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Preface

In recent years, handbooks on Data Envelopment Analysis (DEA) have been

published. They include Handbook on Data Envelopment Analysis (eds,

W.W. Cooper, L.M. Seiford, and J. Zhu, 2011, Springer), Data Envelopment
Analysis: A Handbook of Modeling Internal Structures and Networks (eds,

W.D. Cook and J. Zhu, 2014, Springer), Data Envelopment Analysis: A Handbook
of Models and Methods (ed. J. Zhu, 2015, Springer), and Data Envelopment
Analysis: A Handbook of Empirical Studies and Applications (ed. J. Zhu, 2016,

Springer). It is well known that DEA is a “data-oriented” approach for evaluating

the performance of a set of entities called decision-making units (DMUs) whose

performance is categorized by multiple metrics. These performance metrics are

classified or termed as inputs and outputs. In general, DEA finds an envelopment for

a set of data. This envelopment is called efficient frontier (in production theory) or

best-practice frontier (in benchmarking terminology). While many DEA applica-

tions can be viewed as estimation of production functions, DEA can also be applied

to manufacturing as well as service operations where DEA is used as a versatile tool

for making various operational decisions.

To complement the existing DEA handbooks, the current handbook focuses on

DEA applications in operations analytics which are fundamental tools and tech-

niques for improving operation functions and attaining long-term competitiveness.

In fact, the chapters in the handbook demonstrate that DEA can be viewed as Data

Envelopment Analytics.
Chapter 1, by Ruiz and Sirvent, reviews cross-efficiency evaluation which pro-

vides a peer appraisal in which each DMU is evaluated from the perspective of all

of the others by using their DEA weights.

Chapter 2, by Zhou, Poh, and Ang, presents a case study on measuring the

environmental performance of OECD countries. Environmental performance mea-

surement provides an analytical foundation for environmental policy analysis and

decision making.
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Chapter 3, by Serrano-Cinca, Mar-Molinero, and Fuertes Callén, demonstrates

how to select a set of performance metrics (inputs and outputs) in DEA with an

application to American banks.

Chapter 4, by Liu, proposes using a relational network model to take the

operations of individual periods into account in measuring efficiencies, and the

input and output data are treated as fuzzy numbers.

Chapter 5, by Avkiran and Zhu, shows how the efficient frontier methods DEA

and stochastic frontier analysis (SFA) can be used synergistically. As part of the

illustration, the authors directly compare locally incorporated foreign banks with

Chinese domestic banks.

Chapter 6, by de la Torre, Sagarra, and Agasisti, integrates DEA and

multidimensional scaling, with the aim to discuss the potential complementarities

and advantages of combining both methodologies in order to reveal the efficiency

framework and institutional strategies of the Spanish higher education system.

Chapter 7, by Wu, Kweh, Lu, Hung, and Chang, constructs a dynamic three-

stage network DEA model which evaluates the R&D efficiency, technology-

diffusion efficiency, and value-creation efficiency of Taiwanese R&D organiza-

tions over the period 2005–2009.

Chapter 8, by Wanke and Barros, presents a bootstrapping-based methodology

to evaluate returns to scale and convexity assumptions in DEA.

Chapter 9, by Lozano, Hinojosa, Marmol, and Borrero, studies the possibilities

of hybridizing DEA and cooperative games. Specifically, bargaining games and

transferable utility games (TU games) are considered.

Chapter 10, by Fukuyama and Weber, uses DEA to represent the production

technology and directional distance functions to measure bank performance. The

performance measure allows the researcher to compare observed inputs and out-

puts, including undesirable outputs, with the outputs and inputs that might be

produced if a producer were able to optimally choose production plans relative to

a dynamic benchmark technology.

Chapter 11, by Ke, presents an input-specific Luenberger energy and environ-

mental productivity indicator. DEA is utilized to estimate the directional distance

function for composing the Luenberger energy and environmental productivity

indicator.

Chapter 12, by Mehdiloozad and Sahoo, addresses the issue of reference set by

differentiating between the uniquely found reference set, called the global reference

set (GRS), and the unary and maximal types of the reference set for which the

multiplicity issue may occur. The authors propose a general linear programming-

based approach that is computationally more efficient than its alternatives. The

authors define the returns to scale of an inefficient DMU at its projection point that

is produced by all—but not some—of the units in its GRS.

Chapter 13, by Lim, Jahromi, Anderson, and Tudori, evaluates and compares the

technological advancement observed in different hybrid electric vehicle (HEV)

market segments over the past 15 years. The results indicate that the introduction

of a wide range of midsize HEVs is posing a threat to the two-seaters and compact
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HEV segments, while an SUV segment shows a fast adoption with a significant

performance improvement.

Chapter 14, by Ding, Feng, and Wu, provides radial measurements of efficiency

for the production process possessing multicomponents under different production

technologies. Their approach is based on the construction of various empirical

production possibility sets. Then the authors propose a procedure that is unaffected

by multiple optima for estimating returns to scale.

Chapter 15, by Harrison and Rouse, considers issues around the use of account-

ing information in DEA with suggestions on how accounting data can be used in the

modeling process and how DEA can be combined with other accounting

approaches to improve performance evaluation.

Chapter 16, by Sueyoshi, explains how to use DEA environmental assessment to

establish corporate sustainability and discusses that environmental assessment and

protection are important concerns in modern business.

Chapter 17, by Sueyoshi and Yuan, summarizes previous works on the research

efforts, including concepts and methodologies, on DEA environmental assessment

applied to energy in the past three decades.

Chapter 18, by Sarkis, provides an overview of DEA and how it can be utilized

alone and with other techniques to investigate corporate environmental sustainabil-

ity questions. Some future DEA directions that could be used for research and

application in corporate environmental sustainability are also defined.

We hope that this handbook, along with other aforementioned DEA handbooks,

can serve as a reference for researchers and practitioners using DEA and as a guide

for further development of DEA. We thank reviewers who provided valuable

suggestions and comments to the chapters. We are also grateful to the authors

who make important contributions toward advancing the DEA research frontier.
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Chapter 1

Ranking Decision Making Units:
The Cross-Efficiency Evaluation

José L. Ruiz and Inmaculada Sirvent

Abstract This chapter surveys the literature on the cross-efficiency evaluation,

which is a methodology for ranking decision making units (DMUs) involved in a

production process regarding their efficiency. Cross-efficiency evaluation has been

developed in the context of analyses of relative efficiency carried out with Data

Envelopment Analysis (DEA). It is usually claimed that the DEA efficiency scores

cannot be used for ranking, because they result from a self-evaluation of units based

on DMU-specific input and output weights. Cross-efficiency evaluation, in contrast,

provides a peer-appraisal in which each DMU is evaluated from the perspective of

all of the others by using their DEA weights. This makes it possible to derive an

ordering. We make an exhaustive review of the existing work on the different issues

related to the cross-efficiency evaluation. Other uses of this methodology different

from the ranking of DMUs as well as the extensions that have been developed are

also outlined.

Keywords Cross-efficiency evaluation • Ranking • DEA

1.1 Introduction

In decision making processes, ranking constitutes a crucial step for choosing among

alternatives after their evaluation. In Multi-Attribute Decision Making (MADM)

problems we have n alternatives which are assessed against m criteria. The evalu-

ations that result from these assessments provide the final ranking values of the

alternatives. Usually, the higher the ranking value the better the performance of

the alternative, so the alternative with the highest ranking value is considered as the

best of the alternatives.

Rankings have experienced an increasing popularity. An example of this can be

found in Higher Education with the university rankings or league tables.
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Most visible international rankings are The Academic Ranking of World Univer-

sities (ARWU) by Shanghai Jiao Tung University, commonly known as the Shanghai

index and the World University Ranking by Times Higher Education (THESQS). As

has been widely acknowledged in the related literature, university rankings are

controversial but influential. Despite their limitations, university rankings have

some effect on decision making regarding higher education institutions: on the choice

of a convenient place by students, on recruitment decisions by employers, on

university policies, motivating the competitiveness among them, etc. See De Witte

and Hudrlikova (2013) for a discussion on this issue and a review of the literature.

We here are concerned with the assessment of performance of DMUs involved

in production processes. Specifically, the focus is on the evaluation of their relative

efficiency in the use of several inputs to produce several outputs by means of DEA

models. The DEA efficiency scores provide a self-evaluation of DMUs based on the

inputs and output weights that show them in their best possible light. Thus, since the

DMUs are evaluated with DMU-specific weights (which often differ across units),

it is usually claimed that the efficiency scores that result from DEA models cannot

be used for purposes of ranking DMUs.

The chapter is devoted to the so-called cross-efficiency evaluation. This meth-

odology, as introduced in Sexton et al. (1986) and Doyle and Green (1994a), arose

as an extension of DEA aimed at ranking DMUs. The idea behind the cross-

efficiency evaluation is to apply one DMU’s perspective to others, by using its

DEA weights in the evaluations. That is, the efficiency of each unit is assessed with

the weights of all the DMUs instead of with only its own weights. Each of these

assessments, which are called the cross-efficiencies, is defined as the classical

efficiency ratio of a weighted sum of outputs to a weighted sum of inputs. Even-

tually, the cross-efficiency score of a given unit is calculated as the average of the

cross-efficiencies of such unit obtained with the weights of all the DMUs. Cross-

efficiency evaluation provides thus a peer-evaluation of the DMUs, instead of a

self-evaluation, which makes it possible to derive an ordering. We highlight the

parallelism between the cross-efficiency evaluation and MADM problems. Cross-

efficiency evaluation can be seen as a MADM problem in which the DMUs are the

alternatives and the DEA weights of each of them act as the criteria used in the

evaluations.

Cross-efficiency evaluation has received much attention in the related literature.

In fact, “cross-efficiency evaluation and ranking” is identified as one of the four

research fronts in DEA in the study carried out by Liu et al. (2016), which applies a

network clustering method in order to group the DEA literature over the period

2000–2014. We also note that this methodology has been widely applied for

ranking performance of DMUs in many different contexts. Sexton et al. (1986)

included an evaluation of nursing homes while in Doyle and Green (1994b) an

application to higher education can be found. See also Oral et al. (1991) for an

application to R&D projects, Green et al. (1996) to preference voting, Baker and

Talluri (1997) to industrial robot selection and Talluri and Yoon (2000) to the

selection of advanced manufacturing technology (AMT). More recently, this meth-

odology has been applied to the electricity distribution sector in Chen (2002), for

2 J.L. Ruiz and I. Sirvent



the determination of the best labor assignment in a cellular manufacturing system in

Ertay and Ruan (2005), to economic-environmental performance in Lu and Lo

(2007), to sport in Wu et al. (2009a, b), Cooper et al. (2011), Ruiz et al. (2013) and

Gutiérrez and Ruiz (2013a, b), to public procurement in Falagario et al. (2012) and

to portfolio selection in Lim et al. (2014).

We review here the literature on the different issues related to the cross-

efficiency evaluation. This includes the choice of DEA weights among alternate

optima by using alternative secondary goals (Sect. 1.4) and the aggregation of

cross-efficiencies (Sect. 1.5). Other uses of the cross-efficiency evaluation different

from that concerned with rankings are discussed (Sect. 1.6), together with the

extensions of the standard approach that have been developed and broaden the

range of applicability of this methodology (Sect. 1.7). Previously, Sect. 1.2 sum-

marizes the existing ranking methods in DEA and Sect. 1.3 briefly describes the

standard approach to the cross-efficiency evaluation. Last section concludes.

1.2 Ranking Methods in DEA

The literature has widely dealt with the ranking of DMUs in the context of DEA.

Adler et al. (2002) and Hosseinzadeh Lotfi et al. (2013) provide a couple of reviews,

while the review of methods for improving discrimination in DEA in Angulo-Meza

and Estellita Lins (2002) also considers some methods for ranking DMUs.

This body of research can be roughly described as follows. Firstly, we should

mention the rankings that result from efficiency ratios obtained by using a common

set of weights (CSW). CSW has the appeal of a fair and impartial evaluation in the

sense that each variable is attached the same weight in the assessments of all the

DMUs. This approach has been often followed in the efficiency analyses made in

Economics and Engineering. Regarding that approach, Doyle and Green (1994a)

point out that the choice itself of such weights often raises serious difficulties, and

in many cases there is no universally agreed-upon the weights to be used. We note

that there exist some DEA-based methods aimed at finding a CSW: see Ganley and

Cubbin (1992), Roll and Golany (1993), Troutt (1997), Despotis (2002), Kao and

Hung (2005), Liu and Peng (2008, 2009), Ramón et al. (2011) and Ramón

et al. (2012).

The methods based on either the cross-efficiency evaluation or the super-

efficiency score (Andersen and Petersen 1993) have been those that have received

more attention in view of the number of published papers dealing with these issues.

As said before, this chapter is devoted to the cross-efficiency evaluation, so it is

described subsequently in detail. The super-efficiency score results from the eval-

uation of the DMUs with respect to the technology estimated by excluding the unit

under assessment from the sample. This kind of scores (see Hashimoto 1997;

Sueyoshi 1999 and Tone 2002) have been widely used for ranking DMUs, and

their use has also been extended for the analysis of sensitivity and the detection of

outliers. The infeasibility problems of the super-efficiency score are usually

1 Ranking Decision Making Units: The Cross-Efficiency Evaluation 3



highlighted as a drawback of this efficiency measure, as well as the fact that it

results from DMU-specific weights if it is used for purposes of ranking (as in DEA).

Some existing methods propose to rank DMUs through the benchmarking (see

Sinuany-Stern et al. 1994 and Torgersen et al. 1996). The basic idea behind them is

that a given DMU should rank high if it is frequently used as referent in the

evaluation of the remaining units (obviously, these methods can only rank efficient

DMUs). Other group of methods utilizes multivariate statistical techniques like

canonical correlation analysis and discriminant analysis to rank the DMUs (see

Sinuany-Stern et al. 1994 and Friedman and Sinuany-Stern 1997). These techniques

are usually applied once the DEA classification into efficient and inefficient units

has been obtained, and rank the units by using common weights. Empirically,

non-parametric tests seem to show compatibility between the rank and the DEA

dichotomic classification. Finally, we can mention a last group of papers that

combine DEA and multi-criteria decision-making methods, such as AHP, fuzzy

logic or multi-objective linear programming (see Halme et al. 1999; Li and Reeves

1999 and Kao and Liu 2000). Some of these approaches require the collection of

additional, preferential information from relevant decision makers, which could be

considered as the weakness of these methods.

Obviously, these methods have all their own attractive features and weaknesses,

so no of them could be prescribed as the complete solution to the question of

ranking.

1.3 The Cross-Efficiency Evaluation: The Standard
Approach

Throughout the paper we assume that we have nDMUs that usem inputs to produce

s outputs. These can be described by means of the vectors (Xj, Yj), j¼ 1, . . ., n,
which are assumed to be non-negative. We also denote by X the m� n matrix of

input vectors and by Y the s� n matrix of output vectors. The standard cross-

efficiency evaluation is based on the CCR DEA model (Charnes et al. 1978), which

is an oriented radial model. The following problem is the CCR model in its ratio

form when used for the assessment of relative efficiency of a given DMU0

Max θ0 ¼ u
0
Y0

v
0
X0

s:t: :
u
0
Yj

v
0
Xj

� 1 j ¼ 1, . . . , n

v � 0m, u � 0s

ð1:1Þ

In short, the optimal value of (1.1) is the DEA efficiency score of DMU0 while

the ratios in the constraints provide the cross-efficiencies of the remaining units

calculated with the weights of DMU0.
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Model (1.1) is non-linear. Nevertheless, by using the results on linear fractional

programming in Charnes and Cooper (1962), it can be converted into the following

linear problem (which is the so-called dual multiplier formulation)

Max u
0
Y0

s:t: : v
0
X0 ¼ 1

-v
0
Xj þ u

0
Yj � 0 j ¼ 1, . . . , n

v � 0m, u � 0s

ð1:2Þ

Thus, if (vd, ud) is an optimal solution of (1.2) for a given DMUd, then the cross-

efficiency of DMUj, j¼ 1, . . ., n, obtained with the weights of DMUd is the

following

Edj ¼ ud
0
Yj

vd
0
Xj

ð1:3Þ

The Edj ’ s are usually collected in the so-called matrix of cross-efficiencies

E ¼

E11 . . . E1j . . . E1n

:::: :::: ::::
Ed1 . . . Edj . . . Edn

:::: :::: ::::
En1 . . . Enj . . . Enn

0BBBB@
1CCCCA ð1:4Þ

In each row d, we have the evaluations of the different units calculated with the

DEA weights of DMUd (so the main diagonal of the matrix contains the DEA

efficiency scores). In each column j, we have the efficiencies of a given DMUj

calculated with the weights of all the DMUs. In fact, the cross-efficiency score of

DMUj, j¼ 1, . . ., n, is usually defined as the average of the cross-efficiencies in the

corresponding column. That is,

Ej ¼ 1

n

Xn
d¼1

Edj, j ¼ 1, . . . , n: ð1:5Þ

The cross-efficiency score �Ej provides a peer-evaluation of DMUj, and the

DMUs can be ranked according to the values �Ej, j¼ 1, . . ., n. The fact that the

cross-efficiencies in each of the rows of E are obtained by using the same input and

output weights is the reason why an ordering of DMUs can be derived on the basis

of the cross-efficiency scores.

The literature has emphasized the following two as the principal advantages of

the cross-efficiency evaluation: (1) it provides an ordering of the DMUs and (2) it

eliminates unrealistic weighting schemes without requiring the elicitation of weight

restrictions (see, for example, Anderson et al. 2002). Doyle and Green (1994a) have
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also highlighted the interpretation of the cross-efficiency evaluation as peer-

appraisal. As a result, these authors suggest that cross-efficiency evaluation has

less of the arbitrariness of additional constraints and has more of the right conno-

tations of a democratic process, as opposed to authoritarianism (externally imposed

weights, CSW) or egoism (self-appraisal, DEA).

But there are also some difficulties with the cross-efficiency evaluation. As it

happens with other DEA-based approaches for ranking, for example with the super-

efficiency score or even with the rankings provided by CSWs obtained by using

DEA, there exists the possibility of rank reversal. That is, if a new DMUwere added

to the sample, then the ranking could change. Thus, the rank of a given DMU that

results from the cross-efficiency scores should be seen as reflecting its relative

position in presence of the DMUs considered in the sample. As discussed in Wang

and Luo (2009), the rank reversal phenomenon occurs in many decision making

approaches such as the Analytic Hierarchy Process (AHP), the Borda–Kendall

(BK) method for aggregating ordinal preferences, the simple additive weighting

(SAW) method and the technique for order preference by similarity to ideal solution

(TOPSIS) method. These authors eventually claim that rank reversal “might be a

normal phenomenon”.

However, the problems with the alternate optima for the DEA weights have been

the ones widely acknowledged as the main weakness of this methodology. The

existence of alternative optimal solutions in (1.2) is a factor that may reduce the

usefulness of the cross-efficiency evaluation, because we may have different cross-

efficiency scores (and, consequently, different rankings) depending on the choice of

DEA weights that is made. This is probably the issue related to the cross-efficiency

evaluation that has received more attention in the literature. We discuss it in the

next section.

1.4 The Choice of DEA Weights in Cross-Efficiency
Evaluations

As a potential remedy to resolve the ambiguity of the multiple DEA weights,

Sexton et al. (1986) already suggested making a choice among alternate optima

by using some alternative secondary goal. They proposed the two well-known

benevolent and aggressive approaches used to that end. The idea behind them is

that DMUd chooses among its optimal weights those that maximize/minimize in

some way the cross-efficiencies of the other units. Some models were developed,

which involve the use of different surrogates that try to avoid the non-linear

formulations that result from the inclusion of the cross-efficiencies, which are

ratios, in the problems. For example, instead of maximizing (minimizing) the

sum of cross-efficiency ratios themselves, these authors suggested that an adequate

surrogate is to minimize (maximize) the sum of the denominators of the fractions
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minus the sum of the numerators. Doyle and Green (1994a) implemented the

benevolent/aggressive models below following those ideas

Max=Min
X
j 6¼d

ud
0
Yj � vd

0
Xj

� �
s:t: : vd

0
Xd ¼ 1

�θ*dvd
0
Xd þ ud

0
Yd ¼ 0

�vd 0Xj þ ud
0
Yj � 0 j ¼ 1, . . . , n, j 6¼ d

vd � 0m, ud � 0s

ð1:6Þ

where θ�d is the DEA efficiency score of DMUd.

In line with that approach, these authors also proposed the following two

formulations

Max=Min ud
0X
j 6¼d

Yj

s:t: : vd
0X
j 6¼d

Xj ¼ 1

�θ*dvd
0
Xd þ ud

0
Yd ¼ 0

�vd 0Xj þ ud
0
Yj � 0 j ¼ 1, . . . , n, j 6¼ d

vd � 0m, ud � 0s

ð1:7Þ

which are two models that seek, as secondary goal, to maximize/minimize the

efficiency of a composite DMU, while keeping unchanged the DEA efficiency

score of DMUd, θ�d.
Liang et al. (2008a) extend the work in Doyle and Green (1994a) by introducing

various secondary objective functions, which are formulated in terms of the devi-

ation variables αd
j ¼ vd

0
Xj � ud

0
Yj, j¼ 1, . . ., n. The first secondary goal gives rise

to the following model, which is equivalent to the benevolent formulation in (1.6)

Min
Xn
j¼1

αd
j

s:t: : vd
0
Xd ¼ 1

ud
0
Yd ¼ 1� αd*d

�vd 0Xj þ ud
0
Yj þ αd

j ¼ 0 j ¼ 1, . . . , n

vd � 0m, ud � 0s

ð1:8Þ

where αd*d ¼ 1� θ*d. This model minimizes the total deviation from the ideal

point defined as the multiplier bundle for which every DMU is efficient, that is,
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αd
j ¼ 0, j ¼ 1, . . . n:The following twosecondarygoals are alsoproposed in that paper

with the purpose of deriving weights for which the cross-efficiencies are as similar as

possible:

1. Minimizing the maximum deviation variable

Min Max α j
d ð1:9Þ

which is related to maximizing the minimum cross-efficiency among the n

DMUs, and

2. Minimizing the mean absolute deviation

Min
1

n

Xn
j¼1

α j
d � αd

��� ��� ð1:10Þ

which is aimed at minimizing the variation among the cross-efficiencies of the

DMUs, where αd ¼ 1
n

Xn
j¼1

α j
d.

The new models can be formulated by simply changing the objective of (1.8)

with those in (1.9) and (1.10).

Wang and Chin (2010b) state that the three models above are established on the

basis of an unrealistic ideal point and formulate some variants with the following

differences: (1) the ideal point is associated with the multiplier bundle for which all

the DMUs achieve their DEA efficiency scores (θ�1, . . ., θ�n), instead of using the value
1 as the target efficiency of each DMU, which is only achievable for the efficient

units. As a result, the constraints�vd 0Xj þ ud
0
Yj þ αd

j ¼ 0, j¼ 1, . . ., n, in the Liang

et al.’s models are replaced by �vd 0θ*j Xj þ ud
0
Yj þ αd

j ¼ 0, j¼ 1, . . ., n; (2) the

normalizing constraint is the same in the formulations associated with all the

DMUd’s. In particular, they suggest the following constraint

vd
0Xn
j¼1

Xj þ ud
0Xn
j¼1

Yj ¼ n, and (3) aggressive formulations are also proposed (note

that models (1.8)–(1.10) follow a benevolent approach).

Obviously, neither of the models we have just discussed is better than the others.

The use of them in practice will depend on the circumstances. For instance, Liang

et al. (2008a) suggest that minimizing the total deviation as in (1.8) would be an

appropriate approach to the cross-efficiency evaluation when the DMUs are assumed

to be in a non-cooperative and fully competitive mode. For example, in a supply

chain where each member is acting in its own self-interest, without being concerned

for the others. In contrast, minimizing the maximum deviation, (1.9), might be

deemed appropriate in settings where a more cooperative situation prevails. For

example, in the evaluation of bank branches under a single corporate head, where

the worst performing units would be given the least gap possible between where they

are and where they need to be. Minimizing the mean absolute deviation, (1.10), aims
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at equalizing the various efficiency scores. So, if we were concerned with an

allocatable resource such as the equipment for the maintenance crews, this model

might tend to result in the least amount of redistribution (to render the DMUs equally

efficient) in regard to that resource.

Other approaches focus on the suitability of the profiles of DEA weights that are

chosen without dealing directly with the cross-efficiencies. As said before, one of the

advantages of the cross-efficiency evaluation is that it eliminates unrealistic

weighting schemes without requiring the elicitation of weight restrictions. The idea

is that the effects of unreasonable weights are cancelled out in the summary that the

cross-efficiency evaluation makes (Anderson et al. 2002). However, as Ramón

et al. (2010a) state, we may have more comprehensive cross-efficiency scores if we

actually avoid unreasonable weights instead of expecting that their effects are

eliminated in the amalgamation of weighting schemes. By unrealistic weighting

schemes we often mean the profiles of weights with zeros. The literature has widely

claimed the need to avoid zero weights because they imply that some of the inputs

and/or outputs considered for the analysis are ignored in the assessments. But the

literature has also claimed against the large differences usually found in the weights

as a result of the DEA total weight flexibility. These include both the differences in

the input weights and in the output weights used in the evaluation of a DMU (Cook

and Seiford 2008 state that “the AR concept was developed to prohibit large

differences in the values of multipliers”) and the differences in the weights attached

to the same variable by the different DMUs (see Roll et al. 1991; Pedraja-Chaparro

et al. 1997 and Thanassoulis et al. 2004).

To prevent unrealistic weighting schemes in cross-efficiency evaluations different

strategies have been followed. Ramón et al. (2010b) classify the DMUs in two sets

NZ and Z. In NZ we have the DMUs that can make a choice of non-zero weights

among their alternate optima, while Z consists of those that cannot. That is, NZ ¼ E

[E0 [ NE [ NE0 andZ ¼ F [ NFaccording to the classification of DMUs in Charnes

et al. (1991). Then, they propose that the DMUd’s in NZ choose among their alternate

optima the profiles with the least dissimilar weights, by using the following model in

Ramón et al. (2010a)

Max φd

s:t: : Xm
i¼1

νdi xid ¼ 1

Xs
r¼1

μ d
r yrd ¼ θ*d

-
Xm
i¼1

νdi xij þ
Xs
r¼1

μd
r yrj � 0 j ¼ 1, . . . , n

zI � νdi � hI i ¼ 1, . . . , m
zO � μ d

r � hO r ¼ 1, . . . , s
zI

hI
� φd

zO

hO
� φd

zI, zO � 0

ð1:11Þ
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This model ensures in addition non-zero weights. As for the DMUs in Z, these

are re-assessed with weights that cannot be more dissimilar than those of the DMU

in NZ that needs to unbalance more its weights (as measured by φ* ¼ min
d2NZ

φ*
d) in

order to achieve its CCR efficiency score. These are the weights used by the DMUs

in Z in the cross-efficiency evaluation. See Wang et al. (2012), which also deals

with the weight disparity, albeit it does not ensure non-zero weights.

A different strategy is followed in Ramón et al. (2011). The basic idea of the

proposed approach is to ignore the profiles of weights of the inefficient DMUs in Z

in the calculation of the cross-efficiency scores. That is, the cross-efficiency

evaluation is carried out only with the weights of the DMUs in NZ, once these

latter have made a choice among their alternate optima according to some suitable

criterion. This approach is called “peer-restricted” cross-efficiency evaluation.

Concerning the choice of weights that the DMUs in NZ make, the authors suggest

to reduce as much as possible the differences between the profiles of weights

selected. This criterion seeks, on one hand, to reduce the differences in the weights

attached by the different DMUs to the same variable, and on the other, to reduce the

dispersion in the samples of cross-efficiencies, so the cross-efficiency scores, which

are the corresponding averages, are more representative of such cross-efficiencies.

The choice of the profiles of weights to be used in the “peer-restricted” cross-

efficiency evaluation is made by solving the following model

Min
X

d, d0 2NZ
d < d0

Xm
i¼1

vd
i � vd

0
i

��� ���xi þXs
r¼1

ud
r � ud

0
r

��� ���yr
 !

s:t: :

-
Xm
i¼1

vd
i xij þ

Xs
r¼1

ud
r yrj � 0 j ¼ 1, . . . , n; d2NZ

-θ*d
Xm
i¼1

vd
i xid þ

Xs
r¼1

ud
r yrd ¼ 0 d2NZ

Xm
i¼1

vd
i xi ¼ 1 d2NZ

vd
i , u

d
r � 0 8i, r, d

ð1:12Þ

where xi; i¼ 1, . . ., m, and yr; r¼ 1, . . ., s, are the averages of input i and output r,

respectively, across the DMUs in NZ. Note that model (1.12) includes a common

normalizing constraint that makes the profiles of weights of the different DMUs

comparable.

Model (1.12) can be extended to avoid zero weights (see the original paper for

details).
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1.4.1 Ranking Ranges and Cross-Efficiency Intervals

Liang et al. (2008a) state that the comparison of cross-efficiency scores obtained

with different evaluation criteria allows us to obtain a better picture of cross-

efficiency stability with respect to multiple DEA weights. However, this issue can

be addressed more appropriately with an approach based on considering simulta-

neously all of the optimal solutions for the weights. Alcaraz et al. (2013) and

Ramón et al. (2014) propose a couple of procedures for ranking DMUs based on

the cross-efficiency evaluation which consider all the alternate optima for the DEA

weights, thus avoiding the need to make a choice among them by using some

alternative secondary goal. Instead of a single ranking, the former paper provides a

range for the possible rankings of each DMU, while the latter deals with the cross-

efficiency intervals that result from all the DEA weights and use some order

relations for interval numbers in order to identify dominance relations between

DMUs and rank them.

For each DMU0, Alcaraz et al. (2013) find the range of its possible rankings

that would result from considering all the DEA weights of all the DMUs. This

range is determined by the best and the worst possible rankings of DMU0.

The best ranking of DMU0 is defined as rb0 ¼ Min
V;Uð Þ

H0 V;Uð Þj jf g þ 1, where

H0 V;Uð Þ ¼ DMUj, j ¼ 1, . . . , n=Ej > E0

� �
, V and U being the m� n and s� n

matrices with the input weight vectors and the output weight vectors, respectively, of

a given choice of DEA weights that each of the DMUs makes. It is shown that

rb0 ¼ n� LE*
0, where LE

�
0 is the optimal value of the problem

Max
X
j 6¼0

Ij

s:t: :

ud
0
Yd

vd
0
Xd

¼ θ*d d ¼ 1, . . . , n 13:1ð Þ
ud
0
Yj

vd
0
Xj

� 1 j ¼ 1, . . . , n; d ¼ 1, . . . , n 13:2ð Þ

Edj ¼ ud
0
Yj

vd
0
Xj

j ¼ 1, . . . , n; d ¼ 1, . . . , n 13:3ð Þ

Ej ¼ 1

n

Xn
d¼1

Edj j ¼ 1, . . . , n 13:4ð Þ

Ej � E0 � 1� Ij j ¼ 1, . . . , n, j 6¼ 0 13:5ð Þ
Vd � 0m, ud � 0s, 8d, Ij2 0; 1f g,8j 6¼ 0

ð1:13Þ

1 Ranking Decision Making Units: The Cross-Efficiency Evaluation 11



Likewise, the worst ranking is defined as rw0 ¼ n�Min
V;Uð Þ

L0 V;Uð Þj jf g, where
L0 V;Uð Þ ¼ DMUj, j ¼ 1, . . . , n=Ej < E0

� �
. Now, it is shown that rw0 ¼ HE*

0 þ 1,

where HE�0 is the optimal value of the problem that results from replacing (13.5)

with E0 � Ej � M 1� Ij
� �

; j¼ 1,. . .,n, j 6¼ 0; in (1.13).

The approach in Ramón et al. (2014) also considers simultaneously all the DEA

weights of all the DMUs, but deals with the minimum and the maximum possible

cross-efficiency scores, instead of with their best and worst rankings. For a given

DMU0, these are denoted by �EL �
0 and �ER �

0 , and are obtained, respectively, as the

optimal values of the problems

Min=Max
1

n

Xn
d¼1

u
0
dY0

v
0
dX0

 !
s:t: :

u
0
dYd

v
0
dXd

¼ θ*d d ¼ 1, . . . , n

u
0
dYj

v
0
dXj

� 1 d ¼ 1, . . . , n; j ¼ 1, . . . , n

vd � 0m, ud � 0s d ¼ 1, . . . , n

ð1:14Þ

The authors show how to deal with the cross-efficiency intervals [ �EL �
j , �ER �

j ], j¼ 1,

. . ., n, in order to both identify dominance relations among DMUs and provide a

ranking of units by using some order relations for interval numbers. Specifically, the

following is an order relation between intervals often used in practice which may

appropriately represent the DM’s preferences in problems dealing with efficiency

intervals: Let A and B be two intervals A¼ [aL,aR] and B¼ [bL,bR], then

A�LRB, aL � bL and aR � bR, and A<LRB, A�LRB and A 6¼ B. That is,

�LR represents the DM preference for the unit with the higher minimum cross-

efficiency score and maximum cross-efficiency score. This order relation is actually a

particular case of that originally introduced in Dubois and Prade (1980) for fuzzy

numbers (based on the extension principle) when it is considered for interval num-

bers. The relation �LR is however a partial order, so there may be pairs of intervals

that cannot be compared, as is the case of those that are nested. Therefore, �LR will

usually not allow us to derive a full ranking of units, although it may yield useful

information regarding dominance relations among DMUs in terms of cross-efficiency

assessments. To be specific, if E
L*
j ;E

R*
j

h i
<LR E

L*
j0 ;E

R*
j0

h i
; then we say here that

DMUj’ dominates DMUj. To derive a full ranking of units, the order relation �λ
proposed in Campos and Mu~noz (1989), which takes into account the degree of

optimism of the decision maker (λ), can be used (see the original papers for details).

Yang et al. (2012) also propose an approach to the cross-efficiency evaluation

that avoids the need to make any choice of DEA weights. These authors deal with a

n� n matrix of intervals of cross-efficiencies, which is assumed to be a matrix of

stochastic variables, and use the stochastic multicriteria acceptability analysis
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(SMAA-2) method proposed by Lahdelma and Salminen (2001) to derive a ranking

of units. In order to do so, a probability distribution over the cross-efficiency

intervals must thus be assumed, the uniform and the normal distributions being

those used in that paper. This may eventually increase the computational burden

needed by the proposed approach (note, in particular, that Monte-Carlo simulations

are used to approximate values of the acceptability indices).

1.4.2 Illustrative Example

We use here the data in Zhu (1998) to illustrate some of the approaches to the cross-

efficiency evaluation that have been previously described. The data consist of

18 Chinese cities, which are evaluated by using two inputs and three outputs.

Table 1.1 records the data, the DEA efficiency scores, the interval cross-efficiency

scores [ �EL �
j , �ER �

j ], j¼ 1, . . ., 18, the ranking that results from the order relation�LR

and the ranking provided by the benevolent and the aggressive approaches obtained

with (1.6).

The order relation �LR practically determines a full ranking of cities, in spite of

being a partial order. Figure 1.1 depicts graphically the dominance relations among

cities that can be identified by using it. It shows that only cities 5 and 13 cannot be

compared to each other with �LR, since their corresponding cross-efficiency

intervals are nested. We can see that city 2 ranks first, followed by cities 6, 10

and 12. At the bottom, we have cities 17, 3, 15, 18 and 14. Although cities 5 and

13 cannot be ranked with �LR, we can state that these two cities are placed in

between cities 12 and 9, because they both dominate city 9 and are dominated by

city 12. Therefore, they rank either fifth or sixth.

Note also that the ranking resulting from the use of�LR with the cross-efficiency

intervals is to a large extent consistent with those that the benevolent and the

aggressive formulations provide, which are two rankings that in return show

many similarities. However, we should not think that the benevolent and aggressive

approaches cover all the range of possible rankings, as Table 1.2 shows. This table

reports the ranking ranges obtained with the approach in Alcaraz et al. (2013). We

can see, for example, that 2, 6 and 10 are the top three cities in all the scenarios

determined by all the possible choices of DEA weights that all the DMUs can make.

Nevertheless, each of them can occupy any of the three positions at the top. These

situations suggest therefore that the approach proposed can be a useful complement

in the standard cross-efficiency evaluations, even when some specific alternative

secondary goal has been used to the choice of DEA weights, because it allows us to

gain insight into the robustness of the rankings provided against alternate optima.

In any case, the ranking ranges that have been found are not especially wide, so

we can draw some interesting conclusions with confidence. For example, it can be

stated that 2, 6, 10, 12, 5, 13, 9, 8, 1, 4 are the top ten cities, irrespective of the DEA

weights that are chosen. This can be an interesting finding from the point of view of

1 Ranking Decision Making Units: The Cross-Efficiency Evaluation 13
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management. We can go even further and state that 2, 6 and 10 are the top three

(as said before), and that 5, 9, 12 and 13 will be always in between fourth and

seventh, followed by 1, 4 and 8. Likewise, it has been found that cities 14, 15 and

18 are the poorest performers, city 14 always ranking at the bottom.

1.5 The Aggregation of Cross-Efficiencies

In MADM problems, the different criteria are often attached different weights for

the evaluation of alternatives, as a way to consider their relative importance. These

are usually determined on a subjective basis or trying to reflect the opinion of the

decision makers (DMs). In the standard approach to the cross-efficiency evaluation,

the cross-efficiency scores of the units are usually calculated as the averages of their

cross-efficiencies. This means that the cross-efficiencies provided by the different

DMUs are aggregated by attaching all of them the same importance. However,

allowing for different aggregation weights may obviously introduce more flexibility

into the analysis. In particular, in some situations, the DM could be interested in

incorporating his/her preferences regarding the relative importance that should be

attached to the cross-efficiencies provided by the different DMUs. For example, the

DMmight argue that the cross-efficiencies provided by the DMUs that globally rate

the units better should be given more importance in the final aggregation. In other

Table 1.2 Ranking ranges

DMU

Ranking ranges

rb0 rw0

1 9 10

2 1 3

3 15 15

4 8 10

5 4 6

6 1 3

7 12 12

8 8 9

9 6 7

10 1 3

11 13 14

12 4 5

13 5 6

14 18 18

15 16 17

16 11 11

17 13 14

18 16 17
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situations, it might be desirable that the cross-efficiencies provided by the DMUs

that discriminate more among units are considered as more relevant and, accord-

ingly, their associated aggregation weights should be larger. Furthermore, some

authors have suggested that the choice of aggregation weights should be made in

accordance with that of the DEA weights.

There is a number of papers that depart from the customary use of the arithmetic

mean for the aggregation of cross-efficiencies and propose aggregation weights that

result from models in which different conditions are imposed. In Wu et al. (2011)

the aggregation weights reflect the entropy in the cross-efficiencies provided by the

different DMUs. Wang and Chin (2011) use an approach based on ordered

weighted averaged (OWA) operators in which, through the specification of the

orness degree, they seek to reflect their particular belief that the self-evaluations

should be attached more importance than that attached to the evaluations provided

by the other DMUs. In Ruiz and Sirvent (2012), the aggregation weights are

imposed to reflect the differences in the weights of the different profiles used to

calculate the cross-efficiencies, specifically when the DEA weights are obtained

from (1.11). Wang and Wang (2013) propose three weighted least-square models

yielding aggregation weights which reflect in each case (1) the dissimilarity

between the cross-efficiencies provided by different DMUs, (2) the deviations of

these cross-efficiencies from the CCR efficiency scores, and (3) a combination of

these two measures. And two game approaches are provided in Wu et al. (2008) and

Wu et al. (2009c), where the DMUs are considered as players in a cooperative game

and the aggregation weights of each DMU are defined, respectively, as the nucle-

olus solution of the game and from the Shapley value.

León et al. (2014) propose a general approach to the aggregation of cross-

efficiencies which is based on Induced Ordered Weighted Averaging (IOWA)

operators. In short, the idea is to rearrange the rows of the matrix of cross-

efficiencies on the basis of an inducing variable and then attach the aggregation

weights accordingly. As for the inducing variable, this should reflect the DM

preferences regarding the relative importance of the cross-efficiencies provided

by the different DMUs. Examples of inducing variables can be either zd ¼ z Edj

� �
¼ TEd; where TEd is the total of the cross-efficiencies in row d of the matrix (1.4),

d¼ 1, . . ., n, or zd ¼ z Edj

� � ¼ 1� ed, where ed ¼ �1
log nð Þ

Xn
j¼1

EN
dj log EN

dj

� �
(EN

dj being

Edj=
Xn
j¼1

Edj), that is, the entropy in the cross-efficiencies of row d, d¼ 1, . . ., n. Let

eE ¼ eEdj

� �
be the matrix of cross-efficiencies that results of re-arranging the rows

of the cross-efficiency matrix E according to the ordering induced by z. Thus, in the

top rows of Ẽ we have the cross-efficiencies that are most preferred by the DM, and

consequently they should be attached larger aggregation weights, whereas in those

in the bottom we have the least preferred cross-efficiencies, which will be attached

the smaller aggregation weights. For example, if zd ¼ TEd; then in the top rows we
will have the cross-efficiencies provided by the DMUs that globally evaluate better
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the units, while if zd ¼ 1� ed; we will have those that discriminate more among

units and therefore provide more information to derive a full ranking of units (note

that if Ed1¼Ed2¼ . . .¼Edn then DMUd provides no information to rank the

DMUs; in that case zd ¼ 0).

Concerning the aggregation weights, with this approach only vectors

(ω1, . . .,ωn) such that ω1 � . . . � ωn are considered, where ωd is the weight to be

attached to the cross-efficiencies in the d-th row of Ẽ. Nevertheless, the DM can not

only set an order of preference for the cross-efficiencies provided by the different

DMUs but also he/she can adjust the degree of such preference by means of the

so-called orness level, α. This measure was introduced by Yager (1988) and

characterizes the degree to which the aggregation is like an “or” (Max) operation.

For example, if α ¼ 1, then ω1¼ 1 and ωd¼ 0, d¼ 2, . . ., n, which means that the

ultimate cross-efficiency scores are the cross-efficiencies in the first row of Ẽ. In

other words, only the cross-efficiencies provided by the most preferred rating DMU

are considered. The case α ¼ 0:5 is associated with the situation in which the DM

has no preference on the cross-efficiencies provided by the different DMUs. Then,

ω1¼ . . .¼ωn¼ 1/n, which are the aggregation weights of the arithmetic mean used

in the standard cross-efficiency evaluation. Values of the orness degree in between

0.5 and 1 would be associated with intermediate situations. As α gets closer to 1 the

weight is progressively put on the rating DMUs in the top rows of Ẽ.

In order to calculate the aggregation weights ωd, the minimax disparity problem

proposed by Wang and Parkan (2005) can be used:

Min δ

s:t: :
1

n� 1

Xn
d¼1

n� dð Þωd ¼ α

Xn
d¼1

ωd ¼ 1

ωd � ωdþ1 � δ � 0 d ¼ 1, . . . , n� 1

ωd � ωdþ1 þ δ � 0 d ¼ 1, . . . , n� 1

ωd � 0 d ¼ 1, . . . , n

ð1:15Þ

where α2 0; 1½ � is the orness degree, specified by the DM.

If α � 0:5; model (1.15) ensures that the aggregation weights provided satisfy

ω1 � . . . � ωn; as required before. In addition, model (1.15) minimizes the maxi-

mum difference between pairs of adjacent weights, so this model somehow mini-

mizes the differences between the aggregation weights.

Eventually, the cross-efficiency scores are calculated as

E
IOWA

j ¼
Xn
d¼1

ωd
eEdj, j ¼ 1, . . . , n:

It might be worth mentioning that, like in most approaches, we find here a

common set of aggregation weights which is used in the evaluation of all the units.

We believe that the ranking resulting from cross-efficiency scores calculated with

common weights can be more widely accepted by users than one obtained when the

aggregation weight of the cross-efficiencies provided by a given DMU is different
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in the evaluation of different units (that is, when the cross-efficiencies in a given

row of the matrix are attached different weights), as it usually happens when using

OWA operators for the aggregation like in Wang and Chin (2011). Moreover, León

et al. (2014) suggest that the choice of the aggregation weights should be related to

that of the DEA input and output weights. For example, if zd ¼ TEd is used as the

inducing order variable, then a benevolent approach would be an appropriate

strategy. Analogously, if zd ¼ 1� ed then the DEA weights could be obtained by

using the aggressive formulation.

1.5.1 Illustrative Example (Cont.)

Continuing the same example used in the previous section, we now illustrate the use

of IOWA operators for the aggregation of cross-efficiencies. Specifically, the cross-

efficiency evaluation is performed by using the order inducing variable based on the

entropy, after the cross-efficiencies are obtained following an aggressive approach

to the choice of DEA weights. The rows of the matrix of cross-efficiencies need to

be re-arranged in descending order according to the values 1� ed; and the

aggregation weights are attached following that ordering. In this particular case,

the cross-efficiencies provided by the three efficient cities, 2, 10 and 6, whose

values of 1� ed are 0.495, 0.210 and 0.171, respectively, are attached the largest

aggregation weights, while those provided by cities 1, 5, 8, 11, 14 and 15, with a

value of 1� ed equal to 0.051, are attached the lowest ones. Table 1.3 records the

Table 1.3 Cross-efficiency

scores for different orness

values

Orness degree

DMU 0.5 0.6 0.7 0.8 0.9 1

1 0.381 0.346 0.304 0.247 0.141 0.032

2 0.921 0.889 0.850 0.798 0.698 1.000

3 0.208 0.191 0.169 0.137 0.086 0.006

4 0.390 0.358 0.320 0.265 0.170 0.031

5 0.559 0.533 0.503 0.464 0.381 0.061

6 0.887 0.843 0.789 0.716 0.576 0.034

7 0.258 0.235 0.206 0.165 0.096 0.013

8 0.403 0.372 0.337 0.293 0.198 0.059

9 0.519 0.497 0.469 0.428 0.354 0.073

10 0.873 0.850 0.828 0.815 0.740 0.079

11 0.243 0.222 0.198 0.167 0.105 0.016

12 0.578 0.524 0.463 0.394 0.231 0.048

13 0.552 0.508 0.459 0.409 0.278 0.035

14 0.109 0.098 0.085 0.067 0.036 0.002

15 0.141 0.125 0.106 0.083 0.039 0.001

16 0.335 0.299 0.257 0.211 0.105 0.004

17 0.234 0.207 0.175 0.132 0.056 0.002

18 0.134 0.122 0.108 0.093 0.055 0.009
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cross-efficiency scores of the units for different orness degrees. The cross-

efficiencies under α¼ 0.5 are actually those of the standard aggressive approach,

because that level of orness corresponds to the case of using the arithmetic mean for

the aggregation of cross-efficiencies. The rankings remain quite stable as α
increases, until we get α¼ 1; then some changes occur. For 0.5� α �0.9, cities
2, 6 and 10 are the top three; cities 5, 9, 12 and 13 rank in between fourth and

seventh, followed by 1, 4 and 8; and city 14 ranks at the bottom. These results

coincide with those obtained with the approach by Alcaraz et al. (2013) we have

previously commented. However, when α¼ 1, that is, when the importance

attached to the cross-efficiencies is not so far allocated between all the rows of

the matrix of cross-efficiencies but we only use the profile of DEA weights that

discriminate more among cross-efficiencies (that of city 2), we can see, for exam-

ple, that city 6 falls outside the top three and rank eighth, while city 9 moves up to

the third position. Besides, it is city 15 which ranks at the bottom.

1.6 Other Uses

The cross-efficiency evaluation has been used with other purposes different from

the ranking of DMUs. These include the following.

1.6.1 Identification of Mavericks and All-Round Performers

The cross-efficiency scores allow us to discriminate between DMUs rated as DEA

efficient. Nevertheless, the comparison between DEA efficiency scores and cross-

efficiency scores can be exploited in a variety of other ways. For example, Doyle

and Green (1994a) define the so-called Maverick index as follows (similarly, Baker

and Talluri 1997 define the false positiveness index and Wang and Chin 2010a the

efficiency disparity index):

Mj ¼ θ*j -ej
� �

=ej, j ¼ 1, . . . , n ð1:16Þ

where ej ¼ 1= n� 1ð Þ
X
k6¼j

Ekj. Mj measures the relative increment in the assessment

of DMUj when shifting from the model of peer-appraisal to that of self-appraisal. In

that sense, it may identify mavericks as those that take advantage of the self-

evaluation in their assessments. The higher Mj the more of a maverick is DMUj.

In practice, mavericks have often been identified as the efficient DMUs that appear

in the reference sets of only a few other DMUs. Obviously, this counting procedure

only applies to efficient DMUs, while Mj is applicable to all DMUs.
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Note that the maverick index may also identify all-round performers. A DEA

efficient DMU with a low value of Mj is a unit that is rated as efficient or near the

efficiency with the profiles of weights of all the DMUs.

1.6.2 Classification of DMUs and Benchmarking

Doyle and Green (1994a) have also suggested the use of multivariate techniques,

such as multi-dimensional scaling, principal component analysis or cluster analysis,

for the classification of units into groups of DMUs on the basis of the information

provided by the matrix of cross-efficiencies. Specifically, the correlation coefficient

between a pair of columns tells us how similarly those two DMUs are appraised by

their peers. Using these correlations as the elements in a matrix of resemblance and

applying a clustering method yields clusters with similar DMUs. This could be of

interest for purposes of benchmarking: the best peer-appraised DMU within each

cluster, even though it may not be an efficient unit, is a suitable referent for other

members of the cluster to compare against. These authors claim that this benchmark

is inherently similar but “better” than other DMUs in the same cluster and,

therefore, seems a more readily understable target to aim for than the linear

combination of DMUs in the reference set provided by the conventional DEA,

none of which may appear remotely similar to the unit under evaluation. This

approach is followed in Wu et al. (2009b) for the benchmarking of countries at

the Summer Olympics.

1.6.3 Fixed Cost and Resource Allocation

Du et al. (2014) use the cross-efficiency evaluation to approach cost and resource

allocation problems. DEA has been successfully used to address those problems.

However, the cross-efficiency evaluation provides a very reasonable and appropri-

ate mechanism for allocating a shared resource/cost because it uses the concept of

peer-appraisal. These authors claim that the allocations for fixed cost and resources

resulting from their approach are more acceptable to the players involved because

they are jointly determined by all DMUs rather than a specific one. All involved

DMUs negotiate with one another to adjust the allocation plan for a better peer-

evaluated performance until no one can improve further. A DEA-based iterative

approach is developed, which is feasible and, especially for fixed cost allocation,

ensures all DMUs to be efficient with the fixed cost allocated as an extra input

measure.
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1.7 Extensions

The standard approach to the cross-efficiency evaluation has been developed in the

context of the CCR DEA model. Nevertheless, this methodology has been extended

for use with non-oriented models—the models of directional distance functions

(Chambers et al. 1998) and the multiplicative DEA model (Charnes et al. 1983)—,

under variable returns to scale (VRS) and with fuzzy inputs and outputs. In addition,

the original notion of cross-efficiency has also been generalized to deal with

specific situations we sometimes find in DEA applications. These extensions

broaden the range of applicability of the methodology.

1.7.1 Cross-Efficiency Evaluation with Directional Distance
Functions

Ruiz (2013) explores the duality relations regarding the models of directional

distance functions, which provide a measure of inefficiency in the sense of Farrell

(1957), and establishes the equivalences with some fractional programming prob-

lems. This allows to defining the cross-efficiencies in the form of a ratio as follows

E
β
dj ¼

vd
0
Xj � ud

0
Yj

vd
0
Xj þ ud

0
Yj

, j ¼ 1, . . . , n: ð1:17Þ

It is shown that the cross-efficiencies (1.17) can actually be calculated by using

the DEA weights (vd, ud) provided by the classical CCR model (1.2). The cross-

efficiency score of a given DMUj, j¼ 1, . . ., n, is defined as the average of cross-

efficiencies E
β
j ¼ 1

n

Xn
d¼1

E
β
dj; j¼ 1, . . ., n, as usual. These scores can be used for

ranking the DMUs.

Thus, this extension of the standard approach allows us to use the cross-

efficiency evaluation with non-oriented measures of efficiency, i.e., which account

for the inefficiency both in inputs and in outputs simultaneously.

1.7.2 Cross-Efficiency Evaluation with Multiplicative DEA
Models

Cook and Zhu (2014) (see also Cook and Zhu 2015) develop an approach to the

cross-efficiency evaluation based on the multiplicative DEA model. These authors

define the cross-efficiency score of a given DMUj as the geometric average of its
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cross-efficiencies. Then, they propose to evaluate each DMUd with the so-called

maximum log cross efficiency, which is the optimal value of the model

Max
Yn
d¼1

Y s

r¼1 y
u d
r

rjYm

i¼1 x
v d
i

ij

0@ 1A1=n

s:t: : Y s

r¼1 y
u d
r

rjYm

i¼1 x
v d
i

ij

� 1 d ¼ 1, . . . , n; j ¼ 1, . . . , n

Y s

r¼1 y
u d
r

rjYm

i¼1 x
v d
i

ij

¼ θM*
d d ¼ 1, . . . , n

vd
i , u

d
r � 1 i ¼ 1, . . . , m; r ¼ 1, ::::, s; d ¼ 1, . . . , n

ð1:18Þ

where θM �d is the efficiency score of DMUd, d¼ 1, . . ., n, provided by the multipli-

cative DEA model.

The attractive feature of this approach lies in that the cross-efficiency scores are

uniquely determined with respect to the DEA weights, as they are defined as the

optimal value of (1.18). Note, in any case, that this is not a conventional cross-

efficiency approach in which the cross-efficiencies can be arranged in a matrix so

that those in the same row are obtained with the same input and output weights: the

weights associated with DMUd in solving (1.18) for DMUj are not necessarily the

same as those that will be obtained when the model is solved for another DMUj’.

1.7.3 Cross-Efficiency Evaluation Under VRS

Lim and Zhu (2015a) extend the cross-efficiency evaluation for use under VRS. To

develop a way of resolving the problem of negative cross-efficiencies in the input-

oriented VRS DEA model, they develop a geometric interpretation of the relation-

ship between the VRS and CRS models. They show that, given an optimal solution

(vd, ud, ud0) of an VRS-efficient DMUd, a CRS efficiency score of DMUd, measured

under a translated Cartesian coordinate system defined by an adjusted origin

determined by this optimal solution, is unity. This is interpreted as meaning that

every DMU, via solving the VRS model, seeks for a translation of the Cartesian

coordinate system and an optimal bundle of weights such that its CRS-efficiency

score, measured under the chosen coordinate system, is maximized. Therefore,

VRS cross-efficiency is related to the CRS cross-efficiency measures. In this

context, Lim and Zhu (2015a) define the general concept of peer-evaluation in

DEA as follows: “each DMU cross-evaluates other peer DMUs under its own best
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evaluation environment”, where the best evaluation environment refers to the

weights on the input–output factors as well as the new coordinate system that are

most favourable to the DMU. Under this best evaluation environment, the DMU

itself attains the highest efficiency score as well as the most productive scale size.

The cross-efficiencies are defined as follows

EVRS
dj ¼

ud
0
Yj

vd
0
Xj þ ud

0

, j ¼ 1, . . . , n: ð1:19Þ

Note that EVRS
dd , as defined in (1.19), does not coincide with the VRS efficiency

score in the case of an inefficient DMUd. Thus, for each DMU we have n cross-

efficiencies and one (simple) efficiency score. Lim and Zhu (2015a) suggest to

average the n cross-efficiencies to calculate an input-oriented VRS cross-efficiency

score of the DMU. Alternatives are discussed in Lim and Zhu (2015b).

1.7.4 Fuzzy Cross-Efficiency Evaluation

Sirvent and León (2014) develop a fuzzy approach to the cross-efficiency evalua-

tion, which allows us to extend the use of this methodology to the case of having

imprecise data (that is, fuzzy inputs and outputs). These authors point out that the

rankings of DMUs based on the ordering of fuzzy efficiencies can be criticized for

the same reasons as those resulting from crisp DEA efficiency scores, which

justifies the need of a fuzzy cross-efficiency evaluation. They also claim that, unlike

in crisp DEA, it is not possible to set out a general approach to the cross-efficiency

evaluation in Fuzzy Data Envelopment Analysis (FDEA), because there exist many

different definitions of efficiency in FDEA. Thus, each fuzzy approach to the cross-

efficiency evaluation will depend on the specific features of the FDEA model used

for the measurement of the relative efficiency. In particular, they make some

proposals to perform a cross-efficiency analysis based on the fuzzy DEA model

by Guo and Tanaka (2001). These proposals are to be used in the case of fuzzy

inputs and outputs being symmetrical triangular numbers, and the analysis is

referred to a particular possibility level h in between 0 and 1 pre-specified by the

decision-maker. The fuzzy cross-efficiencies are defined as non-symmetrical trian-

gular fuzzy numbers, and the fuzzy cross-efficiency score of a given DMU is the

average of its fuzzy cross-efficiencies obtained with the weights of all the DMUs.

Once the fuzzy cross-efficiency scores of all the DMUs are obtained, they rank

them by using a ranking index defined in Yager (1981), which eventually provides

the ranking of DMUs. Since the FDEA model of Guo and Tanaka may have

alternative optimal solutions for the input and output weights, Sirvent and León

(2014) also propose, in a similar manner as in the crisp case, a fuzzy benevolent and

a fuzzy aggressive formulation to choose among them. See Ruiz and Sirvent (2016)

for a possibility approach to fuzzy cross-efficiency evaluation.
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1.7.5 Game Cross Efficiency

Liang et al. (2008b) (see also Cook and Zhu 2015) claim that, in many DEA

applications, some form of direct or indirect competition may exist among the

DMUs under evaluation. To deal with this issue, they generalize the original cross-

efficiency concept to the so-called DEA game-cross efficiency. Specifically, in that

approach the DMUs are viewed as players in a game and the cross-efficiency scores

as payoffs. Then, each DMU can choose to take a non-cooperative game stance to

the extent that it will attempt to maximize its (worst possible) cross-efficiency

under the condition that the cross-efficiency of each of the other DMUs does not

deteriorate. The average game cross-efficiency score is obtained when the DMU’s

own maximized efficiency scores relative to each of the other units are averaged.

To implement the DEA game cross-efficiency model proposed, an algorithm is

derived which provides the wanted scores. Note again that this cannot be seen as a

conventional cross-efficiency approach. One important difference lies in that the

weights used to compute the cross-efficiencies of a given DMU are not necessar-

ily an optimal solution of the CCR model (1.2). And, in addition, it cannot be

ensured that the input and output weights used to calculate the game cross

efficiencies for two units, say DMUj and DMUj’, relative to a given DMUd, are

the same, because each of the cross-efficiencies is the result of an independent

optimization.

1.8 Conclusions

Liu et al. (2016) state that cross-efficiency evaluation and ranking “is a truly very

focused subarea. Such a large coherent block of research studies indicates that

many issues in cross-efficiency remain to be resolved and that there probably has

not been a consensus on the method to address the issues in the original cross-

efficiency concept”. In our opinion, there was a need of an updated an organized

survey of the literature on this methodology, and this chapter has tried to make a

contribution to meeting such need. We have recapitulated the literature dealing with

the two issues that have attracted more attention from the researchers: the use of

alternative secondary goals to the choice of DEA weights among alternate optima

and the aggregation of cross-efficiencies. And, in addition, it has been reviewed the

existing work on other uses of the cross-efficiency evaluation different from the

ranking of DMUs and the extensions of the standard approach, which still offer

interesting directions for future research.
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Chapter 2

Data Envelopment Analysis for Measuring
Environmental Performance

Peng Zhou, Kim Leng Poh, and Beng Wah Ang

Abstract Environmental performance measurement provides an analytical

foundation for environmental policy analysis and decision making. As a popular

performance evaluation tool, Data Envelopment Analysis (DEA) has been applied

to construct environmental performance index in different ways, where modeling

undesirable outputs and the choice/construction of efficiency measures are the main

steps. This chapter gives an introductory text on applications of DEA to environ-

mental performance measurement by describing the formulation of environmental

DEA technologies as well as radial and non-radial DEA models for constructing

pure environmental efficiency/productivity index. A case study on measuring the

environmental performance of OECD countries is presented. Future directions of

DEA applications to environmental modeling are discussed with reference to

several recent developments in this area.

Keywords Data envelopment analysis • Environmental performance •

Aggregation • Malmquist productivity index

2.1 Introduction

Environmental performance measurement has received increasing attention at

different levels due to the global concern about environmental issues and sustain-

able development. At firm level, the improvement of environmental performance

may lead to better financial performance and therefore bring stakeholders huge

potential benefits. As such, the measurement of environmental performance has

been regarded as the centre of the theoretical framework for business environmental

P. Zhou (*)

College of Economics and Management, Nanjing University of Aeronautics and Astronautics,

29 Jiangjun Avenue, Nanjing 211106, China

e-mail: rocy_zhou@hotmail.com

K.L. Poh • B.W. Ang

Department of Industrial and Systems Engineering, National University of Singapore, 10 Kent

Ridge Crescent, Singapore 119260, Singapore

© Springer Science+Business Media New York 2016

S.-N. Hwang et al. (eds.), Handbook of Operations Analytics Using Data
Envelopment Analysis, International Series in Operations Research

& Management Science 239, DOI 10.1007/978-1-4899-7705-2_2

31

mailto:rocy_zhou@hotmail.com


management (Tyteca 1996). At macro level, the measurement of environmental

performance measurement helps to make environmental policy analysis and deci-

sion making more quantitative, empirically grounded and systematic (Hsu

et al. 2014).

Technically speaking, the measurement of environmental performance often

involves converting a set of indicators to a composite environmental index. Many

studies have so far been reported on the construction of composite environmental

index, which deal with cases that range from a specific environmental theme to the

whole economic-energy-environmental system, and from a single country/region to

multiple countries/regions (Zhou et al. 2006a). Of the various methods for

constructing composite environmental index, data envelopment analysis (DEA)

as a well-established non-parametric approach to efficiency evaluation has been

widely employed. The review study by Cook and Seiford (2009) provides a sketch

of the historical developments for DEA in the past three decades. As reported by

Zhou et al. (2008a) in their survey study on the applications of DEA to energy and

environmental analysis, about a quarter of studies dealt with environmental perfor-

mance measurement.

This chapter discusses the use of DEA in environmental performance measure-

ment. It is not our intention to provide a very comprehensive review of this area,

which has been done by several earlier review studies like Zhou et al. (2008a) and

Song et al. (2012). On the contrary, we only focus on the theoretical foundation

(i.e. environmental DEA technology) and several basic DEA models for measuring

environmental efficiency and productivity, while some recent developments have

also been sketched. A case study is also presented in Sect. 2.4 to illustrate the

applicability of the models. Finally, we end this chapter by some concluding

remarks on the possible future research agenda about the use of DEA for environ-

mental performance measurement.

2.2 Environmental DEA Technology

The application of DEA to environmental performance measurement starts from the

incorporation of undesirable outputs into production technology (or production

possibility set). It is aware that many production activities will inevitably generate

undesirable (or bad) outputs as byproducts of desirable (or good) outputs. For

instance, the emissions of carbon dioxide and sulphur dioxide are inevitable when

coal is burned to generate electricity in a fossil-fired power plant. In DEA, the issue

of undesirable outputs may be referred to as data irregularity (Zhu and Cook 2007).

For the conventional DEA models, all the outputs are assumed to be of benefit type,

i.e. more outputs are expected to be produced given the constraints of inputs. This

assumption, however, does not hold for undesirable outputs in view of its ‘unde-

sirable’ feature, which need to appropriately modeled into DEA framework.

A large number of methods for modeling undesirable outputs in the DEA

framework have been proposed to deal with this situation (Scheel 2001). In addition
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to treating undesirable outputs as inputs, there are two popular groups of methods

for handling undesirable outputs. One is based on the translation invariance prop-

erty in DEA, for which we first multiply undesirable outputs by “�1” and then add a
sufficiently large number to them to make all the undesirable outputs become

positive. The study by Ali and Seiford (1990) found that additive DEA model

and its variant are translation invariant under variable returns to scale (Banker

et al. 1984). Later, Seiford and Zhu (2002) developed an approach to incorporating

undesirable outputs into BCC–DEA model by using the concept of classification

invariance. The other group uses the original data but is based on the concept of

weak disposable reference technology introduced by Färe et al. (1989). The weak

disposable reference technology, also known as environmental production technol-

ogy or polluting technology, can be characterized in a nonparametric or parametric

way. If it is characterized within a DEA framework, the resulting piece-wide linear

production technology is often referred to as environmental DEA technology (Färe

and Grosskopf 2004; Zhou et al. 2008b). Since the concept of environmental DEA

technology is more frequently used for modeling environmental performance, in

this chapter we shall only introduce environmental DEA technology and the

relevant DEA models for environmental performance measurement.

Suppose that x2RN
þ , y2RM

þ and u2R J
þ are respectively the vectors of inputs,

desirable outputs and undesirable outputs. Then the environmental production

technology can be represented by the following output set (Chung et al. 1997)

P xð Þ ¼ y; uð Þ : x can produce y; uð Þf g ð2:1Þ

According to Färe and Grosskopf (2004), P(x) is often imposed the weak

disposability and null-jointness assumptions as follows:

1. If y; uð Þ2P xð Þ and 0 � θ � 1, then θy, θuð Þ2P xð Þ.
2. If y; uð Þ2P xð Þ and u ¼ 0, then y ¼ 0.

The first property says that a proportional reduction in desirable outputs and

undesirable outputs is feasible. The second property implies that ceasing production

activities is the only choice to eliminate all the undesirable outputs.

In application, the data on inputs and outputs for all the decision making units

(DMUs) are required in order to make the environmental DEA technology be

applicable. Assume that there are k ¼ 1, 2, � � �,KDMUs and for DMUk the observed

data on the vectors of inputs, desirable outputs and undesirable outputs are respec-

tively xk ¼ x1k; x2k; � � �; xNkð Þ, yk ¼ y1k; y2k; � � �; yMkð Þ and uk ¼ u1k, u2k, � � �, uJkð Þ.
Under the constant returns to scale (CRS), the environmental DEA technology can

be characterized by the following output set
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PCRS xð Þ ¼ � y; uð Þ :
XK
k¼1

zkxnk � xn, n ¼ 1, 2, � � �,N
XK
k¼1

zkymk � ym, m ¼ 1, 2, � � �,M
XK
k¼1

zkujk ¼ uj, j ¼ 1, 2, � � �, J
zk � 0, k ¼ 1, 2, � � �,K�

ð2:2Þ

As summarized in Zhou et al. (2008a), most of the studies on environmental

performance measurement are based on the CRS environmental DEA technology.

However, in actual situations the production technology may not always exhibit

CRS and other cases like variable returns to scale (VRS) are likely to be observed

(Tyteca 1996). Under the context of VRS, it is not appropriate to simply add the

constraint of intensity variables being equal to one like the classical BCC–DEA

model. As discussed in Färe and Grosskopf (2004) and Zhou et al. (2008b), the VRS

environmental DEA technology may be characterized by the following production

output set:

PVRS xð Þ ¼ � y; uð Þ :
XK
k¼1

zkxnk � xn, n ¼ 1, 2, � � �,N
XK
k¼1

zkymk � αym, m ¼ 1, 2, � � �,M
XK
k¼1

zkujk ¼ αuj, j ¼ 1, 2, � � �, J
XK
k¼1

zk ¼ 1

α � 1, zk � 0, k ¼ 1, 2, � � �,K�

ð2:3Þ

where α is a parameter which allows the output set to satisfy the weak disposability

assumption.

A graphical comparison between the CRS and VRS environmental DEA tech-

nologies is given by Zhou et al. (2008b). While (2.3) is theoretically consistent with

the weak disposability and null-jointness properties, the resulting DEA models are

nonlinear and difficult to solve. The study by Chen (2013) showed that the linear

formulation of VRS environmental DEA technology given by Kuosmanen (2005),

i.e. (2.4), is more appropriate for application, especially when the additive DEA

models are used to measure environmental performance.
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PVRS xð Þ ¼ � y; uð Þ :
XK
k¼1

zk þ λkð Þxnk � xn, n ¼ 1, 2, � � �,N
XK
k¼1

zkymk � ym, m ¼ 1, 2, � � �,M
XK
k¼1

zkujk ¼ uj, j ¼ 1, 2, � � �, J
XK
k¼1

zk þ λkð Þ ¼ 1

zk � 0, λk � 0, k ¼ 1, 2, � � �,K�

ð2:4Þ

It should be noted that in literature most of DEA models for environmental

performance measurement are based on the CRS environmental DEA technology.

Despite of the fact, several recent studies also adopt either (2.3) or (2.4) form of the

VRS environmental DEA technology in their empirical analysis. An example is

Chen (2013) who employs (2.4) to examine the energy efficiency of EU states.

2.3 Models for Measuring Environmental Performance

A large number of DEA models have been developed for environmental perfor-

mance measurement under the constraint of environmental DEA technology. Most

of them are built upon the CRS environmental DEA technology, e.g. Tyteca (1996,

1997), Färe et al. (2004), Zaim (2004), and Zhou et al. (2006a, b, 2007a, b, 2010a, b,

2012). Therefore, in this section we only introduce several typical DEA models for

measuring environmental performance under the CRS environmental DEA tech-

nology. However, these models can be easily adapted to the case of VRS environ-

mental DEA technology as mentioned above.

2.3.1 Environmental Efficiency Index

A standardized environmental efficiency index, which lies between zero and one, is

often derived when multilateral comparison of environmental performance is

concerned. Of the various DEA models for constructing environmental efficiency

index, the undesirable outputs-oriented DEA model, i.e. (2.5), is particularly

attractive (Tyteca 1997). In (2.5), undesirable outputs are reduced as much as

possible by the same rate, while the constraint of environmental DEA technology

is not violated.
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EEI1 ¼ min λ

s:t:
XK
k¼1

zkxnk � xn, n ¼ 1, 2, � � �,N
XK
k¼1

zkymk � ym, m ¼ 1, 2, � � �,M
XK
k¼1

zkujk ¼ λuj, j ¼ 1, 2, � � �, J
zk � 0, k ¼ 1, 2, � � �,K

ð2:5Þ

Obviously, (2.5) offers a standardized index for evaluating the environmental

efficiency of each DMU. A DMU with larger EEI1 is believed to have a better

environmental performance compared with other DMUs.

While (2.5) as a radial DEA model holds some desirable properties, it has

relatively weak discriminating power. In addition, it cannot incorporate additional

information offered by decision/policy makers regarding their individual prefer-

ences on different undesirable outputs. The weighted non-radial DEA model

proposed by Zhu (1996) and Seiford and Zhu (1998) may be used to overcome

the limitations. Zhou et al. (2007a, b) incorporate undesirable outputs into Zhu’s

non-radial DEA framework and develop the following non-radial DEA model for

constructing an environmental efficiency index:

EEI2 ¼ min
XJ
j¼1

wjλj

s:t:
XK
k¼1

zkxnk � xn, n ¼ 1, 2, � � �,N
XK
k¼1

zkymk � ym, m ¼ 1, 2, � � �,M
XK
k¼1

zkujk ¼ λjuj, j ¼ 1, 2, � � �, J
zk � 0, λj � 1, k ¼ 1, 2, � � �,K; j ¼ 1, 2, � � �, J

ð2:6Þ

where wj j ¼ 1, 2, � � �, Jð Þ refers to a set of normalized user-specified weights for

adjusting the undesirable outputs, which may reflect the preference of decision/

policy makers in adjusting each undesirable output. If there is only one undesirable

output, (2.6) will be exactly the same as (2.5).

In (2.6), there is a constraint λj � 1 which is not included by Zhou et al. (2007a,

b). The additional constraint indicates that no undesirable outputs are allowed to

increase, while in Zhou et al. (2007a, b) some undesirable outputs are allowed to be

expanded in order to achieve higher overall reduction of undesirable outputs as a

whole. In (2.6), the determination of the weights is also a controversial and difficult

issue. In addition to the information on policy/decision makers’ preference, the
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marginal abatement costs or shadow prices of undesirable outputs are also valuable

in determining the weights. As shown in the recent study by Zhou et al. (2014b),

DEA also plays a significant role in estimating the shadow prices of undesirable

outputs.

Finally, it should be pointed out that a DMU with EEI1 or EEI2 equal to one may

not be technical efficient since the slacks/surplus for certain inputs and desirable

outputs may not be zero. As such, it might be appropriate to interpret EEI1 and EEI2
as pure environmental efficiency indexes.

2.3.2 Environmental Productivity Index

The environmental efficiency indexes described in Sect. 2.3.1 are static ones which

are mainly for environmental performance comparisons between different DMUs at

a certain point (period) of time. In addition to cross-section comparisons, decision/

policy makers are also keen to track or monitor the trends in environmental

performance of each DMU over time. While there are several formal time series

analysis methods in DEA, a popular practice is to adapt the Malmquist productivity

index initiated by Caves et al. (1982) and developed by Färe et al. (1994) to

construct environmental productivity index. Originally, Malmquist productivity

index is defined as a ratio of two distance functions. In the case of radial DEA

models, the Shephard distance function is nicely the reciprocal of efficiency score.

In virtue of this relationship, the environmental productivity index can be directly

defined from efficiency scores with time index.

Let t and s (t < s) denote two time indexes. Suppose that EEIqp (p, q ¼ s, t) refers

to the environmental efficiency index of a DMU derived from its input–output pairs

for period of time p and the environmental DEA technology for period q. As
described in Zhou et al. (2007b, 2010), the Malqmuist environmental productivity

index (EPI) of DMU0 can be calculated by

EPI ¼ EEI ts
EEI tt

EEI ss
EEI st

	 
1=2
ð2:7Þ

Using EPI, we can then measure the environmental productivity change of each

DMU to monitor its dynamic environmental performance over time. When

EPI > 1, it indicates that an improvement of environmental performance from

t to s is observed for the DMU being evaluated. When EPI < 1, a deterioration of

environmental performance from t to s is identified for it.

Like the conventional Malmquist productivity index, we can also investigate the

mechanism of environmental productivity changes by decomposing (2.7) into the

following two contributing components:
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EPI ¼ EEI ss
EEI tt

� EEI ts
EEI ss

EEI tt
EEI st

	 
1=2
ð2:8Þ

where the first term of the right-hand side measures the environmental efficiency

change (EEFCH), and the second term measures the shift of environmental DEA

technology, i.e. technological change (TECH). It should be pointed that EPI and its

contributing components can be derived from either radial or non-radial DEA

model introduced in Sect. 2.3.1. For the latter, the studies by Zhou et al. (2007a, b)

and Meng et al. (2013) provide two application examples. When there is only one

undesirable output, choosing radial or non-radial DEA models will lead to the same

environmental productivity index. Examples of such studies can be found in Zhou

et al. (2010a, b) who developed a total factor carbon performance index for

monitoring CO2 emission performance over time.

2.3.3 Other Developments

The several DEA models mentioned above represent only the basic and typical ones

for environmental performance measurement. Recent years have also seen a num-

ber of new developments in this field. Since the radial and non-radial DEA models

described earlier do not incorporate slacks/surplus in inputs and desirable outputs,

some scholars have attempted to model environmental performance by incorporat-

ing these slacks/surplus. For example, Zhou et al. (2006b) adapted the slacks-based

measure (SBM) proposed by Tone (2001) to measure the economic-environmental

performance and estimate the impacts of environmental regulations. Bian and Yang

(2010) used the weighted SBM based on Shannon’s entropy to measure energy and

environmental performance simultaneously. Sueyoshi and Goto (2012) applied

range-adjusted measure (RAM), a weighted sum of slack variables, to measure

environmental performance under different disposability assumptions. Wang

et al. (2013) employed the RAM–DEA model to examine the environmental

performance of different provinces in China.

Directional distance function (DDF) as a new direction in efficiency and pro-

ductivity analysis has also received increasing attention in environmental perfor-

mance measurement (Färe and Grosskopf 2005). Chung et al. (1997) developed

Malmquist-Luenberger productivity index by considering undesirable outputs in

DDF. Boyd and McClelland (1999) used DDF to measure the impact of environ-

mental regulations on productivity growth. Picazo-Tadeo et al. (2005) employed

DDF to examine the impact of environmental regulation on firm’s performance.

The study by Managi and Jena (2008) analyzed the environmental productivity in

India with DDF. Recently, Zhou et al. (2012) employed the non-radial directional

distance function, which is closely linked to the slacks-based DEA models, to

assess the energy and carbon performance in electricity generation.
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Note that environmental efficiency or productivity index is basically a composite

indicator aggregated from several underlying sub-indicators. DEA as a data

weighting and aggregation tool has also received increasing attention in

constructing composite indicators. Zhou et al. (2007a) developed a linear program-

ming approach comprising two DEA-like models for constructing composite indi-

cators. Since geometric aggregation is superior to arithmetic aggregation in terms

of information loss, Zhou et al. (2010a, b) extended their earlier study and proposed

a multiplicative DEA model for constructing composite indicators, which has been

empirically used in a recent study by Blancard and Hoarau (2013).

Yet, there are still many other developments in the applications of DEA to

environmental performance measurement, e.g. the incorporation of material bal-

ance condition into DEA models for measuring environmental performance (Coelli

et al. 2007). However, it is not the purpose of this chapter to enumerate them in a

complete way. Interested readers may refer to the survey study by Zhou

et al. (2008a, b) and Song et al. (2012) for identifying more relevant studies.

2.4 Case Study

In this section, we apply the radial and non-radial DEA models as described in

Sect. 2.3 to calculate the environmental efficiency index (EEI) and environmental

productivity index (EPI) of 29 OECD countries from 2000 to 2011 under the CRS

environmental DEA technology. It should be pointed out that the case study is

mainly for illustrating purpose so that the policy and managerial implications of our

modeling results as well as the data and model biases will not be discussed in detail.

2.4.1 Data

Capital stock and labor force are employed as two inputs and gross domestic

production (GDP) is taken as desirable outputs. In the case of undesirable outputs,

we choose carbon dioxide (CO2) emissions, methane (CH4) emissions and nitrous

oxide (N2O) emissions for use since they are major air pollutants causing global

warming and having adverse health effects. The data on all the variables but capital

stock were collected from the World Bank Group (WBG) and OECD Statistics

(http://stats.oecd.org/). The data on capital stock are calculated by using perpetual

inventory method based on the data of gross fixed capital formation. Table 2.1

shows the descriptive statistics of collected data for the six variables.

2 Data Envelopment Analysis for Measuring Environmental Performance 39

http://stats.oecd.org/


2.4.2 Results and Discussions

2.4.2.1 EEI Analysis

Table 2.2 shows the EEI results derived from the radial DEA model (2.5). It can be

seen from Table 2.2 that the EEI values of nine countries are always equal to

1, which indicates that they had a better environmental performance than other

countries. On the other hand, several countries like Slovak Republic, Czech Repub-

lic and Estonia have relatively lower EEI values, which might be an indication of

poor environmental performance in these countries.

Table 2.3 shows the EEI results derived from the non-radial DEA model (2.6) by

setting equal weights for undesirable outputs. It is not surprising that the EEI values

from non-radial DEA model are lower than those from radial one since the former

has a more relaxed constraint. Compared to the radial DEA model, non-radial DEA

model has higher discriminating power since fewer countries had EEI values equal

to one. Meanwhile, the EEI values for countries like Slovak Republic, Czech

Republic and Estonia are still the lowest. However, there are two exception cases

including Australia and New Zealand that have quite low non-radial EEI scores,

whereas their radial EEI scores are equal to one as shown in Table 2.2. In addition to

the data bias, one possible reason is that that the two countries did not perform well

in certain dimension of undesirable outputs (like CH4).

Figure 2.1 shows the average EEIs for OECD countries from both radial and

non-radial DEA models over time. Not surprisingly, the average EEI1 value is

always above the average EEI2 value, which comes from the fact that non-radial

DEA model has a relaxed constraint than radial one. It could also be an indication

that the radial DEA model may overestimate environmental efficiency since they

only allow the reduction of undesirable outputs at the same rate. It can also be seen

that the average EEIs for OECD countries are relatively stable, no matter whether

radial or non-radial DEA model is used.

Table 2.1 Descriptive statistics of inputs and outputs for 29 OECD countries, 2000–2011

Indicators Units Max Min Mean S.D.

Capital stock Constant 2005 bil-

lion US$

213,138.49 71.36 13,873.82 31,290.39

Labor force Ten thousand

workers

15,800.00 16.60 1672.48 2933.48

Gross domestic

product

Constant 2005 bil-

lion US$

138,000.00 98.40 11,389.07 24,105.53

Carbon dioxide

(CO2)

1000 tons 6,119,317.83 2773.28 414,084.18 1,058,109.36

Methane (CH4) 1000 tons of CO2

eq

610,114.02 437.00 43,949.50 106,083.55

Nitrous oxide

(N2O)

1000 tons of CO2

eq

362,415.56 441.27 27,683.95 62,109.40
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2.4.2.2 EPI Analysis

In order to assess how the environmental performance of OECD countries changed

over time, we further employ (2.7) to calculate the EPI values for the countries. In

this process, both radial and non-radial DEAmodels are employed. Table 2.4 shows

the cumulative EPI values for all the countries in 2011 with 2000 as the base year.

Equation (2.8) is used to compute the two contribution components of EPI and the

cumulative results for 2011 are also shown in Table 2.4. If radial DEA model is

used, the environmental productivity index decreased by 3.3% from 2000 to 2011,

which was mainly driven by the shift of environmental DEA technology. On the

other hand, the environmental efficiency of OECD countries as a whole increased

by 21.7%. With non-radial DEA model, the environmental productivity of OECD

countries decline by more during the period of time and the shift of environmental

DEA technology was still the main contributing factor to the deterioration.

Table 2.5 shows the average EPI values as well as their contribution components

derived from non-radial DEA models for OECD countries as a whole for every two

consecutive years. It is found that from 2000 to 2009 the environmental productiv-

ity of OECD countries as a whole showed a declining trend mainly driven by the

degeneracy of environmental production technology. However, in 2009–2011 the

environmental productivity of these countries increased, which was mainly due to

the growth of environmental efficiency while the situation of technology deterio-

ration also became better. On the other hand, the environmental efficiency showed

an increasing trend with the average growth rate equal to 1.9% during the sample

period.

0.40 
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Fig. 2.1 Trends in the average EEI values from radial and non-radial DEA models
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2.5 Conclusion

DEA has been applied to model environmental performance at both macro and

micro levels. This chapter first introduces the concepts and formulations of envi-

ronmental DEA technologies, which highlights the fundamental role of modeling

undesirable outputs in environmental performance measurement. We then present

both radial and non-radial DEA models for measuring environmental efficiency and

productivity. A case study of OECD countries for 2000–2011 is proposed to

illustrate the use of different DEA models. While only several basic DEA models

Table 2.4 Cumulative EPI and their components, 2011

Countries

Radial DEA Non-radial DEA

Cumulative EPI EEFCH TECH Cumulative EPI EEFCH TECH

Australia 0.862 1.084 0.795 1.210 1.046 1.157

Austria 1.234 0.983 1.256 1.213 1.050 1.155

Belgium 0.578 0.761 0.760 0.455 1.301 0.350

Canada 0.191 1.102 0.174 0.227 1.003 0.226

Czech Republic 1.597 1.285 1.243 1.559 1.245 1.252

Denmark 1.221 1.000 1.221 0.339 1.076 0.315

Estonia 1.321 1.251 1.056 1.305 1.147 1.138

Finland 0.912 0.937 0.974 0.432 1.289 0.336

France 0.823 1.000 0.823 0.321 1.239 0.259

Germany 0.407 2.508 0.162 0.414 1.689 0.245

Greece 0.387 0.946 0.410 0.451 0.998 0.452

Hungary 1.428 1.085 1.316 1.103 1.486 0.742

Iceland 0.635 0.695 0.913 0.605 1.073 0.564

Ireland 0.713 1.166 0.612 1.619 1.301 1.245

Italy 0.705 0.979 0.720 0.598 1.023 0.584

Japan 1.012 1.000 1.012 1.012 1.000 1.012

Luxembourg 0.927 1.000 0.927 0.907 1.000 0.907

Netherlands 0.849 1.552 0.547 0.562 1.597 0.352

New Zealand 0.995 1.000 0.995 0.482 0.921 0.524

Norway 1.000 1.000 1.000 1.000 1.000 1.000

Portugal 1.930 1.672 1.154 1.302 1.040 1.252

Slovak Republic 2.379 1.900 1.252 2.396 1.921 1.247

Slovenia 1.352 1.125 1.201 1.391 1.139 1.221

Spain 1.242 0.972 1.278 1.334 1.070 1.246

Sweden 0.988 1.000 0.988 0.351 1.477 0.238

Switzerland 1.000 1.000 1.000 0.999 1.000 0.999

Turkey 0.373 2.562 0.146 0.397 2.305 0.172

United Kingdom 0.307 1.739 0.176 0.130 2.255 0.058

United States 0.679 0.985 0.689 0.919 0.984 0.934

Mean 0.967 1.217 0.855 0.863 1.265 0.730
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are introduced in this chapter, a quick summary of some other developments in this

area is also provided.

This chapter is by far not a comprehensive review of DEA models for environ-

mental performance measurement. In the last decade, many studies on the applica-

tions of DEA to environmental performance measurement have been reported.

While a number of studies focused on the application aspect, others attempted to

refine the existing DEA models in order to cater for their particular purposes,

e.g. the incorporation of the slacks for specific variables. Indeed, DEA can easily

handle different situations depending on the user targets, whereas the interpretation

of the DEA results needs to be more careful. It is expected that this introductory text

helps to invoke the attention of energy and environmental analysts to use DEA to

model environmental issues for informing policy and decision making. In the

future, one interesting topic is to examine the issue of carbon dioxide emissions

with DEA as a result of the growing concern about climate change and global

warming. This includes not only the measurement of carbon performance but also

many other topics, e.g. the allocation of CO2 emission allowance in emission

trading. A recent example is Zhou et al. (2014a) in which the optimal path as

well as policy strategies for controlling CO2 emissions in China is derived through

DEA modeling. Another interesting direction is to use DEA to benchmark corpo-

rate environmental performance as done by Chen and Delmas (2012), which helps

to identify top performers with their competitive advantages for business strategy

management. In this line of research, unpredicted data features may bring difficulty

in the use of DEA and the interpretation of modeling results while are capable of

generating more interesting works.

Table 2.5 Non-radial EPI

estimates and their

components

EPI EFFCH TECH

2000/2001 0.925 1.013 0.913

2001/2002 0.948 1.053 0.900

2002/2003 0.943 1.022 0.923

2003/2004 0.965 1.047 0.922

2004/2005 0.972 1.015 0.958

2005/2006 0.981 1.010 0.971

2006/2007 0.985 1.014 0.971

2007/2008 0.963 0.978 0.984

2008/2009 0.933 0.968 0.964

2009/2010 1.007 1.037 0.971

2010/2011 1.043 1.049 0.994

Mean 0.969 1.019 0.952
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Chapter 3

Input and Output Search in DEA: The Case
of Financial Institutions

C. Serrano Cinca, C. Mar Molinero, and Y. Fuertes Callén

Abstract DEA has been extensively used but many problems remain unsolved.

One of them is the selection of inputs and outputs. We propose here a methodology

for input and output selection in the context of financial institutions. There are

various views of what constitutes inputs and outputs in a financial institution. The

paper uses multivariate statistical techniques in order to explore up to what point the

various combinations of inputs and outputs are equivalent, and up to what point the

efficiency score obtained by a given institution changes under the various combi-

nations of inputs and outputs. This helps in the search for the best specification, and

can guide other specification search tools such as the bootstrap. The extent to which

two institutions that achieve the same efficiency score arrive at it following

different strategies is explored with the aim of finding out what is behind a DEA

score. By-products of the approach proposed here are the creation of league tables

of financial institutions in terms of efficiencies and the possibility of assessing the

strengths and weaknesses of individual institutions. This methodology is applied to

the particular case of American banks efficiency.

Keywords Efficiency • Principal component analysis • Banking • Data

envelopment analysis • Specification search • Bootstrap

3.1 Introduction

Efficiency is a key concept for financial institutions, and it has long been studied. A

review of 130 such studies in 21 countries is given by Berger and Humphrey (1997).

Berger and Humphrey classify papers according to the technical approach

employed, which they identify as parametric—Stochastic Frontier Approach
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(SFA), Distribution Free Approach (DFA), Thick Frontier Approach (TFA)—or

non parametric—Data Envelopment Analysis (DEA), Free Disposal Hull (FDH),

Index Numbers (IN), Mixed Optimal Strategy (MOS). By far the most popular

technical approach is DEA, which was applied in 62 of the papers surveyed.

DEA is becoming widely used to assess the efficiency of organizations with

multiple homogeneous decision units that produce several outputs with a variety of

inputs. For an extensive bibliography of DEA see, for example, Emrouznejad and

Thanassoulis (1996), and Seiford (1996). DEA is appropriate for sets of homoge-

neous units with similar inputs and similar outputs since it performs multiple

comparisons using a Linear Programming based approach. The assumptions under-

lying DEA are minimal. Inputs and outputs can be measured in their own units, and

these units can be different for the different inputs and outputs. A survey of the

more restricted area of DEA applications to bank branch performance is given by

Schaffnit et al. (1997). Some later references on the application of DEA to financial

institutions are Athanassopoulos (1997), Pastor et al. (1997), Seiford and Zhu

(1999), Saha and Ravisankar (2000), Dekker and Post (2001), Kuosmanen and

Post (2001), Hartman et al. (2001), Luo (2003), and Wheelock and Wilson (2006).

For the purposes of this paper, it will be useful to make a distinction between

model and specification in a DEA context. Different philosophical approaches as to

what a financial institution does, and what is meant by efficiency will lead to

different models. Two basic models are prevalent in the literature: intermediation

and production; see Berger and Mester (1997) for a full discussion. Specification

will refer to a more restricted concept: the particular set of inputs and outputs that

enter into model definition.

The variety of models and specifications for financial efficiency analysis is

reflected in practice. The selection of inputs and outputs varies from study to

study; this is a complex subject on which there is much discussion. For example;

a particular item, such as deposits, may be treated as an input or as an output

according to whether the institution is modeled from the point of view of production

or from the point of view of intermediation, see Athanassopoulos (1997). This is a

matter of concern, as the level of efficiency of a financial institution may depend on

the particular choice of inputs and outputs. It may be puzzling for the manager of a

bank branch to discover that it is possible for different researchers to arrive at

different conclusions about the efficiency of a bank branch when using the same

technique (DEA) on the same data. However, this confusion may be more apparent

than real, since alternative specifications may be equivalent. The study of the extent

to which two different specifications are equivalent is one of the purposes of this

paper. Specification search is complicated by the fact that there is no natural

ordering that can be used to nest hypotheses test. This is a common problem in

Econometrics to which there is not yet a satisfactory solution. Methodologies for

specification searches in Econometrics have been extensively studied. Hendry and

Mizon (1978) have argued that one should always start with a general model and

check that simplifications are valid, rather than proceed in an “ad hoc manner”.

They further introduced the encompassing principle that the results obtained using a
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particular specification should be deductible from the general specification. This is,

in broad lines, the philosophy that has guided our work.

Model and specification selection are not the only issues addressed in this paper.

We wish to go behind the efficiency score. Two financial institutions may achieve

the same DEA efficiency under a given model and under a common specification,

but they may still be very different. Efficiency, being a mere score, may be

compatible with a variety of management strategies. Imagine two institutions that

achieve the same efficiency, one may have specialized in the production of a

particular output and the other on the good use of a particular input. These

differences will, of course, be reflected in different weight structures for inputs

and outputs, and could be identified by means of such techniques as cross-efficiency

analysis; Doyle and Green (1994). Here we apply a methodological approach based

on the combination of DEA and multivariate statistical analysis; Serrano Cinca and

Mar Molinero (2004), and Serrano Cinca et al. (2005). This approach has the

advantage of visualizing the way in which a particular DEA score has been

achieved by a financial institution, and how this score is related to the model

selected.

The purpose of the paper is to discuss how to conduct a specification search, to

describe how the method that we propose works in practice, and how the results can

be interpreted. In this paper, efficiencies are calculated for a variety of DEA

specifications. It is proposed that DEA modeling be embedded in a multivariate

statistical framework.

This paper unfolds as follows. The next section contains a discussion of effi-

ciency in financial institutions. The particular case study of American banks

efficiency is introduced and presented in the next section. This is followed by a

description of the model and its implementation. The paper is completed with a

conclusions section.

3.2 Efficiency Modeling in Financial Institutions

For modeling purposes, financial institutions are often seen from the point of view

of intermediation or from the point of view of production; see Athanassopoulos

(1997), although other models also exist; Camanho and Dyson (2005). Under the

intermediation model, institutions collect deposits and make loans in order to make

a profit. Deposits and acquired loans are inputs. Institutions are interested in placing

loans, which are traditional outputs in studies of this kind; see, for example Berger

and Humphrey (1991). Under the production model, a financial institution uses

physical resources such as labor and plant in order to process transactions, take

deposits, lend funds, and so on. In the production model manpower and assets are

treated as inputs and transactions dealt with—such as deposits and loans—are

treated as outputs. See, for example, Vassiloglou and Giokas (1990), Schaffnit

et al. (1997), Soteriou and Zenios (1999).
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The mathematical models used to study the efficiency of financial institutions

can be divided into two groups: those based on parametric frontier techniques, and

those based on Data Envelopment Analysis (DEA). Berger and Humphrey (1991)

find inconsistencies between the two approaches, although Ondrich and Ruggiero

(2001) argue that both produce similar rankings, and conclude that there is no

advantage in using parametric frontiers.

In this paper we focus on DEA models. Up to what point different DEA

modeling approaches produce different efficiency results? This question can only

be answered by looking at particular case studies. The selection of the correct set of

inputs and outputs that enters a specification goes back a long way; Farrell (1957)

observed that “this is a highly subjective matter, and one hesitates to attempt to lay

down any objective criteria of plausibility”. Oral and Yolalan (1990) found that a

DEA model aimed at estimating service efficiency in bank branches in Turkey

produced indistinguishable results from an alternative DEA model focused on

profitability. A possible way out would be to create a general model that encom-

passes various modeling philosophies as particular cases. But care has to be

exercised since the more inputs and outputs a model contains, the more units

become efficient through specialization or, as Lovell and Pastor (1997) put it,

“because they are self-identifiers”. The relationship between efficiency and the

number of inputs and outputs has been studied by Pedraja Chaparro et al. (1999).

Alternative specifications for inputs and outputs for a given model have been

explored in many studies. Athanassopoulos (1997) observes a lack of consistency in

the selection of inputs and outputs when studying bank branch efficiency. Oral and

Yolalan (1990) experiment with various specifications and observe that efficiencies

change according to the input/output mix chosen. Some times there is no choice, as

the chosen specification is in part determined by the data that is available;

Vassiloglou and Giokas (1990). Lovell and Pastor (1997) observe that alternative

specifications may not give significantly different results, and apply the Pastor

et al. (2002) methodology to choose a parsimonious specification. This approach

is based on a sound mathematical model, but has a mechanical feel to it. Simar and

Wilson (2000a, b) proposed an inferential methodology based on the bootstrap in

order to test the validity of the inclusion or exclusion of a variable in a DEA

specification. The consequences of mis-specification were explored by Smith

(1997). A comparison of specification searches has been performed by Sirvent

et al. (2005).

Different specifications are not totally equivalent, and it is difficult to assess

what are the consequences for individual units of adding or removing an input/

output without engaging in considerable extra work.

An alternative approach to specification search is applied in this paper; Serrano

Cinca and Mar Molinero (2004), and Serrano Cinca et al. (2005). The distinctive

features of a specification are revealed by embedding DEA efficiency results into a

multivariate statistical framework. We use in particular Principal Components

Analysis (PCA), multiple regression, and Hierarchical Cluster Analysis (HCA).

PCA has been used as an alternative to DEA by Zhu (1998) and Premachandra
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(2001). PCA as a data reduction technique to select inputs and outputs has been

used by Adler and Golany (2001).

In this approach, PCA plays a fundamental role in specification and model

selection. We do not attempt to find a “best” specification of inputs and outputs.

A variety of possible specifications that offer combinations of inputs and outputs

are estimated and efficiencies calculated for each financial institution under each

specification. In this way, a matrix is obtained in which each column corresponds to

a specification, and each row to a financial institution. This matrix is analyzed by

means of Principal Components Analysis (PCA). Component scores are plotted to

show the extent to which the efficiency of financial institutions remains unchanged

under the various specifications. The plot is interpreted by means of Property

Fitting (ProFit), a regression-based technique. The superimposition of the ProFit

results on the scores plot will help to identify specification equivalence, guide

model selection, identify outlying behavior, rank banks, and assess strategic behav-

ior patterns in financial institutions that achieve the same efficiency score.

3.3 A Case Study: American Banks

US commercial banks are by far the best studied financial institutions from the point

of view of efficiency. Their study has been undertaken from a variety of perspec-

tives and using several methodologies: Stochastic Frontier Approach (SFA), Dis-

tribution Free Approach (DFA), Thick Frontier Approach (TFA), Data

Envelopment Analysis (DEA) and Free Disposal Hull (FDH); see Berger and

Humphrey (1997). Amongst the studies that have applied DEA to the analysis of

efficiency in US banks we can list Aly et al. (1990), Barr et al. (1993), Berg

et al. (1992, 1993), Charnes et al. (1990), Elyasiani and Mehdian (1995), Ferrier

and Lovell (1990), Miller and Noulas (1996), Thompson et al. (1997), and Whee-

lock and Wilson (2006).

According to Barr et al. (2002), the environment in which U.S. commercial

banks operate has undergone profound transformations, as has the way in which

they conduct their business. They mention changes in the regulatory environment,

in the impact of information technology, and in the way in which they assess risks.

A very competitive industry has emerged. They further point out that such changes

tend to result in a split between institutions that “perform relatively well and those

that perform relatively poorly”, and that the different kinds of institutions can be

identified using non-parametric methods.

This section will be divided into sub-sections. First, the data set will be

described. The second subheading will concentrate on DEA and PCA. Empirical

results will be interpreted in the third and fourth sub-sections.
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3.3.1 The Data Set: Three Inputs and Three Outputs

Data was extracted from Standard & Poor’s COMPUSTAT database for the year

2003, SIC code 6020, “Commercial Banks”. All of them are incorporated in the US

and are quoted in the New York stock exchange—or in Nasdaq. In total, 85 Amer-

ican banks met the conditions and all of them were selected. Having been extracted

from annual accounts, all the data except number of employees are measured in

monetary units. The list of all institutions is given in Table 3.1. Rather than use the

full name of each institution, the “trading symbol” has been employed.

There is much agreement on what constitutes inputs and outputs under the

production model and under the intermediation model, although not all authors

use the same set of inputs and outputs. After a thorough survey of the inputs and

outputs used in the literature,—see Table 3.2—the following inputs and outputs

were selected. Inputs: labor, physical capital, and deposits. Outputs: interest and

non-interest income; deposits; and loans.

3.3.1.1 Labor

This item measures the number of company workers as reported to shareholders.

Labor has been used in banking efficiency studies by Sherman and Gold (1985),

Ferrier and Lovell (1990), Aly et al. (1990), Berg et al. (1993), Seiford and Zhu

(1999), Wheelock and Wilson (1999), and Luo (2003).

3.3.1.2 Physical Capital

This item measures the net cost or valuation of tangible fixed assets used in the

regular business operations of the company, less accumulated depreciation, invest-

ment grants, and other deductions. It has been used by Berg et al. (1993), Seiford

and Zhu (1999), Wheelock and Wilson (1999), Tortosa-Ausina (2002), Luo (2003),

Barr et al. (2002), Aly et al. (1990) and Berg et al. (1991).

3.3.1.3 Deposits

This item measures the total demand, savings, and time deposits held on account for

individuals, partnerships, and corporations plus deposits held on account for other

banks. It is an issue whether deposits are inputs or outputs. See Pastor et al. (1997)

for a discussion. Deposits are treated as inputs by Sealey and Lindley (1977),

Mester (1989), Elyasiani and Mehdian (1992), Miller and Noulas (1996), Mester

(1997), Brockett et al. (1997), and Casu and Girardone (2004); they are treated as

outputs by Sherman and Gold (1985), Ferrier and Lovell (1990), Berger and

Humphrey (1991). Berg et al. (1991), Berg et al. (1993), and Kumbhakar
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Table 3.1 List of banks and the values of inputs and outputs

Trading

symbol

Labor

(number of

employees)

Physical

capital ($

millions)

Deposits ($

millions)

Interest and

non-interest income

($ millions)

Loans ($

millions)

ASBC 4091 131.315 9792.840 972.499 10,225.957

ASO 12,385 964.692 30,440.352 2942.229 29,057.531

BAC 133,549 6036.000 414,113.000 49,006.000 365,300.000

BBT 26,300 1201.342 59,349.785 6243.924 61,791.606

BK 22,901 1398.000 56,406.000 6336.000 42,901.000

BNK 6700 264.818 17,901.184 1560.128 16,155.371

BOH 2700 160.005 7332.777 641.241 5792.040

BOKF 3449 175.901 9219.863 868.165 7355.250

BPFH 437 13.740 1658.461 158.764 1597.292

CBCF 2342 112.784 5442.266 500.796 5166.832

CBH 8200 811.451 20,701.398 1248.109 7371.285

CBSH 4967 336.366 10,206.207 919.077 8007.457

CBSS 7700 527.295 15,687.820 1801.343 17,120.918

CBU 1259 61.705 2725.488 228.710 2099.414

CFR 3268 168.611 8068.857 584.307 4510.035

CHZ 2058 75.179 4969.891 371.543 3692.482

CIH 212,400 6514.000 478,494.000 64,120.000 495,332.000

CMA 11,282 374.000 41,463.000 3299.000 39,499.000

CNB 3939 246.170 9768.590 908.257 11,845.233

CORS 468 26.313 2846.402 187.159 2397.323

CYN 2348 62.719 10,937.063 752.950 8122.501

EWBC 730 24.957 3312.667 211.322 3234.133

FBP 1983 85.269 6765.105 624.507 7624.077

FCF 1474 46.538 3288.275 289.176 2792.859

FCTR 1031 95.756 2427.897 240.210 2255.798

FHN 11,494 350.202 15,679.969 2670.886 16,808.412

FITB 18,899 1828.000 57,095.000 6474.000 53,419.000

FMBI 1646 91.535 4815.105 365.427 4012.998

FMER 3063 119.079 7502.781 777.415 6517.363

FNB 1682 199.735 6159.496 553.883 5657.201

FULT 2950 120.777 6751.781 572.518 6115.055

GBBK 1710 83.816 5312.664 579.261 4411.637

HBAN 7983 349.712 18,487.395 2361.797 22,260.658

HIB 5339 217.399 14,159.516 1260.388 12,878.136

HNBC 623 23.329 1979.081 146.838 1400.189

HU 1859 125.168 6243.355 527.174 4633.264

IBNK 886 54.563 1812.630 174.852 1674.527

IFC 3589 32.208 2899.662 700.283 3980.664

IFIN 2413 76.420 4207.117 582.256 199.530

JPM 93,453 6487.000 326,492.000 44,363.000 225,170.000

KEY 20,034 606.000 50,858.000 5730.000 61,305.000

(continued)
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Table 3.1 (continued)

Trading

symbol

Labor

(number of

employees)

Physical

capital ($

millions)

Deposits ($

millions)

Interest and

non-interest income

($ millions)

Loans ($

millions)

KRB 26,500 2676.597 31,836.078 11,684.361 35,998.091

LBAI 502 27.510 1325.682 79.705 834.637

MEL 20,900 668.000 20,843.000 4403.000 10,139.000

MI 12,244 438.485 22,270.105 2740.721 24,835.379

MRBK 3565 140.922 10,262.551 773.166 9146.329

MTB 14,000 398.971 33,114.945 2957.660 35,171.573

NARA 320 6.766 1061.415 81.802 988.795

NBY 477 14.768 815.839 72.222 582.933

NCC 33,331 1125.526 63,930.031 9593.821 93,521.063

NFB 2979 150.875 15,116.113 1255.091 12,222.539

NPBC 1074 43.653 2435.296 206.933 2223.667

NTRS 8056 498.300 26,270.000 2580.100 26,432.297

ONB 3019 181.398 6493.090 661.897 5496.387

PBKS 1629 49.575 3079.549 343.790 2754.023

PNC 23,200 1456.000 45,241.000 5969.000 34,848.000

PRK 1645 36.746 3414.249 320.152 2667.661

PVN 4525 84.198 10,101.055 2781.408 5655.070

PVTB 219 6.233 1547.359 101.442 1213.977

RF 16,180 629.638 32,732.535 3617.887 33,068.654

RIGS 1450 226.502 4286.230 346.932 3483.946

SBIB 1036 48.541 2418.369 200.944 2127.675

SIVB 969 14.999 3666.876 277.397 1924.729

SKYF 3546 154.242 8514.852 844.285 9361.842

SNV 10,909 791.439 15,941.609 2430.821 16,376.583

STI 27,578 1595.307 81,189.500 7071.841 85,358.766

STT 19,850 1212.000 47,516.000 4727.000 26,698.000

SUSQ 2065 62.961 4134.465 387.770 4220.598

SWBT 1760 117.951 4403.238 326.023 3545.564

TCB 8136 282.193 7611.746 1105.143 8606.531

TRMK 2356 108.374 5089.457 516.931 4958.336

TRST 488 20.168 2419.810 166.779 1113.527

TSFG 1918 142.705 6028.648 509.618 5690.583

UB 10,146 509.734 35,532.281 2563.916 25,636.939

UBSI 1585 46.354 4182.371 400.824 4264.482

UCBH 666 84.145 4483.520 283.465 3730.780

USB 51,377 1957.000 11,9052.000 14,571.000 117,299.000

VLY 2264 128.606 7162.965 605.695 6107.758

WABC 1003 35.748 3463.991 268.575 2269.420

WB 86,670 4619.000 221,225.000 24,474.000 165,375.000

WFC 140,000 3534.000 247,527.000 31,800.000 285,706.000

WL 2307 152.300 6577.199 633.000 6135.398

(continued)
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et al. (2001); they are treated simultaneously as inputs and outputs by Aly

et al. (1990), Lozano (1998), Wheelock and Wilson (1999) and Tortosa-

Ausina (2002).

3.3.1.4 Interest and Non-interest Income

This item measures revenue received from all earning assets plus total revenue/

income that cannot be attributed to interest and dividends received from earning

assets. Used by Miller and Noulas (1996), Thompson et al. (1997), Brockett

et al. (1997) and Seiford and Zhu (1999).

3.3.1.5 Loans

This item measures the monetary value of all outstanding loans, claims, and

advances made to individual, commercial, and industrial borrowers, less reserves

for possible credit losses and unearned income. Used by Sherman and Gold (1985),

Ferrier and Lovell (1990), Aly et al. (1990), Berger and Humphrey (1991), Berg

et al. (1991), Berg et al. (1993), English et al. (1993), Miller and Noulas (1996),

Mester (1997), Wheelock and Wilson (1999), Brockett et al. (1997) and Casu and

Girardone (2004).

The values of all inputs and outputs for all the banks are given in Table 3.1.

Notation will be introduced in order to simplify the discussion of the various

specifications. Inputs are referred to by means of capital letters, in such a way that

the first input is represented by the letter A, the second input by the letter B, and the

third one by the letter C. Outputs are referred to by means of numbers. The first

output is associated with number 1, the second output with number 2, and the third

output with number 3. In this way a specification that treats a bank as an institution

whose employees (input A) take deposits (output 2) and place loans in the market

(output 3) would be labeled A23. If this specification is augmented with physical

assets (input B) and income (output 1), the specification becomes AB123. Specifi-

cation AB123 treats a bank as a production unit that employs manpower (A) and

plant (B) in order to generate income, deposits, and loans. An intermediation model

would be described by a specification such as AC13, in which deposits (C) are

Table 3.1 (continued)

Trading

symbol

Labor

(number of

employees)

Physical

capital ($

millions)

Deposits ($

millions)

Interest and

non-interest income

($ millions)

Loans ($

millions)

WTFC 929 156.714 3876.621 276.083 3302.522

WTNY 2369 148.259 6158.582 427.573 4838.441

ZION 7896 407.825 20,896.695 1889.483 19,652.739

Physical capital, Deposits, Interest and non-interest income, and Loans in millions of U.S. dollars.

Number of employees in units
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treated as an input. Under the AC13 specification a bank is an institution whose

employees collect deposits in order to make loans and generate income.

Other possible views of the way in which a bank operates can be generated by

using different combinations of inputs and outputs. Efficiency ratios are generated

by choosing a specification with only one output and one input. It is, of course,

possible to use all possible combinations of inputs with all possible combinations of

Table 3.2 Inputs and outputs

Variable

symbol

Variable

name

Description and COMPUSTAT

acronimous Used by

Input A Number of

employees

Employees “EMP” Sherman and Gold (1985),

Ferrier and Lovell (1990), Aly

et al. (1990), Berg et al. (1993),

Seiford and Zhu (1999), Whee-

lock and Wilson (1999), and

Luo (2003)

Input B Physical

capital

Fixed assets (net) “PPENT” Berg et al. (1993), Seiford and

Zhu (1999), Wheelock and

Wilson (1999), Tortosa-Ausina

(2002), Luo (2003), Barr

et al. (2002), Aly et al. (1990),

and Berg et al. (1991)

Input C Deposits Deposits customer

“DPTC” +Deposits banks

“DPTB”

Sealey and Lindley (1977),

Mester (1989), Elyasiani and

Mehdian (1992), Miller and

Noulas (1996), Mester (1997),

Brockett et al. (1997), and Casu

and Girardone (2004)

Output 1 Interest and

non-interest

income

Interest & div inc total

“IDIT” + Income noninterest tot

bank “INITB”

Miller and Noulas (1996),

Thompson et al. (1997),

Brockett et al. (1997) and

Seiford and Zhu (1999)

Output 2 Deposits Deposits customer

“DPTC” +Deposits banks

“DPTB”

Sherman and Gold (1985),

Ferrier and Lovell (1990),

Berger and Humphrey (1991).

Berg et al. (1991), Berg

et al. (1993), and Kumbhakar

et al. (2001)

Output 3 Loans Loans/claims/advances banks &

Govt “LCABG” +Loans/claims/

advances customers “LCACU”

Sherman and Gold (1985),

Ferrier and Lovell (1990), Aly

et al. (1990), Berger and Hum-

phrey (1991), Berg et al. (1991),

Berg et al. (1993), English

et al. (1993), Miller and Noulas

(1996), Mester (1997), Whee-

lock and Wilson (1999),

Brockett et al. (1997), and Casu

and Girardone (2004)
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outputs. The total number of specifications that could possibly be generated with n

inputs and m outputs is given by the formula

Xn

i¼1 C
i
n*
Xm

i¼1 C
i
m where Ci

n ¼
n

i

� �
¼ n!

i! n� ið Þ!

In general, it will not be necessary to calculate efficiencies under all possible

specifications, as some of them can be discarded on a priori grounds. The first step

in any modeling exercise is to discard nonsensical specifications. What are non-

sensical specifications is a matter of judgment. We could have started by studying

the 19 different specifications suggested by the authors that we reference in

Table 3.2, but we did not have full information on the details of the specification

used by each of the authors, and we took the pragmatic view that we would consider

all possible combinations, since there were not very many. In general, we would

recommend not proceeding in a mechanical way without thinking about the spec-

ifications being estimated. This is also good advice when the number of inputs/

outputs is large but the number of DMUs is not, since we fall in what Simar and

Wilson call “the curse of dimensionality”. However methodical our procedure is,

we can never avoid the exercise of judgment.

In our case there are three inputs and three outputs, giving a possible total

number of 49 specifications. Specifications that treat deposits both as inputs and

outputs have been excluded, reducing their total number to 33. Some authors

include deposits both as inputs and as outputs; examples are Maudos

et al. (2002), and Camanho and Dyson (2005). Such specifications do not use

exactly the same variable as input and as output. Camanho and Dyson (2005),

following the “value added” modeling approach, use as input “interest costs from

deposits” and as output “total value of deposits”.

The complete list of specifications and the inputs and outputs that they contain

can be found in Table 3.3.

DEA efficiencies, on a scale from 0 to 100%, for all banks were calculated under

Variable Returns to Scale (VRS) for all specifications. The results are given in

Table 3.4.

Only American listed commercial banks were included in the data in an attempt

to preserve homogeneity, but there are wide variations in size, and this can result in

extreme or discordant behavior. Discordant behavior has a negative impact on

efficiency estimates. To explore the presence of outliers, we have applied the

super-efficiency approach of Andersen and Petersen (1993) as modified by Banker

et al. (1989); Wilson’s (1993) approach; and we have also taken into account

Banker and Chang (2006). This procedure revealed that the outliers depend on

the specification used. For example, under the specification AB13 we detected the

following outliers: BAC, CIH, CYN, CMA, CORS, EWBC, IFC, JPM, KEY,

PVTB, PVN, and UBCH. The process was repeated with the 33 specifications

and the results are summarized in Table 3.5. Table 3.5 shows the number of

specifications under which a particular bank is classified as outlier. It is to be
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noticed that only one bank, CIH, displays systematic super-efficiency outlying

behavior in all 33 specifications.

The standard reason for removing outliers in DEA is because efficiency esti-

mates can be significantly affected by their presence or absence. But discordant

behavior depends on the specification used, and a bank that is an outlier under one

of the specifications may not appear to be an outlier under a different specification.

We are unhappy about removing a bank for outlying behavior under some speci-

fications and not under others. This is clearly, very much a matter of judgment as

Table 3.3 The 33 specifications and their definitions

Specification Input Output

A1 Employees Income

A12 Employees Income, deposits

A123 Employees Income, deposits, loans

A13 Employees Income, loans

A23 Employees Deposits, loans

A2 Employees Deposits

A3 Employees Loans

B1 Physical assets Income

B12 Physical assets Income, deposits

B123 Physical assets Income, deposits, loans

B13 Physical assets Income, loans

B23 Physical assets Deposits, loans

B2 Physical assets Deposits

B3 Physical assets Loans

AB1 Employees, physical assets Income

AB12 Employees, physical assets Income, deposits

AB123 Employees, physical assets Income, deposits, loans

AB13 Employees, physical assets Income, loans

AB23 Employees, physical assets Deposits, loans

AB2 Employees, physical assets Deposits

AB3 Employees, physical assets Loans

C1 Deposits Income

C13 Deposits Income, loans

C3 Deposits Loans

AC1 Employees, deposits Income

AC13 Employees, Deposits Income, Loans

AC3 Employees, Deposits Loans

BC1 Physical Assets, Deposits Income

BC13 Physical Assets, Deposits Income, Loans

BC3 Physical Assets, Deposits Loans

ABC1 Employees, Physical Assets, Deposits Income

ABC13 Employees, Physical Assets, Deposits Income, Loans

ABC3 Employees, Physical Assets, Deposits Loans
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well as a matter of applying the correct technical approach. We think that discor-

dant observations may have a story to tell and it is possible that more can be learned

by leaving them in the sample than by removing them. We are of the opinion that it

is better to identify outliers, and try to explain why they are extreme values, and to

assess how influential they are. We have, obviously, started by checking that there

were no transcription or recording errors in the data. In order to do this, we

conducted checks on the annual accounts of the relevant banks. Discussion on

this subject will be resumed below.

Visual examination of Table 3.4 reveals some important features. Only one

bank, Citicorp (CIH), is efficient under all specifications, highlighting the fact

that the selection of inputs and outputs and, therefore, the view of what constitutes

efficiency in the financial sector, is a matter of importance. This was one of the

conjectures that guided this research. Some banks (PVTB, PVN, CMA, UCBH) are

100% efficient under many specifications. In the same way, some banks achieve

low scores under most specifications. Take, for example, PVN, which is 100%

efficient under 18 specifications, implying that this is an excellent institution.

However, its efficiency drops to 26% under A3. This suggests the presence of

some weakness in PVN, a subject that will be further explored below. A counter

example is NBY, whose DEA scores tend to be low, but becomes 100% efficient

under three specifications: C1, C3, C13. This indicates that, although NBY can take

action to improve its efficiency, it has some strong points that deserve further

attention.

Consider now the case of two institutions that achieve the same DEA score under

a given specification. An example would be CYN and IFC. They both are 100%

efficient under AB123. But differences appear if other specifications are consid-

ered. For example, under AB2 CYN achieves 100% efficiency while the same

score for IFC is 37%. Under specification C13 CYN is 52% efficient while IFC is

100% efficient. This indicates that the two institutions follow two different paths to

efficiency. What is behind their strategies? Answering such a question was another

of the objectives of this research.

In summary, the level of efficiency achieved by a particular financial institution

depends on the chosen specification, indicating that specification search is delicate

and important. In addition, if two financial institutions achieve the same efficiency

score under a given specification they may do so following very different patterns

of behavior: there is no single path to efficiency in financial institutions. Exploring

what is behind a DEA score is the objective of the next three subsections.

3.3.2 DEA Specification Searches Using Multivariate
Methods

Although visual inspection of Table 3.4 is a source of important insights, a more

formal analysis of the information it contains will be performed. Table 3.4 will be
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treated as a matrix with 85 cases, the banks, and 33 variables, the specifications, and

analyzed using multivariate statistical methods. The methodological approach will

combine PCA, HCA, and ProFit.

PCA discloses how many independent aspects of efficiency are revealed by the

specifications. ProFit is, in essence, regression with principal components. In this

regression the issue of multicollinearity does not arise, as the regressors are

orthogonal by design. The results of ProFit are represented graphically. ProFit

gives an immediate visual understanding of the relationship between efficiency

and specification. The reason why we apply HCA is a pragmatic one. PCA and

ProFit produce representations in more than two dimensions, and it is very difficult

to see what is going on. HCA answers the question: which points are close to each

other in the space?

There are several reasons why we apply the tools of multivariate analysis to the

matrix of efficiencies.

1. It is acknowledged that banking efficiency is a multidimensional concept. Berger

and Humphrey (1997) state that: “Neither of these two approaches is perfect

because neither fully captures the dual roles of financial institutions.” Several

authors (Berger and Humphrey 1997; Thanassoulis 1999; Oral and Yolalan

1990; Denizer et al. 2000; Camanho and Dyson 2005) suggest that bank effi-

ciency should be simultaneously addressed under a variety of models such as

production, intermediation, value added, and user cost. Our methodology does

just this. Furthermore, Thanassoulis (1999) suggests that the production and the

intermediation models are complementary rather than mutually exclusive. Here

we use them simultaneously. It is precisely the fact that our approach treats

efficiency as a multidimensional variable, that we can address the multiplicity of

modeling approaches within one single framework.

2. A second advantage is that our approach permits an overall efficiency ranking

over all the specifications. This extends to the ranking of efficient units. We will

argue that to rank the banks all we need to do is to rank the first component

loadings in PCA. We would like to quote Banker and Chang (2006) who argue

that: the super-efficiency is a procedure for outlier identification, not for ranking

efficient units. They find that the Andersen–Petersen procedure does not perform

satisfactorily in ranking efficient units.

3. Our approach detects multivariate outliers, and explains why they show outlying

behavior.

4. Our approach combines a strong data analysis methodology with the exercise of

judgment, since it visualizes the results and this helps in explaining the main

features of the data. It can guide the efficient application of bootstrap based

inference procedures.

5. When, for a particular specification, two different DMUs achieve similar effi-

ciencies, our approach explains the reasons why this level of efficiency has been

achieved, revealing the strategic behavior of the decision makers.

The results of applying PCA to Table 3.4 are shown in Table 3.6. Four eigen-

values take values larger than one, accounting for 93.89% of the total variance. The
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first principal component accounts for 63.13% of the variance. The second princi-

pal component is also of importance, as it accounts for a further 14.20%. The

variance accounted for drops to 9.38% in the case of the third component, and to

7.17% in the case of the fourth component. Component loadings are given in

Table 3.7. In what follows the discussion will be based on these four components.

Component scores were calculated for each bank. The plot of the first and second

component loadings for each bank is shown in Fig. 3.1. The plot of the third and

fourth component loadings for each bank is shown in Fig. 3.2.

The banks that achieved full 100% efficiency under a majority of specifications

(CIH, PVTB, PVN, CMA, and UCBH) plot towards the right hand side of Fig. 3.1.

Super-efficient outliers identified in Table 3.5 clearly appear in an extreme of the

representation in Figs. 3.1 and 3.2. What is the impact that the outliers have in the

analysis? In an attempt to answer this question, we produced efficiency estimates

both with and without outliers. We next applied the Simar and Wilson bootstrap

procedure and we observed that frontier bias decreases when the outliers are

removed. For example, under specification AB13, bootstrap bias is reduced from

0.282 to 0.230. For this same specification, bootstrap variance decreases from

0.00353 to 0.00324. However, we are reluctant to remove data just in order to

improve statistical estimates, without any other justification. What matters is up to

what point a bank is an influential observation. We studied the efficiencies when all

the banks were included in the data and when some of the banks were removed, and

we correlated both sets of numbers. Figure 3.1 was not affected by the removal of

outliers, other than in the sense that the banks that had been removed ceased to

appear. We calculated Pearson’s correlation coefficients between efficiencies

before and after outliers were removed, and these were high. For example, in the

case of specification AB13, the correlation between the efficiencies calculated

before and after outlier removal was 0.916. For these reasons, we kept the outliers

in the analysis.

The banks that consistently under perform plot towards the left hand side of

Fig. 3.1, and the ones that consistently have high efficiencies plot towards the right

of the same figure. It is, therefore, clear that the first principal component can be

interpreted as a “global efficiency score”. Thus, an efficiency ranking of banks can

be obtained by simply looking at the ordering on the first component. Usually,

efficiency rankings are based on the concept of super-efficiency introduced by

Andersen and Petersen (1993). However, Banker and Chang (2006) conclude that

Table 3.6 PCA results Component Eigenvalue % of variance Cumulative

PC1 20.833 63.132 63.132

PC2 4.687 14.203 77.335

PC3 3.097 9.384 86.719

PC4 2.367 7.174 93.893

PC5 0.608 1.843 95.737

PC6 0.555 1.683 97.420

PC7 0.223 0.677 98.097

3 Input and Output Search in DEA: The Case of Financial Institutions 69



the super-efficiency procedure is inappropriate in order to rank efficient units. Other

ranking methods have also been proposed; Doyle and Green (1994), Sinuany-Stern

and Friedman (1998), and Raveh (2000). The advantage of the ranking procedure

applied here is that it embeds results from many different specifications, while the

alternatives produce a ranking for each specification. Furthermore, this method

permits a ranking of all the banks, whether efficient or inefficient, while under the

alternative methodologies only efficient banks can be ranked.

Concentrating now on the second component, the North–South direction in

Fig. 3.1, it can be observed that IFC plots towards the top of the figure, while

Table 3.7 Component score

matrix
PC1 PC2 PC3 PC4

AB13 .961 �.109 �.014 �.031
AB123 .949 �.160 .057 �.101
AB12 .917 �.204 .264 �.117
AB23 .916 �.280 �.083 �.126
AB3 .904 �.227 �.298 .007

B13 .903 .084 �.162 �.350
B123 .900 .048 �.103 �.397
B23 .894 �.029 �.188 �.387
B12 .881 .005 .082 �.414
B3 .872 �.006 �.361 �.307
B2 .861 �.124 .036 �.396
BC13 .860 .346 �.167 �.084
AB1 .849 .256 .401 .000

AB2 .844 �.388 .180 �.133
AC13 .824 .061 �.128 .490

A13 .822 �.364 .148 .312

ABC13 .821 .375 �.131 .032

B1 .816 .377 .254 �.258
BC3 .810 .167 �.536 �.063
A123 .803 �.433 .213 .236

ABC3 .766 .184 �.491 .058

A3 .756 �.486 �.177 .349

A1 .752 .008 .549 .297

A23 .749 �.578 .013 .214

A12 .730 �.425 .446 .211

AC3 .693 �.110 �.477 .492

A2 .672 �.611 .250 .155

BC1 .659 .634 .334 �.054
ABC1 .641 .635 .340 .026

AC1 .589 .554 .457 .272

C1 .402 .780 .340 .174

C13 .556 .622 �.281 .389

C3 .477 .453 �.591 .393
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CYN plots towards the bottom. Both are 100% efficient under many specifications.

In which way they are different, and what accounts for their achieving full effi-

ciency, will be revealed by attaching meaning to the second principal component.

In the same way, interpretation of the position of banks in Fig. 3.2 requires that

meaning be attached to the third and the fourth principal components.

A standard way of attaching meaning to principal components is to analyze

component loadings. These are given in Table 3.7. It can be seen there that all

loadings associated with the first component are positive, supporting the view that

this component gives an overall measure of efficiency. The specification that

achieves the highest first component loading is AB13. The efficiencies produced

by AB13 have the highest Pearson’s correlation with respect to the first principal

component (0.961). If a combination of inputs and outputs were to be selected in

order to produce a global assessment of efficiency, AB13 would be the most

appropriate.
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Fig. 3.1 Plot of the first and the second principal component scores. The banks that are discussed

in detail in the text have been highlighted in bold
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Specifications that include deposits as an input (C) are salient in the second

component, in the sense that they achieve high positive component loadings. The

third component appears to be associated with output 3—loans—versus outputs

2 and 1—deposits and income—, and the fourth one with input B—physical

assets—versus inputs A and C—employees and deposits—.

These results can be visualized by means of ProFit and Cluster analysis. This

will be done in the next subsection.
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Fig. 3.2 Plot of the third and the fourth principal component scores. The banks that are discussed

in detail in the text have been highlighted in bold
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3.3.3 Results Visualization and Strategic Pattern
Identification

Each specification generates a DEA score for each bank, and each bank is located in

Figs. 3.1 and 3.2 by means of its component scores. It has just been observed that

efficient banks plot towards the right hand side of Fig. 3.1 while inefficient banks

plot towards the left hand side of the same figure. This appears to be the case for

most specifications. Thus, there appears to be a link between the position of a bank

in the figure, as given by the component scores, and efficiency. The relationship

between DEA efficiency and component scores can be assessed by means of

regression analysis and visualized. A linear regression is calculated for each

specification. In the regression, banks are treated as observations. The dependent

variable is the efficiency achieved by the bank under a given DEA specification.

The regression assumes that the position of a bank in the space of the principal

components is related to the efficiency achieved under the given DEAmodel, hence

the explanatory variables are the coordinates of the bank in the space. These are, in

fact, the four component loadings. Each coordinate, or component loading, is a

regressor. Next, the results of the regression are represented graphically. The

mathematical basis for this procedure is given in Mar Molinero andMingers (2006).

In total, 33 regressions were performed. This procedure is known as Property

Fitting (ProFit) analysis; see Schiffman et al. (1981). For a given specification,

ProFit produces a directional vector on Figs. 3.1 and 3.2 in such a way that DEA

efficiencies grow in the direction of the vector. Directional vectors were calculated

for each one of the 33 specifications. Being regression-based, the quality of the

representation can be assessed by means of the coefficient of determination, R2, and

the F statistic. These are shown in Table 3.8. It is to be noticed that values of R2 are

very high, all of them above 0.8, indicating that there is a strong linear relationship

between DEA scores and the position of the bank in Figs. 3.1 and 3.2. The

directional vectors are located in Figs. 3.1 and 3.2 by means of their standardized

directional cosines, γ. The standardization transforms the vectors into unit length,

using the formula:

γi ¼
βiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

βi
2

s

The value of the standardized directional cosines,—γ1, γ2, γ3, and γ4—and of

their level of significance, are also shown in Table 3.8. ProFit vectors have been

superimposed on component plots in Figs. 3.3 and 3.4.

When two ProFit lines are at an acute angle, the correlation between the

efficiencies obtained under the associated specifications are positive, the smaller

the angle the higher the correlation. When two ProFit lines are orthogonal, the two

approaches to efficiency are independent. Thus, ProFit gives an immediate visual
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Table 3.8 ProFit analysis: Linear regression results

Specification

Directional cosines

F Adj R2γ1 γ 2 γ 3 γ 4

A1 13.05 0.15 9.52 5.15 432.66 0.954

(32.016)** (0.359) (23.359)** (12.643)**

A12 13.61 �7.92 8.31 3.94 441.61 0.955

(31.366)** (�18.263)** (19.148)** (9.077)**

A123 16.05 �8.65 4.26 4.72 280.16 0.930

(27.821)** (�15.003)** (7.382)** (8.188)**

Aa13 16.69 �7.38 3.00 6.34 255.02 0.924

(27.266)** (�12.056)** (4.893)** (10.361)**

A23 16.47 �12.71 0.28 4.70 322.98 0.939

(27.759)** (�21.411)** (0.474) (7.920)**

A2 14.09 �12.82 5.25 3.24 207.06 0.908

(20.249)** (�18.428)** (7.544)** (4.662)**

A3 17.56 �11.29 �4.11 8.11 479.58 0.958

(33.784)** (�21.710)** (�7.907)** (15.591)**

B1 19.41 8.96 6.04 �6.14 309.09 0.936

(29.614)** (13.667)** (9.211)** (�9.368)**
B12 22.01 0.13 2.05 �10.36 413.14 0.952

(36.650)** (0.217) (3.409)* (�17.253)**
B123 22.89 1.22 �2.62 �10.09 959.08 0.979

(56.302)** (2.994)* (�6.451)** (�24.817)**
B13 22.93 2.14 �4.12 �8.90 676.81 0.970

(47.663)** (4.458)** (�8.567)** (�18.499)**
B23 22.67 �0.74 �4.77 �9.82 1372.77 0.985

(66.740)** (�2.167) (�14.050)** (�28.893)**
B2 21.09 �3.04 0.89 �9.71 216.55 0.911

(26.489)** (�3.823)* (1.114) (�12.194)**
B3 22.03 �0.16 �9.12 �7.77 1301.55 0.984

(63.386)** (�0.472) (�26.238)** (�22.356)**
AB1 18.78 5.68 8.87 �0.01 354.90 0.944

(32.861)** (9.932)** (15.527)** (�0.015)
AB12 19.23 �4.28 5.54 �2.45 554.80 0.963

(43.951)** (�9.780)** (12.664)** (�5.610)**
AB123 0.98 �0.16 0.06 �0.10 314.36 0.937

(34.715)** (�5.848)** (2.093) (�3.708)*
AB13 0.99 �0.11 �0.01 �0.03 295.09 0.933

(34.118)** (�3.856)* (�0.485) (�1.115)
AB23 0.94 �0.29 �0.09 �0.13 314.15 0.937

(33.492)** (�10.219)** (�3.049)* (�4.601)**
AB2 0.88 �0.41 0.19 �0.14 212.03 0.909

(25.723)** (�11.830)** (5.477)** (�4.061)**
(continued)
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understanding of the relationship between efficiency and specification. The length

of the projection of the ProFit vector reflects its relevance in the interpretation of the

particular figure. The longer the vector, the more agreement there is between the

ordering of the banks in the representation and the efficiency values obtained from

the specification.

ProFit vectors form a fan in Fig. 3.3. All vectors point in the direction in which

efficiency grows. Each one of the 33 vectors indicates the way in which efficiency

grows under a particular specification. Most vectors point in the direction of the first

principal component. This confirms the observation that the first principal compo-

nent gives an “overall measure of the efficiency” of a bank, and that an ordering

along the first principal component produces an efficiency ranking of institutions.

Since the first principal component accounts for 63.13% of the variance, we

Table 3.8 (continued)

Specification

Directional cosines

F Adj R2γ1 γ 2 γ 3 γ 4

AB3 0.92 �0.23 �0.31 0.01 442.24 0.955

(38.851)** (�9.740)** (�12.828)** (0.308)

C1 0.42 0.82 0.36 0.18 217.51 0.912

(12.381)** (24.042)** (10.483)** (5.371)**

C13 0.58 0.65 �0.29 0.40 250.41 0.922

(18.293)** (20.443)** (�9.237)** (12.796)**

C3 0.49 0.47 �0.61 0.41 294.21 0.933

(16.926)** (16.054)** (�20.950)** (13.918)**

AC1 0.61 0.57 0.47 0.28 298.46 0.934

(21.030)** (19.770)** (16.320)** (9.717)**

AC13 0.85 0.06 �0.13 0.51 307.40 0.936

(29.815)** (2.204) (�4.631)** (17.730)**

AC3 0.71 �0.11 �0.49 0.50 513.40 0.961

(32.019)** (�5.084)** (�22.043)** (22.729)**

BC1 0.68 0.65 0.34 �0.06 385.39 0.948

(26.533)** (25.533)** (13.450)** (�2.170)
BC13 0.91 0.37 �0.18 �0.09 170.52 0.890

(23.751)** (9.557)** (�4.614)** (�2.311)
BC3 0.82 0.17 �0.54 �0.06 816.18 0.975

(46.866)** (9.667)** (�31.009)** (�3.648)*
ABC1 0.66 0.66 0.35 0.03 270.70 0.928

(21.869)** (21.656)** (11.608)** (0.890)

ABC13 0.90 0.41 �0.14 0.03 100.17 0.825

(18.010)** (8.221)** (�2.874)* (0.692)

ABC3 0.82 0.20 �0.53 0.06 128.76 0.859

(18.690)** (4.487)** (�11.982)** (1.423)

*Significant at the 0.05 level, **Significant at the 0.01 level
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conclude that the ranking of banks along this component, which is a ranking of

overall efficiency, is the most salient characteristic of the data.

A set of vectors, containing deposits as an input, is clearly associated with the

second principal component, as they all point towards the top of Fig. 3.3. Deposits

are treated as inputs under the production modeling philosophy. We conclude that

the second principal component distinguishes between the two basic approaches to

banking efficiency: intermediation and production. The second principal compo-

nent, it has to remembered, accounts for 14.20% of the variance. Other authors

have addressed if there is a relationship between production and intermediation,

Berger and Humphrey (1997), Thanassoulis (1999), Oral and Yolalan (1990),

Denizer et al. (2000), Camanho and Dyson (2005). In general, these authors

estimate a specification derived from each model and calculate the correlation

between the efficiencies obtained. Their results tend not to be conclusive, as they

find no significant relationship. Our approach clearly explains the positive but low

correlations that the authors we have mentioned did find. Whether a bank opts for

intermediation or for production, appears very clearly in the second component.

Using similar considerations, we can associate the value of the third principal

component—that accounts for 9.38% of the variance—with the decision to use
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specifications containing as a sole output the value of loans (3), since a fan that

includes only 3 as an output can clearly be discerned on the left hand side of

Fig. 3.4. On the right hand side of this figure we find vectors associated with

deposits as an output (2) and with income (1). This suggests that the third principal

component distinguishes between two banking strategies: collecting deposits, or

making loans.

Finally, in Fig. 3.4 it can be seen that the fourth principal component discrim-

inates between specifications that include physical assets as an input (input B) and

those contain the number of employees (input A). It is clear that vectors that contain

input B in their definition point towards the bottom of Fig. 3.4, while those that

contain input A (employees) in their definition point towards the top of the figure.

We, therefore, interpret the fourth component as asset utilization efficiency,

distinguishing between an orientation towards efficient use of human resources

and efficient use of physical assets. This component explains 7.17% of the

variance.
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Summarizing, in order to describe how a bank achieves a given level of

efficiency, we must take into account four independent aspects: first, and most

importantly, an overall measure of efficiency; second, we make a distinction

between those banks whose efficiency is best seen in the light of the production

model, and the banks whose efficiency is best seen under the intermediation model;

third, we must take into account whether the bank follows a strategy directed to

making loans or collecting deposits; finally, some banks specialize in the efficient

use of human resources while others specialize in the efficient use of physical

assets. There may be other features that help to discriminate between the various

banks in terms of efficiency, but they have not been explored, as these four

characteristics account for 93.89% of the variation in efficiency.

The literature shows that there is no single definition of efficiency, and we show

empirically that, given the inputs and outputs selected, we should examine several

specifications. This substantially enriches the quality of the analysis that can be

carried out. For example, the IFC bank is 100% efficient under the ABC13

specification, but only achieves 12% efficiency under specification A2, one of the

lowest estimated efficiencies, indicating that, in this bank, the amount of deposits

per employee is very low. In Fig. 3.1 we see that the vector associated with

specification ABC13 points towards this bank, while the vector associated with

specification A2 points away from this bank.

The graphical representation in Fig. 3.1 will not only disclose the approach to

efficiency followed by a bank, but also the success with which this approach is

being followed. The Property Fitting line that shows a bank under the best light will

disclose the policy that the bank has adopted.

There are various paths that lead to the same place. For example, a bank that puts

its weight into the improvement of employee efficiency will probably go for

electronic banking or automatic tellers, and will invest in infrastructures (physical

assets) while, at the same time, reducing the number of its staff and keeping the

level of deposits. Such a bank will improve its efficiency under specification A2 (its

stated objective), but will worsen its performance under specification B2.

All the above discussion has been based on the interpretation of two dimensional

projections of a four dimensional data set. Each ProFit vector is plotted in a four

dimensional space, and it would be appropriate to assess if the groups that are

observed on the projections are true reflections of the groups that exist in the space.

For this reason ProFit analysis has been supplemented with Hierarchical Cluster

Analysis (HCA).

Efficiencies in Table 3.4 have been taken as inputs for HCA and clustered using

Ward’s method with Euclidean distances. This method maximizes within group

homogeneity and between group heterogeneity. Since we are interested in finding

out up to what point two different specifications are equivalent, we clustered

variables (specifications) and not cases (banks). The dendrogram can be seen in

Fig. 3.5.

Specifications group neatly into four clusters in Fig. 3.5. These clusters have

been superimposed in Figs. 3.3 and 3.4, and have been labeled 1, 2, 3, and
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4. Clusters 1 and 2 group together at a higher level of clustering. Clusters 3 and

4 also group together at a higher level of clustering.

Clusters 1 and 2 are located at the North of Fig. 3.3, grouping specifications

whose ProFit vectors point up and to the right of the figure. With the exception of
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specifications B1 and AB1, the 14 specifications that form clusters 1 y 2 contain

deposits as input (C). Deposits as an input are a standard feature of intermediation

models. Cluster 3 y 4 are located on the lower part of Fig. 3.3, and none of the

specifications includes deposits (C) as an input. This is consistent with production

models of efficiency.

The differences that exist between cluster 1 and cluster 2, on the one hand, and

cluster 3 and cluster 4, on the other, are made apparent in Fig. 3.4. All the

specifications contained in cluster 1 are located at the right hand side of the figure

(positive end of the third principal component) and include income (1) as an output.

Specifications associated with cluster 2 are located at the left of Fig. 3.4 and include

loans (3) as an output. We conclude that cluster 1 contains specifications that are

consistent with an intermediation model oriented to income, and that cluster

2 contains specifications that are consistent with an intermediation model oriented

towards making loans.

The differences between Clusters 3 and 4 are also apparent in Fig. 3.4. Both

clusters are associated with production type models. Cluster 3 is located at the

bottom of Fig. 3.4, on the negative side of the fourth principal component. All the

specifications contained in it contain input B, physical assets. Cluster 4 is located at

the top of Fig. 3.4. All the specifications contain number of employees (A) as an

input. We conclude that Cluster 3 contains specifications consistent with production

models oriented towards efficiency use of physical assets, and that cluster 4 groups

specifications consistent with a production model oriented to efficient use of human

resources.

If equivalent specifications exist, they will group into clusters, and if specifica-

tions within a cluster share something in common, the analysis will reveal it, with

the added bonus that model simplification will naturally follow. For example, A1

and AC3 appear very close to each other in Fig. 3.3, and one would conclude that

the efficiencies that they produce are very similar, but they belong to different

clusters, indicating that a bank obtains quite different efficiencies under each one of

these two specifications. The reverse is also true: specifications AB123 and AB13

belong to the same cluster and appear next to each other in the representation,

suggesting that AB13 is a valid simplification of ABC13, and this is something that

can be tested using the bootstrap. In this case, high levels of correlation between the

efficiencies produced by the different specifications will result in membership of

the same cluster, and this would guide inferential procedures for specification

search.

It can be argued that specifications contained in a given cluster are largely

equivalent in the sense that they produce similar efficiency scores for the various

banks. This can guide the search for simplifications in the specification. Each

cluster can be represented by a single specification, reducing the total number of

possible specifications from 33 to 4. The selected specification could be the most

parsimonious one or the most central one within the cluster. Ganley and Cubbin

(1992) suggest that one should perform sensitivity analysis in order “to test the

robustness of DEA results to changes in the methods and data used”. For Parkin and
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Hollingsworth (1997), the way one test validity is to calculate the correlations that

exist between the efficiencies obtained under the various specifications.

The question of up to what point two different specifications are equivalent is

addressed here using the bootstrap procedure. Simar and Wilson (1998, 2000a, b),

Richmond (2005) explain how to use the bootstrap for inference purposes in DEA.

The bootstrap was used to test the equivalence of the two specifications that appear

to be equivalent in the sense that their associated ProFit lines belong to the same

cluster and are at a small acute angle in the representation. In order to test the power

of this test, an issue raised by Cherchye and Post (2003), we also checked that two

specifications that appear to be very different in the visualization can indeed be

shown to be different by means of the bootstrap. We have used the software FEAR,

Wilson (2007).

Our way of thinking was as follows. Given a particular specification, the

bootstrap produced a series of possible replications of the efficiencies for each

bank. We treated each replication as a set of efficiencies that could have been

observed in practice. We produced 250 replications, mainly because the results

indicated that this was a sufficient number for the purposes of this analysis. For a

given specification, each replication produced a vector of bootstrap efficiencies, one

for each bank. We calculated the average vector and treated it as a reference point

for the other replications. We next calculated the squared distance between each

replication and the average vector. In this way we obtained 250 distances that could

have been observed by chance. For a one-sided test we are interested in the distance

that is only surpassed in 5% of the cases. This distance was 0.539. The next step

was to calculate the distance between two original specifications, our preferred

specification (AB13) and an alternative one (AB123). We found the distance

between specification AB13 and AB123 to be 0.130. Under the hypothesis that

AB123 is only random deviation away from AB13, we have observed nothing

unusual, therefore we cannot reject the view that AB13 is a valid simplification of

AB123, and adopted the more parsimonious specification. We repeated the test with

two specifications that our methodology identifies as very different from AB13, C1

and A2. We found the distance between AB13 and C1 to be 8.736, well beyond our

one-sided 95% limit, and well beyond the one-sided 98% limit (0.640). We

concluded that specification C1 produces efficiency results that are significantly

different from the results produced by specification AB13. When specification A2

was compared with AB13, the distance obtained was 3.596, also significantly

different at the 98% confidence level. This leads to the conclusion that if we

want to study the efficiency of a bank, we should not proceed by choosing only

one model and only one specification, as this may miss important features of its

operations.

Given the present study, we think that we can only limit our conclusions to the

data we have analyzed. In order to give policy advice we would like to perform

more studies, using a larger sample and, perhaps, a time series, so that our

conclusions could be deemed to be generally valid. Nevertheless, one could tenta-

tively say that a good specification for global efficiency is AB13. This should be
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supplemented with the partial view of efficiency provided by specifications A2, and

C1.

3.3.4 Dissecting the Efficiency Score

It has been argued that there is no single definition of efficiency in the context of

banks. Different views of the way in which banks operate, as reflected in the

different modeling philosophies will produce different efficiency scores. The com-

bination of PCA, ProFit, and HCA sheds light into the reasons why a particular

bank achieves a certain efficiency level. This subject will be further examined in

what follows.

Take CYN and IFC, two previously discussed institutions. They both achieve

100% efficiency under four specifications: B13, B123, AB123 and AB13. They

both appear on the extreme right hand side of the first principal component in

Fig. 3.1. They would both come at the top of an efficiency ranking based on the first

principal component. We could just conclude that they are excellent institutions and

leave it at that. But it is also to be noticed that under specifications C13, C3, BC13,

BC3, ABC13, and ABC3 IFC is 100% efficient but not CYN. All these contain

deposits as an input, and are specifications that would be developed under the

intermediation modeling philosophy. The specifications that make CYN 100%

efficient but not IFC are B12, B23, B2, B3, AB12, AB23, AB2, and AB3. All

these specifications contain physical assets (B) in their definition, or employees

(A) which leads to the conclusion that CYN owes its position in the league table to

the efficient use of its physical and human assets, and that CYN is a good institution

from the intermediation point of view.

This discussion can be extended to the differences and similarities of IFC and

CYN under the third and fourth principal components. We see that their scores

under principal components 3 and 4 are very similar, and this suggests that their

only difference is in principal component 2, and this has just been discussed.

Systematic analysis of Figs. 3.1 and 3.2, together with the interpretations

provided with the help of Figs. 3.3 and 3.4 makes it possible to assess the global

efficiency of an institution and the strategies under which such global efficiency

was achieved. Strengths and weaknesses become apparent. Take, for example, a

previously mentioned case: NBY. In Fig. 3.1 NBY plots towards the center of the

first component, indicating that its global efficiency is mediocre. Indeed, it only

achieves 46% efficiency under specification AB123. It is located at the top of the

second principal component, which is consistent with being 100% efficient under

specifications C1, C3, and C13, all of them with deposits as an input, and implying

that NBY would be only identified as efficient under an intermediation approach.

NBY is located very near IFC. It has just been argued that IFC also appeared in a

good light under an intermediation approach. The differences between NBY and

IFC appear when we examine Figs. 3.2 and 3.4. In Fig. 3.2, IFC is located towards

the most negative side of the fourth principal component, while NBY is located
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towards the top of the figure, at the positive end of the fourth principal component.

In line with the interpretation of the fourth principal component, IFC appears as

efficient under specifications that include physical assets (B) as an input and not

very efficient when the specification contains the number of employees (A). This is

confirmed by the observation that IFC achieves an efficiency of only 12% under

specification A2. NBY, on the other hand, appears at its best under specifications

that contain input A, the number of employees.

Finally, PVN, another previously discussed bank, appears on the right hand side

of Fig. 3.1, implying that it is efficient from the global point of view. Its location in

this figure is consistent with intermediation efficiency. In Fig. 3.2, PVN is located

towards the extreme right hand side. We notice that in Fig. 3.4, vectors associated

with specifications that contain loans (output 3) point on the whole towards the left

hand side. This implies that PVN under performs in specifications that contain loans

as an output, something that is coherent with the results shown in Table 3.4. If we

were to advise this bank we would recommend more efficiency in the granting of

loans.

3.4 Conclusions

There has been much interest and debate on how to model DEA efficiency in

financial institutions. This has extended over the type of model (intermediation or

production) that is appropriate, as well as to the selection of inputs and outputs once

a modeling philosophy has been selected. We have suggested a specification search

strategy that highlights the extent to which two different DEA specifications

produce similar results and the reasons why this happens.

The methodology proposed relies on estimating a variety of input/output mix-

tures and analyzing the results by means of multivariate statistical methods. Par-

ticular emphasis is given to data visualization, which is achieved by combining

Principal Components Analysis, Property Fitting, and Hierarchical Cluster Analy-

sis. Our work mimics the work of the econometrician in the estimation of a

regression model. Economic theory leads to the selection of the variables that

enter the regression equation and the way in which they should impact on the

variable to be explained, but the work of the econometrician is basically of a

statistical (technical) nature. After the statistical work is over, there comes the

interpretation of the results. We have proceeded in the same way, by showing in an

explicit way which banks are efficient under the intermediation and under the

production model, and why they are efficient under a model and not under

another one.

This approach has been applied to the particular case of American banks. A

Principal Component Analysis has made it possible to identify a ranking of banks in

terms of global efficiency, which is nothing else than a ranking along the first

principal component. Furthermore, we have been able to identify four different

views of what constitutes efficiency in a bank. The treatment of deposits as either
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inputs or outputs—a feature that distinguishes intermediation models from produc-

tion models—has proven to be a key feature in the modeling of financial institu-

tions, and this information has been captured by the second principal component.

Another relevant aspect in the assessment of the differences in banking efficiency is

the emphasis on inputs (physical assets versus employees), which is captured by the

third principal component. The fourth principal component highlights the institu-

tion’s orientation towards outputs and separates those institutions that are efficient

at granting loans from those that are efficient at taking deposits.

The standard procedure in the assessment of banking efficiency, which starts

with an a priori view of what inputs and outputs should be included in the

calculation of efficiency should be revised, as different models and specifications

can produce different efficiency results for a given institution. A more realistic view

would be to accept that efficiency is a multidimensional concept, and that several

models ought to be estimated and combined before managerial action is taken to

improve the way in which a financial institution works.

Framing DEA results in a multivariate statistical context has allowed us to go

behind efficiency as a mere score. It has been possible to offer a global view of the

efficiency of an institution which encompasses many specifications; it has made it

possible to assess why a particular institution has achieved a given level of

efficiency under a given choice of inputs and outputs; and has made it possible to

identify the various paths to efficiency followed by different institutions which

would, under most studies, have been classified as equivalent but that differ in

important aspects of their operations.

By showing which combinations of inputs and outputs generate similar effi-

ciency results, the multivariate approach proposed in this paper can guide the

application of inferential tools such as the bootstrap, and these can be used for

hypothesis testing and specification selection.

Further advantages of the method proposed here is that it creates a natural

ranking of institutions in terms of efficiency, and that it highlights the strengths

and weaknesses of each institution.
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Chapter 4

Multi-period Efficiency Measurement
with Fuzzy Data and Weight Restrictions

Shiang-Tai Liu

Abstract In measuring the overall efficiency of a set of decision making units

(DMUs) in a time span covering multiple periods, the conventional approach is to

use the aggregate data of the multiple periods via a data envelopment analysis

(DEA) technique, ignoring the specific situation of each period. In the real word,

there are situations that the observations are inexact and imprecise in nature and

they have to be estimated. This study proposes using a relational network model to

take the operations of individual periods into account in measuring efficiencies, and

the input and output data are treated as fuzzy numbers. Moreover, the assurance

region approach is utilized in the model to reduce the weight flexibility for the

prevention of overly optimistic, even unrealistic, measures of efficiency. The

overall and period efficiencies of a DMU can be calculated at the same time, and

since the observations are fuzzy, the derived overall and period efficiencies are

fuzzy as well. A pair of two-level mathematical programs is developed to calculate

the lower and upper bounds of the α-cut of the fuzzy efficiencies. It is shown that the
fuzzy overall efficiency is still a weighted average of the fuzzy period efficiencies.

Fuzzy measures obtained from fuzzy observations are more informative than crisp

measures obtained from fuzzy observations to be precise.

Keywords Data envelopment analysis • Fuzzy sets • Network system • Weight

restriction

4.1 Introduction

Efficiency, defined as the ratio of the minimal input required to the actual input used

to produce the same amount of output, or the ratio of the actual output produced to

the maximal output that can be produced from the same amount of input, is an

effective measure for identifying production systems with unsatisfactory
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performance, so that necessary amendments can be made to either reduce wasteful

resources or increase expected outputs. Data envelopment analysis (DEA) is an

important and widely used nonparametric technique for evaluating the performance

of decision making units (DMUs) in a multiple-input multiple-output production

technology. DEA was initially proposed by Charnes et al. (1978). Due to the sound

economic theory it is based on and ease of calculation, hundreds of real world

applications and methodological advances have been reported since its first appear-

ance in the literature (see, for example, the review of Cook and Seiford 2009).

For cases in which the period of time being examined is composed of clearly

defined time units, such as years, the total inputs consumed and total outputs

produced in all of the periods are aggregated for efficiency measurement. More

often, the average input and output data of each period are used. Since DEA has a

unit-invariant property (Lovell and Pastor 1995), the efficiencies calculated from

these two types of data, total and average, are the same. When the aggregate data

over all the period is used, the resulting efficiency is an overall measure of the

performance of the specified period of time, and the specific efficiency of individual

periods remains unknown. In this case, the result that a DMU is overall efficient

does not necessarily imply that every period is efficient. In fact, it is possible that

one period is abnormally inefficient while it is overall efficient, and the abnormal

performance may sometimes provide clues about the likelihood of certain events,

such as bankruptcy. Therefore, it would be helpful if the period-specific efficiencies

could also be known. Kao and Liu (2014) propose using a relational network model

to take the operations of individual periods into account in measuring efficiencies.

The overall and period efficiencies of a DMU can be calculated at the same time.

Interestingly, the overall efficiency is a weighted average of the period efficiencies,

and the weights are the most favorable ones for the DMU being evaluated.

One characteristic of the DEA approach is that the efficiency measure is sensi-

tive to data variations. Unfortunately, in the real world, observations are usually

difficult to measure precisely (Guo et al. 2000), observations are missing and need

to be estimated (Kao and Liu 2000b), or the data need to be predicted (Kao and Liu

2004). One way to manipulate imprecise data directly is to represent the uncertain

values by membership functions of the fuzzy set theory (Bellman and Zadeh 1970;

Zadeh 1978; Zimmermann 1996). Under the framework of DEA, different

approaches for measuring efficiency in fuzzy environments have been proposed

(Kao and Liu 2000a; Lertworasirkul et al. 2003; Shokouhi et al. 2010), and some

applications have been reported (Guo 2009). A good review of these approaches

and applications can be found in Hatami-Marbini et al. (2011) and Emrouznejad

and Tavana (2014). Recently, fuzzy network DEA approaches receive more atten-

tions (Kao and Liu 2011, 2012; Lozano 2014a, b). However, these approaches do

not take the weight restrictions into consideration.

Basically, crisp and fuzzy DEA models do not require a priori specification of

input and output weights (or multipliers) and by letting these weights run freely to

obtain optimal weights for all inputs and outputs of each DMU without imposing

any constraints on these weights. In performing DEA, we sometimes encounter

extreme values or zeroes in input or output weights. When the values of weights of
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inputs or outputs are in the zero cases, they do not contribute to interpret the

performance results. In addition, the multipliers, if left to run freely, may lead to

overly optimistic, even unrealistic, measures of efficiency (Asmild et al. 2007).

Saati and Memariani (2005) propose a procedure to find a common set of weights in

the fuzzy DEA model. By assessing upper bounds on factor weights and

compacting the resulting intervals, a common set of weights is determined. Liu

(2008) investigates a fuzzy DEA model with assurance region that is able to

evaluate the performance of flexible manufacturing system. Liu (2014) develops

a methodology for a fuzzy two-stage DEA model considering weight restrictions

when the input and output data are represented as fuzzy numbers. The assurance

region approach is adopted to restrict weight flexibility in this fuzzy two-stage DEA

model. Nevertheless, both Liu’s methods (2008, 2014) cannot be applied to mea-

sure the multi-period efficiencies of DMUs.

The purpose of this study is to develop a model, based on the network DEA

approach, to measure the overall and period efficiencies of a set of DMUs in a

period of time considering weight restrictions when the input and output data are

fuzzy numbers. Based on Zadeh’s extension principle (Zadeh 1978), a pair of

two-level mathematical programs is formulated to calculate the upper bound and

lower bound of the fuzzy efficiency score. We then transform this pair of two-level

mathematical programs into a pair of one-level mathematical programs. Solving

this pair of mathematical programs, we obtain the fuzzy overall and period-specific

efficiencies at the same time, and a relationship in which the former is a weighted

average of the latter is also derived.

This paper is organized as follows. In the next section, a conventional network

DEA model with weight restriction is introduced. Then we propose a methodology

to calculate the fuzzy multi-period and period-specific efficiencies for the fuzzy

network DEA with weight restrictions. After this, we utilize one example with

fuzzy observations and weight restrictions to illustrate the idea proposed in this

paper. Finally, some conclusions are drawn based on the discussion.

4.2 Crisp Network DEA with Weight Restrictions

Let Xij and Yrj denote the ith input, i¼ 1, . . . ,m, and rth output, r¼ 1, . . . , s,
respectively, of the jth DMU, j¼ 1, . . . , n. The CCR model of DEA for calculating

the efficiency of DMU k is (Charnes et al. 1978):

ECCR
k ¼ max

Xs
r¼1

urYrk=
Xm
i¼1

viXik

s:t:
Xs
r¼1

urYrj=
Xm
i¼1

viXij � 1, j ¼ 1, . . . , n,

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m;

ð4:1Þ
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where ur and vi are virtual multipliers and ε is a small non-Archimedean number

imposed for avoiding ignorance of any factor (Charnes et al. 1978; Charnes and

Cooper 1984).

Consider a multi-period system composed of q periods, where the superscript

p in X
ðpÞ
ij and Y

ðpÞ
rj denotes the corresponding period. The total quantities of the ith

input and the rth output in all q periods for DMU j are Xij¼
Xq

p¼1 X
pð Þ
ij and Yrj¼Xq

p¼1 Y
pð Þ
rj , respectively. For the multi-period system, if each period is viewed as a

process of a network system, then it resembles the structure of a parallel production

system with q processes. The relational model proposed by Kao (2009) for mea-

suring the efficiency of parallel systems can thus be adopted to calculate the

efficiency of multi-period systems.

The relational network model has two special features. One is that the same

factor has the same multiplier associated with it, regardless of the period it

corresponds to. This requirement can also be derived from the terms of urYrj and

viXij in Model (4.1): urYrj¼ur
Xq

p¼1 Y
pð Þ
rj ¼

Xq

p¼1 urY
pð Þ
rj and viXij¼vi

Xq

p¼1 X
pð Þ
ij ¼Xq

p¼1 viX
pð Þ
ij . In this expression, Y

ðpÞ
rj and X

ðpÞ
ij of different periods p, p¼ 1, . . . , q,

have the same multipliers, ur and vi, respectively. The other is that in calculating the
overall efficiency of the system, not only must the system inputs and outputs be

considered, but also the period-specific ones. That is, the constraints ofX s

r¼1 urY
pð Þ
rj �

Xm

i¼1 viX
pð Þ
ij � 0, p¼ 1,. . ., q, j¼ 1,. . ., n, are added to Model

(4.1). Kao and Liu (2014) taking these two points into account, the relational

network model for the multi-period system as:

Ek ¼ max
Xs
r¼1

urYrk

s:t:
Xm
i¼1

viXik ¼ 1,

Xs
r¼1

urYrj �
Xm
i¼1

viXij � 0, j ¼ 1, . . . , n,

Xs
r¼1

urY
pð Þ
rj �

Xm
i¼1

viX
pð Þ
ij � 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m:

ð4:2Þ

Obviously, the overall efficiency of this model, Ek, will not exceed that calculated

from the aggregate one, ECCR
k , because of the additional third constraint set.

The sum of the constraints corresponding to the q periods of a DMU in Model

(4.2),
X s

r¼1 urY
pð Þ
rj �

Xm

i¼1 viX
pð Þ
ij � 0, p¼ 1, . . . , q, is just the constraint

corresponding to the system of this DMU,
X s

r¼1 urYrj�
Xm

i¼1 viXij�0; therefore,
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the latter are redundant and can be removed. For this reason, Kao and Liu (2014)

reformulate Model (4.2) as:

Ek ¼ max
Xs
r¼1

Xq
p¼1

urY
pð Þ
rk

s:t:
Xm
i¼1

Xq
p¼1

viX
pð Þ
ik ¼ 1,

Xs
r¼1

urY
pð Þ
rj �

Xm
i¼1

viX
pð Þ
ij � 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

ur, vi � ε, r ¼ 1, . . . , s, i ¼ 1, . . . ,m:

ð4:3Þ

In this case, the constraints of Model (4.3) are those corresponding to the

q periods of the n DMUs, indicating that each period is considered as an inde-

pendent DMU in constructing the efficiency frontier, and the objective is to find

the multipliers that will produce the maximum overall efficiency for the DMU

being evaluated. In other words, all q periods are assumed to have the same

technology.

After the optimal solutions u�r and v�i are obtained, the overall efficiency Ek and

period efficiencies E
ðpÞ
k , p¼ 1, . . . , q, for DMU k, are calculated as (Kao and Liu

2014):

Ek ¼
Xq
p¼1

X s

r¼1 u
*
rY

pð Þ
rkXm

i¼1 v
*
i Xik

 !
¼
X s

r¼1 u
*
rYrkXm

i¼1 v
*
i Xik

¼¼
Xs
r¼1

u*rYrk

E
pð Þ
k ¼

X s

r¼1 u
*
rY

pð Þ
rkXm

i¼1 v
*
i X

pð Þ
ik

, p ¼ 1, . . . , q:

ð4:4Þ

It is shown in Kao and Hwang (2008) and Kao (2009) that, by setting the weight

w( p) to the proportion of the aggregate input consumed in period p in that of all

periods,
Xm

i¼1 v
*
i X

pð Þ
ik /
Xm

i¼1 v
*
i Xik, the overall efficiency is the average of the

q period efficiencies weighted by w( p):

Xq
p¼1

w pð ÞE pð Þ
k ¼

Xq
p¼1

Xm

i¼1 v
*
i X

pð Þ
ikXm

i¼1 v
*
i Xik

�
X s

r¼1 u
*
rY

pð Þ
rkXm

i¼1 v
*
i X

pð Þ
ik

0@ 1A ¼Xq
p¼1

X s

r¼1 u
*
rY

pð Þ
rkXm

i¼1 v
*
i Xik

 !

¼
X s

r¼1 u
*
rYrkXm

i¼1 v
*
i Xik

¼ Ek

Note that the set of weights selected by each DMU is the most advantageous one to

calculate the overall efficiency, and they may not be the same for all DMUs. Model
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(4.4) is thus able to not only calculate the overall and period efficiencies of the

multi-period system, but also obtain a mathematical relationship between them.

The multipliers ur and vi are treated as unknown variables in (4.3). Therefore,

each DMU may select any multipliers as it wants for its inputs and outputs. An

important extension of DEA models is restricting weight flexibility. We can find in

the literature different approaches to setting bounds in weight restrictions of DEA

models (Thompson et al. 1986, 1990; Charnes et al. 1990; Bal et al. 2008; Ramón

et al. 2010; Korhonen et al. 2011). The assurance region approach, first proposed by

Thompson et al. (1986), is originally developed with the purpose of incorporating

value judgments into the analysis, that is, prior information, expert opinions, or

preferences concerning the underlying process of assessing efficiency. Addition-

ally, this approach is very comprehensive to bounding the DEA multipliers. There-

fore, we adopt the assurance region approach to impose weight restrictions in this

paper.

Suppose the relative importance elicited from the experts range from LI1 to UI1

for input item 1 and from LI2 to UI2 for input item 2. The associated constraints are

LI1=UI2�v1/v2�UI1=LI2 . Generalizing to all inputs and outputs, respectively, gives

LIa=UIb � va=vb � UIa=LIb , a < b ¼ 2, . . . ,m
LOa

=UOb
� ua=ub � UOa

=LOb
, a < b ¼ 2, . . . , s:

ð4:5Þ

To simplify the notation, let FL
ab¼ LIa=UIb , F

U
ab¼ UIa=LIb , G

L
ab¼ LOa

=UOb
, and

GU
ab¼UOa

=LOb
. Including assurance region in (4.3) gives the following mathemat-

ical form:

Ek ¼ max
Xs
r¼1

Xq
p¼1

urY
pð Þ
rk

s:t:
Xm
i¼1

Xq
p¼1

viX
pð Þ
ik ¼ 1

Xs
r¼1

urY
pð Þ
rj �

Xm
i¼1

viX
pð Þ
ij � 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

� va þ FL
abvb � 0, va � FU

abvb � 0, a < b ¼ 2, . . . ,m,
� ua þ GL

abub � 0, ua � GU
abub � 0, a < b ¼ 2, . . . , s:

ð4:6Þ

In the next section, we shall develop a fuzzy multi-period efficiency measure-

ment model considering weight restrictions.
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4.3 FuzzyMulti-period Efficiency withWeight Restrictions

Without loss of generality and for simplicity of notation, suppose all observations

are described by fuzzy numbers; then crisp numbers can be considered as degen-

erate fuzzy numbers with only one value in the domain of fuzzy sets. When the

observations are fuzzy numbers, the resulting efficiencies will also be fuzzy

numbers.

Denote eXij and eYrj, as the fuzzy counterparts of Xij and Yrj, respectively, in the

deterministic case. Conceptually, Model (4.6) for fuzzy observations can be for-

mulated as:

eEk ¼ max
Xs
r¼1

Xq
p¼1

ureY pð Þ
rk

s:t:
Xm
i¼1

vi
Xq
p¼1
eX pð Þ
ik ¼ 1

Xs
r¼1

ureY pð Þ
rj �

Xm
i¼1

vieX pð Þ
ij � 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

� va þ FL
abvb � 0, va � FU

abvb � 0, a < b ¼ 2, . . . ,m,
� ua þ GL

abub � 0, ua � GU
abub � 0, a < b ¼ 2, . . . , s:

ð4:7Þ

Since the observations are fuzzy numbers, the resulting efficiency eEk should also be

a fuzzy number. To obtain the membership function μeEk

for eEk, one may rely on

Zadeh’s extension principle (Zadeh 1978; Zimmermann 1996), which describes the

relationship between the membership function of eEk and the membership functions

of eX pð Þ
ij and eY pð Þ

rj .

μeEk

eð Þ ¼ sup
x, y

min μeX pð Þ
ij

x
pð Þ
ij

� �
, μeY pð Þ

rj

y
pð Þ
rj

� �
,8i, r, p, j��e ¼ Ek x; yð Þ

� �
; ð4:8Þ

where Ek(x, y) is defined by Model (4.3).

Nguyen (1978) indicates that the application of the extension principle to eEk can

be viewed as the application of this extension principle to the α-cuts of eEk. This idea

is adopted for calculating the fuzzy efficiency eEk. Denote (X
ðpÞ
ij )α¼ [(X

ðpÞ
ij )Lα,(X

ðpÞ
ij )Uα ]

and (Y
ðpÞ
rj )α¼ [(Y

ðpÞ
rj )

L
α,(Y

ðpÞ
rj )

U
α ], as the α-cuts of eXij and ~Yrj, respectively. To find the

membership function μeEk

(e), it suffices to find the lower and upper bounds of the

α-cut of eEk, (Ek)α¼ [(Ek)
L
α, (Ek)

U
α ].

The upper bound (Ek)
U
α is equal to max{e|μeEk

(e)�α}, and the lower bound (Ek)
L
α

is equal to min{e|μeEk

(e)� α}. In symbols, they can be expressed as:
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Ekð ÞUα ¼ max

X
pð Þ
ij

� �L

α
� xij � X

pð Þ
ij

� �U

α

Y
pð Þ
rj

� �L

α
� yrj � Y

pð Þ
rj

� �U

α8i, r, p, j

Ek x; yð Þ ð4:9aÞ

Ekð ÞLα ¼ min

X
pð Þ
ij

� �L

α
� xij � X

pð Þ
ij

� �U

α

Y
pð Þ
rj

� �L

α
� yrj � Y

pð Þ
rj

� �U

α8i, r, p, j

Ek x; yð Þ ð4:9bÞ

Note that Ek(x, y) is a mathematical program with maximization as the objective

function. Therefore, Models (4.9a) and (4.9b) are two-level programs, with Ek(x, y)

as the inner program. (Ek)
U
α and (Ek)

L
α can be calculated via the following two-level

programming models:

Ekð ÞUα ¼ max

X
pð Þ
ij

� �L

α
� x

pð Þ
ij � X

pð Þ
ij

� �U

α

Y
pð Þ
rj

� �L

α
� y

pð Þ
rj � Y

pð Þ
rj

� �U

α8i, r, p, j

:

max
Xs
r¼1

Xq
p¼1

ury
pð Þ
rk

s:t:
Xm
i¼1

Xq
p¼1

vix
pð Þ
ik ¼ 1,

Xs
r¼1

ury
pð Þ
rj �

Xm
i¼1

vix
pð Þ
ij � 0, j ¼ 1, . . . , n, p ¼ 1, . . . , q,

� va þ FL
abvb � 0, va � FU

abvb � 0, a < b ¼ 2, . . . ,m,
� ua þ GL

abub � 0, ua � GU
abub � 0, a < b ¼ 2, . . . , s:

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(4.10a)

Ekð ÞLα ¼ min

X
pð Þ
ij

� �L

α
� x

pð Þ
ij � X

pð Þ
ij

� �U

α

Y
pð Þ
rj

� �L

α
� y

pð Þ
rj � Y

pð Þ
rj

� �U

α8i, r, p, j

:

max
Xs
r¼1

Xq
p¼1

ury
pð Þ
rk

s:t:
Xm
i¼1

Xq
p¼1

vix
pð Þ
ik ¼ 1,

Xs
r¼1

ury
pð Þ
rj �

Xm
i¼1

vix
pð Þ
ij � 0, j ¼ 1, . . . , n, p ¼ 1, . . . , q,

� va þ FL
abvb � 0, va � FU

abvb � 0, a < b ¼ 2, . . . ,m,
� ua þ GL

abub � 0, ua � GU
abub � 0, a < b ¼ 2, . . . , s:

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

(4.10b)

For each set of x
ðpÞ
ij and y

ðpÞ
rj values defined by the respective α-cuts in the outer

program (first level), the efficiency is calculated in the inner program (second

level). The sets of x
ðpÞ
ij and y

ðpÞ
rj values, which produce the largest and smallest

efficiencies, are determined at the first level by Models (4.10a) and (4.10a),

respectively.

The inner and outer programs of Model (4.10a) have the same direction for

optimization, maximization. Therefore, they can be combined into one level, with
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the objective function of the inner program as the overall objective function and the

constraints at the two levels as the overall constraints, which yields:

Ekð ÞUα ¼ max
Xs
r¼1

Xq
p¼1

ury
pð Þ
rk

s:t:
Xm
i¼1

Xq
p¼1

vix
pð Þ
ik ¼ 1,

Xs
r¼1

ury
pð Þ
rj �

Xm
i¼1

vix
pð Þ
ij � 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

X
pð Þ
ij

� �L

α
� x

pð Þ
ij � X

pð Þ
ij

� �U

α
, i ¼ 1, . . . ,m, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

Y
pð Þ
rj

� �L

α
� y

pð Þ
rj � Y

pð Þ
rj

� �U

α
, r ¼ 1, . . . , s, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

� va þ FL
abvb � 0, va � FU

abvb � 0, a < b ¼ 2, . . . ,m,

� ua þ GL
abub � 0, ua � GU

abub � 0, a < b ¼ 2, . . . , s:

ð4:11Þ

This program is nonlinear due to the nonlinear terms ury
ðpÞ
rj and vix

ðpÞ
ij . However, by

substituting the former by c
ðpÞ
rj and the latter by d

ðpÞ
ij , Model (4.11) can be

transformed into the following linear program:

Ekð ÞUα ¼ max
Xs
r¼1

Xq
p¼1

c
pð Þ
rk

s:t:
Xm
i¼1

Xq
p¼1

d
pð Þ
ik ¼ 1,

Xs
r¼1

c
pð Þ
rj �

Xm
i¼1

d
pð Þ
ij � 0, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

vi X
pð Þ
ij

� �L

α
� d

pð Þ
ij � vi X

pð Þ
ij

� �U

α
, i ¼ 1, . . . ,m, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

ur Y
pð Þ
rj

� �L

α
� c

pð Þ
rj � ur Y

pð Þ
rj

� �U

α
, r ¼ 1, . . . , s, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

� va þ FL
abvb � 0, va � FU

abvb � 0, a < b ¼ 2, . . . ,m,

� ua þ GL
abub � 0, ua � GU

abub � 0, a < b ¼ 2, . . . , s:

ð4:12Þ

After an optimal solution (u�r , v
�
i , c
ðpÞ �
rk , d

ðpÞ �
ik ) is obtained, we have y

ðpÞ �
rk ¼ c

ðpÞ �
rk /

u�r and x
ðpÞ �
ik ¼ d

ðpÞ �
ik /v�i . Then the overall and period efficiencies and the associated

weights are calculated as:
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Ekð ÞUα ¼
Xs
r¼1

Xq
p¼1

u*r y
pð Þ*
rk =

Xm
i¼1

Xq
p¼1

v*i x
pð Þ*
ik

E
pð Þ
k

� �U

α
¼
Xq
p¼1

u*r y
pð Þ*
rk =

Xq
p¼1

v*i x
pð Þ*
ik p ¼ 1, . . . , q

w
pð Þ
k ¼

Xq
p¼1

v*i x
pð Þ*
ik =

Xm
i¼1

Xq
p¼1

v*i x
pð Þ*
ik :

ð4:13Þ

The overall efficiency (Ek)
U
α is the average of the period efficiencies (E

ðpÞ
k )Uα

weighted by w
ðpÞ
k for all α values. The overall efficiency, (Ek)

U
α , is the same as the

result of Kao and Lin (2012). The only difference is that the weight restrictions are

considered in this study.

The conversion of Program (10b) to a one-level program is not so straightfor-

ward, because the directions for optimization for the inner and outer programs are

different. The inner program is a linear program when the values x
ðpÞ
ij and y

ðpÞ
rj are

assigned by the outer program. According to the duality theorem (Dantzig 1963),

the primal and dual programs have the same objective value at optimality. Hence,

the inner program can be replaced by its dual to change the objective function from

maximization to minimization. The dual form of the inner program of (10b) can be

formulated as

min θ � ε
Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !

s:t: θ
Xq
p¼1

x
pð Þ
ik �

Xq
p¼1

Xn
j¼1

λ pð Þ
j x

pð Þ
ij þ

X
b>i

�� αL
ib þ αU

ib

�þX
a<i

�
αL
aiF

L
ai � αU

aiF
U
ai

�� sþi ¼ 0,

i ¼ 1, . . . ,m,Xq
p¼1

Xn
j¼1

λ pð Þ
j y

pð Þ
rj þ

X
b>r

�� β L
rb þ βU

rb

�þX
a<r

�
β L
arG

L
ar � βU

arG
U
ar

�� s�r ¼
Xq
p¼1

y
pð Þ
rk ,

r ¼ 1, . . . , s,

λ pð Þ
j , sþi , s

�
r � 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

θ unrestricted in sign:

ð4:14Þ

After this replacement, both the inner and outer programs have the same direction

of minimization; thus, they can be combined into the same one level. The resulting

program of (10b) becomes the following one-level program:
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Ekð ÞLα ¼ min θ � ε
Xm
i¼1

s�i þ
Xs
r¼1

sþr

 !

s:t: θ
Xq
p¼1

x
pð Þ
ik �

Xq
p¼1

Xn
j¼1

λ pð Þ
j x

pð Þ
ij þ

X
b>i

�� αL
ib þ αU

ib

�þX
a<i

�
αL
aiF

L
ai � αU

aiF
U
ai

�� sþi ¼ 0,

i ¼ 1, . . . ,m,Xq
p¼1

Xn
j¼1

λ pð Þ
j y

pð Þ
rj þ

X
b>r

�� β L
rb þ βU

rb

�þX
a<r

�
β L
arG

L
ar � βU

arG
U
ar

�� s�r ¼
Xq
p¼1

y
pð Þ
rk ,

r ¼ 1, . . . , s,

X
pð Þ
ij

� �L

α
� x

pð Þ
ij � X

pð Þ
ij

� �U

α
, i ¼ 1, . . . ,m, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

Y
pð Þ
rj

� �L

α
� y

pð Þ
rj � Y

pð Þ
rj

� �U

α
, r ¼ 1, . . . , s, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

λ pð Þ
j , sþi , s

�
r � 0, i ¼ 1, . . . ,m, r ¼ 1, . . . , s, p ¼ 1, . . . , q, j ¼ 1, . . . , n,

θ unrestricted in sign:

ð4:15Þ

This program is nonlinear due to the nonlinear terms λðpÞj x
ðpÞ
ij and λðpÞj y

ðpÞ
rj , and these

cannot be linearized by variable substitutions, as occurs in Model (4.11). Since this

program has only m + s nonlinear constraints, which is of small size in the standard

of nonlinear programming, most commercial nonlinear programming solvers can

be used to derive a solution.

The objective value of (4.15) is just the lower bound of the system efficiency at

the α level, (Ek)
L
α. At optimality, the reduced costs of sþi and s�r are the values of

multipliers vi and ur, respectively, of the primal program. The overall and period

efficiencies and the corresponding weights subsequently yield

Ekð ÞLα ¼
Xs
r¼1

Xq
p¼1

u*r y
pð Þ*
rk

.Xm
i¼1

Xq
p¼1

v*i x
pð Þ*
ik

E
pð Þ
k

� �L

α
¼
Xq
p¼1

u*r y
pð Þ*
rk

.Xq
p¼1

v*i x
pð Þ*
ik p ¼ 1, . . . , q

w
pð Þ
k ¼

Xq
p¼1

v*i x
pð Þ*
ik

.Xm
i¼1

Xq
p¼1

v*i x
pð Þ*
ik :

ð4:16Þ

Similar to the upper-bound case, (Ek)
L
α is the average of (E

ðpÞ
k )Lα weighted by

w
ðpÞ
k for all α values. Together with the upper bound of the efficiencies derived from

(4.12), the bounds of the fuzzy efficiencies at a specific α-level are obtained.

Enumerating various values of α, the membership functions of Eek and Eek(p) can be

approximated numerically.
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4.4 Example

In this section we utilize an example to illustrate the idea proposed in this study.

Suppose we have two periods both of which consume two inputs and produce two

outputs. The inputs consumed and outputs produced by each period of the 16 DMUs

are represented by symmetric triangular fuzzy numbers, which are shown in

Table 4.1. The notation used in this paper is (a, b, c) for a triangular fuzzy number

with a, b, and c as the coordinates of the three vertices of the triangle. The values of
a, b, and c indicate, respectively, the most pessimistic, most possible, and most

optimistic values of a fuzzy number.

Table 4.1 Triangular fuzzy numbers for efficiency measurement

DMU Period X1 X2 Y1 Y2

1 1 (16, 22, 28) (60, 65, 70) (19, 25, 31) (24, 30, 36)

2 (24, 26, 28) (76, 82, 88) (20, 24, 28) (18, 21, 24)

2 1 (18, 26, 34) (70, 78, 86) (24, 27, 30) (28, 32, 36)

2 (27, 30, 33) (65, 69, 73) (11, 14, 17) (16, 19, 22)

3 1 (14, 23, 32) (66, 75, 84) (21, 26, 31) (20, 26, 32)

2 (17, 28, 39) (57, 62, 67) (31, 38, 45) (36, 39, 42)

4 1 (16, 19, 22) (78, 83, 88) (18, 22, 26) (12, 15, 18)

2 (26, 31, 36) (75, 83, 91) (16, 20, 24) (20, 23, 26)

5 1 (12, 19, 26) (86, 92, 98) (19, 28, 37) (26, 29, 32)

2 (27, 32, 37) (90, 94, 98) (15, 25, 35) (20, 23, 26)

6 1 (22, 26, 30) (84, 90, 96) (18, 22, 26) (20, 24, 28)

2 (24, 28, 32) (77, 80, 83) (25, 29, 33) (22, 26, 30)

7 1 (18, 20, 22) (80, 86, 92) (19, 23, 27) (20, 26, 32)

2 (32, 38, 44) (48, 53, 58) (17, 22, 27) (18, 22, 26)

8 1 (24, 28, 32) (88, 92, 96) (19, 23, 27) (22, 27, 32)

2 (21, 29, 37) (71, 77, 83) (22, 27, 32) (16, 20, 24)

9 1 (24, 28, 32) (74, 78, 82) (16, 19, 22) (24, 28, 32)

2 (26, 30, 34) (81, 86, 91) (18, 23, 28) (32, 36, 40)

10 1 (10, 15, 20) (64, 72, 80) (30, 36, 42) (24, 31, 38)

2 (16, 23, 30) (48, 53, 58) (29, 33, 37) (42, 47, 52)

11 1 (18, 24, 30) (84, 90, 96) (16, 21, 26) (28, 31, 34)

2 (27, 34, 41) (77, 84, 91) (23, 27, 31) (20, 23, 26)

12 1 (14, 19, 24) (82, 88, 94) (27, 31, 35) (20, 24, 28)

2 (24, 29, 34) (50, 56, 62) (13, 16, 19) (26, 29, 32)

13 1 (16, 21, 26) (86, 92, 98) (32, 34, 36) (26, 30, 34)

2 (29, 35, 41) (85, 89, 93) (26, 30, 34) (28, 30, 32)

14 1 (20, 24, 28) (86, 92, 98) (18, 22, 26) (36, 39, 42)

2 (33, 36, 39) (64, 69, 74) (16, 19, 22) (28, 32, 36)

15 1 (22, 25, 28) (78, 84, 90) (21, 25, 29) (22, 28, 34)

2 (31, 36, 41) (48, 53, 58) (15, 20, 25) (30, 34, 38)

16 1 (22, 26, 30) (66, 70, 74) (24, 30, 36) (29, 33, 37)

2 (32, 35, 38) (56, 61, 66) (16, 19, 22) (26, 31, 36)

100 S.-T. Liu



The relative importance of input item X1 is a range lying between 0.0102 and

0.0205, that is, v1¼ (0.0102, 0.0205), in a scale of 1.0. For X2, Y1, and Y2, they are

also represented in the ranges of v2¼ (0.0018, 0.0063), u1¼ (0.0071, 0.0105), and

u2¼ (0.0083, 0.0115), respectively. Following (4.5), the assurance regions gener-

ated for the input- and output-type multipliers, respectively, are

0:0102

0:0063
� v1

v2
� 0:0205

0:0018
and

0:0071

0:0115
� u1

u2
� 0:0105

0:0083
:

According to (4.12) and (4.15), the data contained in Table 4.1 are used to

measure the fuzzy overall efficiency Eek and two period-specific efficiencies Eek(1) and
Eek(2) with weight restrictions of the 16 DMUs. Table 4.2 lists the results for α¼ 0,

0.1, 0.2, . . . , 1.0, where O, P1, and P2 refer to overall, Period 1, and Period

2, respectively. Since the fuzzy efficiency score lies in a range, the different value

of possibility shows the different interval of the efficiency score. Moreover, the

greater value of the possibility level, the narrower the interval is. Specifically, the

possibility level α¼ 0 shows the range that the efficiency score will definitely

appear and the possibility level α¼ 1.0 shows the efficiency score that is most

likely to be. For example, while the overall efficiency score of DMU 1 is fuzzy, its

value is impossible to exceed 0.929 or fall below 0.275. At the other extreme end of

α¼ 1, the single value of 0.556 indicates that this value is definitely possible for the

efficiency score of this DMU.

As noted previously, the relational network model can not only calculate the

overall and period efficiencies, but also establish a weighted average relationship

between them. This can be verified by multiplying the period efficiencies of each

DMU in Table 4.2 by their associated weights, the values shown in Table 4.3, and

summing over these two periods to get the overall efficiency. For example, the

lower bound efficiencies of the overall, Period 1, and Period 2 of DMU 1 at α¼ 0 are

0.275, 0.312, and 0.243, respectively, and the associated weights of Period 1 and

Period 2 are 0.464 and 0.536, individually. The weighted average of DMU 1 is

0.312� 0.464 + 0.243� 0.536, or 0.275, which is exactly its overall efficiency.

Similarly, the upper bound efficiencies of the overall, Period 1, and Period 2 of

DMU 1 are 0.929, 1.0, and 0.852, respectively; the corresponding weights of Period

1 and Period 2 are, respectively, 0.519 and 0.481. The weighted average is

1.0� 0.519 + 0.852� 0.481¼ 0.929. Clearly, this value is exactly the upper

bound of the overall efficiency. This relationship is true for the lower bound and

upper bound efficiencies of every DMU at all α values.

At α¼ 0, only the overall, Period 1, and Period 2 efficiencies of DMUs 3 and

10 have an upper value of 1.0, indicating that these two DMUs have the possibility

of being evaluated as efficient. Moreover, the α¼ 0 cut also indicates that the

overall efficiency of DMU 10 is clearly better than the other DMUs, as its α¼ 0 cut

does not overlap with those of others. This is also true form the viewpoint of its

efficiency at α¼ 1 cut because all the overall, Period 1, and Period 2 efficiencies

have a perfect efficiency score 1.0. On the contrary, the overall efficiency of DMU

4 is worse than the other DMUs from the same viewpoint of the α¼ 0 and

α¼ 1 cuts.
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4.5 Conclusion

In measuring the efficiencies of DMUs, when the time span for efficiency measure-

ment covers multiple periods, the average data of all periods is often used to get the

glance of performance. However, one shortcoming of this aggregate method is that

it ignores the operations of individual periods. As a result, many inefficient DMUs

will be evaluated as efficient. Additionally, an evaluation process usually comprises

complicated inputs and outputs, where some factors cannot be precisely measured.

We can represent the imprecise data as fuzzy numbers. Traditionally, DEA allows

the flexibility in the determination of the weights (multipliers) on inputs and outputs

when assessing the relative efficiency of a DMU. One can restrict the weight

flexibility to derive more realistic measures of efficiency.

In this paper we develop a methodology to find the fuzzy efficiency measures of

a fuzzy network DEA model with weight restrictions when the observations are

fuzzy numbers. Different from the conventional network model, which treats each

process independently, this paper uses a relational approach to link individual

periods together. By viewing the multi-period system as a parallel network one,

the operation of each period can then be taken into account in evaluating the overall

efficiency. Since the assurance region approach is comprehensive to bounding the

multipliers, this approach is adopted to impose weight restrictions on the model.

When input and output data are fuzzy numbers, the derived efficiencies become

fuzzy as well. We develop a pair of two-level mathematical programs to calculate

the lower and upper bounds of the α-cut of the fuzzy efficiency. The program for

calculating the upper bound efficiency is transformed into a conventional one-level

linear program such that optimal solutions could be obtained easily. On the other

hand, the program for calculating the lower bound efficiency is transformed into a

one-level nonlinear program. Since the nonlinearity of the program is not strong,

optimal solutions can be obtained by most nonlinear programming solvers. The

relational network model proposed in this paper is able to measure the fuzzy overall

and period efficiencies at the same time, and the fuzzy overall efficiency is a

weighted average of the fuzzy period efficiencies. This relationship always exists

for the lower and upper bound efficiencies of every DMU at all α values.

Fuzzy efficiency measures are more informative than crisp ones because they

provide not only the most likely values, but also the range that all possible values

can appear within. This prevents the decision maker from being over-confident with

results that are making inappropriate decisions. With the ability to calculate fuzzy

period efficiencies and to find the most favorable weights to calculate the fuzzy

overall efficiency, the idea proposed in this work should be more convincible for

measuring fuzzy multi-period efficiencies.
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Chapter 5

Pitching DEA Against SFA in the Context
of Chinese Domestic Versus Foreign Banks

Necmi Kemal Avkiran and Yushu (Elizabeth) Zhu

Abstract The primary motivation is to show how the efficient frontier methods

data envelopment analysis (DEA) and stochastic frontier analysis (SFA) can be

used synergistically. As part of the illustration, we directly compare locally incor-

porated foreign banks with Chinese domestic banks. Both DEA and SFA reveal that

foreign banks are less efficient. DEA shows the main source of inefficiency for

foreign banks as managing interest income, whereas domestic banks are inefficient

in managing non-interest income and interest expense. SFA reveals contextual

variables such as interbank ratio, loan-to-deposit ratio and cost-to-income ratio

are significant in explaining inefficiency. The correspondence of rankings based on

DEA vs. SFA is positive and moderate in strength but efficiency estimates do not

belong to the same distribution. Using DEA and SFA side-by-side can encourage

more rigorous and in-depth bank efficiency studies where each method’s limitation

can be overcome by the other.

Keywords Technical efficiency • Scale efficiency • Data Envelopment Analysis •

Stochastic frontier analysis • Single-output Translog function • Multi-output

Translog distance function • Cobb-Douglas function • Robustness testing •

Chinese banks • Efficiency spillovers • Profitability • Potential improvements •

Efficiency contribution measure

5.1 Introduction

The primary motivation of this chapter is to compare and contrast the well-

established efficient frontier methods data envelopment analysis (DEA) and sto-

chastic frontier analysis (SFA) in generating efficiency estimates. In efficient

frontier literature on banking, the choice between DEA and SFA is often based

on authors’ preferences and the complementary nature of these methods makes a

final compelling argument in favor of one or the other difficult. We set out to
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explore whether DEA and SFA can be used in a synergistic manner to allay various

research design concerns such as potential distortion of results by measurement

error or mis-specification of assumed functional relationships. The research design

includes various robustness tests such as sensitivity of results to majority state-

owned large banks, and stability of results to modelled outputs and functional

specification.

Briefly, DEA is a peer benchmarking method used in comparing performance of

organizations of similar operations and identifying relative inefficiencies that may

detract from performance. As a non-parametric efficient frontier method, DEA

calculates a comparative ratio of weighted outputs to weighted inputs that defines

performance—reported as a relative efficiency estimate. On the other hand, SFA is

a parametric efficiency measurement method that explains the variation in organi-

zational performance in terms of managerial efficiency, operating environment and

statistical noise. SFA efficiency estimates are based on parameter values of regres-

sion. In Sect. 5.3, further details on DEA and SFA and formal definitions are

provided, including a discussion of how firm-specific factors (i.e. contextual vari-

ables) can be used to explain inefficiency.

The primary motivation of this chapter is executed in the context of how foreign

banks in China perform when compared against domestic banks as well as each

other in the post-2007 period. Between 2002 and 2006, China further opened up its

domestic financial markets to foreign financial institutions through various reforms

that expanded the scope of business in foreign exchange and renminbi (RMB).

Business engaged in by domestic and locally incorporated foreign banks (hereon,

foreign banks) include such activities as receiving deposits from the general public;

granting loans of short, medium or long term; handling negotiable instruments;

trading bonds; issuing letters of credit and guarantees; handling domestic and

foreign settlements; issuing bank cards; interbank lending, etc., all effective as of

11 December 2006.1 That is, foreign banks are allowed to conduct the same types of

RMB business as their domestic counterparts and have essentially been granted

equal status as of December 2006 (Xu 2011). Consequently, as of 2007, foreign

banks have been in competition with domestic banks, and these two cohorts can be

analyzed together in benchmarking studies to enable a more direct comparison.

Recent examples of applications of DEA to Chinese banking data include Chen

et al. (2005), Ariff and Can (2008), Hu et al. (2008), Yao et al. (2008), Avkiran and

Morita (2010) and Avkiran (2011). Others who have used SFA instead include Fu

and Heffernan (2007) and Jiang et al. (2009). Luo et al. (2011) use DEA as well as

SFA in a study of Chinese domestic banks only.

1 See ‘Regulations of the People’s Republic of China on Administration of Foreign-funded Banks’

(CBRC 2006). The same regulations also apply to the banking institutions established on Chinese

mainland by financial institutions originating from the Hong Kong Special Administrative Region,

the Macao Special Administrative Region, or Taiwan. For example, in our sample, Hang Seng

bank (China) Ltd, and CITIC Ka Wah Bank (China) Ltd with home groups from the Hong Kong

Special Administrative Region are treated as foreign banks rather than Chinese domestic banks

(see Article 72).
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Key findings of this study for the period 2008–2010 show foreign banks to be

generally less efficient compared to domestic banks based on DEA as well as

SFA. An examination of the sources of inefficiency reveals management of

interest income as an area in need of closer examination by foreign banks. On

the other hand, domestic bank operations appear to be primarily inefficient in

managing non-interest income and interest expense. Other findings suggest that
contextual variables such as interbank ratio, loan-to-deposit ratio and cost-to-

income ratio are significant in explaining inefficiency. However, significance tests

show that efficiency estimates from these different methods do not belong to the

same distribution. Furthermore, lower SFA efficiency estimates are better in

separating the more efficient domestic banks from foreign banks. Under SFA,

single-output Translog functional form emerges as a better specification com-

pared to the Cobb-Douglas specification or the two-output Translog distance

function. Overall, intuitive findings from bank performance analysis pave the

way for use of DEA and SFA side-by-side without the researcher having to justify

one method at the expense of the other. We expect such an inclusive approach to

bring stronger rigor to applications of frontier methods in banking and encourage

more in-depth studies.

The rest of the chapter is organized as follows. Section 5.2 begins by briefly

discussing the Chinese banking sector. It continues to further discuss efficiency

spillovers that bring foreign and domestic banks closer and details the performance

models used for estimating bank efficiency including firm-specific factors. Sec-

tion 5.3 describes the data, followed by a discussion of DEA and SFA methods that

includes formulations. Section 5.4 reports results and analyses based on DEA and

SFA and corresponding robustness tests, ending with a comparison of DEA versus

SFA efficiency estimates. Section 5.5 concludes the chapter with a summary of

main findings and managerial implications.

5.2 Conceptual Framework

5.2.1 Chinese Banking Sector

The Chinese banking sector has been offering a wider range of products and

services as a result of the ongoing deregulation which gained momentum since

China joined the World Trade Organization in December 2001. Main examples of

successful listings among the Chinese domestic banks include the Agricultural

Bank of China Ltd., Bank of China Ltd., Bank of Communications Ltd., China

Construction Bank Corp., and Industrial and Commercial Bank of China Ltd. These

majority state-owned commercial banks keep a large branch network throughout

China, and thus, hold a greater share of the retail banking market. Other domestic

banks include joint-stock commercial banks with minority state or government
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ownership, city commercial banks, rural commercial banks, and wholly state-

owned banks known as policy banks. The China Banking Regulatory Commission

(CBRC)—established in 2003—is the main entity responsible for monitoring

implementation of regulations and reforms, and the People’s Bank of China is the

central bank. A more extensive historical background to the development of the

Chinese banking sector can be read in Berger et al. (2009) and in Asmild and

Matthews (2012).

Foreign banks in China have a history of slow entry—representative offices

being allowed for the first time in 1979—followed by branches a few years later

in special economic zones. It was not until 1996 that foreign banks—under

individual licenses—were permitted to engage in business with local enterprises

by accepting deposits and writing loans in renminbi. Lin (2011) maintains that

the predominant form of foreign bank entry into China is green field investment

where new branches are established from ground up, rather than the brown field
approach that requires taking over or building on an existing branch. Green field

investments are likely to be more expensive because such an exercise would

include recruiting and training staff while working on building reputation.

Furthermore, such costs would have to be allocated across multiple periods,

and at least during the initial years of operation, cost control is likely to be

treated as of secondary importance because the focus would be on expanding

market share.

The basic motivation of policy makers and regulators for encouraging foreign

bank presence revolves around anticipated enhancement of structure and compet-

itive efficiency of a country’s banking system. For example, foreign banks are often

credited with contributing to improvement of domestic banking through efficiency

spillovers. Spillovers may take the form of emulation of innovative products and

services of foreign banks by domestic banks as seen in personal banking, and

relocation of talent from foreign to domestic banks (see Deng et al. 2011 and Xu

2011). Such spillovers bring foreign and domestic bank operations closer, thus
enabling benchmarking against a common frontier. Nevertheless, foreign banks are
still in a stage of growth as they open more branches and employ more people.

According to PricewaterhouseCoopers (2012, p. 21) “They are yet to benefit from

increases in operational efficiency and economies of scale”. It is this expectation of

substantial differences in performance that further encourages this chapter to pitch

DEA against SFA in the context of measuring the operational or technical effi-

ciency of foreign and domestic banks.

The initial anticipated finding based on the comment by Pricewaterhou-

seCoopers (2012) is more efficient domestic banks for the period 2008–2010,

which can be explained by the progress made by the domestic banks since the

early days of foreign ownership (see preceding discussion on efficiency spill-

overs). Yet, an earlier study by Berger et al. (2009) based on SFA efficiency

estimates of thirty-eight Chinese banks across 1994–2003 state that, on aver-

age, in developing nations foreign banks are usually more efficient than or at

least as efficient as private domestic banks, and more efficient than state-owned
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banks. In contrast, Lensink et al. (2008) who use SFA on a much larger sample

of 2095 banks across 105 countries (1998–2003) report a general finding of

less efficient foreign banks. Therefore, in the presence of these potentially

conflicting findings, we compare and contrast our chosen non-parametric and

parametric methods with a view to using one method as a robustness test for

the other.

5.2.2 Modeling Performance to Estimate Bank Efficiency

There is no consensus on how to model bank performance, particularly in the

context of evaluating technical efficiency. A recent study of major DEA applica-

tions in banking literature in top journals across 2004–2009 concludes, “. . .there
is no clear agreement amongst the selection of inputs and outputs beyond the

general observance of the intermediation approach to bank behavior” (Avkiran

2011, p. 326). The traditional intermediation executed by banks as part of their

regular operations include incurring interest expense and non-interest expense to
generate deposits (bank liabilities) and writing loans (bank assets) to generate

interest income, as well as generating non-interest income from service fees and

sales commissions. Hence, in this performance benchmarking exercise where we

pitch DEA against SFA, the objective of banks is considered as implementing this

intermediation process efficiently in order to operate profitably. Since we are

looking at two main expense categories and two main revenue categories as the

potential key variables, we are in fact proposing to measure profitability when we

treat them as inputs and outputs, respectively.

One of the basic operations of banks is to make profits by selling liabilities with

one set of features (e.g. liquidity, risk, size and return) and using the proceeds to buy

assets with a different set of features. For example, term deposit accounts (liabil-

ities) held in the name of a number of individuals can provide the underlying funds

needed to write a mortgage loan (asset). In fact, there is no need to look at different

types of assets and liabilities and sacrifice discrimination unless the purpose is to

comment on specific products/services, and the researcher has a very large sample.

Therefore, the performance modeling in this study begins with a parsimonious set

of two discretionary key inputs and one output (where we collapse interest income

and non-interest income into total income) designed to generate a technical effi-

ciency estimate for each bank. In the second stage, we model all four key variables

without aggregation and note whether findings on comparing DEA and SFA are still

similar when dimensionality rises. Yao et al. (2008), Jiang et al. (2009) and Avkiran

(2011) use similar variables involving Chinese banks. Others who have also used

these variables with banks from other countries include Miller and Noulas (1996),

Bhattacharyya et al. (1997), Brockett et al. (1997), Leightner and Lovell (1998),

and Sturm and Williams (2004).
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5.2.3 Contextual Variables

According to Banker and Natarajan (2008), OLS or Tobit regression can be used in

order to understand the impact of various factors or contextual variables on DEA

efficiency estimates. On the other hand, McDonald (2009) concludes that while

Tobit may not be appropriate in this context, OLS is a consistent estimator when

used in second stage DEA efficiency analyses (see Greene 2012 regarding Tobit

regression and the further discussion at the end of Sect. 5.3.2 of this chapter). In

SFA, firm-specific factors or contextual variables are incorporated into the regres-

sion equation. For example, we can explore the relationship between efficiency and

a selection of key traditional financial performance ratios. Potential candidates

include cost-to-income as an overall efficiency ratio used by industry analysts;

impaired loans-to-gross loans (or, non-performing loans ratio, NPL) as a measure of

credit or asset quality; and interbank ratio as a measure of liquidity (ratio of due

from banks to due to banks).2

Historically, domestic banks have shown limited appetite for efficient operations

or lending purely based on risk-return analysis because of their closer ties with

governments. For example, in the past many politically directed lending decisions

have contributed to high non-performing loans, although such practices may grad-

ually be in decline—at least as evidenced by substantially lower non-performing

loans (e.g., according to the China Banking Regulatory Commission, in 2005 the

NPL ratio was 4.2%, whereas by 2009—midway through this study—it had fallen

to 1.58%).3 Similarly, because of domestic banks’ larger branch networks and more

captive customer base—where workers’ wages are deposited—such banks have a

larger deposits base although this does not necessarily imply a larger interbank ratio

if lending to other banks is limited.

Another financial ratio of potential interest is the loan-to-deposit. This ratio can

also be used as a firm-specific factor to acknowledge the impact of regulation on

efficiency. For example, the loan-to-deposit ratio is decreed not to exceed 75% for

all banks operating in China, yet the foreign banks appear to be handicapped by a

smaller branch network in raising deposits, with flow-on limitations on lending (the

grace period for meeting the 75% threshold ended in December 2011). Another

related confounding factor is the practice by the regulators of accepting only one

branch application at a time. All else the same, these conditions are likely to make

efficient revenue generation more difficult because lower deposit raising capacity is

expected to limit revenue generation from traditional lending activities. Thus, this

study also investigates whether regulation of the loan-to-deposit ratio is likely to

have an impact on the efficiency estimates. Summing up, we explore to what extent

2 The interbank ratio is the ratio of funds lent to other banks divided by funds borrowed from other

banks. A ratio greater than 1 indicates that the bank is a net lender in the interbank market and is

therefore more liquid.
3 http://www.cbrc.gov.cn/EngdocView.do?docID¼B22DBFC5175C4AC0AC7926AD7AFEEE27.
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a small selection of key traditional financial ratios (firm-specific factors or contex-

tual variables) are likely to play a significant role in explaining inefficiency.

5.3 Data and Method

5.3.1 Data

This study spans 2008–2010 in an effort to measure the performance of banks in

China against their peers and excludes the three wholly state-owned policy banks

the Agricultural Development Bank of China, the China Development Bank and the

China Exim Bank. Remaining commercial banks with varying degrees of state

ownership are included based on panel data availability across the variables of

interest. Essentially, 2008 marks the first reporting period that captures the opera-

tions for foreign banks when they are considered as offering a range of products and

services similar to domestic banks (data were collected in late 2012 and early 2013

but data for 2011 were mostly unavailable). The 3-year study period is also

appropriate for the common efficient frontier constructed with the pooled data.

The primary data source was Wharton’s Research Data Services.

After accounting for missing data, we were left with 16 foreign banks and

37 domestic banks that consistently had data across all the variables for the

3-year study period (see Table 5.1). The sample represents about 75% of the market

as measured by bank assets. We were also able to collect data for this sample for the

firm-specific factors of cost-to-income ratio, impaired loans-to-gross loans,

interbank ratio and loan-to-deposit ratio. Overall, the data collection effort pro-

duces a sample of 159 bank-year observations in a balanced panel data set, and

enables setting up an efficient frontier common across 3 years. In this sample, four

of the Big Six foreign banks and eight countries and domestic commercial banks are

well represented (see Table 5.1).

Descriptive statistics and correlations between performance variables and firm-

specific factors are shown in Table 5.2. All of the firm-specific factors are correlated

at low levels with the performance variables, and all of the NPL and interbank ratio

correlations are statistically insignificant. The extensive testing in Banker and

Natarajan (2008, p. 56) demonstrates that two-stage methods become unreliable

in explaining the impact of contextual variables (i.e. firm-specific factors) when

such variables are highly correlated with performance variables; the correlations in

the second half of Table 5.2 are all low and mostly insignificant.

Once the foreign and domestic banks are benchmarked against the common

frontier, it is easier to compare how these different cohorts perform against each

other. This approach is appropriate as long as the panel data do not cover too many

years because it assumes no substantial changes in the production technology

during the study period. Various applications of the common frontier in banking

can be found in Dietsch and Lozano-Vivas (2000), Hasan and Marton (2003),
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Table 5.1 Banks in the study (53 banks, or 159 bank-years across 2008–2010)

Sorted by home country

Foreign banks in China

(N¼ 16)

Crédit Agricole CIB (China) France

Société Générale (China) France

CITIC Ka Wah Bank (China)a Hong Kong

Hang Seng Bank (China)b Hong Kong

Nanyang Commercial Bank

(China)

Hong Kong

Bank of Tokyo Mitsubishi UFJ

(China)

Japan

Mizuho Corporate Bank (China) Japan

Hana Bank (China) Korea

Woori Bank (China) Korea

Bank International Ningbo Singapore

United Overseas Bank (China) Singapore

Fubon Bank (Hong Kong) Taiwan

HSBC Bank (China)b United Kingdom

Royal Bank of Scotland (China) United Kingdom

Standard Chartered Bank

(China)b
United Kingdom

Citibank (China)b United States of America

Chinese domestic

banks (N¼ 37)

Sorted alphabetically

Agricultural Bank of China China Merchants Bank

Bank of Beijing China Minsheng Banking

Bank of China China Zheshang Bank

Bank of Communications Chong Hing Bank

Bank of Dongguan Fudian Bank

Bank of Fuxin Fujian Haixia Bank

Bank of Guangzhou Guangzhou Rural Commercial

Bank

Bank of Hangzhou Hankou Bank

Bank of Jilin Harbin Bank

Bank of Nanjing Huaxia Bank

Bank of Ningbo Huishang Bank

Bank of Qingdao Industrial and Commercial Bank

of China

Bank of Shanghai Industrial Bank

Bank of Wenzhou Nanchong City Commercial Bank

Beijing Rural Commercial Bank Shanghai Pudong Development

Bank

China CITIC Bank Shanghai Rural Commercial Bank

China Construction Bank Shengjing Bank

China Everbright Bank Shenzhen Development Bankc

China Guangfa Bank
aThis bank’s new name is CITIC Bank International (China) Ltd.
bBelongs to the group of Big Six foreign banks
cThis bank’s new name is Ping An Bank Co Ltd.
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Avkiran (2009) and Chortareas et al. (2013). Next, we proceed to outline the

principles of DEA and SFA—the two efficient frontier methods at the heart of

this study—where the primary motivation of the chapter calls for close attention to

designing tests in a comparable manner.

5.3.2 Data Envelopment Analysis (DEA)

Before providing a formal definition of the DEA model used, we begin with an

intuitive introduction to this non-parametric method. DEA informs the user whether

performance can be improved relative to observed benchmark performance in a

peer group. Under standard DEA, the relative efficiency estimate (a scalar value) is

expressed as a number between 0 and 1, where a decision-making unit (DMU) with

an estimate of less than 1 is considered inefficient. Benchmark units on the efficient

frontier determine the potential improvements or projections for the various inef-

ficient units not on the frontier. DEA follows the condition of Pareto optimality for

efficient operations, where a DMU or a production unit is not efficient if an output

can be raised without raising any of the inputs and without lowering any other

output. Similarly, a DMU is not efficient if an input can be lowered without

decreasing any of the outputs and without increasing any other input (Charnes

et al. 1981).

Key strengths of DEA include the property that no preconceived functional

structure is imposed on the data in determining the efficient units. That is, DEA

does not assume a particular production technology common to all DMUs. This

means a unit’s efficiency can be assessed based on other observed performance by

benchmarking similar organizations that are better at executing various processes.

As an efficient frontier method, DEA identifies the inefficiency in a particular DMU

by comparing it to efficient DMUs, rather than trying to associate a DMU’s

performance with statistical averages that may not be applicable to that DMU.

Another strength of DEA is its ability to handle related multiple inputs and multiple

outputs in producing a scalar estimate. That is, the optimization process embedded

in the linear program behind DEA accounts for the trade-off between multiple

variables before reporting a single efficiency estimate for a unit. As Gelade and

Gilbert (2003) underline, individual ratios looking at different aspects of an

organization’s effectiveness cannot depict a full picture because ratios are unlikely

to be independent. Alongside the various strengths already mentioned, standard

DEA’s main limitation is the assumption that data are free of measurement error,

thus making DEA more sensitive than stochastic methods to the presence of

measurement error. That is, DEA is often considered deterministic where the

method assumes random variations cancel out one another (for an opposite argu-

ment where DEA is set up as a stochastic frontier estimation method, see Banker

and Natarajan 2008).

Historically, DEA literature has been dominated by radial models that can be

traced to publication of the seminal article, Charnes et al. (1978). In this study, we
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use the output-oriented, variable returns-to-scale version of radial DEA (often

abbreviated as BCC after Banker et al. 1984). Output-orientation is used because

we are primarily interested in identifying overall revenue generating inefficiencies,

i.e. measuring to what extent banks are maximizing their revenues for given levels

of expenses. Next we briefly provide a formal definition of radial DEA (Coelli

et al. 2005, Cooper et al. 2007, 2011 provide authoritative expositions of DEA with

extensive detail).

Efficiency can be defined as the ratio of weighted sum of outputs to weighted

sum of inputs. Efficiency of a DMU, ho, assuming controllable inputs and constant

returns-to-scale, can thus be written as

ho ¼

Xs
r¼1

uryroXm
i¼1

vixio

where s ¼ number of outputs

ur ¼ weight of output r
yro ¼ amount of output r produced by the observed DMU

m ¼ number of inputs

vi ¼ weight of input i
xio ¼ amount of input i used by the observed DMU

ð5:1Þ

While outputs and inputs can be measured and entered in this equation without

standardization, determining a common set of weights can be problematic. DMUs

may well value outputs and inputs quite differently. This potential problem was

addressed through optimization in the CCR model by Charnes et al. (1978) by

allowing a DMU to adopt a set of weights that will maximize its efficiency ratio

without the same ratio for other DMUs exceeding 1. Introduction of this constraint

converts the productivity ratio into a measure of relative efficiency. Thus, we

re-write (5.1) in the form of a fractional programming problem:

max ho ¼

Xs
r¼1

uryroXm
i¼1

vixio

subject to Xs
r¼1

uryrjXm
i¼1

vixij

� 1 for each DMU in the sample

where j ¼ 1, . . . , n number of DMUsð Þ:

ð5:2Þ
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Equation (5.2) represents the ratio form DEA. However, (5.2) has an infinite

number of solutions. To avoid this problem, we convert (5.2) to the more familiar

components of a linear programming problem. In (5.3), known as the multiplier
form, we set the denominator to a constant and maximize the numerator.

max ho ¼
Xs
r¼1

uryro

subject to
Xs
r¼1

uryrj �
Xm
i¼1

vixij � 0

Xm
i¼1

vixio ¼ 1

ur, vi � ε 	 0

ð5:3Þ

In order to prevent an output or an input being mathematically omitted in calcula-

tion of efficiency, the smallest values weights u and v are permitted to have are

non-zero small positive numbers (ε). Equation (5.3) represents constant returns-to-

scale with controllable inputs. It is a primal linear programming problem that

models input contraction (i.e. input-oriented). The output-oriented CCR model is

represented by (5.4):

min ho ¼
Xm
i¼1

vixio

subject to
Xm
i¼1

vixij �
Xs
r¼1

uryrj � 0

Xs
r¼1

uryro ¼ 1

ur, vi � ε 	 0

ð5:4Þ

The BCC model used in this study to measure pure technical efficiency is derived

by introducing a convexity constraint
Xn
j¼1

λj ¼ 1 into (5.4), thus ensuring that an

inefficient DMU is benchmarked against DMUs of similar size.

The radial models defined above generate bounded efficiency estimates. As

such, Tobit regression of firm-specific factors on DEA efficiency estimates can be

regarded appropriate in explaining their impact because estimates are bounded or

censored (Grosskopf 1996). However, given the doubts raised by McDonald (2009)

about using Tobit in second stage DEA efficiency analyses, we focus on OLS

regression and compare findings to Tobit regression. According to Banker and

Natarajan (2008), particularly when there is no direct production correspondence

between inputs and outputs, DEA may have an advantage over parametric methods

where efficiency estimates are generated in the first stage and inefficiencies are

explained in the second stage by introducing contextual variables via regression

(see Simar and Wilson 2011 for a caveat emptor on two-stage DEA).
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5.3.3 Stochastic Frontier Analysis (SFA)

Aigner et al. (1977) and Meeusen and van den Broeck (1977) devised Stochastic

Frontier Analysis (SFA) independently, and SFA is often regarded as the paramet-

ric equivalent of DEA. SFA is a type of regression in which the asymmetric

(non-negative) managerial inefficiency effects can be separated from the symmetric

error term component, i.e. statistical noise. Examples of statistical noise include

errors in measuring variables in the model, or omitted variables; instances of

managerial inefficiency include inadequately trained personnel.

We consider the well-established Cobb-Douglas and Translog (Transcendental

Logarithmic) functions. Translog is a generalization of the Cobb-Douglas function

and includes second order input terms; Translog is a flexible functional form that

allows partial elasticities of substitution between inputs to vary. To bring confi-

dence to the choice of functional specification, we initially investigate both options

and perform a likelihood ratio (LR) test to compare the fit of the two functional

specifications. Based on the LR test results (see second last paragraph in

Sect. 5.4.3.1), we find that the Translog function is more appropriate. An additional

argument as to why Cobb-Douglas would be inappropriate in a competitive industry

such as banking is the non-concave Cobb-Douglas output dimensions (Klein 1953,

p. 227).

In the core SFA analysis using the Translog function with pooled data, the sum

of outputs interest income and non-interest income (i.e. total income) becomes the

dependent variable. The input variables and the firm-specific factors that may

impact efficiency are the same as those used in DEA. The general equation using

the Translog function with two inputs is as follows:

Production function: ln yið Þ ¼ β0 þ β1 lnx1, ið Þ þ β2ln x2, ið Þ þ 1

2
β3 lnx1, ið Þ2

þ 1

2
β4 lnx2, ið Þ2 þ β5lnx1, i*lnx2, i � ziδþWi þ vi

Inefficiency function: E μi½ � ¼ ziδ ui 
 Nþ μi; σ
2
u

� � ð5:5Þ

where ln(yi), is the natural logarithm of the output total income, ln(x1i), ln(x2i), are
the logarithm of the inputs interest expense and non-interest expense, respectively,
followed by three variables which are the second order of the input variables and

their interaction term. The Translog function provides a broader format to describe

the relationship between the output and input levels than the Cobb-Douglas func-

tion because the output variable may be correlated with higher order input vari-

ables—a relationship not considered in a Cobb-Douglas function; Cobb-Douglas

also makes the simplistic assumption that all production units have the same

elasticities. vi is the two-sided i.i.d. error term. ui is the inefficiency term comprised

of two parts where Wi is defined by the truncation of the normal distribution with

zero mean and the variance of σ2, and ziδ is the mean of inefficiencies modeled as a

linear function of the firm-specific factors.

5 Pitching DEA Against SFA in the Context of Chinese Domestic. . . 125



Altogether, there are five variables in the inefficiency equation (including the

foreign bank dummy variable) to explain bank inefficiencies by firm characteris-

tics—discussed earlier under the heading of firm-specific factors. In summary, we

expect to observe that the output production of total income can be explained by the

input variables of interest expense and non-interest expense and their second order

approximations. The inefficiency function allows us to test the association between

inefficiencies and bank characteristics. While in the single-output Translog function

the two outputs are aggregated into one output as total income, it is also possible to
test the two-output case. Therefore, later in the chapter we explore the two-input

two-output extended model which has greater dimensionality.

A distance function can handle the case of multiple outputs (see Coelli and

Perelman 1999, 2000). The output distance function (Shephard 1970) is defined on

the output set P(x) as follows:

DO x; yð Þ ¼ min θ : y=θð Þ2P xð Þf g ð5:6Þ

where θ is the scalar distance, and DO(x, y) is non-decreasing, positively linearly

homogenous and convex in y and decreasing in x (Lovell et al. 1994). The above

output distance function can be represented in Translog form:

lnDOi ¼ α0 þ
XM
m¼1

αmlnymi þ
1

2

XM
m¼1

XM
n¼1

αmnlnymilnyni þ
XK
k¼1

βklnxki

þ 1

2

XK
k¼1

XK
l¼1

βkllnxkilnxli þ
XK
k¼1

XM
m¼1

γkmlnxkilnymi

ð5:7Þ

where i ¼ 1, 2, . . . , N, denotes bank-years in the data set. We choose the output of

interest income as the Mth output, yMi, and derive the multiple-output Translog

distance function for SFA:

�lnyMi ¼ α0 þ
XM�1
m¼1

αmlny*mi þ
1

2

XM�1
m¼1

XM�1
n¼1

αmnlny
*
milny

*
ni þ

XK
k¼1

βklnxki

þ 1

2

XK
k¼1

XK
l¼1

βkllnxkilnxli þ
XK
k¼1

XM�1
m¼1

γkmlnxkilny
*
mi þ vi � ui

ð5:8Þ

where y*mi ¼ ymi=yM, y
*
ni ¼ yni=yM.

The SFA regression does not require specification of the direction of impact of

firm-specific factors and these can be observed from the signs of the emerging

parameters. Neither is it essential to assume a functional form although it is

common practice. SFA enables hypothesis testing and estimation of standard errors

using maximum-likelihood methods (Coelli et al. 1998). Similar to the studies by

Jiang et al. (2009) and Deng et al. (2011) on Chinese bank efficiency, this study also

relies on the one-step approach proposed in Battese and Coelli (1995) where

non-negative technical inefficiencies are a function of firm-specific factors
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(contextual variables). Banker and Natarajan (2008) also consider appropriate for

the parametric approach a one-step procedure that jointly estimates inefficiency and

the impact of contextual variables; further support for the one-step procedure can be

found in Wang and Schmidt (2002) who provide evidence based on Monte Carlo

testing. Inefficiencies are independently distributed as truncations of normal distri-

bution with constant variance but mean values that are a linear function of the

observed variables. We use FRONTIER 4.1 (by Tim Coelli) to estimate the

parameters of SFA regressions.

SFA efficiency estimates based on regression are not highly sensitive to large

data changes—a potential advantage over DEA when substantial measurement

errors are suspected. Fries and Taci (2005) claim SFA to be more appropriate in

situations where measurement errors are more likely—such as transition econo-

mies. On the other hand, SFA may be inappropriate if the structural form assumed

or the distributional assumptions made for random errors or inefficiencies are not

representative of the organizations studied. For example, Luo and Donthu (2005)

report that management prefer DEA and regard it as a more reliable frontier

method.

In summary, DEA and SFA both have some key assumptions that may become

the main weaknesses of these methods. That is, standard DEA assumes no mea-

surement error, whereas SFA studies commonly assume a particular structure

which may not be appropriate for the whole sample. Thus, this study compares

and contrasts results from both methods in an analysis where an industry best-

practice frontier is determined under each approach. We unfold the comparison in

two stages where we initially use a single output (core model) but later move to a

two-output benchmarking model (extended model)—assuming variable returns-to-

scale in acknowledgement of the nature of the sample (see the next section for

formal tests of scale inefficiency).

5.4 Results and Analysis

5.4.1 Testing for Scale Inefficiency Using DEA

In general, assuming variable-returns-to-scale would acknowledge the often differ-

ent scale of operations anticipated among banks operating across China. A quick

look at the minima and maxima in Table 5.2 suggests the presence of substantial

differences in the scale of operations. Therefore, we explore this issue through the

radial DEA formulations of CCR (Charnes et al. 1978) and BCC (Banker

et al. 1984) which permit calculation—rather than inference—of scale inefficien-

cies, i.e. scale efficiency equals the ratio of CCR to BCC efficiency estimates. We

compute rank correlations between output-oriented CCR and BCC estimates (two

inputs and two outputs) and measure statistical differences. Spearman’s rho 0.7340

between CCR and BCC estimates are significant at the 0.000 level. However, when
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we test for statistical differences between radial CCR and BCC efficiency estimates,

Mann-Whitney U test rejects the null at the 0.000 significance level.

The above finding suggests there are significant differences between efficiency

estimates that assume constant returns-to-scale vs. variable returns-to-scale,

i.e. there is substantial scale inefficiency despite a statistically significant rank

correlation. We quantify such differences by computing scale efficiencies. While

the mean scale efficiency is reasonably high at 0.9029, there is a wide range of

estimates (0.3350–1.0000) that are substantially skewed at �2.35. When we rank

the bank-years on descending scale efficiency, we find that the last fourteen places

are occupied by foreign banks with Société Générale (China) representing the

bottom two bank-years (ranked results are available from the authors). The overall

conclusion is one of substantial scale inefficiency at least in some of the banks, but

to a greater extent with the foreign banks when mean scale efficiency estimates are

compared across the two cohorts (domestic 0.9357 vs. foreign 0.8269). Thus, we

conclude that using the variable returns-to-scale specification is better in order to

rule out any impact of scale inefficiency in the overall analysis; this choice is also in

line with Translog SFA (see last paragraph in Sect. 5.4.3.1), thus enabling a

meaningful comparison between DEA and SFA.

5.4.2 Main DEA Results

5.4.2.1 Core Model (Single-Output BCC-O)

The analysis begins with the radial, output-oriented BCC which assumes variable

returns-to-scale. In order to facilitate a more systematic comparison between DEA

and SFA, we begin with a simple core model comprised of one output (total

income) and two inputs (interest expense and non-interest expense). Instead of

simply listing ranked 159 bank-years obtained from DEA, we provide a summary of

the information extracted (the ranked list is available from the authors). Results

indicate a wide range of efficiency estimates (0.4867–1.0000). Mean efficiency

estimates (foreign 0.7900, domestic 0.8672) and mean ranks (foreign 95, domestic

72) point to a less efficient foreign bank cohort. Mann-Whitney U test for foreign

versus domestic banks efficiency estimates rejects the null that the estimates come

from the same distribution at the 0.004 level. The three most frequently referenced

or emulated efficient bank-years by DEA algorithm in determining the relative

efficiency estimates for others in the sample are: 77 times for Huishang Bank 2010

(domestic), 63 times for Bank International Ningbo 2008 (foreign) and 46 times for

Bank of Beijing 2008 (domestic)—highlighting the dominance of domestic banks.

Next, following the example set by Banker and Natarajan (2008) and McDonald

(2009), we report OLS regression of firm-specific factors on the core performance

model DEA efficiency estimates, which suggests, all else the same, a 1 percentage

point drop in the loan-to-deposit or cost-to-income ratios could lead to a 0.0708

percentage point and 0.2159 percentage point rise in overall bank efficiency
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significant at the 0.0459 and 0.0017 levels, respectively, where the residuals are

distributed normally (Tobit regression results are very similar to OLS and available

from the authors). These relationships are robust to various additional tests such as

logging variables or removing outliers.4

An additional robustness test of the sample involves removing the five majority

state-owned large banks from the data set of the core model (i.e. 15 bank-year data

points) and checking the difference between the two cohorts’ efficiency estimates.

Mean efficiency estimates (foreign 0.7900, domestic 0.8676) are almost identical to

those of the full sample—indicating little if any distortion caused by the large

majority state-owned banks. Once again, Mann-Whitney U test on foreign versus

domestic banks rejects the null that the estimates come from the same distribution at

the 0.004 level for the core model. Similarly, when we regress firm-specific factors

on efficiency estimates from the reduced sample, the same factors emerge as

statistically significant in explaining efficiency with almost identical coefficients

and significance levels (available from the authors).

5.4.2.2 Extended Model (Two-Output BCC-O)

The extended model takes advantage of two outputs (i.e. interest income and

non-interest income that were summed to create total income under the core

model), and the same two inputs. The extended model approach is designed to

explore whether similar findings can be observed in the presence of increased

dimensionality. Once again, results indicate a wide range of efficiency estimates

(0.5444–1.0000). Mean efficiency estimates (foreign 0.8258, domestic 0.9156) and

mean ranks (foreign 94, domestic 70) still point to a less efficient foreign bank

cohort. Mann-Whitney U test rejects the null that the estimates come from the same

distribution at the 0.002 level. The three most frequently emulated efficient bank-

years are: 56 times for Nanchong City Commercial Bank 2010 (domestic), 55 times

for Bank of Beijing 2009 (domestic) and 55 times for Bank of Jilin 2010 (domes-

tic)—once again highlighting the dominant domestic banks where Bank of Beijing

perseveres across both models. OLS regression of firm-specific factors on the

extended model DEA efficiency estimates reveal similar results to that of the core

model where a 1 percentage point drop in the loan-to-deposit or cost-to-income

ratios could lead to a 13.5167 percentage points and 0.1168 percentage point rise in

overall bank efficiency significant at the 0.0001 and 0.0498 levels, respectively

(Tobit regression results are very similar to OLS and available from the authors).

Once again, tests of robustness reveal that the above relationships hold after

removal of outliers or logging of variables.

4 SFA is even less sensitive to the presence of any outliers because it estimates the efficient frontier

by fitting a regression line to the production possibilities set, rather than relying on extreme

performers to define the frontier.
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The additional robustness test of removing the five majority state-owned large

banks from the data set results in mean estimates almost identical to those of the full

sample. Mann-WhitneyU test on foreign versus domestic banks rejects the null that

the estimates come from the same distribution at the 0.006 level for the extended

model. Regressing firm-specific factors on efficiency estimates shows the same

factors as statistically significant in explaining efficiency with almost identical

coefficients and significance levels (details available from the authors). In short,

we have no reason to believe that including the majority state-owned banks in either

the core or the extended model are distorting our main findings.

5.4.2.2.1 Overall Potential Improvements Identified by DEA

Using the Extended Model

Figure 5.1 summarizes the overall potential improvements identified by DEA using

the extended model, i.e. radial inefficiencies or under-produced outputs, as well as

slacks or over-utilized inputs. In the full sample of 159 bank-years, most of the

inefficiencies are embedded in non-interest income—which suggests that some

banks are falling substantially behind their peers in generating income from less

traditional banking activities. The second largest source of inefficiency is interest

expense and this can be construed as a reflection of the regulated interest rates in

China. The second pie-chart also identifies non-interest income, followed by

interest expense, as the main sources of inefficiency among domestic banks.

Finally, the third pie-chart points to interest income as the major source of ineffi-

ciency among foreign banks. This observation can be interpreted as an outcome of

their limited branch networks and the general position of domestic banks across

China as favored institutions, in particular, with regards to government or state

related loans. As intuitively expected, compared to foreign banks the extent of

inefficiencies embedded in interest expense is much greater with domestic banks

because of their operations’ emphasis on handling deposits.

In summary, the pie-charts indicate that the main source of inefficiency among

the foreign banks is interest income, whereas the domestic banks appear to be

mostly inefficient in managing their non-interest incomes and interest expenses.

The inefficiencies seen with foreign banks are a reflection of limited access such

institutions have to potential borrowers. At the same time, the inefficiency embed-

ded in non-interest income of domestic banks highlights the potential for growth as

such banks become more skilled in providing less traditional banking services.

Similarly, as market deregulation unfolds at a steady pace, inefficiencies in interest

expenses are also likely to lessen.

5.4.2.2.2 Assessing the Marginal Role of the Output Variables in DEA:

Efficiency Contribution Measures (ECM) for the Extended Model

We implement the method outlined in Pastor et al. (2002) on the extended model

using the full sample, i.e. N¼ 159. The approach calls for making an inefficient
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Domestic banks

Foreign banks
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interest 
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Non-
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income, 
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Non-
interest 
expense, 
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Non-
interest 
income, 
9.61%

Fig. 5.1 Potential improvements identified by output-oriented DEA for the variables in the

extended model with two outputs and two inputs
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DMU efficient by increasing actual output levels to their projected levels deter-

mined by the efficient frontier, and re-running output-oriented DEA without the

variable under scrutiny (i.e. the candidate). Calculation of ECM for each of the two

candidates follows the steps outlined below:

1. The initial DEA with the full-complement of variables identifies the projected

output levels for the inefficient DMUs.

2. Actual output levels for inefficient DMUs are replaced by projections, i.e. virtual

DMUs are created.

3. DEA is repeated without the candidate output variable but in the presence of

virtual DMUs.

4. The ratio of the efficiency estimate from the reduced model to the estimate from

the original full-complement model yields ECM or ρo.
5. If ρo¼ 1, then the candidate has no marginal effect on the observed DMUs’

efficiencies. Alternatively, if ρo> 1, then the candidate variable has some effect.

Pastor et al. (2002) develop a non-parametric statistical test to evaluate the signif-

icance of ECM. From the full set of ECM (ρ) values generated using the sample, a

random sample of ρ values are drawn. If a candidate is not relevant, efficiency

estimates are unlikely to be affected by its presence. This means corresponding

random ρ values are also unlikely to be high. This idea is formalized by introducing

two parameters, namely, ρ ρ 	 1ð Þ representing tolerance for changes in efficiency

estimates due to the candidate, and po 0 < po < 1ð Þ representing the proportion of

units with efficiency changes that exceed the tolerance. Hence, the marginal impact of

a candidate on efficiency estimates would be deemed statistically significant when P
Γ 	 ρ½ � 	 po where Γ is the random ρ. For example, if po ¼ 0:20 and ρ ¼ 1:15, the
above relationship would indicate the candidate as relevant if more than 20% of the

DMUs had associated efficiency change greater than 15% when the variable is

omitted. Using Monte Carlo experiments, Pastor et al. (2002) report that parameters

of po ¼ 0:15 and ρ ¼ 1:1 provide a good performance of the significance test. We

adopt these parameters to evaluate the significance of ECM scores for candidate

variables. Results indicate that when interest income is treated as the candidate,

3.77% of the DMUs have ECM above 1.1. Alternatively, when non-interest income
is the candidate, a significant 44.03% (i.e. greater than 15%) of the DMUs have ECM

greater than 1.1, i.e. non-interest income plays a greater role in efficiency evaluation or

discriminating between theDMUs. This finding ties inwell with the insight previously

gained from Figure 5.1 where the largest potential improvement (inefficiency) across

the full sample was indicated for non-interest income.

5.4.3 SFA Results

5.4.3.1 Core Model (Single-Output Translog Function)

We start with the Translog function SFA and report the results in Table 5.3 using

the dependent variable of total income (the logarithm of the sum of interest income
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and non-interest income). The Translog function is well-specified because all the

input variables are highly significant. A positive relationship between the output

variable and the first order of two input variables (the logarithm of interest expense
and the logarithm of non-interest expense) suggests that total income rises with an

increase in different expense components that are part of the intermediation process

undertaken by banks. The second order approximation input variables are also

shown to be significant (with one exception under robustness testing) and the

magnitudes of the coefficient estimates are non-negligible which indicates the

second order approximation is also significantly related to the output variable.

Table 5.3 SFA parameters for the core model with one outputa

Sample robustness test

Translog function

(N¼ 159) (5.1)

Translog function without large majority

state-owned banks (N¼ 144) (5.2)

Dependent variable: Total

income

Production functionb

Interceptc 1.664***(0.000) 1.641***(0.000)

Interest expense 0.322***(0.000) 0.310***(0.000)

Non-interest expense 0.628***(0.000) 0.648***(0.000)

0.5 * Interest expense

squared

0.129***(0.000) 0.126***(0.000)

0.5 *Non-interest expense

squared

0.087*(0.047) 0.077(0.051)

Interest expense�Non-

interest expense

�0.105**(0.004) �0.099***(0.001)

Inefficiency function (firm-specific factors)

Impaired loans-to-gross

loans (asset quality)d
�0.211(0.179) �0.232(0.189)

Interbank ratio (liquidity) 0.002*(0.019) 0.002**(0.01)

Loan-to-deposit ratio

(regulation)

0.076**(0.004) 0.072*(0.038)

Cost-to-income ratio

(overall efficiency)

0.535***(0.000) 0.534***(0.000)

Foreign bank dummy 0.116***(0.000) 0.115***(0.000)

Sigma-squared (σ2u þ σ2v
�

0.005***(0.000) 0.005***(0.000)

Gamma
σ2u

σ2uþσ2v

� �
0.999***(0.000) 0.999***(0.000)

Log likelihood 199.649 179.678

LR test of the one-sided

error

273.147 253.730

Mean efficiency estimate 0.7168 0.7113
aSFA model assumes a truncated normal distribution of inefficiencies. P-values are in parentheses
bAll the variables take logarithm values in the production functions
c***Significant at 0.1%; **significant at 1%; *significant at 5%
dAlso known as the non-performing loans ratio (NPL)
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Next, we focus on the inefficiency function results detailed in column 1 of

Table 5.3 and the statistically significant coefficients therein. The estimated coef-

ficients in the inefficiency function reveal how firm-specific factors impact on bank

technical efficiency. For example, the positive coefficient for cost-to-income ratio is

consistent with the expectation that higher costs would be found in less efficient

operations (a relationship already observed under the regression of firm-specific

factors on DEA efficiency estimates). This is a highly anticipated finding and brings

further confidence to the analysis because the cost-to-income ratio is the banking

industry’s standard overall efficiency ratio. A positive coefficient for interbank ratio

(the liquidity measure) is also consistent with conventional wisdom. That is, a

higher interbank ratio suggests that a bank having difficulty in converting deposits

to commercial or consumer loans would lend to other banks in the wholesale market

instead, thus enjoying narrower interest margins in the process. This reduction in

margins manifests itself as inefficiency in generating income. Similarly, the posi-

tive loan-to-deposit ratio signals that regulation handicaps banks’ ability to generate

income as this ratio approaches the 75% threshold (see Sect. 5.2.3). On the other

hand, the positive and significant coefficient of the foreign bank dummy variable

brings confidence to the overall finding already reported using DEA that foreign

banks are less efficient than domestic banks.

Finally, the insignificant coefficient for the impaired loans-to-gross loans ratio

indicates that non-performing loans in Chinese banking are well managed and do

not impact on efficiencies in generating income. This is a reflection of the high-

growth Chinese economy where authorities regard non-performing loans as an

acceptable price to pay for growth; in fact, there is a thriving market where NPL

are removed from bank books through purchases made by asset management

companies originally established by government in 1999.

Other parameters reported include the gamma value, γ ¼ σ2u
σ2uþσ2v , that is, the

variance of the normal distribution scaled by the sum of the variance of the normal

distribution and variance of the two-sided disturbance term. In theory, the gamma

value can range between 0 and 1, where a higher value indicates inefficiencies

playing a greater role in the total residual terms. The high gamma values (0.999)

across both samples imply negligible noise; this insight also brings more confidence

to DEA reported earlier as the presence of high levels of noise in data can

potentially distort DEA efficiency estimates—highlighting how the two methods

can complement each other. Coupled with mostly statistically significant produc-

tion and inefficiency function variables, results indicate that the presence of inef-

ficiency is non-negligible and dominate the variance of the total residual terms;

therefore, the two-sided noise vi has little impact on total variance. The null

hypothesizing the absence of inefficiency is rejected at the 0.001 level of signifi-

cance with a log likelihood ratio of 199.6 along with the high LR test of the

one-sided error at 273.1. These observations indicate that the model is well spec-

ified and significant at the equation level.

Focusing on the efficiency estimates for all bank-years using the Translog

function, once again, instead of listing the ranked 159 bank-years obtained from
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SFA (core model), we summarize our key observations (the ranked list is available

from the authors). Results indicate a wide range of efficiency estimates

(0.1516–0.9706). Examining the two cohorts’ mean efficiency estimates (foreign

0.5818, domestic 0.7752) and mean ranks (foreign 127, domestic 60) indicates that

SFA also estimates the foreign bank cohort to be less efficient but in a more

discriminating manner than DEA. Independent samples t-test and Mann-Whitney

U test on foreign versus domestic bank efficiency estimates both reject the null that

the estimates come from the same distribution at the 0.0001 level. The top

performing three bank-years in the sample in descending order are all domestic

banks represented by the Bank of Guangzhou (2008, 2010), and Huishan Bank

(2010) and there is a very clear congregation of domestic bank-years in the top half

of the sample sorted by descending SFA efficiency estimates. A comparison of SFA

and DEA is offered in Sect. 5.4.4.

We continue by implementing the same sample robustness test previously

undertaken with DEA. That is, we exclude the five majority state-owned large

banks to see whether the results of our core SFA test will vary. We find that leaving

out the 15 bank-years (five banks for three consecutive years) does not change the

main results (see results in column two of Table 5.3). The input variables of interest

expense and non-interest expense are still significantly positively correlated with

the output variable of total income, foreign banks remain less efficient, and the

associations originally observed in the inefficiency equation are retained.

We also test the Cobb-Douglas function first mentioned in Sect. 5.3.3. To

determine which functional form fits the data better, other factors such as the

dependent variable and firm-specific factors are kept the same. The Cobb-Douglas

is a special case of the Translog function where all the coefficients of the second

order terms are restricted to be 0, i.e. β3¼ β4¼ β5¼ 0 in (5.5). Hence, Cobb-

Douglas imposes more stringent assumptions on data than the Translog function.

In choosing between Cobb-Douglas and Translog specifications, such restrictions

are tested using the likelihood ratio test (LR test) with the null hypothesis that

Cobb-Douglas is nested in Translog. The null is strongly rejected at the level of

0.001 with the LR ratio of 141.94, thus adding another formal argument in favor of

the Translog function first visited in paragraph 2 of Sect. 5.3.3.

In DEA, we have already established that the appropriate assumption on the

elasticity of scale is variable returns-to-scale (VRS). In the spirit of ensuring DEA

and SFA analyses are comparable, we need to establish that VRS also holds in SFA.

Hence, the null hypothesis of constant returns-to-scale (CRS) in Translog SFA is

tested. The returns-to-scale can be estimated as the sum of interest expense and

non-interest expense coefficients (see Sect. 8.4 in Coelli et al. 2005). The assump-

tion of CRS is equivalent to the null hypotheses that the first order coefficients add

up to 1 and rows and columns of the matrix of the second order coefficients sum up

to zero. In order to test the restrictions jointly, we employ the Wald test. The

unreported results (available from the authors) show that the null hypothesis of

CRS is strongly rejected at the level of 0.000 with the Chi(3)-square value of

424.72. Hence, we are confident that efficiency estimates from DEA and SFA are

based on the same assumption of variable returns-to-scale.
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5.4.3.2 Extended Model (Two-Output Translog Function)

Column 1 of Table 5.4 presents the two-output Translog function results on the full

sample of 159 bank-years. Nine regressors of output and input items are used in the

right hand side of the Translog function and their signs vary. Interpreting the

coefficients of these regressors is difficult at best where inputs and outputs interact

with each other; thus, normally emphasis is placed on efficiency estimates.

We next turn to the inefficiency function results in Table 5.4 with two outputs.

The observed signs correspond to the findings using the single-output Translog

function and results suggest the higher cost-to-income ratio is associated with less

efficiency and foreign banks are less efficient than domestic banks. However, the

other three firm-specific variables are shown to be unrelated to bank technical

inefficiencies. We also test the robustness of the two-output model using a smaller

sample of 144 bank-years in which the five large majority state-owned banks are

removed. The sample robustness test results reported in column 2 of Table 5.4 are

quantitatively similar to that of column 1 with the exception of an insignificant

gamma. The gamma value is an important measure of the presence of inefficiencies

and the robustness test suggests the component of inefficiency is now negligible in

relation to the total residual terms—a most unlikely scenario given what we already

know about the sample. The above observations suggest that the single-output

Translog function provides a better fit for our data than the two-output model.

5.4.4 Comparing DEA and SFA Results

We now return to the primary motivation of this study. Theory points out that DEA

efficiency estimates are expected to be greater than SFA efficiency estimates

because DEA efficiency estimates are upwardly biased in comparison to the

unobserved true efficiency estimates, in particular with small samples (Badin

et al. 2014). On the other hand, SFA may provide more consistent estimates.

Descriptive statistics in Table 5.5 on the full sample indicate that the mean and

median DEA efficiency estimates are higher than SFA efficiency estimates. We run

a series of statistical tests to further compare DEA efficiency estimates with those

generated by SFA. For the core model, Spearman’s rho 0.590 significant at the 0.01
level indicates that the correspondence of rankings between the two methods is

moderate rather than high; for the extended model, the rank correlation is 0.538 also

significant at the 0.01 level. These correlations compare favorably to the

Spearman’s rho of 0.480 (significant at the 0.10 level) reported by Luo

et al. (2011) on a sample of Chinese commercial banks across 1999–2008. More

importantly, Mann-Whitney U test rejects the null that the estimates come from the

same distribution at the 0.05 level for both the core and extended models—

highlighting the different distributions of efficiency estimates created by a

non-parametric versus parametric efficient frontier method. In summary, DEA
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Table 5.4 SFA parameters for the extended model with two outputs

Sample robustness test

Translog

function

(N¼ 159) (1)

Translog functionwithout large

majority state-owned banks

(N¼ 144) (2)

Dependent variable: Log(Interest
income)

Production function

Intercepta 1.252***

(0.000)

1.318 ***(0.000)

Log(Non-interest income/Interest

income)

0.125**(0.005) 0.120***(0.001)

Log(Interest expense) �0.431**
(0.000)

�0.381***(0.000)

Log(Non-interest expense) �0.528***
(0.000)

�0.550***(0.000)

Log(Interest expense) * Log

(Non-interest expense)

0.128**(0.004) 0.095*(0.024)

0.5Log(Interest expense) * Log

(Non-interest income/Interest

income)

�0.072*
(0.036)

�0.060*(0.042)

0.5Log(Non-interest expense) * Log

(Non-interest income/Interest

income)

0.054(0.171) 0.046(0.169)

0.5Log(Interest expense) * Log(Inter-

est expense)

�0.159***
(0.000)

�0.129***(0.000)

0.5Log(Non-interest expense) * Log

(Non-interest expense)

�0.104(0.052) �0.073(0.165)

0.5Log(Non-interest income) * Log

(Non-interest income)

0.004(0.123) 0.005*(0.014)

Inefficiency function (firm-specific factors)

Impaired loans-to-gross loans (asset

quality)b
�0.082(0.633) �0.179(0.236)

Interbank ratio (liquidity) 0.002(0.208) 0.002(0.062)

Loan-to-deposit ratio (regulation) 0.002(0.957) 0.005(0.906)

Cost-to-income ratio (overall

efficiency)

0.511***

(0.000)

0.495***(0.000)

Foreign bank dummy 0.172***

(0.000)

0.181***(0.000)

Sigma-squared (σ2u þ σ2v
�

0.006***

(0.000)

0.006***(0.000)

Gamma
σ2u

σ2uþσ2v

� �
0.999***

(0.000)

0.014 (0.997)

Log likelihood 183.265 165.891

Mean efficiency estimate 0.7475 0.7414
a***Significant at 0.1%; **significant at 1%; *significant at 5%
bAlso known as the non-performing loans ratio (NPL)
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and SFA efficiency estimates that use Chinese data from 2008 to 2010 are statis-

tically different.

Similarly, a visual examination of the distribution of bank-years across the

unreported sample sorted on SFA efficiency estimates reveals a stronger congrega-

tion of foreign banks in the bottom half of the table compared to the DEA’s sorted

sample (available from the authors). In fact, under SFA the more efficient bank-

years are almost entirely populated by domestic banks. The more noticeable

congregation of domestic versus foreign banks in the sorted SFA sample suggests

that SFA efficiency estimates are more discriminating. The non-parametric Kol-

mogorov-Smirnov test (K-S test) can also be used as a formal test to establish

whether the efficiency estimates from SFA and DEA differ significantly. The null

hypothesis of ‘no difference’ or ‘same distribution’ is rejected for efficiency

estimates from both the single-output and two-output performance models at a D-
statistic of 0.4717 (0.000) and 0.5157 (0.000), respectively; the K-S test also reports

that the efficiency estimates are unlikely to be normally or log normally

distributed.5

Table 5.5 Descriptive statistics on DEA and SFA efficiency estimates (N¼ 159)

DEA, core

model (single-

output BCC-O)a

SFA, core model

(single-output

Translog function)

DEA, extended

model

(two-output

BCC-O)

SFA, extended

model (two-output

Translog function)

Mean 0.8439 0.7168 0.8885 0.7475

Median 0.8520 0.7426 0.9129 0.7790

Standard

deviation

0.1157 0.1275 0.1112 0.1382

Coefficient

of variationb
0.1371 0.1779 0.1251 0.1849

Maximum 1.0000 0.9706 1.0000 0.9997

Minimum 0.4867 0.1516 0.5444 0.1692

Skewness �0.6064 �0.9699 �1.0550 �0.7566
Kurtosis �0.0055 2.2913 0.5435 1.2988

Number of

efficient

bank-years

17 n/a 29 n/a

aCore model has one output; extended model has two outputs. BCC-O; Banker, Charnes and

Cooper radial DEA, output-oriented
bRatio of standard deviation to mean

5 The higher number of efficient bank-years under DEA with the extended model reflects the

impact of greater dimensionality when a second output is introduced; the impact of increased

dimensionality is equally easily discernible when core model means and medians are compared

against those from the extended model (see Table 5.5). Clearly, there is a loss of discrimination as

dimensionality rises for a given sample size – better known as the curse of dimensionality.
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We extend the comparison by examining the bank-years common to the fourth

(top 25%) and first (bottom 25%) quartiles across DEA and SFA with the aim of

observing the degree of agreement between these methods at the two extremes

when results are ranked (N¼ 159). Twenty-two of the forty bank-years found in the

fourth quartile in the single-output Translog SFA are also found in DEA, and 24 are

found in the first quartile—a rather poor correspondence confirming the distribu-

tional test reported earlier in this section. Similarly, 19 of the bank-years found in

the fourth quartile in SFA based on the two-output Translog function are found in

DEA, and 23 are found in the first quartile. A closer look at the membership of the

top ten bank-years ranked in the single-output Translog SFA finds only four

corresponding to those identified as efficient under DEA; the same approach yields

a correspondence of five bank-years when the two-output Translog function results

are compared to DEA—once again highlighting the distributional differences

between parametric and non-nonparametric results.

The above observations highlight the risks involved in exclusively relying on

DEA or SFA for ranking purposes. Does the researcher have to favor one method

over the other? The answer can be found in time-series forecasting literature which

suggests that a single set of efficiency estimates can be constructed by taking the

geometric means of the estimates to emerge from DEA and SFA (Coelli and

Perelman 1999). It has been argued that taking simple average of estimates from

multiple methods can reduce bias by averaging out individual biases (Palm and

Zellner 1992).

5.5 Concluding Remarks

The primary motivation of this study is to compare and contrast the popular DEA

and SFA methods in a bank benchmarking exercise and explore the possibility of

using these rival methods in a complementary manner. This motivation is actioned

in the context of how foreign banks in China perform when compared against

domestic banks.

It is worth summarizing the complementarity between DEA and SFA. In partic-

ular, when the non-parametric and parametric methods lead to the same key

findings as seen in this chapter, researchers can rely on DEA to identify the main

potential improvements (see Fig. 5.1), while SFA can be relied upon to directly

explain the role of firm-specific factors on inefficiency (see Table 5.3). On the other

hand, when DEA and SFA produce significantly different rankings, then the

researcher may consider other ranking approaches, e.g. constructing geometric

means based on efficiency estimates from DEA and SFA before ranking. In

situations where measurement error cannot be reliably assessed, SFA can act as a

test of robustness for DEA. Similarly, when the functional structure assumed by

SFA may not apply equally across the sample, DEA can become the test of

robustness for SFA. Interestingly, sample robustness testing suggests that the

presence of large majority state-owned commercial banks do not distort the main

findings. Furthermore, at least in the case of Chinese banking data, the single-output
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Translog function estimated by SFA is a better fitting functional specification than

the Cobb-Douglas or the two-output Translog functions.

According to DEA, in general, foreign banks are less efficient than domestic

banks. A break-down of the sources of inefficiency in the modeled performance

variables point to management of interest income among the foreign banks as a key

area for potential improvement, whereas the domestic banks appear to suffer mainly

from inefficiencies in managing non-interest income and interest expense. The

inefficiencies identified in this study with foreign bank operations can be construed

as a consequence of limited access they have to potential depositors and borrowers.

Similarly, the inefficiency found in generation of non-interest income by domestic

banks points to the potential for expansion as domestic banks become more adept in

less traditional banking services. These are intuitive findings based on what we

know about Chinese bank regulation and well-accepted strengths and weaknesses

of foreign versus domestic bank operations.

SFA reports similar yet more discriminating results to that of DEA regarding the

less efficient foreign banks. Parameters of the inefficiency function in SFA reveal

mostly anticipated relationships. For example, the liquidity measure, regulation

measure, and the industry ratio for overall efficiency show a significant but negative

impact on total income. Overall, results point to the use of parsimonious

benchmarking models and a Translog function as appropriate choices for discrim-

inating among performance of banks.

DEA and SFA efficiency estimates based on the study’s performance modeling

are significantly correlated but they do not belong to the same distribution. Overall,

the intuitive findings from these methods from opposing camps indicate that

efficiency estimates are not simply manifestations of specific assumptions that

underlie DEA or SFA, thus bringing confidence to using either method or both in

benchmarking bank performance. That is, similar to the conclusion reached by

Weill (2004) for European banking, we also conclude that neither method can be

categorically identified as the most suitable for Chinese banking.

The two methods illustrated in this study can be used by regulators for checking

against in-house performance evaluation systems and identifying those banks that

may need closer scrutiny. For regulatory purposes, the comparison of the two

efficient frontier techniques can be further expanded by following the six consis-

tency conditions identified by Bauer et al. (1998). Revealed potential improvements

can also be used by bank management who may be interested in developing a better

understanding of their weaknesses and strengths against their industry peers. Other

compelling reasons to undertake multivariate benchmarking can be found within

the framework of Basel III expected to be fully implemented by 2019. Given the

greater awareness of the interconnectedness of the global financial system since the

global financial crisis of 2007–2009, comparisons with peers are likely to be more

important than simply mechanically checking a list of regulatory boxes for a given

institution. For example, two ratios proposed within the Basel III framework,

namely, the 30-day liquidity coverage ratio (LCR), and the net stable funding

ratio (NSFR), deserve special attention and can be included in future benchmarking

exercises when data become available.
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Chapter 6

Assessing Organizations’ Efficiency Adopting
Complementary Perspectives: An Empirical
Analysis Through Data Envelopment
Analysis and Multidimensional Scaling,
with an Application to Higher Education

Eva M. de la Torre, Marti Sagarra, and Tommaso Agasisti

Abstract In this chapter we integrate Data Envelopment Analysis (DEA) and

Multidimensional Scaling (MDS) with the aim to discuss the potential complemen-

tarities and advantages of combining both methodologies in order to reveal the

efficiency framework and strategies of organisations. To do so we use the example

of the Spanish HE system. MDS empowers efficiency analysis, by means of

defining areas through which universities and their ratios and efficiency indicators

can be grouped and clustered, contributing to the understanding of those potential

factors that are behind efficiency—and helping in explaining it. In this sense, MDS

sheds light on the ‘process’ that leads to higher/lower levels of efficiency, condi-

tional to universities’ characteristics. We complete the study with a discussion of

efficiency in three institutions.
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6.1 Introduction

Higher Education (HE) systems produce large amounts of data that need to be

analysed and interpreted, and desirably understood by the wide public (e.g. citizens,

policy makers and other stakeholders) in order to answer the increasing demand of

accountability and transparency in the use of public funds. Combining and com-

paring differentiated methodologies which aggregate multiple inputs and outputs in

the efficiency’s evaluation of Decision Making Units (DMUs—universities in the

case of this work), can result in several advantages such as obtaining a more

complete understanding of the data, surpassing the inherent shortcomings of each

methodology when applied separately, or making the results of the analysis more

intuitive and accessible to the non-specialist.

In this chapter we combine two methodologies: (i) Data Envelopment Analysis

(DEA), a non-statistical efficiency technique that applies linear programming to

weight the inputs and outputs and to rank the efficiency of DMUs; and

(ii) Multidimensional Scaling (MDS), a distance-based multivariate analysis tech-

nique in the production of statistical maps. The aim is to discuss the potential

complementarities and advantages of combining both methodologies in order to

reveal the efficiency framework and institutional strategies of the Spanish HE

system. In the last years an increasing interest in the efficiency and characterisation

of the HE sector has arisen because it is one of the main national driving forces for

economic growth (Johnes 2008). From the point of view of efficiency, the Spanish

HE system is largely a public sector, being the public universities those that account

for the majority of the resources employed and the outputs produced in the sector.

As a consequence of the economic crisis, the public resources have decreased and

their efficient use has become a matter of major relevance, also in the case of

HE. Finally, universities are increasingly acting as strategic actors, making it

necessary to address the also increasing heterogeneity of the sector in order to

perform unbiased assessment exercises (international rankings and evaluation

agencies), and MDS is a valuable tool for addressing such heterogeneity.

Several authors have combined DEA with a multivariate statistical technique,

usually Principal Component Analysis (PCA). In DEA, DMUs may become fully

efficient or not depending on the inputs and outputs employed in the model

specification, and so a methodology aimed at guiding model selection in DEA is

desirable (Serrano-Cinca and Mar-Molinero 2004). Consequently, some authors

use PCA as a method to overcome these DEA shortcomings or to compare the

results of both methodologies. For instance, Zhu (1998) evaluates the economic

performance of Chinese cities, Adler and Golany (2001) analyse theWest European

air transportation industry, and Bruce Ho and Dash Wu (2009) assess the online

banking performance combining both techniques.

Instead, the joint utilization of DEA and amultivariate analysis technique is fairly

new in the educational context. With the aim of showing the potential of the

combination of these methods, we show the results of an empirical application of

DEA and MDS to the Spanish HE system. In so doing, we formulate the specific

146 E.M. de la Torre et al.



research question: which aspects of the Spanish universities’ efficiency can be
described, when analysed through the two methods—and which cannot be ade-
quately interpreted when considering a single one? In the empirical exercise, we

combine two data sources on the Spanish HE System: the Integrated University

Information System (Sistema Integrado de Informaci�on Universitaria—SIIU) of the

Spanish Ministry of Education; and the Observatory of the Research Activity of

Spanish Universities (Observatorio de la Actividad Investigadora en la Universidad
Espa~nola—IUNE). On the one hand, the SIIU is a new platform for the collection,

processing and analysis of data on the Spanish HE system. It contains extensive data

on the academic activity of universities and their financial statements. On the other

hand, the IUNE Observatory was established in 2012. It counts on a bibliometric

team responsible for producing the IUNE’s bibliometric indicators based on theWeb

of Science (ISI) and gathers data on research and innovation activities from Spanish

administrative sources (Sanz Casado et al. 2011).

The remainder of the chapter is organized as follows. In Sect. 6.2, the two

methodologies are briefly presented, and in Sect. 6.3 the dataset is described. In

Sect. 6.4, DEA is applied on the data about Spanish universities, while Sect. 6.5

combines DEA and MDS methods in an empirical exercise. Section 6.6 contains

some concluding remarks.

6.2 DEA and MDS Methodologies: A Brief Overview

6.2.1 The Data Envelopment Analysis Method

DEA (Farrell 1957; Charnes et al. 1978; Deprins et al. 1984) is a non-parametric

method that estimates the frontier of production possibilities (or frontiers) from the

observations (DMUs) in the sample through linear programming. The DMUs

positioned in the frontier (universities in our example) are identified as efficient

units while the level of inefficiency of those under the frontier is measured as the

distance from the frontier itself. To approximate the frontier it is assumed that any

university j ¼ 1, . . . , k, . . . , n consumes x ¼ x1j, . . . , xij, . . . xmj
� �2Rm

þ inputs to

produce y ¼ y1j; . . . ; yrj; . . . ; ysj

� �
2Rs
þ outputs. The different level of input con-

sumption and output production of the universities is used to estimate an underlying

technology T* ¼ x; yð Þ2Rm
þ � Rs

þ
��x can produce y

� �
common for all universities.

This underlying technology defines the production possibilities set. Finally, the

efficiency score, or distance of each DMU to the frontier, is calculated as a weighted

ratio between inputs and outputs.

Since in this work we focus in the public sector of the Spanish HE system, we

employ an output-oriented DEA, because the resources of public institutions are

strongly influenced by external political and economic factors, being the objective

of institutions (and of the output oriented DEA) that one of maximizing the output
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given the resources available (Tone and Sahoo 2003; Duch 2006; Agasisti and

Perez-Esparrells 2010; Berbegal-Mirabent et al. 2013). We also take care of the

strong variability of the Spanish universities in terms of size employing the variable

returns to scale (VRS) version of the DEA method, which compares DMUs with

those of the same relative size when calculating the efficiency frontier. In a DEA

VRS model the following assumptions are made: free disposability of inputs and

outputs, or the possibility of producing less with more; convexity, which accounts

for the feasibility of the weighted average of feasible production plans; no

possible rescaling; and positive weights for inputs and outputs that when added

are equal to 1.

Descriptions of the use of DEA in the HE sector can be found in the literature. In

particular, Johnes (2006) comments on the different uses of this methodology in HE

and Berbegal-Mirabent and Solé-Parellada (2012) classify the range of proxies used

in DEA empirical studies. Regarding the analysis of the efficiency of the wider

education sector, Worthington (2001) and De Witte and Lopez-Torres (2015)

perform a literature revision of the different efficiency methodologies used,

including DEA.

6.2.2 The Multidimensional Scaling Method

Multidimensional Scaling (MDS) is a non-parametric and distance-based multivar-

iate analysis technique, which produces statistical maps from the main character-

istics of the data, thus having the advantage of making the results accessible to the

non-specialist in an intuitive way (Sagarra et al. 2015a, b). As Mar-Molinero and

Serrano-Cinca (2001) point out, MDS implementation does not need of any sophis-

ticated statistics, and it offers a different paradigm, a different way to look at the

problem, lying its power in its accessibility. Examples of the use of MDS in the HE

sector are Stenberg and Davis (1978), Mar-Molinero (1989, 1990), Mar-Molinero

and Mingers (2007) and Sagarra et al. (2015a, b, 2016).

Given a set of distances, or similarities, between pairs of points, MDS has two

procedures or variants to construct the statistical maps in order to locate the points

in the space. The first procedure is the metric or classical scaling, which relies on

the absolute value of the similarities (Chatfield and Collins 1992). The second

version of the algorithm, the one used in this work, is the non-metric or ordinal

scaling, which relies on the relative ordering of the similarities. It attempts to place

the points in the map in such a way that if the similarity between two points is

“large” they are placed next to each other, and if the similarity is “small” they are

placed far apart. In this way, a simple visual inspection of the map may provide

insights into the information contained in the distance (similarity) matrix. MDS

generates reference scales, hence its name.

In MDS proximities can be worked out: (i) between cases (in our case univer-

sities, see for example Sagarra et al. 2015a, b), or (ii) between variables (in this

case, ratios and DEA specifications). In this work, proximities are calculated
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between variables, not just because the number of cases can be very large and the

number of variables stays normally between more reasonable limits, but because we

want to explore the reasons why a university has achieved a particular DEA value,

and to assess the combinations of DEA specifications with the traditional ratios.

Furthermore, obtaining a complete image of the Spanish HE system structure will

allow us to analyse the different strategies adopted by each university, and the

formation of strategic groups.

An additional advantage of MDS is that complementary methodologies can be

easily applied to add meaning to the statistical map or configuration. In this work

we complement MDS results with Hierarchical Cluster Analysis and Property

Fitting (a technique which relies on linear regression), so this subject is discussed

in full below.

Because scaling maps are built using relationships of order, the problem of

discordant or extreme observations is minimised (Coxon 1982). For the same

reason, MDS is more general than PCA, but both are closely related when the

data are multivariate normal and correlations are used as measures of distance

(Chatfield and Collins 1992).

6.3 Data and Selection of Indicators

6.3.1 Our Sample

The exercise of complementation of the DEA and MDSmethodologies presented in

this work is applied to data for the academic year 2010–2011 on 47 Spanish

universities, all of them public universities offering on-campus education.1 The

47 universities considered in the analyses gather most of the resources and produc-

tion of the Spanish HE system (see Table 6.1).

DEA is a methodology sensible to outliers, a limitation that does not apply to the

case of MDS. Therefore, we have excluded from the sample three public universi-

ties: Universidad Internacional Menéndez Pelayo (UIMP) and Universidad

Internacional de Andalucı́a (UNIA), which are special universities with no aca-

demic staff but able to issue university degrees; as well as Universidad Nacional de

Educación a Distancia (UNED), the public university in Spain providing distance

education which confers it with special characteristics. We also exclude all private

universities, since they would add too much heterogeneity to the sample.

1 A list of the universities included in the analysis and their acronyms is available in Appendix.
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6.3.2 Inputs and Outputs Employed in the DEA Analysis

As we have already mentioned, the DEA methodology assumes that

x ¼ x1j, . . . , xij, . . . xmj
� �2Rm

þ inputs are used to produce y ¼ y1j; . . . ; yrj; . . . ; ysj

� �
2Rs
þ outputs. In particular, our DEA specification considers that universities use

two inputs to produce three outputs (see Table 6.2). This entails a very simplified

framework of the production process of universities, but useful to explain our

methodological choices.

As inputs, we consider the total enrolment and total academic staff full time

equivalent (FTE), both of them widely used in the DEA literature (e.g.: Johnes

1996; Fandel 2007; Agasisti and Dal Bianco 2009; Katharaki and Katharakis 2010;

Kempkes and Pohl 2010; Rayeni and Saljooghi 2010; Kuah and Wong 2011; Lee

2011; Duh et al. 2014; or Johnes 2014). They represent the human capital of the

university, being strongly correlated to the current expenditures and the facilities

available at the institution. The academic staff is the labour force of the university

performing the core activities of the institution.

Similar to Thanassoulis et al. (2011), we consider three different outputs: the

number of graduated students (teaching output), the number of publications

(research output) and the number of patents granted (third mission output). Regard-

ing the teaching output, several studies approximate it through the number of

graduates (e.g. Wolszczak-Derlacz and Parteka 2011; Lu and Chen 2013; Duh

et al. 2014). The DEA literature considers the numbers of students both, aggregated

and separated by degree level. In our case, our proxy aggregates bachelor and

master level students, since in 2011 in Spain there were still students taking and

graduating in pre-Bologna degrees (Agasisti and Perez-Esparrells 2010). As for the

number of publications, it is the most important factor for the evaluation of the

academic staff in Spain, and it is a proxy of the research output widely employed in

DEA studies on HEIs, being the following the most recent ones: Lee (2011),

Berbegal-Mirabent et al. (2013) or Duh et al. (2014). Finally, we approximate the

third mission output through the number of patents, because they recognise the

legal rights to commerce inventions and “an increase in the number of university

Table 6.1 Resources and production of the universities included and excluded in the sample

Universities in the sample Universities excluded from the analysis

Total % Obs. Total % Obs.

Enrolled students 1,181,526 77.23 47 348,336 22.77 30

Academic staff HC 98,930 89.59 47 11,499 10.41 30

Academic staff FTE 72,598.7 89.85 47 8198.6 10.15 30

Graduates 216,061 80.90 47 51,008 19.10 30

Publications 50,605 95.31 47 2492 4.69 30

Citations 396,729 96.92 47 12,991 3.08 30

Patents 838 98.36 47 14 1.64 30

Source: Authors’ elaboration
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patents is therefore an indicator of transfer improvement” (Kim 2013, p. 187). Our

proxy double weights those patents with an international extension PCT and most

probably underestimates the total number of patents produced by universities since

inventions are not always disclosed to the university Technology Transfer Office

(Thursby et al. 2001; Di Gregorio and Shane 2003; Markman et al. 2007; Siegel

et al. 2007).

6.3.3 Indicators Included in the MDS Analysis

The variables included in the MDS analysis are 18 ratios related to the three

missions of the university (teaching, research and knowledge transfer—see

Table 6.3) and the efficiency scores for the 21 possible DEA specifications given

the two inputs and three outputs used in this work (Table 6.4), where specification is

to be understood as a particular combination of inputs and outputs. The 18 ratios

(Table 6.3) were calculated from the raw data for each university, in order to

describe each Spanish university and to create rankings based on one or multiple

indicators. The ratios correct the size effects of the raw data and attempt to describe:

(i) the employment structure of faculty staff (fte_hc); (ii) the teaching activity:

composition of the student body in terms of the discipline studied (under_enrol,

humsc_grad, sci_grad and med_grad), and teaching productivity (grad_enrol); (iii)

the research activity: research by disciplines (humsc_pub, sci_pub and med_pub)

and the level of citation by publication (cit_pub); (iv) different productivity mea-

sures of faculty staff (enrol_fte, grad_fte, pub_fte and pat_fte); (v) the relation

Table 6.2 Definition of the variables employed in the DEA analysis

Type of

variable Code Variable Description

Inputs A Enrolled

studentsa
Enrolled students in undergraduate and Master studies

(units)

B Academic

staff FTEa
Total academic staff (Full-time-equivalent) excluding

those in the affiliated institutions (units)

Outputs 1 Graduatesa Students graduated in undergraduate and Master studies

(units)

2 Publicationsb Number of publications in the Web of Science—ISI (units)

3 Patents

grantedc
Number of national patents and patents with a PCT (Patent

Cooperation Treatyd) international extension (units)

Source: Authors’ elaboration
aSource: SIIU. Data on enrolment refers to the 15th of March of 2011. Data on graduates and the

academic staff refers to the 31st of December of 2010
bSource: Observatorio IUNE—ISI. 2014. Data on publications refers to 2011
cSource: Observatorio IUNE—Red OTRI. 2014. Data on third mission refers to 2011
dThe Patent Cooperation Treaty (1970) is an international patent law treaty, which allows to

protect inventions in each of its contracting states with a single application, the so-called

international application or PCT application. http://www.wipo.int/pct/en/
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between the three missions of universities (pat_pub, pub_enrol and pat_enrol); and

(vi) a measure of university size (size) in order to account for the possibility of

non-linear effects. Through including the efficiency scores of the 21 possible DEA

specifications (Table 6.4) we go beyond the efficiency score that a single DEA

analysis that includes all the inputs and outputs assigns to each university and we

explore the reasons why a university has achieved a particular score (Sagarra

et al. 2016).

6.4 Studying HEIs’ Efficiency by Means of Data
Envelopment Analysis: Results

In an output oriented analysis efficient units take efficiency scores equal to 1 and

inefficient units higher than 1 (the production of outputs can be increased without

increasing the inputs level). However, to make the interpretation of results easier we

present the inverse of the efficiency scores, so efficient units keep taking efficiency

scores equal to 1 but inefficient units score under 1. Table 6.5 contains a ranking of

the Spanish universities based on their efficiency scores and Table 6.6 shows some

descriptive statistics on these scores.

This analysis labels 16 universities as efficient (34.04% of the sample).

According to our results, the average efficiency of the Spanish HE system is

Table 6.3 Definition of the 18 ratios calculated from the raw data

Ratio Ratio description

fte_hc Academic staff (FTE)/Academic staff (HC)

under_enrol N. undergraduate students enrolled/N. students enrolled

humsc_grad Graduates (Social Sciences and Humanities)/Total graduates

sci_grad Graduates (Sciences)/Total graduates

med_grad Graduates (Medicine)/Total graduates

humsc_pub Publications (Social Sciences and Humanities)/Total publications

sci_pub Publications (Sciences)/Total publications

med_pub Publications (Medicine)/Total publications

enrol_fte N. students enrolled/Academic staff (FTE)

grad_fte N. graduates/Academic staff (FTE)

pub_fte N. publications/Academic staff (FTE)

pat_fte N. patents/Academic staff (FTE)

pat_pub N. patents/N. publications

grad_enrol N. graduates/N. students enrolled

pub_enrol N. publications/N. students enrolled

pat_enrol N. patents/N. students enrolled

cit_pub N. citations/N. publications

size Total enrolment (Bachelor þMaster)

Source: Authors’ elaboration
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0.911 and the standard deviation is 0.108. Despite the heterogeneity regarding the

size and productivity of the Spanish public universities, the Spanish HE sector is a

fairly efficient system and the variability of the efficiency scores is quite low.

Among the universities with lower efficiency levels there are those located in the

Canary Islands (ULL and ULPGC) and the efficient universities are mostly located

in Catalonia (UAB, UB, UPC and UPF) and Madrid (UAH, UAM, UCM and

UPM), which indicates that the special location of these universities confers them

with significant differences in efficiency with respect to those universities located in

other regions. Additionally, Table 6.7 shows that, on average, that efficient univer-

sities use more inputs than the inefficient ones to produce more output. Moreover, if

we consider the weights endogenously assigned by the DEA method to each

institution as proxies of their “implicit” strategy, Table 6.8 reveals that the Spanish

HE system is strongly teaching oriented (weights are specially high for the numbers

of students) and that the efficient sector of the system shows a production structure

relatively more oriented to research and third mission activities than the less

efficient sector.

Table 6.4 DEA

specificationsa
Specification Inputs Outputs

A1 A 1

AB1 A, B 1

B1 B 1

A2 A 2

AB2 A, B 2

B2 B 2

A3 A 3

AB3 A, B 3

B3 B 3

A12 A 1, 2

AB12 A, B 1, 2

B12 B 1, 2

A13 A 1, 3

AB13 A, B 1, 3

B13 B 1, 3

A23 A 2, 3

AB23 A, B 2, 3

B23 B 2, 3

A123 A 1, 2, 3

AB123 A, B 1, 2, 3

B123 B 1, 2, 3

Source: Authors’ elaboration
aThe meaning of the codes A, B, 1, 2, and 3 can be consulted in

Table 6.2
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6.5 Combining DEA and MDS Methodologies: Results

6.5.1 Preliminary Insights

As we have already mentioned, we applyMDS to a data set of 39 variables: 18 ratios

related to the three missions of the university and the efficiency scores for 21 DEA

specifications. Applying MDS we reduce the dimensionality of the data. As it is

Table 6.5 Ranking of Spanish public universities according to the efficiency scores

N. Univ. Eff. scores N. Univ. Eff. scores N. Univ. Eff. scores

1 UAB 1 17 EHU 0.997 33 UVA 0.876

2 UAH 1 18 UNEX 0.992 34 UA 0.867

3 UAM 1 19 UM 0.990 35 UHU 0.860

4 UB 1 20 UPO 0.989 36 UAL 0.859

5 UCM 1 21 UCLM 0.967 37 UIB 0.856

6 UMA 1 22 USC 0.956 38 UNIOVI 0.854

7 UNAVARRA 1 23 USAL 0.945 39 UBU 0.840

8 UNILEON 1 24 URJC 0.938 40 UMH 0.834

9 UNIRIOJA 1 25 URV 0.931 41 UJAEN 0.797

10 UPC 1 26 UNICAN 0.926 42 UDG 0.791

11 UPCT 1 27 UCA 0.925 43 UDC 0.744

12 UPF 1 28 UPV 0.922 44 UCO 0.734

13 UPM 1 29 UNIZAR 0.910 45 ULL 0.650

14 US 1 30 UGR 0.906 46 UJI 0.589

15 UV 1 31 UC3M 0.897 47 ULPGC 0.589

16 UVIGO 1 32 UDL 0.891

Source: Author’s elaboration

Table 6.6 Descriptive statistics on the efficiency scores by DEA specification. 2010–2011

Min Q1 Median Mean Q3 Max SD

N. of efficient

universities

% of efficient

universities

Eff.

scores

0.589 0.859 0.938 0.911 1 1 0.108 16 34.04%

Source: Author’s elaboration

Table 6.7 Average use of inputs and average production of outputs for efficient and inefficient

universities

A. staff (FTE) Enrolm. Grads. Pubs. Patents

efficient 1855.0 31,165.9 5742.8 1554.4 26.9

inefficient 1384.5 22,028.1 4005.7 830.2 13.1

difference 470.5 9137.8 1737.1 724.2 13.8

difference % 34.0% 41.5% 43.4% 87.2% 105.3%

Source: Authors’ elaboration
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common practice in MDS, we assess this dimensionality using the Stress1 statistic

(Kruskal and Wish 1978). Table 6.9 and Fig. 6.1 show the Stress1 statistic for each

dimensionality. The configuration in six dimensions returns a Stress1 value of

0.0326, which is considered as “excellent” in Kruskal’s (1964) verbal classification.

Since the more dimensions in the configuration, the better the fit, we have

performed the analysis with an additional (seventh) dimension but it contributes

very little to reducing the stress and the results are equivalent to the six-dimensional

configuration, indicating that a configuration in six dimensions is appropriate.

Therefore, each variable has been represented through a set of coordinates in a

six-dimensional space. However, it is not possible to visualise a six-dimensional

map and we are forced to work with projections onto pairs of dimensions. The

projection of the configuration on Dimensions 1 and 2 can be seen in Fig. 6.2, and

the projection of the configuration on Dimensions 2 and 3 can be seen in Fig. 6.3.

The scales in Figs. 6.2 and 6.3 range from �3 to þ3 because the algorithm

automatically standardises the dimensions to mean zero and unit variance.

The next step in MDS methodology is to interpret the configuration. We have

selected Property Fitting and Hierarchical Cluster Analysis to do so. Property

Fitting (ProFit) is a technique which relies on linear regression and that comes

under the general umbrella of biplots (Gower and Hand 1996; Mar-Molinero and

Mingers 2007). It explores, with a series of vectors through the configuration, if a

particular characteristic of the data grows in a given direction. Following the

procedure given by Sagarra et al. (2016), the first step is to standardise the 39 vari-

ables of the study to mean zero and unit variance, in order to make the results unit-

independent. The hypothesis is that the values of the 39 standardised variables (for

the 47 universities) can be explained in relation to the statistical configuration

Table 6.8 Average weights assigned to inputs and outputs

N A. staff Enrolment Graduates Publications Patents

All universities 47 Average 0.270 0.709 0.822 0.044 0.135

SD 0.429 0.523 0.261 0.141 0.190

Efficient

universities

16 Average 0.210 0.582 0.670 0.109 0.222

SD 0.367 0.525 0.377 0.227 0.272

Inefficient

universities

31 Average 0.301 0.774 0.900 0.010 0.090

SD 0.459 0.499 0.109 0.021 0.102

Source: Authors’ elaboration

Table 6.9 Stress1 and

dimensionality
Dimension Stress1

1 0.2808

2 0.1526

3 0.1017

4 0.0633

5 0.0387

6 0.0326

Source: Authors’ elaboration
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Fig. 6.1 Elbow diagram. Source: Authors’ elaboration

Fig. 6.2 Multidimensional scaling configuration in Dimensions 1 and 2. Source: Authors’

elaboration
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derived from the analysis, meaning that the position of the variables in the config-

uration explains the values of the 39 standardised variables for each university. We

run as many linear regressions as universities we have, using each university as

dependent variables, and the coordinates of the variables in the space (dimensions)

for that university as independent variables, in order to plot a column vector for

each university, whose elements are the standardised values of the 39 variables for

that university. Table 6.10 shows the directional cosines for the universities in the

study. Since we use linear regression, we measure the quality of fit by means of the

coefficient of determination, the adjusted R2, also shown in Table 6.10.

We have not completely represented all the universities with R2 values higher

than 0.5, in order not to clutter the representation. We have plotted in Figs. 6.2 and

6.3 the points of 22 representative universities from Table 6.10 (with very high R2

values and with different sizes and very well differentiated strategies), and we have

drawn the vector lines of three universities, UAB and UPC (Fig. 6.2) and UAH

(Fig. 6.3), in order to explain the interpretation of the technique. Although both the

configuration and the lines belong to a space of six dimensions (i.e. the higher the

Fig. 6.3 Multidimensional scaling configuration in Dimensions 2 and 3. Source: Authors’

elaboration
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Table 6.10 Results of ProFit analysis

University Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Adjusted R2

EHU �0.118 �0.116 0.260 �0.661 �0.284 0.238 0.607

UA 0.045 �0.604 �0.058 0.545 0.103 0.314 0.734

UAB �0.408 0.786 �0.132 �0.115 0.212 �0.003 0.833

UAH �0.618 �0.185 0.627 0.067 0.054 �0.132 0.803

UAL �0.530 �0.481 �0.043 0.358 �0.080 �0.308 0.696

UAM �0.167 0.839 0.058 �0.202 0.016 �0.155 0.764

UB �0.385 0.797 �0.013 �0.135 0.354 0.115 0.930

UBU 0.143 �0.767 0.007 0.094 �0.413 0.232 0.812

UC3M 0.737 0.151 0.064 0.321 �0.331 �0.074 0.747

UCA �0.039 �0.773 0.354 0.136 0.012 0.022 0.696

UCLM �0.567 �0.474 0.355 �0.328 �0.168 0.115 0.788

UCM �0.539 0.164 0.291 �0.142 0.340 0.412 0.653

UCO 0.195 �0.013 �0.815 0.198 0.271 �0.032 0.782

UDC 0.436 �0.635 �0.480 0.130 0.073 0.058 0.821

UDG �0.146 0.179 �0.688 0.120 �0.282 0.098 0.561

UDL �0.543 0.368 �0.075 �0.097 �0.146 �0.182 0.406

UGR �0.328 �0.058 �0.203 0.026 0.549 0.298 0.458

UHU 0.309 �0.372 �0.010 0.719 �0.308 �0.174 0.854

UIB �0.428 0.144 �0.442 0.516 0.154 �0.015 0.631

UJAEN 0.204 �0.733 �0.400 0.321 0.027 �0.056 0.816

UJI 0.136 0.059 �0.727 0.593 �0.083 0.030 0.892

ULL 0.216 �0.132 �0.911 �0.058 �0.041 0.094 0.891

ULPGC 0.190 �0.303 �0.767 �0.134 �0.146 0.094 0.720

UM �0.813 �0.315 0.405 �0.051 0.088 �0.073 0.928

UMA 0.299 �0.449 0.441 0.415 0.310 0.073 0.714

UMH �0.466 0.248 �0.397 0.069 0.333 �0.286 0.565

UNAVARRA 0.291 0.155 0.503 �0.191 �0.653 �0.223 0.850

UNEX �0.527 �0.473 0.379 �0.465 �0.036 �0.144 0.861

UNICAN 0.120 0.593 �0.398 �0.487 �0.320 �0.090 0.848

UNILEON �0.601 �0.486 0.233 �0.375 0.008 �0.239 0.821

UNIOVI �0.103 �0.165 �0.591 �0.600 �0.191 0.063 0.748

UNIRIOJA �0.105 0.051 0.464 0.121 �0.308 0.388 0.393

UNIZAR 0.259 0.375 �0.100 �0.626 �0.288 0.148 0.661

UPC 0.935 0.120 0.155 0.032 0.185 �0.131 0.959

UPCT 0.752 0.396 0.292 �0.200 �0.226 0.043 0.881

UPF �0.569 0.703 0.109 0.321 �0.116 �0.035 0.939

UPM 0.949 �0.029 0.142 �0.001 0.183 �0.024 0.947

UPO �0.443 �0.099 0.542 0.371 �0.373 �0.003 0.735

UPV 0.848 0.008 0.043 0.002 0.271 �0.074 0.763

URJC �0.680 �0.450 0.031 0.243 0.343 �0.076 0.819

URV �0.243 0.818 �0.133 �0.047 �0.230 �0.209 0.816

US 0.604 �0.236 0.322 0.082 0.439 0.260 0.752

(continued)
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inclination of the unit vector with respect to the plane, the shorter will be the

projection of the vector), we deal with the projections into two dimensions by

drawing both the line and the projection of the unit vector associated with the line.

For every ‘vectorised’ university we have projected, as an example, only six vari-

ables on to the vector.

Following Sagarra et al. (2016), if we consider a scale associated with every of

the three represented lines, the zero of the scale is in the centre of coordinates of the

six-dimensional configuration. As we move towards one end of the line, the scale

increases in general from 0 to þ3, and as we move towards the other end, the scale

decreases in general from 0 to �3.
Finally, as the points representing variables in Figs. 6.2 and 6.3 are just pro-

jections of a six-dimensional configuration on a two-dimensional space, it is

possible for two variables to appear near to each other in Fig. 6.2 and/or Fig. 6.3

while being far apart in the six-dimensional space. We resort to Hierarchical Cluster

Analysis to find out which variables are closer to each other in the full

six-dimensional space. The clustering algorithm is the one suggested by Ward,

which maximises homogeneity within clusters and heterogeneity between clusters.

For visualization purposes, the variables contained in each of the resultant clusters

have been distinguished in Figs. 6.2 and 6.3 by using different geometric shapes

(circles, squares and two types of triangles).

6.6 Results

Figure 6.2 shows the first and second dimensions of the MDS analysis. In the

specific case of UAB, moving from the top to the bottom of the line we find the

following variables: pub_fte, B23, med_grad, sci_grad, pat_pub and fte_hc, taking

the values 3.74, 1.69, 1.16, �0.49, �0.89 and �1.55 respectively. In the case of

UPC, we find sci_grad, sci_pub, pat_fte, B23, cit_pub and humsc_grad taking the

values 3.30, 2.32, 3.26, 1.69,�0.42 and�3.09 respectively. In the case of UAH, we
find AB123, fte_hc, B23, med_grad, pub_fte and cit_pub taking the values 0.81,

�0.90, �0.37, 0.16, �0.29 and �0.80 respectively. The ordering of the projections
over the line is related with the ordering of the original standardised values of the

variables, although the match is not perfect. If the match had been perfect, we

would have found a value of the adjusted R2 much closer to unity.

Table 6.10 (continued)

University Dim1 Dim2 Dim3 Dim4 Dim5 Dim6 Adjusted R2

USAL �0.704 �0.325 0.092 �0.388 �0.203 0.100 0.776

USC 0.679 0.204 �0.099 �0.116 0.174 �0.250 0.547

UV �0.776 0.333 0.040 0.023 0.401 0.067 0.860

UVA 0.182 �0.565 0.022 �0.517 �0.312 0.208 0.716

UVIGO �0.202 0.032 0.587 0.067 0.053 �0.307 0.392

Source: Authors’ elaboration
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If we analyse the position of the variables in Fig. 6.2 it is to be noticed that at the

far right of the first dimension we find those efficiency (DEA) models and the ratio

that contain output 3 (patents) in relation with input B (academic staff FTE), as well

as ratios related to the participation of the science area in the overall university

productivity and to the relationship between the production of patents and the

production on teaching and research. We find in this area of the figure the poly-

technic universities and UC3M, a university not classified as polytechnic but with a

strong technical profile. On the opposite side, at the left of the first dimension, we

find those DEA models that contain outputs 1 and 2 (graduates and publications) in

relation with inputs A and B (enrolled students and academic staff FTE), and

several ratios relating these inputs and outputs, as well as the importance of

medicine and social science & humanities areas in the global activity of universi-

ties. The universities located at this end of the first dimension are more regional

(e.g. UM, UCLM, UNEX, URJC, among others). This suggests that Dimension

1 could be labelled as “orientation towards efficiency in the third mission

vs. orientation towards the traditional missions of teaching and research”.

Analysing the second dimension in Fig. 6.2, it is to be noticed that at the top of

the “map” are located those DEA models relating output 2 (publications) mainly to

input B (academic staff FTE) but also to input A (enrolled students). We find

together with these DEA specifications different ratios related to the publication

productivity, such as pub_fte, pub_enrol or cit_pub. The kind of universities we find

here are UPF, UAB, UB, UAM, and a more regional one, URV, being most of them

located in Catalonia and Madrid (as in the case of the efficient universities

according to the previous DEA analysis). This suggests that Dimension 2 could

be interpreted as “orientation towards efficiency in research”. Finally, we note that

some variables, most of them efficiency (DEA) models, are located in the centre of

Fig. 6.2. An inspection of the six-dimensional coordinates of all the variables shows

us that the meaning of Dimension 3 could be explained by these variables. Fig-

ure 6.3 represents the projection of the six-dimensional configuration into Dimen-

sion 2 and 3. The third dimension appears to be associated with DEA specifications

which join all three outputs 1, 2 and 3 (graduates, publications and patents) in

combination with both inputs A and B (enrolled students and academic staff FTE),

emphasizing here the presence of the full DEA model AB123, which joins all the

inputs and outputs. This suggests that Dimension 3 could be labelled as “orientation

towards overall efficiency”, a strategy that seems appropriate to define the priorities

of universities like UAH or UNAVARRA. We have not attempted to find meaning

to the rest of dimensions since, for the purposes of this study; efficiency related

effects can be well described using Fig. 6.2 and the following Fig. 6.3.

Figure 6.4 shows the dendrogram of the cluster analysis performed to identify

the proximity between variables in the six-dimensional space. Although the selec-

tion of the number of clusters is at analysts’ discretion, the dendrogram shows a

clear division among four clusters, in line with the findings obtained from the ProFit

analysis and from the interpretation of each dimension. A simple inspection of

Fig. 6.4 adds meaningful findings to the previous analyses: in the first place, it

confirms the full coherence between the location of ratios and their corresponding
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Fig. 6.4 Dendrogram for cluster analysis of variables. Source: Authors’ elaboration
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(or nearest) DEA models. In the second place, it sheds light on the mechanisms and

influential factors behind the different strategies adopted by each university.

6.7 Concluding Remarks

In this contribution we have analysed the efficiency of the Spanish public HE sector

through a DEA analysis, and the strategies and characteristics of its universities

through the MDS method. MDS empowers efficiency analysis, by means of defin-

ing areas through which universities and their ratios and efficiency indicators can be

grouped and clustered, contributing to the understanding of those potential factors

that are behind efficiency—and helping in explaining it. In this sense, MDS sheds

light on the ‘process’ that leads to higher/lower levels of efficiency, conditional to

universities’ characteristics. Combining two different methods to assess the perfor-

mance (and characteristics) of the organizations is essential to look at the phenom-

ena under different perspectives. Single indicators are not able to describe

efficiency, while studying efficiency ratios is not sufficient to cluster universities

according to their characteristics.

These results can be employed by policy makers for multiple uses. For making

an example, it is advisable to take into account both efficiency scores and univer-

sities’ characteristics to design incentive schemes, such as competitive fund allo-

cations. Considering different dimensions can shed light on the strategies adopted

by single universities, and can be a reference to verify ex-ante and ex-post whether

the objectives set are pursued or not, by devoting efforts and resources in directions

and activities which are coherent with the strategy. Also, the policy-maker can set

targets of efficiency improvements to be reached—by controlling for institutions’

strategies and factors used by them.

Both efficiency scores and MDS graphs may be used also by managers of single

institutions. In this perspective, the two methods are an example of benchmarking

tools. Through DEA, universities’ managers can identify potential peers, and set

targets for improving their efficiency by leveraging their inputs and outputs’

weights. Through MDS, each university can individuate its own positioning in

the various clusters created by the (multi)dimensional space. Combining the infor-

mation, thus, each manager can decide which are the strategies to be developed, the

corrections to be implemented, and the indicators to be monitored to check whether

performance is improved over time in an efficient way. In other words, efficiency

analyses and MDS can be some ingredients of an evolved management control

system at organizational level.

However, a transversal point that must be stressed is that to unfold the potential

of both policy and managerial use of data in developing evidence based policies and

strategies, it is necessary to provide the involved actors with training to fully

understand the potential of these—as well as their limitations.

Finally, we recall two limits of the current chapter that pave the way for future,

potential extensions of this research: (i) the integration of Stochastic Frontier
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Analysis with DEA and MDS would make the overall analysis more robust

methodologically and (ii) the extension of the time span for considering more

than 1 year would allow to study how efficiency and institutional strategies vary

over time.

Appendix: List of Universities Included in the Analysis
and Their Acronyms

N. Abbreviation University name

1 EHU Universidad del Paı́s Vasco/Euskal Herriko Unibertsitatea

2 UA Universidad de Alicante

3 UAB Universitat Autònoma de Barcelona

4 UAH Universidad de Alcalá

5 UAL Universidad de Almerı́a

6 UAM Universidad Autónoma de Madrid

7 UB Universitat de Barcelona

8 UBU Universidad de Burgos

9 UC3M Universidad Carlos III de Madrid

10 UCA Universidad de Cádiz

11 UCLM Universidad de Castilla-La Mancha

12 UCM Universidad Complutense de Madrid

13 UCO Universidad de Córdoba

14 UDC Universidad de A Coru~na

15 UDG Universitat de Girona

16 UDL Universitat de Lleida

17 UGR Universidad de Granada

18 UHU Universidad de Huelva

19 UIB Universitat de les Illes Balears

20 UJAEN Universidad de Jaén

21 UJI Universidad Jaume I de Castellón

22 ULL Universidad de La Laguna

23 ULPGC Universidad de Las Palmas de Gran Canaria

24 UM Universidad de Murcia

25 UMA Universidad de Málaga

26 UMH Universidad Miguel Hernández de Elche

27 UNAVARRA Universidad Pública de Navarra

28 UNEX Universidad de Extremadura

29 UNICAN Universidad de Cantabria

30 UNILEON Universidad de León

31 UNIOVI Universidad de Oviedo

32 UNIRIOJA Universidad de La Rioja

33 UNIZAR Universidad de Zaragoza

(continued)
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N. Abbreviation University name

34 UPC Universitat Politécnica de Catalunya

35 UPCT Universidad Politécnica de Cartagena

36 UPF Universitat Pompeu Fabra

37 UPM Universidad Politécnica de Madrid

38 UPO Universidad Pablo de Olavide

39 UPV Universidad Politécnica de Valencia

40 URJC Universidad Rey Juan Carlos

41 URV Universitat Rovira i Virgili

42 US Universidad de Sevilla

43 USAL Universidad de Salamanca

44 USC Universidad de Santiago de Compostela

45 UV Universitat de València (Estudi General)

46 UVA Universidad de Valladolid

47 UVIGO Universidad de Vigo

Source: Authors’ elaboration
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Chapter 7

Capital Stock and Performance of R&D
Organizations: A Dynamic DEA-ANP
Hybrid Approach

Yueh-Cheng Wu, Qian Long Kweh, Wen-Min Lu, Shiu-Wan Hung,
and Chia-Fa Chang

Abstract Assessing resource allocation in R&D organizations is an important

issue that requires a comprehensive measure to characterize it. To provide a greater

picture, we first construct a dynamic three-stage network DEA model, which

evaluates the R&D efficiency, technology-diffusion efficiency, and value-creation

efficiency of Taiwanese R&D organizations over the period 2005–2009. Before

integrating window analysis and network data envelopment analysis (DEA) to

estimate dynamic efficiencies, we apply Analytic Network Process (ANP) to

determine the relative importance of each stage. Subsequently, we employ panel

data regression to examine whether the capital stock of patents, quality of human

resources, and capability of service support affect the dynamic efficiencies of the

R&D organizations. Our findings show that the mean R&D efficiency score is

greater than that of the technology-diffusion efficiency, with the value-creation

efficiency score being the lowest, suggesting that R&D organizations have to firstly

work on improving the technology-diffusion inefficiency, and finally improving the

value-creation inefficiency. Our panel data regression analysis indicates that the
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capital stock of patents do affect the efficiencies of the R&D organizations, even

including the quality of human resources and capability of service support. That is,

managers should focus on technological development and innovation to improve

their corporate performance.

Keywords Network data envelopment analysis • Analytic Network Process •

Window analysis • R&D organizations • Patents

7.1 Introduction

From the perspective of a dynamic and three-stage data envelopment analysis

(DEA) procedure, this study integrates window analysis and network DEA as

well as Analytic Network Process (ANP) to evaluate the research and development

(R&D) efficiency, technology-diffusion efficiency, and value-creation efficiency of

Taiwanese R&D organizations over the period 2005–2009. This study further

investigates changes in the efficiency scores of the R&D organizations in different

industries from a long-term perspective. Furthermore, from the viewpoint of orga-

nizational innovation, this study examines the impacts of the capital stock of

patents, quality of human resources, and capability of service support on the

performance of the R&D organizations. This relation is a key input into the

continuing discussion on the role of innovation in corporate performance. Recent

years have seen a shift in attention from a focus on labor-intensive environment to

an emphasis on emphasizing knowledge-intensive environment (Efrat 2014),

whereby technological development has become a key factor in a country’s com-

petitiveness. That is, countries around the world formulate policies to encourage the

development of science and technology as well as their innovation in order to

sustain economic growth. In this regard, R&D organizations play a vital role in

achieving technological innovation in a country (Lu and Hung 2011).

In this study, we focus our analysis on Taiwan because it serves as a suitable

setting to examine the above-stated purposes. In 2007, the Science, Technology and

Industry Scoreboard released by the Organization for Economic Cooperation and

Development (OECD) documents that most of the OECD countries including

Taiwan prioritize technology and innovation in stimulating economic growth. In

fact, Taiwan has progressed from a labor-intensive economy to a capital-intensive

and technology-intensive economy since the 1950s. Taiwan has long emphasized

the development of technology and innovation in its modernization and economic

development plans. In today’s challenging world, Taiwan continues to focus on

developing a knowledge-intensive economy to cope well in the intense global

competitive environment. According to the 2009 World Economic Forum, Taiwan

has moved into the innovation-oriented period from innovation-oriented transi-

tional period. Among the initiatives implemented by the Taiwanese government

are: (i) promoting the collaboration between players in the practice and academi-

cians, (ii) providing small and medium enterprises (SME) with consultations on
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innovative R&D technology, (iii) developing new technological and innovative

services, and (iv) reducing the gap on technology among industrial player, to name

but a few of the ventures by the country.

With the increasing emphasis on technological development and innovation,

requirements for performance evaluation of R&D organizations have become more

critical. Despite its obvious importance, academic studies to date do not adequately

address the question of how to objectively quantify and benchmark the performance

of national R&D organizations. This study addresses the issue, making several

important contributions to the literature. Through analyses on R&D efficiency,

technology-diffusion efficiency, and value-creation efficiency, we provide insights

to assist governments in implementing performance improvement strategies to

enhance competitive advantage of R&D organizations. Note also that we employ

ANP analysis to obtain the relative weights for each stage of efficiency from the

average scores given by five R&D managers, which are then used in the DEA

analysis. Furthermore, this paper examines changes in the efficiency performance

of the R&D organizations in different industries from a long-term perspective.

To effectively evaluate efficiency changes over time, a researcher can employ

several data envelopment analysis (DEA) models such as window analysis (Klopp

1985), the Malmquist index (Färe et al. 1994), and the dynamic slacks-based

measure (SBM) (Tone and Tsutsui 2010). DEA is a non-parametric method that

utilizes mathematical programming to evaluate the relative efficiency of decision

making units (DMUs) via simultaneous handling of multiple variables (Cooper

et al. 2006). Note that performance evaluation is a complex process that requires

more than a single criterion to characterize it, suggesting that a uni-dimensional

performance measure is not capable of comprehensively assess an organization’s

performance evaluation (Hung et al. 2013; Zhu 2009). However, the traditional

DEA approach not only neglect changes in efficiency across several periods, but

also disregard intermediate measures or linking activities (Chen and Zhu 2004;

Tone and Tsutsui 2009). To address the problem, we integrate window analysis

(Klopp 1985) and a network DEA model (Tone and Tsutsui 2009). Specifically, we

evaluate the performance of Taiwanese R&D organizations through a hybrid

approach based on a dynamic network DEA and ANP.

For the first time, as far as we know, we also document the impact of the capital

stock of patents on R&D efficiency, technology-diffusion efficiency, and value-

creation efficiency. This effect is present even including quality of human resources

and capability of service support in our panel data regression models, with the

exception of value-creation efficiency. In the last decade, we have seen mounting

evidence of the usefulness of the capital stock of patents. For example, Guellec and

Bruno (2004) and Wang and Huang (2007) argue that the capital stock of patents

serves as an indicator to understand the competitive advantage and ultimately the

performance of an organization.

The remainder of this study is organized as follows. Section 7.2 discusses the

literature on the current status of Taiwanese R&D organizations and DEA appli-

cations in R&D organizations. Section 7.3 describes the research design of this

study. Section 7.4 presents the results. A final section concludes the paper.
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7.2 Literature Review

7.2.1 Current Status of Taiwanese R&D Organizations

R&D organizations are research institutes established by government to develop

effective technology improvement plans and to transfer their technological devel-

opment and innovation to industries (Edquist 1997). R&D organizations play an

important role in the innovation system of a country, whereby they coordinate and

execute R&D activities in the country. To ensure ordered allocation of national

resources and to rapidly grow SMEs’ skills and knowledge in their industries, R&D

organizations are also responsible to help SMEs to engage in R&D projects of

government-owned corporations.

In Taiwan, the Department of Industrial Technology of the Ministry of Eco-

nomic Affairs has established many R&D organizations like Institute for Informa-

tion Industry, Development Center for Biotechnology, Metal Industries Research &

Development Center, Food Industry Research & Development Institute, Taiwan

Textile Research Institute, Cycling & Health Industry R&D Center, United Ship

Design & Development Center, Stone & Resource Industry R&D Center, Printing

Technology Research Institute, Plastics Industry Development Center, Precision

Machinery Research Development Center, Medical and Pharmaceutical and Devel-

opment Center, Footwear & Recreation Technology Research Institute, and Animal

Technology Institute Taiwan, all of which are to support industrial development, to

build the high-tech industries in Taiwan, to achieve technological development and

innovation, and ultimately to improve the nation’s competitive advantage.

Another R&D organization in Taiwan is Chung Shan Institute of Science and

Technology (CSIST) under the Ministry of Defense. Since 1969, CSIST have been

developing many systems and architects of national defense; even though it is no

longer a military unit, it is still an important resource of defense technology of

Taiwan. Its key R&D activities include the areas of electronics, information

warfare, and advanced weapon system. It positively interacts with other major

research institutes in Taiwan, and expands its R&D activities to many universities

in order to boost academic involvement in the national defense technology. Under

government policy, CSIST actively joins research projects on technological devel-

opment and focuses their target on technologies that are beneficial to military and

civilian.

Although various works have been completed to investigate the operating

performance of R&D organizations, there is little convincing evidence that exam-

ines the dynamic performance of R&D organizations. In the first stage, this study

integrates window analysis and network DEA to evaluate the performance of R&D

organizations in terms of R&D efficiency, technology-diffusion efficiency, and

value-creation efficiency, a three-stage DEA analysis. Through this innovative

approach, we not only can understand differences in managerial performance of

R&D organizations, but also can find out efficiency changes of R&D organizations

over long-term periods. This study aims to provide such information with insights
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into resource allocation that could help managers in making strategic decision to

improve their competitive advantage.

7.2.2 DEA Applications in R&D Organizations

Research into the effects of R&D investment on improving productivity has a long

history (see for example, González and Gascón 2004; Griliches 1988; Hartmann

2003; Mansfield 1980, 1988; Saiki et al. 2006; Walwyn 2007). Lee and Park (2005)

argue that measuring R&D productivity is a prerequisite for improving R&D

productivity. Using the DEA approach, the authors measure the relative R&D

efficiency of Asian countries. Since R&D policy is an important national agenda,

we contend that evaluation of resources allocation and value creation of R&D

organizations in a country should be highlighted, in line with the study by Lee

et al. (2009) that evaluates the efficiency of national R&D programs. Other studies

have also applied DEA to examine relative R&D efficiency across countries,

including the US and Japan (Co and Chew 1997), European countries (Rousseau

and Rousseau 1998), and developed and developing countries (Sharma and Thomas

2008).

Among all, Rousseau and Rousseau (1997) are among the first scholars to

recommend the use of DEA for estimating the relative national/inter-countries

R&D efficiencies. After that, the two similar scholars apply DEA again to gauge

the R&D efficiency of European countries (Rousseau and Rousseau 1998). Another

early study by Co and Chew (1997) on applying DEA to take into consideration

R&D expenditures is another effective study that answers the question of whether

firms in the U.S. or those in Japan perform better. Other subsequent

DEA-application studies (for example, Nasierowski and Arcelus 2003; Wang and

Huang 2007) apply a two-step approach, in which they regress environmental

factors on R&D efficiency. Besides individual efficiency analysis, they also answer

what factors are contributive to productivity.

Guan and Chen (2012) introduce an innovated concept to further enrich the

R&D performance measurement research, whereby they separate the R&D process

into two stages of efficiency measures, namely knowledge production process and

knowledge commercialization process. After estimating efficiency, approximating

to Nasierowski and Arcelus (2003), the authors also analyze a regression model to

examine the effects of environmental factors on the efficiency. Lu et al. (2014) also

apply the same concept in studying the national innovation systems in 30 countries.

Other relevant DEA-application studies include Zhang et al. (2003) who employ

stochastic frontier analysis (SFA) to examine the R&D efficiency and productivity

of firms in mainland China; Cherchye and Abeele (2005) gauge the R&D efficiency

of universities in Finland and the Netherlands, respectively.

While the two-stage process model is useful, it is subject to one limitation, that

is, the weights given to each stage of process model are subjective. To date, a

number of studies have estimate efficiency based on a hybrid approach of DEA and

7 Capital Stock and Performance of R&D Organizations: A Dynamic DEA-ANP. . . 171



ANP (Sipahi and Timor 2010). As ANP is able to categorize and analyze compli-

cated decision makings, a researcher may first use the technique to obtain relative

weights for two or more stages of process model, which would be next used in the

efficiency analysis. Furthermore, extant DEA-application studies in the R&D field

may not be sufficient as they generally ignore changes in efficiency over times or

dynamic performance in today’s dynamic world. In summary, although several

studies have been carried out to explore R&D efficiency, this study identifies a gap

that should be filled.

7.3 Research Design

7.3.1 Three-Stage Value-Creation Process of R&D
Organizations

Most of the existing performance evaluation studies on R&D organizations depend

on efficiency specifications of R&D projects. They divide organizational efficiency

into input, output, and result application and economic efficiency, which are the

four major processes of R&D activities. According to the Execution Efficiency

Report on Science Projects of Artificial Person Institutions, standards to evaluate

the efficiencies of R&D organizations are organization development, R&D devel-

opment, and industry efficiency as at the year of 2010. In line with prior studies, this

study applies DEA, particularly the evaluation model created by Tone and Tsutsui

(2009) to build our three-stage value-creation process of R&D organizations. Our

specifications of value-creation process of R&D organizations are consistent with

that of Lu et al. (2010). See Fig. 7.1 regarding the building specifications of value-

creation process of R&D organizations.

In terms of the selection of input and output variables, we follow prior studies

(Hsu 2005; Liu and Lu 2010; Wu et al. 2006) and base our selection on the data

availability in the annual report of Execution of R&D Projects of 2009. In the stage

of R&D efficiency, we examine the efficiency of R&D organizations in utilizing

human resources, time and funds to generate research outputs and intellectual

properties. That is, we use manpower, research time, and research funds as input

variables, and patents, technology acquired, research reports, research publications,

and outsourced research as output variables. In the stage of technology-diffusion

efficiency, we evaluate how well research outputs and intellectual properties are

disseminated. At this stage, input variables are the outputs from the stage of R&D

efficiency, while output variables are patents transferred, technology transferred,

technology services, and seminar. The third stage, the stage of value-creation

efficiency, discusses the generation of value from the technology diffusion. The

ultimate outputs include investment and production value. Table 7.1 summarizes

definitions of input and output variables.
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Technology-
Diffusion Efficiency

Manpower

Research Time

Research Fund

Value-Creation
Efficiency

R&D Efficiency

Technology Acquisition

Research Publications

Research Reports

Patents

Outsourced Research

Patent Transferred

Technology Services

Technology Transferred

Seminar

Investment

Production Value

Fig. 7.1 Value-creation process of R&D organizations

Table 7.1 Definitions of the input and output variables

Item Definition Unit

Manpower Manpower is the total number of personnel engaged in each

project

Number

Time Time is the total executive time of each project Month

Budget Budget includes all money invested in each project Thousand

Patents Patents are the number of patents produced by each project Number

Technology

Acquisition

Technology acquisition includes the planned, selective, focalized Number

Research

Reports

Completed the implementation of the project study report num-

ber of articles, including technical, research, training and other

reports

Number

Publications Publications include all papers and reports published by each

project

Number

Sub-study Research activities, some of the work plans by the industry or

academia responsible

Number

Patent Transfer Technology plan, through technology transfer, licensing patents

to manufacturers to use the license and royalty income

Thousand

Technology

Transfer

Technology and patent transfer include all technology and patent

transferred to the firms by each project

Number

Technology

Services

Technology services are the services provided by each project for

product development, equipment calibration and maintenance,

technical supports, etc., to the firms

Number

Seminar Will result in an open manner to explain the activities of the

industry, including technical seminars, training workshops,

technical seminars, presentations

Number

Investment Firm investments are the investments made by various firms for

new technologies or production due to each project

Thousand

Production

Value

The key results achieved through the transfer of production

technology, to promote the industry to expand the production

scale of the original

Thousand

Source: Definitions from the Ministry of Economic Affairs that are available in the 2009 Annual

Report
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7.3.2 Data Selection and Description

According to the annual reports of Execution of R&D Projects from the Department

of Industrial Technology, the numbers of R&D projects executed by artificial

persons are far more than industries and academics between 2005 and 2009. In

other words, artificial person institutes are the major R&D power in Taiwan. We

thus use 29 artificial person R&D organizations as our study objects, including eight

R&D units under ITRI, six units under CSIST of Ministry of National Defense and

Institute for Information Industry, Development Center for Biotechnology, Metal

Industries Research & Development Center, Food Industry Research & Develop-

ment Institute, Taiwan Textile Research Institute, Cycling & Health Industry R&D

Center, United Ship design & Development Center, Stone & Resource Industry

R&D Center, Printing Technology Research Institute, Plastics Industry Develop-

ment Center, Precision Machinery Research Development Center, Medical and

Pharmaceutical and Development Center, Footwear & Recreation Technology

Research Institute, Animal Technology Institute Taiwan, and INER. Each R&D

unit is regarded as a DMU. Furthermore, as R&D projects executed by artificial

person institutes have different orientations due to their different R&D specifica-

tions, we divide the sample into two types, namely ‘ordinary elements and envi-

ronment establishments’ and ‘innovations and R&D services and compatibilities’.

Note that DEA necessitates homogenous sample organizations. Therefore, we only

discuss projects belong to ‘ordinary elements and environment establishments’.

This study uses annual reports of Execution of R&D Projects from the Depart-

ment of Industrial Technology as secondary data resource. Considering the date of

publication and sources of data, we only choose samples for the period 2005–2009.

These annual reports were prepared by Taiwan Institute of Economic Research

(TIER), a delegate of the Department of Industrial Technology. The reports are of

high credibility and completeness; they fully cover the execution results of all R&D

projects run by the artificial person institutes.

The descriptive statistics of input and output variables of our research samples

are shown at Table 7.2. During the sample period, the average human resource is

166 persons; the average working time is 38 months; the average of research funds

is NTD404.85 millions; the average number of patents is 68; the average number of

technology acquired is 20; the average number of research reports is 137; the

average number of research publications is 90; the average number of research

outsourced are 20; the average patent authorization fee is NTD15.75 millions; the

average technology transferred is 35; the average number of technology services is

56; the average number of seminars is 22; the mean investment amount during

execution time is NTD877.63 millions; the mean production value of execution

time is NTD2882.34 millions. In summary, we could infer that the Taiwanese

government has allocated much effort and budget in the long-term investment on

R&D projects.

Table 7.3 shows the correlation coefficients among the input and output vari-

ables. The results show that the inputs and outputs are all positively and
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significantly related, with few exceptions. It can thus be concluded that the inputs

and outputs used in this study have “isotonicity” relationships. That is, the corre-

lation analysis justifies our selection of the variables in the model (Golany and Roll

1989).

7.3.3 Dynamic Extension of Network Slack-Based Measure
DEA Model

Traditional network DEA models utilize a radial measure to estimate the relative

efficiency for each DMU in a multi-stage value-creation process. However, objec-

tivity in radial models could be lacking in that they are not able to reveal the real

input/output conditions for each organization, and stand on the assumption that

inputs or outputs undergo proportional changes. Furthermore, the network DEA

analysis is cross sectional, neglecting the efficiency changes of organizations over

several periods. In this regard, we apply window analysis for the longitudinal

performance measure as it is able to analyze efficiency changes across periods.

Put differently, we are able to analyze the multidimensional performance of R&D

organizations from a dynamic view. To overcome the shortcomings discussed

above, we combine the SBM network data envelopment analysis (Tone and Tsutsui

2009) and the window analysis (Klopp 1985) to ensure enhanced estimates of

efficiency across periods with internal linking activities in a single implementation

for every DMU.

This study deals with n R&D organizations (j ¼ 1, . . . , n) consisting of K stages

(k ¼ 1, . . . ,K) in T periods (t ¼ 1, . . . ,T); mk and rk are the numbers of inputs and

outputs to stage k, respectively; z
t f ;hð Þ
dj is the amount of linking intermediate product

Table 7.2 Descriptive statistics of the input and output variables

Variable Mean Q1 Q3 Std. dev.

Research Fund 404,851 64,302 573,850 582,475

Manpower 166 34 239 193

Research Time 38 12 48 28

Outsourced research 23 7 29 23

Investment 880,630 134,000 1,330,450 1,178,813

Production value 2,885,347 135,000 4,095,000 4,649,439

Patents 71 10 77 134

Technology acquired 4 0 5 3

Research reports 137 22 163 189

Research publications 90 16 115 132

Patent transferred 16,050 700 12,757 33,917

Technology transferred 32 11 43 33

Technology services 51 14 67 70

Seminar 25 7 29 32
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d from stage f to stage h to organization j in period t; The window starting at time t,
1 � t � T and with the width w, 1 � w � T � t, has n� w observations. T � wþ 1

is the number of windows (p ¼ 1, . . . , T � wþ 1). The dynamic extensions of

network SBM DEA model for the observed organization in period t with the width
w under a variable returns to scale assumption and the free link activities program

problem is as follows:

ηp
o ¼Min
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i , i¼ 1, . . . ,mk, p¼ 1, . . .T�wþ1,
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þ
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j , 8 f ;hð Þ,XT�wþ1

p¼1
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j¼1 λp,kj ¼ 1, k¼ 1, . . . ,K, p¼ 1, . . . ,T�wþ1,

λp,kj � 0, sp,k
�

i � 0, sp,k
þ

r � 0; j¼ 1, . . . ,nw;

ð7:1Þ

where sp,k
�

i and sp,k
þ

r are the optimal input slacks and output slacks at stage k; ωk is

the relative weight of stage k which is determined corresponding to its importance

and
X k

i¼1 ωk ¼ 1, ωk � 0 8kð Þ.
XT�wþ1

p¼1
Xn�w

j¼1 λp,kj ¼ 1 constructed best practice

frontier exhibits variable returns to scale technology at stage k with window p.
Transforming this program problem into a linear program using the Charnes and

Cooper transformation (Charnes et al. 1978) will solve the problem itself.

Ifηp*o ¼ 1 in (7.1), the observed organization is called overall efficient in window

p. The efficiency of observed organization at stage k in window p can be defined by

τp*ko ¼

XT�wþ1
p¼1 1� 1

mk

Xmk

i¼1
sp,k

�*
i

xp,kio

 !" #
XT�wþ1

p¼1 1þ 1

rk
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þ*
r
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 !" # , k ¼ 1, . . . ,K,

p ¼ 1, . . . , T � wþ 1;

ð7:2Þ
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where sp,k
�*

i and sp,k
þ*

r are the optimal input slacks and output slacks in (7.1). If

τp*ko ¼ 1, then the observed organization is technically efficient at stage k. If τp �ko is

smaller than one, then the observed organization is technically inefficient.

7.4 Results and Discussions

7.4.1 Performance Analysis in Value-Creation Process

Many researchers have utilized the ANP techniques for multi-criteria decision

analyses (Sipahi and Timor 2010) as this method is particularly useful in analyzing

complicated decisions. In this study, three stages of efficiencies are developed to

comprehensively measure the dynamic performance of R&D organizations in

Taiwan. Using ANP, we are able to find the relative importance of each stage of

the value-creation process. Specifically, five R&D managers are randomly chosen

from the sample R&D organizations and asked to evaluate the relative importance

of value-creation process based on the first evaluation part of ANP by Saaty (1996).

Table 7.4 shows the results of the weights obtained for each stage of the value-

creation process. The relative weights in Table 7.4 are calculated as follows. First,

we ask the five managers to express their viewpoints on the relative importance of

each stage through the Likert Scale of 1–9 as in Saaty (1996). With that, the relative

weights are obtained accordingly. Second, we calculated the geometric mean of the

scores obtained in the first step. These mean values are used as the input weights for

the efficiency estimates of the value-creation process.

For understanding the connectivity of inner economical activities of R&D

organizations over long-term periods, we integrate window analysis and network

DEA to evaluate the R&D efficiency, technology-diffusion efficiency, and value

creation efficiency of Taiwanese R&D organizations for the period 2005–2009. In

order to understand dynamic performance of these 5 years, we calculate a 5-year

average performance value of each R&D organization. We also use standard

deviation to determine the stability of the 5-year performance.

Table 7.4 Input weights for value-creation process

Expert

R&D

efficiency

Technology-diffusion

efficiency

Value-creation

efficiency Sum

Manager 1 0.467 0.256 0.277 1.000

Manager 2 0.415 0.342 0.243 1.000

Manager 3 0.473 0.243 0.284 1.000

Manager 4 0.513 0.212 0.275 1.000

Manager 5 0.455 0.282 0.263 1.000

Mean 0.465 0.265 0.270 1.000
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Dynamic performance of each stage is shown in Table 7.5. For R&D efficiency,

the overall average efficiency score is 0.459. There are five R&D organizations that

achieve an efficiency value of at least 0.8, namely SRIRDC, PTRI, PIDC, FRTRI,

and INER. We further check the standard deviations of the five organizations; the

results show that their variation levels are generally and relatively smaller than

those of other organizations, implying that their performance is more stable as

compared to others over the sample period. The top-performing R&D organization

is PTRI, which has the highest R&D efficiency score and the lowest value of

standard deviation. This finding means that this organization is the best learning

benchmark for other R&D organizations.

To remove the R&D inefficiency, we suggest that the R&D organizations should

apply patent for valuable key technologies, design global patent map, and increase

creation of intellectual properties. In terms of technology acquisition, the organi-

zations should reinforce international cooperation and technology authorization, so

that their R&D level could improve and reach international level. More impor-

tantly, they are able to possess their core technologies. As for research reports and

research publications, the organizations should work harder on preparing technical

reports and publishing academic studies to show their achievement in R&D and

accomplishment in academic research. In summary, the R&D organizations should

focus on key profitable technology, patent map layout, intellectual property, and

academic achievement.

On the front of technology-diffusion efficiency, the overall average efficiency

score is 0.608. There are 11 organizations that achieve an efficiency value of at least

0.8. We further check their standard deviations, which shows that the results of

these organizations are again better than those of others. Among the organizations,

two organizations, APIT and INER, are considered as efficient in terms of

technology-diffusion efficiency. Therefore, other organizations should take the

two organizations as the best learning model for diffusing technology.

Our suggestions for organizations that need improvement in terms of

technology-diffusion efficiency are as follows. First, organizations should actively

transfer their research results to industries and increase their profit from patent

authorization fees (technology transfer and patent authorization); organizations

should hold technology forums, training camps, and exhibitions to present their

research reports with the purpose of helping industries to enhance their technology

capabilities (seminars). To accelerate the technological development in the indus-

tries, R&D organizations should fully utilize technology services, international

standard authentications, and technology platform exchange mechanisms to pro-

vide technical help to industries in R&D activities (technology and industry ser-

vices). In summary, R&D organizations should enforce the proliferation effect of

their R&D results, and establish transfer mechanisms of technologies, patents, and

industry services.

As for the results on the value-creation efficiency, the overall average efficiency

value is 0.176. There is only one R&D organization with an efficiency value above

0.8, viz. ITRI_CCRL. For this stage, we also provide some suggestions for

improvement. First, R&D organizations should actively transfer their research
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results to the industries, get their patents authorized, and utilize delegations and

industry services. This is because through the proliferation of their technology

results to value-added applications in the industries, they are able to fully bring

positive effects from direct and indirect investments, such as an increase in the

production value, newly created industries. In summary, R&D organizations have

Table 7.5 Mean efficiencies of R&D organizations for the 3-year windows during 2005–2009

R&D

organizations

R&D efficiency

Technology-

diffusion

efficiency

Value-creation

efficiency

Overall

efficiency

Mean

Std.

dev. Mean

Std.

dev. Mean

Std.

dev. Mean

Std.

dev.

ITRI_HQ 0.320 0.140 0.188 0.025 0.050 0.047 0.212 0.062

ITRI_EORL 0.149 0.024 0.645 0.225 0.090 0.088 0.265 0.054

ITRI_CCRL 0.192 0.060 0.466 0.208 0.806 0.290 0.431 0.036

ITRI_MSRL 0.246 0.309 0.373 0.353 0.473 0.296 0.341 0.315

ITRI_MCRL 0.254 0.177 0.485 0.165 0.566 0.327 0.399 0.132

ITRI_EERL 0.318 0.082 0.657 0.242 0.195 0.119 0.375 0.087

ITRI_BERL 0.271 0.034 0.425 0.115 0.018 0.024 0.243 0.047

ITRI_STC 0.415 0.076 0.610 0.233 0.137 0.158 0.392 0.084

Mean 0.271 0.059 0.481 0.109 0.292 0.073 0.332 0.064

CSIST_RL1 0.601 0.256 0.550 0.209 0.034 0.027 0.434 0.166

CSIST_RL2 0.395 0.103 0.521 0.273 0.035 0.021 0.331 0.110

CSIST_ERL 0.338 0.122 0.527 0.227 0.096 0.049 0.323 0.102

CSIST_CTI 0.222 0.036 0.177 0.046 0.154 0.061 0.192 0.021

CSIST-RL4 0.407 0.031 0.536 0.172 0.124 0.112 0.365 0.057

CSIST-RL5 0.179 0.024 0.187 0.010 0.450 0.312 0.254 0.096

Mean 0.357 0.048 0.416 0.078 0.149 0.068 0.316 0.044

III 0.162 0.109 0.155 0.047 0.432 0.178 0.233 0.098

DCB 0.257 0.063 0.926 0.166 0.216 0.439 0.423 0.069

MIRDC 0.212 0.082 0.280 0.117 0.370 0.120 0.273 0.058

FIRDI 0.272 0.035 0.766 0.226 0.122 0.080 0.363 0.067

TTRI 0.192 0.016 0.233 0.026 0.208 0.089 0.207 0.020

CHIRDC 0.661 0.132 0.787 0.147 0.048 0.035 0.529 0.077

USDDC 0.655 0.021 0.584 0.159 0.080 0.031 0.481 0.048

SRIRDC 0.875 0.151 0.975 0.056 0.032 0.012 0.674 0.064

PTRI 1.000 0.001 0.976 0.053 0.228 0.432 0.785 0.121

PIDC 0.938 0.082 0.864 0.304 0.071 0.076 0.684 0.109

PMRDC 0.635 0.061 0.939 0.076 0.023 0.014 0.550 0.025

MPDC 0.607 0.173 0.874 0.117 0.009 0.016 0.516 0.112

FRTRI 0.889 0.168 0.932 0.069 0.019 0.014 0.666 0.061

APIT 0.717 0.076 1.000 0.000 0.019 0.034 0.604 0.039

INER 0.921 0.033 1.000 0.000 0.005 0.006 0.695 0.017

Mean 0.600 0.026 0.753 0.033 0.125 0.046 0.512 0.014

Total average 0.459 0.028 0.608 0.042 0.176 0.033 0.422 0.024
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to concern about increasing the values of the industries, creating new profit basis for

the industries, and growing Taiwanese companies from ‘technology followers’ to

‘value creators’.

From the above-discussed results, we find that the average efficiency score of the

technology-diffusion efficiency (0.608) is better than that of the R&D efficiency

(0.459) and the value-creation efficiency (0.176). The findings suggest that R&D

organizations should (i) enforce the proliferation effect at the stage of technology-

diffusion efficiency, (ii) transfer their technologies and timely get their patents

authorized, and (iii) disseminate their research results through the technology

services and consultancy services.

7.4.2 The Relationship Between Capital Stock and R&D
Organizations Performance

The purpose of establishing R&D organizations is to raise the technology level of

the industries and to accelerate the innovation in the industries, which could create

values. As a result, it is important that R&D organizations invest in the capital stock

of patents. Currently, a patent in Taiwan will be protected by law for 10 years; the

economical benefits of research outcomes are also protected by patent law for up to

a maximum of a decade. In other words, a researcher should evaluate patents from

the perspective of the capital stock of patents.

This study uses the number of patents as the proxy of the capital stock of patents,

consistent with prior studies that also use the number of patents to gauge the

capability of R&D and innovation (Griliches 2007; Hall and Bagchi-Sen 2007;

Trajtenberg 1990). It has been argued that the more patents a R&D organization

has, the stronger its power is at technological development and innovation

(Griliches 2007; Trajtenberg 1990). In measuring the capital stock of patents, a

researcher can amortize the capital stock of patents of a R&D organization at 15%.

Specifically, the formula to calculate the capital stock of patents (PAT) for i R&D

unit at year t is as follows:

PATi, t ¼ PATi, t�1 � 1� 15%ð Þ þ Pt ð7:3Þ

where P is the ratio of the number of patents acquired to the number of patents

applied of each R&D organization (the patent acquired ratio).

In addition to the capital stock of patents, prior studies also indicate that the

quality of human resources and capability of service support could affect the

performance of a R&D organization. The quality of human resources can be

evaluated by their education and working experiences (Souitaris 2002). Therefore,

we define the quality of human resources as the number of employees with doctoral

degrees in a R&D organization because better qualified human resources would

possess higher quality of research capability. In other words, talented employees
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are the cornerstone of technological development and innovation, as well as the

core of knowledge-based economic development. Consistent with Souitaris (2002)

who finds that the quality of R&D human resources are highly related to technical

innovation, we predic that the quality of R&D human resources is positively related

to the performance of R&D organizations.

In implementing R&D projects or developing new products, R&D organizations

use their existing technologies and equipments to provide short-term services such

as maintenance and technical consultancy. In this study, we use the average charged

amount of contracted service for the industries to proxy for the capability of service

support. A higher value of the variable indicates that an organization has better

capability at providing service support. Specifically, R&D organizations are able to

provide better services to their customers through innovating their services

(Chakravarty et al. 1995; Upton 1995) because the capability of service support is

the key element in achieving competitive advantage. Therefore, we predict that

there is a positive relationship between the capability of service support and the

performance of R&D organizations.

To determine the relationship between the capital stock of patents, quality of

human resources, and capability of service support, and the performance of R&D

organizations, we apply panel data regression models. Banker and Natarajan (2008)

have documented that the use of a two-stage procedure involving DEA followed by

an ordinary least squares (OLS) regression analysis yields consistent estimators of

the regression coefficients. Note that panel data estimation procedures are superior

to the simply-pooled OLS procedures. An advantage of panel data regression is that

it could adjust for organization-specific and year-specific effects.

Table 7.6 presents the panel data regression. The results show that the capital

stock of patents is positively and significantly related to the R&D efficiency and

technology-diffusion efficiency. Although the capital stock of patents is negatively

related to the value-creation efficiency, the coefficient doesn’t reach the conven-

tional significance level. In the technological development and innovation process,

patents are the key to performance. That is, the number of patents acquired reflects

the degree of competitiveness of a R&D organization (Deeds and Hill 1996;

Mowery et al. 1996). As noted earlier, we study patents acquired by the R&D

projects that are executed by 29 artificial person institutes for the period

2005–2009. The untabulated statistics show that approximately 6000 units of

patents were acquired by these organizations. While the results imply that the

R&D organizations have been planning their global patent policies, building com-

plete lines of patents, enforcing the quality of patents, and generating competitive

advantages of their research results, the negative association between the capital

stock of patents and value-creation efficiency indicates that R&D organizations

should continue (i) to introduce new and advanced technologies, (ii) to learn higher

level key technologies, and (iii) to integrate superior resources in the organizations.

These methods could ensure that the R&D organizations are able to demonstrate

their capabilities at design, production and management, to build up their irreplace-

able specialization, and ultimately create values through competitive advantages.
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However, the regression results in Table 7.6 show that there is no significant

relationship between the quality of human resources and the performance of R&D

organizations. A R&D organization should be able to create future competitiveness

by acquiring new technical knowledge, developing new technologies through

cooperation with other countries, exchanging knowledge and personnel with for-

eign institutes, and transforming human resources into value. That is, it might mean

that R&D organizations concentrate too much on their capabilities of R&D but pay

less attention the important roles played of their employees.

As for the capability of service support, the coefficients are all positive, but only

those for the R&D and technology-diffusion efficiencies are significant. These

outcomes support our prediction that the better the capability of service support,

the better the performance of R&D organizations, suggesting that customers are

satisfied if organizations can provide valuable service support. During the sample

period, the accumulated number of industry services cases reached 6911 and the

revenue was NTD8000 millions, which means that R&D organizations actively

deploy their core technologies and help the industries to raise their values.

7.5 Conclusions

In today’s dynamic economic environment, evaluating the performance of R&D

organizations is a process that requires a comprehensive measure to characterize

it. In this study, we develop a dynamic three-stage network DEA model through the

combination of window analysis and network DEA. The innovative DEA model

evaluates the R&D efficiency, technology-diffusion efficiency, and value-creation

efficiency of Taiwanese R&D organizations over the period 2005–2009. Before

performing DEA analysis, we first apply the ANP technique to define the relative

importance of each stage of efficiency. The DEA analysis suggests that managers

should first focus on removing the technology-diffusion inefficiency, then elimi-

nating the value-creation inefficiency, and finally improving the R&D efficiency.

Table 7.6 Results of panel data regression

Independent variables

Dependent variable

R&D efficiency

Technology-diffusion

efficiency

Value-creation

efficiency

Fixed-effect

model Random-effect model

Random-effect

model

Constant 0.400 0.201

Patent capital stock 0.352* 0.778*** �0.111
Quality of HR 0.145 0.220 �0.461
Ability of service

support

0.297*** 0.190* 0.788

R2 0.640 0.311 0.536

Note: ***P< 0.01; **P< 0.05; *P< 0.1
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In the second stage, panel data regression is employed to examine the impacts of the

capital stock of patents, quality of human resources, and capability of service

support on the dynamic performance of the R&D organizations. The panel data

regression outcomes shows that the capital stock of patents and capability of service

support positively affect the performance of R&D organizations.

Despite the innovative application of the dynamic and network DEA models in

this study, we highlight that future studies may apply the dynamic network SBM

model by Tone and Tsutsui (2014) to account for dynamic efficiencies. Note that,

however, this study looks at R&D organizations that can hardly be characterized by

carry-overs, which are permanent accounts that are accumulated over periods, used

in the dynamic SBM model. Therefore, future research may apply the similar

innovative approach to examine organizations in a different industry or even the

dynamic network SBM model for the same industry when more data become

available to the public.
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Chapter 8

Evaluating Returns to Scale and Convexity
in DEA Via Bootstrap: A Case Study
with Brazilian Port Terminals

Peter F. Wanke and Carlos Pestana Barros

Abstract This paper presents a simple methodology, built upon the bootstrapping

technique originally developed by Simar and Wilson (Handbook on Data Envelop-

ment Analysis, Kluwer International Series, Boston, 2004), in order to evaluate,

unambiguously, returns to scale and convexity assumptions in DEA. The basic idea

is to use confidence intervals and bias corrected central estimates to test for

significant differences on distance functions and returns-to-scale indicators pro-

vided by different DEA models. This methodology is illustrated by means of a case

study in the Brazilian port sector, where anecdotal evidence regarding an eventual

capacity shortfall is corroborated.

Keywords Data Envelopment Analysis • Bootstrapping • Returns-to-scale •

Convexity • Ports • Brazil

8.1 Introduction

Nonparametric efficiency estimators such as Data Envelopment Analysis (DEA)

typically rely on linear programming techniques for computation of estimates, and

are often characterized as deterministic, as if to suggest that the methods lack any

statistical underpinnings (Simar and Wilson 2004). Applied studies that have used

these methods have typically presented point estimates of inefficiency, with no

measure or even discussion of uncertainty surrounding these estimates (Cesaro
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et al. 2009). Indeed, many papers contain statements where efficiency is described

as being computed or calculated as opposed to being estimated, and results are

frequently referred to as efficiencies rather than efficiency estimates (e.g. Ray 2010;

Zarepisheh et al. 2010).

The choice of terminology in describing the nonparametric efficiency

approaches and their results is perhaps understandable given (until very recently)

the lack of a “tool box” with aids for diagnostics, inference etc, such as the one

available to researches using parametric approaches (Simar and Wilson 2004). To

solve these problems, bootstrap techniques have been introduced into DEA analysis

(Cesaro et al. 2009). The bootstrap technique permits the sensitivity of efficiency

scores relative to the sampling variation of the frontier to be analyzed, avoiding

problems of asymptotic sampling distributions.

DEA results, in fact, may be affected by sampling variation in the sense that

distances to the frontier are underestimated if the best performers in the population

are not included in the sample. To account for this, Simar and Wilson (1998, 2000)

originally proposed a bootstrapping method allowing the construction of confidence

intervals for DEA efficiency scores which relies on smoothing the empirical

distribution. This technique consists of a simulation of a true sampling distribution

by mimicking a data generating process, using the outputs from DEA. In this way, a

new dataset is created and DEA is re-estimated using this dataset. Repeating the

process many times allows a good approximation to be achieved of the true

distribution of the sampling (Cesaro et al. 2009).

Generally speaking, statistical inference based on a non-parametric frontier

approach may be useful to determine whether a productive unit is actually operating

at its most productive scale size or not. When a productive unit is found to be

operating in the region of increasing returns to scale, an implied judgment is that it

is smaller than its optimal size (Ray 2010). Similarly, a firm operating in the region

of diminishing returns to scale is considered to be too large.

In applied research, the common practice is to select either an input or an output-

orientation projection and to draw conclusions about the returns to scale at observed

bundle solely on the basis of the selected projection (Zarepisheh et al. 2010).

Seldom, if ever, is there any attempt to crosscheck whether the other projection

also leads to the same conclusions about returns to scale (Ray 2010). Because

returns to scale can be different at the other projection, this practice can be

misleading. Indeed, this can be a source of confusion about whether the firm is

too small or large.

Convexity assumptions may be also assessed via statistical inference, testing

whether a given production frontier actually encompasses or is embedded by

another one (Simar and Wilson 2004). It is possible that, even when a given

orientation is assumed, the violation of the convexity assumption imposed by

DEA may lead to ambiguous returns to scale characterizations (Daraio and Simar

2007).

This paper presents a simple methodology, built upon the bootstrapping tech-

nique originally developed by Simar and Wilson (2004), in order to evaluate,

unambiguously, returns to scale and convexity assumptions in DEA. The basic
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idea is to use confidence intervals and bias corrected central estimates as corner-

stone tools, not only to test for significant differences on efficiency scores and their

reciprocals (that is, their distance functions), but also on returns to scale indicators

provided by different DEA models. A final contribution of the paper lies in its

empirical application which considers the Brazilian port terminals. Inspired by the

current debate in the Brazilian port sector, in which anecdotal evidences suggest a

capacity shortfall (Agência Brasil 2004; Doctor 2003; Sales 2001), returns to scale

are examined in the sector.

The remainder of the paper unfolds as follows. In Sect. 8.2, efficiency measure-

ment and returns-to-scale characterization issues are discussed in light of DEA

models. Sect. 8.3 provides additional information on estimation and bootstrapping

in DEA. Section 8.4 presents a brief review on the Brazilian port industry and

summarizes the data collection process. In Sect. 8.5, the respective empirical

application illustrates the methodology proposed. Conclusions are given in

Sect. 8.6.

8.2 Efficiency Measurement and RTS Characterization

8.2.1 Measuring Efficiency Scores Under Different
Orientations and Frontiers

DEA is a non-parametric model first introduced by Charnes et al. (1978). It is based

on linear programming (LP) and is used to address the problem of calculating

relative efficiency for a group of Decision Making Units (DMUs) by using multiple

measures of inputs and outputs. Given a set of DMUs, inputs and outputs, DEA

determines for each DMU a measure of efficiency obtained as a ratio of weighted

outputs to weighted inputs. There are several variations of the technique (Cooper

et al. 2007). They differ not only with regard to the orientation and how the distance

to the frontier is calculated for inefficient DMUs, but also with respect to efficiency

change over time, undesirable outputs, resource congestion, disposability of outputs

and inputs, just to mention some possible variations.

Compared with the stochastic parametric frontier approach, DEA imposes

neither a specific functional relationship between production outputs and inputs,

nor any assumptions on the specific statistical distribution of the error terms

(Cullinane et al. 2006). An efficient frontier is on the boundary of a convex poly

tope created in the space of inputs and outputs, and in which each vertex is an

efficient DMU (Dulá and Helgason 1996). Another feature of DEA is that the

relative weights of the inputs and the outputs do not need to be known a priori,

that is, these weights are determined as part of the solution of the linear problem

(Zhu 2003).

Consider a set of n observations on the DMUs. Each observation, DMUj (j ¼ 1,

. . . , n ) uses m inputs xij ( i ¼ 1, . . . ,m ) to produce s outputs yrj ( r ¼ 1, . . . , s ).
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Table 8.1 summarizes the envelopment models with respect to the orientations and

frontier types (Zhu 2003), where DMUo represents one of the n DMUs under

evaluation, and xio and yro are the ith input and rth output for DMUo, respectively.

Thus, the BCC model differs from the CCR model only in the adjunction of the

constraint
Xn

j¼1 λj ¼ 1. Together with the constraints λj � 0, 8j, this imposes a

convexity assumption on allowable ways in which the observations for the s DMUs

may be combined within an efficient frontier, as is illustrated in Fig. 8.1.

As regards the model orientation, whether input or output-oriented, the two

measures provide the same scores under constant returns to scale (CRS), but are

unequal when varying returns to scale (VRS) are assumed as the efficient frontier

(Cooper et al. 2004). Essentially, one should select an orientation according to

which quantities (inputs or outputs) the decision-makers have most control over

(Coelli 1996). However, given that LP cannot suffer from such statistical problems

as simultaneous equation bias, the choice of an appropriate orientation is not as

crucial as it is in the econometric estimation case (Coelli 1996). Furthermore, the

choice of orientation will have only minor influences upon the scores obtained and

their relative ranks (Coelli and Perelman 1999).

The dual LP problems to the envelopment models are called multiplier models

(Zhu 2003). They are shown in Table 8.2. The weighted input and output ofXm

i¼1 vixij and
X s

r¼1 uryrj are called virtual input and virtual output, respectively.

Seiford and Thrall (1990) provide a detailed discussion on these models.

As least as important as DEA, even though not so popular, is the Free Disposal

Hull (FDH) model. As seen, the non-parametric literature has extensively discussed

efficiency measurement in convex frontier models as DEA (e.g. Banker et al. 2004

and reference therein). However, the convexity assumption where DEA relies on

may be difficult to argue in real world, as it implies additivity and divisibility.

Table 8.1 DEA envelopment models

Frontier type Input-oriented Output-oriented

Constant Returns

to Scale (CRS),

also known as

CCR (Charnes

et al. 1978)

minθ
s:t:Xn

j¼1
λjxij � θxio,8i

Xn
j¼1

λjyrj � yro, 8r
λj � 0, 8j

(8.1)

maxϕ
s:t:Xn

j¼1
λjxij � xio, 8i

Xn
j¼1

λjyrj � ϕyro,8r
λj � 0, 8j

(8.2)

Varying Returns

to Scale (VRS),

also known as

BCC (Banker

et al. 1984)

Add
Xn
j¼1

λj ¼ 1 Add
Xn
j¼1

λj ¼ 1
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Therefore, its non-convex generalization, the FDH model, would be more adequate

(De Witte and Marques 2008).

Although LP is typically not used to compute the efficiency scores within the

FDH model (Simar and Wilson 2004), Table 8.3 presents its mixed integer formu-

lation for the input and output oriented cases.

Input X

Output Y

I J K

L

M

H

YK

YL

YM

XI XJ Xk

Constant returns-to-scale (CRS/CCR)

Varying returns-to-scale (VRS/BCC)

• H is a scale-efficient DMU.

Considering DMU K:

• XJ/ XK  is the input saving technical efficiency (VRS);

• YK/ YL is the output increasing technical efficiency (VRS);

• XI/ XK is the gross scale efficiency (input saving when VRS);

• XI/ XJ is the pure scale efficiency (input corrected);

• YL/ YM is the pure scale efficiency (output corrected).

Source: Odeck and Alkadi (2001)

Fig. 8.1 Efficiency measurement illustrated: DEA-CCR and BCC frontiers

Table 8.2 DEA multiplier models

Frontier type Input-oriented Output-oriented

max
Xs
r¼1

uryro þ uo

s:t:Xs
r¼1

uryrj �
Xm
i¼1

vixij þ uo � 0

Xm
i¼1

vixio ¼ 1

ur , vi � 0

(8.3)

min
Xm
i¼1

vixio þ vo

s:t: Xm
i¼1

vixij �
Xs
r¼1

uryrj þ vo � 0

Xs
r¼1

uryro ¼ 1

ur , vi � 0

(8.4)

CRS uo ¼ 0 vo ¼ 0

VRS uo free in sign vo free in sign

Table 8.3 FDH models

Frontier type Input-oriented Output-oriented

VRS only

(Kerstens and

Vanden Eeckaut

1999; Deprins

et al. 1984)

minθ
s:t:Xn

j¼1
λjxij � θxio,8i

Xn
j¼1

λjyrj � yro, 8rXn
j¼1

λj ¼ 1

λj2 0; 1f g
(8.5)

maxϕ
s:t:Xn

j¼1
λjxij � xio, 8i

Xn
j¼1

λjyrj � ϕyro, 8rXn
j¼1

λj ¼ 1

λj2 0; 1f g
(8.6)
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The binary value for λj, combined with the constraint
Xn

j¼1 λj ¼ 1 ensures that

the efficiency score is only affected from actually observed production units, in

contrast to a convex combination of quantities in DEA (De Witte and Marques

2008). This is illustrated in Fig. 8.2. The efficiency score also varies between 0 and

1, where a value of 1 denotes an efficient observation.

8.2.2 Scaling or RTS Characterization

Scale inefficiency is due to either increasing or decreasing returns-to-scale (RTS).

Although the constraint on
Xn

j¼1 λj actually determines the prevalent RTS type of

an efficient frontier (Zhu 2003)—CRS or VRS—scale inefficiency at a given DMU

can be assessed under both models. As pointed out by Cooper et al. (2007), while

the CCR model simultaneously evaluates RTS and technical inefficiency, the BCC

model separately evaluates technical efficiency—with efficiency scores from the

envelopment models (8.1) and (8.2)—and RTS—with uo and vo, respectively, from
models (8.3) and (8.4).

Constant returns-to-scale (CRS/CCR)

Variable returns-to-scale (VRS/BCC)

Variable returns-to-scale (VRS/FDH)

1 2 3

Input X

Output Y

4 5

6

Constant returns-to-scale (CRS/CCR)

Variable returns-to-scale (VRS/BCC)

Variable returns-to-scale (VRS/FDH)
A

Input X

Output Y

B

C

Source: Ray (2010), De Witte and Marques (2008)v
o
<0

v
o
>0

u
o
<0 u

o
>0

Fig. 8.2 Returns-to-scale under DEA and FDH frontiers
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As seen in Fig. 8.1, if
Xn

j¼1 λj ¼ 1 is omitted from models (8.1) and (8.2), a CRS

efficient frontier is obtained. Figure 8.2 (Top) exemplifies the optimal solution for

the CCR model, consisting of all points upon the ray from the origin that intersect

the Most Productive Scale Size (MPSS) region, which are represented by the line

segment BC. According to Banker et al. (2004), if the point being evaluated falls

within the MPSS, it can be expressed as a convex combination of its extreme points

so that
X n

j¼1 λj ¼ 1 and constant RTS prevail. If the point is above this region, its

coordinate values will be larger than their corresponding coordinates in MPSS so

that
Xn

j¼1 λj > 1 and decreasing RTS prevail. On the other hand, if the point is

below the MPSS region then
Xn

j¼1 λj < 1, with the prevalence of increasing RTS.

As noted by Odeck and Alkadi (2001), the term
Xn

j¼1 λj is also known as Scale

Indicator (SIo) within the CCR model. So, even though the term CRS is used to

characterize the CCR model, this model may be used to determine whether increas-

ing, decreasing or constant RTS prevail at a given DMU, by making the input and

output slacks explicit in the LP formulation. For instance, if its “input saving”

efficiency is greater than its “output increasing” efficiency, increasing RTS prevails

(Odeck and Alkadi 2001).

Now with respect to the BCC model, since its efficient frontier is strictly

concave, the optimal solution will necessarily designate a given DMU as being in

the region of constant, decreasing, or increasing RTS. Figure 8.2 (Bottom) exem-

plifies the RTS evaluation under the BCC model for an input orientation: increasing

RTS prevail if uo > 0; decreasing, if uo < 0; and constant, if uo ¼ 0.

8.2.3 Orientation Impact on RTS Characterization

Although the choice of orientation will have only minor influences upon the

efficiency scores obtained and their relative ranks (Coelli and Perelman 1999), it

should be noted, however, that input and output oriented models may give different

results in their RTS findings (Banker et al. 2004). Thus the result secured may

depend on the orientation used (Ray 2010). Increasing RTS may result from an

input-oriented model, for example, while an application of an output oriented

model may produce a decreasing RTS characterization from the same data.

One can easily verify, based upon Fig. 8.2 (Top) that both horizontal (input-

oriented) and vertical (output-oriented) projections of DMUs located within regions

1, 4, and 6 upon CCR and BCC frontiers lead to the same conclusions: increasing,

constant, and decreasing RTS, respectively. However, if output-oriented projection

were used instead input-oriented projections on DMUs located within regions 2, 3,

and 5 different conclusions would be drawn (cf. Table 8.4). This is due to the fact

that input-oriented and the output-oriented models CCR/BCC models yield
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different projection points on the CCR/BCC efficient frontier, upon which RTS is

determined (Zarepisheh et al. 2010).

The fact that different orientations may lead to different RTS characterizations,

regardless of the DEA model adopted—CCR or BCC—is well-discussed in liter-

ature (see, for instance, Zarepisheh et al. 2010; Ray 2010; Banker et al. 2004).

However, under what conditions CCR and BCC models generate different RTS

characterizations, observing the same orientation, is a frontier estimation issue that

shall be further explored (Daraio and Simar 2007), where the “real life” violation of

the convexity assumption may or may not be involved.

For instance, according to Fig. 8.2 (Top and Bottom) even that convexity

assumptions hold, horizontal and vertical projections upon points A, B, and C

cannot be unambiguously defined as CRS, IRS, or DRS without further testing,

since different classifications may emerge from CCR and BCC models, specially if

mþ s > 2 (multiple inputs and outputs). Different scaling conclusions may also be

derived when convexity assumptions are violated. For instance, this might happen

if the DRS region preceded the IRS region. Scale Indicator values close to 1 and/or

uo values close to 0 would possibly indicate such ambiguities for a given DMU.

These issues are addressed next.

8.3 Estimation and Bootstrapping in DEA

8.3.1 Estimation

Thus far, according to Simar and Wilson (2004), none of the theoretical models

presented in the previous sections are actually observed, including the

efficient frontier (CCR, BCC, or FDH) and its respective distance function to

each DMU (D x, y=�ð Þ). More precisely, distance functions can be viewed as applied

tools in efficiency measurement. For example, the reciprocal of the input distance

function is equivalent to what is called in DEA/FDH terminology as the input

oriented measure of technical efficiency/efficiency score (Färe et al. 2004), that is

Table 8.4 Orientation and

RTS characterization
Model CCR BCC

Orientation Input Output Input Output

Region 1 IRS IRS IRS IRS

2 IRS CRS IRS CRS

3 IRS DRS IRS DRS

4 CRS CRS CRS CRS

5 CRS DRS CRS DRS

6 DRS DRS DRS DRS

IRS increasing RTS, DRS decreasing RTS, CRS constant RTS
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D x, y=�ð Þ ¼ θ�1� , where • represents a given efficient frontier and � symbolizes an

estimate.

Thus, all these elements must be estimated. Simar and Wilson (2004) advocate

that the terminology often used in the DEA/FDH literature is sometimes confusing

and misleading. For instance, the terms “CCR model”, “BCC model”, and “FDH

model” are, as a matter of fact, misnomers, since they constitute different estimators

of the efficient frontier, not different models. In other words, the term “DEAmodel”

should not obfuscate the fact that DEA is a class of efficient frontier estimators,

characterized by, among other things, convexity assumptions (Cesaro et al. 2009).

Departing from Tables 8.1 and 8.3, it is possible to compute estimates forD x, y=�ð Þ,
writing them as linear programs. In particular, if the input-orientation is considered,

it follows that:

D x,y=CCR
� �� ��1 ¼ min θ=y � Yλ, θx � Xλ, λ � 0f g; ð8:7Þ

D x,y=BCC
� �� ��1 ¼ min θ=y � Yλ, θx � Xλ, eλ ¼ 1, λ � 0f g; ð8:8Þ
D x,y=FDH
� �� ��1 ¼ min θ=y � Yλ, θ � Xλ, λ2 0; 1f gf g; ð8:9Þ

where, again, X and Y are, respectively, vectors of observed inputs and outputs and

e is a vector of ones.
Taking Fig. 8.2 as reference, and considering that the actual, non-observable,

efficient frontier is, in fact, convex, it is possible to affirm that (Simar and Wilson

2004):

FDH � BCC � CCR: ð8:10Þ

The differences between the actual, non-observable, efficient frontier and any of

the estimatorsFDH ,BCC, andCCR are of utmost importance, for these differences

determine the differences between D x, y=�ð Þ and any of the corresponding estima-

tors. The focus of interest isD x, y=�ð Þ, fixed, but unknown. Estimators, on the other

hand, are necessarily random variables upon which statistical tests, or at least,

confidence intervals (CI) can be built to derive useful conclusions.

The importance of bootstrap-based approaches, such as those presented in Simar

and Wilson (2004) and Wilson (2008), for estimation on the efficiency frontier,

should be put into perspective. As seen in previous sections, the discussions on RTS

in different DEA models have been confined to “qualitative” characterizations in

the form of identifying whether they are increasing, decreasing, or constant (Banker

et al. 2004; Cooper et al. 2007). These bootstrap approaches, however, which are

also useful to deal with the asymptotic distribution of DEA/FDH estimators, can be

used to implement statistical tests of constant returns to scale versus varying returns

to scale, convexity among other things (Wilson 2009). For example, Daraio and

Simar (2007) developed several conditional measures of efficiency, which also

provide indicators for the type of RTS. The bootstrap methodology used in this

study is detailed next.
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Putting into a broader perspective, it is important for the practitioner to be able to

test empirically hypotheses relating to the DGP and having to do with the shape of

the frontier (e.g., convexity, returns to scale, etc.). This is important not only for

economic considerations, but also for statistical reasons, since as shown above there

is much to be gained in terms of statistical precision by assuming convexity of the

production frontier or constant-returns to scale if such assumptions are appropriate

(Simar and Wilson 2013).

8.3.2 Bootstrapping Method

Rather than using the inconsistent naive bootstrap, Simar and Wilson (1998)

propose using a smooth bootstrap. In this early study, Simar and Wilson implement

the smoothed bootstrap in a simple model under the assumption that the distribution

of the inefficiencies along the chosen direction (input rays or output rays) is

homogeneous in the input-output space. Hence the smoothing operates only on

the estimation of the univariate density of the efficiencies, making the problem

much easier to handle. Simar and Wilson (2000) extend this idea to a more general

heterogeneous case where the distribution of efficiency is allowed to vary over the

production frontier. Results from intensive Monte-Carlo experiments described in

both papers suggest that these bootstrap procedures give reasonable approximations

for correcting the bias of the efficiency estimates and for building individual

confidence intervals for the efficiency of any fixed point (Simar and Wilson 2013).

The method used in this study departs from the one developed by Simar and

Wilson (2004), which adapted the bootstrap methodology to the case of DEA/FDH

efficiency estimators, and uses an Gaussian kernel density function for random data

generation. The algorithm is detailed next.

Algorithm

1. For eachDMUj, apply all distance function estimators in (8.7)–(8.9) to obtain the

reciprocal estimates of D xj, yj=FDH
� �

, D xj, yj=CCR
� �

, and D xj, yj=BCC
� �

.

2. Reflect the n reciprocal estimates for each efficient frontier (FDH,BCC, and
CCR) about the unity, and determine the respective bandwidth parameters hFDH,
hBCC, and hCCR via ordinary least squares.

3. Use step [4] to draw n bootstrap valuesDj , j¼ 1,. . .,n, from the respective kernel

density function, for each one of the efficiency estimates from step [1] and their

reflected values from step [2].

4. Let εj
� �n

j¼1 be a set of iid draws from the probability density function used to

define the respective kernel function; let dj
� � n

j¼1 be a set of values drawn

independently, uniformly, and with replacement from the respective set of

reflected distance function estimates R ¼ D xj, yj=�
� �

, 2� D xj, yj=�
� �n o

; and
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let d ¼ n�1
Xn

j¼1 dj. Then compute dj ¼ d þ 1þ h2�=s
2

� �1=2
dj þ h�εj � d
� �

,

where s2 is the sample variance of the values dj þ h�εj. If dj � 1, then

Dj ¼ dj , otherwise Dj ¼ 2� dj .

5. Construct a pseudo dataset of inputs and outputs (S�n ¼ xj ; yj

� �n on

j¼1
) for each

efficient frontier (FDH,BCC, and CCR) with elements xj ; yj

� �
given by xj ¼ Dj

xj=D xj, yj=
j�

� �
and yj ¼ yj (if input-oriented).

6. Use the respective distance function estimators in (8.7)–(8.9) to compute the

bootstrap estimate D xo , yo=�ð Þ.
7. Repeat steps [3] to [5] B times to obtain a set of B bootstrap estimates

Db xo ,yo=�ð Þf gBb¼1.
As a matter of fact, once the B pseudo datasets of inputs and outputs for the

n DMUs have been obtained, it is straightforward to estimate CIs on a given DMUo,

not only for the actual distance functions, but also for the efficiency scores and the

RTS indicators. Table 8.5 summarizes the pseudo datasets of additional estimates

that can be possibly generated from the pseudo datasets of inputs and outputs, using

the algorithm previously presented.

8.4 Case Study: Brazilian Port Terminals

Transportation has increased in importance for the economy and firms in the

globalization scenario. In order to support trade oriented economic development,

port authorities have increasingly been under pressure to improve port efficiency,

ensuring that port services are provided on an internationally competitive basis.

There is a consensus that ports form a vital link in the overall trading chain by

contributing to a nation’s international competitiveness (Tongzon 1989; Chin and

Tongzon 1998).

In Brazil, one of the so-called “emerging countries” or “BRICs” (Wilson and

Purushothaman 2003)—acronym that stands for Brazil, Russia, India, and China—

exports in nominal prices more than doubled in the period between 2002 and 2008,

reaching almost US$ 200 bn (Fleury and Hijjar 2008). About half of this volume

was due to primary commodities and partly processed commodities (soy, iron ore,

oil, frozen orange juice, petrochemicals, coffee, sugar, ethanol, pulp, etc.); the other

half was due to manufactured products (processed meat, automobiles, steel, aircraft,

appliances, auto parts, etc.).

According to Curcino (2007), the Brazilian Federal Law 8630—edited in 1993

and also known as “Port Modernization” Law—was the path for port privatization,

leasing of terminals, installation of local port authorities, and labor deregulation,

breaking up with the state monopoly on the sector. Although investments in

capacity expansion were minimal from that period to these days, the comparison
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of several ports in terms of their overall efficiency has become an essential part of

the Brazilian microeconomic reform agenda for sustaining economic growth based

on foreign trade (Fleury and Hijjar 2008). For example, in 2006 a federal authority

linked to the Transportation Ministry was created to monitor operational bottle-

necks and to allocate investments among Brazilian ports and terminals.

Traditionally, the performance of ports and terminals has been variously eval-

uated by numerous attempts at calculating and seeking to optimize the operational

productivity of cargo handling at the berth and in the terminal area (see Cullinane

et al. 2006 for a comprehensive list of references). In recent years approaches such

as DEA and FDH (Cullinane et al. 2005) have been increasingly utilized to analyze

production and performance of ports and terminals. It must be noted, however, that

FDH is less frequently used than DEA, the technique that presents the largest

amount of applications in this sector (see Panayides et al. 2009 for a comprehensive

list of references until that date).

As regards model orientation, some authors, such as Rios and Maçada (2006),

Barros (2003), Barros and Athanassiou (2004), and Park and De (2004) used input-

oriented models. The basic idea behind this choice is that the output increasing

potential should be interpreted with more care, unless there is demand for it and,

therefore, decision-makers should focus on “stressing” production inputs for a

given level of output that may not necessarily be maximal (Odeck and Alkadi

2001). On the other hand, however, port inputs are strictly seen by some authors as

fixed assets, long-term investments, which are difficult to demobilize in the short-

term (Cullinane et al. 2006) and, thus, decision-makers should focus on maximizing

outputs for a given level of production inputs.

Due to the scarcity of official data and due to confidentiality regarding physical

resources allocated to terminal operations, a questionnaire was sent via e-mail at the

beginning of 2009, covering a convenience sample of 25 terminals that had

previously agreed to provide such information. This sample size is comparable to

similar DEA applications: the comprehensive literature review presented in

Panayides et al. (2009) indicates that the number of DMUs (ports/terminals)

researched ranges from 6 to 104 (mean 28). If the work of Wang and Cullinane

(2006) was excluded, the average number of DMUs would be 19.8. Since there are

46 ports and 124 terminals operating in Brazil (Fleury and Hijjar 2008), the

response rate of this survey is around 20% (25/124).

If alternative criteria were used to evaluate the representativeness of this sample

size of 25 terminals, results of similar magnitude—at least—would be obtained.

Along with ANTAQ (Brazilian National Waterborne Transportation Agency—

www.antaq.gov.br), the total amount of cargo handled by ports in Brazil during

2008 was 284.8 million tons, implying a share of 42.6% for these 25 selected

terminals. ANTAQ also provides data regarding the total number of berths in

Brazilian ports (244 in 2008). Compared with the total number of berths of these

25 terminals on that date (49), it follows that they represented 20.1% of the total

national amount. Lastly, data provided by ANTAQ with respect to the frequency of

shipments per year in Brazilian ports (15,183 in 2008) suggest that these 25 termi-

nals represent 48.5% of this total amount.
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It is methodologically noteworthy that, although ANTAQ yearly presents sev-

eral statistics on terminal production levels—throughputs, frequencies, and loading

hours—data regarding physical resources such as berths, areas, and parking lots are

presented aggregated on the port level, not reflecting the their consumption, usage,

or even allocation between terminals. Therefore, it was decided, as part of the

research strategy, to collect this data directly from the field in order to get accurate

figures in terms of the terminal operation level.

The terminals researched, as well as their respective ports of origin, are listed in

Table 8.6. The three variable inputs collected from each terminal are: terminal area

(in square meters), size of parking lot for incoming trucks (in number of trucks), and

number of shipping berths. As regards the outputs, two variables were collected:

aggregate throughput per year (in tons) and number of loaded shipments per year.

Their descriptive statistics are presented in Table 8.7.

Before proceeding, it is worth commenting that, although international, peer-

reviewed papers dealing with the application of these techniques in Brazilian ports

are scarce, empirical and anecdotal evidences suggest that Brazilian terminals

present increasing returns to scale. Put in other words, it seems that the capacity

of the Brazilian terminals is too small relative to the tasks that it performs or,

literally, that these productive units are running short in capacity due to the foreign

trade boom verified over the last few years.

Table 8.6 Terminals researched

Port Terminal Port Terminal

Aratu Porto de Aratu Itaguaı́ TECAR

Rio de

Janeiro

Terminal da Ilha Guaı́ba Itaguaı́ Terminal de Alumina do Porto de

Itaguaı́

Rio de

Janeiro

Rio TPS Vitória Terminal Portuário PEIU

Santos Terminal ADM Aratu Terminal Marı́timo Dow Brasil

Industrial

Santos Terminal XXXIX Aratu TEGAL

Santos Teaçu Armazéns Gerais Aratu Tequimar

Santos Citrosuco Serviços Portuários Paranaguá Cattalini Terminais Marı́timos

Santos TIS—Terminal Intermodal

de Santos

Paranaguá Uni~ao Vopak Armazéns Gerais

Santos Uni~ao Terminais Rio

Grande

Terminal Santa Clara

Santos Vopak Terminal Alemoa Rio

Grande

TERIG

Santos Terminal 37 Manaus Super Terminais Comércio e

Indústria

Santos Tecondi Paranaguá TCP—Terminal de Contêineres de

Paranaguá

Suape Tecon Suape
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As a matter of fact, Rios and Maçada (2006) point out that, until that date, no

studies developed in Brazil were found. The authors analyzed the relative efficiency

of 20 container terminals located in Mercosur during the years of 2002, 2003, and

2004 by means of an input-oriented BCC model. Results indicate that 60% of the

terminals were found to be efficient in this three-year period, probably reflecting the

fact that the Brazilian ports had reached record rates of cargo traffic, including

higher value added products, such as automobiles. According to these authors,

container traffic had increased 23.1% by that time. In Argentina, the container

sector had an increase of almost 17%. No further international peer-reviewed

studies, on the efficiency of Brazilian ports or terminals, were found since 2006

until 2010.

In order to evaluate the adequacy of the convexity assumption imposed by DEA

models and to characterize the prevalent RTS within the collected sample of

Brazilian terminals, the methodological framework presented in Sect. 8.3 was

applied. More precisely, 95% CIs were determined, not only for the set of estima-

tors Db xo ,yo=FDH
� �� �B

b¼1, Db xo ,yo=BCC
� �� �B

b¼1 and Db xo ,yo=CCR
� �� �B

b¼1—to

accept/reject the convexity assumption at a given DMUo/terminal—but also for

SIo,b xo ,yo=CCR
� �� �B

b¼1 and uo,b xo ,yo=BCC
� �� �B

b¼1—to assess how its rejection

impacts the RTS characterization under the same input-orientation. These analyses

were implemented in Maple 12, with 1000 bootstrap replications, generated upon

Gaussian kernel density functions, for each efficient frontier. Their results are

discussed next.

8.5 Results

8.5.1 Initial Estimates

The efficiency rankings calculated using DEA/FDH input-oriented models are

given in Table 8.8, as well as the RTS scores (SI and uo) for each DMU. As one

would expect, the FDHmodel yields higher average efficient estimates than do both

DEA models (an index value of 1.00 equates to maximum efficiency). Specifically,

the CCR model yields lower average efficiency estimates than the BCC model, with

Table 8.7 Summary statistics for the sample

Inputs measured Outputs measured

Terminal type

(Container¼ 0/

bulk¼ 1)

Number

of berths

Terminal

area

(sq. m)

Parking

lot (# of

trucks)

Aggregate

throughput

(tons/year)

Loaded

shipments

(per year)

Mean 1.96 214,189.12 59.67 4,850,909.60 294.24 0.80

St.

dev.

0.93 329,956.02 49.41 18,062,163.68 303.65 0.41

CV 0.48 1.54 0.83 3.72 1.03 0.51
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zé
n
s

G
er
a
is

–
–

3
1
.6
2

1
5
0
,7
5
8
.9
6

–
1
.0
0

0
.5
8

0
.1
6

0
.1
1

In
cr
ea
si
n
g

(0
.0
0
)

D
ec
re
a
si
n
g

2
0

T
er
m
in
al

S
an
ta

C
la
ra

–
–

–
3
,1
1
2
,3
5
9
.2
6

–
1
.0
0

1
.0
0

0
.7
7

0
.7
7

In
cr
ea
si
n
g

1
.0
0

In
cr
ea
si
n
g

2
1

T
E
R
IG

–
–

–
–

–
1
.0
0

1
.0
0

1
.0
0

1
.0
0

C
o
n
st
a
n
t

0
.4
3

In
cr
ea
si
n
g

2
2

C
it
ro
su
co

S
er
v
iç
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respective average values of 0.47 and 0.81, and. In other words, the CCR model

identifies more inefficient terminals (21 vs. 11) than the BCC model does. This

result is not surprising, as the CCR model fits a linear production technology,

whereas the BCC model features variables returns to scale, which are more flexible

and reflect managerial efficiency apart from purely technical limits.

The vast majority (20 out 25) of the Brazilian terminals analyzed seems to be

unambiguously experiencing IRS under both RTS characterizations. Only one

terminal appears to be unambiguously experiencing DRS (DMU 3, Terminal

37 at Port of Santos). Discrepancies between RTS characterizations were found

in five cases (DMUs 7, 8, 19, 21 and 24), three of them scale efficient, that is,

located at the MPSS.

According to Odeck and Alkadi (2001) and Ross and Droge (2004), a DMUmay

be scale inefficient if it experiments decreasing returns to scale by being too large in

size, or if it is failing to take full advantage of increasing returns to scale by being

too small. So far, these initial results suggest that most Brazilian port terminals are

running short in capacity. Put in other words, the capacity of the terminal is too

small relative to the tasks that it performs.

Considering the results presented in Table 8.8, the terminal area and the truck

parking lot tend to be less efficiently used than the shipping berths under idle

capacity at the inefficient terminals. As a matter of fact, the output of these

terminals may indeed be higher, not only in terms of aggregate throughput in tons

per year but also in terms of the number of shipments loaded. It is interesting to note

that as these outputs increase, the level of shipment consolidation at each terminal is

impacted. In general, these results help to explain the increasing returns to scale

observed in the majority of the terminals analyzed: although there are no berths left,

which may suggest that capacity is strangled, the slacks of terminal areas and

parking lots can be used to increase the aggregate throughput per shipment per

berth.

8.5.2 Preliminary Statistics Tests on Initial Estimates

Before proceeding, it is relevant to ensure that the different terminals presented in

Table 8.6 consist, as matter of fact, of a group of homogenous DMUs, upon which

valid conclusions can be derived regarding returns-to-scale and convexity. There

are particular analyses that may help characterizing such homogeneity, for which

hypothesis tests could be performed on the initial estimates, prior to bootstrapping.

These analyses frequently involve the identification of: (a) the adequacy of a given

model assumption—that is, returns to scale—to the whole data set; (b) the eventual

differences between two groups—container vs. bulk terminals—in terms of their

returns-to-scale and efficiency levels (Banker and Natarajan 2004); (c) the relevant

and irrelevant inputs used (Wagner and Shimshak 2007); and (d) the most influen-

tial observations—or outliers—in the data set (Pastor et al. 1999; Wilson 2008).

These issues are discussed next.
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8.5.2.1 Testing for Model Specification

In order to distinguish between the two possible technology sets—constant

vs. varying returns to scale—the non-parametric Kruskal-Wallis test was performed

on DEA CCR and BCC efficiency estimates (Banker and Natarajan 2004). Tech-

nology assumptions within Brazilian port terminals are evaluated, therefore, by

testing whether or not efficiency estimates are the same under the two technologies

(Bogetoft and Otto 2010). Results presented in Fig. 8.3 indicate that the null

hypothesis of a constant returns-to-scale technology should be rejected in favor of

a varying one (p-value¼ 0.0008518; Chi-squared¼ 11.1248; df¼ 1). Thus, it is

possible to affirm that varying returns to scale prevails within Brazilian port

terminals.

8.5.2.2 Testing for Differences Between Container and Bulk Terminals

Here it will be distinguished not between two sets of model assumptions, but rather

between two groups of observations—container and bulk terminals—according to

the discussion presented in Bogetoft and Otto (2010). The idea is to check whether

different production processes could lead to significant differences in efficiency and

scale estimates, thus jeopardizing the basic DEA assumption of homogeneous

DMUs comparison. Again, the non-parametric Kruskal-Wallis test was performed

on DEA efficiency estimates for each group. Results presented in Fig. 8.4 indicate

that the null hypothesis of identical efficiency levels between container and bulk

Brazilian terminals cannot be rejected (p-value¼ 0.3409; Chi-squared¼ 0.907;

df¼ 1).

Similarly, taking the scale indicator between both groups into account, results

presented in Fig. 8.5 for the Kruskal-Wallis test also indicate that the null hypoth-

esis of identical returns-to-scale between container and bulk Brazilian terminals

cannot be rejected (p-value¼ 0.1023; Chi-squared¼ 2.6687; df¼ 1).
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8.5.2.3 Testing for Relevant Inputs and Outputs

According to Simar and Wilson (2013), reducing the dimensionality of the problem

by testing the relevance of certain inputs and outputs or the possibility of aggre-

gating inputs or outputs is always of interest when applying statistical approaches

into nonparametric frontier models. In this research, although different production

processes between container and bulk terminals did not lead to significant differ-

ences in terms of efficiency levels and returns-to-scale, it is possible that some

input/output variable may reflect the specifics of such processes, turning out to be

irrelevant to the whole technology set. For instance, if pipes or railroads are the

0 1

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Container (1) vs. Bulk (0) Terminals

Type of Cargo

E
ffi

ci
en

cy

0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
5

1.
0

1.
5

2.
0

Efficiency

D
en

si
ty

Bulk
Container

Fig. 8.4 Efficiency comparison between container and bulk terminals (box plot and kernel

densities)

0 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Container (1) vs. Bulk (0) Terminals

Type of Cargo

S
ca

le
 In

di
ca

to
r

0.0 0.5 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lambda

D
en

si
ty

Bulk
Container

Fig. 8.5 Scale indicator comparison between container and bulk of terminals (box plot and kernel

densities)

206 P.F. Wanke and C.P. Barros



transportation modes used for feeding a bulk terminal, the parking lot for trucks

may be irrelevant for this production process and, therefore, should be discarded

from the analysis.

Hence, the non-parametric Kruskal-Wallis test is performed to test whether

fewer inputs should be included, thus moving the analysis towards what is called

a “core production model” (Wagner and Shimshak 2007). More precisely, the

number of shipments per berth and the throughput per berth capture the most

fundamental essence of port production, both when its definition and its operations

planning are taken into consideration. For example, Alderton (2008) provides a

legal definition for ports: “they are areas within which ships are loaded and/or

discharged of cargoes and includes the usual places where ships wait or their turn”.

On the other hand, Meisel (2009) discusses the berth allocation problem, affirming

that “this problem is to assign a berthing position and a berthing time to each vessel,

such that a given objective function is optimized”.

Results presented in Fig. 8.6 for the Kruskal-Wallis test indicate that the null

hypothesis of identical efficiency levels between the original analysis and the other

one, where the parking lot variable is discarded, cannot be rejected

(p-value¼ 0.1023; Chi-squared¼ 2.6687; df¼ 1). Since these two technology

sets are only slightly different in terms of efficiency, the parking lot variable is

not an influential input and, therefore, should be discarded from subsequent

analyses.

8.5.2.4 Testing for Outliers

The approach developed by Wilson (2008) to identify the most influential obser-

vations (outliers) within the ambit of DEA analyses—was conducted with the

support of the general purpose statistical software R using the function ap from

the FEAR library. It is based on the data cloud method, which is briefly described
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by Bogetoft and Otto (2010). Figure 8.7 indicates that the dashed lines peaks at two

deleted terminals from the original sample, that is, there are two outliers. Additional

results derived from this analysis indicate that these outliers are DMU 7 (Terminal

da Ilha Guaı́ba) and DMU 12 (TECAR). They are, therefore, discarded from

subsequent analysis.

8.5.3 Bootstrapped Efficiency Scores and Convexity
Assumption

The lower and upper bounds for the 95% CIs for the FDH, BCC, and CCR

efficiency scores, as well as their respective bias corrected central estimates, are

presented in Fig. 8.8 for each terminal, after discarding two outliers and one

irrelevant input variable. The procedures for computing these estimates, based

upon 1000 bootstrap replications for each efficient frontier, followed the discus-

sions detailed in Simar and Wilson (2004), Bogetoft and Otto (2010), Curi

et al. (2010). The asymptotic nature of the CIs should also be noted, as their

lower and upper bounds are not symmetrical around the central estimate.

With respect to the convexity assumption, the upper bounds for the 95% CIs for

the FDH, BCC, and CCR distance functions are given in Fig. 8.9. Readers should
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note that taking the reciprocals of the CI estimates, for the case of analyzing input

distance functions instead of efficiency scores, requires reversing the order of the

bounds; that is, the reciprocal of the upper bound for the input distance function

measure gives the lower bound for the efficient score measure, and vice-versa

(Wilson 2009). Considering the conditions stated in (8.10), it follows that the

convexity assumption is statistically supported within this data set.

8.5.4 RTS Characterizations: CIs for SI and uo

The lower and upper bounds for the 95% CIs for the SI and uo RTS indicators, as

well as their respective bias corrected central estimates, are given in Fig. 8.10. The

methodology used to analyze these results is synthesized in Fig. 8.11. Within the
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CCR case, a given RTS characterization is considered to be statistically significant

only if the lower and upper bounds of the confidence interval for the SI indicator are
both greater than 1 (DRS) or smaller than 1 (IRS). On the other hand, if the BCC

case is considered, only if the lower and upper bounds of the confidence interval for

Fig. 8.10 95% CIs for SI and uo

Fig. 8.11 Simple methodology to assess RTS characterization based upon CIs
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the uo indicator are both greater than 0 (IRS) or smaller than 0 (DRS). Both bounds

equal to 1 or 0, respectively, strongly suggests CRS at a given significance level. As

argued by Bogetoft and Otto (2010), since the connection between a given RTS

characterization and its estimates is uncertain or stochastic, the hypotheses of a

given characterization should be rejected if at least one of the estimated scale

indicators falls outside such critical values.

Eight out of 23 Brazilian terminals—after discarding the two outliers—seem to

be unambiguously experiencing IRS under both RTS characterizations at 5% of

significance. In six other cases, only one RTS characterization was found to be

statistically significant at 5%. No terminal appears to be unambiguously experienc-

ing DRS at 5% of significance. Only one terminal was found to be experiencing

DRS under a given characterization. The remainder eight terminals are experienc-

ing CRS. Discrepancies between RTS characterizations, originally found in five

cases except for one outlier, were eliminated.

8.5.5 Discussion

Although terminal production is well known for its complexity, this research not

only shows that different Brazilian container and bulk terminals can be described in

terms of a core production process, but also that they constitute a homogenous

group of DMUs in terms of efficiency levels and economies of scale. The findings

confirm that the majority of Brazilian terminals present increasing returns to scale,

thus providing an argument for their upgrading. In other words, this means that the

size of Brazilian terminals should be scaled-up in order to deal with constantly

growing demand requirements.

These results may be useful for the purpose of implementing public policies or,

at least, for helping in defining investment priorities. Differently from several Asian

countries, for instance, in Brazil, since early 1990, there was relatively little

investment in new ports, not only because of federal budget constraints but also

because additional capacity could be gained by improving the existing ports via

terminal privatization, deregulation etc. Now, after some successful reforms, has

come the time for effective capacity expansion, as further reforms of existing

terminals seem to be not enough to cater for future growth.

8.6 Conclusions

This paper illustrates how the bootstrapping methodology proposed by Simar and

Wilson (2004) may be used to characterize, unambiguously, returns-to-scale under

different DEA models, when a given input/output orientation is assumed. This

methodology, which was implemented in Maple 12, allows the inference of confi-

dence intervals and bias corrected central estimates, not only for returns-to-scale
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indicators, but also for the efficiency scores and their reciprocals, that is, their

distance functions. Specifically, the latter may be also used to test for the convexity

assumption imposed by DEA efficient frontiers at a given DMU altogether

with FDH.

The purposes of the numerical example conducted within Brazilian port termi-

nals are twofold. First, it was useful to corroborate empirical evidences regarding

the fact that these terminals are running short in capacity, i.e., that increasing

returns-to-scale prevail within this industry. Second, it served as a basis to illustrate

the analytical developments of the proposed methodology, given that the

researched Brazilian container and bulk terminals were proven to constitute a

homogeneous group of DMUs in terms of efficiency levels and returns-to-scale

that could be described by the same core production process.
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Chapter 9

DEA and Cooperative Game Theory

Sebastián Lozano, Miguel Ángel Hinojosa, Amparo Marı́a Mármol,

and Diego Vicente Borrero

Abstract In this chapter the possibilities of hybridizing data envelopment analysis

(DEA) and cooperative games are studied. Specifically, bargaining games and

transferable utility games (TU games) are considered. There are already a number

of different DEA approaches that are based on these types of cooperative games

but, more importantly, there is the potential for further cooperation from both

techniques.

Keywords Game theory • Bargaining solutions • Core concepts • Data

envelopment analysis (DEA) • Process efficiency • Series production system •

DEA games • DEA production games

9.1 Introduction

An increasing number of game theoretical approaches to DEA problems have

recently appeared in the literature. Specially important are those involving

bargaining game theory and cooperative TU game approaches.

Previous research involving bargaining game theory deals with problems such as

the determination of a common set ofweights for the assessment of the efficiency of a

set of decision making units (DMUs); the computation of the process efficiency in a

network; the assessment of efficiency when two or more groups of inputs are

considered, or alternatively different perspectives are used to compute the efficiency.

On the other hand, cooperative TU game theory approaches have also been used

to analyze situations within the framework or concepts developed in DEA. One

well-known example of these problems is that of consensus-making among

individuals or organizations that use multiple criteria to evaluate their performance.
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Another group of approaches deals with the idea of cooperation among several

organizations by sharing data about the feasible input/output operating points.

Apart from the above approaches, other possibilities to apply cooperative TU

game theory to DEA exist, such as the measuring of the importance of the variables

in DEA applications.

In this chapter, we revise the mentioned approaches and propose some others.

The structure of this chapter is the following. First, in Sect. 9.2, the basic concepts

about cooperative games are introduced and explained. In Sects. 9.3 and 9.4, the

various existing DEA approaches that use cooperative games are reviewed. These

include bargaining approaches to DEA and DEA-based TU games. Finally, in

Sect. 9.5, some potential further applications of cooperative games in a DEA

context are proposed.

9.2 Cooperative Game Theory

In cooperative game theory it is assumed that players can commit to behave in a

way that is socially optimal. The main issue is how to share the benefits arising from

cooperation. The set of players is denoted by N:¼ {1, 2, . . ., n}. For each SN, we
refer to S as a coalition, with j S j denoting the number of players in S. Coalition N is

often referred to as the grand coalition. It is assumed that players can make binding

agreements and, hence, notions like fairness and equity are taken into account when
finding allocations of the total amount that the grand coalition can obtain.

We deal with two important subclasses of cooperative games: bargaining
problems and transferable utility games (TU games).

9.2.1 Bargaining Problems

An n-agent bargaining problem is a pair (F, d ) where F and d are respectively a

subset and a point of the n-dimensional Euclidean space, verifying

1. F is bounded and closed (i.e., it contains its boundary),

2. there is at least one point of F strictly dominating d (x2F exists, such that xi> di
for each i¼ 1, . . ., n),

3. (F, d ) is d-comprehensive (i.e., if x2F and x� y� d, then y2F),
4. F  IRn

þ and d2F.
The set F represents the vectors of possible results to which the n agents have

access if they cooperate. Their preferences over these vectors of results differ.

If they agree on a particular alternative, then that is what they get. Otherwise, they

end up at the pre-specified alternative in the feasible set, d, called the disagreement
point or breakdown point. Therefore, the only feasible alternatives that matter are
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those over the disagreement point d. LetℬN be the class of these n-agent bargaining

problems. Moreover, for each bargaining problem ðF, dÞ2ℬN , we define the

compact set Fd:¼ {x2F: x� d}.
In the axiomatic theory of bargaining originated in the fundamental paper by

Nash (1950), F is assumed to be convex. The reason is that each point of F is

interpreted as the utility levels (measured in some von Neumann-Morgerstern

scale) reached by the agents through the choice of one of the alternatives, or as a

randomization among the available alternatives. Convexity of F is due to the

possibility of randomization. Non-convex bargaining problems have also been

studied in the literature (see, for instance, Herrero 1989, Conley and Wilkie 1991,

and Conley and Wilkie 1996).

A solution, φ, on the class of bargaining problems, ℬN , associates with each

problem ðF, dÞ2ℬN an unique point of F, φðF, dÞ, interpreted as a prediction, or a

recommendation, for that problem. We focus here on two relevant solutions or

allocation rules, namely the Nash solution and the Kalai-Smorodinsky solution.

9.2.1.1 The Nash Solution

The best-known bargaining solution for convex problems, introduced in

Nash (1950), consists of a compromise obtained by maximizing the product

of the utility gains from the disagreement point: N(F, d) is the maximizer of
Qn

i¼1
ðxi � diÞ for x2F, x� d. Figure 9.1 represents the Nash solution in a two-agent

bargaining problem, where u1 and u2 are the utilities of agents 1 and 2, respectively.
In the class of convex bargaining problems the Nash solution is characterized by

four well-known properties (axioms), namely Pareto-optimality (PO), symmetry
(SYM), scale invariance (SI) and contraction independence (CI) (also referred to in
the literature as independence of irrelevant alternatives). These properties for a

solution φ are formalized as:

u2

d
u1

F

N(F,d)

α α

Fig. 9.1 The Nash

bargaining solution
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PO: φðF, dÞ is in the Pareto frontier of F.
SYM: If F is invariant under all exchanges of agents, then φiðF, dÞ ¼ φjðF, dÞ for

all i, j21, 2, . . . , n.
SI: λiφiðF, dÞ ¼ φiðλ� F, λ� dÞ, where λ� d ¼ ðλidiÞi¼1,2, ...,P, and λ� F ¼

fλ� s : s2Fg, being λ2 IRn
þþ (i.e., the solution does not depend on the

scale in which the utilities are measured).

CI: if F
0 � F and φðF, dÞ2F0 , then φðF0 , dÞ ¼ φðF, dÞ.

Several generalizations of the Nash bargaining solution for non-convex

problems have been proposed in the literature. An interesting one is the so-called

Nash extension solution, proposed by Conley and Wilkie (1996). This solution is

continuous, single-valued, coincides with the Nash solution if the problem is

convex, and approximates the Nash solution otherwise. To construct the Nash

extension solution, the convex hull of F, con(F), is considered, and the line

segment, L(F, d), connecting the disagreement point with the point obtained by

applying the Nash solution to the problem (con(F), d ), N(con(F), d ), is drawn. The
Nash extension solution, denoted by NE, is defined as: for each (F, d), NE(F, d)
is the maximal element, x, with respect to the partial order on IRn, such that

x2LðF, dÞ \ F (see Fig. 9.2).

The Nash extension solution, NE, shares some of the properties of the Nash

solution. In fact, on the whole class ℬN , it is characterized by Pareto-optimality

(PO), symmetry (SYM), scale invariance (SI), together with ethical monotonicity
(EM) and continuity (CONT). That is, in relation with the characterization of the

Nash solution for convex problems, in the characterization of the Nash extension

solution, contraction independence (CI) is substituted with these last two properties.

Continuity is a very natural property, meaning that similar problems should be

solved similarly, whereas Ethical Monotonicity is a modification of CI which

applies to non-convex problems. Formally, these two properties are defined for a

bargaining solution, φ, as:

u2

d
u1

F
NE(F,d)

Fig. 9.2 The Nash

extension solution
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EM: If F0 F and φðconðFÞ, dÞ2conðF0 Þ, then φðF, dÞ � φðF0 , dÞ.
CONT: For all sequence of problems Fν

,dνf g1ν¼1, φν ! F in the Hausdorff

topology, and dν ! d, then φðFν, dνÞ ! φðF, dÞ.
The Nash extension solution, NE, is the only solution on the whole class ℬN

satisfying PO, SYM, SI, EM and CONT.

9.2.1.2 The Kalai-Smorodinsky Solution

The Kalai-Smorodinsky solution was introduced for two-player bargaining problems

as an alternative allocation rule in Kalai and Smorodinsky (1975). This solution

strongly depends on the aspiration levels of the players. These levels give rise to the

so-called utopia point of a bargaining problem ðF, dÞ2ℬN , given by the vector

bðF, dÞ2 IRN, where, for each i2N,biðF, dÞ ¼ maxx2Fd
fxig. TheKalai-Smorodinsky

solution, KS, is defined, for each ðF, dÞ2ℬN , by KSðF, dÞ :¼ d þ tðbðF, dÞ � dÞ,
where t :¼ maxft 2 IR : d þ tðbðF, dÞ � dÞ2Fdg. Note that the compactness of Fd

ensures that t iswell defined. Figure 9.3 represents theKalai-Smorodinsky solution in a

two-agent example:

Kalai and Smorodinsky (1975) provided a characterization of their allocation

rule for two-player bargaining problems that is based on the following monotonic-

ity property, called individual monotonicity (IM):

IM: Let ðF, dÞ, ðbF, dÞ2ℬN be a pair of bargaining problems such that bFd  Fd.

Let i2N be such that, for each j 6¼ i, bjðbF, dÞ ¼ bjðF, dÞ. If φ is an allocation

rule for n-player bargaining problems that satisfies IM, then

φiðbF, dÞ � φiðF, dÞ.
The Kalai-Smorodinsky solution is the unique allocation rule for two-player

bargaining problems that satisfies PO, SYM, SI, and IM. Unfortunately,

this characterization cannot be generalized to n� 3 because there is no solution

for n-player bargaining problems (n� 3) satisfying PO, SYM, and IM (see

u2

d

u1

Fd
KS(F,d)

b(F,d)FFig. 9.3 Kalai-

Smorodinsky solution
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Roth 1979). In spite of this negative result, Thomson (1980) showed that PO, SYM

and IM characterize the Kalai-Smorodinsky solution if we restrict attention to a

certain (large) domain of n-player bargaining problems.

9.2.2 Transferable Utility Games

In a transferable utility game, in short, TU-game, the different coalitions that can be

formed among the players in N can enforce certain cooperation (possibly through

binding agreements); the problem is to decide how the benefits generated by the

cooperation of the players have to be shared among them. The transferable utility

assumption has important implications. It implicitly assumes that there is a

numeraire good (money, for instance) such that the utilities of all the players are

linear with respect to it and that this good can be freely transferred among players.

Formally a TU-game is a pair (N, v), where N is the set of players and v : 2N ! IR

is the characteristic function of the game, which represent, for each coalition SN,
the worth of the coalition, that is, what each coalition can guarantee without the

collaboration of the players outside the coalition. By convention, vðθÞ ¼ 0. When

no confusion arises, we denote the game (N, v) by v. Let GN be the class of

TU-games with n players.

A TU-game v2GN is

– monotonic if, for each pair S,TN, with S T, we have v(S)� v(T).
– zero-normalized if, for each i2N, v({i})¼ 0. Given v2GN, the game w2GN

defined, for each SN, by wðSÞ :¼ vðSÞ �
X

i2SvðfigÞ is zero normalized.

– additive if, for each i2N and each SN ∖{i}, vðS [ figÞ ¼ vðSÞ þ vðfigÞ.
– weakly superadditive if, for each i2N and each SN ∖{i}, v(S [{ i})� v(S) +

v({i}).
– superadditive if, for each pair S,TN, with S \ T ¼ θ, v(S [ T )� v(S) + v(T).
– zero-monotonic if its zero-normalization is a monotonic game. It can be easily

checked that v2GN is weakly super superadditive if and only if it is zero-

monotonic.

The main goal of the theory of TU-games is to define solutions that select, for
each TU-game, a set of allocations that are admissible for the players.1 There are

two possible approaches in developing a solution concept. One of them is based on

stability, where the objective is to find solutions that choose sets of allocations that

are stable according to different criteria. This is the approach underlying, for

instance, the core (Gillies, 1953), the stable sets (von Neumann and

Mongerstern, 1944), and the bargaining set (Aumann and Maschler, 1964). The

second approach is based on fairness: it aims to find allocation rules that propose,

1When the solution recommends a singleton we will refer to it as an allocation rule.
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for each TU-game, an allocation that represents a fair compromise for the players.

This is the approach underlying, for instance, the Shapley value (Shapley, 1953),

the nucleolus (Schmeidler, 1969), and the τ-value (Tijs, 1981). Below we refer to

some of these solution concepts, namely, the core, the Shapley value, the least core

and the nucleolus.

9.2.2.1 The Core and Related Concepts

Let v2GN, and x2 IRN . Then

– x is efficient if
X

i2Nxi ¼ vðNÞ. Hence, provided that v is a superadditive game,

efficiency just requires that the total benefit from cooperation is actually shared

among the players.

– x is individually rational if, for each i2N, xi� v({i}). The set of imputations of a
TU-game, I(v), consists of all the efficient and individually rational allocations.

– x is coalitionally rational if, for each SN,
X

i2Sxi � vðSÞ. The set of efficient
and coalitionally rational allocations is the core of the game, denoted by C(v). Its
elements are called core allocations. Core allocations are stable in the sense that
no coalition has incentives to block any of them.

A necessary and sufficient condition for a game to have a nonempty core was

independently proved by Bondareva (1963) and Shapley (1967), and is known as

the Bondareva-Shapley theorem.

– A family of coalitions ℱ  2N∖θ is balanced if there are positive real numbers

fαS : S2ℱ g such that, for each i2N,
X

S2ℱ ; i2SαS ¼ 1. The numbers

fαS : S2ℱ g are called balanced coefficients.
– A TU-game v2GN is balanced if, for each balanced family ℱ , with balanced

coefficients fαS : S2ℱ g,
X

S2ℱ αSvðSÞ � vðNÞ. A TU-game v2GN is totally

balanced if, for each SN, the TU-subgame2 (S, vS) is balanced.
– (Bondareva-Shapley theorem) CðvÞ 6¼ θ if and only if v is balanced.

9.2.2.2 The Shapley Value

An allocation rule for n-players TU-games is a map φ : GN ! IRN . Probably the

most important allocation rule is the Shapley value. The Shapley value, ϕ, is
defined, for each v2GN and each i2N, by

2 The restriction of (N, v) to the coalition S is the TU-game (S, vS), where, for each T S, vS(T):¼ v(T ).
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ϕiðvÞ ¼
X

SN∖fig

jSj! n� jSj � 1ð Þ!
n!

ðvðS [ if gÞ � vðSÞÞ:

In the Shapley value, each player gets a weighted average of the contributions he

makes to the different coalition.

An alternative definition of the Shapley value, based on the so-called vectors of
marginal contributions is

ϕiðvÞ ¼
1

n!

X
π2ΠðNÞ

mπ
i ðvÞ,

where Π(N ) denote the set of all permutations of the elements in N and the vector of

marginal contributions associated with π, mπ(v), is defined, for each π 2Π(N ), by

mπ
i ðvÞ :¼ vðPπðiÞ [ figÞ � vðPπðiÞÞ, where Pπ(i) denote the set of predecessors of

i under the ordering given by π, i.e., j2Pπ(i) if and only if π( j)< π(i).
Shapley (1953) characterizes the Shapley value by means of four appealing

properties that an allocation rule should satisfy. To establish these properties, the

following concepts need to be introduced. Given a game v2GN,

1. A player i2N is a null player if, for each SN, vðS [ figÞ � vðSÞ ¼ 0

2. Two players i and j are symmetric if, for each coalition SN ∖{i, j}, v(S [{ i})¼ v
(S [{ j})

In the class of TU-games with n players, the Shapley value is characterized by

four well-known properties (axioms), namely efficiency (EFF), null player property
(NPP), symmetry (SYM) and additivity (ADD). These properties for an allocation

rule φ are formalized as:

EFF: φ satisfies EFF if, for each v2GN ,
X
i2N

φiðvÞ ