Chapter 14

A Radial Framework for Estimating
the Efficiency and Returns to Scale
of a Multi-component Production
System in DEA

Jingjing Ding, Chenpeng Feng, and Huaqing Wu

Abstract This chapter provides radial measurements of efficiency for the produc-
tion process possessing multi-components under different production technologies.
Our approach is based on the construction of various empirical production possi-
bility sets. Then we propose a procedure that is unaffected affected by multiple
optima for estimating returns to scale. The theoretical connections between the
traditional black box and the proposed multi-component approach are established,
which ascertains consistency in estimating the efficiency and returns to scale.
Moreover, we introduce two homogeneity conditions, which clarify the difference
between our approach and the existing one, and are important for evaluating
performance in multi-component setting. Finally, an empirical study of the pollu-
tion treatment processes in China is presented, and compared to the results from
black-box approach. Many insightful findings related to the operations of the
pollution treatment processes in China are secured.
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14.1 Introduction

We consider the estimation of the efficiency and returns to scale (RTS) for a
production system which can be modeled as having multi-components based on
data envelopment analysis (DEA). There are many production systems bearing this
situation. For example, Beasley (1995) studied the performances of universities,
each of which had two components: research and teaching. Cook et al. (2000)
modeled a banking production system as having two components: service and sales.
We are mainly concerned with radial measurements, and the theoretical connection
with the existing black-box approach.

DEA is a nonparametric technique for measuring the relative efficiencies of a set
of peer decision-making units (DMUs) involving multiple inputs and outputs.
Charnes et al. (1978) first introduced it. In this pioneer paper, the authors
constructed a nonlinear programming model to evaluate the efficiency of activity
conducted by a non-profit organization. The model is known as the CCR model in
the literature. As is known, the CCR model captures both technical and scale
inefficiencies. Banker et al. (1984) proposed a new model (BCC model) which
extended the CCR model by separating technical efficiency and scale efficiency.
Recently, DEA has been extended to many areas in management science and
operational research field.

At the early stage of development, DEA treats a DMU under evaluation as a
black box. Thus, it cannot provide users with specific information concerning the
sources of inefficiency within an organization. Fire and Grosskopf (2000) intro-
duced a network DEA technique, which opened the black box, and explicitly
modeled the internal mechanism of a DMU. Lewis and Sexton (2004) also
published a research paper in this direction. Fire and Grosskopf (2000) and
Lewis and Sexton (2004) proposed radial measurements of efficiency in network
DEA literature. By contrast, Tone and Tsutsui (2009) extended radial measure-
ments in network DEA to non-radial measurements of efficiency by introducing
slack-based network DEA model. Kao and Hwang (2008) and Kao (2009a, b)
proposed models for evaluating DMUs with serial network structure, parallel
network structure and the mixture of the above two structures. DMUs with a
two-stage production process have been extensively studied both from a theoretical
and from a practical perspective. Included among these studies are Liang
et al. (2008) and Chen et al. (2006, 2009a, b, 2010). We refer the reader to review
papers, such as Cook et al. (2010) and Castelli et al. (2010) for more references.

The value of returns to scale (RTS) measures the percentage change in output
from a given percentage change in inputs in economic theory. Unlike main
researches in economic literature, which are concerned about production processes
with a single output, extensions to the situations of multiple outputs are spurred by
Banker et al. (1984). Since then, RTS has been studied extensively. Banker
et al. (2004) published an excellent review on different methods used to handle
RTS. According to the paper, there are two approaches followed in the literature to
study RTS. The first approach is proposed by Fire et al. (1985, 1994) and the other
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one is devised by Banker et al. (1984). In this paper, we follow the first approach,
which has the advantage of being unaffected by the possible existence of multiple
optima.

The existing papers concerning RTS are mainly based on the black-box assump-
tion. However, very few of these papers deal with RTS, when the black-box
assumption is dropped. Research papers with RTS consideration include Chen
et al. (2009a), Tsai and Molinero (2002). Those two papers both follow the
framework proposed by Banker et al. (1984), and could suffer from the existence
of multiple optima.

Our current paper studies a production process with a multi-component
structure. Before moving on, we firstly differentiate two cases of production
processes having a multi-component according to data availability. The first case
has the data on how the shared inputs and shared outputs are split among sub-
decision making units (SDMUs). The second case does not have data on how the
shared inputs/outputs are split among SDMUs. Beasley (1995) and Cook
et al. (2000) investigated models for evaluating performance in the second case,
but did not study the RTS of the productions. In addition, how to extend their
models to treat RTS is not clear. The difficulties are twofold in multi-component
setting: (1) the nonlinearity of the proposed models and (2) the impact of potential
multiple optima on testing RTS by following Banker’s approach. Our work focuses
on production processes with multi-components of (1). In doing so, we avoid the
problem of nonlinearity, to center on investigating RTS.

The contributions of our work mainly lie in three aspects. Firstly, we propose
radial measurements for efficiency evaluation and a procedure to determine the
RTS of a DMU that is unaffected by possible multiple optima. Secondly,
we establish theoretical connection between the black-box approach by
Fire et al. (1985, 1994) and our multi-component approach, which helps to connect
the black-box approach with the network approach, and ensures consistency
between both approaches in dealing with RTS. In addition, two homogeneity
conditions are proposed and are important for evaluating performance in multi-
component setting. They are not pointed out before in the literature. Thirdly, in this
work, we use the proposed method to study the efficiency and RTS of pollution
treatment processes in China based on real data. We model the processes as having
two components, which is different from the traditional approach, and secure
various insightful findings related to the operations of the pollution treatment
processes in China.

The paper unfolds as follows: Section 14.2 proposes a radial evaluation model
under variable returns to scale assumption (14.2.1), and establishes the theoretical
connection of the proposed model to the black-box model (14.2.2). Section 14.3
provides a procedure for determining the RTS of a DMU. Section 14.4 establishes
the theoretical connection of the proposed approach for estimating RTS to Fire
et al. (1985, 1994). In Sect. 14.5, we apply the prospective method to study
the performance of pollution treatment processes in China. Section 14.6 concludes
the paper.
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14.2 Radial Performance Measurement
for a Multi-component System

A production unit (denoted as a DMU) with multi-component structure studied in
this paper is depicted in Fig. 14.1. The DMU consists of two sub-decision-making
units (SDMUs) without loss of generality. It is assumed that some inputs of DMU
are shared by SDMU, and SDMU),, and some outputs are the results of SDMU,; and
SDMU,. In addition to shared inputs and outputs, there are inputs and outputs of the
DMU dedicated to, or are the results of, SDMU,; or SDMU, exclusively. We
assume to deal with n DMUs in this paper. In the sequel, when referring to a
specific DMU, we denote it by a subscript j, that is, DMU;, SDMU;, and SDMUy;
(j=1,....n).

