
Chapter 1

Ranking Decision Making Units:
The Cross-Efficiency Evaluation

José L. Ruiz and Inmaculada Sirvent

Abstract This chapter surveys the literature on the cross-efficiency evaluation,

which is a methodology for ranking decision making units (DMUs) involved in a

production process regarding their efficiency. Cross-efficiency evaluation has been

developed in the context of analyses of relative efficiency carried out with Data

Envelopment Analysis (DEA). It is usually claimed that the DEA efficiency scores

cannot be used for ranking, because they result from a self-evaluation of units based

on DMU-specific input and output weights. Cross-efficiency evaluation, in contrast,

provides a peer-appraisal in which each DMU is evaluated from the perspective of

all of the others by using their DEA weights. This makes it possible to derive an

ordering. We make an exhaustive review of the existing work on the different issues

related to the cross-efficiency evaluation. Other uses of this methodology different

from the ranking of DMUs as well as the extensions that have been developed are

also outlined.
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1.1 Introduction

In decision making processes, ranking constitutes a crucial step for choosing among

alternatives after their evaluation. In Multi-Attribute Decision Making (MADM)

problems we have n alternatives which are assessed against m criteria. The evalu-

ations that result from these assessments provide the final ranking values of the

alternatives. Usually, the higher the ranking value the better the performance of

the alternative, so the alternative with the highest ranking value is considered as the

best of the alternatives.

Rankings have experienced an increasing popularity. An example of this can be

found in Higher Education with the university rankings or league tables.
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Most visible international rankings are The Academic Ranking of World Univer-

sities (ARWU) by Shanghai Jiao Tung University, commonly known as the Shanghai

index and the World University Ranking by Times Higher Education (THESQS). As

has been widely acknowledged in the related literature, university rankings are

controversial but influential. Despite their limitations, university rankings have

some effect on decision making regarding higher education institutions: on the choice

of a convenient place by students, on recruitment decisions by employers, on

university policies, motivating the competitiveness among them, etc. See De Witte

and Hudrlikova (2013) for a discussion on this issue and a review of the literature.

We here are concerned with the assessment of performance of DMUs involved

in production processes. Specifically, the focus is on the evaluation of their relative

efficiency in the use of several inputs to produce several outputs by means of DEA

models. The DEA efficiency scores provide a self-evaluation of DMUs based on the

inputs and output weights that show them in their best possible light. Thus, since the

DMUs are evaluated with DMU-specific weights (which often differ across units),

it is usually claimed that the efficiency scores that result from DEA models cannot

be used for purposes of ranking DMUs.

The chapter is devoted to the so-called cross-efficiency evaluation. This meth-

odology, as introduced in Sexton et al. (1986) and Doyle and Green (1994a), arose

as an extension of DEA aimed at ranking DMUs. The idea behind the cross-

efficiency evaluation is to apply one DMU’s perspective to others, by using its

DEA weights in the evaluations. That is, the efficiency of each unit is assessed with

the weights of all the DMUs instead of with only its own weights. Each of these

assessments, which are called the cross-efficiencies, is defined as the classical

efficiency ratio of a weighted sum of outputs to a weighted sum of inputs. Even-

tually, the cross-efficiency score of a given unit is calculated as the average of the

cross-efficiencies of such unit obtained with the weights of all the DMUs. Cross-

efficiency evaluation provides thus a peer-evaluation of the DMUs, instead of a

self-evaluation, which makes it possible to derive an ordering. We highlight the

parallelism between the cross-efficiency evaluation and MADM problems. Cross-

efficiency evaluation can be seen as a MADM problem in which the DMUs are the

alternatives and the DEA weights of each of them act as the criteria used in the

evaluations.

Cross-efficiency evaluation has received much attention in the related literature.

In fact, “cross-efficiency evaluation and ranking” is identified as one of the four

research fronts in DEA in the study carried out by Liu et al. (2016), which applies a

network clustering method in order to group the DEA literature over the period

2000–2014. We also note that this methodology has been widely applied for

ranking performance of DMUs in many different contexts. Sexton et al. (1986)

included an evaluation of nursing homes while in Doyle and Green (1994b) an

application to higher education can be found. See also Oral et al. (1991) for an

application to R&D projects, Green et al. (1996) to preference voting, Baker and

Talluri (1997) to industrial robot selection and Talluri and Yoon (2000) to the

selection of advanced manufacturing technology (AMT). More recently, this meth-

odology has been applied to the electricity distribution sector in Chen (2002), for
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the determination of the best labor assignment in a cellular manufacturing system in

Ertay and Ruan (2005), to economic-environmental performance in Lu and Lo

(2007), to sport in Wu et al. (2009a, b), Cooper et al. (2011), Ruiz et al. (2013) and

Gutiérrez and Ruiz (2013a, b), to public procurement in Falagario et al. (2012) and

to portfolio selection in Lim et al. (2014).

We review here the literature on the different issues related to the cross-

efficiency evaluation. This includes the choice of DEA weights among alternate

optima by using alternative secondary goals (Sect. 1.4) and the aggregation of

cross-efficiencies (Sect. 1.5). Other uses of the cross-efficiency evaluation different

from that concerned with rankings are discussed (Sect. 1.6), together with the

extensions of the standard approach that have been developed and broaden the

range of applicability of this methodology (Sect. 1.7). Previously, Sect. 1.2 sum-

marizes the existing ranking methods in DEA and Sect. 1.3 briefly describes the

standard approach to the cross-efficiency evaluation. Last section concludes.

1.2 Ranking Methods in DEA

The literature has widely dealt with the ranking of DMUs in the context of DEA.

Adler et al. (2002) and Hosseinzadeh Lotfi et al. (2013) provide a couple of reviews,

while the review of methods for improving discrimination in DEA in Angulo-Meza

and Estellita Lins (2002) also considers some methods for ranking DMUs.

This body of research can be roughly described as follows. Firstly, we should

mention the rankings that result from efficiency ratios obtained by using a common

set of weights (CSW). CSW has the appeal of a fair and impartial evaluation in the

sense that each variable is attached the same weight in the assessments of all the

DMUs. This approach has been often followed in the efficiency analyses made in

Economics and Engineering. Regarding that approach, Doyle and Green (1994a)

point out that the choice itself of such weights often raises serious difficulties, and

in many cases there is no universally agreed-upon the weights to be used. We note

that there exist some DEA-based methods aimed at finding a CSW: see Ganley and

Cubbin (1992), Roll and Golany (1993), Troutt (1997), Despotis (2002), Kao and

Hung (2005), Liu and Peng (2008, 2009), Ramón et al. (2011) and Ramón

et al. (2012).

The methods based on either the cross-efficiency evaluation or the super-

efficiency score (Andersen and Petersen 1993) have been those that have received

more attention in view of the number of published papers dealing with these issues.

