = -0.2; % wall velocities

V2 = 1.0;

pdrop = 0.3; % streamwise pressure drop over one period

gac = 1.0; % acceleration of gravity

NSG = 32; % number of segments

Dt = 0.001; % time step
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nstep = 128*128; % number of steps

method = 2; % backward differences

method = 1; % central differences

%----

% prepare

%----

sn0 = sin(beta);

cs0 = cos(beta);

ROT = [cs0,sn0;-sn0,cs0]; % rotation matrix for plotting

gx = gac*sn0;

gy = -gac*cs0;

as = a*a;

vsr = vs2/vs1; % viscosity ratio

Drho = rho1-rho2; % density difference

dnr = rho2/rho1; % density ratio

wn = 2*pi/L; % wave number

Dx = L/NSG;

Dx2 = 2.0*Dx;

Dx23 = 2.0*Dx*Dx*Dx;

Dxs = Dx*Dx;

%----------------

% initial profile

%----------------

for i=1:NSG+4

x(i) = (i-1.0)*Dx;

arg = wn*x(i);

y(i) = yIunp + aI0*cos(arg);

srtn(i) = gamma;

end

%==============

% time stepping

%==============

for step=1:nstep

for i=3:NSG+2

ib = i-2; ia = i-1; i1 = i+1; i2 = i+2;

DyDx1(i) = (y(i1)-y(ia))/Dx2;

DyDx2(i) = (y(i1)-2.0*y(i)+y(ia))/Dxs;

DyDx3(i) = (y(i2)-2.0*y(i1)+2.0*y(ia)-y(ib))/Dx23;

h1(i) = a+y(i);

h2(i) = a-y(i);

r(i) = h2(i)/h1(i);

end
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DyDx1(1) = DyDx1(NSG+1);

DyDx2(1) = DyDx2(NSG+1);

DyDx3(1) = DyDx3(NSG+1);

h1(1) = h1(NSG+1); h2(1) = h2(NSG+1); r(1) = r(NSG+1);

DyDx1(2) = DyDx1(NSG+2);

DyDx2(2) = DyDx2(NSG+2);

DyDx3(2) = DyDx3(NSG+2);

h1(2) = h1(NSG+2); h2(2) = h2(NSG+2); r(2) = r(NSG+2);

%---------------

% compute dp1/dx

%---------------

for i=1:NSG

tmp = 1.0/(vsr+hr(i));

Den = vsr*h1(i)^3 + h2(i)^3 ...

+ 12.0*vsr*tmp*as*h2(i);

t1 = -Drho*gy*(h2(i)+6.0*vsr*tmp*a) ...

h2(i)^2*DyDx1(i);

t2 = - srtn(i)*(h2(i)+6.0*vsr*tmp*a) ...

*h2(i)^2*DyDx3(i);

t3 = rho1*gx* (vsr*h1(i)^3 + dnr*h2(i)^3 ...

+6.0*vsr*tmp*(1.0+dnr*hr(i))*a*h1(i)*h2(i));

t4 = 6.0*vs2*(V1*h1(i)+V2*h2(i)) ...

+ 12.0*vs2*a*tmp*(vsr*V2+hr(i)*V1);

dp1dx(i) = (t1+t2+t3+t4)/Den;

store(i) = 1.0/Den;

end

%--------------------------

% compute the function f(t)

%--------------------------

sum1 = 0.0; sum2 = 0.0;

for i=1:NSG

sum1 = sum1 + dp1dx(i);

sum2 = sum2 + store(i);

end

sum1 = sum1*Dx; sum2 = sum2*Dx;

f = (pdrop-sum1)/sum2;

%-----------------------------------

% complete the computation of dp1/dx

%-----------------------------------

for i=1:NSG

dp1dx(i) = dp1dx(i) + f*store(i);

end
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dp1dx(NSG+1) = dp1dx(1);

dp1dx(NSG+2) = dp1dx(2);

%------------

% compute u I

%------------

for i=1:NSG

ri1 = 1.0+r(i);

uI(i) = a*h2(i)/vs1 *(-dp1dx(i) ...

+rho1*gx*(1.0+dnr*hr(i))/ri1 ) ...

+0.5*h2(i)^2/vs1*(-Drho*gy*DyDx1(i) ...

-srtn(i)*DyDx3(i)) + hr(i)*V1+vsr*V2;

uI(i) = uI(i)/(vsr+r(i));

end

uI(NSG+1) = uI(1);

uI(NSG+2) = uI(2);

%------------------------------------

% compute dQ1/dx

%

% then set dy/dt = - dQ1/dx

%------------------------------------

pr1 = 12.0*Dx2*vs1; pr2 = 2.0*Dx2;

pr3 = 12.0*Dx*vs1; pr4 = 2.0*Dx;

for i=2:NSG+1

ia = i-1; i1 = i+1;

%---

if(method==1) % central differences

%---

dq1dx = ( h1(i1)^3 *(-dp1dx(i1)+rho1*gx) ...

-h1(ia)^3 *(-dp1dx(ia)+rho1*gx))/pr1 ...

+ ( (uI(i1)+V1)*h1(i1) -(uI(ia)+V1)*h1(ia))/pr2;

%---

else % backward differences

%---

dq1dx = ( h1(i)^3 *(-dp1dx(i) +rho1*gx) ...

-h1(ia)^3 *(-dp1dx(ia)+rho1*gx))/pr3 ...

+ ( (uI(i)+V1)*h1(i) -(uI(ia)+V1)*h1(ia))/pr4;

%---

end

%---
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DyDt(i) =-dq1dx;

end

for i=2:NSG+1

y(i) = y(i)+Dt*DyDt(i);

end

y(1) = y(NSG+1);

y(NSG+2) = y(2);

y(NSG+3) = y(3);

y(NSG+4) = y(4);

%---

% plotting

%---

for k=1:NSG+1

xx = ROT*[x(k) y(k)]’;

xplot1(k) = xx(1)/L;

yplot1(k) = xx(2)/L;

end

if(step==1)

Handle1 = plot(xplot1,yplot1,’r.-’);

xlabel(’x/L’,’fontsize’,15)

ylabel(’y/L’,’fontsize’,15)

set(gca,’fontsize’,15)

axis equal

end

set(Handle1,’XData’,xplot1,’YData’,yplot1)

drawnow

%=====

end % of time stepping

%=====

A sequence of evolving profiles is shown in Figure 9.4.2. Surface tension and gravity
for stably stratified fluids work synergistically to dampen interfacial deviations from the flat
shape.

Implicit time integration

The explicit method requires a small time step to prevent the onset of numerical instability
manifested by growing oscillations in the nodal position along the interface. This restriction
can be overcome by applying the evolution equation (9.4.32) at a grid point at a certain
time t+Δt and approximating the time derivatives on the left-hand side with a backward
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Figure 9.4.2 Snapshots of an evolving interface between two layers in a channel confined between
two parallel walls computed by code chan2l exp.

finite difference using a small time step, Δt, to obtain

yI(x, t+Δt)− yI(x, t)

Δt
= F (t+Δt). (9.4.35)

Evaluating the right-hand side by numerical differentiation, we obtain a nonlinear system
of algebraic equations for the interfacial elevation at the nodes at time t+Δt.

The method is implemented in code chan2l imp, located in directory 05 lub of Fdlib,
not listed in the text. A drawback of the implicit method is that computing the solution of
a nonlinear algebraic system at each time step requires significant computational effort.

9.4.1 Single-layer flow in a channel

Demonstrate that, when the densities and viscosities of the two layers are matched, the
equations of two-layer flow reduce to those of single-layer flow.

Problems
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Figure 9.5.1 Streamline pattern of axisymmetric Stokes flow due to the translation of a sphere along
the x axis in an infinite fluid. Streamlines are drawn (a) in a stationary frame of reference and
(b) in a frame of reference moving with the sphere.

9.4.2 Two-layer flow in a channel

Run the code chan2l exp for a set of conditions of your choice. Display sequences of evolving
profiles, investigate the effect of the size of the time step on numerical stability, and discuss
the nature of the motion.

9.5 Flow due to the motion of a sphere

A variety of natural and engineering applications involve particle motion in a viscous fluid.
An elementary configuration involves a spherical particle settling with constant velocity due
to its weight in a virtually infinite quiescent ambient fluid, thereby generating an axisym-
metric flow, as illustrated in Figure 9.5.1.

When the radius of the spherical particle, a, is small, or the fluid viscosity, μ, is high,
or the fluid density, ρ, is low, or the particle velocity V is small, inertial forces are negligible
near the particle and the left-hand side of the Navier–Stokes equation can be set to zero
without introducing serious error. The result is the Stokes equation,

∇p = μ∇
2u+ ρg, (9.5.1)

which, together with the continuity equation,

∇ · u =
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z
= 0, (9.5.2)

comprise the equations of Stokes or creeping flow.
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The three scalar components of the Stokes equation are

∂p

∂x
= μ (

∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂y2
) + ρ gx,

∂p

∂y
= μ (

∂2uy

∂x2
+

∂2uy

∂y2
+

∂2uy

∂y2
) + ρ gy, (9.5.3)

∂p

∂z
= μ (

∂2uz

∂x2
+

∂2uz

∂y2
+

∂2uz

∂y2
) + ρ gz.

The formal requirement for fluid inertia to be negligible is that the Reynolds number
defined with respect to the particle radius, Re = aρV/μ, is small. However, we will see that
this assumption does not guarantee that inertia will be negligible uniformly throughout the
domain of the flow and, in particular, far from the sphere.

Having noted this exception, we proceed to compute the solution by assuming that
inertia is negligible throughout the domain of flow, and then return to assess the validity of
this assumption.

9.5.1 Formulation in terms of the stream function

To simplify the analysis, we take advantage of the axial symmetry of the flow with respect to
the direction of translation and work in spherical polar coordinates, (r, θ, ϕ), and companion
cylindrical polar coordinates, (x, σ, ϕ), where the x axis points in the direction of translation.

To bypass the computation of the pressure, we work with the vorticity transport equa-
tion (6.6.16) for the only nonvanishing component of the vorticity pointing in the azimuthal
direction, ωϕ. In the absence of fluid inertia, we obtain the simplified governing equation

E2(σ ωϕ) = 0, (9.5.4)

where σ = r sinϕ is the distance from the x axis and the second-order linear differential
operator, E2, is defined in (2.9.27) as

E2 ≡ ∂2

∂r2
+

sin θ

r2
∂

∂θ

( 1

sin θ

∂

∂θ

)
=

∂2

∂r2
+

1

r2
∂2

∂θ2
− cot θ

r2
∂

∂θ
(9.5.5)

in spherical polar coordinates.

Expressing the azimuthal component of the vorticity in terms of the stream function
using expression (2.9.23),

ωϕ = − 1

σ
E2ψ, (9.5.6)

we obtain

E4ψ ≡ E2 E2ψ = 0. (9.5.7)
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Our task is to solve this fourth-order differential equation in the exterior of the sphere,
subject to appropriate boundary and far-field conditions.

Boundary and far-field conditions

On the surface of the sphere, r = a, the no-slip and no-penetration boundary conditions
require that the fluid velocity is equal to the velocity of the sphere,

u(r = a) = V ex, (9.5.8)

where ex is the unit vector along the x axis. Thus,

ur(r = a) = V cos θ, uθ(r = a) = −V sin θ. (9.5.9)

The far-field condition requires that the velocity decays so that the fluid becomes quiescent
at infinity.

Using the differential relations between the velocity components and the stream function
in axisymmetric flow,

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ = − 1

r sin θ

∂ψ

∂r
, (9.5.10)

we find that, in terms of the stream function, the boundary and far-field conditions take the
forms

ψ(r = a) =
1

2
V a2 sin2 θ,

(∂ψ
∂r

)
r=a

= V a sin2 θ (9.5.11)

and

ψ

rm
→ 0 as r → ∞ (9.5.12)

for m ≥ 2. Condition (9.5.12) allows the stream function to diverge at infinity but requires
that the rate of divergence is less than quadratic; otherwise, the velocity field will not decay,
as required.

Solution be separation of variables

Motivated by the functional form of the boundary conditions (9.5.11), we search for a
solution by separation of variables in the form

ψ = q(r) sin2 θ. (9.5.13)

The unknown function, q(r), satisfies the boundary conditions

q(r = a) =
1

2
V a2,

(dq
dr

)
r=a

= V a, (9.5.14)

and the far-field condition

q(r)

rm
→ 0 as r → ∞ (9.5.15)

for m ≥ 2.
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Substituting expression (9.5.13) into (9.5.7), and carrying out the differentiations, we
obtain a fourth-order linear ordinary differential equation,

(
d2

dr2
− 2

r2
) (

d2

dr2
− 2

r2
) q = 0, (9.5.16)

which can be resolved into two second-order component equations,

d2w

dr2
− 2

r2
w = 0,

d2q

dr2
− 2

r2
q = w. (9.5.17)

The second equation merely defines the intermediate function w(r).

The general solution of the first equation in (9.5.17) is found readily to be

w = Ar2 +
B

r
, (9.5.18)

where A and B are two constants. Substituting this expression into the second equation,
we derive an inhomogeneous equation,

d2q

dr2
− 2

r2
q = Ar2 +

B

r
. (9.5.19)

The solution of (9.5.19) is the sum of (a) the general solution of the homogeneous equation
computed by setting the right-hand side to zero, given by q = Cr2 +D/r, where C and D
are two new constants, and (b) a particular solution found by inspection. The result is

q =
1

10
Ar4 − 1

2
B r + C r2 +

D

r
. (9.5.20)

To ensure the satisfaction of condition (9.5.15), we set A and C to zero. Substituting the
remaining expression into the boundary conditions (9.5.14), and solving for the coefficients
B and D, we obtain

B = − 3

2
V a, D = − 1

4
V a3. (9.5.21)

Substituting these values into (9.5.20) and the result into (9.5.13), we obtain the desired
stream function,

ψ(r, θ) =
1

4
V r2

a

r

(
3− a2

r2
)
sin2 θ. (9.5.22)

Note that the stream function has units of velocity multiplied by distance squared.

Velocity and pressure fields

The radial and azimuthal velocity components arise by substituting (9.5.22) into equations
(9.5.10), yielding

ur =
1

2
V

a

r

(
3− a2

r2
)
cos θ (9.5.23)
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and

uθ = − 1

4
V

a

r

(
3 +

a2

r2
)
sin θ. (9.5.24)

Substituting these expressions into the radial and meridional spherical polar components of
the Stokes equations, we derive expressions for the partial derivatives of the pressure, ∂p/∂r
and ∂p/∂θ. Integrating these expressions, we derive the pressure distribution

p =
3

2

μV

a

a2

r2
cos θ + ρ (gx x+ gy y + gz z) + π0, (9.5.25)

where g = (gx, gy, gz) is the acceleration of gravity and π0 is a constant determined by the
pressure prevailing far from the sphere (Problem 9.5.1).

Validity of the equations of creeping flow

We must return to evaluate the assumptions under which the preceding analysis is valid in
light of the linearization of the equation of motion. Expressions (9.5.23) and (9.5.24) reveal
that, in the absence of fluid inertia, the velocity decays like V a/r far from the sphere; the cu-
bic term V (a/r)3 decays much faster and can be neglected. Differentiating this asymptotic
form with respect to r, we find that the derivative ∂ur/∂r involved in the nonlinear convec-
tive term on the left-hand side of the Navier–Stokes equation decays like V a/r2, while the
derivative ∂2ur/∂r

2 involved in the viscous term on the right-hand side of the Navier–Stokes
equation decays like V a/r3.

The time derivative ∂ur/∂t scales with ur/T , where T the characteristic time scale. In
the absence of explicit time dependence due to an external action, we may identify T with
the ratio of the distance from the center of the sphere to the velocity of the sphere, T = r/V .

Using the preceding scaling, we find that the ratio of the magnitude of the nonlinear
inertial term to the magnitude of the viscous term in the equation of motion is of order

ρ V
a

r
V

a

r2

μV
a

r3

=
ρV a

μ
≡ Re, (9.5.26)

and the ratio of the magnitude of the time-dependent inertial term to the magnitude of the
viscous term is of order

ρ (V
a

r
)/(

r

V
)

μV
a

r3

=
ρ V r

μ
≡ Rer = Re

r

a
. (9.5.27)

We have introduced the nominal Reynolds number, Re, defined with respect to the radius
of the sphere, and the local Reynolds number, Rer, defined with respect to distance from
the center of the sphere.
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Breakdown

Equations (9.5.26) and (9.5.27) reveal that, for inertial forces to be negligible, both Re and
Rer must be far less than unity. The former can be made arbitrarily small by adjusting
one of the flow parameters involved in its definition, ρ, a, V , and μ. However, there is no
way that the latter can be uniformly small throughout the domain of flow. Even if Re is
exceedingly small, the ratio r/a becomes arbitrary large sufficiently far from the sphere and
the local Reynolds number, Rer, increases linearly with respect to distance, rendering the
effect of fluid inertia significant.

We conclude that the approximation of creeping flow ceases to be accurate far from the
sphere, with one disturbing consequence. If the governing equations are not valid all the way
up to infinity, enforcing the far-field boundary condition expressed by (9.5.12) is dubious at
best and catastrophic at worst. Fortunately, a more detailed analysis using the method of
matched asymptotic expansions shows that retaining the far-field condition introduces an
error that is comparable to that introduced by dropping the inertial terms in the equation
of motion, which is on the order of Re. This will not be the case of two-dimensional Stokes
flow past a cylinder, as discussed in Section 9.7.

9.5.2 Traction, force, and the Archimedes–Stokes law

Having derived expressions for the velocity and pressure fields, given, respectively, in (9.5.23),
(9.5.24), and (9.5.25), we proceed to evaluate the traction on the surface of the sphere and
then integrate the traction to obtain an expression for the force exerted on the sphere. For
simplicity, we assume that gravity is directed along the x axis, that is, gx = g, gy = 0, and
gz = 0, where g is the magnitude of the acceleration of gravity.

Stress and traction

Using the definition of the Newtonian stress tensor shown in Table 4.7.2(b), we derive an
expression for the normal component of the traction,

σrr(r = a) =
(
− p+ 2μ

∂ur

∂r

)
r=a

= −(p)
r=a

, (9.5.28)

yielding

σrr(r = a) = − 3

2

μV

a
cos θ − ρgx− π0, (9.5.29)

and an expression for the tangential component of the traction,

σrθ(r = a) = σθr(r = a) =
(
r
∂

∂r

(uθ

r

)
+

1

r

∂ur

∂θ

)
r=a

, (9.5.30)

yielding

σrθ(r = a) =
3

2

μV

a
sin θ. (9.5.31)
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Note that, because of the no-slip boundary condition, viscous stresses do not contribute to
the normal component of the traction, in agreement with our discussion in Section 4.11.

Combining (9.5.29) and (9.5.31), we find that the traction exerted on the sphere is

f = σrr(r = a) er + σrθ(r = a) eθ, (9.5.32)

where er and eθ are unit vectors in the radial or azimuthal direction. Expressing er and
eθ in terms of Cartesian unit vectors using relations (1.3.36), substituting the results along
with expressions (9.5.29) and (9.5.31) into (9.5.32), and simplifying the resulting expression,
we derive a remarkably simple result,

f = − 3

2

μV

a
ex − (ρgx+ p0) er, (9.5.33)

which shows that, hydrostatic contributions aside, the traction over the surface of the sphere
points opposite to the direction of translation with a uniform magnitude.

Force on a moving sphere

To compute the force exerted on the sphere, F, we integrate the traction over the surface
of the sphere. Substituting x = r cos θ, we obtain

F =

∫∫
sphere

f dS =

∫ 2π

0

∫ π

0

f a2 sin θ dθ dϕ. (9.5.34)

Performing the integration, we obtain

F = −6πμV a ex − 4

3
πa3ρg ex, (9.5.35)

where V is the volume of the sphere. The first term on the right-hand side expresses Stokes’s
law. The second term expresses Archimedes’s buoyancy force, familiar from our discussion
in Chapter 5 of hydrostatics, stating that the force exerted on an immersed body is equal
in magnitude and opposite in direction to the weight of the fluid displaced by the body.

Terminal velocity of a settling sphere

As an application, we compute the terminal velocity of a solid sphere with density ρs settling
along the x axis in an infinite ambient fluid. Balancing the weight of the sphere with the
force given in (9.5.35), we obtain

4

3
πa3ρs g ex − 6πμV a ex − 4

3
πa3ρg ex = 0. (9.5.36)

Solving for the velocity of the sphere, we obtain

V =
2

9

a2(ρs − ρ)g

μ
. (9.5.37)

In practice, this equation can be used to estimate the viscosity of a fluid from observation
of the terminal velocity of a sphere in a device called the falling-ball viscometer.
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9.5.1 Pressure distribution around a moving sphere

Derive the pressure distribution (9.5.25).

9.5.2 Flow past a stationary sphere

Consider steady uniform Stokes flow with velocity U along the x axis past a stationary sphere
of radius a. Derive expressions for the stream function, the velocity, the pressure field, the
traction and the force on the surface of the sphere. Show that, for the fluid inertia to be
negligible throughout the domain of flow, both Re and Rer defined in equations (9.5.26)
and (9.5.27) must be sufficiently less than unity.

9.6 Point forces and point sources in Stokes flow

Consider the stream function of the flow due to a translating sphere given in equation
(9.5.22). The right-hand side involves two terms that decay like the inverse of the scaled
distance from the center of the sphere, a/r. and the inverse cubic power of the scaled
distance from the center of the sphere, (a/r)3.

To make this distinction clear, we recast equation (9.5.22) into the form

ψ(r, θ) = sx ψ
3DSTx(r, θ) + dx ψ

3DPSDx(r, θ), (9.6.1)

where

sx =
3

4
V a, dx = −πV a3 (9.6.2)

are two coefficients,

ψ3DSTx(r, θ) ≡ r sin2 θ (9.6.3)

is the stream function associated with a fundamental solution of the equations of Stokes
flow called the three-dimensional Stokeslet, and

ψ3DPSDx(r, θ) ≡ 1

4π

1

r
sin2 θ (9.6.4)

is a stream function representing irrotational flow due to a three-dimensional point-source
dipole pointing along the x axis, as discussed in Section 3.6.

The expressions for the velocity, pressure, and stress can be resolved into corresponding
components associated with the Stokeslet and the point-source dipole. For example, the
Cartesian components of the velocity are given by

⎡⎣ ux

uy

uz

⎤⎦ = sx

⎡⎢⎢⎢⎢⎢⎣
1

r
+

x2

r3
xy

r3

xz

r3

⎤⎥⎥⎥⎥⎥⎦+ dx
1

4π

⎡⎢⎢⎢⎢⎢⎣
− 1

r3
+ 3

x2

r5

3
xy

r5

3
xz

r5

⎤⎥⎥⎥⎥⎥⎦ , (9.6.5)

Problems
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where the origin has been set at the center of the sphere. The first and second terms on the
right-hand side of (9.6.5) represent, respectively, the velocity field due to a Stokeslet and a
potential dipole, both situated at the origin and pointing along the x axis.

9.6.1 The Oseen tensor and the point force

Generalizing the expression for the Stokeslet given on the right-hand side of equation (9.6.5),
we introduce the velocity at a field point, x = (x, y, z), due to a three-dimensional Stokeslet
with arbitrary vectorial strength, s = (sx, sy, sz), situated at another point, x0 = (x0, y0, z0),
given by ⎡⎣ ux

uy

uz

⎤⎦ (x,x0) = S(x,x0) ·
⎡⎣ sx

sy
sz

⎤⎦ , (9.6.6)

where S is the 3× 3 Oseen tensor for three-dimensional flow defined as

S(x,x0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

r
+

(x− x0)
2

r3
(x− x0)(y − y0)

r3
(x− x0)(z − z0)

r3

(y − y0)(x− x0)

r3
1

r
+

(y − y0)
2

r3
(y − y0)(z − z0)

r3

(z − z0)(x− x0)

r3
(z − z0)(y − y0)

r3
1

r
+

(z − z0)
2

r3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (9.6.7)

and

r = [ (x− x0)
2 + (y − y0)

2 + (z − z0)
2 ]1/2 (9.6.8)

is the distance of the field point, x, from the location of the Stokeslet, x0. The three
columns of the Oseen tensor represent, respectively, the x, y, and z components of the
velocity associated with a Stokeslet of unit strength pointing in the direction of the x, y, or
z axis. In index notation, the Oseen tensor takes the form

Sij(x,x0) =
δij
r

+
x̂i x̂j

r3
, (9.6.9)

where x̂ = x− x0 and δij is Kronecker’s delta representing the identity matrix.

The corresponding pressure field is given by

p(x,x0) = 2μ
1

r3

⎡⎣ x− x0

y − y0
z − z0

⎤⎦ ·
⎡⎣ sx

sy
sz

⎤⎦ , (9.6.10)

where the dot denotes the inner vector product.

The velocity (9.6.6) and accompanying pressure field (9.6.10) satisfy the equations of
Stokes flow, (9.5.3) and (9.5.2) with the gravity term absent, for any Stokeslet strength
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Figure 9.6.1 Streamline pattern in the xy plane of the axisymmetric flow induced by a three-
dimensional point force pointing along the x axis.

represented by the vector s, everywhere except at the point x0 where the velocity and
pressure become infinite. The streamline pattern in the xy plane induced by a Stokeslet
pointing in the x direction is shown in Figure 9.6.1.

Force on a surface enclosing the Stokeslet

Consider a surface, D, enclosing the singular point of a Stokeslet, x0, It can be shown that
the force exerted on this closed surface is given by

F ≡
∫∫

D
n · σ dS = −8πμ s, (9.6.11)

independent of the shape of the surface, where σ is the stress tensor and n is the unit vector
normal to D pointing outward.

The corresponding torque with respect to the singular point, x0 is zero,

T ≡
∫∫

D
(x− x0)× (n · σ) dS = 0. (9.6.12)

The force and torque exerted on a closed surface that does not enclose the singular point,
x0, are both zero.

Equation (9.6.11) suggests that the Stokeslet expresses the flow due to a three-dimensional
point force applied at a singular point, x0. In physical terms, this flow can be identified with
the flow induced by a small moving particle located at the point x0. The strength of the
point force counterbalances the force exerted on the particle due, for example, to gravity.
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Figure 9.6.2 Illustration of a spherical particle moving along the axis of a circular tube with velocity
V in the presence of an ambient Poiseuille flow.

Point source and point-source dipoles

It can be shown by straightforward substitution that the irrotational velocity fields due to
a point source or point-source dipole discussed in Section 3.6 satisfy the equations of Stokes
flow (9.5.3) and (9.5.2) with the gravity term absent and a corresponding constant pressure.
The force and torque on a closed surface are zero, independent of whether the singular point
x0 lies inside or outside the surface.

9.6.2 Flow representation in terms of singularities

We have discussed three singular fundamental solutions of the equations of Stokes flow, in-
cluding the point force, the point source, and the point-source dipole. These singularities can
be employed in a more general context to generate desired solutions by linear superposition.
The key idea is to express a flow of interest in terms of a linear combination of singularities,
and then compute the strengths of the singularities to satisfy required boundary conditions.
Superposition is permissible in light of the linearity of the equations of Stokes flow.

Flow due to the translation of a sphere

We have already seen that the flow due to the translation of a sphere can be represented
exactly by a point force and a point-source dipole placed at the center of the sphere. The
coefficients of the singularities are given in equations (9.6.2). Using equation (9.6.11), we
find that the hydrodynamic force exerted on the sphere is given by

F = −8πμ s = −6πμV a ex, (9.6.13)

which is identical to expression (9.5.35) derived by detailed integration.

However, because exact singularity representation are rare, we must compromise by
deriving approximate solutions.

9.6.3 A sphere moving inside a circular tube

Consider a spherical particle of radius a moving with velocity V along the axis of cylindrical
tube of radius b under the action of pressure-driven flow, as illustrated in Figure 9.6.2. In
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the absence of the sphere we obtain the Poiseuille unidirectional flow velocity profile

up
x = U

(
1− σ2

b2
)
, (9.6.14)

where U is the centerline velocity and

σ =
√
y2 + z2 = r sin θ (9.6.15)

is the distance from the x axis. The corresponding stream function for axisymmetric flow,
ψp, is defined by the equation

1

σ

dψp

dσ
= up

x. (9.6.16)

Integrating with respect to σ, we derive the expression

ψp = U
1

2
σ2
(
1− 1

2

σ2

b2

)
+ c, (9.6.17)

where c is an unspecified constant.

Flow representation

An approximate representation of the flow in the presence of the sphere can be devised by
superposing (a) the unperturbed parabolic flow, (b) the flow due to a point force, and (c)
the flow due to a point-source dipole, where the two singularities are located at the center
of the sphere and point along the x axis. The composite stream function is given by

ψ = ψp + sx ψ
3DSTx + dx ψ

3DPSDx, (9.6.18)

where sx and dx are the a priori unknown strengths of the singularities. Expressing (9.6.3)
and (9.6.4) in cylindrical polar coordinates, we obtain

ψ3DST ≡ r sin2 θ =
σ2

(x2 + σ2)1/2
(9.6.19)

and

ψ3DPSDx ≡ 1

4π

1

r
sin2 θ =

1

4π

σ2

(x2 + σ2)3/2
, (9.6.20)

where r =
√
x2 + σ2.

The boundary conditions require that the velocity at the surface of the sphere is equal
to u = V ex, where V is the velocity of translation of the sphere and ex is the unit vector
along the x axis. In terms of the stream function,

ux(r = a) =
1

σ

(∂ψ
∂σ

)
r=a

= V, uσ(r = a) = − 1

σ

(∂ψ
∂x

)
r=a

= 0, (9.6.21)
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where the derivative with respect to σ is taken holding x constant, and the derivative with
respect to x is taken holding σ constant.

Substituting (9.6.17), (9.6.19), and (9.6.20) into the right-hand side of (9.6.18), and then
substituting the resulting expression into the boundary conditions (9.6.21) and simplifying,
we obtain

U (1− σ2

b2
) +

sx
a

(2− σ2

a2
) +

1

4π

dx
a3

(2− 3
σ2

a2
= V, (9.6.22)

and

sx +
3

4π

1

a2
dx = 0. (9.6.23)

where the left-hand side of (9.6.22) is evaluated at r = a. Using relation (9.6.23) to eliminate
dx in favor of sx from (9.6.22), we obtain

U (1− σ2

b2
) +

4

3

sx
a

= V (9.6.24)

evaluated at r = a. Since σ = a sin θ over the surface of the sphere, it is not possible to
satisfy the boundary condition (9.6.24) over the entire surface of the sphere, except in the
absence of the parabolic flow. This difficulty underlines the limitations of the approximate
singularity representation embodied in(9.6.18).

Breaking free

As a compromise, we require the satisfaction of (9.6.24) integrated over the surface of the
sphere. Substituting σ = a sin θ, recalling that the integral of an axisymmetric function f(θ)
over the surface of the sphere is given by∫∫

f(θ) dS = 2πa2
∫ π

0

f(θ) sin θ dθ, (9.6.25)

and noting that the surface area of the sphere is 4πa2, we obtain

U
(
4πa2 − 2πa4

b2

∫ π

0

sin3 θ dθ
)
+

4

3

sx
a

4πa2 = 4πa2V. (9.6.26)

Noting that ∫ π

0

sin3 θ dθ =
4

3
(9.6.27)

and simplifying, we obtain

U
(
1− 2

3

(a
b

)2 )
+

4

3

sx
a

= V. (9.6.28)
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According to (9.6.13), the x component of the hydrodynamic force exerted on the sphere
is given by

Fx = −8πμ sx. (9.6.29)

Using this expression to eliminate sx in favor of Fx in (9.6.28), we obtain

V = U
(
1− 2

3

(a
b

)2 )− Fx

6πμa
, (9.6.30)

which provides us with an expression for the velocity of the sphere, V , in terms of the
velocity profile of the Poiseuille flow, determined by U and b, and the force exerted on the
sphere, Fx.

The second term on the left-hand side of (9.6.30) is consistent with Stokes’ law expressed
by (9.5.35). If the tube is vertical and the x axis points downward in the direction of gravity,
a force balance on the sphere requires that Fx should be equal and opposite to the weight
of the sphere reduced by the buoyancy force,

Fx = −4π

3
a3(ρs − ρ)g, (9.6.31)

where ρs is the density of the sphere, ρ is the density of the fluid, and g is the magnitude
of the acceleration of gravity.

Motion of a freely suspended sphere

In the case of a freely suspended sphere, Fx = 0, equation (9.6.30) yields

V = U
(
1− 2

3

(a
b

)2 )
. (9.6.32)

This expression shows that the velocity of the sphere lags behind the local fluid velocity at
the centerline, U , by a factor that is determined by the square of the ratio of the sphere to
tube radius, (a/b)2.

Boundary effects

The no-slip and no-penetration conditions at the surface of the tube have not been enforced.
As a consequence, expression (9.6.30) is strictly valid for a sphere immersed in infinite
parabolic flow. Consequently, the presence of the tube in our discussion is relevant only
insofar as to establish the curvature of the parabolic velocity profile.

In spite of the approximate satisfaction of the boundary condition on the surface of
the sphere implemented by (9.6.26), expression (9.6.30) turns out to be exact for infinite
parabolic flow, but not for wall-bounded parabolic flow.

9.6.4 Boundary integral representation

Consider an incident flow with velocity u∞ past a stationary, translating, or rotating par-
ticle, and divide the surface of the particle into a collection of N surface elements, such as
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x
(k)

n

Figure 9.6.3 Stokes flow past a particle can be represented by a superposition of point forces located
at designated centers of boundary elements.

curved quadrilaterals or triangles, as illustrated in Figure 9.6.3. An approximate represen-
tation of the flow can be obtained by adding to the incident flow the flow due to a collection
of point forces located at designated centers of the surface elements.

Expressing the Stokeslet in terms of the Oseen tensor, as shown in equation (9.6.6), we
find that the velocity at a point x that lies in the fluid is given by

u(x) = u∞(x)− 1

8πμ

N∑
k=1

S(x,x(k)) · F(k), (9.6.33)

where x(k) is the designated center of the kth element and F(k) is the corresponding vectorial
strength of the point force.

Rearranging the representation (9.6.33), we obtain

u(x) = u∞(x)− 1

8πμ

N∑
k=1

(
S(x,x(k)) · f (k) )ΔS(k), (9.6.34)

where ΔS(k) is the surface area of the kth element, and we have introduced the average
traction

f (k) ≡ 1

ΔS(k)
F(k). (9.6.35)

As the number of elements, N , tends to infinity, and correspondingly the surface areas
ΔS(k) tend to zero, the sum on the right-hand side of (9.6.34) reduces to a surface integral,
yielding the integral representation

u(x) = u∞(x)− 1

8πμ

∫∫
particle

S(x,x′) · f(x′) dS(x′), (9.6.36)

which expresses the flow in terms of a continuous distribution of point forces over the particle
surface. In fact, it can be shown that the density of the distribution, f , is the hydrodynamic
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traction exerted on the particle surface, given by f = n ·σ, where n is the unit vector normal
to the particle surface pointing into the fluid.

The integral representation (9.6.36) suggests a practical method of computing the flow:
apply this equation at an arbitrary point, x, at the particle surface, enforce the boundary
conditions for the velocity to evaluate the left-hand side, and then solve the resulting integral
equation for the traction, f .

In practice, the solution is found numerically by approximating (9.6.36) with a discrete
form in terms of boundary elements, as shown in equation (9.6.34). Identifying the point
x in (9.6.34) with the designated center of each element, provides us with a system of
linear equations for the strengths of the point forces, F(k). The procedure is known as a
boundary-element/collocation method. Other methods for solving the integral equation are
available.

9.6.1 Force on a surface enclosing a Stokeslet or point source

(a) Verify equation (9.6.11) for a spherical surface centered at the singular point, x0.

(b) Verify that the force exerted on a spherical surface centered at a point source is zero.
Recall that the pressure field associated with a point source is uniform throughout the
domain of a Stokes flow.

9.7 Two-dimensional Stokes flow

It might appear that our discussion of three-dimensional Stokes flow in Sections 9.5 and 9.6
carries over to two-dimensional flow without any further difficulties or added considerations.
While this is generally true, there is one important exception: the flow due to the motion of
a two-dimensional body in an infinite and otherwise quiescent fluid is generally not defined,
in that a solution that satisfies the condition of vanishing velocity at infinity cannot be
obtained if the force exerted on the body is nonzero. We will consider this problematic case
first and then discuss well-posed flows.

9.7.1 Flow due to the motion of a cylinder

Consider the flow due to a circular cylinder of radius a translating along the x axis with
velocity V in the xy plane. If the Reynolds number is sufficiently small, Re = ρV a/μ < 1,
inertial forces are negligible compared to pressure and viscous forces sufficiently close to the
cylinder, and the motion of the fluid is governed by the linear equations of Stokes flow. In
Section 9.5, we emphasized that the smallness of the Reynolds number does not guarantee
that inertial forces are insignificant throughout the domain of flow and, in particular, suffi-
ciently far from the cylinder. Thus, the consistency of a solution derived working exclusively
in the context of Stokes flow is subject to a priori verification.

Problem
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Solution for the stream function

To bypass the computation of the pressure, we seek a solution based on the vorticity trans-
port equation for the only non-vanishing vorticity component, ωz,

ρ
( ∂ωz

∂t
+ ux

∂ωz

∂x
+ uy

∂ωz

∂y

)
= μ∇2ωz, (9.7.1)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the two-dimensional Laplacian operator.

Setting the right-hand side of (9.7.1) to zero to eliminate inertial effects, introducing the
stream function, ψ, and substituting ωz = −∇2ψ, we derive a fourth-order linear differential
equation for the stream function,

∇2∇2ψ ≡ ∇4ψ = 0, (9.7.2)

where

∇4 ≡ ∇2∇2 = (
∂2

∂x2
+

∂2

∂y2
)(

∂2

∂x2
+

∂2

∂y2
) =

∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
(9.7.3)

is the biharmonic operator in two dimensions. Our task is to solve the fourth-order dif-
ferential equation (9.7.3) in the flow regime, outside the cylinder, subject to appropriate
boundary and far-field conditions.

Repeating the analysis of Section 9.5 for the analogous problem of flow due to a translat-
ing sphere, we find that, in plane polar coordinates with origin at the center of the cylinder,
(r, θ), the boundary conditions take the form

ψ(r = a) = V a sin θ,
(∂ψ
∂r

)
r=a
= V sin θ, (9.7.4)

where θ = 0 along the direction of translation. In the far field, we require that

ψ

rm
→ 0 as r → ∞ (9.7.5)

for any exponent m ≥ 1. Condition (9.7.5) allows the stream function to diverge at infinity,
but requires that the rate of growth is less than linear so that the fluid becomes quiescent
at infinity.

Solution by separation of variables

Motivated by the functional form of the boundary conditions (9.7.4), we seek a solution for
the stream function by separation of variables in plane polar coordinates, setting

ψ(r, θ) = q(r) sin θ. (9.7.6)

The unknown function q(r) satisfies the boundary conditions

q(r = a) = V a,
( ∂q

∂r

)
r=a

= V, (9.7.7)
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and the far-field condition

q(r)

rm
→ 0 as r → ∞ (9.7.8)

for m ≥ 1.

Equation (3.2.29) provides us with the Laplacian operator in planar polar coordinates.
The corresponding biharmonic operator is

∇4 =
( 1

r

∂

∂r
(r

∂

∂r
) +

1

r2
∂2

∂θ2

)( 1

r

∂

∂r
(r

∂

∂r
) +

1

r2
∂2

∂θ2

)
. (9.7.9)

Substituting (9.7.6) into (9.7.2), and carrying out the differentiations, we derive a fourth-
order linear ordinary differential equation,( d2

dr2
+

1

r

d

dr
− 1

r2

)( d2

dr2
+

1

r

d

dr
− 1

r2

)
q = 0. (9.7.10)

Working as in Section 9.4 for flow due to the motion of a sphere, we derive the general
solution

q(r) = Ar3 +B r ln
r

a
+ C r +

D

r
, (9.7.11)

where A, B, C and D, are four constants.

For the far-field condition (9.7.8) to be satisfied, the constants A, B, and C must all be
zero. Only one coefficient, D, is then left to satisfy the two remaining boundary conditions
(9.7.7) at the surface of the cylinder, which is not possible. Sadly, the problem of Stokes
flow due to the motion of a cylinder does not admit a solution.

Significance of inertia

To probe the origin of this catastrophe, we return to examine the magnitude of inertial and
viscous terms in the equation of motion, as discussed in Section 9.5. Cursory inspection re-
veals that the approximations underlying the notion of creeping flow cease to be accurate far
from the cylinder. As a consequence, imposing the far field condition (9.7.8) is inconsistent.

In the case of three-dimensional flow due to the motion of a sphere discussed in Section
9.5, this difficulty was shielded by the decay of the flow due to a three-dimensional Stokeslet
expressing a point force. In contrast, in the case of two-dimensional flow, the velocity field
due to a point force exhibits a logarithmic divergence contributed by the second term on
the right-hand side of (9.7.11), and a decaying solution cannot be found.

Matched asymptotic expansions

To remedy this essential difficulty, we use the method of matched asymptotic expansions.
The main idea is to divide the flow into two regimes, as follows:
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• An inner regime where the motion of the fluid is governed by the equations of creeping
flow, subject to the no-slip and no-penetration boundary conditions at the surface of
the cylinder, as discussed previously in this section.

• An outer regime where the motion of the fluid is governed by another simplified system
of equations, called the equations of Oseen flow, subject to the far-field condition
(9.7.8).

Matching conditions arise by requiring consistency between the functional forms of the
inner and outer solutions, respectively, for large and small distances from the center of the
cylinder. The analysis involves sophisticated arguments that lie outside the scope of our
discussion.

9.7.2 Rotation of a circular cylinder

Not all problems of two-dimensional infinite flow are ill-posed, in that a solution that satisfies
the boundary and far-field conditions cannot be found. If the force exerted on the union of
all internal boundaries is zero, then a perfectly acceptable solution can be obtained.

As an example, we consider two-dimensional flow generated by a circular cylinder of
radius a that rotates with angular velocity Ω around its center. The induced flow is identical
to that due to a point vortex with strength κ = 2πΩ a2 situated at the center of cylinder, as
discussed in Section 3.7. Using expressions (3.7.1), we derive the radial and polar velocity
components

ur = 0, uθ = Ω
a2

r
. (9.7.12)

The corresponding pressure field is uniform throughout the domain of flow.

An external torque must be applied to counterbalance the hydrodynamic torque due
to the motion of the fluid, and thus sustain the rotation of the cylinder. The torque with
respect to the center of the cylinder is given by

Tz =

∮
cylinder

σrθ a d
, (9.7.13)

where 
 is the arc length around the cylinder. Substituting (9.7.12) into the Newtonian
constitutive equation shown in Table 4.7.3, we derive the stress component

σrθ = −2μΩa3
1

r2
. (9.7.14)

Substituting this expression into (9.7.13), setting d
 = a dθ, and integrating with respect to
θ from 0 to 2π, we obtain

Tz = −4πμΩ a2. (9.7.15)
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9.7.3 Simple shear flow past a circular cylinder

As a further application, we consider simple shear flow along the x axis past a circular
cylinder of radius a centered at the origin. The incident velocity components are

u∞
x = ξy, u∞

y = 0, (9.7.16)

where the constant ξ is the shear rate. The cylinder is allowed to rotate about its center
with angular velocity

Ω = − 1

2
ξ. (9.7.17)

If ξ is positive, the cylinder rotates in the clockwise direction; if ξ is negative, the cylinder
rotates in the counter-clockwise direction.

A detailed analysis shows that the radial and polar components of the velocity are given
by

ur = ξa
1

2

( r
a
− 2

a

r
+

a3

r3
)
sin 2θ (9.7.18)

and

uθ = ξa
1

2

(− r

a
+
( r
a
− a3

r3
)
cos 2θ

)
, (9.7.19)

while the torque exerted on the cylinder is zero. These results demonstrate that a freely-
suspended cylinder rotates at an angular velocity that is equal to the negative of half the
shear rate of the incident simple shear flow.

9.7.4 The Oseen tensor and the point force

The second term on the right-hand side of (9.7.11), involving the logarithm, represents the
flow due to a two-dimensional point force oriented along the x axis. Differentiating with
respect to x or y, we obtain the corresponding velocity field. Repeating the derivation for
a point force oriented along the y axis, we obtain the velocity field at a point, x = (x, y),
due to a two-dimensional Stokeslet with vectorial strength s = (sx, sy) situated at another
point, x0 = (x0, y0), expressed by[

ux

uy

]
(x,x0) = S(x,x0) ·

[
sx
sy

]
, (9.7.20)

where S is the 2× 2 Oseen tensor for two-dimensional flow defined as

S(x,x0) =

⎡⎢⎢⎢⎣
− ln

r

a
+

(x− x0)
2

r2
(x− x0)(y − y0)

r2

(y − y0)(x− x0)

r2
− ln

r

a
+

(y − y0)
2

r2

⎤⎥⎥⎥⎦ , (9.7.21)
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Figure 9.7.1 Streamline pattern of the flow induced by a two-dimensional point force pointing along
the x axis.

a is a specified constant length, and

r = [(x− x0)
2 + (y − y0)

2]1/2 (9.7.22)

is the distance of the field point, x, from the location of the Stokeslet, x0.

The two columns of the Oseen tensor represent, respectively, the x and y velocity
components associated with a Stokeslet of unit strength pointing in the direction of the x
or y axis. The corresponding pressure field is given by

p(x,x0) = μ
2

r2

[
x− x0

y − y0

]
·
[

sx
sy

]
, (9.7.23)

where a dot denotes the inner vector product. The streamline pattern of the flow induced
by a two-dimensional Stokeslet oriented along the x axis is shown in Figure 9.7.1.

Consider a closed contour, C, enclosing a singular point, x0. In can be shown that the
force exerted on the fluid enclosed by the contour is given by

F =

∮
C
σ · n d
 = −4πμ s, (9.7.24)

independent of the contour shape, where σ is the stress tensor, n is the unit vector normal
to C pointing outward, and 
 is the arc length. The torque with respect to the point x0 is
zero. The force and torque exerted on a closed contour that does not enclose the singular
point, x0, are also zero. These results are consistent with our earlier assertion that the
two-dimensional Stokeslet expresses the flow due to a two-dimensional point force.
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9.7.1 Simple shear flow past a freely-suspended cylinder

(a) Verify that the velocity field given in (9.7.18) and (9.7.19) satisfies the continuity equation

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂r
= 0. (9.7.25)

(b) Confirm that the torque exerted on the cylinder is zero. (c) Compute the associated
pressure field.

9.8 Local solutions

The boundaries of a flow may involve walls, interfaces, and dividing streamlines that meet
at corners or cusps. Deep into the corners or cusps, the magnitude of the velocity decays
rapidly, the inertia of the fluid becomes negligible, and the Reynolds number of the local
flow is small. The structure of the flow may then be studied in the context of Stokes flow,
regarding the far flow as a driving mechanism that determines the intensity and selects the
geometrical mode and spatial structure of the local flow.

9.8.1 Solution by separation of variables

Consider a two-dimensional flow between two planes intersecting at an angle 2α, as illus-
trated in Figure 9.8.1. To facilitate the implementation of the boundary conditions, we
introduced plane polar coordinates with origin at the apex, (r, θ). To circumvent the com-
putation of the pressure, we introduce the stream function, ψ, and separate the radial from
the angular dependencies, writing

ψ(r, θ) = q(r) f(θ), (9.8.1)

where q(r) and f(θ) are two a priori unknown functions. Note that expression (9.8.1) is a
generalization of expression (9.7.6) describing the flow due to the motion of a cylinder.

Next, we stipulate that the component function q(r) exhibits a power-law dependence
on r,

q(r) = rλ, (9.8.2)

while the component function f(θ) exhibits an exponential dependence on θ,

f(θ) = A exp(κθ), (9.8.3)

where λ and κ are two constants and A is an arbitrary coefficient. The exponent, κ, is
allowed to be complex,

κ = κR + iκI, (9.8.4)

Problem
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x
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r

Figure 9.8.1 Because the local Reynolds number of the flow near a corner is small, the motion of
the fluid is governed by the equations of Stokes flow. Similarity solutions can be derived working
in local plane polar coordinates, (r, θ).

where i is the imaginary unit, i2 = −1, and κR, κI are two real constants. Using the Euler
decomposition of the complex exponential, we write

f(θ) = A exp(κRθ)
[
cos(κIθ) + i sin(κIθ)

]
, (9.8.5)

with the understanding that either the real or the imaginary part may be selected on the
right-hand side of (9.8.1).

Substituting expressions (9.8.2) and (9.8.3) into (9.8.1) and the result in the biharmonic
equation, ∇4ψ = 0, expressed in plane polar coordinates, as shown in (9.7.9), we derive a
bi-quadratic algebraic equation for κ parametrized by the exponent λ,

κ4 + 2 (λ2 − 2λ+ 2)κ2 + λ2 (λ− 2)2 = 0. (9.8.6)

The roots can be found readily using the quadratic formula. Solving for κ, substituting the
result into (9.8.5), and rearranging the emerging expression, we obtain the general solution

f(θ) =

⎧⎨⎩
B sin(λθ − β) + C sin[(λ− 2)θ − γ] if λ 
= 0, 1, 2,
B sin(2θ − β) + C θ +D if λ = 0, 2,
B sin(θ − β) + C θ sin(θ − γ) if λ = 1,

(9.8.7)

where B, C are two complex constants and β, γ are two real constants.

A variety of flows can be generated by selecting, or solving for, the exponent λ. Illus-
trative examples are discussed in the remainder of this section.

9.8.2 Stagnation-point flow on a plane wall

In the first application, we consider flow near a stagnation point on a plane wall, as illustrated
in Figure 9.8.2. The no-slip and no-penetration boundary conditions require that

f = 0,
df

dθ
= 0 (9.8.8)
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Figure 9.8.2 Streamline pattern of flow in the neighborhood of a stagnation point on a plane wall
with a rectilinear dividing streamline. The angle subtended between the dividing streamline and
the wall is (a) α = π/4 and (b) π/2.

at θ = 0 and π. The structure of the flow is determined by specifying that f = 0 along the
dividing streamline located at θ = α, where the angle α is regarded as a free parameter.

Making the judicious choice λ = 3 and using the general solution given by the first
formula in (9.8.7), we obtain

f(θ) = B sin(3θ − β) + C sin(θ − γ). (9.8.9)

Enforcing the no-slip and no-penetration boundary conditions, and specifying the orien-
tation of the dividing streamline, we derive a system of three homogeneous equations for
the constants B and C, involving the unknown parameters, β and γ. The no-penetration
condition requires that

f(0) = f(π) = −B sinβ − C sin γ = 0, (9.8.10)

the no-slip condition requires that(df
dθ

)
θ=0

= −
(df
dθ

)
θ=π

= 3B cosβ + C cos γ = 0, (9.8.11)

and the orientation of the dividing streamline requires that

f(α) = B sin(3α− β) + C sin(α− γ) = 0. (9.8.12)

Combining equations (9.8.10) and (9.8.11), we find that

tanβ = −3 tan γ. (9.8.13)



9.8 Local solutions 663

Combining equations (9.8.11) and (9.8.12), we find that

3
cosβ

sin(3α− β)
= − cos γ

sin(α− γ)
. (9.8.14)

Equations (9.8.13) and (9.8.14) can be used to express β and γ in terms of α. Using
any one of equations (9.8.10), (9.8.11), (9.8.12) to express B in terms of C, substituting the
result into (9.8.9), and making use of the trigonometric identity sin 3a = 3 sin a − 4 sin3 a,
we derive the final form

f(θ) = G sin2 θ sin(θ − α), (9.8.15)

where G is an arbitrary constant.

Substituting (9.8.15) into (9.8.1), we obtain the desired stream function,

ψ(r, θ) = Gr3 sin2 θ sin(θ − α). (9.8.16)

The value of the constant G is determined by the strength of the flow far from the stagnation
point.

Streamline patterns for α = 1
4π and 1

2π are shown in Figure 9.8.2. A distinguishing
feature of Stokes flow is that the dividing streamlines are straight lines originating from the
stagnation point on the wall. This is not true in the case of Navier–Stokes flow.

9.8.3 Flow inside a corner

In the second application, we consider flow inside a corner confined between two intersecting
stationary planes located at θ = ±α, as illustrated in Figure 9.8.1. The no-slip and no-
penetration boundary conditions require that f = 0 and df/dθ = 0 at θ = ±α.

We confine our attention to flow that is antisymmetric will respect to the midplane,
located at θ = 0, and require the condition df/dθ = 0 at θ = 0, stating that the radial
velocity vanishes at the mid-plane. The value of the exponent λ cannot be specified a priori
as in the case of stagnation-point flow discussed earlier in this section, but must be found
instead as part of the solution.

Assuming that λ 
= 0, 1, 2, we set β = π/2 and γ = π/2 in the first equation of (9.8.7)
to ensure that df/dθ = 0 at θ = 0, and find that

f(θ) = Q cos(λθ) +G cos[(λ− 2)θ], (9.8.17)

where Q and G are two constants.

Enforcing the boundary conditions f = 0 and df/dθ = 0 at θ = ±α, we obtain a
homogeneous system of two equations for the constants Q and G,[

cos(λα) cos[(λ− 2)α]
λ sin(λα) (λ− 2) sin[(λ− 2)α]

]
·
[

Q
G

]
=

[
0
0

]
. (9.8.18)
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For a nontrivial solution to exist, the determinant of the coefficient matrix on the left-hand
side must be zero, yielding

(λ− 2) cos(λα) sin[(λ− 2)α]− λ sin(λα) cos[(λ− 2)α] = 0, (9.8.19)

which can be restated as a nonlinear algebraic equation,

sin[2α(λ− 1)] = (1− λ) sin(2α). (9.8.20)

An obvious solution is λ = 1. However, since for this value the third instead of the first
equation in (9.8.7) should have been used, this choice is disqualified.

We anticipate that equation (9.8.20) will have a generally complex solution for λ, and
write

λ = λR + iλI, (9.8.21)

where i is the imaginary unit. Substituting (9.8.21) into (9.8.20) and using standard formulas
of complex calculus, we derive a system of two real equations for λR and λI,

sin[2α(λR − 1)] cosh(2αλI) = (1− λR) sin(2α),
sin[2α(λR − 1)] sinh(2αλI) = −λI sin(2α).