The variables in Fig. 14.1 are defined as follows: X; = (x],...,x}) indicates

m inputs dedicated to SDMUy; X, = (x%, .. ,x%) indicates s inputs dedicated to
SDMU,; X, = (x{,...,x}) indicates / inputs shared by SDMU; and SDMU,; ¥ =

(y1,...,y!) indicates s outputs produced exclusively by SDMUj; Y, = (y%, . ys)

indicates ¢ outputs produced exclusively by SDMU,; Y, = (y{,...,y;) indicates
u outputs produced together by SDMU; and SDMU,. When referring to the specific
data of DMUj, we shall use a secondary index ;. For instance, the m inputs dedicated to

SDMU|;, the SDMU; of DMU;, are denoted as X ; = (x}_,, oA )

tmj

We differentiate two cases of production processes with multi-component struc-
ture according to data availability. In the first case, the data on how the shared
inputs and shared outputs are split between SDMU,; and SDMUj, are available. In
this case, weuse X1 = (¥, ..., "), Xp = (x2,...,x?),and Yy = (v{,...,»3)),
Yo = (y{z, R yflz) to denote the observational data fulfilling X; = X, + X, and
Y, =Yy + Y. Note that these are component wise additions indicating X (i) =
X1 (D) +X(0), 0,. ., and Y(j) =Y1(j) + Y2(j), = 1,. . .,u. In the second case, it is
not known how the shared inputs/outputs are split. We deal with the former case in
this paper.

To be specific, we take pollution treatment processes in China as an example.
If we are going to investigate the performances of pollution treatment processes in
all provinces, provinces are naturally modeled as DMUs. When the black box of a

Fig. 14.1 Structure of

multi-component system X, Y.
SDMU,

Xs Ys

X, Y:
SDMU:
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DMU is opened, it can be found that cities can be further classified into two
SDMUs: capital city and non-capital cities. The capital city is the political,
economic and cultural center of a province. Thus, the environment beyond the
control of the management of the pollution treatment process in capital city and
non-capital cities is arguably different. This makes sense: For example, a capital
city often consumes more inputs such as capital inputs: pollution treatment
facilities. As will be shown in this paper, the average capital city consumes
approximately more than one fifth of the total inputs, but produces less than one
fifth of the total outputs. In this case, we might reasonably claim that the capital city
consumes more inputs as compared with noncapital cities.

14.2.1 Basic Model

Let us begin with the construction of production possibility set (PPS) of each
SDMU. Based on the PPS of SDMUs, the PPS of a DMU is derived. We assume
first variable returns of scale for all SDMUs. Note that the PPS considered is similar
to that in Tsai and Molinero (2002).

The PPS of SDMU;:

n
Zﬂlxljgx 1, mZ/ly,jzy,'.,rzl,...,s
j=1
n
TVRS = L (X' D[ D A <xli=1, ... lZAy >ylr=1,...,u
j=1

1 _ 1
sz =1LA>0
J=

(14.1)

where (Xl,Yl) = (x%,...,x,il,xll,...,x,”,y%,...,ysl,y‘il,...,yfll).
The PPS of SDMU,:

Zﬂxlj<xl, —1,...,h,lenyij%,rzl,...,q
VR = { (x%,7?) Zzz <=1, ... IZzzy,j_y,,~_1,...,u

2,12_1,12>0

(14.2)

2 y2\ _ 2 2 52 s2 1,2 2,52 52
where(X,Y)—(xl,...,xh,xl,...,xl ,yl,...,yq,yl,...,yu).
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The PPS of DMU:
n n n
1 . s 2 s s
oAb <ali=1.m> A 4> A <xti=1,...1
=1 =1 =1
n
Zlfxizjgxiz,iz1,...,h,Zl}y}ij},,rzl...s
=1
TVRS: (X,Y) J

n n n
D Ay D Ay Zyr =Ly Ay ziir=1ig
J=1 =1 =1

1 _ 2 _ 1 42
Zl:lj —I,Z;Aj =1.2},27>0
J= J=

(14.3)

_ 1 1 s s 2 AN | 1 s s 2 2
Where(X,Y)—(xl,...7xm,xl,...7x,,x1,...,xh,y],...,ys,y],...,yu,yl,...,yq)

It should be noted that the PPS of DMU is the addition of the PPS’s of SDMU;
and SDMU,. We assume that if SDMU; (X!, ¥/) and SDMU, (X°, Y?) are
possible, then one can set up a DMU consisting of a SDMU,; and a SDMU,. Most
importantly, the two SDMUs do not interfere with each other and carry out (X', ¥7)
and (X°, Y?) independently. The result is then that DMU built in this way consumes
X" +X?), and produces (Y’ +Y?).

The performance of a DMU can be measured under two different situations: first,
price information is given, and second, prices are not available. In the latter
situation, Shephard’s input distance function is a frequently used measurement
(Shephard’s 1970). Suppose L(Y) is the input requirement set derived from 7"*5.
Shephard’s input distance function is given below.

D(X,Y) =max{A:X/A€L(Y),A €R} (14.4)
Clearly, D(X, Y) is greater than or equal to 1, ifX € L(Y), with D(X,Y) = 1, if and

only if it is impossible to improve input vector X proportionately without worsening
the output vector. Let @ = 1/4. It follows that

[D(X,Y)]"" = min{#: 6X € L(Y)} (14.5)

According to (14.3) and (14.5), the performance of DMU, with multi-
components can be estimated by the following linear programming model.
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0, = min

2
s.t. ZZA ka < Ox} i=1,...,1(shared inputs)

ZA, x} < ox), i=1,...,m (inputs dedicated to SDMU) )

En:,lfx,?j < Ox7, i=1,...,h (inputs dedicated to SDMUy)

=1

ZZ& >y, r =1, ...,u (shared outputs) (14.6)
zn:/lj! Y= r=1,...,s (outputs produced by SDMU; )
ii}y% >y r =1, ...,q (outputs produced by SDMU,)

=1

=
AF>0k=1,2, j=1....n

where the decision variables are /1}" (G=1,...,n; k=1,2) and 6. It should be

noted that xj;, x}¥, y}; and y'} are observational data that correspond to the types of

inputs and outputs labeled in (14.6).

