
Chapter 14

A Radial Framework for Estimating
the Efficiency and Returns to Scale
of a Multi-component Production
System in DEA

Jingjing Ding, Chenpeng Feng, and Huaqing Wu

Abstract This chapter provides radial measurements of efficiency for the produc-

tion process possessing multi-components under different production technologies.

Our approach is based on the construction of various empirical production possi-

bility sets. Then we propose a procedure that is unaffected affected by multiple

optima for estimating returns to scale. The theoretical connections between the

traditional black box and the proposed multi-component approach are established,

which ascertains consistency in estimating the efficiency and returns to scale.

Moreover, we introduce two homogeneity conditions, which clarify the difference

between our approach and the existing one, and are important for evaluating

performance in multi-component setting. Finally, an empirical study of the pollu-

tion treatment processes in China is presented, and compared to the results from

black-box approach. Many insightful findings related to the operations of the

pollution treatment processes in China are secured.
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14.1 Introduction

We consider the estimation of the efficiency and returns to scale (RTS) for a

production system which can be modeled as having multi-components based on

data envelopment analysis (DEA). There are many production systems bearing this

situation. For example, Beasley (1995) studied the performances of universities,

each of which had two components: research and teaching. Cook et al. (2000)

modeled a banking production system as having two components: service and sales.

We are mainly concerned with radial measurements, and the theoretical connection

with the existing black-box approach.

DEA is a nonparametric technique for measuring the relative efficiencies of a set

of peer decision-making units (DMUs) involving multiple inputs and outputs.

Charnes et al. (1978) first introduced it. In this pioneer paper, the authors

constructed a nonlinear programming model to evaluate the efficiency of activity

conducted by a non-profit organization. The model is known as the CCR model in

the literature. As is known, the CCR model captures both technical and scale

inefficiencies. Banker et al. (1984) proposed a new model (BCC model) which

extended the CCR model by separating technical efficiency and scale efficiency.

Recently, DEA has been extended to many areas in management science and

operational research field.

At the early stage of development, DEA treats a DMU under evaluation as a

black box. Thus, it cannot provide users with specific information concerning the

sources of inefficiency within an organization. Färe and Grosskopf (2000) intro-

duced a network DEA technique, which opened the black box, and explicitly

modeled the internal mechanism of a DMU. Lewis and Sexton (2004) also

published a research paper in this direction. Färe and Grosskopf (2000) and

Lewis and Sexton (2004) proposed radial measurements of efficiency in network

DEA literature. By contrast, Tone and Tsutsui (2009) extended radial measure-

ments in network DEA to non-radial measurements of efficiency by introducing

slack-based network DEA model. Kao and Hwang (2008) and Kao (2009a, b)

proposed models for evaluating DMUs with serial network structure, parallel

network structure and the mixture of the above two structures. DMUs with a

two-stage production process have been extensively studied both from a theoretical

and from a practical perspective. Included among these studies are Liang

et al. (2008) and Chen et al. (2006, 2009a, b, 2010). We refer the reader to review

papers, such as Cook et al. (2010) and Castelli et al. (2010) for more references.

The value of returns to scale (RTS) measures the percentage change in output

from a given percentage change in inputs in economic theory. Unlike main

researches in economic literature, which are concerned about production processes

with a single output, extensions to the situations of multiple outputs are spurred by

Banker et al. (1984). Since then, RTS has been studied extensively. Banker

et al. (2004) published an excellent review on different methods used to handle

RTS. According to the paper, there are two approaches followed in the literature to

study RTS. The first approach is proposed by Färe et al. (1985, 1994) and the other
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one is devised by Banker et al. (1984). In this paper, we follow the first approach,

which has the advantage of being unaffected by the possible existence of multiple

optima.

The existing papers concerning RTS are mainly based on the black-box assump-

tion. However, very few of these papers deal with RTS, when the black-box

assumption is dropped. Research papers with RTS consideration include Chen

et al. (2009a), Tsai and Molinero (2002). Those two papers both follow the

framework proposed by Banker et al. (1984), and could suffer from the existence

of multiple optima.

Our current paper studies a production process with a multi-component

structure. Before moving on, we firstly differentiate two cases of production

processes having a multi-component according to data availability. The first case

has the data on how the shared inputs and shared outputs are split among sub-

decision making units (SDMUs). The second case does not have data on how the

shared inputs/outputs are split among SDMUs. Beasley (1995) and Cook

et al. (2000) investigated models for evaluating performance in the second case,

but did not study the RTS of the productions. In addition, how to extend their

models to treat RTS is not clear. The difficulties are twofold in multi-component

setting: (1) the nonlinearity of the proposed models and (2) the impact of potential

multiple optima on testing RTS by following Banker’s approach. Our work focuses
on production processes with multi-components of (1). In doing so, we avoid the

problem of nonlinearity, to center on investigating RTS.

The contributions of our work mainly lie in three aspects. Firstly, we propose

radial measurements for efficiency evaluation and a procedure to determine the

RTS of a DMU that is unaffected by possible multiple optima. Secondly,

we establish theoretical connection between the black-box approach by

Färe et al. (1985, 1994) and our multi-component approach, which helps to connect

the black-box approach with the network approach, and ensures consistency

between both approaches in dealing with RTS. In addition, two homogeneity

conditions are proposed and are important for evaluating performance in multi-

component setting. They are not pointed out before in the literature. Thirdly, in this

work, we use the proposed method to study the efficiency and RTS of pollution

treatment processes in China based on real data. We model the processes as having

two components, which is different from the traditional approach, and secure

various insightful findings related to the operations of the pollution treatment

processes in China.

The paper unfolds as follows: Section 14.2 proposes a radial evaluation model

under variable returns to scale assumption (14.2.1), and establishes the theoretical

connection of the proposed model to the black-box model (14.2.2). Section 14.3

provides a procedure for determining the RTS of a DMU. Section 14.4 establishes

the theoretical connection of the proposed approach for estimating RTS to Färe

et al. (1985, 1994). In Sect. 14.5, we apply the prospective method to study

the performance of pollution treatment processes in China. Section 14.6 concludes

the paper.
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14.2 Radial Performance Measurement
for a Multi-component System

A production unit (denoted as a DMU) with multi-component structure studied in

this paper is depicted in Fig. 14.1. The DMU consists of two sub-decision-making

units (SDMUs) without loss of generality. It is assumed that some inputs of DMU

are shared by SDMU1 and SDMU2, and some outputs are the results of SDMU1 and

SDMU2. In addition to shared inputs and outputs, there are inputs and outputs of the

DMU dedicated to, or are the results of, SDMU1 or SDMU2 exclusively. We

assume to deal with n DMUs in this paper. In the sequel, when referring to a

specific DMU, we denote it by a subscript j, that is, DMUj, SDMU1j, and SDMU2j

( j¼ 1,. . .,n).

The variables in Fig. 14.1 are defined as follows: X1 ¼ x11; . . . ; x
1
m

� �
indicates

m inputs dedicated to SDMU1; X2 ¼ x21; . . . ; x
2
h

� �
indicates h inputs dedicated to

SDMU2; Xs ¼ xs1; . . . ; x
s
l

� �
indicates l inputs shared by SDMU1 and SDMU2; Y1 ¼

y11; . . . ; y
1
s

� �
indicates s outputs produced exclusively by SDMU1; Y2 ¼ y21; . . . ; y

2
q

� �
indicates q outputs produced exclusively by SDMU2; Ys ¼ ys1; . . . ; y

s
u

� �
indicates

u outputs produced together by SDMU1 and SDMU2. When referring to the specific

data of DMUj, we shall use a secondary index j. For instance, them inputs dedicated to

SDMU1j, the SDMU1 of DMUj, are denoted as X1j ¼ x11j; . . . ; x
1
mj

� �
.