(9.8.22)

To simplify the notation, we introduce the auxiliary variables

ξ = 2α(λR − 1), η = 2αλI κ =
sin(2α)

2α
, (9.8.23)

and express the system (9.8.22) in the more convenient form

f1(ξ, η) ≡ sin ξ cosh η + κξ = 0, f2(ξ, η) ≡ cos ξ sinh η + κη = 0. (9.8.24)

Using the definition of ξ and η, we find that

λ =
1 + ξ

2α
+ i

η

2α
. (9.8.25)

Our task is to solve the system of equations (9.8.24) for ξ and η, subject to a specified value
for κ, that is, subject to a specified angle, α.

Newton’s method

The solution of the nonlinear algebraic equations must be found by iteration. The numerical
procedure involves guessing values for ξ and η that wishfully satisfy equations (9.8.24), and
then improving the guess in some sensible fashion.

In Newton’s method, the solution is found by guessing the values ξG and ηG for ξ and
η, replacing the functions f1(ξ, η) and f2(ξ, η) with their linearized Taylor series expansion,



9.8 Local solutions 665

and then solving a linear system of equations for the unknowns using elementary analyt-
ical or numerical methods. The linearized Taylor series expansion provides us with the
approximations

f1(ξ, η) 	 f1(ξ
G, ηG) +

(∂f1
∂ξ

)
ξG,ηG

(ξ − ξG) +
(∂f1
∂η

)
ξG,ηG

(η − ηG),

(9.8.26)

f2(ξ, η) 	 f2(ξ
G, ηG) +

(∂f2
∂ξ

)
ξG,ηG

(ξ − ξG) +
(∂f2
∂η

)
ξG,ηG

(η − ηG).

Setting the right-hand sides to zero to satisfy (9.8.24), we find that⎛⎜⎜⎝
∂f1
∂ξ

∂f1
∂η

∂f2
∂ξ

∂f2
∂η

⎞⎟⎟⎠
ξ=ξG,η=ηG

·
(

ξ − ξG

η − ηG

)
= −

(
f1(ξ

G, ηG)
f2(ξ

G, ηG)

)
. (9.8.27)

The coefficient matrix on the left-hand side is the Jacobian matrix of the algebraic system
(9.8.24). In summary, Newton’s algorithm involves the following steps:

1. Guess the values ξG and ηG.

2. Evaluate the right-hand side of (9.8.27) and the coefficient matrix on the left-hand
side.

3. Solve the system of two linear equations (9.8.27) for the differences Δξ ≡ ξ − ξG and
Δη ≡ η − ηG; we recall that ξ and η are unknown.

4. Improve the guesses by replacing the guessed values with the new values

ξN = ξG +Δξ, ηN = ηG +Δη. (9.8.28)

5. Return to Step 2 and repeat the procedure with new values for ξ = ξN and η = ηN.

The iterations converge as long as the initial guesses are sufficiently close to the exact
solution.

System (9.8.24) has a family of solution branches obtained by making different selections
for the initial guess. The most physically relevant branch is associated with the smallest
value of λR, corresponding to a flow that decays at the lowest possible rate with distance
from the apex, r, yielding the strongest possible flow.

The real and imaginary parts of λ are plotted against the half-angle, α, in Figure
9.8.3(a). When 0.41π < α < π, the exponent λ is real; the fluid moves uninterrupted along
the walls and regions of recirculating flow do not develop, as illustrated in Figure 9.8.3(b).
When 0 < α < 0.41π, the exponent λ is complex; the flow develops an infinite sequence of
regions of recirculating fluid, called eddies, as shown in Figure 9.8.3(c).
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Figure 9.8.3 (a) Graphs of the real part (solid line) and imaginary part (broken line) of the exponent
λ with the smallest real part for antisymmetric flow between two walls intersecting at an angle
2α. When 0.41π < α < π, λ is real; when 0 < α < 0.41π, λ is complex. (b, c) Streamline
pattern of antisymmetric flow in a corner with half-angle (b) α = 135◦, and (c) 10◦.

9.8.1 Flow near a scraper

Derive a local solution for flow near two intersecting plates, where one of the plates is
held stationary while the second plate moves parallel to itself with constant velocity. This
idealized configuration is a model of the flow due to a plate scrapping fluid off a flat surface,
viewed in a frame of reference moving with the scraper.

Problems
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9.8.2 Computation of the exponent

Write a computer program that uses Newton’s method to solve the nonlinear algebraic
system (9.8.24) and reproduce the graph shown in Figure 9.8.3(a).



High-Reynolds-number flow 10
10.1 Changes in the structure of a flow with increasing Reynolds number
10.2 Prandtl boundary-layer analysis
10.3 Blasius boundary layer on a semi-infinite plate
10.4 Displacement and momentum thickness
10.5 Boundary layers in accelerating or decelerating flow
10.6 Momentum integral method
10.7 Instability of shear flows
10.8 Finite-difference solution of the Rayleigh equation
10.9 Finite-difference solution of the Orr–Sommerfeld equation
10.10 Turbulent flow
10.11 Spectrum of a turbulent flow
10.12 Analysis and modeling of turbulent flow

Having discussed viscous flow at low Reynolds numbers in Chapter 9, now we turn our
attention to the diametrically opposite limit of inertia-dominated flow at high Reynolds
numbers. Inspecting the changes in the structure of a flow with increasing Reynolds number,
we encounter a rich phenomenology and a variety of transition protocols. In all cases,
when the Reynolds number exceeds a critical threshold, flow instability sets in and a small-
scale turbulent motion is established. The study of the structure and dynamics of flow at
high Reynolds numbers encompasses several complementary topics including potential flow
theory, boundary-layer analysis, hydrodynamic stability, turbulent flow, and vortex motion.
Potential flow was discussed earlier in this book; boundary-layer theory, hydrodynamic
stability, and turbulent motion are discussed in this chapter; vortex motion is the exclusive
topic of Chapter 11.

10.1 Changes in the structure of a flow
with increasing Reynolds number

As the Reynolds number of a flow increases by raising, for example, the magnitude of the
velocity, the structure of the flow changes in a way that depends strongly on the particular
flow configuration. Even though a general statement regarding the anticipated protocol of
change cannot be made, several pervasive features can be identified.
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Boundary layers

As the Reynolds number increases, diffusion of vorticity away from the boundaries of the
flow and into the bulk of the fluid is hindered by strong convection along the boundaries,
toward the boundaries, or both. As a result, vorticity tends to be confined inside boundary
layers and within free shear layers developing along fluid interfaces and free surfaces. Viscous
forces are significant inside the boundary and free shear layers, but can be neglected in the
bulk of the flow.

Vortices

Vorticity that has entered the flow by diffusion across the boundaries may accumulate into
compact regions of rotational motion identified as vortices. Vortices are typically generated
behind bluff bodies and at the trailing edge of streamlined objects.

Vortex dynamics

Vortex interaction causes the flow to become unsteady in a deterministic, random, or chaotic
fashion. Spatial, temporal, and spatio-temporal chaos can be established even at moderate
Reynolds numbers.

Instability

When the Reynolds number exceeds a critical threshold, small disturbances amplify, altering
the local and sometimes the global structure of a flow.

Transition to turbulence

Instability is followed by transition leading to turbulent flow where a small-scale unsteady
motion is superimposed on a large-scale steady or unsteady flow. The small-scale motion
affects and is affected significantly by the large-scale structure and global properties of the
flow.

10.1.1 Flow past a cylinder

The salient changes in the structure of streaming (uniform) flow past a circular cylinder
with increasing Reynolds number, Re ≡ ρDU/μ, are illustrated in Figure 10.1.1(a). In
the definition of the Reynolds number, D is the cylinder diameter, U is the velocity of the
approaching stream far from the cylinder, μ is the fluid viscosity, and ρ is the fluid density.

When the Reynolds number is less than unity, inertial forces are negligible near the
cylinder. The motion of the fluid is governed by the equations of Stokes flow discussed in
Chapter 9, and the streamline pattern is symmetric with respect to the vertical plane that
is normal to the incident stream and passes through the cylinder mid-plane.

As the Reynolds number increases, inertial forces become increasingly significant, and
a boundary layer, identified as a region of increased vorticity, is established around the
surface of the cylinder. The rotational fluid inside the boundary layer is convected along
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Figure 10.1.1 (a) Schematic illustration of changes in the structure of streaming flow past a circular
cylinder with increasing Reynolds numbers, showing boundary-layer separation and the develop-
ment of a wake, after Homann, F. (1936) Einfluss grosser zähigkeit bei strömung um zylinder.
Forschg. Ing.-Wes. 7, 1–10. (b) Drag coefficient plotted against the Reynolds number defined
with respect to the cylinder diameter.

Changes in the structure of a flow with increasing Reynolds number
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the cylinder and accumulates behind the cylinder to form two regions of recirculating flow,
leading to a slender wake.

A further increase in the Reynolds number causes the flow to become unstable. A pair
of vortices developing behind the cylinder are shed downstream in an alternating fashion at
a frequency that depends weakly on the Reynolds number, only to be replenished by newly
formed vortices. The frequency of shedding, f , is expressed by the dimensionless Strouhal
number, St ≡ fD/U . In the case of a circular cylinder, laboratory observations show that
St 	 0.2. Far from the cylinder, the wake consists of two rows of counter-rotating vortices
arranged in a staggered configuration that is known as the von Kàrmàn vortex street. At
even higher Reynolds numbers, turbulent flow is established and the edges of the wake
become blurred and poorly defined.

Behavior of the drag force

The changes in the structure of the flow described previously in this section have a strong
influence on the drag force exerted on the cylinder. A graph of the dimensionless drag
coefficient,

cD ≡ 2F

ρDU2
, (10.1.1)

is plotted against the Reynolds number in Figure 10.1.1(b) on a log-log scale, where F is
the drag force per unit length exerted on the cylinder.

In the limit of vanishing Reynolds number, Re → 0, theoretical analysis shows that the
drag force is given by the modified Stokes law

F 	 4π

ln 7.4
Re

μU. (10.1.2)

Correspondingly, the drag coefficient is given by

cD 	 8π

Re log 7.4
Re

. (10.1.3)

The change in the functional form of the drag coefficient at a critical Reynolds number on
the order of 103, evident in Figure 10.1.1(b), is due to the detachment of the boundary
layer from the surface of the cylinder at a certain point at the rear surface of the cylinder,
as discussed in Section 10.4. The detachment occurs in a process that is described as flow
separation.

When the Reynolds number becomes on the order of 105, the flow becomes turbulent
and the boundary layer reattaches, causing a sudden decline in the drag coefficient as shown
in Figure 10.1.1(b).

The non-monotonic dependence of the force drag coefficient on the Reynolds number
illustrated in Figure 10.1.1(b) is a manifestation of the complexity of fluid motion in high
Reynolds number flow.
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Figure 10.2.1 Schematic illustration of a Prandtl boundary layer developing around the surface of a
two-dimensional curved body.

10.1.1 Flow in a channel through an expansion

Consider flow through a channel with a sudden expansion, as illustrated in Figure 6.2.1.
Discuss the expected changes in the structure of the flow with increasing a properly defined
Reynolds number.

10.2 Prandtl boundary-layer analysis

In Section 10.1, we identified a boundary layer as a region of elevated vorticity over a solid
boundary in a high-Reynolds-number flow. To make the concept of a boundary layer more
specific, we may consider a model flow consisting of the following two regimes:

• An outer regime where the curl of the vorticity or the vorticity itself vanishes and the
motion of the fluid is described by the equations of inviscid flow, including Euler’s
equation and the continuity equation.

• A boundary layer across which the vorticity undergoes a rapid transition and the
magnitude of viscous forces is significant, as illustrated in Figure 10.2.1.

Wakes and regions of recirculating flow are allowed, but are significant only insofar as to
determine the structure of the outer flow.

10.2.1 Simplifications

The slenderness of the boundary layer, compared with the typical size of the boundaries,
flow allows us to simplify the equation of motion for the flow inside the boundary layer, and
thereby derive approximate solutions in the asymptotic limit of high Reynolds numbers,
Re → ∞.

Problem
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To illustrate the physical arguments involved in the formulation of the boundary-layer
theory, and simultaneously demonstrate the salient mathematical simplifications, we con-
sider the boundary layer developing along a mildly-curved two-dimensional rigid body that
is held stationary in an incident irrotational flow, as shown in Figure 10.2.1. Extensions to
axisymmetric and three-dimensional flow are straightforward.

Continuity equation

We begin the analysis by introducing Cartesian coordinates where the x axis is tangential
to the body at a point and the y axis is perpendicular to the body at that point, as shown
in Figure 10.2.1. Next, we apply the continuity equation for two-dimensional flow at a point
in the vicinity of the origin,

∂ux

∂x
+

∂uy

∂y
= 0. (10.2.1)

Let L be is the typical dimension of the body, U be the magnitude of the velocity of the
incident irrotational flow, δ be the designated thickness of the boundary layer, and V be
the typical magnitude of component of the velocity normal to the body at the edge of the
boundary layer.

It is reasonable to expect that the magnitude of the derivative ∂ux/∂x inside the bound-
ary layer will be comparable to the ratio U/L, while the magnitude of the derivative ∂uy/∂y
will be comparable to the ratio V/δ. The continuity equation (10.2.1) requires that

U

L
∼ V

δ
or V ∼ U

L
δ, (10.2.2)

which shows that the normal component of the velocity at the edge of the boundary layer
scales with the boundary-layer thickness, δ.

x component of the equation of motion

Next, we examine the two components of the equation of motion in the vicinity of the origin
written for the dynamic pressure that excludes hydrostatic variations, defined as

ς ≡ p− ρg · x. (10.2.3)

Considering the x component of the Navier–Stokes equation,

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= −1

ρ

∂ς

∂x
+ ν (

∂2ux

∂x2
+

∂2ux

∂y2
), (10.2.4)

↓ ↓ ↓ ↓
U2

L

U2

L
ν

U

L2
ν
U

δ2

we scale ux with U , ∂ux/∂x with U/L, uy with V , ∂ux/∂y with U/δ, the second derivative
∂2ux/∂x

2 with U/L2, and the second derivative ∂2ux/∂y
2 with U/δ2.
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Moreover, we use the scaling shown in (10.2.2) to eliminate V in favor of U , and find
that the magnitude of the various terms is as shown underneath equation (10.2.5). The
scaling of the first term involving the time derivative on the left-hand side is determined
by the temporal variation of the outer flow, which is best left unspecified. At this stage,
there is no obvious way of scaling the x derivative of the dynamic pressure gradient on the
right-hand side of (10.2.5) on the basis of kinematics alone.

The scalings shown underneath equation (10.2.5), combined with the assumption δ � L,
have two important consequences. First, the penultimate viscous term on the right-hand
side is small compared to the last viscous term and may be neglected, yielding the boundary-
layer equation

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
= − ∂ς

∂x
+ ν

∂2ux

∂y2
. (10.2.5)

Second, the magnitude of the last viscous term must be comparable to the magnitude of
the inertial terms on the left-hand side, so that

U2

L
∼ ν

U

δ2
(10.2.6)

or

δ ∼
√

νL

U
=

L√
Re

, (10.2.7)

where Re = UL/ν is the Reynolds number defined with respect to the boundary size, L.

y component of the equation of motion

Next, we consider the individual terms in the y component of the equation of motion,

∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y
= −1

ρ

∂ς

∂y
+ ν
( ∂2uy

∂x2
+

∂2uy

∂y2
)
,

↓ ↓ ↓ ↓
U2δ

L2

U2δ

L2

U2δ

L2

U2δ

L2
(10.2.8)

and scale uy with V , ∂uy/∂x with V/L, ux with U , ∂uy/∂y with V/δ, the second derivative
∂2uy/∂x

2 with V/L2, and the second derivative ∂2uy/∂y
2 with V/δ2. Moreover, we express

the kinematic viscosity of the fluid, ν, in terms of δ using the first equation in (10.2.7),
replacing it with Uδ2/L, and find that the magnitude of the various terms is as shown
underneath equation (10.2.8).

The magnitude of all nonlinear convective and viscous terms is of order δ. Unless the
magnitude of the temporal derivative on the left-hand side is of order unity, the dynamic
pressure gradient across the boundary layer must also be of order δ, ∂ς/∂y ∼ δ,; to leading-
order approximation,

∂ς

∂y
	 0. (10.2.9)
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We conclude that non-hydrostatic pressure variations across the boundary layer are negligi-
ble and the dynamic pressure inside the boundary layer is primarily a function of position
along the boundary measured by the arc length.

10.2.2 Boundary-layer equations

To compute the streamwise pressure gradient, we evaluate the x component of the Euler
equation (6.4.3) at the edge of the boundary layer, obtaining

−1

ρ

∂ς

∂x
=

∂Ux

∂t
+ Ux

∂Ux

∂x
, (10.2.10)

where Ux is the tangential component of the velocity of the outer flow. The boundary-layer
equation (10.2.5) then becomes

∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y
=

∂Ux

∂t
+ Ux

dUx

dx
+ ν

∂2ux

∂y2
(10.2.11)

in a general unsteady flow.

Equations (10.2.1) and (10.2.11) provide us with a system of two second-order, nonlinear
partial-differential equations for the velocity components ux and uy. The solution is subject
to two sets of conditions: (a) the no-slip and no-penetration boundary conditions requiring
that ux and uy are zero along the boundary, and (b) a far-field condition requiring that,
as y/δ tends to infinity, ux tends to the tangential component of the outer velocity, Ux.
Because the boundary-layer equations do not involve the second partial derivative of uy

with respect to y, a far-field condition for uy is not required.

In the boundary-layer analysis, the pressure is computed by solving the equations gov-
erning the structure of the outer irrotational flow.

Favorable and adverse pressure gradient

Evaluating equation (10.2.11) at the origin of the local Cartesian coordinates, and enforcing
the no-slip and no-penetration boundary conditions in a steady flow, we obtain(∂2ux

∂y2

)
y=0

= −1

ν
Ux

dUx

dx
, (10.2.12)

which shows that the sign of the curvature of the velocity profile at the boundary is opposite
to that of the streamwise acceleration of the outer flow, dUx/dx. Thus, the flow inside
the boundary layer in a decelerating outer flow (dU/dx < 0) reverses direction, causing
convection of vorticity away from the boundary and the consequent formation of vortices in
the bulk of the flow.

When dUx/dx > 0, the pressure gradient is negative, dς/dx < 0, and the boundary layer
is subjected to a favorable pressure gradient. In the opposite case where dUx/dx < 0, the
pressure gradient is positive, dς/dx > 0, and the boundary layer is subjected to an adverse
pressure gradient. Equation (10.2.12) shows that an adverse pressure gradient promotes
flow separation.
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10.2.3 Surface curvilinear coordinates

The Prandtl boundary-layer equation (10.2.11) was developed with reference to the local
Cartesian axes shown in Figure 10.2.1, and is strictly valid near the origin of the local Carte-
sian coordinates. To avoid redefining the Cartesian axes at every point along a boundary,
we introduce curvilinear coordinates where the ξ axis is tangential to the boundary and
the η axis is perpendicular to the boundary, as shown in Figure 10.2.1. The corresponding
velocity components are denoted by uξ and uη.

Repeating the boundary-layer analysis, we find that the boundary-layer equations stated
in (10.2.1), (10.2.9), and (10.2.11) stand true to leading-order approximation, provided that
the Cartesian x and y coordinates are replaced by corresponding arc lengths in the ξ and η
directions denoted, respectively, by 
ξ and 
η. Equation (10.2.9) becomes

∂ς

∂
η
= κ ρU2

ξ , (10.2.13)

where κ is the curvature of the boundary. Thus, the dynamic pressure drop across the
boundary layer is of order δ, provided that κ is not too large; that is, provided that the
boundary is not too sharply curved.

For simplicity, in the remainder of this chapter we denote 
ξ and 
η, respectively, by x
and y.

10.2.4 Parabolization

The absence of a second partial derivative with respect to the streamwise position, x, renders
the boundary-layer equation (10.2.11) a parabolic partial differential equation in x. This
classification has important consequences on the nature of the solution and chosen numerical
method of computing the solution.

Most important, the system of equations (10.2.1) and (10.2.11) can be solved using
a marching method with respect to x, beginning from a particular x station where the
structure of the boundary layer is somehow known; examples will be discussed later in this
chapter. In contrast, because the Navier–Stokes equation is an elliptic partial differential
equation with respect to x and y, the solution must by found simultaneously at every point
in the flow, even when the velocity and pressure at the inlet are specified.

The parabolic nature of (10.2.11) with respect to x implies that, if a perturbation is
introduced at some point along the boundary layer, it will modify the structure of the flow
downstream but will leave the upstream flow unaffected. The absence of the second partial
derivative with respect to x due to the boundary-layer approximation precludes a mechanism
for upstream signal propagation.

10.2.5 Flow separation

Boundary-layer analysis for laminar flow is based on two key assumptions: (a) the Reynolds
number is sufficiently large, but not so large that the flow becomes turbulent, and (b) and
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Figure 10.3.1 Schematic illustration of the boundary layer developing along a semi-infinite flat plate
that is held parallel to a uniform incident stream.

the vorticity remains confined inside boundary layers wrapping around the boundaries. The
physical relevance of the second assumption depends on the structure of the incident flow
and on the geometry of the boundaries.

Streamlined bodies allow laminar boundary layers to develop over a large portion of
their surface, whereas bluff bodies cause the vorticity to concentrate inside compact regions
forming steady or unsteady wakes. For example, the alternating ejection of vortices of
opposite sign into a wake is responsible for the von Kàrmàn vortex street illustrated in
Figure 10.1.1(a). These limitations should be born in mind when questioning the physical
relevance of results based on the boundary-layer approximation.

10.2.1 Oscillatory flow over a plate

Compute the velocity profile in the boundary layer along an infinite plate driven by a
streaming oscillatory outer flow with velocity Ux = Ux cos(ωt), where Ux is is the amplitude
and ω is the angular frequency of the oscillations.

10.3 Blasius boundary layer on a semi-infinite plate

Having established a simplified equation of motion for the flow inside a boundary layer over
a solid surface, we proceed to derive solutions by analytical and numerical methods. In this
section, we study the boundary layer established over a semi-infinite flat plate that is held
stationary parallel to an incident streaming (uniform) flow with velocity U , as illustrated in
Figure 10.3.1.

Since the tangential velocity of the outer flow is constant, dUx/dx = 0, the boundary-
layer equation (10.2.11) for steady flow simplifies to a convection–diffusion equation for the

Problem
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streamwise velocity component,

ux
∂ux

∂x
+ uy

∂ux

∂y
= ν

∂2ux

∂y2
. (10.3.1)

The problem has been reduced to solving the simplified equation of motion (10.3.1), together
with the continuity equation (10.2.1), for the velocity components, ux and uy, subject to
the no-slip, no-penetration, and far-field conditions.

Scaling

Because the length of the plate is infinite, the only available characteristic length scale, L,
introduced in Section 10.2, is the streamwise distance from the leading edge, x. The second
relation in (10.2.7) then provides us with an expression for the boundary-layer thickness in
terms of the local Reynolds number, Rex ≡ Ux/ν,

δ(x) ∼
√

νx

U
=

x√
Rex

. (10.3.2)

Recall that this scaling has arisen by balancing the magnitude of inertial and viscous forces
inside the boundary layer.

10.3.1 Self-similarity and the Blasius equation

Blasius discovered that computing the solution of the system of partial differential equations
(10.2.1) and (10.3.1) can be reduced solving a single ordinary differential equation. To carry
out this reduction, we assume that the flow develops in a self-similar fashion, such that the
streamwise velocity profile across the boundary layer is a function of a scaled dimensionless
transverse position expressed by the similarity variable

η ≡ y

δ(x)
= y

√
U

νx
(10.3.3)

according to the functional form

ux(x, y) = U F (η), (10.3.4)

where F (η) is an a priori unknown function.

A key observation is that this self-similar streamwise profile derives from the stream
function

ψ(x, y) =
√
ν Ux f(η), (10.3.5)

where f is the indefinite integral or anti-derivative of F , satisfying df/dη = F . The prin-
cipal advantage of using the stream function is that the continuity equation is satisfied
automatically and does not need to be considered.
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As a preliminary, we compute the derivatives

∂η

∂x
= − y

2x

√
U

νx
,

∂η

∂y
=

√
U

νx
. (10.3.6)

Differentiating (10.3.5) with respect to y or x and setting

∂f

∂x
=

df

dη

∂η

∂x
,

∂f

∂y
=

df

dη

∂η

∂y
, (10.3.7)

we derive the x velocity component,

ux(x, y) =
∂ψ

∂y
= U

√
ν Ux

df

dη

dη

dy
= U

√
ν Ux

df

dη

√
U

νx
, (10.3.8)

yielding

ux(x, y) = U
df

dη
, (10.3.9)

and the y velocity component

uy(x, y) = −∂ψ

∂x
= −(Uν)1/2

∂[
√
x f(η)]

∂x
, (10.3.10)

yielding

uy(x, y) = − 1

2

√
Uν

x
f −

√
νUx

df

dη

∂η

∂x
(10.3.11)

and then

uy(x, y) = − 1

2

√
Uν

x

(
f − η

df

dη

)
. (10.3.12)

Further differentiation yields

∂ux

∂x
= U

d2f

dη2
∂η

∂x
,

∂ux

∂y
= U

d2f

dη2
∂η

∂y
, (10.3.13)

and

∂2ux

∂y2
= U

d3f

dη3

(∂η
∂y

)2
. (10.3.14)

Substituting these expressions into the boundary-layer equation (10.3.1) and simplifying,
we obtain a third-order nonlinear ordinary differential equation for the function f(η),

d3f

dη3
+

1

2
f
d2f

dη2
= 0, (10.3.15)

derived by Blasius in 1908.
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Enforcing the no-slip and no-penetration conditions and requiring that the flow in the
boundary layer reduces to the outer uniform flow far from the plate, we obtain

f = 0 and
df

dη
= 0 at η = 0, (10.3.16)

and

df

dη
→ 1 as η → ∞. (10.3.17)

These equations provide us with boundary and far-field conditions to be used in solving the
Blasius equation (10.3.15).

Before proceeding to compute the solution, it is instructive to apply the Blasius equation
(10.3.15) at the plate where η = 0. Using the first boundary condition in (10.3.16), we find
that (d3f

dη3

)
η=0

= 0, (10.3.18)

which shows that the curvature of the streamwise velocity profile vanishes at the wall, in
agreement with equation (10.2.12).

10.3.2 Numerical solution

To solve the Blasius equation (10.3.15), it is convenient to rename x1 = f , denote the first
and second derivative of the function f as

x2 ≡ df

dη
, x3 ≡ dx2

dη
=

d2f

dη2
, (10.3.19)

and resolve the third-order equation into a system of three first-order nonlinear equations,

dx1

dη
= x2,

dx2

dη
= x3,

dx3

dη
= − 1

2
x1 x3. (10.3.20)

This system is accompanied by three boundary conditions,

x1(η = 0) = 0, x2(η = 0) = 0, x3(η = ∞) = 1, (10.3.21)

originating from (10.3.16) and (10.3.17).

Shooting method

Since boundary conditions are provided at both ends of the solution domain with respect
to η, extending from 0 to ∞, we are presented with a two-point boundary-value problem
involving three first-order differential equations. The solution can be computed using a
shooting method according to the following steps:



682 Fluid Dynamics: Theory, Computation, and Numerical Simulation

1. Guess the value of x3(0) ≡ f ′′(η = 0).

2. Integrate equations (10.3.20) from η = 0 to η = ∞, subject to the initial conditions
(10.3.16), using the value of x3(η = 0).

3. Check whether the far-field condition x3(η = ∞) = 1 is satisfied. If not, improve the
guess for q(η = 0) and return to Step 2.

In practice, integrating up to η = 10 in Step 2 yields satisfactory accuracy. The improvement
in Step 3 can be made using several methods.1

The following MATLAB code, entitled blasius, located in directory 10 bl of Fdlib, per-
forms the integration in the second step using the modified Euler (RK2) method:

%========

% Solution of the Blasius boundary-layer equation

%=======

Nstep = 64; % integration steps

etamax = 10.0;

deta = etamax/Nstep;

eta = 0.0;

x(1) = 0.0; x(2) = 0.0; x(3) = 0.332;

xplot(1) = eta;

yplot1(1) = x(1);

yplot2(1) = x(2);

yplot3(1) = x(3);

%---

for i=2:Nstep+1

xp = blasius ode(x);

for j=1:3

xsave(j) = x(j);

xpsave(j) = xp(j);

x(j) = x(j) + xp(j)*deta;

end

eta = eta + deta;

xp = blasius ode(x);

for j=1:3

x(j) = xsave(j) + 0.5*(xpsave(j)+xp(j))*deta;

end

1Pozrikidis, C. (2008) Numerical Computation in Science and Engineering, Second Edition, Oxford Uni-
versity Press.
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xplot(i) = eta;

yplot1(i) = x(1); yplot2(i) = x(2); yplot3(i) = x(3);

end

%---

%---

% plotting

%---

hold on

plot(yplot1,xplot,'--')

plot(yplot2,xplot)

plot(yplot3,xplot,':')

ylabel('\eta','fontsize',15)

The program calls the following MATLAB function to evaluate the right-hand side of the
differential equations:

function xp = blasius ode(x)

%---

% Blasius odes

%---

xp(1) = x(2);

xp(2) = x(3);

xp(3) = -0.50*x(1)*x(3);

end

This function receives the vector x in the input and generates the rate-of-change vector xp
in the output.

Numerical computations show that the far-field boundary condition is satisfied when
f ′′(0) 	 0.332, to shown precision. The corresponding profile of the streamwise velocity,
u/U = f ′ ≡ df/dη, is drawn with the solid line in Figure 10.3.2. The profiles of f and
f ′′ ≡ d2f/dη2 are drawn with the dashed and dotted lines.

The numerical solution shows that u/U = 0.99 when η 	 4.9, to shown precision. Based
on this result, we may define the 99% boundary-layer thickness

δ99 = 4.9

√
νx

U
or

δ99
x

= 4.9
1

Rex
, (10.3.22)

where Rex ≡ Ux/ν is the local Reynolds number. The 99.5% boundary-layer thickness is
defined in a similar fashion. The numerical solution shows that the corresponding coefficient
on the right-hand side of equations (10.3.22) is approximately equal to 5.3.
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Figure 10.3.2 Profiles of the Blasius self-similar streamwise velocity, u/U = f ′ (solid line) and its
integral and derivative functions f and f ′′ (dashed and dotted lines).

10.3.3 Wall shear stress and drag force

The wall shear stress and drag force exerted on a boundary are of particular interest in the
engineering design of equipment for high-speed flow. According to the Blasius similarity
solution, the wall shear stress is given by

τxy(x) = μ
(∂ux

∂y

)
y=0

=
f ′′(0)√
Rex

ρU2 = 0.332
1√
Rex

ρU2. (10.3.23)

We observe that the wall shear stress takes an infinite value at the leading edge and decreases
like the inverse square root of the streamwise distance or local Reynolds number, Rex,
along the plate. However, the physical significance of the singular behavior at the origin
is compromised by the breakdown of the assumptions that led us to the boundary-layer
equations at the leading edge.

Drag force

Even though the shear stress is infinite at the leading edge, the inverse-square-root singu-
larity is integrable and the drag force exerted on any finite section of the plate extending
from the leading edge up to an arbitrary point is finite. Using the similarity solution, we
find that the drag force exerted on both sides of the plate over a length extending from the
leading edge up to a certain distance x, is given by

D(x) ≡ 2

∫ x

0

τxy(ξ) dξ = 0.664 ρU
√
Uν

∫ x

0

dξ√
ξ
. (10.3.24)

Performing the integration, we obtain

D(x) = 1.328
1√
Rex

ρU2x. (10.3.25)
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Based on this expression, we define the dimensionless drag coefficient

cD ≡ D
1
2ρU

2x
= 2.656

1√
Rex

. (10.3.26)

The predictions of equations (10.3.25) and (10.3.26) agree with laboratory measurements
up to about Rex 	 1.2×105. Beyond that point, the flow inside the boundary layer develops
a wavy pattern and ultimately becomes turbulent. Above the critical value of Rex, the
function cD(Rex) jumps to a different branch with significantly higher values.

10.3.4 Vorticity transport

Neglecting the velocity component normal to the boundary layer, along the y axis, we find
that the z component of the vorticity inside the boundary layer is given by

ωz(x, y) 	 −∂ux

∂y
= − f ′′(η)√

Rex

U2

ν
= −f ′′(η)

U

δ(x)
. (10.3.27)

We observe that the strength of the vorticity at a particular location, η, decreases like the
inverse of the local boundary-layer thickness, δ(x), due to the broadening of the velocity
profile.

The streamwise rate of convection of vorticity across a plane that is perpendicular to
the plate is given by∫ ∞

0

ux(x, y) ωz(x, y) dy 	 −
∫ ∞

0

ux(x, y)
∂ux

∂y
dy = − 1

2
U2, (10.3.28)

which is independent of the downstream position, x. Thus, the flux of vorticity across the
plate is zero and viscous diffusion of vorticity does not occur at the wall, in agreement with
our earlier observation that the gradient of the vorticity vanishes at the wall,

U
∂f ′′′

∂y
=

∂2ux

∂y2
= −∂ω

∂y
= 0. (10.3.29)

Consequently, all convected vorticity is generated at the leading edge where the boundary-
layer approximation ceases to be valid. Viscous stresses at the leading edge somehow gen-
erate the proper amount of vorticity necessary for the Blasius self-similar flow.

10.3.1 Blasius solution

Use the shooting method to compute f ′′(0) for the Blasius boundary layer, accurate to the
sixth decimal place.

Problems
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Figure 10.3.3 Illustration of the Sakiadis boundary layer developing over a semi-infinite translating
belt.

10.3.2 Sakiadis boundary layer

Consider flow due to the translation of a semi-infinite belt along the x axis with velocity
V normal to a vertical stationary wall, as illustrated in Figure 10.3.3. A boundary layer
identified by Sakiadis is established along the belt.2

(a) Show that the flow in the boundary layer is governed by the Blasius equation (10.3.15),
subject to the modified boundary conditions f = 0 and f ′ = 0 at η = 0, and f ′ → 0 as η
tends to infinity.

(b) Obtain the solution using the shooting method, plot the streamwise velocity profile, and
discuss the structure of the flow field far from the moving belt. Hint : the iterations converge
when f ′′(0) = −0.44375.

10.4 Displacement and momentum thickness

Because of the broadening of the velocity profile in the streamwise direction, x, the stream-
lines inside the Blasius boundary layer are deflected upward and away from the plate, as
shown in Figure 10.3.1. To quantify this deflection, we introduce the displacement thickness.

Displacement thickness

Consider a streamline outside the boundary layer, described by the equation y = g(x), and
write a mass balance over a control area that is enclosed by (a) the streamline, (b) a vertical
plane located at x = 0, (c) a vertical plane located at a certain distance x, and (d) the plate.
Since the streamwise velocity profile at the leading edge located at x = 0 is flat, we obtain∫ g(0)

0

U dy =

∫ g(x)

0

ux(x, y) dy. (10.4.1)

2Sakiadis, B. C., (1961) Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations
for two-dimensional and axisymmetric flow, AIChE J. 7, 26–28; II. The boundary layer on a continuous flat
surface, AIChE J. 7, 221–225.
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Straightforward rearrangement yields the equation

U
(
g(x)− g(0)

)
=

∫ g(x)

0

(
U − ux(x, y)

)
dy. (10.4.2)

Taking the limit as the streamline under consideration moves increasingly far from the plate,
we derive the equation

lim
x→∞

(
g(x)− g(0)

)
= δ∗(x), (10.4.3)

where

δ∗(x) ≡
∫ ∞

0

(
1− ux

U

)
dy (10.4.4)

is defined as the displacement thickness.

Using the numerical solution of the Blasius equation to evaluate the integral on the
right-hand side of (10.4.4), we derive the exact relation

δ∗(x) =
(νx
U

)1/2 ∫ ∞

0

(
1− df

dη

)
dη = 1.721

√
νx

U
, (10.4.5)

which shows that the displacement thickness, like the 99% boundary-layer thickness, in-
creases like the square root of the streamwise position, x.

Physically, the displacement thickness describes the vertical displacement of the stream-
lines far from from the plate with respect to their elevation at the leading edge. Laboratory
experiments have shown that the boundary layer undergoes a transition from the lami-
nar to the turbulent state when the displacement thickness reaches the approximate value
δ∗ ∼ 600 ν/U . At that point, turbulent shear stresses become significant and the analysis
pursued in this section based on the assumption of laminar flow ceases to be valid.

The displacement thickness describes the surface of a fictitious impenetrable but slippery
body that is held stationary in the incident irrotational flow. An improved boundary-layer
theory can be developed by replacing the tangential velocity of the outer flow along the plate,
U , with the corresponding tangential component of the velocity of the irrotational flow past
the fictitious body. The irrotational flow past the fictitious body must be computed after
the displacement thickness has been established, as discussed in this section. This iterative
improvement provides us with a basis for describing the flow in the context of asymptotic
expansions.

Momentum thickness

It is illuminating to perform a momentum integral balance over the control area used previ-
ously to define the displacement thickness. Since the upper boundary of the control volume
is a streamline, it does not contribute to the rate of momentum input. Assuming that the
normal stresses at the vertical sides are equal in magnitude and opposite in sign, which is
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justified by the assumption that the pressure drop across the boundary layer is negligibly
small, and neglecting the traction along the top streamline, we obtain∫ g(0)

0

U (ρU) dy −
∫ g(x)

0

ux (ρ ux) dy − 1

2
D(x) = 0, (10.4.6)

where D(x) is the drag force exerted on both sides of the plate, defined in equation (10.3.25).
Now we make the upper limits of integration equal by recasting (10.4.6) into the form

−ρU2
(
g(x)− g(0)

)− ρ

∫ g(x)

0

(U2 − u2
x) dy − 1

2
D(x) = 0. (10.4.7)

Finally, we take the limit as the streamline defining the top of the control area moves far
from the plate, and use the definitions (10.4.3) and (10.4.4) to obtain the relation

D(x) = 2 ρU2Θ(x), (10.4.8)

where Θ is the momentum thickness defined as

Θ(x) ≡
∫ ∞

0

ux

U
(1− ux

U
) dy. (10.4.9)

Using the numerical solution of the Blasius equation, we find that

Θ(x) =

√
νx

U

∫ ∞

0

f ′(η)
(
1− f ′(η)

)
dη = 0.664

√
νx

U
, (10.4.10)

where f ′(η) = df/dη.

Shape factor

The ratio between the displacement and the momentum thickness is called the shape factor,

H ≡ δ∗

Θ
. (10.4.11)

Substituting the right-hand sides of expressions (10.4.5) and (10.4.9) into (10.4.11), we find
that, for the boundary layer over a flat plate, H = 2.591.

Inspecting the definitions of δ∗ and Θ, given in equations (10.4.4) and (10.4.8), we find
that the shape factor is greater than unity as long as the streamwise velocity ux is less than
U inside a substantial portion of the boundary layer. The satisfaction of this constraint is
consistent with physical intuition. The smaller the value of H, the more blunt the velocity
profile across the boundary layer.

Relation between the wall shear stress and momentum thickness

The momentum thickness is related to the wall shear stress, and vice versa, by the integral
momentum balance expressed by equation (10.4.8). Differentiating (10.3.25) with respect
to x, we find that

dD(x)

dx
= 2 τxy(x). (10.4.12)



10.4 Displacement and momentum thickness 689

Expressing the drag force in terms of the momentum thickness using (10.4.8), we obtain

τxy(x) = ρU2 dΘ(x)

dx
. (10.4.13)

Thus, if the shear stress is known, the momentum thickness can be computed by integration.
Conversely, if the momentum thickness is known, the shear stress can be computed by
differentiation.

10.4.1 Von Kàrmàn’s approximate method

Given the velocity profile across a boundary layer, we have two ways of computing the
wall shear stress: directly by differentiation, and indirectly by evaluating the momentum
thickness and then differentiating it with respect to streamwise position, x, to obtain the
shear stress according to equation (10.4.13). The indirect method is less sensitive to the
structure of the velocity profile near the wall. For the velocity profile that arises by solving
the Blasius equation, the two methods are equivalent (Problem 10.4.1).

To implement the indirect method, we may introduce a self-similar velocity profile with
some reasonable form involving an unspecified function that is either stipulated by physical
intuition or suggested by laboratory observation. Our goal is to adjust the unspecified func-
tion so that the two methods of computing the wall shear stress discussed in the preceding
paragraph are equivalent.

A reasonable velocity profile is

ux

U
=

df(η)

dη
=

{
sin

πy
2Δ(x)

for 0 < y < Δ(x),

1 for y > Δ(x),
(10.4.14)

where

η ≡ y

Δ(x)
, (10.4.15)

and Δ(x) is an unspecified function playing the role of a boundary-layer thickness, simi-
lar to the δ99 thickness introduced in equation (10.3.22). Note that the velocity distribu-
tion (10.4.14) conforms with the required boundary conditions f ′(0) = 0, f ′′′(0) = 0, and
f ′(∞) = 1, but does not satisfy the Blasius equation; a prime denotes a derivative with
respect to η.

Differentiating the profile (10.4.14) with respect to y, we obtain the wall shear stress

τxy(x) =
π

2

μU

Δ(x)
. (10.4.16)

The displacement thickness, momentum thicknesses, and shape factor defined in (10.4.4)
and (10.4.8) are found to be

δ∗(x) = (1− 2

π
) Δ(x) = 0.363Δ(x), Θ(x) = (

2

π
− 1

2
) Δ(x) = 0.137Δ(x). (10.4.17)
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The shape factor defined in (10.4.11) is found to be

H = 2.660. (10.4.18)

It is reassuring to observe that the shape factor is remarkably close to that arising from the
exact solution of the Blasius equation, H = 2.591.

Now substituting the expressions for the momentum thickness and wall shear stress
into the integral momentum balance (10.4.13), we derive an ordinary differential equation
for Δ(x),

π

2

μU

Δ(x)
= 0.137 ρU2 dΔ(x)

dx
. (10.4.19)

Rearranging and integrating with respect to x subject to the initial condition Δ = 0 at
x = 0, we find that

Δ(x) = 4.80

√
νx

U
. (10.4.20)

Substituting this expression back into (10.4.16) and (10.4.17), we find that

τxy(x) =
0.327√
Rex

ρU2, δ∗(x) = 1.743

√
νx

U
, Θ(x) = 0.665

√
νx

U
. (10.4.21)

These approximate expressions are in remarkable agreement with their exact counterparts
shown in (10.3.23), (10.4.5), and (10.4.9).

However, this level of agreement is fortuitous and atypical of the accuracy of the ap-
proximate method (Problem 10.4.2).

10.4.1 Wall shear stress

Confirm that the wall shear stress computed directly by differentiating the velocity profile
across the Blasius boundary layer is the same as that arising by differentiating the momen-
tum thickness with respect to streamwise position, x, according to equation (10.4.13).

10.4.2 Von Kàrmàn’s method

Assume that the velocity profile across the Blasius boundary layer is described by a hyper-
bolic tangent function

ux = U tanh
y

Δ(x)
. (10.4.22)

Show that the effective boundary-layer thickness, wall shear stress, displacement thickness,
and momentum thicknesses are given by the right-hand sides of equations (10.4.20) and

Problems
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(a) (b) (c)

α

Accelerating flow

Decelerating flow Accelerating flow

Decelerating flow

Figure 10.5.1 Boundary layers in accelerating or decelerating flow: (a, b) flow past a wedge and (c)
uniform flow past a flat plate at a non-zero angle of attack.

(10.4.21), except that the numerical coefficients are equal, respectively, to 2.553, 0.392,
1.770, and 0.783. Discuss the accuracy of these results with reference to the exact solution.

10.4.3 Sakiadis’ boundary layer

Compute the displacement thickness, momentum thickness, and shape factor of the Sakiadis
boundary layer discussed in Problem 10.3.2.

10.5 Boundary layers in accelerating or decelerating flow

In Section 10.3, we discussed the Blasius boundary layer developing along a flat plate paral-
lel to a uniform incident streaming flow. One important feature of the parallel configuration
is the uniformity of the tangential velocity of the outer flow over the plate. In this section,
we consider the more general case of a Falkner–Skan boundary layer developing in an accel-
erating or decelerating incident flow. Examples of physical situations where such boundary
layers occur are illustrated in Figure 10.5.1.

Consider an outer flow whose tangential velocity, Ux(x), exhibits a power-law depen-
dence on the streamwise distance from a specified origin, x, along a flat surface,

Ux(x) = c xm, (10.5.1)

where c is a positive coefficient and m is a positive or negative exponent. When m = 0, we
recover the Blasius boundary layer over a flat plate at zero angle of attack. When m = 1,
we obtain a boundary layer in orthogonal stagnation-point flow. Intermediate values of m
correspond to symmetric flow past a wedge with semi-angle

α =
m

m+ 1
π, (10.5.2)

as illustrated in Figure 10.5.1(a). This expression can be inverted to give the exponent m
in terms of α.

Boundary layers in accelerating or decelerating flow
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Differentiating (10.5.1) with respect to x, we obtain the streamwise acceleration or
deceleration of the outer flow,

dUx

dx
= cmxm−1. (10.5.3)

Thus, the outer flow accelerates when m > 0 and decelerates when m < 0. In the first case,
conservation of mass expressed by the continuity equation requires that the y derivative of
the velocity component normal to the wall, Uy, is negative, ∂Uy/∂y < 0. Since Uy is zero
on the wall, it must be negative at the edge of the boundary layer. The associated motion
of the outer fluid toward the wall confines the vorticity and reduces the thickness of the
boundary layer with respect to that in a non-accelerating flow.

Substituting (10.5.3) into the boundary-layer equation (10.2.11) at steady state, we
obtain the specific form

ux
∂ux

∂x
+ uy

∂ux

∂y
= c2mx2m−1 + ν

∂2ux

∂y2
. (10.5.4)

Working as in Section 10.3 for the Blasius boundary layer, we identify the characteristic
length L with the current streamwise position, x, and use (10.3.2) to define the boundary-
layer thickness

δ(x) ∼
√

ν x

Ux(x)
=

√
ν

c xm−1
. (10.5.5)

When m = 1, the boundary-layer thickness is constant, independent of x.

10.5.1 Self-similarity

We may assume that the velocity profile across the boundary is self-similar in x and y. The
means that the scaled streamwise velocity profile, ux/Ux, is a function of the dimensionless
similarity variable

η ≡ y

δ(x)
= y

√
Ux(x)

νx
= y

√
c

νx1−m
, (10.5.6)

so that

ux(x, y) = Ux(x)F (η), (10.5.7)

where F (η) is an a priori unknown function.

A key observation is that this self-similar profile can be derived from the stream function

ψ(x, y) =
√
ν Ux(x)x f(η) =

√
ν c xm+1 f(η), (10.5.8)

where F = df/dη, that is, F is the indefinite integral of f .
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As a preliminary, we compute the derivatives

∂η

∂x
=

m− 1

2

y

x

√
c xm−1

ν
,

∂η

∂y
=

√
c

νx1−m
. (10.5.9)

Differentiating (10.5.5) with respect to x, we derive expressions for the two velocity compo-
nents,

ux(x, y) =
∂ψ

∂y
= Ux(x)

df

dη
= c xm df

dη
(10.5.10)

and

uy(x, y) = −∂ψ

∂x
=

1

2
(νcxm−1)1/2

(
(1−m) η

df

dη
− (1 +m) f

)
. (10.5.11)

Further differentiation yields

∂ux

∂x
= cmxm−1 df

dη
+ Ux

d2f

dη2
∂η

∂x
(10.5.12)

and

∂ux

∂y
= Ux

d2f

dη2
∂η

∂y
,

∂2ux

∂y2
= Ux

d3f

dη3

(∂η
∂y

)2
. (10.5.13)

Substituting these expressions into the boundary-layer equation (10.5.4) and simplifying,
we derive the Falkner–Skan ordinary differential equation for the function f ,

d3f

dη3
+

1

2
(m+ 1) f

d2f

dη2
−m

(df
dη

)2
+m = 0, (10.5.14)

which is to be solved subject to the boundary conditions expressed by (10.3.16) and (10.3.17).
When m = 0, we recover the Blasius equation (10.3.15). Since boundary conditions are
specified at both ends of the solution domain (0,∞), we are presented with a two-point
boundary-value problem involving three first-order differential equations.

10.5.2 Numerical solution

The boundary-value problem can be solved by the shooting method discussed in Section
10.3.2 for the Blasius equation. The counterpart of the Blasius system of first-order differ-
ential equations (10.3.20) is

dx1

dη
= x2,

dx2

dη
= x3,

dx3

dη
= − 1

2
(m+ 1)x1 x3 +mx2

2 −m. (10.5.15)

The boundary conditions require that x1(η = 0) = 0, x2(η = 0) = 0, and x3(η = ∞) = 1.

We find that convergence is achieved when f ′′(0) = 1.491 for m = 1.5, f ′′(0) = 1.231
for m = 1.0, f ′′(0) = 0.675 for m = 0.25, f ′′(0) = 0.594 for m = 0.176, f ′′(0) = 0.332 for
m = 0, and f ′′(0) = 0 for m = −0.0904.

Streamwise velocity profiles expressed by the derivative f ′(η) are plotted in Figure 10.5.2
for several values of m. The profiles for m < 0, corresponding to decelerating flow, exhibit
an inflection point near the wall. The wall shear stress vanishes when m = −0.0904.

Boundary layers in accelerating or decelerating flow
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Figure 10.5.2 Velocity profiles across Falkner–Skan boundary layers for several values of the accel-
eration parameter m; from bottom to top, m = 1.5 (dotted line), 1.0, 0.25, 0.176, 0.0 (dashed
line), and −0.0904.

10.5.1 Orthogonal stagnation-point flow

The Falkner–Skan profile with m = 1 corresponds to irrotational orthogonal stagnation-
point flow against a flat plate.

(a) Derive the velocity field of the outer irrotational flow.

(b) Show that the Falkner–Skan boundary-layer solution satisfies the unsimplified Navier–
Stokes equation, and thus it provides us with an exact solution.

10.5.2 Falkner–Skan equations

Compute the velocity profile across a Falkner–Skan boundary layer with m = −0.05.

10.6 Momentum integral method

We have discussed the solution of the boundary-layer equations over a flat surface subject
to a constant, accelerating, or decelerating outer flow with a power-law dependence on
streamwise position. To compute boundary layers developing over curved surfaces and for
more general types of outer flow, we resort to approximate methods.

Von Kàrmàn developed an elegant and efficient method for computing the flow inside
a two-dimensional boundary layer developing over a surface with arbitrary shape, based
on an integral momentum balance. The formulation culminates in an ordinary differential
equation for a properly defined boundary-layer thickness with respect to arc length measured
along the surface.

Problems
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Flow over a flat surface

To illustrate the method, we consider the boundary layer developing over a flat surface
located at y = 0, and introduce a control area confined between two vertical planes located
at x1 and x2, the flat surface, and a horizontal plane located at the elevation y = h.
Consistent with our previous notation, we denote the tangential component of the outer
flow along the surface by Ux(x). For simplicity, we assume that the physical properties of
the fluid are uniform throughout the domain of flow.

We begin by considering the x component of the integral momentum balance (6.2.20),
and introduce the Newtonian constitutive equation for the stress tensor. Neglecting the
normal viscous stresses over the vertical and top planes, and assuming that gravitational
effects are negligibly small, we obtain∫ x2

x1

∫ h

0

ρ
(∂ux

∂t

)
(x,y)

dy dx−
∫ h

0

[ux (ρ ux)](x=x1,y) dy

+

∫ h

0

[ux (ρ ux)](x=x2,y) dy +

∫ x2

x1

[uy (ρ ux)](x,y=h) dx (10.6.1)

=

∫ h

0

(−p)(x=x1,y) dy −
∫ h

0

(−p)(x=x2,y) dy −
∫ x2

x1

τxy(x) dx.

Next, we take the limit as x1 tends to x2, recall that the pressure remains constant across
the boundary layer, set ux(x, y = h) = Ux(x), and rearrange to obtain an integro-differential
relation,

ρ

∫ h

o

∂ux

∂t
dy = h

( ∂p

∂x

)
y=h

−ρ
∂

∂x

∫ h

0

u2
x(x, y) dy − ρUx(x)uy(x, y = h)− τxy(x).

(10.6.2)

To reduce the number of unknowns, we eliminate uy(x, y = h) in favor of ux using the
continuity equation, setting

uy(x, y = h) = −
∫ h

0

∂ux

∂x
(x, y′) dy′. (10.6.3)

Moreover, we use the x component of Euler’s equation (6.4.4) to evaluate the streamwise
pressure gradient, finding that

∂p

∂x
= −ρ

( ∂Ux

∂t
+ Ux

∂Ux

∂x

)
. (10.6.4)

Substituting expressions (10.6.3) and (10.6.4) into (10.6.2) and rearranging, we obtain

ρ

∫ h

o

∂(Ux − ux)

∂t
dy = −ρ

∂

∂x

∫ h

0

ux (Ux − ux) dy

−ρ
∂

∂x

∫ h

0

Ux (Ux − ux) dy + ρUx
∂

∂x

∫ h

0

(Ux − ux) dy + τxy(x), (10.6.5)
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which can be interpreted as an evolution equation for the momentum deficit expressed by
the term ρ (Ux − ux).

Now we let the scaled height h/δ tend to infinity, and use the definitions of the displace-
ment and momentum thickness stated in equations (10.4.4) and (10.4.9) to derive the von
Kàrmàn integral momentum balance

ρ
∂(Ux δ

∗)
∂t

+ ρ
∂(U2

x Θ)

∂x
+ ρ

∂(U2
x δ∗)
∂x

− ρUx
∂(Ux δ

∗)
∂x

− τxy = 0. (10.6.6)

Rearranging, we derive an expression for the wall shear stress in terms of the displacement
and momentum thickness,

τxy
ρU2

x

=
∂(Uxδ

∗)
∂t

+
∂Θ

∂x
+ (2Θ + δ∗)

1

Ux

∂Ux

∂x
. (10.6.7)

If the flow is steady, the first term on the right-hand side does not appear. It is reassuring to
confirm that, when Ux is constant, equation (10.6.7) reduces to equation (10.4.13) describing
the boundary layer developing over a flat plate that is held stationary parallel to an incident
streaming flow.

