
Chapter 10

Measuring Bank Performance: From Static
Black Box to Dynamic Network Models

Hirofumi Fukuyama and William L. Weber

Abstract This chapter presents the recently developed dynamic-network bank

technology and performance measures of Fukuyama and Weber (Efficiency and

productivity growth: Modelling in the financial services industry. Wiley, London,

pp. 193–213, 2013; J Product Anal 44(3):249–264, 2015a; Ann Oper Res, in press,

2015b; Japanese bank productivity, 2007-2012: A dynamic network approach.

Mimeo, 2016). The method uses DEA to represent the production technology and

directional distance functions to measure bank performance. A two stage bank

technology where an intermediate product is produced in a first stage and then used

to produce final outputs in a second stage is extended over time. The performance

measure allows the researcher to compare observed inputs and outputs, including

undesirable outputs, with the outputs and inputs that might be produced if a

producer were able to optimally choose production plans relative to a dynamic

benchmark technology. Although Fukuyama and Weber’s studies apply the

dynamic network technology to measure the performance of Japanese banks, the

method can be applied to banks in other countries and to other types of financial

institutions.
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10.1 Introduction

In this chapter we present a dynamic-network model of the bank technology which

can be used to measure bank performance. The model accounts for exogenous

inputs, excess reserves which can be carried over from period to period and final

outputs that include desirable outputs and jointly produced undesirable by-products

in the form of nonperforming loans. The framework is based on the performance

measures of Fukuyama and Weber (2013, 2015a, b, 2016). These models measure

bank performance accounting for the following characteristics of the bank technol-

ogy: (i) banks face a two-stage network technology where deposits and other funds

are produced in a first stage and then in a second stage those deposits are used to

generate a portfolio of interest-bearing assets (loans) and non-interest bearing assets

(securities investments), (ii) banks face credit risk in that the loan production

process generates a jointly produced by-product of nonperforming loans, (iii) in

the second stage of production bank managers can choose to make loans and

securities investments or carry-over some excess reserves for use in a future period,

(iv) nonperforming loans produced in one period become an undesirable input to

the first stage of production in a future period.

The dynamic aspect of the technology incorporates two outcomes of current

period production on future production. First, a bank can choose to either produce

final outputs of securities investments and loans, including jointly produced non-

performing loans or they can choose to carry-over some of their raised funds to the

second stage of production in a future period. Thus, current production decisions

affect future production possibilities. Second, nonperforming loans generated in the

current period have a negative effect on the first stage of production in a subsequent

period. This is because when nonperforming loans are generated, a bank must raise

more financial equity capital or curtail their deposit taking and other fund-raising

activities. Thus, static performance indicators that account for only current period

outputs and inputs are biased to the extent that bank managers optimize over many

periods. Although the lending process links desirable and jointly produced unde-

sirable outputs, securities investments made by the bank are not linked to nonper-

forming loans.1 As a consequence we separate the jointly produced linked outputs

of performing and nonperforming loans and the unlinked outputs of securities

investments following Epure and Lafuente (2015) and Fukuyama and Weber

(2016). Since nonperforming loans are an unavoidable by-product of loan produc-

tion and negatively affect the ability of banks to raise deposits, they are treated as an

undesirable input to stage 1 in a subsequent period. On the other hand, carryover

assets from a previous period augment future lending and investment opportunities

and are treated as a desirable input to stage 2.

1 Securities investments generally are subject to interest rate risk (Saunders and Cornett 2011)

rather than credit risk.
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10.2 Selective Literature Review

10.2.1 Network DEA and Dynamic DEA

In the static black-box form of data envelopment analysis (DEA) due to Farrell

(1957) and Charnes et al. (1978), inputs and outputs are assumed to be independent

across production periods. That is, the inputs and outputs observed in one period

have no effect on the production technology in future periods. Färe and Grosskopf

(1996) extended the static black box technology and laid the theoretical foundation

for network DEA. A two-stage network model where intermediate products are

produced in stage 1 and then become the only inputs to stage 2 is commonly used

(see Fig. 10.1). The popularity of this model is mainly due to its simple mathemat-

ical structure although this network model can be easily extended to more than two

stages and to parallel production technologies as well. Sexton and Lewis (2003),

Liang et al. (2008), Chen et al. (2009b) and Chen et al. (2010) investigated the static

two-stage network method without undesirable outputs. Fukuyama and Weber

(2010) presented a static two-stage network model of bank production accounting

for the undesirable output of nonperforming loans. Their model used the directional

technology distance function to measure performance and accounted for slacks in

the constraints that define the DEA technology.

Lewis and Sexton (2004) developed a multi-stage network DEA model which

extended the Sexton and Lewis (2003) two-stage network model. Kao and Hwang

(2008) provided a two-stage method that simultaneously determined the efficiency

of each division and the entire system. Tone and Tsutsui (2009) introduced a

network DEA method that compared actual division outputs with potential outputs

accounting for slacks in the output and inputs constraints that defined the network

technology. Kao (2009) used a multiplier form and introduced a network DEA

method by considering the relations among sub-process efficiencies in terms of

series, parallel, and mixed methods.

Fukuyama and Mirdehghan (2012) and Mirdehghan and Fukuyama (2016)

suggested a two-phase algorithm for identifying the Pareto-Koopmans efficiency

status of the decision making unit (DMU). Lozano (2015) presented a network DEA

model that compared outputs of all divisions with the outputs of all divisions that

intermediate  products
Q
+z

undesirable outputs
L
+b

inputs
N
+x

desirable outputs
M
+y

Production of 
Final Outputs

Production of 
Intermediate Outputs

SN

Stage 1

1tT
SN

Stage 2

2tT

Fig. 10.1 Static two-stage network production with bad outputs. Legend: T1tSN: static network

stage 1 technology; T2tSN: static network stage 2 technology; SN: static network
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could be produced if a central decision-maker allocated inputs to each division or

sub-process instead of taking divisional inputs as given. Extending Fukuyama and

Weber’s (2010) two-stage network SBI (slack-based inefficiency) model, Lozano

(2016) generalized Fukuyama and Weber’s (2010) two-stage network model by

accounting for undesirable outputs. A comprehensive survey of the literature on

network DEA is provided by Kao (2014) who categorized network DEA models

into nine classes: (i) independent models, (ii) system distance measure models, (iii)

process distance models, (iv) factor distance models, (v) slacks-based measure

models, (vi) ratio-form system (overall) efficiency models, (vii) ratio-form

sub-process efficiency models, (viii) game theoretic models, and (ix) value-based

models.

While dynamic DEA studies are sparse compared to those of network DEA, the

number of dynamic network DEA studies has been growing. Färe, Grosskopf and

Margaritis (2011) extended Shephard and Färe’s (1980) basic dynamic production

framework by connecting a sequence of single-period technologies and allowing

producers to produce either final outputs or carryover some output to augment

production in a subsequent period. Färe and Grosskopf (1996) used investment

spending as an example of a carryover with producers deciding the mix of GDP to

be allocated to the final output of consumer spending and private investment

spending that enhances future production possibilities. Sengupta (1994) and

Nemoto and Goto (2003) used adjustment cost theory and provided optimal

control-theoretic models for assessing the dynamic efficiency of DMUs. To exam-

ine the impact of public capital investment on private productivity, Bogetoft

et al. (2009) derived a DEA model and calculated the optimal paths and levels

of public and private investment spending. Tone and Tsutsui (2014) proposed a

slacks-based dynamic-network model that allowed carryover assets to have pos-

itive or negative effects on future production. In an examination of Bangladeshi

banks Akther et al. (2013) constrained the current-period bank technology on the

amount of nonperforming loans generated in a previous period. Fukuyama and

Weber (2013, 2015a, b, 2016) extended Akther et al. (2013) to multiple periods

and allowed a bank to reduce the current production of loans and securities

investments and to save carryovers for use in a future period if future production

could be enhanced by more than the loss of current production.

Färe et al. (1992) and Färe et al. (1994) proposed static Malmquist productivity

indices which can be decomposed into indexes of efficiency change and techno-

logical change. Färe et al. (2011) presented a multiplicative dynamic Malmquist

index that allowed DMUs to make inter-temporal decisions on the allocation of

scarce resources so as to maximize production over all periods. Similarly, Fuku-

yama and Weber (2015b, 2016) proposed a dynamic-network Luenberger bank

productivity indicator and its additive components of efficiency change and tech-

nological change.

De Mateo et al. (2006) and Fallah-Fini et al. (2014) addressed various inter-

temporal aspects of production technologies and performance measures. De Mateo

et al. (2006) studied various concepts associated with inter-temporal production
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including the cost, path, and period of adjustment, the appraisal period, profits, and

dynamic DEA. Fallah-Fini et al. (2014) determined five main factors that influence

the inter-temporal dependence between inputs and outputs: production delays,

inventories, quasi-fixed factors, adjustments costs, and disembodied technical

change.

10.2.2 Bank Production and Risk

Berger and Humphrey (1997) provide a comprehensive survey of financial institu-

tion performance measures. Here we selectively examine studies that estimated

bank performance controlling for the effects of bank risk. McAllister and McManus

(1993) showed that large US banks had even greater measured scale economies

controlling for bank risk. Altunbas et al. (2000) estimated a parametric cost frontier

for a sample of Japanese commercial banks to examine the impact of risk and

quality factors on bank costs. Altunbas et al. (2000) defined the loan quality as the

ratio of nonperforming loans to total loans. For a sample of Japanese banks

operating in 1996, Drake and Hall (2003) reported evidence that financial capital

had the greatest impact on scale efficiency.

Liu and Tone (2008) used the ratio of credit costs to potential loan losses as an

input and found that Japanese banks appeared to be “learning by doing” as

efficiency improved during the sample period of 1997–2001. Park and Weber

(2006) and Fukuyama and Weber (2003, 2004, 2005) controlled for bank risk by

using financial equity capital as an input in their static measures of bank perfor-

mance. Fukuyama and Weber (2008a, b) estimated the shadow price of nonper-

forming loans. Drake et al. (2009) documented the importance of accounting for

loans and risk in the analysis of Japanese bank efficiency.

Fukuyama and Weber (2010) proposed a two-stage network model for Japanese

cooperative Shinkin banks. In stage 1 banks use labor, physical capital and financial

equity capital to produce deposits. Then, in stage 2 those deposits serve as an input

as banks produce a portfolio of securities investments and loans with some of the

loans becoming nonperforming. In a study of Bangladeshi banks Akther, Fukuyama

and Weber (2013) advanced this specification by allowing nonperforming loans

generated in a preceding period to decrease the production possibility set in a

subsequent period. All above-mentioned bank efficiency studies have the view

that risk associated to nonperforming loans need to be considered in bank efficiency

measurement.

Compared with network DEA, fewer studies have been devoted to the dynamic

DEA studies of bank efficiency. Fukuyama and Weber (2013) extended the Färe

and Grosskopf (1996) dynamic model to a network setting by specifying a bank

technology where a bank can forego current loans and the jointly produced non-

performing loans by expanding carryover assets (excess reserves) for use in a

subsequent period when better lending conditions might exist. Although their

dynamic model considered only three periods for bank managers to optimize over
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Fukuyama and Weber (2015b, 2016) extended the model to more than three

periods. Fukuyama and Weber (2015a) added a financial regulatory restraint that

constrained the feasible technology by requiring banks to hold a minimum ratio of

financial equity capital to assets. Furthermore, Fukuyama and Weber (2015a, b)

showed how the primal envelopment form that incorporated the regulatory con-

straint could be estimated by its dual multiplier form with financial regulatory

restraint and how the Luenberger dynamic productivity indicator could be

decomposed into productivity gains due to technological progress and productivity

gains due to greater efficiency. Epure and Lafuente (2015) accounted for bank risk

and distinguished between desirable outputs linked to nonperforming loans and

desirable outputs such as securities investments and service fees not linked to

jointly produced undesirable outputs.

Table 10.1 presents a summary of the assumptions behind the models of Fuku-

yama andWeber (2013, 2015a, b, 2016) and the data sets on Japanese banks used in

their empirical work. The primary purpose of the current study is to unify these

models and provide an extension by incorporating the condition of weak dispos-

ability between desirable outputs and jointly produced undesirable outputs when

banks operate under variable returns to scale.

10.3 Preliminaries

10.3.1 Black-Box Technology

Let the exogenous inputs that can be employed by a bank in period t be represented

by xt ¼ x t1; . . . ; x
t
N

� �2ℜN
þ and let total desirable outputs be represented by

yt ¼ y t1; . . . ; y
t
M

� �2ℜM
þ . The static black-box (SBB) technology for period t is

defined as

T t
SBB ¼ xt, ytð Þ2ℜN

þ �ℜM
þ xt can produce ytj� �

: ð10:1Þ

The SBB technology considers only one period and neglects the possible effects of

past production outcomes such as nonperforming loans and carryover assets that

might make a bank appear less efficient than it would otherwise be if those

carryover assets were incorporated into the technology. We assume that TtSBB
satisfies strong disposability of exogenous inputs xt and desirable outputs yt along

with other standard properties (Shephard 1970; Färe and Primont 1995). Strong

disposability of inputs and outputs means that if x t
0, y t

0

� �2T t
SBB then x t

0, � y t
0

� �
� x t

1, � y t
1

� �
implies x t

1, y t
1

� �2T t
SBB. That is, it is feasible for banks to use more

input to produce less output.
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10.3.2 Network Technology with Bad Outputs

To specify a bank technology and measure DMU performance researchers must

determine what inputs are used to produce what outputs. In their examination of

Japanese banks Fukuyama and Weber (2003, 2004, 2005) adopted the intermedi-

ation approach of Sealey and Lindley (1977) and assumed that Japanese banks

employed variable inputs of labor, physical capital, and deposits and a quasi-fixed

Table 10.1 Previous dynamic-network bank efficiency studies with NPLs

Unique model characteristics Data used

Common

model

characteristics

Fukuyama

and Weber

(2013)

• Envelopment form Shinkin banks

(265� 8 ¼ 2120)

1. CRS

frontiers

• 3-period directional technology

distance function

Period: FY2002–

FY2009

2. NPLs as

undesirable

output

Fukuyama

and Weber

(2015a)

• Envelopment form and multiplier form Commercial banks

(101� 5 ¼ 505)

3. Past NPLs

affect pre-

sent

production

• Financial regulatory constraints Period: FY2006–

FY2010

4. Two-stage

network

structure

• 3-period directional technology dis-

tance function

5. Multi-period

dynamic

structureFukuyama

and Weber

(2015b)

• Envelopment form Commercial

banks

(103� 7 ¼ 721)

• Multi-period directional technology

distance function

Shinkin banks

(265� 7 ¼ 1855)

• Luenberger indicator Period: FY2006–

FY2012

Fukuyama

and Weber

(2016)

• Envelopment Form Commercial

banks

(100� 7 ¼ 700)

• Multi-period directional output dis-

tance function

Period: FY2006–

FY2012

• Luenberger indicator

• Distinction between linked desirable

and undesirable outputs and desirable

outputs not linked to undesirable

outputs

FW Fukuyama and Weber, DN dynamic-network, NPLs nonperforming loans, FY fiscal year

Notes: Data size changes due to data availability, differences in research objectives and the

functional differences in bank activities. (1) Commercial banks consist of joint-stock city and

regional banks. (2) Shinkin banks are credit cooperatives
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input in the form of financial equity capital to produce loans and securities invest-

ments. Although the SBB technology represented by (10.1) has frequently been

used in bank efficiency measurement studies, disagreement exists regarding

whether deposits should be treated as an output or as an input. Berger and Hum-

phrey (1997) and Fethi and Pasiouras (2010) provide background on this on-going

discussion. To cope with this problem, various authors have used static two-stage

network models where deposits are an intermediate output of stage 1 production

and an intermediate input of stage 2 production. Let zt ¼ z t1; . . . ; z
t
Q

� �
2ℜQ

þ
represent the vector of intermediate products that are produced in stage 1 and

then subsequently used as an input in stage 2. The static stage 1 network

(SN) technology is denoted

T1 t
SN ¼ xt, ztð Þ 2ℜN

þ �ℜQ
þ xt2ℜN

þ can produce zt2ℜQ
þ

���n o
: ð10:2Þ

In the second stage of production it is commonly assumed that the main activity of a

bank is lending to the customers and hence it faces the credit risk associated with

lending, i.e., nonperforming loans arise in the stage 2 production process. Let bt

¼ bt
1; . . . ; b

t
L

� �2ℜL
þ represent the undesirable outputs that are jointly produced as

part of the lending process. Accounting for these undesirable outputs the static stage

2 network technology is denoted

T2 t
SN ¼ zt, yt, btð Þ 2ℜN

þ �ℜM
þ �ℜL

þ xt can produce yt; btð Þj� �
: ð10:3Þ

Nonperforming loans are generally classified by the various stages of delinquency–

loans delinquent for less than 3 months, loans delinquent less than 6 months but

more than 3 months, etc. Following Wang et al. (1997) and Chen et al. (2009a, b,

2010) the SBB technology can be extended to a static two-stage network technol-

ogy that accounts for undesirable outputs. This static network technology is denoted

T t
SN ¼ xt, zt, ytð Þ2ℜN

þ �ℜM
þ xt, ztð Þ 2T1 t

SN, zt, yt,btð Þ 2T2 t
SN

��� �
: ð10:4Þ

Figure 10.1 depicts the two-stage network system with undesirable outputs.

10.3.3 Dynamic Technology with Carryovers

To move from a static to a dynamic technology we follow Färe and Grosskopf

(1996) and assume that bank managers have discretion in how to allocate total

output produced, yt ¼ y t
1; . . . ; y

t
M

� �2RM
þ , between final outputs,

fyt ¼ fy t
1, . . . , fy

t
M

� �2RM
þ , and carryover assets, ct ¼ c t1; . . . ; c

t
M

� �2ℜM
þ where
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yt ¼ fyt þ ct2ℜM
þ : ð10:5Þ

See also Fukuyama and Weber (2013, 2015a, b). For instance, total outputs can be

thought of as the total amount of assets–less required reserves and physical capital

assets–that can be allocated to the various divisions that make loans and securities

investments. After the managers of those divisions receive their allocation (yt) they
can choose to use their funds to make loans or securities investments (fyt) or they

can save their allocation for use in a future period (ct) when better lending and

investment opportunities might be available because of technological progress or

because of a more robust economy (Fig. 10.2).

Intermediate  Products
deposits in 
other raised funds in 
...

t
t

t=z

Undesirable input  
NPLs in 11
...

Inputs linked to past NPLs
labor in 
physical capital in 
equity capital in 
...

tt

t
tt

t

−− =

=

b

x

Stage1 technology

1tT

Stage 2 technology

2tT

Uundesirable outputs
NPLs in 
...

t t
=b

Outputs linked to NPLs
loans in 
...

t t
=fy

Carryovers
carryover assets in 
...

t t
=c

1

Carryover Inputs from the previous period
carryovers from loans in 1
carryovers from securities in 1
...

t
t

t−

−

−=c

Outputs unlinked to NPLs
securities in 
...

t t
=fy

Fig. 10.2 Bank intermediation process with NPLs and carryovers. Notes: T1t: dynamic network

Stage 1 technology; T2t: dynamic network Stage 2 technology; NPLs: nonperforming loans
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Therefore, we define the dynamic black-box (DBB) technology as

TDBB ¼ x, fy, c, bð Þ ct�1,bt�1, xt, fyt þ ct, bt
� �

is a feasible

production plan for t ¼ 1, . . . ,T

����
	 


ð10:6Þ

where x ¼ x1; x2; . . . ; xTð Þ, fy ¼ fy1, fy2, . . . , fyTð Þ, c ¼ c0, c1, . . . , cTð Þ and
b ¼ b0; b1; . . . ; bT

� �
. Akther et al. (2013) considered lagged nonperforming loans

as an undesirable input when studying the efficiency of commercial banks in

Bangladesh.

10.3.4 Dynamic-Network Technology

Our final goal is to link the static network technology with the dynamic black box

technology. Nonperforming loans generated in a previous period, bt�1, are an

undesirable input to stage 1 in period t. Undesirable inputs have the property that

if the current level of production is to be maintained, greater use of the undesirable

input must be offset by the use of larger amounts of the desirable inputs. For

instance, financial equity capital is necessary for banks to engage in fund raising

activities. When some of a bank’s loans become nonperforming, the ratio of equity

capital to total assets falls and bank regulations require banks to either seek

additional sources of financial equity capital (the desirable stage 1 input) or reduce

fund raising activities. Therefore, we define the dynamic-network stage 1 technol-

ogy as

T1t ¼ bt�1;xt;zt
� �2ℜM

þ �ℜN
þ �ℜQ

þ bt�1;xt
� �2ℜN

þ can produce zt2ℜQ
þ

���n o
:

ð10:7Þ

Stage 2 of production also has a dynamic element. Along with the intermediate

outputs of raised funds and deposits, carryover assets from a previous period are a

desirable input in the production of the portfolio of loans and securities investments

in the current period. When lending and other investment opportunities are plentiful

in the current period, bank managers might seek to keep carryover assets (excess

reserves) to a minimum which reduces production possibilities in a subsequent

period. In contrast, bank managers might choose to keep final outputs relatively

small and hold a large amount of carryover assets for use in a future, more positive

lending environment. Thus, carryover assets, ct ¼ c t1; . . . ; c
t
M

� �2ℜM
þ represent the

unused assets in period t that are held until period tþ 1, similar to an inventory.

When current economic conditions are weakening or when technological progress

is expected a bank can delay some portion of the assets for use to a future period at
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the expense of the current production of outputs. Therefore, we denote the stage

2 technology as

T2t ¼ ct�1, zt, fyt,bt
� �2ℜN

þ �ℜM
þ �ℜL

þ ct�1, zt, fyt þ ct,bt
� �

is feasible
��� �

:

ð10:8Þ

We combine (10.7) and (10.8) to obtain the period t network technology

NTt ¼ bt�1, ct�1, xt, zt, fyt, bt, ct
� � bt�1, xt, zt

� �2T1t,
ct�1, zt, fyt,btð Þ2T2t

����
	 


: ð10:9Þ

The dynamic-network technology (DNT) is formed by extending (10.9) over t ¼ 1,

. . . , T periods:

DNT ¼ x, y, c, bð Þ
b0, c0, x1, z1, fy1, b1, c1
� �2NT1,

⋮
bT�1, cT�1, xT , zT , fyT , bT , cT
� �2NTT

������
8<
:

9=
;: ð10:10Þ

To measure bank performance we use a variant of the directional distance

function. Directional distance functions were developed by Chambers et al. (1998)

as a functional representation of the production technology, similar to Luenberger’s
(1992, 1995) benefit function that was used to represent the consumer’s choice

problem. A single period directional distance function measures the simultaneous

expansion in desirable outputs and contraction in undesirable outputs and inputs for

the directional scaling vector g ¼ gf y; gb; gx
� �

. We extend the directional distance

function to the dynamic network technology given by (10.10). Let

Ωk ¼ bt�1
k , _c t�1

k , €ct�1
k , b t

k, x t
k, f _y t

k, _c t
k, f€y t

k, €c tk, 8t ¼ 1, . . . ,T
� �

represent

the observed inputs, outputs, and carryovers for bank k in each production period.

We define a weighted DN-directional distance function as

DN~D Ωk;gð Þ¼ maximize
βt, zt, ct

XT
t¼1

wtβt
(

b0,c0, x1�β1gx, z
1, fy1þβ1gy, b

1�β1gb,c
1

� �2NT1,

b1�β1gb,c
1, x2�β2gx, z

2, fy2þβ2gy, b
2�β2gb,c

2
� �2NT1,

⋮
bT�1�βT�1gb,c

T�1, xT �βTgx, z
T , fyT þβTgy, b

T �βTgb,c
T

� �2NTT :

��������

9>>=
>>;

ð10:11Þ

The weights (wt) for each period are exogenously chosen. Following Nemoto and

Goto (2003), De Mateo et al. (2006) and Fukuyama andWeber (2015a, b, 2016) one

might choose the present value factors for the predetermined weights. That is,

wt ¼ 1þ Rð Þt�1
, where R is the producer’s rate of time preference. Inefficient

producers have DN~D Ωk; gð Þ > 0 and in stage 1 of period t they can contract inputs
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by βtgx while in stage 2 of the same period they can simultaneously expand

desirable outputs by βtgy and contract undesirable outputs by βtgb. The contraction
in stage 2’s undesirable outputs means that in the next period the amount of

undesirable inputs that enter stage 1 will also decline. A producer who is efficient

in a single period has βt ¼ 0 and a producer who is efficient in every period has

DN~D Ωk; gð Þ ¼ 0. We note that in the initial period the lagged value of undesirable

outputs (b0) are fixed. Furthermore, while the producer chooses the amount of

carryover assets (ct) in each of the t ¼ 1, . . . , T periods, the lagged value of

carryover assets (c0) in period t ¼ 1 are taken as exogenous. Figure 10.3 depicts

the multi-period dynamic-network structure for a bank.

10.4 DEA Implementation

We specify the dynamic network technology and estimate the performance of each

DMU using DEA. To incorporate the idea that nonperforming loans from a

previous period are an undesirable input to stage 1 of the current period we assume

that nonperforming loans bt�1
� �

and other inputs (xt) satisfy joint weak input

disposability (JWID). The condition of JWID is written as

11T

12T

21T

22T

1TT

2TT

1x 2x Tx

1fy
2fy Tfy

0b 1b

1T−b

Tb

1z 2z Tz

0c 1c 1T−c Tc

2b

2c

Tfy
2fy1fy. ... ..

. ..

Fig. 10.3 Dynamic network structure of bank production. Note: We adapted the multi-period

dynamic-network representations given in Fukuyama and Weber (2015b, 2016)
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JWID : bt�1, xt, zt
� �2T1t � ℜLþNþQ

þ and φ � 1

) φbt�1, φxt, zt
� �2T1t ð10:12Þ

which indicates that any proportional expansion of undesirable inputs bt�1 and

current desirable inputs xt can still feasibly produce a fixed level of intermediate

products zt.

Our DEA technology also distinguishes between desirable outputs that are

linked to undesirable byproducts and desirable outputs that are not linked to

undesirable outputs. To make the distinction we assume that _M of the desirable

outputs are linked to undesirable outputs and that €M of the desirable outputs are not

linked to undesirable outputs where M ¼ _M þ €M. That is,

yt ¼ fyt þ ct ¼ f _y t þ _c t, f€yt þ €ctð Þ: ð10:13Þ

In addition to JWID we assume that stage 2 desirable outputs linked to undesirable

outputs satisfy joint weak output disposability (JWOD). This condition is written as

follows:

JWOD : zt, f _y tþ _c t, f€ytþ €ct, btð Þ2T2t �ℜQþ _Mþ €MþL
þ

and 0� θt � 1 ) zt, θt f _y tþ _c tð Þ, f€ytþ €ct, θbtð Þ2T2t
ð10:14Þ

which means that it is feasible to produce proportionally less of the desirable and

undesirable outputs with the same amount of input. Weak disposability of outputs is

in contrast to the more typical assumption of strong disposability where it is

possible to produce less of a single output. Weak disposability means there is an

opportunity cost of producing fewer undesirable outputs–fewer desirable outputs

must also be produced.

To fully specify the DEA technology we assume that there are j¼ 1,. . ., J banks

observed in t ¼ 1, . . . ,T periods. Let λ1t ¼ λ1t1 ; . . . ; λ
1t
J

� �2ℜ J
þ and

λ2t ¼ λ2t1 ; . . . ; λ
2t
J

� �2ℜ J
þ represent the intensity variable vectors that form convex

combinations of observed inputs for the stage 1 and stage 2 technologies. Account-

ing for JWID, the stage 1 DEA technology in period t is

T1t ¼ bt�1,xt, zt
� �

bt�1, xt
� �

can produce zt
��� �

¼ bt�1, xt, zt
� �2ℜLþNþQ

þ
bt�1 �

X J

j¼1
φtbt�1

j λ1tj , xt �
X J

j¼1
φtx t

j λ
1t
j ,

zt �
X J

j¼1
z tj λ

1t
j , λ

1t � 0, φt � 1

������
8<
:

9=
;

ð10:15Þ
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where “0” indicates an appropriate dimensional zero vector. The existence of

nonperforming loans from a preceding period requires the bank to raise a greater

amount of equity capital and utilize more of the other inputs.

The stage 2 DEA technology for period t is denoted by

T2t ¼ zt, fytþ ct, btð Þ2ℜQþLþM
þ ct�1, ztð Þ can produce ytþ ct, btð Þ��n o

¼ zt, f _y tþ _c t, bt,

f€ytþ€ct

� �
2ℜQþLþM

þ

X J

j¼1
z tj λ

t
j � z2t, bt �

X J

j¼1
θtb t

j λ
2t
j ,

f _y tþ _c t �
X J

j¼1
θt _y t

j λ
2t
j ,

f€ytþ€ct �
X J

j¼1
€y t
j λ

2t
j ,

_c t�1 �
X J

j¼1
_c t�1
j λ2tj , €ct�1 �

X J

j¼1
€ct�1
j λ2tj ,

λ2tj � 0, 0� θt � 1, 8t¼ 1, . . . ,T

���������������

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
:

ð10:16Þ

Combining (10.15) and (10.16), we obtain the DEA-based technology for t denoted
as

NTt

¼
bt�1, xt, ct�1,

f _y tþ _c t,

f€ytþ€ct, bt

0
@

1
A 2ℜLþNþMþ _Mþ €MþL

þ

bt�1 �
XJ
j¼1

φtbt�1
j λ1tj , xt �

X J

j¼1
φtx t

j λ
1t
j ,X J

j¼1
z tj λ1tj � λ2tj

� �
� 0, bt �

X J

j¼1
θtb t

j λ
2t
j ,

f _y tþ _c t �
XJ
j¼1

θt _y t
j λ

2t
j ,

f€ytþ€ct �
X J

j¼1
€y t
j λ

2t
j ,

_c t�1 �
X J

j¼1
_c t�1
j λ2tj , €ct�1 �

X J

j¼1
€ct�1
j λ2tj , zt � 0,

λ1t � 0, λ2t � 0, φt � 1, 0� θt � 1, 8t¼ 1, . . . ,T

����������������������

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

:

ð10:17Þ

We usebt �
X J

j¼1
θtb t

j λ
2t
j rather thanbt ¼

X J

j¼1
θtb t

j λ
2t
j in (10.16) and (10.17), but

this treatment does not indicate that undesirable outputs are inputs due to the

condition that 0 � θt � 1. In fact, Färe et al. (2016) also replaced the equality

“¼” by the inequality “�” in a static black-box setting where no distinction was

made between desirable outputs linked with jointly produced undesirable outputs

and desirable outputs not linked to undesirable outputs. They stated that such a

treatment was consistent with treating bt as undesirable outputs, rather than inputs.

In (10.17) two sets of constraints link the two stages of production. These

constraints are for the intermediate outputs produced in stage 1 which are then

used as an input to stage 2. The constraints are
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XJ
j¼1

z tj λ
1t
j � z and

XJ
j¼1

z tj λ
2t
j � z ,

XJ
j¼1

z tj λ1tj � λ2tj

� �
� 0: ð10:18Þ

See Fukuyama and Weber (2010, 2014) and see also Chen et al. (2009b) and Chen

et al. (2010). Equation (10.18) allows some of the intermediate outputs produced in

stage 1 to be wasted in that not all of the intermediate outputs are needed to produce

the final outputs in stage 2. Fukuyama and Weber (2015a) found that Japanese

commercial banks produced more deposits in stage 1 than were needed to produce

the portfolio of loans and securities investments in stage 2. An et al. (2015) also

studied the relation between the degree of centralization and the internal resource

waste for a two-stage network DEA problem. Fukuyama and Mirdehghan (2012)

and Mirdehghan and Fukuyama (2016) examined (10.18) in a more general net-

work DEA framework from a Pareto-Koopmans efficiency perspective.

The dynamic network directional distance function can be estimated using DEA

by substituting the dynamic network DEA technology (10.17) into (10.11). Let g

¼ gx, g _y, g€y, gb
� �

be a predetermined directional vector for exogenous inputs,

linked outputs, unlinked outputs and undesirable outputs and let wt represent the

pre-determined weights for each period. The T-period DN-directional technology

distance function is estimated using DEA as

DN~D Ωk;gð Þ ¼ maximize
βt, _c t, €ct, λ1t, λ2t, φt, θt

w1β1þw2β2þ . . .þwTβT

subject to :

bank k in t¼ 1 and technology at t¼ 1

b0k �
X J

j¼1
φ1b0j λ

1,1
j , x1k �β1gx �

X J

j¼1
φ1x1j λ

1,1
j ,

X J

j¼1
z1j λ1,1j � λ2,1j

� �
� 0,

_c 0
k �

X J

j¼1
_c 0
j λ

2,1
j , €c0k �

X J

j¼1
€c0j λ

2,1
j , b1k �β1gb �

XJ
j¼1

θ1b1j λ
2,1
j ,

f _y 1
k þ _c 1þβ1g _y �

X J

j¼1
θ1 _y 1

j λ
2,1
j , f€y1k þ€c1þβ1g€y �

X J

j¼1
€y1j λ

2,1
j ,

β1 � 0, λ1,1 � 0, λ2,1 � 0, _c 1 � 0, €c1 � 0 , φ1 � 1, 0� θ1 � 1

ð10:19Þ
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bankk int¼2, ...Tandtechnologyatt¼2, ...,T

bt�1
k �βt�1gb�

X J

j¼1
φtbt�1

j λ1tj , x
t
k�βtgx�

X J

j¼1
φtx t

j λ
1t
j ,

X J

j¼1
z tj λ1tj �λ2tj

� �
�0,

_c t�1�
X J

j¼1
_c t�1
j λ2,tj , €ct�1�

X J

j¼1
€ct�1
j λ2,tj , b t

k�βtgb�
X J

j¼1
θtb t

j λ
2t
j ,

f _y t
kþβtg _yþ _c t�

X J

j¼1
θt _y t

j λ
2t
j , f€y

t
kþβtg€yþ€ct�

X J

j¼1
€y t
j λ

2t
j ,

βt�0, λ1t�0, λ2t�0, _c t�0, €ct�0, φt�1, 0�θt�1:

The T-period DN-directional technology distance function is a dynamic network

version of the directional technology distance function due to Chambers

et al. (1996).

Although (10.19) is a nonlinear program it can be transformed into a linear

program by transforming the intensity variables using the Kuosmanen’s (2005)

procedure. Let γ1tj ¼ φtλ1tj and let μ1tj ¼ 1� φtð Þλ1tj where μ1tj j ¼ 1, . . . , Jð Þ are
non-positive. Consequently, the stage 1 intensity variables can be written as

λ1tj ¼ γ1tj þ μ1tj . Similarly, let γ2tj ¼ θtλ2tj and let μ2tj ¼ 1� θtð Þλ2tj where

μ2tj j ¼ 1, . . . , Jð Þ are non-negative. Thus, the stage 2 intensity variables can be

written as λ2tj ¼ γ2tj þ μ2tj . Note that γ
1t
j and γ2tj are non-negative. Substituting these

transformed variables into (10.19) yields

XT

t¼1
wtβt t½ � ¼ maximize

βt, _c t, €ct, γ1tj , μ1tj , γ2tj , μ2tj

w1β1 þ w2β2 þ . . .þ wTβT

subject to :

bank k in t ¼ 1 and technology in t ¼ 1

b0k �
X J

j¼1
b0j γ

1,1
j , x1k � β1gx �

X J

j¼1
x1j γ

1,1
j ,X J

j¼1
z1j γ1,1j þ μ1,1j

� �
� γ2,1j þ μ2,1j

� �� �
� 0,

_c 0
k �

X J

j¼1
_c 0
j γ2,1j þ μ2,1j

� �
, €c0k �

X J

j¼1
€c0j γ2,1j þ μ2,1j

� �
,

b1 � β1gb �
X J

j¼1
b1j γ

2,1
j ,

f _y 1
k þ β1g _y þ _c 1 �

X J

j¼1
_y 1
j γ

2,1
j ,

f€y1k þ β1g€y þ €c1 �
X J

j¼1
€y1j γ2,1j þ μ2,1j

� �
,

β1 � 0, λ1,1 � 0, λ2,1 � 0, _c 1 � 0, €c1 � 0 ,

γ1,1j � 0, μ1,1j � 0, γ2,1j � 0, μ2,1j � 0 j ¼ 1, . . . , Jð Þ
γ1,1j þ μ1,1j � 0 j ¼ 1, . . . , Jð Þ, γ2,1j þ μ2, tj � 0 j ¼ 1, . . . , Jð Þ;

ð10:20Þ
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bank k in t¼ 2, . . .T and technology at t¼ 2, . . . ,T

bt�1
k �βt�1gb �

X J

j¼1
bt�1
j γ1tj , x t

k�βtgb �
X J

j¼1
x t
j γ

1t
j , ,X J

j¼1
z tj γ1tj þμ1tj

� �
� γ2tj þμ2tj

� �� �
� 0,

_c t�1 �
X J

j¼1
_c t�1
j γ2tj þμ2tj

� �
, €ct�1 �

X J

j¼1
€ct�1
j γ2tj þμ2tj

� �
,

bt�βtgb �
X J

j¼1
b t
j γ

2t
j ,

f _y t
kþβtg _y þ _c t �

X J

j¼1
_y t
j γ

2t
j ,

f€y t
kþβtg€yþ€ct �

X J

j¼1
€y t
j

�
γ2tj þμ2tj

�
,

βt � 0, λ1t � 0, λ2t � 0, _c t � 0, €ct � 0 ,

γ1tj � 0, μ1tj � 0, γ2tj � 0, μ2tj � 0 j¼ 1, . . . ,Jð Þ
γ1tj þμ1tj � 0 j¼ 1, . . . ,Jð Þ, γ2tj þμ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T:

where carryover assets, _c t, €ct 8t ¼ 1, . . . ,Tð Þ are choice variables and the

optimized values βt[t] represent bank inefficiency in period t with

DN~D Ωk; gð Þ ¼
XT

t¼1
wtβt t½ �.

The dynamic-network performance problem (10.20) selects the maximal value

of the weighted sum of scaling factors related to exogenous inputs, the undesirable

output of nonperforming loans and the desirable outputs of loans and securities

investments. The model (10.20) differs from those of Fukuyama and Weber (2013,

2015a, b) by incorporating joint weak input-disposability (JWID) given by (10.12)

and joint weak output-disposability (JWOD) given by (10.14). The multi-period

dynamic-network directional distance function DN~D Ωk; gð Þ extends the static

black-box directional technology distance function due to Chambers et al. (1998).

The optimal values of the intermediate outputs, zt, can be calculated using the

optimal intensity variables with
X J

j¼1
z tj γ1tj þ μ1tj

� �
providing an upper bound

estimate for zt and
X J

j¼1
z tj γ2tj þ μ2tj

� �
providing a lower bound estimate of zt.

Values of DN~Dk ¼ DN~D Ωk; gð Þ ¼ 0 indicate that DMU k is efficient in every

period with no ability to simultaneously expand final outputs and contract undesir-

able outputs given the DEA technology. When DN~Dk > 0, DMU k is inefficient

with larger values indicating greater inefficiency.

The objective function of (10.20) is a weighted bank performance score equal to

the sum of the product of the weights (wt) and the period t directional technology
distance functions βt[t] over the t ¼ 1, . . . ,T periods. For the estimation of various

productivity indicators we need to calculate cross-period directional technology

distance functions βtþ1 t½ � and βt tþ 1½ �, t ¼ 1, . . . ,T � 1, where βtþ1 t½ �measures the

distance of the observed banks inputs and outputs in period t relative to the
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technology in period tþ 1 and βt tþ 1½ � measures the observed bank’s inputs and
outputs in period tþ 1 relative to the technology in period t. We estimate the

cross-period DN-directional technology distance functions by building on Pastor,

Asmild, and Lovell’s (2011) biennial Malmquist index and Färe et al. (2011)

dynamic Malmquist index.

Using the cross-period estimates, the DN-Luenberger productivity indicator

DNLt, tþ1
� �

is obtained as

DNLt, tþ1 ¼ 1

2
wtβt t½ � � wtβt tþ 1½ �ð Þ þ wtþ1βtþ1 t½ � � wtþ1βtþ1 tþ 1½ �� � �

,

t ¼ 1, . . . , T � 1:

ð10:21Þ

A DMU experiences productivity growth (decline) between periods t and tþ 1 if

DNLt, tþ1 is positive (negative). The DN-Luenberger productivity indicator extends

Chambers’ (2002) static Luenberger productivity indicator for a dynamic network

technology. The DN-Luenberger productivity indicator can also be thought of as an

additive version of the static Malmquist productivity index of Färe et al. (1994).

To estimate βt tþ 1½ � we solve the following optimization problem:

XT�1

t¼1
wtβt tþ 1½ � ¼ maximize

βt, _c t, €ct, γ1tj , μ1tj , γ2tj , μ2tj

XT�1

t¼1
wtβt

subject to :

bank k in t ¼ 2 and technology in t ¼ 1

b1k �
X J

j¼1
b0j γ

1,1
j , x2k � β1gx �

X J

j¼1
x1j γ

1,1
j ,X J

j¼1
z1j γ1,1j þ μ1,1j

� �
� γ2,1j þ μ2,1j

� �� �
� 0, _c 1

k �
X J

j¼1
_c 0
j γ2,1j þ μ2,1j

� �
,

€c1k �
X J

j¼1
€c0j γ2,1j þ μ2,1j

� �
, b2 � β1gb �

X J

j¼1
b1j γ

2,1
j ,

f _y 2
k þ β1g _y þ _c 2 þ _s 2 ¼

X J

j¼1
_y 1
j γ

2,1
j ,

f€y2k þ β1g€y þ €c2 þ €s2 ¼
X J

j¼1
€y1j
�
γ2,1j þμ2,1j

�
,

β1 : free, λ1,1 � 0, λ2,1 � 0, _c 2 � 0, €c2 � 0 , _s 2 : free, €s2 : free,

γ1,1j � 0, μ1,1j � 0, γ2,1j � 0, μ2,1j � 0 j ¼ 1, . . . , Jð Þ
γ1,1j þ μ1,1j � 0 j ¼ 1, . . . , Jð Þ, γ2,1j þ μ2,1j � 0 j ¼ 1, . . . , Jð Þ

ð10:22Þ
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bank k in t¼ 3, . . .T and technology at t¼ 2, . . . ,T�1

b t
k�βt�1gb �

X J

j¼1
bt�1
j γ1tj , xtþ1

k �βtgx �
X J

j¼1
x t
j γ

1t
j ,X J

j¼1
z tj γ1tj þμ1tj

� �
� γ2tj þμ2tj

� �� �
� 0,

_c t �
X J

j¼1
_c t�1
j γ2tj þμ2tj

� �
, €ct �

X J

j¼1
€ct�1
j γ2tj þμ2tj

� �
,

btþ1
k �βtgb �

X J

j¼1
b t
j γ

2t
j ,

f _y tþ1
k þβtg _y þ _c tþ1þ _s tþ1 ¼

X J

j¼1
_y t
j γ

2t
j ,

f€ytþ1
k þβtg€yþ€ctþ1þ €stþ1 ¼

X J

j¼1
€y t
j

�
γ2tj þμ2tj

�
,

βt : free in sign, _c t � 0, €ct � 0 ,
_s tþ1 : free in sign, €stþ1 : free in sign,
γ1tj � 0, μ1tj � 0, γ2tj � 0, μ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1

γ1tj þμ1tj � 0 j¼ 1, . . . ,Jð Þ, γ2tj þμ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1:

The cross-period distance functions, βtþ1 t½ �, t ¼ 1, 2, . . . , T � 1, measure how

far a bank’s observed inputs and outputs in period t are from the period tþ 1

production frontier. These cross-period distance functions are found by solving

the linear programming problem

XT�1

t¼1
wtþ1βtþ1 t½ � ¼ max

βt, _c t, €ct, γ1tj , μ1tj , γ2tj , μ2tj

XT�1

t¼1
wtþ1βtþ1

subject to :

bank k in t ¼ 1 and technology in t ¼ 2

b0k �
X J

j¼1
b1j γ

1,2
j , x1k � β2gx �

X J

j¼1
x2j γ

1,2
j ,X J

j¼1
z2j γ1,2j þ μ1,2j

� �
� γ2,2j þ μ2,2j

� �� �
� 0,

_c 0
k �

X J

j¼1
_c 1
j γ2,2j þ μ2,2j

� �
, €c0k �

X J

j¼1
€c1j γ2,2j þ μ2,2j

� �
,

b1k � β2gb �
X J

j¼1
b1j γ

2,2
j ,

f _y 1
k þ β2g _y þ _c 1 þ _s 1 ¼

X J

j¼1
_y 2
j γ

2,2
j ,

f€y1k þ β2g€f þ €c1 þ €s1 ¼
X J

j¼1
€y2j
�
γ2,2j þ μ2,2j

�
,

β2 : free in sign, _c 1 � 0, €c1 � 0,
_s 1 : free in sign, €s1 : free in sign,

γ1,2j � 0, μ1,2j � 0, γ2,2j � 0, μ2,2j � 0 j ¼ 1, . . . , Jð Þ
γ1,2j þ μ1,2j � 0 j ¼ 1, . . . , Jð Þ, γ2,2j þ μ2,2j � 0 j ¼ 1, . . . , Jð Þ

ð10:23Þ
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bank k in t¼ 2, . . .T�1 and technology at t¼ 3, . . . ,T

bt�1
k �βtgb �

X J

j¼1
b t
j γ

1,tþ1
j , x t

k�βtþ1gx �
X J

j¼1
xtþ1
j γ1,tþ1

j ,X J

j¼1
ztþ1
j γ1,tþ1

j þμ1,tþ1
j

� �
� γ2,tþ1

j þμ2,tþ1
j

� �� �
� 0,

_c t�1 �
X J

j¼1
_c t
j γ2,tþ1

j þμ2,tþ1
j

� �
, €ct�1 �

X J

j¼1
€c tj γ2,tþ1

j þμ2,tþ1
j

� �
,

b t
k�βtþ1gb �

X J

j¼1
b t
j γ

2t
j ,

f _y t
kþβtþ1g _y þ _c tþ _s t ¼

X J

j¼1
_y tþ1
j γ2,tþ1

j ,

f€y t
kþβtþ1g€yþ€ctþ €st ¼

X J

j¼1
€ytþ1
j γ2,tþ1

j þμ2,tþ1
j

� �
,

βtþ1 : free in sign, _c t� 0, €ct � 0 ,
_s t : free in sign, €st : free in sign,
γ1tj � 0, μ1tj � 0, γ2tj � 0, μ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1

γ1,tþ1
j þμ1,tþ1

j � 0 j¼ 1, . . . ,Jð Þ, γ2,tþ1
j þμ2,tþ1

j � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1:

After solving the linear programming problems (10.20), (10.22), and (10.23), we

can obtain the DN-Luenberger productivity indicator, DNLt, tþ1, given in (10.21).

This productivity indicator can be decomposed into a dynamic-network efficiency

change indicator, DNECt, tþ1, and a dynamic-network technical change indicator,

DNTCt, tþ1:

DNLt, tþ1 ¼ wtβt t½ � � wtþ1βtþ1 tþ 1½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DNECt, tþ1

þ 1

2
wtþ1βtþ1 t½ � � wtβt t½ �� �þ wtþ1βtþ1 tþ 1½ � � wtβt tþ 1½ �� � �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DNTCt, tþ1

;

ð10:24Þ

A bank exhibits an efficiency gain (loss) if DNECt, tþ1 is positive (negative).

Similarly, a bank exhibits technological progress (regress) if DNTCt, tþ1 is positive

(negative).

10.5 A Choice of Variables and Regulatory Constraints

10.5.1 Variable Selection: An Example

In this sub-section, we describe the bank inputs and outputs that were used by

Fukuyama and Weber (2015a) in their dynamic network model. In their basic

model, banks transform labor (x1), physical capital (x2) and financial equity capital

(x3) to produce deposits (z1) and other raised funds (z2) in stage 1. Then, in stage

2, banks use the intermediate products of stage 1 as inputs in producing loans f _y1ð Þ
and securities investments ( fÿ2) as well as carryover assets c ¼ _c 1, €c2ð Þð Þ and an
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undesirable by-product of nonperforming loans (b1). Carryover assets are divided

into carryover assets that come from loans _c 1ð Þ and carryover assets that come from

securities €c2ð Þ. The total carryover assets _c1 þ €c2ð Þ are derived as:

_c 1 þ €c2 ¼ Assets� Required Reserves� Physical capitalðx2Þ
�Performing loansðf _y 1Þ � Securities investments ðf€y2Þ
�Nonperforming loans ðb1Þ:

ð10:25Þ

In their study, all carryover assets correspond with securities, i.e., c1¼ 0 and c2 > 0.

Since all carryovers are from securities investments, the network technology

(10.17) exhibits null-jointness, because a proportional reduction in linked desirable

and undesirable outputs is technologically feasible given the condition of JWOD.

For the calculation of required reserves, see Fukuyama andWeber (2013, 2015a, b).

10.5.2 Imposing Bank Regulatory Constraint

Banks face a variety of financial regulations which constrain their ability to reduce

certain kinds of inputs such as financial equity capital or to expand deposits and

other raised funds without the use of extra financial equity capital, even if the

technology would allow them to do so. In addition, financial regulations also

constrain the ability of banks to make certain kinds of risky loans without additional

financial equity capital. Fukuyama and Weber (2015a) incorporated these financial

regulatory constraints into the DEA technology. Since Japanese domestic banks are

required to have qualifying equity capital as a percent of risk-weighted assets (wAt
k)

greater than 4%, bank k’s capital adequacy ratio is expressed as

CARt
k ¼

Tier 1 t
k þ Tier 2 t

k � deduct tk
wAt

k

� 0:04 ð10:26Þ

where Tier 1tk is core tier 1 bank capital (primarily shareholders’ equity), Tier 2tk is

supplementary bank capital and deducttk is a deduction that includes goodwill.

Domestically operating banks are required to have a capital adequacy ratio of at

least 4%, whereas the international banks need to have a capital adequacy ratio of at

least 8% (see for example Montgomery and Shimizutani 2009).

Weber and Devaney (1999) and Färe et al. (2004) were the early DEA studies

which incorporated risk-based capital constraints in bank efficiency measurement.

Let Wt
ka be the risk-weight of asset a and let At

ka be the value of asset a. For assets

a ¼ 1, . . . ,Z the weighted sum wAt
k ¼

XZ
a¼1

Wt
kaA

t
ka represents risk-weighted assets.

The dynamic-network model of Fukuyama and Weber (2015a) assumed that

equity capital equals the sum of Tier 1 and Tier 2 capital, less deductions. Their

data source did not report the risk-weights for loans and securities although it did

10 Measuring Bank Performance: From Static Black Box to Dynamic Network Models 261



report total risk-weighted assets (wAt
k). Therefore, they imputed the risk-weights for

the two outputs of loans and securities investments from total risk-weighted assets

and by using the regulatory risk-weights for various classes of assets. Their imputa-

tion procedure is as follows. A bank’s total securities consist of central government

bonds (Govtk), local and municipal bonds (Localtk), corporate bonds (Corptk), and
other securities (otherSectk), and securities have risk weights between zero and one

with various government bonds having lower risk weights than corporate bonds

and other securities. Following Fukuyama and Weber (2015a) the risk-weight

for total securities can be computed as Wt
2k ¼ 0�Gov t

kþ0:2�Local tkþ0:75�Corp t
kþ1�otherSec t

k

f y t
2k

.

Fukuyama and Weber (2015a) also assumed that cash representing carryover

assets has a risk weight of 0 and physical capital has a risk weight of 1; and

other assets (otherAt
k) have a risk-weight of 1. Since

wAt
k ¼ 0� Cash t

k þWt
1kf y

t
1k þWt

2kf y
t
2k þ 1� x t2k þ 1� otherAt

k, the risk-weight

for loans is computed as Wt
1k ¼ wA t

k�W t
2k�f y t

2k
�1�x t

2k
�1�otherA t

k

f y t
1k

. Therefore, the

capital adequacy restriction given by (10.26) can be written as
x t
3k

W t
1k�f y t

1k
þW t

2k�f y t
2k
þ1�x t

2k
þ1�otherA t

k
� 0:04 which can be rearranged to yield

x t
3k

0:04 � Wt
1k � f y t1k þWt

2k � f y t2k þ 1� x t2k þ 1� otherAt
k

� �
. Thus, taking ineffi-

ciency into consideration yields the following regulatory inequality constraint:

x t3k
0:04

� Wt
1k � f y t1k þWt

2k � f y t2k þ x t2k þ otherAt
k

þ βt W t
1k � gy1 þWt

2k � gy2 � gx2 þ
gx3
:04

� �
: ð10:27Þ

Therefore, the financial regulatory constraints can be expressed as

Ft
k � βtG t

k t ¼ 1, . . . , Tð Þ: ð10:28Þ

where Ft
k ¼ x t

3k

0:04 �Wt
1k � f y t1k �Wt

2k � f y t2k � x t2k � otherAt
k and Gt

k ¼ Wt
1k�

gy1 þW t
2k � gy2 � gx2 þ gx3

0:04. Therefore, the financial regulatory constraint can be

imposed by adding (10.28) to (10.19). A consequence of financial regulatory

constraints is that measures of inefficiency–the ability to expand desirable outputs

and contract inputs–is less than what might be achieved given the technology

without the financial regulatory constraint.

Note that the dual multiplier representation of (10.19) with the financial regula-

tory constraint (10.28) can be developed similar to the method of Fukuyama and

Weber (2015a).
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10.6 A Summary

Specifying an appropriate technology and measuring financial institution perfor-

mance has been a fertile area among operations researchers in the past 30 years.

Much of the early work relied on a black box technology where inputs entered and

outputs emerged from the black box and the performance of a particular financial

institution was measured relative to the best-practice producer in a single period.

This research was extended to network models that allowed various production

divisions within a financial institution to contribute to the production of final

outputs. One of the common network models assumed that banks used various

exogenous inputs in stage 1 to produce intermediate outputs of deposits and then

used those deposits as an input in stage 2 to generate a portfolio of interest bearing

assets such as loans and securities investments. These network models were

extended to account for the fact that the lending process generates a jointly

produced undesirable output in the form of delinquent or nonperforming loans.

Furthermore, nonperforming loans generated in one period constrain bank produc-

tion possibilities in future periods. In addition, instead of immediately making loans

as deposits are generated banks can instead choose to carryover some of their

deposits if they expect enhanced future production possibilities. Dynamic models

extended the black box technology by allowing inter temporal dependence between

the input and output decisions of one period on the production possibilities of

subsequent periods.

In this chapter, the dynamic network bank technology and performance mea-

sures developed by Fukuyama and Weber (2013, 2015a, b) were studied and

extended accounting for weak disposability between desirable and undesirable

inputs and accounting for weak disposability between desirable and undesirable

outputs. Static black box efficiency measures tend to be biased because they ignore

inter-temporal dependencies among inputs and outputs. The performance measures

that were developed in this chapter help reduce the bias in static black box

efficiency measures by comparing observed bank input and output decisions rela-

tive to a dynamic best-practice technology that accounts for the effects of input and

output decisions of one period on the ability of banks to produce in future periods.
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