As said before, this chapter is devoted to the cross-efficiency evaluation, so it is

described subsequently in detail. The super-efficiency score results from the eval-

uation of the DMUs with respect to the technology estimated by excluding the unit

under assessment from the sample. This kind of scores (see Hashimoto 1997;

Sueyoshi 1999 and Tone 2002) have been widely used for ranking DMUs, and

their use has also been extended for the analysis of sensitivity and the detection of

outliers. The infeasibility problems of the super-efficiency score are usually
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highlighted as a drawback of this efficiency measure, as well as the fact that it

results from DMU-specific weights if it is used for purposes of ranking (as in DEA).

Some existing methods propose to rank DMUs through the benchmarking (see

Sinuany-Stern et al. 1994 and Torgersen et al. 1996). The basic idea behind them is

that a given DMU should rank high if it is frequently used as referent in the

evaluation of the remaining units (obviously, these methods can only rank efficient

DMUs). Other group of methods utilizes multivariate statistical techniques like

canonical correlation analysis and discriminant analysis to rank the DMUs (see

Sinuany-Stern et al. 1994 and Friedman and Sinuany-Stern 1997). These techniques

are usually applied once the DEA classification into efficient and inefficient units

has been obtained, and rank the units by using common weights. Empirically,

non-parametric tests seem to show compatibility between the rank and the DEA

dichotomic classification. Finally, we can mention a last group of papers that

combine DEA and multi-criteria decision-making methods, such as AHP, fuzzy

logic or multi-objective linear programming (see Halme et al. 1999; Li and Reeves

1999 and Kao and Liu 2000). Some of these approaches require the collection of

additional, preferential information from relevant decision makers, which could be

considered as the weakness of these methods.

Obviously, these methods have all their own attractive features and weaknesses,

so no of them could be prescribed as the complete solution to the question of

ranking.

1.3 The Cross-Efficiency Evaluation: The Standard
Approach

Throughout the paper we assume that we have nDMUs that usem inputs to produce

s outputs. These can be described by means of the vectors (Xj, Yj), j¼ 1, . . ., n,
which are assumed to be non-negative. We also denote by X the m� n matrix of

input vectors and by Y the s� n matrix of output vectors. The standard cross-

efficiency evaluation is based on the CCR DEA model (Charnes et al. 1978), which

is an oriented radial model. The following problem is the CCR model in its ratio

form when used for the assessment of relative efficiency of a given DMU0

Max θ0 ¼ u
0
Y0

v
0
X0

s:t: :
u

0
Yj

v
0
Xj

� 1 j ¼ 1, . . . , n

v � 0m, u � 0s

ð1:1Þ

In short, the optimal value of (1.1) is the DEA efficiency score of DMU0 while

the ratios in the constraints provide the cross-efficiencies of the remaining units

calculated with the weights of DMU0.
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Model (1.1) is non-linear. Nevertheless, by using the results on linear fractional

programming in Charnes and Cooper (1962), it can be converted into the following

linear problem (which is the so-called dual multiplier formulation)

Max u
0
Y0

s:t: : v
0
X0 ¼ 1

-v
0
Xj þ u

0
Yj � 0 j ¼ 1, . . . , n

v � 0m, u � 0s

ð1:2Þ

Thus, if (vd, ud) is an optimal solution of (1.2) for a given DMUd, then the cross-

efficiency of DMUj, j¼ 1, . . ., n, obtained with the weights of DMUd is the

following

Edj ¼ ud
0
Yj

vd
0
Xj

ð1:3Þ

The Edj ’ s are usually collected in the so-called matrix of cross-efficiencies

E ¼

E11 . . . E1j . . . E1n

:::: :::: ::::
Ed1 . . . Edj . . . Edn

:::: :::: ::::
En1 . . . Enj . . . Enn

0BBBB@
1CCCCA ð1:4Þ

In each row d, we have the evaluations of the different units calculated with the

DEA weights of DMUd (so the main diagonal of the matrix contains the DEA

efficiency scores). In each column j, we have the efficiencies of a given DMUj

calculated with the weights of all the DMUs. In fact, the cross-efficiency score of

DMUj, j¼ 1, . . ., n, is usually defined as the average of the cross-efficiencies in the

corresponding column. That is,

Ej ¼ 1

n

Xn
d¼1

Edj, j ¼ 1, . . . , n: ð1:5Þ

The cross-efficiency score �Ej provides a peer-evaluation of DMUj, and the

DMUs can be ranked according to the values �Ej, j¼ 1, . . ., n. The fact that the

cross-efficiencies in each of the rows of E are obtained by using the same input and

output weights is the reason why an ordering of DMUs can be derived on the basis

of the cross-efficiency scores.

The literature has emphasized the following two as the principal advantages of

the cross-efficiency evaluation: (1) it provides an ordering of the DMUs and (2) it

eliminates unrealistic weighting schemes without requiring the elicitation of weight

restrictions (see, for example, Anderson et al. 2002). Doyle and Green (1994a) have
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also highlighted the interpretation of the cross-efficiency evaluation as peer-

appraisal. As a result, these authors suggest that cross-efficiency evaluation has

less of the arbitrariness of additional constraints and has more of the right conno-

tations of a democratic process, as opposed to authoritarianism (externally imposed

weights, CSW) or egoism (self-appraisal, DEA).

But there are also some difficulties with the cross-efficiency evaluation. As it

happens with other DEA-based approaches for ranking, for example with the super-

efficiency score or even with the rankings provided by CSWs obtained by using

DEA, there exists the possibility of rank reversal. That is, if a new DMUwere added

to the sample, then the ranking could change. Thus, the rank of a given DMU that

results from the cross-efficiency scores should be seen as reflecting its relative

position in presence of the DMUs considered in the sample. As discussed in Wang

and Luo (2009), the rank reversal phenomenon occurs in many decision making

approaches such as the Analytic Hierarchy Process (AHP), the Borda–Kendall

(BK) method for aggregating ordinal preferences, the simple additive weighting

(SAW) method and the technique for order preference by similarity to ideal solution

(TOPSIS) method. These authors eventually claim that rank reversal “might be a

normal phenomenon”.

However, the problems with the alternate optima for the DEA weights have been

the ones widely acknowledged as the main weakness of this methodology. The

existence of alternative optimal solutions in (1.2) is a factor that may reduce the

usefulness of the cross-efficiency evaluation, because we may have different cross-

efficiency scores (and, consequently, different rankings) depending on the choice of

DEA weights that is made. This is probably the issue related to the cross-efficiency

evaluation that has received more attention in the literature. We discuss it in the

next section.

1.4 The Choice of DEA Weights in Cross-Efficiency
Evaluations

As a potential remedy to resolve the ambiguity of the multiple DEA weights,

Sexton et al. (1986) already suggested making a choice among alternate optima

by using some alternative secondary goal. They proposed the two well-known

benevolent and aggressive approaches used to that end. The idea behind them is

that DMUd chooses among its optimal weights those that maximize/minimize in

some way the cross-efficiencies of the other units. Some models were developed,

which involve the use of different surrogates that try to avoid the non-linear

formulations that result from the inclusion of the cross-efficiencies, which are

ratios, in the problems. For example, instead of maximizing (minimizing) the

sum of cross-efficiency ratios themselves, these authors suggested that an adequate

surrogate is to minimize (maximize) the sum of the denominators of the fractions
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minus the sum of the numerators. Doyle and Green (1994a) implemented the

benevolent/aggressive models below following those ideas

Max=Min
X
j 6¼d

ud
0
Yj � vd

0
Xj

� �
s:t: : vd

0
Xd ¼ 1

�θ*dvd
0
Xd þ ud

0
Yd ¼ 0

�vd
0
Xj þ ud

0
Yj � 0 j ¼ 1, . . . , n, j 6¼ d

vd � 0m, ud � 0s

ð1:6Þ

where θ�d is the DEA efficiency score of DMUd.

In line with that approach, these authors also proposed the following two

formulations

Max=Min ud
0X
j 6¼d

Yj

s:t: : vd
0X
j 6¼d

Xj ¼ 1

�θ*dvd
0
Xd þ ud

0
Yd ¼ 0

�vd
0
Xj þ ud

0
Yj � 0 j ¼ 1, . . . , n, j 6¼ d

vd � 0m, ud � 0s

ð1:7Þ

which are two models that seek, as secondary goal, to maximize/minimize the

efficiency of a composite DMU, while keeping unchanged the DEA efficiency

score of DMUd, θ�d.
Liang et al. (2008a) extend the work in Doyle and Green (1994a) by introducing

various secondary objective functions, which are formulated in terms of the devi-

ation variables αd
j ¼ vd

0
Xj � ud

0
Yj, j¼ 1, . . ., n. The first secondary goal gives rise

to the following model, which is equivalent to the benevolent formulation in (1.6)

Min
Xn
j¼1

αd
j

s:t: : vd
0
Xd ¼ 1

ud
0
Yd ¼ 1� αd*d

�vd
0
Xj þ ud

0
Yj þ αd

j ¼ 0 j ¼ 1, . . . , n

vd � 0m, ud � 0s

ð1:8Þ

where αd*d ¼ 1� θ*d. This model minimizes the total deviation from the ideal

point defined as the multiplier bundle for which every DMU is efficient, that is,
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αd
j ¼ 0, j ¼ 1, . . . n:The following twosecondarygoals are alsoproposed in that paper

with the purpose of deriving weights for which the cross-efficiencies are as similar as

possible:

1. Minimizing the maximum deviation variable

Min Max α j
d ð1:9Þ

which is related to maximizing the minimum cross-efficiency among the n

DMUs, and

2. Minimizing the mean absolute deviation

Min
1

n

Xn
j¼1

α j
d � αd

��� ��� ð1:10Þ

which is aimed at minimizing the variation among the cross-efficiencies of the

DMUs, where αd ¼ 1
n

Xn
j¼1

α j
d.

The new models can be formulated by simply changing the objective of (1.8)

with those in (1.9) and (1.10).

Wang and Chin (2010b) state that the three models above are established on the

basis of an unrealistic ideal point and formulate some variants with the following

differences: (1) the ideal point is associated with the multiplier bundle for which all

the DMUs achieve their DEA efficiency scores (θ�1, . . ., θ�n), instead of using the value
1 as the target efficiency of each DMU, which is only achievable for the efficient

units. As a result, the constraints�vd
0
Xj þ ud

0
Yj þ αd

j ¼ 0, j¼ 1, . . ., n, in the Liang

et al.’s models are replaced by �vd
0
θ*j Xj þ ud

0
Yj þ αd

j ¼ 0, j¼ 1, . . ., n; (2) the

normalizing constraint is the same in the formulations associated with all the

DMUd’s. In particular, they suggest the following constraint

vd
0Xn
j¼1

Xj þ ud
0Xn
j¼1

Yj ¼ n, and (3) aggressive formulations are also proposed (note

that models (1.8)–(1.10) follow a benevolent approach).

Obviously, neither of the models we have just discussed is better than the others.

The use of them in practice will depend on the circumstances. For instance, Liang

et al. (2008a) suggest that minimizing the total deviation as in (1.8) would be an

appropriate approach to the cross-efficiency evaluation when the DMUs are assumed

to be in a non-cooperative and fully competitive mode. For example, in a supply

chain where each member is acting in its own self-interest, without being concerned

for the others. In contrast, minimizing the maximum deviation, (1.9), might be

deemed appropriate in settings where a more cooperative situation prevails. For

example, in the evaluation of bank branches under a single corporate head, where

the worst performing units would be given the least gap possible between where they

are and where they need to be. Minimizing the mean absolute deviation, (1.10), aims
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at equalizing the various efficiency scores. So, if we were concerned with an

allocatable resource such as the equipment for the maintenance crews, this model

might tend to result in the least amount of redistribution (to render the DMUs equally

efficient) in regard to that resource.

Other approaches focus on the suitability of the profiles of DEA weights that are

chosen without dealing directly with the cross-efficiencies. As said before, one of the

advantages of the cross-efficiency evaluation is that it eliminates unrealistic

weighting schemes without requiring the elicitation of weight restrictions. The idea

is that the effects of unreasonable weights are cancelled out in the summary that the

cross-efficiency evaluation makes (Anderson et al. 2002). However, as Ramón

et al. (2010a) state, we may have more comprehensive cross-efficiency scores if we

actually avoid unreasonable weights instead of expecting that their effects are

eliminated in the amalgamation of weighting schemes. By unrealistic weighting

schemes we often mean the profiles of weights with zeros. The literature has widely

claimed the need to avoid zero weights because they imply that some of the inputs

and/or outputs considered for the analysis are ignored in the assessments. But the

literature has also claimed against the large differences usually found in the weights

as a result of the DEA total weight flexibility. These include both the differences in

the input weights and in the output weights used in the evaluation of a DMU (Cook

and Seiford 2008 state that “the AR concept was developed to prohibit large

differences in the values of multipliers”) and the differences in the weights attached

to the same variable by the different DMUs (see Roll et al. 1991; Pedraja-Chaparro

et al. 1997 and Thanassoulis et al. 2004).

To prevent unrealistic weighting schemes in cross-efficiency evaluations different

strategies have been followed. Ramón et al. (2010b) classify the DMUs in two sets

NZ and Z. In NZ we have the DMUs that can make a choice of non-zero weights

among their alternate optima, while Z consists of those that cannot. That is, NZ ¼ E

[E0 [ NE [ NE0 andZ ¼ F [ NFaccording to the classification of DMUs in Charnes

et al. (1991). Then, they propose that the DMUd’s in NZ choose among their alternate

optima the profiles with the least dissimilar weights, by using the following model in

Ramón et al. (2010a)

Max φd

s:t: : Xm
i¼1

νdi xid ¼ 1

Xs
r¼1

μ d
r yrd ¼ θ*d

-
Xm
i¼1

νdi xij þ
Xs
r¼1

μd
r yrj � 0 j ¼ 1, . . . , n

zI � νdi � hI i ¼ 1, . . . , m
zO � μ d

r � hO r ¼ 1, . . . , s
zI

hI
� φd

zO

hO
� φd

zI, zO � 0

ð1:11Þ
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This model ensures in addition non-zero weights. As for the DMUs in Z, these

are re-assessed with weights that cannot be more dissimilar than those of the DMU

in NZ that needs to unbalance more its weights (as measured by φ* ¼ min
d2NZ

φ*
d) in

order to achieve its CCR efficiency score. These are the weights used by the DMUs

in Z in the cross-efficiency evaluation. See Wang et al. (2012), which also deals

with the weight disparity, albeit it does not ensure non-zero weights.

A different strategy is followed in Ramón et al. (2011). The basic idea of the

proposed approach is to ignore the profiles of weights of the inefficient DMUs in Z

in the calculation of the cross-efficiency scores. That is, the cross-efficiency

evaluation is carried out only with the weights of the DMUs in NZ, once these

latter have made a choice among their alternate optima according to some suitable

criterion. This approach is called “peer-restricted” cross-efficiency evaluation.

Concerning the choice of weights that the DMUs in NZ make, the authors suggest

to reduce as much as possible the differences between the profiles of weights

selected. This criterion seeks, on one hand, to reduce the differences in the weights

attached by the different DMUs to the same variable, and on the other, to reduce the

dispersion in the samples of cross-efficiencies, so the cross-efficiency scores, which

are the corresponding averages, are more representative of such cross-efficiencies.

The choice of the profiles of weights to be used in the “peer-restricted” cross-

efficiency evaluation is made by solving the following model

Min
X

d, d0 2NZ

d < d0

Xm
i¼1

vd
i � vd

0
i

��� ���xi þXs
r¼1

ud
r � ud

0
r

��� ���yr
 !

s:t: :

-
Xm
i¼1

vd
i xij þ

Xs
r¼1

ud
r yrj � 0 j ¼ 1, . . . , n; d2NZ

-θ*d
Xm
i¼1

vd
i xid þ

Xs
r¼1

ud
r yrd ¼ 0 d2NZ

Xm
i¼1

vd
i xi ¼ 1 d2NZ

vd
i , u

d
r � 0 8i, r, d

ð1:12Þ

where xi; i¼ 1, . . ., m, and yr; r¼ 1, . . ., s, are the averages of input i and output r,

respectively, across the DMUs in NZ. Note that model (1.12) includes a common

normalizing constraint that makes the profiles of weights of the different DMUs

comparable.

Model (1.12) can be extended to avoid zero weights (see the original paper for

details).
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1.4.1 Ranking Ranges and Cross-Efficiency Intervals

Liang et al. (2008a) state that the comparison of cross-efficiency scores obtained

with different evaluation criteria allows us to obtain a better picture of cross-

efficiency stability with respect to multiple DEA weights. However, this issue can

be addressed more appropriately with an approach based on considering simulta-

neously all of the optimal solutions for the weights. Alcaraz et al. (2013) and

Ramón et al. (2014) propose a couple of procedures for ranking DMUs based on

the cross-efficiency evaluation which consider all the alternate optima for the DEA

weights, thus avoiding the need to make a choice among them by using some

alternative secondary goal. Instead of a single ranking, the former paper provides a

range for the possible rankings of each DMU, while the latter deals with the cross-

efficiency intervals that result from all the DEA weights and use some order

relations for interval numbers in order to identify dominance relations between

DMUs and rank them.

For each DMU0, Alcaraz et al. (2013) find the range of its possible rankings

that would result from considering all the DEA weights of all the DMUs. This

range is determined by the best and the worst possible rankings of DMU0.

The best ranking of DMU0 is defined as rb0 ¼ Min
V;Uð Þ

H0 V;Uð Þj jf g þ 1, where

H0 V;Uð Þ ¼ DMUj, j ¼ 1, . . . , n=Ej > E0

� �
, V and U being the m� n and s� n

matrices with the input weight vectors and the output weight vectors, respectively, of

a given choice of DEA weights that each of the DMUs makes. It is shown that

rb0 ¼ n� LE*
0, where LE

�
0 is the optimal value of the problem

Max
X
j 6¼0

Ij

s:t: :

ud
0
Yd

vd
0
Xd

¼ θ*d d ¼ 1, . . . , n 13:1ð Þ
ud

0
Yj

vd
0
Xj

� 1 j ¼ 1, . . . , n; d ¼ 1, . . . , n 13:2ð Þ

Edj ¼ ud
0
Yj

vd
0
Xj

j ¼ 1, . . . , n; d ¼ 1, . . . , n 13:3ð Þ

Ej ¼ 1

n

Xn
d¼1

Edj j ¼ 1, . . . , n 13:4ð Þ

Ej � E0 � 1� Ij j ¼ 1, . . . , n, j 6¼ 0 13:5ð Þ
Vd � 0m, ud � 0s, 8d, Ij2 0; 1f g,8j 6¼ 0

ð1:13Þ
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Likewise, the worst ranking is defined as rw0 ¼ n� Min
V;Uð Þ

L0 V;Uð Þj jf g, where
L0 V;Uð Þ ¼ DMUj, j ¼ 1, . . . , n=Ej < E0

� �
. Now, it is shown that rw0 ¼ HE*

0 þ 1,

where HE�
0 is the optimal value of the problem that results from replacing (13.5)

with E0 � Ej � M 1� Ij
� �

; j¼ 1,. . .,n, j 6¼ 0; in (1.13).

The approach in Ramón et al. (2014) also considers simultaneously all the DEA

weights of all the DMUs, but deals with the minimum and the maximum possible

cross-efficiency scores, instead of with their best and worst rankings. For a given

DMU0, these are denoted by �EL �
0 and �ER �

0 , and are obtained, respectively, as the

optimal values of the problems

Min=Max
1

n

Xn
d¼1

u
0
dY0

v
0
dX0

 !
s:t: :

u
0
dYd

v
0
dXd

¼ θ*d d ¼ 1, . . . , n

u
0
dYj

v
0
dXj

� 1 d ¼ 1, . . . , n; j ¼ 1, . . . , n

vd � 0m, ud � 0s d ¼ 1, . . . , n

ð1:14Þ

The authors show how to deal with the cross-efficiency intervals [ �EL �
j , �ER �

j ], j¼ 1,

. . ., n, in order to both identify dominance relations among DMUs and provide a

ranking of units by using some order relations for interval numbers. Specifically, the

following is an order relation between intervals often used in practice which may

appropriately represent the DM’s preferences in problems dealing with efficiency

intervals: Let A and B be two intervals A¼ [aL,aR] and B¼ [bL,bR], then

A�LRB , aL � bL and aR � bR, and A<LRB , A�LRB and A 6¼ B. That is,

�LR represents the DM preference for the unit with the higher minimum cross-

efficiency score and maximum cross-efficiency score. This order relation is actually a

particular case of that originally introduced in Dubois and Prade (1980) for fuzzy

numbers (based on the extension principle) when it is considered for interval num-

bers. The relation �LR is however a partial order, so there may be pairs of intervals

that cannot be compared, as is the case of those that are nested. Therefore, �LR will

usually not allow us to derive a full ranking of units, although it may yield useful

information regarding dominance relations among DMUs in terms of cross-efficiency

assessments. To be specific, if E
L*
j ;E

R*
j

h i
<LR E

L*
j0 ;E

R*
j0

h i
; then we say here that

DMUj’ dominates DMUj. To derive a full ranking of units, the order relation �λ
proposed in Campos and Mu~noz (1989), which takes into account the degree of

optimism of the decision maker (λ), can be used (see the original papers for details).

Yang et al. (2012) also propose an approach to the cross-efficiency evaluation

that avoids the need to make any choice of DEA weights. These authors deal with a

n� n matrix of intervals of cross-efficiencies, which is assumed to be a matrix of

stochastic variables, and use the stochastic multicriteria acceptability analysis

12 J.L. Ruiz and I. Sirvent



(SMAA-2) method proposed by Lahdelma and Salminen (2001) to derive a ranking

of units. In order to do so, a probability distribution over the cross-efficiency

intervals must thus be assumed, the uniform and the normal distributions being

those used in that paper. This may eventually increase the computational burden

needed by the proposed approach (note, in particular, that Monte-Carlo simulations

are used to approximate values of the acceptability indices).

1.4.2 Illustrative Example

We use here the data in Zhu (1998) to illustrate some of the approaches to the cross-

efficiency evaluation that have been previously described. The data consist of

18 Chinese cities, which are evaluated by using two inputs and three outputs.

Table 1.1 records the data, the DEA efficiency scores, the interval cross-efficiency

scores [ �EL �
j , �ER �

j ], j¼ 1, . . ., 18, the ranking that results from the order relation�LR

and the ranking provided by the benevolent and the aggressive approaches obtained

with (1.6).

The order relation �LR practically determines a full ranking of cities, in spite of

being a partial order. Figure 1.1 depicts graphically the dominance relations among

cities that can be identified by using it. It shows that only cities 5 and 13 cannot be

compared to each other with �LR, since their corresponding cross-efficiency

intervals are nested. We can see that city 2 ranks first, followed by cities 6, 10

and 12. At the bottom, we have cities 17, 3, 15, 18 and 14. Although cities 5 and

13 cannot be ranked with �LR, we can state that these two cities are placed in

between cities 12 and 9, because they both dominate city 9 and are dominated by

city 12. Therefore, they rank either fifth or sixth.

Note also that the ranking resulting from the use of�LR with the cross-efficiency

intervals is to a large extent consistent with those that the benevolent and the

aggressive formulations provide, which are two rankings that in return show

many similarities. However, we should not think that the benevolent and aggressive

approaches cover all the range of possible rankings, as Table 1.2 shows. This table

reports the ranking ranges obtained with the approach in Alcaraz et al. (2013). We

can see, for example, that 2, 6 and 10 are the top three cities in all the scenarios

determined by all the possible choices of DEA weights that all the DMUs can make.

Nevertheless, each of them can occupy any of the three positions at the top. These

situations suggest therefore that the approach proposed can be a useful complement

in the standard cross-efficiency evaluations, even when some specific alternative

secondary goal has been used to the choice of DEA weights, because it allows us to

gain insight into the robustness of the rankings provided against alternate optima.

In any case, the ranking ranges that have been found are not especially wide, so

we can draw some interesting conclusions with confidence. For example, it can be

stated that 2, 6, 10, 12, 5, 13, 9, 8, 1, 4 are the top ten cities, irrespective of the DEA

weights that are chosen. This can be an interesting finding from the point of view of

1 Ranking Decision Making Units: The Cross-Efficiency Evaluation 13
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management. We can go even further and state that 2, 6 and 10 are the top three

(as said before), and that 5, 9, 12 and 13 will be always in between fourth and

seventh, followed by 1, 4 and 8. Likewise, it has been found that cities 14, 15 and

18 are the poorest performers, city 14 always ranking at the bottom.

1.5 The Aggregation of Cross-Efficiencies

In MADM problems, the different criteria are often attached different weights for

the evaluation of alternatives, as a way to consider their relative importance. These

are usually determined on a subjective basis or trying to reflect the opinion of the

decision makers (DMs). In the standard approach to the cross-efficiency evaluation,

the cross-efficiency scores of the units are usually calculated as the averages of their

cross-efficiencies. This means that the cross-efficiencies provided by the different

DMUs are aggregated by attaching all of them the same importance. However,

allowing for different aggregation weights may obviously introduce more flexibility

into the analysis. In particular, in some situations, the DM could be interested in

incorporating his/her preferences regarding the relative importance that should be

attached to the cross-efficiencies provided by the different DMUs. For example, the

DMmight argue that the cross-efficiencies provided by the DMUs that globally rate

the units better should be given more importance in the final aggregation. In other

Table 1.2 Ranking ranges

DMU

Ranking ranges

rb0 rw0

1 9 10

2 1 3

3 15 15

4 8 10

5 4 6

6 1 3

7 12 12

8 8 9

9 6 7

10 1 3

11 13 14

12 4 5

13 5 6

14 18 18

15 16 17

16 11 11

17 13 14

18 16 17
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situations, it might be desirable that the cross-efficiencies provided by the DMUs

that discriminate more among units are considered as more relevant and, accord-

ingly, their associated aggregation weights should be larger. Furthermore, some

authors have suggested that the choice of aggregation weights should be made in

accordance with that of the DEA weights.

There is a number of papers that depart from the customary use of the arithmetic

mean for the aggregation of cross-efficiencies and propose aggregation weights that

result from models in which different conditions are imposed. In Wu et al. (2011)

the aggregation weights reflect the entropy in the cross-efficiencies provided by the

different DMUs. Wang and Chin (2011) use an approach based on ordered

weighted averaged (OWA) operators in which, through the specification of the

orness degree, they seek to reflect their particular belief that the self-evaluations

should be attached more importance than that attached to the evaluations provided

by the other DMUs. In Ruiz and Sirvent (2012), the aggregation weights are

imposed to reflect the differences in the weights of the different profiles used to

calculate the cross-efficiencies, specifically when the DEA weights are obtained

from (1.11). Wang and Wang (2013) propose three weighted least-square models

yielding aggregation weights which reflect in each case (1) the dissimilarity

between the cross-efficiencies provided by different DMUs, (2) the deviations of

these cross-efficiencies from the CCR efficiency scores, and (3) a combination of

these two measures. And two game approaches are provided in Wu et al. (2008) and

Wu et al. (2009c), where the DMUs are considered as players in a cooperative game

and the aggregation weights of each DMU are defined, respectively, as the nucle-

olus solution of the game and from the Shapley value.

León et al. (2014) propose a general approach to the aggregation of cross-

efficiencies which is based on Induced Ordered Weighted Averaging (IOWA)

operators. In short, the idea is to rearrange the rows of the matrix of cross-

efficiencies on the basis of an inducing variable and then attach the aggregation

weights accordingly. As for the inducing variable, this should reflect the DM

preferences regarding the relative importance of the cross-efficiencies provided

by the different DMUs. Examples of inducing variables can be either zd ¼ z Edj

� �
¼ TEd; where TEd is the total of the cross-efficiencies in row d of the matrix (1.4),

d¼ 1, . . ., n, or zd ¼ z Edj

� � ¼ 1� ed, where ed ¼ �1
log nð Þ

Xn
j¼1

EN
dj log EN

dj

� �
(EN

dj being

Edj=
Xn
j¼1

Edj), that is, the entropy in the cross-efficiencies of row d, d¼ 1, . . ., n. Let

eE ¼ eEdj

� �
be the matrix of cross-efficiencies that results of re-arranging the rows

of the cross-efficiency matrix E according to the ordering induced by z. Thus, in the

top rows of Ẽ we have the cross-efficiencies that are most preferred by the DM, and

consequently they should be attached larger aggregation weights, whereas in those

in the bottom we have the least preferred cross-efficiencies, which will be attached

the smaller aggregation weights. For example, if zd ¼ TEd; then in the top rows we
will have the cross-efficiencies provided by the DMUs that globally evaluate better

1 Ranking Decision Making Units: The Cross-Efficiency Evaluation 17



the units, while if zd ¼ 1� ed; we will have those that discriminate more among

units and therefore provide more information to derive a full ranking of units (note

that if Ed1¼Ed2¼ . . .¼Edn then DMUd provides no information to rank the

DMUs; in that case zd ¼ 0).

Concerning the aggregation weights, with this approach only vectors

(ω1, . . .,ωn) such that ω1 � . . . � ωn are considered, where ωd is the weight to be

attached to the cross-efficiencies in the d-th row of Ẽ. Nevertheless, the DM can not

only set an order of preference for the cross-efficiencies provided by the different

DMUs but also he/she can adjust the degree of such preference by means of the

so-called orness level, α. This measure was introduced by Yager (1988) and

characterizes the degree to which the aggregation is like an “or” (Max) operation.

For example, if α ¼ 1, then ω1¼ 1 and ωd¼ 0, d¼ 2, . . ., n, which means that the

ultimate cross-efficiency scores are the cross-efficiencies in the first row of Ẽ. In

other words, only the cross-efficiencies provided by the most preferred rating DMU

are considered. The case α ¼ 0:5 is associated with the situation in which the DM

has no preference on the cross-efficiencies provided by the different DMUs. Then,

ω1¼ . . .¼ωn¼ 1/n, which are the aggregation weights of the arithmetic mean used

in the standard cross-efficiency evaluation. Values of the orness degree in between

0.5 and 1 would be associated with intermediate situations. As α gets closer to 1 the

weight is progressively put on the rating DMUs in the top rows of Ẽ.

In order to calculate the aggregation weights ωd, the minimax disparity problem

proposed by Wang and Parkan (2005) can be used:

Min δ

s:t: :
1

n� 1

Xn
d¼1

n� dð Þωd ¼ α

Xn
d¼1

ωd ¼ 1

ωd � ωdþ1 � δ � 0 d ¼ 1, . . . , n� 1

ωd � ωdþ1 þ δ � 0 d ¼ 1, . . . , n� 1

ωd � 0 d ¼ 1, . . . , n

ð1:15Þ

where α2 0; 1½ � is the orness degree, specified by the DM.

If α � 0:5; model (1.15) ensures that the aggregation weights provided satisfy

ω1 � . . . � ωn; as required before. In addition, model (1.15) minimizes the maxi-

mum difference between pairs of adjacent weights, so this model somehow mini-

mizes the differences between the aggregation weights.

Eventually, the cross-efficiency scores are calculated as

E
IOWA

j ¼
Xn
d¼1

ωd
eEdj, j ¼ 1, . . . , n:

It might be worth mentioning that, like in most approaches, we find here a

common set of aggregation weights which is used in the evaluation of all the units.

We believe that the ranking resulting from cross-efficiency scores calculated with

common weights can be more widely accepted by users than one obtained when the

aggregation weight of the cross-efficiencies provided by a given DMU is different
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in the evaluation of different units (that is, when the cross-efficiencies in a given

row of the matrix are attached different weights), as it usually happens when using

OWA operators for the aggregation like in Wang and Chin (2011). Moreover, León

et al. (2014) suggest that the choice of the aggregation weights should be related to

that of the DEA input and output weights. For example, if zd ¼ TEd is used as the

inducing order variable, then a benevolent approach would be an appropriate

strategy. Analogously, if zd ¼ 1� ed then the DEA weights could be obtained by

using the aggressive formulation.

1.5.1 Illustrative Example (Cont.)

Continuing the same example used in the previous section, we now illustrate the use

of IOWA operators for the aggregation of cross-efficiencies. Specifically, the cross-

efficiency evaluation is performed by using the order inducing variable based on the

entropy, after the cross-efficiencies are obtained following an aggressive approach

to the choice of DEA weights. The rows of the matrix of cross-efficiencies need to

be re-arranged in descending order according to the values 1� ed; and the

aggregation weights are attached following that ordering. In this particular case,

the cross-efficiencies provided by the three efficient cities, 2, 10 and 6, whose

values of 1� ed are 0.495, 0.210 and 0.171, respectively, are attached the largest

aggregation weights, while those provided by cities 1, 5, 8, 11, 14 and 15, with a

value of 1� ed equal to 0.051, are attached the lowest ones. Table 1.3 records the

Table 1.3 Cross-efficiency

scores for different orness

values

Orness degree

DMU 0.5 0.6 0.7 0.8 0.9 1

1 0.381 0.346 0.304 0.247 0.141 0.032

2 0.921 0.889 0.850 0.798 0.698 1.000

3 0.208 0.191 0.169 0.137 0.086 0.006

4 0.390 0.358 0.320 0.265 0.170 0.031

5 0.559 0.533 0.503 0.464 0.381 0.061

6 0.887 0.843 0.789 0.716 0.576 0.034

7 0.258 0.235 0.206 0.165 0.096 0.013

8 0.403 0.372 0.337 0.293 0.198 0.059

9 0.519 0.497 0.469 0.428 0.354 0.073

10 0.873 0.850 0.828 0.815 0.740 0.079

11 0.243 0.222 0.198 0.167 0.105 0.016

12 0.578 0.524 0.463 0.394 0.231 0.048

13 0.552 0.508 0.459 0.409 0.278 0.035

14 0.109 0.098 0.085 0.067 0.036 0.002

15 0.141 0.125 0.106 0.083 0.039 0.001

16 0.335 0.299 0.257 0.211 0.105 0.004

17 0.234 0.207 0.175 0.132 0.056 0.002

18 0.134 0.122 0.108 0.093 0.055 0.009
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cross-efficiency scores of the units for different orness degrees. The cross-

efficiencies under α¼ 0.5 are actually those of the standard aggressive approach,

because that level of orness corresponds to the case of using the arithmetic mean for

the aggregation of cross-efficiencies. The rankings remain quite stable as α
increases, until we get α¼ 1; then some changes occur. For 0.5� α �0.9, cities