We differentiate two cases of production processes with multi-component struc-

ture according to data availability. In the first case, the data on how the shared

inputs and shared outputs are split between SDMU1 and SDMU2 are available. In

this case, we useXs1 ¼ xs11 ; . . . ; x
s1
l

� �
,Xs2 ¼ xs21 ; . . . ; x

s2
l

� �
, andYs1 ¼ ys11 ; . . . ; y

s1
u

� �
,

Ys2 ¼ ys21 ; . . . ; y
s2
u

� �
to denote the observational data fulfilling Xs ¼ Xs1 þ Xs2 and

Ys ¼ Ys1 þ Ys2. Note that these are component wise additions indicating Xs(i)¼
Xs1(i) +Xs2(i), i,. . .,l, and Ys( j)¼ Ys1( j) + Ys2( j), j¼ 1,. . .,u. In the second case, it is
not known how the shared inputs/outputs are split. We deal with the former case in
this paper.

To be specific, we take pollution treatment processes in China as an example.

If we are going to investigate the performances of pollution treatment processes in

all provinces, provinces are naturally modeled as DMUs. When the black box of a

Fig. 14.1 Structure of

multi-component system
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DMU is opened, it can be found that cities can be further classified into two

SDMUs: capital city and non-capital cities. The capital city is the political,

economic and cultural center of a province. Thus, the environment beyond the

control of the management of the pollution treatment process in capital city and

non-capital cities is arguably different. This makes sense: For example, a capital

city often consumes more inputs such as capital inputs: pollution treatment

facilities. As will be shown in this paper, the average capital city consumes

approximately more than one fifth of the total inputs, but produces less than one

fifth of the total outputs. In this case, we might reasonably claim that the capital city

consumes more inputs as compared with noncapital cities.

14.2.1 Basic Model

Let us begin with the construction of production possibility set (PPS) of each

SDMU. Based on the PPS of SDMUs, the PPS of a DMU is derived. We assume

first variable returns of scale for all SDMUs. Note that the PPS considered is similar

to that in Tsai and Molinero (2002).

The PPS of SDMU1:

TVRS
1 ¼ X1; Y1

� �
Xn
j¼1

λ1j x
1
ij � x1i , i ¼ 1, . . . ,m,

Xn
j¼1

λ1j y
1
rj � y1r , r ¼ 1, . . . , s

Xn
j¼1

λ1j x
s1
ij � xs1i , i ¼ 1, . . . , l,

Xn
j¼1

λ1j y
s1
rj � ys1r , r ¼ 1, . . . , u

Xn
j¼1

λ1j ¼ 1, λ1j � 0

���������������

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð14:1Þ

where X1; Y1
� � ¼ x11; . . . ; x

1
m; x

s1
1 ; . . . ; x

s1
l ; y

1
1; . . . ; y

1
s ; y

s1
1 ; . . . ; y

s1
u

� �
.

The PPS of SDMU2:

TVRS
2 ¼ X2; Y2

� �
Xn
j¼1

λ2j x
2
ij � x2i , i ¼ 1, . . . , h,

Xn
j¼1

λ2j y
2
rj � y2r , r ¼ 1, . . . , q

Xn
j¼1

λ2j x
s2
ij � xs2i , i ¼ 1, . . . , l,

Xn
j¼1

λ2j y
s2
rj � ys2r , r ¼ 1, . . . , u

Xn
j¼1

λ2j ¼ 1, λ2j � 0

���������������

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð14:2Þ

where X2; Y2
� � ¼ x21; . . . ; x

2
h; x

s2
1 ; . . . ; x

s2
l ; y

2
1; . . . ; y

2
q; y

s2
1 ; . . . ; y

s2
u

� �
.
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The PPS of DMU:

TVRS ¼ X;Yð Þ

Xn
j¼1

λ1j x
1
ij � x1i , i¼ 1, . . . ,m,

Xn
j¼1

λ1j x
s1
ij þ

Xn
j¼1

λ2j x
s2
ij � xsi , i¼ 1, . . . , l

Xn
j¼1

λ2j x
2
ij � x2i , i¼ 1, . . . ,h,

Xn
j¼1

λ1j y
1
rj � y1r ,r¼ 1 . . .s

Xn
j¼1

λ1j y
s1
rj þ

Xn
j¼1

λ2j y
s2
rj � ysr ,r¼ 1, . . . ,u,

Xn
j¼1

λ2j y
2
rj � y2r ,r¼ 1, . . . ,q

Xn
j¼1

λ1j ¼ 1,
Xn
j¼1

λ2j ¼ 1,λ1j ,λ
2
j � 0

����������������������

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð14:3Þ

where X; Yð Þ ¼ x11; . . . ; x
1
m; x

s
1; . . . ; x

s
l ; x

2
1; . . . ; x

2
h; y

1
1; . . . ; y

1
s ; y

s
1; . . . ; y

s
u; y

2
1; . . . ; y

2
q

� �
.

It should be noted that the PPS of DMU is the addition of the PPS’s of SDMU1

and SDMU2. We assume that if SDMU1 (X1, Y1) and SDMU2 (X2, Y2) are

possible, then one can set up a DMU consisting of a SDMU1 and a SDMU2. Most

importantly, the two SDMUs do not interfere with each other and carry out (X1, Y1)
and (X2, Y2) independently. The result is then that DMU built in this way consumes

(X1+X2), and produces (Y1+ Y2).
The performance of a DMU can be measured under two different situations: first,

price information is given, and second, prices are not available. In the latter

situation, Shephard’s input distance function is a frequently used measurement

(Shephard’s 1970). Suppose L(Y ) is the input requirement set derived from TVRS.
Shephard’s input distance function is given below.

D X; Yð Þ ¼ max λ : X=λ 2 L Yð Þ, λ 2 Rf g ð14:4Þ

Clearly,D(X, Y) is greater than or equal to 1, ifX 2 L Yð Þ, with D(X,Y)¼ 1, if and

only if it is impossible to improve input vector X proportionately without worsening

the output vector. Let θ ¼ 1=λ. It follows that

D X; Yð Þ½ ��1 ¼ min θ : θX 2 L Yð Þf g ð14:5Þ

According to (14.3) and (14.5), the performance of DMU0 with multi-

components can be estimated by the following linear programming model.
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θ*T ¼ min θ

s:t:
X2
k¼1

Xn
j¼1

λ kj x
sk
ij � θxsio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ1j x
1
ij � θx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ2j x
2
ij � θx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ kj y
sk
rj � ysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ1j y
1
rj � y1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ2j y
2
rj � y2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ kj ¼ 1 k ¼ 1, 2

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:6Þ

where the decision variables are λ kj j ¼ 1, . . . , n; k ¼ 1, 2ð Þ and θ. It should be

noted that xkij, x
sk
ij , y

k
rj and yskrj are observational data that correspond to the types of

inputs and outputs labeled in (14.6).

14.2.2 Theoretical Connection with Black-Box Approach

In this section, we formally derive the black-box equivalent PPS that corresponds to

TVRS, which can give an insight into model (14.6). Before moving on, we assume

that the structure depicted in Fig. 14.1 consumes all inputs shared by SDMU1 and

SDMU2, and all the outputs of DMU are the results of SDMU1 and SDMU2. We

adopt the convention that DMU consumes m inputs Xj ¼ x1j; . . . ; xmj
� �

and pro-

duces s outputsYj ¼ y1j; . . . ; ysj

� �
. Thus, based on the notations provided above for

DMUs with multi-component structure, the assumption here implies that Xsk
j ¼

xsk1j ; . . . ; x
sk
mj

� �
and Ysk

j ¼ ysk1j ; . . . ; y
sk
sj

� �
with Xs1

j þ Xs2
j ¼ Xs

j ¼ Xj, and

Ys1
j þ Ys2

j ¼ Y s
j ¼ Yj. Later in the paper, the s in the superscript is deleted for
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simplicity. In cases where inputs or outputs are not entirely shared by SDMU1 and

SDMU2 (See Fig. 14.1), the values of those inputs/outputs dedicated to SDMU1

(SDMU2) are zeros for SDMU2 (SDMU1). Therefore, the structure of the DMU in

Fig. 14.1 reduces to structure provided in Fig. 14.2.