If fluid is injected into the flow or withdrawn through a porous wall with normal velocity
V , the right-hand side of (10.6.7) contains the additional term, −V/Ux, where V is positive
in the case of injection and negative in the case of suction.

10.6.1 The von Kàrmàn–Pohlhausen method

Von Kàrmàn and Pohlhausen developed an approximate method for computing the boundary-
layer thickness and associated structure of the flow based on the momentum integral balance
(10.6.7). In the first state, we assume a sensible velocity profile across the boundary layer
of the form ux = F (η), where η ≡ y/Δ(x) and Δ(x) is a boundary-layer thickness similar
to the δ99 boundary layer thickness. In the second stage, we compute Δ(x) to satisfy the
integral momentum balance equation (10.6.7).

The implementation of the method for flow over a flat plate at zero angle of attack
where F (η) is a quarter of a period of a sinusoidal function, as shown in (10.4.15), was
discussed in Section 10.4. In the remainder of this section, we illustrate the implementation
for an arbitrary steady flow.

10.6.2 Pohlhausen polynomials

Pohlhausen described the velocity profile across a boundary layer with a fourth-order poly-
nomial,

ux

Ux
= F (η) =

{
a(x) η + b(x) η2 + c(x) η3 + d(x) η4 for 0 < η < 1,
1 for η > 1,

(10.6.8)

where a(x), b(x), c(x), and d(x) are position-dependent coefficients to be computed as part of
the solution. Note that the functional form (10.6.8) satisfies the no-slip boundary condition
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at the wall corresponding to η = 0. To compute the four coefficients a, b, c, and d, we
require four equations.

First, we require that the overall velocity profile is continuous and has a smooth first
and second derivative at the edge of the boundary layer corresponding to η = 1, and thus
obtain three conditions,

F = 1,
dF

dη
= 0,

d2F

dη2
= 0 (10.6.9)

at η = 1.

A fourth condition arises by applying the boundary-layer equation (10.2.5) at the wall
located at y = 0, and then using the no-slip and no-penetration boundary conditions to set
the left-hand side to zero. Evaluating the streamwise pressure gradient from (10.6.4) with
the time derivative on the right-hand side set to zero, we find that( ∂u2

x

∂y2

)
y=0

= −1

ν
Ux

dUx

dx
. (10.6.10)

Next, we express the velocity in terms of the function F (η) introduced in (10.6.8), and
obtain (d2F

dη2

)
η=0

= −Λ, (10.6.11)

where

Λ(x) ≡ Δ2(x)

ν

dUx

dx
, (10.6.12)

is a dimensionless function expressing the ratio of the magnitude of the inertial acceleration
forces in the outer irrotational flow to the magnitude of the viscous forces developing inside
the boundary layer; if dUx/dx = 0, then Λ = 0.

By definition, the effective boundary-layer thickness, Δ(x), is related to Λ(x) by

Δ(x) ≡
√

ν Λ

U ′
x

, (10.6.13)

where U ′
x ≡ dUx/dx.

Requiring that the Pohlhausen profile (10.6.8) satisfies equations (10.6.9) and (10.6.11),
we obtain

a = 2 +
1

6
Λ, b = − 1

2
Λ, c = −2 +

1

2
Λ, d = 1− 1

6
Λ. (10.6.14)

Substituting these expressions into (10.6.8) and rearranging, we obtain the velocity profile
in terms of the parameter Λ,

u

Ux
= F (η) =

{
η (2− 2 η2 + η3) + Λ 1

6 η (1− η)3 for 0 < η < 1,
1 for η > 1.

(10.6.15)
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Figure 10.6.1 Profiles of Pohlhausen polynomials for Λ = 20, 12 (heavy solid line), 6, 0, −6, −12
(heavy dashed line), and −15.

Program pohl pol, located inside directory 10 bl of Fdlib, computes polynomial profiles
by evaluating the right-hand side of (10.6.15). A family of profiles is shown in Figure
10.6.1. The overshooting observed when Λ > 12, corresponding to a strongly accelerating
external flow according to (10.6.12), places a limit on the physical relevance of the fourth-
order polynomial expansion. When Λ = −12, the slope of the velocity profile is zero at the
wall, and this suggests that the flow is on the verge of reversal. Under these conditions,
the approximations that led us to the boundary-layer equations cease to be valid and the
boundary layer is expected to separate from the wall and develop regions of recirculating
fluid attached to the wall.

The displacement thickness, momentum thickness, and wall shear stress can be com-
puted in terms of Δ(x) and Λ(x) using the profiles (10.6.15), and are found to be

δ∗ =
Δ

10
(3− 1

12
Λ), Θ =

Δ

315
(37− 1

3
Λ− 5

144
Λ2), (10.6.16)

and

σxy(x, y = 0) =
μUx

Δ
(2 +

1

6
Λ). (10.6.17)

Expressing Δ(x) in terms of Λ(x) using the definition (10.6.13), we obtain corresponding
expressions in terms of Λ alone.
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Next, we substitute the expressions given in (10.6.16) and (10.6.17) into the momentum
integral balance (10.6.7), and thus derive a first-order nonlinear ordinary differential equa-
tion for Λ(x) with respect to x. Having solved this equation, we recover the boundary-layer
thickness, Δ(x), from the definition (10.6.13).

10.6.3 Numerical solution

It is convenient to introduce the Holstein–Bohlen parameter

λ(x) ≡ Θ2(x)

Δ2(x)
Λ(x) =

Θ2(x)

ν

dUx

dx
, (10.6.18)

whose physical interpretation is similar to that of the parameter Λ discussed after the
definition (10.6.12). Using the expression for the momentum thickness given in (10.6.16),
we obtain a relationship between λ and Λ,

λ =
Λ

3152
(37− Λ

3
− 5

144
Λ2)2. (10.6.19)

The value Λ = −12 corresponds to λ = −0.15673 where the boundary layer is expected to
separate, as shown in Figure 10.6.1.

To expedite the solution, we multiply both sides of the momentum integral balance
(10.6.7) at steady state by Θ, and rearrange to obtain

d

dx
(

λ

dUx/dx
) ≡ 1

ν

d2Θ

dx2
= 2

S(λ)− [2 +H(λ)]λ

Ux
, (10.6.20)

where H is the shape factor defined in (10.4.11) and S is the shear function defined as

S(λ) ≡ Θ

μUx
σxy(x, y = 0). (10.6.21)

Physically, the shear function expresses the ratio of the wall shear stress to the average value
of the shear stress across the boundary layer, and is thus another measure of the sharpness
of the velocity profile across the boundary layer. Using the expressions given in (10.6.16)
and (10.6.17), we find that

H =
315

10

3− Λ
12

37− Λ
3 − 5

144 Λ
2
, S =

1

315
(2 +

Λ

6
) (37− Λ

3
− 5

144
Λ2), (10.6.22)

where Λ can be expressed in terms of λ using equation (10.6.19). The numerical procedure
involves the following steps:

1. Given the value of λ at a particular position, x, compute the corresponding value of
Λ by solving the nonlinear algebraic equation (10.6.19).

2. Evaluate the functions S and H using expressions (10.6.22).

3. Compute the right-hand side of (10.6.20) to obtain the rate of change of the ratio on
the left-hand side with respect to x.

4. Advance the value of λ over a small increment, Δx.

5. Return to Step 1 and repeat the calculations for another cycle.
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The following MATLAB function entitled Lam solves the nonlinear equation (10.6.19)
required in Step 1 using Newton’s method:

function Lam = root(lam,Lam)

%---

% given lambda, solve for Lambda

%---

if(abs(lam)<0.000005)

Lam = 0.00001; return

end

%---

% Newton’s method

%---

for i=1:50

fnc = ltoL(lam,Lam);

fnc1 = ltoL(lam,Lam+0.0001);

fncp = (fnc1-fnc)/0.0001;

corr = -fnc/fncp;

Lam = Lam+corr;

if(abs(corr)<0.000001) return; end

end

disp 'root: could not find a root in 50 iterations'

return

%--------------

function f = ltoL(lam,Lam)

f = Lam*((37.0-Lam/3.0-5.0*Lam*Lam/144.0)/315.0)^2-lam;

return

Note that the main function Lam is accompanied by an evaluator function ltoL (λ to Λ).

Evaluation at a stagnation point

The numerical integration typically begins at a stagnation point where the tangential veloc-
ity Ux vanishes and the right-hand side of (10.6.20) is undefined. To prevent a singularity,
we require that the numerator is zero at that point, and thus obtain a nonlinear alge-
braic equation for Λ. A physically acceptable solution is Λ = 7.0523231, corresponding to
λ = 0.0770356. These values are used to initialize the computation.
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To evaluate the right-hand side of (10.6.20) at a stagnation point located at x = 0,
we denote the expression enclosed by the pointed brackets on the right-hand side by Q(λ).
Applying the l’Hôspital rule to evaluate the fraction, we find that

d

dx

( λ

dUx/dx

)
x=0

=
( dQ/dx

dUx/dx

)
x=0

=
( dQ/dλ

dUx/dx

dλ

dx

)
x=0

(10.6.23)

and then

d

dx

( λ

dUx/dx

)
x=0

=
( dQ

dλ

)
x=0

( d

dx
(

λ

dUx/dx
) + λ

d2Ux/dx
2

(dUx/dx)2

)
x=0

. (10.6.24)

Combining the left-hand side with the first term inside the tall parentheses on the right-hand
side, we obtain

d

dx

( λ

dUx/dx

)
x=0

=
( λ

1− dQ/dλ

dQ

dλ

d2Ux/dx
2

(dUx/dx)2

)
x=0

. (10.6.25)

Evaluating the expression on the right-hand side using the definition of Q(λ), we obtain the
required initial value

d

dx

( λ

dUx/dx

)
x=0

= −0.0652
( d2Ux/dx

2

(dUx/dx)2

)
x=0

. (10.6.26)

10.6.4 Boundary layer around a curved body

The Kàrmàn-Pohlhausen method was developed with reference to a planar boundary where
the x coordinate increases along the boundary in the direction of the velocity of the outer
flow. To tackle the more general case of a curved boundary, we replace x with the arc length
along the boundary, 
, measured in the direction of the tangential velocity of the incident
flow, and begin the integration from a stagnation point.

A difficulty arises at the critical point where the acceleration dU
/d
 becomes zero or
infinite. However, the ambiguity can be removed by carrying out the integration at that
point using the Falkner–Skan similarity solution with a proper value for the exponent m.

Boundary layer around a circular cylinder

As an application, we consider streaming (uniform) flow past a stationary circular cylinder
of radius a with vanishing circulation around the cylinder, as shown in Figure 10.6.2. Far
from the cylinder, the flow is streaming toward the negative direction of the x axis and the
velocity tends to the uniform value −U ex, where U > 0 is the magnitude of the streaming
flow and ex is the unit vector along the x axis.

Using the velocity potential for irrotational flow past a circular cylinder, given in equa-
tion (3.5.48) with Vx = −U , we find that the tangential component of velocity of the outer
flow is

Uθ(θ) =
( ∂φ

∂θ

)
r=a

= 2U sin θ, (10.6.27)
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Figure 10.6.2 Illustration of the Prandtl boundary layer around a circular cylinder of radius a held
stationary in an incident streaming flow with velocity U .

where θ is the polar angle measured around the center of the cylinder in the counterclockwise
direction, as shown in Figure 10.6.2. The arc length around the cylinder measured from the
front stagnation point is 
 = aθ. The required derivatives of the velocity with respect to arc
length are

dUθ

d

=

1

a

dUθ

dθ
= 2

U

a
cos θ,

d2Uθ

d
2
=

1

a2
d2Uθ

dθ2
= −2

U

a2
sin θ. (10.6.28)

Equation (10.6.26) yields

d

d


( λ

dUθ/d


)

=0

= 0, (10.6.29)

which is used to start up the computations.

The following MATLAB function named phase vel evaluates the right-hand side of
(10.6.20):

function f = phase vel (U0,theta,Lam,lam)

tmp = 37.0-Lam/3.0-5.0*Lam*Lam/144.0;

H = 31.5*(3.0-Lam/12.0)/tmp;

S = (2.0+Lam/6.0)*tmp/315.0;

U = 2.0*U0*sin(theta);

f = 2.0*(S-(2.0+H)*lam)/U;

return

The Kàrmàn-Pohlhausen method is implemented in the following MATLAB code entitled
kp cc, located in directory 10 bl of Fdlib:

a = 1.0; % cylinder radius

U0 = 1.0; % incident velocity

nu = 1.0; % kinematic viscosity

mu = 1.0; % viscosity

Ndiv = 2*128; % number of divisions

angle = 0.60*pi; % maximum integration angle
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%---

% prepare

%---

Dtht = angle/Ndiv; % differential angle theta

Dx = a*Dtht; % differential arc length

%---

% initial values

%---

tht = 0.0;

lam = 0.0770;

Lam = 7.052;

Up = 2.0*U0*cos(tht)/a;

z = lam/Up;

%---

% integrate by the modified Euler method

%---

for i=1:Ndiv

U = 2.0*U0*sin(tht); % velocity

Up = 2.0*U0*cos(tht)/a; % acceleration

tmp = 37.0-Lam/3.0-5.0*Lam*Lam/144.0;

H = 31.5*(3.0-Lam/12.0)/tmp;

S = (2.0+Lam/6.0)*tmp/315.0;

Del = sqrt(abs(nu*Lam/Up));

del = Del*(3.0-Lam/12.0)/10.0;

sw = mu*U/Del*(2.0+Lam/6.0);

THeta = 0.0;

if(abs(sw)>0.0000001)

THeta = mu*U*S/sw;

end

if(i==1)

fv = 0.0;

else

Lam = root(lam,Lam);

fv = phase vel(U0,tht,Lam,lam);

end

zsave = z;

fvsave = fv;

tht = tht+Dtht;

z = z + fv*Dx;

Up = 2.0*U0*cos(tht)/a;
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Figure 10.6.3 Features of the Prandtl boundary layer around a circular cylinder of radius a held
stationary in an incident streaming flow with velocity U , computed by the von Kàrmàn-Pohlhausen
method. (a) Distribution of the dimensionless parameters 1

12
Λ (solid line) and λ (dashed line). (b)

Boundary-layer thickness Δ (solid line), displacement thickness δ∗ (dashed line), and momentum

thickness Θ (dotted line); all are scaled by
√

ν a/U . (c) Distribution of the wall shear stress
scaled by μU/a (solid line), and shape factor S (dashed line). (d) Distribution of the shear
function, H.

lam = z*Up;

Lam = root(lam,Lam); % solve for Lambda

fv = phase vel(U0,tht,Lam,lam);

z = zsave + 0.5*(fv+fvsave)*Dx;

lam = z*Up;

end

Graphs of the solution are shown in Figure 10.6.3. The velocity profile across the boundary
layer at different stations around the cylinder can be inferred from the scaled Pohlhausen
profiles shown in Figure 10.6.1 using the local value of Λ.
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The numerical solution reveals that Λ = −12 when θ = 109.5◦. At that point, the shear
stress becomes zero and the boundary layer is expected to separate. Comparing this result
with the experimentally observed value θ = 80.5◦, we find a serious disagreement attributed
to the deviation of the actual outer flow from the idealized potential flow distribution de-
scribed by (10.6.27) due to the presence of a wake.

To improve the solution, we may describe the tangential velocity distribution Uθ by
interpolation based on data collected in the laboratory. When this is done, the predictions
of the boundary-layer analysis are in excellent agreement with laboratory observation.

10.6.1 Von Kàrmàn method for the Blasius boundary layer

Assume that the velocity profile across the Blasius boundary layer is given by the Pohlhausen
polynomial (10.6.15). Show that the effective boundary-layer thickness, wall shear stress,
displacement thickness, and momentum thicknesses are given by the right-hand sides of
equations (10.4.20) and (10.4.21), except that the numerical coefficients are equal, respec-
tively, to 5.863, 0.343, 1.751, and 0.685. Discuss the accuracy of these results with reference
to the exact solution obtained by numerical methods.

10.6.2 Boundary layer around a circular cylinder

Plot and discuss scaled velocity profiles uθ/U0 across the boundary layer around a circular
cylinder at a sequence of angles, θ.

10.7 Instability of shear flows

In Chapter 7, we derived exact solutions of the governing equations for channel and tube
flow, assuming unidirectional motion with rectilinear or circular streamlines. The physical
relevance of these assumptions is corroborated by laboratory observations at low and mod-
erate Reynolds numbers. However, at high Reynolds numbers, small perturbations inherent
in any real flow amplify to initiate an unsteady motion, possibly leading to a new steady
state that is different than that computed under the assumption of unidirectional flow.

Linear stability analysis

Two questions naturally arise: what is the threshold Reynolds number above which a flow
becomes unstable? and what are the salient modes of amplification? To develop insight into
the answers, we carry out a linear stability analysis. Our general strategy is to consider a flow
of interest at steady state, introduce small perturbations, and describe the time evolution
of the perturbations by solving simplified versions of the governing equations that arise by
linearization. If all perturbations decay, the flow is stable; if some perturbations amplify,
the flow is unstable; if some perturbations stay constant in time and all other perturbations
decay, the flow is neutrally stable. Perturbations that grow or decay exponentially in time
represent normal modes.

Problems
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10.7.1 Stability analysis of shear flow

To illustrate the procedures, we consider a steady unidirectional flow along the x axis with
velocity, pressure, and vorticity given by

uB
x = U(y), uB

y = 0, pB = −χx, ωB
z = −dU(y)

dy
, (10.7.1)

where the superscript B designates the base flow whose stability is examined, U(y) is the
unperturbed velocity profile, and χ is the negative of the streamwise pressure gradient.

It should be noted that, unless the velocity profile is parabolic, the base flow will not
satisfy the steady version of the equation of motion. However, we assume that the base
flow evolves at a rate that is much slower than that of the perturbations, and may thus be
considered to be in a quasi-steady state.

Perturbations and disturbances

Next, we introduce a two-dimensional perturbation whose velocity and pressure fields are
described by

uP
x (x, y, t) = ε uD

x (x, y, t), uP
y (x, y, t) = ε uD

y (x, y, t),

pP(x, y, t) = ε pD(x, y, t), (10.7.2)

where the superscript P designates the perturbation, the superscript D designates the dis-
turbance, and ε is a dimensionless coefficient whose magnitude is much smaller than unity.
The corresponding perturbation in the vorticity is

ωP
z (x, y, t) = ε ωD(x, y, t) = ε

( ∂uD
y

∂x
− ∂uD

x

∂y

)
(x, y, t). (10.7.3)

The physical flow arises by adding corresponding variables of the base and perturbation
flows shown in (10.7.1) and (10.7.2). For example, the x velocity component of the perturbed
flow is given by

ux(x, y, t) = uB
x (y) + ε uD

x (x, y, t). (10.7.4)

Substituting this sum and its counterparts for other variables into the vorticity transport
equation for two-dimensional flow stated in equation (6.6.14), we obtain

ε
∂ωD

z

∂t
+ ε uB

x

∂ωD
z

∂x
+ ε2 uD

x

∂ωD
z

∂x
+ ε uD

y

∂ωB
z

∂y
+ ε2 uD

y

∂ωD
z

∂y

= ν
( ∂2ωB

∂x2
+

∂2ωB

∂y2
+ ε
( ∂2ωD

∂x2
+

∂2ωD

∂y2
) )

, (10.7.5)

where ν is the kinematic viscosity of the fluid. Since the vorticity of the base flow satisfies
the steady version of the vorticity transport equation for unidirectional flow under the quasi-
steady approximation, the sum of the first two terms on the right-hand side is zero.
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Linearization

Because ε has been assumed small, quadratic terms that are proportional to ε2 are small
compared to linear terms that are proportional to ε, and may be discarded from both sides of
(10.7.5). Collecting the linear terms and setting their sum to zero, we obtain the linearized
vorticity transport equation

∂ωD
z

∂t
+ uB

x

∂ωD
z

∂x
+ uD

y

∂ωB
z

∂y
= ν

( ∂2ωD
z

∂x2
+

∂2ωD
z

∂y2
)
. (10.7.6)

Substituting the expressions for the base flow stated (10.7.1) into (10.7.6), we derive the
more specific form

∂ωD
z

∂t
+ U(y)

∂ωD
z

∂x
− uD

y

d2U

dy2
= ν

( ∂2ωD
z

∂x2
+

∂2ωD
z

∂y2
)
. (10.7.7)

The problem has been reduced to solving the linear equation (10.7.7) for the disturbance
flow, subject to a specified initial condition and appropriate boundary conditions.

Disturbance stream function

It is convenient to express the disturbance flow in terms of a disturbance stream function,
ψD(x, y, t), defined by the equations

uD
x =

∂ψD

∂y
, uD

y = −∂ψD

∂x
. (10.7.8)

The disturbance vorticity is given by

ωD
z = −

( ∂2ψD

∂x2
+

∂2ψD

∂y2

)
= −∇2ψD, (10.7.9)

where ∇2 ≡ ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator in the xy plane. Substituting these
expressions into (10.7.7) and rearranging, we obtain

∂∇2ψD

∂t
+ U(y)

∂∇2ψD

∂x
− ν∇4 ψD =

∂ψD

∂x

d2U

dy2
, (10.7.10)

where ∇4 = ∇2∇2 is the biharmonic operator in the xy plane.

10.7.2 Normal-mode analysis

To study the evolution of each and every possible disturbance is practically impossible. To
make progress, we exploit the linearity of equation (10.7.10) and deduce the nature of the
general solution corresponding to an arbitrary initial condition from the behavior of an
infinite family of solutions corresponding to disturbances that are sinusoidal functions of
the streamwise position, x, and exponential functions of time, t, called normal modes. The
general solution can be constructed by linear superposition.
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Consider a normal mode with wave length L and corresponding wave number k = 2π/L.
The disturbance stream function is expressed in the form

ψD(x, y, t) = χR(y, t) cos(kx) + χI(y, t) sin(kx), (10.7.11)

where χR(y, t) and χI(y, t) are two real functions. To simplify the notation, we introduce
the complex function

χ(y, t) ≡ χR(y, t)− iχI(y, t), (10.7.12)

where i is the imaginary unit, i2 = −1. Using the Euler decomposition of the imaginary
exponential,

exp(ikx) = cos(kx) + i sin(kx), (10.7.13)

we recast (10.7.11) into the form

ψD(x, y, t) = real{ΨD(x, y, t)}, (10.7.14)

where real designates the real part of the complex quantity enclosed by the angular brackets,
and

ΨD(x, y, t) ≡ φ(y, t) exp(ikx) (10.7.15)

is a complex stream function. To simplify the analysis, we require that the imaginary part
of ΨD also satisfies equation (10.7.10).

Substituting (10.7.15) into (10.7.10), carrying out the differentiation with respect to x,
and noting that

∇2ΨD =
(− k2φ+

∂2φ

∂y2
)
exp(ikx), (10.7.16)

we derive the equation

−k2
∂φ

∂t
+

∂3φ

∂y2 ∂t
+ i k U(y)

(− k2φ+
∂2φ

∂y2
)

−ν
(
k4φ− 2k2

∂2φ

∂y2
+

∂4φ

∂y4
)
= i k φ

d2U

dy2
,

(10.7.17)

which should be regarded as a linearized vorticity transport equation.

Growth rate

A solution of (10.7.17) can be found by expressing φ(x, t) in the separated form

φ(y, t) = f(y) exp(−iσ t) = f(y) exp(−ikct), (10.7.18)

where f(y) is a complex function, σ is a complex constant called the complex growth rate,
and c ≡ σ/k is another complex constant called the complex phase velocity.
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Substituting (10.7.18) into (10.7.15), we derive the corresponding complex disturbance
stream function

Ψ(x, y, t) = f(y) exp[ i (kx− σt) ] = f(y) exp[ ik(x− ct) ]. (10.7.19)

Next, we decompose σ and c into their real and imaginary parts, writing

σ = σR + iσI, c = cR + i cI, (10.7.20)

and obtain the expression

Ψ(x, y, t) = f(y) exp[i k (x− cRt)] exp(σIt), (10.7.21)

where the subscripts R and I stand for real and imaginary. Expression (10.7.21) illustrates
two important features:

• The constant cR is the real phase velocity of the disturbance. The crests and troughs
of the sinusoidal perturbation, but not the fluid itself, travel along the x axis with
velocity cR.

• The constant σI = kcI is the growth rate of the disturbance; if σI is positive, the
disturbance grows at an exponential rate in time; if σI is negative, the disturbance
decays at an exponential rate in time; if σI = 0, the amplitude of the disturbance
remains constant in time. In the first case, the flow is unstable; in the second case,
the flow is stable; and in the third case, the flow is neutrally stable.

Orr–Sommerfeld equation

Substituting expression (10.7.18) into the governing equation (10.7.17), and rearranging the
resulting expression, we derive the Orr–Sommerfeld equation,

k4f − 2 k2
d2f

dy2
+

d4f

dy4
=

i k

ν

( (
U(y)− c

) ( d2f
dy2

− k2f
)− d2U

dy2
f
)
, (10.7.22)

which can be classified as a linear ordinary differential equation with variable coefficients
determined by the velocity profile. A trivial solution is f = 0.

Nontrivial solutions expressing normal modes are possible only for certain values of c
that are the eigenvalues of the Orr–Sommerfeld equation. The main objective of linear
stability analysis is to identify these eigenvalues and associated eigenfunctions, and thereby
assess whether the amplitude of a normal mode will grow, decay, or remain constant in time.

Rayleigh equation

When viscous forces are negligible, the left-hand side of the Orr–Sommerfeld equation
(10.7.22) may be set equal to zero, yielding the Rayleigh equation

(
U(y)− c

) ( d2f
dy2

− k2f
)− d2U

dy2
f = 0, (10.7.23)
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which is also available in the alternative form

d2f

dy2
− ( k2 + 1

U(y)− c

d2U

dy2
)
f = 0. (10.7.24)

Because of the absence of viscous forces, the Rayleigh equation is a second-order differen-
tial equation, whereas its inclusive Orr-Sommerfeld equation is a fourth-order differential
equation. Both equations are linear, but the coefficients multiplying the derivatives of the
unknown complex function f are not necessarily constant.

Numerical methods

Analytical solutions to the Orr–Sommerfeld and Rayleigh equations are possible only for
a limited class of purely viscous or idealized inviscid flows. To study the stability of more
general flows, we resort to numerical methods. Typical methods are discussed in Sections
10.8 and 10.9.

10.7.1 Instability of an inviscid shear flow

Consider an infinite shear flow with velocity profile U(y) = U0 tanh η, where η = y/δ and
δ is a specified length. Confirm that an eigenvalue and the corresponding eigenfunction of
Rayleigh’s equation describing a neutrally stable perturbation are c = 0 and f(y) = A sechη,
where A is an arbitrary constant.

10.8 Finite-difference solution of the Rayleigh equation

To illustrate the implementation of a finite-difference method, we study the stability of an
inviscid shear flow in a channel confined between two parallel walls located at y = −b and
a, as illustrated in Figure 10.8.1. It is convenient to recast Rayleigh’s equation (10.7.23)
into the form

U(y)
d2f

dy2
− (U(y) k2 +

d2U

dy2
)
f = c (

d2f

dy2
− k2f ), (10.8.1)

where the unknown eigenvalue, c, has been moved to the right-hand side. The no-penetration
boundary condition requires that f(−b) = f(a) = 0. Because the values of the stream
function over the two walls are prescribed to be equal, the disturbance flow will not generate
a net flow rate in the direction of the base flow.

10.8.1 Finite-difference equations

We begin by introducing a one-dimensional uniform grid of nodes with N intervals separated
by grid spacing Δy = (a + b)/N , located at yi for i = 1, . . . , N + 1, where y1 = −b and
yN+1 = a, as illustrated in Figure 10.8.1. For simplicity, we denote the value of f at the

Problem
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1

U(y)

2
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+1N

i

x
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a

Figure 10.8.1 Illustration of a finite-difference grid used to solve the Rayleigh equation determining
the growth rate of two-dimensional perturbations in inviscid unidirectional shear flow.

ith node by f(yi) = fi. To satisfy the no-penetration condition, we require that the stream
function is constant at the lower and upper walls,

f1 = 0, fN+1 = 0. (10.8.2)

All other nodal values of f must be computed as part of the solution.

Applying the Rayleigh equation (10.8.1) at the ith interior node for i = 2, . . . , N , and
approximating the second derivative, d2f/dy2, with a centered difference, we obtain the
difference equation

Ui
fi+1 − 2 fi + fi−1

Δy2
− (Ui k

2 + U
′′

i

)
fi = c

( fi+1 − 2 fi + fi−1

Δy2
− k2fi

)
, (10.8.3)

where we have denoted Ui ≡ U(yi) and U
′′

i ≡ (d2U/dy2)(yi). Rearranging, we obtain a
difference equation,

Ui fi−1 −
[
2Ui +Δy2 (k2Ui + U

′′

i )
]
fi + Ui fi+1

= c
[
fi−1 − (2 + k2Δy2) fi + fi+1

]
.

(10.8.4)

Compiling all equations for the interior nodes, i = 2, . . . , N , we derive a system of N − 1
linear equations accommodated into the matrix form

A · f = cT · f , (10.8.5)

where

f ≡ [f2, f3, . . . , fN−1, fN
]

(10.8.6)
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is the unknown solution vector,

A ≡

⎡⎢⎢⎢⎢⎢⎣
−2U2 −Δy2(k2U2 + U

′′

2 ) U2 0

U3 −2U3 −Δy2(k2U3 + U
′′

3 ) U3

0 U4 −2U4 −Δy2(k2U4 + U
′′

4 )
...

...
. . .

0 0 0

−→

· · · 0
· · · 0
· · · 0
...

...

UN −2UN −Δy2(k2UN + U
′′

N )

⎤⎥⎥⎥⎥⎥⎦ (10.8.7)

is an (N − 1) × (N − 1) tridiagonal matrix involving the nodal velocities of the base flow
and its second derivatives, and

T ≡

⎡⎢⎢⎢⎢⎢⎣
−2− k2Δy2 1 0 · · · 0 0

1 −2− k2Δy2 1 · · · 0 0
0 1 −2− k2Δy2 · · · · · · 0
...

...
. . .

...
...

...
0 0 · · · 0 1 −2− k2Δy2

⎤⎥⎥⎥⎥⎥⎦ (10.8.8)

is another (N − 1)× (N − 1) tridiagonal matrix. Note that the matrix T is independent of
the velocity profile, U(y).

10.8.2 A generalized eigenvalue problem

Equation (10.8.5) presents us with a generalized algebraic eigenvalue problem that can be
stated as follows: Compute a value of the generally complex constant c so that equation
(10.8.5) has a nontrivial solution for the vector f , that is, a solution other than the null
vector.

To compute an eigenvalue, c, we may restate equation (10.8.5) in the form of a homo-
geneous equation,

E · f = 0, (10.8.9)

where E is a tridiagonal matrix given by

E ≡

⎡⎢⎢⎢⎢⎢⎣
E1,1 1 0 · · · 0
1 E2,2 1 · · · 0
...

...
. . .

...
...

0 0 · · · EN−2,N−2 1
0 0 · · · 1 EN−1,N−1

⎤⎥⎥⎥⎥⎥⎦ , (10.8.10)
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with diagonal elements

E1,1 = −2−Δy2(k2 +
U

′′

2

U2 − c
), E2,2 = −2−Δy2(k2 +

U
′′

3

U3 − c
),

. . . , EN−1,N−1 = −2−Δy2(k2 +
U

′′

N

UN − c
). (10.8.11)

Note that the super- and sub-diagonal elements of E are all equal to unity.

For system (10.8.9) to have a nontrivial solution, the coefficient matrix E must be
singular. Phrased differently, c must be such that the determinant of the complex matrix
E is zero. This observation provides us with a basis for a numerical method involving the
following steps:

1. Begin by guessing a complex value for c.

2. Compute the determinant of the matrix E using the algorithm discussed in Section
10.8.3.

3. Improve c to reduce the magnitude of the determinant.

4. Return to Step 2 and repeat, if necessary.

The improvement in the third step can be made using Newton’s method, setting

cnew = cold − det[E(cold)](d det[E(c)]

dc

)
c=cold

. (10.8.12)

The derivative in the denominator on the right-hand side of (10.8.12) can be approximated
with a finite difference,(d det[E(c)]

dc

)
c=cold

	 det[E(cold + ε)]− det[E(cold)]

ε
, (10.8.13)

where ε is a real or complex increment with small magnitude. Analytic function theory
ensures that the derivative is independent of ε, provided that the norm of ε is small.

10.8.3 Determinant of a tridiagonal matrix

To compute the determinant of the tridiagonal matrix E, we use an efficient algorithm that
is applicable to a general M ×M tridiagonal matrix of the form

T ≡

⎡⎢⎢⎢⎢⎢⎣
a1 b1 0 · · · 0 0 0
c2 a2 b2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · cM−1 aM−1 bM−1

0 0 0 . . . 0 cM aM

⎤⎥⎥⎥⎥⎥⎦ , (10.8.14)
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Figure 10.8.2 Profiles of (a) the base flow velocity described by (10.8.16), and (b) its second deriva-
tive for α = 1 (bold profiles), 0.75, 0.50, 0.25, and 0.

where ai, bi, and ci are real or complex constants. The algorithm involves computing a
sequence of numbers, Pi, based on the recursion relations

P1 = a1, P2 = a2 a1 − b1 c2, . . . , Pi = ai Pi−1 − bi−1 ci Pi−2 (10.8.15)

for i = 2, . . . ,M , and then setting det(T) = PM .

10.8.4 Numerical implementation

To be more specific, we consider a family of inviscid shear flows with velocity profile

U(y) = U0

(
α tanh η + (1− α) exp(−η2)

)
, (10.8.16)

where η = y/δ, δ is a specified length, and the dimensionless parameter α takes values in
the range [0, 1]. Profiles of the velocity, U(y), and second derivative, U ′′(y), are plotted
in Figure 10.8.2 for several values of α. The limiting value α = 1 corresponds to a shear
layer with a hyperbolic tangent velocity profile. The limiting value α = 0 corresponds to a
symmetric wake with a Gaussian velocity profile.

The following MATLAB function entitled rayleigh vel, located in directory rayleigh inside
directory 08 stab of Fdlib, computes the the velocity of the base flow and its first and second
derivatives for the flow described by (10.8.16) and another flow with a inverse squared
hyperbolic cosine profile:

function [U,Up,Upp] = rayleigh vel (menu,U0,delta,alpha,y)

%------------------------------------------------------

% Evaluation of the velocity (U), first derivative (Up)
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% and second derivative (Upp), at a point y

%

% menu: choice of velocity profile

% U0: coefficient of the velocity profile

% delta: length scale of the velocity profile

% alpha: velocity profile parameter

%------------------------------------------------------

%---------

% prepare

%---------

eta = y/delta;

%---------

% evaluate

%---------

%---

if(menu==1) % derivatives analytically

%---

alphac = 1.0-alpha; tmp = exp(-eta^2);

U = alpha*tanh(eta) - alphac*tmp;

Up = alpha/cosh(eta)^2 + alphac*2.0*eta*tmp;

Upp = -alpha*2.0*sinh(eta)/cosh(eta)^3 ...

-alphac*2.0*(1.0-2.0*eta)*tmp;

%---

elseif(menu==2) % derivatives by numerical differentiation

%---

U = 1.0/cosh(eta)^2;

eps = 0.00001;

U1 = 1.0/cosh(eta-eps)^2;

U2 = 1.0/cosh(eta+eps)^2;

Up = (U2-U1)/(2.0*eps);

Upp = (U2-2.0*U+U1)/eps^2;

%---

else

%---

disp('rayleigh_vel: this menu item is not available');

return

%---

end

%---
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%-----

% scale

%-----

Up = Up/delta; Upp = Upp/delta^2;

U = U*U0; Up = Up*U0; Upp = Upp*U0;

%-----

% Done

%-----

return

The following MATLAB function entitled rayleigh sys, located in directory rayleigh in-
side directory 08 stab of Fdlib, compiles the real and imaginary elements of the matrix E

and computes its determinant:

function [detr, deti] = rayleigh sys (N,Dys,U,Upp,k,creal,cimag)

%---------------------------------

% Compile the (N-1)x(N-1) tridiagonal matrix E

% and compute the determinant

%

% matrix has the structure:

%

% |a b

% | c a b

% E = | c a b

% | c a b

%

% ar is the real part of a

% ai is the imaginary part of a

%---------------------------------

%---

% generate the complex tridiagonal matrix E

%---

for i=2:N

den = (U(i)-creal)^2+cimag^2;

ar(i-1) = -2.0-Dys*(k^2 + Upp(i)*(U(i)-creal)/den);

br(i-1) = 1.0;

cr(i-1) = 1.0;

ai(i-1) = - Dys*Upp(i)*cimag/den;
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bi(i-1) = 0.0;

ci(i-1) = 0.0;

end

%---

% Compute the determinant of the complex matrix E

% using a fast method

%---

Pr(1) = ar(1);

Pi(1) = ai(1);

tmpr = br(1)*cr(2)-bi(1)*ci(2);

tmpi = br(1)*ci(2)+bi(1)*cr(2);

Pr(2) = ar(2)*Pr(1)-ai(2)*Pi(1)-tmpr;

Pi(2) = ar(2)*Pi(1)+ai(2)*Pr(1)-tmpi;

for i=3:N-1

ia = i-1;

tmpr = br(ia)*cr(i)-bi(ia)*ci(i);

tmpi = br(ia)*ci(i)+bi(ia)*cr(i);

ib = i-2;

auxr = tmpr*Pr(ib)-tmpi*Pi(ib);

auxi = tmpr*Pi(ib)+tmpi*Pr(ib);

Pr(i) = ar(i)*Pr(ia)-ai(i)*Pi(ia)-auxr;

Pi(i) = ar(i)*Pi(ia)+ai(i)*Pr(ia)-auxi;

end

detr = Pr(N-1);

deti = Pi(N-1);

%-----

% done

%-----

return

The following MATLAB code entitled rayleigh, located inside directory 08 stab of Fdlib,
computes the complex phase velocity of perturbations and generates a stability graph:

%-------------------------------------------------

% Normal mode analysis of unidirectional inviscid

% shear flow along the x axis

%

% The flow is confined between two parallel walls

% located at y = a and -b

%

% SYMBOLS:

% -------
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%

% U: velocity, function of y

% Upp: second derivative of U with respect to y

% N: level of discretization of y axis within (a,b)

%

% kdiv: number of k divisions

% will span the wave-number range (kmin, kmax)

%

% epsr: real step for Newton corrections

% epsi: imag step for Newton corrections

% tole: tolerance for convergence

%

% cr, ci: real and imaginary parts of c

%---------------------------------------------

a = 5.0;

b = 5.0;

menu = 1;

U0 = 1.0;

delta = 1.0;

alpha = 1.0;

N = 2*2*64;

kstart = 0.01;

kend = 2.0;

kdiv = 64;

newter = 20; % max Newton iterations

epsr = 0.01; % for Newton iterations

epsi = 0.01; % for Newton iterations

tole = 0.000001; % for stopping Newton iterations

cr = 0.7; % initial guess

ci = 0.1; % initial guess

%--------

% prepare

%--------

denn = epsr^2 + epsi^2;

Dk = (kend-kstart)/kdiv;

Dy = (a+b)/N;

Dys = Dy^2;

%----------

% velocity profile

%----------
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for i=1:N+1

y = -b+(i-1)*Dy;

[U(i),Up(i),Upp(i)] = rayleigh vel(menu,U0,delta,alpha,y);

end

%--------------------------------------------------

% scan the wave-number axis from k = kstart to kend

%--------------------------------------------------

%=======================

for kloop=1:kdiv+1

%=======================

k = kstart+(kloop-1)*Dk;

%---

% Newton iterations

%---

%---

for iter=1:newter

%---

[detr, deti] = rayleigh sys (N,Dys,U,Upp,k,cr,ci);

[detr1, deti1] = rayleigh sys (N,Dys,U,Upp,k,cr+epsr,ci+epsi);

%---

% compute the derivative DdetDc = d(det(E))/dc

%---

Ddetr = detr1-detr;

Ddeti = deti1-deti;

DdetDcr = ( Ddetr*epsr + Ddeti*epsi)/denn;

DdetDci = (-Ddetr*epsi + Ddeti*epsr)/denn;

%---

% compute the correction

%---

den = DdetDcr^2+DdetDci^2;

corrr = ( detr*DdetDcr + deti*DdetDci)/den;

corri = (-detr*DdetDci + deti*DdetDcr)/den;
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%---

% make the correction

%---

cr = cr - corrr;

ci = ci - corri;

corr = sqrt(corrr^2+corri^2);

if(corr<tole)

break

end

%---

end % of Newton iterations

%---

%---

% printing session

%---

sigma = ci*k;

kplot(kloop) = k;

crplot(kloop) = cr;

ciplot(kloop) = ci;

sigmaplot(kloop) = sigma;

if(ci<0.001)

break

end

%===

end % of scanning the wave number

%===

figure(1)

plot(kplot,ciplot,'k-','linewidth',1)

figure(2)

plot(kplot,sigmaplot,'k-','linewidth',1)

figure(3)

plot(kplot,crplot,'k-','linewidth',1)

Note that, because the code does not make use of internal MATLAB functions, it can be
translated into any mid-level computer language of choice; this is a poor man’s code.
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Figure 10.8.3 Instability of an inviscid shear flow with hyperbolic tangent velocity profile described
by equation (10.8.16) with α = 1. Graphs of (a) the scaled imaginary part of the phase velocity,
cI/U0, and (b) scaled growth rate, σIδ/U0, for a/δ = b/δ = 2.0, 2.5, 3.0, 4.0, 5.0, and 6.0 (heavy
lines), in the regime of unstable wave numbers.

Results of numerical computations for an inviscid shear flow with hyperbolic tangent
velocity profile described by equation (10.8.16) with α = 1 are shown in Figure 10.8.3 for a
sequence of channel widths, a/δ, with b = a. When the scaled wave number, kδ, is higher
than a critical threshold, (kδ)cr, that is determined by the ratio a/δ, the growth rate is zero
and the perturbations are neutrally stable. As a/δ tends to infinity, we obtain infinite shear
flow in the absence of side walls. In this limit, the critical wave number for neutral stability
is known to be exactly (kb)cr = 1.0.

The results shown in Figure 10.8.3 demonstrate that the walls diminish the growth
rate of perturbations by restricting the lateral extent over which fluid motion is allowed to
develop. Maximum growth rate occurs at a certain wave number (kb)max 	 0.50. The corre-
sponding perturbation is expected to dominate the instability and therefore spontaneously
arise in a randomly perturbed flow.

10.8.1 Instability of inviscid shear flow

(a) Run the code rayleigh to generate the counterpart of Figure 10.8.3 for the velocity profile
given in (10.8.16) with α = 0.50 and 0.0, in each case for b = a and a/δ = 2.0, 3.0, and 4.0.
Discuss the results of your computations.

(b) Repeat (a) for a shear flow with velocity profile

U(y) = U0

(
α tanh η + (1− α) sech2η

)
, (10.8.17)

where η = y/δ, δ is a specified length, and the dimensionless parameter α takes values in

Problem
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the range [0, 1]. The limiting values δ = 1 and 0 correspond, respectively, to a shear layer
with a hyperbolic tangent velocity profile and to the Bickley jet.

10.9 Finite-difference solution of the Orr–Sommerfeld equation

Finite-difference methods for the Orr–Sommerfeld equation (10.7.22) governing the stability
of viscous unidirectional flow can be developed working as in Section 10.8 for the Rayleigh
equation governing the stability of inviscid flow. To begin, we rearrange the Orr–Sommerfeld
equation by moving the complex phase velocity, c, to the right-hand side, obtaining

iν k
(− 2

d2f

dy2
+ k2f

)
+ i

ν

k

d4f

dy4
+ U(y)

( d2f
dy2

− k2f
)− d2U

dy2
f

= c (
d2f

dy2
− k2f).

(10.9.1)

The no-penetration and no-slip boundary conditions over a stationary solid surface require
that the boundary values of the function f(y) and its first derivative are both zero.

Finite-difference equations

Discretizing the Orr–Sommerfeld equation, as discussed in Section 10.8, we obtain a system
of linear equations,

A · f = cB · f , (10.9.2)

where B is a tridiagonal matrix. However, because of the presence of the fourth derivative,
f (iv), the matrix A is pentadiagonal (penta derives from the Greek word πεντε which means
five.) The algebraic system arising from the finite-difference discretization can be recast into
a form similar to that shown in (10.8.9),

E · f = 0, (10.9.3)

where the matrix E is now pentadiagonal. Unfortunately, the determinant of this matrix
may no longer be computed using an efficient numerical method.

As a compromise, we reluctantly solve the generalized eigenvalue problem expressed
by (10.9.2) using an internal MATLAB function regarded as a black box. The pertinent
MATLAB function call is:

egv = eig(A,B)

where the output vector egv contains the eigenvalues. Our simple task is to compile the
matrices A and B provided in the input.

Finite-difference equations

Consider the finite-difference grid shown in Figure 10.8.1. To derive the difference equation
corresponding to the ith interior node, we use a familiar finite-difference approximation for
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the second derivative,

f ′′
i =

fi−1 − 2fi + fi+1

Δy2
(10.9.4)

for i = 2, . . . , N , subject to the no-penetration boundary condition requiring that f1 = 0
and fN+1 = 0. The corresponding approximation for the fourth derivative is

f
(iv)
i =

fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2

Δy4
(10.9.5)

for i = 2, . . . , N , subject to the no-penetration boundary condition requiring that f1 = 0
and fN+1 = 0 and to the no-slip boundary condition requiring that f0 = f2 and fN+2 = fN .

Orr–Sommerfeld code

By way of example, we consider an infinite shear flow with a hyperbolic tangent velocity
profile

U(y) = U0 tanh η, (10.9.6)

where η = y/δ and δ is a specified length, and a pressure-driven channel flow with a parabolic
velocity profile

U(y) = U0 (1− η2), (10.9.7)

where η = y/a and y = ±a describes the location of the walls.

The following MATLAB code entitled orr, located in directory 08 stab of Fdlib, im-
plements the numerical method and generates stability graphs by running over the wave
number and the Reynolds number in two nested loops:

%====================

% Solution of the Orr--Sommerfeld equation

% in a domain -b<y<a

%

% N finite-difference divisions

%

% ====+ N+1 y=a

% |

% + N

% |

% +

% |

% + 2

% |

% ====+ 1 y=-b

%

% iflow = 1 hyperbolic tangent profile

% iflow = 2 parabolic Hagen-Poiseuille flow
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%

% U0: reference velocity

%====================

%---

% preferences

%---

iflow = 2; % parabolic Hagen--Poiseuille flow

iflow = 1; % hyperbolic tangent profile

kmax = 1.2; % maximum wave number

nkloop = 32; % number of wave numbers

N = 256; % discretization level

%---

% plotting flags

%---

iplot2d = 1;

iplotcn = 1;

iplotms = 1;

%---

% choose the flow and set parameters

%---

if(iflow==1)

a = 5.0;

b = 5.0;

U0 = 1.0;

delta = 1.0;

Restart = 1.0; % starting Reynolds number

Reend = 40.0; % ending Reynolds number

nReloop = 16; % number of Re scanned

elseif(iflow==2)

a = 1.0;

b = a;

U0 = 1.0;

Restart = 2000.0;

Reend = 40000.0;

nReloop = 32;

end

%---

% prepare

%---

Dy = (a+b)/N; % grid size
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Dys = Dy^2;

Dk = kmax/nkloop;

im = sqrt(-1); % imaginary unit

% factor for ramping Re

fcRe = (Reend/Restart)^(1/(nReloop-1));

%---

% nodal velocity and second derivatives

%---

for i=1:N+1

y(i) = -b+(i-1.0)*Dy;

if(iflow==1)

eta = y(i)/delta;

U(i) = U0*tanh(eta);

Upp(i) = -2.0*U0*sinh(eta)/cosh(eta)^3;

elseif(iflow==2)

eta = y(i)/a;

U(i) = U0*(1.0-eta^2);

Upp(i) = -2.0*U0; % second derivative

end

end

%------------------------------------

% pentadiagonal matrix approximating

% the fourth derivative f''''

%------------------------------------

P = zeros(N-1,N-1);

P(1,1)= 7.0; P(1,2)=-4.0; P(1,3)= 1.0;

P(2,1)=-4.0; P(2,2)= 6.0; P(2,3)=-4.0; P(2,4)= 1.0;

for i=3:N-3

P(i,i-2)=1; P(i,i-1)=-4; P(i,i)=6; P(i,i+1)=-4; P(i,i+2)=1;

end

P(N-2,N-4)= 1.0; P(N-2,N-3)=-4.0; P(N-2,N-2)= 6.0;

P(N-2,N-1)=-4.0;

P(N-1,N-3)= 1.0; P(N-1,N-2)=-4.0; P(N-1,N-1)= 7.0;

P = P/Dy^4;

%------------------------------------

% tridiagonal matrix approximating

% the second derivative f''

%------------------------------------
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T = zeros(N-1,N-1);

T(1,1) = -2.0; T(1,2) =1.0;

for i=2:N-2

T(i,i-1)=1.0; T(i,i)=-2.0; T(i,i+1)=1.0;

end

T(N-1,N-2) = 1.0; T(N-1,N-1) =-2.0;

T = T/Dys;

%---------------------------

% another tridiagonal matrix

% approximating U f''

%---------------------------

T1 = zeros(N-1,N-1);

T1(1,1) = -2.0*U(2); T1(1,2) = U(2);

for i=2:N-2

Unode = U(i+1);

T1(i,i-1) = Unode; T1(i,i) = -2.0*Unode; T1(i,i+1) = Unode;

end

T1(N-1,N-2) = U(N); T1(N-1,N-1) = -2.0*U(N);

T1 = T1/Dys;

%==================

% scan the wave number (k)

%==================

%---

for kloop=1:nkloop+1

%---

k = (kloop-1.0)*Dk+0.0001;

ks = k*k;

%==================

% scan the Reynolds number

%==================

Re = Restart;
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%---

for Reloop=1:nReloop

%---

if(iflow==1) % adjust the kinematic viscosity

nu = U0*delta/Re; % according to Re

elseif(iflow==2)

nu = U0*a/Re;

end

A = im*nu/k * P + T1- 2.0*k*im*nu*T;

for i=1:N-1

A(i,i) = A(i,i) - U(i+1)*ks - Upp(i+1) + im*nu*k^3;

end

B = T;

for i=1:N-1

B(i,i) = B(i,i)-ks;

end

%---

% eigenvalues

%---

egv = eig(A,B);

gr = imag(k*egv); % growth rate

grsorted = -sort(-gr); % sort the growth rate

ggrr(kloop,Reloop) = grsorted(1); % maximum growth rate

if(iflow==1)

wn(kloop) = k*delta;

elseif(iflow==2)

wn(kloop) = k*a;

end

Re = fcRe*Re; % ramp up Re

%---

end % of Reloop

%---

Re = Re/fcRe;

%---

end % of kloop

%---
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%=======

% Graphics module

%=======

%--------

% 2D plot

%--------

if(iplot2d==1)

figure(1)

hold on

set(gca,'fontsize',15)

box on

if(iflow==1)

xlabel('k\delta','fontsize',15)

ylabel('\sigma_I\delta/U_0','fontsize',15)

axis([0 1.2 -0.2 0.2])

elseif(iflow==2)

xlabel(’ka’,’fontsize’,15)

ylabel('\sigma_I{a}/U_0','fontsize',15)

axis([0 1.2 -0.06 0.01])

end

plot(wn,ggrr(:,1),'k','linewidth',3);

for Reloop=2:nReloop

plot(wn,ggrr(:,Reloop),'k');

end

plot([0 1.2],[0,0],'--k')

end

%----

% contour plot

%----

if(iplotcn==1)

figure(2)

hold on

set(gca,’fontsize’,15)

box on

xlabel(’Re’,’fontsize’,15)

if(iflow==1)

[C,h] = contour(Rey,wn,ggrr,[0.0, 0.0],'k-');
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set(h, 'LineWidth', 3);

clabel(C,h);

[C,h]= contour(Rey,wn,ggrr,[-0.2, -0.2],'k');

clabel(C,h);

[C,h]= contour(Rey,wn,ggrr,[-0.1, -0.1],'k');

clabel(C,h);

[C,h]=contour(Rey,wn,ggrr,[0.05, 0.05],'k');

clabel(C,h);

[C,h]=contour(Rey,wn,ggrr,[0.10, 0.10],'k');

clabel(C,h);

[C,h]=contour(Rey,wn,ggrr,[0.14, 0.14],'k');

clabel(C,h);

ylabel('k\delta','fontsize',15)

axis([0 40 0 1])

elseif(iflow==2)

[C,h]=contour(Rey,wn,ggrr,[0.0, 0.0],'k-');

plot([5572 5572],[0.55,1.2],'k--')

ylabel('ka','fontsize',15)

axis([0 40000 0.55 1.2])

end

end

%----

% mesh plot

%----

if(iplotms==1)

figure(3)

set(gca,'fontsize',15)

mesh(Rey,wn,ggrr);

box on

xlabel('Re','fontsize',15)

if(iflow==1)

zlabel('\sigma_I\delta/U_0','fontsize',15)

ylabel('k\delta','fontsize',15)

axis([0 40 0 1 -1.5 0.2])

elseif(iflow==2)

zlabel('\sigma_I{a}/U_0','fontsize',15)

ylabel('ka','fontsize',15)

axis([0 40000 0 1.2 -0.06 0.01])

end

end
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Figure 10.9.1 Stability graphs for infinite shear flow with velocity profile U(y) = U0 tanh η, where
η = y/δ and δ is a specified length. (a) Scaled growth rate, σIδ/U0, computed with discretization
level N = 256 and truncation level a = b = 5δ, plotted against the scaled wave number, kδ,
for Reynolds number Re ≡ U0δ/ν = 1 (lowest curve) up to 40 (highest curve), increasing by
a geometrical factor. (b) Scaled growth rate plotted against kδ and Re, and (c) displayed as a
contour plot. (d) Schematic illustration of the countour plot of the scaled growth rate in the
absence of numerical error, showing regimes of stable and unstable flow.