14.2.2 Theoretical Connection with Black-Box Approach

In this section, we formally derive the black-box equivalent PPS that corresponds to
TV®S, which can give an insight into model (14.6). Before moving on, we assume
that the structure depicted in Fig. 14.1 consumes all inputs shared by SDMU,; and
SDMU,, and all the outputs of DMU are the results of SDMU; and SDMU,. We

adopt the convention that DMU consumes m inputs X; = (xlj, e ,xmj) and pro-

duces s outputs Y; = <y1 oo ysj) . Thus, based on the notations provided above for
DMUs with multi-component structure, the assumption here implies that X]S-k =
(x{f, . ,xfnkj) and Y"‘ (va . ,yjjk) with X;l +X;2 =X/ =X;, and
Yj-' + sz = YjS =Y;. Later in the paper, the s in the superscript is deleted for
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Fig. 14.2 Structure of
DMU with all shared inputs 1
d outputs )(51 SDMU, Ys
an .
X, Y.
2
X SDMU. Y*

simplicity. In cases where inputs or outputs are not entirely shared by SDMU, and
SDMU, (See Fig. 14.1), the values of those inputs/outputs dedicated to SDMU,
(SDMU,) are zeros for SDMU, (SDMU,). Therefore, the structure of the DMU in
Fig. 14.1 reduces to structure provided in Fig. 14.2.

In light of the structure depicted in Fig. 14.2, T}®S, TY®S and T"*® in the previous
section are rewritten as follows:

O {CRE) R NE
=1

) (14.7)
Z/lly,]_y,, =1,...,s, /1}—1,/1}20}
" ‘
where (XI,YI) = (x},---7x,]n7)’i,---ay;)~
T\Z/RS _ {(Xz’Y2)|Z’112x5 <x =1,...,m,
j (14.8)

Z/lzyu>y’,r: Looos, Yy 4= 1,&}20}
Jj=1
where (X2,Y?) = («F,...,22,¥1,...,¥%).

2 n
Zz/llkxl’;<x,,lf1 ,m,zz/lky”>y,,r =1,...,s
TVRS _ ()(7 Y) knl Jj= k=1 j=1
Zﬂj]{ = 1”1.1']( >0,k=1,2

J=1

(14.9)

where (X,Y) = (X1, .., Xpy Ypy - o5 V)



14 A Radial Framework for Estimating the Efficiency and Returns to Scale. . . 359

We proceed to give a result on the convexity of TV®S that is necessary for the
exposition of this paper.

T"RS is convex set.

Property 1
Proof Suppose (X1,Y;) and (X5, Y;) belong to TVRS, By definition, there are sets of

n n
nonnegative multipliers /1]’f1 *,A;‘z* with Z/Ifl* =1 and Z/ljl‘f% = 1 such that
J=1 J=1

2 n 2 n

k1% k 1. _ K%k 1
E E /Ij y,_jzy,.,i 71,...,.9,2 E /1j xljgxi,lfl,...,m,
k=1 j=1 k=1 j=1

2 n 2 n
ZZA}Z*)},’.‘] > ylz_,r =1,...,s, ZZ&;‘Z*X!}‘- < xl-z,i =1,...,m.
k=1j=1 k=1 j=1
2 n
For any convex pair a,f, we have Z Z (a/ljl-‘l* + ﬂ/lfz*)y,’; > ay!
=1 j=1
2 n
+B4r=1,...,s, Z (a/}fl* +[)’/1f2*)xl/j? <ax! +p2i=1,...,m, and
k=1 j=1
n .
Z (a/i_fl* —|—ﬂ/1;‘72 )=1. This ensures that aX1,Y1)+ p(X2,Y2) =
=1
(aX1 + pXa,aYy + pY,) € TVES. i

Assumption 1 Assume there are n DMUs, each of which consists of two produc-
tion units SDMU,;, SDMUy;, j=1,...,n using the production technology charac-
terized by T}® and T5*S respectively. Let there be an extended data set (EDS) of n*
distinct DMUs, each of which comprises SDMU;; and SDMU,, with
Lke{l,...,n}.

Let (x;,,;) denote the input and output bundle of DMU; in EDS. Define T}*5,
TSRS, and TS as below, where the superscripts CRS and NIRS, respectively, stand
for constant returns to scale and non-increasing returns to scale:

2
n

T}‘:RS: {(X,Y)‘ZAJXUSX,,I: 1, cee,m,

=1 k

1‘12 nz
/ijrj >y, r=1, ...,S,Zﬁj: 1,4 20}
=1 =1

"2 ﬂz
T}fRS = {(X,Y)‘Z/ljx,-j <x;i=1, ...,m,z/ljyrj >y.r=1,...,84 ZO}
=1

J=1
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n’ ”
" = {(XvY)|Z/1/xz:/ Sani=1loomy dyyZyer=1...s
j=1 k=1

nZ
DALy 0}
=1

where (X,Y) = (X1, .., Xm, Y1y v 5 Ys)-

We now establish that the PPS of the general multi-component system with two
different SDMUs can be recovered by DMUs in EDS through the black-box
approach. The connections between the multi-component PPS’s and the above
mentioned black-box PPS’s are summarized in Theorem 1.

Theorem 1 TXRS = TVRS s TERS = TCRS , and T,[)WRS = TN’RS, where

2
Zz/lffj‘<x,,l—1 ,m,ZEn:/lkyU>yr,r_1 S
=1 /=1

T8 = (x,v)|

Z}I} = z;/l?,/lf >0,k=1,2
j= j=

and

iiﬁj"x{;gx,»,i_l, mZZl]‘y,j>y,,i_1 .., S
TNIRS _ (X7 Y) k:I J=1

Z/ll 2/12<1,1k>0k_12

=1

Proof See Appendix. O

Let us close this section by pointing out the difference between TS and T
which is defined by

k —
A >0,k =1,2}.

Researchers in the literature tend to define 7 as the CRS PPS for the
production system in Fig. 14.1. Tsai and Molinero (2002) is a case in point.
Obviously, the production frontier determined by 7<% is dominated by the one

defined by 7. In Fig. 14.3, we use a set of two DMUs with one input and one
output for illustration.
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DMUA DMUZ
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o
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SDMU21
0 | | | | | |
0 0.5 1 15 2 25 3 35 4
X

Fig. 14.3 Graphical illustration of TCFS and T

Here, DMU,; and DMU, comprise of (SDMU;;, SDMU,;) and (SDMUj,,
SDMU,,) respectively. DMU, and DMUg are generated by combining respec-
tively SDMU; and SDMU,,, SDMU,,; and SDMU.,. In light of Theorem 1, 7<% is
the conic hull constructed by DMU;, DMU,, DMU, and DMUgy_ This is the

region to the right of frontier F,. PPS provided by T is the region to the right
of frontier F.

Figure 14.3 shows that the production frontier of T is determined by SDMUy;.
Apparently, the production process of SDMU is arguably different from that of
DMU. Therefore, the use of SDMU as a benchmarking point for DMU is not
appropriate. To highlight the difference between SDMU and DMU, criteria for
homogeneity are essential. The homogeneity in this context refers to the character-
istic of the efficient frontier that a benchmarking point on the frontier constructed
for evaluating the performance of a DMU should be comparable to the DMU in
terms of the internal production process. Two homogeneity conditions for the
construction of a virtual DMU, i.e., weak condition and strong condition, are
introduced below:

(1) Weak homogeneity condition: ¢#; = 0 if and only if #, = 0.
(2) Strong homogeneity condition: ¢ = t,.
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Clearly, if a virtual DMU built by SDMU,; and SDMU, satisfies the strong
homogeneity condition, the weak homogeneity condition is automatically satisfied.

