C. Pozrikidis

‘ Fluid Dynamics

Theory, Computation,
and Numerical Simulation

Third Edition

@ Springer



Fluid Dynamics

Theory, Computation, and Numerical Simulation






C. Pozrikidis

Fluid Dynamics

Theory, Computation, and Numerical Simulation

Third Edition

@ Springer



C. Pozrikidis
University of Massachusetts
Ambherst, Massachusetts, USA

Author retains ownership and copyright of all computer codes listed, discussed, or referred to in the book.

MATLAB® and Simulink® are registered trademarks of The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760-2098, USA, http://www.mathworks.com

ISBN 978-1-4899-7990-2 ISBN 978-1-4899-7991-9  (eBook)
DOI 10.1007/978-1-4899-7991-9

Library of Congress Control Number: 2016949478

© Springer Science + Business Media LLC 2001, 2009, 2017

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on
microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be
true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or
implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer Science + Business Media LLC
The registered company address is: 233 Spring Street, New York, NY 10013, U.S.A.



Contents

Preface xvii
Notation xix
1 Introduction to kinematics 1
1.1 Fluidsand solids . . . . . . . . . . . . . . 1
1.2 Fluid parcels and flow kinematics . . . .. .. ... ... ... ...... 2
1.3 Coordinates, velocity, and acceleration . . . . . . . . ... .. ... .... 4
1.3.1  Cylindrical polar coordinates . . . . . . . . ... ... ... .... 7

1.3.2  Spherical polar coordinates . . . . . . . .. ... .. ... ..... 10

1.3.3  Plane polar coordinates . . . . . . . . . .. ... .. ... ..., 13

1.4 Fluid velocity . . . . . . . . . o 16
1.4.1  Continuum approximation . . . . . ... .. .. ... .. ..... 17

1.4.2  Steady flow . . . . ..o 17

1.4.3 Two-dimensional flow . . . . . . ... ... ... .. .. ...... 18

1.4.4  Swirling and axisymmetric low . . .. ... ... 0000 18

1.4.5  Velocity vector field, streamlines and stagnation points . . . . . . 18

1.5 Point particles and their trajectories . . . . . . . ..o 19
1.5.1  Pathlines . . . .. . . . . . . .. 20

1.5.2  Ordinary differential equations (ODEs) . . . . .. ... ... ... 21

1.5.3  Explicit Euler method . . . . . ... ... .. ... 26

1.5.4  Modified Euler method . . . . .. ... ... ... ... ...... 28

1.5.5  Description in polar coordinates . . . . . .. ... ... ... ... 32

1.5.6  Streaklines . . . . . . . . . ... ... 33

1.6 Material surfaces and elementary motions . . . . . . ... ... ... ... 34
1.6.1  Fluid parcel rotation . . . . . . ... ... ... ... .. ... .. 34

1.6.2  Fluid parcel deformation . . . . . ... ... ... ... ...... 36

1.6.3  Fluid parcel expansion . . . . . ... ... ... ... .. ... .. 37

1.6.4  Superposition of rotation, deformation, and expansion . .. . . . 38

1.6.5 Rotated coordinates . . . . . . . . .. ... ... ... 38

1.6.6  Fundamental decomposition of a two-dimensional flow . . . . . . 41



vi

1.7

Fluid Dynamics: Theory, Computation, and Numerical Simulation

Numerical interpolation . . . . . . . . .. ... ... ... ...
1.7.1  Imterpolation in one dimension . . . . . . . . ... ... ... ...
1.7.2  Imterpolation in two dimensions . . . . ... ... ... ... ...
1.7.3  Interpolation of the velocity in a two-dimensional flow . . . . ..
1.7.4  Streamlines by interpolation . . . . . .. ... ... ... ...

More on kinematics

2.1

2.2
2.3

24
2.5

2.6

2.7

2.8

Fundamental modes of fluid parcel motion. . . . . . . ... ... ... ..
2.1.1  Function linearization . . . . . . . . . .. .. ... ... ......
2.1.2  Velocity gradient tensor . . . . . . ... ..o
2.1.3  Relative motion of point particles . . . . ... .. ... ... ...
2.1.4  Fundamental motions in two-dimensional flow . . . . . ... ...
2.1.5  Fundamental motions in three-dimensional flow . . . . . ... ..
2.1.6  Gradient in polar coordinates . . . . . .. ... .. ... .. ...

Fluid parcel expansion . . . . . . . . . . . . ...

Fluid parcel rotation and vorticity . . . . . .. .. ... ... ... ....
2.3.1  Curland vorticity . . . . . . . . ... o
2.3.2  Two-dimensional flow . . . . . . ... ... ... L.
2.3.3  Axisymmetric flow . .. ... oo o

Fluid parcel deformation . . . . ... ... ... ... ... ........

Numerical differentiation . . . . . . . . . . . . ... ... ...
2.5.1 Numerical differentiation in one dimension . . . . . . .. . . ...
2.5.2  Numerical differentiation in two dimensions . . . . . .. ... ..
2.5.3  Velocity gradient and related functions . . . . ... ... .. ...

Flow rates . . . . . . . . . e
2.6.1 Areal flowrateand flux. . . . . ... .. ... ... ... ...
2.6.2  Areal flow rate acrossaline . ... ... ... ... ........
2.6.3  Analytical integration . . . . . . . ... ... L.
2.6.4  Numerical integration . . . . . .. . .. .. ...
2.6.5  The Gauss divergence theorem in two dimensions . . . .. . . ..
2.6.6  Flow rate in a three-dimensional flow . . . . . .. ... ... ...
2.6.7  Gauss divergence theorem in three dimensions . . . . . . . .. ..
2.6.8 Axisymmetric flow . . . ... oo oo

Mass conservation and the continuity equation . . . . ... ... ... ..
2.7.1  Mass flux and mass flowrate . . . . . . ... ...
2.7.2  Mass flow rate across a closed line . . . . . .. ... ... .. ...
2.7.3  The continuity equation . . . . .. ... ... ... L.
2.7.4  Three-dimensional flow . . . . . . . .. .. ... ... ... ...
2.7.5  Control volume and integral mass balance . . .. ... ... ...
2.7.6  Rigid-body translation . . . . ... ... ... ...
2.7.7  Evolution equation for the density . . . . . .. ... ... ... ..
2.7.8  Continuity equation for axisymmetric flow . . . ... ... .. ..

Properties of point particles . . . . . . . . . ... ... ... ...,
2.8.1 The material derivative . . . . . . . . . . . . ...

46
47
50
53
o7

63

63
64
67
69
69
71
72

()

76
8
79
80

81

84
84
86
88

95
96
97
98
99
101
102
102
103

105
105
105
106
107
109
109
110
112

114
114



Contents

2.9

2.10

3.1
3.2

3.3

3.4

3.5

3.6

3.7

2.8.2
2.8.3

The continuity equation . . .. . ..
Point particle acceleration . . . . ..

Incompressible fluids and stream functions .
Kinematic consequence of incompressibility . . . . . . . .. .. ..
Mathematical consequence of incompressibility . . . . . . . . . ..
Stream function for two-dimensional flow . . . . . . . .. ... ..

2.9.1
2.9.2
2.9.3
294

Stream function for axisymmetric flow

Kinematic conditions at boundaries . . . . .
2.10.1 The no-penetration boundary condition . . . . . . . ... ... ..

Flow computation based on kinematics

Flow classification based on kinematics . . .

Irrotational flow and the velocity potential .

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7

Two-dimensional flow . . . . . .. ..

Incompressible fluids and the harmonic potential . . . . .. . ..

Three-dimensional flow . . . . . . ..
Boundary conditions . . . ... ...
Cylindrical polar coordinates . . . . .
Spherical polar coordinates . . . . . .
Plane polar coordinates . . . . . . ..

Finite-difference methods . . . . . . ... ..

3.3.1
3.3.2
3.3.3
3.34

Boundary conditions . . .. .. ...
Finite-difference grid . . . .. .. ..
Finite-difference discretization . . . .
Compilation of a linear system . . . .

Linear solvers . . . . . . . .. ... ... ...

3.4.1
3.4.2

Gauss elimination . . . . . . ... ..
A menagerie of other methods . . . .

Two-dimensional point sources and point-source dipoles . . . . . . .. ..
Function superposition and fundamental solutions . . . . . . . ..

3.5.1
3.5.2
3.5.3
3.54
3.5.5

Two-dimensional point source . . . .
Two-dimensional point-source dipole
Flow past a circular cylinder . . . . .

Sources and dipoles in the presence of boundaries . . . . . . . ..

Three-dimensional point sources and point-source dipoles . . . . . .. ..

3.6.1
3.6.2
3.6.3
3.6.4

Three-dimensional point source . . .
Three-dimensional point-source dipole
Streaming flow past a sphere . . . . .

Sources and dipoles in the presence of boundaries . . . .. . . ..

Point vortices and line vortices . . . . . . . .
The potential of irrotational circulatory flow . . . . . ... .. ..

3.7.1
3.7.2
3.7.3
3.74

Flow past a circular cylinder . . . . .
Circulation . . . . . ... ... ....
Line vortices in three-dimensional flow

vii

116
116
120
121
121
122
124

126
127

131

131

133
134
135
137
137
138
138
139

140
140
142
143
145

154
155
156
157
157
158
160
165
166

168
168
169
170
171

172
173
174
176
177



viii Fluid Dynamics: Theory, Computation, and Numerical Simulation

4 Forces and stresses 181
4.1 Forces acting ina fluid . . . . ... ... ... L 181
4.1.1 Bodyforce . . . .. .. 181
4.1.2 Surface force . . . . . . ... 182

4.2 Traction and the stress tensor . . . . . . ... ... L L. 183
4.2.1  Traction on either side of a fluid surface . . . .. ... ... ... 187
4.2.2 Tractiononaboundary . . . . . . .. ... ..o 188
4.2.3  Symmetry of the stress tensor . . . . . ... ... ... ... .. 188

4.3 Traction jump across a fluid interface . . . . . . ... ... ... ... .. 189
4.3.1 Interfacial tension . . . . . . . . ... .. 189
4.3.2  Force balance at a two-dimensional interface . . . . . . . ... .. 190

4.4 Force balance at a three-dimensional interface . . . . .. ... ... ... 197
4.41 Mean curvature . . . .. ..o Lo 199
4.4.2  Directional curvatures. . . . . . . .. .. ... 200
4.4.3  Axisymmetric interfaces . . . ... ..o 0oL 201

4.5 Stressesin a fluidatrest . . . . ... ..o Lo 204
4.5.1  Pressure from molecular motions . . . . . .. .. ... 205
4.5.2  Jump in pressure across an interface in hydrostatics . . . . . . . . 206

4.6 Constitutive equations . . . . . . . . . ... 207
4.6.1 Simple fluids . . . . . . ... 209
4.6.2  Incompressible Newtonian fluids . . . . ... ... ... ...... 210
4.6.3 Viscosity . . . . ... 211
4.6.4 Viscosityofagas . ... .. ... 211
4.6.5 Ideal fluids . . . . . . . ... L 214
4.6.6  Significance of the pressure in an incompressible fluid . . . . . . . 214

4.7  Pressure in compressible fluids . . . . .. ... 00000 215
4.8 Simple non-Newtonian fluids . . . . . ... .. ... ... ... ... .. 219
4.8.1  Unidirectional shear flow . . . . . . .. ... ... ... ... ... 219
4.82 Channel flow . . . . . .. ... L oL 220
4.8.3  Yield-stress fluids . . . .. ... ... o oL 221

4.9 Stresses in polar coordinates . . . . . .. ... ... o 222
4.9.1  Cylindrical polar coordinates . . . . . . . . .. ... ... ... .. 222
4.9.2  Spherical polar coordinates . . . . . . .. ..o 225
4.9.3  Plane polar coordinates . . . . . . .. ... oL 226

4.10 Boundary conditions for the tangential velocity . . . . . . . ... ... .. 228
4.10.1 No-slip boundary condition . . . . . . ... ... ... 228
4.10.2 Slip boundary condition . . . . . ... ... .. 0oL 229

4.11 Wall stresses in Newtonian fluids . . . . . . . ... ... .. ... .. ... 229
4.12 Interfacial surfactant transport . . . . . . . . . . ... ... ... 231
4.12.1 Two-dimensional interfaces . . . . . . ... .. ... ... ... .. 232
4.12.2 Axisymmetric interfaces . . . ... ..o 236

4.12.3 Three-dimensional interfaces . . . . . . . . . . .. ... ... ... 238



Contents

5 Hydrostatics
5.1 Equilibrium of pressure and body forces . . . . . ... ... ... ... ..
5.1.1  Equilibrium of an infinitesimal parcel . . . . . .. ... ... ...
5.1.2  Gases in hydrostatics . . . . . . . . .. ... oL
5.1.3  Liquids in hydrostatics . . . . . . . .. ... .. L.
5.2  Force exerted on an immersed surface . . . . . . ... ... ... ... ..
5.2.1 A sphere floating on a flat interface . . . . . . ... ... ... ..
5.2.2 Newton’s method . . .. ... ... .. ... ... ... ... ..
5.3 Archimedes’ principle . . . . . ... L
5.3.1  Net force on a submerged body . . .. ... ... ... .. .. ..
5.3.2 Moments . . . . ...
5.4 Interfacial shapes. . . . . . . . . ... oL
54.1 Curved interfaces . . . . . . . . ... o o
5.4.2  The Laplace-Young equation for a two-dimensional interface . . .
5.4.3  Three-dimensional and axisymmetric interfaces . . . . . ... ..
5.5 A semi-infinite interface attached to an inclined plate . . . .. .. .. ..
5.5.1  Numerical method . . . . . . . .. ... .. .. L.
5.5.2 A floating cylinder . . ... ... ... ... ... ..
5.6 A meniscus between two parallel plates . . . . . ... ... ... ... ..
5.7 A two-dimensional drop on a horizontal plane . . . . . . . ... ... ...
5.8 A two-dimensional drop on an inclined plane . . . . . .. ... ... ...
5.8.1  First contact angle specified . . . . . ... ... ... ... ...
5.8.2  Specified contact points . . . . .. ...
5.9 Axisymmetric meniscus inside a tube . . .. ... 000
5.10 Axisymmetric drop on a horizontal plane . . . . . . ... ... ... ...
5.11 A sphere straddling an interface . . . . .. ... ... 0oL
5.12 A three-dimensional meniscus . . . . . . . . ... ...
5.12.1 Elliptic coordinates . . . . . . . . . ... oL
5.12.2 Finite-difference method . . . . . . . ... .. ... ... .. ...
5.12.3 Capillary force and torque . . . . . . . . ... ... ... ...

6 Equation of motion and vorticity transport
6.1 Newton’s second law of motion for a fluid parcel . . . . .. ... ... ..
6.1.1  Rate of change of linear momentum . . . . . . ... ... .. ...
6.1.2  Equation of parcel motion . . . . . .. ... ... L.
6.1.3 Two-dimensional flow . . . . . . .. ... ... ... ... ...
6.2 Integral momentum balance . . . . . . .. ... Lo
6.2.1  Control volume and integral momentum balance . . . . . . . . ..
6.2.2  Flow through a sudden enlargement . . . . . ... ... ... ...
6.2.3  Isentropic flow through a conduit . . . . ... .. ... ... ...
6.3 Cauchy’s equation of motion . . . . . ... .. L oL oL
6.3.1  Hydrodynamic volume force . . . ... .. ... ... .......

ix

241
241
243
246
247
250
250
253
256
258
258
260
261
262
263
264
266
270
273
282
292
295
302
310
320
334
349
350
352
357

361
361
362
363
363
366
369
371
372
374
374



6.4

6.5

6.6

6.7

6.8

6.9

Fluid Dynamics: Theory, Computation, and Numerical Simulation

6.3.2  Hydrodynamic force on an infinitesimal parcel . . . . . . ... ..
6.3.3  The equation of motion . . . . . ... ... .. ... ... ... ..
6.3.4  Evolution equations . . . . . . .. ... . oo
6.3.5  Cylindrical polar coordinates . . . . . . . . .. ... ... .. ...
6.3.6  Spherical polar coordinates . . . . . . .. ... ...
6.3.7  Plane polar coordinates . . . . . . . ... ... oL
6.3.8 Vortex force . . . . . ... L
6.3.9  Summary of governing equation . . . . . ... .. ... ... ...
6.3.10 Accelerating frame of reference . . . . . . . . ... ... L.

Euler and Bernoulli equations . . . . . . . ... ... L.
6.4.1 Boundary conditions . . . ... ... oo
6.4.2 TIrrotational flow . . . . . . .. ... oo
6.4.3 Torricelli’slaw . . . . . . . .. Lo
6.4.4  Decay of perturbations in a wind or water tunnel . . . . . .. ..
6.4.5  Flow of a horizontal stream over a hump . . . . . . ... .. ...
6.4.6  Steady rotational flow . . . . . ... ... 0oL
6.4.7  Flow with uniform vorticity . . . ... .. ... .. ... ... ..

The Navier—Stokes equation . . . . . . . ... ... ... ... .. ...
6.5.1  Pressure and viscous forces . . . . . . ... ... L.
6.5.2 A radially expanding or contracting bubble . . . . . . ... ...
6.5.3  Boundary conditions . . . ... ... oo
6.5.4  Polar coordinates . . . . . .. ... Lo

Vorticity transport . . . . . . .. Lo
6.6.1 Two-dimensional flow . . . . . ... ... ... ... ... ..
6.6.2  Axisymmetric flow . . . ... Lo oo oo
6.6.3  Three-dimensional flow . . . . . ... ... ... .. ... ... ..

Dynamic similitude and the Reynolds number . . . . ... .. ... ...
6.7.1 Dimensional analysis . . . . ... ... .. ... L.
Structure of a flow as a function of the Reynolds number . . . . . .. ..
6.8.1 Stokesflow . . . . . ...
6.8.2  Flows at high Reynolds numbers . . . . . .. ... ... ... ...
6.8.3  Laminar and turbulent flow . . . . ... ... ... .. .. .. ..

Dimensionless numbers in fluid dynamics . . . . . ... ... ... ....

Channel, tube, and film flow

7.1

7.2

7.3

Steady flow in a two-dimensional channel . . . . . ... ... ... ...
7.1.1  Alternative coordinates . . . . . . . ... ... ...
7.1.2 Two-layer flow . . . . . . . . ...
7.1.3  Multi-layer flow . . . . . ... o
7.1.4  Power-law fluids . . . . . .. ...

Steady film flow down an inclined plane . . . . . . .. ... ... ...
721 Multi-filmflow . . . .. ... o
7.2.2  Power-law fluids . . . . . ... oo o

Steady flow through a circular tube . . . . . ... ... ... ... ....

375
376
377
377
379
379
380
380
381

381
382
383
386
389
390
391
392

394
395
395
397
398

400
400
403
404

407
410
413
414
415
415

415

419

419
423
426
428
435

440
441
446

447



Contents

7.4

7.5

7.6

7.7

7.8

7.9

8.1
8.2

8.3

8.4

7.3.1  Multi-layer tube flow . . . . . ... ..o
7.3.2  Flow due to a translating sector . . . . . ... ... ... ... ..

Steady flow through an annular tube . . . . . . . ... ... ... ... ..
741 Smallgaps . . . . . ...
7.4.2  Multi-layer annular flow . . . . .. ... o000

Steady flow through channels and tubes . . . . . . . ... ... ... ...
7.5.1 Elliptical tube . . . . . . . ... oo
7.5.2  Equilateral triangular tube . . . . . . ..o
7.5.3 Rectangular tube . . . .. .. ... L oo
7.5.4 Rectangular duct . . . .. .. ... ..o
7.5.5  Semi-infinite rectangular channel . . . . . .. ... ... ...

Steady swirling flows . . . . . . . . .. ...
7.6.1 Annularflow . . . . ... oL o
7.6.2  Multi-layer swirling flow . . . . .. ... ... L.

Transient channel flows . . . . . . . ... ... ... ... .. .. ...,
7.71 Couetteflow . . . . . . .. ...
7.7.2  Impulsive motion of a plate in a semi-infinite fluid . . . . . . . ..
7.7.3  Pressure- and gravity-driven flow . . . ... ... ...

Oscillatory channel flows . . . . . .. .. ... o0
7.8.1  Oscillatory Couette low . . . . . . .. ... ... ... ... ...
7.8.2  Rayleigh’s oscillating plate . . . . . . . . ... ... ... .. ...
7.8.3  Pulsating pressure-driven flow . . . . . . ... ... ... ... ..

Transient and oscillatory flow in a circular tube . . . . . . . .. . ... ..
7.9.1  Transient Poiseuille flow . . . . .. ... ... .. .. .......
7.9.2  Pulsating pressure-driven flow . . . . . ... ... ... ... ...
7.9.3  Transient circular Couette flow . . . . . . . .. ... ... ... ..
7.9.4  Orthogonality of Bessel functions . . . . .. ... ... ... ...

Finite-difference methods

Choice of governing equations . . . . . . . . . . .. ... ... ... ...

Unidirectional flow; velocity /pressure formulation . . . . . .. ... ...
8.2.1  Governing equations . . . ... ... L Lo
8.2.2  Explicit finite-difference method . . . . . . . . .. ... ... ...
8.2.3  Implicit finite-difference method . . . . . . . .. .. ... ... ..
8.2.4  Thomas algorithm . . . . . .. ... .. ... o L.
8.2.5 Steady state . . . . ... ... o
8.2.6 Two-layer flow . . . . . . ... Lo

Unidirectional flow; velocity /vorticity formulation . . . . ... ... ...
8.3.1  Boundary conditions for the vorticity . . . ... ... ... .. ..
8.3.2  Alternative set of equations . . . . . ... ... ... ...
8.3.3  Comparison with the velocity/pressure formulation . . . ... ..
Unidirectional flow; stream function/vorticity formulation . . . . . . . ..
8.4.1  Boundary conditions for the vorticity . . . . ... ... ... ...

xi

453
458
461
462
464
469
470
472
475
478
480

483
483
486
491
491
494
497
501
501
504
506

509
509
514
017
518

521
521

522
523
523
526
530
532
533
540
540
541
543
543
544



xii

8.5

8.6

8.7

8.8

Fluid Dynamics: Theory, Computation, and Numerical Simulation

8.4.2 A semi-implicit method . . . . . .. . ... oL

Two-dimensional flow; stream function/vorticity formulation . . . . ...

8.5.1 Flow in a cavity . .
8.5.2  Finite-difference grid
8.5.3  Unsteady flow . . .
8.5.4  Steady flow . . ..
8.5.5  Summary . . . . ..

Velocity/pressure formulation . . . . . ... ... Lo
8.6.1  Alternative system of governing equations . . . . ... ... ...
8.6.2  Pressure boundary conditions . . . .. .. ... .0
8.6.3  Compatibility condition for the pressure . . ... ... ... ...

Operator splitting and solenoidal projection . . . . . . .. ... ... ...

8.7.1  Convection—diffusion
8.7.2  Projection step . .
8.7.3  Boundary conditions
8.7.4  Flow in a cavity . .

step . .. Lo

for the intermediate velocity . . . . . . . ..

8.7.5  Computation of the pressure . . . . . . .. ... .. ... ... ..

Staggered grids . . . . . . .

Low-Reynolds-number flow

9.1

9.2

9.3

9.4
9.5

9.6

9.7

Flow in a narrow channel .
9.1.1  Governing equations
9.1.2  Scaling . .. .. ..
9.1.3  Equations of lubricat
9.1.4  Lubrication flow in a

ionflow . . ... ... o
slider bearing . . . .. ... ... ......

9.1.5 Flowin awavy channel . . . . ... ... .. ... .. ... ..

9.1.6  Dynamic lifting . .
Film flow on a horizontal or
9.2.1  Thin-film flow . . .
9.2.2  Numerical methods
Multi-film flow on a horizont
9.3.1  Evolution equations
9.3.2  Numerical methods
Two-layer channel flow . .
Flow due to the motion of a

inclined wall . . ... ... ... .......
al or inclined wall . . . ... ... ......

sphere. . . . . ...

9.5.1 Formulation in terms of the stream function . . . ... ... ...
9.5.2  Traction, force, and the Archimedes—Stokes law . . . . ... ...

Point forces and point sources in Stokes flow . . . . .. ... ...
9.6.1  The Oseen tensor and the point force . . . . . . ... ... .. ..
9.6.2  Flow representation in terms of singularities . . . .. .. ... ..

9.6.3 A sphere moving insi

de a circular tube . . . . ... ...

9.6.4 Boundary integral representation . . . . .. ... ... ... ...

Two-dimensional Stokes flow

545
547
547
549
549
551
557

559
561
061
562
563
564
566
567
568
580

082

591

991
592
593
994
994
997
600
610
610
613
615
619
620
627

639
640
644
646
647
649
649
652

654



Contents

9.7.1  Flow due to the motion of a cylinder . . . ... ... ... ....
9.7.2  Rotation of a circular cylinder . . . . . ... ... ... ... ...
9.7.3  Simple shear flow past a circular cylinder . . . . . . . ... . ...
9.7.4  The Oseen tensor and the point force . . . . . .. ... ... ...

9.8 Local solutions . . . . . . . . . . ..
9.8.1  Solution by separation of variables . . . . . . . ... ... .. ...
9.8.2  Stagnation-point flow on a plane wall . . . . . . .. ... ... ..
9.8.3 Flowinsideacorner. . . . . . . . . .. ... ... ...

10 High-Reynolds-number flow
10.1 Changes in the structure of a flow
with increasing Reynolds number . . . . . . . .. .. .00
10.1.1 Flow past a cylinder . . . . ... ... ... ... ... ...

10.2 Prandtl boundary-layer analysis . . . . . . .. ... ... .
10.2.1 Simplifications . . . . . . . ...
10.2.2 Boundary-layer equations . . . . . .. ... ... L.
10.2.3 Surface curvilinear coordinates . . . . . . . . ... ... L.
10.2.4 Parabolization . . . . . . .. ... Lo
10.2.5 Flow separation . . . . . . . .. ... ...

10.3 Blasius boundary layer on a semi-infinite plate . . . . . . . ... ... ..
10.3.1 Self-similarity and the Blasius equation . . . . . . . ... ... ..
10.3.2 Numerical solution . . . .. ... .. ... .. L L.
10.3.3 Wall shear stress and drag force . . . . . . ... ... ... .. ..
10.3.4 Vorticity transport . . . . . .. ...

10.4 Displacement and momentum thickness . . . . . .. ... ... ... ..
10.4.1 Von Karman’s approximate method . . . . . ... .. .. ... ..

10.5 Boundary layers in accelerating or decelerating flow . . . . ... ... ..
10.5.1  Self-similarity . . . . . . . ...
10.5.2 Numerical solution . . . . . .. ... .. ... 0.

10.6 Momentum integral method . . . . . . . .. ... oo
10.6.1 The von Karman-Pohlhausen method . . . . . . . .. ... ... .
10.6.2 Pohlhausen polynomials . . . . .. ... ... ... ... ....
10.6.3 Numerical solution . . . .. .. ... ... ... .. L.
10.6.4 Boundary layer around a curved body . . . . . . ... .. ... .

10.7 Instability of shear flows . . . . . . . .. ... .. ... ... ... ..
10.7.1 Stability analysis of shear flow . . . . . ... ... ... ... ...
10.7.2 Normal-mode analysis. . . . . . ... ... ... ... ... .

10.8 Finite-difference solution of the Rayleigh equation . . . . ... ... ...
10.8.1 Finite-difference equations . . . . . . .. ... ...
10.8.2 A generalized eigenvalue problem . . . . . . ... ... ... ...
10.8.3 Determinant of a tridiagonal matrix . . . . . . .. . ... ... ..
10.8.4 Numerical implementation . . . . . . ... .. ... ... .....

10.9 Finite-difference solution of the Orr—-Sommerfeld equation . . . . . . . ..

xiii

654
657
658
658

660
660
661
663

669

669
670

673
673
676
677
677
677

678
679
681
684
685

686
689
691
692
693

694
696
696
699
701
705
706
707

710
710
712
713
714

722



Xiv

Fluid Dynamics: Theory, Computation, and Numerical Simulation

10.10 Turbulent flow . . . . . . . . . . ..

10.10.1 Transition to turbulence . . . . . . . .. .. ... ... .. ....
10.10.2 Lagrangian turbulence . . . . . ... . ... ... ... ... ...
10.10.3 Features of turbulent motion . . . . . . . . ... .. ... .. ...
10.10.4 Decomposition into mean and fluctuating components . . . . . . .
10.10.5 Inviscid scales . . . . . . . . . . . ...
10.10.6 Viscous scales . . . . . . . . . . . ... ...
10.10.7 Relation between inviscid and viscous scales . . . . . .. ... ..

10.11 Spectrum of a turbulent flow . . . . . . ... .. ... .. .. ... ...

10.12 Analysis and modeling of turbulent flow . . . . . . .. .. ... ... ...

10.12.1 Reynolds stresses . . . . . . . . . .. Lo
10.12.2 Prandtl’s mixing length . . . . . . . .. .. ... oL
10.12.3 Logarithmic law for wall-bounded shear flow . . . . . ... .. ..
10.12.4 Correlations . . . . . . . . . ...

11 Vortex motion

11.1
11.2

11.3

11.4

11.5

11.6

Vorticity and circulation in two-dimensional flow . . . . . . . .. ... ..
Point vortices . . . . . . . Lo
11.2.1 Dirac’s delta function in a plane . . . . . . . ... ... ... ...
11.2.2 Evolution of the point vortex strength . . . . . . ... ... ...
11.2.3 Velocity of a point vortex . . . . . . . . .. ... ... .. .. ...
11.2.4 Motion of a collection of point vortices . . . .. ... .. .. ...
11.2.5 Effect of boundaries . . . . . . . .. ... oL
11.2.6 A periodic array of point vortices . . . . . . ... ... ... ...
11.2.7 A point vortex between two parallel walls . . . . . . ... ... ..
11.2.8 A point vortex in a semi-infinite strip . . . . . . . ... ... ..
Two-dimensional flow with distributed vorticity . . . ... .. ... ...
11.3.1 Vortex patches with uniform vorticity . . . . . .. ... ... ...
11.3.2 Contour dynamics . . . . . . . . .. .. Lo
11.3.3 Gauss integration quadrature . . . . . ... ... ... ... ...
11.3.4 Representation with circular arcs . . . . .. ... ... ... ...
Vorticity and circulation in three-dimensional flow . . . . . ... ... ..
11.4.1 Preservation of circulation . . . . . ... ... ... ... ... .
11.4.2  Flow induced by vorticity . . . . . . . ... ...
Axisymmetric flow induced by vorticity . . . . ... ... 00000
11.5.1 Biot—Savart integral for axisymmetric low . . ... ... ... ..
11.5.2 Line vortexring . . . . . . . . . . . . ...
11.5.3 Vortex ring with finitecore . . . . . . . ..o o000
11.5.4 Motion of a collection of vortex rings . . . . ... ... ... ...
11.5.5 Vortex patch in axisymmetric flow . . . . . . ... ... 0oL
Three-dimensional vortex motion . . . . . . . .. . ... ... .......
11.6.1 Vortex particles . . . . . .. .. . o o
11.6.2  Line vortices and the local-induction approximation (LIA)

731
733
734
735
736
738
739
740
741
745
745
747
749
750

753
753
755
756
758
758
758
759
761
765
766
767
769
772
e
775
780
781
783
784
786
789
791
795
796
798
799
799



Contents

12 Aerodynamics
12.1 General features of flow past an aircraft . . . . . ... .. .. ... ....
12.2 Airfoils and the Kutta—Joukowski condition . . . . . . ... ... .. ...

12.2.1 The Kutta—Joukowski theorem . . . . . . . . . ... ... .....
12.2.2 The Kutta—Joukowski condition . . . . . . . . ... ... ... ..

12.3

12.4

12.5

12.6

12.7

A FDLIB Software Library

Vortex panels . . .

12.3.1 From point vortices to vortex panels . . . . .. ... .. ... ..
12.3.2  Vortex panels with uniform strength . . . . ... ... ... ...
12.3.3 Vortex panel with linear strength density . . . . . . . .. ... ..

Vortex panel method . . . . .. .. ... oo
12.4.1 Velocity in terms of the panel strength . . . . .. .. .. ... ..
12.4.2 Point collocation. . . . . . . .. ... Lo o
12.4.3 Circulation and pressure coefficient . . . . . . ... ... .. ...

1244 Lift . . ..

12.4.5 Vortex panel code . . . . . . .. ... oo

Vortex sheet representation . . . . . . .. .. .. Lo
12.5.1 Thin airfoil theory . . . . . . . . .. ... L o

Point-source-dipole panels . . . . . . . ...
12.6.1 Source-dipole panel method . . . . . ... ... ... ... ... .
12.6.2 Source-dipole representation . . . . . .. .. ... L.
12.6.3 Solution of the interior problem . . . . . .. ... ... ... ...

Point-source panels and Green’s third identity . . . . ... ... ... ..
12.7.1 Source panels with constant density . . . . . . .. ... ... ...
12.7.2  Green’s third identity . . . . . . .. ... 0oL

References

C Matlab Primer
Launching MATLAB . . . . . . . . . . o e e e e e
MATLAB programming . . . . . . . . . . . .. ..
MATLAB commands . . . . . . . . . oot t

C.1
C.2
C.3
C4
C.5
C.6
C.7

Index

MATLAB examples
MATLAB functions

User-defined functions . . . . . . . . . . ... ...

MATLAB graphics

XV

803
803

805
810
811

812
813
814
816

819
822
823
824
825
827

833
834

842
844
845
846

847
848
849

853
864

866
866
867
869
873
876
876
881

889






Preface

Ready access to computers has defined a new era in teaching and learning. The opportunity
to extend the subject matter of traditional science and engineering curricula into the realm of
scientific computing has become not only desirable, but also necessary. Thanks to portability
and low overhead and operating cost, experimentation by numerical simulation has become
a viable substitute, and occasionally the only alternative, to physical experimentation.

The new framework has necessitated the writing of texts and monographs from a modern
perspective that incorporates numerical and computer programming aspects as an integral
part of the discourse. Under this modern approach, methods, concepts, and ideas are
presented in a unified fashion that motivates and underlines the urgency of the new elements,
but neither compromises nor oversimplifies the rigor of the classical discourse.

Interfacing fundamental concepts and practical methods of scientific computing can be
implemented at different levels. In one approach, theory and implementation are kept com-
plementary and presented in a sequential fashion. In another approach, the coupling involves
deriving computational methods and simulation algorithms, and translating equations into
computer code instructions immediately following problem formulations. Seamlessly inter-
jecting methods of scientific computing in the traditional discourse offers a powerful venue
for developing analytical skills and obtaining physical insight.

My goal in this book is to offer an introductory course in traditional and modern fluid
mechanics, covering topics in a way that unifies theory, computation, computer program-
ming, and numerical simulation. The approach is truly introductory in that only a few
prerequisites are required. The intended audience includes undergraduate and entry-level
graduate students, as well as a broader class of scientists, engineers, fluid dynamics and
computational science enthusiasts with a general interest in computing. This book should
be especially appealing to those who are making a first excursion into the world of nu-
merical computation and computational fluid dynamics (CFD) beyond the black-box and
drop-down menu approach. This book should be an ideal text for an introductory course in
fluid mechanics and CFD.

The presentation of the material is distinguished by two features. First, solution proce-
dures and algorithms are developed immediately after problem formulations are presented,
and illustrative MATLAB® codes are listed and discussed in the text. Second, numeri-
cal methods are introduced on a need-to-know basis and in order of ascending difficulty:
function interpolation, function differentiation, function integration, solution of algebraic
equations, finite-difference methods, etc. Computer problems at the end of each section
require performing computation and simulation to study the effect of various parameters
determining a flow.

In concert with the intended usage of this book as a stand-alone introductory text and
as a tutorial on numerical fluid dynamics and scientific computing, only a few references are

xvii
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provided in the discussion. Instead, a selected compilation of introductory, advanced, and
specialized texts on fluid dynamics, calculus, numerical methods, and computational fluid
dynamics are listed in Appendix B. The reader who wishes to focus on a particular topic is
directed to these resources for further details.

FDLIB

A major feature of this book is the accompanying fluid dynamics software library FDLIB dis-
cussed in Appendix A. The FORTRAN 77 and MATLAB programs of FDLIB explicitly illus-
trate how computational algorithms translate into computer instructions. The codes of
FDLIB range from introductory to advanced, and the topics span a broad range of appli-
cations discussed in this text: from laminar channel flows, to vortex flows, to flow past
airfoils. The MATLAB codes of FDLIB combine numerical computation, graphics display,
data visualization and animation.

To run the FORTRAN 77 codes of FDLIB, a FORTRAN 77 or FORTRAN 90 compiler is
required. Free compilers are available thanks to the gnu foundation. The input data is either
entered from the keyboard or read from data files. The output is recorded in output files in
tabular form so that it can be read and displayed using independent graphics, visualization,
and animation applications on any computer platform, including MATLAB.

Third edition

The third edition incorporates significant enhancements and improvements. Further exam-
ples, clarifications, solved problems, and new material have been added for a more compre-
hensive treatment of the various topics. Additional MATLAB programs integrating numeri-
cal computation and graphics visualization are listed and discussed in the text. The revised
text refers to the latest version of the accompanying library FDLIB. The integrated approach
pursued in this book overrides the Graphical User Interface or black-box approach, which
is often misrepresented as an educational or learning tool. The book Internet site is located
at: http://dehesa.freeshell.org/FD3

C. Pozrikidis
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Notation

Italic symbols denote scalars. Bold symbols denote vectors, matrices, or tensors.

symbols have multiple meanings.

N < 0 W

-3

2

=
3

S > QA X ED

acceleration vector

unit vector

acceleration of gravity
acceleration of gravity vector

pressure
time
fluid velocity

position vector

rate of expansion

surface (interfacial) tension
or strength of a vortex sheet
curvature

strength of a point vortex
mean curvature

density

viscosity

viscosity

stress tensor

velocity potential
projection function

stream function

vorticity

Cartesian coordinates
Cylindrical polar coordinates
Spherical polar coordinates

gradient operator
Laplacian operator

arc length or a typical length

S

Fom<c

2 m

Bond number
rate-of-deformation tensor

Bessel function of order p
characteristic length

fluid velocity

boundary velocity
position of a point particle
flow rate

Reynolds number

hydrodynamic volume force

vorticity tensor
angular velocity

Some
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Introduction to kinematics

1.1 Fluids and solids

1.2  Fluid parcels and flow kinematics

1.3 Coordinates, velocity, and acceleration
1.4  Fluid velocity

1.5 Point particles and their trajectories

1.6 Material surfaces and elementary motions
1.7 Numerical interpolation

We begin the study of fluid mechanics by pointing out the differences between fluids and
solids and by describing a fluid flow in terms of the motion of elementary fluid parcels. As
the volume of a parcel becomes infinitesimal, the parcel reduces to a point particle and the
average velocity of the parcel reduces to the local fluid velocity computed just before the
molecular nature of the fluid becomes apparent. The study of the motion and deformation
of material lines and surfaces consisting of collections of point particles reveals the nature
and illustrates the diversity of motion in fluid mechanics.

1.1 Fluids and solids

Casual observation of the world around us reveals materials that are classified as solids
and fluids; the second category includes gases and liquids. What are the distinguishing
features of these two groups? The answer can be given on a wide variety of levels: from the
molecular level of the physicist, to the macroscopic level of the engineer or oceanographer,
to the cosmic level of the astronomer.

From the perspective of mainstream fluid mechanics underlying this book, the single
most important difference between fluids and solids is that a fluid must assume the shape of
the container in which it is placed, whereas a solid is able to stand alone, sustaining its own
shape. As a consequence, a body of fluid is not able to resist a shearing force exerted on
its surface parallel to the surface, but must keep deforming in perpetuity when subjected to
it. An example is the motion of water in a lake due to an overpassing wind. In contrast, a
solid is able to deform and assume a new stationary shape. An example is the deformation
of a squeezed sponge.

© Springer Science + Business Media LLC 2017 1
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Certain materials, such as polymeric melts and solutions, exhibit properties that are
intermediate between those of fluids and solids in that they exhibit viscous and elastic
response. These materials are classified as viscoelastic.

Intermolecular forces

The differences between fluids and solids can be attributed to the intensity of the forces
holding the molecules together to form a coherent piece of material. The inability of a
fluid to assume its own shape is due to the weakness of the potential energy associated
with intermolecular forces relative to the kinetic energy associated with the vibrations of
the individual molecules. The molecules of a fluid are too busy vibrating to hang onto one
another and thus form a long-lived crystalline material.

Fluids can be transformed into solids, and wice versa, by manipulating the relative
magnitude of the potential energy due to intermolecular forces and the kinetic energy due
to thermal motion. In practice, this is done by heating or by changing the pressure of the
ambient environment.

PROBLEMS

1.1.1 Nature of a liquid/solid suspension

Fluids containing particles, called suspensions, abound in nature, physiology, and technol-
ogy. Examples include (a) blood consisting of a dense suspension of red, white, and other
blood cells, (b) slurry used in the petroleum industry for the hydrodynamic transport of
particulates, (¢) toothpaste and dough. Discuss whether a suspension should be classified
as a fluid or solid with reference to the volume fraction of the suspended solid phase.

1.1.2 Water and milk

A glass is filled half way with water, and another glass is filled half way with milk. Half
the water is transfer into the milk glass and the contents of the milk glass are thoroughly
mixed. One third of the diluted milk is then transferred back into the water glass and the
contents of the water glass are thoroughly mixed. What is the volume and constitution of
the liquid in each glass at the end?

1.2 Fluid parcels and flow kinematics

The motion of a non-deformable solid body, called a rigid body, can be described in terms of
the velocity of translation vector, V, and the angular velocity of rotation vector, £, where
rotation occurs around a specified center of rotation, as shown in Figure 1.2.1. A rigid body
moves as a whole in the direction of the velocity vector, while rotating as a whole around
the angular velocity vector that is pinned at the designated center of rotation. For example,
a rigid sphere translates with the velocity of its center, while rotating about the center.

In contrast, the motion of a deformable body, such as an elastic solid or a fluid, cannot
generally be described in terms of two vectors alone. A more advanced framework that
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Figure 1.2.1 A rigid body translates with velocity V while rotating with angular velocity € around
a specified center of rotation. A fluid exhibits a more general type of motion that involves local
or global deformation in addition to local or global translation and rotation.

Figure 1.2.2 A body of fluid can be divided into small parcels whose relative motion determines
the local fluid flow in a certain neighborhood. The parcels are drawn detached for clarity and
esthetics.

allows for an extended range of motions, in addition to translation and rotation, is required.

Decomposition of a fluid into parcels

To establish the necessary generalized framework, we subdivide a body of fluid into parcels,
as shown in Figure 1.2.2. For simplicity, we assume that all molecules comprising the parcels
are identical, which means that the fluid is homogeneous. Each molecule in a certain parcel
moves with its own highly fluctuating velocity. However, if the parcel exhibits a net motion,
the velocities of the individual molecules are coordinated to reflect or, more accurately, give
rise to the net motion. A molecule of a gas collides frequently with other molecules after
having traveled a distance comparable to the mean free path.

The macroscopic motion of a small fluid parcel can be described in terms of its velocity
of translation, which can be quantified in terms of the average velocity of the individual
molecules, as will be discussed in Section 1.3. If the parcel is sufficiently small, rotation is
neglected as a first approximation.

Relative parcel motion

A key observation is that the motion of a fluid can be described in terms of the relative
motion of the individual fluid parcels. If all parcels move with the same velocity, the relative
parcel velocity is zero and the fluid translates as a rigid body. It is possible that the velocity
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of the parcels is coordinated so that the fluid rotates as a whole like a rigid body about a
designated center of rotation.

As an example, we consider a fluid-filled flexible rubber tube that is closed at both ends,
and assume that the tube is stretched to elongate the fluid. The fluid has undergone neither
translation nor rotation, but a new type of motion that can only be described as deformation.
Combinations of translation, rotation, and deformation whose relative strength varies with
position in the fluid gives rise to a wide variety of fluid motions.

Kinematics as a field of fluid dynamics

Establishing in quantitative terms the relationship between the relative motion of fluid
parcels and the global structure of a flow is the main objective of kinematics. The term
kinematics derives from the Greek work kivnois which means motion. Grammatically, kine-
matics is a singular or plural noun, whereas kinematic is an adjective. The complementary
discipline of dynamics (dvvauekn) addresses the forces exerted on a fluid by an ambient
surface or body force field, such as the gravitational field, as well as the forces developing
inside a fluid as the result of the motion.

PROBLEM

1.2.1 Athens, Ohio

A car with 18" diameter tires is driven from Athens, Ohio to Athens, Georgia. How many
times have the wheels turned during the journey?

1.2.2 A rolling sphere

A sphere of radius a is rolling down a plane on a rectilinear path. How is the velocity at
the center of the sphere, V', related to the angular velocity of rotation about the center of
the sphere, Q7

1.3 Coordinates, velocity, and acceleration

To describe the motion of a molecule, we work under the auspices of classical mechanics. We
begin by introducing three mutually orthogonal axes forming a Cartesian coordinate system,
(z,y, 2), as illustrated in Figure 1.3.1. Each point in space has an associated position vector
that starts at the common origin of the Cartesian axes and ends at the point. The point is
identified by the values of x, y, and z, defined as the positive or negative projections of the
position vector onto the corresponding axes.

In vector notation, the Cartesian coordinates are expressed by an ordered triplet

x = (z,y, 2) (1.3.1)

where z, y, and z take values in the range (—o0, 00). Accordingly, the Cartesian coordinates

of a point have a dual interpretation: they represent a geometrical entity associated with the
position vector, and they also form an ordered triplet of real numbers.
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Figure 1.3.1 Three mutually orthogonal axes define a Cartesian coordinate system, (x,y,z). The
arrow indicates the position vector corresponding to a point, x.

Unit vectors
The three dimensionless (unit-less) vectors,
e, = (1,0,0), e, =(0,1,0), e, =(0,0,1), (1.3.2)

point in the positive directions of the x, y, or z axis. The end points of these vectors lie on
the z, y, or z axis. We say that the three vectors e;, e,, and e, are mutually orthogonal
Cartesian unit vectors.

Combining these definitions, we express the position vector in the form
XxX=ze,+ye,+ze,. (1.3.3)

In physical terms, this equation states that, to get to the point x departing from the origin,
we may move along each one of the unit vectors e,, e,, and e, by respective distances equal
to x, y, and z units of length. The order of motion along the three directions is immaterial.

Velocity

Because a molecule moves with a highly fluctuating velocity, its position changes rapidly in
time. Formally, we say that the coordinates of the molecule are functions of time, ¢, denoted
by

r = X(t), y=Y(t), z=Z(t). (1.3.4)
To economize our notation, we introduce the vector function
X() = (X(), Y@, 2Z@), (1.3.5)
and consolidate expressions (1.3.4) into the form

x = X(1). (1.3.6)
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By definition, the velocity of a molecule is equal to the rate of change of its position, displace-
ment over time elapsed. If the x coordinate of a molecule has changed by an infinitesimal
increment, dX, during an infinitesimal period of time, dt, then, by definition, v, = dX/dt.
Writing the counterparts of this equation for the y and z coordinates, and collecting the
three expressions, we obtain

dX dY dz
Ve = E, Uy = E, V, = E, (137)

which can be compiled into an ordered triplet,

dX dY dZ

(57 o E)' (1.3.8)

(7):1:7 Vy, Uz ) -

In vector notation,

ax
dt

VvV =

(1.3.9)

We have demonstrated that the velocity of a molecule is a vector described by its
three Cartesian components, v,, vy, and v, representing the positive or negative distances
between the projections of the last and first points of the velocity vector onto the z, y, or
z axis. The distances are then multiplied by a scaling factor to acquire units of velocity,
length divided by time. A negative value for v, indicates that the x coordinate of the last
point of the velocity vector is lower than the = value of the first point, and therefore the
motion occurs toward the negative direction of the z axis. Similar interpretations apply to
the y and z components.

In terms of the unit vectors defined in equations (1.3.2), the velocity vector is given by
V=uy€e;+vy€, +v,€,. (1.3.10)

It is evident from these definitions that the velocity vector is a free Cartesian vector, which
means that it can be translated in space to any desired location. In contrast, the first point
of the position vector, x, is always pinned to the origin.

Acceleration

The acceleration vector, a, is defined as the rate of change of the velocity vector in time,

dv  d°X
= —=—. 1.3.11
dt de? ( )
By definition then,
a=aze;+aye, +a.e,, (1.3.12)
where the Cartesian components of the acceleration vector are given by
*X a4’y d’z
Ay = W’ Ay = W./ a, = W (1313)

If the Cartesian coordinates of a molecule are constant or change linearly in time, the second
time derivatives vanish and the acceleration is zero.
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Figure 1.3.2 lllustration of cylindrical polar coordinates, (x, o, ¢), defined with respect to Cartesian
coordinates, (z,y, z), where o is the distance from the z axis.

1.3.1 Cylindrical polar coordinates

A point in space can be identified by the values of an ordered triplet, (x, o, ¢), as illustrated
in Figure 1.3.2, where:

e x is the projection of the position vector onto the straight (rectilinear) = axis passing
through a designated origin, taking values in the range (—oo, 400).

e o is the distance of a point of interest from the z axis, taking values in the range
[0, 0).

e ¢ is the azimuthal angle measured around the x axis, taking values in the range [0, 27).
The value ¢ = 0 corresponds to the first and second quadrants of the xy plane, and
the value ¢ = 7 corresponds to the third and fourth quadrants.

Using elementary trigonometry, we derive relations between the Cartesian and associated
polar cylindrical coordinates,

Yy = 0 cos p, z = osing. (1.3.14)

The inverse relations between the polar cylindrical and Cartesian coordinates are
o=y + 22, (© = arccos g (1.3.15)
o

In computing the inverse cosine function, arccos, care must be taken to ensure that the
azimuthal angle, ¢, is a continuous function of y and o with reference to a specified branch
cut.
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Unit vectors

Consider an arbitrary point in space and define three dimensionless unit vectors, denoted
by e., e, and e,, pointing in the direction of the x axis, normal to the x axis, and in the
azimuthal direction of varying angle ¢, respectively, as depicted in Figure 1.3.2. Note that
the orientation of the unit vectors e, and e, changes with position in space, whereas the
orientation of the unit vector e, is fixed and independent of position in space.