2, 6 and 10 are the top three; cities 5, 9, 12 and 13 rank in between fourth and

seventh, followed by 1, 4 and 8; and city 14 ranks at the bottom. These results

coincide with those obtained with the approach by Alcaraz et al. (2013) we have

previously commented. However, when α¼ 1, that is, when the importance

attached to the cross-efficiencies is not so far allocated between all the rows of

the matrix of cross-efficiencies but we only use the profile of DEA weights that

discriminate more among cross-efficiencies (that of city 2), we can see, for exam-

ple, that city 6 falls outside the top three and rank eighth, while city 9 moves up to

the third position. Besides, it is city 15 which ranks at the bottom.

1.6 Other Uses

The cross-efficiency evaluation has been used with other purposes different from

the ranking of DMUs. These include the following.

1.6.1 Identification of Mavericks and All-Round Performers

The cross-efficiency scores allow us to discriminate between DMUs rated as DEA

efficient. Nevertheless, the comparison between DEA efficiency scores and cross-

efficiency scores can be exploited in a variety of other ways. For example, Doyle

and Green (1994a) define the so-called Maverick index as follows (similarly, Baker

and Talluri 1997 define the false positiveness index and Wang and Chin 2010a the

efficiency disparity index):

Mj ¼ θ*j -ej
� �

=ej, j ¼ 1, . . . , n ð1:16Þ

where ej ¼ 1= n� 1ð Þ
X
k6¼j

Ekj. Mj measures the relative increment in the assessment

of DMUj when shifting from the model of peer-appraisal to that of self-appraisal. In

that sense, it may identify mavericks as those that take advantage of the self-

evaluation in their assessments. The higher Mj the more of a maverick is DMUj.

In practice, mavericks have often been identified as the efficient DMUs that appear

in the reference sets of only a few other DMUs. Obviously, this counting procedure

only applies to efficient DMUs, while Mj is applicable to all DMUs.
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Note that the maverick index may also identify all-round performers. A DEA

efficient DMU with a low value of Mj is a unit that is rated as efficient or near the

efficiency with the profiles of weights of all the DMUs.

1.6.2 Classification of DMUs and Benchmarking

Doyle and Green (1994a) have also suggested the use of multivariate techniques,

such as multi-dimensional scaling, principal component analysis or cluster analysis,

for the classification of units into groups of DMUs on the basis of the information

provided by the matrix of cross-efficiencies. Specifically, the correlation coefficient

between a pair of columns tells us how similarly those two DMUs are appraised by

their peers. Using these correlations as the elements in a matrix of resemblance and

applying a clustering method yields clusters with similar DMUs. This could be of

interest for purposes of benchmarking: the best peer-appraised DMU within each

cluster, even though it may not be an efficient unit, is a suitable referent for other

members of the cluster to compare against. These authors claim that this benchmark

is inherently similar but “better” than other DMUs in the same cluster and,

therefore, seems a more readily understable target to aim for than the linear

combination of DMUs in the reference set provided by the conventional DEA,

none of which may appear remotely similar to the unit under evaluation. This

approach is followed in Wu et al. (2009b) for the benchmarking of countries at

the Summer Olympics.

1.6.3 Fixed Cost and Resource Allocation

Du et al. (2014) use the cross-efficiency evaluation to approach cost and resource

allocation problems. DEA has been successfully used to address those problems.

However, the cross-efficiency evaluation provides a very reasonable and appropri-

ate mechanism for allocating a shared resource/cost because it uses the concept of

peer-appraisal. These authors claim that the allocations for fixed cost and resources

resulting from their approach are more acceptable to the players involved because

they are jointly determined by all DMUs rather than a specific one. All involved

DMUs negotiate with one another to adjust the allocation plan for a better peer-

evaluated performance until no one can improve further. A DEA-based iterative

approach is developed, which is feasible and, especially for fixed cost allocation,

ensures all DMUs to be efficient with the fixed cost allocated as an extra input

measure.
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1.7 Extensions

The standard approach to the cross-efficiency evaluation has been developed in the

context of the CCR DEA model. Nevertheless, this methodology has been extended

for use with non-oriented models—the models of directional distance functions

(Chambers et al. 1998) and the multiplicative DEA model (Charnes et al. 1983)—,

under variable returns to scale (VRS) and with fuzzy inputs and outputs. In addition,

the original notion of cross-efficiency has also been generalized to deal with

specific situations we sometimes find in DEA applications. These extensions

broaden the range of applicability of the methodology.

1.7.1 Cross-Efficiency Evaluation with Directional Distance
Functions

Ruiz (2013) explores the duality relations regarding the models of directional

distance functions, which provide a measure of inefficiency in the sense of Farrell

(1957), and establishes the equivalences with some fractional programming prob-

lems. This allows to defining the cross-efficiencies in the form of a ratio as follows

E
β
dj ¼

vd
0
Xj � ud

0
Yj

vd
0
Xj þ ud

0
Yj

, j ¼ 1, . . . , n: ð1:17Þ

It is shown that the cross-efficiencies (1.17) can actually be calculated by using

the DEA weights (vd, ud) provided by the classical CCR model (1.2). The cross-

efficiency score of a given DMUj, j¼ 1, . . ., n, is defined as the average of cross-

efficiencies E
β
j ¼ 1

n

Xn
d¼1

E
β
dj; j¼ 1, . . ., n, as usual. These scores can be used for

ranking the DMUs.

Thus, this extension of the standard approach allows us to use the cross-

efficiency evaluation with non-oriented measures of efficiency, i.e., which account

for the inefficiency both in inputs and in outputs simultaneously.

1.7.2 Cross-Efficiency Evaluation with Multiplicative DEA
Models

Cook and Zhu (2014) (see also Cook and Zhu 2015) develop an approach to the

cross-efficiency evaluation based on the multiplicative DEA model. These authors

define the cross-efficiency score of a given DMUj as the geometric average of its
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cross-efficiencies. Then, they propose to evaluate each DMUd with the so-called

maximum log cross efficiency, which is the optimal value of the model

Max
Yn
d¼1

Y s

r¼1
y
u d
r

rjYm

i¼1
x
v d
i

ij

0@ 1A1=n

s:t: : Y s

r¼1
y
u d
r

rjYm

i¼1
x
v d
i

ij

� 1 d ¼ 1, . . . , n; j ¼ 1, . . . , n

Y s

r¼1
y
u d
r

rjYm

i¼1
x
v d
i

ij

¼ θM*
d d ¼ 1, . . . , n

vd
i , u

d
r � 1 i ¼ 1, . . . , m; r ¼ 1, ::::, s; d ¼ 1, . . . , n

ð1:18Þ

where θM �
d is the efficiency score of DMUd, d¼ 1, . . ., n, provided by the multipli-

cative DEA model.