However, the opposite is not true. Comparing the definition of 7<% with that of

—CRS . . .. .
T, the difference is the distinct requirements of the sum of the levels of ele-

mentary activities involved (i.e., f; = Z;il /1},12 = Z;:l /1]2). Specifically, TERS

requires t; = t,, while T does not. T is claimed to violate the strong
homogeneity condition.

This small example shows that SDMU\; is chosen as a benchmarking point, as
can be seen from Fig. 14.3 where F; is completely specified by SDMU ;. If we do
not set conditions for choosing a benchmarking point, the frontier is arguably too
ideal. The main consequence is the potential under estimation of the efficiency of a
DMU, since an improper benchmarking point is chosen. This specification of
conditions is comparable to the modeling consideration in the evaluation consider-
ing environment constraints. One might expect that the performance of a DMU be
evaluated by comparing it to the DMUSs possessing similar environment character-
istics (See, for example, Ruggiero (1998)).

14.3 Procedure for Estimating the Returns to Scale

In economic theory, the value of RTS measures the percentage change in output
from a given percentage change in inputs. Lety = f(x) denote a production function
for a single-output technology. The production function is said to have IRS if
flax) > af(x), for any a> 1. The production function exhibits DRS if
f(ax) > af (x), for any a € [0,1). If f(ax) =af(x) for all scalars a >0, the
production function exhibits CRS. Banker et al. (1984), who introduced the concept
of Most Productive Scale Size (MPSS) into the DEA literature, spurred extensions
to the situations of multiple inputs and outputs. For a technically efficient DMU,
with input and output bundle (X, Y¢) to be MPSS, the following optimization model
should achieve a value of one. Note that the subscript 0 is usually used to indicate
the DMU under evaluation in the literature. In the sequel, we shall frequently refer
to DMU, when a specific DMU is discussed.

max —
a

st. (aXo,pYo) €T (14.10)

a,p > 0.

where T is the empirical production possibility set. If the optimal value is larger
than 1, it means that either the current input level can be reduced with a less
percentage of losses in outputs, or it can be increased with a larger percentage of
gains in outputs. Therefore, DMUj, can benefit from the adjustment of input levels.
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By analogy, the following model is proposed for testing whether DMU, with multi-
component structure is MPSS, where T in (14.10) is substituted by TVES,

¢

max —
9

s.t. ZZA x"‘ +57 = 6x)) i =1, ...,1 (shared inputs)
Z/llxl + sl’ = xm i=1,...,m (inputs dedicated to SDMU;)
Z/lzxz + 577 = 0x i=1,...,h (inputs dedicated to SDMU,)

ZD!‘yff =t =gy,

Z/l vy — st =y, r =1, ...,s (outputs produced by SDMU; )

1, ...,u (shared outputs)

Zﬂzy, = st =gy, r=1,...,q (outputs produced by SDMU,)

ZAJ."=1 k=1,2,
j=1

,1]." >0,k=1,2,j=1,...,n
(14.11)

Cooper et al. (1996) proposed an approach to transform the above non-linear

model to an equivalent linear model. Firstly, let us divide both sides of the constraints
by ¢. The resulting model is given in (14.12). Secondly, by letting 6/¢ = ¢,
s+/¢_s l+/¢_s1jL 2+/¢_s2+ S /¢_§l , } /¢_sl , 2—/¢:§i27
and /1]-"/¢ = j , we can obtain model (14.13). Since ¢ in (14.13) is a free variable, it
is safe to delete it. Finally, model (14.13) can be further reduced to an equivalent
model (14.14). Note that we call two optimization problems equivalent if from a
solution of one, a solution of the other is readily found, and vice versa.
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i =0
s.t. ZZ'—’XEZ‘—%S’—:—X? i=1,...,I(shared inputs)

" s e : :
Zix-l- +--=-x, i=1,...,m(inputs dedicated to SDMU)

n /12 2—

j o2 Si 0, . . .
ng"f + ? = $Xi0 i=1,...,h (inputs dedicated to SDMU,)
=1
2 n lk s+
ZZ—’y?f —SL:y,?O r=1,...,u(shared outputs) (14.12)
k=1 j=1 ¢ ¢
n ﬂ.l
Z¢ ,]—L—ym r=1,...,s (outputs produced by SDMU; )
n ,12 s2+
Z y,j ZL_=y2  r=1,...,q (outputs produced by SDMU,)
n /lk 1

j

—=— k=12
—~¢ ¢

,1]k,¢20,k:1,2,j:1,...,n

max -

st}2§)¢“+?*: s i=1,...,I(shared inputs)
kl/

Zij x;+ 91_ = }0 i=1,...,m(inputs dedicated to SDMU )

sz xizj —1—512‘ = txiza i=1,...,h (inputs dedicated to SDMU,)

ZZA v =" =y}, r=1,...,u(shared outputs) (14.13)
S-St =y, =
=

ny,zj —52*=y>  r=1,...,q (outputs produced by SDMU,)

>-37

ﬂk>0k—12J—1

—_

, -..,8 (outputs produced by SDMU, )
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= mm L
s.t. ZZ&I xfj" +5 = i =1, ...,1 (shared inputs)
ZA xlj +57 =w)) i =1, ...,m (inputs dedicated to SDMU] )

Z/ll x;+ 52‘ = ,20 i =1, ...,k (inputs dedicated to SDMU,)

22/1 W5 =y, r =1, ...,u (shared outputs)

Z/_ljy}_j —5t =yl r =1, ...,s (outputs produced by SDMU;)

r ro

Z/l Vi — 2=y r =1, ...,q (outputs produced by SDMU,)

D—Z
/1">0k_121_1
(14.14)

Assume that t*,/_ljl‘{;k are the optimal solution to model (14.14). It follows that

# n ® s P # no <% # no 2%
) :I/ijl/ljz and 0 =t¢ :t/zjzl/lj :t/zj:1’1j . Apparently,

Proposition 1 holds.

Proposition 1 Ift" = 1, then DMU is MPSS, and constant returns to scale prevails
at DMU,; Otherwise, the unit is not MPSS.

RTS generally has an unambiguous meaning only if DMUj, is on the efficiency
frontier. For any inefficient DMUO to become efficient, based on the optimal
solutions of model (14.6), it can be projected onto the efficient frontier by formulas
as follows:

(1) y’su - ym —|—S *’yil'a = y/]o +s;~_1*’y/2'0 :y’20 +S;~_2*.

— —s* =1 _ & 1 _ —I* =2 __ * 2 2%
(2) ‘Xlo t ‘Xl(l Si s Xip = t Xio Si X = t Xio Sp 7.