In light of the structure depicted in Fig. 14.2, TVRS1 , TVRS2 and TVRS in the previous
section are rewritten as follows:

TVRS
1 ¼ X1; Y1

� ���Xn
j¼1

λ1j x
1
ij � x1i , i ¼ 1, . . . ,m,

(

Xn
j¼1

λ1j y
1
rj � y1r , r ¼ 1, . . . , s,

Xn
j¼1

λ1j ¼ 1, λ1j � 0

) ð14:7Þ

where X1; Y1
� � ¼ x11; . . . ; x

1
m; y

1
1; . . . ; y

1
s

� �
.

TVRS
2 ¼ X2; Y2

� ���Xn
j¼1

λ2j x
2
ij � x2i , i ¼ 1, . . . ,m,

(

Xn
j¼1

λ2j y
2
rj � y2r , r ¼ 1, . . . , s,

Xn
j¼1

λ2j ¼ 1, λ2j � 0

) ð14:8Þ

where X2; Y2
� � ¼ x21; . . . ; x

2
m; y

2
1; . . . ; y

2
s

� �
.

TVRS ¼ X; Yð Þ

X2
k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr, r ¼ 1, . . . , s

Xn
j¼1

λ kj ¼ 1, λ kj � 0, k ¼ 1, 2

����������

8>>>><
>>>>:

9>>>>=
>>>>;

ð14:9Þ

where X; Yð Þ ¼ x1; . . . ; xm; y1; . . . ; ysð Þ.

Fig. 14.2 Structure of

DMU with all shared inputs

and outputs
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We proceed to give a result on the convexity of TVRS that is necessary for the

exposition of this paper.

Property 1 TVRS is convex set.

Proof Suppose (X1,Y1) and (X2, Y2) belong to TVRS. By definition, there are sets of

nonnegative multipliers λk1 �j , λk2 �j with
Xn
j¼1

λk1*j ¼ 1 and
Xn
j¼1

λk2*j ¼ 1 such that

X2
k¼1

Xn
j¼1

λk1*j ykrj � y1r , r ¼ 1, . . . , s,
X2
k¼1

Xn
j¼1

λk1*j x kij � x1i , i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λk2*j ykrj � y2r , r ¼ 1, . . . , s,
X2
k¼1

Xn
j¼1

λk2*j x kij � x2i , i ¼ 1, . . . ,m:

For any convex pair α, β, we have
X2
k¼1

Xn
j¼1

�
αλk1*j þ βλk2*j

�
ykrj � αy1r

þβy2r , r ¼ 1, . . . , s;
X2
k¼1

Xn
j¼1

�
αλk1*j þ βλk2*j

�
xkij � αx1i þ βx2i , i ¼ 1, . . . ,m; and

Xn
j¼1

�
αλk1*j þ βλk2*j

� ¼ 1. This ensures that α X1; Y1ð Þ þ β X2; Y2ð Þ ¼

αX1 þ βX2, αY1 þ βY2ð Þ 2 TVRS. □

Assumption 1 Assume there are n DMUs, each of which consists of two produc-

tion units SDMU1j, SDMU2j, j¼ 1,. . .,n using the production technology charac-

terized by TVRS1 and TVRS2 respectively. Let there be an extended data set (EDS) of n2

distinct DMUs, each of which comprises SDMU1j and SDMU2k with

j, k 2 1; . . . ; nf g.
Let (xij, yrj) denote the input and output bundle of DMUj in EDS. Define TVRSb ,

TCRSb , and TNIRSb as below, where the superscripts CRS and NIRS, respectively, stand

for constant returns to scale and non-increasing returns to scale:

TVRS
b ¼ X;Yð Þ��Xn2

j¼1

λjxij � xi, i¼ 1, . . . ,m,
Xn2
k¼1

λjyrj � yr,r¼ 1, . . . ,s,
Xn2
j¼1

λj ¼ 1,λj � 0

( )

TCRS
b ¼ X;Yð Þ��Xn2

j¼1

λjxij � xi, i¼ 1, . . . ,m,
Xn2
k¼1

λjyrj � yr,r¼ 1, . . . ,s,λj � 0

( )
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T NIRS
b ¼ X; Yð Þ��Xn2

j¼1

λjxij � xi, i ¼ 1, . . . ,m,
Xn2
k¼1

λjyrj � yr, r ¼ 1, . . . , s,

(

Xn2
j¼1

λj � 1, λj � 0

)

where X; Yð Þ ¼ x1; . . . ; xm; y1; . . . ; ysð Þ.
We now establish that the PPS of the general multi-component system with two

different SDMUs can be recovered by DMUs in EDS through the black-box

approach. The connections between the multi-component PPS’s and the above

mentioned black-box PPS’s are summarized in Theorem 1.

Theorem 1 TVRS
b ¼ TVRS, TCRS

b ¼ TCRS, and T NIRS
b ¼ TNIRS, where

TCRS ¼ X; Yð Þ

X2
k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr, r ¼ 1, . . . , s

Xn
j¼1

λ1j ¼
Xn
j¼1

λ2j , λ
k
j � 0, k ¼ 1, 2

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

and

TNIRS ¼ X; Yð Þ

X2
k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr, r ¼ 1, . . . , s

Xn
j¼1

λ1j ¼
Xn
j¼1

λ2j � 1, λ kj � 0, k ¼ 1, 2

�����������

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

Proof See Appendix. □

Let us close this section by pointing out the difference between TCRS and T
CRS

,

which is defined by

T
CRS ¼ X;Yð Þ��X2

k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr , r ¼ 1, . . . , s,

(

λ kj � 0, k ¼ 1, 2g.
Researchers in the literature tend to define T

CRS
as the CRS PPS for the

production system in Fig. 14.1. Tsai and Molinero (2002) is a case in point.

Obviously, the production frontier determined by TCRS is dominated by the one

defined by T
CRS

. In Fig. 14.3, we use a set of two DMUs with one input and one

output for illustration.
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Here, DMU1 and DMU2 comprise of (SDMU11, SDMU21) and (SDMU12,

SDMU22) respectively. DMUA and DMUB are generated by combining respec-

tively SDMU11 and SDMU22, SDMU21 and SDMU22. In light of Theorem 1, TCRS is
the conic hull constructed by DMU1, DMU2, DMUA and DMUB. This is the

region to the right of frontier F2. PPS provided by T
CRS

is the region to the right

of frontier F1.

Figure 14.3 shows that the production frontier ofT
CRS

is determined by SDMU11.

Apparently, the production process of SDMU is arguably different from that of

DMU. Therefore, the use of SDMU as a benchmarking point for DMU is not

appropriate. To highlight the difference between SDMU and DMU, criteria for

homogeneity are essential. The homogeneity in this context refers to the character-

istic of the efficient frontier that a benchmarking point on the frontier constructed

for evaluating the performance of a DMU should be comparable to the DMU in

terms of the internal production process. Two homogeneity conditions for the

construction of a virtual DMU, i.e., weak condition and strong condition, are

introduced below:

(1) Weak homogeneity condition: t1 ¼ 0 if and only if t2 ¼ 0.