Position and velocity
In terms of the first two local unit vectors, e, and e, the position vector is given by
Xx=ze,+0e,. (1.3.16)

The dependence of the position vector on the azimuthal angle, ¢, is mediated through the
unit vector e, on the right-hand side. The absence of e,, from the right-hand side of (1.3.16)
can be justified by observing that the distance from the origin, expressed by the position
vector x, is perpendicular to the third unit vector, e..

Correspondingly, the velocity vector at a point can be expressed in the form
V =Uz€; + Vs €5 + Uy €y, (1.3.17)
where the coefficients v;, v,, and v, are the cylindrical polar components of the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive relations between the Cartesian and cylindrical
polar unit vectors,

e, =cospe, +singe,, e, = —sinpe, +cospe,. (1.3.18)

The inverse relations are

e, =cospe, —sinpe,, e. =sinpe, +cospe,. (1.3.19)
The corresponding relations for the velocity components are

Vg = COS P Uy +sinpv,, v, = —sinp v, + cosp v, (1.3.20)
and

Uy = COS P Uy — SiN Y vy, v, = sin Y v, + cos P v,. (1.3.21)
The Cartesian and cylindrical polar components of other vectors transform in similar ways.
Rates of change
The counterparts of expressions (1.3.4) for the cylindrical polar coordinates are

= X(t), o=, ©=d(t). (1.3.22)
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The rates of change of the unit vectors following the motion of a molecule are given by the
relations

de, de, do del _do

=0 = 1.3.23
> 0, (13.23)

at  dt o a . dt

Consistent with our earlier observation, the first unit vector, e,, is fixed, while the second
and third unit vectors, e, and e,, change with position in space.

Velocity components

Substituting expressions (1.3.22) into the right-hand side of (1.3.16), taking the time deriva-
tive, and using expressions (1.3.23), we find that

dxX d dx de, d¥ de,
T T (XeptYe, )= — e, b X L e, YT 1.3.24
G g X ertYeo) = et Xogm+ res + 3, ( )
and then
dX dX dy dd
_ e 4w 1.3.25
dt dte+dte+ at ©° ( )

Comparing this expression with the decomposition (1.3.17), we extract the cylindrical polar
components of the velocity,

dx dx dd
= S ekl 1.3.26
dt’ v dt’ e dt ( )

Vy =

Since @ is a dimensionless function, all three right-hand sides have units of length divided
by time.

Acceleration

Differentiating expression (1.3.25) with respect to time, ¢, and expanding the derivatives,
we find that

d’°X  d /dX dx dd
e (et e, Y — 1.3.27
ai? dt( TR TRy ew) ( )
Carrying out the differentiations, we obtain
d’°X  d%x 4’ dX de, d¥ d® d’® d® de
- et ——e,t— T i — 2 (1.3.28
de? az © * az © + dt dt + dt dt et de? ot dt dt ( )

Now we substitute expressions (1.3.23) and find that

*X X 4’y ds d® dx do 4°e 4o do

— e+ —e,+——e = ) yjpuiind -y
de2 de? €z + az © + dt dt et dt dt et ae ¢ at dt ©

o

(1.3.29)
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Figure 1.3.3 lllustration of spherical polar coordinates, (1,6, ), defined with respect to the Cartesian
coordinates, (z,v, z), and cylindrical polar coordinates, (x, o, ), where r is the distance from the
origin, € is the meridional angle, ¢ is the azimuthal angle, and o is the distance from the z axis.

Finally, we consolidate the terms on the right-hand side and derive the cylindrical polar
components of the acceleration vector,

42X 4’y 4o\ 2
Ay = 75> Qg = —%5 — Y| — s
de? de? dt
(1.3.30)
¢ _dxde 1 d do

s 2 = oo (22,
T w2 T At T s ar\”
Note that a change in the azimuthal angle determined by the function ® is accompanied by
radial acceleration, a, .

1.3.2 Spherical polar coordinates

An arbitrary point in space can be identified by the values of an ordered triplet (7,6, ), as
illustrated in Figure 1.3.3, where:
e 7 is the distance from the designated origin taking values in the range [0, c0).
e 0 is the meridional angle subtended between the z axis, the origin, and the chosen
point, taking values in the range [0, 7].
e ¢ is the azimuthal angle measured around the x axis, taking values in the range [0, 27).

The value ¢ = 0 corresponds to the first and second quadrants of the xy plane, and
the value ¢ = 1 corresponds to the third and fourth quadrants.

Using elementary trigonometry, we derive relations between the Cartesian, cylindrical polar,
and spherical polar coordinates,

r =rcosb, o =rsinf, (1.3.31)
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and
y =ocosp =rsinf cosp, z =osing = rsinf sin ¢. (1.3.32)

The inverse relations are

r=va2+y2+22 = Va2 + o2, 0 = arccos g, © = arccos g (1.3.33)
r o

In computing the inverse cosine functions, care must be taken so that 6 and ¢ emerge as
continuous functions of z, y, r, and o.

Unit vectors

Consider a point in space and define three dimensionless unit vectors, e,, eg, and e,
pointing in the radial, meridional, and azimuthal directions, respectively, as illustrated in
Figure 1.3.3. Note that the orientations of all three unit vectors change with position in
space. In contrast the orientations of the Cartesian unit vectors, e,, e,, and e, are fixed.

Position and velocity
In terms of the local unit vectors e,., eg, and e, the position vector is given by
X =7Te,. (1.3.34)

The dependence on # and ¢ is mediated through the unit vector e, on the right-hand side.
The absence of eg and e, from the right-hand side of (1.3.34) can be explained by observing
that the distance from the origin, expressed by the position vector x, is perpendicular to
the unit vectors ey and e,.

Correspondingly, the velocity vector is given by
V = v, e, + vgeg + vy, €, (1.3.35)
where the coefficients v,., vg, and v, are the spherical polar components of the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive relations between the spherical polar, cylindrical
polar, and Cartesian unit vectors,

e, = cosfe, +sinfcospe, +sinfsinpe, = cosfe, +sinbe,,
ep = —sinfle, +cosllcospe, +cosfsinpe, = —sinfle, + cosle,,
e, = —sinpe, +cosype,. (1.3.36)

The corresponding relations for the velocity components are
Uy = cos v, +sinfcospvy, +sinfsinpv, = cosfv, +sinbdv,,
vg = —sinfuv, + cosfcospv, +costsinpv, = —sindv, + cosfv,,

vy = —sing v, + cos@v,. (1.3.37)
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The Cartesian and polar components of other vectors transform in similar ways.

Rates of change
The counterparts of expressions (1.3.4) for the spherical polar coordinates are
r = R(t), 0= 0(t), © = D(t). (1.3.38)

The rate of change of the unit vectors following the motion of a molecule is given by the
relations

de, do . fo. + doe o dey d® cosfe doe o
= sin — ey, —% _ = cos — e,
at — dt P ar " ac — dt At
d do do
% =% cosfey — n sinfe,. (1.3.39)

All three unit vectors change with position in space.

Veelocity components

Substituting the first expression in (1.3.38) into the right-hand side of (1.3.50), and using
(1.3.39), we obtain

dX dR de, dR dd . de
_die = e R Ging ey 1.3.4
" " e, + I i e +R " sinfe, + R I e (1.3.40)

Comparing this expression with the decomposition (1.3.35), we derive expressions for the
spherical polar components of the velocity,
dR de
= —, = R _
at’ v dt’
Since the functions © and ® are dimensionless, all three right-hand sides have units of length
divided by time.

do
U v, = Rsinf T (1.3.41)

Acceleration

Differentiating expression (1.3.40) with respect to time, ¢, and expanding the derivatives,
we find that

d?X d’R dR de, dR d® . o |
W = ( W €, —+ E dt ) (E E Slnﬂew —+ R @ Slnaew (1342)
d® de do de dR d© d’e dO dey
R— cosf — e, + R— sin)—2 — R—— R— =2
gy cosO gy e TSmO, ) (dt ET R Ve L TR )

where the parentheses enclose terms originating from each term on the right-hand side of
(1.3.40).

Now we substitute expressions (1.3.39) and obtain

d’X
ST —A+B+C, (1.3.43)
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where the first contribution to the right-hand side is

d*R dR d® dR d®e
A= — sinf —— ey, 1.3.44
a2 o a a et (1.3.44)
the second contribution is
dR d® d*® d® de
TR sinfe, + R — e 5 sinfe, + R — ETry cosfe,,
ddy2 | .
-R (E) sinf(sinf e, + cosley), (1.3.45)
and the third contribution is
~ dRde d*e d® de dOe\ 2
RS ey + RS 0 R(—) . 1.3.46
St g e T e~y ) @ ( )

Consolidating the various terms, we derive the cylindrical polar components of the acceler-
ation vector,

d*R dey2 . o de
GT—F‘R(E) 0~ R(dt)’
d’e dR dO dd\2 |
angW+2 & Ef]?<a) sin @ cos 6, (1.3.47)
d’°® dR d® de do 1 d d®
—R—— 9= B — 25in2h — ).
Rd2 sin § + T @ sin 0 + Rd i cosf = Rend dt( sin”“ 0 dt)

Note that a change in the meridional angle described by O, or azimuthal angle described by
®, is accompanied by radial acceleration.

1.3.3 Plane polar coordinates

A point in the xy plane can be identified by the values of the doublet (r,8), where r is the
distance from the origin, and 6 is the angle subtended between the = axis, the origin, and
the chosen point, measured in the counterclockwise direction, as illustrated in Figure 1.3.4.
The radial distance, r, takes values in the range [0, 00), and the polar angle, 0, takes values
in the range [0, 27).

Using elementary trigonometry, we derive the following relations between the Cartesian
and plane polar coordinates,

x =1 cosb, y=rsind, (1.3.48)
and the inverse relations

r=+/z?+y?, 0 = arccos % (1.3.49)

In computing the inverse cosine function, care must be taken so that 6 emerges as a contin-
uous function of y and r.
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0

O R

Figure 1.3.4 lllustration of a system of plane polar coordinates, (r,0), in the xy plane defined with
respect to Cartesian coordinates, (z,y).

Unit vectors

Consider a point in the xy plane and define two dimensionless unit vectors, e, and ey, point-
ing in the radial or polar direction, as depicted in Figure 1.3.4. Note that the orientations
of these unit vectors change with position in the zy plane, whereas the orientations of the
Cartesian unit vectors e, and e, are fixed.

Position and velocity

In terms of the local unit vectors e, and ey, the position vector is given by
X =re,, (1.3.50)
and the velocity vector is given by
VvV =0, e, + vy ey. (1.3.51)
The coefficients v, and vy are the plane polar components of the velocity.

Relation to Cartesian vector components

Using elementary trigonometry, we derive the following relations between the Cartesian and
plane polar unit vectors,

e, =cosfe, +sinfe,, ep = —sinfle, + cosf ey, (1.3.52)
and the inverse relations
e, = cosfe, —sinfey, e, =sinf e, + cosf ey. (1.3.53)
The corresponding relations for the velocity components are

vy = cos 0 vy, +sin vy, vg = —sinf v, + cos v, (1.3.54)
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and
vy = cos O v, — sin 0 vy, vy = sin b v, + cos 0 vy. (1.3.55)
The Cartesian components of other vectors transform in similar ways.

Rates of change

The counterparts of expressions (1.3.4) for the plane polar coordinates are
r = R(t), 0 = 0(t). (1.3.56)

The rates of change of the unit vectors following the motion of a molecule are given by the
relations

de, dO dey  dO
ar = E €y, E = dt €. (1357)

Both unit vectors change as we move around the origin.

Velocity components

To derive the velocity components, we substitute the first equation in (1.3.56) into the
right-hand side of (1.3.50), and take the time derivative of the resulting equation. Next, we
identify the left-hand side with the velocity, expand the derivatives of the products on the
right-hand side, and use the first relation in (1.3.57) to eliminate the time derivative of the
radial unit vector, e,. Comparing the result with expressions (1.3.51), we obtain the plane
polar components of the velocity,

dR de

dr _ o8 1.3.58
at’ v =R ( )

Ty = o

Note that the right-hand sides have units of length divided by time.

Acceleration

Working as in the case of the cylindrical polar coordinates, we find that the plane polar
components of the acceleration are given by

d’R de\ 2
=gz R(g)"

d’e dRd® 1 d/_,de
=R—+2 =~ —(R?*=2).
a =gz + dﬁ(R dt)

— == 1.3.
de? dt dt R (1.3.59)

Consider a molecule moving on a circular path of radius R centered at the origin, so
that dR/dt = 0. The acceleration components are

de\2 v} d’e
ar—R(E) =, as =R > (1.3.60)
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Note that radial acceleration arises even when a molecule moves at constant polar velocity,
vg.

PROBLEMS

1.3.1 Spherical polar coordinates

Derive the inverse of the transformation rules shown in equations (1.3.37). That is, derive
expressions for the Cartesian components of the velocity in terms of the spherical polar
components of the velocity.

1.3.2 Acceleration

Derive the plane polar components of the acceleration given in (1.3.59).

1.4 Fluid velocity

Having prepared the ground for describing the motion of molecules of a fluid in quantitative
terms, we turn to considering the motion of fluid parcels consisting of a large collection of
molecules. For simplicity, we consider a homogeneous fluid parcel consisting of identical
molecules and label the N constituent molecules by an integer index, i fori =1,..., N.

Let vg), vg(,i), and uii) be the Cartesian components of the velocity of the ith molecule at
a particular time instant. The corresponding components of the mean velocity are defined
as
1 & 1 & 1 &
Ty = v Zvi?), Ty = N Zvéz), T, = N ng’), (1.4.1)
i=1 i=1 i=1
where a bar over v denotes the average value (arithmetic mean) over all N molecules.
Equations (1.4.1) can be combined into a vector form,

| X
= = (%)
V= gl v, (1.4.2)

Consider a fluid parcel of interest at a particular time, ¢, centered at a point, x. As the
size of the parcel becomes decreasingly small, the parcel tends to occupy an infinitesimal
volume in space containing the point x. In this limit, the components of the parcel velocity
defined in equations (1.4.1) reduce to the corresponding components of the fluid velocity,
denoted by uz, u,, and u., forming an ordered triplet,

u = (Ug, Uy, Us). (1.4.3)
In terms of the Cartesian unit vectors,
u=1uze; +uye, +u,e,. (1.4.4)

Polar cylindrical and other curvilinear velocity components can be defined in a similar
fashion, as discussed in Section 1.3.
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1.4.1 Continuum approximation

A conceptual difficulty undermines the physical relevance of the fluid velocity: in the limit
as the size of a fluid parcel tends to zero, the number of molecules residing inside the parcel
also tends to zero, and the averages defined in equations (1.4.1) become ill-defined. To see
this, we consider a spherical particle of radius €. As € tends to zero, a graph of the average
molecular velocity, U,, plotted against €, shows strong fluctuations that are manifestations
of random molecular excursions.

To circumvent this difficulty, we adopt the continuum approximation prescribing that,
as the size of a fluid parcel tends to zero, the limit of the average molecular velocity is
computed before the discrete nature of the fluid becomes apparent.

Since different choices for the designated parcel center at difference times produce differ-
ent fluid velocities, the components of the velocity vector, u, may be regarded as functions
of the components of the position vector, x = (z,y,2), and time, t. To signify this de-
pendence, we append to u,, uy, and u, a set of parentheses enclosing four independent
variables, writing

ug(x,y, 2, 1), uy(x,y, 2, t), uy(z,y, 2, t). (1.4.5)
In compact notation, we write
Uz (%, 1), uy(x,1), uy(x,1). (1.4.6)
In full vector notation, we write
u(x,t). (1.4.7)

If a fluid translates as a rigid body in a certain direction, possibly with a time-dependent
velocity, we omit the position vector x in the list of arguments, and write u(t).

For example, the Cartesian components of a certain velocity field are given by the
expressions

up(z,y, 2,t) = a (y* + 22) + (b + ct) 23yz + ce®™,
uy(2,y,2,t) = a(2® +2%) + (b + ct) vy®z + ce™, (1.4.8)
u(2,y,2,t) = a(z® +y*) + (b + ct) zyz® + ce™,

where a, b, ¢, and d are four constants. Velocity has units of length over time L/T', and the

position vector has units of length, L. In order for both sides of equations (1.4.8) to have
the same units, the constant a must have dimensions of inverse length-time, 1/(LT).

1.4.2 Steady flow

If a flow is steady, the components of the fluid velocity are constant in time. Consequently,
t is omitted from the list of arguments in (1.4.5)—(1.4.7), so that u(x).
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1.4.3 Two-dimensional flow

The z component of the fluid velocity in a two-dimensional flow in the zy plane is identically
Zero,

uy =0, (1.4.9)
while the z and y components depend on x and y but not on z,

ug(x,y), uy(x,y). (1.4.10)

The velocity vector lies in the xy plane at every point.

1.4.4 Swirling and axisymmetric flow

Consider the cylindrical polar coordinates depicted in Figure 1.3.2. The cylindrical polar
components of the velocity, u, and u,, are related to the Cartesian components by the
counterparts of equations (1.3.20),

Uy = COSP Uy + SN u,, Uy, = —sinpu, + cos pu,. (1.4.11)

In a swirling flow, the axial and radial velocity components are identically zero, u, =
0 and u, = 0, while the azimuthal component, u,, is nonzero and independent of the
azimuthal angle, ¢, that is u,(z, o), Consequently, the velocity vector points in the direction
of the azimuthal angle, ¢. at every point.

In an axially symmetric flow, also called an axisymmetric flow, the azimuthal velocity
component vanishes at every point,

u, =0, (1.4.12)

while the axial and radial components, u, and u,, are nonzero but independent of ¢,
Uy (x,0), U (2,0). (1.4.13)

The velocity vector lies in an azimuthal plane, defined as a plane that passes through the x
axis, at every point in an axisymmetric flow.

Superposing a swirling flow and an axisymmetric flow, we obtain a three-dimensional
flow described as axisymmetric flow with swirling motion. All three velocity components,
Uy, Uy, and u,, are generally nonzero but independent of the meridional angle ¢ in this
flow.

1.4.5 Velocity vector field, streamlines and stagnation points

Consider a flow at a certain time instant, and draw velocity vectors at a large number of
points distributed in the domain of flow. The collection of these vectors defines a vector field
called the velocity field. Starting at a certain point in the flow, we may draw a line that is
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Figure 1.4.1 lllustration of a velocity vector field and associated streamline pattern in a two-
dimensional flow involving stagnation points marked by circular symbols. Stagnation points may
occur in the interior or at the boundaries of a flow.

tangential to the velocity vector at each point, as illustrated in Figure 1.4.1. This generally
curved three-dimensional line is an instantaneous streamline. A collection of streamlines
composes an instantaneous streamline pattern.

Two or more streamlines may meet at a stagnation point, as illustrated in Figure 1.4.1.
Since the velocity is unique at each point in a flow, all velocity components must necessarily
vanish at a stagnation point. A streamline must be a closed line, extend to infinity, cross a
moving boundary, or terminate at a stagnation point.

PROBLEMS

1.4.1 Units of coefficients
Deduce the units of the coefficients b, ¢, and d on the right-hand sides of equations (1.4.8).

1.4.2 Streamline patterns

Sketch the streamline pattern of (a) a two-dimensional flow, (b) a swirling flow, (¢) an
axisymmetric flow, and (d) an axisymmetric flow with swirling motion.

1.5 Point particles and their trajectories

As the size of a fluid parcel tends to zero, the parcel reduces to an abstract entity called
a point particle. In the context of continuum mechanics, a point particle is large enough
to contain a large number of molecules whose average velocity is well-defined, but small
enough so that its volume is infinitesimal. This means that the ratio of the volume of a
point particle to the volume of the whole fluid is zero. Two consequences of this idealization
are the following:
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@)

Figure 1.5.1 lllustration of path lines defined as the trajectories of point particles in a steady (time-
independent) or unsteady (time-dependent) flow.

e A finite fluid parcel is comprised of an infinite number of point particles.

e The product of the infinite number of point particles to the infinitesimal volume of
each point particle is finite, nonzero, and equal to the parcel volume.

By definition, the rate of change of the position of a point particle is equal to the velocity of
the fluid evaluated at the instantaneous position of the point particle. If the x coordinate
of a point particle located at the position x = X has changed by the infinitesimal distance,
dX, during an infinitesimal period of time, d¢, then u, = dX/d¢, where the velocity u, is
evaluated at x = X at the current time, t. Writing the counterparts of this equation for the
y and z components, we obtain

dx dy
il (X(t),Y(t),Z(t),t), 5= uy (X(t),Y(t),Z(t),t),
(1.5.1)
% =u.(X(t),Y(t), Z(t),t).

The first set of parentheses on the right-hand side of each equation enclose the four scalar
arguments of the velocity.

1.5.1 Path lines

Since a point particle moves with the local fluid velocity, its coordinates generally change
in time according to equations (1.5.1), even if the flow is steady. Point particles in a fluid
remain stationary only if they lie precisely at a stagnation point in a steady flow, or if the
velocity field vanishes and the fluid is macroscopically quiescent. The trajectory of a point
particle is called a path line. Typical path lines are illustrated in Figure 1.5.1.

Instantaneous streamlines

By definition, a streamline is tangential to the instantaneous velocity vector field at every
point. An instantaneous streamline is the path described by a point particle moving with
the frozen instantaneous velocity field. An instantaneous streamline is physically meaningful
only in the case of steady flow.
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1.5.2 Ordinary differential equations (ODEs)

Equations (1.5.1) comprise a system of three first-order ordinary differential equations
(OpEs). If the flow is steady, the system is autonomous, meaning that there is no ex-
plicit time dependence on the right-hand side. If the flow is unsteady, the system is non-
autonomous, exhibiting an explicit time dependence on the right-hand side. The right-hand
side of a non-autonomous system depends on time implicitly through the arguments of the
dependent variables, X (t), Y(¢), and Z(t), and explicitly through the possible unsteadiness
of the flow.

Unidirectional flow

For example, the Cartesian velocity components of a steady unidirectional flow with parabolic
velocity profile are given by

Uy = (11/2 + by + & Uy = 0 Uy = 07 (152)

where a, b, and c are three constants with appropriate units. In this case, the fluid moves
along the x axis with velocity that depends on the y coordinate alone. The trajectory of a
point particle is a straight line described by an autonomous system of ODEs,

dX dY dz
=0 =0

—— =aY? +bY +e, — =0, — = 5.
7 ¢ +0Y + ¢, T , T (1.5.3)
The solution of these equations is readily found to be
X(t) = Xo + (aY? +bY +0)t, Y (t) = Yo, Z(t) = Zy, (1.5.4)

where Xy, Yy, and Z; are the coordinates of a point particle at the initial instant, ¢ = 0.

Method of integrating factors
Consider a steady three-dimensional flow with velocity components

where £ is a constant with units of inverse time. The trajectory of a point particle is
described by an autonomous system of ODEs,

dX dYy dz
— =¢(X+Y +37 —=—-E£R2Y + 2), — =¢Z 1.5.6
S —E(X+Y+32),  =-g@Y+2), ¢ (1.5.6)
The third equation can be integrated readily to give
Z(t) = Zge*'. (1.5.7)

Substituting this expression into the second equation of (1.5.6) and rearranging, we obtain

dy :
-+ 28Y = —£Zy e, (1.5.8)
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This equation can be solved by the method of integrating factors. Multiplying each term
on both sides by the integrating factor exp(2£t) and rearranging, we obtain

d(Ye?t)

= % 36t (1.5.9)

Integrating in time and enforcing the initial condition Y (0) = Yy, we obtain
YeXt = 2 Zy (1 - ™) + Yy, (1.5.10)

and then

Y(t) = 5 Zo (6725t — eb') + Yy e 261, (1.5.11)

The first equation in (1.5.6) then becomes

dx ( (
- X = 5 €70 (e % + 8et) + £Yp e (1.5.12)

Multiplying each term by the integrating factor exp(—&t), we obtain

d(X e %)

= 5 &20 (e 4 8) + €Y e 3, (1.5.13)

Integrating in time and enforcing the initial condition X (0) = Xy, we obtain
Xe ™ =5 Zg(1—e 3 4 246t) + 5 Yo (1 — e %) + X,, (1.5.14)
and then
X(t)=3Zo (1 —e ™% +24€te™) + 5 Yo (5 — o) + Xy e, (1.5.15)
We have managed to derive explicit expressions for the particle position in time.

Steady linear flow

The velocity field of a three-dimensional steady linear flow is given by

Uy = Az + Ay + Az, Uy = Aoy + Agoy + Aszz,

where A;; for 4,5 = 1,2,3 are nine constant coefficients. The trajectories of point particles
are described by an autonomous system of ODEs,

dXx dYy
T =AnX +ApY +A3Z2, a = A1 X + ApY + As3Z,
dz
= Ay X + ApY + Ags 7. (1.5.17)

dt
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These equations can be conveniently collected into the matrix form
d X(f) A11 A12 A13 X(t)
&( Y (t) ) = | Ay Asy Ao Y (#) (1.5.18)
Z(t) Az Azx Ass Z(t)
In vector notation,
dX
2 A-X 1.5.19
= , (1.5.19)
where
X Ay A Asg
X=|Y |, A= Ay Ay Aos (1.5.20)
Z Az1 Azz Ass
is the position vector and a constant 3 x 3 matrix. For the velocity field given in (1.5.6),
1 1 3
A=¢|1 0 -2 -1 (1.5.21)
0 0 1

This matrix is classified as upper triangular. The trace of this matrix, defined as the sum
of the three diagonal elements, is zero.

The solution of the ordinary differential equations is given by

X(t) vgl) v§2) [ v§3> |
Y(t) | =ar | ol [eMtas| of? et +ay| of¥ |ett, (1.5.22)
Z(t) ot o o
where A1, A2, and A3 are the eigenvalues of the matrix A and
v%n v§2> [ 1}53) |
vl = | M v = | 42 v® = | ¥ (1.5.23)
oV w2 o
are the corresponding eigenvectors satisfying the equations
A-vD) =\ v, A-v® =)\ v?, A-v® =\ v®), (1.5.24)
In vector notation,
X(t) = a;vPet 4 agv@eet 4 qgv®etst, (1.5.25)
This solution can be confirmed by substituting it into (1.5.19) and using (1.5.24).
The coefficients a1, as, and a3 are determined by the initial condition,
X(t=0)= X, Y(t=0)=Yo, Z(t=0)=Z, (1.5.26)
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requiring that

Uil) vf) vf) X,
ar | ol | tax | o | +az| 0P | = Yo |, (1.5.27)
o) o o Zo

which provides us with a system of linear algebraic equations for a1, as, and as,

L @ 3

”Ul Ul Ul a1 XO
o @ @y = v | (1.5.28)
BORORNC as Z

The solution can be found using, for example, Cramer’s rule.

Exceptions arise in the case of multiple eigenvalues. An example is provided by the
matrix (1.5.21) whose eigenvalues are 1 (twice) and —2 (once). In that case, products of
powers of ¢t with exponential terms arise.

Eigenvalues and eigenvectors

As an example, we consider a steady two-dimensional flow with velocity components

where £ a constant shear rate with units of inverse time. In this case, the coefficient matrix
is

1 3
A=¢ { 9 _1 ] . (1.5.30)
To compute the eigenvalues of A, we formulate the linear system
(A=)XI)-v=0, (1.5.31)

where v is an eigenvector of A and I is the 2 x 2 identity matrix, and compute the roots of
the characteristic polynomial,

det(A — AI) = det 52*2 ij =(E=N)(=€£-N)—6£2=0, (1.5.32)

yielding a quadratic equation,
N 76?2 =0. (1.5.33)
The eigenvalues are

A1, Ao = HVTE. (1.5.34)
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Next we compute the eigenvectors by solving the linear system

EFVIE 3% ] [u]_
2 _Gﬁg} {02}_0. (1.5.35)

In fact, because the two equations encapsulated in this system are identical, the system can
be replaced by a single equation,

(1FV7)v1 + 30y = 0. (1.5.36)

Two eigenvectors are found corresponding to the plus or minus sign,

V<1>:;{1iﬁ} V<2>:§{13ﬁ} (1.5.37)

The solution of the linear system is

(1) At (2) Aot
X(t) = arv® et 4 apv@etat = [ Ziﬁ”im 1 ZEZ?)ZAQt ] ; (1.5.38)
where the coefficients oy and as are determined by the initial condition.
Setting
X0) | 1 3aq + 3as | Xo
[RR0H ] YRR o) i B B
we obtain a linear system of two equations for oy and asq,
a1 + ay = X, a1 (=1 4+ V7) + as (=1 —V7) = 3Y,. (1.5.40)
Using Cramer’s rule, we obtain
det Xo ! } det [ ! Xo ]
ay = [ W —1-V7 = “L+VT 3% (1.5.41)

dot 1 1 ' dot 1 1 '
Tl-1evT —1-vT Cl-1evT —1-vT
where det denotes the determinant. Evaluating the determinants, we finally obtain

1 1
alzrﬁ[(uﬁ)xoml/g] o = 5o

Families of streamlines can be drawn for different choices of the initial doublet, (Xg, Yp).

[(-1+V7) Xo—3Yp].  (1.5.42)

Steady linear flows with drift
The linear system (1.5.19) can be generalized into the system

dX
—A-X—b 1.5.43
dt ’ ( )
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where b is a constant vector representing a drift velocity. The solution is given by

X (t) e e e X
V(t) | =ar | ol [eMtdan| of? [t rag| of [t | v |, (1.5.44)
Z(t) ulV) o o Z
where X = ()N( Y., Z ) is the fized point satisfying the linear system
A-X=h. (1.5.45)
In vector notation,
X(t) = a;v et 4 apv@er2t 4 agv@etet X (1.5.46)

where the coefficients a1, aso, and ag are determined by the initial condition.
As an example, we consider a steady two-dimensional flow with velocity components
Uy =& (x4 3y) + Uy, uy =& (22 —y) + Uy, (1.5.47)

where £ a constant shear rate with units of inverse time and U,, U, are two constant veloc-
ities. In this example,

A_gu _:1’)] b_“];]. (1.5.48)

Yy

The fixed point satisfies the equation
1 3 > 1
2]

< 1 [-U -6U,
X = 7 { Ut } (1.5.50)

The constants, oy and as are determined by the initial condition.

U,
v } : (1.5.49)

whose solution is

1.5.3 Explicit Euler method

In general, the solution of system (1.5.1) cannot be found by analytical methods. A numeri-
cal method for generating the trajectory of a point particle can be developed by considering
the change in the position of the point particle over a small time interval, At, and replacing
the differential equations (1.5.1) with the algebraic equations

X(t+ At) — X(t)
At

=u, (X(t),Y(t), Z(t),1),

Y(t+At) —Y(t)
At

=u, (X(t),Y (1), Z(t),t), (1.5.51)

Z(t+ At) — Z(t)
At

=u.(X(t),Y(t), Z(t),t).
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To obtain these equations, we have approximated the time derivatives on the left-hand
sides of equations (1.5.1) with forward finite-difference ratios. Since, by definition, the first
derivative dX/dt is equal to the ratio [X (¢ + At) — X (¢)]/At in the limit as At tends to
zero, we expect that, as long as At is sufficiently small, the error introduced by replacing
the derivative with a forward-difference approximation will also be reasonably small.

In fact, performing a Taylor series expansion, we find that the magnitude of the error
associated with the approximate forms (1.5.51) is comparable to the magnitude of At. This
means that, if At is equal to 0.1 in some units, the error associated with the difference
approximation will be on the order of 0.1 multiplied by a constant whose absolute value
ranges roughly between 0.5 and 5 in corresponding units.

In vector notation, the discrete form of the differential system (1.5.1) expressed by the
algebraic system (1.5.51) takes the form

X(t+ At) — X (1)
At

= u(X(t),t) + O(At), (1.5.52)

where the symbol O(At) on the right-hand side signifies the order of the error due to the
difference approximation.

Solving the first equation in (1.5.51) for X (¢t + At), the second equation for Y (¢ + At),
and the third equation for Z(t + At), we obtain

X(t+At) = X(t) +ug (X(t),Y(t), Z(t),t) x At,

Y (t+ At) =Y (t) +uy (X(¢),Y(t), Z(t), ) x At, (1.5.53)
Z(t+At) = Z(t) +u. (X(t),Y (1), Z(t),t) x At.
In vector notation,
X(t+ At) = X(t) + u(X(t),t) x At. (1.5.54)

In physical terms, equation (1.5.54) states that the position of a point particle at next
time instant, ¢ + At, is equal to the position at the current time instant, ¢, plus a small
displacement that is equal to the distance traveled over the small time interval At. The travel
velocity has been assumed constant and equal to the local fluid velocity at the beginning of
the time step, corresponding to time ¢, which is a sensible approximation.

Algorithm
Equations (1.5.53) provide us with a numerical scheme for computing the trajectory of a

point particle according to the following algorithm implementing the explicit Euler method:

1. Specify the initial time; for example, set ¢ = 0.
2. Select the size of the time step, At.
3. Specify the initial coordinates, Xy, Yy, and Zj.
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4. Evaluate the velocity components on the right-hand side of equations (1.5.53),
ug (X (8),Y (1), Z(t),t), uy(X(1),Y(t), Z(t),t), u.(X(t),Y(t),Z(t),t), (1.5.55)

5. Evaluate the right-hand sides of (1.5.53) to obtain the new point particle coordinates,
X(t+ At), Y(t+ At), and Z(t + At).

6. Reset the time to ¢t + At.

7. Stop, if desired, or return to execute Steps 4-6.

The method is explicit in that the new position of a point particle is computed in terms of
the old position using information available exclusively at the old position.

We have mentioned that approximating the derivative dX/d¢ with a forward difference
introduces an error that is comparable to the magnitude of At, as shown in equations
(1.5.52). Accordingly, the error in the position of the point particle after it has traveled for
a time interval At is on the order of At2. Based on the value of the exponent of At, we say
that the explicit Euler method carries a stepwise error of second order with respect to the
time step.

If Ngteps steps are executed from time ¢ = 0 to time ¢ = tgna, the stepwise error
will accumulate to an amount that is comparable to the product Ngteps X At?. Since, by
definition, Ngteps X At = tgnal, the cumulative error will be on the order of

t[inal x At. (1556)

This expression shows that the cumulative error is of first order with respect to the time
step. Unless At is sufficiently small, this level of error is hardly acceptable.

1.5.4 Modified Euler method

To reduce the magnitude of the error, we modify the explicit Euler method according to the
following steps:

Set the initial time; for example, set ¢ = 0.
Select the size of the time step, At.
Specify the initial coordinates, X (0), Y (0), and Z(0).

Evaluate the current velocity components,

L

ui'urrcnt = Ug (X(f)v Y(f)v Z(f)v f)
W =y (X(0), Y (1), Z(1). 1), (1.5.57)

ud™M = (X (8), Y (1), Z(t), ),

z

on the right-hand sides of (1.5.53), and save them for future use.

5. Evaluate the right-hand sides of (1.5.53) to obtain the predicted coordinates at time
t + At, denoted by XPred ypred and zpred,
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6. Evaluate the velocities at the predicted position at time ¢ + At,

“};md = u, (Xpmd, Yprcd7 med,t + Af),
ugred = u, (Xpred_/ }/pred7 Zpred7 t 4 At). (1558)

ugrcd _ UZ(Xper,Ypmd7 med,t + At),

7. Compute the average of the current and predicted velocities,

,,aver 1 current pred

Ug - 92 (U:I: + Uy )7
aver __ 1 current pred

uy -2 (ull + uy )7 (1559)
aver 1 current pred

Uy =g (uz + u )

8. Compute the coordinates of the point particle at time ¢t + At by returning to the
position at time ¢t and traveling with the mean velocity computed in Step 7 using the
formulas

X(t+ At) = X (t) + ud’ At,
Y(t+ At) =Y (1) + uy™ At, (1.5.60)
Z(t+ At) = Z(t) + ul¥" At.
9. Advance the time to t + At.
10. Stop if desired, or return to execute Steps 4-9.

~—

In fact, the modified Euler method is a special implementation of the inclusive second-
order Runge—Kutta method for solving systems of ordinary differential equations. An error
analysis shows that each time step introduces a numerical error in the position of the point
particle that is comparable to the cubic power of time step, At®. The cumulative error is
thus on the order of

tﬁnal X At27 (1561)
which is much smaller than that incurred by the explicit Euler method.

To ensure a smooth particle trajectory, we may specify an approximate travel distance
in each step, As, and adjust the time step accordingly using At = As/u, where u is the
magnitude of the local velocity.

Program path_lines

The following MATLAB code entitled path_lines, located in directory 04_various of FDLIB,
computes and displays path lines originating from specified initial points. The integration
terminates when a path line escapes the plotting window or returns to the initial position
to form a closed loop:

Nsteps = 400; % number of steps
Ds = 0.01; % spatial step
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xmin = -1.0; xmax = 1.0; % plotting window

ymin = -1.0; ymax = 1.0;

Xstart = [0.1, 0.2, 0.3]; % starting points of path lines
Ystart = [0.1, 0.2, 0.3];

-
% prepare to plot

%___

figure(1)

hold on

axis equal

set(gca, 'fontsize',13)
xlabel('x', 'fontsize',13)
ylabel('y','fontsize',13)
box on

0,
—
for n=1:size(Xstart') 7 run over starting points

%___

X0 = Xstart(n);

YO = Ystart(n);
Xsave = XO0;
Ysave = YO0;

clear Xplot Yplot

Xplot (1)
Yplot (1)

X0;
YO;

X =X0; Y=Y0; t=0;
-

for i=1:Nsteps

/-

[ux, uy] = path_lines_vel(X,Y,t);

um = sqrt(ux*ux + uy*uy);

Dt = Ds/um;
X1 = X + uxxDt;
Y1 =Y + uy*Dt;
tl = t + Dt;

[ux1, uyl] = path_lines vel(X1,Y1,t1);
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X = X + 0.5*%Dt*(ux+uxl);
Y = Y + 0.5%xDt*(uy+uyl);

t =t + Dt;
Xplot(i+l) = X;
Yplot(i+1l) = Y;

/—
% stopping check for window limits and closed paths
—

closed = sqrt((X-Xsave) "2+(Y-Ysave) "2);

if(closed < 0.9%Ds | X<xmin |X>xmax | Y<ymin | Y>ymax)

break
end

plot (Xplot,Yplot, 'k."')

end 7 of path lines

The velocity components are evaluated by the following user-defined companion MAT-
LAB function entitled path_lines_vel:

function [ux,uy] = path_lines vel(x,y,t)
o —

% evaluate the velocity

%___

Omega = 1.0;
G = 0.5;
alpha = 0.0;

ux = G*x-Omega*y+0.5%alpha*x*exp(-t);
uy = Omega*x-G*y+0.5*alpha*y*exp(t) ;

return

Running the code path_lines generates the patterns shown in Figure 1.5.2. In this case,
point particles move along closed loops.
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0.3r

0.2r

0.1

Figure 1.5.2 Path lines computed by the code path_lines for the velocity field defined in the code.

1.5.5 Description in polar coordinates

The position of a point particle can be described in the cylindrical polar coordinates depicted
in Figure 1.3.2 by three functions,

x = X(t), o= X(t), = D(t). (1.5.62)
Using the transformation rules given in Section 1.3, we derive the differential equations

dX dx

o = U (X3, 0(0),1),

= u, (X (t), 5(t), B(1), 1),

A u, (X (1), %(t), ®(t),1)
T 500 : (1.5.63)

Note the implicit and explicit dependence on time on the right-hand sides.

In the spherical polar coordinates depicted in Figure 1.3.3, the position of a point
particle is described by three functions

r = R(t), 0 =0(t), = ®(1). (1.5.64)
Using the transformation rules given in Section 1.3, we derive the differential equations

dO _ up(X(t),O(1), &(t).t)

dt R(t)

dr
dt

= u, (X(t),0(t), ®(t),1),

dd  u,(X(t),0(), ®(t),1)
dat R(t) sin©(t)

(1.5.65)

Note the implicit and explicit dependence on time on the right-hand sides.
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In the plane polar coordinates depicted in Figure 1.3.4, the position of a point particle
is described by two functions,

r = R(t), 0=0(t) (1.5.66)
Using the transformation rules given in Section 1.3, we derive the differential equations

dR 40  ug(R(t),0(t),t)
dt dat R(t)

Note the implicit and explicit dependence on time on the right-hand sides.

u, (R(t),0(t), 1), (1.5.67)

The systems of differential equations (1.5.63), (1.5.65), or (1.5.67) can be integrated
in time using the methods discussed previously in this section for Cartesian coordinates,
including the Euler method and the modified Euler method. To deduce the position vector
at any time, we use the transformation rules to obtain the Cartesian coordinates in terms
of the chosen polar coordinates.

1.5.6 Streaklines

A streakline emerges by connecting the instantaneous positions of point particles that have
been released or injected into the flow from a stationary or moving source at previous times.
Alternatively, the point particles may have been residing in the fluid at all times, but they
have been colored or tagged as they passed through the tip of a stationary or moving probe.
If the flow is steady and the probe is stationary, a streakline is also a streamline.

To compute a streakline, we solve the differential equations describing the motion of
the point particles after they have entered the flow or passed through the coloring probe
using the methods described in this section for particle paths. Since the motion of point
particles is independent of their relative position, the trajectory of each point particle can be
computed individually and independently, as though each point particle moved in isolation.

PROBLEMS

1.5.1 Streamlines by analytical integration
Consider a steady two-dimensional flow with velocity components

Uy = Ex + Ny, Uy =Nz — &Y. (1.5.68)
Deduce the units of the constants £ and 77 and derive analytical expressions for the position

of a point particle similar to those shown in (1.5.4).

1.5.2 Streamlines by analytical integration

Derive analytical expressions for the position of a point particle in a steady three-dimensional
linear flow described by the matrix

0 0
A=¢| -3 —2 0|, (1.5.69)
13
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where £ is a constant shear rate. For obvious reasons, this matrix is classified as lower
triangular.

1.5.3 & Path lines by numerical integration

Program path_lines, located in directory 04_various of FDLIB, computes and displays path
lines originating from specified initial points, as discussed in the text. Run the program for
the velocity field given in (1.5.68) with n = 0.5¢ and discuss the nature of the path lines.

1.5.4 ® Streamlines by numerical integration

Program strml, located in directory 04_various of FDLIB, generates streamlines originating
from a specified set of points. The streamlines are computed by the modified Euler method.

(a) Run the program for three velocity fields of your choice implemented in the code. Gen-
erate and discuss the structure of the streamlines patterns.

(b) Add to the code a new flow of your choice. Generate and discuss the corresponding
streamline pattern.

1.6 Material surfaces and elementary motions

An infinite collection of point particles distributed over a surface that resides inside or at
the boundary of a fluid defined a material surface. A cylindrical material surface in a
two-dimensional flow can be identified by its trace in the zy plane. A material surface
of revolution in an axisymmetric flow can be identified by its trace in an azimuthal plane
corresponding to a certain azimuthal angle, ¢.

Any patch on the surface of a cup of coffee is a material surface with distinct identity.
Under most conditions, if a material patch lies at the boundary of a fluid at a certain time,
it will remain at the boundary of the fluid at any time. This means that the point particles
comprising the patch are not able to penetrate the fluid.

Material parcels

A closed material surface is the boundary of a material parcel consisting of a fixed amount
of fluid with a permanent identity. Under most conditions, if a material surface is located
at the boundary of a material parcel at a certain time, it will remain at the boundary of the
parcel at any time. To analyze the evolution of a material parcel and visualize its motion,
we may compute the trajectories of the point particles that lie on its boundary by analytical
or numerical methods.

1.6.1 Fluid parcel rotation

Consider a two-dimensional flow in the xy plane with velocity components

Uy = —Qy, uy = Qu, (1.6.1)
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where  is a constant with units of inverse time. In vector notation, equations (1.6.1) are
collected into the form

0@ } . (1.6.2)

v wl=le | g
According to our discussion in Section 1.5, the trajectory of a point particle with Cartesian
coordinates X (t) and Y'(¢) is governed by the differential equations

dX dY
= _QY —— =QOX 1.6.3
dt ’ dt ’ ( )

subject to a specified initial condition, Xo = X (¢t = 0) and Yy = Y (¢ = 0). The solution is
readily found to be

X (t) = cos(Qt) Xo — sin(Q2t) Yy, Y (t) = sin(2t) Xo + cos(Qt) Yp. (1.6.4)

In vector notation,

EIREERECIE os)

To deduce the nature of the motion, we refer to plane polar coordinates and find that
the square of the distance of a point particle from the origin,
R%(t) = X2(t) + Y2(¢), (1.6.6)

remains constant in time, equal to the initial distance, Ry = R(t = 0). The polar angle, 6,
defined by the equation tan 6 = Y (t)/ X (¢), increases linearly in time at the rate d@/dt = €,

0=Qt+ 0o, (1.6.7)
where 6y is the polar angle at ¢ = 0. To show this, we write

Y(t)  sin(Qt) Xo + cos(Qt) Yo
tanf = = , 1.6.
O= 0 T cos(F) Xo — sin(Q) Vo (16.8)

yielding

sin(Qt) cos Oy + cos(Q2t) sinfy  sin(Qt + Op)
tan g = = = tan(Qt + bp). 1.6.9
o cos(Qt) cos By — sin(Qt) sinfy  cos(2t + 0y) an(€ + 6o) ( )

Using the relations developed in Section 1.3.3, we find that the radial and polar velocity
components are given by u, = 0 and ug = Qr. Applying (1.5.67), we recover R(t) = Ry and
0=Qt+ 6.

The preceding analysis suggests that a circular material line centered at the origin
rotates around the origin as a rigid body with angular velocity €2 while retaining its circular
shape. Accordingly, the velocity field associated with (1.6.1) expresses rigid-body rotation
around the origin of the xy plane.
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Figure 1.6.1 Deformation of a circular material line under the influence of a two-dimensional elon-
gational flow.

1.6.2 Fluid parcel deformation

Now we consider a different type of two-dimensional flow in the xy plane with velocity
components

u; = Gr, uy = —Gy, (1.6.10)

where G is a constant with units of inverse time. In vector-matrix notation,

¢ 0 } . (1.6.11)

[uz  uyl =[x yl- |: 0 -G
In this case, the trajectory of a point particle is governed by the differential equations

dx

dy
= =0X —
dt ’

O _ e 1.6.12
dt GY, ( )

subject to a specified initial condition. Note that equations (1.6.12) are decoupled, that is,
the first equation contains only X and the second equation contains only Y. The solution
is readily found to be

X (t) = e Xo, Y(t) =e CY,. (1.6.13)
In vector—-matrix notation,
X)) ] [e“ 0 Xo
EIBGEAEE 1614
The diagonal matrix elements increase or decrease exponentially in time and the off-diagonal
elements remain zero.

The evolution of a circular material line of radius a centered at the origin is illustrated
in Figure 1.6.1 for a positive value of G. As soon as the motion begins, the circular contour
deforms into an ellipse with major semi-axis

b(t) = ae®! (1.6.15)
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oriented in the x direction, and minor semi-axis
c(t) = ae G (1.6.16)

oriented in the y direction. To show this, we confirm that the coordinates of a point particle
satisfy the equation of the ellipse,
X3(t) | Y?(t)

GO0

=1, (1.6.17)

where X2 + Y = a? describes the initial circle. The area enclosed by the deforming circle
remains constant in time, equal to

A(t) = b(t) c(t) = ma®. (1.6.18)

The preceding analysis suggests that the velocity field described by (1.6.11) describes
pure deformation occurring at an exponential rate in the absence of expansion or contraction;
the constant G is the rate of deformation. The deformation conserves the area of the parcel
enclosed by the continuously deforming ellipse.

1.6.3 Fluid parcel expansion

As a third case study, we consider a two-dimensional flow in the zy plane with velocity
components
Uy = %a:c, Uy = %ay., (1.6.19)

where « is a constant with units of inverse time. In vector-matrix notation,

5Q

e wl=l o) 3 L] (1.6.20)

The trajectory of a point particle is governed by two decoupled differential equations,
dX Yy
= _luax = -1
dt & ’ dt 2

subject to a specified initial condition. The solution is found by elementary methods to be

ay, (1.6.21)

X (t) = e2 ! X,, Y(t) =e2 'Y, (1.6.22)

In vector-matrix notation,

[iféf? } - { 8 e } ' { o } (1.6.23)

Based on these expressions, we deduce that a circular material line centered at the origin
expands at an exponential rate while retaining its circular shape. Accordingly, the velocity
field associated with equations (1.6.19) expresses isotropic expansion.
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If a(t) is the radius of the circular material line at time ¢, then
a(t) = a(t = 0) e **, (1.6.24)

where a(t = 0) is the radius at the origin of time. Raising both sides to the second power,
multiplying the result by 7, and rearranging, we find that the ratio of the enclosed areas is

ma?(t)

—— =, 1.6.25
ma?(t =0) ¢ ( )

Accordingly, the constant « is the rate of areal expansion.

1.6.4 Superposition of rotation, deformation, and expansion

For future convenience, we relabel the Cartesian coordinates from (x,y) to (z/,y’). Su-
perposing the three types of motion discussed in the preceding three sections, we obtain a
compound velocity field with components

[uer  uy] = [2' y’]~({_£ QO}+{GO _8}+P% é(ﬂ) (1.6.26)

The three matrices on the right-hand side of (1.6.26) express fluid parcel rotation, pure
deformation, and isotropic expansion. Summing corresponding elements, we obtain the
composite vector form

u=x"-A, (1.6.27)
where ' = (uy,u, ), X' = (2/,y'), and the matrix A is defined as

- G—&-%a Q

A —Q -G+ ia

(1.6.28)

Because the velocity field shown in (1.6.27) depends linearly on the position vector, x’, the
associated flow is linear.

Varying the relative magnitudes of the three adjustable flow parameters, 2, G, and «,
allows us to alter the character of the flow by forming hybrid forms of the three fundamental
constituents.

1.6.5 Rotated coordinates

Although fluid parcel rotation, deformation, and expansion have been deduced with refer-
ence to the 2’y system of Cartesian coordinates, expressing the position and velocity vectors
in a different system of coordinates should not affect the physical nature of the motion. Mo-
tivated by this observation, we set out to generalize the velocity field described by equation
(1.6.27) in a way that clarifies further its physical interpretation.