Infinite shear flow

Results of numerical computations for infinite shear flow with N = 256 divisions and domain
trunction level a = b = 5 δ are shown in Figure 10.9.1(a–c). The zeroth contour in Figure
10.9.1(c), indicated by the bold line, corresponds to neutrally stable perturbations.
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A schematic yet faithful contour plot of the growth rate for flow in an infinite domain,
a, b → ∞, is shown in Figure 10.9.1(d). A perturbation whose wave number lies in the
shaded area below the zeroth-level contour is unstable, whereas a perturbation whose wave
number lies above the shaded area is stable. As the Reynolds number increases, we recover
the results for inviscid flow presented in Figure 10.8.3.

The results in Figure 10.9.1(d) reveal that the flow is unstable at arbitrarily small
Reynolds numbers. The destabilizing effect of inertia becomes evident by observing that,
as the Reynolds number increases, the range of unstable scaled wave numbers, [0, (kδ)cr],
becomes wider, which means that a broader range of perturbations grow at increasingly
high growth rates.

Plane Hagen–Poiseuille flow

Results of numerical computations with N = 128 divisions for plane Hagen–Poiseuille
(pressure-driven) flow in a channel confined between two parallel walls located at y = ±a
are shown in Figure 10.9.2. The zeroth contour of the growth rate displayed in Figure 10.9.2
(c) separates regions of stable flow (outside the loop) and unstable flow (inside the loop).
The Reynolds number for instability, Recr = 5, 772, represented by the vertical dashed line
in Figure 10.9.2 (c), defines the critical threshold where certain wave numbers, and thus the
flow itself, start becoming unstable.

10.9.1 Stability of a generalized shear flow

Derive the finite-difference formula (10.9.5) from (10.9.4).

10.9.2 Stability of a generalized shear flow

Generate and discuss the counterpart of Figure 10.9.1 for the velocity profile given in
(10.8.16) with α = 0.5 or 0.0.

10.10 Turbulent flow

Turbulent flow is established when the Reynolds number, defined in an appropriate fashion
for the particular flow under consideration, Re = ρV L/μ, exceeds a certain threshold,
usually on the order of 103.

In the definition of the Reynolds number, V is a characteristic macroscopic velocity and
L is a characteristic macroscopic length typically associated with the size of the boundaries.
Both V and L are classified as external scales. For example, in the case of pipe flow, V
can be identified either with the mean fluid velocity or with the maximum fluid velocity
occurring at the centerline, and L can be identified with the tube radius or diameter.

Turbulence is characterized by random motions in both time and space. Thus, a graph
of a velocity component plotted against time at a particular location in a turbulent flow

Problems
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Figure 10.9.2 Stability graphs for unidirectional plane Hagen-Poiseuille flow in a channel confined
between two parallel walls located at y = ±a, with velocity profile U(y) = U0 (1− y2/a2), where
U0 is the midplane velocity. (a) Scaled growth rate, σIa/U0, plotted against the scaled wave
number, ka, for Reylonds numbers Re ≡ U0a/ν = 2, 000 (lowest curve printed in bold) up to
40, 000, increasing by a geometrical factor. (b) Scaled growth rate plotted against ka and Re. (c)
Zero contour of the growth rate separating regions of stable flow (outside the loop) and unstable
flow (inside the loop).

reveals random fluctuations, as illustrated in Figure 10.10.1(a). An analogous graph of
the velocity against the spatial coordinate x at a particular instant in time reveals similar
random fluctuations, as illustrated in Figure 10.10.1(b).
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Figure 10.10.1 Typical (a) temporal and (b) spatial variation of a velocity component in a turbulent
flow.

10.10.1 Transition to turbulence

The transition from laminar to turbulent flow with increasing Reynolds number is not sud-
den, but occurs through a sequence of events that lead to an eventual randomly fluctuating
motion. For example, pressure-driven flow in a circular tube is laminar when the Reynolds
number, defined with respect to the tube radius and the maximum velocity at the centerline,
is less than approximately 1, 100; transition occurs when the Reynolds number lies between
1, 100 and 1, 500; and fully developed turbulent motion is established at higher Reynolds
numbers. Wall roughness and entrance conditions affect the precise thresholds for transition.

A record of the streamwise velocity component in uniform (streaming) flow past a flat
plate with length L at a sequence of increasing Reynolds numbers, defined with respect to
the length of the plate, is shown in Figure 10.10.2.3 In the experiment, the velocity probe
was placed 0.02′′ above the plate and 56′′ in behind the leading edge, where the double
prime stands for an inch. The graphs illustrate the onset of oscillations, the development of
turbulent spots, and the ultimate establishment of fully turbulent flow.

Logistic mapping

A simple model illustrating the process of transition from simple to complex behavior is
provided by the logistic mapping. Given a number, x(0), the logistic mapping generates a
sequence of numbers, x(1), x(2), . . . , computed by the recursion formula

x(k+1) = λx(k) (1− x(k)) (10.10.1)

for k = 0, 1, . . . , where λ is a specified positive constant. The special choices x(0) = 0 and
(λ − 1)/λ are the fixed points of the mapping; for these choices, x(k) = x(0) for all k, and
the logistic sequence is stationary.

3Cebeci, T. & Smith, A.M.O. (1974) Analysis of Turbulent Boundary Layers, Academic Press.
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Figure 10.10.2 Record of the streamwise velocity component in flow past a flat plate at a sequence
of increasing Reynolds numbers, ReL, defined with respect to the length of the plate, L. The
signal shows the onset of oscillations, the development of turbulent spots, and the ultimate
establishment of fully turbulent flow.

To illustrate the transition, we introduce the λx plane and perform a series of compu-
tations according to the following steps:

1. Choose a value for λ.

2. Select a value for x(0) that lies between 0 and 1, but is not exactly equal to 0 or 1.

3. Compute a few hundred terms based on the logistic mapping (10.10.1).

4. Skip the first one hundred terms and plot the rest of the terms in the λx plane with
dots.

5. Return to Step 1 and repeat.

The results of this computation are shown in Figure 10.10.3. We observe that, as the
parameter λ increases, a cascade of bifurcations and a random behavior reminiscent of
turbulent motion emerges.

10.10.2 Lagrangian turbulence

Point particles in a certain class of unsteady two-dimensional laminar flows and steady or
unsteady three-dimensional laminar flows have been observed to move in a random fashion,
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Figure 10.10.3 Sequences generated by the logistic mapping equation (10.10.1), illustrating the
process of transition by way of a cascade of bifurcations in the λx plane.

exhibiting a Lagrangian turbulent motion. However, fluid motion in a turbulent flow should
be distinguished from the seemingly random motion of point particles in these laminar yet
chaotic flows. A distinguishing feature of a turbulent flow is the presence of pronouced three-
dimensional vorticity fluctuations and the occurrence of significant kinematic and molecular
diffusion accompanied by high levels of viscous dissipation.

10.10.3 Features of turbulent motion

Turbulence continues to defy a simple physical interpretation in terms of elementary fluid
motions. In a traditional approach, a turbulent flow is regarded as a stochastic random
process amenable to statistical analysis. However, several important features distinguish
turbulent motion from a generic random process.

Intermittency

Turbulence is intermittent. A record of the velocity at a certain point in a turbulent flow may
appear regular for a period of time, only to be interrupted by periods of violent turbulent
motion in an intermittent fashion.

Coherent structures

A turbulent flow contains small-scale short-lived and large-scale long-lived coherent struc-
tures associated with eddies and vortices with a well-defined structure. Examples include
vortex billows developing in shear layers and horseshoe vortices developing near boundary
layers and in regions of high shear rates.

Vortex motion

An intimate connection exists between the dynamics of a turbulent flow and vortex dynamics
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discussed in Chapter 11. However, it is not clear how studies of vortex dynamics can be
used to delineate precisely the physical and mathematical properties of a turbulent flow.

Eddy motion

Eddies in a turbulent flow carry turbulent kinetic energy that is distributed over a broad
range of scales; from the external scale, L, to the energy dissipating Kolmogorov scale,
η, defined later in Section 10.10.6. Energy is transferred across the scales, forward and
backward, from large to small and small to large, and a balance is achieved at dynamic
equilibrium. A net transfer of energy occurs toward the small scales.

Dependence on the type of flow

The dynamics of turbulent flow associated with eddy motion and the distribution of energy
among the different length scales is not universal, but depends on the particular flow under
consideration. Thus, the properties of wall-bounded turbulent shear flow are different from
those of unbounded shear flow, and different from those of grid-turbulent flow generated
behind a grid placed in a high-speed flow. This diversity reflects differences in the physical
mechanism by which energy is supplied into a turbulent flow, ultimately to be dissipated by
small-scale motion.

Sedation near a wall

The no-slip boundary condition sedates the turbulent motion near a wall where a viscous
sublayer of an unsteady laminar flow is established. A buffer zone separates the viscous
sublayer from the regime of fully-developed turbulent flow. The temporal velocity signal of
a turbulent flow inside a circular pipe of radius 15 cm is shown in Figure 10.10.4 at different
radial positions. The measurements illustrate the cessation of the turbulent motion near
the wall.

10.10.4 Decomposition into mean and fluctuating components

It is useful to decompose a turbulent flow variable, such as a velocity component, into a
smoothly varying or mean component and a rapidly fluctuating component. The smoothly
varying component can be identified with the time averaged value over a period of time,
t0, that is large compared to the time scale of the fluctuations, but small compared to the
external time scale L/V .

The mean velocity at the position x, designated by an overbar, is defined as

u(x, t) ≡ 1

t0

∫ t+ 1
2 t0

t− 1
2 t0

u(x, t+ t′) dt′. (10.10.2)

The fluctuating velocity, designated by a prime, is then defined by the decomposition

u(x, t) = u(x, t) + u′(x, t). (10.10.3)

Note that the mean component is allowed to be a slowly varying function of time. The
fluctuating component evolves rapidly in time.
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Figure 10.10.4 Temporal velocity fluctuations in turbulent pipe flow at different distances from the
tube wall, showing the presence of the laminar sublayer and the buffer zone near the wall, after
Corrsin, S. (1943) Investigation of flow in an axially asymmetric heated jet-air. NACA Rep. 3L23.

The definition (10.10.2) implies that the time-averaged value of the fluctuating velocity
is zero by construction,

u′(x, t) ≡ 1

t0

∫ t+ 1
2 t0

t− 1
2 t0

u′(x, t+ t′) dt′ = 0. (10.10.4)

In contrast, the time averaged value of the square of the x component of the fluctuating
velocity,

u′2
x (x, t) ≡

1

t0

∫ t+ 1
2 t0

t− 1
2 t0

u′2
x (x, t+ t′) dt′, (10.10.5)

is not zero; the square of the y or z component of the fluctuating velocity is also nonzero.
The square root of these time averages, called the root-mean-square (rms) values, normalized
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by an external velocity scale, V , expressed by the ratios

ix ≡ 1

V

√
u′2
x , iy ≡ 1

V

√
u′2
y , iz ≡ 1

V

√
u′2
z , (10.10.6)

are sensible measures of the intensity of the turbulent motion in the three spatial directions.

Laboratory measurements have shown that the three intensities defined in (10.10.6)
have different magnitudes, except in the idealized case of isotropic turbulent flow occurring
in the absence of boundaries. Nearly isotropic turbulence can be realized in the laboratory
by placing eight fans at the vertices of a cube, and turning the rotating blades of the fans
toward the center of the cube. In the case of channel or tube flow, the turbulence intensity
in the direction of the flow is significantly greater than that in directions perpendicular to
the flow, especially near walls.

A single measure of the magnitude of the turbulent velocity fluctuations is provided by
the velocity scale

u ≡
( u′2

x + u′2
y + u′2

x

3

)1/2
. (10.10.7)

In the case of isotropic turbulence, the three terms in the numerator on the right-hand side
are equal.

Flow through a pipe

As an example, we consider pressure-driven turbulent flow through a circular tube of radius
a. Schematic illustrations of the mean velocity profile, distribution of the streamwise tur-
bulence intensity, and distribution of the lateral turbulence intensity are shown in Figure
10.10.5. The mean velocity profile can be approximated with the algebraic form

ux(σ) = U
(
1− σ

a

)1/7
, (10.10.8)

where U ≡ (ux)max is the maximum mean velocity occurring at the centerline. This profile
should be contrasted with its parabolic counterpart for laminar flow shown in equation
(7.3.8).

10.10.5 Inviscid scales

A turbulent flow contains an infinite collection of interacting eddies defined and regarded as
elementary fluid motions. Inspecting the turbulence signal shown in Figure 10.10.1(b), we
identify spatial scales with a broad range of magnitudes. One important scale, classified as
inviscid, is the scale of the energy-containing turbulent motion, denoted by 
.

Using 
 and the magnitude of the velocity fluctuations u defined in (10.10.7), we deduce
that the time scale of the energy containing eddies is comparable to 
/u. The actual size of

 varies according to the particular flow under consideration, as follows:
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Figure 10.10.5 Schematic illustrations of the mean velocity profile and distribution of the streamwise
and lateral turbulence intensities for turbulent flow through a circular tube of radius a.

• In the case of boundary-layer flow, 
 is comparable to the local boundary layer thick-
ness.

• In the case of turbulent jet flow, 
 is comparable to the local jet diameter.

• In the case of a wake behind a body, 
 is comparable to the local width of the wake.

• In the case of pipe flow, 
 is comparable to the tube diameter.

• In the case of infinite shear flow over a wall, 
 in the buffer zone is proportional to the
distance from the wall.

• In the case of free turbulence generated by placing a grid in a uniform stream, 
 is
comparable to the grid size behind the grid, and increases with downstream position.

The inviscid scales are complemented by viscous scales that develop spontaneously inside
the fluid.

10.10.6 Viscous scales

Energy is dissipated in a turbulent flow even if the mean flow has a uniform velocity profile.
A continuous external supply of energy is necessary to sustain the motion of the fluid. The
rate of viscous dissipation, with units of kinetic energy per mass per time, is denoted by

ε [=]
L2

T 3
, (10.10.9)

where the symbol [=] denotes dimensional equivalence, L is length, and T is time. One
distinguishing property of turbulent flow is that dissipation occurs mainly due to small-
scale motion.

It can be argued that the rate of dissipation is determined primarily by the fluid prop-
erties. Combining ε with the kinematic viscosity, ν, we formulate the Kolmogorov length
scale

η ≡
(ν3

ε

)1/4
, (10.10.10)
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and accompanying Kolmogorov velocity scale,

uK ≡ (ν ε)1/4. (10.10.11)

The two scales are related by

ReK ≡ uKη

ν
= 1, (10.10.12)

where ReK is the Reynolds number of the energy-dissipating motion. By design, ReK is
equal to unity, underlying the dominance of viscous forces responsible for converting kinetic
to thermal energy inside a viscous fluid.

10.10.7 Relation between inviscid and viscous scales

Energy conservation requires that the rate of viscous dissipation, ε, scales as

ε 	 u3



. (10.10.13)

Substituting this estimate into (10.10.10) and rearranging, we obtain

η



	
( ν

u


)3/4
, (10.10.14)

where we recall that η is the Kolmogorov length scale.

The magnitude of the velocity fluctuations, u, is typically comparable to the external ve-
locity scale, V , whereas the inviscid length scale 
 is comparable to the external length scale,
L. As a result, the inverse of the ratio on the right-hand side of (10.10.14) is comparable to
the Reynolds number Re = V L/ν, yielding the scaling

η



	 Re−3/4. (10.10.15)

Working in a similar fashion with (10.10.11), we derive the scaling law

uK

u
	 Re−1/4, (10.10.16)

where we recall that uK is the Kolmogorov velocity scale. These equations allow us to
estimate the scales of the energy-dissipating motion from measurable or observable outer
scales and the Reynolds number of the flow.

10.10.1 Turbulent mean velocity profile in pipe flow

Consider turbulent flow in a pipe whose mean velocity profile is described by (10.10.8).
Derive a relationship between the mean flow rate and the mean velocity at the centerline.
Compare this relationship with its counterpart for laminar Poiseuille flow.

Problems
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10.10.2 Kolmogorov length scale for pipe flow

Laboratory data for turbulent flow in a circular tube with diameter D has shown that:
(a) the length scale of the energy containing turbulent motion, 
, is comparable to D, and
(b) the magnitude of the turbulent velocity fluctuations in comparable to the maximum
mean velocity occurring at the centerline, V . Based on this information, compute the
Kolmogorov length and velocity scale for a tube with diameter D = 10 cm, at Reynolds
number Re ≡ V D/ν = 106.

10.11 Spectrum of a turbulent flow

To analyze the distribution of energy across the scales of a turbulent flow, it is helpful to
decompose a recording of the velocity or pressure at a particular location into a Fourier
series with respect to time, and then examine the magnitude of the Fourier coefficients.

In the laboratory, the velocity is measured typically by two methods: hot-wire anemom-
etry based on a calibration that associates velocity to heat loss from a small heated wire
probe placed in a flow; and laser-Doppler velocimetry based on light scattering from a
patterned laser beam caused by small particles seeded in the flow.

Time series analysis

To develop the Fourier decomposition, we consider a times series of a function, f(t), consist-
ing of a sequence of values of the function recorded at evenly spaced time intervals separated
by a sampling time, Δt. Suppose that the time series contains N records corresponding to
times

t1 = 0, t2 = Δt, t3 = 2Δt, . . . , tN = (N − 1)Δt, (10.11.1)

and define the total time T = NΔt. Using Fourier representation theory, and assuming for
convenience that f(N Δt) = f(0), we express the function f(t) over the time interval (0, T )
in terms of a complete Fourier series,

f(t) 	 1

2
a0 +

M∑
p=1

ap cos
( 2πp

N

t

Δt

)
+

M∑
p=1

bp sin
( 2πp

N

t

Δt

)
(10.11.2)

for t ≥ 0, where M is a specified truncation level, p is an integer, ap are cosine Fourier
coefficients, and bp are sine Fourier coefficients.

The complex Fourier coefficients are defined as

cp ≡ 1

2
(ap + i bp) (10.11.3)

for p = 0, 1, . . . , where i is the imaginary unit, i2 = −1. In terms of the complex Fourier
coefficients, the Fourier series (10.11.2) can be recast into the compact form

f(t) 	
M∑

p=−M

cp exp
(− i

2πp

N

t

Δt

)
, (10.11.4)
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where the negative-indexed complex Fourier coefficients are given by

c−p = c∗p =
1

2
(ap − i bp), (10.11.5)

and an asterisk denotes the complex conjugate.

Evaluation of the Fourier coefficients

Fourier theory provides us with a remarkably simple method of evaluating the Fourier co-
efficients.4 Denoting the data by

fi ≡ f(ti), (10.11.6)

we find that

ap =
2

N

[
f1 + cos(2π

p

N
) f2 + cos(2π

2p

N
) f3 + · · ·+ cos(2π

(N − 1) p

N
) fN

]
(10.11.7)

and

bp =
2

N

[
f1 + sin(2π

p

N
) f2 + sin(2π

2p

N
) f3 + · · ·+ sin(2π

(N − 1) p

N
) fN

]
. (10.11.8)

In practice, because the number of data points, N , can be on the order of several thou-
sand or even higher, the direct evaluation of the sums on the right-hand sides of expressions
(10.11.8) requires a prohibitive amount of computational time. Fortunately, the compu-
tations can be expedited considerably by using an ingenious algorithm for computing the
Fourier coefficients, known as the fast Fourier transform (FFT).

Function fft, located in directory stats inside directory 13 turbo of Fdlib, performs the
FFT of a time series with size N = 2q, where q is an integer.

Power spectrum

Now we take the square of both sides of (10.11.4), expand the square of the product on
the right-hand side, integrate the resulting expression with respect to time from t = 0 to
T ≡ N Δt, and use trigonometric identities to set the integral of a large number of terms
equal to zero, finding ∫ T

0

f2(t) dt 	 T

M∑
p=−M

cp c
∗
p, (10.11.9)

which can be rearranged into

f2 ≡ 1

T

∫ T

0

f2(t) dt 	
M∑

p=−M

|cp|2 = c20 + 2

M∑
p=1

|cp|2, (10.11.10)

4Pozrikidis, C. (2008) Numerical Computation in Science and Engineering, Second Edition, Oxford Uni-
versity Press.
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where

|cp|2 = cp c
∗
p =

1

4
(a2p + b2p) (10.11.11)

is the square of the magnitude of the pth complex Fourier coefficient.

A graph of the positive coefficients 2 |cp|2 against the angular frequency ωp ≡ 2πp/Δt
for p = 1, . . ., is the discrete temporal power spectrum of the function f(t). Of particular
interest is the behavior of the power spectrum at high values of p corresponding to high
angular frequencies.

A graph of the coefficients 2 |cp|2 against the spatial wave number kp ≡ ωp V = 2πpV/Δt
is the discrete power spectrum of the function f(t), where V is a specified velocity. Of
particular interest is the behavior at high values of p corresponding to high wave numbers.

Now identifying the generic function f(t) with the x, y, or z component of the velocity,
we obtain the discrete energy spectrum of a turbulent flow, providing us with information
on the distribution of kinetic energy across different scales.

In practice, the discrete power spectrum is computed by taking the Fourier transform
of a time series comprised of sets of data points on the order of 212 = 4096. The power spec-
trum computed using one data set exhibits pronounced fluctuations. To obtain a smooth
spectrum, the Fourier coefficients are averaged over sets corresponding to different realiza-
tions or different time periods for the same flow conditions.

Energy density function

As the sample size, N , and total sampling time, T = NΔt, tend to infinity, the sum on the
right-hand side of (10.11.4) reduces to a Fourier integral. Correspondingly, the right-hand
side of (10.11.10) takes the form

f2 =

∫ ∞

0

Et(ω) dω =

∫ ∞

0

E(k) dk, (10.11.12)

where Et(ω) and E(k) are temporal and spatial energy density functions. Now making a
correspondence between (10.11.12) and (10.11.10), we obtain the relations

Et(ωp) =
Δt

2π
2 |cp|2, E(kp) =

VΔt

2π
2 |cp|2, (10.11.13)

which allow us to prepare graphs and study the shape of the energy density function. Taylor’s
frozen-field hypothesis amounts to setting V equal to the local mean value of the streamwise
velocity.

FDLIB Data

As an application, we consider a stratified turbulent shear flow behind a vertical grid with
mean velocity profile ux(y) and mean temperature field T (y), as shown in Figure 10.11.1. At
the University of California, San Diego, researcher Kurt Keller recorded a time series of the x
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Figure 10.11.1 A time series of the velocity and temperature in stratified turbulent shear flow behind
a vertical grid recorded by Kurt Keller can be found in file keller.dat, residing in directory stats

inside directory 13 turbo of Fdlib.

and y velocity components and temperature at a point located 457.2 cm behind the grid, at
the sampling frequency 5 Khz corresponding to sampling time 0.0002 s−1, for the following
conditions: grid spacing 2.54 cm; mean shear rate dux/dy = −7.63 s−1; mean temperature
gradient dT/dy = 35.8 K m−1; local microscale Reynolds number Re ≡ λu/ν = 91.2.

In the definition of the microscale Reynolds number,

u ≡
√

u′2
x (10.11.14)

is the rms value of the fluctuations of the streamwise component of the velocity and λ is the
Taylor microscale defined from the relation

u2

λ2
=
(du′

dy

)2
. (10.11.15)

The data are arranged in the three columns of file keller.dat located in directory stats
inside directory 13 turbo of Fdlib.

10.11.1 Stratified shear flow

(a) With reference to Figure 10.11.1, compute and plot the mean and rms values of the
velocity and temperature. Investigate their dependence on the sample size.

(b) Compute, plot, and discuss the discrete power spectrum of the x and y velocity compo-
nents and temperature.

Problem
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10.12 Analysis and modeling of turbulent flow

Deriving exact solutions of the Navier–Stokes equation for turbulent flow is out of the ques-
tion. Direct numerical simulation (DNS) is prohibited by pragmatic constraints associated
with the finite grid size, which necessitate sub-grid modeling: to capture the dynamics of a
turbulent flow, we must resolve a prohibitively broad range of length scales. Progress can be
made by developing approximate models and phenomenological theories based on empirical
correlations that are inspired by laboratory observation.

10.12.1 Reynolds stresses

A useful point of departure for developing phenomenological theories is the decomposition of
the velocity field into a mean and a fluctuating component, as shown in equation (10.10.3).
A similar decomposition of the pressure field yields

p(x, t) = p(x, t) + p′(x, t), (10.12.1)

where

p(x, t) ≡ 1

t0

∫ t+ 1
2 t0

t− 1
2 t0

p(x, t+ t′) dt′ (10.12.2)

is the mean pressure. The continuity equation for an incompressible fluid requires that

∇ · u = 0, (10.12.3)

where a bar denotes the time-averaged value.

Next, we substitute the decompositions (10.10.3) and (10.12.2) into Cauchy’s equation
of motion, expand the derivatives of the products, take the time average of both sides, and
simplify to derive a modified equation of motion for the mean component. The fluctuating
component appears as an effective inertial hydrodynamic volume force.

For example, the term ∂(ρ uxuy)/∂y on the left-hand side of the x component of the
equation of motion (6.3.16), becomes

∂

∂y
(ρ uxuy) =

∂

∂y

[
ρ (ux + u′

x) (uy + u′
y)
]

=
∂

∂y
(ρ ux uy) +

∂

∂y
(ρ ux u

′
y) +

∂

∂y
(ρ u′

x uy) +
∂

∂y
(ρ u′

x u
′
y). (10.12.4)

Taking the time average of both sides, as shown in equations (10.10.2) and (10.12.2), and
interchanging the order of time-averaging and space differentiation, we obtain

∂

∂y
(ρ uxuy) =

∂

∂y
(ρ uxuy) +

∂

∂y
(ρ uxu′

y) +
∂

∂y
(ρ u′

xuy) +
∂

∂y
(ρ u′

xu
′
y)

=
∂

∂y
(ρ uxuy) +

∂

∂y
(ρ uxu′

y) +
∂

∂y
(ρ u′

xuy) +
∂

∂y
(ρ u′

xu
′
y). (10.12.5)
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Because of (10.10.4), the second and third terms on the right-hand side of (10.12.5) are zero,
leaving the simplified expression

∂

∂y
(ρ uxuy) =

∂

∂y
(ρ ux uy) +

∂

∂y
(ρ u′

xu
′
y). (10.12.6)

RANS

Working in a similar fashion with the other terms on the left-hand side of the Navier–Stokes
equation, we derive a the Reynolds-averaged Navier–Stokes (RANS) equation

ρ (
∂ u

∂t
+ u ·∇u) = −∇p+ μ∇2u+∇ · σR + ρg, (10.12.7)

where σR is the Reynolds stress tensor with components

σR
ij = −ρ u′

iu
′
j , (10.12.8)

expressing transfer of momentum from the ith to the jth direction, and vice versa, by way
of turbulence fluctuations. An alternative form of (10.12.7) is

∂ (ρu)

∂t
+∇ · (ρuu) = −∇p+ μ∇2u+∇ · σR + ρg. (10.12.9)

Phenomenological theories seek to establish a relationship between the Reynolds stresses
and the structure of the time-averaged flow. Once this has been done, the averaged equation
of motion (10.12.7) or (10.12.9) can be solved together with the time-averaged continuity
equation (10.12.3) to generate the velocity distribution in a turbulent flow.

The Boussinèsq’s law

Boussinèsq proposed the constitutive law

σR = − 3

2
ρk I+ μT 2E, (10.12.10)

where

k =
1

2
(u′2

x + u′2
y + u′2

z ) (10.12.11)

is the turbulent kinetic energy, μT is an eddy viscosity, I is the identity matrix, and E

is the time-averaged rate-of-deformation tensor. The scalar 3
2ρ k in the first term on the

right-hand side of (10.12.10) plays the role of a positive turbulence pressure.

In the k-εmodel, the turbulent kinetic energy is related to the rate of viscous dissipation,
ε, by

νT ε = cμ ρ k
2, (10.12.12)

where

ε = νT

( ∂ui

∂xj

)( ∂ui

∂xj

)
, (10.12.13)

νT = μT/ρ is the turbulent kinematic viscosity, cμ is a dimensionless coefficient, and sum-
mation is implied over the repeated indices i and j.
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Figure 10.12.1 Profile of turbulent shear flow along the x axis illustrating the random displacement
of a fluid parcel by a distance that is comparable to the Prandtl mixing length.

10.12.2 Prandtl’s mixing length

Prandtl proposed a physically intuitive model that relates the Reynolds stresses to the
velocity profile of the mean flow. Motivation is provided by a tentative analogy between
eddy motion in a turbulent flow and molecular motion in a gas. The derivation is similar
to that discussed in Section 4.4.5 concerning the fluid viscosity.

Consider a unidirectional turbulent shear flow along the x axis with mean velocity profile
ūx = U(y), as illustrated in Figure 10.12.1. Suppose that, because of the turbulent motion,
a small fluid parcel with volume δVp, initially located at y = y1, is displaced to the position
y = y2 where it travels in the streamwise direction with the new local velocity. The change
in the x component of the parcel momentum is(

δMx

)
p
=
(
ux(y=y2,t) − ux(y=y1,t)

)
ρ δVp. (10.12.14)

Because turbulent fluctuations have been assumed small, the total velocity has been ap-
proximated with the mean velocity to give(

δMx

)
p
	 (U(y=y2) − U(y=y1)

)
ρ δVp. (10.12.15)

Next, we consider the transport of momentum across a horizontal plane located at
elevation y, as shown in Figure 10.12.1. During a small period of time, Δt, all parcels
residing inside a layer of thickness uy(y, t)Δt adjacent to this elevation cross the elevation
to find themselves on the other side. The total volume of fluid crossing the plane is

δV = uy(y, t)wΔxΔt, (10.12.16)

where w is an arbitrary width along the z axis. The associated transport of x momentum
across a horizontal length Δx due to this motion is

δMx 	 ρ
[
U(y = y2)− U(y = y1)

]
δV, (10.12.17)



748 Fluid Dynamics: Theory, Computation, and Numerical Simulation

which can be approximated as

δMx 	 (y2 − y1)
∂U

∂y
ρ δV. (10.12.18)

Substituting (10.12.16), we obtain

δMx 	 ρ uy(y, t) (y2 − y1)
∂U

∂y
w ΔxΔt. (10.12.19)

Averaging this expression over all time intervals, Δt, we obtain

δMx 	 ρ uy(y, t) (y2 − y1)
∂U

∂y
wΔxΔt. (10.12.20)

According to Newton’s second law of motion, this averaged transfer of momentum
amounts to a force pointing in the x direction, expressed by the Reynolds shear stress,
σR
xy. Setting

δMx = σR
xy wΔxΔt (10.12.21)

and rearranging, we obtain

σR
xy = ρ uy(y, t)Δy

∂U

∂y
. (10.12.22)

where Δy ≡ y2 − y1.

In the next key step, we introduce the scaling

uy(y, t)Δy 	
√
u′2
y 
P 	

∣∣∣∂U
∂y

∣∣∣ 
2P , (10.12.23)

where 
P is Prandtl’s mixing length. Substituting (10.12.23) into (10.12.22), we obtain the
targeted constitutive equation

σR
xy(y) = ρ 
2P

∣∣∣∂U
∂y

∣∣∣ (∂U
∂y

)
. (10.12.24)

The product of the first three terms on the right-hand side of (10.12.24) plays the role of
the eddy viscosity introduced by Boussinèsq.

Readers who are overwhelmed by uneasiness regarding the physical relevance of the
various steps involved in the preceding derivation are not alone. Numerous constitutive
relations similar to that shown in (10.12.24) have been proposed based on heuristic and
tentative analogies and laboratory observation.
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10.12.3 Logarithmic law for wall-bounded shear flow

As an application, we use Prandtl’s mixing length model expressed by equation (10.12.24)
to deduce the functional form of the velocity profile in wall-bounded shear flow, away from
the viscous sublayer and the buffer zone.

Assuming that the sign of dU/dy is positive, neglecting the viscous shear stress μ dU/dy
in comparison to the Reynolds shear stress, and ignoring the variation of the shear stress in
the y direction due to the streamwise pressure drop, we find that

σR
xy(y) = ρ 
2P

(dU
dy

)2
= τwall, (10.12.25)

where τwall is the wall shear stress. Rearranging, we obtain


2P

(dU
dy

)2
=

τwall

ρ
≡ u2

∗, (10.12.26)

where u∗ is the friction velocity.

Next, we set the Prandtl mixing length proportional to the distance from the wall,


P = κ y, (10.12.27)

where κ is a dimensionless constant. In the case of flow through a circular tube, measure-
ments suggest the particular value κ 	 0.36. Substituting (10.12.27) into (10.12.26), taking
the square root of the emerging equation, and rearranging, we find that

dU

dy
=

u∗
κy

. (10.12.28)

Integrating with respect to y, we derive the logarithmic relationship

U(y)

u∗
=

1

κ
ln

y

a
+A, (10.12.29)

where a is a defined length and A is a dimensionless constant. In dimensionless variables,
expression (10.12.29) takes the form

u+ =
1

κ
ln y+ +B, (10.12.30)

where B is another dimensionless constant, and we have defined

u+ ≡ ux(y)

u∗
=

U(y)

u∗
, y+ ≡ u∗y

ν
. (10.12.31)

Laboratory measurements have shown that equation (10.12.30) with B = 3.6 describes
accurately the velocity profile approximately for y+ > 26, as illustrated in Figure 10.12.2.

In the viscous sublayer attached to the wall, laboratory observations suggest the linear
relation

u+ = y+ (10.12.32)

approximately for 0 < y+ < 5. In the buffer zone, 5 < y+ < 26, a more involved relation is
required.
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Figure 10.12.2 Schematic illustration of the distribution of the mean velocity in the dimensionless
variables defined in equations (10.12.31) for wall-bounded turbulent shear flow.

10.12.4 Correlations

Space-time correlations allow us to extract information on the small-scale structure of a
turbulent flow. Consider the ith component of the fluctuating velocity at a point, x1, at
time t, and the jth component of the fluctuating velocity at another point, x2, at time t+τ ,
where τ is the time delay. The corresponding second-order space-time correlation is defined
as

Rij(x1,x2, t, τ) ≡ u′
i(x1, t)u′

j(x2, t+ τ). (10.12.33)

Explicitly,

Rij(x1,x2, t, τ) =
1

t0

∫ t+ 1
2 t0

t− 1
2 t0/2

u′
i(x1, t+ t′)u′

j(x2, t+ τ + t′) dt′. (10.12.34)

Two special correlations are of particular interest: the spatial correlation corresponding to
τ = 0, and the time-delayed correlation arising when the points x1 and x2 coincide.

Taylor’s frozen-field hypothesis provides us with a relationship between the time-delayed
and spatial correlation. The underlying reasoning is that, in a low-intensity turbulent flow,
the mean velocity sweeps the turbulence so fast that the eddies do not evolve significantly
during the time it takes them to cross a fixed point in space. Physically, the velocity vector
field appears to be frozen in time. If the mean velocity is in the direction of the x axis, we
may write

Rij(x1,x2, t, τ) 	 Rij(x1,x1 +Δx ex, t, τ) = Rij

(
x1,x1, t, τ = −Δx

ux

)
, (10.12.35)

where ex is the unit vector along the x axis. This expression provides us with a conve-
nient method for obtaining a spatial correlation in terms of a more accessible time-delayed
correlation.



10.12 Analysis and modeling of turbulent flow 751

The usefulness of second-order correlations lies in their ability to provide us with infor-
mation on the geometrical structure and dynamics of eddy motion in a turbulent flow. As
a point x2 tends to another point x1, local fluid motions are coordinated and the correla-
tions are significant. As the points x1 and x2 move farther apart, the fluid motions become
independent or uncorrelated and the correlations decay to zero.

Homogeneous and isotropic turbulence

In the case of homogeneous turbulent flow, the correlations depend on the vectorial distance
between the points x1 and x2, but not on the absolute position of each point. To signify
this dependence, we write

Rij(x2 − x1, t, τ). (10.12.36)

In the case of isotropic turbulent flow, the correlations depend on the scalar distance between
the two points, |x2 − x1|. To signify this dependence, we write

Rij(|x2 − x1|, t, τ). (10.12.37)

Evolution equations

Evolution equations for second-order correlations can be derived from the Navier–Stokes
equation. Just as the averaged Navier–Stokes equation (10.12.7) involves the Reynolds
stresses, evolution equations for second-order correlations involve third-order correlations
defined as time averages of products of three scalar fluctuating components. An important
field of study in the general subject of turbulent flow seeks to establish relations between
high-order correlations and the structure of the mean flow, thereby achieving closure.

10.12.1 Deissler correlation

Deissler replaced Prandtl’s constitutive equation (10.12.24) with a more involved equation
inspired by laboratory measurements,

σR
xy(y) = n2ρ y U(y)

(∂U
∂y

)
y

(
1− exp(−n2Uy

ν
)
)
, (10.12.38)

where n = 0.124 is an experimentally determined dimensionless constant. Substitute this
relation into (10.12.25), integrate to compute the velocity profile, and then compare the
profile with that shown in (10.12.30).

10.12.2 Stratified shear flow

Compute, plot, and discuss the form of the time-delayed correlation of the velocity compo-
nents and temperature recorded in file keller.dat residing in directory stats inside directory
13 turbo of Fdlib.

Problems



Vortex motion 11
11.1 Vorticity and circulation in two-dimensional flow
11.2 Point vortices
11.3 Two-dimensional flow with distributed vorticity
11.4 Vorticity and circulation in three-dimensional flow
11.5 Axisymmetric flow induced by vorticity
11.6 Three-dimensional vortex motion

Flows at high Reynolds number typically develop islands of concentrated vorticity, concisely
called vortices, embedded in a low-vorticity or virtually irrotational ambient fluid. The
velocity field can be resolved into two constituents: an irrotational component prevailing
in the absence of the vortices, and a rotational component associated with the localized
vorticity distribution. The velocity field of the latter can be expressed conveniently as an
integral over the volume of fluid occupied by the vortices. At high Reynolds numbers,
viscous forces are insignificant away from flow boundaries, and the vortices evolve according
to simple rules dictated by the vorticity transport equation.

In this chapter, we derive an integral representation for the velocity field in terms of
the vorticity distribution, discuss simplified laws governing vortex motion in a flow with
negligible viscous forces, and develop numerical methods for describing the structure and
evolution of a prototypical class of vortex flows with specific vorticity distributions. The
study of these flows allow us to develop insights into the dynamics of more general flows at
high Reynolds number dominated by vortex interactions.

11.1 Vorticity and circulation in two-dimensional flow

The circulation around a closed loop in a two-dimensional flow is defined as the line integral
of the tangential component of the velocity with respect to arc length around the loop, as
shown in equation (3.7.12), repeated below for convenience,

C ≡
∮
L
ut d
 =

∮
L
u · t d
, (11.1.1)

where L denotes the loop, d
 = (dx2+dy2)1/2 is the differential arc length around the loop,
and the unit tangent vector t points in the counterclockwise direction along L, as illustrated
in Figure 11.1.1.
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Figure 11.1.1 Illustration of a closed loop in a two-dimensional flow in the xy plane, L, enclosing
an area, D. The circulation around the loop is equal to the areal integral of the strength of the
vorticity, ωz, over D. If the flow is irrotational, the circulation is zero.

A loop is reducible if it can be shrunk to a point without crossing flow boundaries or
singular points. The Stokes circulation theorem allows us to express the circulation around
a reducible loop as the areal integral of the z vorticity component over the area enclosed by
the loop, D, as shown in equation (3.7.13), repeated below for convenience,

C =

∫∫
D
ωz dA, (11.1.2)

where dA is a differential area in the xy plane (Problem 11.1.1). With this expression
as a point of departure, and using the vorticity transport equation discussed in Section
6.6, we proceed to derive an important theorem that facilitates considerably the study and
computation of two-dimensional vortex flow.

Evolution of the circulation in a flow with negligible viscous forces

We begin by considering a reducible material loop consisting of a fixed collection of point
particles with permanent identity, as illustrated in Figure 11.1.1. In the absence of singu-
larities, the fluid enclosed by the loop also has a permanent identity, that is, it is composed
of the same infinite collection of point particles at any time.

The vorticity transport equation for a flow with uniform density and negligible viscous
forces requires that point particles maintain their vorticity as they move about the domain
of flow, as shown in equation (6.6.13), that is,

Dωz

Dt
= 0, (11.1.3)

where D/Dt is the material derivative. Moreover, because the fluid has been assumed
incompressible, the area occupied by an infinitesimal material patch of fluid residing inside
the loop, dA, remains constant in time, that is,

D(dA)

Dt
= 0. (11.1.4)
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Combining these observations, we find that the integral on the right-hand side of (11.1.2)
remains constant in time. Formally, we write

dC

dt
=

d

dt

∫∫
D
ωz dA =

∫∫
D

D(ωz dA)

Dt
=

∫∫
D

Dωz

Dt
dA+

∫∫
D
ωz

D(dA)

Dt
(11.1.5)

and then

dC

dt
= 0. (11.1.6)

We have shown that, when viscous forces are negligible, the circulation around any reducible
material loop remains constant in time.

In Section 11.4.1, we will see that the circulation around an irreducible loop that encloses
a boundary also remains constant in time. These results will reveal that the vorticity of a
point particle in a flow with negligible viscous forces is preserved in a two-dimensional flow.

11.1.1 Stokes circulation theorem

Prove that the circulation around a reducible loop can be expressed in terms of the vorticity,
as shown in equation (11.1.2). Hint: Apply Gauss’s divergence theorem stated in equation
(2.6.29) for the vector functions h = (uy, 0) and h = (0, ux).

11.2 Point vortices

We begin the study of vortex dynamics by considering the motion of point vortices in a
flow with negligible viscous forces. Expressions (3.7.1) provide us with the plane polar
component of the velocity induced at a point, x = (x, y), by a point vortex with strength κ
located at another point, x0 = (x0, y0). The Cartesian components of the induced velocity
are

ux(x, y) = − κ

2π

y − y0
(x− x0)2 + (y − y0)2

(11.2.1)

and

uy(x, y) =
κ

2π

x− x0

(x− x0)2 + (y − y0)2
. (11.2.2)

The denominator of the fractions on the right-hand sides is the square of the distance of the
field point, x, from the location of the point vortex, x0. Since the numerator is proportional
to the difference of the x or y coordinates, the velocity due to a point vortex decays as the
inverse of the distance from the point vortex, in agreement with (3.7.1).

We may verify readily by straightforward differentiation that the strength of the vor-
ticity,

ωz ≡ ∂uy

∂x
− ∂ux

∂y
, (11.2.3)

Problem
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Figure 11.2.1 Horizontal profiles of scaled test functions described by equation (11.2.4) for y = y0
and λ/a = 0.6, 0.5, 0.4, 0.3, 0.2, and 0.1 (highest peak), where a is a specified length. In the
limit as λ/a tends to infinity, we obtain Dirac’s delta function in two dimensions.

vanishes everywhere in the flow, except at the location of the point vortex where the right-
hand sides of equations (11.2.1) and (11.2.2) and their derivatives are not defined. Dirac’s
delta function in two dimensions provides us with a convenient mathematical device for ex-
pressing this singular vorticity distribution in compact form using the concept of generalized
functions.

11.2.1 Dirac’s delta function in a plane

To construct the Dirac delta function in in the xy plane, we introduce a family of test
functions, gλ(x, y), parametrized by an arbitrary length, λ. The test functions are radially
symmetric with respect to a specified point, x0, that is, they depend only on the distance of
the field point, x, from the chosen point, x0; they peak at the point (x0, y0); they decay to
zero rapidly with distance from this point; and their areal integral over the entire xy plane
is equal to unity.

One acceptable family of such test functions are described by the Gaussian distribution

gλ(r) =
1

πλ2
exp
(− r2

λ2

)
, (11.2.4)

where

r =
[
(x− x0)

2 + (y − y0)
2
]1/2

(11.2.5)

is the distance from the peak. Note that the argument of the exponential function is
dimensionless, as required.
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We may chose an arbitrary length, a, and restate (11.2.4) as

gλ(r) =
1

πa2
1

λ̂2
exp
(− r̂2

λ̂2

)
, (11.2.6)

where λ̂ ≡ λ/a is a dimensionless parameter and r̂ ≡ r/a is a dimensionless distance. Graphs

of the test functions for several values of λ̂ are shown in Figure 11.2.1.

As λ̂ tends to infinity, the support of the test function gλ(r) shrinks to zero, yielding
Dirac’s delta function in the xy plane, denoted by

gλ→0(r) = δ2(x− x0, y − y0). (11.2.7)

By construction, the Dirac delta function, δ2(x − x0, y − y0), vanishes everywhere, except
at the point x = x0 and y = y0 where it takes an infinite value, subject to the following
properties:

1. The areal integral of the delta function over an area D that contains the point x0 is
equal to unity, ∫∫

D
δ2(x− x0, y − y0) dA = 1, (11.2.8)

where dA is a differential area in the xy plane. This property reveals that the delta
function in two dimensions has units of inverse squared length.

2. The areal integral of the product of an arbitrary function, f(x, y), and the delta
function over an area D that contains the point x0 is equal to value of the function at
the singular point,∫∫

D
δ2(x− x0, y − y0) f(x, y) dA = f(x0, y0). (11.2.9)

Note that identity (11.2.8) arises from (11.2.9) by setting f(x, y) = 1.

3. The areal integral of the product of an arbitrary function, f(x, y), and the delta
function over an area D that does not contain the point x0 is zero.

Dirac delta functions in one, three, or higher dimensions are defined in a similar fashion.

Vorticity field associated with a point vortex

The vorticity distribution associated with the velocity field given in (11.2.1) and (11.2.2)
can be expressed in terms of the two-dimensional delta function in the compact form

ωz(x, y) = κ δ2(x− x0, y − y0). (11.2.10)

In vector notation,

ωz(x, y) = κ δ2(x− x0). (11.2.11)
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The strength of the point vortex, κ, has units of circulation, which amounts to velocity mul-
tiplied by length, V L, while the two-dimensional delta function has units of inverse length
squared 1/L2. Their product has units of velocity over length, V/L, which is consistent
with the definition of the vorticity in terms of selected spatial derivatives of the velocity.

It is instructive to confirm that the circulation around a closed loop that encloses a
point vortex is equal to the strength of the point vortex. Substituting (11.2.10) into the
integrand on the right-hand side of (11.1.2) and using property (11.2.8), we find that C = κ.

Idealization by condensation

Reviewing the process by which the delta function arose from a family of smooth functions
with increasingly narrow support and high peak, we interpret a point vortex as an idealized
vortex structure emerging in the limit as the size of a compact vortex region in the xy plane
tends to zero, while the circulation around the vortex is held fixed.

11.2.2 Evolution of the point vortex strength

When viscous forces are negligible, the circulation around any material loop that encloses a
point vortex, and therefore the strength of the point vortex, remains constant in time,

dκ

dt
= 0. (11.2.12)

Thus, a point vortex retains its strength as it remains stationary or wanders with the fluid
velocity in the available domain of a flow.

11.2.3 Velocity of a point vortex

The computation of the fluid velocity at the position of a point vortex is frustrated by the
singular nature of the right-hand sides of expressions (11.2.1) and (11.2.2). To circumvent
this difficulty, we observe that, although the fluid in the vicinity of a point vortex spins
about the point vortex with a velocity that increases as the inverse of the distance from the
point vortex, radial symmetry prevents the point vortex from exhibiting a net translational
motion.

This observation suggests that the self-induced velocity of a point vortex in an infinite
domain is zero, and the point vortex is convected with a velocity other than that associated
with its own vorticity distribution. For example, a point vortex embedded in a uniform flow
translates with the velocity of the uniform flow.

11.2.4 Motion of a collection of point vortices

A collection of N point vortices move under the influence of their mutually-induced veloc-
ities. The rate of change of position of the ith point vortex, Xi = (Xi, Yi), is governed by
the ordinary differential equations

dXi

dt
= −

N∑
j=1

′ κj

2π

Yi − Yj

(Xi −Xj)2 + (Yi − Yj)2
(11.2.13)
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and

dYi

dt
=

N∑
j=1

′ κj

2π

Xi −Xj

(Xi −Xj)2 + (Yi − Yj)2
(11.2.14)

for i = 1, . . . , N , where the prime after the sum indicates that the troublesome term j = i is
excluded to bypass the singular self-induced contribution. Equation (11.2.12) ensures that
the strength of each point vortex remains constant during the motion.

Equations (11.2.13) and (11.2.14) provide us with a system of 2N first-order coupled
differential equations for the point vortex coordinates, (Xi, Yi). Having specified the initial
positions, we may compute the subsequent motion using a standard method for solving
ordinary equations, such as the modified Euler method or a Runge–Kutta method.

Code pvm located in directory 09 vortex of Fdlib, not listed in the text, simulates the
motion of a collection of point vortices in an infinite and unbounded domain of flow.

11.2.5 Effect of boundaries

When the domain of flow is bounded by an impermeable surface, a complementary flow must
be added to the right-hand sides of equations (11.2.1) and (11.2.2) or equations (11.2.13) and
(11.2.14) to ensure the satisfaction of the no-penetration boundary condition. For simple
boundary geometries, the complementary flow can be identified with the flow induced by
point vortices with appropriate strengths located at image positions.

Directory pv, located inside directory 09 vortex of Fdlib, contains functions that return
the velocity induced by a point vortex for several boundary geometries. Examples are
discussed in this section.

Point vortex near a plane wall

The complementary flow for a point vortex near an infinite plane that is parallel to the x
axis at y = w can be generated by reflecting the point vortex with respect to the wall. If
a primary point vortex with strength κ is located at a point, (x0, y0), then an image point
vortex with strength −κ is located at the image point (x0, 2w − y0).

The velocity field induced by the primary point vortex and its image is given by

ux(x, y) = − κ

2π

( y − y0
(x− x0)2 + (y − y0)2

− y − 2w + y0
(x− x0)2 + (y − 2w + y0)2

)
(11.2.15)

and

uy(x, y) =
κ

2π

( x− x0

(x− x0)2 + (y − y0)2
− x− x0

(x− x0)2 + (y − 2w + y0)2
)
. (11.2.16)

The streamline pattern induced by the vortex pair for w = 0 is illustrated in Figure 11.2.2(a).
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Figure 11.2.2 Streamline pattern of the flow due to (a) a pair of point vortices with opposite strength,
(b) a point vortex inside a circular cylinder, (c) a point vortex outside a circular cylinder, and (d)
a periodic array of point vortices. These streamline patterns were generated by the program strml

residing in directory 04 various of Fdlib.

The x velocity component induced by the image vortex at the location of the primary
vortex is

vx =
κ

4π

1

y0 − w
, (11.2.17)

while the y component is zero, vy = 0. Thus, the primary point vortex translates with
constant velocity parallel to the wall at a speed that is inversely proportional to the distance
from the wall, y0 − w.
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Point vortex inside or outside a circular cylinder

The complementary flow of a point vortex located inside or outside a circular cylinder of
radius a centered at a point, (xc, yc), is generated by placing an image point vortex with
opposite strength at the inverse point of the point vortex with respect to the cylinder.

If a point vortex with strength κ is located at a point, (x0, y0), then an image point
vortex with strength −κ is located at the point

ximage
0 = xc + (x0 − xc)

a2

|x0 − xc|2 , yimage
0 = yc + (y0 − yc)

a2

|x0 − xc|2 , (11.2.18)

where

|x0 − xc|2 = (x0 − xc)
2 + (y0 − yc)

2 (11.2.19)

is the square of the distance of the point vortex from the cylinder center.

The velocity field induced by the primary point vortex and its image is given by

ux(x, y) = − κ

2π

( y − y0
(x− x0)2 + (y − y0)2

− y − yimage
0

(x− ximage
0 )2 + (y − yimage

0 )2

)
(11.2.20)

and

uy(x, y) =
κ

2π

( x− x0

(x− x0)2 + (y − y0)2
− x− ximage

0

(x− ximage
0 )2 + (y − yimage

0 )2

)
. (11.2.21)

The streamline pattern induced by the vortex pair inside or outside a cylinder is illustrated
in Figure 11.2.2(b, c).

Examining the velocity induced by the image vortex at the location of the primary
vortex, we find that the primary vortex rotates around the cylinder with polar velocity

vθ =
κ

2π

d

a2 − d2
(11.2.22)

in the direction of the polar angle θ measured in the counterclockwise orientation around
the center of the cylinder.

11.2.6 A periodic array of point vortices

Next, we consider a periodic array of point vortices with identical strengths separated by
distance a, as illustrated in Figure 11.2.2(d). The mth point vortex is located at the position

xm = x0 +ma, ym = y0, (11.2.23)

where (x0, y0) is the position of an arbitrary point vortex labeled 0, and m is an integer
label. If we attempt to compute the velocity induced by the array simply by summing the
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individual contributions from all point vortices, we will encounter unphysically divergent
sums.

Renormalization

To overcome this difficulty, we consider the stream function, ψ, corresponding to the velocity
field induced by the individual point vortices, defined by the equations ux = ∂ψ/∂y and
uy = −∂ψ/∂x, and express it in the form

ψ0(x, y) = − κ

2π
ln

r0
a
, ψm(x, y) = − κ

2π
ln

rm
|m| a (11.2.24)

for m = ±1,±2, . . ., where

rm ≡ [ (x− xm)2 + (y − ym)2 ]1/2 (11.2.25)

is the distance of a field point, x = (x, y), from the mth point vortex. The denominators of
the fractions in the arguments of the logarithms on the right-hand sides of the two equations
in (11.2.24) have been chosen judiciously to facilitate forthcoming algebraic manipulations.

It is important to observe that, as m tends to ±∞, the fraction on the right-hand side
of the second equation in (11.2.24) tends to unity, and correspondingly its logarithm tends
to vanish, thereby ensuring that remote point vortices make decreasingly small contribu-
tions. In contrast, if the denominators were not included, remote point vortices would make
contributions that are proportional to the logarithm of the distance of a point vortex from
the point (x, y) where the stream function is evaluated.

Next, we express the stream function due to the infinite array as the sum of a constant,
expressed by the term after the equal sign in the following equation (11.2.26), and the
individual stream functions stated in expressions (11.2.24), obtaining

ψ(x, y) = − κ

2π
ln(

√
2π) +

∞∑
m=−∞

ψm(x, y) (11.2.26)

or

ψ(x, y) = − κ

2π
ln

√
2π r0
a

− κ

2π

∑
m=±1,±2,...

ln
rm
|m| a, (11.2.27)

which can be restated as

ψ(x, y) = − κ

2π
ln
( √

2π r0
a

∏
m=±1,±2,...

rm
|m| a

)
, (11.2.28)

where Π denotes the product.