(2) Strong homogeneity condition: t1 ¼ t2.

Fig. 14.3 Graphical illustration of TCRS and T
CRS
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Clearly, if a virtual DMU built by SDMU1 and SDMU2 satisfies the strong

homogeneity condition, the weak homogeneity condition is automatically satisfied.

However, the opposite is not true. Comparing the definition of TCRS with that of

T
CRS

, the difference is the distinct requirements of the sum of the levels of ele-

mentary activities involved (i.e., t1 ¼
X n

j¼1
λ1j , t2 ¼

Xn

j¼1
λ2j ). Specifically, T

CRS

requires t1 ¼ t2, while T
CRS

does not. T
CRS

is claimed to violate the strong

homogeneity condition.

This small example shows that SDMU11 is chosen as a benchmarking point, as

can be seen from Fig. 14.3 where F1 is completely specified by SDMU11. If we do

not set conditions for choosing a benchmarking point, the frontier is arguably too

ideal. The main consequence is the potential under estimation of the efficiency of a

DMU, since an improper benchmarking point is chosen. This specification of

conditions is comparable to the modeling consideration in the evaluation consider-

ing environment constraints. One might expect that the performance of a DMU be

evaluated by comparing it to the DMUs possessing similar environment character-

istics (See, for example, Ruggiero (1998)).

14.3 Procedure for Estimating the Returns to Scale

In economic theory, the value of RTS measures the percentage change in output

from a given percentage change in inputs. Let y ¼ f xð Þdenote a production function
for a single-output technology. The production function is said to have IRS if

f axð Þ > af xð Þ, for any a > 1. The production function exhibits DRS if

f axð Þ > af xð Þ, for any a 2 �0, 1�. If f axð Þ ¼ af xð Þ for all scalars a � 0, the

production function exhibits CRS. Banker et al. (1984), who introduced the concept

of Most Productive Scale Size (MPSS) into the DEA literature, spurred extensions

to the situations of multiple inputs and outputs. For a technically efficient DMU0

with input and output bundle (X0,Y0) to be MPSS, the following optimization model

should achieve a value of one. Note that the subscript 0 is usually used to indicate

the DMU under evaluation in the literature. In the sequel, we shall frequently refer

to DMU0 when a specific DMU is discussed.

max
β

α
s:t: αX0, βY0ð Þ 2 T

α, β � 0:

ð14:10Þ

where T is the empirical production possibility set. If the optimal value is larger

than 1, it means that either the current input level can be reduced with a less

percentage of losses in outputs, or it can be increased with a larger percentage of

gains in outputs. Therefore, DMU0 can benefit from the adjustment of input levels.
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By analogy, the following model is proposed for testing whether DMU0 with multi-

component structure is MPSS, where T in (14.10) is substituted by TVRS.

max
ϕ

θ

s:t:
X2
k¼1

Xn
j¼1

λ kj x
sk
ij þ ss� ¼ θxsio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ1j x
1
ij þ s1�i ¼ θx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ2j x
2
ij þ s2�i ¼ θx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ kj y
sk
rj � ssþr ¼ ϕysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ1j y
1
rj � s1þr ¼ ϕy1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ2j y
2
rj � s2þr ¼ ϕy2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ kj ¼ 1 k ¼ 1, 2,

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:11Þ

Cooper et al. (1996) proposed an approach to transform the above non-linear

model to an equivalent linear model. Firstly, let us divide both sides of the constraints

by ϕ. The resulting model is given in (14.12). Secondly, by letting θ=ϕ ¼ t,

ssþr =ϕ ¼ ssþr , s1þr =ϕ ¼ s1þr , s2þr =ϕ ¼ s2þr , ss�i =ϕ ¼ ss�i , s1�i =ϕ ¼ s1�i , s2�i =ϕ ¼ s2�i
and λ kj =ϕ ¼ λ

k

j , we can obtain model (14.13). Since ϕ in (14.13) is a free variable, it

is safe to delete it. Finally, model (14.13) can be further reduced to an equivalent

model (14.14). Note that we call two optimization problems equivalent if from a

solution of one, a solution of the other is readily found, and vice versa.
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max
ϕ

θ

s:t:
X2
k¼1

Xn
j¼1

λ kj
ϕ
xskij þ

ss�i
ϕ

¼ θ

ϕ
xsio i¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ1j
ϕ
x1ijþ

s1�i
ϕ

¼ θ

ϕ
x1io i¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ2j
ϕ
x2ijþ

s2�i
ϕ

¼ θ

ϕ
x2io i¼ 1, . . . ,h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ kj
ϕ
yskrj �

ssþr
ϕ

¼ ysro r¼ 1, . . . ,u shared outputsð Þ

Xn
j¼1

λ1j
ϕ
y1rj�

s1þr
ϕ

¼ y1ro r¼ 1, . . . ,s outputs produced bySDMU1ð Þ

Xn
j¼1

λ2j
ϕ
y2rj�

s2þr
ϕ

¼ y2ro r¼ 1, . . . ,q outputs produced bySDMU2ð Þ

Xn
j¼1

λ kj
ϕ
¼ 1

ϕ
k¼ 1,2

λ kj ,ϕ� 0,k¼ 1,2, j¼ 1, . . . ,n:

ð14:12Þ

max
1

t

s:t:
X2
k¼1

Xn
j¼1

λ
k

j x
sk
ij þ ss�i ¼ tx sio i¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ
1

j x
1
ijþ s1�i ¼ tx1io i¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ
2

j x
2
ijþ s2�i ¼ tx2io i¼ 1, . . . ,h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ
k

j y
sk
rj � ssþr ¼ ysro r¼ 1, . . . ,u shared outputsð Þ

Xn
j¼1

λ
1

j y
1
rj� s1þr ¼ y1ro r¼ 1, . . . ,s outputs produced bySDMU1ð Þ

Xn
j¼1

λ
2

j y
2
rj� s2þr ¼ y2ro r¼ 1, . . . ,q outputs produced bySDMU2ð Þ

Xn
j¼1

λ
1

j ¼
Xn
j¼1

λ
2

j ¼
1

ϕ

λ kj � 0,k¼ 1,2, j¼ 1, . . . ,n:

ð14:13Þ
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t* ¼ min t

s:t:
X2
k¼1

Xn
j¼1

λ
k

j x
sk
ij þ ss�i ¼ tx sio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ
1

j x
1
ij þ s1�i ¼ tx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ
2

j x
2
ij þ s2�i ¼ tx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ
k

j y
sk
rj � ssþr ¼ ysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ
1

j y
1
rj � s1þr ¼ y1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ
2

j y
2
rj � s2þr ¼ y2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ
1

j ¼
Xn
j¼1

λ
2

j

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:14Þ

Assume that t*, λ
k*

j are the optimal solution to model (14.14). It follows that

ϕ* ¼ 1=
Xn

j¼1
λ2*j and θ* ¼ t*ϕ* ¼ t*=

Xn

j¼1
λ
1*

j ¼ t*=
Xn

j¼1
λ
2*

j . Apparently,

Proposition 1 holds.

Proposition 1 If t* ¼ 1, then DMU is MPSS, and constant returns to scale prevails
at DMU; Otherwise, the unit is not MPSS.

RTS generally has an unambiguous meaning only if DMU0 is on the efficiency

frontier. For any inefficient DMU0 to become efficient, based on the optimal

solutions of model (14.6), it can be projected onto the efficient frontier by formulas

as follows:

(1) ysro ¼ ysro þ sþs*
r , y1ro ¼ y1ro þ sþ1*

r , y2ro ¼ y2ro þ sþ2*
r .

(2) xsio ¼ t*x sio � s�s*
i , x1io ¼ t*x1io � s�1*

i , x2io ¼ t*x2io � s�2*
i .

For those who are interested in the projection operation and the concept of

efficient frontier, we recommend Cooper et al. (2004). A full treatment of the topics

is beyond the scope of this paper. Before proceeding to discuss how to determine

RTS of a DMU, we now introduce the scale efficiency of a production unit in

Definition 1.
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Definition 1 Scale efficiency: θ*S ¼ t*=θ*T .

Scale efficiency reflects the RTS characteristic of DMU0. It should be noted that

if DMU0 is not an efficient unit, the scale efficiency actually reflects the RTS

characteristic of the corresponding projection on the efficient frontier by formulas

(14.1) and (14.2). Let us denote it as DMU�
o for the convenience of reference.

Obviously, it can be seen that θ*S � 1, since the feasible set of model (14.6) is a

subset of the feasible set of model (14.14). If θ*S ¼ 1, DMU�
o should achieve an

efficiency rating of 1 by model (14.14). If not, it contradicts that θ*S ¼ 1, i.e.,

t* ¼ θ*T . Therefore, by Proposition 1, DMU�
0 is MPSS. In other words, DMU0

exhibits or is projected onto a region of the efficient frontier exhibits constant

returns to scale.

If θ*S < 1, or equivalently, the optimal objective function (ϕ/θ) of model (14.11)

is larger than 1, the current input–output data of DMU�
0 can be improved in

productivity by adjusting the scale of it. This is because the percentage by which

the outputs gain equiproportionate increase due to the adjustment of the scale will

outweigh the percentage by which the inputs increase equiproportionate, or the

input equiproportionate reduction will outweigh the output equiproportionate

reduction. To sum up, if θ*S < 1, DMU0 is currently not located in CRS region of

the frontier or not projected onto a region of the frontier that exhibits CRS.

Below we provide Proposition 2 to shed light on how to determine whether IRS

or DRS prevail at DMU0 with the aid of model (14.15).

Proposition 2. (Conditions for the Determination of RTS (Multi-component))

(1) If θ*S ¼ 1, then DMU0 exhibits or is projected onto a region of the efficient
frontier exhibits constant returns to scale.

(2) If θ*S < 1 and the optimal values of models (14.14) and (14.15) below coincide,
then DMU0 exhibits or is projected onto a region of the efficient frontier that
exhibits increasing returns to scale.

(3) If θ*S < 1 and the optimal values of models (14.6) and (14.15) below coincide,
DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits
decreasing returns to scale.

A short proof of the proposition is in order. We consider the condition (2):

θ*S < 1 and the optimal values of models (14.14) and (14.15) coincide. The

condition (3) can be established similarly.

Let λ
1*

j and λ
2*

j be the optimal solutions of models (14.14) and (14.15). It is clear

that
Xn

j¼1
λ
1*

j ¼
X n

j¼1
λ
2*

j < 1. DMU�
0 can make improvement through output

augmentation since ϕ* ¼ 1=
Xn

j¼1
λ
1*

j > 1. As DMU�
0 is technically efficient, the

only way that it can increase the output level is by increasing the level of inputs. As

the percentage by which the outputs increase outweighs the percentage by which

the inputs increase, DMU0 is currently located in the region that shows increasing

returns to scale.
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We have to show now it is impossible to lower its output level, and at the same

time improve the productivity, i.e., achieve MPSS, since we have not checked if

model (14.15) can achieve an value less than that of model (14.6) (i.e., θ�T) ifXn

j¼1
λ1j ¼

Xn

j¼1
λ2j � 1 is replaced by

Xn

j¼1
λ1j ¼

Xn

j¼1
λ2j � 1. It should be

noted that an optimal value less than θ�T in this context indicates DMU�
0 can gain

benefits by lowering its input level. If this were true, the RTS of DMU�
0 will have an

ambiguous meaning, since it can gain positive change in productivity by either

lowering or augmenting its input level.

We claim impossibility by contradiction. Suppose λ
1*

1j , λ
2*

1j , t
�
1 and λ

1*

2j , λ
2*

2j , t
�
2 are the

respective optimal solutions of model (14.15) and the model similar to model (14.15)

except that
Xn

j¼1
λ1*1j ¼

Xn

j¼1
λ2*1j < 1 is replaced by

Xn

j¼1
λ1*2j ¼

X n

j¼1
λ2*2j > 1. In

addition, t*1 ¼ t* � t*2 < θ*T (i.e., θ
*
S < 1). Thus, there exists a convex combination of

the two solutions with t* ¼ at*1 þ 1� að Þt*2 < θ*T , and
Xn

j¼1
aλ1*1j þ 1� að Þλ1*2j
� �

¼Xn

j¼1
aλ2*1j þ 1� að Þλ2*2j
� �

¼ 1, which contradicts the premise that θ�T is the optimal

value of model (14.6). Thus, impossibility holds and condition (2) has an unambigu-

ous meaning.

t*nirs ¼ min t

s:t:
X2
k¼1

Xn
j¼1

λ
k

j x
sk
ij þ ss�i ¼ tx sio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ
1

j x
1
ij þ s1�i ¼ tx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ
2

j x
2
ij þ s2�i ¼ tx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ
k

j y
sk
rj � ssþr ¼ ysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ
1

j y
1
rj � s1þr ¼ y1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ
2

j y
2
rj � s2þr ¼ y2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ
1

j ¼
Xn
j¼1

λ
2

j � 1

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:15Þ
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14.4 Theoretical Connection Between Black Box Approach
and Multi-component Approach

In this section, we establish the equivalence between the method proposed in the

previous section and the traditional black approach provided by Färe et al. (1985,

1994). This further ensures consistency in transition from black box to multi-

component setting.

The efficiency measurements based on CRS, VRS, and NIRS respectively are

provided as follows:

1. Efficiency index based on CRS;

θcrsb ¼ min θ

s:t:
Xn2
j¼1

λjyrj � yro r ¼ 1, . . . , s:

Xn2
j¼1

λjxij � θxio i ¼ 1, . . . ,m:

λj � 0, j ¼ 1, . . . , n2:

ð14:16Þ

2. Efficiency index based on VRS;

θvrsb ¼ min θ

s:t:
Xn2
j¼1

λjyrj � yro r ¼ 1, . . . , s:

Xn2
j¼1

λjxij � θxio i ¼ 1, . . . ,m:

Xn2
j¼1

λj ¼ 1

λj � 0, j ¼ 1, . . . , n2:

ð14:17Þ

3. Efficiency index based on NIRS;

θ nirs
b ¼ min θ

s:t:
Xn2
j¼1

λjyrj � yro r ¼ 1, . . . , s:

Xn2
j¼1

λjxij � θxio i ¼ 1, . . . ,m:

Xn2
j¼1

λj � 1

λj � 0, j ¼ 1, . . . , n2:

ð14:18Þ
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Färe et al. (1985, 1994) provided the following proposition for determining RTS.

Proposition 3 (Conditions for Determination of RTS (Black Box))

(1) DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits

constant returns to scale, if θcrsb ¼ θvrsb ¼ θ nirs
b .

(2) DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits

increasing returns to scale, if θcrsb ¼ θ nirs
b < θvrsb .

(3) DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits

decreasing returns to scale, if θcrsb < θ nirs
b ¼ θvrsb .

Formally, the following theorem holds.

Theorem 2 Proposition 2 is equivalent to Proposition 3.

Proof In light of Theorem 1, we can derive that θvrsb ¼ θ*T ; θ
crs
b ¼ t* and θcrsb ¼ t*nirs,

since the corresponding PPS’s are equal. Since θ*s ¼ 1 indicates t* ¼ θ*T ¼ t*nirs, it
follows that the first condition of Proposition 3 is equivalent to the first condition of

Proposition 2. By the same reasoning, condition 2 of the propositions is equivalent

as well as their conditions 3. Thus, Proposition 3 is equivalent to Proposition 2. □

14.5 Application

In this section, data extracted from Environmental Statistics 2009 are used for

illustration. We analyze the performances (efficiency and RTS) of the pollution

treatment processes for waste water and waste air in China. Provinces are deemed

as DMUs, each of which consists of two SDMUs, namely, capital city and

non-capital cities. The pollution treatment process is depicted in Fig. 14.4.

Fig. 14.4 Treatment process for wastewater and gas
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The inputs involved in this application are three indicators: (1) number of

facilities for treatment of wastewater in set (X1); (2) number of facilities for

treatment of waste gas in set (X2); (3) annual expenditures in 10,000 Yuan (X3).

The outputs include (1) the industrial wastewater meeting discharge standards in

10,000 t (Y1), (2) industrial sulphur dioxide removed in 10,000 t (Y2), (3) industrial
soot removed in 10,000 t (Y3), and (4) industrial dust removed in 10,000 t (Y4).

The inputs (X1,X2,X3) are shared by capital city (SDMU1) and non-capital cities

(SDMU2), and the outputs are the results of SDMU1 and SDMU2 fulfilling

Xi ¼
X2

k¼1
xik and Yr ¼

X2

k¼1
yrk.

Table 14.1 provides the input/output data by DMU (province), and Table 14.2

provides data on inputs/outputs by SDMU1 (capital city). Table 14.3 presents the

descriptive statistics of the data on inputs/outputs. In light of Table 14.3, capital city

consumes relative more inputs and produces comparatively less outputs. An aver-

age capital city consumes inputs 19%, 21% and 26% of the means of X1, X2 and X3

respectively. However, the amounts produced account for 20%, 17%, 17% and

14% respectively of the means of Y1, Y2, Y3 and Y4 by an average capital city. Thus,
roughly speaking, the average capital city consumes approximately more than one

fifth of the total inputs, but produces less than one fifth of the total outputs. In this

case, we might reasonably claim that the capital city consumes more inputs as

compared with the noncapital cities. In the sequel, we will present the computa-

tional results associated with efficiency and returns to scale.

14.5.1 Efficiency

The efficiencies of DMUs by using the black-box approach and the proposed multi-

component approach are presented in Table 14.4. From the black-box approach, the

results of θ
crs

o (CCR model), θ
nirs

o and θ
vrs

o (BCC model) are reported in columns 2–4.

Column 5 presents results by Kao’s parallel model which, in fact, are based on the

T
CRS

(see Kao (2009b)). Using the multi-component approach the results of

t*, θ�nirs, θ
�
T by models (14.14), (14.15) and (14.6) are presented in columns 6–8.

Now we focus on the results of θ
vrs

o and θ�T , both of which are based on the VRS

assumption. Note that θ
vrs

o is the result of the black-box approach without consid-

ering the internal mechanism of a DMU, and θ�T is the result of multi-component

approach. The difference between the two efficiency indexes can be attributed to

the level of information requirements. Obviously, if more information is available,

we are able to refine the results from the black-box approach. Overall, notice from

Table 14.4 that the mean of θ�T is approximately 87.6% of the mean of θ
vrs

o , with a

standard deviation of 0.103. Their distributions are provided in Fig. 14.5. The

distribution of θ�T is more bell-shaped, while the distribution of θ
vrs

o is obviously

skewed to the left.
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Furthermore, according to Fig. 14.5, 15 provinces are classified as efficient by

the BCC. It can be seen the discrimination power of BCC model in this application

is too weak. By contrast, 12 of them are degraded in efficiencies by the multi-

component approach. They are Hebei, Liaoning, Zhejiang, Jiangxi, Shandong,

Henan, Guangdong, Guangxi, Tibet, Gansu, Qinghai, and Ningxia. Seven of them

are given efficiency scores lower than 0.9.

Finally, we point out that the efficiency scores based on TCRS are almost the same

as those based onT
CRS

. Though the differences of θ�Kao and t* are negligible, we can
find that the efficiencies of some DMUs such as Zhejiang and Hunan are adjusted

slightly.

14.5.2 Returns to Scale

The RTS of provinces can be determined by Proposition 3 (black box), and

Proposition 2 (multi-component). The results are presented in Table 14.5.

Table 14.5 shows that approximately half of the provinces which are classified

by the black-box approach as CRS and IRS are reclassified as DRS or CRS by the

multi-component approach. Those classified as DRS by the black-box approach

remain the same by the both approaches. We concentrate here on the results of the

multi-component approach. In summary, six provinces show IRS, five provinces

show CRS and the rest show DRS. Among those that show CRS, Inner Mongolia

and Jilin have the MPSS because the optimal value in Model (14.10) that corre-

sponds to t* in Table 14.4 equals one. We proceed to rearrange the results by the

multi-component approach according to the administrative regions of China. The

results are provided in Table 14.6.

From Table 14.6, the developed provinces are more likely to show DRS. In

particular, East China shows DRS entirely. Another obvious finding is that the

provinces that show IRS are mainly located in the west of China, which is less

developed area of China.

Table 14.3 Descriptive statistics on input and output variables

Variables

Mean

(province)

Std. dev.

(province)

Mean

(capital

city)

Std. dev.

(capital

city)

Mean

(non-capital

city)

Std. dev.

(non-capital

city)

X1 (set) 2539.5 2368.8 483.03 494.6 2056.5 2188.7

X2 (set) 5618.2 3920.8 1155.7 949.74 4462.5 3801.1

X3 (10,000

Yuan)

395,580 319,360 101,600 122,600 293,980 302,330

Y1 (10,000 t) 72,064 67,491 14,265 17,043 57,799 61,115

Y2 (10,000 t) 73.748 59.378 12.616 16.88 61.132 57.118

Y3 (10,000 t) 985.26 758.18 170.96 134.95 814.3 711.99

Y4 (10,000 t) 273.27 210.9 38.332 35.447 234.94 212.8
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14.6 Summary and Conclusion

This paper studies the efficiency evaluation and RTS estimation in the situation

where a DMU has multi-component structure. Radial measurements for efficiency

evaluation and a procedure to determine the RTS of a DMU that is unaffected by

possible multiple optima are provided. In doing so, we emphasize the theoretical

connections between the black-box approach, which has been extensively studied in

the literature, and the proposed methods. The strong relationship as is given by

theorem 1 ensures a consistent transition from the black-box approach to the multi-

component approach.

Table 14.4 Results of various models

Provinces θcrsb θnirsb θvrsb θKao t* θ�nirs θ�T
Beijing 0.4944 0.4944 0.5062 0.373 0.373 0.373 0.373