For those who are interested in the projection operation and the concept of
efficient frontier, we recommend Cooper et al. (2004). A full treatment of the topics
is beyond the scope of this paper. Before proceeding to discuss how to determine
RTS of a DMU, we now introduce the scale efficiency of a production unit in
Definition 1.
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Definition 1 Scale efficiency: 65 = /6.

Scale efficiency reflects the RTS characteristic of DMUj,. It should be noted that
if DMUj is not an efficient unit, the scale efficiency actually reflects the RTS
characteristic of the corresponding projection on the efficient frontier by formulas
(14.1) and (14.2). Let us denote it as DMU?, for the convenience of reference.

Obviously, it can be seen that 9; < 1, since the feasible set of model (14.6) is a
subset of the feasible set of model (14.14). If 6’; = 1, DMUj should achieve an
efficiency rating of 1 by model (14.14). If not, it contradicts that 0; =1, ie.,
= 0;. Therefore, by Proposition 1, DMUj; is MPSS. In other words, DMU,
exhibits or is projected onto a region of the efficient frontier exhibits constant
returns to scale.

If 9; < 1, or equivalently, the optimal objective function (¢/0) of model (14.11)
is larger than 1, the current input—output data of DMU; can be improved in
productivity by adjusting the scale of it. This is because the percentage by which
the outputs gain equiproportionate increase due to the adjustment of the scale will
outweigh the percentage by which the inputs increase equiproportionate, or the
input equiproportionate reduction will outweigh the output equiproportionate
reduction. To sum up, if 9; < 1, DMUj is currently not located in CRS region of
the frontier or not projected onto a region of the frontier that exhibits CRS.

Below we provide Proposition 2 to shed light on how to determine whether IRS
or DRS prevail at DMU, with the aid of model (14.15).

Proposition 2. (Conditions for the Determination of RTS (Multi-component))

) If 9; =1, then DMUQO exhibits or is projected onto a region of the efficient
frontier exhibits constant returns to scale.

2) Ifc9§ < 1 and the optimal values of models (14.14) and (14.15) below coincide,
then DMU, exhibits or is projected onto a region of the efficient frontier that
exhibits increasing returns to scale.

3) Ifﬁz < 1 and the optimal values of models (14.6) and (14.15) below coincide,
DMU, exhibits or is projected onto a region of the efficient frontier that exhibits
decreasing returns to scale.

A short proof of the proposition is in order. We consider the condition (2):
9; <1 and the optimal values of models (14.14) and (14.15) coincide. The
condition (3) can be established similarly.

Let le " and Z]T be the optimal solutions of models (14.14) and (14.15). It is clear
that Z,n: . Z/I* = jn: . Z,zx < 1. DMU; can make improvement through output
augmentation since ¢" = 1/ Z,n: . Z; > 1. As DMUj; is technically efficient, the

only way that it can increase the output level is by increasing the level of inputs. As
the percentage by which the outputs increase outweighs the percentage by which
the inputs increase, DMUj, is currently located in the region that shows increasing
returns to scale.
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We have to show now it is impossible to lower its output level, and at the same
time improve the productivity, i.e., achieve MPSS, since we have not checked if
model (14.15) can achieve an value less than that of model (14.6) (i.e., 07) if

n 1 _ n 2 . n 1 o n 2
ijl/lj = ijl/lj <1 is replaced by ijl/lj = Zj:llf > 1. It should be
noted that an optimal value less than 67 in this context indicates DMUj can gain

benefits by lowering its input level. If this were true, the RTS of DMU( will have an
ambiguous meaning, since it can gain positive change in productivity by either
lowering or augmenting its input level.

We claim impossibility by contradiction. Suppose 7111 , Efj, t; and /_15, /_12, t; are the
respective optimal solutions of model (14.15) and the model similar to model (14.15)

n * n * . n * n %

except that Zj: . l}j = Zj: . /1%]» < lisreplaced by Zj: . /léj = Zj: . ﬂgj > 1.In
addition, ZT =< t; < 6; (ie., 6’; < 1). Thus, there exists a convex combination of
the two solutions with /" = at} + (1 — a)t, < 67, and Zjn:l (al}; +(1— a)ﬂ;;) =

Zj,n: . (a/l%; +(1- a)ﬂ%j) = 1, which contradicts the premise that €7 is the optimal

value of model (14.6). Thus, impossibility holds and condition (2) has an unambigu-
ous meaning.

£, =min ¢
2 n i
st Y Y Axf4s =ng  i=1,...,I(shared inputs)
k=1 j=1

n
Zz;x}j +57 =wl  i=1,...,m (inputs dedicated to SDMUj)
J=1

10

n
ZIfx?j +5 =2 i=1,...,h (inputs dedicated to SDMUS,)
=
2 n —x
ZZ&/ yff -5t =y r =1, ...,u (shared outputs)
=1 =1

n
Zz;y}.j —3st =yl r=1,...,s5 (outputs produced by SDMUj)
=1

T

SA =<
j=1 j=1

zjkgo,k: 1,2,j=1,...,n.

n
Z/_lfy,z.j —5*t =32 r=1,...,q (outputs produced by SDMUS,)
=

(14.15)
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14.4 Theoretical Connection Between Black Box Approach
and Multi-component Approach

In this section, we establish the equivalence between the method proposed in the
previous section and the traditional black approach provided by Fire et al. (1985,
1994). This further ensures consistency in transition from black box to multi-
component setting.

The efficiency measurements based on CRS, VRS, and NIRS respectively are
provided as follows:

1. Efficiency index based on CRS;
0, = min 6

S.t. ley,.j > Vo r=1,...,s.
~ (14.16)
Z/ljxijgex,-o l:1, e, m.
j=1

4>0,j=1,...,n%
2. Efficiency index based on VRS;
0,”° = min 6

2
n

s.t. ley,.j > Y r=1,...,s.
J=1

n?
D dpx<Ox,  i=1,...,m (14.17)
j=1

n?

dh=1

=1
ﬂ.jzo,j: 1, ...,nz.

3. Efficiency index based on NIRS;

6,’,”'” = min 0

D i <Ox, i=1,....m. (14.18)
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Fire et al. (1985, 1994) provided the following proposition for determining RTS.
Proposition 3 (Conditions for Determination of RTS (Black Box))

(1) DMU, exhibits or is projected onto a region of the efficient frontier that exhibits
constant returns to scale, if 05 = 0}'° = 9"

(2) DMU, exhibits or is projected onto a region of the efficient frontier that exhibits
increasing returns to scale, if 05° = 0} < ).

(3) DMU, exhibits or is projected onto a region of the efficient frontier that exhibits
decreasing returns to scale, if 05 < ;" = 6}

Formally, the following theorem holds.

Theorem 2 Proposition 2 is equivalent to Proposition 3.