The attractive feature of this approach lies in that the cross-efficiency scores are

uniquely determined with respect to the DEA weights, as they are defined as the

optimal value of (1.18). Note, in any case, that this is not a conventional cross-

efficiency approach in which the cross-efficiencies can be arranged in a matrix so

that those in the same row are obtained with the same input and output weights: the

weights associated with DMUd in solving (1.18) for DMUj are not necessarily the

same as those that will be obtained when the model is solved for another DMUj’.

1.7.3 Cross-Efficiency Evaluation Under VRS

Lim and Zhu (2015a) extend the cross-efficiency evaluation for use under VRS. To

develop a way of resolving the problem of negative cross-efficiencies in the input-

oriented VRS DEA model, they develop a geometric interpretation of the relation-

ship between the VRS and CRS models. They show that, given an optimal solution

(vd, ud, ud0) of an VRS-efficient DMUd, a CRS efficiency score of DMUd, measured

under a translated Cartesian coordinate system defined by an adjusted origin

determined by this optimal solution, is unity. This is interpreted as meaning that

every DMU, via solving the VRS model, seeks for a translation of the Cartesian

coordinate system and an optimal bundle of weights such that its CRS-efficiency

score, measured under the chosen coordinate system, is maximized. Therefore,

VRS cross-efficiency is related to the CRS cross-efficiency measures. In this

context, Lim and Zhu (2015a) define the general concept of peer-evaluation in

DEA as follows: “each DMU cross-evaluates other peer DMUs under its own best
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evaluation environment”, where the best evaluation environment refers to the

weights on the input–output factors as well as the new coordinate system that are

most favourable to the DMU. Under this best evaluation environment, the DMU

itself attains the highest efficiency score as well as the most productive scale size.

The cross-efficiencies are defined as follows

EVRS
dj ¼ ud

0
Yj

vd
0
Xj þ ud

0

, j ¼ 1, . . . , n: ð1:19Þ

Note that EVRS
dd , as defined in (1.19), does not coincide with the VRS efficiency

score in the case of an inefficient DMUd. Thus, for each DMU we have n cross-

efficiencies and one (simple) efficiency score. Lim and Zhu (2015a) suggest to

average the n cross-efficiencies to calculate an input-oriented VRS cross-efficiency

score of the DMU. Alternatives are discussed in Lim and Zhu (2015b).

1.7.4 Fuzzy Cross-Efficiency Evaluation

Sirvent and León (2014) develop a fuzzy approach to the cross-efficiency evalua-

tion, which allows us to extend the use of this methodology to the case of having

imprecise data (that is, fuzzy inputs and outputs). These authors point out that the

rankings of DMUs based on the ordering of fuzzy efficiencies can be criticized for

the same reasons as those resulting from crisp DEA efficiency scores, which

justifies the need of a fuzzy cross-efficiency evaluation. They also claim that, unlike

in crisp DEA, it is not possible to set out a general approach to the cross-efficiency

evaluation in Fuzzy Data Envelopment Analysis (FDEA), because there exist many

different definitions of efficiency in FDEA. Thus, each fuzzy approach to the cross-

efficiency evaluation will depend on the specific features of the FDEA model used

for the measurement of the relative efficiency. In particular, they make some

proposals to perform a cross-efficiency analysis based on the fuzzy DEA model

by Guo and Tanaka (2001). These proposals are to be used in the case of fuzzy

inputs and outputs being symmetrical triangular numbers, and the analysis is

referred to a particular possibility level h in between 0 and 1 pre-specified by the

decision-maker. The fuzzy cross-efficiencies are defined as non-symmetrical trian-

gular fuzzy numbers, and the fuzzy cross-efficiency score of a given DMU is the

average of its fuzzy cross-efficiencies obtained with the weights of all the DMUs.

Once the fuzzy cross-efficiency scores of all the DMUs are obtained, they rank

them by using a ranking index defined in Yager (1981), which eventually provides

the ranking of DMUs. Since the FDEA model of Guo and Tanaka may have

alternative optimal solutions for the input and output weights, Sirvent and León

(2014) also propose, in a similar manner as in the crisp case, a fuzzy benevolent and

a fuzzy aggressive formulation to choose among them. See Ruiz and Sirvent (2016)

for a possibility approach to fuzzy cross-efficiency evaluation.
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1.7.5 Game Cross Efficiency

Liang et al. (2008b) (see also Cook and Zhu 2015) claim that, in many DEA

applications, some form of direct or indirect competition may exist among the

DMUs under evaluation. To deal with this issue, they generalize the original cross-

efficiency concept to the so-called DEA game-cross efficiency. Specifically, in that

approach the DMUs are viewed as players in a game and the cross-efficiency scores

as payoffs. Then, each DMU can choose to take a non-cooperative game stance to

the extent that it will attempt to maximize its (worst possible) cross-efficiency

under the condition that the cross-efficiency of each of the other DMUs does not

deteriorate. The average game cross-efficiency score is obtained when the DMU’s
own maximized efficiency scores relative to each of the other units are averaged.

To implement the DEA game cross-efficiency model proposed, an algorithm is

derived which provides the wanted scores. Note again that this cannot be seen as a

conventional cross-efficiency approach. One important difference lies in that the

weights used to compute the cross-efficiencies of a given DMU are not necessar-

ily an optimal solution of the CCR model (1.2). And, in addition, it cannot be

ensured that the input and output weights used to calculate the game cross

efficiencies for two units, say DMUj and DMUj’, relative to a given DMUd, are

the same, because each of the cross-efficiencies is the result of an independent

optimization.

1.8 Conclusions

Liu et al. (2016) state that cross-efficiency evaluation and ranking “is a truly very

focused subarea. Such a large coherent block of research studies indicates that

many issues in cross-efficiency remain to be resolved and that there probably has

not been a consensus on the method to address the issues in the original cross-

efficiency concept”. In our opinion, there was a need of an updated an organized

survey of the literature on this methodology, and this chapter has tried to make a

contribution to meeting such need. We have recapitulated the literature dealing with

the two issues that have attracted more attention from the researchers: the use of

alternative secondary goals to the choice of DEA weights among alternate optima

and the aggregation of cross-efficiencies. And, in addition, it has been reviewed the

existing work on other uses of the cross-efficiency evaluation different from the

ranking of DMUs and the extensions of the standard approach, which still offer

interesting directions for future research.
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