An identity allows us to compute the infinite product on the right-hand side of (11.2.28)
in closed form, obtaining∏

m=±1,±2,...

rm
|m| a =

a√
2π r0

(
cosh[k(y − y0)]− cos[k(x− x0)]

)1/2
, (11.2.29)
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where k = 2π/a is the wave number. Substituting this expression into (11.2.28), we derive
the desired stream function associated with an infinite point-vortex array,

ψ(x, y) = − κ

4π
ln
(
cosh[k(y − y0)]− cos[k(x− x0)]

)
. (11.2.30)

Note the minus sign on the right-hand side.

Velocity field

Differentiating the stream function with respect to x or y, we obtain the velocity components

ux(x, y) = − κ

2a

sinh[k(y − y0)]

cosh[k(y − y0)]− cos[k(x− x0)]
(11.2.31)

and

uy(x, y) =
κ

2a

sin[k(x− x0)]

cosh[k(y − y0)]− cos[k(x− x0)]
. (11.2.32)

The streamline pattern due to the periodic array is shown in Figure 11.2.2(d) where the x
axis has been scaled with a.

Self-induced velocity

Because of symmetry, the velocity at the location of one point vortex induced by all other
point vortices is zero; consequently, the infinite array is stationary.

Shear-layer flow

Far above or below the array, the x component of the velocity tends to the value −κ/a or
κ/a, while the y component decays at an exponential rate with respect to distance from
the array. These features render the infinite array a sensible model of the flow generated
by the instability of a shear layer separating two streams that merge at different velocities.
The Kelvin–Helmholtz instability causes the shear layer to roll up into compact vortices
represented by the point vortices of the periodic array.

Motion of a collection of point vortices in a periodic arrangement

The motion of a periodic collection of N point vortices, each repeated in the x direction with
period a, is governed by the counterpart of equations (11.2.13) and (11.2.14) for periodic
flow. Using the velocity field described in (11.2.31) and (11.2.32), we obtain the evolution
equations

dXi

dt
= −

N∑
j=1

′ κj

2a

sinh[k(Yi − Yj)]

cosh[k(Yi − Yj)]− cos[k(Xi −Xj)]
(11.2.33)

and

dYi

dt
=

N∑
j=1

′ κj

2a

sin[k(Xi −Xj)]

cosh[k(Yi − Yj)]− cos[k(Xi −Xj)]
(11.2.34)



764 Fluid Dynamics: Theory, Computation, and Numerical Simulation

Figure 11.2.3 Stages in the evolution of a perturbed periodic array of point vortices showing periodic
roll up and the eventual onset of disorganized motion.

for i = 1, . . . , N , where the prime after the sum indicates the exclusion of the term j = i,
corresponding to the vanishing velocity induced by the host array. The strength of each
point vortex remains constant during the motion.

Program pvm pr located inside directory 09 vortex of Fdlib, not listed in the text,
simulates the evolution of a periodic row of point vortices that have been perturbed from
the planar configuration. The motion is known to suffer from a severe numerical instability
that causes the appearance of small-scale irregularities at an early stage of the motion. One
way to suppress these irregularities is by smoothing the coordinates of the point vortices,
replacing them with weighted averages of their neighbors.

The five-point formula of Longuett–Higgins and Cokelet prescribes replacing the actual
positions of the point vortices with smoothed positions according to the formula

f smoothed
i =

1

16
(−fi−2 + 4 fi−1 + 10fi + 4 fi+1 − fi+2), (11.2.35)

where f stands for the x or y position or any other smoothed function. Results of a simu-
lation with smoothing applied after each time step are shown in Figure 11.2.3.



11.2 Point vortices 765

(a) (b)

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x

y

−2 −1 0 1 2
−1

−0.5

0

0.5

1

1.5

2

2.5

3

x

y

Figure 11.2.4 (a) Streamline pattern of the flow due to a point vortex between two parallel walls.
(b) Streamline pattern of the flow due to a point vortex in a semi-infinite rectangular strip. The
streamline patterns were generated using the program strml residing in directory 04 various of
Fdlib.

11.2.7 A point vortex between two parallel walls

Consider a point vortex between two parallel walls along the x, separated by distance h,
as shown in Figure 11.2.4(a). The image system associated with the point vortex consists
of the two reflections of the point vortex, and the reflections of the reflections of the point
vortex with respect to both walls.

The end result is an image system consisting of two infinite periodic arrays of point
vortices along the y axis separated by distance 2h. One array contains the primary point
vortex, and the second array contains the reflection of the primary array with respect to
the lower or upper wall. The strength of the point vortices in the second array is equal in
magnitude and opposite in sign to that of the point vortices in the first array. The stream
function and velocity field may be deduced from the expressions given in (11.2.30), (11.2.31),
and (11.2.32).

Consideration of the velocity field reveals that the point vortex travels along the x axis,
parallel to the walls, with velocity

vx =
κ

h
1

4

sin(2πb/h)

1− cos(2πb/h)
, (11.2.36)

where b is the distance of the point vortex from the upper or lower wall. As b tends to zero,
vx tends to the limiting value of κ/(4πb), corresponding to a point vortex above a single
plane wall.
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11.2.8 A point vortex in a semi-infinite strip

Consider a point vortex between two parallel walls separated by distance h, intersecting
at a right angle a third wall to form a semi-infinite rectangular strip, as shown in Figure
11.2.4(b). The image system of the point vortex consists of the image system associated with
the two parallel walls, discussed in Section 11.2.7, and the reflection of the image system
with respect to the third intersecting wall. The strength of the reflected point vortices is
the negative of that of their images. The motion of the point vortex must be computed by
numerical methods.

11.2.1 Dirac delta function in one dimension

The Dirac delta function in one dimension, denoted by δ1(x − x0), is distinguished by the
following properties:

1. δ1(x− x0) vanishes everywhere, except at the point x = x0 where it becomes infinite.

2. The integral of the delta function over an interval, I, that contains the point x0 is
equal to unity, ∫

I
δ1(x− x0) dx = 1. (11.2.37)

This property reveals that the delta function in one dimension has units of inverse
length.

3. The integral of the product of an arbitrary function, f(x), and the delta function
over an interval, I, that contains the point x0 is equal to value of the function at the
singular point, ∫

I
δ1(x− x0) f(x) dx = f(x0). (11.2.38)

4. The integral of the product of an arbitrary function f(x) and the delta function over
an interval I that does not contain the point x0 is zero.

Note that identity (11.2.37) arises from (11.2.38) by setting f(x) = 1.

(a) Show that δ1 arises from the family of test functions

qλ(|x− x0|) = 1√
πλ

exp
(− (x− x0)

2

λ2

)
, (11.2.39)

in the limit as the length parameter, λ, tends to infinity.

(b) Show that the test functions gλ(r) defined in (11.2.4) derive from the test functions qλ
defined in (11.2.39) as

gλ(r) = qλ(|x− x0|) qλ(|y − y0|). (11.2.40)

Problems



11.3 Two-dimensional flow with distributed vorticity 767

Explain why we may write

δ2(x− x0, y − y0) = δ1(x− x0) δ1(y − y0). (11.2.41)

(c) Show that the integral of δ1(x − x0) is the Heaviside function, which is to zero when
x < x0 or unity when x > x0. Is there a corresponding Heaviside function in two dimensions?

11.2.2 Dirac delta function in three dimension

State the distinguishing properties of the Dirac delta function in three dimensions. Devise
an appropriate family of test functions corresponding to those discussed in the text for the
delta function in two dimensions.

11.2.3 A point vortex near a corner

The image flow associated with a point vortex located between two semi-infinite walls inter-
secting at a right-angle is represented by three point vortices located at the reflections, and
the reflection of the reflections of the vortex with respect to the two walls. Introduce plane
polar coordinates (r, θ) with origin at the apex and the walls located at θ = 0 and π/2, and
show that the primary point vortex moves along a path described by r = c/ sin(2θ), where
the constant c is determined by the initial position.

11.2.4 Point vortex in a rectangular box

Discuss how the image system for a point vortex located in a semi-infinite rectangular strip
discussed in section 11.2.8 can be extended to describe flow inside a rectangular box.

11.2.5 Motion of point vortices

(a) Run program pvm to simulate the motion of a collection of N point vortices with
identical strengths placed at the vertices of an N -sided regular polygon of radius a. Carry
out simulations for N = 8, 16, and 32, and discuss the nature of the motion at long times.

(b) Modify the program pvm to include the presence of a boundary of your choice. Compute
the motion of a collection of point vortices of your choice and discuss the nature of the
motion.

11.2.6 Motion of a periodic collection of point vortices

Run the program pv pr to compute the motion of a periodic arrangement of point vortices
using an initial condition of your choice, with and without smoothing. Discuss the nature
of the motion in each case.

11.3 Two-dimensional flow with distributed vorticity

Broadening the scope of our discussion, now we consider the more general case of two-
dimensional flow in the xy plane containing regions of concentrated vorticity embedded in an
otherwise perfectly or nearly irrotational fluid. To deduce the induced velocity, we subdivide
the vortex region into a collection of N parcels with small areas, δAi for i = 1, . . . , N , as
illustrated in Figure 11.3.1.
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xi

Figure 11.3.1 A vortex region in a two-dimensional flow is discretized into small parcels. Each parcel
is then condensed into a point vortex located at a designated parcel center. As the number of
parcels tends to infinity, the velocity induced by the point vortices is expressed by the integral
representations given in (11.3.4) and (11.3.5).

Let ωi ≡ ωz(xi) be the strength of the vorticity at a designated center of the ith parcel,
xi. The strength of the parcel is the integrated vorticity over the parcel area,

κi ≡ ωi δAi. (11.3.1)

For the purpose of evaluating the velocity at a point in the flow, we may replace the parcels
with point vortices located at the designated parcel centers. Using expressions (11.2.1) and
(11.2.2), we find that the velocity induced by the collection of the point vortices is given by

ux(x, y) = − 1

2π

N∑
i=1

y − yi
(x− xi)2 + (y − yi)2

ωi δAi (11.3.2)

and

uy(x, y) =
1

2π

N∑
i=1

x− xi

(x− xi)2 + (y − yi)2
ωi δAi. (11.3.3)

As the number of parcels, N , tends to infinity, the sums reduce to areal integrals,
yielding an integral representation for the velocity in terms of the vorticity,

ux(x, y) = − 1

2π

∫∫
vortex

y − y′

(x− x′)2 + (y − y′)2
ωz(x

′, y′) dx′ dy′ (11.3.4)

and

uy(x, y) =
1

2π

∫∫
vortex

x− x′

(x− x′)2 + (y − y′)2
ωz(x

′, y′) dx′ dy′. (11.3.5)

The stream function is given by the corresponding integral representation

ψ(x, y) = − 1

4π

∫∫
vortex

ln
( (x− x′)2 + (y − y′)2

�2
)
ωz(x

′, y′) dx′ dy′, (11.3.6)
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Figure 11.3.2 Illustration of an isolated patch with constant vorticity in a two-dimensional flow in
the xy plane.

where � is a specified length. The stream function satisfies the Poisson equation,

∇2ψ = −ωz, (11.3.7)

arising from the definitions of the vorticity and the defining relation between the velocity
and the stream function.

Expressions (11.3.4) and (11.3.5) allow us to compute the velocity field associated with
a specified vorticity distribution in the xy plane.

Recovering point vortices

It is instructive to observe that the velocity field due to a point vortex arises by substituting
the singular vorticity distribution (11.2.10) into expressions (11.3.4) and (11.3.5), and then
using property (11.2.9) to evaluate the integrals. The delta function simply switches x′ to
x0 and y′ to y0, and thereby generates the flow due to a point vortex expressed by equations
(11.2.1) and (11.2.2).

11.3.1 Vortex patches with uniform vorticity

Next, we consider a compact vortex with uniform vorticity, Ω, enclosed by a closed contour,
C, as illustrated in Figure 11.3.2. Extracting the vorticity from the integral on the right-hand
side of the integral representation (11.3.6), we obtain the stream function

ψ(x, y) = − Ω

4π

∫∫
vortex

ln
(x− x′)2 + (y − y′)2

�2
dx′ dy′. (11.3.8)

The x and y velocity components derive from the stream function as ux = ∂ψ/∂y and
uy = −∂ψ/∂x.

Differentiating (11.3.8) with respect to x or y, transferring the derivatives on the right-
hand sides into the integrals, and then writing

∂

∂x
ln

(x− x′)2 + (y − y′)2

�2
= − ∂

∂x′ ln
(x− x′)2 + (y − y′)2

�2
(11.3.9)

and

∂

∂y
ln

(x− x′)2 + (y − y′)2

�2
= − ∂

∂y′
ln

(x− x′)2 + (y − y′)2

�2
, (11.3.10)
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we obtain

ux(x, y) =
Ω

4π

∫∫
vortex

∂

∂y′
ln

(x− x′)2 + (y − y′)2

�2
dx′ dy′ (11.3.11)

and

uy(x, y) = − Ω

4π

∫∫
vortex

∂

∂x′ ln
(x− x′)2 + (y − y′)2

�2
dx′ dy′. (11.3.12)

These manipulations were motivated by our ability to convert the areal integral of the x or
y derivative of a function over the region occupied by the vortex to a line integral along the
vortex contour, C.

The conversion is done using the Gauss divergence theorem stated in equation (2.6.29)
for an arbitrary vector function, h = (hx, hy). Setting

hx = 0, hy = ln
(x− x′)2 + (y − y′)2

�2
, (11.3.13)

we find that

ux(x, y) =
Ω

4π

∮
C
ln

(x− x′)2 + (y − y′)2

�2
ny(x

′, y′) d
(x′, y′), (11.3.14)

where ny is the y component of the unit vector normal to the vortex contour, C, pointing
outward from the vortex, and d
 is the differential arc length along C. Working in a similar
fashion with the y velocity component, we find that

uy(x, y) = − Ω

4π

∮
C
ln

(x− x′)2 + (y − y′)2

�2
nx(x

′, y′) d
(x′, y′). (11.3.15)

To recast the component equations (11.3.14) and (11.3.15) into a unified vector form,
we introduce the unit vector tangent to the vortex contour pointing in the counterclockwise
direction, t = (tx, ty), as shown in Figure 11.3.2, and write

nx = ty, ny = −tx. (11.3.16)

The velocity induced by the patch may now be expressed in the vector form

u(x, y) = − Ω

4π

∮
C
ln

(x− x′)2 + (y − y′)2

�2
t(x′, y′) d
(x′, y′). (11.3.17)

The integral is independent of the arbitrary length, �.

A collection of patches

If a flow contains a collection of Np vortex patches with uniform vorticity Ωm for m =
1, . . . Np, the velocity field arises by integrating around the contour of each patch and then
summing the contributions according to the generalized version of (11.3.17)

u(x,y) = − 1

4π

Np∑
m=1

Ωm

∮
Cm

ln
(x− x′)2 + (y − y′)2

�2
t(x′, y′) d
(x′, y′), (11.3.18)

where Cm is the contour of the lth patch.
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Figure 11.3.3 Illustration of a periodic patch with uniform vorticity in an otherwise irrotational two-
dimensional flow.
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Figure 11.3.4 Illustration of an arrangement of NL adjacent periodic vortex layers in two-dimensional
flow in the xy plane.

Periodic patches

To develop a contour integral representation of the flow induced by a vortex patch that is
repeated periodically in the x direction with period a, as illustrated in Figure 11.3.3, we
repeat the preceding analysis using the stream function of the flow induced by a periodic
array of point vortices given in (11.2.30).

Straightforward generalization provides us with the counterpart of equation (11.3.18)
for a flow containing a collection of Np periodically repeated vortex patches,

u(x, y) = − 1

4π

Np∑
m=1

Ωm

∮
Cm

ln
(
cosh[k(y − y′)]− cos[k(x− x′)]

)
t(x′, y′) d
(x′, y′),

(11.3.19)

where k = 2π/a is the common wave number. For the configuration depicted in Figure
11.3.3 involving one periodic patch, Np = 1.

Periodic layers

A judicious rearrangement of (11.3.19) allows us to derive a contour integral representation
of the flow induced by NL adjacent periodic vortex layers with uniform vorticity, as shown
in Figure 11.3.4.
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To develop this representation, we identify one period of a vortex layer with a periodic
patch, and note that the contour integrals over periodic segments cancel due to the opposite
orientation of the unit tangent vector. The result is the integral representation

u(x, y) = − 1

4π

NL+1∑
m=1

(Ωm − Ωm−1) (11.3.20)

×
∫
Lm

ln
(
cosh[k(y − y′)]− cos[k(x− x′)]

)
t(x′, y′) d
(x′, y′),

with the understanding that Ω0 = 0 and ΩNL+1 = 0, where Lm is one period of the mth
contour, as illustrated in Figure 11.3.4.

An arrangement of adjacent layers with gradually varying vorticity is an acceptable
representation of a shear layer with smoothly varying vorticity separating two streams far
above or below the arrangement.

11.3.2 Contour dynamics

The vorticity transport equation (6.6.13) ensures that, if viscous forces are insignificant, the
vorticity inside a patch with uniform vorticity remains constant in time. To compute the
evolution of the flow, it suffices then to follow the motion of the vortex contour.

In numerical practice, this is done by tracing the contour with a collection of point parti-
cles, evaluating the velocity at the position of the point particles using the contour integral
representation, and then advancing the position of the point particles using a numerical
method for integrating ordinary differential equations (ODEs).

Contour discretization

Consider the evolution of a solitary vortex patch immersed in an infinite fluid, as depicted
in Figure 11.3.2. The numerical method involves the following steps:

1. Trace the vortex contour with N + 1 point particles located at Xi = (Xi, Yi) for
i = 1, . . . , N + 1, where point particles labeled 1 and N + 1 coincide.

2. Describe the shape of the contour by interpolation.

3. Compute the velocity of each marker point by evaluating the integral on the right-hand
side of (11.3.17) for x = Xi and y = Yi, where i = 1, . . . , N .

4. Compute the motion of the point particles by integrating in time the coupled ordinary
differential equations

dXi

dt
= ux(Xi, Yi),

dYi

dt
= uy(Xi, Yi) (11.3.21)

for i = 1, . . . , N . Note that the velocity of the ith contour point particle depends on
the position of all contour point particles.
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Influence coefficients

In the simplest method, the vortex contour is approximated with the polygonal line (poly-
line) connecting successive marker points. To evaluate the velocity in the third step of
the algorithm, we replace the contour integral with the sum of integrals over the individ-
ual straight elements connecting adjacent point particles. Observing that the unit tangent
vector over the jth element is constant and equal to

t(j) =
1

Δ
j
(Xj+1 −Xj), (11.3.22)

we write

u(Xi, Yi) 	 − Ω

4π

N∑
j=1

t(j)
∫
Ej

ln
(Xi − x′)2 + (Yi − y′)2

�2
d
(x′, y′), (11.3.23)

where Ej denotes the jth element and Δ
j is the element length. To facilitate the logistics,
we recast equation (11.3.23) into the compact form

u(Xi, Yi) = − Ω

2π

N∑
j=1

Aj(Xi, Yi) (Xj+1 −Xj), (11.3.24)

where

Aj(Xi, Yi) ≡ 1

Δ
j

∫
Ej

ln
[ (Xi − x′)2 + (Yi − y′)2 ]1/2

�
d
(x′, y′) (11.3.25)

are dimensionless influence coefficients. If the flow contains a collection of vortex patches,
the right-hand side of (11.3.24) is summed over all contours to account for all induced
contributions.

Singular elements

As the integration point, (x′, y′), approaches the evaluation point, (Xi, Yi), the integrand
of the contour integral diverges at a logarithmic rate. Consequently, the integrals over
the elements numbered i − 1 and i are improper and the elements are deemed singular.
Fortunately, these improper integrals can be computed analytically, yielding the influence
coefficients

Aj(Xi, Yi) = ln
ri,j
�

− 1, (11.3.26)

for j = i− 1, i, where

ri,j ≡ [ (Xi −Xj)
2 + (Yi − Yj)

2 ]1/2 (11.3.27)

is the distance between the point particles labeled i and j (Problem 11.3.1).
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Regular elements

The rest of the integrals defining the influence coefficients are non-singular and can be
computed by standard numerical methods. Choosing the trapezoidal rule, we replace the
integrand in (11.3.25) with the average of the values corresponding to the end points of the
integration domain, finding

Aj(Xi, Yi) =
1

2
( ln

ri,j
�

+ ln
ri,j+1

�
) (11.3.28)

for j = 1, . . . , i − 2 and j = i+ 1, . . . , N . Note that we have skipped the singular elements
numbered i− 1 and i.

Periodic flow

To compute the evolution of a periodic flow with period a, we replace equation (11.3.17)
with its counterpart originating from equation (11.3.19). In the case of one vortex patch
repeated in the x direction with period a, corresponding to Np = 1, we find that

u(Xi, Yi) = − Ω

4π

N∑
j=1

t(j)
∫
Ej

ln
(
cosh[ k(Yi − y′) ]− cos[ k(Xi − x′) ]

)
d
(x), (11.3.29)

where k = 2π/a is the wave number.

The periodic integrand in (11.3.29) exhibits a logarithmic singularity over the two el-
ements hosting the evaluation point, Xi. To remove this singularity, we add and subtract
the non-periodic kernel corresponding to a solitary point vortex, writing

ln
(
cosh[ k(Yi − y′) ]− cos[ k(Xi − x′) ]

)
(11.3.30)

= ln
cosh[ k(Yi − y′) ]− cos[ k(Xi − x′) ]

(Xi − x′)2 + (Yi − y′)2
+ ln[(Xi − x′)2 + (Yi − y′)2].

As x′ tends to Xi and y′ tends to Yi, the fraction on the right-hand side of (11.3.30) tends
to a finite value. The integral of the corresponding logarithmic term may then be computed
using a standard numerical method. The improper integral of the last term on the right-
hand side of (11.3.30) can be computed analytically, as discussed previously in this section
for non-periodic flow.

11.3.3 Gauss integration quadrature

Various modifications of the basic contour dynamic algorithm outlined in Section 11.3.2 can
be made to improve the accuracy of the numerical method.

Consider the evaluation of the influence coefficients Aj defined in equation (11.3.24) over
non-singular elements. The trapezoidal rule expressed by (11.3.28) replaces the integral with
a weighted average of the values of integrand at the two end points, where both weights
are equal to 1

2 . Generalizing this approximation, we evaluate the integral by a quadrature
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expressing a weighted average of the integrand at craftily selected quadrature base points,
so that ∫

Ej

ln
(Xi − x′)2 + (Yi − y′)2

�2
d
(x′, y′)

	 1

2
Δ
j

NQ∑
k=1

ln
(Xi − xk)

2 + (Yi − yk)
2

�2
wk, (11.3.31)

where NQ is a chosen number of quadrature points and wk are integration weights. The
position of the base points (xk, yk) on element Ej is given by

xk =
1

2
(Xj+1 +Xj) +

1

2
(Xj+1 −Xj) ξk,

yk =
1

2
(Yj+1 + Yj) +

1

2
(Yj+1 − Yj) ξk, (11.3.32)

where the scaled base-point positions, zk, take values in the interval [−1, 1]. The left extreme
value, ξ1 = −1, corresponds to x1 = Xj and yk = Yj , where the right extreme value,
ξNQ

= 1, corresponds to xNQ
= Xj+1 and yk = Yj+1. The trapezoidal rule expressed by

(11.3.28) corresponds to NQ = 2 with ξ1 = −1, ξ2 = 1, and equal weights, w1 = w2 = 1.0.

Tabulation

Handbooks of mathematical functions provide us with tables of the optimal positions of the
base points, zk, and corresponding weights, wk, for a specified number of quadrature base
points, NQ, where k = 1, . . . , NQ. The base points are the zeros of a selected class of or-
thogonal polynomials. The weights arise by integrating Lagrange interpolating polynomials
defined in terms of the base points. For smooth integrands that do not exhibit singularities,
the tables come under the header of the Gauss–Legendre quadrature. For integrands with
integrable singularities or integrals over infinite domains, the tables come under different
headers.

Directory 07 integration, located inside directory 01 num meth of Fdlib, includes func-
tions that return base points and weights. Other programs in the same directory perform
numerical integration.

11.3.4 Representation with circular arcs

To account for the curvature of a vortex contour, we may replace the straight segments
connecting adjacent marker points with circular arcs, as illustrated in Figure 11.3.5. The
backward arc passes through a trio of points numbered j − 1, j, and j + 1, whereas the
forward arc passes through a trio of points numbered j, j + 1, and j + 2. Each arc is
specified by the coordinates of its center and radius, computed by solving a system of three
linear equations using interpolation constraints. The blended arc arises by averaging the
geometrical properties of the forward and backward arcs on either side of an interpolation
interval.
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Figure 11.3.5 Local approximation of a vortex contour with a circular arc passing through three
points, defined by its center and radius.

The position of a point on the jth arc is described in parametric form by the equations

x = xcj +Rj cos θ, y = ycj +Rj sin θ, (11.3.33)

where (xcj , ycj ) are the coordinates of the arc center, Rj is the arc radius, and the polar
angle θ varies between two limits corresponding to the arc end-points. The components of
the unit tangent vector are given by

tx(θ) = −± sin θ, ty(θ) = ± cos θ, (11.3.34)

and the differential arc length along the arc is given by d
 = ±Rj dθ. The plus sign of ± is
chosen when the arc is traced in the counterclockwise direction from point j to point j + 1,
and the minus sign otherwise.

The x and y components of the integral over the j arc on the right-hand side of (11.3.17)
evaluated at the point (Xi, Yi) are given by

(Ix)ij ≡ −Rj

∫ θj+1

θj

ln
(Xi − xcj −Rj cos θ)

2 + (Yi − ycj −Rj sin θ)
2

�2
sin θ dθ (11.3.35)

and

(Iy)ij ≡ Rj

∫ θj+1

θj

ln
(Xi − xcj −Rj cos θ)

2 + (Yi − ycj −Rj sin θ)
2

�2
cos θ dθ. (11.3.36)

The integrals with respect to θ on the right-hand sides can be computed using the Gauss–
Legendre quadrature discussed in Section 11.3.3.

Singular arcs

When the evaluation point, (Xi, Yi), lies at the jth arc, the integrands in (11.3.36) exhibit
a logarithmic singularity. To compute the integrals, we express the coordinates, (Xi, Yi), in
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local plane polar coordinates, writing

Xi = xcj +Rj cos θi, Yi = ycj +Rj sin θi. (11.3.37)

Substituting these expressions into (11.3.35) and (11.3.36), simplifying and rearranging, we
obtain

(Ix)ij ≡ −Rj

∫ θj+1

θj

ln
2R2

j

(
1− cos(θ − θi)

)
�2

sin θ dθ, (11.3.38)

and

(Iy)ij ≡ Rj

∫ θj+1

θj

ln
2R2

j

(
1− cos(θ − θi)

)
�2

cos θ dθ. (11.3.39)

As the integration angle, θ, tends to the evaluation angle, θi, the integrands in (11.3.38)
and (11.3.39) exhibit a logarithmic singularity. To remove this singularity, we manipulate
the x component by writing

(Ix)ij = −Rj

(
ln

2R2
j

�2

∫ θj+1

θj

sin θ dθ +

∫ θj+1

θj

ln[1− cos(θ − θi)] sin θ dθ
)
, (11.3.40)

and then

(Ix)ij = −Rj

(
− ln

2R2
j

a2
(cos θj − cos θj+1) +

∫ θj+1

θj

ln
1− cos(θ − θi)

(θ − θi)2
sin θ dθ

+

∫ θj+1

θj

ln(θ − θi)
2 (sin θ − sin θi) dθ + sin θi

∫ θj+1

θj

ln(θ − θi)
2 dθ

)
. (11.3.41)

Using the Taylor series expansion of the cosine with respect to θ around θi, we find that, as
θ tends to θi, the fraction in the first integral on the right-hand side of (11.3.41) tends to
1
2 (Problem 11.3.2). The corresponding integral is nonsingular and can be computed by a
standard numerical method. The second integral on the right-hand side is also nonsingular.
The singularity has been shifted to the third integral, which can be evaluated by elementary
analytical methods. The y component expressed by the second of equations (11.3.39) can
be manipulated in a similar fashion.

An alternative method of computing the singular integrals in (11.3.38) and (11.3.39)
employs a quadrature that is specifically designed for integrals with a logarithmic singularity,
as discussed in texts on numerical methods cited in the bibliography.

FDLIB codes vp 2d

Code vp 2d, located in directory 09 vortex of Fdlib, not listed in the text, simulates the
evolution of an arbitrary collection of vortex patches. In the numerical method, the contour
of each patch is approximated with a collection of blended circular arcs. An essential feature
of the numerical procedure is that marker points along the vortex contours are redistributed
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Figure 11.3.6 Evolution of three vortex patches computed by the method of contour dynamics for
two-dimensional flow implemented in a code entitled vp 2d. In the course of the interaction, the
three vortices merge into a larger vortex with spiral filaments.

adaptively during the motion to capture the development of regions of high curvature and
prevent point clustering and dilution.

Stages in the evolution of three vortex patches in close proximity are shown in Figure
11.3.6. The dots around the contours mark the adaptively redistributed marker points. Note
that an increasing number of marker points are introduced in the course of the simulation.
The results reveal the spontaneous vortex merger under the influence of the mutually induced
velocity.

FDLIB codes vp 2d pr

Code vp 2d pr, located inside directory 09 vortex of Fdlib, not listed in the text, computes
the evolution of a collection of adjacent vortex layers. The numerical method is similar to
that described previously for vortex patches.
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Figure 11.3.7 Kelvin–Helmholtz instability of a uniform vortex layer computed by the method of
contour dynamics for periodic flow.

Stages in the Kelvin–Helmholtz instability of a periodic vortex layer separating a uni-
form stream that moves to the right above the layer from another uniform stream that
moves to the left below the layer are shown in Figure 11.3.7. The initially sinusoidal vortex
contours roll up into a periodic sequence of compact vortices connected by thinning braids.
In the final stages of the motion, the vortex layer transforms into a periodic array of billows
sometimes seen in a cloudy sky.

11.3.1 Influence coefficient for a singular element

(a) Derive the influence coefficients for a singular element shown in (11.3.26). Hint: Work
in local Cartesian coordinates where the x axis is tangential to the singular element.

(b) Compute in analytical form the last integral on the right-hand side of (11.3.41).

(c) Derive the counterpart of (11.3.41) for the y component of the induced velocity.

11.3.2 Periodic kernel

Evaluate the limit of the fraction after the logarithm on the right-hand side of (11.3.41) as
the integration point tends to the evaluation point.

11.3.3 Motion of vortex patches and vortex layers

(a) Run the code vp 2d to simulate the evolution of a vortex arrangement of your choice.
Discuss the nature of the motion.

(b) Run the code vp 2d pr to simulate the motion of a deformed vortex layer. Discuss the
nature of the motion.

Problems
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Figure 11.4.1 Illustration of a loop in three-dimensional flow, L, enclosing a patch, D. The circu-
lation around the loop is equal to the surface integral of the normal component of the vorticity,
ω · n, over D.

11.4 Vorticity and circulation in three-dimensional flow

The circulation around a loop in a three-dimensional flow is defined as the line integral of
the tangential component of the velocity around the loop, L,

C ≡
∮
L
ut dl
 =

∮
L
(ux tx + uy ty + uz tz) d
 =

∮
L
u · t d
, (11.4.1)

where t = (tx, ty, tz) is the unit vector tangent to the loop and

d
 = (dx2 + dy2 + dz2)1/2 (11.4.2)

is the differential arc length around the loop measured from an arbitrary point in the di-
rection of t, as shown in Figure 11.4.1. The definition (11.4.1) generalizes that stated in
equation (11.4.1) for two-dimensional flow.

Circulation around a reducible loop

If the loop is reducible, that is, if it can be shrunk to a point without crossing flow boundaries
or singular lines, we may use the Stokes circulation theorem to express the circulation
around the loop as an integral of the component of the vorticity vector normal to any
three-dimensional surface, D, that is bounded by the loop,

C =

∫∫
D
ω · n dS, (11.4.3)

where dS is a differential surface area on D. The orientation of the unit normal vector, n,
is such that, as we view the surface from the positive direction of the normal vector, the
unit tangent vector, t, points in a direction corresponding to counterclockwise rotation, as
depicted in Figure 11.4.1.

In the case of two-dimensional flow in the xy plane, the loop L and surface D enclosed
by L can be chosen to lie in the xy plane. The unit normal vector n is then parallel to the
z axis, and expression (11.4.3) reduces to expression(11.1.2), where ω = ωz n.
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11.4.1 Preservation of circulation

To compute the rate of change of circulation around a material loop consisting of a fixed
collection of point particles with permanent identity, we take the time derivative of the
definition (11.4.1) and find that

dC

dt
=

d

dt

∮
L
u · t d
 =

∮
L

Du

Dt
· t d
+

∮
L
u · D(td
)

Dt
, (11.4.4)

where D/Dt is the material derivative.

Focusing on the second integral on the right-hand side of (11.4.4), we express it in the
form ∮

L
u · D(t d
)

Dt
=

∮
L
u · DdX

Dt
, (11.4.5)

where

u · DdX

Dt
= ux

DdX

Dt
+ uy

DdY

Dt
+ uz

DdZ

Dt
. (11.4.6)

The material derivative D (dX)/Dt expresses the rate of change of the components of an
infinitesimal material vector that begins at a certain point particle and ends at another
point particle. If the two point particles move with the same velocity, the material vector
will simply translate; consequently, D (dX)/Dt = 0. This observation suggests that the
derivative D (dX)/Dt is proportional to the local rate of change of the velocity with respect
to arc length along the material vector, 
.

Using Taylor series expansions, we find that

DdX

Dt
= dX

∂ux

∂x
+ dY

∂ux

∂y
+ dZ

∂ux

∂z
,

DdY

Dt
= dX

∂uy

∂x
+ dY

∂uy

∂y
+ dZ

∂uy

∂z
,

DdZ

Dt
= dX

∂uz

∂x
+ dY

∂uz

∂y
+ dZ

∂uz

∂z
. (11.4.7)

Now considering the first term on the right-hand side of (11.4.6), we write

ux
DdX

Dt
= dX ux

∂ux

∂x
+ dY ux

∂ux

∂y
+ dZ ux

∂ux

∂z
, (11.4.8)

which can be expressed in the form

ux
DdX

Dt
= dX

1

2

∂u2
x

∂x
+ dY

1

2

∂u2
x

∂y
+ dZ

1

2

∂u2
x

∂z
(11.4.9)

or

ux
DdX

Dt
=

1

2

du2
x

d

. (11.4.10)
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Because the right-hand side of (11.4.10) is an exact differential, its line integral around a
closed loop is identically zero.

Working in a similar fashion with the second and third terms on the right-hand side
of (11.4.6), we find that the corresponding integrals are also zero, yielding the evolution
equation

dC

dt
=

∮
L

Du

Dt
· t d
. (11.4.11)

We have found that the rate of change of the circulation around a material loop is equal to
the instantaneous circulation of the acceleration field, Du/Dt, around the loop.

Kelvin’s circulation theorem

If viscous forces are negligible, we may use Euler’s equation (6.4.3) to recast the integral on
the right-hand side of (11.4.11) into the form∮

L

Du

Dt
· t d
 =

∮
L

(− 1

ρ
∇p+ g

) · t d
. (11.4.12)

The unit tangent vector is given by

t =
1

d

dX, (11.4.13)

where X is the position of a point particle around the loop. Using this expression and
assuming that the fluid density is uniform throughout the domain of flow, we find that∮

L

Du

Dt
· t d
 = −1

ρ

∮
L
dX ·∇p+ g ·

∮
L
dX (11.4.14)

and then ∮
L

Du

Dt
· t d
 = −1

ρ

∮
L
dp+ g ·

∮
L
dX. (11.4.15)

Because the loop is closed, the domain of integration with respect to X is periodic. Since
the two integrands on the right-hand side of (11.4.15) are exact differentials, their integrals
are identically zero, yielding Kelvin’s circulation theorem expressed by the conservation law

dC

dt
= 0 (11.4.16)

for any reducible or irreducible loop.

We have found that, when viscous forces are negligible, the circulation around any closed
material loop remains constant in time.
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11.4.2 Flow induced by vorticity

Given the velocity field, we may compute the associated vorticity distribution using the
definition of the vorticity by analytical or numerical differentiation,

ω ≡ ∇× u. (11.4.17)

Is there a way of performing the inverse, that is, express the velocity in terms of the vorticity
field?

Biot–Savart integral

In the case of two-dimensional flow, the velocity field associated with a specified vorticity
distribution in the xy plane arises from the integral representations described in (11.3.4)
and (11.3.5). The corresponding formula for three-dimensional flow is expressed by the
Biot–Savart integral

u(x, y, z) = − 1

4π

∫∫∫
(x− x′)× ω(x′)

r3
dV (x′), (11.4.18)

where

r =
[
(x− x′)2 + (y − y′)2 + (z − z′)2

]1/2
(11.4.19)

is the scalar distance of the evaluation point, x = (x, y, z), from the integration point,
x′ = (x′, y′, z′), and the integration is performed over the entire domain of flow. In index
notation, the ith component of the velocity is given by

ui(x, y, z) = − 1

4π

∫∫∫
εijk (xj − x′

j)ωk(x
′)

r3
dV (x′) (11.4.20)

where summation is implied over the repeated indices, j and k.

The numerator of the integrand in (11.4.18) is the cross product of (a) the vectorial
distance of the evaluation point, x = (x, y, z), from the integration point, x′ = (x′, y′, z′),
and (b) the vorticity at the integration point. The denominator is the cubic power of the
scalar distance between the evaluation point and the integration point, |x− x′|3. Thus, far
from the integration point, x′, the integrand decays like 1/r2.

The physical interpretation of (11.4.18) becomes evident by replacing the integral with
a sum of integrals over the volumes of elementary fluid parcels. The velocity induced by
each individual parcel due to its rotation is illustrated in Figure 11.4.2. A direct analogy
with the magnetic field induced by an electrical current explains why the integral on the
right-hand side of (11.4.18) is known as the Biot–Savart integral of vortex dynamics.

Effect of boundaries

The integral representation (11.4.18) is applicable only for unbounded flow extending to
infinity in all directions and decaying at infinity. In the presence of boundaries, an additional
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Figure 11.4.2 The velocity field induced by the rotation of a small fluid parcel centered at a point,
x′, is expressed by the Biot–Savart integral shown in (11.4.20).
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Figure 11.5.1 Illustration of an axisymmetric flow without swirling motion. The vorticity vector
points in the direction of the azimuthal angle, ϕ, at any point.

complementary flow must be included to ensure the solenoidality of the velocity field, ∇·u =
0, and the satisfaction of the no-penetration and no-slip boundary conditions.

11.4.1 Rate of change of circulation

Assume that the viscous force in a fluid is given by μ∇2u = −κu, where κ is a resistance
coefficient. What are the dimensions of κ? Derive an equation for the rate of change of
circulation around a material loop.

11.5 Axisymmetric flow induced by vorticity

The vorticity of an axisymmetric vortex flow without swirling motion is oriented in the
direction of the azimuthal angle, ϕ, at any point, as illustrated in Figure 11.5.1. The known
orientation of the vorticity field and accompanying axial symmetry of the velocity field allow
us to simplify the volume integral on the right-hand side of (11.4.18), and thereby derive
integral representations that are amenable to analytical and numerical computation.

Problem
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Figure 11.5.2 Streamline pattern associated with Hill’s spherical vortex (a) in a stationary frame of
reference and (b) in a frame of reference translating with the vortex.

In the cylindrical polar coordinates depicted in Figure 11.5.1, the vorticity vector takes
the form

ω = ωϕ(x, σ) eϕ, (11.5.1)

where ωϕ is the azimuthal vorticity component and eϕ is the unit vector in the direction of
the azimuthal angle, ϕ. The Cartesian components of the vorticity are given by

ωx = 0, ωy = −ωϕ sinϕ, ωz = ωϕ cosϕ. (11.5.2)

Hill’s spherical vortex

Hill’s spherical vortex provides us with an important example of an axisymmetric vortex
with distributed vorticity. The strength of the vorticity inside Hill’s vortex is proportional
to the distance from the x axis,

ωϕ = Ωσ, (11.5.3)

where Ω is a constant with units of inverse length multiplied by time. Outside Hill’s vortex,
the flow is irrotational flow due to the motion of a sphere. The streamline patterns in a
stationary frame of reference and in a frame of reference translating with the vortex are
shown in Figure 11.5.2.

In the moving frame of reference, corresponding to Figure 11.5.2(b), the axisymmetric
stream function of the flow inside Hill’s vortex is given by

ψinterior =
1

10
Ωσ2 (a2 − x2 − σ2). (11.5.4)
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Outside the vortex, the stream function is given by

ψexterior = − 1

15
Ω a2σ2

(
1− a3

(x2 + σ2)3/2
)
. (11.5.5)

Observed in a stationary frame of reference, corresponding to Figure 11.5.2(a), Hill’s vortex
translates along the x axis with velocity

V =
2

15
Ω a2. (11.5.6)

Recall that the constant Ω has units of velocity divided by length squared.

Vortex rings

Hill’s vortex is an extreme member of a family of vortex rings, arising in the limit as the
core of the rings spreads out and the ring contour in an azimuthal plane touches and then
extends over the x axis. The opposite extreme member of this family is a line vortex ring
with circular core of infinitesimal radius, as discussed in Section 11.5.2.

11.5.1 Biot–Savart integral for axisymmetric flow

Referring to the integral representation (11.4.18), we express the y and z coordinates of the
evaluation point, x, and integration point, x′, in cylindrical polar coordinates, as

y = σ cosϕ, z = σ sinϕ, y′ = σ′ cosϕ′, z′ = σ′ sinϕ′. (11.5.7)

The square of the distance between these two points is

r2 ≡ (x− x′)2 + (y − y′)2 + (z − z′)2

= (x− x′)2 + (σ cosϕ− σ′ cosϕ′)2 + (σ sinϕ− σ′ sinϕ′)2. (11.5.8)

Expanding the squares and using standard trigonometric identities, we find that

r2 = x̂2 + (σ + σ′)2 − 2σσ′[ 1 + cos(ϕ− ϕ′)
]

(11.5.9)

and then

r2 = x̂2 + (σ + σ′)2 − 4σσ′ cos2( 1
2
ϕ̂), (11.5.10)

where

x̂ = x− x′, ϕ̂ ≡ ϕ− ϕ′. (11.5.11)

Next, we consider the x component of the integral representation (11.4.20) and express
the differential volume in cylindrical polar coordinates,

dV (x′) = dx′dσ′σ′dϕ′, (11.5.12)
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to obtain

ux(x, σ) = − 1

4π

∫∫ (∫ 2π

0

1

r3
[
ŷ ωz(x

′, y′, z′)− ẑ ωy(x
′, y′, z′)

]
σ′ dϕ′

)
dx′ dσ′, (11.5.13)

where ŷ = y−y′ and ẑ = z−z′. Substituting relations (11.5.2) and (11.5.7), into the numer-
ator of the integrand, simplifying by the use of trigonometric identities, and rearranging,
we find that

ux(x, σ) =
1

4π

∫∫ ( ∫ 2π

0

−σ cos ϕ̂+ σ′

r3
dϕ̂
)
ωϕ(x

′, σ′) σ′ dx′ dσ′. (11.5.14)

To compute the σ component of the velocity, we work in a similar fashion departing
from the equation

uσ = uy cosϕ+ uz sinϕ. (11.5.15)

The final result is

uσ(x, σ) =
1

4π

∫∫ ( ∫ 2π

0

x̂ cos ϕ̂

r3
dϕ̂
)
ωϕ(x

′, σ′) σ′ dx′ dσ′. (11.5.16)

To simplify the notation, we recast equations (11.5.14) and (11.5.16) into the forms

ux(x, σ) =
1

4π

∫∫ [ − σ I31(x̂, σ, σ
′) + σ′ I30(x̂, σ, σ′)

]
ωϕ(x

′, σ′) σ′ dx′ dσ′ (11.5.17)

and

uσ(x, σ) =
1

4π

∫∫
x̂ I31(x̂, σ, σ

′)ωϕ(x
′, σ′) σ′ dx′ dσ′. (11.5.18)

We have introduced the integrals

I30(x̂, σ, σ
′) ≡

∫ 2π

0

dϕ̂

r3
=

∫ 2π

0

dϕ̂[
x̂2 + (σ + σ′)2 − 4σ σ′ cos2( 12 ϕ̂)

]3/2 (11.5.19)

and

I31(x̂, σ, σ
′) ≡

∫ 2π

0

cos ϕ̂

r3
dϕ̂ =

∫ 2π

0

cos ϕ̂[
x̂2 + (σ + σ′)2 − 4σ σ′ cos2( 12 ϕ̂)

]3/2 dϕ̂. (11.5.20)

We find that

I30(x̂, σ, σ
′) =

4[
x̂2 + (σ + σ′)2

]3/2 ∫ π/2

0

dη

(1− k2 cos2 η)3/2
(11.5.21)

and

I31(x̂, σ, σ
′) =

4

[(x− x′)2 + (σ + σ′)2]3/2

∫ π/2

0

cos(2η)

(1− k2 cos2 η)3/2
dη, (11.5.22)
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Figure 11.5.3 Graphs of the complete elliptic integral of the first kind, F(k) (solid line), and second
kind, E(k) (dashed line).

where η ≡ 1
2 ϕ̂ and

k2 ≡ 4σσ′

x̂2 + (σ + σ′)2
(11.5.23)

is a dimensionless group.

Complete elliptic integrals

The integrals on the right-hand sides of (11.5.21) and (11.5.22) can be expressed in terms
of complete elliptic integrals of the first and second kind, F and E, defined as

F(k) ≡
∫ π/2

0

dη√
1− k2 sin2 η

, E(k) ≡
∫ π/2

0

√
1− k2 sin2 ηdη, (11.5.24)

for 0 ≤ k ≤ 1. Graphs of the complete elliptic integrals in their domain of definition are
shown in Figure 11.5.3. Note that, as k tends to unity, E(k) remains finite but F(k) diverges
to infinity.

The complete elliptic integrals can be computed efficiently by numerical approximation
or iteration. An efficient method is based on the following expressions involving rapidly
converging infinite products:

F(k) =
π

2
(1 +K1)(1 +K2) · · · , E(k) = F(k) (1− 1

2
k2 P ), (11.5.25)

where

P = 1 +
1

2
K1

[
1 +

1

2
K2 (1 +

1

2
K3 . . .)

]
. (11.5.26)
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The sequence Kp is computed using the recursive formula

Kp =
1− (1−K2

p−1)
1/2

1 + (1−K2
p−1)

1/2
, (11.5.27)

starting with K0 = k. MATLAB computes the complete elliptic integrals using the internal
function ellipke.

Now referring to standard tables of integrals, we find that∫ π/2

0

dη

(1− k2 cos2 η)3/2
=

E(k)

1− k2
(11.5.28)

and ∫ π/2

0

cos(2η)

(1− k2 cos2 η)3/2
dη = − 2

k2
F(k) +

2− k2

k2 (1− k2)
E(k). (11.5.29)

The derivation of these expressions concludes the analytical part of our work.

11.5.2 Line vortex ring

Now we are in a position to evaluate the velocity field associated with a specified axisym-
metric vorticity distribution based on the integral representation (11.5.18). The simplest
vorticity distribution is associated with a line vortex ring, which is the axisymmetric coun-
terpart of the point vortex in two-dimensional flow. The strength of the ring is equal to the
circulation around any loop that encloses once the trace of the ring in an azimuthal plane
corresponding to a specified azimuthal angle, ϕ. More broadly, the strength of the ring is
equal to the circulation around any loop that chain-links the vortex ring.

The strength of the vorticity in an azimuthal plane is expressed by the generalized
distribution

ωϕ(x, σ) = κ δ2(x− xr, σ − σr), (11.5.30)

where δ2 is the two-dimensional delta function, κ is the strength of the vortex ring, σr is
the ring radius, and xr is the axial position of the ring.

Substituting (11.5.30) into expressions (11.5.18), and using the distinctive properties of
the delta function discussed in Section 11.2 to evaluate the integrals, we obtain the axial
velocity

ux(x, σ) =
κ

4π
σr

(− σ I31(x− xr, σ, σr) + σr I30(x− xr, σ, σr)
)

(11.5.31)

and the radial velocity

uσ(x, σ) =
κ

4π
σr (x− xr) I31(x− xr, σ, σr). (11.5.32)

The streamline pattern of the flow induced by the ring is shown in Figure 11.5.4(a).
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Figure 11.5.4 Streamline pattern of the flow induced by a line vortex ring in an azimuthal plane in
(a) an unbounded domain of flow, (b) a semi-infinite domain of flow bounded by an infinite plane
wall, (c) outside a sphere, and (d) inside a sphere. These streamline patterns were generated
using program strml residing in directory 04 various of Fdlib.

Presence of boundaries

Consider a flow in the presence of an axisymmetric boundary whose axis of revolution
coincides with the axis of a vortex ring. The velocity field induced by a vortex ring expressed
by (11.5.32) is accompanied by a complementary velocity field that ensures the satisfaction
of the no-penetration boundary condition. For simple boundary geometries involving one or
two parallel walls, the complementary flow can be expressed in terms of image vortex rings.

Computer functions that evaluate the velocity field can be found in directory lvr, inside
directory 09 vortex of Fdlib. The streamline pattern of the axisymmetric flow induced by
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Figure 11.5.5 Illustration of a vortex ring with radius σr and a circular core of radius a.

a vortex ring in an azimuthal plane in front of a plane wall and in the exterior or interior of
a sphere are shown in Figure 11.5.4(b–d).

11.5.3 Vortex ring with finite core

Next, we consider the flow induced by a compact vortex ring with centerline radius σr

located at the axial position xr. It is helpful to introduce plane polar coordinates, (q, χ),
defined in a plane of constant azimuthal angle, ϕ, with origin at the center of the ring core,
as illustrated in Figure 11.5.5. We will assume that the ring has a circular core of radius a,
where a � σr. The vorticity vanishes outside the core, ωϕ = 0 for q > a.

Using expression (11.4.3), we find that the circulation around a loop that encloses the
core once is given by an integral over the core cross-section,

C =

∫∫
core

ωϕ(x, σ) dx dσ =

∫ 2π

0

∫ a

0

ωϕ(q, χ) q dq dχ. (11.5.33)

Our earlier discussion allows us to identify the circulation with the strength of the vortex
ring, κ.

Referring to the integral representation for the velocity given in (11.5.18), we perform
the integration in plane polar coordinates, (q, χ), and find that

ux(x, σ) =
1

4π

∫ 2π

0

∫ a

0

(−σ I31 + σ′ I30)ωϕ(x
′, σ′)σ′ q dq dχ (11.5.34)

and

uσ(x, σ) =
1

4π

∫ 2π

0

∫ a

0

(x− x′) I31 ωϕ(x
′, σ′)σ′ q dq dχ. (11.5.35)

Because of the singular behavior of the complete elliptic integral of the first kind, F(k),
as shown in Figure 11.5.3, the integrands exhibit a benign logarithmic singularity as the
evaluation point, (x, σ), lies inside the core.
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The simplest method of evaluating the double integrals in (11.5.34) and (11.5.35) is by
the double mid-point rule. The numerical method involves dividing the integration domain
with respect to q and χ into evenly spaced intervals defining circular sectors, approximating
the integrand over each sector with the value at the center-point, and adding all contribu-
tions.

Self-induced velocity

The self-induced velocity of a vortex ring propagating along the x axis with velocity Ux can
be identified with the x component of the fluid velocity at the center of the vortex core,
which can be computed by evaluating the integral in (11.5.34) for x = xr and σ = σr.

A graph of the dimensionless scaled self-induced velocity, Ux σr/κ, against the dimen-
sionless scaled core radius, a/σr, evaluated using the double mid-point rule is shown in
Figure 11.5.6. The solid line corresponds to a core with uniform vorticity,

ωϕ =
κ

πa2
. (11.5.36)

The dashed line corresponds to a core with distributed vorticity described by

ωϕ =
κ

a2
π

(π2 − 4)
(1 + cos

πq

a
) (11.5.37)

for 0 < q < a or ωϕ = 0 for q > a. The computation of the integral neglects the weak
logarithmic singularity of the integrand.

The numerical method is implemented in the following MATLAB program entitled ring,
residing inside directory 09 vortex of Fdlib:

rr = 1.0; % ring radius

circ = 1.0; % circulation

nrad = 64; %radial divisions

nchi = 64; % azimuthal divisions

nrepeat = 32; % scanning the core radius

%---

% prepare

%---

dchi = 2*pi/nchi; % angular divisions

%===========

for repeat=1:nrepeat % run over the core radius

%===========

cr = 0.01+(repeat-1.0)/nrepeat; % core radius

dcr = cr/nrad; % radial divisions
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%-----------------------------------------

% discretize the vortex core into elements

% and compute the area of each element "ar"

%-----------------------------------------

for i=1:nrad

for j=1:nchi

ar(i,j) = 0.5*dchi*dcr*dcr*(2.0*i-1);

end

end

%-----------

% initialize

%-----------

arintv1 = 0.0; % areal integral of the vorticity

arintv2 = 0.0;

u1 = 0.0; v1 = 0.0;

u2 = 0.0; v2 = 0.0;

%----------------------

% compute the self-induced velocity

% integrate by the trapezoidal rule

%----------------------

for i=1:nrad % loop over radial divisions

rad = (i-0.5)*dcr; % center of the ring elements

% uniform core:

w1 = circ/(pi*cr*cr);

% normalized bell shape:

w2 = circ*pi/(cr*cr)/(pi*pi-4.0)*(1.0+cos(pi*rad/cr));

for j=1:nchi % loop over azimuthal elements

chi = (j-0.5)*dchi;

sig = rr+rad*sin(chi);

Dx = rad*cos(chi);

Dxs = Dx*Dx;

ks = 4.0*rr*sig/(Dxs+(rr+sig)^2);

[F, E]= ellipke(ks);

RJ30 = E/(1.0-ks);

RJ31 = (-2.0*F + E*(2.0-ks)/(1.0-ks))/ks;

cf = 4.0/sqrt((Dxs+(rr+sig)^2)^3);

RI30 = cf*RJ30;

RI31 = cf*RJ31;

cf1 = ar(i,j)*sig*w1/(4*pi);

u1 = u1 + cf1*(-rr*RI31+sig*RI30);

v1 = v1 + cf1* Dx*RI31;
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cf2 = ar(i,j)*sig*w2/(4*pi);

u2 = u2 + cf2*(-rr*RI31+sig*RI30);

v2 = v2 + cf2*Dx*RI31;

arintv1 = arintv1 + w1*ar(i,j);

arintv2 = arintv2 + w2*ar(i,j);

end % of azimuthal loop

end % of radial loop

%------------------------

% Kelvin’s approximation

% for comparison purposes

%------------------------

uh = circ/(4*pi*rr)*(log(8.0*rr/cr)-0.25);

xplot(repeat) = cr/rr;

velr1(repeat) = u1;

velr2(repeat) = u2;

velr3(repeat) = uh;

%==

end

%==

plot(xplot,velr1,'k');

plot(xplot,velr2,'k--');

plot(xplot,velr3,'k:');

xlabel('a/\sigma_r','fontsize',15)

ylabel('U_x \sigma_r/\kappa','fontsize',15)

The results presented in Figure 11.5.6 indicate that the precise form of the vorticity
distribution over the core of the ring has a small effect on the ring velocity. As the size
of the core tends to zero, while the strength of the ring is held constant, the self-induced
velocity takes increasingly large values irrespective of the functional form of the vorticity
distribution over the core. Consequently, the self-induced velocity of a line vortex ring with
infinitesimal core, which is the axisymmetric counterpart of a point vortex, is not defined. In
Section 11.6, we will see that this is a more general behavior applicable to vortex filaments
with arbitrary three-dimensional shapes.