Proof In light of Theorem 1, we can derive that 8)"* = 6,,0° =" and ¢/° =1,
since the corresponding PPS’s are equal. Since 0, = 1 indicates * = 0; = £, , it
follows that the first condition of Proposition 3 is equivalent to the first condition of
Proposition 2. By the same reasoning, condition 2 of the propositions is equivalent

as well as their conditions 3. Thus, Proposition 3 is equivalent to Proposition 2. O

14.5 Application

In this section, data extracted from Environmental Statistics 2009 are used for
illustration. We analyze the performances (efficiency and RTS) of the pollution
treatment processes for waste water and waste air in China. Provinces are deemed
as DMUs, each of which consists of two SDMUs, namely, capital city and
non-capital cities. The pollution treatment process is depicted in Fig. 14.4.

Industrial W_aste
Number of facilities \gatir Meeting
for treatment of ischarge
waste water (X1) Xy S Yiq Standards(Y 1)
> X, Y. >
21 —> " " —>» 21
Capital CIty(SDMU1) > Yy Industrial Sulphur
Number of facilities X3y —> — >y Dioxide Removed
for treatment of 41 2/
waste gas (X2) —>
> Industrial Soot
Yz —> —> V12 Removed (Y,)
X, —> Vg _—>
99 —> ani "
;ft\nnual e)t(_per(1 dit)ures Non-capital Cities(SDMU 2) > Vs . o
for operation Xy, — > —> ndustrial Dust
% s Vaz Removed (Y,)
i E—
Province(DMU)

Fig. 14.4 Treatment process for wastewater and gas
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The inputs involved in this application are three indicators: (1) number of
facilities for treatment of wastewater in set (X;); (2) number of facilities for
treatment of waste gas in set (X;); (3) annual expenditures in 10,000 Yuan (X3).
The outputs include (1) the industrial wastewater meeting discharge standards in
10,000 t (Y1), (2) industrial sulphur dioxide removed in 10,000 t (Y3), (3) industrial
soot removed in 10,000 t (Y3), and (4) industrial dust removed in 10,000 t (Y).

The inputs (X1, X5, X3) are shared by capital city (SDMU,) and non-capital cities
(SDMU,), and the outputs are the results of SDMU; and SDMU, fulfilling

X,’ = Zi:l Xik and Y,~ = Zi:l Vik-

Table 14.1 provides the input/output data by DMU (province), and Table 14.2
provides data on inputs/outputs by SDMU, (capital city). Table 14.3 presents the
descriptive statistics of the data on inputs/outputs. In light of Table 14.3, capital city
consumes relative more inputs and produces comparatively less outputs. An aver-
age capital city consumes inputs 19 %, 21 % and 26 % of the means of X;, X, and X3
respectively. However, the amounts produced account for 20 %, 17 %, 17 % and
14 % respectively of the means of Y, Y5, Y5 and Y, by an average capital city. Thus,
roughly speaking, the average capital city consumes approximately more than one
fifth of the total inputs, but produces less than one fifth of the total outputs. In this
case, we might reasonably claim that the capital city consumes more inputs as
compared with the noncapital cities. In the sequel, we will present the computa-
tional results associated with efficiency and returns to scale.

14.5.1 Efficiency

The efficiencies of DMUs by using the black-box approach and the proposed multi-
component approach are presented in Table 14.4. From the black-box approach, the
—nirs

results of ?Z;m (CCR model),f, " and 5:;“ (BCC model) are reported in columns 2—4.

Column 5 presents results by Kao’s parallel model which, in fact, are based on the

T (see Kao (2009b)). Using the multi-component approach the results of

t*, 6., 07 by models (14.14), (14.15) and (14.6) are presented in columns 6-8.

Now we focus on the results of 5:)” and 67, both of which are based on the VRS
assumption. Note that 5:“ is the result of the black-box approach without consid-
ering the internal mechanism of a DMU, and 67 is the result of multi-component
approach. The difference between the two efficiency indexes can be attributed to
the level of information requirements. Obviously, if more information is available,
we are able to refine the results from the black-box approach. Overall, notice from
Table 14.4 that the mean of 07 is approximately 87.6 % of the mean of 5:”, with a
standard deviation of 0.103. Their distributions are provided in Fig. 14.5. The
distribution of 67 is more bell-shaped, while the distribution of 9;” is obviously
skewed to the left.
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Table 14.3 Descriptive statistics on input and output variables

Mean Std. dev. Mean Std. dev.
Mean Std. dev. (capital | (capital (non-capital | (non-capital

Variables (province) | (province) | city) city) city) city)
X (set) 2539.5 2368.8 483.03 | 494.6 2056.5 2188.7
X, (set) 5618.2 3920.8 1155.7 |949.74 4462.5 3801.1
X3 (10,000 395,580 319,360 101,600 | 122,600 293,980 302,330
Yuan)
Y, (10,000 t) | 72,064 67,491 14,265 17,043 57,799 61,115
Y, (10,000 t) | 73.748 59.378 12.616 16.88 61.132 57.118
Y5 (10,000 t) |985.26 758.18 170.96 134.95 814.3 711.99
Y, (10,000 t) |273.27 210.9 38.332 | 35.447 234.94 212.8

Furthermore, according to Fig. 14.5, 15 provinces are classified as efficient by
the BCC. It can be seen the discrimination power of BCC model in this application
is too weak. By contrast, 12 of them are degraded in efficiencies by the multi-
component approach. They are Hebei, Liaoning, Zhejiang, Jiangxi, Shandong,
Henan, Guangdong, Guangxi, Tibet, Gansu, Qinghai, and Ningxia. Seven of them
are given efficiency scores lower than 0.9.

Finally, we point out that the efficiency scores based on T“®S are almost the same

as those based on 7. Though the differences of 6%, and r* are negligible, we can
find that the efficiencies of some DMUs such as Zhejiang and Hunan are adjusted
slightly.

14.5.2 Returns to Scale

The RTS of provinces can be determined by Proposition 3 (black box), and
Proposition 2 (multi-component). The results are presented in Table 14.5.

Table 14.5 shows that approximately half of the provinces which are classified
by the black-box approach as CRS and IRS are reclassified as DRS or CRS by the
multi-component approach. Those classified as DRS by the black-box approach
remain the same by the both approaches. We concentrate here on the results of the
multi-component approach. In summary, six provinces show IRS, five provinces
show CRS and the rest show DRS. Among those that show CRS, Inner Mongolia
and Jilin have the MPSS because the optimal value in Model (14.10) that corre-
sponds to #* in Table 14.4 equals one. We proceed to rearrange the results by the
multi-component approach according to the administrative regions of China. The
results are provided in Table 14.6.

From Table 14.6, the developed provinces are more likely to show DRS. In
particular, East China shows DRS entirely. Another obvious finding is that the
provinces that show IRS are mainly located in the west of China, which is less
developed area of China.