Consider a two-dimensional Cartesian system, x’y’, that has been rotated with respect
to a reference system, xy, by an angle 3, as shown in Figure 1.6.2. Note that the angle 5 is
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Figure 1.6.2 A system of Cartesian axes, (x',y’), arises by rotating another system, (z,y), by an
angle, 3. The length of the dotted horizontal segment is v sin 3.

positive when the system z’y’ arises from the counterclockwise rotation of xy, and negative
otherwise. The unprimed system, xy, provides us with our working coordinates.

A point in the 2'y’ or xy plane can be identified either by its primed coordinates, (z’,y’),
or unprimed coordinates, (x,y). Using elementary trigonometry, we find that the two sets
of coordinates are related by

x =x' cos B —y sinf, y =2 sin B+ cosp. (1.6.29)

In vector-matrix notation,

o yl=[ ] [ _i?;g il(i/; } : (1.6.30)

Note the left-to-right vector-matrix multiplication on the right-hand side.

Rotation matrix

To simplify the analysis, we introduce the rotation matrix

o cosB sinf3
R = { _sinf cosp } , (1.6.31)

and express (1.6.30) in the form
x =x"R, (1.6.32)
where x' = (2/,y) and x = (z,y).

The rotation matrix has two important properties. First, its determinant is equal to
unity,

det(R) = 1. (1.6.33)
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To explain the second property, we introduce the transpose of R, which arises by inter-
changing the off-diagonal elements R12 and Rsi, to formulate the new matrix

T | cosB —sinf
Ro= [ sinf  cosf } ' (1.6.34)

where the superscript T denotes the transpose. Using the rules of matrix multiplication, we
find that

R-RT =1, R - R=1, (1.6.35)

where I is the unit or identity matrix defined as

I= [ (1) (1) } . (1.6.36)

The inverse of an arbitrary square matrix, A, is another matrix, denoted as A~!, with
the properties

A-A =T, Al A=1 (1.6.37)

If the inverse matrix, A ™!, is equal to the matrix transpose, AT, then the matrix A is called
orthogonal. In light of this definition, equations (1.6.35) ensure that the rotation matrix,
R, is orthogonal. Relation (1.6.32) can then be inverted to give

x' =x-RT, (1.6.38)
providing us with the primed coordinates in terms of the unprimed coordinates.

Velocities

Working in a similar fashion, we find that the components of the velocity vector in the xy
and z'y’ coordinates are related by the counterparts of relations (1.6.32) and (1.6.38),

u=u-R, u =u-RTY, (1.6.39)
where v’ = (uz, u,) and u = (ug, uy).
h ! y d y

Having made the necessary preparations, we multiply both sides of equation (1.6.27) by
the rotation matrix, R, and exploit the first orthogonality property in (1.6.35) to obtain

v R=x A R=x-1T-A-R=x"-R-R"A -R. (1.6.40)
Using equations (1.6.32) and (1.6.39), we obtain
u=x-B, (1.6.41)
where

B=R" A R (1.6.42)



1.6 Material surfaces and elementary motions 41
is a new matrix. Substituting (1.6.28), (1.6.31), and (1.6.34) into the right-hand side of
(1.6.42) and using the trigonometric identities

cos(2f) = cos? § — sin’ 3, sin(28) = 2 sin 5 cos G, (1.6.43)
we derive the explicit form

[ Geos(2B)+42a —Gsin(28)+Q

B=1 _Gsin@8)-9 —Gcos(26)+1a

(1.6.44)

Note that, when § = 0 or 7, the matrix B reduces to the matrix A given in equation (1.6.28).
The four elements of the matrix B are defined in terms of the three flow parameters €2, G,
and «, and the rotation angle, 5.

1.6.6 Fundamental decomposition of a two-dimensional flow

In practice, we are interested in the inverse problem: given the four elements of the matrix
B, obtained by laboratory measurements or numerical computation, we want to evaluate the
four parameters 2, G, and «, and 3, and thereby extract, respectively, the rate of rotation,
the rate of deformation, the rate of expansion, and the direction of deformation.

By way of an example, we consider a linear flow whose velocity components are given
by

Uy = ax + cy, Uy = bx + dy, (1.6.45)

where a, b, ¢, and d are four constants with units of inverse time. In vector notation,

(ue uy]=[z y]- { ! Z } : (1.6.46)

Setting each component of the matrix on the right-hand side of (1.6.46) equal to the cor-
responding component of the matrix B on the right-hand side of (1.6.44), we obtain a
nonlinear system of four trigonometric equations for the four unknowns, Q, G, «, and £,

G cos(28) + 3 a =a, ~G sin(28) + Q =b,
~Gsin(28) - Q=c, ~G cos(28) + 5 a = d. (1.6.47)
The solution can be found most readily according to the following steps.
First, we resolve the matrix on the right-hand side of (1.6.46) into three constituents,
S PR P E A ST SN
(1.6.48)

The first matrix on the right-hand side of (1.6.48) is antisymmetric or skew-symmetric,
which means that the 12 component is equal to the negative of the 21 component. The
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second matrix is symmetric with zero trace.! The third matrix is diagonal and isotropic,

which means that the two diagonal elements are identical. The decomposition into these
three components is unique by construction.

With reference to the first matrix on the right-hand side of (1.6.48), we identify the rate
of rotation,

Q=3 (b-o. (1.6.49)

With reference to the third matrix on the right-hand side of (1.6.48), we identify the rate
of expansion,

a=a+d. (1.6.50)

Eigenvalues and eigenvectors

To extract the remaining two unknowns, G and [, we consider the second matrix on the
right-hand side of (1.6.48), defined as

1|l a—d b+ec
E2|:C—‘rb d—a} (1.6.51)

An eigenvalue of E, denoted by A, and the corresponding eigenvector, denoted by

w = { i; } , (1.6.52)
satisfy the equation
E-w=\w, (1.6.53)
or
(E—AI)-f=0, (1.6.54)

where I is the 2 x 2 unit matrix and

1l a—d—=2A b+ ¢
E-A=3 c+b d—a—2\ |

(1.6.55)
The eigenvalues of E are found by setting the determinant of the matrix E — AT to zero,
thereby ensuring that the system (1.6.54) admits a nontrivial solution. Formulating the
determinant, we obtain the quadratic equation

(3(a—d)=X)(5(d—a)=X) =5 (b+c)?=0

: : (1.6.56)

IThe trace of an arbitrary square matrix is defined as the sum of the diagonal elements. For example,
the trace of the N x N identity matrix is equal to N. The trace of a matrix is equal to the sum of its
eigenvalues.
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whose roots are found to be

A=x:+/(a—d)?+ (b+ )2 (1.6.57)

The corresponding eigenvectors are found by solving the homogeneous system (1.6.54). Hav-
ing computed the eigenvalues and eigenvectors of the matrix E, we recover the constants G
and S by setting

G =, (1.6.58)

with the plus or minus sign selected on the right-hand side of (1.6.57), and identifying 3
with the angle subtended between the corresponding eigenvector w and the x axis, that is,
we compute the angle 8 from the equation

tan f = Y. (1.6.59)

A typical linear flow

To be more specific, we consider a two-dimensional linear velocity field with velocity com-
ponents

Uz(w>yvt) = g(t) (2‘7’ - y)7 “y(xvyﬂf) = g(t) (_&E + Sy)v (1660)

where £(t) is an arbitrary function of time with dimensions of inverse time. The four time-
dependent parameters a, b, ¢, and d introduced in (1.6.46) are specified as

a=2¢&(t), b= —-3¢&(t), c=—=£(1), d=3¢&(t). (1.6.61)
Thus,
2 -3
B =¢£(t) { 1 3 } : (1.6.62)
Carrying out the decomposition shown in equation (1.6.48), we find that
o 1] 0 =2 1| -1 —4 1] 5
Bg(t)<2{2 0}*2{—4 1}*2{0

Using equations (1.6.49) and (1.6.50), we find that the rate of rotation and rate of expansion
are given by

oL O

} ) (1.6.63)

Q= —¢(t), a=5¢&(t). (1.6.64)

The symmetric matrix E defined in equation (1.6.51) is given by the second term on the
right-hand side of (1.6.63),

E = £(t) [ :%2 é } . (1.6.65)
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The eigenvalues of E are found by setting the determinant of the following matrix to zero:

Cagpo | CzE® —A —26()
E-A=| "25¢ lew-x | (1.6.66)

The roots of the resulting quadratic equation are found to be

A= i\/Tﬁ £(t). (1.6.67)

Either one of these values can be identified with the rate of extension, G, as indicated by
equation (1.6.58).

Substituting expressions (1.6.67) into (1.6.54) we obtain two homogeneous equations,
—+(1£V17) -2 w0
-2 —1 (—=1+V17) wy || 0]

In fact, the two scalar equations comprising this system are identical; the redundancy un-
derlines the notion of an eigensolution. Using the first equation, we obtain

Wy __li\/17

Wy 4

(1.6.68)

(1.6.69)

Following the instructions given in the paragraph following equation (1.6.57), we finally
obtain

[ = — arctan

141
Tﬁ. (1.6.70)

In summary, we have managed to extract the rate of rotation, rate of expansion, two
rates of deformation, and the corresponding eigenvectors in a linear two-dimensional flow.

Simple shear flow
The velocity components of simple shear flow in the xy plane are given by
Uy = E(t) Y, Uy = 07 (1671)

where £(t) is a constant or time-dependent coefficient with units of inverse time, called the
shear rate, as shown in Figure 1.6.3. The four coefficients, a, b, ¢, and d, introduced in
(1.6.46) are

a=0, b=0, c=£&(b), d=0. (1.6.72)

Thus,

B— { 5(1:()) 8} (1.6.73)
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-

Figure 1.6.3 lllustration of simple shear flow in the xzy plane. A circular fluid parcel deforms into
an inclined ellipse as the upper part of the parcel moves forward and the lower part of the parcel
moves backward relative to the parcel center.

Carrying out the decomposition shown in equation (1.6.48), we find that

g 0 -1 0 1 0 0
B_2§(t)({1 0:|+|:0 1]+{00]). (1.6.74)
Using equations (1.6.49) and (1.6.50), we find that the rate of rotation and rate of expansion
are given by

O =—3&), a=0. (1.6.75)

When & > 0, a fluid parcel rotates in the clockwise direction, 2 < 0; when & < 0, a fluid

parcel rotates in the counterclockwise direction, € > 0.

The symmetric matrix E defined in equation (1.6.51) is given by the second term on
the right-hand side of (1.6.74),

_ 1 0 1
E =3¢ { 10 } . (1.6.76)
The eigenvalues of E are found by setting the determinant of the following matrix to zero,
A € ]

E- )= 25 . 1.6.77
e (16.17)

The roots of the resulting quadratic equation are found readily to be

1

A=£5 (1) (1.6.78)

FEither one of these values can be identified with the rate of extension, G, as indicated by
equation (1.6.58).

Substituting the eigenvalues given in (1.6.78) into (1.6.54), we obtain a linear system
for the eigenvector components,

% Azl
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yielding

Yy — 49, (1.6.80)

Wy

The first eigenvector corresponding to the + sign is inclined by 45° with respect to the x
axis. The second eigenvector corresponding to the — sign is inclined at 135° with respect to
the x axis. These results are consistent with the physical interpretation of the deformation
of a circular patch, as illustrated in Figure 1.6.3.

PROBLEMS

1.6.1 Material lines

A collection of point particles distributed along a line in a flow defines a material line.
Explain why, if the flow is steady, a material line that lies at a streamline at a certain time
will remain on the streamline at any time.

1.6.2 Rotation of coordinates
Use elementary trigonometry to derive two equations that relate the old coordinates, (2’,y’),
to the new coordinates, (x,y), and vice versa.

1.6.3 Fundamental decomposition of a flow

Carry out the decomposition of a two-dimensional flow with velocity components

ug(z,y,t) = &(t) (22 + 3y) uy (2, y,t) = £(t) (—z — 2y), (1.6.81)

where £(t) is a given function of time.

1.7 Numerical interpolation

In practice, the components of the fluid velocity are rarely available in an explicit form, as
shown in equations (1.4.8) and (1.5.2). Instead, they are either measured in the laboratory
with velocity probes or computed by numerical methods at data points inside the domain
of a flow.

Typically, but not always, the data points are located at the nodes of a grid defined
by the intersections of straight or curved lines in two dimensions, or by the intersection of
planar or curved surfaces in three dimensions. The velocity at an arbitrary point is then
obtained by a numerical procedure known as function interpolation.

A Cartesian grid is defined by the intersection of straight lines that are normal to the
2 or y axis in two dimensions, and by the intersection of planes that are normal to x, y, or
z axis in three dimensions. A one-dimensional, a two-dimensional, and a three-dimensional
Cartesian grid with evenly spaced grid lines are shown in Figure 1.7.1.
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1 2 3 i N+1

Figure 1.7.1 lllustration of (a) a one-dimensional grid with N divisions, (b) a two-dimensional N, x
N, Cartesian grid, and (c) a three-dimensional N, x N, x N. Cartesian grid with evenly spaced
grid lines.

1.7.1 Interpolation in one dimension

To prepare the ground for computing the components of the velocity at an arbitrary point
in a flow from specified grid values, we develop methods of interpolating a function, f(z),
of one independent variable, z.

Let us assume that the values of a function, f(z), are available at N + 1 nodes of a
one-dimensional grid, located at z; for i = 1,..., N 4+ 1, where 21 < 5 < -+ < Zn41, a8
shown in Figure 1.7.1(a). Effectively, we are provided with a three-column table of N + 1
entries listing ¢, x;, and f(x;); for simplicity, we denote f(x;) by f;, that is,

fi = f(ws). (1.7.1)
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y=flx)
y=fx)

fk+1 ””””””””””””

fi b=

i1

Figure 1.7.2 Local approximation of a function, f(x), with (a) a linear interpolating function rep-
resented by the straight line or (b) a parabolic interpolating function represented by the bold
line.

Our goal is to compute the value of the function f(z) at a point, x, that does not necessarily
coincide with a node.

A set of N + 1 nodes define N intervals, where the ith interval starts at the ith node
and ends at the i + 1 node. Suppose that the point z lies inside the kth interval subtended
between the nodes xy and xx11. A simple way of finding the value of k is by computing the
products

pi = (z —2;)(z — 2i41) (1.7.2)

fori=1,...,N. The appropriate value of k is the unique value of i for which p; is negative.

Better and faster methods of finding the label of the host interval, k, are available.
For example, in the method of logarithmic search, we first examine whether the point x
lies on the left or on the right of the mid-point of the interpolation domain (21, zn1).
Having found the host half-interval, we repeat the process until the host sub-interval has
been reduced to the kth interval.

Linear interpolation

To compute the value f(z), we may approximate the graph of the function f(z) in the
host interval, (2, xg4+1), with a straight line, and require that the straight line interpolates
through the data points (2, fx) and (zx11, frt+1), as illustrated in Figure 1.7.2(a).

In mathematical terms, we approximate the function f(z) inside the interval (zx, zg41)
with a linear function expressed by the first-degree polynomial

PP () = a® (@ — i) + b, (L.7:3)

where the coefficient a(*) is the slope and the constant b*) is the intercept. To facilitate
forthcoming algebraic manipulations, we have expressed the polynomial in terms of the
shifted monomial = — xj, rather than in terms of the unshifted monomial, x.
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To compute the constants a*) and %), we enforce the interpolation conditions
P (ay) =™ = f,
P (1) = a® (2ppy — ap) + 0P = frpq, (1.7.4)

which ensure that the graph of the polynomial passes through the data labeled k£ and k4 1.
Solving the system of the two linear equations (1.7.4) for the two monomial coefficients, we
obtain

o® = fer1 =i ) = £, (1.7.5)
Tyl — Tk

To compute the linear polynomial Pl(k) (x), we first calculate the coefficients a®) and
bF) using equations (1.7.5), and then evaluate the right-hand side of (1.7.3) for a desired
value of = that lies between xj and xj11. The result will be a reasonable approximation to
the desired value, f(z).

Quadratic interpolation

Interpolation based on the straight-line approximation overlooks the curvature of the graph
of the function f(x). For better accuracy, we may approximate the function f(z) with a
parabola defined in the interval (x, zk+1), as depicted in Figure 1.7.2(b). In mathematical
terms, we approximate the function f(x) with a quadratic function expressed by the second-
degree polynomial

p2(k) () = a® (z — z1)% + b (z — 25) + P, (1.7.6)

To simplify the forthcoming algebraic manipulations, we have expressed the polynomial in
terms of the shifted monomial x — xj, rather than the unshifted monomial, x.

To compute the three constants, a®), b*) | and ¢(¥) | we require three equations. First, we
demand that the parabola interpolates through the two data points (x, fx) and (xgt1, fe+1),
and obtain the interpolation conditions

PP () =™ =g,
PQ(k) (xpy1) = a®) (Tp1 — xp) + (k) (g1 — xp) + cF) = Sreat. (1.7.7)

One more datum point is required, and we may choose either the backward point, (xg_1, fr—1),
or the forward point, (542, fr+2). The backward choice provides us with the condition

PP (@p-1) = a® (@1 — 2x)? + 00 (@1 — ap) + P = fr_1. (1.7.8)

With the choice expressed by equations (1.7.7) and (1.7.8), the coefficients of the bino-
mial are found to be

frer —fr o fo— fra1 fr1 — fr S — fr—1
- hk:—l + hk:
o — hy hi—1 pF) — hy, hi—1 RONS
hk: +hk:71 hk: +hkfl ' / b

(1.7.9)
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where
hk-—l =Tk — Tk—-1, hk = Tk+1 — Tk (1710)
are the lengths of the backward and forward intervals.

When the data points are spaced evenly, hy_1 = hip = h, we obtain the simplified
expressions

' 1 — 2f% o . 1 — JE— X
ok — Jet1 2.;?2,4' Jr L = fk+12hfk, N (1.7.11)

To compute PQ(k)(l‘), we first calculate the coefficients a®), b*), and ¢(*) using the pre-
ceding equations, and then evaluate the right-hand side of (1.7.6). The result will be an
approximation to f(x) that is improved with respect to that computed by linear interpola-
tion.

1.7.2 Interpolation in two dimensions

Next, we consider a function of two independent variables, x and y. For the present purposes,
a function of two variables is an engine that receives a pair of numbers, x and y, and generates
a new number, f(z,y).

Cartesian grid

Assume that values of a function, f(x,y), are given at the nodes of a two-dimensional
Cartesian grid defined by the intersections of z-level lines z; for ¢ = 1,..., N, + 1, and
y-level lines y; for j = 1,..., N, + 1, as shown in Figure 1.7.1(). A grid node is identified
by the values of two indices, ¢ and j, forming an ordered integer doublet, (¢,7). The value
of the function f(z,y) at the (4,7) node is equal to f(x;,y;). Our goal is to compute the
value of f at a point, (z,y), that is not necessarily a node.

Grid generation

The following function entitled grid_2d, located in directory rec_2d inside directory 02_grids
of FDLIB, generates evenly spaced grid lines and grid points in a rectangular domain in the
zy plane confined between a, < z < b, and a, <y < by, with N, intervals in the x direction
and N, intervals in the y direction:

function [glx,gly,gx,gyl = grid-2d (ax,bx,ay,by,Nx,Ny)
% grid spacing
A—

Dx = (bx-ax)/Nx;
Dy = (by-ay)/Ny;
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—
% generate the grid lines

%___

for i=1:Nx+1
glx(i) = ax+(i-1.0)*Dx;
end

for j=1:Ny+1
gly(j) = ay+(j-1.0)*Dy;
end

—
% generate the grid points

%___

for i=1:Nx+1
for j=1:Ny+1
gx(i,3) = glx(i);
gy(i,3) = gly(§);

end

return

Suppose that a value of z lies inside the k,th x-interval confined between the xj, and
Tk, +1 z-level lines, and a value of y lies inside the k,th y-interval confined between the yy,
and yk,+1 y-level lines, as shown in Figure 1.7.3. The values of k, and k, can be found by
the methods discussed in Section 1.7.1 for one-dimensional interpolation.

Bilinear interpolation

A sensible approximation to f(z,y) can be obtained by replacing f(z,y), with a bilinear
function,

I (2, y), (1.7.12)

defined in a rectangular domain that is confined between the z-level lines © = z, and
T = Ty, 11, and y-level lines y =y, and y = yg,+1. The bilinear function is distinguished
by the following properties:

1. For a fixed value of z, call it g, the function IT¥+:¥v (2, y) varies linearly with respect
to y.

2. For a fixed value of y, call it yo, the function IT¥="*v (x, ) varies linearly with respect
to x.
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Figure 1.7.3 Bilinear interpolation of a scalar function at a point, (x,y), through a rectangular grid.
The four areas shown determine the interpolation weights.

3. The following four interpolation conditions ensure that the bilinear function reproduces
the neighboring grid values:

b (o ye,) = f(@r,, Uk, ),
I (2, yk,+1) = F(@k, s Yry+1);
%k (2, 41, Y, ) F(Thpt1s Yy ) (1.7.13)
% (w1, gk, 41) = (@hat1s Yk, 41)-

The first and second properties require that the bilinear function has the functional form

%=k (z,y) = (ak=*v @ + bf=*v) (afe*v y + b=hv), (1.7.14)
karky s keky kaiky ko ky . .
To evaluate the four constants, a;""™", bz""", a,""", and by"""", we use the four interpolation
conditions (1.7.13), obtaining

t sk ko ky ko ky
17k (2, y) = woe ™ (2, ) f(@re s yr,) w16 (@) f(@h,415 Uk, )

ko ky ko ky
twoy (5C7y)f(55kwyky+l) +wyy (way)f(mkwﬂaykﬁl): (1.7.15)
where
ka ke, Ago Kk, Aqo
wOO (CE y) - A ) Wy (l’., ) - 77
(1.7.16)
ko ky Ao1 K ky A
wor (2, y) = A wii (2, y) = A

are position-dependent interpolation weights. The numerators, Agg, A1g, Ag1, and Aq;, are
the areas of the four sub-rectangles depicted in Figure 1.7.3, given by

Ao = («Tik;,+1 - x)(yk;y+1 -y), A = (x — Ik:m)(?/k:y-t,—l —y),
Aor = (T +1 — 2)(Y — Uk, ), An = (. — o, ) (Y — Yk, )- (1.7.17)
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The common denominator, A, is the area of the interpolation rectangle, given by

A= Agy+ Aot + Ao + A1 = (.7,‘]%_;,_1 — mkz,)(yky—&-l — yky)- (1718)

Tt is reassuring to observe that the sum of the four interpolation weights given in (1.7.16)
is equal to unity for any = and y,

wop™ (@, y) + wig ™ (2,y) + wgl ™ () +wip (e y) = 1 (1.7.19)
This property guarantees that, if the four participating grid values are equal,
@ yr,) = (@r, s vk, +1) = f(@ho4150k,) = f @k, 41, Yk, +1) = &, (1.7.20)
then bilinear interpolation based on (1.7.15) predicts that
b (z,y) = 6 (wgg ™ +wig™ +wo™ +wii™) =, (L.721)

as required.

1.7.3 Interpolation of the velocity in a two-dimensional flow

Returning to fluid mechanics, we consider a two-dimensional flow in the zy plane and specify

the values of the z and y velocity components, u, and u,, at the nodes of a two-dimensional

Cartesian grid. To obtain the corresponding values at an arbitrary point, (x,y), we employ
bilinear interpolation, finding that

k. k ks,

g (2, y) = wo " " (@, Y) Ua (T, , Y, ) + W16

ko ko K,k
+wor (@, Y) U (They, Yhy+1) + Wit (2, Y) Ua (Thy 11, Yky 1) (1.7.22)

k.,
(2, y) U (Thy 41, Uk,)

and

ka ky ks ky
“y(xa y) = Wy J(‘T"a y) “y(l‘kw; yky) =+ Wig J(‘T"a y) “y(xk-,-ﬁ—l; yky)

ow o K
+wo; Y (@, y) uy (ks Yk, +1) Wit (2, Y) Uy (Thy 41 Yky+1)- (1.7.23)

The following MATLAB function entitled rec_2d_int, residing in directory rec_2d inside
directory 02_grids of FDLIB, performs the interpolation in a rectangular domain confined in
ay <2 < by and ay <y < by:

function [ux,uy] = rec_2d_int ...

(ax,bx ... % x end points

,ay,by ... % y end points
,Nx, Ny ... % grid size
,glx,gly ... % grid lines

,gux,guy ... % grid velocity
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JX, Y e % interpolation point

% Bilinear interpolation of the velocity
% at a point, (x, y)
Y5

%___

% locate the x and y intervals

for kx=1:Nx
prod = (x-glx(kx))*(x-glx(kx+1));
if (prod<0) break; end

end

for ky=1:Ny
prod = (y-gly(ky))*(y-gly(ky+1));
if (prod<0) break; end

end

% interpolation weights

%___ =

A00 = (glx(kx+1)-x)*(gly(ky+1)-y);
A01 = (glx(kx+1)-x)*(y-gly(ky));
A10 = (x-glx(kx))*(gly(ky+1)-y);
A1l = (x-glx(kx))*(y-gly(ky));

A = (glx(kx+1)-glx(kx))*(gly (ky+1)-gly (ky));

w00 = AOO/A; w01l = AO1/A; wi0 = A10/A; will = A11/A;

ux = w00 * gux(kx ,ky) + w0l * gux(kx ,ky+1)

+ w10 * gux(kx+l,ky) + wil * gux(kx+1,ky+1);
uy = w00 * guy(kx ,ky) + w0l * guy(kx ,ky+1)

+ w10 * guy(kx+1l,ky) + wil * guy(kx+1l,ky+1);

return



1.7 Numerical interpolation 55

The following MATLAB code entitled rec_2d, located in directory 02_grids of FDLIB,
generates a grid and calls this function to display a velocity vector field:

Y5
% rec_2d: velocity vector field by interpolation

%

ax = -1.3; bx = 1.3; ay = -1.0; by = 1.0;

Nx

16; Ny = 8; % grid size

—
% prepare to plot

%___

figure(1)

hold on

axis([ax-0.1, bx+0.1, ay-0.1, by+0.1])
axis equal

xlabel('x', 'fontsize',14)
ylabel('y','fontsize',14)

set(gca, 'fontsize',14)

box on

title('Velocity vector field')

plot([ax, bx, bx, ax, ax],[ay, ay, by, by, ayl,'-k')

[ glx,gly,gx,gy 1 = grid-2d (ax,bx,ay,by,Nx,Ny);

-
% specify the grid velocities (typical)
-

for i=1:Nx+1
for j=1:Ny+1
gux(i,j) = gx(i,3);
guy(i,j) =-gy(i,j);
end
end

T
% velocity vector field

% in the middle of each cell
—



56

Fluid Dynamics: Theory, Computation, and Numerical Simulation

for i=1:Nx
x = 0.5%(glx(i)+glx(i+1));
for j=1:Ny
y = 0.5%x(gly(j)+gly(j+1));

plot(x,y,’g.”)

[ux,uy]l = rec_2d_int ...

(ax,bx ... % x end points
,ay,by ... % y end points
,Nx,Ny ... 7% grid size
,glx,gly ... % grid lines
,gux,guy ... /% grid velocity
,X,¥ ... / interpolation point
)

vector = draw_arrow_2d(x,y,ux/Nx,uy/Nx);
plot(vector(:,1),vector(:,2));
end

The graphics display generated by the code for the velocity field specified in the code is
shown in Figure 1.7.4.

The following MATLAB function draw_arrow-2d, located in directory rec_2d inside di-

rectory 02_grids of FDLIB, is invoked to generate beautiful arrows:

function vector = draw_arrow_2d (x1,yl,dx,dy)

Generate coordinates for plotting
a five-point arrow starting at the point
(x1,x2) and ending at the point (x1+dx, yl+dy)

SYMBOLS:

dx, dy: arrow vector

vector(i,1): x-coordinate of the ith point
vector(i,2): y-coordinate of the ith point
% where i=1,2,3,4,5
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% angle: angle of arrow tip in radians
% tip: length of arrow tip sides
% as a fraction of the arrow length

%____ SV

x2 = xl+dx; y2 = yl+dy;
cs = cos(angle);

sn = sin(angle);

dxi = -dx; dyi = -dy;

vector(1,1) = x1; vector(1,2) = yi;
vector(2,1) = x2; vector(2,2) = y2;
vector(3,1) = x2+( dxi*cs+dyi*sn)*tip;
vector(3,2) = y2+(-dxi*sn+dyi*cs)*tip;
vector(4,1) = x2; vector(4,2) = y2;
vector(5,1) = x2+(dxi*cs-dyi*sn)*tip;
vector(5,2) = y2+(dxi*sn+dyi*cs)*tip;

return

MATLAB encapsulates the graphics function quiver that also generates a velocity vector
field over a grid.

1.7.4 Streamlines by interpolation

Our ability to interpolate the velocity components at any point in a flow from specified
grid values allows us to generate particle paths and streamlines in the absence of explicit
expressions for the velocity field. In computational fluid dynamics (CFD), grid values are
computed by solving the equations governing the motion of a fluid using a variety of nu-
merical methods, as discussed in Chapters 3 and 8.

The following MATLAB code entitled rec_2d_strml, located in directory rec_2d inside
directory 02_grids of FDLIB, generates and draws streamlines:
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Velocity vector field
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Figure 1.7.4 Bilinear interpolation of a velocity vector field through a Cartesian grid in a two-
dimensional flow.

% streamlines in a rectangular cavity
h
% confined in ax<x<bx and ay<y<by

%=========

o N

Nx = 16; Ny = 20; % grid size

400; % maximum steps along a streamline
.020; % travel distance in each step

% prepare to plot
A—

figure(1)

hold on

axis([ax-0.1, bx+0.1, ay-0.1, by+0.1])
axis equal

xlabel('x', 'fontsize',14)

ylabel('y', 'fontsize',14)

set(gca, 'fontsize',14)

box on
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[ glx,gly,gx,gy 1 = grid-2d(ax,bx,ay,by,Nx,Ny);

o/ —
% specify the grid velocities (typical)
—

for i=1:Nx+1
for j=1:Ny+1
gux(i,j) =-gy(i,j);
guy(i,j) = gx(i,3);
end
end

0
— — -
% initial streamline points

%___ =

x0 = [0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2];
Nstr = size(x0');

for i=1:Nstr
y0(i) = 0.001;
end

0
— _— -
% loop over streamlines

%___

for 1=1:Nstr

xn = x0(1);
yn = yo(1);
xstr(1) = xn; % new point

ystr(1) = yn; % new point
P
% integrate by the modified Euler method
o/ —

for i=2:Nmax % step in time

[ux,uy] = rec_2d_int ...

99
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(ax,bx ... 7% x end points

,ay,by ... % y end points

,Nx,Ny ... % grid size

,glx,gly ... % grid lines
,gux,guy ... /% grid velocity
,Xn,yn ... /% interpolation point
¥

Umag = sqrt(ux*ux+uy*uy) ;
Dt = Ds/Umag;

x1 = xn + Dt*ux;

yl = yn + Dt*uy;

[ux1l,uyl] = rec_2d_int

(ax,bx ...
,ay,by ...
,Nx,Ny ...
,glx,gly ...

,gux,guy ...
,x1,y1

)

Dth = 0.5%Dt;
xn = xn + Dth*(ux+uxi);
yn = yn + Dthx(uy+uyl);
xstr(i) = xn;
ystr(i) = yn;

check for a closed streamline after 5 steps (typical)

if (i>5)

Dist = sqrt((xn-xstr(1l)) "2+(yn-ystr(1))~2);

if (Dist<Ds)
xstr(i+l) = xstr(1);
ystr(i+l) = ystr(1);
break;
end
end

end 7 over time
plot(xstr,ystr, 'r-')

clear xstr ystr
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” 07
-0.2r

Figure 1.7.5 Streamlines of a rotary flow generated by interpolation from an underlying Cartesian
grid

end % of run over streamlines

axis([ax-0.1, bx+0.1, ay-0.1, by+0.1])

The graphics display generated by the code for the specified velocity field expressing rigid-
body rotation is shown in Figure 1.7.5.

PROBLEMS

1.7.1 Quadratic interpolation

Solve the linear system of three equations (1.7.7) and (1.7.8) to derive formulas (1.7.9).
Hint: Compute first the coefficient ¢*) using the first of equations (1.7.7).

1.7.2 Forward-point parabolic interpolation

Consider the parabolic interpolation of a function of one variable, f(z), as discussed in the
text. Forward interpolation employs the interpolation condition

P (@h19) = a® (wrpo — 2)? + b (2pp2 — 21) + ¢ = fruo, (1.7.24)

in place of (1.7.8). Derive expressions for the coefficients a(*), b*), and ¢(*) in terms of the

grid values fi, fit1, and fry2, and the interval sizes hy and hy41. Then derive simplified
expressions when hy and hy1 are both equal to h.
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1.7.3 Trilinear interpolation

Consider a function of three variables, f(z,y, z). Extend the method of bilinear interpolation
of a function of two variables, discussed in the text, to the method of trilinear interpolation
that generates the value of f at an arbitrary point (z,y,z) using the values of f at the
nodes of a three-dimensional Cartesian grid, as shown in Figure 1.7.1(¢). The interpolation
formula should be the counterpart of (1.7.15) with properly defined interpolation weights.

1.7.4 B Bilinear interpolation

Run the code rec_2d for a velocity field of your choice. Confirm that the interpolated values
are identical to the specified grid values and prepare a plot of the velocity vector field similar
to that displayed in Figure 1.7.4. Discuss the structure of the flow.

1.7.5 B Streamlines by interpolation

Run the code rec_2d_strml for a velocity field of your choice. Generate, plot, and discuss
the streamline pattern.



More on kinematics

2.1 Fundamental modes of fluid parcel motion

2.2 Fluid parcel expansion

2.3 Fluid parcel rotation and vorticity

2.4 Fluid parcel deformation

2.5 Numerical differentiation

2.6 Flow rates

2.7 Mass conservation and the continuity equation
2.8 Properties of point particles

2.9  Incompressible fluids and stream functions
2.10 Kinematic conditions at boundaries

In this chapter, we continue the study of kinematics by considering in more detail the motion
of fluid parcels, by deriving expressions for the areal, volumetric, and mass flow rates across
lines and surfaces drawn in a fluid, and by developing numerical methods for evaluating
kinematic variables of interest in terms of derivatives and integrals of the velocity field.
Mass conservation and physical conditions imposed at boundaries introduce mathematical
constraints that motivate the description of a flow in terms of ancillary functions that
expedite the mathematical analysis and considerably simplify the numerical computation.

2.1 Fundamental modes of fluid parcel motion

In Chapter 1, we pointed out that the nature of the motion of a small fluid parcel is
determined by the relative motion of point particles residing inside the parcel. If variations
in the point particle velocity are negligible compared to the average point particle velocity,
the parcel exhibits rigid-body translation. Significant variations in the point particle velocity
are responsible further general types of motion, including local rotation, deformation, and
isotropic expansion.

To study the relative motion of point particles in the vicinity of a certain point, x¢g =
(20, Y0, 20), we consider differences in the corresponding velocity components evaluated at
a point x = (z,y, z) that lies close to x¢, and at the chosen point, xg, as shown in Figure
2.1.1. If the differences are small compared to the distance between the points x and xq,
both measured in proper units, then the relative motion is negligible. If the differences are
substantial, the relative motion is significant and needs to be properly analyzed.

© Springer Science + Business Media LLC 2017 63
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|
]

Figure 2.1.1 lllustration of relative motion of a fluid in the neighborhood of a point, x¢. The bold
line represents an actual velocity profile and the straight line represents the linearized velocity
profile.

2.1.1 Function linearization

To prepare the ground for our analysis, we consider a scalar function of three independent
variables that receives a triplet of numbers, (x,y, z), and generates a number, f(z,y,z).
If the function f is locally well behaved, and if the point x lies sufficiently near the point
X, then we expect that the value f(z,y, z) will be close to the value f(xg,yo,20). Stated
differently, in the limit as x tends to x, that is, all three scalar differences x — z¢, y — yo,
and z — zg tend to zero, the difference in the function values,

f('T>y7Z) _f(x()ayOaZO)? (211)
will vanish.

The variable point, x, may approach the fixed point, xg, from different directions.
Selecting the direction that is parallel to the x axis, we set x = (x, ¥, 20), and consider
the limit of the difference f(z,vo,20) — f(20,¥0,20) as © — xo tends to zero. Because the
function f has been assumed well behaved, the ratio of the differences,

f(.??,yo,Zo) - f('/r()?yOaZO)
T — o

: (2.1.2)

tends to a finite number, which is defined as the first partial derivative of the function f
with respect to the variable z evaluated at the point xg, and is denoted by (9f/0z)(xq).
Elementary calculus ensures that the partial derivative can be computed using the usual
rules of differentiation of a function of one variable with respect to x, regarding all other
independent variables as constant. For example, if f = zyz, then 0f/0x = yz, and thus

(0f/0z)(%0) = yozo,
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Setting the fraction shown in (2.1.2) equal to (0f/0x)(xp), and solving the resulting
equation for f(x,yo, 20), we obtain

f(z, 90, 20) = (20, Y0, 20) + (x — x0) (g—f) . (2.1.3)
X/ xo
It is important to bear in mind that this equation is exact only in the limit as Az =z — xg
tends to zero. For small but non-infinitesimal values of Ax, the difference between the left-
and right-hand sides is on the order of Az2, which is small compared to Axz. For example,
if Az is equal to 0.01 is some units, then Axz? is equal to 0.0001 in corresponding units.

The point x may also approach the point xg along the y or z axis, yielding the following
counterparts of equation (2.1.3),

f(zo,9, 20) = f(zo, Y0, 20) + (¥ — o) (%)x ; (2.1.4)
and
f(wo,y0,2) = f(w0,y0,20) + (2 — 20) (%)x) (2.1.5)

Combining the arguments that led us to equations (2.1.3)—(2.1.5), we let the point x ap-
proach the point x¢ from an arbitrary direction and derive the approximation

£, = fao oy 20) + (@ = 0) (51)_ +w=w0) (52), + =) (5L ),
(2.1.6)

We pause to emphasize that relation (2.1.6) is exact only in the limit as all three spatial
differences, Ax = x — x9, Ay = y — yo, and Az = z — zp, tend to zero. For small but
non-infinitesimal values of any of these differences, the left-hand side of (2.1.6) differs from
the right-hand side by an amount that is generally on the order of the maximum of Az?
Ay?, or Az2.

Taylor series

Equation (2.1.6) can be rendered exact for any value of Az, Ay, or Az, by adding to the
right-hand side a term called the remainder. As all three differences Ax, Ay, and Az, tend
to zero, the remainder vanishes faster than these differences. Elementary calculus shows
that, if Az, Ay, and Az are sufficiently small, the remainder can be expressed as an infinite
series involving products of powers of Az, Ay, and Az, called the Taylor series of the
function f about the point xq.

The process of deriving (2.1.6) is called linearization of the function f(x) about the
point xg. The linearized form (2.1.6) states that, in the immediate vicinity of a point, xq,
any regular function resembles a linear function of the shifted monomials Az, Ay, and Az.
If all three first partial derivatives happen to vanish at the point xg, the function f(x)
behaves like a quadratic function; however, this is a rare exception.
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Gradient of a scalar function

To economize our notation, we introduce the gradient of a function, f, denoted by V f,
defined as the vector of the three partial derivatives,

of of of

ViSergr t gy T 5y

> (2.1.7)

where e,, e, and e, are the unit vectors along the x,y, or z axes. The symbol V is a vector
operator called the del or gradient operator, defined as

0 0 0
erj,;—+eya—y+e2£.

o (2.1.8)

Unlike a regular vector, V may not stand alone, but must operate on a scalar function
of position from the left to acquire a meaningful interpretation.

Inner vector product

As a second preliminary, we define the inner product of a pair of three-dimensional vectors,

£ = (far fy: I2), g = (92, 9v,92), (2.1.9)
as the scalar
It e 5 = il G 25 i By =5 S G (2.1.10)
In index notation,
f-g=fig, (2.1.11)

where summation of the repeated index ¢ is implied over x, y, and z, according to Einstein’s
repeated-index summation convention: if an index appears twice in a product, then summa-
tion of that index is implied over its range. In two dimensions, ¢ is summed over x and y.
An index may not appear more than twice in a product. An index that appears once is a
free index

Interpretation of the inner vector product

It can be shown using the rule of cosines that the inner product defined in (2.1.10) is equal
to the product of (a) the length of the first vector, f, (b) the length of the second vector, g,
and (¢) the cosine of the angle subtended between the two vectors, S,

f-g=|f|g|cosp. (2.1.12)

If the angle 3 is equal to %71’, which means that the two vectors are orthogonal, the cosine
of the angle is zero and the inner product vanishes. If the angle is zero, which means the
two vectors are parallel, the inner product is equal to the product of the two vector lengths.
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If the angle is equal to 7, which means the two vectors are anti-parallel, the inner product
is equal to the negative of the product of the two vector lengths.

If both f and g are unit vectors, that is, their lengths are equal to one unit of length, then
the inner product is equal to the cosine of the angle subtended between the corresponding
directions.

Linearized expansion in compact form

Using the preceding definitions, we state equation (2.1.6) in a compact vector form

f(x) = f(x0) + (x =x0) - (V)xo) (2.1.13)

where the subscript xg signifies that the gradient, V f, is evaluated at the point xg. The
second term on the right-hand side of (2.1.13) is the inner product of the distance vector,
X — Xq, and the gradient vector, V f, evaluated at a point of interest, xo. The magnitude of
this term attains an extreme value when the two vectors are collinear.

2.1.2 Velocity gradient tensor

To derive the linearized form of the velocity field in the vicinity of a point, xq, we identify
the function f(x) with the z, y, or z velocity component, u,, u,, or u., and obtain the
approximations

Uy (X) >~ uz(X0) + (2 — o) (a/lf:)xo (v — o) (35;1>xl] (2 — 20) <85L;)x07

Q¥ o

u ou

Uy (X) =~ ug(x0) + (v — 20) <7:)xo (y — vo) (%)XO (2 = 20) ( Ozy)XO’ (2.1.14)

w0 = )+ o — o) (52) + 0 =) (5) = 20) (552

Collecting these equations into a unified vector form, we obtain the vector equation
u(x) ~ u(xo) + (x — x¢) - L(x0), (2.1.15)

where L is a 3 x 3 matrix called the velocity-gradient tensor, defined as

[ Ouy % ou,
ox ox ox
ou ou ou
L= z Oy Ous 2.1.1
Qy oy 0Oy ( 6)
Ou, Ouy, Ou,
L Oz 0z 0z |

The notation L(x¢) in (2.1.15) emphasizes that the nine components of the velocity-gradient
tensor are evaluated at the chosen point xy around which linearization has taken place. An
actual and a linearized velocity profile is shown in Figure 2.1.1.
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Denoting 1 = z, y1 = y, and z; = 2, and also u; = ug, Uz = uy, and uz = u,. we
compute the components of the velocity-gradient tensor
&uj
03:1»

Lij = (2.1.17)

fori,j=1,2,30ri,j =u,y,z.

An application

As an example, we consider the velocity field expressed by equations (1.4.8), repeated below
for convenience,

@, 2, ) = a (4 + 22) + 5Pyz (b+ ct) + et
a(2? + 2% + 2y32 (b+ ct) + ce®, (2.1.18)
uz(x,y,2,t) = a(z® +y%) + ayz’ (b+ ct) + ce®,

“y(fca?]a Z7t>

where a, b, ¢, and d are four constants. Applying the rules of partial differentiation, we
obtain the associated velocity-gradient tensor

322yz (b+ ct) + cdt et 2az + 2z (b+ ct) 2ax +yz3(b+ ct)
L= 2ay + 23z (b + ct) 3y?zz (b+ ct) + cdt V! 2ay + x23(b + ct)
2az + 23y (b + ct) 2az + zy3 (b + ct) 3222y (b+ ct) + cdt et

(2.1.19)
Placing the point x( along the x axis, that is, setting yo = 0 and zy = 0, we find that

edt et 2qxy  2axg
L(%0,0,0) = 0 cdt 0 . (2.1.20)
0 0 cdt

Thus, in the vicinity of the point xg = (z0,0,0), the flow expressed by equations (2.1.18)
can be approximated with a linear flow described by
Ug (2, Y, 2) ~ Uy (X0) + cdt e (z — 1),
uy(x,y, 2) ~ uy(x0) +2a (x — 1) + cdt y, (2.1.21)
(T, y,2) = u.(xg) + 2a (v — 1) + cdt z.

The right-hand sides of equations (2.1.21) are linear functions of the spatial coordinates =,
y, and z, but not necessarily linear functions of time, ¢.

What is a tensor?

The velocity-gradient tensor is a matrix containing the three first partial derivatives of the
three components of the velocity with respect to x, y, or z, a total of nine scalar elements.
Why have we called this matrix a tensor?

A tensor is a matrix whose elements are physical entities evaluated with reference to a
chosen system of Cartesian coordinates. If the coordinate system is changed, for example,
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by translation or rotation, the elements of the matrix will also change to reflect the new
Cartesian base. This change is analogous to that undergone by the components of the
position or velocity vector when a new system of coordinates is introduced, as discussed in
Section 1.5.

If the elements of the matrix corresponding to the new system are related to the elements
corresponding to the old system by certain rules discussed in texts of matrix calculus and
continuum mechanics mechanics, then the matrix is called a tensor.! Establishing whether
or not a matrix is a tensor is important in deriving physical laws that relate matrices with
different physical interpretations.

2.1.3 Relative motion of point particles

According to equation (2.1.15), the motion of a point particle near a point, xg, is governed
by the equation

S = u(X) = u(xo) + (X — x0) - Lixo), (21.22)

where X is the position of the point particle and u(X) is the point-particle velocity, which
is equal to the local and instantaneous fluid velocity.

The first term on the right-hand side of (2.1.22) states that a point particle located at
the point X translates with the velocity of the point particle located at the point xg. The
second term expresses the relative motion with respect to the point particle located at xg.
Different velocity-gradient tensors, L(xq), represent different types of relative motion. Our

next goal is to delineate the nature of the relative motion in terms of the components of
L(Xo).

2.1.4 Fundamental motions in two-dimensional flow

We begin by considering a two-dimensional flow in the zy plane and introduce the 2 x 2
velocity-gradient tensor

Ouy  Ouy

. dr  Ox
L= ou, ou, (2.1.23)

dy Oy

In Section 1.6, we studied the velocity field associated with the linear flow expressed by
equation (1.6.46), repeated below for convenience,

e wl=la ol [0 0], (2.1.21)

LPozrikidis, C. (2011) Introduction to Theoretical and Computational Fluid Dynamics. Second Edition,
Oxford University Press.
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where a, b, ¢, and d are four constants with units of inverse time. Comparing equations

(2.1.15) and (2.1.23) with equation (2.1.24), we set

_ Ou, _% )_Oux _%

- ) - ) c= I ) 7 I )
oz’ ox dy dy

a

(2.1.25)

where all partial derivatives are evaluated at the point xg.

To study the nature of the linearized flow, we carry out the decomposition shown in
equation (1.6.48), setting

L=E+E+;al (2.1.26)
where
Ou,  Ouy
0 871 B Ay
==1
=5 | ou, ou ) (2.1.27)
dy or

is a skew-symmetric matrix with zero trace called the wvorticity tensor,

Jx dy  Ox + y

=1
E=3 Ouy . Ouy  Ouy  Ouy (21.28)
dy or Oy ox
is a symmetric matrix with zero trace called the rate-of-deformation tensor,
10
I= [ 01 } (2.1.29)
is the 2 x 2 identity matrix, and the scalar
Oug ~ Ouy
== 2.1.30
“T or + y ( )

is the rate of areal expansion.

Areal expansion

The results of Section 1.6 suggest that a fluid parcel centered at the point xy expands
isotropically with an areal rate of expansion that is equal to the right-hand side of (2.1.30)
evaluated at xg, as illustrated in Figure 2.1.2.

Rotation

Referring to equation (1.6.49), we find that a fluid parcel centered at the point x( rotates
in the xy plane around the point xg with angular velocity

Ou,  Ouy

1
€= (ax dy

2

) (2.1.31)
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Figure 2.1.2 Expansion, rotation, and deformation of a small discoidal fluid parcel occurring during
an infinitesimal period of time in a two-dimensional flow.

where the right-hand side is evaluated at xg, as shown in Figure 2.1.2. When € is positive,
the parcel rotates in the counterclockwise direction; whereas, when ¢ is negative, the parcel
rotates in the clockwise direction.

Deformation

Our discussion in Section 1.6 suggests that the flow associated with the rate-of-deformation
tensor, E, expresses pure deformation in the absence of rotation or expansion, as illustrated
in Figure 2.1.2.

To compute the rate of deformation, GG, we consider the eigenvalues of E. Denoting
E,, = E1,, introducing a similar notation for the other components, and taking into account
that

Eypw + Eyy =0, Euy = By (2.1.32)

by construction, we find the eigenvalues

G =+\/E2, + E2,. (2.1.33)

The corresponding eigenvectors define the principal directions of the rate of deformation,
also called the rate of strain. It can be shown that, because E is symmetric, the two
eigenvectors are mutually orthogonal. An eigenvalue of the rate-of-strain tensor expresses
the rate of deformation of a circular fluid parcel centered at a point, xg, in the direction of
the associated eigenvector.

A theorem of matrix calculus ensures that the sum of the eigenvalues of a matrix is
equal to the sum of the diagonal elements; in the case of the rate-of-deformation tensor, E,
this is equal to zero by construction. Because of this property, the deformation conserves
the area of a fluid parcel during the motion.

2.1.5 Fundamental motions in three-dimensional flow

To generalized the analysis of Section 2.1.4 to three-dimensional flow, we resolve the three-
dimensional velocity-gradient tensor into three parts, as

L=2+E+zal (2.1.34)
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duy  Ouz  Ou.  Ouy

0 or Oy ox 0z
-_ 1 Uy - % 0 ou.~ - Ouy
T2 oy ox oy 0z
Oug B Ou.  Ouy B ou
0z Ox 0z oy
Uy 1 1,0uy  Oug 1,0u, Oy
or 3% 5(@ Gy) 5(8.7: 02)
Ouz — Ou, ou, 1 1,0u du,
E= 1 z Yy Ty 1 1 z Yy
2(8_7/ 61') oy 5 2(8y 82)
Ouy ou 1 Ouy  Ou ou,

1
3

1
E( 0z 033) 2( 0z 8y) 0z

Table 2.1.1 Definition of the vorticity tensor, E, and rate-of-deformation tensor, E, in a three-
dimensional flow; the scalar « = V - u is the volumetric rate of expansion.

where E is the skew-symmetric vorticity tensor, E is the symmetric and traceless rate-of-
deformation tensor,

10 0
I=10 1 0 (2.1.35)
0 0 1
is the 3 x 3 identity matrix, and the scalar coefficient
_ Oug | Ouy  Ou, (2.1.36)

T Ox Oy 0z

is the rate of volumetric expansion. Explicit expressions for the vorticity tensor, 2, and
rate-of-deformation tensor, E, are given in Table 2.1.1.

The three terms on the right-hand side of (2.1.34) express, respectively, isotropic ex-
pansion, rotation, and pure deformation, as illustrated in Figure 2.1.3. Because of the fun-
damental significance of these motions, these terms merit individual attention in Sections
2.2-24.

2.1.6 Gradient in polar coordinates

We have defined the velocity-gradient tensor as the gradient of the velocity vector field. Ex-
pressions for the gradient operator in polar coordinates can be obtained by using geometrical
transformation rules combined with the chain rule of differentiation.
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Figure 2.1.3 Expansion, rotation, and deformation of a small spherical fluid parcel occurring during
an infinitesimal period of time in a three-dimensional flow.

Cylindrical polar coordinates

In the cylindrical polar coordinates depicted in Figure 1.3.2, the gradient of a scalar function,
f(x), is determined by its cylindrical polar components F,, F,, and F,, as

F=Vf=Fye+ e, +Fye,. (2.1.37)
Using the transformation rules shown in equations (1.3.20), we find that

o of . of o of af
Fg—cosapa—y—&—smgoaz, F, = smgoa—y—i—cosapaz.

(2.1.38)

To express the derivatives with respect to y and z in terms of derivatives with respect
to cylindrical polar coordinates, we use the chain rule of differentiation along with the
coordinate transformation rules (1.3.14) and (1.3.15), and find that

(%)J,Z B (%)G,W(%)w,z i (%)-’I?W(%)%Z - (%)x,a(%)w,z (2.1.39)

or
(%L S (%)w - Sh;w (gi)l_’, (2.1.40)
and
()~ (2) () )+ () (%), e
or

(%)m = sing (ZT{)W =" (g*i)x,g~ (2.1.42)

Substituting relations (2.1.40) and (2.1.42) into the right-hand sides of relations (2.1.38),
we find that

_of i p_L0f

Fw—%7 0—070_7 ga—;a(p-

(2.1.43)
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Equations (2.1.43) illustrate that the polar components of the gradient are equal to the
partial derivatives with respect to the corresponding coordinates multiplied by an appropri-
ate scaling factor.

Spherical polar coordinates

In the spherical polar coordinates depicted in Figure 1.3.3, the gradient of a scalar function,
f, is defined by its spherical polar components F)., Fy, and F,, as

F=Vf=Fe +Fe)+F,e,. (2.1.44)

Working as in the case of cylindrical polar coordinates, we obtain

_of L _1af 1 of

F’I’_ia — T qap>? - . a
or T Y rsinf 9p

(2.1.45)

Note that the expression for F, is consistent with that given in the third relation of (2.1.43),
subject to the substitution o = rsin 6.

Plane polar coordinates

In the plane polar coordinates depicted in Figure 1.3.4, the gradient of a scalar function, f,
is defined by its plane polar components, F,. and Fy, as

F=Vf=Fe +Fyey. (2.1.46)

Working as in the case of cylindrical coordinates, we obtain

_9f
T or’

_L9f

F, - .
r 00

Fy (2.1.47)

PROBLEMS

2.1.1 Inner vector product

Prove the interpretation of the inner vector product discussed after equation (2.1.11). Hint:
Use the law of cosines.

2.1.2 Decomposition of a linearized flow

(@) Linearize the velocity described by equations (1.5.2) around the origin of the y axis, and
then decompose the velocity-gradient tensor of the linearized flow into the three constituents
shown on the right-hand side of (2.1.34).

(b) Decompose the velocity gradient-tensor of the linearized flow expressed by equations
(2.1.21) into the three constituents shown on the right-hand side of (2.1.34).
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2.2 Fluid parcel expansion

The velocity field associated with the third term on the right-hand side of (2.1.34) is de-
scribed by

u 3

1 00

expansion () = L a(xg) (x —%o) - | 0 1 0 | =3 a(xo) (x — xo). (2.2.1)
0 0 1

Under the influence of this field, a spherical fluid parcel centered at the point x¢ expands

when the coefficient «(xg) is positive, or contracts when the coefficient a(xg) is negative,
all the while retaining the spherical shape.

To see this behavior more clearly, we consider the motion of a point particle that lies
at the surface of the spherical parcel. Using (2.2.1), we find that the radius of the parcel,
a(t), is given by

_alt)  _ tar (2.2.2)

Raising both sides to the third power and multiplying the result by the factor %ﬂ, we find

that the ratio of the instantaneous parcel volume to the initial parcel volume is

a3(1)

@ t
B e 2.2.3
Lait=0) (223

This result explains why the constant « is called the rate of volumetric expansion.

Divergence of the velocity field

The rate of expansion defined in equation (2.1.36) can be expressed in a compact form that
simplifies the notation. Taking the inner product of the del operator defined in (2.1.8) and
the velocity, we find that

duy % ou,

Vou= — . 2.2.4
U= " y + 0z ( )
In index notation,
ou;
V.u= 2.2.5
u= 3, (225)

where summation over the repeated index ¢ is implied for z, y, and z. In the case of two-
dimensional flow in the xy plane, the derivative of w, with respect to z does not appear.
Accordingly, we write

a=V-u (2.2.6)

The right-hand side of (2.2.6) is the divergence of the velocity field.
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Solenoidal velocity fields

We have found that the rate of volumetric expansion at an arbitrary point in a three-
dimensional flow and the rate of areal expansion at a point in a two-dimensional flow are
equal to the divergence of the velocity evaluated at that point. If the divergence of the ve-
locity vanishes everywhere in a flow, with the physical consequence that no parcel undergoes
expansion but only exhibits translation, rotation, and deformation, then the velocity field
is called solenoidal.

PROBLEM

2.2.1 Rate of expansion

Derive the rate of expansion of the flow described by equations (2.1.18), and then evaluate
the rate of expansion at the point xg = (1,0, 1).

2.3 Fluid parcel rotation and vorticity

The velocity field associated with the first term on the right-hand side of (2.1.34) is given
by

urotation(x7 Y, Z) — (X _ XO) . E(XO), (23.1)

where = is the vorticity tensor defined in Table 2.1.1.

A planar fluid parcel in a two-dimensional flow in the xy plane may only rotate around
the z axis. In contrast, a three-dimensional fluid parcel in a three-dimensional flow may
rotate around any arbitrary axis that passes through the designated center of rotation, xq,
and points in any arbitrary direction.

The orientation, magnitude, and direction of rotation define an angular velocity vec-
tor, €, whose components can be deduced from the three upper triangular or three lower
triangular entries of the vorticity tensor shown in Table 2.1.1, and are given by

Ou, Ouy ou, Ou, Ouy,  Ouy

_ 1 _ _
oy _5)7 Qy_Q(az Ox ) Ox Oy

= ol

1
Q=5 ( 2

), (2.3.2)
where the right-hand sides are evaluated at the designated parcel center, xg. As we look
down into the vector €2 from the tip of its arrow, the fluid rotates in the clockwise direction.

Equation (2.3.1) can be recast into a compact form in terms of the angular velocity
vector as

0 Q. -0,

rotation(w’ n Z) — (X _ XO) . -0, 0 O , (233)
Q, 9 0

u

where Q derives from the velocity by way of (2.3.2).
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Figure 2.3.1 The outer product of two vectors, f and g, is a new vector that is perpendicular to the
plane of f and g.

We note that the three components of the angular velocity vector arise by combining
selected partial derivatives of the components of the velocity field in a particular fashion.
Stated differently, the angular velocity vector field arises from the velocity field by operating
with a differential operator, just as the rate of expansion arises from the velocity field by
operating with the divergence operator (V-), as discussed in Section 2.2.

Outer vector product

To identify the differential operator that generates the point particle angular velocity field,
Q, from the velocity field, u, according to equations (2.3.2), we introduce the outer vector
product. Consider a pair of vectors,

f= (,ﬁlzvfyvfz)v g = (g,’mgyvgz)- (234)

The outer product of the first vector with the second vector, taken in this particular order,
is a new vector, denoted as f x g, defined as

fxg=(fyg: —f-9y)ec +(f: 90 — fug:)ey + (fogy — fy9u)es, (2.3.5)
where e;, ey, and e, are unit vectors along the z, y, or z axis. We find that
fxg=-gxf. (2.3.6)
If the order of the two vectors is switched, a minus sign must be included.

Interpretation of the outer vector product

It can be shown that the outer-product vector f x g is normal to the plane containing the
vectors f and g, as illustrated in Figure 2.3.1. The magnitude of f x g is equal to the product
of (a) the length of the vector f, (b) the length of the vector g, and (c¢) the absolute value
of the sine of the angle, 5, subtended between the two vectors.

The orientation of the outer-product vector f x g is such that, as we look down at the
plane defined by f and g toward the negative direction of f x g, the angle 5 measured in
the counterclockwise direction from f is less than 7. If 5 is equal to 0 or 7, the two vectors
are parallel or anti-parallel, the sine of the angle is zero, and the outer product vanishes.
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The three directions defined by the the triplet of vectors f, g, and f x g, arranged in
this particular order, form a right-handed system of coordinates. This is another way of
saying that f x g arises from f and g according to the right-hand rule.

Now invoking the definition of the cross product, we recast equation (2.3.3) into the
form

urotation(l,’ v, Z) =0 x (X _ XO)a (237)

which describes rigid-body rotation with angular velocity €2 around the point xg, in agree-
ment with the previously stated physical interpretation.

2.3.1 Curl and vorticity

Taking the outer product of the del operator and the velocity field, we obtain the curl of
the velocity defined as the vorticity,
Ou,  Ouy

dy 0z

Ouy Buz) o 4 (% Uy
or’ Y Yox Oy

w=Vxu=( )e.. (2.3.8)

)ex +(

0z
Comparing equation (2.3.8) with equations (2.3.2), we find that
1
Q= 7 %, (2.3.9)

which shows that the angular-velocity vector is equal to half the vorticity vector, or half the
curl of the velocity.

Irrotational flow

If the curl of a velocity field vanishes at every point in a flow, with the consequence that no
spherical fluid parcel undergoes rotation, then the velocity field is called irrotational. The
properties and computation of irrotational flow will be discussed in Chapter 3, and then
again in Chapter 12 in the context of aerodynamics.

The alternating tensor

The long expression on the right-hand side of equation (2.3.5) defining the outer vector
product is cumbersome. To simplify the notation, we introduce the three-index alternating
tensor, €;;x, defined as follows:

1. Ifi=j,or j =k, or k=1, then ¢, = 0. For example, €,.y = €.y = €,yy = 0.

2. If 7, 7, and k are all different, then €;;;, = £1. The plus sign applies when the triplet
17k is a cyclic permutation of zyz, and the minus sign applies otherwise. For example,
€ryz = €rzy = €y2z = 1, DUt €5,y = —1.

Two important properties of the alternating tensor stemming from its definition are

€ijk €mjk = 2 6im: (2310)
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where double summation of the repeated indices 7 and k is implied on the left-hand side,
and

€ijk €lmk — 6Ll 6jm - 5i’771 5]'17 (2311)

where summation of the repeated index k is implied on the left-hand side. Kronecker’s delta,
di;, represents the identity matrix: §;; = 1 if 4 = j, or 0 if ¢ # j. Additional properties of
the alternating tensor are listed in Problem 2.3.2.

In terms of the alternating tensor, the ith component of the outer vector product f x g
defined in equation (2.3.5) is given by

(f x g)i = €ij fi gk (2.3.12)

where double summation of the two repeated indices j and k is implied on the right-hand
side.

Using the definition (2.3.8), we find that the ith component of the vorticity is given by

5,
Wi = €ijk 7(9?:@ (2.3.13)
z;

Straightforward manipulation of (2.3.13) provides us with an expression for the vorticity
vector in terms of the vorticity tensor,

ouy, ouy, ouy, Ouy,

wi =3 (€ + ik gy ) = 8 (€ G, ~ ik ) (23.14)
and then
w; = % (nggzlj - Ezjkg%) = eijk% (g:j - %) (23'15)
or
w; = €3k - (2.3.16)
The inverse relationship is
Eij = 5 €ijk W (2.3.17)

(Problem 2.3.3).

2.3.2 Two-dimensional flow

Consider a two-dimensional flow in the zy plane. Inspecting the right-hand side of (2.3.8),
we find that the x and y components of the vorticity vanish. The vorticity vector is then
parallel to the z axis, and thus perpendicular to the plane of the flow,

w=w,e,, (2.3.18)
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where e, is the unit vector along the z axis. The scalar w, is the strength of the vorticity,
defined as

Ou,  Ouy
.= —> — . 2.3.19
w ox dy ( )
For example, in the case of simple shear flow, u, = &y, u, = 0, and w, = —¢, where the

coefficient £ is the shear rate.

Using the transformation rules discussed in Section 1.1, we find that the strength of the
vorticity in the plane polar coordinates depicted in Figure 1.1.4 is given by

oo (),

In the case of rigid-body rotation with angular velocity Q, ug = Qr u, =0, and w, = % Q.

(2.3.20)

2.3.3 Axisymmetric flow

Consider an axisymmetric flow in the absence of swirling motion and refer to the polar cylin-
drical coordinates (x, o, ¢) depicted in Figure 1.1.2 and to the spherical polar coordinates
(r,0,¢) depicted in Figure 1.1.3.

A fluid patch that lies in an azimuthal plane, defined as plane of constant azimuthal angle
p, is able to rotate only around an axis that is perpendicular to this plane. Consequently,
the vorticity vector points in the direction of increasing or decreasing azimuthal angle, ¢.
This observation suggests that the vorticity vector takes the form

W= w,e,, (2.3.21)

where e, is the unit vector in the azimuthal direction and w,, is the corresponding vorticity
component given by

_ Ouy  Ouy 1 ( O(rug) B ou, )

Y= or T ac  r\ or 90

Note that the expression in spherical polar coordinates, (r,6), given on the right-hand side
of (2.3.22) is identical to that in plane polar coordinates given in (2.3.20).

(2.3.22)

PROBLEMS

2.3.1 Properties of the outer vector product

(a) Show that f x g = —g X f, where the outer vector product, denoted by X, is defined in
equation (2.3.5).

(b) The outer vector product of two vectors, f and g, can be identified with the determinant
of a matrix,

e; €, e,

fxg:det( fo o fe ) (2.3.23)
9z Gy Yz
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Confirm that this rule is consistent with the definition of the curl of the velocity in (2.3.8).

2.3.2 Properties of Kronecker’s delta and alternating tensor

Prove the properties
(5u‘ = 3, Gljk 57k = 07 aj 57k = ag, Al‘j (S‘jk = Allm (2.3.24)

where 6;; is Kronecker’s delta representing the 3 x 3 identity matrix, a is an arbitrary vector,
A is an arbitrary matrix, and summation is implied over a repeated index.

2.3.3 Relation between the vorticity tensor and vector

Prove relation (2.3.17). Hint: Express the vorticity in terms of the velocity as shown in
(2.3.13), and then use property (2.3.11).

2.3.4 The vorticity field is solenoidal
Show that the divergence of the vorticity is identically zero, V -w = 0, that is, the vorticity

field is solenoidal.

2.4 Fluid parcel deformation

The velocity field associated with the second term on the right-hand side of (2.1.34) is
udeformation(w’ v, Z) _ (X . XO) . E(X()), (241)

where E is the symmetric and traceless rate-of-deformation tensor defined in Table 2.1.1.

To develop insights into the nature of the motion described by (2.4.1), we consider a
special case where E(xq) is a diagonal matrix,

C')ux _ l
oxr 3
E(Xo) — 0

0 0
Ouy 1
2y -z« 0 , (2.4.2)
auz 1

with the understanding that the derivatives on the right-hand side are evaluated at the point
Xg. The trace of the matrix on the right-hand side is zero, as required. The eigenvalues of a
diagonal matrix are equal to the diagonal elements. The corresponding eigenvectors point
along the z, y, or z axes.

Cursory inspection reveals that, under the action of the flow described by (2.4.1), subject
to (2.4.2), a spherical fluid parcel centered at a point, xg, deforms to obtain an ellipsoidal
shape while preserving its volume, as illustrated in Figure 2.1.2. The three eigenvalues of
the rate-of-deformation tensor express the rate of deformation in three principal directions
corresponding to the eigenvectors. If an eigenvalue is negative, the parcel is compressed in
the corresponding direction to obtain an oblate shape.
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More generally, the rate-of-deformation tensor has three real eigenvalues, A1, Ao, and
A3, that are found by setting the determinant of the following matrix to zero,

E-\=| E, E,-X E. |, (2.4.3)
sz Ezy Ezz - )\

and then computing the roots of the emerging cubic equation for A, where I is the 3 x 3
identity matrix. It can be shown that, because E is symmetric, all three eigenvalues are
real and each eigenvalue has a distinct corresponding eigenvector. Moreover, the three
eigenvectors are mutually orthogonal, pointing in the principal directions of the rate of
strain.

Under the action of the flow stated in (2.4.1), a spherical fluid parcel centered at the
point x deforms to obtain an ellipsoidal shape whose axes are generally inclined with respect
to the z,y, and z axis. The three axes of the ellipsoid are parallel to the eigenvectors of
E, and the respective rates of deformation of the ellipsoid are equal to the corresponding
eigenvalues. A theorem of matrix calculus states that the sum of the eigenvalues is equal
to the sum of the diagonal elements of E, which is zero. Because of this property, the
deformation preserves the parcel volume.

Computation of the rates of strain

Setting the determinant of the matrix (2.4.3) to zero, we obtain a cubic algebraic equation
for A,

MN+aX+bA+c=0, (2.4.4)
where

a = —trace(E) = —(Eyy + Eyy + E.),
b = (Enyzz - EyzEzy) + (Eerzz - Ezzsz) + (ExxEyy - Eryny)a
¢ = det(E), (2.4.5)

and det stands for the determinant. Using Cardano’s formulas, we find that the three roots
of (2.4.4) are given by

XEtm

)\12—%4—6[008%7 A2,3:—g—dCOS 3 (2.4.6)
where
1, /2 1 q
d=2 (5 |p\) , X = arccos (— 3 ﬁ) (2.4.7)
(5pl)
and
p=>b—zad’ q:c+22—7a3—%ab. (2.4.8)
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In general, we may find three real eigenvalues or one real eigenvalue accompanied by a pair
of complex conjugate eigenvalues.

In the case of the rate-of-deformation tensor, because the trace is zero, a = 0, we obtain
the simplified expressions

SE
A1 = d cos K, Ao3 = —d cos i ﬂ-, (2.4.9)
3 ’ 3
where
1/3 .
d=2 (% |b\) , X = arccos ( - % ﬁ) (2.4.10)
(316l)

and b, ¢ can be arbitrary.

Once the eigenvalues have been found, the eigenvectors are computed by solving a ho-
mogeneous system of three equations for three unknowns. For example, the eigenvector
e = (e&l),eél), egl)) corresponding to the eigenvalue \; is found by solving the homoge-

neous linear system

(E—M\I)-eM =0, (2.4.11)
which can be restated as
_ (1) 1 (1)
xx 1 ] 1 - xz )
(E A1) ey + Eyy ey E,.el
Eypel) +(Byy—A)el) = —E, el (2.4.12)
Ene)+Eyel) = —(B..—A)el.

To solve system (2.4.12), we may assign an arbitrary value to the first component, egl),

evaluate the first two right-hand sides, and solve the first two equations for eg;l) and 6751)
using, for example, Cramer’s rule. The solution is guaranteed to also satisfy the third
equation. A solution cannot be found if the eigenvector is perpendicular to the z axis, in
which case e,(zl) is zero. If this occurs, we simply transfer the term involving ef(ﬁl) or eg(,l) to

the right-hand side instead, and solve for the other two components.

PROBLEMS

2.4.1 Properties of eigenvalues
(a) Confirm that the sum of the three eigenvalues given in (2.4.6) is equal to the trace of E.

(b) Confirm that the product of the three eigenvalues given in (2.4.6) is equal to the deter-
minant of the rate-of-deformation tensor, E.

(¢) Confirm that, when E is diagonal, formulas (2.4.6) identify the eigenvalues with the
diagonal elements.
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2.4.2 B FEigenvalues and eigenvectors

Directory 05_eigen, located inside directory 0I_num_meth of FDLIB, contains a program
entitled eigen33 that computes the eigenvalues of a 3 x 3 matrix. Use the program to
compute the eigenvalues and eigenvectors of the rate of deformation tensor corresponding
to the linearized flow (2.1.21) for a = 1 s7! and edt =2 s71.

2.5 Numerical differentiation

We have mentioned that, in practice, the components of a velocity field are hardly ever
given in analytical form by way of mathematical expressions. Instead, their values are
either measured in the laboratory with probes, or computed by numerical methods at data
points represented by grid nodes located in the domain of flow. The partial derivatives of
the velocity are then recovered by a numerical procedure called numerical differentiation.

2.5.1 Numerical differentiation in one dimension

As a prelude to computing the partial derivatives of the components of the velocity from
specified grid values, we consider computing the first derivative of a function, f(x), of one
independent variable, x, defined on a grid.

To be more specific, we assume that values of f(z) are given at N + 1 nodes of a
one-dimensional uniform grid with nodes located at x; for e = 1,..., N 41, as shown below:

Our goal is to compute the derivative, df/dx, at a point, z, that lies in the kth interval
subtended between the nodes xj and 4.

First-order differentiation

In the simplest approach, the graph of the function f(x) in the interval (x, xx41) is approx-
imated with a straight line, as shown in Figure 1.7.2, and the derivative df/dz is approx-
imated with the slope. Using equations (1.7.3) and (1.7.5), we derive the finite-difference
approximation

flx) ~ Jea1 = i (2.5.1)

LTr+1 — zp’
where a prime denotes a derivative with respect to x.

Now identifying the evaluation point, x, with the grid point, x, we obtain the forward-
difference approximation

Jet1 — fr

fan) = P— (2.5.2)
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The error associated with this approximation is proportional to the interval size, hy =
T+1 — Tk

Using instead the straight-line approximation for the & — 1 interval, we obtain the
backward-difference approximation

- S — fr—1

!
ey . 2.5.3
Py = 2=t (253
Formulas (2.5.2) and (2.5.3) carry a comparable amount of error due to the straight-line

approximation.

To evaluate the derivative at the first point, f’(x1), we use a forward difference; to
evaluate the derivative at the last point, f'(xy11), we use a backward difference; to evaluate
f/(x;) at an interior grid point, where i = 2,..., N, we use either a forward or a backward
difference, whichever is deemed more convenient or appropriate.

Second-order differentiation

Numerical differentiation based on linear interpolation neglects the curvature of the graph of
the function f(z). To improve the accuracy of the interpolation, we approximate f(x) with
a parabolic function defined in the interval (zy,xg+1), as depicted in Figure 1.7.3, and then
approximate the slope of the function, f’, with the slope of the parabola. Differentiating
(1.7.6), we derive the second-order finite-difference approximation

() ~2a®™ (z —ap) + b, (2.5.4)
where the coefficients a*) and b(*) are given in (1.7.9).

Now identifying the evaluation point, z, with the grid point, x;, we obtain the centered-
difference approximation

f () ~ b, (2.5.5)

When the grid points are spaced evenly, z — xx_1 = 241 — & = h, we obtain the
simple form

iy L Sk — femr 9.5.6
where h is the grid spacing. The error associated with this approximation is proportional
to the square of the interval size, hZ.

The parabolic approximation allows us to also obtain an estimate for the second deriva-
tive, d®f/dz?. Differentiating (1.7.6) twice with respect to z, we derive the finite-difference
approximation

() ~ 24, (2.5.7)

where the coefficient a(®) is given in (1.7.9).
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When the grid points are spaced evenly along the x axis with separation h, we obtain
the simpler formula

o
£(z) ~ Jer1 }];k t fr-1 (2.5.8)
)
Identifying the evaluation point, x, with the grid point, xj, we obtain the centered-difference
approximation

f//(xk) ~ fk+1 _Qh.];k—’—fkfl (259)

The error associated with this approximation is proportional to the square of the interval
size, h2.

2.5.2 Numerical differentiation in two dimensions

Consider the computation of the first partial derivatives of a function of two independent
variables, f(x,y), f/0x and 0f /0y, from given values of the function at the nodes of a
two-dimensional grid defined by the intersection of the z-level lines, z; fori =1,..., N, +1,
and y-level lines, y; for j =1,..., N, + 1, as illustrated in Figure 1.7.2(b). The value of «
lies in the kyth x-interval confined between the x;, and xx, 41 x-level lines, and the value
of y lies in the k,th y-interval confined between the yx, and yi, 41 y-level lines.

First-order differentiation

Using the method of bilinear interpolation discussed in Section 1.7, we approximate the first
partial derivatives of the function f(z,y) with the partial derivatives of the bilinear function
defined in equation (1.7.15). Considering the derivative with respect to x, we obtain the
forward-difference approximation

: ko oky
(%)J = (anax )TJ (2.5.10)

where IT¥+-%v is the bilinear function given in (1.7.15). Performing the differentiation, we
obtain

(%)W ~ (aw;)g?f)l yf(%,?/k-y) + (W)w (ko1 Uk,)

x,

awk:m,k:y a/wkm,ky
01 g 11 g
o1 Th s S e ). (2511
+( Oz )myyf(lkm/ykyﬂ)*( E )I’yf(xkﬁrl Yk, +1)- ( )

Using expressions (1.7.16) and (1.7.17), we obtain

af yk7/+1 ) yky+1 -
(%)m,y B _Tf(q‘k*’yky) + Tf(%ﬁlﬂ@)
Y- yku y— yky
T A ‘ f(xkx'/ykﬁl) + A f(xkz+1ayky+1)- (2.5.12)
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where

A= (T, 11— Th,) (Yky+1 — Yy ) (2.5.13)

as given in (1.7.18). Using this formula, we derive the first-order, forward-difference approx-
imation at the southwestern grid node,

0 (z Uk, ) — [Tk, , Yk,
(l) - f(@rp+1,9k,) — f(Tk, !Jk_,). (2.5.14)
Oz /) xy,, Y, Th,+1 — Tk,
A similar approximation for the y derivative yields
(9 Ty s - Ty s
(i) - f(@ry s Yr,+1) — [k yky). (2.5.15)
oy’ wk,, Yk, Yk, +1 — Yk,

Both formulas express forward-difference approximations with respect to the respective vari-
able, z or y.

Second-order differentiation

Second-order centered-difference formulas for evaluating the first partial derivative of a
function at a grid point can be derived based on the one-dimensional formula (2.5.5). Using
the expression for the coefficient b*) given in (1.7.9), we obtain

)fkﬁl,ky — Jha ey )fkmy — fro—1,k,

Ty — Thy—1 + Thy+1 — Tk,
(g) - (@, Thy4+1 — Tk, (@, + Tk — Thky—1
Ox /) wk,, Yk, Thyt1 = Thy—1
(2.5.16)
The corresponding expression for the derivative with respect to y is
Joky+1 = fhy ke, Thoiky = Jpoky—1
Yky — Yhy—1) — + (Yk,+1 — Yk, — —
(g) - (o, ) Yky+1 — Yk, (W + ) Yk, — Yky—1
dy Tkyr Yk, - Yky+1 — Yky—1
(2.5.17)
When the grid lines are spaced evenly,
Tk, — Thy—1 = Thyd+1 — T, = ha, (2.5.18)
and
Yk, — Yky—1 = Yky+1 — Yk, = Dy, (2.5.19)
we obtain the simpler formulas
(ﬁ) _ Sretidy = framiy (2.5.20)
ox Thy Yy th
and
0 — ko ky—
(i) _ Jroeyt = Fho eyt (2.5.21)
ay Tk Yhy 2hy

which express centered-difference approximations in x or y.
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2.5.3 Velocity gradient and related functions

The formulas derived in Section 2.5.2 can be applied to obtain approximations to the ele-
ments of the velocity-gradient tensor, rate-of-deformation tensor, vorticity vector, and rate
of expansion, from specified values of the velocity at grid points. To illustrate the method-
ology, we consider a two-dimensional flow and employ a uniform grid with constant x and
y grid spacings equal to h, and h,.

Using the second-order, centered-difference approximations (2.5.20) and (2.5.21), we
find that the rate of expansion can be approximated with the finite-difference formula

o Wadkarihy, = (a)ke o1k, | (Uy)ka by = (g Dbe by 1

(V ’ u)mka. Wy 2h, Z}Ly

(2.5.22)

The corresponding finite-difference approximation for the z component of the vorticity
takes the form

(uy)k:.—o—l.k:, - (Uy>k:, —1.k (“ﬂ:{;)k;, ky,+1 — (“’.’L’)k’ ky—1
wo(Tp Yy ) Gl i A Y D 2.5.23
(k) T e (25.23)
Similar finite-difference approximations can be written for the elements of the rate-of-
deformation tensor, and subsequently used to obtain approximations to its eigenvalues and
eigenvectors.

The following MATLAB function entitled rec_2d_vgt, located in directory rec_2d inside
directory 02_grids of FDLIB, computes the velocity gradient tensor at the nodes of a two-
dimensional Cartesian grid:

function [Axx,Axy,Ayx,Ayy]l = rec_2d_vgt ...

(glx,gly,Nx,Ny, gux, guy)

% compute the velocity gradient
% tensor L_ij at the grid points

% interior points
% compute derivatives by central differences

for i=2:Nx
for j=2:Ny
Lxx(i,j) (gux(i+1,j)-gux(i-1,3))/(glx(i+1)-glx(i-1));
Lxy(i,j) = (guy(i+l,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));
Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));
Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(G+1)-gly(j-1));
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% left wall
% compute derivatives by central or forward differences

—

i=1;

for j=2:Ny
Lxx(i,j) = (gux(i+l,j)-gux(i,j))/(glx(i+1)-glx(i));
Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));
Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly(j+1)-gly(j-1));
Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly (j+1)-gly(j-1));

end

A

% bottom wall
% compute derivatives by central or forward differences

A

j=1;

for i=2:Nx
Lxx(i,j) = (gux(i+1l,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));
Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));
Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(G+1)-gly(j));
Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(G+1)-gly(j));

end

——

% right wall
% compute derivatives by central or backward differences

% __________

i=Nx+1;

for j=2:Ny
Lxx(i,j) = (gux(i,j)-gux(i-1,3))/(glx(i)-glx(i-1));
Lxy(i,j) = (guy(i,j)-guy(i-1,3))/(glx(i)-glx(i-1));
Lyx(i,j) = (gux(i,j+1)-gux(i,j-1))/(gly (G+1)-gly(j-1));
Lyy(i,j) = (guy(i,j+1)-guy(i,j-1))/(gly(j+1)-gly(j-1));

end

% __________

% top wall

% compute derivatives by central or backward differences

% __________

J=Ny+1;

for i=2:Nx

89
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Lxx(i,j) = (gux(i+1,j)-gux(i-1,j))/(glx(i+1)-glx(i-1));
Lxy(i,j) = (guy(i+1,j)-guy(i-1,j))/(glx(i+1)-glx(i-1));
Lyx(i,j) (gux(i,j)-gux(i, j-1))/(gly(j)-gly(G-1));
Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(§)-gly(G-1));

end

-
% four corner points

%

i=1; j=1;

Lxx(i,j) = (gux(i+l,j)-gux(i,j))/(glx(i+1)-glx(i));
Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));
Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(G+1)-gly(i));
Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(G+1)-gly(j));

i=Nx+1; j=1;

Lxx(i,j) = (gux(i,j)-gux(i-1,j))/(glx(i)-glx(i-1));
Lxy(i,j) = (guy(i,j)-guy(i-1,j))/(glx(i)-glx(i-1));
Lyx(i,j) = (gux(i,j+1)-gux(i,j))/(gly(G+1)-gly(j));
Lyy(i,j) = (guy(i,j+1)-guy(i,j))/(gly(G+1)-gly(j));

i=Nx+1; j=Ny+1;

Lxx(i,j) = (gux(i,j)-gux(i-1,3))/(glx(i)-glx(i-1));
Lxy(i,j) = (guy(i,j)-guy(i-1,3))/(glx(i)-glx(i-1));
Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));
Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(§)-gly(j-1));

i=1; j=Ny+1;

Lxx(i,j) = (gux(i+l,j)-gux(i,j))/(glx(i+1)-glx(i));
Lxy(i,j) = (guy(i+1,j)-guy(i,j))/(glx(i+1)-glx(i));
Lyx(i,j) = (gux(i,j)-gux(i,j-1))/(gly(j)-gly(j-1));
Lyy(i,j) = (guy(i,j)-guy(i,j-1))/(gly(j)-gly(j-1));

return

The following MATLAB code appended to the code rec_2d discussed in Section 1.10,
residing in directory rec_2d inside directory 02_grids of FDLIB, computes various flow vari-
ables:

S
% specify the grid velocities
A

for i=1:Nx+1
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for j=1:Ny+1
px = gx(i,3); py = gy(i,j);
wnx = 2xpi/(bx-ax); wny = 2*pi/(by-ay);
gux(i,j) = cos(wnx*px)*cos (wny*py) ;
guy(i,j) = sin(wnx*px)*sin(wny*py) ;
end
end

0
/A
% velocity gradient tensor

%____

Lxx,Lxy,Lyx,Lyy] = rec_2d_vgt (glx,gly,Nx,Ny,gux,guy);

/A
% compute the rate of expansion
yA the rate of strain tensor
% the strains

yA the vorticity

—

for i=1:Nx+1
for j=1:Ny+1

roe(i,j) = Lxx(i,j)+Lyy(i,j); % rate of expansion
omega(i,j) = Lxy(i,j)-Lyx(i,j); % vorticity
Exx(i,j) = Lxx(i,j)-0.5%roe(i,j); % rate of deformation

Exy(i,j) = 0.5%(Lxy(i,j)+Lyx(i,j)); % rate of deformation
Eyx(i,j) = Exy(i,j); % rate of deformation

Eyy(i,j) = Lyy(i,j)-0.5%roe(i,j); ' rate of deformation
det = 4.0%(Exx(i,j) 2+Exy(i,j)"2); ' eigenvalues

srd = sqrt(det);

strainl(i,j) = 0.5%srd;

strain2(i,j) = -0.5%*srd;

0
/—
% compute the eigenvectors of the rate of strain

7 —
if (abs(Exy(i,j))<0.0001) % E is diagonal

if (abs (Exx(i,j)-strainl(i,j))>0.0001)
egvix(i,j) = 0.0; egviy(i,j) = 1.0;
else
egvlix(i,j) = 1.0; egvly(i,j) = 0.0;
end
if (abs(Exx(i,j)-strain2(i,j))>0.0001)
egv2x(i,j) = 0.0; egv2y(i,j) = 1.0;
else
egv2x(i,j) = 1.0; egv2y(i,j) = 0.0;
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end
else % E is not diagonal
egvix(i,j) = 1.0;

egvly(i,j) = -(Exx(i,j)-strainl(i,j))/Exy(i,]);
egv2x(i,j) = 1.0;

egv2y(i,j) = -(Exx(i,j)-strain2(i,j))/Exy(i,]);
end

/A

% normalize the eigenvectors

—

fcl = 1.0/sqrt(egvix(i,j) 2+egvliy(i,j)~2);
egvl x(i,j) = fclxegvix(i,j); egvl_y(i,j) = fcl*egvly(i,j);
fc2 = 1.0/sqrt(egv2x(i,j) "2+egv2y(i,j)~2);
egv2.x(i,j) = fc2xegv2x(i,j); egv2.y(i,j) = fc2*egv2y(i,j);

end
end

-
% plotting
-

figure

mesh(glx,gly,omega’')
xlabel('x', 'fontsize',15)
ylabel('y', 'fontsize',15)
zlabel('\omega', 'fontsize',15)

figure

mesh(glx,gly,roe')

xlabel('x', 'fontsize',15);
ylabel('y', 'fontsize',15)
zlabel('\alpha','fontsize',15)

figure
mesh(glx,gly,strainl')
xlabel('x', 'fontsize',15)
ylabel('y', 'fontsize',15)
zlabel('s\_1','fontsize',15)

figure
mesh(glx,gly,strain2')
xlabel('x', 'fontsize',15);
ylabel('y', 'fontsize',15)
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zlabel('s\_2', 'fontsize',15)

figure
hold on
[ glx,gly,gx,gy 1 = grid_2d (ax,bx,ay,by,Nx,Ny);
for i=1:Nx+1
for j=1:Ny+1
vector = draw_arrow_2d ...
(gx(i,3),gy(i,]),egvix(i,j)/Ny,egvly(i,j)/Ny);
plot(vector(:,1),vector(:,2));
end
end
xlabel('x', 'fontsize',15)
ylabel('y','fontsize',15)
box on

figure
hold on
[glx,gly,gx,gy] = grid_2d (ax,bx,ay,by,Nx,Ny);
for i=1:Nx+1
for j=1:Ny+1
vector = draw_arrow_2d ...
(gx(i,j),gy(i,j),egv2x(i,])/Ny,egv2y(i,j)/Ny);
plot(vector(:,1),vector(:,2));
end
end
xlabel('x', 'fontsize',15)
ylabel('y', 'fontsize',15)

The graphics display generated by the code for the velocity field implemented in the code
is shown in Figure 2.5.1.

PROBLEMS

2.5.1 Numerical differentiation

Use formula (2.5.9) to evaluate the second derivative of the exponential function f(z) = e®
at x = 0 in terms of the values of f(x) at x = —h,0, h, for h = 0.16, 0.08, 0.04, 0.02, and
0.01. Compute and plot the difference between the numerical value and the exact value
against h on a log-log scale. Assess and discuss the slope of the graph.

2.5.2 B Numerical differentiation of a two-dimensional flow

Run the code rec_2d for a velocity field of your choice. Prepare and discuss plots of the
vorticity, eigenvalues, and eigenvectors of the rate-of-strain tensor.
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Velocity vector field

H

f&\\\""/li
;"K/,a\\\’t
NHANEaNEk

Tfff/,,"&\b

“""HH“"’M

M;,\w

i
[

Vs VNS
G P S O 0 5 A W W
[ = SR IR N P PSSP ERES N (O
’f\\\«,/l‘&\\\_,;/ff
[N PR S P PN PN g
P A A N P O
FIPYPY SRR N I 2P e RPN I
;ll"“\\&f’/”"\\&

LLN\.;ffTT’ﬁ!\_,‘J;

¥\\\_.,«/l‘
ff//_,\\\
ili’“"‘&

|
|
=3
o

x ot
=3
o

rate of expansion vorticity

y -2

y M y -1 -2 X
first principal eigevector second principal eigevector

‘ ‘ ‘ ] M e > = > > > =7 T 1 ‘ ]

AR R R o " I I S B R

I N D D e - .
o.s—?’??iiifi\ﬁﬁﬁaeaaz— 0.3\3‘)*%9».,/$;;;¢‘&\—

[ T e S O O R P 4
X120 R R I T T T A N N MRS By 7 D DO D P20 T R R S
RS T T (R R N N N
L e T T O L W W TR T B Y I B M N e
S O D e Y T O O O N I B W N M N
021, I T S B U T 2 N S I
R 7,280 S T N T Oy
>"”“H““HHMM’>"’HHWM“““H’
[N N - N N N D e e
Y1 A I D 2 N N T T T P 20 N N N T T 2 S N N N N D
A N 72 T Y T T P22 N TR R T 20 S D O D e e
~0.4f [N DD 200200 T T N T T T & R S22 T T S T B B DD LA
e R Y M 2 LN - LR e A N A
06N NN by oy, R N S Y /;”9‘\\\\N¥T1f1 |
NV I D e D Dl S DD I bl I ’
L NI A PN L N
-0.8 [ 0.8 1
-HHHH/Q,9999§X RS .
S T A et B etV A MR
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
X X

Figure 2.5.1 Velocity vector field, rate of expansion, vorticity, principal strains, and principal eigen-
vectors computed by numerical differentiation on a uniform Cartesian grid.
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Figure 2.6.1 lllustration of a stationary open line that starts at a point, A, and ends at another
point, B, used to define the areal flow rate and flux in a two-dimensional flow. When the end
points A and B coincide, we obtain a closed loop.

2.6 Flow rates

Consider a two-dimensional flow in the zy plane and draw a stationary line that resides in
its entirety inside the fluid. At any instant, point particles cross the line generating a net,
positive or negative, areal flow rate in a designated direction. Our goal is to quantify this
flow rate in terms of the shape of the line and the fluid velocity.

Unit tangent and unit normal vectors

First, we consider an open line that starts at a point, A, and ends at another point, B, as
shown in Figure 2.6.1. As a preliminary, we introduce the unit tangent vector, t = (¢,%,),
defined as the vector that is tangential to the line at a point, subject to the normalization
condition

4+t =1. (2.6.1)

The direction of t is chosen such that, if we start moving along the line from point A in the
direction of t, we will finally end up at point B.

Next, we introduce the unit normal vector, n = (ng, n,), defined as the unit vector that
is perpendicular to the line at a point. The magnitude of n is equal to unity,

ni+n, =1 (2.6.2)

The orientation of n is such that the tangent vector t arises by rotating n around the z axis
in the counterclockwise direction by an angle equal to %ﬂ.

Now we consider an infinitesimal section of the line that starts at a point, x, and ends
at the point x + dx, where the differential distance, dx = (dx, dy) is parallel to, and points
in the direction of the unit tangent vector, t. The components of the unit tangent vector
and unit normal vector are given by

_dw _%

ty = —, t, = 2.6.3
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and

dy dx
by = ——, by = ———, 2.6.4
T T (2.64)

where d/ is the differential arc length of the infinitesimal section of the line, given by

2
Al = /d2? + dy? = /1 + (%) |dz| (2.6.5)

dx

Because t and n are mutually orthogonal, their inner product is zero,
t-n=n-t=0. (2.6.6)
To confirm this, we merely substitute (2.6.3) and (2.6.4) into the right-hand side of (2.1.10).

Normal and tangential velocities

Next, we consider a group of adjacent point particles distributed along the infinitesimal arc
length, d/, at a particular time instant, t. During an infinitesimal period of time, dt, the
point particles move to a new position, thus allowing other point particles located behind
or in front of them to cross the line into the other side.

To compute the net area of fluid that has crossed the infinitesimal arc length d¢, we
resolve the velocity of the point particles into a normal component and a tangential com-
ponent, writing

u = u,n--+ut. (2.6.7)

The normal and tangential velocities, u,, and us, can be computed readily in terms of
the inner vector product defined in equation (2.1.10). Taking the inner product of the unit
normal vector with both sides of (2.6.7), and using (2.6.6) and (2.6.2), we obtain

Up = U N = Uy Ny + Uy Ny (2.6.8)

Taking the inner product of the unit tangent vector with both sides of (2.6.7), and using
(2.6.6) and (2.6.1), we obtain

up=u-t=uyty +uyty,. (2.6.9)

2.6.1 Areal flow rate and flux

By definition, the local areal flow rate across an infinitesimal section, d/, is the area of fluid,
dAy, that crosses the infinitesimal section during an infinitesimal period of time, dt, given
by

@aly ) 2.6.10
i Uy, df, ( )
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Figure 2.6.2 Two point particles move from the thin line to the bold line over small period of time,
dt, thereby allowing for an areal flow rate, dAy. The particles can be assumed to move first normal
to the bold line (dashed vectors) and then tangential to the line to reach their final destination.

as shown in Figure 2.6.2. To see why we selected the normal component of the velocity on
the right-hand side, we observe that, if the normal component vanishes, the particles move
tangentially to the line and fluid does not cross the line. In general, although point particles
move both in the tangential and normal directions, only the normal motion contributes to
the local areal flow rate.

The corresponding local areal flux, ¢, is defined as the ratio of the local areal flow rate,
dAy/dt, to the infinitesimal length of the line across which transport takes place,

dA;
T 2.6.11
1= qtae ~ " ( )

We have found that the local areal flux is merely the normal component of the fluid velocity.

Substituting expression (2.6.8) for the normal velocity component into (2.6.10), and
using (2.6.4), we obtain

dA
(Tf = u, dl = qdf (2.6.12)
and then
dA
ditf = (ug ng + uy ny) dl = uy dy — uy da. (2.6.13)

These expressions allow us to evaluate the local areal flow rate in terms of the components
of the velocity.
2.6.2 Areal flow rate across a line

To compute the areal flow rate across the stationary open line depicted in Figure 2.6.1,
denoted by Qareal, we subdivide the line into an infinite collection of infinitesimal sections
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with differential lengths, d/, and add all contributions. In mathematical terms, we integrate
the local areal flux along the line with respect to arc length, finding that

B B B B
areal dAf / dAf /
= = = _— = . 2. .14
Q /A qdl /A T d de L a A (ugpng + uyny) de, (2.6.14)
and then
B B
Qareal — / Uy, dl = / (ugdy —uy dz). (2.6.15)
A A

The integral on the right-hand side of (2.6.15) allows us to evaluate @ in terms of the
geometry of the line and the two velocity components.

Note that the areal flow rate, Q°*!, has units of area divided by time. The associated
volumetric flow rate with units of volume divided by time, is given by

Q=wQ"™, (2.6.16)
where w is a chosen width along the z axis.

Parcel expansion

The integral representation for the areal flow rate is also applicable in the case of a closed
line, £, described as a loop, as shown in Figure 2.6.3. In that case, the last point, B, simply
coincides with the first point, A, yielding a closed integral,

Qareal — % Uy Al = % (uw dy — uy d:]j), (2.6.17)
L L

In fact, the areal flow rate across a closed loop is equal to the rate of change of the area of
the fluid parcel that is enclosed by the loop at a certain instant, A,, that is,

d4, 1
=1 _ prmeal 2.6.18
a Q ( )

The area of the parcel can change only if the fluid occupying the parcel is compressible.

2.6.3 Analytical integration

If a line has a sufficiently simple shape and the components of the velocity are known func-
tions of position with simple forms, the integrals in (2.6.15) can be computed by standard
analytical methods.

As an example, we consider a line that has the shape of a section of a circle of radius
a centered at a point, x., with end points corresponding to polar angles 65 and 6p. Points
along the circular arc are described by the equations

T =z.+a cosb, Y =Y+ asind. (2.6.19)
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n

Figure 2.6.3 When the end points of a line coincide, we obtain a closed loop enclosing an area, A.

Differentiating these equations with respect to 6, we obtain
dr = —a sin6dé, dy = a cos6d6. (2.6.20)

Substituting these expressions into the last integral in (2.6.15), we obtain

05

Qareal = a/ (ugzcosf + u,sind ) db. (2.6.21)
[N

Substituting the expressions for the velocity components in terms of the angle 8, we obtain

an integral representation in terms of 6.

As an application, we assume that

1 1
Uy = % -~ cos 0, Uy = % = sinf, (2.6.22)

where « is a constant and r is the distance from the origin. The flow rate is given by

i a1 [% «
Qmeal —g—= / do = — (HB _ GA) (2623)
2w a Jg, 2T
If the circular segment forms a complete circle and the integration is performed in the
counterclockwise direction from 0x = 6y to 0 = 27 — 0y, then Qareal = @, independent of
the radius, a, where 6 is an arbitrary angle.

2.6.4 Numerical integration

Under most conditions, we will not be able to compute the line integrals in (2.6.15) exactly
by analytical methods and we must resort to numerical computation.

To perform numerical integration, we mark the location of a line with N + 1 sequential
nodes denoted by x; fori = 1,..., N+1, as depicted in Figure 2.6.4. The first node coincides
with the first end point, A, and the last node coincides with the second end point, B. If the
line is closed, the first node labeled 1 coincides with the last node labeled N + 1.

Next, we approximate the shape of the line between two successive nodes labeled i and
1+ 1 with a straight segment that passes through these nodes, denoted by F;, where E
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Figure 2.6.4 An array of points along a line in the xy plane is introduced to compute the areal flow
rate across a line by numerical methods.

stands for element. The union of the N elements forms a polygonal line, called a polyline,
starting at the first end point, A, and ending at the second end point, B.

Trapezoidal rule

A key step in developing a numerical approximation is the replacement of the line integrals in
(2.6.15) with the sum of integrals over the elements, and the approximation of the velocity
components over each element with the average of the values at the element end points.
With these approximations, the last integral in (2.6.15) takes the form

N

area Ugp (X)) + Ugp (X5 Uy (X;) + Uy (X1
Q 1_ Z |: ( ) 5 ( +1) (yz_+1 _yz) - U( ) 5 1/( + ) ($i+1 _xi) ) (2624)
i=1
Writing out the sum and rearranging, we obtain
Q¥ = 2 [y (x1)(y2 — y1) — uy(x1) (22 — 21) ]
N
+% [ (i) (Yir1 — Yim1) — Uy (%) (@ip1 — 2i-1) | (2.6.25)
i=2

J—

+3 [Um(XN+1)(yN+1 —yn) — Uy (Xn41) (TN 1 — CL’N”-

If the line is closed, nodes labeled 1 and N + 1 coincide, and the first and last contribu-
tions on the right-hand side of (2.6.25) combine to yield the simpler form

N
Qareal o l
2

[ (%) (Yit1 — Yio1) — uy (%) (@ig1 — @i—1) |, (2.6.26)

=1

where the wrapped point labeled 0 coincides with the penultimate point labeled N.
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The computation of the right-hand sides of (2.6.25) and (2.6.26) requires knowledge
of the velocity components at the nodes. In practice, the nodal values are either given
explicitly or computed by interpolation from grid values, as discussed in Section 1.7.

2.6.5 The Gauss divergence theorem in two dimensions

Consider a closed loop in the zy plane, denoted by L, and a vector function of position
h = (hg, hy), where hy(x,y) and hy(z,y) are two scalar functions. The normal component
of h along L is given by the inner vector product

hn =h-n = hyng + hyny. (2.6.27)
The divergence of h is a scalar function of position given by
Oh, ~ Oh
V-h= 24+ 22, 2.6.28
or + dy ( )

The Gauss divergence theorem states that the line integral of the normal component,

hn,, along the loop, L, is equal to the integral of the divergence of h over the area A enclosed
by L,

j{h-ndé:/ V -hdA, (2.6.29)
L A

where n is the unit vector normal to £ pointing outward, d/ is a differential arc length, and
dA is a differential area.

Areal flow rate across a loop

Now we consider the areal flow rate across a closed loop, as shown in Figure 2.6.3. Applying
(2.6.29) with h = u, we find that the areal flow rate across this loop is equal to the areal
integral of the divergence of the velocity over the area enclosed by the loop,

Qareal _ % u-ndl = / V- -u dA7 (2630)
/2 A

where the unit normal vector points outward, as shown in Figure 2.6.3. The expression on
the right-hand side of (2.6.30) allows us to compute the instantanecous areal flow rate across
a closed loop in terms of the integral of the rate of expansion over the enclosed area.

Incompressible fluids

It is clear from expression (2.6.30) that, if the velocity field is solenoidal, that is, the diver-
gence of the velocity vanishes at every point,

V-u=0, (2.6.31)

then the areal flow rate across any closed loop is zero. In physical terms, fluid parcels deform
and rotate but do not expand. As a consequence, the amount of fluid entering an area that
is enclosed by a stationary closed loop is equal to the amount of fluid exiting the loop during
any period of time.
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(a) (b)

c

Figure 2.6.5 (a) lllustration of an open surface, S, in a three-dimensional flow, bounded by a closed
line, C, () lllustration of a closed surface, S, enclosing a volume, V.

2.6.6 Flow rate in a three-dimensional flow

The preceding discussion for two-dimensional flow can be extended in a straightforward
fashion to three-dimensional flow. To carry out this extension, we replace the line integrals
along open or closed loops with surface integrals over open or closed surfaces residing inside
the flow. The volumetric flow rate across an open or closed surface, S, is given by the surface
integral

Q= /S u-nds. (2.6.32)

The unit vector normal to S, denoted by n, and the differential area of a surface element,
dS, are defined in Figure 2.6.5. Note that @) has units of volume divided by time.

If V, is the volume of a parcel confined by a closed surface, then the rate of change of
the parcel volume is

dv,
dt

=Q. (2.6.33)
Parcel expansion or shrinkage is possible only if the fluid is compressible.

2.6.7 Gauss divergence theorem in three dimensions

Consider a closed surface, S, and a vector function of position, h = (hg, hy, h,). The normal
component of h over § is given by the inner product

hn, =h-n=hyn, + hyn, + h.n,. (2.6.34)

The divergence of h is defined as

Oh,  Oh, Ok,
Ox Oy 0z

V-h= (2.6.35)
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The Gauss divergence theorem states that the surface integral of h,, over S is equal to the
integral of the divergence of h over the volume V enclosed by S,

/hndS:ﬂVth, (2.6.36)
S %

where n is the unit vector normal to the surface S pointing outward, dS is a differential
surface area and dV is a differential volume.

Flow rate

Now we consider the flow rate across a closed surface V, given in (2.6.32). Applying (2.6.36)
for the fluid velocity, h = u, we obtain

Q:/u~nd5:ﬂv-udV (2.6.37)
s v

This expression shows that, if the velocity field is solenoidal, V - u = 0, the volumetric flow
rate across any closed surface enclosing fluid alone must vanish.

2.6.8 Axisymmetric flow

Next, we consider an axisymmetric flow and draw a line that begins at a point, A, and ends
at another point, B, in a azimuthal plane, as illustrated in Figure 2.6.6. The volumetric
flow rate across the axisymmetric surface that arises by rotating the line around the = axis
is given by

‘B

Q= 27r/ o (g Ny + upny) de, (2.6.38)
A

where d/ is the differential arc length along the generating line, u, it the velocity component

along the = axis, and u, is the velocity component normal to the = axis.

Expression (2.6.38) arises by adding the fluxes across all elementary axisymmetric sur-
faces confined between two parallel planes that are perpendicular to the x axis and are
separated by an infinitesimal distance, dz, corresponding to the arc length, d¢, taking into
consideration that the surface area of an elementary surface centered at a ring of radius o
is equal to 2wod/.

Substituting the components of the normal vector,

_do - d (2.6.39)
e =g e =T o
we obtain
B
Q= 27r/ o (uy do — uy dx). (2.6.40)
A
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9

YAvAATAN

Figure 2.6.6 lllustration of an axisymmetric surface whose trace in an azimuthal plane is an open
line that begins at a point, A, and ends at another point, B.

PROBLEMS

2.6.1 Flow rate across an ellipse

Consider a closed loop in the xy plane in the shape of a horizontal ellipse centered at a
point, x. = (., y.), with major and minor semi-axes equal to a and b. The elliptical shape
is described in parametric form by the equations

T =T+ acosn, Yy =Y+ bsinn, (2.6.41)

where 7 is the native parameter of the ellipse ranging in the interval (0, 27]. We will assume
that, in plane polar coordinates in the zy plane with origin at the center of the ellipse, (r, ),
the velocity components are given by

1
Uy = % ; COS 9, Uy = % ; sin 67 (2642)

where « is a constant. Show that
b
tanf = — tann (2.6.43)
a

and derive an expression for the flow rate across the ellipse as an integral with respect to 7.

2.6.2 B Flow rate across an ellipse

With reference to Problem 2.6.1, write a code that computes the flow rate across the ellipse
using a numerical method based on equation (2.6.26). Perform computations for ellipses
with aspect ratios, a/b = 1, 2,4, and 8, in each case for N = 8, 16,32, and 64 numerical
divisions. Discuss the results of your computations.
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2.7 Mass conservation and the continuity equation

In Section 1.5, we defined a point particle as an idealized entity arising in the limit as the
size of a small fluid parcel becomes decreasingly small and eventually infinitesimal. In this
limit, the ratio between the mass of the parcel and the volume of the parcel tends to a finite,
nonzero, and non-infinite value, which is defined as the fluid density, p. To indicate that
the density is a function of position and time in a fluid, we write

p(x,t), (2.7.1)

with the understanding that the density at a particular point in a flow is equal to the density
of the point particle that happens to be at that position at the designated time.

2.7.1 Mass flux and mass flow rate

Consider a two-dimensional flow in the zy plane and draw a stationary line that begins at a
point, A, and ends at another point, B, as illustrated in Figure 2.6.1. At any instant, point
particles cross this line, thereby generating a net mass flow rate in a specified direction.
Our goal is to quantify this mass flow rate in terms of the shape of the line and the velocity
and density distributions in the fluid.

Repeating the analysis of Section 2.6, we find that the mass flux across an infinitesimal
section of the line is given by the following counterpart of equation (2.6.11),

Gmass = P Un, (272)

where u,, = u - n is the component of the fluid velocity normal to the line. The mass flow
rate across a line that begins at a point, A, and ends at another point, B, is given by the
following counterpart of equation (2.6.15),

B B B
areal / Gmass A0 = / pu-ndl= / p (ugydy — uydz). (2.7.3)
A A A

Note that Q¢! has units of mass divided by length and time. The integrals in (2.7.3) can

mass
be computed by analytical or numerical methods, as discussed in Section 2.6.

2.7.2 DMass flow rate across a closed line

The net mass flow rate outward from a closed line in a two-dimensional flow can be expressed
in terms of a closed line integral in the form

lafl‘ill = 7{ (mass A = 7{ pu-ndl = 7{ p (u,,; dy — uy d.r), (2.7.4)

where the unit normal vector, n, points into the exterior of the area enclosed by the closed
line, as depicted in Figure 2.6.3.
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The Gauss divergence theorem expressed by equation (2.6.29) states that the line in-
tegral in (2.7.4) is equal to the integral of the divergence of the velocity multiplied by the
fluid density over the area enclosed by the line, A,

areal _ // () iy (2.75)
WA

where

I(puy) n A(puy)

V- (pu) = ox dy

(2.7.6)

is the divergence of the mass velocity, pu.

For future reference, we expand the derivatives of the products on the left-hand side of
(2.7.6) using the rules of product differentiation, finding that

pt Loy, + Ly (2.7.7)
or
V:-(pu)=u-Vp+pV - u. (2.7.8)

We have introduced the vector of the first partial derivatives of the density,

0 0
Vo= (L, 4L

ol (2.7.9)

defined as the gradient of the density.

2.7.3 The continuity equation

The first principle of thermodynamics mandates that the rate of change of the mass residing
inside an area, A, that is enclosed by a stationary closed line, £, given by

/ pdA, (2.7.10)

A

is equal to the mass flow rate inward across the line, which is equal to the negative of the
mass flow rate outward across the line. If the outward mass flow rate is positive, the rate
of the change of mass enclosed by the line is negative, reflecting a reduction in time.

In terms of the mass flow rate defined in equation (2.7.4) and expressed as an areal
integral in equation (2.7.5), mass conservation requires that

d

— pdA=— fﬁiz—fpu-ndﬂ:—// V - (pu) dA. (2.7.11)
dt JJ a c A
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Since the area A is fixed in space, we can interchange the order of the time differentiation
and space integration on the left-hand side of (2.7.11), and then combine the two integrals
to obtain

dp
/A(atJrV-(pu))dAzo. (2.7.12)

Since the shape of the area A is arbitrary, the integrand on the right-hand side of (2.7.12)
must be identically zero, yielding a partial differential equation in time-space expressing
mass conservation,

19)

P LV (pu) =0, (2.7.13)
ot
called the continuity equation. This terminology emphasizes that, in the absence of singu-
larities in the form of point sources and sinks, mass neither appears nor disappears in the
flow and the fluid must move in a continuous fashion in the available domain of flow.

Combining equations (2.7.8) and (2.7.13), we derive an alternative form of the continuity
equation,

ap
ot

involving the vectorial density gradient, Vp, and the scalar rate of expansion, V - u.

+u-Vp+pV-u=0, (2.7.14)

Differential mass balance

It is instructive to derive the continuity equation based on a mass balance over a small
stationary rectangular control area in the xy plane, as shown in Figure 2.7.1. Balancing the
rate of mass accumulation inside the control area with the rates of mass crossing the four
edges, we obtain

d

T (p dx dy) = (pu,,,;dy)w — (pumdy)x+dw + (puydz)y - (p’uydx)l/ery. (2.7.15)

Dividing both sides by dx dy and noting that the variables, x, y, and ¢ are independent, we
obtain

% _ (pu’JE)m o (pul’):z:-‘rd:l: + <puydl)y B (puyd{r)y-‘rdy
dt da dy ’

(2.7.16)

To derive the continuity equation (2.7.13), we merely invoke the definition of the partial
derivative.

2.7.4 Three-dimensional flow

Our discussion earlier in this section for two-dimensional flow can be generalized in a
straightforward fashion to three-dimensional flow. To carry out this extension, we replace
the line integrals with surface integrals over a closed or open surface. The mass flow rate
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Yy

dy _ _—

_—

dx

Figure 2.7.1 To derive the continuity equation for two-dimensional flow, we write a mass balance
over an infinitesimal rectangular control area.

across a stationary, open or closed surface S depicted in Figure 2.6.5 is given by the surface
integral

Qmass = / pua- l’ldS7 (2717)
S

involving the normal velocity component, u,, = u-n.

If the surface is closed and the unit normal vector points outward, as shown in Figure
2.6.5(b), we may use the divergence theorem to convert the surface integral on the right-
hand side of (2.7.17) into an integral of the rate of expansion over the volume ) enclosed
by the surface, obtaining

Qmass = ﬁv A\ (P ll) dv. (2718)

The counterpart of the mass balance equation (2.7.11) is

///v % V' = ~Cumase = — //S pu-nds =— //v V- (pu)dv. (2.7.19)

Since the area D is fixed in space, we can interchange the order of

The continuity equation expressed by (2.7.13) or (2.7.14) stands true, with the under-
standing that Vp is the three-dimensional density gradient with components

_,0p 9Op Op
VP - ( am’ 83}7 Oz ) (2720)

defined over the domain of flow.



2.7 Mass conservation and the continuity equation 109

Control volume

Figure 2.7.2 lllustration of a stationary control volume in a flow (cv) bounded by solid or fluid
surfaces.

2.7.5 Control volume and integral mass balance

In the context of transport phenomena, a volume, V, bounded by a closed surface, S, is
regarded as a control volume (c¢v), as shown in Figure 2.7.2. Equation (2.7.11) requires that

ﬂ op dv + / pu-ndS =0, (2.7.21)

physically stating that mass accumulation in a stationary control volume is due to convec-
tive motion through the boundaries of the control volume. Equation (2.7.21) expresses an
integral or macroscopic mass balance.

2.7.6 Rigid-body translation

When a fluid translates as a rigid body, the fluid velocity, u, has a constant and possibly
time-dependent value, U(t). In this case, the continuity equation (2.7.13) simplifies to a
linear convection equation,

Ip

U- 2.7.22
82‘+ Vp (2.7.22)

Consider a steady flow where U is independent of time. Using equation (2.7.22), we
find that, if po(x) is the density field at ¢ = 0, then

p(x,t) = po(x—U) (2.7.23)

will be the density field at any other time, ¢. Physically, the density at the point x = xg—U ¢
at time ¢ is equal to the density at the point x¢ at ¢ = 0. We may say that the density field
is convected by the uniform flow.

To confirm (2.7.23), we introduce an auxiliary vector variable, w = x — Ut, with
components

wy, =x — Uy t, wy =y —Uyt, w, =z—U,L. (2.7.24)
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Using the chain rule of differentiation, we write

dp _ Opyg Owy  Opg Owy  Ipo Ow.

= 2.7.2
ot ow, Ot ow, Ot ow, Ot (2.7.25)
and then
dp _ 9po Ipo Idpo
bl _ — — . 2.7.2
The proof follows by observing that
dpo dpo Jpo dpo dpo dpo
— 077 =, 2.7.2
Ow,, oz’ dw, oy’ ow, 0z (2.7.27)

2.7.7 Evolution equation for the density

The continuity equation can be regarded as an evolution equation for the density, determined
by the fluid velocity. To see this, we recast equation (2.7.13) into the form

o _
ot
Evaluating the right-hand side of (2.7.28) at a certain point, x, in terms of the local and

instantaneous velocity and density, we obtain an expression for the local and current rate
of change of the density in time.

=V - (pu). (2.7.28)

Temporal discretization

Consider the change in density occurring during a small time interval, At, following the
current time t. Evaluating both sides of equation (2.7.28) at a point, x, and approximating
the right-hand side with a first-order forward difference, we obtain

p(x,t 4+ At) — p(x,t)

N = V- (pu), (2.7.29)

where the right-hand side is evaluated at (x,t). Solving for p(x,t + At), we obtain
p(x,t+ At) = p(x,t) — AtV - (pu), (2.7.30)

which provides us with an explicit expression for p(x,t + At) in terms of the density and
velocity at the current time, .

Finite-difference method

In practice, equation (2.7.28) is solved by numerical methods. Consider an idealized one-
dimensional flow along the x axis representing, for example, the flow along a conduit with
a known axial velocity, u(xz,t). The one-dimensional version of the continuity equation
(2.7.28) is

Op _ 9(pu)

ot ox

(2.7.31)
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The solution must be found inside a specified interval, a < x < b, subject to an initial
condition that specifies the density distribution at the designated origin of time, p(z,t = 0),
and a boundary condition that specifies the density at the left end of the solution domain,
T = a.

To develop the numerical method, we divide the solution domain into N intervals defined
by N + 1 nodes, x; fort =1,..., N 4 1, as shown below:

a b
o010 O o0 x
1 2 3 i N N+l

The first node coincides with the left end point, x = a, and the last node coincides with the
right end point, z = b. Our goal is to generate the values of p at the nodes at a sequence
of time instants separated by the time interval At. To simplify the notation, we denote the
density at the ith node at the kth time level, corresponding to time t, = k At, by pf.

Evaluating both sides of (2.7.31) at the ith node at the kth time level, and approximating
the time derivative on the left-hand side with a first-order forward difference and the spatial
derivative on the right-hand side with a first-order backward difference, we derive the finite-
difference approximation

Pt o (pw)f — (pu)i (2.7.32)
At Tj — Tj—1 ' o
Solving for pf“, we obtain the updating formula
. At :
ot = b - 20w — (e, ]. (2.7.33)

Li — Ti—1

Algorithm

The numerical method involves the following steps:

Specify the initial values p? for i =1,..., N + 1.

Use equation (2.7.33) to compute p} for i =2,..., N + 1.
Use the left end boundary value to set the value of pi.
Use equation (2.7.33) to compute p? for i =2,..., N + 1.

Use the left end boundary value to set the value of p3.

S A o

Stop, or continue for further steps.

Note that a boundary condition at the right end of the solution domain is not required.
Numerical analysis shows that the success of this method depends on the size of the time
step, At, and sign of the convection velocity, u.
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Figure 2.7.2 To derive the continuity equation for axisymmetric flow, we write a mass balance over
an infinitesimal toroidal control volume in cylindrical polar coordinates.

J

2.7.8 Continuity equation for axisymmetric flow

Consider an axisymmetric flow and introduce cylindrical polar coordinates, (z,0,¢), as

shown in Figure 2.7.2. We will demonstrate that the continuity equation takes the form
@ + d(puT) + l 0 (O',OU(T) —0. (2734)
ot ox o Oo

To derive this equation, we perform a differential mass balance over a toroidal control volume

with two sides parallel sides at = and =+ dz and the other two coaxial sides at ¢ and o +do,

as shown in Figure 2.7.2. The volume of the differential control volume is

dVe, = 2rodax do (2.7.35)

and the mass of the fluid residing inside the control volume at any instant is dme, = pdVey.

Balancing the rate of accumulation of fluid inside the control volume with the rates of
convection of mass across the four sides, we obtain

i (p 2modx da) = (p 1LI27T0'C10')I — (p ux27rada)

dt z+d:1:

+(pus2modz)  — (pus2modz) 4. . (2.7.36)
Simplifying, we obtain
d
74 (p dx do) =0 (p uwda)m -0 (p 71,,,;do')x+dm + (p ugadm)g — (p 71,(72(7d.7:)0+d0. (2.7.37)

Now dividing both sides by ocdxdo and noting that z,o, and ¢ are independent variables,
we obtain

G o), () g, | 1 (0p0000), ~ (o0,

dt dx o do (2.7.38)
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Figure 2.7.3 To derive the continuity equation for axisymmetric flow, we write a mass balance over
an infinitesimal control volume in spherical polar coordinates.

To derive (2.7.34), we invoke the definition of the partial derivative and transfer all terms
to the left-hand side. Note that the density, p, remains inside the derivatives.

In spherical polar coordinates, (r,0, ), equation (2.7.34) takes the form

op 1 A(r’pu,) N 1 O(sinfpuyg)

= 2.7.39
ot r? or 7 sin 6 00 0- ( )

To derive this equation, we perform a differential mass balance over a toroidal control volume
with two faces at r and r 4+ dr and the other two faces at § and 6 + df, as shown in Figure
2.7.3.

PROBLEMS

2.7.1 Convection under constant velocity

Consider the one-dimensional flow discussed in the text where the density field is governed
by (2.7.31) with the velocity u being a constant. Sketch a profile of the density distribution
along the = axis at the initial time, ¢t = 0, and at a subsequent time.

2.7.2 Steady state

Consider a steady one-dimensional flow with a specified velocity distribution, u(z). Derive
an expression for the density distribution at steady state based on (2.7.31). Discuss the
behavior of the density at a point where the velocity is zero.
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2.7.3 B Finite-difference method

Consider a steady, one-dimensional, periodic flow along the x axis with sinusoidal velocity
distribution,

u(z) =U [1+ ecos(2mz/L)], (2.7.40)

where U is a constant velocity, € is a specified dimensionless constant, and L is the period.
Write a computer program that uses the numerical method discussed in the text to com-
pute the evolution of the density over one spatial period, L, subject to a uniform initial
distribution. Run the program for e = 0, 0.2, 0.4, and 0.8, prepare graphs of the density
distribution at different times, and discuss the behavior of the solution at long times.

2.8 Properties of point particles

The physical properties of a homogeneous fluid parcel consisting of a single chemical species
are determined by the number of molecules, the kinetic energy, the potential energy, and
the thermal energy of the molecules that comprise the parcel. Each one of these physical
properties is extensive, in that, the larger the parcel volume, the higher the magnitude of
the physical property.

As the size of a parcel tends to zero, the ratio between the value of an extensive property
and the parcel volume tends to a limit that is regarded as an intensive physical property of
the point particle that emerges from the parcel immediately before the molecular nature of
the fluid becomes apparent.

For example, we have already seen that, as the volume of a parcel tends to zero, the
ratio between the mass of the parcel and the volume of the parcel tends to a finite limit that
is defined as the fluid density, p. Similarly, the ratio of the number of molecules residing
within the parcel and the volume of the parcel tends to the molecular number density, and
the ratio of the potential energy of the molecules and the volume of the parcel tends to the
specific potential energy.

2.8.1 The material derivative

To prepare the ground for establishing evolution laws governing the motion and physical
state of a fluid, we seek corresponding laws determining the rate of change of physical
and kinematic properties of point particles moving with the local fluid velocity. Kinematic
properties include the point particle velocity and its first time derivative defined as the point
particle acceleration, the vorticity, and the rate of strain.

A key concept is the material derivative, defined as the rate of change of a physical or
kinematic property following a point particle. Our first objective is to derive an expression
for the material derivative in terms of Eulerian derivatives; that is, partial derivatives with
respect to spatial coordinates and time.
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Taylor series expansion

Consider the material derivative of the density of a point particle which, at a certain time
t,o, is located at the point xg. In three-dimensional flow, the density is a function of
four independent variables, including the three Cartesian coordinates, (z,y, z), determining
position in space, and time, .

We begin by linearizing the density field, p(z, y, z, t), around (xq, yo, 20, to), as discussed
in Section 2.1. Adding time dependence to equation (2.1.6) and identifying the generic
function f(x,t) with the density, we obtain the linearized form

0
plx,) = p(xo,to) + (t—to) (57)

+(z — x0) <%>xwo+ (y — o) (%)xwo—i_ (z — 20) (%)xo’m, (2.8.1)

where xg = (20, Yo, 20). Next, we bring the first term on the right-hand side, p(xg), to the
left-hand side, and divide both sides of the resulting equation by the time elapsed, t — ¢,
to derive the expression

p(x,t) — p(x0,t0) _ (@) T — g (@) Y — Yo (@) z— 2 (@) ’

t— t() ot X0,to t— t() ox X0,to t— t() 8y x0,to t— f/() 0z

(2.8.2)

which is applicable at any point, x, in the neighborhood of a chosen point of interest, xq,
and for time t near tg.

Moving with the fluid

The second key step involves the judicious choice of the field point, x. This point is selected
so that, if a point particle is located at the position xy at time tg, then the same point
particle is located at the position x at a later time, ¢t. By definition then, the left-hand side
of (2.8.2) reduces to the material derivative.

Since the point particle moves with the fluid velocity, the three fractions on the right-
hand side of (2.8.2) are equal the three components of the fluid velocity, u,, u,, and u..
Denoting the material derivative by D/Dt, we find that

Dp op ap ap dp
P = (L 4u, 22 Py, 2P . 2.8.
(Dt)xo,to (815 L 8£L'+uy 3y+u 8z)x0$t0 (2.8.3)
In terms of the density gradient defined in (2.7.20), equation (2.8.3) takes the simpler form

u- ‘70‘ 2.8.4
Dt (?t / ( )

where both sides are evaluated at the arbitrary point, xg, at an arbitrary time instant, tg.
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Lagrangian and Eulerian derivatives

Equation (2.8.3) allows us to compute the material derivative of the density, sometimes
also called the Lagrangian derivative, in terms of Eulerian derivatives, that is, in terms of
partial derivatives of the density with respect to time and spatial coordinates, x, y, and z. In
numerical practice, the partial derivatives are computed by finite-difference approximations,
as discussed in Section 2.5.

2.8.2 The continuity equation

Comparing equations (2.8.4) and (2.7.14), we find that, in terms of the material derivative
of the density, the continuity equation takes the form
Dp

L ov.u=0, 2.8.5
oy TPV u=0, (2.8.5)

which reveals that the rate of change of the density of a point particle is determined exclu-
sively by the local rate of expansion, V -u. However, the inverse interpretation is physically
more appropriate: the structure of the velocity field is determined, in part, by the rate of
change of the density of all point particles.

Consider a small fluid parcel with volume 6V}, density p, and mass ém, = pdV,,. Mass
conservation requires that dm, remains constant in time, D dm, /Dt = 0. Expanding the
material derivative, we obtain

D(pdVp) Dp  DéV,
— = =4V, — =0 2.8.6
Dt "Dt Dt (2.86)
(Problem 2.8.1). Using the continuity equation (2.8.5) and rearranging, we find that
1 DoV,
=V . u, 2.8.7
3V, Dt " (28.7)

which reinforces our interpretation of the divergence of the velocity as the rate of volumetric
expansion.

2.8.3 Point particle acceleration

The acceleration of a point particle, a, is defined as the rate of change of the point particle
velocity. Invoking the definition of the material derivative, we find that the x component of
the acceleration is equal to the material derivative of the x component of the point particle
velocity, which is equal to the local fluid velocity, a, = Du,/Dt. Similar arguments reveal
that

Du, Du, Du,
T — ) y — =, z — . 2 .
“ Dt W= Do “ Dt (288)
In vector form,
Du
el 2.8.9
a= (2.8.9)

Not surprisingly, the acceleration vector is the material derivative of the velocity vector.
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Replacing p in equation (2.8.4) with u,, u,, or u,, we find that the three Cartesian
components of the point particle acceleration are given by

Du, Ouy . v Ouy L Ouy L Juy n Ouy
Uy = —— = u-Vu, = — +up — + Uy——— + Uy ——,
Dt ot ot e Y oy 0z’
Du,, Ouy Ou, ou, Ou, ou,
= oy T WV, = ¥ 4o, T g, T, T 2.8.10
W=y T g TV T gy Ty, Tl Tl (2:8.10)
Du, Ou, e Oou, . ou, . Ou, n Ou,
a, = = u-Vu, = Uy — + Uy ——— + U, .
Dt ot ot or Y oy 0z

The three scalar equations (2.8.10) can be collected conveniently into a vector form,

Du Ou tu L ou
a=—=—+u-L=—

Dt ot ot

where L = Vu is the velocity-gradient tensor defined in equation (2.1.16), with components

L;j = 0u;j/0z,. In index notation, the jth component of (2.8.11) takes the form

+u-Vu, (2.8.11)

Du]‘ - E)uj . Ouj

TR TR (2.8.12)

where summation is implied over the repeated index 1.

Linear momentum

The linear momentum of a small fluid parcel is the product of the mass of the parcel,
om, = pdV,, and the parcel velocity, u. Requiring mass conservation, that is, demanding
that dm,, remains constant in time, we find that the rate of change of the linear momentum
can be expressed in terms of the point particle acceleration in the form

D (dmpu) Du Du
= — pdV, = =— ém,,. 2.8.1
Dt Dt POVr = pp O (2.8.13)

Thus, the mass of an infinitesimal parcel can be extracted from the material derivative, just
like a constant can be extracted from an ordinary derivative.

Cylindrical polar coordinates

In the cylindrical polar coordinates defined in Figure 1.3.2, the point particle acceleration
is expressed in terms of its cylindrical polar components, a;, as, and a,, as

a=aze;+ a,€5 + age,. (2.8.14)
Using the transformation rules shown in (1.3.20), we find that
Gy = COSpa, +singas, a, = —singa, +cospa,. (2.8.15)

Substituting the right-hand sides of the second and third relations in (2.8.10) into the right-
hand sides of the equations in (2.8.15), and then using the chain rule of differentiation to
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convert derivatives with respect to z,y, and z to derivatives with respect to z, o, and ¢ in
the resulting equations as well as in the first equation in (2.8.10), we obtain

Ouy Ouy n Ouy Uy Ouy
Gy = Up——— + Uy —+ ,
’ ot Or do o Oy
Ol Ol Ougy Uy Oy ui
L= . Uy —Z £ 2.8.16
Go="gr Tl gy T o T % 90 & (2:8.16)
_ Ouy, Ou, Oup Uy OUy  Ugly
e ot T ox e do + o Op o

Using the expression for the gradient of a function in cylindrical polar coordinates defined in
equations (2.1.37) and (2.1.43), we recast expressions (2.8.16) into compact form involving
the material derivative,

Ouy Du,
P SV, = i
Ay ot +u Uy Dt
ou w2 Du u?
=T vy, — = e Te
“ ot tu “ o Dt o
ou UgU Du, ugsu

These expressions illustrate that the cylindrical polar components of the acceleration are

not simply equal to the material derivative of the corresponding polar components of the
velocity.

Spherical polar coordinates

In the spherical polar coordinates depicted in Figure 1.3.3, the point particle acceleration is
expressed in terms of its spherical polar components, a.,, ag, and a,, as

a=uare. +ageq+agze,. (2.8.18)

Working as previously for the cylindrical polar coordinates, we find the somewhat more
involved expressions

Ou,. u,. n ug O, n Uy, Ouy u? + ui,
ar = Uy — -,
' ot " or r 00  rsing Op r
ou ou ug Ou, U, Ou Uy u? cot 6
g = Db g, S0 U0 U0 Ue MO Lo (2.8.19)
ot or r 00  rsinf Oy r r
ou ou, ug Ou u, Ou Uptl Uugu
ay = e e —r —F 4 TF 7% cot 0,
ot or r 00  rsinf Oy r r
which can be expressed in a more compact form involving the material derivative,
Du, ug+uj Dug  uyug  uZcotf
ap = — — ——F, 4= —+—— L
' Dt T v Dt r r
(2.8.20)

Duy = u,u, Ul
p = —— Y+ 2% coth.
Dt T r
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These expressions illustrate that the spherical polar components of the acceleration are
not simply equal to the material derivative of the corresponding polar components of the
velocity.

Plane polar coordinates

In the system of plane polar coordinates depicted in Figure 1.3.4, the point particle accel-
eration is expressed in terms of its plane polar components, a, and ag, as

a=a,e,+ agey. (2.8.21)

Working in the familiar way, we obtain

ou, ou,  ug Ou, ug Du, ug
ar = + Uy — - = £
ot a0 r 00 r Dt r’
(2.8.22)
Ouyg n Oug  ug Oug  uyug Dug  upug
ag = — +Up— + — — =_— .
v ot or r 060 r Dt r

Note that these components are related to the ¢ and ¢ components in polar cylindrical
coordinates.

Acceleration at a point with zero vorticity

If all components of the vorticity vector are zero at a certain point in a flow, the velocity
gradient tensor is symmetric at that point. Consequently, selected partial derivatives of the
velocity must be such that the three terms enclosed by the parentheses on the right-hand
side of (2.3.8) are zero,
Ou,  Ouy Ou,  Ou, Ouy  Ouyg
oy 0z’ 0z 0Oz’ dr Oy
The sum of the last three terms on the right-hand side of the first equation in (2.8.10) may
then be written as
8’&1 i 8uy 4 3”U,Z 1 3ui 1 auz 1 8&5 1 a(ufa + ufj + ui)
Up——— F+ Uy— +u == S —= 4= = —"°,
* Oz Y ox 0r 2 0x %2 0x 2 0r 2 Ox
Working in a similar fashion with the y and z components, and collecting the derived
expressions into a vector form, we obtain

. (2.8.23)

(2.8.24)

2 5,2 )2
. 1o 2 (Ou ou ou
u-Vu=1ve= (—aw B ar ) (2.8.25)
where
u? = u? + ui + u? (2.8.26)

is the square of the magnitude of the velocity, and Vu? is its gradient. The point particle
acceleration may thus be expressed in the alternative form

Du o0Ou 9
= =l . 2.8.27
A= T T2V (2.8.27)
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The first term on the right-hand side of (2.8.27) is zero in a steady flow. The point
particle acceleration is then equal to half the gradient of the square of the magnitude of the
local velocity, which is a measure of the local kinetic energy of the fluid. We conclude that
the acceleration is oriented in the direction of maximum change of kinetic energy indicated
by the gradient.

In Chapter 6, we will see that the simplified expression (2.8.27) serves as a point of
departure for the theoretical analysis and numerical computation of irrotational flows.

PROBLEMS

2.8.1 Properties of the material derivative

Consider two scalar physical or kinematic fluid properties, such as the density or a compo-
nent of the velocity, denoted, respectively, by f and g. Prove that the following usual rule
of product differentiation applies,

Difg) _  Df
Dt Dt

where D/Dt is the material derivative.

+ f (2.8.28)

2.8.2 Point particle acceleration in rotational flow
Show that the counterpart of equation (2.8.25) at a point where the vorticity w is not
necessarily zero is the inclusive equation

u-Vu= % Vu? —ux w, (2.8.29)

where u the magnitude of the velocity. How does this expression simplify at a point where
the velocity vector is parallel to the vorticity vector?

2.8.3 Point particle motion in one-dimensional flow
Consider an idealized one-dimensional flow along the x axis with velocity u(z,t) satisfying
the inviscid Burgers equation
Ju ou
ot o ox
Explain why point particles in this flow travel with a time-independent velocity that is equal

to the velocity assigned to them at the initial instant; different point particles may travel
with different velocities.

=0. (2.8.30)

2.9 Incompressible fluids and stream functions

If the volume of a fluid parcel is preserved as the parcel is convected in a flow, the fluid
residing inside the parcel is incompressible. In contrast, if the volume of the parcel is allowed
to change in time, the fluid residing inside the parcel is compressible.
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Mass conservation requires that the mass of any fluid parcel is conserved irrespective of
whether the fluid is compressible or incompressible.

Since both the mass and the volume of an arbitrary incompressible fluid parcel are
conserved during the motion, the density of the point particles that comprise the parcel
remain constant in time. Using the physical interpretation of the material derivative, D/Dt,
we derive the mathematical statement of incompressibility,

Dy _

=0. 29.1
Dt 0 ( )

It is important to bear in mind that the density of an incompressible fluid is not neces-
sarily uniform throughout the domain of flow. Different point particles may have different
densities, but the density of each individual point particle is conserved during the motion.

2.9.1 Kinematic consequence of incompressibility

Using the incompressibility condition expressed by equation (2.9.1), we find that the conti-
nuity equation (2.8.5) for an incompressible fluid simplifies to

V-u=0, (2.9.2)

which states that the velocity field should be solenoidal. By definition, the divergence of any
solenoidal vector field is identically zero. Consequently, the rate of expansion « defined in
equation (2.2.6) is identically zero. An incompressible fluid parcel may undergo translation,
rotation, and isochoric (volume-preserving) deformation, but not expansion. The word
1sochoric is composed from the Greek words toos which means equal, and the word ywpos
which means volume or space.

It is important to bear in mind that the stipulation (2.9.1) is the defining property
of an incompressible fluid, while the simplified form of the continuity equation (2.9.2) is a
consequence of mass conservation.

2.9.2 DMathematical consequence of incompressibility

Equation (2.9.2) states that the x, y, and z components of the velocity of an incompressible
fluid may not be prescribed arbitrarily, but must be such that the differential constraint im-
posed on them by the requirement that the velocity field be solenoidal is satisfied throughout
the domain of flow at any time. In contrast, the three components of the velocity of a com-
pressible fluid may be arbitrary; the density of the point particles will then adjust to ensure
mass conservation, as dictated by the continuity equation.

A second important consequence of incompressibility is that, because the evolution of
the density is governed by the kinematic constraint (2.9.1), an equation of state relating the
pressure to the density to the temperature is not needed. The important significance of this
consequence will be discussed further in Chapters 4 and 8 in the context of hydrodynamics.
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2.9.3 Stream function for two-dimensional flow

The continuity equation for a two-dimensional flow in the zy plane stated in (2.9.2) takes
the form

Ou, — Ouy

ox dy

= 0. (2.9.3)

In computing the velocity field of an incompressible fluid by analytical or numerical methods,
it is convenient to satisfy this constraint at the outset and concentrate on satisfying boundary
conditions and other constraints that arise by balancing forces and torques, as will be
discussed in later chapters.

To achieve this, we may express the two velocity components in terms of a scalar func-
tion, v, called the stream function, as

O
’I'iay7

O

e (2.9.4)

Uy:

If the two velocity components, u, and u, derive from ¢ by equations (2.9.4), then the
satisfaction of the incompressibility constraint (2.9.3) is guaranteed. To confirm this, we
substitute (2.9.4) into (2.9.3) and find that

2, 2,
04y 0“1 —0

ordy Oyor (2:95)

Since the order of partial differentiation with respect to the two independent spatial variables
x and y is immaterial, the equality is satisfied.

Extensional flow

As an example, we consider a two-dimensional flow with velocity components

Uy = fT Uy = 75?/ (296)

describing an extensional flow, where ¢ is a constant with units of inverse time. It can
be verified readily that the continuity equation is fulfilled, V - u = 0. Substituting these
expressions into (2.9.3), we confirm that the fluid is incompressible. The stream function
corresponding to this flow is given by

Y = €xy + ¢, (2.9.7)

where ¢ is an unspecified and inconsequential constant.

Non-uniqueness of the stream function

The example discussed in the last section illustrates that the stream function of a specified
two-dimensional flow is not unique. Cursory inspection of equation (2.9.4) shows that an
arbitrary constant may be added to a particular stream function to yield another perfectly
acceptable stream function describing the same flow. However, this ambiguity is neither
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essential nor alarming. In performing analytical or numerical computation, the arbitrary
constant simply provides us with one degree of freedom that can be used to simplify numer-
ical and algebraic manipulations.

Physical interpretation

Consider the areal flow rate, Q*°*, across a line that begins at a point, A, and ends at
another point, B, as illustrated in Figure 2.6.1. Substituting expressions (2.9.4) into the
right-hand side of the last integral in (2.6.15) for the areal flow rate, we obtain

B
. o o
areal
“ /A ( oy o ) 20
We may then write
B
Qarea] — / dg/} — UB _ "7/)A7 (299)
JA

where ¢, and g are the values of the stream function at the end points, A and B.

Equation (2.9.9) shows that the difference in the values of the stream function between
two points is equal to the areal flow rate across any arbitrary line that begins at the first
point and ends at the second point. Because the fluid is incompressible, the flow rate is
independent of the actual shape of the line, provided that the line begins and ends at two
specified points.

Vorticity

The z component of the vorticity of a two-dimensional flow in the xy plane was given in
equation (2.3.19) in terms of selected derivatives of the velocity,

_ Ouy  Oug

= —— — . 2.9.10
« ox dy ( )
Substituting expressions (2.9.4), we find that
%y 0%, 5
where
. 0? 0?
2 _
=—+ — 2.9.12
\Y 92 + oy (2.9.12)

is the Laplacian operator in the zy plane, as discussed in Section 3.2. Thus, the z component
of the vorticity is equal to the negative of the Laplacian of the stream function.

If the stream function satisfies Laplace’s equation, V?i) = 0, the velocity field is
solenoidal and the flow is irrotational. A function that satisfies Laplace’s equation is called
harmonic.
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Plane polar coordinates

Departing from equations (2.9.4) and (2.3.19), and using the rules of coordinate transforma-
tion, we derive the velocity components of a two-dimensional flow in plane polar coordinates,
(r,0), in terms of the stream function,

10y oY
UV = =D Ty = =, 2.9.13
T Y o (2:9.13)
The vorticity is
10/ oY 1 0% 9
=199 _ 10V _ o 2.9.14
¥ 7“87‘(787“) r2 062 v ( )
where
‘ 0? 0? 10 0 1 02
2 _
=t —=-—(r— — = 2.9.1
V=02 T oy T@T(Tar) 2 962 (2:9.15)
is the Laplacian operator in plane polar coordinates.
Expressions (2.9.13) satisfy the continuity equation in plane polar coordinates,
1 O(ru, 10
1o0ruy)  10us _, (2.9.16)

r Or r Or

for any differentiable and single valued stream function, .

2.9.4 Stream function for axisymmetric flow

In the case of axisymmetric flow without swirling motion, we express all dependent and
independent variables in the continuity equation, V -u = 0, in cylindrical polar coordinates,
(z,0,p). After carrying out a fair amount of algebra using the chain rule, we find that
the continuity equation takes the form of a constraint on the axial and radial velocity
components, u; and u,,

ox o Oo

_ Ouy, n 10 (ouy)

V-u = 0. (2.9.17)

To ensure the satisfaction of this equation, we express the axial and radial components
of the velocity in terms of an axisymmetric stream function, v, also called the Stokes stream
function, defined by the equations
1oy 1 0y

Uy = o — — (2.9.18)

o Oc’ o Oz’

Notice the minus sign in the second expression. Straightforward substitutions confirm that
the velocity components given in (2.9.18) satisfy the continuity equation (2.9.17) for any
regular stream function, .
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Extensional flow

As an example, we consider an axisymmetric flow with velocity components
up =€z, Uy =—3 Eo, (2.9.19)

representing an extensional flow, where £ is a constant with units of inverse time. Substi-
tuting these expressions into (2.9.17), we confirm that the left-hand side vanishes and the
fluid is incompressible. The corresponding stream function is given by

¥ =3 fxo® +c, (2.9.20)
where ¢ is an unspecified constant.

Physical interpretation

Working as in Section 2.9.3 for two-dimensional flow, we find that the volumetric flow rate
across an axisymmetric surface whose trace in an azimuthal plane of constant angle ¢ starts
at a point, A, and ends at another point, B, as illustrated in Figure 2.6.6, is

Q=1vB —VYa (2.9.21)

(Problem 2.9.2). This result is consistent with the units of the axisymmetric stream function,
velocity multiplied by length squared, evident from equations (2.9.18). In contrast, the
stream function for two-dimensional has units of velocity multiplied by length.

Vorticity

The azimuthal component of the vorticity in an axisymmetric flow was given in equation
(2.3.22) in terms of derivatives of the cylindrical polar components of the velocity,

_ Ous  Ouy

Wy = — z
ks ox Jdo

. (2.9.22)

Substituting expressions (2.9.18), we obtain

Oy 0% 10¢ ). (2.9.23)

_ L1 0%
Yo = agd}i U(aazQ o2 o0 0o

where £2 is a second-order linear differential operator defined as

, 07 02 10
&= —+-—-—=.
dx?  0o? o0o
If the stream function is such that the right-hand side of (2.9.23) is zero throughout the
domain of flow, the flow is irrotational.

(2.9.24)
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Spherical polar coordinates

Departing from equations (2.9.18) and (2.3.22), and using the rules of coordinate transfor-
mation, we derive the velocity components in spherical polar coordinates, (1,6, ),

1 oY 1 o

= r2sinf 00’ Uo = T rsing or (2.9.25)

The azimuthal component of the vorticity is given by

_ 1 ey (2.9.26)

rsin 6

We

where £2 is the second-order differential operator defined in (2.9.24). In spherical polar
coordinates,

2 . 1 2 1 2
0 sinf 0 ( 6) 0 0 coteg (2.9.27)

=92 2 90\smoeae) "oz T2 T 2 90

If the stream function is such that the right-hand side of (2.9.26) is zero throughout the
domain of flow, the flow is irrotational.

PROBLEMS

2.9.1 Stream function for two-dimensional flow

Derive the Cartesian components of the velocity and the z vorticity component of a two-
dimensional flow whose stream function is (a) ¢ = 1 £¢? or (b) ¥ = 1 & (22 — y?), where ¢
is a constant. Deduce the units of ¢ and discuss the nature of each flow.

2.9.2 Stream function of azisymmetric flow

Substitute expressions (2.9.18) into the right-hand side of (2.6.38) and perform the integra-
tion to confirm (2.9.21).

2.10 Kinematic conditions at boundaries

In real life, a flow occurs in a domain that is bounded by stationary or moving surfaces with
different constitutions and physical properties. FExamples include the flow in an internal
combustion engine generated by the motion of an engine piston, the flow induced by the
motion of an aircraft or ground vehicle, the flow induced by the sedimentation of an aerosol
particle in the atmosphere, the flow induced by a small bubble rising in a carbonated bev-
erage, and the flow induced by the motion of an elephant running through the Savannah to
escape a mouse.

Types of boundary conditions

In the context of kinematics, boundaries are classified into the following four main categories:
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1. Impermeable solid boundaries: examples include the surface of a rigid or flexible solid
body, such as a vibrating radio antenna or a swimming microorganism.

2. Permeable solid boundaries: examples include the surface of a porous medium, such as
a rock bed or a biological tissue composed of cells separated by gaps in the intervening
spaces.

3. Sharp interfaces between tmmiscible fluids: examples include the free surface of the
ocean and the interface between oil and vinegar in an Italian salad dressing.

4. Diffuse interfaces between miscible fluids: examples include the fuzzy edge of a river
discharging into the ocean and the ambiguous edge of a smoke ring rising in still air.

Different boundary conditions are imposed on each of these surfaces according to the pre-
vailing physical context.

2.10.1 The no-penetration boundary condition

By definition, a point particle moving with the fluid velocity may not cross an impermeable
solid boundary or a sharp interface between two immiscible fluids, but is required to lie on
one side of the boundary or interface at all times. As a consequence, the velocity of a point
particle that lies at a stationary or moving impermeable boundary or sharp interface must
be consistent with, but not necessarily equal to, the velocity of the boundary or interface.
To ensure compatibility, the no-penetration boundary condition is required.

Impermeable solid boundaries

Consider a flow that is bounded by an impermeable solid, but not necessarily rigid, boundary
(rubber is a non-rigid, elastic yet solid boundary.) The no-penetration boundary condition
requires that the component of the fluid velocity normal to the boundary is equal to the
component of the boundary velocity normal to its instantaneous shape. The tangential
component of the velocity is left unspecified. If the boundary is stationary, the normal
component of the fluid velocity must vanish.

To derive the mathematical statement of the no-penetration condition, we introduce
the unit vector normal to the boundary at a point, n, and the velocity of the boundary, v,
where the orientation of n is left unspecified. If the boundary is stationary, the boundary
velocity is zero, v® = 0; if the boundary translates as a rigid body, vP is constant; if the
boundary rotates as a rigid body or exhibits some type of deformation, v? is a function of
position, as will be discussed later in this section.

In all cases, the no-penetration boundary condition requires that
u-n=v".n (2.10.1)

where both sides are evaluated at a point on the boundary.
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Rigid-body motion

Consider an impermeable rigid boundary that translates with velocity UP while rotating
with angular velocity Q° around a specified center of rotation, xg. The angular velocity
vector, QF, passes through the center of rotation, xg. The magnitude and orientation of
QP express the rate of direction and direction of rotation. As we look down at the angular
velocity vector from above, the body rotates in the counterclockwise direction.

In terms of the velocity of translation and angular velocity of rotation, the velocity at
a point x that lies at the boundary is given by the expression

vB =UB + QP x (x — xgr), (2.10.2)
where x denotes the outer vector product defined in equation (2.3.5). In component form,
VP = (U2 + Q) (- 2r) - Q0 (y —yr) | es
+HUY + Q7 (x — zr) — QF (2 — 2r) ] ey (2.10.3)
HUZ + Q7 (y —yr) — Q) (@ — 2r) ez,
where e,, e,, and e, are unit vectors along the x,y, or z axes.

In the case of two-dimensional flow in the xy plane, the z velocity component is zero,

UB = 0, and the angular velocity vector is parallel to the z axis, QF = 0 and QyB =0,

yielding the simplified form
vB = [UE —QB(y - Yr) | €s + [Ul]/3 + Q8 (z - zR) | ey, (2.10.4)
which is linear in x and y.

The no-penetration boundary condition arises by substituting expression (2.10.3) or
(2.10.4) into the right-hand side of (2.10.1), respectively, for three-dimensional or two-
dimensional flow. If the boundary is stationary, v® = 0, we obtain the simple form

u-n=0, (2.10.5)

where the direction of the unit normal vector, n, is unspecified.

The no-penetration condition in terms of the stream function

Next, we consider an incompressible fluid in a two-dimensional flow and express the veloc-
ity in terms of the stream function, v, defined in equations (2.9.4). The no-penetration
boundary condition (2.10.1) requires that
oY o
U 1= Uy Ny + Uy Ny = a—y Ng — I Ny = vB.n. (2.10.6)
Substituting expressions (2.6.4) for the components of the normal vector in terms of differ-
ential displacements along the boundary, we obtain
opdy OYpde dy g

Gyl drdc  ac v ™ (2.10.7)
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where d¢ is an infinitesimal arc length measured along the boundary from an arbitrary
origin.

If the boundary is stationary, the right-hand side of (2.1.8) is zero, di)/d¢ = 0, and
the stream function is constant over the boundary. The no-penetration boundary condition
takes the simple form

W = 1)y, (2.10.8)
where the constant 1)y is either assigned arbitrarily or computed as part of the solution.

Similar arguments can be made to show that the stream function is constant over an
impermeable stationary boundary in axisymmetric flow (Problem 2.10.2(b)).

Sharp interfaces

Next, we consider the no-penetration condition over a stationary or moving sharp interface
separating two immiscible fluids. Physical arguments suggest that the normal component
of the fluid velocity on one side of the interface must be equal to the normal component of
the velocity on the other side of the interface. However, the tangential velocities may be
different.

To derive the mathematical statement of the no-slip condition, we introduce the velocity
on one side of the interface, denoted by u(¥), and the velocity on the other side of the
interface, denoted by u®, and require that

= ) g, (2.10.9)

where n is the unit vector normal to the interface. Both sides are evaluated at a point at
the interface with an unspecified direction of the unit normal vector, n.

PROBLEMS

2.10.1 Changing the center of rotation
The center of rotation of a rigid body can be placed at any arbitrary position. Suppose that
we choose a point, Xy, instead of the point xg discussed in the text. The counterpart of
equation (2.10.2) is

vB = U + QP x (x — x). (2.10.10)

Set the right-hand side of (2.10.10) equal to the right-hand side of (2.10.2) to derive expres-
sions for UB and QP in terms of UB and QP8 and vice versa.

2.10.2 Stream functions

(a) Use the no-penetration boundary condition to derive an expression for the stream func-
tion over a translating but non-rotating impermeable boundary in two-dimensional flow.

(b) Show that the no-penetration condition over a stationary boundary in axisymmetric flow
takes the form expressed by (2.10.8).



Flow computation
based on kinematics

3.1 Flow classification based on kinematics

3.2 Irrotational flow and the velocity potential

3.3 Finite-difference methods

3.4 Linear solvers

3.5 Two-dimensional point sources and point-source dipoles
3.6 Three-dimensional point sources and point-source dipoles
3.7 Point vortices and line vortices

Flows can be classified according to the vorticity distribution as irrotational flows if the
vorticity vanishes or is nearly zero throughout the domain of flow, vortex flows dominated
by the presence of compact regions of concentrated vorticity embedded in an otherwise
irrotational fluid, and rotational flows if the vorticity is significant throughout the domain
of flow. In this chapter, we discuss the kinematic structure and mathematical description
of the simplest and most tractable class of irrotational flows.

Following the mathematical analysis, we will develop finite-difference methods for com-
puting the velocity field from knowledge of the velocity distribution at the boundaries, and
then present a class of elementary irrotational flows that serve as fundamental building
blocks for generating desired solutions. Complementary building blocks associated with el-
ementary vortex flows provide us with additional elementary units that allow us to address
a broader class of irrotational flows where the fluid exhibits circulatory motion.

3.1 Flow classification based on kinematics

In Chapters 1 and 2, we discussed the general kinematic properties of a flow with reference
to the motion of fluid parcels and infinitesimal point particles. To make further progress, we
establish a taxonomy by classifying flows according to sensible criteria. Examples of possible
classifications include internal and external flows, inviscid and viscous flows, subsonic and
supersonic flows.

On the basis of kinematics alone, flows can be classified into three main categories,
including irrotational flows, flows containing compact regions of intense vorticity embedded
in an otherwise perfectly or nearly irrotational fluid, and rotational flows with distributed
vorticity.
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[rrotational flows

The first category includes flows where the vorticity vector vanishes, and the magnitude of
the vorticity is zero throughout the domain of flow. According to our discussion in Chapter
2, small spherical fluid parcels in a three-dimensional irrotational flow and discoidal fluid
parcels in a two-dimensional irrotational flow translate, deform, and expand or contract,
but do not rotate.

A perfectly irrotational flow is a mathematical idealization. In practice, because a
small amount of vorticity is always present, a nominally irrotational flow is nearly but not
perfectly irrotational. An example is high-speed flow past a slender airfoil under conditions
of no-stall, as will be discussed in Chapter 12 in the context of aerodynamics.

Vortex flows

The second category includes flows that contain well-defined compact regions where the
magnitude of the vorticity is significant, embedded in an otherwise irrotational fluid. The
vortical flow regions cannot be neglected without introducing serious discrepancies and
compromising the physics of the flow under consideration. In practice, regions of intense
vorticity appear in the form of narrow layers, thin filaments, wakes behind bluff bodies,
tornadoes and swirls. A vortex flow familiar to the aircraft traveler is the flow associated
with a high-speed jet emerging from a turbine engine.

Rotational flows

The third category includes flows where the vorticity is significant throughout the domain of
flow. The distinction between vortex flows and rotational flows is somewhat vague, as some
flows can be classified into both categories. However, we will see that vortex flows can be
analyzed and computed using a special class of numerical methods, called vortex methods.
The availability of these methods provides us with a practical criterion for the distinction
between vortex and rotational flows.

Flows in nature and technology

The vast majority of flows in nature and technology are rotational. Examples include the
flow due to a small particle settling in the atmosphere, the flow through the engine of a
turbine, and blood flow in the heart and through large blood vessels and small capillaries.
High-speed flows develop regions of concentrated vorticity and are typically classified as
vortex flows. High-speed turbulent flows contain random collections of rapidly evolving
vortices, called eddies or coherent structures, embedded in a low- or moderate-vorticity
background fluid.

Irrotational flows are simplified models of vortex flows that emerge by neglecting the
regions of concentrated vorticity, or else by shifting the actual boundaries of the flow to the
edges of the vortex regions, thereby placing them outside the domain of flow.
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Considerable physical insight and practical experience are necessary to accurately pre-
dict whether a flow will develop to become irrotational, rotational, or vortex flow. Insights
can be gained by studying model flows that are amenable to analytical and simple numerical
methods. Additional insights can be gained by analyzing the laws governing the generation
and evolution of the vorticity field from a given initial state.

Flow computation

The difficulty of computing the structure or evolution of a flow increases sharply as we
transition from irrotational flows, to vortex flows, to rotational flows. Exceptions to this
general rule arise in special cases. Our discussion of analytical and computational methods
for flow computation begins in this chapter by considering the most amenable class of
irrotational flows. In the context of kinematics alone, the problem can be stated as follows:
given the boundary geometry and the velocity distribution over the boundaries, compute
the structure of a steady irrotational flow or the evolution of an unsteady irrotational flow
from a specified initial state.

PROBLEM

3.1.1 Flow classification

Suggest a possible way of classifying flows according to sensible criteria apart from the those
discussed in the text.

3.2 Irrotational flow and the velocity potential

The vorticity of a three-dimensional flow was defined in equation (2.3.8) as the curl of the
velocity,

w=Vxu (3.2.1)

The z component of the vorticity of a two-dimensional flow in the xy plane was given in
equation (2.3.19) as

Ou,  Ouy,
Wy, = 4 —

Oz oy’

(3.2.2)

and the azimuthal component of the vorticity of an axisymmetric flow was given in equation
(2.3.22) as

B L d(rug)  Ouy )
ox do 1 or 00’

_ Oug Ouy, 1

Wy, (3.2.3)

If a flow is irrotational, the structure of the velocity field must be such that the right-hand
sides of these equations are zero.
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3.2.1 Two-dimensional flow

Consider a two-dimensional irrotational flow in the xy plane. Setting the left-hand side of
equation (3.2.2) to zero, we obtain a constraint on selected partial derivatives of the velocity,

Ouy  Oug
T (3.2.4)

To describe a two-dimensional irrotational flow, we may attempt to compute the two velocity
components individually, subject to constraints imposed by the continuity equation and
boundary conditions, while ensuring that condition (3.2.4) is fulfilled at every point in
the flow. Alternatively, we may choose to satisfy condition (3.2.4) at the outset and then
concentrate on fulfilling the rest of the requirements.

It should not be surprising that the second approach is more expedient in both theo-
retical analysis and numerical computation.

The velocity potential

The key idea is to introduce a new scalar function, ¢, called the velocity potential, such
that the two velocity components of a two-dimensional flow derive from the relations

9¢ 9¢
. Y= —. 2.
Uz = - Wy a9y (3.2.5)
In vector notation, equations (3.2.5) are collected into the compact form
u= Vg, (3.2.6)
where
dp 09
Vo=(=—, —), 3.2.7
o= (3 30 (327

is the two-dimensional gradient of the potential. The velocity, and thus the velocity poten-
tial, ¢, is a function of position, x = (z,y,2), and, in the case of unsteady flow, time, ¢.
Inspection of (3.2.5) reveals that the velocity potential has units of velocity multiplied by
length, which amounts to length squared divided by time.

It is a straightforward exercise to confirm that, if the velocity components derive from
¢ in terms of equations (3.2.5), then the irrotationality constraint (3.2.4) is automatically
satisfied. Substituting expressions (3.2.5) into (3.2.4), we obtain

0% B 0%¢
drdy  Oyox’

(3.2.8)

Since the order of partial differentiation with respect to the two independent spatial vari-
ables, x and y, can be interchanged, relation (3.2.4) is satisfied. Accordingly, an irrotational
flow is also a potential flow, and wvice versa.
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The velocity potential of a certain irrotational flow is not unique. An arbitrary con-
stant can be added to a particular potential to produce another perfectly acceptable po-
tential. However, this ambiguity is neither essential nor alarming. In performing analytical
or numerical computation, the arbitrary constant is determined by introducing a proper
constraint.

Deriving the potential

Given the velocity field of an irrotational flow, we can derive the corresponding potential by
integrating the system of differential equations (3.2.5), where the left-hand sides are treated
as a known.

As an example, we consider two-dimensional unidirectional streaming (uniform) flow
with velocity components

U’.’L‘ - Ulf7 “y - Uy, (32.9)

where U, and U, are two constant velocities. Integrating the first equation in (3.2.5), we
find that the potential must take the form

where f(y) is an unknown function of y. Differentiating both sides of this equation with
respect to y and using the second equation in (3.2.5), we find that df/dy = U,, which can
be integrated to give f(y) = Uyy + ¢, where c¢ is an arbitrary constant. Combining these
expressions, we find that the velocity potential corresponding to (3.2.9) is

p=Uz+Uyy+c=U-x+c (3.2.11)

In agreement with our previous observation, the velocity potential is defined uniquely up to
an arbitrary constant, c.

Computation of the potential based on kinematics

The automatic satisfaction of the irrotationality constraint (3.2.4) by way of the velocity
potential is helpful, but we still require one equation, or a system of equations, that will
allow us to compute the potential. Normally, these equations would have to be derived
by considering forces and torques exerted on the surfaces and over the volume of small
fluid parcels, as will be discussed in subsequent chapters with reference to the more general
class of rotational flows. Fortunately, this is not necessary in the case of irrotational flow.
Given the boundary distribution of the velocity, an irrotational flow can be computed in the
framework of kinematics alone pivoted on the continuity equation.

3.2.2 Incompressible fluids and the harmonic potential

Mass conservation requires that the velocity field of an incompressible fluid is solenoidal,
which means that the velocity components must satisfy the constraint expressed by the
continuity equation (2.9.2),

V- -u=0. (3.2.12)
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In the case of two-dimensional flow, we obtain

Ouy . %
ox Ay

=0. (3.2.13)
Substituting expressions (3.2.5) into (3.2.12), we obtain Laplace’s equation in two dimen-

sions,

9%¢ @:

72 T o =0 (3.2.14)

It is convenient to define the two-dimensional Laplacian operator,

02 0?
2= o 2.1
\% 9.2 T Rl (3.2.15)
and recast (3.2.14) into the more compact form
V34 =0. (3.2.16)

A function that satisfies Laplace’s equation (3.2.16) is called harmonic.

It is instructive to derive Laplace’s equation working in vector notation. Substituting
(3.2.6) into (3.2.12), we find that

V-u=V-(V¢)=V?p=0, (3.2.17)
which identifies the Laplacian operator with the divergence of the gradient,
Vi=V.V, (3.2.18)
regarded as a differential operator.

Laplace’s equation arises in a broad range of contexts under and beyond the auspices of
fluid mechanics. For example, Laplace’s equation governs the distribution of temperature
at steady state in a conductive material, such as a fin or a cooling plate.

Quasi-steady state

Laplace’s equation (3.2.16) conveys a statement of mass conservation for an incompressible
fluid. Although time does not appear explicitly in this equation, the velocity field, and thus
the velocity potential, may change in time, so that ¢(x,t). The absence of explicit time
dependence classifies an the irrotational flow of an incompressible fluid as a quasi-steady
flow. This terminology implies that the instantaneous structure of the flow depends on
the instantaneous boundary geometry and boundary conditions, but is independent of the
motion at previous times. Thus, if all boundaries are stationary at a particular time instant,
the fluid will also be stationary at that instant, independent of the history of the fluid and
boundary motion.
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3.2.3 Three-dimensional flow

The foregoing analysis can be extended in a straightforward fashion to three-dimensional
flow. The velocity components of a three-dimensional flow derive from the velocity potential
by the equations

_ 9 - _ %

Ug = 5, y= 7 := 5o 2.1
e = or ty dy “ 0z (3:2.19)

The velocity components, and thus the potential, ¢, are functions of position x = (x,y, 2)
and time, ¢, in the case of unsteady flow.

If the fluid is incompressible, the velocity potential satisfies the counterpart of Laplace’s
equation (3.2.17) for three-dimensional flow,
¢ 9% ¢

Vu:V(V¢)EV2 E@.’L’2+872+8? 0, (3.2.20)

where
02 82 (92

2:7 [ [
V= Ox2 + Oy? N 022

(3.2.21)
is the Laplacian operator in three dimensions.

3.2.4 Boundary conditions

Laplace’s equation for the velocity potential, ¢, in two or three dimensions is a second-order,
elliptic partial differential equation. One consequence of this classification is that, in order
to compute the solution, we must specify one scalar boundary condition for ¢, one of its
first partial derivatives, or a combination thereof, along each boundary.

Impermeable boundaries

Over an impermeable boundary, we require the no-penetration condition discussed in Section
2.10. If the boundary is stationary, u-n = 0, where n is the unit vector normal to the
boundary pointing either into or outward from the domain of flow. Using equations (3.2.5),
we find that

99 99 _

o 5 + ny o 0. (3.2.22)

in the case of two-dimensional flow. This is truly a boundary condition for the normal
component of the gradient of the potential, which is equal to the derivative with respect
to distance normal to the boundary, called a Neumann boundary condition. Because the
right-hand side of (3.2.22) is zero, this boundary condition is classified as homogeneous.

Permeable boundaries

Over a permeable boundary, we may specify the tangential component of the velocity and
allow the normal component to arise as part of the solution. To implement this condition in
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the case of two-dimensional flow, we introduce the unit vector tangential to the boundary,
t, defined in equations (2.6.3). The tangential component of the velocity in the direction of
t is given by the inner product
oo} op dx dp dy d¢  do
U=t =ty o by o = — o o =
te=t Y ox thy oy Al Ox + d¢ oy  de’
where ¢ is the arc length measured in the direction of t. If the distribution of ¢ over the
boundary is known, the right-hand side of (3.2.23) can be computed by differentiating the
potential with respect to arc length using analytical or numerical methods.

(3.2.23)

The last observation suggests that, instead of specifying the tangential component of the
velocity, we may specify the boundary distribution of the potential. A boundary condition
for the distribution of the potential is a Dirichlet boundary condition.

A word of caution is in order. If a flow is bounded by a number of disconnected bound-
aries, replacing the boundary condition for the tangential velocity with a boundary condition
for the distribution of the potential is permissible only over one boundary; otherwise, in-
consistencies may arise.

3.2.5 Cylindrical polar coordinates

Consider a three-dimensional irrotational flow and introduce cylindrical polar coordinates,
(z,0,¢), as shown in Figure 1.3.2. Using expressions (2.1.43), we find that the cylindrical
polar components of the velocity are given by

09 09 109
Uy = %, Uy = 870'7 'U/gp = pu 099 (3224)
Laplace’s equation for the harmonic potential takes the form
% 1 0 s 0¢ 1 0%
= et — o —— = 3.2.25
v dx? o do (000) o2 Op? ( )

If a flow is axisymmetric, the velocity potential is a function of x and ¢ but not ¢, as
required for u,, to vanish.

3.2.6 Spherical polar coordinates

Consider a three-dimensional irrotational flow and introduce spherical polar coordinates,
(r,0, ), as shown in Figure 1.3.3. Using relations (2.1.45), we find that the spherical polar
components of the velocity are given by

¢ 19 1 99

b = —, =——, o= ———. 3.2.26
" or T, Y = i sing Oy ( )
Laplace’s equation for the harmonic potential takes the form
19 [ ,0¢ 1 9. 0 1 9%
V2= -2 (292 2 @ 22 = 0. 3.2.27
r2 Or (7 67“) + r2 sinf 00 (bm 39) + 72 sin? @ Op? ( )

If a flow is axisymmetric, the velocity potential is a function of r and 6 but not ¢, as required
for u, to vanish.
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3.2.7 Plane polar coordinates

Consider a two-dimensional irrotational flow and introduce plane polar coordinates, (r,0),
as shown in Figure 1.3.4. Using relations (2.1.47), we find that the plane polar components
of the velocity are

_ 9 _10¢

b = ——, = - —. 2.2
u 5 up = g (3.2.28)
Laplace’s equation for the harmonic potential takes the form
10/ 0¢ 1 0%
24 = —— (p—* AR 3.2.29
V=5 (15e) + 2 g = (3.2:29)

Note that this equation derives from (3.2.25) by replacing o with r and ¢ with 6, and then
discarding the x dependence.

PROBLEMS

3.2.1 Deriving the velocity potential

(a) Consider a two-dimensional flow with velocity components
Uy = U cos(kz) e ", u, = —U sin(kx) e ™, (3.2.30)

where U and k are two constants. Confirm that this flow is irrotational, derive the cor-
responding velocity potential, investigate whether or not the potential is harmonic, and
explain why. Sketch the streamline pattern and discuss the structure of the flow and the
physical interpretation of the constant k.

(b) Consider a three-dimensional flow with velocity components

ks . —k ky . k
U, =U - cos(kyx) sin(kyy) e *, uy =U f sin(k,x) cos(kyy) e "2,

u, = —U sin(k,x) sin(k,y) e "2, (3.2.31)

where U, k., and k,, are three constants and k = (k2 —l—k;)l/ 2. This is the three-dimensional
counterpart of the two-dimensional flow discussed in (a). Confirm that this flow is irrota-
tional, derive the corresponding velocity potential, investigate whether or not the potential is
harmonic, and explain why. Discuss the structure of the flow and the physical interpretation
of the constants k, and k,.

(¢) Explain why it is not possible to find a velocity potential for simple shear flow along the
2 axis varying along the y axis whose velocity components are given by u, = £y, uy = 0,
and u, = 0, where £ is a constant with units of inverse time called the shear rate.

3.2.2 Irrotational flow in cylindrical polar coordinates
Verify by direct substitution that the potential
3
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satisfies Laplace’s equation (3.2.25), where U and a are two constants. Discuss the structure
of the axisymmetric flow described by this potential.
3.2.3 Irrotational flow in spherical polar coordinates

Verify by direct substitution that the potential

3

¢=Urcost (14 =) (3.2.33)

satisfies Laplace’s equation (3.2.27), where U and a are two constants. Discuss the structure
of the axisymmetric flow described by this potential.
3.2.4 Irrotational flow in plane polar coordinates
Verify by direct substitution that the potential
2 K

a
¢:UTCOSQ(1+1§)+%H’ (3.2.34)

satisfies Laplace’s equation (3.2.29), where k, U, and a are three constants. Discuss the
structure of the two-dimensional flow described by this potential.

3.3 Finite-difference methods

In practice, Laplace’s equation for a harmonic potential, ¢, is solved by a variety of numerical
methods. To illustrate the implementation of the finite-difference method, we consider a
two-dimensional potential flow in the zy plane in a rectangular domain confined between
two pairs of parallel straight lines,

ay < x < by, ay <y < by, (3.3.1)

as illustrated in Figure 3.3.1. The left, bottom, and right walls are impermeable, whereas
the top wall is exposed to an external flow.

3.3.1 Boundary conditions

Before attempting to compute the solution, we must specify boundary conditions for the
scalar potential, ¢.

Over the left wall, the unit vector normal to the wall pointing into the fluid is n = (1, 0).
Accordingly, the no-penetration condition (3.2.22) provides us with the Neumann boundary
condition

¢ _

o 0 at z=a,. (3.3.2)
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Figure 3.3.1 lllustration of a Cartesian grid used to compute the harmonic potential of a two-
dimensional irrotational flow in a rectangular domain. The grid nodes are parametrized by two
indices, 7 and j, wherei =1,... N, +1and j =1,... N, + 1. Phantom grid lines are introduced
at i =0, 1= Nz + 2, and j = 0, to implement the Neumann boundary conditions. The solution
is found by solving Laplace's equation using a finite-difference method. The five-point stencil
indicates the nodal pattern used to approximate the Laplacian at an interior node.

Over the bottom wall, the unit vector normal to the wall pointing into the flow is
n = (0,1). Accordingly, the no-penetration condition (3.2.22) provides us with the Neumann
boundary condition

0

87(;; =0 at y=a,. (3.3.3)
Over the right wall, the unit vector normal to the wall pointing into the flow is n =

(=1,0). Accordingly, the no-penetration condition (3.2.22) provides us with the Neumann

boundary condition

8d>:

. 0 at x=b,. (3.3.4)
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Over the top wall, we stipulate for the purpose of illustration that the tangential compo-
nent of the velocity is constant and equal to V. Other boundary conditions can be imposed
to reflect different flow conditions. Since the top wall is parallel to the = axis, the unit
tangent vector is t = (1,0). Accordingly, expression (3.2.23) provides us with the boundary
condition

9¢ _
oxr

u=u-t=

V. oat y=b,. (3.3.5)

Straightforward integration of (3.3.5) with respect to = shows that this condition is equiva-
lent to a Dirichlet boundary condition,

p=Vr+c at y=b,. (3.3.6)

The constant ¢ can be assigned an arbitrary value that is inconsequential to the structure
of the flow.

The problem formulation is now complete, and we may proceed to compute the solution.
Our task is to solve Laplace’s equation

P _,

a? + @ ) (3-3.7)

subject to the four boundary conditions expressed by equations (3.3.2), (3.3.3), (3.3.4), and
(3.3.6).

3.3.2 Finite-difference grid

We begin implementing the finite-difference method by dividing the x interval, [a,, b,], into
N, evenly spaced sub-intervals separated by the spacing Az = (b, — a,)/N,, and draw
vertical grid lines at

x;=a;+ (i—1)Ax (3.3.8)
fori=1,..., N, + 1, as shown in Figure 3.3.1.

Similarly, we divide the y interval, [a,, b,], into N, evenly spaced sub-intervals separated
by the spacing Ay = (b, — a,)/N,, and draw horizontal grid lines at

y;=ay +(—1) Ay (3.3.9)
for j =1,..., Ny, + 1, as shown in Figure 3.3.1.

The intersections of vertical and horizontal grid lines define grid points or nodes. For
convenience, we denote the value of the harmonic potential ¢ at the (i, 7) node as

bij = O(T4, Y5) (3.3.10)

fori=1,...,N;+landj=1,...,N, + 1.



3.3 Finite-difference methods 143

Dirichlet boundary condition

The Dirichlet boundary condition (3.3.6) provides us with the values

¢i,N,+1 = Va;. (3.3.11)
Without loss of generality, we have made the arbitrary choice ¢ = 0. Our objective is
to compute the remaining unknown values, ¢; ;, at the grid points i = 1,..., N, + 1 and
j=1,...,N,, comprising a set of
N, = (N, +1)N, (3.3.12)
unknowns.

3.3.3 Finite-difference discretization

To build a system of equations for the unknown grid values, we require the satisfaction of
Laplace’s equation (3.2.14) at the (i, ) node, and approximate the second partial derivatives
with finite differences. Introducing the approximations implemented in formula (2.5.9), we
write

9% Gi—1,j — 205 + Dit1j
_ ~ 2 2 2 . 1
((9x2 )17 Ax? (3.3.13)
and
%9 Gij—1— 2¢i; + dij+1
(072)7 ~ v . (3.3.14)

These approximations transform the differential equation (3.3.7) to an algebraic equation,

Di—1,j — 205 + Dig1j n Gij—1—20i; + dij+1

A A =0 (3.3.15)
at the (7,7) node. Rearranging the left-hand side, we obtain
Git1,; —2(A+B) i+ bic1; + Bbijr1 + Bij—1 =0, (3.3.16)
where
B = (Azx/Ay)? (3.3.17)

is the square of the grid spacing ratio. In the case of a square grid, g = 1.

Equation (3.3.15) and its equivalent equation (3.3.16) can be applied at the interior
nodes, i =2,...,N; and j = 2,... N, to obtain a system of

Nfde interior — (N’Z‘ - 1)(N1/ - 1) (3318)



144 Fluid Dynamics: Theory, Computation, and Numerical Simulation

difference equations. However, equation (3.3.15) cannot be applied at a boundary node, since
one grid point involved in the finite-difference approximation will lie outside the domain of
flow. We must somehow generate

Ny — Nide interior = (Ng + 1)Ny — (N = 1)(N, — 1) = N, + 2N, — 1 (3.3.19)
additional equations.

Neumann boundary condition

The missing equations originate from the Neumann boundary condition at the left, bottom,
and right walls where the no-penetration condition is prescribed. One way of implementing
these boundary conditions with an error that is comparable to that of the finite-difference
approximations (3.3.13) and (3.3.14), is to extend the domain of solution beyond the physical
boundaries of the flow and introduce fictitious or phantom nodes located at

T =20 = a, — Az, Yy =1yo=ay — Ay (3.3.20)
at the left and bottom walls, and
T=TN,42 = by + Az (3.3.21)

at the right wall. Having introduced these extensions, we apply the second-order finite-
difference approximation (2.5.6) to recast the Neumann boundary condition into the discrete
form

®2, — Po.j
=T e — .3.22
9 A 0 (3.3.22)
for j =1,..., Ny, corresponding to the left wall,
bi2 — dio
——— =0 3.3.23
2Ry ( )

fori=1,..., N, + 1, corresponding to the bottom wall, and

PNot2.j = PNesj

= 3.24
2 Az ! (3.3.24)

for j =1,...,N,, corresponding to the right wall.

Algebraic balance

To this end, we pause to confirm that the number of unknowns matches the number of
available equations. First, we note that the difference equation (3.3.15) or (3.3.16) may now
be applied at the interior and boundary nodes for 7 = 1,..., N, +1and j = 1,..., Ny, to
yield

Nfde - (Nx + 1) Ny (3.3.25)
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equations. Adding to these equations the
Npe = N, + 2N, + 1 (3.3.26)
boundary conditions expressed by(3.3.22), (3.3.23), and (3.3.24), we obtain
Neq = (Nz + 1)(Ny + 1) + 2N, (3.3.27)

equations. The total number of equations matches the number of unknowns, including the
values of ¢ at the (N, + 1) N, interior and boundary nodes and the values of ¢ at the
2N, + N, + 1 phantom nodes marked with circular symbols in Figure 3.3.1.

3.3.4 Compilation of a linear system

To formalize the method, we collect the interior and boundary unknowns into a long vector,
w, consisting of row-blocks, beginning from the bottom,

W= [ 011,021, ON,+1.15
01,2, 2.2, - ON,+1,2,
(3.3.28)
DLN,—1,P2,N, 1+ PNy +1,N, —1,

LN, D2.Ny s PN, LN, |-

Next, we apply the finite-difference equation (3.3.16) successively at boundary and in-
terior nodes. Without loss of generality, we scan the grid points row-by-row starting from
the bottom; a column-by-column compilation would also be acceptable.

Southwestern corner node

For the southwestern corner node (1, 1), we obtain the finite-difference equation

2,1 —2(1+B) P11+ P01+ Bbr2+ Boro=0. (3.3.29)

Boundary condition (3.3.22) for j = 1 requires that ¢21 = ¢,1, and boundary condition
(3.3.21) for j = 1 requires that ¢1 2 = ¢1,0. Using these equations to eliminate ¢g 1 and ¢; o
in favor of ¢ 1 and ¢1,2 on the right-hand side of (3.3.29), we obtain

2¢21 =21+ B)¢1,1+2B¢1,2=0. (3.3.30)

For future reference, we express this equation in the form of the inner product of a vector,
a(lV) | and the vector of unknowns w defined in (3.3.28), as

al'l . w =0, (3.3.31)
where

alV) = [—2(1+8),2,0,...,0 2[3,0,...,0’0,...,0’ (0,...,0] (3.3.32)
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is a sparse block vector. Each one of the NN, blocks on the right-hand side of (3.3.32) has
N, + 1 entries.

Southwestern bordering node
Next, we consider the boundary node (2,1) and obtain
¢31 —2(1+B) p21 + P11+ B d22 + Biao =0. (3.3.33)

Boundary condition (3.3.23) applied for ¢ = 2 requires that ¢2 2 = ¢2 . Using this equation
to eliminate ¢ in favor of ¢ 5 on the right-hand side of (3.3.33), we obtain

¢31—2(1+B)d21+ P11 +2B8¢p22 =0. (3.3.34)
For future reference, we express this equation in the form of an inner vector product,
a®b.w=0. (3.3.35)
where

a®b = [1,-2(1+ 8),1,0,...,0 0,25,0....,0(0,...,0‘ ’o,..,o] (3.3.36)

is a sparse block vector. Each one of the N, blocks on the right-hand side of (3.3.36) has
N, + 1 entries.

Other nodes

Continuing in this fashion, we build the rest of the vectors a(®/) for i = 1,... N, + 1 and
Jj=1,... Ny — 1, until we have reached the penultimate row corresponding to j = N,.
In simplifying the finite-difference equations for this row, we take into consideration not
only the Neumann boundary conditions (3.3.22) and (3.3.24) for the side walls, but also the
Dirichlet condition (3.3.11) for the top wall.

For example, considering the northwestern node (1, NV, ), we obtain the difference equa-
tion

—2(1+pB) 1N, +2¢2,n, +Bd1,n,—1 = —BVay, (3.3.37)
which can be expressed in the form of the inner product
albN) . w = —BV (3.3.38)
where

AN, [01,”70‘ )Q...,O)ﬁ,ﬂ,...ﬁ’ —2(148),2,0,...,0]  (3.3.39)

is a sparse block vector. Each one of the N, blocks on the right-hand side of (3.3.39) has
N, + 1 entries.



3.3 Finite-difference methods 147

Assembly

Finally, we collect equations (3.3.31), (3.3.35), (3.3.38) and their counterparts for the rest
of the interior and boundary nodes into a large system of equations,

A -w=h. (3.3.40)

The first row of the matrix A is the vector a(l:!) defined in (3.3.32); the second row is the
vector a®>1) defined in (3.3.36); subsequent rows have similar identities. The block vector
b on the right-hand side of (3.3.40) is given by

b:[o,...,o‘.,...,

oo( BV, —BVas, ..., —BVan.41 ] (3.341)

The coeflicient matrix A consists of N, vertical and N, horizontal partitions in the block
tridiagonal form

T 2D 0 0 0 0
D T D o --- 0 O
0 T D 0 --- 0
A= : : S : : . (3.3.42)
o .- 0O D T D O
0 0 .-« 0 D T D
(0 0 o 0 D T

The factor two in front of the D block in the first row is due to the Neumann boundary
condition. We have introduced the (N, + 1) x (N, + 1) tridiagonal matrix

[ —2(1+3) 2 0 0 - 0 0 1
1 —2(1+48) 1 0 - 0 0
0 1 —2(1+B) 1 .- 0 0
T = : : : L : : . (3.3.43)
0 0 S Y 1
i 0 0 o0 2 _2(14—5)_

and the (N, + 1) x (N, + 1) diagonal matrix

B 0 0 0
0 B 0 0
D=|: : "~ & (3.3.44)
00 -~ B8 0
00 --- 0 p

Note that the super- and sub-diagonal elements of T are equal to unity, except for the
elements in the first the last rows that are equal to two. The origin of these irregular elements
can be traced back to the Neumann boundary condition. Cursory inspection reveals that all
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elements of the matrix A are zero, except for the elements along five diagonal lines. Because
of the dominant presence of zeros, the matrix A is classified as sparse.

The following MATLAB function entitled cvt_2d_fdm, located in directory cvt_2d inside
directory 07_ptf of FDLIB, generates the coefficient matrix A for a specified grid size:

function A = cvt_2d_fdm (Nx,Ny,beta)

0

% - _—
% Generate the coefficient matrix

% of a linear system for the potential

%_ e

N = Ny*(Nx+1); % matrix size
A = zeros(N,N);
cf = -2.0%(1.0+beta);

Y- ———
% set the five diagonals

%_ e

A(1,1) = cf; % first row
A(1,2) 2.0; A(1,Nx+2) = 2.0%*beta;

for i=2:Nx+1 % first block
A(i,i) = cf
A(i,i+1)
A(i,i-1) =
A(i,i+Nx+1) = 2.0*beta;
end

0’
O.

>

i,
i,

for i=Nx+2:N-Nx-1 % intermediate blocks
A(i,i) = cf;
A(i,i+1) = 1.0;
A(i,i-1) = 1.0;
A(i,i+Nx+1) = beta;
A(i,i-Nx-1) = beta;
end

for i=N-Nx:N-1 % last block
A(i,i) = cf;
A(i,i+1) =1
A(i,i-1) = 1.0;
A(i,i-Nx-1) = beta;
end

.0;
qOF

A(N,N) = cf; % last row
A(N,N-1) = 2.0;
A(N,N-Nx-1) = beta;
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%= N,

% reset the ones to twos and
% the faulty betas to zeros

for i=2:Ny

% run over horizontal partitions
loc = (i-1)*(Nx+1)+1;

A(loc,loc-1) = 0.0;
A(loc,loc+1l) = 2.0;

end

for i=1:Ny-1

end

return

For N, =2, N, =3, and 3 =1, the code generates the matrix:

% run over horizontal partitions
loc = ix(Nx+1);

A(loc,loc-1) = 2.
A(loc,loc+1) = 0.

0;
O.

>

-4 2 o | 2 0o 0 | 0 ©
l1 -4 1 1 0 2 0 | 0 o0
lo 2 -4 1 0 0o 2 | 0 o
| _— _ _

l1 o o | -4 2 o0 | 1 0
lo 1 o | 1 -4 1 | 0o 1
lo o 1 | 0 2 -4 ] 0 0
| —_— _ _

lo o ol 1 0 0 | -4 2
lo o o | o 1 0 | 1 -4
lo o ol o o 1 | 0o 2

which is consistent with the general form displayed in (3.3.42).

Solving the linear system

149

We have formulated the problem in terms of the linear system of equations (3.3.40) for the
vector w defined in (3.3.28). Our next task is to solve this system by numerical methods.
Once this has been accomplished, the velocity components at the grid nodes arise as partial

derivatives of the potential computed by finite-difference methods.

The following MATLAB code entitled cvt_2d, located in directory 07_ptf of FDLIB, as-
sembles and solves the linear system using a numerical method implemented in an internal

MATLAB function invoked by a vector-by-matrix division:
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Dx = (bx-ax)/Nx; 7 grid spacing
(by-ay)/Ny; % grid spacing
beta = (Dx/Dy)~2;

N = Ny*(Nx+1); % system size

(w)
<
]

[glx,gly,gx,gy] = grid_2d (ax,bx,ay,by,Nx,Ny);

/I —_—
% specify the potential at the top row

% ________________ o o

for i=1:Nx+1
phitop(i) = veltop*glx(i);
end

for i=1:N-Nx-1
rhs(i) = 0.0;
end

for i=1:Nx+1
rhs (N-Nx-1+i) = -beta*phitop(i);
end

%___ o o

% solve the linear system

%___ S S



3.3 Finite-difference methods 151

sln = rhs/A’;

0,
p/— —_
% assign solution to nodes

%___ N

Ic = 1; % counter

for j=1:Ny
for i=1:Nx+1
ptl(i,j) = sln(Ic);
Ic = Ic+i;
end
end

for i=1:Nx+1
ptl(i,Ny+1) = phitop(i);
end

surf (glx,gly,ptl')
xlabel('x', 'fontsize',15)
ylabel('y', 'fontsize',15)
zlabel('\phi', 'fontsize',15)

0
/I _—_
% compute the velocity at the internal nodes
% by numerical differentiation

% using central differences

h=== o= S

for i=2:Nx
for j=2:Ny
gux(i,j) = (ptl(i+1,j) -ptl(i-1,3))
/(gx(i+1,j)-gx(i-1,3));
guy(i,j) = (ptl(i,j+1) -ptl(i,j-1))
/(gy(i,j+1)-gy(i,j-1));
end
end

W
% compute the velocity on the walls
% by numerical differentiation

%___
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—
% left wall: i=1
—
for j=2:Ny
gux(1,j) = 0.0;
guy(1,j) = ( ptl(1,j+1)- ptl(1,j-1))
/(gy(1,j+1)-gy(1,j-1));
end
-
% bottom wall: j=1
—
for i=2:Nx
gux(i,1) = ( ptl(i+1,1)- ptl(i-1,1))
/(gx(i+1,1)-gx(i-1,1));
guy(i,1) = 0.0;
end
—
% right wall: i=Nx+1
—
for j=2:Ny
gux(Nx+1,3j) = 0.0;
guy (Nx+1,j) = ( ptl(Nx+1,j+1) -ptl(Nx+1,j-1))
/(gy (Nx+1, j+1) -gy (Nx+1,3-1) ) ;
end
—
% top wall: j=Ny+1
—
for i=2:Nx
gux(i,Ny+1) = veltop;
guy (i,Ny+1) = ( ptl(i,Ny+1)- ptl(i,Ny))
/(gy (i,Ny+1)-gy(i,Ny));
end
—

% four corners
% velocity is zero or singular;
% set it to zero

%___

gux(1 ,1) = 0.0; gux(Nx+1,1) = 0.0;
gux(1 ,Ny+1) = 0.0; gux(Nx+1,Ny+1) = 0.0;
guy(1 ,1) = 0.0; guy(Nx+1,1) = 0.0;
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Figure 3.3.2 (a) Surface plot of the potential and () velocity vector field of a two-dimensional
potential flow in a rectangular cavity computed by a finite-difference method.

guy(1 ,Ny+1) = 0.0; guy(Nx+1,Ny+1) = 0.0;

—
% graphics
-

figure

hold on
quiver(gx,gy,gux,guy)
axis equal
xlabel('x','fontsize',15)
ylabel('y', 'fontsize',15)
box

The graphics display generated by the code is shown in Figure 3.3.2. The velocity vector
field shown in Figure 3.3.2(b) was visualized by the internal MATLAB graphics function

quiver.
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PROBLEMS

3.3.1 Ezxplicit form of a linear system

Present the explicit form of the linear system (3.3.40) for discretization levels N, = 3 and
N, =3.

3.3.2 Neumann boundary conditions all around

Derive the counterpart of the linear system (3.3.40) when the no-penetration boundary
condition is applied along all four walls. Specifically, present the components of the unknown
vector w, constant vector b, and coefficient matrix A, in a form that is analogous to that
displayed in (3.3.42). Then confirm that the sum of the elements in each row of the matrix
A is zero. Based on this observation, explain why the matrix A is singular; that is, its
determinant is equal to zero.

3.3.3 B [rrotational flow in a cavity

(@) Run the code cvt_2d for a cavity with length to depth ratio equal to unity and discretiza-
tion level as high as you can afford. Plot the velocity vector field and discuss the structure
of the flow.

(b) Repeat (a) for a cavity with length to depth ratio equal to 4.0. Discuss the effect of the
cavity aspect ratio on the structure of the flow.

3.4 Linear solvers

In Section 3.3, we reduced the problem of solving Laplace’s equation for the harmonic
potential in the rectangular domain of a two-dimensional flow to the problem of solving
the linear system of equations (3.3.40) for the values of the potential at the nodes of a
finite-difference grid deployed over the domain of flow. The reduction was carried out by
implementing finite-difference approximations. The solution of the linear system was found
using a internal MATLAB function. Since such systems of linear equations arise in broad
range of applications within and beyond fluid mechanics, in this section, we review pertinent
numerical methods in a generalized framework.

Consider a system of N linear algebraic equations for N unknown scalar variables,
T1,L2y.-.,TN,
Arjxi+Aigzo+ -+ A vorav—1 AL vy = by,
Asqz1+Aspzo+ - -+ Ay 1on—1 + Ao v TN = by,
e (3.4.1)
A1z +Ang2o+ -+ Ay NNy + A N2y = by,

where A; ; for 7,5 = 1,..., N are given coefficients and b; are given constants. In matrix
notation, the system takes the compact form

A-x=b, (3.4.2)
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where A is an N x N coefficient matrix,

Aiq At e AN AN
As Ag o e A N Az N
Av-11 An-12 o Avoin-1 Anoan
AN Ano o AN N-1 AN N

and b is an N-dimensional vector,

by
bo

b=|: : (3.4.4)

bn—1
by

A variety of direct and iterative solution procedures are available.

3.4.1 Gauss elimination

A general procedure for solving system (3.4.2) employs the method of Gauss elimination.
The basic idea is to solve the first equation in (3.4.2) for the first unknown, x, and use the
expression thus obtained to eliminate x; from all subsequent equations. We then retain the
first equation as is, and replace all subsequent equations with their descendants that do not
contain xq.

At the second stage, we solve the second equation for the second unknown, x5, and use
the expression thus obtained to eliminate x5 from all subsequent equations. We then retain
the first and second equations, and replace all subsequent equations with their descendants
that do not contain x; or xo. Continuing in this fashion, we arrive at the last equation,
which contains only the last unknown, x .

Having completed the elimination, we compute the unknowns by the method of back-
ward substitution. First, we solve the last equation for x, which thus becomes a known.
Second, we solve the penultimate equation for x_1, which also becomes a known. Con-
tinuing in the backward direction, we scan the reduced system until we have computed all
unknowns.

Pivoting

Immediately before the mth equation has been solved for the mth unknown, where m =
1,...,N — 1, the linear system takes the form shown in Table 3.4.1, where AZ(.?) are inter-

mediate coefficients and bgm) are intermediate right-hand sides.

A difficulty arises when the diagonal element, AS,T 7)717 is nearly or precisely zero, for
then we may no longer solve the mth equation for x,,, as required. However, the failure
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- Agy’ylz) AE:VZL; L e . AEIHIL\% ] . r bgm) -
0 A2,2 T T o A2,1\’ T2 bg”)
0 0 . .(.m> . .(.m) . . .(.m) Z3 bgnz)
0 0 Amflqul A’mfl.,’m e A?nfl,N : - : ’
0 0 IN-1 bl(\’,/r:)l
0 0 A, e IR L

Table 3.4.1 Transient structure of a linear system of equations at the mth stage of Gauss elimination.
The first equation of the transient system is the same as the first equation in the original system
(3.4.2) for any m. Subsequent equations are different, except at the first stage corresponding to
m = 1.

of the method does not imply that the linear system does not have a unique solution. To
circumvent this difficulty, we simply rearrange the equations or relabel the unknowns so as
to bring the mth unknown to the mth equation using the method of pivoting. If there is no
way we can make this happen, the matrix A is singular and the linear system has either no
solution or an infinite number of solutions.

In the method of row pivoting, potential difficulties are bypassed by switching the mth
equation of the transient system displayed in Table 3.4.1 with the subsequent kth equation,

where k& > m. The value of k is chosen such that |A§Cmn1| is the maximum value of the
elements in the mth column below the diagonal, AETZL) fort>m. If AE”;L) =0 for all i > m,

the matrix A is singular and the system under consideration does not have a unique solution.

3.4.2 A menagerie of other methods

In practice, the size of system (3.3.40) can be on the order of 10* x 10* or even higher,
corresponding to discretization levels N, and N,, on the order of 10%. For such large systems,
the method of Gauss elimination requires a prohibitive computational time. The practical
need for solving systems of large size has motivated the development of a host of powerful
methods for general or specific applications.’

[terative methods

Iterative methods are appropriate for sparse systems with large dimensions. The main idea
is to split the coefficient matrix, A, into two matrices, A’ and A", writing

A=A —A", (3.4.5)
and then recast the system (3.4.2) into the form
A x=A"-x+b. (3.4.6)

LPozrikidis, C. (2008) Numerical Computation in Science and Engineering, Second Edition, Oxford
University Press.
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The procedure involves guessing the solution, x, computing the right-hand side of (3.4.6),
and solving for x on the left-hand side. The advantage of this approach is that, if the splitting
(3.4.5) is done craftily, it much easier to solve (3.4.6) than (3.4.2) for x on the left-hand
side. The computation is repeated until the value of x used to compute the right-hand side
of (3.4.6) is virtually identical to that arising by solving the linear system (3.4.6). Examples
of iterative methods are the Jacobi, the Gauss—Seidel, and the successive over-relaxation
(SOR) method.

A different class of iterative methods search for the solution vector, x, by making steps
in the N-dimensional space toward craftily designed or optimal directions. The multi-grid
method is another powerful technique for solving systems of linear equations arising from
finite-difference and related discretization.

Directory 03_lin_eq inside directory 01_num_meth of FDLIB contains programs that im-
plement the conjugate and biconjugate gradients methods.

PROBLEM

3.4.1 @ Gauss elimination

Program gel, located in directory 03_lin_eq inside directory 01_num_meth of FDLIB, solves
a system of linear equations using the method of Gauss elimination with row pivoting. Use
the program to solve a system of your choice and verify the accuracy of the solution.

3.5 Two-dimensional point sources and point-source dipoles

Laplace’s equation for the harmonic velocity potential-equation (3.2.16) for two-dimensional
flow or equation (3.2.20) for three-dimensional flow—is linear. This means that if ¢1 and ¢
are two harmonic potentials representing two elementary flows, any linear combination of
these potentials,

¢ =c191+ 22, (3.5.1)

will also be a harmonic potential representing a hybrid flow, where ¢; and ¢y are two arbitrary
coefficients.

3.5.1 Function superposition and fundamental solutions

The linearity of Laplace’s equation allows us to generate exact and approximate solutions by
the method of superposition. The key idea is to introduce a family of harmonic potentials
playing the role of basis functions, also called fundamental solutions, and then use them as
building blocks to generate further solutions.

For example, if ¢; and ¢o are two such fundamental solutions, a desired solution can
be expressed by the right-hand side of (3.5.1), and the two coefficients ¢; and ¢y can be
adjusted to satisfy the boundary conditions.
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Various families of fundamental solutions are available for flows in infinite or semi-
infinite domains, and for singly, doubly, or triply periodic flows. The most general class of
fundamental solutions consists of the fundamental singularities of potential flow.

3.5.2 Two-dimensional point source

Imagine that an incompressible fluid is discharged into an infinite pool through the walls of
an infinite perforated cylinder, thereby generating a radial flow in the zy plane outward from
the inlet point. In plane polar coordinates centered at the point of discharge, xg = (20, yo),
the radial and polar components of the velocity at an arbitrary field point, x = (z,y), are
given by

up(r) = — —, ug = 0, (3.5.2)

where

r=/(z—20)? + (y — o) (3.5.3)

is the distance of the field point, x, from the discharge point, xg, and m is a constant
expressing the rate of areal discharge. The units of m are velocity multiplied by length.

The flow described by equations (3.5.2) is attributed to a two-dimensional point source,
and the rate of areal discharge m is the strength of the point source. If m is negative, we
obtain a point source with negative strength described as a point sink.

The radial velocity of the flow due to a point source decays as the inverse of the dis-
tance from the point of discharge, r, for the following physical reason. Since the fluid is
incompressible, the flow rate @ across any circular loop of arbitrary radius a centered at the
point of discharge must be independent of the loop radius. To verify that the velocity field
(3.5.2) satisfies this constraint, we use expression (2.6.21) and find that

27 27 27
1 m 1
Q:a/ /urda:;ﬁa/ “dp=1 7/ 40 = m, (3.5.4)
.

a
Jo ™ Jo 27T CL,O

as required. If we had set, for example, u, = m/(27r"), where the exponent k is not equal
to unity, the restriction of constant areal flow rate associated with an incompressible fluid
would not be satisfied.

Singular behavior of the point source

As the distance from the point source r tends to zero, the right-hand side of the radial
velocity in (3.5.2) tends to infinity. This singular behavior is a manifestation of the idealized
nature of the flow due to a point source, and explains why the point source is classified as
a singularity.

In practice, the flow expressed by (3.5.2) is valid only for r > b, where b is the radius of
the perforated cylinder discharging the fluid. Extending the domain of flow inward all the
way up to the center of the cylinder, located at x(, we allow for a mathematical singularity.
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Velocity potential

The velocity potential of a two-dimensional point source, denoted by #?PFS is related to
the velocity components according to equations (3.2.28),

9DPS o 1 2DPS
1
_ 9% _m 1 w =227 _o. (3.5.5)
or 2w r 00

Uy

Integrating the first equation and using the second equation to evaluate the integration
constant, we find that

r

/Z

(x —x0)® + (y — yo)27 (3.5.6)

2DPS __
¢ - £2

m1 m1
o~ = 2
271'I 47rn

where L is a specified length introduced to ensure that the argument of the logarithm
is dimensionless, as required. Straightforward differentiation confirms that ¢?PFS satisfies
Laplace’s equation in two dimensions at every point,

V2p?PPS =, (3.5.7)
except at the singular point, xg, where the potential and its derivatives are not defined.

Cartesian velocity components and stream function

To derive the Cartesian components of the velocity due to a point source, we take the partial
derivatives of $?PPS with respect to x or y, and obtain

42PPS _ 99 ?Prs _m * —To (3.5.8)
‘ Ox 21 (z — 0)? + (¥ — ¥o)?
and
), 2DPS B
uiDPS _ ¢ _ e y2 Yo 5. (3.5.9)
Ay 27 (x — x0)? + (¥ — yo)

The streamlines of the flow due to a point source are radial straight lines emanating from
the singular point, xg. The associated stream function is

Y — Yo

. m
¢2DPS = — arctan
2w

+ %o, (3.5.10)

where 1 is an inconsequential constant. Note that the stream function is a multi-valued
function of position.

A point source embedded in uniform flow

As an application, consider the superposition of uniform (streaming) flow along the z axis
with velocity U, and the flow due to a point source with strength m situated at the origin,
zo = 0 and yp = 0. Using the potential ¢ = U,x for the streaming flow and the potential
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given in (3.5.6) for the point source, we find that the potential of the composite irrotational
flow is

2 2

m ¢ +y

X)=U,x+ — In ,

$(x) =¥+ 4 2
where £ is an arbitrary length. The associated Cartesian components of the velocity are
given by

(3.5.11)

m x m y

w, = U. e .o Y )
e I+27T x2 4+ y2’ YT on 2 4+ y?

(3.5.12)

Note the absence of the inconsequential reference length, L.

To study the structure of the flow, we introduce dimensionless variables denoted by a
caret (hat),

L Yy g oy
S = y=—=, T = 77 Uy = 75, 3.5.13
T YT Y=, T, (3:5.13)
and recast equations (3.5.12) into the dimensionless form
. T N m
G, =140 RN i, = 7 (3.5.14)
where
1 m
== 5.1
b=, (3.5.15)

is a dimensionless parameter expressing the strength of the point source relative to the
magnitude of the incident flow. Equations (3.5.14) demonstrate that the structure of the
flow is determined by the value of the parameter .

The streamline pattern shown in Figure 3.5.1 for § = 0.25 reveals that the velocity
potential (3.5.11) describes uniform flow along the x axis past a semi-infinite two-dimensional
body whose surface can be identified with two streamlines emanating from a stagnation point
lying on the negative part of the x axis. Using the first equation in (3.5.14), we find that
the 2 component of the velocity at the x axis is zero when & = —(3. Thus, the larger the
value of 3, expressing the relative strength of the point source, the farther the stagnation
point is located from the origin.

3.5.3 Two-dimensional point-source dipole

Next, we consider the flow due to the superposition of a point source with strength m
located at a point, (zg + b,70), and a point sink with strength —m located at the nearby
point (zg — b, yp), where b is a specified half distance, as shown in Figure 3.5.2(a).

Using expression (3.5.6), we find that the combined harmonic potential induced by these
singularities is given by

é(x) = = In (z — (w0 + b)b)22 +y—w)? m . (z— (xo— )"+ (y — yo)z.
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Figure 3.5.1 Streamline pattern of the flow due to the superposition of streaming (uniform) flow
along the z axis and the flow due to a two-dimensional point source located at the origin.

Consolidating the logarithms, we obtain

2

~

m (z— (2o +b)" + (v~

m S 3.5.17
Ar (2 — (20— b))+ (y— o ( )

5 .

~~—

The Cartesian components of the fluid velocity are found by differentiation,

U :%:E v = (2o +b) — = (20— b) 3.5.18
ox 2 ( (CU_(«TO‘Fb))Q-l-(y—yU)Q (m_(xo—b)>2+(y—y0)2) ( )
and
dp m Y=Y Y—Y
Uy = — = — - . (3.5.19
it (z = (w0 +0)" +(y—w0)? (o- <xob>)2+<yyo>2) o

Now we hold the position of the field point (z,y) fixed and decrease the distance between
the two singularities, that is, we let b tend to zero. In this limit, the flow due to the point
sink tends to cancel the flow due to the point source. However, if the strengths of the point
source and the point sink, +m, also increase in inverse proportion with the distance between
the two singularities, 2b, then a nontrivial flow due to a point source dipole arises in the
limit.

To derive the flow due to a point-source dipole, we recast the expression for the potential
on the right-hand side of (3.5.17) into the form

2(x—xo)—b
r —x0)? + (Y — yo)?

2(x—mxo)+0b
(. —20)% + (¥ — v0)?

m

o(x) = (ln(l—b(

) —In(1+b ) ). (3.5.20)

47
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Figure 3.5.2 (a) A point source and a point sink merge to yield a point-source dipole. The depicted
dipole is oriented along the x axis. (b) Streamline pattern due to a two-dimensional dipole pointing
along the z axis.

and then

¢ = 4@ (In(1—e)—In(1+e€2)), (3.5.21)

T
where

2(x—mo) — b
(x —20)? + (y — v0)?’

2(x —x0)+0b
(z —20)? + (y — 50)?

€1 =

€y =

(3.5.22)

are dimensionless variables. As the distance, b, becomes decreasingly smaller than the
distance between the field point, x, and the point x(, both €; and e tend to zero.

The Taylor series expansion of the logarithmic function Inw about the point w = 1
provides us with the approximations

11’1(1—61):—61—"---'7 1H(1+62) :62+---. (3523)

Substituting these expressions into the right-hand side of (3.5.21) and neglecting quadratic
and higher-order terms represented by the dots, we obtain the velocity potential due to a
point-source dipole located at the point (xg,yo) and oriented along the = axis,

m
$?DPSDx _ _@(61 +eo) (3.5.24)

or

d.,. a8 = a8
2DPSDx o 0

= —— , 3.5.25
¢ 21 (z — x0)% + (¥ — v0)? ( )
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where
d, = 2mb (3.5.26)
is the strength of the dipole.

Now comparing (3.5.6), (3.5.25), and (3.5.26), we obtain

8¢2DPS

2DPSDx _ op — 2 3.5.27
¢ ol (3:5.27)

which shows that the potential due to a point-source dipole oriented along the x axis arises
by differentiating the potential due to a point source with respect to the x coordinate of the
singular point, xy. This property classifies the dipole as a derivative singularity descending
from the point source.

Velocity components and stream function

The velocity components associated with a two-dimensional (2D) point-source dipole (PSD)
oriented along the x axis are given by

SDx 2DPS 2DPS
4 2PPSDx _ %EPSD _ 0% — 9 0%¢ (3.5.28)
v Ox Ox Oxg Ox? o
and
x 2DPS 5 ,2DPS
. 2DPSDx _ %mPSD _ 0%¢ - _ 0%¢ (3.5.29)
Y oy Oy Oz Oz Oy o
Carrying out the differentiations, we obtain
d 1 (x — )2
2DPSDx x
Uy == = +2 3.5.30
2 ( (@ = 20)* + (¥ — y0)? ((x—m0)?2+ (y — y0)2)2 ) ( )
and
4 2DPSDx _ dz 9 (z —0)(y — %) (3.5.31)
2 0.
’ 277 (@~ 20)* + (y = 0)?)

The associated streamline pattern is shown in Figure 3.5.2(b). The stream function is given
by

dy Y — Yo
2DPSDx
_ds . 3.5.32
¥ 21 (= 20)* + (¥ — ¥o)? v ( !

where 1 is an inconsequential constant.
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Dipole along the y axis

Working in a similar fashion, we derive the flow due to a point-source dipole with strength
d, oriented along the y axis. The associated harmonic potential is
. 8 2DPS d S
$2DPSDy _ o 007 dy Ca— - (3.5.33)
Yo 21 (z = 20)* + (¥ — ¥o)
where d, = 2mb is the strength of the dipole. The corresponding Cartesian components of
the velocity are given by

2DPS 2DPS
42DPSDy _ %QDPSDY _ 0%¢ - _ 0%¢ (3.5.34)
v Ox Ox Oy Ox Oy e
and
2DPS DPS
popspy _ 0070 260 96 (3.5.35)
Y Jy y dyo dy? -
Carrying out the differentiations, we obtain the explicit expressions
W2PPSDY _ 4y, (@=20)(y —40) y (3.5.36)
27 ((z — 20)® + (y — v0)?)
and
d 1 (y — yo)?
2DPSDy _ y
uy = —( — +2 . 3.5.37
2 ( (x —20)2+ (y — yo)? (z—20)2 + (y — yo)2)2 ) ( )

The streamline pattern is found by rotating the pattern shown in Figure 3.5.2(b) by 90°
around the location of the dipole. The stream function is given by

d, T—x
2DPSDy _ _ Oy 0
4 2m (2 — 20) + (¥ — vo)? e (3:5.38)

where 1 is an inconsequential constant.

General dipole orientation

Combining the expressions given in (3.5.25) and (3.5.33), we find that the harmonic potential
due to a potential dipole with vectorial strength d = (d,, d, ) located at the point xq is given
by

$?PPSD _ g . §2PPSD. (3.5.39)

(I)QDPSD

where the vector function is defined as

1 1 Tr—x
$20PSD — _ & 0. 5.4
21 (. —20)?2+ (y —v0)? | ¥ — Yo (3.5.40)

The velocity field can be expressed in the corresponding form

u=—d.U?Prsb, (3.5.41)

where U?PPSD ig a 2 x 2 matrix function of position (Problem 3.5.2).
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3.5.4 Flow past a circular cylinder

As an application, we consider the superposition of uniform (streaming) flow along the z
axis with velocity U,, and the flow due to a point-source dipole oriented along the x axis
located at the origin. Using the potential ¢ = U,z for the streaming flow and the potential
given in (3.5.25) with zp = 0 and yo = 0 for the dipole, we derive the potential of the
composite flow,

dy T B
o2m 22 + 2

=8

e 1 ), (3.5.42)

2
z T

1
(/)(‘Lvy)*Uz‘L Uli(lfﬂ

-

where

r =22+ y? (3.5.43)

is the distance of the field point, x = (x,y), from the center of the cylinder. In plane polar
coordinates, (r,6),

ISH

T

1
21 U,

=S| =

¢(r,0) = U, (r ) cos¥, (3.5.44)
where the polar angle 6 is measured in the counterclockwise direction around the center of
the cylinder, defined such that z = r cos#.

Now using the expression for the radial component of the velocity in terms of the
potential given in the first of equations (3.2.28), we find that

_ 9 _

dy 1
- or - 72

1
U, (1+ U ) cos®. (3.5.45)

Uy

The expression inside the parentheses on the right-hand side is zero at the radial distance

r= ( - % gi )1/2, (3.5.46)

where the quantity under the square root is assumed positive. Conversely, if the strength
of the dipole has the value

dy = =21 U, a?, (3.5.47)

then the radial velocity will be zero at the radial distance » = a. The negative sign underlines
that the dipole is oriented against the incident streaming flow.

It is evident that the potential (3.5.44) with d, evaluated from expression (3.5.47)
describes uniform flow with velocity U, past a circular cylinder of radius a centered at
the origin, where the no-penetration condition is satisfied over the surface of the cylinder.
Substituting the value for d, given in (3.5.47) into (3.5.44), we derive the explicit solution

2
¢="U, (r+ a?) cos 6. (3.5.48)
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(a) (b)

v e
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Figure 3.5.3 Streamline pattern of (a) uniform (streaming) flow past a circular cylinder with vanish-
ing circulation around the cylinder, and (b) uniform (streaming) flow past a sphere.

The corresponding Cartesian velocity components are

@, s a (3.5.49)
um:Uz(1+r—472r—2sL ), uy:fQUzrszy. -0.
The associated streamline pattern is shown in Figure 3.5.3(a). We recall that the origin has
been set at the center of the cylinder and the solution applies in the exterior of the cylinder,
r> a.

3.5.5 Sources and dipoles in the presence of boundaries

When the domain of flow is bounded by an impermeable surface, the flow due to a point
source or point source dipole must be accompanied with a complementary flow whose pur-
pose is to satisfy the no-penetration boundary condition. For simple boundary geometries,
the complementary flow can be identified with the flow generated by singularities located
at image positions.

Directory lgf-2d, located inside directory 07_ptf of FDLIB, contains a collection of sub-
routines that evaluate the harmonic potential and associated velocity field for several bound-
ary geometries. Two examples are discussed in the remainder of this section.

Point source above a wall

In the case of a point source placed above a plane wall located at y = y,,, the complementary
flow is generated by reflecting the point source with respect to the wall. If a primary point
source with strength m is located at a point, (xg, o), then an image point source with equal
strength is located at the point (2o, 2y, — yo). The streamline pattern is shown in Figure
3.5.4(a).
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Figure 3.5.4 Streamline pattern of the flow due to a two-dimensional point source (@) above a plane
wall and (b) in front of a circular cylinder.

Point source outside a circular cylinder

In the case of a point source located outside a circular cylinder of radius a centered at a
point x. = (2, y.), the complementary flow is generated by two image point sources. The
first image point source is located at the inverse point of the primary point source with
respect to the cylinder. If a primary point source with strength m is located at (xq,yo),
then an image point source with the same strength is located at the point

2 2

image a image

Lo =T+ (170 - Ic) mv Yo =Y+ (yO - yc) (3550)

\Xo - XC‘2’
where
|xo — xc|2 = (z9 — :L’c)2 + (yo — yC)Q (3.5.51)

is the square of the distance of the primary point source from the center of the cylinder. A
second image point source with strength —m is located at the center of the cylinder. Note
that the sum of the strengths of the image singularities is zero to ensure that a net flow rate
across the surface of the cylinder does not arise. The streamline pattern of the induced flow
is shown in Figure 3.5.4(b).

PROBLEMS

3.5.1 Oblique streaming flow past a circular cylinder

Derive an expression for the harmonic potential and Cartesian components of the velocity
of oblique streaming flow with uniform velocity, v, = U, u, = Uy, past a circular cylinder
of radius a centered at the origin.
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Figure 3.5.5 Streamline pattern of the flow due to a two-dimensional point source between two
parallel plates.

3.5.2 Flow due to a point-source dipole

Use expressions (3.5.30) and (3.5.36) to derive the explicit form of the matrix U2?PPSP
introduced in (3.5.41).

3.5.3 Stream functions

Confirm the stream functions associated with (a) a two-dimensional point source given in
(3.5.10) and (b) a two-dimensional point-source dipole pointing along the z or y axis, given
in (3.5.32) and (3.5.38).

3.5.4 B Point source in a semi-infinite rectangular strip

Directory strml, located inside directory 0/_various of FDLIB, contains a program that
generates the streamline pattern of the flow induced by a point source for several boundary
geometries. Examples are shown in Figures 3.5.4 and 3.5.5. Run the program to generate
the streamline pattern of the flow due to a point source in a semi-infinite rectangular strip
and discuss the structure of the flow.

3.6 Three-dimensional point sources and point-source dipoles

The fundamental solutions derived in Section 3.5 for two-dimensional potential flow can be
extended in a straightforward fashion to three-dimensional flow.

3.6.1 Three-dimensional point source

The harmonic potential due to a three-dimensional point source with strength m located at

the point x¢ = (20, Yo, 20) is

goops _ _m 1 (3.6.1)
4 r
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where

r=/(z—0)> 4+ (y—y0)? + (2 — 2)? (3.6.2)

is the distance of the field point, x, from the location of the point source, xg. The corre-
sponding Cartesian velocity components are

apps M T — Xg spps M Y — Yo spps M Z — 20
uSPPS = — T ulePb === udPPS = — T (3.6.3)
b A r 4 r 4 7

The streamlines are radial straight lines emanating from the singular point, xo. The fluid
moves outward from a point source (m > 0) and inward into a point sink (m < 0).
3.6.2 Three-dimensional point-source dipole

The harmonic potential due to a three-dimensional point-source dipole oriented along the
x, Y, Or z axis is given, respectively, by

« d, x — x0 dy Yy — Yo ” d. z— 2z
$3PPSD __ﬁ S ¢3DPSDy:_ﬁ = 3DPSD :_ﬁ . (3.6.4)

where d,, dy, and d, are the directional strengths of the dipole. The corresponding velocity
components are found by straightforward differentiation with respect to x, y, or z.

For a dipole oriented along the = axis, we find that

ppspx _ 0% _de 1 (0o w0)?
r ox An 3 o )

'LLSDPSDX = %SDPSDX — di 3 w (3 6 5)
Y ay 47T T5 9 0.

43PPSDx _ %:mpsnx dfx 3 (x —20)(2 — 20)
z 0z 47 rd ’

The streamline pattern in the xy plane is qualitatively similar, but not identical, to that

shown in Figure 3.5.2(b) for two-dimensional flow.

For a dipole oriented along the y axis, we find that

Jagrg: S
ygopsoy _ 9077 dy o (y — o)z — a0)

* Oz 4T 70 ’
3DPSDy __ 5¢3DPSDy _ dy 1 3 (y — yo)2 3.6.6
ty =y = (-5 +37—") (3.6.6)
3DPSDy __ 9P PPShy _ dy (y —yo)(z — 20)
u; = — =3 =
0z 47 rd
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For a dipole oriented along the z axis, we find that

r Ox 47 5 '

ysp-pspos _ 9% ds g (2= 20)(w — w0)
p

3DPSDz
u3P—PSD—z 99 d. , (2= 20)(y — o)
5

_ 99 _ &, 3.6.7
v Ay 47 r ’ ( )
o SDz
y3D—PSD—= _ @:mp v _ 4z (- 1 43 (2 — 20)? )
Z 0z 4w r3 75 ’

Expressions (3.6.5)—(3.6.7) can be conveniently placed into a compact vector-matrix form,
as discussed in Problem 3.6.1.

3.6.3 Streaming flow past a sphere

As an application, we consider the superposition of streaming (uniform) flow along the x
axis with velocity U,, and the flow due to a three-dimensional point-source dipole positioned
at the origin, o = 0, yo = 0, z9 = 0, and pointing along the = axis.

Using the potential ¢ = U,z for the streaming flow and the first expression in (3.6.4)
for the point-source dipole, we find that the potential of the composite axisymmetric flow
is given by

dy x d, 1

=U,r— -2 "2 =U,z(1- ), .0.
9 v 47 13 v ( 47U, 13 ) (3.6.8)
where r = (22 + y? + 22)'/2 is the distance from the origin. Rearranging, we obtain
o(r,0) =U, (1 — do 1 )7 cos®, (3.6.9)
4nU, 13

where 6 is the meridional angle defined such that x = rcos#.

Using the first expression in (3.2.26), we find that the radial velocity component is given
by

_ % _ da 1 cost. (3.6.10)

Us (1+ 2nU, r3

Uy

The sum inside the parentheses on the right-hand side of (3.6.10) is zero at the radial
distance

. (, 27‘:-;]@)1/3, (3.6.11)

Conversely, if the strength of the dipole has the value

dy = 21U, a®, (3.6.12)



3.6 Three-dimensional point sources and point-source dipoles 171

then the radial velocity vanishes at the radial distance r = a.

These observations suggest that the potential (3.6.9) with d, evaluated from expression
(3.6.12) describes uniform flow along the = axis with velocity U, past a stationary sphere
of radius @ centered at the origin. Substituting (3.6.12) into (3.6.9), we obtain an explicit
expression for the potential,

3
$=U, (r+z % ) cos . (3.6.13)

The corresponding Cartesian velocity components are given by

1 x2
Uy =Uw(1+%a3(r—3 —3::5 )),

(3.6.14)
3 T2

rd’

__3 3 LY 3
1Ly——§UIa 5 uz——gUxa

The streamline pattern in an azimuthal plane is shown in Figure 3.5.3(b). The structure
of the flow is similar to that of flow past a cylinder with zero circulation shown in Figure
3.5.3(a).

3.6.4 Sources and dipoles in the presence of boundaries

To account for the presence of boundaries, we introduce a complementary flow whose purpose
is to ensure the satisfaction of the no-penetration boundary condition, as discussed in Section
3.5.5 for two-dimensional flow. For simple boundary geometries, the complementary flow
can be identified with the flow generated by singularities located at image positions outside
the domain of flow.

Directory lgf_3d, residing inside directory 07_ptf of FDLIB, contains a collection of sub-
routines that evaluate the velocity field for several boundary geometries. The streamline
pattern of the flow due to a point source located above a plane wall is shown in Figure
3.6.1(a). In this case, the complementary flow is due to a reflected point source. The
streamline pattern of the flow due to a point source outside a sphere is shown in Figure
3.6.1(b).

PROBLEMS

3.6.1 Flow due to a three-dimensional point-source dipole

Express the potential and velocity field of a three-dimensional point source dipole in terms
of (a) the vectorial strength of the dipole, (b) a three-component vector function, $3PPSD
and (c) a 3 x 3 matrix function, U3PFSD,

3.6.2 Stream functions

Introduce cylindrical polar coordinates with origin at the location of a three-dimensional
point source or point-source dipole, and derive expressions for the axisymmetric (Stokes)
stream function.
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Figure 3.6.1 Streamline pattern in a azimuthal plane of the flow due to a three-dimensional point
source (a) above a plane wall or (b) outside a sphere.

3.7 Point vortices and line vortices

Consider a long circular cylinder immersed in an infinite ambient fluid and rotating around
its axis with a constant angular velocity, thereby generating a two-dimensional swirling flow
in the xy plane.

In plane polar coordinates with origin at the center of the cylinder, xo = (z9, o), the
radial and angular velocity components are

ur(x) =0, ug(x) = % % (3.7.1)
where
r=/(z—20)? + (y — o) (3.7.2)

is the distance of the point where the velocity is evaluated, x = (z,y), from the center of
the cylinder, and x is a constant with units of velocity multiplied by length.

The magnitude x expresses the strength of the flow due to the rotation of the cylinder,
and the sign of k expresses the direction of rotation. If x is positive, point particles in the
flow rotate around the cylinder in the counterclockwise direction. If x is negative, point
particles in the flow rotate around the cylinder in the clockwise direction.

We note that the magnitude of the polar velocity component, wugy, decays like 1/r. If
the fluid rotated as a rigid body with angular velocity €2 around the point xg, the polar
velocity ug would increase linearly with respect to radial distance, as ug = Qr. It is clear
that the velocity field expressed by (3.7.1) represents a flow that is different than rigid-body
rotation.
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(a) (b)
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Z

Figure 3.7.1 (a) Two-dimensional and (b) three-dimensional perspectives of a point vortex with
positive strength representing a rectilinear line vortex parallel to the z axis.

Point vortex singularity

The flow described by equations (3.7.1) is physically meaningful only in the exterior of the
cylinder. Neglecting the surface of the cylinder and extending the domain of flow all the
way up to the center of the cylinder, we obtain a singular flow described as the flow due
to a point vortex with strength k, as illustrated in Figure 3.7.1(a). The singularity occurs
because, as the distance of an observation point from the point vortex, r, tends to zero, the
magnitude of the velocity diverges to infinity.

To confirm that the flow due to a point vortex is irrotational, we substitute expressions
(3.7.1) into (2.3.20), and find that the z component of the vorticity vanishes everywhere in
the flow, except at the location of the point vortex, xp, where a singularity appears. These
properties classify the point vortex as a singularity of two-dimensional irrotational flow.

A seemingly paradoxical behavior should be noted. Because the flow is irrotational
at every point except at the location of the point vortex, small circular fluid parcels not
containing the point vortex translate and deform but do not rotate around their center, and
yet the fluid exhibits net circulatory motion. The apparent but not essential contradiction
serves to underscore that global circulatory motion does not necessarily imply the occurrence
of rotational flow.

3.7.1 The potential of irrotational circulatory flow

The presence of circulation has important implications on our ability to describe a flow
in terms of a velocity potential. To see this, we use equations (3.2.28) and find that the
potential due to a point vortex, denoted by ¢PY, satisfies the equations
dpP" 199 k1
-

or ’ r a0 27 (3.7.3)

Integrating these equations, we obtain

v B
o =50, (3.7.4)
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where 6 is the polar angle measured around the point vortex in the counterclockwise direc-
tion. An arbitrary but irrelevant constant can be added to the right-hand side of (3.7.4).
The corresponding stream function is

) K T
PPV = —— In —

- In, (3.7.5)

where £ is a specified length.

According to expression (3.7.4), as we move around the point vortex on a circular path
in the counterclockwise direction, the potential increases in proportion to the angle . But
then, as we return to the point of departure, because 6 has increased by 27, the potential has
undergone a jump with respect to the initial value, equal to x. We can continue traveling
around the point vortex for one more turn, only to find that, each time we perform a
complete rotation, the potential undergoes a jump equal to . This observation illustrates
that the potential associated with a point vortex is multi-valued. Moreover, since the point
of departure is arbitrary, the potential is multi-valued at every point in the flow.

We have discovered by example that circulatory motion is associated with a multi-valued
potential and wvice versa. In practice, a multi-valued potential is too much to handle by
analytical and numerical methods. To circumvent this difficulty, we decompose the potential
into an easy multi-valued part and a harder complementary single-valued part; we specify
the former, and extract the latter by analytical or numerical methods. The implementation
of this method will be discussed in Chapter 12 in the context of aerodynamics.

In an alternative approach, we introduce an artificial boundary residing inside the fluid
called a branch cut, and work under the assumption that the potential has two different
values on either side of the brunch cut. If the flow does not exhibit net circulatory motion,
the two values are identical.

3.7.2 Flow past a circular cylinder

To illustrate the usefulness of the point vortex singularity, we consider streaming (uniform)
flow past a circular cylinder, as discussed in Section 3.5. Equation (3.5.48) provides us with
the single-value harmonic potential in the absence of circulatory motion around the cylinder.

To allow for circulatory motion, we add to the right-hand side of (3.5.48) the potential
due to a point vortex situated at the center of cylinder, given in equation (3.7.4), obtaining

b= U, (r+ %) costt 0 (3.7.6)
= r+ —) cos — 0. 7.
* r 27
The corresponding Cartesian velocity components are
a® 2 K Yy Y 4 K X
“L:Ul(l—i_ﬁ_Qﬁa)_%ﬁ UU:—UIZF(] +§ﬁ (377)

Since the radial velocity component, u, = d¢/Jr, is zero over the surface of the cylinder
located at r = a, the no-penetration condition is satisfied.
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(a) (b) (c)

Figure 3.7.2 Streamline pattern of uniform (streaming) flow past a circular cylinder with different
degrees of circulation around the cylinder determined by the dimensionless parameter 8 defined
in equation (3.7.9); (a) 8 = 0.5, (b) 1.0, and (¢) 1.2. The streamline pattern in the absence of
circulation, 8 = 0, is shown in Figure 3.5.3(a).

Rearranging (3.7.6), we obtain the dimensionless form
1
¢ =Uza(cosf(T+=)—280), (3.7.8)
T
where 7 = r/a is the scaled radial distance defined such that 7 = 1 corresponds to the

cylinder surface, and

K
p=- na (3.7.9)

is a dimensionless circulation parameter. When § = 0, the circulation around the cylinder
vanishes. Expression (3.7.8) reveals that the structure of the flow is determined by the
dimensionless parameter 3.

The tangential component of the velocity at the surface of the cylinder is given by

ug(r =a) = -2V, sinf + % = —2V, (sinf + B).

—~

3.7.10)

We note that the magnitude of the velocity is zero when 6 = arcsin(—/3), and conclude that
stagnation points develop on the surface on the cylinder when —1 < g < 1.

When g = 0, two stagnation points occur in the horizontal mid-plane of the cylinder
located at # = 0 and w. As [ increases from zero to unity, the stagnation points move
downward and finally merge at lowest point of the cylinder, § = —%7‘(‘. When B exceeds the
value of unity, the merged stagnation points move off the surface of the cylinder into the
flow. Streamline patterns for 8 = 0.5, 1.0, and 1.2 illustrating this transition are shown in
Figure 3.7.2.
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Reducible

Irreducible Irreducible

Irreducible

Figure 3.7.3 lllustration of reducible and irreducible loops in a two-dimensional flow. The shaded
areas represent flow boundaries.

3.7.3 Circulation

Having discussed the effect of the circulation around a cylinder placed in a uniform flow, we
proceed to extend the concept of circulation to a more general framework.

Consider a two-dimensional flow in the xy plane, and draw a simple closed loop inside
the flow. If the loop encloses fluid alone and no boundaries, the loop is called reducible.
If the loop encloses fluid and one or more boundaries, the loop is called irreducible. The
distinguishing feature of a reducible loop is that it can be shrunk to a point without crossing
flow boundaries. One reducible and three irreducible loops are depicted in Figure 3.7.3.

Next, we select a point on a reducible or irreducible loop and introduce the unit tangent
vector pointing in the counterclockwise direction, t = (t,t,), as shown in Figure 3.7.3. The
inner product of the velocity and the unit tangent vector is given by

U =U- -t =ugty +uyty. (3.7.11)

The circulation around the loop is defined as the line integral of the tangential component
of the velocity with respect to arc length around the loop, #,

C= % utdﬁzf u-tds, (3.7.12)
c c

where £ denotes the loop and d¢ = y/dz? + dy? is an infinitesimal arc length around the
loop.

Reducible loops

Stokes’s circulation theorem discussed in Section 11.1 states that, in the absence of point
vortices inside the area enclosed by a reducible loop, the circulation around the loop is equal
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to the strength of the vorticity integrated over the area of fluid enclosed by the loop, D,

c :/ w, dA. (3.7.13)
D

In this case, the right-hand sides of (3.7.12) and (3.7.13) are equal.

An important consequence of Stokes’s circulation theorem is that, because the vorticity
of an irrotational flow vanishes at every point, the circulation around any reducible loop
drawn in an irrotational flow is precisely zero. Important implications of this property will
be discussed in Chapter 11 in the context of vortex dynamics.

Reducible loops enclosing point vortices

The circulation around a reducible loop that encloses a collection of N point vortices with
strengths k1, ks, ..., kN is equal to the sum of the strengths of the point vortices,

=Y ri (3.7.14)

If some point vortices have positive strength and other point vortices have negative strength,
so that the sum of the strengths is zero, the circulation around the loop is also zero.

As an example, we consider uniform flow past a circular cylinder described by the
potential shown in (3.7.6). To confirm that the circulation around any loop that encloses
the cylinder is equal to x, we compute the circulation around a loop of radius b centered at
the cylinder, and find the expected result

N 1o o 1 [ Ko
C:j{utdé_j{uebde_b raede_bbf%de_m, (3.7.15)

where d¢ = bd# is the arc length around the loop.

Irreducible loops

The circulation around a loop that encloses one boundary or multiple boundaries in a two-
dimensional irrotational flow can be arbitrary. In practice, the amount of circulation is
set up internally during a start up period when the flow develops from the state of rest.
The circulation established spontaneously around a moving body is of central interest in
aerodynamics, as discussed in Chapter 12.

3.7.4 Line vortices in three-dimensional flow

Viewed from a three-dimensional perspective, a point vortex in the xy plane appears like
a rectilinear line vortex parallel to the z axis, as shown in Figure 3.7.1(b). Deforming this
rectilinear line vortex or merging its two ends to form a loop, we obtain a curved three-
dimensional line vortex in a three-dimensional flow. One example familiar to cigar smokers
is a closed line vortex with a circular or wobbly shape, called a line vortex ring.
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(a) (b)

Figure 3.7.4 lllustration of (a) an open and (b) a closed line vortex in a three-dimensional flow.

A line vortex can be infinite, as illustrated in Figure 3.7.4(a), or closed, as illustrated in
Figure 3.7.4(b). However, a line vortex may not end suddenly in the interior of a fluid. In
real life, a fluid is always bounded by a rigid or deformable surface and an otherwise infinite
line vortex inevitably ends at the boundaries.

The analysis and computation of the flow associated with, or induced by a three-
dimensional line vortex constitutes an important field of fluid mechanics with important
applications in turbulent fluid motion and aerodynamics, as discussed in Chapters 11 and
12.

PROBLEMS

3.7.1 Circulation around a loop in the xy plane

Consider a closed loop in the xy plane performing m turns around a point vortex with
strength x, where m is an arbitrary integer. Explain why the circulation around this loop
is equal to mk.

3.7.2 Point vortex dipole

Just as the point-source dipole arises from a point source/sink dipole, as discussed in Section
3.5, a point-vortex dipole arises from a point vortex with positive strength and a point
vortex with negative strength of equal magnitude, in the limit as the distance between the
two point vortices tends to zero while their strength increases by inverse proportion. The
harmonic potential associated with a point vortex dipole oriented along the x or y axis is
given, respectively, by

dpP
Owo ’

D¢

PVD
o ( Y Dy

z,y) = Ao VDY (2,y) = A (3.7.16)

where A, and A, are the components of the vectorial strength of the point-vortex dipole in
the x and y direction.

Carry out the differentiations on the right-hand sides of (3.7.16) and compare the result-
ing expressions with those shown in equations (3.5.25) and (3.5.33) for the two-dimensional
point-source dipole. Based on this comparison, establish a relationship between the flow
due to a point-vortex dipole and the flow due to a point-source dipole.
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3.7.3 Irreducible loops in three-dimensional flow

(a) Consider a three-dimensional domain of flow extending to infinity and bounded internally
by a toroidal boundary having the shape of a donut. Show that this flow contains irreducible
loops that may not be shrunk to a point without crossing flow boundaries.

(b) Invent another three-dimensional domain of flow containing irreducible loops.



Forces and stresses

4.1 Body forces and surface forces

4.2 Traction and the stress tensor

4.3 Traction jump across a fluid interface

4.4 Force balance at a three-dimensional interface
4.5 Stresses in a fluid at rest

4.6 Constitutive equations

4.7 Pressure in compressible fluids

4.8 Simple non-Newtonian fluids

4.9  Stresses in polar coordinates

4.10 Boundary conditions for the tangential velocity
4.11 Wall stresses in Newtonian fluids

4.12 Interfacial surfactant transport

Previously in this book, we discussed the kinematic structure of a flow but made no reference
to the external action that is necessary to establish a flow or to the physical mechanism
that is necessary to sustain the motion of the fluid. To address these issues, in this chapter
we turn our attention to the hydrodynamic forces developing in a fluid as a result of the
motion and introduce constitutive equations relating the stresses developing at the surface of
infinitesimal fluid parcels to the parcel motion and deformation. The constitutive equations
will then be incorporated into an integrated theoretical framework based on Newton’s law
of motion that will allow us to compute the structure of a steady flow and the evolution of
an unsteady flow from a specified initial configuration.

4.1 Forces acting in a fluid

Two types of forces are exerted on any coherent piece of a material: a homogeneous force
acting on its volume, and a surface force acting on its boundaries.

4.1.1 Body force

A fluid parcel, like any other piece of material, is subject to a force mediated by an ambi-
ent gravitational, electrical, electromagnetic, or any other external force field acting on its
volume. Electrical and electromagnetic forces arise when the fluid is electrically charged or
contains molecules or small particles of a polarized material.
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Under the influence of such fields, the molecules residing inside a fluid parcel are acted
upon individually and independently by a force that may be constant or vary with position
inside the parcel. The sum of the forces exerted on the individual molecules amounts to a
net body force that is proportional to the number of molecules residing inside the parcel,
and thus to the parcel volume.

Gravitational body force

Let dF,, be the gravitational force exerted on a small fluid parcel with volume §V,,, density
p, and mass édm, = pdV,. By definition,

0F, =gpdV,, (4.1.1)

where g is the acceleration of gravity. The right-hand side of (4.1.1) has units of acceleration
multiplied by mass, which amounts to force.

One distinguishing feature of the body force due to gravity is that it is considered to
be independent of molecular motions. This means that a certain mass of fluid weighs the
same, independent of whether the fluid is stationary or flows.

4.1.2 Surface force

A different type of force arises at the surface of a fluid parcel and at the boundaries of a
flow, such as the surface of a bubble rising through an ambient liquid or the windshield of a
moving vehicle. More generally, a surface force can be defined on any fictitious surface that
is drawn inside the bulk of a fluid or over its boundary.

Understanding the physical origin of the surface force requires consideration of molec-
ular motions and necessitates a distinction between gases and liquids. A key idea is the
equivalence between local hydrodynamic force and rate of exchange of momentum between
adjacent fluid layers due to molecular excursions.

Gases

To understand the origin of surface forces developing in a gas, we draw a surface in the
interior of the gas and consider the momentum of the molecules that cross the surface from
either side. A key realization is that the momentum normal to the surface is responsible for
a normal force.

If the molecules move with different average tangential velocities on either side of the
surface, the net transport of tangential momentum is responsible for a tangential surface
force necessary to accelerate or decelerate the molecules. In the present context, the average
velocity of a molecule can be identified with the velocity of the fluid at the location where
a molecule last underwent a collision with one of its peers. The effective force field due to
the tangential surface force slows down fast-moving molecules as they approach regions of
slower-moving fluid.
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Figure 4.2.1 lllustration of a small section on the surface of a fluid parcel, §.5, introduced to define
the hydrodynamic traction exerted on the parcel.

Liquids

The physical origin of surface forces developing in a liquid is somewhat different. The
molecules of a liquid perform oscillatory motion around a mean position with an amplitude
that is determined by their distance from closely spaced neighbors. Occasional excursions
into vacant spots are responsible for momentum transport attributed to the action of a
surface force.

PROBLEM

4.1.1 Friction

The friction on a body sliding over a horizontal surface imparts to the body a tangential
surface force that depends on the body weight. Does this frictional force also depend on the
contact area?

4.2 Traction and the stress tensor

Consider a small surface with area §S centered at a point, x = (z,y, z), in a stationary
or moving fluid, as illustrated in Figure 4.2.1. The designated outer side of the surface is
indicated by the direction of the unit vector normal to the surface at the point x, denoted
by n = (ng,ny,n,). According to our discussion in Section 4.1, a body of fluid whose
instantaneous boundary includes the small surface under consideration experiences a surface
force, oFsurface that may point in any direction; that is, it may have a component normal
to the surface and a component tangential to the surface.

Traction

The ratio between the surface force, 6Fs"f and the area of the surface, 85, is the average

stress exerted on the small surface. As the surface area 6S becomes infinitesimal, the
average stress tends to a limit defined as the traction exerted on an infinitesimal surface
and is denoted by f. Thus, by definition,

5Fsurface

— (4.2.1)

f
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in the limit at §5S becomes infinitesimal. The three scalar components of the traction have
units of force per area, which amounts to stress.

Force in terms of traction

Rearranging equation (4.2.1), we obtain an expression for the surface force exerted on an
infinitesimal surface in terms of the traction,

5Fsurface —f6S. (422)

Integrating the traction over a specified surface area, such as the boundary of a fluid parcel,
we obtain a resultant surface force.

Dependence on position and orientation

It is clear from relation (4.2.1) that the traction is defined only when the location and
orientation of an infinitesimal surface upon which the traction is exerted are specified, re-
spectively, in terms of the coordinates of the center-point, x, and orientation of the unit
normal vector, n. This requirement is signified by writing

f(x,n), (4.2.3)

where the parentheses enclose the arguments of the three scalar components of the traction.
If a flow is unsteady, or the position or orientation of the surface change in time, time, t,
should be added to the arguments on the right-hand side of (4.2.3).

The stress tensor

The traction exerted on a small surface that is perpendicular to the z, y, or z axis, is denoted
by

f(:]:) _ [f£:1;>7 fls.’l:)7 fz(.’l;) ],

£ = [0, £, F0)), (42.4)

B9 = (£ 19, 5900,

respectively, where the unit normal vector, n points in the positive directions of these axes,
as depicted in Figure 4.2.2. Stacking these vectors on top of one another in a particular
order, we obtain the 3 x 3 stress tensor
S R
o= | ¥ ¥ W (4.2.5)
A P A

in a three-dimensional flow, and a corresponding 2 X 2 tensor in a two-dimensional flow.
Next, we introduce the standard two-index notation for the components of the stress
tensor,

Orxx Oxy Ogxz
0= | Oyz Oyy Oyz |, (4.2.6)
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Figure 4.2.2 lllustration of (a) a triangular fluid parcel in a two-dimensional flow and (b) a tetrahedral
fluid parcel in a three-dimensional fluid. These parcels are used as devices for computing the
traction exerted on an arbitrary surface in terms of (a) the unit vector normal to the surface, and
(b) the stress tensor.

and find that, by definition,
oij = £ (4.2.7)

for 7,7 = x,y,2. The first index of 0;; indicates the component of the normal vector on
the infinitesimal surface upon which the traction is exerted. The second index indicates the
component of the corresponding traction.

We will see that, in the absence of an externally induced torque, the stress tensor is
symmetric,

Oij = Oji- (428)
For example, 0,y = 04y

In the case of two-dimensional flow in the xy plane, the stresses are encapsulated in a
2 X 2 stress tensor,

Oyz  Oyy

The five omitted components involving the subscript z are either constant or zero.

Traction in terms of the stress tensor

We will demonstrate that the dependence of the traction on the position vector, x, and
normal vector, n, displayed symbolically in (4.2.3), can be decoupled in a simple fashion,
yielding

f(x,n) =n-o(x). (4.2.10)
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Specifically,

Ozx Ozy Ozxz

[f’,r7fy.,fz] = [nv,,;,ny,nz} | oyr Oy Oyr |- (4.2.11)
Ozx Ozy Ozz

In index notation,
fi(x,0) = n; 045 = ng 045 + Ny Ty + Ny 024, (4.2.12)

where summation is implied over the repeated index, 4, in the middle expression of (4.2.12),
while the index j is free to vary over z, y, or z.

An important consequence of (4.2.10) is that, if the nine components of the stress tensor
are known at a point, then the traction exerted on any infinitesimal surface centered at that
point can be evaluated in terms of the unit normal vector, n, merely by carrying out a
vector-matrix multiplication.

To confirm that expression (4.2.10) is consistent with the foregoing definitions, we choose
n = (1,0,0) and carry out the vector-matrix multiplication on the right-hand side of (4.2.12)
to find that f = £(*) as required. Working in a similar fashion with n = (0,1,0) and
n = (0,0,1), we obtain f = £ and f = £(*), as required.

It remains to show that (4.2.10) holds true for general orientations of the unit normal
vector, n. For simplicity, we present the proof for two-dimensional flow in the zy plane with
reference to the 2 x 2 stress tensor defined in (4.2.9).

Force balance on a small triangular parcel

Consider a small area of fluid enclosed by an infinitesimal triangle with two sides perpen-
dicular to the = and y axes, as shown in Figure 4.2.2(a). Newton’s second law of motion
requires that the rate of change of the momentum of the fluid enclosed by the triangle is
balanced by the forces exerted on the triangle. The forces include the body force and the
surface force associated with the traction exerted on the three sides.

The momentum of the parcel and the body force exerted on the parcel are both propor-
tional to the area of the triangle, %Ax Ay. The surface force exerted on the vertical side
is equal to f(*) Ay, the surface force exerted on the horizontal side is equal to f(*) Az, and

the surface force exerted on the slanted side is equal to fAf, where A/ is the length of the
slanted side, Al = (Az? + Ay?)1/2.

In the limit as Ax and Ay tend to zero, the fluid momentum and the body force become
negligible compared to the surface force exerted on the sides, and the sum of the three surface
forces must balance to zero. Setting the x and y components of the sum to zero, we obtain

fo AL+ 040 Ay + 0y Az =0, fy AL+ 04y Ay + 0yy Az = 0. (4.2.13)

Using elementary trigonometry, we find that the x and y components of the outward unit
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Figure 4.2.3 lllustration of a thin fluid layer with a designated inner and outer side. The outer side
is indicated by the direction of the unit normal vector, n.

vector normal to the slanted side of the triangle are given by

Ay Az
Ny = *ﬂa Ny = *H. (4214)
Combining equations (4.2.13) and (4.2.14), we find that
f:x: =Ny Ogg + Ty Oy fy = Ny Ogy + TNy O gy (4215)

which are precisely the z and y components of (4.2.10).

To carry out an analogous proof for three-dimensional flow, we consider the forces
exerted on the sides and over the volume of a tetrahedral fluid parcel, as illustrated in
Figure 4.2.2(b), and work in similar ways (Problem 4.2.1).

4.2.1 Traction on either side of a fluid surface

Next, we consider a thin fluid layer with a designated outer side indicated by the direction
of the unit normal vector, n, and a designated inner side indicated by the direction of the
opposite normal vector, n'™®" = —n, as illustrated in Figure 4.2.3. Balancing the rate of
change of momentum of the fluid residing inside the thin layer with the forces exerted on the
layer, and repeating the preceding arguments on the insignificance of the fluid momentum
and body force compared to the surface force, we derive the force balance equation

foutcr 4 finncr — 0’ (4216)

which is a statement of Newton’s third law of action and reaction, stating that the force
exerted on one body by a second body is equal in magnitude and opposite in direction to
the force exerted by the second body on the first body.

It is reassuring to confirm that expression (4.2.10) is consistent with the physical law
expressed by (4.2.16). Substituting the former into the latter, we obtain
n-o+n" .o =0, (4.2.17)

inner __

which is true in light of the definition n —n. More generally, for (4.2.16) to be true,

it must be that
f(x,—n) = —f(x,n), (4.2.18)
which is clearly satisfied by the right-hand side of (4.2.10).
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Figure 4.2.4 lllustration of a thin fluid layer adjacent to a boundary used to define the hydrodynamic
force exerted on the boundary.

4.2.2 Traction on a boundary

Now we consider a small fluid surface residing at the boundary of a flow. The outer side of
the fluid surface is indicated by the unit normal vector n°**"2rd pointing into the boundary,
as illustrated in Figure 4.2.4. Newton’s third law of action and reaction requires that the
traction exerted on the surface should balance the traction exerted by the fluid on the
boundary, fPourdary o that

fboundary + noutward .o =0. (4219)

In terms of the inward unit normal vector pointing into the fluid, n™Ward = —poutward (e
obtain

fboundary _ ninward .o. (4220)

Expression (4.2.20) allows us to compute the traction exerted on a boundary in terms of
the stress tensor evaluated at the boundary.

4.2.3 Symmetry of the stress tensor

The torque with respect to a specified point, xg, due to a force, F, applied at a point, x, is
defined by the outer vector product

T(X()) = (X = X()) x F. (4221)

A fundamental law of mechanics originating from Newton’s second law of motion requires
that the rate of change of angular momentum of a fluid parcel should be balanced by the
torque exerted on the fluid parcel, including the torque due to the body force and the torque
due to the surface force.

Applying this law for a rectangular fluid parcel whose sides are parallel to the x, vy,
and z, axes, we find, that, in the absence of a body force inducing a torque, the tangential
component of the traction in the jth direction exerted on the side that is perpendicular to
the 7th axis must be equal to the tangential component of the traction in the ith direction
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exerted on the side that is perpendicular to the jth axis, otherwise an imbalance will arise
(Problem 4.2.2). Thus,

1=, (4.2.22)
stating that the stress tensor is symmetric,

0ij = Oji. (4.2.23)
The diagonal components of the stress tensor can be arbitrary.

It is important to emphasize that the stress tensor is symmetric only in the absence of
an externally induced torque, that is, in the absence of an external force field causing point
particles to spin. This condition is tacitly assumed in the remainder of this book.

PROBLEMS

4.2.1 Traction in three-dimensional flow

Prove expression (4.2.10) for three-dimensional flow. Hint: Perform a force balance over
the polyhedral volume depicted in Figure 4.2.2(b).

4.2.2 Symmetry of the stress tensor

Demonstrate the symmetry of the stress tensor for two-dimensional flow in the absence of
an externally induced torque.

4.3 Traction jump across a fluid interface

Equation (4.2.16) states that the traction exerted on one side of a surface drawn inside a fluid
is equal in magnitude and opposite in direction to that exerted on the other side. To derive
this relation, we performed a force balance over a thin fluid layer centered at the surface,
considering the force exerted along the edges infinitesimal. If the fluid residing inside this
layer is homogeneous, the edge force scales with the layer thickness and is negligible indeed
compared to the surface force exerted on the two sides.

However, if a thin layer straddles the interface between two different fluids instead
of a regular surface residing inside a homogeneous fluid, differences in the magnitude of
intermolecular forces on either side of the layer generate an effective edge force that does
not scale with the layer thickness.

4.3.1 Interfacial tension

The interfacial edge force can be expressed in terms of the interfacial tension, also called the
surface tension, v, defined as the tangential force per differential arc length exerted around
the edge of a section of an interface. In fact, the surface tension is the integrated normal
stress exerted in a plane that is normal to the interface over a thin interfacial layer where the
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Fluid 1
")

Fluid 2 n'

Figure 4.3.1 lllustration of forces exerted on a thin fluid layer centered at a two-dimensional interface,
including the hydrodynamic force due to the fluid stresses and the force due to the surface tension.

physical properties of the medium undergo a rapid transition. Interfaces with membrane-like
constitution exhibit tangential as well as normal interfacial tensions and possibly bending
moments. In the most general case, an interface behaves line a thin shell, such as a dome
or an egg shell.

Simple interfaces and surfactants

Consider a simple interface separating two immiscible liquids or a gas from a liquid. The
surface tension pulls the interfacial layer in a direction that is tangential to the interface and
normal to the edges. The magnitude of the surface tension depends on the local temperature
and on the molecular constitution of the interface determined by the concentration of surface
active substances residing over the interface, called surfactants, as will be discussed in
Section 4.10. The higher the temperature or the concentration of a surfactant, the lower
the surface tension.

Surfactants are often added to liquids to lower the surface tension and achieve a desired
effect. A dish or laundry detergent is a common household surfactant used to lower the
strength of the forces anchoring particles to a soiled surface. In engineering applications,
surfactants are used to disperse oil spills.

4.3.2 Force balance at a two-dimensional interface

To illustrate the action of the surface tension, we consider a small section of a two-dimensional
interface with length A/, as shown in Figure 4.3.1. Surface tension pulls the layer forward
and backward at the two edges in directions that are tangential to the interface at the two
end points, A and B.

Balancing the surface force exerted on the upper and lower sides due to the stresses in
each fluid and the edge forces, we obtain the vectorial equilibrium condition

[n(l) . 0_(1)] Al + [1’1(2) . 0-(2)} A£+»}/A tA — "\/B tB = 0, (431)

where the unit normal vector nt") points into the fluid labeled 1 by convention, while the
unit normal vector n(®?) = —n(!) points into the fluid labeled 2.
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Now we express the second normal vector in terms of the first normal vector and rear-
range the resulting expression to obtain

,YA tA o ,YB tB
Al )

n® . (M - @) =_ (4.3.2)
If the surface tension is uniform across the length of the interfacial element under consider-
ation, then vB = 42, If, in addition, the interface is flat, t® = t*, the vectorial difference
tB — t4 is zero and the right-hand side of (4.3.2) vanishes. Equation (4.3.2) then requires
that the traction is continuous across the interface in the absence of a net contribution due
to the surface tension.

As the length of the interfacial segment, A/, tends to zero, the fraction on the right-
hand side of (4.3.2) tends to the derivative of the product vt with respect to arc length, ¢,
measured in the direction of the tangent vector t from an arbitrary origin, yielding

n® . (o0 _ @y = 408 (4.3.3)
de
Expanding the derivative of the product on the right-hand side, we find that
dt dy

W (M _g@y = 5 = ¢ 4.3.4
n® - (0 —o®) = - T - Tt (43.4)

The second term on the right-hand side contributes a traction discontinuity tangential to
the interface, known as the Marangoni traction. If the surface tension is uniform over the
interface, the Marangoni traction does not appear.

Curvature

To interpret the first term on the right-hand side of (4.3.4), we consider the difference
between the two nearly equal tangential vectors t* and t®. As the arc length, A¢, tends to
zero, the difference between these vectors tends to a new vector that is directed normal to
the interface. More precisely, in this limit, the ratio (t* — tB)/A/¢ tends to the derivative

dt

= —rn, (4.3.5)

where £ is the positive or negative curvature of the interface; for the shape shown in Figure
4.3.1, the curvature is positive, k > 0.

To understand why the derivative dt/d¢ is normal to the interface, we approximate the
derivative with the ratio (t* — tB)/A¢, and rearrange to obtain

tA ~tB — k. (4.3.6)

The second term on the right-hand side inclines t® against n(!) to generate t*, as shown in
Figure 4.3.1.
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Taking the inner product of both sides of equation (4.3.5) with the unit normal vector
n(!) | we derive an expression for the curvature,

dt

= 4.3.7
T (43.7)

= —n@ .

which can be restated as

_dr oyt dy gy At
ds dy

R =

Py (4.3.8)

By definition, K = 1/R, where R is the positive or negative radius of curvature of the
interface. For the shape shown in Figure 4.3.1, the radius of curvature is positive, R > 0.

Conversely, the derivative of the unit normal vector is parallel to the unit tangential
vector,

1)
d‘;g = ki, (4.3.9)
yielding
dn®
K=t 3/ . (4.3.10)

Equations (4.3.5) and (4.3.9) comprise the Frenet—Serret relations in differential geometry.