Slender rings

An asymptotic analysis of the self-induced velocity of a vortex ring in the limit of small core
size shows that, to leading order, the self-induced velocity is given by Kelvin’s formula

Ux =
κ

4πσr

(− ln
8a

σr
− 1

4

)
. (11.5.38)

This formula demonstrates explicitly that the self-induced velocity diverges at a logarithmic
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Figure 11.5.6 Self-induced velocity of a vortex ring of radius σr and circulation κ plotted against
the ratio of the core to the ring radius, a/σr. The solid and dashed lines correspond, respec-
tively, to a ring with uniform or diffuse vorticity distribution described by equations (11.5.36)
and (11.5.37). The dotted line represents Kelvin’s asymptotic prediction for small core radius
expressed by equation (11.5.38).

rate with respect to the scaled core radius, a/σr. The predictions of Kelvin’s formula,
represented by the dotted line in Figure 11.5.6, are in good agreement with the exact values
represented by the solid and dashed lines even when the vortex core radius, a, is not small
compared to the ring radius, σr.

11.5.4 Motion of a collection of vortex rings

A vortex ring that belongs to a collection of coaxial vortex rings translates under the in-
fluence of its self-induced velocity as well as the velocity induced by its peers. When the
ring core size is small, the self-induced velocity can be described accurately using formula
(11.5.38).

The vorticity transport equation (6.6.16) requires that, as the radius of a ring, σr,
changes during the motion, the azimuthal vorticity component, ωϕ, increases or decreases
by the same proportion. In response to this change, the radius of the core, a, adjusts to
preserve the ring strength and core volume, so that

d

dt

(
(2π σr)πa

2
)
= 0. (11.5.39)

Expanding the derivative on the left-hand side and rearranging, we obtain an evolution
equation for the core radius,

da

dt
= − 1

2

a

σr

dσr

dt
= − 1

2

a

σr
Uσ, (11.5.40)
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Figure 11.5.7 Motion of a collection of coaxial vortex rings demonstrating leap frogging.

where Uσ ≡ dσr/dt is the rate of expansion of the circular centerline. Appending equation
(11.5.40) to the equation of motion for the ring centerline, we obtain a system of differential
equations governing the ring axial position, centerline radius, and core radius.

A numerical method for integrating the system of governing equations from a given
initial condition is implemented in a code entitled lvrm, not listed in the text, residing in
directory 09 vortex of Fdlib. Stages in the motion of four vortex rings computed using
this code are shown in Figure 11.5.7. The simulation reveals that neighboring vortex rings
pass through one another in an alternating fashion, exhibiting a type of motion that can be
described as leap frogging.

11.5.5 Vortex patch in axisymmetric flow

Next, we consider an axisymmetric flow containing a toroidal vortex whose vorticity is
proportional to the distance from the x axis,

ωϕ = Ωσ, (11.5.41)

where Ω is a constant. The flow outside the vortex is irrotational.

Substituting the linear vorticity distribution into the integral representation (11.5.18),
and using the Gauss divergence theorem, we derive a contour integral representation that
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is analogous to that for a two-dimensional vortex patch with uniform vorticity discussed in
Section 11.2.

Contour integral representation

We find that the axial velocity component is given by

ux(x, σ) = − Ω

4π

∫
C

[
(x− x′)I10(x− x′, σ, σ′)nx(x

′, σ′)

+σ I11(x− x′, σ, σ′)nσ(x
′, σ′)

]
σ′ d
(x′, σ′), (11.5.42)

and the radial velocity component is given by

uσ(x, σ) =
Ω

4π

∫
C
I11(x− x′, σ, σ′)nx(x

′, σ′) σ′2 d
(x′, σ′), (11.5.43)

where C is the trace of the vortex contour in a plane of constant azimuthal angle, ϕ, and 

is the arc length along C. We have introduced the integral

I10(x̂, σ, σ
′) ≡

∫ 2π

0

dϕ̂

r
=

∫ 2π

0

dϕ̂[
x̂2 + (σ + σ′)2 − 4σ σ′ cos2( 12 ϕ̂)

]1/2 , (11.5.44)

which can be evaluated by writing

I10(x̂, σ, σ
′) =

4

[x̂2 + (σ + σ′)2]1/2

∫ π/2

0

dη

(1− k2 cos2 η)1/2
(11.5.45)

and then

I10(x̂, σ, σ
′) =

4F(k)

[x̂2 + (σ + σ′)2]1/2
, (11.5.46)

where η ≡ 1
2 ϕ̂, k

2 is defined in (11.5.23), and F(k) is the complete elliptic integral of the
first kind defined in the first equation of (11.5.24). We have also introduced the integral

I11(x̂, σ, σ
′) ≡

∫ 2π

0

cos ϕ̂

r
dϕ̂ =

∫ 2π

0

cos ϕ̂[
x̂2 + (σ + σ′)2 − 4σ σ′ cos2( 12 ϕ̂)

]1/2 dϕ̂, (11.5.47)

which can be expressed as

I11(x̂, σ, σ
′) =

4

[x̂2 + (σ + σ′)2]1/2

∫ π/2

0

cos(2η)

(1− k2 cos2 η)1/2
dη. (11.5.48)

The integral on the right-hand side of (11.5.48) can be expressed in terms of complete elliptic
integrals of the first and second kind, F(k) and E(k), defined in (11.5.24), as∫ π/2

0

cos(2η)

(1− k2 cos2 η)1/2
dη =

2− k2

k2
F(k)− 2

k2
E(k). (11.5.49)
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Contour dynamics

The vorticity transport equation for axisymmetric flow with negligible viscous forces, stated
in equation (6.6.17), requires that the vorticity inside an axisymmetric patch whose vorticity
distribution is linear with respect to distance from the x axis, σ, remains linear in time.
To compute the evolution of the flow, it suffices then to follow the motion of the vortex
contour using the counterpart of the contour dynamics method for two-dimensional flow, as
discussed in Section 11.3.

Program vp ax, located in directory 09 vortex of Fdlib, not listed in the text, simulates
the motion of a collection of axisymmetric vortex patches using the method of contour
dynamics for axisymmetric flow. In the numerical implementation, the contour of each
patch is approximated with blended circular arcs, as discussed in Section 11.3. The marker
points defining each contour are redistributed adaptively during the motion to capture the
development of regions of high curvature and prevent point clustering or dilution.

11.5.1 Velocity induced by vorticity

Derive the representation (11.5.16).

11.5.2 Hill’s spherical vortex

Show that the velocity corresponding to the stream functions (11.5.4) and (11.5.5) is con-
tinuous across the spherical interface of Hill’s vortex.

11.5.3 Contour dynamics for three-dimensional flow

Is it possible to derive a contour dynamics method for a three-dimensional (non-axisymmetric)
vortex flow?

11.5.4 Motion of line vortex rings

Run the code lvrm to simulate the motion of a collection of coaxial vortex rings of your
choice and discuss the nature of the motion.

11.5.5 Motion of vortex patches

Run the code vp ax to simulate the motion of an axisymmetric vortex patch of your choice
and discuss the nature of the motion.

11.6 Three-dimensional vortex motion

Previously in this chapter, we discussed the dynamics of two-dimensional and axisymmetric
vortex flow based on an integral representation for the velocity in terms of the vorticity
expressed by the Biot–Savart integral, combined with simplified versions of the vorticity

Problem
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Figure 11.6.1 The motion of a thin vortex filament can be computed using the local-induction
approximation expressed by equations (11.6.1) and (11.6.2).

transport equation for flow with negligible viscous forces. Extensions to three-dimensional
flow are straightforward in principle but may be subtle in numerical implementation.

11.6.1 Vortex particles

The vortex-particle method arises by replacing the Biot–Savart integral in equation (11.4.18)
with a sum of integrals over small parcels of rotational fluid, and then condensing the vortic-
ity of each parcel into a designated center represented by point particles. This approximation
effectively replaces the rotational fluid with a collection of three-dimensional singularities
called rotlets or vortons. The strength of each vorton evolves in time according to rules
originating from the vorticity transport equation for three-dimensional flow, incorporating
stretching and reorientation.

The vorton discretization of a three-dimensional flow is analogous to the point-vortex
discretization of a two-dimensional flow and to the line-vortex-ring discretization of an ax-
isymmetric flow. However, because the three-dimensional discretization breaks the continu-
ity of the vortex lines, some fundamental difficulties arise in three-dimensional flow. These
difficulties, combined with high computational cost, explain why the vorton method is less
attractive compared to its counterparts for two-dimensional and axisymmetric flow.

11.6.2 Line vortices and the local-induction approximation (LIA)

Consider a three-dimensional vortex filament with small core size, as illustrated in Figure
11.6.1. A simplified model of the self-induced motion can be devised using our earlier results
for vortex rings with small but non-infinitesimal core radius. To compute the motion of the
filament centerline, we evaluate the velocity of point particles distributed along the centerline
using the Biot–Savart integral expressed by (11.4.18), and then advance the position of the
point particles using a standard numerical method.

Our earlier discussion of vortex rings suggests that the self-induced velocity of the
filament is determined primarily by the ratio of the local filament core radius to the local
radius of curvature of the filament centerline, as shown in (11.5.38). This observation
provides us with a basis for computing the motion of the centerline according to the local-
induction approximation (LIA).
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In the LIA approximation, the velocity at a point along the centerline of a vortex
filament is assumed to be parallel to the local unit binormal vector, b, defined as the cross
product of the unit tangent vector, t, and the unit normal vector, n,

b = t× n. (11.6.1)

The unit tangent vector arises by differentiating the position vector, x, with respect to arc
length, 
, along the centerline,

t =
dx

d

. (11.6.2)

The unit normal vector arises by further differentiating the unit tangent vector with respect
to arc length,

n = −1

�

dt

d

, (11.6.3)

where � is the radius of curvature of the centerline. In the local-induction approximation,
the self-induced velocity of the filament is given by

u = ub b. (11.6.4)

The magnitude of the velocity, ub, derives from Helmholtz’s formula (11.5.38) as

ub =
κ

4π�

(− ln
8a

�
− 1

4

)
, (11.6.5)

where κ is the strength of the filament. The local filament core radius, a, is allowed to vary
with position along the centerline.

Evolution of the core radius

The vorticity transport equation requires that the vorticity in the filament core increases or
decreases depending on whether the filament centerline undergoes stretching or compression.
An evolution equation for the filament core radius may then be derived by requiring that
the volume of rotational fluid residing inside the core is conserved during the motion.

Let δ
 be an infinitesimal arc length along the centerline corresponding to a material
segment that begins and ends at two material point particles. Conservation of volume
requires that

d

dt

(
δ
 πa2

)
= 0. (11.6.6)

Expanding the derivative of the product on the right-hand side and rearranging, we obtain
the evolution equation

da

dt
= − 1

2

a

δ


dδ


dt
. (11.6.7)
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The last two equations are the counterparts of equations (11.5.39) and (11.5.40) pertaining
to axisymmetric flow.

Numerical method

A numerical method for computing the evolution of the centerline of a closed filament can
be implemented according to the following steps:

1. Trace the centerline with N + 1 marker points, where point labeled 1 coincides with
point labeled N + 1, and assign initial values to the core radius.

2. Approximate the centerline over the interval subtended between points labeled i − 1
and i + 1 with a circular arc passing through the three points labeled i − 1, i, and
i+ 1, and compute the arc center and radius for i = 1, . . . N .

3. Compute the unit tangent, normal, and binormal vector at the ith marker point using
equations (11.6.1), (11.6.2), and (11.6.3) for i = 1, . . . , N .

4. Set the radius of curvature of the line vortex at each point equal to the radius of the
arc, �.

5. Advance the position of the marker points with the velocity computed from (11.6.4).

6. Update the core radius by requiring conservation of volume expressed by (11.6.6).

The motion of marker points computed by this method suffers from a numerical in-
stability manifested by the onset of strong oscillations due to the violent amplification of
numerical or round-off error. Smoothing the position of the marker points using the five-
point formula (11.2.35) applied for the Cartesian coordinates of the marker points filters
out the oscillations and allows us to pursue the motion for an extended period of time.

Program lv lia, located in directory 09 vortex of Fdlib, simulates the motion of a
closed line vortex using the local induction approximation. The code features adaptive
point redistribution to capture the development of regions of high curvature.

Stages in the evolution of a closed line vortex computed by this program are shown in
Figure 11.6.2. The simulation shows that the ring travels while exhibiting wobbly oscillations
familiar to cigarette and cigar smokers.

11.6.1 LIA for a circular line vortex ring

Confirm that the local-induction approximation describes consistently the self-induced mo-
tion of a circular line vortex ring discussed in Section 11.5.

11.6.2 Motion of line vortex

Run program lv lia to simulate the evolution of a line vortex with initial shape and core
radius of your choice. Discuss the nature of the motion.

Problem
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Figure 11.6.2 Stages in the evolution of a closed line vortex, resembling a smoke ring, computed by
program lv lia of Fdlib.
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Flows past airplane wings and high-speed ground vehicles has captured the attention of
fluid dynamicists, applied mathematicians, and computational scientists and engineers, not
only because of their obvious technological significance, but also because of the opportunity
they present to perform elegant mathematical analysis and develop realistic and efficient
numerical models. Although these flows occur at high Reynolds numbers and often at
transonic or supersonic speeds that are comparable to, or even exceed the speed of sound,
the effect of viscosity is important in two ways. First, viscous stresses determine the drag
force exerted on moving surfaces and thus the energy required to sustain the motion. Second,
viscous stresses are responsible for production of vorticity which generates circulation and
thereby induces a lift force.

A comprehensive analysis of high-speed flow in aerodynamics incorporates the effects of
fluid compressibility and turbulent motion, and accounts for the presence of boundary layers
and regions of recirculating flow. In this chapter, we discuss the most basic configuration
that arises by neglecting the presence of boundary layers and wakes, and by assuming that
the fluid is inviscid and incompressible. The simplified model involving irrotational flow
in the presence of global circulatory motion is amenable to efficient numerical methods
that illustrate the importance of computational fluid dynamics in the practical field of
aerodynamics.

12.1 General features of flow past an aircraft

A schematic illustration of flow past an aircraft that has taken off and traveled by a certain
distance is shown in Figure 12.1.1 in a frame of reference moving with the aircraft. If the
flow is subsonic, the following features are most significant:

• A thin vortex loop resembling a line vortex is established behind the aircraft. The loop
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Figure 12.1.1 Schematic illustration of flow past an aircraft in a frame of reference moving with the
aircraft.

extends from the left wing tip, back at a length that is comparable to the distance that
the aircraft has traveled, and then forward to the right wing tip. The trailing vortex
at the back of the loop was generated when the airplane first started moving, and is
accordingly called the starting vortex. The vortex loop can be extended artificially
into the wings to form a closed line vortex.

The circulation around any closed loop that encloses the line vortex is constant, inde-
pendent of the shape and location of the loop. Thus, the circulation around a simple
loop that encloses a wing is equal to the circulation around a simple loop that encloses
the trailing vortex.

• Viscous stresses cause the vortex loop to diffuse and its vortex core to be smeared.
However, the circulation around any loop that encloses the smeared vortex loop is
equal to the circulation around a loop that encloses a wing, no matter how far the
vorticity has spread out.

• The circulation around a loop that encloses a wing is determined by the speed of the
aircraft and the geometry and orientation of the wings with respect to the incoming
wind, as discussed in Section 12.2.

• If the aircraft suddenly changes its speed or direction of flight, a new vortex loop will
be ejected, contributing an additional amount of circulation around the wings.

• Each wing experiences a lift force normal to the direction of flight, and a drag force
parallel to the direction of flight. The later must be compensated by the thrust
produced by the engine.

The lift force can be computed with surprising accuracy by neglecting the effects of
viscosity and assuming that the flow around the airfoil is irrotational. To compute the drag
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Figure 12.2.1 Illustration of an airfoil and its standard geometrical properties, also showing the angle
of attack, α.

force, we must carry out a boundary-layer analysis of the basic irrotational flow, as discussed
in Chapter 10.

It is important to bear in mind that the main features of the flow past an aircraft
discussed in this chapter assume that the wings are only slightly tilted with respect to the
direction of the incoming wind. When this condition is not met, large regions of recirculating
flow may develop over the upper surface of the airfoil, seriously affecting the structure of
the flow and performance of the aircraft.

To study the flow past the wings and compute the lift force per unit span exerted on
them, we may assume that the flow is locally two-dimensional occurring in the xy plane
that is normal to the line connecting the wing tips. It turns out that neglecting the third
dimension provides us with a theoretical model whose predictions are in good and sometimes
excellent agreement with laboratory measurements taken in wind tunnels. In the remainder
of this chapter, we concentrate on the two-dimensional flow. The three-dimensional flow is
an advanced topic suitable for a second course in aerodynamics.

12.2 Airfoils and the Kutta–Joukowski condition

An airfoil is a section of a wing, as shown in Figure 12.2.1. The shape of an airfoil is
determined by the following geometrical parameters:

• The chord line, defined as the straight line connecting the leading edge to the trailing
edge.

• The chord, defined as the distance from the leading edge to the trailing edge.

• The camber line, defined as the locus of points located halfway between the upper and
lower surface of the airfoil.

• The camber, defined as the maximum displacement of the camber line from the chord
line. The camber of a symmetric airfoil is zero.

• The airfoil thickness along the camber line.
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The angle subtended between the incoming wind and the chord line, α, is the angle of
attack, as shown in Figure 12.2.1.

NACA airfoils

The National Advisory Committee for Aeronautics of the United States (NACA), the pre-
decessor of today’s NASA, has standardized airfoil shapes to facilitate engineering design.
NACA airfoils are generated by specifying the geometry of the camber line, and then wrap-
ping around the camber line an airfoil contour to obtain a desired distribution of half-
thickness.

The dated four-digit NACA mnlk airfoils, where m,n, k, l are four integers, have a
camber of 0.0m × c, occurring at a distance 0.0n × c from the leading edge, where c is the
chord. The maximum airfoil thickness is 0.kl × c.

The following MATLAB code entitled NACA4, located in directory airf 2d inside direc-
tory 07 ptf of Fdlib, generates a four-digit NACA airfoil:

chord = 1.0;

xcam = 0.4;

cam = 0.05;

thick = 0.1;

n = 32; % number of nodes around the airfoil

%----

% prepare

%----

dpsi = 2*pi/n;

%----

% prepare to plot

%----

figure(1)

hold on

axis equal

xlabel('x','fontsize',13)

ylabel('y','fontsize',13)

%----

% run over nodes

%----

for i=1:n

psi = (i-1.0)*dpsi;

x = 0.5*(1.0+cos(psi));
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% camber line:

if(x<xcam)

yc(i) = cam*(2.0*xcam*x-x*x)/xcam^2;

else

yc(i) = cam/(1.0-xcam)^2 ...

*((1.0-2.0*xcam)+2.0*xcam*x-x*x);

end

% thickness:

yt = 5.0*thick *(0.2969*sqrt(x) -0.1260*x...

-0.3516*x*x +0.2843*x*x*x -0.1036*x*x*x*x );

% contour:

if(i<(n/2+1))

ya(i) = (yc(i)-yt)*chord;

else

ya(i) = (yc(i)+yt)*chord;

end

xa(i) = x*chord;

end

xa(n+1) = chord;

ya(n+1) = 0.0;

yc(n+1) = 0.0; % trailing edge

%----

% plot

%----

plot(xa,ya,'ko-');

plot(xa,yc,'k--');

The graphics display generated by the code is shown in Figure 12.2.2.

Modern five- and six-digit airfoils are encoded with additional geometrical and flow
properties.

Airfoil shapes by mapping

Airfoil shapes can be generated by mapping a closed contour in an auxiliary parametric
(ξ, η) plane to the airfoil contour in the physical xy plane using an appropriate mapping
function. In theoretical aerodynamics, the mapping function arises from a function of a
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Figure 12.2.2 Contour of a four-digit NACA airfoil generated by a MATLAB program named
NACA4.

complex variable, f(ζ), by setting

z = f(ζ), (12.2.1)

where

z ≡ x+ i y, ζ ≡ ξ + i η (12.2.2)

are two complex variables, and i is the imaginary unit satisfying i2 = −1.

Joukowski’s transformation

Joukowski’s transformation employs the mapping function

f(ζ) = ζ +
σ2

ζ
, (12.2.3)

where σ is a specified length. A circle in the ξη plane passing through the singular point
(−σ, 0) and enclosing the reflected singular point (σ, 0) is mapped to a cusped airfoil whose
camberline and camber are determined by the location of the center of the circle in the ξη
plane, as shown in Figure 12.2.3. The airfoil cusp is located at the image of the first singular
point. Different airfoil shapes can be generated by fixing the value of σ and varying the
position of the center of the circle, xc, in the ξη plane.

The following MATLAB code entitled joukowski, located in directory airf 2d inside di-
rectory 07 ptf of Fdlib, generates airfoil shapes:
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Figure 12.2.3 A Joukowski airfoil is generated by mapping conformally a circle in the ξη plane to
an airfoil contour in the xy plane. The first singular point, located at the ξ axis at ξ = −σ, is
mapped to the airfoil trailing edge. The second singular point, located at ξ = σ, is mapped inside
the airfoil.

xc = 0.1; % circle center

yc = 0.2; % circle center

n = 32; % number of contour nodes

sigma = 1.0;

%---

% prepare

%---

radius = sqrt((xc+sigma)^2+yc*yc);

phi = acos((xc+sigma)/radius);

thstart = -pi+phi;

dth = 2*pi/n;

%---

% run around the airfoil

%---

for i=1:n+1

th = thstart+(i-1)*dth;

xi = xc+radius*cos(th);

et = yc+radius*sin(th);

r2 = xi*xi+et*et;

x(i) = xi*(1.0+sigma^2/r2);

y(i) = et*(1.0-sigma^2/r2);

end

%---

% plot

%---
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Figure 12.2.4 A Joukowski airfoil generated by the code joukowski listed in the text for the parameter
values listed in the code.

plot(-x,y,'o-')

axis equal

xlabel('x','fontsize',13)

ylabel('y','fontsize',13)

The graphics display generated by the code is shown in Figure 12.2.4. Note that the starting
angle φ is defined in Figure 12.2.3. The first and last points, labeled 1 and n+1 are mapped
to the trailing edge. Intermediate points are distributed in the counterclockwise direction
around the airfoil. Note that the airfoil contour has been reflected at the plotting stage to
place the leading edge on the left.

12.2.1 The Kutta–Joukowski theorem

The lift force per unit span exerted on an airfoil, L, is determined by the incoming wind
speed, U , and by the circulation of the fluid around the airfoil, C, as determined by the
Kutta–Joukowski theorem expressed by the equation

L = −ρUC, (12.2.4)

where ρ is the density of the fluid. Note that positive lift, L > 0, requires negative circulation
associated with clockwise rotation around the airfoil, C < 0 as illustrated in Figure 12.2.1.
If the circulation vanishes, the lift force is zero.

The Kutta–Joukowski theorem can be proved most readily working under the auspices
of analytic function theory in complex variables, as discussed in the texts cited in the
bibliography.

Flow past a cylinder

To confirm the Kutta–Joukowski theorem, we consider streaming (uniform) flow past a
circular cylinder of radius a discussed in Section 3.7. Applying Bernoulli’s equation (6.4.18)
at infinity and at a point on the surface of the cylinder, and evaluating the tangential velocity
on the surface of the cylinder using formula (3.7.10), we derive an expression for the surface
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pressure,

pr=a = −2ρ V 2
x (sin θ + β)2 + p∞, (12.2.5)

where p∞ is the pressure at infinity, β is a dimensionless circulation parameter defined in
equation (3.7.9) as

β ≡ − C

4πVx a
, (12.2.6)

and C is the circulation around the cylinder.

In the absence of viscous stresses, the force per unit span exerted on the cylinder is
given by

F =

∮ [− pr=a

]
n d
 = −

∫ 2π

0

pr=a n a dθ, (12.2.7)

where d
 = a dθ is the differential arc length around the cylinder and n = (cos θ, sin θ) is
the unit vector normal to the cylinder pointing into the fluid. Substituting the pressure
distribution (12.2.5) into (12.2.7), we find that the x component of the force vanishes, while
the y component of the force is given by

Fy ≡ L = 2ρ a V 2
x

∫ 2π

0

(sin θ + β)2 sin θ a dθ. (12.2.8)

Performing the integration, we obtain

L = 4πaρV 2
x β. (12.2.9)

Recalling the definition of β given in (12.2.6), we find that

L = −ρ Vx C, (12.2.10)

which is consistent with the Kutta–Joukowski theorem expressed by (12.2.4).

12.2.2 The Kutta–Joukowski condition

In the context of irrotational flow theory, the circulation around an airfoil, or any two-
dimensional body, is arbitrary. Kutta and Joukowski observed independently that, in prac-
tice, when the angle of attack α is sufficiently small, the flow on the upper side of an airfoil
joins smoothly with the flow on the lower side of the airfoil at the trailing edge. This obser-
vation provides us with a physical basis for the Kutta–Joukowski condition stipulating that
the circulation established around an airfoil is such that a singular flow does not arise at
the trailing edge, and therefore the fluid does not have to turn around a cornered or cusped
trailing edge.

Referring to the Kutta–Joukowski theorem expressed by (12.2.4), we see that a well-
designed airfoil should be able to generate a high degree of circulation, while minimizing
the drag force exerted on the airfoil.
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12.2.1 Flow past a cylinder

Carry out the integration in (12.2.7) with the pressure given in (12.2.5) to derive expression
(12.2.10).

12.2.2 Joukowski airfoils

Run the code joukowski to generate several airfoil shapes of your choice. Investigate the
effect of the location of the mapped circle center.

12.3 Vortex panels

We begin the study of two-dimensional flow past an airfoil by introducing a class of elemen-
tary flows associated with vortex panels. Our ultimate objective is to use these elementary
flows as fundamental building blocks for describing the flow past an airfoil with arbitrary
shape, where the circulation around the airfoil is determined by the Kutta–Joukowski con-
dition discussed in Section 12.2.2.

Flow due to a point vortex

In Section 3.7, we introduced the two-dimensional irrotational flow with circulatory motion
induced by a point vortex. The x and y components of the velocity at a point, x = (x, y),
due to a point vortex with strength κ located at another point, x0 = (x0, y0), were given in
equations (11.2.1) and (11.2.2), repeated below for convenience,

ux(x, y) = − κ

2π

y − y0
(x− x0)2 + (x− y0)2

(12.3.1)

and

uy(x, y) =
κ

2π

x− x0

(x− x0)2 + (x− y0)2
. (12.3.2)

The associated stream function is given by

ψ(x, y) = − κ

4π
ln

(x− x0)
2 + (y − y0)

2

�2
, (12.3.3)

where � is an arbitrary constant length. The corresponding multi-valued velocity potential
is given by

φ(x, y) =
κ

2π
arctan

y − y0
x− x0

. (12.3.4)

We recall that the velocity is the gradient of the velocity potential, u = ∇φ.

Problems
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Figure 12.3.1 A collection of N point vortices are distributed evenly along the x axis inside an
interval, (a, b). As the number of point vortices increases, we obtain a continuous distribution
yielding a vortex panel.

12.3.1 From point vortices to vortex panels

Consider a collection of N point vortices distributed evenly along the x axis inside an
interval, (a, b), separated by distance Δx = (b− a)/N , as illustrated in Figure 12.3.1. The
ith point vortex is situated at the position

xi = a+
1

2
iΔx, yi = 0 (12.3.5)

for i = 1, . . . , N . The strength of the ith point vortex is denoted as κi. The first point
vortex is located at xi = a+ 1

2 Δx and the last point vortex is located at xN = b− 1
2 Δx.

Superposing the stream functions associated with the individual point vortices, we find
that the stream function of the flow induced by the collection is given by

ψ(x, y) = −
N∑
i=1

κi

4π
ln

(x− xi)
2 + (y − yi)

2

�2
, (12.3.6)

which can be recast into the form

ψ(x, y) = − 1

4π

N∑
i=1

ln
(x− xi)

2 + (y − yi)
2

�2
κi

Δx
Δx, (12.3.7)

with the understanding that yi = 0.

In the limit as N tends to infinity, and correspondingly Δx tends to zero, while the
strength of the point vortices decreases so that the ratio γi ≡ κi/Δx remains constant,
the sum on the right-hand side of (12.3.7) reduces to a line integral over the domain of
distribution of the point vortices, yielding the integral representation

ψvortex panel(x, y) = − 1

4π

∫ b

a

ln
(x− x′)2 + (y − y′)2

�2
γ(x′) dx′, (12.3.8)

with the understanding that y′ = 0. The right-hand side of (12.3.8) expresses the flow due to
a two-dimensional finite vortex sheet with strength density γ(x), also called a vortex panel,
extending between the points x = a and b. The circulation around the panel is equal to the
integral of the strength density,

Γvortex panel ≡
∫ b

a

γ(x) dx, (12.3.9)
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defined as the panel strength.

Following the discussion in Section 3.7, we find that the circulation around a closed loop
that does not enclose the panel is zero, whereas the circulation around a simple loop that
wraps around the panel once is equal to the panel strength. If the strength of the panel is
zero, the circulation vanishes.

12.3.2 Vortex panels with uniform strength

It is useful to consider a vortex panel with uniform strength density, γ, equal to γ(0).
According to (12.3.9), the circulation around the panel is equal to

Γvortex panel = (b− a) γ(0). (12.3.10)

Applying (12.3.8) with y′ = 0, we find that the stream function of the induced flow is given
by

ψ(0)(x, y) = −γ(0)

4π

∫ b

a

ln
(x− x′)2 + y2

�2
dx′. (12.3.11)

The integral on the right-hand side of (12.3.11) can be calculated with the help of standard
mathematical tables, and is found to be

ψ(0)(x, y) = −γ(0) 1

4π

(
− (x− b) ln

(x− b)2 + y2

�2

+(x− a) ln
(x− a)2 + y2

�2
(12.3.12)

+2y
[
arctan

y

x− b
− arctan

y

x− a

]− 2(b− a)
)
.

The velocity components arise by straightforward differentiation, and are found to be

u(0)
x (x, y) =

∂ψ(0)

∂y
= −γ(0)

2π

(
arctan

y

x− b
− arctan

y

x− a

)
(12.3.13)

and

u(0)
y (x, y) = −∂ψ(0)

∂x
= −γ(0)

4π
ln

(x− b)2 + y2

(x− a)2 + y2
. (12.3.14)

The streamline pattern induced by a vortex panel subtended between the points x = ±b
is shown in Figure 12.3.2. Far from the panel, the flow resembles that due to a point vortex
with strength

κ = Γvortex panel = γ(0) (b− a) = 2 b γ(0), (12.3.15)

situated at the origin.
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Figure 12.3.2 Streamline pattern of the flow induced by a vortex panel with uniform strength situated
along the x axis in the interval [−b, b].

Jump in velocity across a vortex panel

Expression (12.3.14) shows that the y component of the velocity is continuous throughout
the domain of flow as well as across the vortex panel. In contrast, because of the presence
of the inverse tangent function on the right-hand side of (12.3.13), the x velocity component
undergoes a discontinuity across the vortex panel.

To demonstrate this jump, we evaluate the velocity at a point on the upper surface of
the panel for a < x < b and y = +ε, where ε is a small positive elevation, and find that

u(0)
x (x, y → 0+) = −γ(0) 1

2π

(− arctan(−∞) + arctan(+∞)
)
, (12.3.16)

yielding

u(0)
x (x, y → 0+) = −γ(0) 1

2π
(
π

2
+

π

2
) (12.3.17)

and then

u(0)
x (x, y → 0+) = − 1

2
γ(0), (12.3.18)

independent of x, provided that a < x < b. The x velocity component at a point at the
lower surface of the panel for a < x < b and y = −ε is given by

u(0)
x (x,→ 0−) = −γ(0) 1

2π

(− arctan(+∞) + arctan(−∞)
)
, (12.3.19)

yielding

u(0)
x (x,→ 0−) = −γ(0) 1

2π
(−π

2
− π

2
), (12.3.20)
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and then

u(0)
x (x,→ 0−) =

1

2
γ(0), (12.3.21)

independent of x, provided that a < x < b.

Using the preceding results, we find that, as the vortex panel is traversed from the upper
to the lower side, the velocity undergoes a discontinuity whose magnitude is equal to the
strength of the vortex sheet,

ux(x,−ε)− ux(x,+ε) = γ(0). (12.3.22)

In contrast, a discontinuity does not occur beyond the edges of the vortex panel.

These observations suggest that a vortex panel, or more generally a vortex sheet, can be
identified with a surface across which the tangential component of the velocity undergoes a
discontinuity, where the magnitude of the discontinuity is the strength of the vortex panel
or vortex sheet.

12.3.3 Vortex panel with linear strength density

Next, we consider a vortex panel situated in the interval [a, b] along the x axis, with linear
strength density distribution given by

γ(x) = γ(0) + γ(1) (x− a). (12.3.23)

Using (12.3.9), we find that the circulation around the panel is

Γvortex panel =

∫ b

a

γ dx = (b− a)
[
γ(0) +

1

2
γ(1)(b− a)

]
(12.3.24)

or

Γvortex panel = (b− a) γ(
a+ b

2
). (12.3.25)

Applying (12.3.8) with y′ = 0 and rearranging, we find that the stream function of the
induced flow is given by

ψ(01)(x, y) = −γ(0) + γ(1)(x− a)

4π

∫ b

a

ln
(x− x′)2 + y2

�2
dx′

−γ(1)

4π

∫ b

a

(x′ − x) ln
(x− x′)2 + y2

�2
dx′. (12.3.26)

The first integral on the right-hand side of (12.3.26) is equal to the expression enclosed by
the tall parentheses following the fraction on the right-hand side of (12.3.12). The second
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integral can be calculated with the help of standard tables of integrals and is found to be∫ b

a

(x′ − x) ln
(x− x′)2 + y2

�2
dx′ = 1

2
[ (x− b)2 + y2 ] ln

(x− b)2 + y2

�2

− 1

2
[ (x− a)2 + y2 ] ln

(x− a)2 + y2

�2
− 1

2
(x− b)2 +

1

2
(x− a)2. (12.3.27)

Combining (12.3.11), (12.3.27), and (12.3.8), and consolidating various terms, we obtain

ψ(01)(x, y) = ψ(0)(x, y) + ψ(1)(x, y), (12.3.28)

where ψ(0) is given in (12.3.12) and

ψ(1)(x, y) = −γ(1) 1

4π

(
1

2
[ y2 − (x− b)(x+ b− 2a) ] ln

(x− b)2 + y2

�2

− 1

2
[ y2 − (x− a)2 ] ln

(x− a)2 + y2

�2
+ 2y (x− a) (arctan

y

x− b
− arctan

y

x− a
)

−1

2
(x− b)2 +

1

2
(x− a)2 − 2(x− a)(b− a)

)
. (12.3.29)

The velocity components can be resolved into corresponding constituents,

u(01)
x (x, y) = u(0)

x (x, y) + u(1)
x (x, y) (12.3.30)

and

u(01)
y (x, y) = u(0)

y (x, y) + u(1)
y (x, y), (12.3.31)

where u
(0)
x and u

(0)
y are given in (12.3.13) and (12.3.14). Tedious differentiation yields the

final forms

u(1)
x (x, y) =

∂ψ(1)

∂y
= −γ(1) 1

4π

(
y ln

(x− b)2 + y2

(x− a)2 + y2

+2 (x− a) (arctan
y

x− b
− arctan

y

x− a
)
)

(12.3.32)

and

u(1)
y (x, y) = −∂ψ(1)

∂x
= −γ(1) 1

4π

(
(x− a) ln

(x− b)2 + y2

(x− a)2 + y2

−2 y (arctan
y

x− b
− arctan

y

x− a
) + 2 (b− a)

)
. (12.3.33)

Using these expressions, we confirm that, as the vortex panel is traversed along the y axis
from the upper to the lower side, the x velocity component undergoes a discontinuity whose
magnitude is equal to the local strength of the vortex sheet.
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Figure 12.3.3 Streamline pattern of the flow due to a vortex panel with linear strength situation
along the x axis in the interval [−b, b], for vanishing circulation around the panel.

The streamline pattern of the flow induced by a vortex panel extending in the interval
[−b, b] is shown in Figure 12.3.3 for γ(1) = −γ(0)/b, so that γ(x) = γ(0)x/b. Because the
circulation around the panel vanishes, as required by (12.3.25), far from the panel, the flow
reduces to that due to a point-vortex dipole situated at the panel center-point and oriented
along the x axis. Alternatively, the far flow is identical to the flow due to a point-source
dipole placed at the same location oriented along the y axis.

12.3.1 Velocity potential due to vortex panels.

(a) Confirm that the velocity potential corresponding to the stream function stated in
(12.3.12) is given by

φ(0)(x, y) = −γ(0) 1

2π

(
(x− b) arctan

y

x− b
− (x− a) arctan

y

x− a

+
1

2
y ln

(x− b)2 + y2

(x− a)2 + y2
)
. (12.3.34)

(b) Confirm that the velocity potential corresponding to the stream function given in
(12.3.29) is given by

φ(1)(x, y) = −γ(1) 1

4π

(
(x− a) y ln

(x− b)2 + y2

(x− a)2 + y2

+
[
(x− a)2 − (b− a)2 − y2

]
arctan

y

x− b
(12.3.35)

−[ (x− a)2 − y2
]
arctan

y

x− a
+ y(b− a)

)
.

Problem
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Figure 12.4.1 Discretization of the contour of an airfoil into N flat panels defined by a set of N +1
nodes.

12.4 Vortex panel method

In Section 12.3, we introduced vortex panels with constant or linear density distributions
and studied the properties of the induced flows. In this section, we employ these flows as
elementary units into a vortex-panel method that allows us to compute an irrotational flow
past a two-dimensional airfoil with the Kutta–Joukowski condition satisfied at the trailing
edge.

The key idea is to express a flow of interest as a superposition of (a) an incident streaming
flow and (b) a collection of flows induced by vortex panels with a priori unknown strength
densities distributed around an airfoil. The panel strength densities are then computed to
satisfy the no-penetration boundary condition around the airfoil.

Contour discretization

Shown in Figure 12.4.1 is a schematic illustration of uniform (streaming) flow with velocity
U = (Ux, Uy) past an airfoil for angle of attack α. In the first strep of the vortex panel
method, the contour of the airfoil is traced with N + 1 nodes distributed in the clockwise
direction, where points labeled 1 and N + 1 coincide with the trailing edge.

A pair of successive nodes, x(i) and x(i+1), defines a flat vortex panel labeled i for
i = 1, . . . , N . The union of the N vortex panels defines a polygonal contour which is an
approximation to the generally curved contour of the airfoil.

Flow representation

In the vortex-panel method, the velocity at a field point, x = (x, y), is expressed by the
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superposition

u(x, y) = U+

N∑
i=1

u(i)(x, y), (12.4.1)

where u(i)(x, y) is the velocity induced by the ith vortex panel.

In the implementation discussed in this section, panels with linear strength density are
employed. The strength density of the ith panel varies linearly from the value γi assigned
to the ith node, which is the first point of the ith panel, to the value γi+1 assigned to the
i + 1 node, which is the second point of the ith panel. The N + 1 unknown values, γi for
i = 1, . . . , N + 1, must be computed to satisfy the no-penetration condition around the
airfoil in some approximate sense.

A key observation that the velocity induced by the ith panel, u(i)(x, y), is determined
by the position and strength density of the panel at the two end points. To signify this
dependence, we write

u(i)(x, y) = uLVP(x, y ; x(i),x(i+1), γ(i), γ(i+1)). (12.4.2)

where LVP stands for linear vortex panel. Next, we proceed to develop a method for com-
puting the velocity induced by the individual panels.

Panel-induced velocity in global coordinates

It is helpful to introduce a local coordinate system, (x′, y′), where the x′ axis passes through
the two end points of the ith panel, x(i) and x(i+1), and set the origin at the first end point
x(i), as shown in Figure 12.4.1. The coordinates of a point in the local system, (x′, y′), are
related to those in the global system, (x, y), by the equations

x′ = (x− x(i)) cos θ(i) + (y − y(i)) sin θ(i),

y′ = −(x− x(i)) sin θ(i) + (y − y(i)) cos θ(i), (12.4.3)

where θ(i) is the inclination of the ith panel defined in Figure 12.4.1.

Next, we express the strength density of the ith panel in the linear form

γ(x′) = γ(0) + γ(1)(x′ − x′(i)), (12.4.4)

with the understanding that x′(i) = 0, and require that

γ
(
x′ = x′(i)) = γ(0) = γ(i),

γ
(
x′ = x′(i+1)

)
= γ(0) + γ(1)(x′(i+1) − x′(i)) = γ(i+1), (12.4.5)

to find that

γ(0) = γ(i), γ(1) =
γ(i+1) − γ(i)

Δ
i
, (12.4.6)
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where

Δ
i =
(
(x(i+1) − x(i))2 + (y(i+1) − y(i))2

)1/2
= x′(i+1) − x′(i) (12.4.7)

is the length of the ith panel computed in terms of the global (unprimed) or local (primed)
coordinates of the two panel end-points.

Reviewing the results of Section 12.3, we find that the x′ and y′ components of the
velocity induced by the ith panel are given by equations (12.3.30) and (12.3.31), subject to
the following substitutions:

a → 0
b → x′(i+1)

γ(0) → γ(i)

γ(1) → (γ(i+1) − γ(i))/Δ
i
x → x′

y → y′

(12.4.8)

After carrying out some algebra, we find that the velocity components of the flow induced
by the ith panel in the local frame are given by

u
(i)
x′ (x

′, y′) = a
(i,1)
x′ γ(i) + a

(i,2)
x′ γ(i+1), (12.4.9)

and

u
(i)
y′ (x

′, y′) = a
(i,1)
y′ γ(i) + a

(i,2)
y′ γ(i+1), (12.4.10)

where a
(i,1)
x′ , a

(i,2)
x′ , a

(i,1)
y′ , and a

(i,2)
y′ are local influence coefficients given by

a
(i,1)
x′ =

1

2πx′
2

( y′c+ (x′ − x′
2)Δθ′ ),

a
(i,1)
y′ =

1

2πx′
2

( (x′ − x′
2) c− y′ Δθ′ + x′

2 ),

a
(i,2)
x′ = − 1

2πx′
2

( y′c+ x′ Δθ′ ), (12.4.11)

a
(i,2)
y′ = − 1

2πx′
2

(x′c− y′ Δθ′ + x′
2 ),

subject to the following definitions:

x′
2 ≡ x′(i+1), Δθ′ ≡ θ′2 − θ′1, θ′2 ≡ arctan

y′

x′ − x′
2

,

θ′1 ≡ arctan
y′

x′ , c ≡ log
( (x′ − x′

2)
2 + y′2

x′2 + y′2

)1/2
. (12.4.12)
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To recover the velocity components in the global frame, we use the inverse of the coor-
dinate transformation shown in (12.4.3),

u(i)
x (x, y) = u

(i)
x′ (x

′, y′) cos θ(i) − u
(i)
y′ (x

′, y′) sin θ(i) (12.4.13)

and

u(i)
y (x, y) = u

(i)
x′ (x

′, y′) sin θ(i) + u
(i)
y′ (x

′, y′) cos θ(i). (12.4.14)

Substituting expressions (12.4.9) and (12.4.10) into the right-hand sides of equations (12.4.13)
and (12.4.14), and rearranging, we derive explicit relations in terms of the strength of the
vortex panel at the end points,

u(i)
x (x, y) = a(i,1)x γ(i) + a(i,2)x γ(i+1),

u
(i)
y (x, y) = a

(i,1)
y γ(i) + a

(i,2)
y′ γ(i+1),

(12.4.15)

where a
(i,1)
x , a

(i,2)
x , a

(i,1)
y , and a

(i,2)
y are global influence coefficients given by

a(i,1)x (x, y) = a
(i,1)
x′ (x′, y′) cos θ(i) − a

(i,1)
y′ (x′, y′) sin θ(i),

a(i,2)x (x, y) = a
(i,2)
x′ (x′, y′) cos θ(i) − a

(i,2)
y′ (x′, y′) sin θ(i),

a(i,1)y (x, y) = a
(i,1)
x′ (x′, y′) sin θ(i) + a

(i,1)
y′ (x′, y′) cos θ(i), (12.4.16)

a(i,2)y (x, y) = a
(i,2)
x′ (x′, y′) sin θ(i) + a

(i,2)
y′ (x′, y′) cos θ(i).

Given the coordinates of the evaluation point, (x, y), we may evaluate these coefficients by
carrying out the following steps:

1. Compute the panel inclination angle, θ(i), and the panel length from the expressions
given in (12.4.6) and (12.4.7).

2. Compute the local coordinates (x′, y′) using (12.4.3).

3. Compute the local influence coefficients using (12.4.11).

4. Compute the global influence coefficients using (12.4.16).

The procedure is readily implemented in a computer code.

12.4.1 Velocity in terms of the panel strength

Substituting expressions (12.4.15) into the right-hand side of (12.4.1), we obtain explicit
expressions for the global components of the velocity in terms of the strength of the vortex
panels at the end-nodes,

ux(x, y) = Ux +
N∑
i=1

(
a(i,1)x (x, y) γ(i) + a(i,2)x (x, y) γ(i+1)

)
,

uy(x, y) = Uy +

N∑
i=1

(
a(i,1)y (x, y) γ(i) + a(i,2)y (x, y) γ(i+1)

)
. (12.4.17)
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For convenience, we write

ux(x, y) = Ux +

N+1∑
i=1

b(i)x (x, y) γ(i),

uy(x, y) = Uy +

N+1∑
i=1

b(i)y (x, y) γ(i),

(12.4.18)

where

b(1)w (x, y) = a(1,1)w (x, y),

b(2)w (x, y) = a(1,2)w (x, y) + a(2,1)w (x, y),

b(3)w (x, y) = a(2,2)w (x, y) + a(3,1)w (x, y),

· · · , (12.4.19)

b(N)
w (x, y) = a(N−1,2)

w (x, y) + a(N,1)
w (x, y),

b(N+1)
w (x, y) = a(N,2)

w (x, y)

for w = x, y is a new set of influence coefficients.

12.4.2 Point collocation

If we knew the strength of the vortex panels at the nodes, we would be able to use equations
(12.4.18) to evaluate the velocity at any point in the flow. The fundamental idea underlying
the vortex-panel method is that the N +1 unknown values, γ(i) for i = 1, . . . , N +1, should
be computed to satisfy the no-penetration condition at a point x located around the airfoil
contour,

u(x) · n(x) = 0, (12.4.20)

where n is the unit vector normal to the airfoil.

In the panel-collocation method, N equations emerge by requiring that (12.4.20) is
satisfied at the mid-point of each panel located at

x
(j)
M =

1

2
(x(j) + x(j+1)) (12.4.21)

for j = 1, . . . , N . Using (12.4.18) to express the velocity in terms of the strength of the
vortex sheet and rearranging, we obtain

N+1∑
i=1

Ai,j γ
(i) = −Ux nx(x

(j)
M , y

(j)
M )− Uy ny(x

(j)
M , y

(j)
M ), (12.4.22)
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where

Ai,j ≡ b(i)x

(
x
(j)
M , y

(j)
M

)
nx(x

(j)
M , y

(j)
M ) + b(i)y

(
x
(j)
M , y

(j)
M

)
ny(x

(j)
M , y

(j)
M ). (12.4.23)

It is important to bear in mind that, when i = j, the self-induced velocity is evaluated
at the mid-point of the panel on the side of the flow exterior to the airfoil. With reference
to equations (12.4.11), this means that y′ = 0, c = 0, and Δθ′ = π. Applying equation
(12.4.22) for j = 1, . . . , N , we obtain a system of N linear algebraic equations for the N +1
unknowns, γ(i).

Kutta–Joukowski condition

One degree of freedom is available and can be used to arbitrarily specify the circulation
around the airfoil. In Section 12.4.2, we saw that, in practice, the circulation established
around the airfoil is such that the Kutta–Joukowski condition is fulfilled at the trailing edge.

In our formulation, the Kutta–Joukowski condition is implemented by requiring that
the strength of the vortex sheet on the upper side of the airfoil at the trailing edge is equal
in magnitude and opposite in sign to the strength of the vortex sheet on the lower side of the
airfoil at the trailing edge. The mathematical statement of the Kutta–Joukowski condition
is then

γ(1) = −γ(N+1). (12.4.24)

Appending this equation to equation (12.4.22) written for j = 1, . . . , N , we obtain the
desired system of N + 1 equations for the N + 1 unknowns, γ(i). The solution can be
computed using, for example, the method of Gauss elimination discussed in Section 3.4.

12.4.3 Circulation and pressure coefficient

Once the strength of the vortex sheet is available, the tangential velocity, ut = u · t, can be
evaluated from the discrete representation (12.4.18), where t is the unit vector tangent to
the airfoil pointing along the local x′ axis.

The circulation around the airfoil can be approximated either with the expression

C = −
N∑
i=1

ut(x
(i)
M )Δ
i (12.4.25)

or with the expression

C =
1

2

N∑
i=1

(γ(i) + γ(i+1))Δ
i, (12.4.26)

where Δ
i is the length of the ith panel. The second expression implements the trapezoidal
rule for integrating the strength of the vortex sheet with respect to arc length, 
, around
the airfoil.
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The dimensionless pressure coefficient at the panel mid-points is defined by the expres-
sion

c(i)p ≡ p(x
(i)
M )− p∞
1
2ρU

2
= 1− u2

t (x
(i)
M )

U2
, (12.4.27)

where p∞ is the pressure at infinity and

U2 ≡ U2
x + U2

y (12.4.28)

is the square of the magnitude of the velocity of the incident streaming flow.

The streamline pattern, distribution of panel strength, and distribution of the pressure
coefficient around a NACA airfoil computed by the code airf 2d lvp discussed in Section
12.4.5 is shown in Figure 12.4.2. The results confirm that high pressure occurs at the lower
surface of the airfoil and low pressure occurs at the upper surface of the airfoil; the difference
generates a lift force.

12.4.4 Lift

In the absence of viscous stresses, the force exerted on the airfoil is given by the pressure
integral

F =

∮
(−p)n d
 = −1

2
ρU2

∮ (
cp +

p∞
1
2ρU

2
)n d
, (12.4.29)

where n is the unit vector normal to the airfoil pointing into the fluid, and 
 is the arc
length around the airfoil. Since the integral of the normal vector around a closed contour is
identically zero,

F = − 1

2
ρU2

∮
cp n d
, (12.4.30)

Using the mid-point rule to approximate the two scalar components of the vector inte-
gral in (12.4.30), we obtain the following expressions for the dimensionless x and y force
components,

F̂x ≡ Fx
1
2ρU

2
= −

N∑
i=1

c(i)p n(i)
x Δ
i (12.4.31)

and

F̂y ≡ Fy
1
2ρU

2
= −

N∑
i=1

c(i)p n(i)
y Δ
i. (12.4.32)

The scaled lift force with respect to the wind axis is defined as the component of the
force normal to the direction of the incident flow, given by

L̂w = F̂y cosα− F̂x sinα, (12.4.33)
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Figure 12.4.2 (a) Streamline pattern and distribution of the pressure coefficient on the upper and
lower surfaces of an airfoil for angle of attack α = 5◦, computed using the linear vortex panel
method. (b) Distribution of the pressure coefficient (dashed line) and panel strength (connected
dots) around another airfoil. These solutions were generated by the Fdlib code airf 2d lvp.
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where α is the angle of attack, as shown in Figure 12.4.1. According to the Kutta–Joukowski
theorem expressed by equation (12.2.4),

L̂w = −2
C

U
. (12.4.34)

The difference in the values of the lift predicted by (12.4.33) or (12.4.34) is a measure of the
accuracy of the numerical method.