376 J. Ding et al.

Table 14.4 Results of various models
Provinces 0, 19,’;"’“ 0, Okao r* [ (4
Beijing 0.4944 0.4944 0.5062 0.373 0.373 0.373 0.373
Tianjin 0.4681 0.4681 0.4748 0.3937 0.3937 0.4003 0.4003
Hebei 0.5428 1 1 0.4718 0.4718 0.8754 0.8754
Shanxi 0.5161 0.5654 0.5654 0.4952 0.4952 0.536 0.536
Inner Mongolia 1 1 1 1 1 1 1
Liaoning 0.902 1 1 0.7609 0.7609 0.8761 0.8761
Jilin 1 1 1 1 1 1 1
Heilongjiang 0.7037 0.7037 0.7049 0.5528 0.5528 0.6043 0.6043
Shanghai 0.5177 0.5177 0.519 0.3241 0.3241 0.3756 0.3756
Jiangsu 0.9221 1 1 0.6711 0.6711 1 1
Zhejiang 0.5352 1 1 0.5034 0.5036 0.7536 0.7536
Anhui 0.9099 0.9405 0.9405 0.7872 0.7872 0.7941 0.7941
Fujian 0.8612 0.8612 0.8614 0.7703 0.7703 0.8023 0.8023
Jiangxi 1 1 1 0.9605 0.9618 0.9709 0.9709
Shandong 0.8142 1 1 0.6254 0.6254 0.9473 0.9473
Henan 0.9133 1 1 0.7209 0.7209 0.9412 0.9412
Hubei 0.8199 0.8199 0.8201 0.6874 0.6874 0.7555 0.7555
Hunan 0.774 0.774 0.7742 0.7004 0.7006 0.7006 0.7006
Guangdong 0.5486 1 1 0.4723 0.4723 0.7266 0.7266
Guangxi 1 1 1 0.9612 0.9614 0.9708 0.9708
Hainan 0.6608 0.6608 0.7323 0.4066 0.4066 0.4066 0.4243
Chongqing 0.9163 0.9163 0.9203 0.6495 0.6495 0.7123 0.7123
Sichuan 0.6593 0.6593 0.6596 0.615 0.6154 0.6179 0.6179
Guizhou 0.8909 0.8909 0.8961 0.8397 0.8397 0.8407 0.8407
Yunnan 0.6877 0.6877 0.6882 0.5962 0.5965 0.5965 0.597
Tibet 0.711 0.711 1 0.5031 0.5031 0.5031 0.8519
Shananxi 0.5248 0.5248 0.5274 0.4946 0.495 0.495 0.4953
Gansu 1 1 1 0.9309 0.9346 0.9346 0.9351
Qinghai 0.9673 0.9673 1 0.6992 0.6992 0.6992 0.706
Ningxia 1 1 1 0.889 0.8903 0.8903 0.8903
Xinjiang 0.5407 0.5407 0.5434 0.4591 0.4591 0.5198 0.5198

14.6 Summary and Conclusion

This paper studies the efficiency evaluation and RTS estimation in the situation
where a DMU has multi-component structure. Radial measurements for efficiency
evaluation and a procedure to determine the RTS of a DMU that is unaffected by
possible multiple optima are provided. In doing so, we emphasize the theoretical
connections between the black-box approach, which has been extensively studied in
the literature, and the proposed methods. The strong relationship as is given by
theorem 1 ensures a consistent transition from the black-box approach to the multi-
component approach.
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Fig. 14.5 Distribution of efficiency scores

In the application section, we use the proposed method to study the efficiencies
and RTS of pollution treatment processes in China. The results show that the multi-
component approach has strong discrimination power: the efficiency scores
obtained are distributed in a bell-shaped manner, contrast this to the weak discrim-
ination power as evidenced by the black-box approach with the distribution of
efficiency scores skewed to the left. It is also found that six provinces show IRS,
five provinces show CRS, and the rest show DRS. Among those that show CRS,
Inner Mongolia and Jilin have the MPSS. Furthermore, the developed provinces are
more likely to show DRS. In particular, East China shows DRS entirely. In contrast,
the provinces that show IRS are mainly located in the west, which is a less
developed area of China.
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Appendix

Proof of Theorem 1 Before we prove theorem 1, we establish Lemma 1.
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Table 14.5 Results of various models

J. Ding et al.

Provinces RTS (black box) RTS (multi-component)
Beijing IRS CRS
Tianjin IRS DRS
Hebei DRS DRS
Shanxi DRS DRS
Inner Mongolia CRS CRS
Liaoning DRS DRS
Jilin CRS CRS
Heilongjiang IRS DRS
Shanghai IRS DRS
Jiangsu DRS DRS
Zhejiang DRS DRS
Anhui DRS DRS
Fujian IRS DRS
Jiangxi CRS DRS
Shandong DRS DRS
Henan DRS DRS
Hubei IRS DRS
Hunan IRS CRS
Guangdong DRS DRS
Guangxi CRS DRS
Hainan IRS IRS
Chongging IRS DRS
Sichuan IRS DRS
Guizhou IRS DRS
Yunnan IRS IRS
Tibet IRS IRS
Shananxi IRS IRS
Gansu CRS IRS
Qinghai IRS IRS
Ningxia CRS CRS
Xinjiang IRS DRS
Lemma Al Define TXRS, TVRS as follows:
n2
7,0 =X Ay =xi=1.m,
J=1
n’ n*
leyrj:y,.,rzl,...,s, A=1%42>0
j=1

and

J=1
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Table 14.6 RTS by administrative regions

Provinces
Region IRS CRS DRS
North China Beijing, Inner | Tianjin, Hebei, Shanxi

Mongolia
Northeast Jilin Liaoning, Heilongjiang
East China Shanghai, Jiangsu, Zhejiang, Anhui,
Fujian, Jiangxi, Shandong

South-central China | Hainan Hunan Henan, Hubei, Guangdong, Guangxi
Southwest Yunnan, Tibet Chonggqing, Sichuan, Guizhou
Northwest Shaanxi, Ningxia Xinjiang

Gansu,

Qinghai
Total 6 5 20
- VRS 2 S . S
T = (X,Y)}Zz/ljxij:xi,z:l,...,m,z Ay =Ynr=1....5s,

k=1 j=1 k=1 j=1

"~ k - VRS RS
Z;ﬂj =1L >0} ThenT,” =T
=

Proof ()T, "™
Let DMU; be some DMU in EDS, and (xyj, ..., X Y1) - - -, Y,) be its input—
output bundle. Suppose it is made of SDMU;,, and SDMU,,, where