Laplace pressure

Substituting (4.3.5) into (4.3.4) and rearranging, we derive the final expression for the jump
in the interfacial traction across a two-dimensional interface,
— 20 . () _ 5@ o _d

Af =n"V - (e — ') =~kn f@t. (4.3.11)
The first term on the right-hand side of (4.3.11) contributes a traction discontinuity normal
to the interface, known as the Laplace pressure; however, bear in mind that the term pressure
is appropriate only in the absence of fluid motion on either side of the interface. If either
the curvature of the interface or the surface tension vanishes, the Laplace pressure is zero
and the normal stress is continuous across the interface.

It is important to bear in mind that the interfacial tension is independent of the radius
of curvature of the interface, except when the radius of curvature is so small that it becomes
comparable to the molecular size. In mainstream engineering applications, the surface
tension is regarded as a genuine physical constant.

Local coordinates

Consider the jump in traction across the curved interface depicted in Figure 4.3.2(a). The
origin of the Cartesian axes lies at a point on the interface, the = axis is tangential to the
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(a) (b)
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Figure 4.3.2 (a) A local coordinate system with the x axis tangential to a two-dimensional interface
at a point is used to evaluate the jump in the traction across the interface. (b) A differentially
heated interface drives a thermocapillary flow.

interface, and the y axis is normal to the interface pointing into the fluid labeled 1. At the
origin of the Cartesian axes, the components of the unit normal vector, n*), are

n( =0, n{ =1, (4.3.12)
and the jump in the interfacial traction is given by

Af =0 (6W —o@) = (o) =) e, + (ol}) — D) ey, (4.3.13)

where e, and e, are unit vectors parallel to the x or y axis.

Applying equation (4.3.11) at the origin and setting t = e, and n) = ey, we obtain
d

Af = yre, — d—z e.. (4.3.14)
Comparing this equation with (4.3.13), we derive an expression for the jump in the shear
stress,

dy
1 2
U?(ﬂ) Uz(/x) — (4.3.15)

and another expression for the jump in the normal stress,
UZ(J,Iy) — a,é(/f/) =YK (4.3.16)
For the configuration shown in Figure 4.3.2(a), the curvature s is positive

A heated liquid layer

As an application, we consider a liquid layer that is hot at the left end and cold at the right
end, as illustrated in Figure 4.3.2(b). In this case, dT/dx < 0 and therefore dy/dx > 0,
where T is the temperature. Equation (4.3.15) yields

dy
dx

o) — o) = —

<0. (4.3.17)
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Figure 4.3.3 lllustration of a circular interface of radius a enclosing a fluid labeled 2, showing the
unit tangent vector, t, and the outward unit normal vector, n.

Because the shear stress is insignificant in the gas above the layer, we can approximate

o) ~ 0. (4.3.18)
For a Newtonian fluid,
du,
2 €T
o(? = o > 0, (4.3.19)

where po is the viscosity of the lower fluid, as discussed in Section 4.5. The positive sign of
the slope du, /dy is consistent with the velocity profile drawn in Figure 4.3.2(b). Physically,
the high surface tension at the cold end pulls the fluid against the low surface tension at
the hot end to drive a surface-tension induced flow.

A flow induced by temperature differences causing variations in surface tension is called
a thermocapillary flow.

Curvature of a circle

We have seen that the curvature of an interface determines the jump in the normal compo-
nent of the traction due to surface tension. To gain experience on the computation of the
curvature, we consider a circle of radius a centered at the origin, described in parametric
form by the equations

x =asinw, Y = acosw, (4.3.20)

where w is the polar angle measured around the center of the circle in the clockwise direction,
varying from 0 to 27, as shown in Figure 4.3.3. The components of the unit tangent vector
pointing in the clockwise direction are

_dz _@

te= " b=, (4.3.21)



4.3 Traction jump across a fluid interface 195

where d¢ = (dz? + dy?)!/? is the differential arc length measured in the clockwise direction.
Using the parametric representation, we find that
dzr = a cosw dw, dy = —a sin f dw, d¢ = adw, (4.3.22)
and thus
t, = cosw, ty = —sinw. (4.3.23)

Based on these formulas, we compute

dt,  d(cosw) 1. dt, d(—sinb) 1
= — = —— § = 0 = — — SW. 4.3.24
de d(aw) a O de d(ad) a Y ( )
In unified vector form,
dt 1
= 4.3.2
7= o (4.3.25)

where n = (sinw, cosw) is the unit vector normal to the circle pointing outward, as shown
in Figure 4.3.3. Comparing (4.3.25) with (4.3.5), we confirm that the curvature of the circle
is equal to the inverse of its radius, k = 1/a.

Formulas for the curvature

The shape of a two-dimensional interface that does not turn upon itself but has a monotonic
shape can be described by a single-valued function,

y = f(x). (4.3.26)
Using elementary geometry, we find that
n—(fe.te,) b (e 4 f'e,)
. T Yy )y T y)s

=@ (5 )7

ds
— =1 12 4.3.2
C=VIER, (43.27)

where a prime denotes a derivative with respect to x. Substituting these expressions into
the formula (4.3.7) for the curvature, and simplifying, we derive the expressions

f// 1 1 / f/ 1
k= T+ )32 - ?( M+ f’2) B _(‘ /1+ f/2) ' (4.3.28)
The slope angle of the interface, 6, is defined by the equation

tan = f’. (4.3.29)

We note that the fraction in the second expression of (4.3.28) is equal to |cos @] and derive
the alternative expression

_ 1 d|cosf|

f= T (4.3.30)
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The curvature of an interface that is described parametrically by the functions
z = X(), y=Y(&) (4.3.31)
is given by

Xee Ve = Yee X
= (4.3.32)
(XE +Y2)%
where a subscript denotes a derivative with respect to the parametric variable, £. Formula
(4.3.28) arises by setting & = x.

PROBLEMS

4.3.1 Curvature of an ellipse

Consider a horizontal ellipse centered at the origin of the zy plane, described in parametric
form by the equations x = acosn and y = bsinn, where 7 is the natural parameter of the
ellipse varying between 0 and 27, and a, b are the ellipse semi-axes. Derive an expression
for the curvature of the ellipse in terms of a, b, and 1. Confirm that, as b tends to a, the
curvature of the ellipse reduces to that of a circle.

4.3.2 B Computation of the curvature

A line in the xy plane can be described by a set of N + 1 marker points with coordinates
(zi,y;) for i=1,...,N + 1. An approximation to the components of the tangent vector at
the ith point is provided by the central-difference formulas

(i) — Fit1 = Li-1 (i) _ Yi+1 —Yi-1
ta AL, ty AR (4.3.33)

where

1/2

Al = [(zip1 — 2io1)® + (Y1 — 4i1)” ] (4.3.34)

The derivatives of the components of the tangent vector with respect to arc length can be
approximated with the corresponding formulas

dtfg) tgci-&-l) B tgi,—l) dfst) 7f('H—l) - t(i—l)
= , LA v (4.3.35)
de Al de Al
The components of the outward normal vector at the marker points are given by
R 0} (4.3.36)

Write a computer program that reads or generates the coordinates of a set of marker
points, computes the right-hand sides of (4.3.33)—(4.3.36), and then evaluates the curvature
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(a) (b)
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Figure 4.4.1 (a) lllustration of of a thin fluid layer straddling a three-dimensional interface. The
surface tension pulls the interfacial patch in the direction of the unit tangent vector, t. (b) The
mean curvature of a three-dimensional surface is equal to the average of two directional curvatures
in two perpendicular planes containing the normal vector.

at the marker points from the expression kK = —n - dt/d¢. Perform a series of computations
with marker points distributed evenly along a circle, and compare the numerically computed
with the exact curvature.

4.3.3 B Motion induced by curvature

Interfaces exhibit a variety of motions under the influence of surface tension. In a simplified
model, point particles distributed along a two-dimensional interface move normal to the
interface with velocity that is proportional to the local curvature. If X is the position
of the ith marker point, then the motion of the marker point is described by the vectorial
differential equation

dx @)

3 = (4.3.37)

where ¢ stands for time, n() is the outward normal vector, and & is the curvature.

Write a computer program that computes the motion of marker points distributed along
an interface using the finite-difference approximations discussed in Problem 4.3.2 and the
modified Euler method for integrating in time the differential equations (4.3.37). Run the
program to compute the evolution of marker points distributed along a circle or an ellipse
with axes ratio equal to two. Discuss the nature of the motion in each case.

4.4 Force balance at a three-dimensional interface

In Section 4.3, we derived a force balance at a two-dimensional interface and discussed
the computation of the curvature. To derive the counterpart of the force balance equation
(4.3.11) for a three-dimensional interface, we consider a thin material patch straddling the
interface, as illustrated in Figure 4.4.1(a).

Let n(!) be the unit vector normal to the interface pointing into fluid labeled 1, and r
be the unit vector tangential to the edge of the patch, C. Surface tension pulls the layer
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in the direction of the unit vector t that is tangential to the interface and normal to both
n(® and r. Recalling the geometrical interpretation of the outer vector product, discussed
in Section 2.3, we write

t=rxn. (4.4.1)
All vectors involved in this equation are unit vectors, that is, they have unit length.

Next, we balance the surface force due to the fluid stresses on either side of the interface
and the edge force due to the surface tension, writing

(n®M.eMW)YAS + (n?.e@)AS + 7{ ytdl =0, (4.4.2)
Je
where AS is the surface area of the patch, £ is the arc length around the edge of the patch, C,
and n® is the unit vector normal to the interface pointing into the fluid labeled 2. Equation
(4.4.2) is the three-dimensional counterpart of equation (4.3.1). Setting n® = —n(!) and
rearranging, we obtain

Af =0 . (V) — @) = ’Ais 7{ . (4.4.3)
JC

In the limit as the loop C shrinks to a point and AS tends to zero, equation (4.4.3) provides
us with the expression

0
Af =2k, n® — a% T, (4.4.4)
subject to the following definitions:

e k., is the mean curvature of the interface defined in terms of the surface divergence
of the unit normal vector, as discussed in Section 4.4.1.

e T is the unit vector tangent to the interface pointing in the direction where the surface
tension changes most rapidly.

e ( is the arc length measured in the direction of the tangential vector 7, and 9~/ is
the corresponding maximum rate of change of the surface tension with respect to arc
length.

The first term on the right-hand side of (4.4.4) expresses a discontinuity in the normal di-
rection identified as the Laplace pressure, whereas the second term expresses a discontinuity
in the tangential direction identified as the Marangoni traction.

Tangential coordinates

If the x axis is chosen to be normal to the interface at a point, and correspondingly the yz
plane is tangential to the interface at that point, then

9y i
Af =2k, €, — ay ey — 5, & (4.4.5)

where e, and e, are tangential unit vectors along the y and z axes.
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4.4.1 Mean curvature

If the yz plane is tangential to an interface at a point, then the mean curvature at that
point is given by the surface divergence of the normal vector,

on on
2%km =Vs-n=—2 = 4.4.6
= YT gy T oz (4.46)
Requiring that
n? + ni +n?=1, (4.4.7)
and then
ong ony ong
I — — ——— =0, 4.4.8
& ox + dy o 0z ' ( )

and setting n, =, n, = 0, and n, = 0, we find that On,/0x = 0, which shows that the
normal derivative of the normal component of the normal vector is zero. This property
allows us to write the more general expression

on, On, On,
+ =24

2 'm = ' - )
" Voo Ox y 0z’

(4.4.9)

with reference to an arbitrary system of Cartesian coordinates whose axes are not necessarily
tangential or normal to the interface.

Mean curvature of a surface described as F(x,y,z) =0
A three-dimensional interface can be described implicitly by an equation of the form
F(z,y,z) =0. (4.4.10)

Given two of the three coordinates, z, y, or z, this equation can be used to compute the third
coordinate by analytical or numerical methods. The unit vector normal to the interface is
given by

1
= = VF 4.
n V] (4.4.11)
and the mean curvature is given by
Ui = V ( ! VF) ! g2p_ 1 gr.(vvr).vE 4.4.12
Rm = ‘N~ o = T BTy : . y 4.
VE| V] VEP (4.4.12)

where VV F' = ® is a symmetric matrix encapsulating the second partial derivatives,

0*F
P, = . 4.4.1
' O0x;0x; ( 3)
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Mean curvature of a surface described as z = f(x,y)
For an interface that is described explicitly by a function

z = f(z,y), (4.4.14)

we set F(x,y,z) =z — f(x,y) and derive the formula

(L + ) faw = 2fafyfoy + L+ £2) fuy
A+ f2+ £3)22 ’

where the subscript x denotes a derivative with respect to x and the subscript y denotes a

derivative with respect to y.

26m = —

(4.4.15)

For a nearly flat interface, the partial derivatives are small compared to unity, yielding

26m 2 —(foz + fyy)- (4.4.16)

The term inside the parentheses is the Laplacian of f(z,y).

Spherical polar coordinates

The unit normal vector for an interface that is described in spherical polar coordinates,
(/r" 0’ 80)7 as

r=f(0,9), (4.4.17)
is computed from (4.4.11) with
f9 fap

VF=e.—*—¢ey— e,, 4.4.18
T rsing ¥ ( )
where a subscript after f indicates a corresponding partial derivative.

For a nearly spherical interface of radius r, the mean curvature can be approximated
with the linearized expression

(4.4.19)

- A fsw
r2sin?0

involving first and second partial derivatives.

4.4.2 Directional curvatures

To compute the mean curvature of a three-dimensional interface, we consider the traces of
the interface in two conjugate orthogonal planes that are normal to the interface at a point,
and thus contain the normal vector, as depicted in Figure 4.4.1(b).

If k1 and ko are the curvatures of the two traces at that point, computed using formula
(4.3.5) with the x and y axes residing in each of the two planes, then the mean curvature
of the interface is given by

Kom = 3 (k1 + K2). (4.4.20)



4.4 Force balance at a three-dimensional interface 201

A theorem due to Euler reassures us that the mean value of the conjugate directional
curvatures is independent of the orientation of the two planes, provided that the planes
remain mutually orthogonal.

Principal curvatures

There is a particular orientation of the normal plane corresponding to maximum directional
curvature, Kmax, and a conjugate orthogonal orientation corresponding to minimum direc-
tional curvature, kmin. These are the principal curvatures of the interface at the chosen
point. The mean curvature is

1
Rm = 3 (’imax = ’imin)~ (4421)
In the case of a sphere, the principal curvatures and the mean curvature are equal.

Euler’s theorem states that the curvature in an arbitrary direction is related to the
principal curvatures by

K = Kmax COS> @ + Kmin Sin? a, (4.4.22)
where « is the angle subtended between (a) the tangential vector pointing in a chosen
direction, and (b) the tangential vector pointing in the direction of maximum curvature.
4.4.3 Axisymmetric interfaces

Next, we consider the geometrical properties of an axisymmetric interface, as shown in
Figure 4.4.2. The mean curvature is the average of the two principal curvatures: one is
the curvature of the trace of the interface in the oz (azimuthal) plane, corresponding to a
certain value of the azimuthal angle, ¢, denoted by k1, and the second is the curvature of
the trace of the interface in the conjugate orthogonal plane, denoted by k.

Description as o = w(x)

The shape of an interface in an azimuthal plane can be described by a function,

o= w(z), (4.4.23)
as shown in Figure 4.4.2(a). The unit normal vector is
1
n=—— (e, —w'e,;), (4.4.24)

V1+w?

where a prime denotes a derivative with respect to . The mean curvature is given by the

divergence of the normal vector,

d(one)
0o

1
Qi = == + = (4.4.25)
ag

ox

Making substitutions, we obtain

/

Uiy = —(ﬁ)/ + é 800(\/11W) (4.4.26)
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Figure 4.4.2 lllustration of an axisymmetric interface. (a) The second principal curvature at a point
in the xy plane is the curvature of the line representing the trace of the interface in a plane that is
normal to the interface and normal to the xy plane, drawn as a heavy line. (b) An axisymmetric
interface can be described by a function 2 = f(o). The second principal curvature is the curvature
of the line drawn with a heavy line.

Carrying out the differentiations, we find that
w” 1 1

or
1 w /
2 Ko, = W (ﬁ) o (4428)

The first term on the right-hand side of (4.4.27) is the principal curvature in an azimuthal
plane. The second term is the second principal curvature,

1
Ky = — Ro=oV1+uw?2=— =2, (4.4.29)

Ry’ sin¢  ng

where Ry is the second principal radius of curvature and the angle ( is defined in Figure
4.4.2(a). We have found that Ry is the signed distance between (a) the point where the
curvature is evaluated and (b) the intersection of the extension of the normal vector with
the x axis. If n, is negative, Ry is also negative.

In the case of a sphere, points A and B in Figure 4.4.2(a) coincide with the center of
the sphere, and both principal curvatures are equal to the radius of the sphere.

Description as x = f(o)
Alternatively, the shape of an interface can be described by a function

x = f(o), (4.4.30)
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as shown in Figure 4.4.2(b). The unit normal vector is given by

ne— (e, fe) (4.4.31)

N

where a prime denotes a derivative with respect to o. The mean curvature is given by the
divergence of the normal vector,

ong 1 d(one)
2 m — - . 4.4.32
" Jdr o OJo ( )
Making substitutions, we obtain
1 af’ !
i = == (=) . 4.4.33
o\t )" )
Carrying out the differentiations, we find that
1 1 /
26m = — f - f (4434)

CEFDEE e )

The first term on the right-hand side is the principal curvature in a meridional plane,

f‘// 1 ( 1 )/
o o ). 4.4.35
S e R AW ey .
The second term is the second principal curvature,
1 o o o
- R, = —— /1 2 = = 4.4.
K2 = 7. = VIH = = (4.4.36)

where Ry is the second principal radius of curvature and the angle ( is defined in Figure
4.4.2(b).

PROBLEMS

4.4.1 Mean curvature

(a) Compute the mean curvature of a periodic surface described by the equation
z = asin(kx) + bsin(ly), (4.4.37)

where a, b, k, and [ are given constants. State the units of each constant.

(b) Based on formula (4.4.20) and its accompanying interpretation discussed in the text,
show that the mean curvature of a sphere of radius a is equal to k,, = 1/a, whereas the
mean curvature of a circular cylinder of radius a is equal to &, = 1/(2a).

(¢) The sphere and the circular cylinder are two shapes with constant mean curvature.
Describe and discuss one additional shape.

4.4.2 Jump n traction in local coordinates

Derive the counterparts of equations (4.3.15) and (4.3.16) for a three-dimensional interface.



204 Fluid Dynamics: Theory, Computation, and Numerical Simulation

%

Figure 4.5.1 The traction exerted at the three sides of a cubical parcel of a stationary fluid has only
a normal component defined in terms of the thermodynamic pressure, p.

4.5 Stresses in a fluid at rest

If a fluid does not exhibit macroscopic motion as seen by a stationary observer, that is,
the observable fluid velocity vanishes, the molecules are in a state of dynamic equilibrium
determined by the physical conditions prevailing in their immediate environment.

Consider a small cubic fluid parcel with all six faces perpendicular to the z, y, or z
axis, as illustrated in Figure 4.5.1. In the absence of macroscopic fluid motion, the traction
exerted on the sides that are perpendicular to the x axis must be directed normal to these
side. To demonstrate this by reduction ad absurdum, we note that, if this were not true, a
tangential component pointing in a physically indeterminate direction would arise. In the
notation of Section 4.2,

0 o0, 17 =0, 19 =0, (45.1)

where £(*) is the traction exerted on the right side of a face that is perpendicular to the
axis.

Similar arguments can be made to show that the traction exerted on the sides that are
perpendicular to the y or z axis are directed normal to these sides,

=0, o W= (452)
and

2 =0, 7 =0, 2 #0. (4.5.3)

If the size of the cubic parcel is infinitesimal, the fluid residing inside the parcel is

perfectly or nearly homogeneous and the non-vanishing components of the three tractions,

;x), f;y), and fz(z), must be identical. By definition, the common value of these normal
components is the negative of the pressure, p,
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We conclude that, in hydrostatics, the stress tensor introduced in equation (4.2.6) in terms
of three tractions is defined exclusively in terms of the pressure, and is given by

—p 0 0 1 0 0
o= 0O —p O0|=-p |0 1 0. (4.5.5)
0 0 —p 0 0 1
In compact notation,
o=—pl, (4.5.6)

where I is the unit or identity matrix shown on the right-hand side of (4.5.5).

Traction on a surface

As an application, we use expression (4.5.6) to evaluate the traction exerted on a surface
that resides inside or at the boundary a stationary fluid. Substituting (4.5.6) into formula
(4.2.10), we find that

f(x,n)=n-(—pI)=—-pn-1, (4.5.7)
and then
f(x,n) = —pn. (4.5.8)

The last equation results from the identity n-I =I-n = n. Equation (4.6.1) shows that the
traction exerted on a surface in hydrostatics is directed normal to the surface and points
against the surface, while the tangential component is identically zero.

Traction on a boundary

Substituting (4.2.20) into expression (4.5.6) to evaluate the traction on a boundary that is
immersed in, or confines a stationary fluid, we obtain

fb()undary _ ninward . (_p I) =—p ninward . I, (459)
and then

fboundary =—p ninward ) (45 10)

The last equality results from the identity ni"Ward . T = n'"Ward " Thys, the traction exerted
on a fluid boundary in hydrostatics is directed normal to the boundary and points against
the boundary, while the tangential component of the traction is identically zero.

4.5.1 Pressure from molecular motions

The hydrostatic pressure distribution established in a fluid at rest cannot be computed
working exclusively in the context of fluid mechanics. Additional information concerning the
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relationship between the density and the pressure for a particular fluid under consideration
is required.

Gases

Molecular thermodynamics states that the pressure of a small gas parcel is determined by
(@) the number of molecules residing inside the parcel expressed by the local fluid density,
p, (b) the kinetic energy of the molecules determined by the absolute temperature, T', and
(¢) the nature and intensity of the intermolecular forces due to an intermolecular potential.

For an ideal gas, intermolecular forces are negligible and the pressure derives from the
density and temperature in terms of the ideal gas law,

_RT

= . 4511
P=r P ( )

where M is the molecular mass, defined as the mass of one mole comprised of a collection
of N molecules;

N = 6.022 x 10%° (4.5.12)
is the Avogadro number;
R = 8.314 x 10°kgm?/(sec? - kmole - K) (4.5.13)

is the ideal gas constant; T is Kelvin’s absolute temperature, which is equal to the Celsius
centigrade temperature reduced by 273 units. The gram-molecular mass of an element is
equal to the atomic weight of the element listed in the periodic table, expressed in grams.

Liquids

Because liquids are nearly incompressible, the pressure can be regarded a function of the
density alone, independent of pressure. The computation of the hydrostatic pressure distri-
bution in gases and liquids will be discussed in detail in Chapter 5.

4.5.2 Jump in pressure across an interface in hydrostatics

Equations (4.3.11) and (4.4.4) provide us with expressions for the jump in the traction
across a two- or three-dimensional interface. If the fluids on either side of the interface are
stationary, the corresponding stress tensors are given by (4.5.6) in term of the pressure and
the jump in the traction is given by

Af =nY . (W) — @) =n® . [—pW T - (—pP 1)), (4.5.14)
where the superscript 1 or 2 denotes the choice of fluid. Simplifying, we obtain
Af = (p® — pWynW®), (4.5.15)

Because the jump in traction is normal to the interface, surface tension variations are not
accepted in hydrostatics.
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Comparing the right-hand side of (4.5.15) with the right-hand side of the force equilib-
rium equation (4.3.11) for a two-dimensional interface with uniform surface tension, v, we
find that

(2) 1)

B = =5 (4.5.16)

where k is the curvature of the interface. We have shown that the jump in the pressure
across a two-dimensional interface in hydrostatics is equal to the product of the surface
tension and the curvature of the interface.

Working in a similar fashion for a three-dimensional interface, we refer to (4.4.4) and
find that

pA =W =52k, (4.5.17)

where k,, is the mean curvature of the interface. We have found that the jump in the
pressure across a three-dimensional interface in hydrostatics is equal to the product of the
surface tension and twice the mean curvature of the interface.

Laplace’s law

As an application, we compute the jump in pressure across a spherical interface of radius
a representing the surface of a liquid drop or bubble. Designating the outer fluid as fluid 1
and the inner fluid as fluid 2, we find that the mean curvature is k,, = 1/a. Consequently,
the pressure jump across the spherical interface is given by Laplace’s law,

p®@ —pM =9 g (4.5.18)
The pressure inside a drop or bubble is higher than the ambient pressure due to the interfacial

tension by 2v/a.

PROBLEMS

4.5.1 Jump in pressure across a circular interface

Derive an expression for the jump in pressure across a circular interface of radius a repre-
senting the trace of a cylindrical thread in the zy plane.

4.5.2 Curvature of a soap film

Explain why the mean curvature of a thin soap film attached to a wire frame must be zero.

4.6 Constitutive equations

In the absence of macroscopically observable fluid motion, the traction exerted on a specified
side of a small fluid surface indicated by the unit normal vector, n, is given by equation
(4.6.1),

f(x,n) = —pn, (4.6.1)
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(a) (b)

Figure 4.6.1 (a) Stretching of a liquid bridge between two coaxial cylinders that are pulled apart
along their axes with velocity V. (b) Shear flow in a two-dimensional channel confined between
two parallel plates located at y = 0 and h; the motion is due to the parallel translation of the
upper plate with velocity V.

in terms of the pressure, p. In the presence of macroscopic fluid motion, this equation is
modified in two ways. First, the normal component of the traction is accompanied by a new
contribution that depends on the physical properties of the fluid and the nature of the fluid
motion. Second, a tangential component of the traction is established.

To understand how these new contributions arise from a physical point of view, it is
helpful to consider the tractions developing in two complementary flows: (a) an extensional
flow where the fluid stretches and elongates, and (b) a channel flow where the fluid is sheared
due to boundary motion, as shown in Figure 4.6.1.

Stretching of a thread

In one experiment, a thread of liquid is suspended between two rods forming an axisymmetric
bridge, and the rods are pulled apart with velocity V extending the thread, as illustrated
in Figure 4.6.1(a). A force is required to pull the rods apart and thus overcome the normal
component of the hydrodynamic traction imparted by the fluid to the tips of the rods, so
that

i (4.6.2)

where p is the pressure discussed in Section 4.5 in the context of hydrostatics, Our intu-
ition suggests that the faster the rods are pulled apart, the higher the magnitude of the
normal component of the traction. The greater the distance between the rods, the lower the
magnitude of the normal component of the traction.
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For most common fluids, a linear relationship exists between the traction, the velocity
of the rods, and the inverse of their distance, so that

o v
F5 = =p+ 2 prex (4.6.3)

f 9
where L is half the instantaneous distance between the rods and jieyt is a physical constant
associated with the fluid called the extensional viscosity of the fluid.

Shearing of a layer

In another experiment, a fluid is placed in a channel confined between two parallel plates.
The upper plate translates in the direction of the z axis parallel to itself with constant
velocity V', while the lower plate is held stationary, as depicted in Figure 4.6.1(b). A force
in the x direction must be exerted on the upper plate to balance the tangential component
of the traction developing due to the fluid motion, so that

) +£o. (4.6.4)

The faster the velocity of the translating plate, the higher the magnitude of the traction;
the greater the distance between the two plates, the lower the magnitude of the traction.

For most common fluids, a linear relationship exists between the traction, the velocity
of the moving plate, and the inverse of the distance between the plates, h,

\%4
ffw = Mshear 7 (4.6.5)

where fishear 1S & physical constant associated with the fluid called the shear viscosity of the
fluid.

4.6.1 Simple fluids

We have demonstrated by example that stresses develop in a fluid as a result of the motion.
To proceed further, we consider the tractions developing at the surface of a small fluid parcel
in motion and argue the following properties characterizing a simple fluid:

e If a fluid parcel translates, rotates, or translates and rotates as a rigid body, tractions
do not develop at the parcel surface.

e Tractions develop only when a parcel deforms.

e The distribution of traction over the parcel surface at any particular time instant
depends only on the type and rate of deformation of the parcel at that particular time
instant.

Our analysis of kinematics in Chapter 2 has revealed that a small spherical fluid parcel in mo-
tion deforms to obtain an ellipsoidal shape whose axes are parallel to the three eigenvectors
of the rate-of-deformation tensor given in Table 2.1.1. The directional rates of deformation
are equal to the corresponding eigenvalues.
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Table 4.6.1 Components of the stress tensor for an incompressible Newtonian fluid in Cartesian
coordinates.

Temperature (°C)  Water (cp) Air (cp)

20 1.002 0.0181
40 0.653 0.0191
80 0.355 0.0209

Table 4.6.2 The viscosity of water and air at three temperatures; cp stands for centipoise, which is
one hundredth of the viscosity unit poise defined as 1 g/(cm sec). Thus, cp= 10"2g/(cm sec).

With these observations as a point of departure, we proceed to relate the stress tensor to
the physical properties of the fluid and to the structure of the velocity field by a constitutive
equation.

4.6.2 Incompressible Newtonian fluids

The constitutive equation for an incompressible Newtonian fluid reads
o=-pl+pu2E, (4.6.6)

where p is the pressure, the coefficient p is the fluid viscosity, sometimes also called the
dynamic viscosity, and E is the rate-of-deformation tensor given in Table 2.1.1. Note that
the Newtonian constitutive relation respects the symmetry of the stress tensor discussed
at the end of Section 4.2. Explicitly, the components of the stress tensor are given by the
matrix equation shown in Table 4.6.1. The viscosity of water and air at three temperatures
is given in Table 4.6.2.

In the absence of flow, we recover the hydrostatic stress tensor defined in equation
(4.5.6), involving the hydrostatic pressure alone.

Unidirectional shear flow

As an example, we consider flow in a two-dimensional channel confined between two parallel
plane walls. The motion of the fluid is generated by the translation of the upper wall, as
shown in Figure 4.6.1(b). Physical intuition suggests that, at low and moderate velocities,
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the fluid will translate along the x axis with a position-dependent velocity u, varying along
the y axis; to signify this dependence, we write u, (y). Using equation (2.1.28), we find that
the rate-of-deformation tensor is given by

1 0 ddum
1
E - 5 d’U,;I; J . (467)
dy
Substituting this expression into the right-hand side of (4.6.6), we obtain the stress tensor
duy
PR
o = d’ll,_»l/- ‘ . (468)
4 dy D

The off-diagonal components involving the local slope of the velocity profile, du,/dy arise
as a result of the fluid motion.

The x component of the traction exerted on a fluid surface that is perpendicular to the
y axis, identified as the shear stress, is

duy

= UK Ty. (4.6.9)

f;y) = Oys
Physically, this traction can be attributed to the friction experienced by adjacent fluid layers
as they slide over one another with gradually varying velocities.

4.6.3 Viscosity

Strictly speaking, the viscosity of a Newtonian fluid is a proportionality coefficient relating
the stress tensor to the rate-of-deformation tensor, as shown in equation (4.6.6). However,
it is reassuring to know that this mathematical definition, established by phenomenological
observation, has a firm physical foundation. In fact, the viscosity is a genuine physical
property dependent on the local physical conditions, including the temperature.

As the temperature increases, the viscosity of liquids decreases whereas the viscosity
of gases increases, as shown in Table 4.6.2. This dichotomy is a reflection of the differ-
ent physical mechanisms that are responsible for the development of stresses in these two
complementary classes of fluids.

In the case of liquids, the viscosity is due to occasional molecular excursions from a
mean position to neighboring empty sites. In the cases of gases, the viscosity is due to the
relentless molecular excursions from regions of high velocity to regions of low velocity in the
course of random motion due to thermal fluctuations.

4.6.4 Viscosity of a gas

To demonstrate the relation between molecular and macroscopic fluid motion, we consider
a gas in unidirectional shear flow and derive an expression for the viscosity in terms of
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molecular properties. In the simplest kinetic theory, the molecules are modeled as rigid
spheres moving with the local fluid velocity defined in Section 1.4, and with a randomly
fluctuating velocity. The square of the average magnitude of the fluctuating component is
8 kT

7P = 2 4.6.10

ST E M (46.10)
where kg is the Boltzmann’s constant, 7' is the absolute temperature, and M is the molecular
mass. In the course of the random motion, two molecules occasionally collide after having
traveled an average distance equal to the mean free path, \.

Consider a macroscopically stationary gas with vanishing fluid velocity. The number
of molecules crossing an infinitesimal surface area during an infinitesimal time interval as a
result of the fluctuating motion is denoted by 7crossing. Using principles of statistical me-
chanics, we find that nepossing 1S proportional to (a) the number of molecules per infinitesimal
volume, defined as the number density n, and (b) the average magnitude of the fluctuating
velocity, v. It can be shown that

1 _
Necrossing = 7 N V- (4611)

The units of Nerossing are number of particles over time and length squared.

A molecule crossing a surface at a particular instant has collided with another molecule
above or below the surface at an average distance a. Using principles of statistical mechanics,
we find that

A, (4.6.12)

where A is the mean free path. Relations (4.6.11) and (4.6.12) have been derived taking into
consideration that, since the molecules move randomly in all directions, only one component
of the velocity brings them toward the crossing surface under consideration.

Relations (4.6.10)—(4.6.12) also hold true when the fluid exhibits macroscopic motion,
provided that the molecular velocity is computed relative to the average velocity at the
position where a molecule last underwent a collision.

Momentum transport

Shown in Figure 4.6.2 is a schematic illustration of the instantaneous distribution of molecules
in a gas undergoing unidirectional shear flow along the x axis. Without loss of generality,
we have assumed that the fluid velocity increases in the positive direction of the y axis. In
the course of the motion, gas molecules cross a horizontal plane corresponding to a certain
value of y, drawn with the heavy horizontal line, from either side. Because the x velocity of
molecules crossing from above is higher than the x velocity of molecules crossing from below,
2« momentum is transferred in the negative direction of the y axis. The rate of transport of =
momentum across a surface that is perpendicular to the y axis amounts to a hydrodynamic
traction, fi¥.
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Figure 4.6.2 A molecular model of a gas in shear flow is used to derive an expression for the viscosity
in terms of molecular properties, as shown in equation (4.6.17).

The rate of momentum transport defined in the last paragraph can be quantified by
setting
fW = - M (0L inets — Moossing¥a ), (4.6.13)

crossing “'x crossing “x /7

where u,, is the fluid velocity and the superscripts + and — indicate that the superscripted
variable is evaluated at a distance equal to a above or below the transport surface. Effec-
tively, the collection of molecules crossing the y plane during an infinitesimal period of time
are represented by model molecules distinguished by the following two important properties:

e The model molecules last underwent a collision at a distance a above or below the y
plane.

e The model molecules move with an average velocity that is equal to the local fluid
velocity evaluated at the position of the last collision.

Because the flow is unidirectional, the mean fluid velocity normal to a horizontal plane is
zero and the number of molecules crossing the y plane from either side during an infinitesimal
time period are equal,

o =n (4.6.14)

Nerossing — Merossing -
Combining equations (4.6.11)-(4.6.13), we obtain
O = MLng Ug —Up 4y (4.6.15)
i 7 2a 3

Since a is small compared to the macroscopic length scale of the shear flow, the fraction on
the right-hand side can be approximated with a derivative, yielding the final result
du,

: 1 o
W = 3 nMTA TR (4.6.16)
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Now comparing equations (4.6.16) and (4.6.9), we derive an expression for the viscosity
of a gas in terms of the number density, n, the molecular mass, M, the magnitude of the
fluctuating velocity component, v, and the mean free path, A\,

=5 nMTA. (4.6.17)

The units of the four terms on the right-hand side following the numerical fraction % are as
follows:

Particle Mass Length Mass

Length = —————, 4.6.18
X Leng Length Time’ ( )

X : X :
Volume  Particle Time
as required.

We have derived the Newtonian constitutive equation from molecular considerations
and obtained a prediction for the viscosity of a gas in terms of molecular properties.

4.6.5 Ideal fluids

If the viscosity of a fluid vanishes, the fluid is frictionless and is called ideal. The stress
tensor in an ideal fluid is given by a simplified version of (4.6.6),

o=—-pL (4.6.19)

However, in practice, no fluid is ideal and the absence of viscosity should be interpreted
strictly as insignificance of hydrodynamic forces or stresses associated with the fluid viscosity.
Viscous stresses are always important near solid boundaries, as discussed in Chapter 10. The
formal requirement for viscous stresses to be negligible will be discussed in Chapter 6 with
reference to the Reynolds number.

4.6.6 Significance of the pressure in an incompressible fluid

The physical interpretation of the pressure in the Newtonian constitutive equation (4.6.6),
or any other constitutive equation, is not entirely clear. Strictly speaking, the pressure is a
mathematical entity defined in terms of the trace of the stress tensor,

p= f% trace(o) = f% (Ozz + Oyy + 022). (4.6.20)

All we can say with confidence is that, as a fluid becomes quiescent, the dynamic pres-
sure reduces to the hydrostatic pressure computed from consideration of random molecular
motions.

In the case of compressible gases, an equation relating the pressure to the density to
the temperature can be derived working in the framework of equilibrium thermodynamics,
as discussed in Section 4.7



4.7 Pressure in compressible fluids 215

PROBLEMS

4.6.1 Flow in a channel.

Consider steady unidirectional flow in a channel due to the translation of the upper wall, as

depicted in Figure 4.6.1(b).
(a) Perform a force balance over a rectangular fluid layer confined between two y levels to
show that, if the pressure is uniform, the shear stress féy) must be independent of y.

(b) Having established that féy) is constant, solve the first-order differential equation (4.6.9)
for u, in terms of y subject to the no-slip boundary conditions u,(y = 0) = 0 and wu,(y =

h) =V, and evaluate fw(y) in terms of u, V, and the channel width, h.

4.6.2 Extensional flow

(a) Consider a two-dimensional extensional flow in the xy plane with velocity components
Uy = &x, uy = =&y, (4.6.21)

where £ is the rate of extension with units of inverse time. The corresponding pressure field
is uniform throughout the domain of flow. Confirm that the fluid is incompressible, sketch
the streamline pattern, and evaluate the stress tensor.

(b) Repeat (a) for axisymmetric extensional flow with Cartesian velocity components
U, = &x, Uy = 7% &y, Uy = —= £. (4.6.22)

(¢) The axisymmetric extensional flow discussed in (b) describes the motion inside the
thread illustrated in Figure 4.6.1(a). Assuming that the fluid is Newtonian, compute the
force necessary to pull the rods apart with velocity V in terms of the half-length of the
thread, L, the fluid viscosity, i, and the cross-sectional area of the rods, A.

4.7 Pressure in compressible fluids

Consider a small fluid parcel of a compressible gas with volume V. To decrease the volume
of the parcel by a differential amount, dV', we may apply an external pressure, p, by way of
an ideal frictionless piston. The differential work required to carry out this reduction is

W = —pdV = —pndv, (4.7.1)

where n is the number of moles contained in the parcel and v is the specific volume defined
as the volume occupied by one mole of gas; by definition,

V = nv. (4.7.2)

In our experiment, dV and dv are both negative due to compression, while dW is positive.
In the case of expansion, dV and dv would be both positive, while 6/ would be negative,
indicating that energy would be released instead of supplied.
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The notation §W emphasizes that the differential work can be computed only after the
frictional properties of the piston have been specified. In formal thermodynamics, we say
that W is an inexact differential.

Part of the work in compression or expansion is spent to increase the temperature of the
parcel, T, by a differential amount, dT, and therefore the internal (thermal) energy of the
parcel, U, by a differential amount, dU. The remainder of the work escapes as a (negative)
process-dependent heat loss, 6Q).

Energy conservation for a closed system in the absence of significant kinetic or potential
energy requires that

dU = oW +6Q, (4.7.3)
which can be rearranged as
oW =dU — Q. (4.7.4)

A certain change in internal energy, dU, can be achieved by different combinations of §W
and Q) satisfying this equation.

Reversible process

To quantify the heat loss in the case of a reversible process, we write
0Qrey = T'dS, (4.7.5)
and obtain
Wiey = dU —T°dS, (4.7.6)

where S is the entropy. Dividing this equation by the number of moles of the gas, n, we
obtain

OWrey = du — T'ds, (4.7.7)

where

W U S

w=—, u=—, §=— (4.7.8)
n

are the specific work, specific internal energy, and specific entropy.

Now substituting into (4.7.7) the expression dw,ey = —pdv and rearranging, we derive
a process-independent differential relation in the absence of inexact differentials,

du =Tds —pdwv. (4.7.9)

If the specific volume of a gas is made to change by the same small amount, dv, according
to two different processes, the corresponding changes in the specific internal energy, du, and
specific entropy, ds, will be such that equation (4.7.9) is satisfied in both cases.
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Ideal gas

The specific internal energy of an arbitrary gas depends on the temperature, T', and specific
volume, v. Due of the absence of intermolecular forces, the specific internal energy of an
ideal gas depends on the temperature alone. The change in the specific internal energy is
given by

du = ¢, dT, (4.7.10)

where ¢, is the specific heat capacity under constant volume. Substituting this equation
into the balance equation (4.7.9) and rearranging, we find that

Cy p
= —dT + = d1 7.
ds T dT + Tdu, (4.7.11)
which shows that
Co _ (ﬁ) _ (4.7.12)
T aT 7)/

that is, the ratio ¢, /T is the partial derivative of the specific entropy with respect to the
temperature under constant volume. For a mono-atomic ideal gas, ¢, = % R. For a diatomic
ideal gas, ¢, = gR.

Change of entropy

Now solving the equation of state for an ideal gas, pv = RT, for the pressure, and substi-
tuting the result into (4.7.1), we find that

d/
Sw=—pdv=—RT . (4.7.13)
v
Substituting this expression into the balance equation(4.7.11), we obtain
dov dT
—R— =c¢, — —ds. 4.7.14
v “ T ’ ( )
Rearranging, we derive an expression for the change in the specific entropy,
dr d
ds=c, o= + R, (4.7.15)
T v

applicable for an ideal gas.

Next, we treat ¢, as a constant and integrate (4.7.15) between two states labeled A and
B to derive an expression for the difference in entropy,

T
As=sg —5sp =c, In B RIn U—B, (4.7.16)
TA VA
which can be rearranged into
T Cy R
As=sg—sp =1n [(—B) (U—B> } (4.7.17)
A UA



218 Fluid Dynamics: Theory, Computation, and Numerical Simulation

For example, in the case of constant pressure, pg = pa, we use the equation of state to
write vg/va = T /Ta and

T
As=c,In=2, (4.7.18)
Ta

where ¢, = ¢, + R is the specific heat capacity under constant pressure.

Isentropic compression or expansion

In the case of a constant entropy (isentropic) reversible process, sg = sa, the general
equation (4.7.17) for an ideal gas yields

(%)(%)R =1 (4.7.19)

and thus

TR = A (4.7.20)

)

where A is a constant. This equation provides us with a relation between the specific volume,
v, and the temperature, T. Introducing the density, p = M /v, we write

T¢ = Bp¥, (4.7.21)

where M is the molecular weight and B = A/M" is a new constant. Using the ideal gas
law expressed in the form

_ Mp
=R

T (4.7.22)

we eliminate the temperature and thus obtain a relation between the density and the pressure
in an ideal compressible gas in isentropic transition,

p= Dp", (4.7.23)

where D is a new constant and

wtR ¢

C?) CU

k= (4.7.24)

is the heat capacity ratio.

Speed of sound

The square of the speed of sound, ¢, is given by the formula

2= (%) (4.7.25)
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The right-hand side is the derivative of the pressure with respect to the density at constant
entropy. Using (4.7.23), we find that

Z=Dkpt 1 =2, (4.7.26)
P
and then
RT
2
2_ BT 4.7.27
7 (4.7.27)

The higher the temperature, the faster the speed of sound, in agreement with physical
intuition.

PROBLEM

4.7.1 Speed of sound in the atmosphere

Use equation (4.7.27) to predict the speed of sound in the atmosphere regarded as an ideal
gas with k£ = 1.4 and molecular mass M = 28.97 kg/kmole at 25° C.

4.8 Simple non-Newtonian fluids

The Newtonian constitutive law for an incompressible fluid, expressed by equation (4.6.6),
describes the stresses developing in a fluid consisting of small molecules. Fluids containing or
consisting of macromolecules, such as polymeric solutions and melts, and fluids containing
suspended rigid or deformable particles, exhibit a more complicated behavior described
by more involved constitutive equations. Examples include pastes, bubbly liquids, and
biological fluids, such as blood.

To derive a constitutive equation for a non-Newtonian fluid, we consider the motion of a
small fluid parcel and seek to establish a relation between the instantaneous traction exerted
on the parcel surface, expressed in terms of the stress tensor, o, and the entire history of
the parcel deformation. In the simplest class of materials, the traction depends only on the
instantaneous rate of parcel deformation expressed by the rate-of-deformation tensor, E.

A distinguishing feature of a non-Newtonian fluid is that the relation between the stress
tensor, o, and the rate-of-deformation tensor, E, is nonlinear. In contrast, the corresponding
relation for a Newtonian fluid is linear.

4.8.1 Unidirectional shear flow

In the case of two-dimensional unidirectional shear flow along the z axis, the Newtonian
shear stress, given by

duy
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can be generalized by allowing the viscosity to depend on the magnitude of the shear rate,
|du, /dy|, where the vertical bars indicate the absolute value. If the viscosity decreases as the
shear rate increases, the fluid is shear-thinning or pseudo-plastic. If the viscosity increases
as the shear rate increases, the fluid is shear-thickening or dilatant.

Physically, the dependence of the viscosity on the shear rate is attributed to changes
in the configuration of molecules, changes in the shape and relative position of particles
suspended in a fluid, and to the spontaneous formation of internal microstructure due to
intermolecular force fields and other particle interactions.

Power-law fluids

The shear stress developing in a certain class of non-Newtonian fluids in unidirectional
shear flow can be described by the Ostwald-de Waele model. In this model, the viscosity is
proportional to the magnitude of the shear rate raised to a certain power,

n—1

; (4.8.2)

duy,

dy

K= Ho

where pi is a reference viscosity and n is the power-law exponent. When n = 1, we obtain
a Newtonian fluid with viscosity po; when n < 1, we obtain a shear-thinning fluid; when
n > 1, we obtain a shear-thickening fluid.

Substituting (4.8.2) into expression (4.6.9), we derive an expression for the shear stress,

dug
dy

n—=1 duy,,

fiy) = Oyx = M0 (483)

dy

When n = 1, we recover the Newtonian shear stress.

4.8.2 Channel flow

As an application, we consider flow in a channel due to the translation of the upper wall with
velocity V', as illustrated in Figure 4.6.1(b). Performing a force balance over a rectangular
fluid layer, we find that, if the pressure is uniform, the shear stress, oy, is independent of
y and the right-hand side of (4.8.3) is constant (Problem 4.5.1).

The fluid velocity at the upper wall located at y = h is equal to the wall velocity, V,
while the fluid velocity at the stationary lower wall located at y = 0 is zero. Integrating
equation du,/dy = ¢, where ¢ is the constant shear rate, and using the aforementioned
boundary conditions, we derive a linear velocity profile with shear rate

du, V

= —, 4.8.4
dy h’ (4.84)

independent of the value of the power-law exponent, n.

Although the velocity profile is linear for any value of n, the magnitude of the shear
stress depends on n, as shown in equation (4.8.3). This distinction emphasizes that the
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Y, du,/dy

Figure 4.8.1 Rheological response of a Bingham plastic showing a yield-stress behavior in unidirec-
tional flow.

kinematic appearance of a flow does not necessarily reflect the magnitude of the stresses
developing in the fluid. Two flows that are kinematically identical may support different
stress fields.

4.8.3 Yield-stress fluids

A class of heterogeneous fluids, called Bingham plastics, flow only when the shear stress
established due to the motion exceeds a certain threshold. Examples include pastes and
concentrated suspensions of fine particles. An idealized constitutive equation between stress
and shear rate for this class of materials is

du,

&y =0 if oyl <m0 (4.8.5)

and

duy,

dy

f;y) = Oyg =T0+ 14 if loys| > 0, (4.8.6)
where 1 is the viscosity and 7y is the yield stress. The relation between the shear stress and
the shear rate is represented by the solid line in Figure 4.8.1.

As an application, we consider the familiar unidirectional flow in a channel confined
between two parallel walls, generated by exerting on the upper wall a force, F', parallel to
the x axis. If the fluid is a Bingham plastic whose rheological behavior is described by
equations (4.8.5) and (4.8.6), a shear flow across the entire cross-section of the channel will
be established only if the externally imposed force F' over a certain length of the channel,
L, counteracting the shear stress, oy, = F/L, is greater than the yield-stress threshold, 7.

Assuming that this occurs, we treat oy, as a constant, solve equation (4.8.6) for du, /dy,
and then integrate with respect to y subject to the boundary condition u,(y = 0) = 0 to
obtain a linear velocity profile,

— 7). (4.8.7)
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The velocity at the upper wall is
uy(y =h) = — (Z —70)=V. (4.8.8)

In practice, equation (4.8.8) allows us to estimate the values of the physical constants u and
7o from laboratory observations.

PROBLEM

4.8.1 Yield-stress fluid

The relation between the shear stress and shear rate for a class of yield-stress fluids in
unidirectional flow is described by the broken line in Figure 4.8.1, where ~. is the critical
shear rate.

(a) State the equations describing this rheological behavior.

(b) Compute the shear stress established in a channel with parallel walls, where the upper
wall translates with velocity V' while the lower wall is held stationary.

4.9 Stresses in polar coordinates

We have discussed tractions and stresses in Cartesian coordinates. In practice, it is often
convenient to work in cylindrical, spherical, or plane polar coordinates, with the benefit of
reduced algebraic manipulations and ease in the implementation of boundary conditions. In
this section, we define the components of the stress tensor in polar coordinates and relate
them to the pressure and to the corresponding components of the rate-of-deformation tensor
using the constitutive equation for an incompressible Newtonian fluid.

4.9.1 Cylindrical polar coordinates

Consider the cylindrical polar coordinates, (z, o, ¢), depicted in Figure 4.9.1(a). The trac-
tion exerted on a small surface that is perpendicular to the x axis, £*), acting on the side
that faces the positive direction of the z axis, can be resolved into its cylindrical polar
components as

where e, e,, and e, are unit vectors pointing, respectively, in the axial, radial, and az-
imuthal direction. Note that the orientation of e, is constant, whereas the orientations of
e, and e, change with position in the flow.

The traction exerted on a small surface that is perpendicular to the distance from the
x axis, £(?), and is thus parallel to the axial and azimuthal directions at a designated center
of the surface