Tianjin 0.4681 0.4681 0.4748 0.3937 0.3937 0.4003 0.4003

Hebei 0.5428 1 1 0.4718 0.4718 0.8754 0.8754

Shanxi 0.5161 0.5654 0.5654 0.4952 0.4952 0.536 0.536

Inner Mongolia 1 1 1 1 1 1 1

Liaoning 0.902 1 1 0.7609 0.7609 0.8761 0.8761

Jilin 1 1 1 1 1 1 1

Heilongjiang 0.7037 0.7037 0.7049 0.5528 0.5528 0.6043 0.6043

Shanghai 0.5177 0.5177 0.519 0.3241 0.3241 0.3756 0.3756

Jiangsu 0.9221 1 1 0.6711 0.6711 1 1

Zhejiang 0.5352 1 1 0.5034 0.5036 0.7536 0.7536

Anhui 0.9099 0.9405 0.9405 0.7872 0.7872 0.7941 0.7941

Fujian 0.8612 0.8612 0.8614 0.7703 0.7703 0.8023 0.8023

Jiangxi 1 1 1 0.9605 0.9618 0.9709 0.9709

Shandong 0.8142 1 1 0.6254 0.6254 0.9473 0.9473

Henan 0.9133 1 1 0.7209 0.7209 0.9412 0.9412

Hubei 0.8199 0.8199 0.8201 0.6874 0.6874 0.7555 0.7555

Hunan 0.774 0.774 0.7742 0.7004 0.7006 0.7006 0.7006

Guangdong 0.5486 1 1 0.4723 0.4723 0.7266 0.7266

Guangxi 1 1 1 0.9612 0.9614 0.9708 0.9708

Hainan 0.6608 0.6608 0.7323 0.4066 0.4066 0.4066 0.4243

Chongqing 0.9163 0.9163 0.9203 0.6495 0.6495 0.7123 0.7123

Sichuan 0.6593 0.6593 0.6596 0.615 0.6154 0.6179 0.6179

Guizhou 0.8909 0.8909 0.8961 0.8397 0.8397 0.8407 0.8407

Yunnan 0.6877 0.6877 0.6882 0.5962 0.5965 0.5965 0.597

Tibet 0.711 0.711 1 0.5031 0.5031 0.5031 0.8519

Shananxi 0.5248 0.5248 0.5274 0.4946 0.495 0.495 0.4953

Gansu 1 1 1 0.9309 0.9346 0.9346 0.9351

Qinghai 0.9673 0.9673 1 0.6992 0.6992 0.6992 0.706

Ningxia 1 1 1 0.889 0.8903 0.8903 0.8903

Xinjiang 0.5407 0.5407 0.5434 0.4591 0.4591 0.5198 0.5198
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In the application section, we use the proposed method to study the efficiencies

and RTS of pollution treatment processes in China. The results show that the multi-

component approach has strong discrimination power: the efficiency scores

obtained are distributed in a bell-shaped manner, contrast this to the weak discrim-

ination power as evidenced by the black-box approach with the distribution of

efficiency scores skewed to the left. It is also found that six provinces show IRS,

five provinces show CRS, and the rest show DRS. Among those that show CRS,

Inner Mongolia and Jilin have the MPSS. Furthermore, the developed provinces are

more likely to show DRS. In particular, East China shows DRS entirely. In contrast,

the provinces that show IRS are mainly located in the west, which is a less

developed area of China.
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Appendix

Proof of Theorem 1 Before we prove theorem 1, we establish Lemma 1.

Fig. 14.5 Distribution of efficiency scores
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Lemma A1 Define T̂
VRS

b , T̂
VRS

as follows:

T̂
VRS

b ¼ X; Yð Þ��Xn2
j¼1

λjxij ¼ xi, i ¼ 1, . . . ,m,

(

Xn2
j¼1

λjyrj ¼ yr, r ¼ 1, . . . , s,
Xn2
j¼1

λj ¼ 1, λj � 0

)

and

Table 14.5 Results of various models

Provinces RTS (black box) RTS (multi-component)

Beijing IRS CRS

Tianjin IRS DRS

Hebei DRS DRS

Shanxi DRS DRS

Inner Mongolia CRS CRS

Liaoning DRS DRS

Jilin CRS CRS

Heilongjiang IRS DRS

Shanghai IRS DRS

Jiangsu DRS DRS

Zhejiang DRS DRS

Anhui DRS DRS

Fujian IRS DRS

Jiangxi CRS DRS

Shandong DRS DRS

Henan DRS DRS

Hubei IRS DRS

Hunan IRS CRS

Guangdong DRS DRS

Guangxi CRS DRS

Hainan IRS IRS

Chongqing IRS DRS

Sichuan IRS DRS

Guizhou IRS DRS

Yunnan IRS IRS

Tibet IRS IRS

Shananxi IRS IRS

Gansu CRS IRS

Qinghai IRS IRS

Ningxia CRS CRS

Xinjiang IRS DRS
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T̂
VRS ¼ X; Yð Þ��X2

k¼1

Xn
j¼1

λ kj x
k
ij ¼ xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj ¼ yr, r ¼ 1, . . . , s,

(
Xn
j¼1

λ kj ¼ 1, λ kj � 0g. Then T̂
VRS

b ¼ T̂
VRS

.

Proof (1) T̂
VRS

b � T̂
VRS

;

Let DMUj be some DMU in EDS, and (x1j, . . ., xmj, y1j, . . ., yrj) be its input–

output bundle. Suppose it is made of SDMU1k, and SDMU2m, where

k,m 2 1; . . . ; nf g. Obviously, x1j; . . . ; xmj; y1j; . . . ; yrj

� �
2 T̂

VRS

b , since it can be

decomposed into input–output bundle of SDMU1k, and that of SDMU2m. To put

it another way, if we set a multiplier corresponding to SDMU1k and SDMU2m equal

to 1 and other multipliers equal to zero, we can see that (x1j, . . ., xmj, y1j, . . ., yrj)

satisfies the condition to be an element of T̂
VRS

. Therefore T̂
VRS

b � T̂
VRS

holds.

(2) T̂
VRS

b � T̂
VRS

;

For any X; Yð Þ 2 T̂
VRS

, there exist two sets of convex multipliers (λ11, . . ., λ
1
n) and

λ21; . . . ; λ
2
n

� �
λ1j , λ

2
j � 0,

Xn
j¼1

λ1j ¼ 1,
Xn
j¼1

λ2j ¼ 1

 !
such that

xi ¼
Xn
j¼1

λ1j x
1
ij þ

Xn
j¼1

λ2j x
2
ij i ¼ 1, . . . ,mð Þ,

yr ¼
Xn
j¼1

λ1j y
1
rj þ

Xn
j¼1

λ2j y
2
rj r ¼ 1, . . . , sð Þ:

ð14:19Þ

Table 14.6 RTS by administrative regions

Region

Provinces

IRS CRS DRS

North China Beijing, Inner

Mongolia

Tianjin, Hebei, Shanxi

Northeast Jilin Liaoning, Heilongjiang

East China Shanghai, Jiangsu, Zhejiang, Anhui,

Fujian, Jiangxi, Shandong

South-central China Hainan Hunan Henan, Hubei, Guangdong, Guangxi

Southwest Yunnan, Tibet Chongqing, Sichuan, Guizhou

Northwest Shaanxi,

Gansu,

Qinghai

Ningxia Xinjiang

Total 6 5 20
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We need to show that there always exists a convex multiplierXn2

j¼1
λj ¼ 1, λj � 0, such that xi ¼

Xn2

j¼1
λjxij, yr ¼

Xn2

j¼1
λjyrj, where (x1j, . . .,

xmj, y1j, . . ., yrj) is the input–output bundle of DMUj in EDS. In other words, there is
a convex multiplier such that the following equations hold:

xi ¼
Xn
j¼1

λj x1i1þ x2ij

� �
þ
X2n
j¼nþ1

λj x1i2þ x2i j�nð Þ
� �

þ , . . . , þ
Xn2

j¼n2�nþ1

λj x1inþ x2i j�n2�nð Þ
� �

yr ¼
Xn
j¼1

λj y1r1þ y2rj

� �
þ
X2n
j¼nþ1

λj y1r2þ y2r j�nð Þ
� �

þ , . . . , þ
Xn2

j¼n2�nþ1

λj y1rnþ y2r j�n2�nð Þ
� �

ð14:20Þ

where (x11j, . . ., x
1
mj, y

1
1j, . . ., y

1
sj) and (x21j, . . ., x

2
mj, y

2
1j, . . ., y

2
sj), j ¼ 1, . . . , n, are the

respective input bundle and output bundle of SDMU1j, and SDMU2j. That is to

say,
Xn2
j¼1

λj ¼ 1, λj � 0 must satisfy the following conditions:

λ1j ¼
Xj�1ð Þnþn

k¼ j�1ð Þnþ1

λk, λ
2
j ¼

Xn
k¼1

λn j�1ð Þþk, j ¼ 1, . . . , n ð14:21Þ

To facilitate understanding, we organize the conditions as matrix products.