. ~ VRS . .
k,m € {1,...,n}. Obviously, (xlj,...,xmj,ylj7...,y,.j> €T, ", since it can be

decomposed into input—output bundle of SDMUyy, and that of SDMU,,,. To put
it another way, if we set a multiplier corresponding to SDMU , and SDMU,,, equal
to 1 and other multipliers equal to zero, we can see that (Xyj, . . ., X Yijs - - - Vi)

satisfies the condition to be an element of T VRS. Therefore fZRS VRS holds.
o) TZRS S5 fVRS
~ VRS . ..
Forany (X,Y) € T ", there exist two sets of convex multipliers (4}, ...,A}) and

(A, ) (A2 > 0,3 4= 1,34 =1 such that
j=1 j=1

X; Zilx Zﬂz 2 s eeeam),
:Zl:/l y,j+2/12y,/ =1,...,5).
=

(14.19)
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We need to show that there always exists a convex multiplier

n2 2 2
Zj:1 Aj=1,4; > 0, such that x; = Z;;l AiXij, ¥, = Z;:l ljy,.j, where (xyj,. ..,
Xmj» Y1js - - -» Yyj) 18 the input—output bundle of DMUj in EDS. In other words, there is
a convex multiplier such that the following equations hold:

n 2n
Xi= Zij (.X}l +x5) + Z lj (xi12 +x12(/ n) ) >+ Z ()C +x1(/ nz—n)>

Jj=n+1 Jj= n27n+l
1 2
Z’l (yll +ylj) Z’l (yr2+yr(jfn)> >+ Z <y1n+yr(] nzfn))
Jj=n+1 Jj=n?—n+1
(14.20)
where (x}j, .. .,x,lnj,y{j, . .,y;j) and (xfj, .. .,x%,j,yfj, . .,yfj), j=1,...,n, are the
respective input bundle and output bundle of SDMUj;, and SDMU,;. That is to
n2
say, Z/I_, = 1,4; > 0 must satisfy the following conditions:
=1
—D)n+n
ﬂvjl = Z j-k’ j - Z’ln(/ 1)+k> ./ - 1 (1421)
k=(j—1)n+1

To facilitate understanding, we organize the conditions as matrix products.

/'{2
PR R T B 1
A
/12 /1,1+2 . /1,,27,1 1 _ 2 (1422)
An Angn - 1 /ﬁ
/11
A /1n+1 cee /1,12,n+1 ! /1:
A2 Anio Ao 1 = 2 (1423)
A Ansn A2 1 /1’11

The above illustration indicates that the row j of the matrix is summed to 22, and

the column j the matrix is summed to /11 Let us now combine (14.22) and (14.23)
into the following equations where A is 2n by n’
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B n n n n T

—— N —N— Al
11,...,100,...,000,...,0 ... 00,...,0 }
00.....011,....1 00.....0 ... 00, ....0 4

X Al

Al—|00,...,000,...,000,...,0 ... 11,....1 =|"|=r (14.24)

10,...,0 10, ...,0 10,...,0 ... 10,...,0 | | " ’1;
01,...,001,...,001,...,0 ... 0L,...,0| — " 2
100,...,100, ...,100, ...,1 ... 00,...,1] LAy

*

We are going to prove (14.24) always has a nonnegative solution /ff, ey d
n* n n
Note that Z /1; = 1 automatically holds provided Z /1} =1 and Z/ljz = 1. Our
=1 =1 =1
problem reduces to the existence of nonnegative solution to (14.24). We claim the
nonnegative solution always exists, by way of contradiction. Before moving on, we
reduce (14.24) to (14.25).

n?*

r n n n n T

—— T i
0o,...,0 11,...,1 00,...,0 ...00,...,0 %
oo,...,0 oo,...,011,...,1...00,...,0 A3
_ N M _
Al=100,...,0 00,...,000,...,0...11,...,1 = /1; =T (14.25)
10,...,0 10,...,0 10,...,0...10,...,0 /12 é
01,...,0 01,...,001,...,0... 01,...,0 | = " 4
100,...,1 00,...,100,...,1...00,...,1] LA

Note that we have eliminated the first row of A and the first element of I by
elementary row operation. Assume, now, that A4 = I doesn’t have a nonnegative
solution, i.e., T doesn’t belong to the conic hull constructed by the column vectors of
A. By Farkas lemma, there exists x € R?~! such that

(1) xT > 0;
(2) xTA(i) < 0,A(i) denotes the i th column of A, i =1, ...,n>.
By (2), it follows that
M x(()<0,i=n,....2n—1, (x(i) denotes the ith component of vector x);
(2) Forany k=1, ...,n—1, we have x(k) +x(i) <0, i=mn,...,.2n—1, ie,
x(k) < mi%l 1—x(j).
Jj=n,..2n—

Combining the previous two conditions, we obtain
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n—1 2n—1 2n—1

2

I =3 i+ Y04 ( min () >ZAH1 DI

j=n

2n—1

(—,_nf??}’;n N )DM + 20K

. — 1 .
( ,,ﬂfw@);ﬂm max_ x()

n—1
(j 1-— 1 <
= (o max, ¥ >)( ;%)—0

IN

(14.26)

To see why the last relation holds, note that Z,lijl =1 and

x(i)<0,i=n,...,2n—1. So it follows that 1— Z:l /1k+1 = /1} >0, and
max  x(j) < 0. Therefore, the product of the two parts is less than or equal

Jj=ny..,2n—1
to zero.

This contradicts x'T' > 0. Therefore, I belongs to the conic hull constructed by
the column vectors of A, i.e., there is A = (41,4s,...,4,2) > 0 such that A1 =T,
which also means that A4 = I'. By our construction, we know that there exists

A= (A,42,...,42) > 0 such that (14.22) and (14.23) hold. In turn, this estab-

lishes that (X,Y) € T, O

Proof of Theorem I Let (xyj, ..., Xy, Y1/ - - -, ¥,j) be an arbitrary point in TXRS . We
first prove that Ty®S C TS| By definition, there exists one point
. VRS _ _ .
(XU, R NIRATIEEE ,y,.j) in T, such that x; >X; and y,; <y, In light of
VRS
Lemma 1, ()_c]j, oy Xy Vijy e e ,yrj) also belongs to T . Therefore
T"®S such that x; > X;;
TVRS

(xlj, e Xy Vi ,y,j) € TVRS, since there is a point in
andy,; <y, hold. By analogy, we can prove T/®S O TVRS, Therefore, T)®S =
holds.
By substituting the convex condition in the definition of 7V*S and T}** for
2
Z A=t(k=12) and Z;’:lx,- —1(t>0) respectively, it follows that

TVRS(f) = T)®S(t), since they are obtained by scaling up or down 7"* and T}

by the same factor ¢ Given the fact that TSRS = [U )TVRS()
te[0, 00
TNRS = U T/®(1),and TRS = U TBS(p), TVIRS = U TVRS(y), it follows
t€[0,1] t€[0, 00) t€[0,1]

TgRS — TCRS and T[])VIRS — TNIRS. O
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