12.4.5 Vortex panel code

The following MATLAB code entitled airf 2d lvp, located in directory 07 ptf of Fdlib,
implements the linear vortex panel method:

%===========================

% linear vortex panel method

%===========================

Npl = 64; % number of panels

chord = 1.0; % chord

thick = 0.1; % airfoil thickness

Umag = 1.0; % incident velocity

alpha = 4.0; % angle of attack in degrees

%----

% generate the NACA 23012 airfoil contour

% ep are the panel end points

%----

ep = naca(chord,thick,Npl);

%---

% coordinates of the panel end points

%---

for i=1:Npl

pt1(i,1) = ep(i,1);

pt1(i,2) = ep(i,2);

pt2(i,1) = ep(i+1,1);

pt2(i,2) = ep(i+1,2);

end

%---------------------------------------

% compute:

%

% 1. panel inclination angle th(j) between -pi and pi

% 2. panel lengths

% 3. tangential and normal unit vectors

%---------------------------------------
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for i=1:Npl

dx = pt2(i,1)-pt1(i,1);

dy = pt2(i,2)-pt1(i,2);

dl(i) = sqrt( (pt2(i,1)-pt1(i,1))^2 ... % panel length

+ (pt2(i,2)-pt1(i,2))^2);

th(i) = atan2(dy,dx);

tnx(i) = cos(th(i)); % tangential vector

tny(i) = sin(th(i));

vnx(i) = -tny(i); % normal vector points into flow

vny(i) = tnx(i);

end

%---

% collocation points are panel mid-points

%---

for i=1:Npl

co(i,1) = 0.5*(pt1(i,1)+pt2(i,1));

co(i,2) = 0.5*(pt1(i,2)+pt2(i,2));

end

%-------------------------------------

% compute the influence coefficients

% and right-hand side of linear system

%-------------------------------------

for i=1:Npl % OVER COLLOCATION POINTS; ENDS AT THE RABBIT

%---

% compute influence of jth panel

% on ith collocation point

%---

for j=1:Npl % OVER PANELS; ENDS AT THE DOG

%---

% Compute the local panel coordinates (x, y)

% The first panel point is located at the shifted origin;

% the panel becomes horizontal

%---

xt = co(i,1) - pt1(j,1); % shift collocation point

yt = co(i,2) - pt1(j,2);

x = xt*tnx(j) + yt*tny(j); % and rotate

y = -xt*tny(j) + yt*tnx(j);

x1 = 0.0; y1 = 0.0;

x2t = pt2(j,1) - pt1(j,1); % shift second-end point

y2t = pt2(j,2) - pt1(j,2);
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x2 = x2t*tnx(j) + y2t*tny(j); % and rotate y2 = 0.0;

%---

% Compute radial distances: r1, r2

% subtended angles: th1, th2

%---

r1 = sqrt(x*x+y*y);

r2 = sqrt((x-x2)*(x-x2)+y*y);

th1 = atan2(y,x);

th2 = atan2(y,x-x2);

%--------------------------------------------

% gamma1, gamma2 are the vortex sheet strengths

% at the first and second panel points.

%

% Compute influence coefficients associated with

% the velocity components (ux, uy)

% corresponding to gamma1 and gamma, so that:

%

% ux = ax1*gamma1 + ax2*gamma2

% uy = ay1*gamma1 + ay2*gamma2

%

% These velocities are in

% the jth-panel reference frame.

%--------------------------------------------

if(i==j) % self-induced velocity

ax1 = 0.5*(x/x2-1.0);

ay1 = 1.0/(2*pi);

ax2 =-0.5*x/x2;

ay2 =-1.0/(2*pi);

else

dth = th2-th1;

rrt = r2/r1;

rrtl = log(rrt);

fcc = 1.0/(2*pi*x2);

ax1 = fcc*( y*rrtl + (x-x2)*dth );

ay1 = fcc*((x-x2)*rrtl - y*dth + x2);

ax2 = -fcc*(y*rrtl + x*dth );

ay2 = -fcc*(x*rrtl - y*dth + x2);

end

%---

% transform the influence coefficient into the

% global reference frame by rotation

%---

ux1 = ax1*tnx(j) - ay1*tny(j);
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uy1 = ax1*tny(j) + ay1*tnx(j);

ux2 = ax2*tnx(j) - ay2*tny(j);

uy2 = ax2*tny(j) + ay2*tnx(j);

%-----------------------------------------------

% Compute the coefficients of gamma in the

% master influence matrix.

%

% These are the velocity influence coefficients

% projected onto the normal vector of ith panel

%------------------------------------------------

if(j==1)

a(i,1)= ux1*vnx(i) + uy1*vny(i);

holda = ux2*vnx(i) + uy2*vny(i); % hold for the next panel

elseif(j==Npl)

a(i,Npl) = ux1*vnx(i) + uy1*vny(i) + holda;

a(i,Npl+1) = ux2*vnx(i) + uy2*vny(i);

else

a(i,j)= ux1*vnx(i) + uy1*vny(i) + holda;

holda = ux2*vnx(i) + uy2*vny(i); % hold for the next panel

end

%-------------------------------------------------------

% b are tangential velocity influence coefficients

%

% These are the velocity influence coefficients

% projected onto the tangential vector of the ith panel

%-------------------------------------------------------

if(j==1)

b(i,1)= ux1*tnx(i) + uy1*tny(i);

holdb = ux2*tnx(i) + uy2*tny(i); % hold for the next panel

elseif(j==Npl)

b(i,Npl) = ux1*tnx(i) + uy1*tny(i) + holdb;

b(i,Npl+1) = ux2*tnx(i) + uy2*tny(i);

else

b(i,j)= ux1*tnx(i) + uy1*tny(i) + holdb;

holdb = ux2*tnx(i) + uy2*tny(i); % hold for the next panel

end

end % OVER PANELS - DOG

end % OVER COLLOCATION POINTS - RABBIT

%--------------------------------

% Add the Kutta condition

% expressed by the Npl+1 equation:

%



12.4 Vortex panel method 831

% The strength of the sheet at the first point

% of the first panel is equal and opposite

% to the strength of the sheet at the last point

% of the last panel,

% so that the mean value vanishes

%--------------------------------

a(Npl+1,1) = 1.0;

a(Npl+1,Npl+1) = 1.0;

%--------------------

% set right-hand side

%--------------------

al = alpha*pi/180.0;

cal = cos(al); sal = sin(al);

Ux = Umag*cal; Uy = Umag*sal;

for i=1:Npl

rhs(i) = -Ux*vnx(i)-Uy*vny(i);

end

rhs(Npl+1)=0.0;

%-----------------------

% solve the linear system

%-----------------------

gamma = rhs/a';

%---------------------------------

% compute c p and the circulation

%---------------------------------

circul = 0.0; % circulation

circulg = 0.0; % circulation in terms of gamma

for i=1:Npl

velt = Ux*tnx(i)+Uy*tny(i); % tangential velocity

for j=1:Npl+1

velt = velt + b(i,j)*gamma(j);

end

circul = circul - velt*dl(i); % circulation

circulg = circulg ...

+0.5*(gamma(i)+gamma(i+1))*dl(i); % circulation

cp(i) = 1.0-velt*velt/(Umag*Umag); % press coeff

end

cp(Npl+1)=cp(1);
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%---

% plotting

%---

patch(ep(:,1),ep(:,2),'y')

plot(ep(:,1),ep(:,2),'k.-')

plot(ep(:,1),cp,'--')

plot(ep(:,1),gamma,'r:')

xlabel('x','fontsize',15)

ylabel('y','fontsize',15)

The airfoil profile is generated by the following MATLAB function entitled naca, located
in directory 07 ptf of Fdlib:

function [ep] = naca(chord,thick,Npl)

%----

% generate the NACA 23012 airfoil contour

% ep are the panel end-points

%----

dpsi = 2*pi/Npl;

ep(1,1) = chord;

ep(1,2) = 0.0;

for i=2:Npl

psi = (i-1.0)*dpsi;

x = 0.5*(1.0+cos(psi));

%---

% camber line:

%---

if(x<0.2025)

yc = 2.6595*x*(0.1147+x*(-0.6075+x));

else

yc = 0.02208*(1.0-x);

end

%---

% thickness:

%---

yt = 5.0*thick*(0.2969*sqrt(x) ...

-0.1260*x -0.3516*x*x +0.2843*x*x*x ...

-0.1036*x*x*x*x );
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if(i<=(Npl/2+1))

y = yc-yt;

else

y = yc+yt;

end

ep(i,1) = x*chord;

ep(i,2) = y*chord;

end

ep(Npl+1,1) = chord; % trailing edge

ep(Npl+1,2) = 0.0; % trailing edge

%---

% done

%---

return

The graphics display generated by the code is shown in Figure 12.4.2(b). The dots connected
by a line describes the distribution of the panel strength, and the dashed line describes the
distribution of the pressure coefficient.

12.4.1 Linear vortex panel method

(a) Run the code airf 2d lvp for an airfoil shape of your choice. Prepare graphs and discuss
the distribution of the panel strength and pressure coefficient.

(b) Evaluate the velocity at several points inside the airfoil and discuss the results.

12.5 Vortex sheet representation

Consider the vortex panel method for flow past a two-dimensional airfoil discussed in Section
12.4. In the limit as the number of panels, N , tends to infinity, the piecewise linear strength
distributions over the individual panels describe a smooth distribution defined around the
airfoil contour. Correspondingly, the sum on the right-hand side of equation (12.4.1) reduces
to an integral with respect to arc length around the airfoil contour, representing the velocity
induced by a vortex sheet with a generally curved shape.

Generalizing expression (12.3.8), we find that the stream function associated with the
vortex sheet is given by

ψvortex sheet(x, y) = − 1

4π

∮
ln

(x− x′)2 + (y − y′)2

�2
γ(x′) d
′, (12.5.1)

where d
′ = (dx′2+dy′2 )1/2 is the differential arc length around the airfoil measured in the

Problem
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clockwise direction starting at the trailing edge, and the integration is performed around
the airfoil contour.

Conversely, the vortex-panel representation can be regarded as the result of discretizing
the integral on the right-hand side of (12.5.1) into geometrical elements represented by the
vortex panels. In Section 12.4, we discussed straight elements with linear strength distribu-
tion. In more advanced implementations, curved elements, such as sections of parabolas and
circular arcs, and quadratic or higher-order strength density distributions are employed.

Internal flow

Although the vortex sheet representation is physically meaningful only when it is applied to
evaluate the stream function and velocity at a point in the flow, nothing prevents us from
performing corresponding evaluations at a point inside the airfoil. When this is done, we
find that the stream function is constant and the velocity vanishes inside the airfoil (Problem
12.5.2).

To explain this curiosity, we observe that the strength of the vortex sheet is computed
to satisfy the no-penetration boundary condition around the airfoil. Because the normal
component of the velocity is continuous across the vortex sheet, the interior flow occurs
under vanishing normal boundary velocity. Since tangential velocity on the interior side of
the airfoil is prohibited by the condition of irrotational motion in the absence of singular
points, the fictitious internal flow must vanish.

12.5.1 Thin airfoil theory

Next, we consider flow past a thin cambered airfoil and introduce a system of coordinates
such that the leading edge lies at the origin of the x axis, and the trailing edge lies at the
point x = c along the x axis, as illustrated in Figure 12.5.1. The camberline is described by
the equation

y = ε ηc(x), (12.5.2)

where ε � 1 is a small dimensionless number and ηc(x) is the camberline shape function
required to satisfy the geometrical constraints

ηc(0) = 0, ηc(c) = 0. (12.5.3)

If ηc(x) = 0 for any x, the camberline is flat.

Because both sides of the airfoil are near the x axis, the corresponding line integrals
with respect to arc length in (12.5.1) can be approximated with integrals with respect to
x′ from x′ = 0 to c. Setting y′ = 0, tracing the airfoil in the clockwise direction beginning
from the trailing edge, and noting that on the upper side of the airfoil d
′ = dx′ while on
the lower side d
′ = −dx′, we find that

ψvortex sheet(x, y) 	 − 1

4π

∫ c

0

ln
(x− x′)2 + y2

�2
(γ+ − γ−)(x′) dx′, (12.5.4)
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Figure 12.5.1 Illustration of the camberline of a thin airfoil, and definition of variables used to
develop the slender-airfoil theory.

where the superscripts + and - denote, respectively, the upper and lower side of the cam-
berline. Defining

χ ≡ γ+ − γ−, (12.5.5)

we obtain a representation in terms of an effective flat vortex sheet extending between the
leading and trailing edge,

ψvortex sheet(x, y) 	 − 1

4π

∫ c

0

ln
(x− x′)2 + y2

�2
χ(x′) dx′. (12.5.6)

The corresponding velocity potential is given by

φvortex sheet(x, y) 	 1

2π

∫ c

0

arctan
( y

x− x′
)
χ(x′) dx′. (12.5.7)

Our goal is to compute the strength of the effective vortex sheet, χ, so as to satisfy the
no-penetration condition around the airfoil.

Velocity on either side of the vortex sheet

As a preliminary, we consider the velocity induced by the effective vortex sheet on the upper
and lower sides of the airfoil. To begin, we consider the limit of the velocity potential as the
evaluation point, x = (x, y), approaches the vortex sheet from the upper side; that is, as
y → 0+ with 0 < x < c. In this limit, the inverse tangent function on the right-hand side of
(12.5.7) is zero when x′ < x, or π when x′ > x. Consequently, the potential takes the value

φvortex sheet(x, y → 0+) =
1

2

∫ c

x

χ(x′) dx′. (12.5.8)

Differentiating this expression with respect to x, we find that the x velocity component is
given by

uvortex sheet
x (x, y → 0+) = − 1

2
χ(x). (12.5.9)
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Working in a similar fashion for the lower side of the airfoil, we obtain

uvortex sheet
x (x, y → 0−) =

1

2
χ(x). (12.5.10)

The last two equations illustrate once again that the velocity undergoes a discontinuity
whose magnitude is equal to the strength of the vortex sheet.

The y velocity component over the airfoil can be found by differentiating either the
stream function given in (12.5.6) with respect to x or the velocity potential given in (12.5.7)
with respect to y. Either way, we find that

uvortex sheet
y (x, y = 0±) =

1

2π

∫ c

0

χ(x′)
x− x′ dx

′. (12.5.11)

Unlike the x velocity component, the y velocity component remains continuous across the
vortex sheet.

Asymptotics

To compute the strength of the effective vortex sheet, χ, we implement the no-penetration
boundary condition through a series of approximations that may appear drastic but have a
solid theoretical foundation.

First, we replace the disturbance flow due to the airfoil with the flow due to the effec-
tive vortex sheet expressed by (12.5.6) or (12.5.7). Enforcing the no-penetration boundary
condition at the camberline, we obtain

n · (U+ uvortex sheet(y = εηc)
)
= 0, (12.5.12)

where n is the unit vector normal to the camberline on the upper side, pointing into the
fluid. Using the geometrical representation (12.5.2), we find that

nx = −ε
η′c√

1 + ε2 η′2c
, ny =

1√
1 + ε2 η′2c

, (12.5.13)

where η′c = dηc/dx. Because ε has been assumed small, the denominators can be replaced
by unity, yielding the simplified expressions

nx 	 −ε
dηc
dx

, ny 	 1. (12.5.14)

A second approximation arises by replacing the velocity at the upper side of the cam-
berline with the velocity at the upper side of the effective vortex sheet, given in (12.5.9) and
(12.5.11).

Substituting (12.5.14), (12.5.9), and (12.5.11) into (12.5.12), we obtain

−ε
dηc
dx

(
Ux − 1

2
χ(x)

)
+ Uy +

1

2π

∫ c

0

χ(x′)
x− x′ dx

′ = 0. (12.5.15)
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Next, we confine our attention to flow that is nearly parallel to the x axis, thereby
assuming that Uy is small compared to Ux. Writing

Uy = tanαUx 	 α Ux, (12.5.16)

we obtain

−ε
(dηc
dx

)
x

(
Ux − 1

2
χ(x)

)
+ αUx +

1

2π

∫ c

0

χ(x′)
x− x′ dx

′ = 0, (12.5.17)

where α is the angle of attack.

Inspecting the various terms on the left-hand side of equation (12.5.17), we find that the
magnitude of χ is on the order of ε or α, both of which have been assumed small. Since χ
is negligible compared to Ux, it can be discarded from the expression enclosed by the large
parentheses. Rearranging, we obtain an integral equation of the first kind for χ(x),

1

2π

∫ c

0

χ(x′)
x− x′ dx

′ = Ux

(
ε
dηc
dx

− α
)

(12.5.18)

for 0 < x < c.

Solution by Fourier expansions

One way to solve equation (12.5.18) is by expanding the unknown function χ in a Fourier
series with respect to the angle θ varying between 0 and π, defined such that

x = c
1

2
(1− cos θ), (12.5.19)

as illustrated in Figure 12.5.1. Differentiating, we obtain

dx = c
1

2
sin θ dθ. (12.5.20)

The Kutta–Joukowski condition requires that the strength of the vortex sheet vanishes
at the trailing edge located at θ = π. Wind tunnel measurements show that a high peak
occurs at the leading edge located at θ = 0. Based on these observations, we express χ as
the sum of the singular function, cot θ

2 , and a sine Fourier series in the form

χ(θ) = 2Ux

(
a0 cot

θ

2
+

∞∑
n=1

an sin(nθ)
)
, (12.5.21)

where an are Fourier coefficients. Substituting (12.5.19) and (12.5.21) into (12.5.18), we
obtain the equation

1

π

∫ π

0

sin θ′

cos θ′ − cos θ

[
a0 cot

θ′

2
+

∞∑
n=1

an sin(nθ
′)
]
dθ′ = ε

dηc
dx

− α. (12.5.22)
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The integrals on the left-hand side of (12.5.22) can be evaluated with the help of standard
tables. First, we write

cot
θ′

2
=

1 + cos θ′

sin θ′
, (12.5.23)

and find that ∫ π

0

sin θ′

cos θ′ − cos θ
cot

θ′

2
dθ′ =

∫ π

0

1 + cos θ′

cos θ′ − cos θ
dθ′ = π. (12.5.24)

Second, we note that∫ π

0

sin θ′

cos θ′ − cos θ
sin(nθ′) dθ′ = −π cos(nθ). (12.5.25)

Substituting these results into (12.5.22), we derive a remarkably simple expression,

a0 −
∞∑

n=1

an cos(iθ) = ε
dηc
dx

− α. (12.5.26)

The left-hand side of (12.5.26) is the cosine Fourier expansion of the right-hand side with
respect to θ. Multiplying both sides by cos(mθ), where m is an integer, integrating with
respect to θ from 0 to π, and using the identity∫ π

0

cos(nθ) cos(mθ) dθ =

⎧⎨⎩
0 if n 
= m,
π if n = m = 0,
1
2π if n = m 
= 0,

(12.5.27)

we obtain

a0 = −α+ ε
1

π

∫ π

0

(dηc
dx

)
x(θ)
dθ, an = −ε

2

π

∫ π

0

(dηc
dx

)
x(θ)
cos(nθ) dθ (12.5.28)

for i = n, 2, . . . .

The camberline slope, dηc/dx, can be expanded in a cosine Fourier series with respect
to θ, (dηc

dx

)
x(θ)

=
1

2
b0 +

∞∑
n=1

bn cos(nθ), (12.5.29)

where bn are dimensionless Fourier coefficients given by

bn =
2

π

∫ π

0

(dηc
dx

)
x(θ)

cos(nθ) dθ (12.5.30)

for n = 0, 1, . . . ,. Substituting the right-hand side of (12.5.29) into (12.5.26) and setting the
sum of like Fourier coefficients to zero, we obtain

a0 = −α+ ε
1

2
b0, an = −ε bn (12.5.31)
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for n = 1, 2, . . . . These relations illustrate that only the leading coefficient, a0, depends on
the angle of attack, α, while the rest of the coefficients are determined exclusively by the
geometry of the camberline.

Lift, lift coefficient, and lift slope

To compute the lift force per unit span exerted on the airfoil, we use the Kutta–Joukowski
theorem expressed by equation (12.2.4), obtaining

L = −ρUx

∫ c

0

χ(x) dx. (12.5.32)

or

L = −ρ cUx
1

2

∫ π

0

χ(θ) sin θ dθ. (12.5.33)

Substituting the expansion (12.5.21) into the right-hand side, we obtain

L = −ρ cU2
x

∫ π

0

(
a0 cot

θ

2
+

∞∑
n=1

an sin(nθ)
)
sin θ dθ. (12.5.34)

Evaluating the integrals, we find that only two terms make a non-zero contribution, yielding
the lift force

L = −πρ cU2
x (a0 +

1

2
a1). (12.5.35)

Using (12.5.31), we find that

L = πρ c
(
α− ε

1

2
(b0 + b1)

)
. (12.5.36)

The lift coefficient is

cL ≡ L
1
2 ρ cU

2
x

= −2π (a0 +
1

2
a1) = 2π

(
α− ε

1

2
(b0 + b1)

)
. (12.5.37)

In practical aerodynamics, the performance of an airfoil is characterized by the lift slope,
defined as the slope dcL/dα. Our analysis has shown that the lift slope of a thin airfoil is
constant, equal to 2π, independent of the camber.

Pressure difference across the airfoil

The difference in the pressure on either side of the vortex sheet representing the airfoil,

Δp ≡ p(x, y → 0−)− p(x, y → 0+), (12.5.38)

can by computed using Bernoulli’s equation (6.4.18). Using expressions (12.5.9) and (12.5.10),
we find that the velocity on the upper or lower side of the vortex sheet is, respectively, equal
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to Ux − 1
2χ and Ux + 1

2χ. Substituting these expressions in Bernoulli’s equation for irrota-
tional flow, we obtain

Δp =
(
p∞ − 1

2
ρ (Ux +

1

2
χ)2
)− ( p∞ − 1

2
ρ (Ux − 1

2
χ)2
)
= −ρUx χ, (12.5.39)

which is consistent with expression (12.5.32) for the lift force.

Pressure moment

The moment of the pressure force with respect to the leading edge is expressed by the
integral

M = −
∫ c

0

xΔp dx. (12.5.40)

Substituting expression (12.5.39) for the pressure drop, we obtain

M = ρUx

∫ c

0

xχ(x) dx =
1

4
ρUx c

2

∫ π

0

χ(θ) (1− cos θ) sin θ dθ. (12.5.41)

Substituting expansion (12.5.21), we obtain

M =
1

2
ρU2

x c2
∫ π

0

(
a0 cot

θ

2
+

∞∑
n=1

an sin(nθ)
)
(1− cos θ) sin θ dθ. (12.5.42)

Evaluating the integrals, we find

M =
1

4
πρ c2 U2

x(a0 + a1 − 1

2
a2), (12.5.43)

which shows that only three coefficients contribute to the pressure moment. The moment
coefficient is defined as

cM ≡ M
1
2 ρ c

2 U2
x

=
1

2
π (a0 + a1 − 1

2
a2). (12.5.44)

The moment of the pressure forces with respect to an arbitrary point, x = xm, is given
by

Mxm
= −

∫ c

o

(x− xm) Δp dx = M + xm L, (12.5.45)

where L is the lift force. Substituting expressions (12.5.35) and (12.5.43) for L and M into
the right-hand side of (12.5.45), we find that

Mxm
= πρ cU2

x

(
1

4
c (a0 + a1 − 1

2
a2)− xm (a0 +

1

2
a1)
)
. (12.5.46)
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When xm = 1
4c, the coefficient a0 disappears from the right-hand side of (12.5.46) and

the pressure moment becomes independent of the angle of attack, α. The quarter chord
moment, Mc/4,

Mc/4 =
1

8
πρ c2 U2

x (a1 − a2), (12.5.47)

and associated moment coefficient,

cMc/4
≡ Mc/4

1
2 ρ c

2 U2
x

=
1

4
π (a1 − a2), (12.5.48)

are used to characterize the performance of an airfoil.

Symmetric airfoils

Since the camber of a symmetric airfoil vanishes, we may set ε = 0 or ηc(x) = 0 in the
preceding equations. Equations in (12.5.31) yield a0 = −α and an = 0 for n = 1, 2, . . ., and
expansion (12.5.21) reduces to

χ = −2αUx cot
θ

2
. (12.5.49)

The lift force and lift coefficient computed from equations (12.5.35) and (12.5.37) are given
by

L = απρ cU2
x , cL = 2απ. (12.5.50)

The moment and moment coefficient computed from equations (12.5.43) and (12.5.44) are
given by

M = −απρc2 U2
x , cM = −α

2
π. (12.5.51)

12.5.1 Thin airfoil with parabolic camber

Consider a thin airfoil with parabolic camberline described by the shape function

ηc(x) =
4

c
x (c− x). (12.5.52)

The camber is equal to ε ηc(
1
2c) = εc. Show that the lift and moment coefficients are given

by

cL = 2π (α+ 2 ε), cM = −π

2
(α+ 4ε). (12.5.53)

Note that the lift vanishes when α = −2ε.

Problems
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12.5.2 NACA 23012 airfoil

The camberline of the NACA 23012 airfoil is described as

ŷ =

{
2.6595 (x̂3 − 0.6075x̂2 + 0.1147 x̂) for 0 ≤ x̂ ≤ 0.2025,
0.02208 (1− x̂) for 0.2025 ≤ x̂ ≤ 1 ,

(12.5.54)

where x̂equivx/c and ŷ ≡ y/c. Derive expressions for the lift and moment coefficients in
terms of the angle of attack. Compare your results with experimental measurements for
α = 4◦, showing that cL = 0.55 and cMc/4

= −0.01.

12.5.3 Comparison of asymptotics with the vortex panel method

Consider the NACA 23012 airfoil discussed in Problem 12.5.2. Run the code airf 2d lvp
in directory 07 ptf of Fdlib to compute the lift coefficient in wind axes. Compare the
numerical results with the asymptotic predictions for small airfoil thickness.

12.6 Point-source-dipole panels

Consider the stream function of the flow induced by a vortex panel situated along the x
axis between the point x = a and b, as shown in equation (12.3.8), repeated below for
convenience,

ψvortex panel(x, y) = − 1

4π

∫ b

a

ln
(x− x′)2 + (y − y′)2

�2
γ(x′) dx′, (12.6.1)

with the understanding that y′ = 0. The distribution of circulation along the panel, μ(x),
is defined as the integral of the strength density of the vortex sheet with respect to x from
an arbitrary point x = d ≥ a up to an arbitrary point x ≤ b,

μ(x) ≡
∫ x

d

γ(x′) dx′, (12.6.2)

where a ≥ x ≥ b. Using the rules of integral differentiation, we find that

dμ

dx
= γ. (12.6.3)

Substituting the left-hand side of (12.6.3) into the integral of (12.6.1), and integrating by
parts, we obtain

ψvortex panel(x, y) =
μ(x = a)

2π
ln

(x− a)2 + (y − y′)2

�2

−μ(x = b)

2π
ln

(x− b)2 + (y − y′)2

�2
(12.6.4)

+
1

4π

∫ b

a

d

dx′

(
ln

(x− x′)2 + (y − y′)2

�2

)
μ(x′) dx′,
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with the understanding that y′ = 0 since the panel situated along the x axis. Carrying out
the differentiation under the integral sign, we derive the final form

ψvortex panel(x, y) =
μ(x = a)

2π
ln

(x− a)2 + (y − y′)2

�2
(12.6.5)

−μ(x = b)

2π
ln

(x− b)2 + (y − y′)2

�2
− 1

2π

∫ b

a

x− x′

(x− x′)2 + (y − y′)2
μ(x′) dx′.

The three terms on the right-hand side of (12.6.5) admits the following interpretations:

• The first term represents the flow due to a point vortex with strength −μ(x = a)
situated at the first panel end-point.

• The second term represents the flow due to a point vortex with strength μ(x = b)
situated at the second panel end-point.

• Comparing the third term on the right-hand side of (12.6.5) with (3.5.38), we find that
the third term represents the flow due to a distribution of point-source dipoles with
strength density μ(x′) oriented normal to the panel. If μ(x′) is positive, the dipole at
the point x′ is oriented toward the positive direction of the y axis. If μ(x′) is negative,
the dipole at the variable point x′ is oriented toward the negative direction of the y
axis.

Now we introduce the stream function due to a point-source dipole panel,

ψsource dipole panel(x, y) ≡ − 1

2π

∫ b

a

x− x′

(x− x′)2 + (y − y′)2
μ(x′) dx′, (12.6.6)

and rearrange expression (12.6.5) to obtain

ψsource dipole panel(x, y) = ψvortex panel(x, y) (12.6.7)

= −μa

2π
ln

(x− a)2 + (y − y′)2

�2
+

μb

2π
ln

(x− b)2 + (y − y′)2

�2
,

where μa = μ(x = a) and μb = μ(x = b).

Equation (12.6.7) establishes a correspondence between the flow due to a source-dipole
panel and the flow due to a vortex panel, subject to the differential relation (12.6.3). The
first term on the right-hand side of (12.6.7) represents the flow due to a point vortex with
strength μa placed at the first panel end-point, and the second term represents the flow due
to a point vortex with strength −μb placed at the second panel end-point.

Panels with uniform point-source dipole strength density

When the strength density of the source-dipole distribution is constant, μ = μ0, the strength
of the vortex sheet is identically zero and the first term on the right-hand side of (12.6.7)
does not appears. In that case, the flow due to the panel is identical to the flow induced by
two point vortices with strengths μ0 and −μ0 situated, respectively, at the first and second
panel end-point.
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12.6.1 Source-dipole panel method

The flow due to a point-source dipole panel can be used as a fundamental building block for
representing and subsequently computing a flow of interest past an airfoil. To develop the
source-dipole panel method, we work as with the vortex panel method discussed in Section
12.4, with some modifications. In the first step, we trace the contour of the airfoil with
N +1 nodes distributed in the clockwise direction, as illustrated in Figure 12.4.1. A pair of
successive nodes , x(i) and x(i+1), defines the ith flat source-dipole panel.

In the second step, the velocity at a point in the flow is described by a superposition
of the incident flow and the flows induced by the N source-dipole panels. An additional
degree of freedom is required to specify the circulation around the airfoil. This degree of
freedom is provided by an additional contribution mediated by a point vortex with strength
κ placed at the trailing edge. The composite representation is

u(x, y) = U+

N∑
i=1

u(i)(x, y) + u
point vortex
at trailing edge(x, y), (12.6.8)

where u(i)(x, y) is the velocity induced by the ith panel.

Uniform panels

We have seen that, if the source-dipole strength is uniform over each panel, the flow induced
by the ith panel is identical to the flow induced by two point vortices with strength μ(i) and
−μ(i) located at the first or second panel end-point, where μ(i) is the constant value of the
source-dipole strength density over the panel. Consequently, the ith node for i = 2, . . . , N
hosts two point-vortices. One point vortex with strength −μ(i−1) is contributed by the i−1
panel, and a second point vortex with strength μ(i) is contributed by the i panel. The
combined strength is μ(i) − μ(i−1).

The first node, located at the trailing edge, hosts three point vortices: one due to the first
panel labeled 1, a second due to the last panel labeled N , and a third circulation-producing
point vortex placed at the trailing edge. The Kutta–Joukowski condition requires that the
net strength of the trailing point vortex is zero,

μ(1) − μ(N) + κ = 0. (12.6.9)

The N + 1 unknowns, including μ(i) for i = 1, . . . , N and κ, can be computed by the
collocation method discussed in Section 12.3, incorporating the Kutta–Joukowski condition
(12.6.9).

Linear panels

When the strength density of a source-dipole panel varies linearly with respect to arc length,
all three terms on the right-hand side of (12.6.7) make a contribution to the induced velocity
field. Expression (12.6.3) shows that the strength density of the equivalent vortex sheet is
constant and equal to the slope of the dipole density over the panel.
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In the linear source-dipole panel method, the flow is represented by a superposition of
the three constituents shown in equation (12.6.8), where the dipole density over the ith
panel varies linearly with respect to arc length from the initial value μ(i) to the final value
μ(i+1). Summing the flows due to the individual panels expressed by the right-hand side of
(12.6.7), and consolidating the left- and right-panel point vortices at the panel end points,
we derive an equivalent representation in terms of point vortices and vortex panels with
constant strength. The uniform strength density of the ith corresponding vortex panel is

γ(i) ≡ μ(i+1) − μ(i)

Δ
i
, (12.6.10)

where Δ
i is ith the panel length.

Because the dipole strength is continuous around the approximate polygonal contour
of the airfoil described by the panels, the strength of the point vortices vanishes at all but
the first point where it takes the value μ(1) − μ(N+1) + κ. We conclude that the linear
source-dipole panel representation is equivalent to the uniform vortex panel representation
supplemented by a point vortex at the trailing edge. The strength of the point vortex must
vanish to satisfy the Kutta–Joukowski condition at the trailing edge, as required by equation
(12.6.9).

12.6.2 Source-dipole representation

As the number of panels, N , increases, the individual panel strength density distributions
join to yield a smooth distribution defined around the airfoil. Correspondingly, the sum on
the right-hand side of (12.6.8) reduces to an integral with respect to arc length around the
airfoil, yielding an integral representation in terms of a source-dipole sheet.

Equation (12.6.7) provides us with an expression for the stream function associated
with a source-dipole panel situated over the x axis, where the source-dipoles point along
the y axis. Generalizing this expression, we find that the stream function associated with
source-dipole distribution around the airfoil is given by

ψsource dipole sheet(x, y) = − 1

2π

∮
(x− x′)ny(x

′)− (y − y′)nx(x
′)

(x− x′)2 + (y − y′)2
μ(x′) d
′, (12.6.11)

where d
′ = (dx′2 +dy′2)1/2 is the differential arc length around the airfoil measured in the
clockwise direction from a designated origin. The associated velocity potential is

φsource dipole sheet(x, y) = − 1

2π

∮
(x− x′)nx(x

′) + (y − y′)ny(x
′)

(x− x′)2 + (y − y′)2
μ(x′) d
′. (12.6.12)

The counterpart of the panel representation (12.6.8) is

u(x, y) = U+ usource dipole sheet(x, y) + u
point vortex
at trailing edge(x, y), (12.6.13)
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where the second term on the right-hand side is the velocity corresponding to the stream
function (12.6.11) and velocity potential (12.6.12). The stream function and velocity poten-
tial are given by the corresponding expressions

ψ(x, y) = Uxy − Uyx+ ψsource dipole sheet(x, y) + ψpoint vortex
at trailing edge(x, y), (12.6.14)

and

φ(x, y) = Uxx+ Uyy + φsource dipole sheet(x, y) + φpoint vortex
at trailing edge(x, y). (12.6.15)

Conversely, the source-dipole panel representation arises from the discretization the in-
tegral on the right-hand side of (12.6.11) or (12.6.12) into geometrical elements representing
source-dipole panels. In this section, we have discussed straight elements with constant and
linear strength density distributions. In more advanced implementations, curved elements,
such as sections of a parabola and circular arcs, and quadratic or higher-order strength
density distributions are employed.

12.6.3 Solution of the interior problem

Assume that the strength of the source-dipole sheet is available such that the no-penetration
condition around the airfoil is satisfied. For reasons discussed in Section 12.3, if we evaluate
the right-hand sides of equations (12.6.11)–(12.6.13) at a point located inside the airfoil,
we will find that the velocity vanishes and the stream function and potential take constant
values. This observation suggests an alternative method of computing the strength density
of the source dipoles. Instead of using the Neumann no-penetration boundary condition, we
can use the Dirichlet boundary condition requiring that the potential and stream function
are constant along the interior side of the airfoil.

Panels with constant strength density

To illustrate the implementation of the method, we discretize the airfoil contour into N
flat panels with constant strength density, as illustrated in Figure 12.4.1. Identifying the
flow induced by each panel with the flow induced by two point vortices located at the panel
end-points, as discussed earlier in this section, we obtain the potential

φ(x, y) = Ux x+ Uy y +
1

2π

N∑
i=1

[
μ(i)(θ

(i)
1 − θ

(i)
2 )
]
+

κ

2π
θT, (12.6.16)

where κ is the strength of the point vortex at the trailing edge, and the angles θ
(i)
1 , θ

(i)
2 , and

θT are defined in Figure 12.4.1.

To implement the collocation method, we evaluate (12.6.16) at the mid-point of the jth

panel, (x
(j)
M , y

(j)
M ), on the interior side of the airfoil for j = 1, . . . , N . Next, we note that

θ
(j)
1 = 0 and θ

(j)
2 = −π, and assign to the potential the reference value of zero to derive an
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algebraic equation,

0 = Ux x
(j)
M + Uy y

(j)
M +

1

2π

N∑
i=1

′ [μ(i)(θ
(i)
1 − θ

(i)
2 )
]
+

1

2
μ(j+1) +

κ

2π
θT, (12.6.17)

where the prime after the summation symbol denotes that the term i = j is excluded from
the sum. Rearranging (12.6.17), we derive a linear equation relating the panel source-dipole
densities to the strength of the trailing-edge point vortex,

1

2
μ(j+1) +

1

2π

N∑
i=1

′ [μ(i)(θ
(i)
1 − θ

(i)
2 )
]
+

κ

2π
θT = −Ux x

(j)
M − Uy y

(j)
M . (12.6.18)

Applying this equation for j = 1, . . . N , and appending to the resulting system of equations
the Kutta–Joukowski condition expressed by (12.6.9), we obtain a linear system for the
N + 1 unknowns μ(i) for i = 1, . . . N , and κ.

Distribution of the potential over the airfoil

Inspecting the third term on the right-hand side of (12.6.16) involving the sum, we find that
the potential undergoes a discontinuity of magnitude −μ(i) across the ith panel. Since the
potential inside the airfoil is constant and equal to zero, the potential on the exterior side
of the panel must be equal to −μ(i).

This result applies in a more general context: the potential at the outer side of the
airfoil is equal to the negative of the strength density of the source dipole. The tangential
velocity may then be computed by numerically differentiating μ with respect to arc length
around the airfoil.

12.6.1 Constant strength dipole panels

Code airf 2d cdp, located inside directory 07 ptf of Fdlib, computes flow past an airfoil
using the constant strength source-dipole-panel method.

(a) Run the code for an airfoil of your choice. Prepare graphs, and discuss the distribution
of the pressure coefficient.

(b) Evaluate the velocity at several points inside the airfoil and discuss the results.

12.7 Point-source panels and Green’s third identity

Previously in this chapter, we discussed flow representations in terms of vortex panels and
point-source dipole panels expressed, respectively, by equations (12.5.1) and (12.6.12) or
(12.6.13). In this section, we introduce a new representation in terms of distributions of
point sources. Working by analogy with (12.6.13), we find that the harmonic potential of

Problem
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the induced flow is given by

φsource distribution(x, y) =
1

4π

∮
ln

(x− x′)2 + (y − y′)2

�2
σ(x′) d
(x′), (12.7.1)

where σ(x) is the strength density of the distribution and � is an arbitrary reference length.

The point-source representation carries an important restriction: conservation of mass
requires that the total strength of the point sources, defined as the integral of the strength
density, σ, with respect to arc length around the airfoil, 
, is zero. If this condition is not
met, a net radial flow due to an effective point source will be established. This restriction
is satisfied automatically only in the case of symmetric flow past a symmetric non-lifting
airfoil at zero angle of attack, and in the absence circulatory motion.

In spite of this limitation, the point-source representation is not without its merits.
Its usefulness stems predominantly from Green’s third identity discussed in Section 12.7.2,
stating that a judicious combination of the point source and source-dipole representation
ensures the satisfaction of the zero flow rate condition, and also endows the strength densities
of the distributions with simple and appealing physical interpretations.

12.7.1 Source panels with constant density

Consider a flat source panel with uniform strength density equal to σ(0) situated along the
x axis between the points x = a and b. Applying (12.7.1) with y′ = 0, we find that the
corresponding velocity potential is given by

φ(0)(x, y) = σ(0) 1

4π

∫ b

a

ln
(x− x′)2 + y2

�2
dx′. (12.7.2)

Note that this expression is identical to that for the stream function due to a vortex panel
with constant strength density given in equation (12.3.11), subject to the substitution

γ(0) = −σ(0). (12.7.3)

Referring to (12.3.12), we find that

φ(0)(x, y) = σ(0) 1

4π

(
− (x− b) ln

(x− b)2 + y2

�2

+(x− a) ln
(x− a)2 + y2

�2
(12.7.4)

+2 y
(
arctan

y

x− b
− arctan

y

x− a

)− 2(b− a)
)
.

The components of the velocity are found by straightforward differentiation, and are given
by

u(0)
x (x, y) =

∂φ(0)

∂x
= −σ(0) 1

4π
ln

(x− b)2 + y2

(x− a)2 + y2
, (12.7.5)
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Figure 12.7.1 Streamline pattern of the flow due to a point-source panel with uniform strength
extending between the points x = ±b.

and

u(0)
y (x, y) =

∂φ(0)

∂y
= σ(0) 1

2π

(
arctan

y

x− b
− arctan

y

x− a

)
. (12.7.6)

Far from the panel, the flow resembles that due to a point source with strength m =
σ(0) (b− a) situated at the origin. The streamline pattern of the flow induced by a uniform
panel extending between x = ±b is shown in Figure 12.7.1.

Jump in the velocity across the panel

Expression (12.7.5) shows that the x velocity component is continuous throughout the do-
main of flow and across the source panel. In contrast, because of the inverse tangent func-
tions on the right-hand side of (12.7.6), the y velocity component undergoes a discontinuity
with magnitude σ(0) across the source panel. Specifically, the y velocity component at the
upper or lower side of the panel, a < x < b, is given by

u(0)
y (x, y → ±0) = ± 1

2
σ(0). (12.7.7)

Inverse tangent functions also appear on the right-hand side of (12.7.4). However,
because these functions are multiplied by y, which is zero over the panel, a discontinuity in
the potential does not arise.

12.7.2 Green’s third identity

The source panels can be used in the familiar way to develop a representation of potential
flow past a symmetric airfoil at zero angle of attack in the absence of circulation. The
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Figure 12.7.2 A control area in the xy plane confined by a collection of closed contours, C, is used
to establish Green’s third identity; N is the unit vector normal to the boundaries pointing into
the fluid.

numerical implementation is analogous to that of the vortex panel method discussed in
Section 12.3. However, a more interesting and more general representation is possible thanks
to Green’s third identity.

Consider a control area in the xy plane enclosed by a collection of boundaries identified
as closed contours, denoted by C, as illustrated in Figure 12.7.2. Green’s third identity states
that the harmonic potential at a point x that lies inside the control area can be represented
in terms of a combined point-source/source-dipole distribution, in the form

φ(x, y) =
1

4π

∮
C
ln

(x− x′)2 + (y − y′)2

�2
N(x′) ·∇φ(x′) d
′

+
1

2π

∮
C

(x− x′)Nx(x
′) + (y − y′)Ny(x

′)
(x− x′)2 + (y − y′)2

φ(x′) d
′, (12.7.8)

where � is an arbitrary constant length and N is the unit vector normal to the boundaries
pointing into the control area, as shown in Figure 12.7.2.

Comparing the two terms on the right-hand side of (12.7.8) with the representations
(12.7.1) and (12.6.12), we identify the strength density of the point-source distribution
with the boundary values of the potential, and the strength density of the source-dipole
distribution with the boundary values of the normal derivative of the potential.

Next, we identify the control area with the area occupied by an airfoil, and apply Green’s
identity for the potential of an incident streaming flow, φ∞. Writing N = −n, where n is
the unit vector normal to the airfoil pointing into the exterior and N is the unit vector
normal to the airfoil pointing into the interior, we obtain the representation

φ∞(x, y) = − 1

4π

∮
C
ln

(x− x′)2 + (y − y′)2

�2
n(x′) ·∇φ∞(x′) d
′
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− 1

2π

∮
C

(x− x′)nx(x
′) + (y − y′)ny(x

′)
(x− x′)2 + (y − y′)2

φ∞(x′) d
′, (12.7.9)

where the point x = (x, y) lies inside the airfoil. Note the opposite signs on the right-hand
sides of (12.7.8) and (12.7.9)

Equations (12.6.12) and (12.6.15) provide us a double-layer representation of the flow
inside the airfoil in the form

φ(x, y) = φ∞(x, y) +
1

2π

∮
C

(x− x′)nx(x
′) + (y − y′)ny(x

′)
(x− x′)2 + (y − y′)2

φ(+)(x′) d
′

+φpoint vortex
at the trailing edge(x, y), (12.7.10)

where φ(+) is the potential on the exterior side of the airfoil. Since the point x = (x, y) is
located in the interior of the airfoil, the left-hand side is a constant that may be set equal
to zero.

Combining equations (12.7.9) and (12.7.10), we obtain

1

4π

∮
C
ln

(x− x′)2 + (y − y′)2

�2
n(x′) ·∇φ∞(x′) d
′

(12.7.11)

= − 1

2π

∮
(x− x′)nx(x

′) + (y − y′)ny(x
′)

(x− x′)2 + (y − y′)2
μ(x′) d
′ + φpoint vortex

at the trailing edge(x, y),

where

μ ≡ −φ(+) + φ∞. (12.7.12)

Equation (12.7.11) is an integral equation for the dipole density μ. Once this equation has
been solved using, for example, a panel method, the potential on the exterior side of the
airfoil can be computed from equation (12.7.12) as

φ(+) = φ∞ − μ. (12.7.13)

The advantages of this representation over the vortex panel representation are now apparent.

12.7.1 Source-dipole panel method

Program airf 2d csdp, located in directory 07 ptf of Fdlib, computes flow past an airfoil
using a panel method based on equation (12.7.11). Run the code for an airfoil of your choice,
prepare graphs and discuss the distribution of the pressure coefficient around the airfoil.

12.7.2 Constant source panel method

Write a code that computes flow past a symmetric airfoil at zero angle of attack using the
point-source panel method. Run the code for an airfoil of your choice, prepare graphs, and
discuss the distribution of the pressure coefficient around the airfoil.

Problems



FDLIB Software Library A
The software library Fdlib contains a suit of Fortran 77, MATLAB, and other com-
puter programs (codes) that solve a broad range of problems in fluid dynamics and related
disciplines by a variety of numerical methods.

Fdlib consists of the thirteen main directories (folders) listed in Table A.1. Each
main directory contains a multitude of nested subdirectories (subfolders) that include main
programs, assisting subroutines and functions, utility subroutines, and data files Linked
with drivers, the utility subroutines become stand-alone modules; all drivers are provided.

A list of subdirectories and a brief statement of their contents are given in this appendix.
Further information is available at the Fdlib Internet site:

http://dehesa.freeshell.org/FDLIB

Download

The source code of Fdlib consisting of computer programs and data files is available from
the Fdlib Internet site. The directories have been archived using the tar Unix facility into
a compressed filed named FDLIB.tgz.

To unravel the directories on a Unix system, open a terminal and issue the command:
tar xzf FDLIB.tgz. This will generate a directory (folder) called FDLIB that contains
nested subdirectories (subfolders).

To unravel the directories on a Windows or other system, double-click on the archived
tar file and follow the on-screen instructions of the application invoked.

Installation and compilation

MATLAB programs are executed as interpreted scripts. The downloaded Fdlib package
does not contain Fortran 77 object files or executables. To compile and link Fortran

77 programs, follow the instructions of your compiler.

An application can be built using the makefile provided in each subdirectory. A makefile
is a script interpreted by the make utility (application) that instructs the operating system
how to compile a main program and associated functions of subroutines, and then link the
object files into an executable binary file (application) using a compiler. For example, to
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Subject Directory

1 Numerical methods 01 num meth

2 Grids 02 grids

3 Hydrostatics 03 hydrostat

4 Various 04 various

5 Lubrication 05 lub

6 Stokes flow 06 stokes

7 Potential flow 07 ptf

8 Hydrodynamic stability 08 stab

9 Vortex motion 09 vortex

10 Boundary layers 10 bl

11 Finite difference methods 11 fdm

12 Boundary element methods 12 bem

13 Turbulence 13 turbo

Table A.1 Fdlib is arranged in thirteen main directories in a physical or computational scheme.

compile an application named sublime, navigate to the subdirectory (subfolder) where the
application resides and issue the statement: make sublime.

To remove the object files, output files, and executable of a chosen application, navigate
to the subdirectory where the application resides and issue the statement: make clean.

To compile the Fortran 77 programs using a Fortran 77 90 compiler, simply make
appropriate compiler call substitutions in the makefiles.

CFDLAB

A subset of Fdlib has been combined with the fabulous X11 graphics library vogle into an
integrated application named Cfdlab that visualizes the results of simulations and performs
interactive animation. The source code of Cfdlab can be downloaded from the Internet
site: http://dehesa.freeshell.org/CFDLAB.

BEMLIB

A subset of Fdlib containing boundary-element codes have been arranged into the library
Bemlib accompanying the book: Pozrikidis, C. (2002) A Practical Guide to Boundary-
Element Methods with the Software Library BEMLIB, Chapman & Hall. The source code of
Bemlibcan be downloaded from the Internet site: http://dehesa.freeshell.org/BEMLIB.

FDLIB directory contents

The public Fdlib directories are listed in the following tables along with a brief description.
Further information and updates can be found at the Fdlib Internet site.

http://dehesa.freeshell.org/CFDLAB
http://dehesa.freeshell.org/BEMLIB
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01 num meth

This directory contains a suite of general-purpose programs on general numerical meth-
ods and differential equations that accompany the book: Pozrikidis, C. (2008) Numerical
Computation in Science and Engineering, Second edition, Oxford University Press.

Subdirectory Topic

01 num comp General aspects of numerical computation

02 lin calc Linear algebra and linear calculus

03 lin eq Systems of linear algebraic equations

04 nl eq Nonlinear algebraic equations

05 eigen Eigenvalues and eigenvectors of matrices

06 interp diff Function interpolation and differentiation

07 integration Function integration

08 approximation Function approximation

09 ode Ordinary differential equations

10 ode ddm Ordinary differential equations;

domain discretization methods

11 pde diffusion Partial differential equations;

unsteady diffusion

12 pde poisson Partial differential equations; Poisson equation

13 pde cd Partial differential equations;

convection--diffusion equation

14 bem Boundary-element methods

15 fem Finite-element methods

99 spec fnc Special functions

02 grids

This directory contains programs that perform grid generation, adaptive discretization,
parametrization, representation, and meshing of planar lines, three-dimensional lines, and
three-dimensional surfaces.

Subdirectory Topic

grid 2d Discretization of a planar line into a

mesh of straight or circular elements

prd 2d Adaptive discretization of a closed line

prd 2d open Adaptive discretization of an open line

prd 2d pr Adaptive discretization of a periodic line

prd 2d pr hs Adaptive discretization of a periodic line

with mid-point symmetry

prd 2d qs Adaptive discretization of a closed line

with quarter symmetry

prd 3d Adaptive discretization of a closed

three-dimensional line

prd 3d pr Adaptive discretization of a periodic

three-dimensional line



856 Fluid Dynamics: Theory, Computation, and Numerical Simulation

prd ax Adaptive parametrization of a planar line

representing the trace of an axisymmetric

surface in an azimuthal plane

rec 2d Interpolation through a Cartesian grid

rec 2d strml Streamlines by interpolation on a Cartesian grid

sm 3d cl df Smoothing of a function on a closed surface

by surface diffusion

sm 3d cl tr Smoothing of a function on a closed surface

by Legendre spectrum truncation

trgl Triangulation of a closed surface

trgl flat Triangulation of a flat surface

03 hydrostat

This directory contains codes that generate interfacial shapes in hydrostatics.

Subdirectory Topic

drop 2d Shape of a two-dimensional pendant or sessile

drop on a horizontal plane

drop 2di Shape of a two-dimensional drop

on an inclined plane

drop ax Shape of an axisymmetric pendant

or sessile drop on a horizontal plane

flsphere Position of a sphere floating at an

interface with a curved meniscus

men 2d Shape of a two-dimensional meniscus

between two parallel plates

men 2d plate Shape of a two-dimensional meniscus

attached to an inclined plate

men 3d Shape of a three-dimensional meniscus

in the exterior of an ellipse

men 3d 2p Shape of a doubly periodic three-dimensional

meniscus attached to cylinder lattice

men ax Shape of an axisymmetric meniscus

inside a vertical circular tube

men axe Shape of an axisymmetric meniscus

in the exterior of a vertical cylinder

men cc Shape of a three-dimensional meniscus

in the exterior two vertical cylinders
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04 various

This directory contains miscellaneous codes that compute the structure and kinematics of
various flows.

Subdirectory Topic

chan 2d Steady flow in a channel

chan 2d 2l Steady two-layer flow in a channel

chan 2d imp Impulsive flow in a channel

chan 2d ml Multi-layer flow in a channel

chan 2d osc Oscillatory flow in a channel

chan 2d trans Transient flow in a channel

chan 2d wom Pulsating flow in a channel

chan brush Steady flow in a brush channel

chan pl Steady channel flow of a power-law fluid

film Film flow down an inclined plane

films Multi-film flow down an inclined plane

flow 1d Steady unidirectional flow in a tube

with arbitrary cross-section

flow 1d 1p Steady unidirectional flow over

a periodic array of cylinders

with arbitrary cross-section

flow 1d osc Oscillatory unidirectional flow in a

tube with arbitrary cross-section

path lines Computation of path lines

plate imp Flow due to the impulsive motion of a plate

plate osc Flow due to the oscillations of a plate

spf Similarity solutions for stagnation-point flow

strml Streamline patterns of a broad range

of flows offered in a menu

tube ann Steady annular flow

tube ann ml Steady multi-layer annular flow

tube ann sw Steady swirling annular flow

tube ann sw ml Steady multi-layer swirling annular flow

tube crc Steady flow through a circular tube

tube crc ml Steady multi-layer flow

through a circular tube

tube crc sec Steady flow through a circular tube

due to the translation of a sector

tube crc sw trans Transient swirling flow in a circular tube

tube crc trans Transient flow through a circular tube

tube crc wom Pulsating flow in a circular tube

tube ell Steady flow through a tube with

elliptical cross-section

tube rec Steady flow through a tube with

rectangular cross-section

tube trgl eql Steady flow through a tube with

triangular cross-section
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05 lub

This directory contains codes that solve problems involving lubrication flow.

Subdirectory Topic

bear 2d Dynamic simulation of the motion of a

slider bearing pressing against a wall

chan 2l exp Dynamic simulation of the evolution

of two superposed viscous layers in a

horizontal or inclined channel computed

by an explicit finite-difference method

chan 2l imp Same as chan 2l exp, but with an

implicit finite-difference method

films Evolution of an arbitrary number of superposed

films on a horizontal or inclined wall

06 stokes

This directory contains codes that compute viscous flows at vanishing Reynolds numbers.

Subdirectory Topic

bump 3d Shear flow over a spherical bump on a plane wall

caps 2d Dynamic simulation of the motion of

a two-dimensional drop or elastic capsule

for a variety of flow configurations

caps 3d Dynamic simulation of the motion of a

three-dimensional elastic capsule

chan2l Dynamic simulation of two-layer flow in a channel

in the presence of an insoluble surfactant

drop 3d Dynamic simulation of the motion of a

three-dimensional drop with constant

or varying surface tension

drop 3dw Dynamic simulation of the deformation

of a three-dimensional drop adhering to

a plane wall

drop ax Dynamic simulation of the motion

of an axisymmetric liquid drop

em 2d Dynamic simulation of the motion of a

suspension of two-dimensional drops or

elastic capsules, for a variety of flow

configurations

flow 2d Two-dimensional flow in a domain with

arbitrary geometry

flow 3x Shear flow over an axisymmetric cavity,

orifice, or protrusion, computed by a

boundary-element method
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prtcl 2d Flow past a fixed bed of two-dimensional

particles with arbitrary shapes

for a variety of flow configurations

computed by a boundary-element method

prtcl 3d Flow past or due to the motion of

a three-dimensional particle

for a variety of configurations

computed by a boundary-element method

prtcl 3d mob Same as prtcl 3d but for the mobility problem

where the force and torque on the particle

are specified and the particle velocity

and angular velocity are computed in the solution

prtcl 3d mob dlr se Same as prtcl 3d mob using the double-layer

representation and a spectral-element method

prtcl ax Flow past or due to the motion of

a collection of axisymmetric particles

computed by a boundary-element method

prtcl sw Swirling flow produced by the rotation

of an axisymmetric particle computed

by a boundary-element method

rbc 2d Dynamic simulation of the deformation

of a two-dimensional red blood cell

sgf 2d Green’s functions of two-dimensional flow

sgf 3d Green’s functions of three-dimensional flow

sgf ax Green’s functions of axisymmetric flow

susp 3d Dynamic simulation of the motion

of a suspension of three-dimensional

rigid particles with arbitrary shapes,

for a variety of flow configurations,

computed by a boundary-element method

two spheres Motion of two intercepting spheres in

simple shear flow

07 ptf

This directory contains codes that solve problems involving potential flow.

Subdirectory Topic

airf 2d Airfoil shapes

airf 2d cdp Flow past an airfoil computed by the

constant-dipole-panel method

airf 2d csdp Flow past an airfoil computed by the

constant-source-dipole-panel method

airf 2d lvp Flow past an airfoil computed by the

linear-vortex-panel method

body 2d Flow past or due to the motion of

a two-dimensional body computed
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by a boundary element method

body ax Flow past or due to the motion of

an axisymmetric body computed

by a boundary element method

cvt 2d Flow in a rectangular cavity computed

by a finite difference method

flow 2d Two-dimensional flow in an arbitrary domain

computed by a boundary element method

lgf 2d Green and Neumann functions of Laplace’s

equation in two dimensions

lgf 3d Green and Neumann functions of Laplace’s

equation in three dimensions

lgf ax Green and Neumann functions of Laplace’s

equation in axisymmetric domains

tank 2d Dynamic simulation of liquid sloshing

in a rectangular tank computed by a

boundary-element method

08 stab

This directory contains codes that perform stability analysis of miscellaneous flows.

Subdirectory Topic

ann2l Capillary instability of two annular layers

placed between two concentric cylinders

in the presence of an insoluble surfactant

ann2l0 Same as ann 2l for Stokes flow

ann2lel Same as ann 2l for an elastic interface

ann2lel0 Same as ann 2l0 for an elastic interface

ann2lvs0 Same as ann 2l0 for a viscous interface

chan2l0 Instability of two-layer flow in a channel

under conditions of Stokes flow

chan2l0 s Instability of two-layer flow in a channel

in the presence of an insoluble surfactant

under conditions of Stokes flow

coat0 s Instability of a liquid film resting on a plane

wall in the presence of an insoluble surfactant

under conditions of Stokes flow

film0 Instability of a liquid film down an inclined

plane for Stokes flow

film0 s Instability of a liquid film down an inclined

plane in the presence of an insoluble surfactant

for Stokes flow

if0 Instability of a horizontal interface between

two semi-infinite fluids for Stokes flow

ifsf0 s Instability of a horizontal interface between

two semi-infinite fluids for Stokes flow
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in simple shear flow in the presence

of surfactants

kirch stab Instability of Kirchhoff’s elliptical vortex

layer0 Instability of a horizontal liquid layer

resting on a horizontal wall under

a semi-infinite fluid for Stokes flow

layer0sf s Instability of a sheared liquid layer coated

on a horizontal plane in the presence of

an insoluble surfactant for Stokes flow

orr Instability of a viscous shear flow

with arbitrary velocity profile

prony Prony fitting of a times series

with a sum of complex exponentials

rayleigh Instability of an inviscid shear flow

with arbitrary velocity profile

thread0 Instability of an infinite viscous thread

suspended in an ambient viscous fluid

for Stokes flow

thread1 Instability of an inviscid thread

suspended in an inert ambient fluid

vl Instability of a vortex layer

vs Instability of a vortex sheet

09 vortex

This directory contains codes that compute vortex motion.

Subdirectory Topic

lv lia Dynamic simulation of the motion of a

three-dimensional line vortex computed

by the local-induction approximation (LIA)

lvr Velocity induced by line vortex rings

lvrm Dynamic simulation of the motion of a

collection of coaxial line vortex rings

pv Velocity induced by a point vortex

pvm Dynamic simulation of the motion

of a collection of point vortices

pvm pr Dynamic simulation of the motion of a

periodic collection of point vortices

pvpoly Polygonal arrangements of point vortices

ring Self-induced velocity of a vortex ring

with core of finite size

vl 2d Dynamic simulation of the evolution of

compound periodic vortex layers

vp 2d Dynamic simulation of the evolution of a

collection of two-dimensional vortex patches

vp ax Dynamic simulation of the evolution of a
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collection of axisymmetric vortex rings and

vortex patches

10 bl

This directory contains codes that solve boundary-layer flow.

Subdirectory Topic

blasius Computation of the Blasius boundary layer

falskan Computation of the Falkner-Skan boundary layer

kp cc Boundary layer around a circular cylinder

computed by the Kàrmàn-Pohlhausen method

pohl pol Profiles of the Pohlhausen polynomials

11 fdm

This directory contains codes that solve problems using finite-difference methods.

Subdirectory Topic

channel Unidirectional flow in a channel

cvt pm Transient flow in a rectangular cavity

computed by a projection method

cvt stag Steady Stokes flow in a rectangular

cavity computed on a staggered grid

cvt sv Steady flow in a rectangular cavity computed

by the stream function/vorticity formulation

12 bem

This directory contains codes that produce solutions to Laplace’s equation by boundary-
element methods.

Subdirectory Topic

ldr 3d Solution of Laplace’s equation with Dirichlet

boundary conditions in the interior or exterior

of a three-dimensional region computed using

the boundary-integral formulation

ldr 3d 2p Solution of Laplace’s equation with Dirichlet

boundary conditions in a semi-infinite

region bounded by a doubly-periodic surface

computed using the double-layer formulation

ldr 3d ext Solution of Laplace’s equation with Dirichlet

boundary conditions in the exterior of a

three-dimensional region computed using

the double-layer formulation
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ldr 3d ext se Same as ldr 3d ext but with a spectral-element method

ldr 3d int Solution of Laplace’s equation with Dirichlet

boundary conditions in the interior of a

three-dimensional region computed using

the double-layer formulation

ldr 3d int se Same as ldr 3d int but with a spectral-element method

lnm 3d Solution of Laplace’s equation with Neumann

boundary conditions in the interior or

exterior of a three-dimensional region

computed using the boundary-integral formulation

13 turbo

This directory contains data and codes pertinent to turbulent flow.

Subdirectory Topic

stats Statistical analysis of a turbulent flow time series
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Matlab Primer C
MATLAB R© is a commercial computer software application for interactive numerical compu-
tation and graphics visualization produced and distributed by The MathWorks Inc. The
application was developed in the 1970s as a virtual laboratory for matrix calculus and linear
algebra. Since then, MATLAB has evolved to become both a programming language and
a computing environment supported by a multitude of advanced functions and toolboxes.
MATLAB must be purchased and installed on a computer with a proper license. Inexpensive
licenses are available for students and educators.

As a programming language, MATLAB is roughly equivalent, in some ways superior
and in some ways inferior to traditional upper-level languages, such as Fortran 77, C,
or C++. As a computing environment, MATLAB is able to run indefinitely in its own
workspace. Thus, a session defined by all initialized variables, graphics and other objects,
such as figures, can be saved and reinstated at a later time. In this sense, MATLAB is an
operating system running inside the operating system that empowers the host computer.
Symbolic algebraic manipulation is available through an add-on library (toolbox) that uses
a kernel borrowed from the mathematical software engine Maple.

An attractive feature of MATLAB is the availability of a broad range of utility com-
mands, intrinsic functions, and computational toolboxes, especially graphics functions. A
simplifying feature of MATLAB is that the type and size of vectors and matrices used in
the calculations are assigned automatically and can be changed in the course of a session,
thereby circumventing the need for variable declaration and explicit memory allocation and
deallocation.

C.1 Launching MATLAB

To launch MATLAB in a Windows operating system, double-click on the MATLAB icon.
This action runs a starter program, currently a disk operating system (DOS) batch script,
that launches the main MATLAB executable. Alternatively, MATLAB can be started from
a DOS command line by a procedure similar to that discussed next for Unix.

To launch MATLAB in a Unix operating system, run the Unix script matlab installed
by MATLAB by issuing the command:

>> matlab
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where >> represents the Unix shell prompt. Assuming that the script is in the path of
executables, the MATLAB executable will be launched in a graphical user interface (GUI)
or command line mode. To suppress the memory demanding GUI, issue the command:

>> matlab -nodesktop

or the command:

>> matlab -nojvm

where nojvm negates the java virtual machine (jvm). Starting MATLAB by issuing the
command:

>> matlab -nodesktop -nosplash

suppresses both the GUI and the splash screen at startup. In Unix, MATLAB can be
launched with a number of options. To obtain a list, request help by issuing the command:

>> matlab -help

in the MATLAB environment.

MATLAB employs a number of shared libraries, parameters, and environmental vari-
ables. To obtain a complete list, issue the command:

>> matlab -n

A variety of MATLAB tutorials are available in the Internet.

C.2 MATLAB programming

Only elementary computer programming skills are needed to read and write MATLAB code.
The code is written in one file or a collection of files, called the source or program files,
using a standard file editor, such as the notepad or the vi editor.

The source code includes the main program, sometimes also called a script, and the
necessary user-defined functions. The names of these files must be suffixed by a dot followed
by the m letter (.m). Code execution begins by typing the name of the file containing the
main program in the MATLAB environment without the .m suffix. Alternatively, the code
can be typed in the MATLAB environment one line at a time, followed by the Return

keystroke.

MATLAB is an interpreted language, which means that the instructions are translated
into machine language and executed in real time, one at a time. In contrast, a source code
written in Fortran 77, C, C++, or any other comparable language must first be compiled
to generate object files. The object files are then linked together with the necessary system
and user-defined libraries to produce an executable binary file.
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Grammar and syntax

Following is a list of general rules regarding on MATLAB grammar and syntax. When
confronted with a warning or error after issuing a command or during execution, this list
should serve as a first check point:

• MATLAB variables are (lower and upper) case-sensitive:

The variable echidna is different from the variable echiDna. Similarly, the MAT-

LAB command return is not equivalent to the erroneous command Return. The latter
will not be recognized by the MATLAB interpreter.

• MATLAB variables must start with a letter:

A variable name is described by a string of up to thirty-one characters, including
letters, digits, and the underscore. Punctuation marks are not allowed.

• MATLAB string variables are enclosed by a single quote:

For example, we may define the string variable:

artist_001 = 'Celine_Dion'

• Beginning and end of a command line:

A MATLAB command may begin at any position in a line and may continue practically
indefinitely in the same line.

• Line continuation:

To continue a command to the next line, put three consecutive dots at the end of the
line. Text after three dots in the current line is ignored.

• Multiple commands in a line:

Two or more commands can be placed in the same line, provided they are separated
by a semicolon (;).

• Display:

When a command is executed directly or by running a MATLAB code, MATLAB dis-
plays the numerical value assignment or the result of a calculation. To suppress the
output, put a semicolon (;) at the end of the command.

• White space:

More than one empty spaces between words are ignored. However, numbers cannot
be broken up into sections separated by blank spaces.

• Range of indices:

The indices of vectors and arrays must be positive and nonzero. For example, the
vector entry v(-3) is not acceptable. This annoying restriction can be circumvented in
clever ways by redefining, reflecting, or shifting the indices.
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• Comments:

A line beginning with the % character, or the tail-end of a line after the % character,
is a comment to be ignored by the MATLAB interpreter.

• Mathematical symbols and special characters:

Mathematical symbols and special characters used in interactive MATLAB dialog and
programming are listed in Table C.2.1.

• Logical control flow commands:

Basic logical control flow commands are listed in Table C.2.2.

• Input/output commands:

Basic input/output (I/O) commands, functions, and formatting statements are listed
in Tables C.2.3–C.2.5. Once the output format is set, it remains in effect until changed.

Do not write MATLAB-specific code

It is a good practice to write MATLAB code in a form that can be translated readily to
any other upper-level computer language, such as Fortran 77, C, or C++, by avoiding
procedures that are available only in MATLAB. Computational scientists often write code
in one of the aforementioned languages and a companion code in MATLAB for the purpose
of debugging and to ensure platform independence.

Precision

MATLAB stores all numbers in the long format of the floating point representation. This
means that real numbers have a finite precision of roughly sixteen significant digits and
a range of definition varying in absolute value approximately between 10−308 and 10+308.
Numbers that are smaller than 10−308 or higher than 10+308 in absolute value cannot be
accommodated. All computations are done in double precision. However, this should not be
confused with the ability to view and print numbers with a specified number of significant
figures.

C.3 MATLAB commands

Once invoked, MATLAB responds interactively to various commands, statements, and dec-
larations issued by the user in the MATLAB environment. These directives are issued by
typing the corresponding name, single-line syntax, or multi-line construct, and then pressing
the Enter key.

General utility and interactive-input MATLAB commands are listed in Table C.3.1.
Issuing the command demos initiates various demonstrations and illustrative examples. A
session can be saved using the save command and reinstated at a later time.
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+ plus sign
- minus sign
* number or matrix multiplication sign
.* array multiplication sign
^ number or matrix power sign
.^ array power sign
kron Kronecker tensor product
\ backslash or left division sign
/ slash or right division sign
./ array division sign
: colon
() parentheses
[] brackets
. decimal point sign
.. parent directory
... line continuation
, comma
; semicolon, use to suppress the screen display
% indicates that the rest of the line is a comment
! exclamation point
′ matrix transpose
′′ quote
.′ nonconjugated transpose
= set equal to (replace left by right)
== equal
∼= not equal
< less than
<= less than or equal to
> greater than
>= greater than or equal to
& logical and
| logical or
∼ Logical not
xor Logical exclusive or

i, j imaginary unit
pi number π = 3.14159265358 . . .

Table C.2.1 MATLAB operators, symbols, special characters, and constants.
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break terminate the execution
else Use with the if statement
elseif Use with the if statement
end terminate a for loop, a while loop, or an if block
error display a message and abort
for loop over commands a specific number of times
if conditionally execute commands
pause wait for user’s response
return return to the MATLAB environment,

invoking program or function
while Repeat statements an indefinite number of times

until a specified condition is met

Table C.2.2 Logical control flow MATLAB commands and construct components.

disp display numerical values or text
Use as: disp disp() disp(‘text’)

fclose close a file
fopen open a file
fread read binary data from a file
fwrite write binary data to a file
fgetl read a line from a file, discard the newline character
fgets read a line from a file, keep the newline character
fprintf write formatted data to a file using C language conventions
fscanf read formatted data from a file
feof test for end-of-file (EOF)
ferror inquire the I/O error status of a file
frewind rewind a file
fseek set file position indicator
ftell get file position indicator
sprintf write formatted data to string
sscanf read formatted string from file
csvread read from a file values separated by commas
csvwrite write into file values separated by commas
uigetfile retrieve the name of a file to open through dialog box
uiputfile retrieve the name of a file to write through dialog box

Table C.2.3 Input/output (I/O) MATLAB commands using for opening, closing, and manipu-
lating files.

input prompt for user input
keyboard invoke keyboard as though it were a script file
menu generate menu of choices for user input

Table C.2.4 Interactive MATLAB input commands.
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format short fixed point with 4 decimal places (default)
format long fixed point with 14 decimal places
format short e scientific notation with 4 decimal places
format long e scientific notation with 15 decimal places
format hex hexadecimal format
format + +, -, and space are printed for positive,

negative, and zero elements
format compact suppress extra line feeds
format loose reinstate extra line feeds

Table C.2.5 Matlab Formatting MATLAB commands.

clear Clear variables and functions from memory
demo Run demos
exit Terminate a MATLAB session
help Online documentation
load Retrieve variables from a specified directory
save Save workspace variables to a specified directory
saveas Save figure or model using a specified format
size Reveal the size of matrix
who List current variables
quit Terminate a MATLAB session

Table C.3.1 General utility MATLAB commands.

To obtain a full explanation of a MATLAB command, statement, or function, use the
MATLAB help facility, which is the counterpart of the Unix manual man facility. For ex-
ample, issuing the command help break in the MATLAB environment prompts the following
description:

BREAK Terminate execution of WHILE or FOR loop.

BREAK terminates the execution of FOR and WHILE loops.

In nested loops, BREAK exits from the innermost loop only.

BREAK is not defined outside of a FOR or WHILE loop.

Use RETURN in this context instead.

See also FOR, WHILE, RETURN, CONTINUE.

The command clear is especially important, as it resets all variables to the uninitialized
state, and thereby prevents the use of improper values defined or generated in a previous
session or calculation. A detailed explanation of this command can be obtained by typing:
help clear.
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C.4 MATLAB examples

In the following examples, the interactive usage of MATLAB is demonstrated in simple ses-
sions. A line that begins with two “greater than” signs (>>) denotes the MATLAB command
line where we enter a definition or issue a statement. Unless stated otherwise, a line that
does not begin with >> is MATLAB output.

• Numerical value assignment and addition:

>> a=1

a =

1

>> b=2

b =

2

>> c=a+b

c =

3

• Numerical value assignment and subtraction:

>> clear

>> a=1; b=-3; c=a-b

c =

4

• Number multiplication:

>> clear

>> a=2.0; b=-3.5; c=a*b;

>> c

c =

-7

Typing the variable c displays its current value, in this case −7.

• Vector definition:

>> clear

>> v = [2 1]

v =

2 1

>> v(1)

ans =

2

>> v' % transpose

ans =

2

1
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Typing v(1) displays the first component of the vector v as an answer. The comment
“transpose” is ignored since it is preceded by the comment delimiter “%.” The answer ans
is, in fact, a variable initialized and evaluated by MATLAB.

• Vector addition:

>> v = [1 2]; u = [-1, -2]; u+v

ans =

0 0

• Matrix definition, addition, and multiplication:

>> a = [1 2; 3 4]

a =

1 2

3 4

>> b = [ [1 2]' [2 4]' ]

b =

1 2

2 4

>> a+b

ans =

2 4

5 8

>> c=a*b

c =

5 10

11 22

• Multiply a complex matrix by a complex vector:

>> a = [1+2i 2+3i; -1-i 1+i]

a =

1.0000 + 2.0000i 2.0000 + 3.0000i

-1.0000 - 1.0000i 1.0000 + 1.0000i

>> v = [1+i 1-i]

v =

1.0000 + 1.0000i 1.0000 - 1.0000i

>> c=a*v'

c =

2.0000 + 6.0000i

-2.0000 + 2.0000i

By taking the transpose, indicated by a prime, the row vector, v, becomes a column vector
that is conformable with the square matrix, a.
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• For loop:

>> for j=-1:0

j

end

j =

-1

j =

0

In this example, the first three lines are entered by the user.

• If statement:

>> j=0;

>> i=1;

>> if i==j+1, disp 'case 1', end

case 1

• For loop:

>> n=3;

>> for i=n:-1:2

disp 'i='; disp(i), end

i=

3

i=

2

The loop is executed backward, starting at n, with step of −1.

• If loop:

>> i=1; j=2;

>> if i==j+1; disp 'case 1'

elseif i==j; disp ’case2'

else; disp 'case3'

end

case3

In this example, all lines, save the last line, are entered by the user.
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• While loop:

>> i=0;

>> while i<2, i=i+1; disp(i), end

1

2

The four statements in the while loop could have been typed in separate lines; that is, the
commas could have been replaced by the Enter keystroke.

C.5 MATLAB functions

MATLAB encapsulates an extensive library of internal functions for numerical computation
and data visualization. General and specialized mathematical functions are listed in Table
C.5.1. The MATLAB help facility provides detailed information on the proper function
usage, arguments, and parameters.

If the proper syntax or applicability of a function is unclear, it is best to code the nu-
merical method in a user-defined function working from first principles. It is both rewarding
and instructive to create a personal library of user-defined functions based on control-flow
commands.

Numerical methods

MATLAB includes a comprehensive library of numerical methods whose functions perform
numerical linear algebra, solve algebraic equations, perform minimization, carry out function
integration, solve differential equations, and execute a variety of other tasks. Special-purpose
libraries of interest to a particular discipline are accommodated in toolboxes. Selected
MATLAB numerical methods functions are listed in Table C.5.2.

The following MATLAB session illustrates the solution of a linear system, A · x = b,
where A is a matrix and b is a conformable vector,

>> A=[1 1; 3 2];

>> b(1)=0; b(2)=1;

>> x=b/A'

x =

1.0000 -1.0000

Note that the transpose of the matrix A is used in the third line.

C.6 User-defined functions

In MATLAB, a user-defined function is written in a file whose name defines the calling
name of the function. The file name must be suffixed with the MATLAB identifier (.m).
Thus, a function named woodchuck must reside in a file named woodchuck.m, whose general
structure is:
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Function Purpose

abs absolute value
acos inverse cosine
acosh inverse hyperbolic cosine
acot inverse cotangent
acoth inverse hyperbolic cotangent
acsc inverse cosecant
acsch inverse hyperbolic cosecant
angle phase angle
asec inverse secant
asech inverse hyperbolic secant
asin inverse sine
asinh inverse hyperbolic sine
atan inverse tangent
atan2 four-quadrant inverse tangent
atanh inverse hyperbolic tangent
ceil round toward plus infinity.
cart2pol Cartesian-to-polar coordinate conversion
cart2sph Cartesian-to-spherical coordinate conversion
conj complex conjugate
cos cosine
cosh hyperbolic cosine
cot cotangent
coth hyperbolic cotangent
csc cosecant
csch hyperbolic cosecant
exp exponential
expm matrix exponential
fix round toward zero
floor round toward minus infinity
gcd greatest common divisor
imag complex imaginary part
lcm least common multiple
log natural logarithm
log10 common logarithm
pol2cart polar-to-Cartesian coordinate conversion
real real part
sec secant

Table C.5.1 Common and specialized MATLAB mathematical functions (Continuing.)
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Function Purpose

sech hyperbolic secant
sign signum function
sin sine
sinh hyperbolic sine
sqrt square root
tan tangent
tanh hyperbolic tangent

Specialized

bessel Bessel functions
besseli modified Bessel functions of the first kind
besselj Bessel functions of the first kind
besselk modified Bessel functions of the second kind
bessely Bessel functions of the second kind
beta Beta function
betainc incomplete beta function
betaln logarithm of the beta function
ellipj Jacobi elliptic functions
ellipke complete elliptic integral
erf error function
erfc complementary error function
erfinv inverse error function
expint exponential integral
gamma Gamma function
gammainc incomplete gamma function
gammaln logarithm of gamma function
legendre associated Legendre functions
log2 dissect floating point numbers
pow2 scale floating point numbers

Initialization

eye identity matrix
ones matrix of ones
rand uniformly distributed random numbers and arrays
randn normally distributed random numbers and arrays
zeros matrix of zeros

Table C.5.1 (Continued) Common and specialized MATLAB mathematical functions.
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Function Purpose

cat concatenate arrays
cond condition number of a matrix
det matrix determinant
eig matrix eigenvalues and eigenvectors
inv matrix inverse
lu LU decomposition of a matrix
ode23 solution of ordinary differential equations

by the second/third-order Runge-Kutta method
ode45 solution of ordinary differential equations

by the fourth/fifth-order Runge-Kutta-Fehlberg method
qr QR decomposition of a matrix
poly characteristic polynomial of a matrix
quad function integration by Simpson’s rule
root polynomial root finder
svd singular-value decomposition
trapz function integration by the trapezoidal rule

x = A\b solves a linear system, A · x = b,
where A is an N ×N matrix and
b, x are N -dimensional column vectors;
also solves an overdetermined system of equations

x = b/A solves a linear system, x ·A = b,
where A is an N ×N matrix and
b, x are N -dimensional row vectors;
also solves an overdetermined system of equations

x = b/A' solves a linear system, A · x = b,
where A is an N ×N matrix, and
b, x are N -dimensional row vectors;
also solves an overdetermined system of equations

fsolve solves a system of nonlinear equations
fminunc performs unconstrained minimization
fmincon performs constrained minimization

Table C.5.2 An partial list of numerical-methods functions encapsulated in MATLAB.
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function [output1, output2, ...] = groundhog(input1, input2,...)

......

return

The three dots indicate additional input and output variables separated by commas; the six
dots indicate additional lines of code. The output list,

output1, output2, ...

consists of numbers, vectors, matrices, and string variables evaluated by the function by
performing operations involving the input string

input, input2, ...

A variable may appear both in the input and output list.

To execute this function in the MATLAB environment or invoke the function from a
program file, we issue the command:

[evaluate1, evaluate2, ...] = woodchuck(parameter1, parameter2, ...)

After the function has been successfully executed, evaluate1 takes the value of output1,
evaluate2 takes the value of output2, and the rest of the output variables take corre-
sponding values. If an output field is not evaluated in the function, MATLAB will issue a
warning.

If a function evaluates only one number, vector, matrix, character string, entity, or
object, the function statement and corresponding function declaration can be simplified to:

function evaluate = souvlaki(input1, input2, ...)

.....

return

An example of a simple function residing in a file named bajanakis.m is:

function bname = bajanakis(iselect)

if(iselect==1)

bname = 'sehoon';

elseif(iselect==2)

bname = 'phaethon';

else

bname = 'hercules';

end

return

The default name returned by bajanakis is hercules.
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C.7 MATLAB graphics

A powerful feature of MATLAB is the ability to generate professional quality graphics,
including animation. Graphics are displayed in dedicated windows that appear in response
to graphics commands launching internal programs. Graphics functions are listed in Table
C.7.1 under several categories. The MATLAB help facility provides a detailed description of
the various graphics function and their arguments and parameters.

Some helpful tips are listed below:

• To generate a new graphics window, use the command: figure

• To generate a graphics file, use the export or save option under the file pull-down
menu.

• To manipulate axis properties, use the function axis with appropriate arguments.

• To superimpose graphs, use the command: hold.

• To close a graphics window, use the command: close.

• Newer versions of MATLAB offer an increasing number of options.

In the remainder of this section, we present several graphics sessions followed by the
graphics output.

• Graph of the function: f(x) = sin3(πx)

>> x=-1.0:0.01:1.0; % define an array of abscissae

>> y = sin(pi*x).^3; % note the array power operator .^ (table C.3.1)

>> plot(x,y,'k')

>> set(gca,'fontsize',15)

>> xlabel('x','fontsize',15)

>> ylabel('y','fontsize',15)
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Two-dimensional graphs

bar bar graph
comet animated comet plot
compass compass plot
errorbar error bar plot
fplot plot a function
fill draw filled two-dimensional polygons
hist histogram plot
loglog log-log scale plot
plot linear plot
polar polar coordinate plot
semilogx semi-log scale plot, x-axis logarithmic
semilogy semi-log scale plot, y-axis logarithmic
stairs stair-step plot
stem stem plot for discrete sequence data

Graph annotation and operations

grid grid lines
gtext mouse placement of text
legend add legend to plot
text text annotation
title graph title
xlabel x-axis label
ylabel y-axis label
zoom zoom in and out of a two-dimensional plot

Line and fill commands

fill3 draw filled three-dimensional polygons
plot3 plot lines and points

Two-dimensional graphs of three-dimensional data

clabel contour plot elevation labels
comet3 animated comet plot
contour contour plot
contour3 three-dimensional contour plot

Table C.7.1 Elementary and specialized MATLAB graphics functions and procedures (Continu-
ing.)
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contourc contour plot computation (used by contour)
image display image
imagesc scale data and display as image
pcolor pseudocolor (checkerboard) plot
quiver quiver plot
slice volumetric slice plot

Surface and mesh plots

mesh three-dimensional mesh surface
meshc combination mesh/contour plot
meshgrid generate x and y arrays
meshz three-dimensional mesh with zero plane
slice volumetric visualization plot
surf three-dimensional shaded surface
surfc combined surf/contour plot
surfl shaded surface with lighting
trimesh triangular mess plot
trisurf triangular surface plot
waterfall waterfall plot

Three-dimensional objects

cylinder generate a cylinder
sphere generate a sphere

Graph appearance

axis axis scaling and appearance
caxis pseudocolor axis scaling
colormap color lookup table
hidden mesh hidden line removal
shading color shading
view graph viewpoint specification
viewmtx view transformation matrices

Graph annotation

grid grid lines
legend add legend to plot

Table C.7.1 Elementary and specialized MATLAB graphics functions and procedures (Continu-
ing.)
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text text annotation
title graph title
xlabel x-axis label
ylabel y-axis label
zlabel z-axis label for three-dimensional plots

Graphics control

capture screen capture of current figure in Unix
clf clear current figure
close abandon figure
figure create a figure in a new graphics window
gcf get handle to current figure
graymon set default figure properties for grayscale monitors
newplot determine correct axes and figure for new graph
refresh redraw current figure window
whitebg toggle figure background color

Axis control

axes create axes at arbitrary position
axis control axis scaling and appearance
caxis control pseudo-color axis scaling
cla clear current axes
gca get handle to current axes
hold hold current graph
ishold true if hold is on
subplot Create axes in tiled positions

Graphics objects

figure create a figure window
image create an image
line generate a line
patch generate a surface patch
surface generate a surface
text create text
uicontrol create user interface control
uimenu create user interface menu

Table C.7.1 Elementary and specialized MATLAB graphics functions and procedures (Continu-
ing.)
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Graphics operations

delete delete object
drawnow flush pending graphics events
findobj find object with specified properties
gco get handle of current object
get get object properties
reset reset object properties
rotate rotate an object
set set object properties

Hard copy and storage

orient set paper orientation
print print graph or save graph to file
printopt configure local printer defaults

Movies and animation

getframe get movie frame
movie play recorded movie frames
moviein initialize movie frame memory

Miscellaneous

ginput graphical input from mouse
ishold return hold state
rbbox rubber-band box for region selection
waitforbuttonpress wait for key/button press over figure

Color controls

caxis pseudocolor axis scaling
colormap color lookup table
shading color shading mode

Table C.7.1 Elementary and specialized MATLAB graphics functions and procedures (Continu-
ing.)
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Color maps

bone grayscale with a tinge of blue color map
contrast contrast enhancing grayscale color map
cool shades of cyan and magenta color map
copper linear copper-tone color map
flag alternating RGB and black color map
gray linear grayscale color map
hsv hue-saturation-value color map
hot black-red-yellow-white color map
jet variation of HSV color map (no wrap)
pink pastel shades of pink color map
prism prism-color color map
white all white monochrome color map

Color map functions

brighten brighten or darken color map
colorbar display color map as color scale
hsv2rgb hue-saturation-value to RGB equivalent
rgb2hsv RGB to hue-saturation-value conversion
rgbplot plot color map
spinmap spin color map

Lighting models

diffuse diffuse reflectance
specular specular reflectance
surfl three-dimensional shaded surface with lighting
surfnorm surface normals

Table C.7.1 Elementary and specialized MATLAB graphics functions and procedures (Contin-
ued.)
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• Graph of the Gaussian function: f(x) = e−x2

>> fplot('exp(-x^2)',[-5, 5],'k')

>> set(gca,'fontsize',15)

>> xlabel('x','fontsize',15)

>> ylabel('y','fontsize',15)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

• Paint a polygon in red:

>> x =[0.0 1.0 1.0];

y=[0.0 0.0 1.0];

c='r';

>> fill(x,y,c)

>> set(gca,'fontsize',15)
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• Mesh plot:

>> [x, y] = meshgrid(-1.0:0.10:1.0, -2.0:0.10:2.0);

>> z = sin(pi*x+pi*y);

>> mesh(z)

>> set(gca,'fontsize',15)
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• Kelvin foam:

Script tetrakai (not listed in the text) generates a periodic, space-filling lattice of Kelvin’s
tetrakaidecahedron (14-faced polyhedron) encountered in liquid and metallic foam.
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Index

NACA4, 806
airf 2d cdp, 847
airf 2d lvp, 827
arrow cp , 589
bear 2d press, 602
bear 2d, 605
ber bei 0, 516
blasius, 682
chan2l exp, 633
chan2l imp, 638
chan 2d 2l, 427
chan 2d imp, 494
chan 2d ml, 430
chan 2d osc, 504
chan 2d trans, 500
chan 2d wom, 507
chan 2d, 422
chan brush, 481
chan pl fun, 438
chan pl, 437
channel ftcs, 524
contour, 557
cubic, 256
cvt 2d fdm, 148
cvt 2d, 149
cvt pm, 570
cvt stag, 584
cvt sv, 553
draw arrow 2d, 56
drop 2d ode, 287
drop 2di1 newton2, 297
drop 2di1, 299
drop 2di2 ode, 303
drop 2di2, 308
drop 2di3 newton2, 305
drop 2di ode, 295

drop 2d, 289
drop ax1 ode, 326
drop ax1, 330
drop ax, 324
eig, 722
ellipke, 789
fft, 742
films pde, 620
films, 443, 624
film, 441
flsphere ode, 335
flsphere, 340
fsolve, 302
grid 2d, 50
joukowski, 808
keller.dat, 744
kp cc, 702
lgf 2d, 166
lv lia, 801
lvrm, 796
lvr, 790
men 2d ode, 277
men 2d plate, 267
men 2d, 279
men 3d, 352
men ax ode, 315
men ax, 317
naca, 832
newton1 2, 256
orr, 723
path lines, 29, 34
phase vel, 702
plate osc, 505
pohl pol, 698
pois gs nnnn, 577
pvm, 759
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pv, 759
quiver, 57, 153
rayleigh sys, 716
rayleigh vel, 714
rayleigh, 717
rec 2d int, 53
rec 2d strml, 57
rec 2d vgt, 88
rec 2d, 53, 55, 57, 88, 90
ring, 792
stats, 744, 751
strml, 34, 168, 760
surf, 557
tetrakai, 888
thomas, 529
tube an ml, 465
tube an sw ml, 486
tube ann sw, 485
tube ann, 462
tube crc ml, 454
tube crc sec, 459
tube crc sw trans, 518
tube crc trans, 514
tube crc wom, 517
tube crc, 449
tube ell, 472
tube rec, 478
two layers, 536
vp 2d pr, 778
vp 2d, 777
vp ax, 798

accelerating frame, 381
acceleration, 6, 9

of a point particle, 116
accumulation, 370
aerodynamics, 803
aircraft, 803

altimeter, 249
airfoil, 805

by mapping, 807
Joukowski, 808
NACA, 806
thin, 834

alternating tensor, 78

altimeter, 249
angle of attack, 806
annular flow, 461

multi-layer, 464
antisymmetric matrix, 42
Archimedes principle, 256
autonomous ODEs, 21
Avogadro number, 206
axisymmetric

flow, 18, 80, 103
induced by vorticity, 784
stream function, 124
vorticity transport, 403

interface, 236
azimuthal angle, 7, 10

baroclinic vorticity, 401
Beltrami flow, 380, 381
BEMLIB, 854
Bernoulli equation, 381

for irrotational flow, 384
for steady irrotational flow, 385

Bessel function, 511
orthogonality, 513, 518

Bickley jet, 722
biconjugate gradients, 157
biharmonic

equation, 661
operator, 655, 707

bilinear interpolation, 51
Bingham plastic, 221
binormal vector, 800
Biot–Savart integral, 783

for axisymmetric flow, 786
Blasius equation, 679
blood, 2
body force, 181
Boltzmann constant, 212
Bond number, 272, 335, 416
boundary

-element method, 854
-integral representation of Stokes flow,

652
condition, 397
Dirichlet, 138
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homogeneous, 137
in potential flow, 137
Neumann, 137
no-slip, 228
slip, 229

impermeable, 137
layer, 670
Blasius, 678
Falkner–Skan, 691
in accelerating or decelerating flow, 691
Prandtl, 673
Sakiadis, 686, 691
Stokes, 503, 505, 516
thickness, 683

permeable, 137
traction, 188

Boussinèsq law for turbulent flow, 746
branch cut, 174
bubble

axisymmetric, 320
expanding or contracting, 395
two-dimensional, 282

buffer zone, 736
buoyancy force, 252

camber, 805
line, 805

capillary
length, 263
number, 417
pressure, 398
rise, 265

Cardano’s formula, 82, 256
Cartesian

coordinates, 4
grid, 46

cavity flow, 547
centered difference, 85, 86
centrifugal force, 379
CFD, 57, 521
CFDLAB, 854
channel

flow, 469
of two layers, 533, 627
steady, 419

rectangular, 480
characteristic scale, 414
chord, 805
circular

arc, 775
Couette flow, 483
multi-layer, 486

circulation, 176, 780
in two-dimensional flow, 753

circulatory motion, 173
closure in turbulent flow, 751
coherent structure, 735
compatibility condition, 562
compressible fluid, 120, 215
conditional stability, 525
conjugate gradients, 157
constitutive equation, 210
contact

angle, 261
line, 229, 261
point, 261

continuity equation, 105, 106, 116, 124, 135,
380

continuum approximation, 17
contour

dynamics, 772
for axisymmetric flow, 798

integral representation, 769
control volume, 109, 369
convection, 370
coordinates

cylindrical polar, 73
elliptic, 350
plane polar, 74, 119, 124
spherical polar, 74

Coriolis force, 379
corner flow, 663
correlation in turbulent flow, 750
Couette flow, 422

circular, 483
multi-layer, 486

Crank–Nicolson method, 564
creeping flow, 639
cubic equation, 256
curl, 78
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curvature, 191
directional, 200
mean, 198
of a line, 195, 800
principal, 201

cylinder
flow past, 670, 810
in potential flow, 174
in shear flow, 658
rotating, 657

cylindrical polar coordinates, 7, 32, 73, 117,
138, 222, 377, 398

deformation, 4, 36, 71, 81
rate of, 37, 70

del operator, 66
delta function

in a plane, 756
in one dimension, 766
in three dimensions, 767

density, 105
evolution equation, 110
specific, 255

derivative
material, 114
numerical, 84

difference
backward, 85
centered, 85, 86
forward, 27, 84

differentiation
in two dimensions, 86
numerical, 84

diffusion number, 524
dimensionless number, 415
Dirac delta function

in a plane, 756
in one dimension, 766
in three dimensions, 767

displacement thickness, 686
divergence

of the velocity, 75, 367
theorem, 101, 102, 257

DNS, 745
DOS, 866

dough, 2
drag force on a cylinder, 672
driven-cavity flow, 547
drop

axisymmetric, 320
pendant, 282, 320
sessile, 282, 320
two-dimensional
on a horizontal plane, 282
on an inclined plane, 292

duct, 478
dynamics, 4

eddy, 735
viscosity, 746

eigenvalue, 42
eigenvector, 42
Einstein summation convention, 66
element

regular, 774
singular, 773

elliptic
coordinates, 350
integral, 482, 788

elliptical tube, 470
energy

internal, 216
kinetic, 2

entropy, 216
error function, 496

complementary, 496
Euler

–Maclaurin theorem, 599
decomposition, 503, 708
equation, 381
method
explicit, 26
modified, 28

theorem for the curvature, 201
evolution equation

for the density, 110
for the potential, 384
for the velocity, 377

expansion, 37, 70, 75
extension, 208
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extensional flow, 215
extensive property, 114

Falkner–Skan boundary layer, 691
falling-ball viscometer, 645
fast Fourier transform, 742
FDLIB, 853
FFT, 742
Fick’s law, 234
film flow, 440, 610

multi-, 441, 615
finite-difference

grid, 549
method, 110
for Laplace’s equation, 140
for the Orr–Sommerfeld equation, 722
for the Rayleigh equation, 710
for unidirectional flow, 522

finite-volume method, 613
five-point formula, 764
floating sphere, 250, 334
flow

annular, 461
axisymmetric, 18, 103
circular Couette, 517
extensional, 215
fully developed, 420
gravity-driven, 366
in a cavity, 547
in a corner, 663
in a narrow channel, 591
in a wavy channel, 597
in channels and tubes, 469
induced by vorticity, 783
axisymmetric, 784

irrotational, 132
isentropic, 372
laminar, 415
linear, 38
lubrication, 592
multi-layer, 428
oscillatory
in a channel, 501
in a tube, 514

over a hump, 390

potential, 134
pressure-driven, 366
pulsating
in a channel, 506
in a tube, 514

rate, 96
mass, 105

separation, 672, 677
shear-driven, 366
steady, 17
swirling, 18
through an enlargement, 371
transient Couette in a channel, 491
transient in a channel, 491
transient in a tube, 509
transient pressure-driven in a channel,

497
turbulent, 415
two-dimensional, 18, 547
two-layer, 426
unidirectional, 21, 522, 540, 543
vortex, 132

flow rate, 102
fluid, 1

compressible, 215
frictionless, 214
ideal, 214
incompressible, 101
Newtonian, 210
non-Newtonian, 219
parcel, 2, 16
power-law, 220
shear-thickening, 220
shear-thinning, 220
simple, 209
velocity, 16
yield-stress, 221

flux, 97
force

body, 181
buoyancy, 252
inertial acceleration, 381
lift, 804
surface, 182
vortex, 380, 382
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Fourier
analysis, 741
expansion, 476, 480, 492
orthogonality, 493, 499
series, 837
transform, 742

free fall, 381
Frenet–Serret relations, 192
frequency number, 416
friction velocity, 749
frictionless fluid, 214
Froude number, 391, 416
frozen-field hypothesis, 743
fully developed flow, 420
fundamental

motion, 71
solution, 157, 646

gas, 1
in hydrostatics, 246
viscosity of, 211

Gauss
–Seidel method, 157
divergence theorem, 101, 102, 257
integration quadrature, 774

Gaussian distribution, 756
Gibbs law, 232
gradient, 66, 134

surface, 239
gravity, 182

-driven flow, 366, 422
Green’s third identity, 847
grid, 46

Cartesian, 549
staggered, 582

growth rate, 708

Hagen flow, 422
harmonic

function, 123
potential, 136

heat capacity, 218, 372
Heaviside function, 767
Helmholtz velocity of a vortex ring, 800
high-Reynolds-number flow, 415, 669

Hill’s spherical vortex, 785, 798
homogeneous

fluid, 3
turbulence, 751

hot-wire anemometry, 741
hump, 390

ideal
fluid, 214
gas, 217, 246
gas constant, 206
gas law, 206

incompressible fluid, 101, 120
inertial acceleration force, 381
influence coefficient

of a panel, 821
of an element, 773

inner vector product, 66
instability

of a flow, 669
of a shear flow, 705

intensive property, 114
interface, 189

axisymmetric, 201, 236
two-dimensional, 232

interfacial shapes, 260
interfacial tension, 189
intermittency, 735
interpolation, 46

bilinear, 51
in one dimension, 47
in two dimensions, 50
linear, 48
quadratic, 49
trilinear, 62

inverse of a matrix, 40
irreducible loop, 176, 177, 782
irrotational flow, 78, 132
isentropic

flow, 372
process, 218

Jacobi method, 157
Jacobian, 665
Java, 867
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Joukowski
airfoil, 808
transformation, 808

jvm, 867

k-ε model, 746
Kelvin

–Helmholtz instability, 763, 779
circulation theorem, 782
function, 516
velocity of a vortex ring, 794

kinematic viscosity, 403
kinematics, 4
kinetic energy, 2
Knudsen number, 229
Kolmogorov scale, 736, 739
Kronecker delta, 239
Kutta–Joukowski

condition, 811, 824
theorem, 810

Lagrange interpolating polynomial, 775
Lagrangian turbulence, 734
laminar flow, 415
Laplace

–Young equation, 262
equation, 123, 136, 458, 476, 480, 522
law, 207
pressure, 192

lapse rate, 249
laser-Doppler velocimetry, 741
leap frogging, 796
LIA, 799
lift, 825, 839

force, 804
in lubrication, 600
slope, 839

line vortex, 177, 799
ring, 177, 789
near a boundary, 790

linear
flow, 38
interpolation, 48
stability analysis, 705
system, 145, 154

linearization, 65, 707
liquid, 1

viscosity, 211
with particles, 2

local-induction approximation, 799
logistic mapping, 733
loop

irreducible, 176, 177, 782
reducible, 176, 754, 780, 782

low-Reynolds-number flow, 591
lubrication

flow, 592
lift, 600

Mach number, 373
manometer, 248
maple, 866
Marangoni traction, 191, 192, 198
mass

balance, 109
conservation, 105
flow rate, 105
flux, 105

matched asymptotic expansion, 656
material

derivative, 114
line, 46
parcel, 34
surface, 34

MATLAB, 866
examples, 873
precision, 869
primer, 866
toolbox, 876

matrix
antisymmetric, 42
inverse, 40
isotropic, 42
orthogonal, 40
skew-symmetric, 42
sparse, 148
symmetric, 42
transpose, 40
tridiagonal, 147, 527, 713

Maxwell relation, 229
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mean
curvature, 198
free path, 3, 212, 229
velocity, 16, 736

meniscus
attached to a plate, 264
between plates, 273
in a tube, 310
three-dimensional, 349

meridional angle, 10
mid-point rule, 460, 482
mixing length model, 747
molecular mass, 206
moment, 258

of the pressure force, 840
momentum, 362

balance, 366, 369
integral method, 694
tensor, 367
thickness, 687
transport, 212

motion
circulatory, 173
equation of, 376
of a rigid body, 2
relative, 3, 69

multi
-film flow, 615
-grid method, 157
-layer flow, 428

NACA airfoil, 806
narrow-channel flow, 591
Navier–Stokes equation, 394
Newton

–Raphson method, 253
method, 253, 700, 713
for two equations, 664

second law of motion, 186, 361
third law, 187

Newtonian fluid, 210
no-penetration condition, 127
no-slip condition, 228
non-autonomous ODEs, 21
non-Newtonian fluid, 219

normal-mode analysis, 707
notepad, 867
numerical

differentiation, 84
in two dimensions, 86

stability, 525
Nusselt velocity profile, 441

odd-even coupling, 569
ODE, 21
ordinary differential equation, 21
Orr–Sommerfeld equation, 709
orthogonal matrix, 40
oscillatory flow

in a channel, 501
in a tube, 514

Oseen
flow, 656
tensor
three-dimensional, 647
two-dimensional, 658

Ostwald-de Waele model, 220
outer vector product, 77

panel
point-source-dipole, 842
source, 848
vortex, 812

parabolization, 677
parcel, 2

material, 34
particle

in Stokes flow, 639
motion, 639
point, 19

path line, 20
pendant drop, 282, 320
phase velocity, 708
pivoting, 156
plane

Couette flow, 422
gravity-driven flow, 422
inclined, 440
Poiseuille flow, 422
polar coordinates, 13, 33, 74, 119, 124,

139, 226, 379, 398
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plug flow, 458
Pohlhausen polynomials, 696
point

force
three-dimensional, 647
two-dimensional, 658

particle, 19
sink
three-dimensional, 168
two-dimensional, 158

source
above a wall, 166, 171
dipole, 160, 161, 169
outside a cylinder, 167
outside a sphere, 171
three-dimensional, 168
two-dimensional, 158

vortex, 172, 755
array, 761
between two walls, 765
dipole, 178
in a rectangular box, 767
in a semi-infinite strip, 766
inside or outside a circular cylinder,
761

near a boundary, 759
near a corner, 767
near a plane wall, 759
self-induced velocity, 758

Poiseuille
flow, 449
plane, 422

law, 450
Poisson

equation, 470, 769
for the pressure, 560
nonlinear, 352

integral formula, 459
polar angle, 13
polar coordinates, 72, 222, 382

cylindrical, 7, 32, 117, 138, 222, 377, 398
plane, 13, 33, 139, 226, 379, 398
spherical, 10, 32, 118, 138, 225, 379, 398

polyline, 100, 773
position vector, 4

potential, 134
evolution equation, 384
harmonic, 136

power-law fluid, 220, 435, 446
Prandtl

boundary layer
on a semi-infinite plate, 678

boundary-layer analysis, 673
mixing length, 747

pressure, 204, 205
-driven flow, 366
coefficient, 824
gradient
adverse, 676
favorable, 676

in a stationary gas, 246
jump across an interface, 206
Poisson equation, 560
significance of, 214

primary variables, 521
principal

curvatures, 201
directions, 71, 82

projection
function, 564
matrix, 239

pulsating flow
in a channel, 506
in a tube, 514

pycnometer, 255

quadratic
equation, 42
interpolation, 49

quadrature, 775
quasi-steady state, 136

RANS, 746
rarefied gas, 229
rate

of deformation, 37, 70
of expansion
areal, 70

of strain, 82
Rayleigh
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–Taylor instability, 615
bubble equation, 397
oscillating plate, 504
stability equation, 709

rectangular
duct, 478
tube, 475

reducible loop, 176, 754, 780, 782
relative motion, 69
remainder, 65
residual, 552
reversible process, 216
Reynolds

number, 214, 409, 413, 557, 731
microscale, 744

stress, 745
rigid body, 2

rotation, 78
translation, 17, 109

RK4, 287
rms, 737
rolling sphere, 4
rotation, 34, 70, 76

matrix, 39
of a rigid body, 2

rotlet, 799
Runge–Kutta method

second-order, 29
Runge-Kutta method

fourth–order, 287

Sakiadis boundary layer, 686, 691
sampling time, 741
scale

characteristic, 414
external, 731
inviscid, 738
Kolmogorov, 736
viscous, 739

secant method, 279
self-similarity, 679
separation of a flow, 672, 677
separation of variables, 510, 641
sessile drop, 282, 320
shape factor, 688

shear
-driven flow, 366
-thickening fluid, 220
-thinning fluid, 220
flow, 44, 80
instability, 705
stratified, 743

function, 699
rate, 44, 80, 139, 427

shearing, 209
shedding, 672
shooting method, 278, 287
similarity solution, 495
similarity variable, 679
simple

fluid, 209
shear flow, 139, 392

singularity, 158
representation in Stokes flow, 649

skew-symmetric matrix, 42
slider bearing, 592, 594
slip, 452

boundary condition, 229
coefficient, 229
length, 229

sloshing, 385
slurry, 2
smoothing, 764
solenoidal field, 76, 121
solid, 1
SOR method, 157
sound, 373
source

file, 867
panel, 848

source-dipole, 160, 169
representation, 845

sparse matrix, 148
specific heat capacity

constant pressure, 218
constant volume, 217

speed of sound, 218, 373
sphere

floating, 250, 334
in Stokes flow, 639

898



Index

moving inside a tube, 649
rolling, 4
straddling, 250, 334

spherical polar coordinates, 10, 32, 74, 118,
138, 225, 379, 398

stability, 705
analysis, 705
numerical, 525

staggered grid, 582
stagnation point, 19

on a wall, 661
temperature, 373

starting vortex, 804
steady flow, 17
Stokes

boundary layer, 503, 505, 516
circulation theorem, 176, 754, 755
equation, 639
flow, 414, 639
boundary integral representation, 652
two-dimensional, 654

law, 644, 645
Stokeslet

three-dimensional, 646
two-dimensional, 658

streakline, 33
stream function

/vorticity formulation, 543, 547
for axisymmetric flow, 124
for two-dimensional flow, 122

streamline
by interpolation, 57
circular, 484
instantaneous, 18, 20

stress
-momentum tensor, 370
in Cartesian coordinates, 184
in polar coordinates, 222
tensor, 184
symmetry of, 188

stretching
of a thread, 208
vortex-, 404

Strouhal number, 672
summation convention, 66

surface
force, 182
gradient, 239
material, 34
tension, 189

surfactant, 190
evolution, 633
transport, 231

suspension, 2
swirling flow, 18, 483

multi-layer, 486
symbolic manipulation, 866
symmetric matrix, 42

Taylor
frozen-field hypothesis, 750
microscale, 744
series, 65

tensor, 68
alternating, 78
product, 239, 368, 370

terminal velocity, 645
test functions, 756
thermocapillary flow, 194
thin airfoil theory, 834
Thomas algorithm, 530, 602
times series, 741
TMAC, 229
toothpaste, 2
torque, 188
Torricelli’s law, 386
trace of a matrix, 42
traction, 183

jump across an interface, 189
Marangoni, 191, 198
on a boundary, 188

transient flow
circular Couette, 517
Couette in a channel, 491
in a channel, 491
in a tube, 509
pressure-driven in a channel, 497

transition to turbulence, 415, 687, 733
transport phenomena, 369
transpose of a matrix, 40
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trapezoidal rule, 599, 774, 825
triangular tube, 472
tridiagonal matrix, 147, 527

determinant of, 713
trilinear interpolation, 62
tube

annular, 461
bifurcation, 451
elliptical, 470
flow, 447, 469
multi-layer, 453

rectangular, 475
triangular, 472

turbulence, 415
Lagrangian, 734

turbulent flow, 415, 731
homogeneous, 751
isotropic, 738, 751

two-dimensional
flow, 18, 547
vorticity transport, 400

interface, 232
stream function, 122

two-layer flow, 426, 533, 619, 627

unidirectional flow, 21, 522, 540, 543
unit vector, 5

vector
free, 6
position, 4
product
inner, 66
outer, 77

velocity, 5
-gradient tensor, 67
/pressure formulation, 522, 559
/vorticity formulation, 540
evolution equation, 377
fluctuation, 736
friction, 749
mean, 16, 736
of a fluid, 16
solenoidal, 76
terminal, 645

vector field, 18
Venturi flume, 390
vi editor, 867
viscoelastic fluid, 2
viscometer, 645
viscosity, 210, 211

eddy, 746
extensional, 209
kinematic, 403
of a gas, 211
of a liquid, 211
shear, 209

vogle, 854
von Kàrmàn

–Pohlhausen method, 696
approximate method, 689
vortex street, 672

vortex, 670, 735, 753
flow, 132
force, 380, 382
merger, 778
methods, 132
motion, 736, 753
in three dimensions, 798

panel, 812
linear, 816
method, 819
with uniform strength, 814

particle, 799
patch, 769
in axisymmetric flow, 796

point-, 172, 755
ring
line, 789
with finite core, 791

sheet, 833
starting, 804
stretching, 404

vorticity, 78
transport, 400
in axisymmetric flow, 80
tensor, 70

vorton, 799

wake, 672
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wall stress, 229
wavy channel, 597
Weber number, 416
Womersley number, 504, 517

X11, 854

yield-stress fluid, 221
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