λ1 λnþ1 . . . λn2�nþ1

λ2 λnþ2 . . . λn2�n

. . . . . . . . . . . .
λn λnþn . . . λn2

2
664

3
775

1

1

. . .
1

2
664

3
775 ¼

λ21
λ22
. . .

λ2n

2
66664

3
77775 ð14:22Þ

λ1 λnþ1 . . . λn2�nþ1

λ2 λnþ2 . . . λn2�n

. . . . . . . . . . . .
λn λnþn . . . λn2

2
664

3
775
T

1

1

. . .
1

2
664

3
775 ¼

λ11
λ12
. . .

λ1n

2
66664

3
77775 ð14:23Þ

The above illustration indicates that the row j of the matrix is summed to λ2j , and

the column j the matrix is summed to λ1j . Let us now combine (14.22) and (14.23)

into the following equations where A is 2n by n2.
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Aλ¼

11, . . . ,1
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

. . . 00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0 11, . . . ,1 00, . . . ,0 . . . 00, . . . ,0

. . . . . . . . . . . . . . .

00, . . . ,0 00, . . . ,0 00, . . . ,0 . . . 11, . . . ,1

10, . . . ,0 10, . . . ,0 10, . . . ,0 . . . 10,. . . , 0

01, . . . ,0 01, . . . ,0 01, . . . ,0 . . . 01,. . . , 0

. . . . . . . . . . . . . . .

00, . . . ,1 00, . . . ,1 00, . . . ,1 . . . 00,. . . , 1

2
666666666666664

3
777777777777775

λ1
λ2
. . .
λn2

2
664

3
775¼

λ11
λ12
. . .

λ1n
λ21
λ22
. . .

λ2n

2
6666666666664

3
7777777777775
¼Γ ð14:24Þ

We are going to prove (14.24) always has a nonnegative solution λ*1, . . . , λ
*
n2 .

Note that
Xn2
j¼1

λ*j ¼ 1 automatically holds provided
Xn
j¼1

λ1j ¼ 1 and
Xn
j¼1

λ2j ¼ 1. Our

problem reduces to the existence of nonnegative solution to (14.24). We claim the

nonnegative solution always exists, by way of contradiction. Before moving on, we

reduce (14.24) to (14.25).

Aλ¼

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

11, . . . ,1
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

. . .00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0 00, . . . ,0 11, . . . ,1 . . . 00, . . . ,0

. . . . . . . . . . . . . . .

00, . . . ,0 00, . . . ,0 00, . . . ,0 . . . 11, . . . ,1

10, . . . ,0 10, . . . ,0 10, . . . ,0 . . . 10, . . . ,0

01, . . . ,0 01, . . . ,0 01, . . . ,0 . . . 01, . . . ,0

. . . . . . . . . . . . . . .

00, . . . ,1 00, . . . ,1 00, . . . ,1 . . . 00, . . . ,1

2
666666666666664

3
777777777777775

λ1
λ2
. . .
λn2

2
664

3
775¼

λ12
λ13
. . .

λ1n
λ21
λ22
. . .

λ2n

2
6666666666664

3
7777777777775
¼Γ ð14:25Þ

Note that we have eliminated the first row of A and the first element of Γ by

elementary row operation. Assume, now, that Aλ ¼ Γ doesn’t have a nonnegative

solution, i.e.,Γdoesn’t belong to the conic hull constructed by the column vectors of

Ā. By Farkas lemma, there exists x 2 R2n�1, such that

(1) xTΓ > 0;

(2) xTA ið Þ � 0,A ið Þ denotes the i th column of Ā, i ¼ 1, . . . , n2.

By (2), it follows that

(1) x ið Þ � 0, i ¼ n, . . . , 2n� 1,
�
x ið Þ denotes the ith component of vector x);

(2) For any k ¼ 1, . . . , n� 1, we have x kð Þ þ x ið Þ � 0, i ¼ n, . . . , 2n� 1, i.e.,

x kð Þ � min
j¼n, :::2n�1

�x jð Þ:

Combining the previous two conditions, we obtain
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xTΓ ¼
Xn�1

k¼1

x kð Þλ1kþ1 þ
X2n�1

j¼n

x jð Þλ2j � min
j¼n, ..., 2n�1

�x jð Þ
	 
Xn�1

k¼1

λ1kþ1 þ
X2n�1

j¼n

x jð Þλ2j

¼ � max
j¼n, ..., 2n�1

x jð Þ
	 
Xn�1

k¼1

λ1kþ1 þ
X2n�1

j¼n

x jð Þλ2j

� � max
j¼n, ..., 2n�1

x jð Þ
	 
Xn�1

k¼1

λ1kþ1 þ max
j¼n, ..., 2n�1

x jð Þ

¼ max
j¼n, ..., 2n�1

x jð Þ
	 


1�
Xn�1

k¼1

λ1kþ1

 !
� 0

ð14:26Þ

To see why the last relation holds, note that
Xn

j¼1
λ1j ¼ 1 and

x ið Þ � 0, i ¼ n, . . . , 2n� 1. So it follows that 1�
Xn�1

k¼1
λ1kþ1 ¼ λ11 � 0, and

max
j¼n, ..., 2n�1

x jð Þ � 0. Therefore, the product of the two parts is less than or equal

to zero.

This contradicts xTΓ > 0. Therefore, Γ belongs to the conic hull constructed by

the column vectors of Ā, i.e., there is λ ¼ λ1; λ2; . . . ; λn2ð Þ � 0 such that Aλ ¼ Γ,
which also means that Aλ ¼ Γ. By our construction, we know that there exists

λ ¼ λ1; λ2; . . . ; λn2ð Þ � 0 such that (14.22) and (14.23) hold. In turn, this estab-

lishes that X; Yð Þ 2 T̂
VRS

b . □

Proof of Theorem 1 Let (x1j, . . ., xmj, y1j, . . ., yrj) be an arbitrary point in TVRSb . We

first prove that TVRS
b � TVRS. By definition, there exists one point

x1j; . . . ; xmj; y1j; . . . ; yrj

� �
in T̂

VRS

b such that xij � xij and yrj � yrj. In light of

Lemma 1, x1j; . . . ; xmj; y1j; . . . ; yrj

� �
also belongs to T̂

VRS
. Therefore

x1j; . . . ; xmj; y1j; . . . ; yrj

� �
2 TVRS, since there is a point in TVRS such that xij � xij

and yrj � yrj hold. By analogy, we can prove TVRS
b � TVRS. Therefore, TVRS

b ¼ TVRS

holds.

By substituting the convex condition in the definition of TVRS and TVRSb forXn

j¼1
λ kj ¼ t k ¼ 1, 2ð Þ and

Xn2

j¼1
λj ¼ t t � 0ð Þ respectively, it follows that

TVRS tð Þ ¼ TVRS
b tð Þ, since they are obtained by scaling up or down TVRS and TVRSb

by the same factor t. Given the fact that TCRS
b ¼ [

t2½0,1Þ
TVRS
b tð Þ,

T NIRS
b ¼ [

t2 0;1½ �
TVRS
b tð Þ, and TCRS ¼ [

t2½0,1Þ
TVRS tð Þ, TNIRS ¼ [

t2 0;1½ �
TVRS tð Þ, it follows

TCRS
b ¼ TCRS and TNIRS

b ¼ TNIRS. □
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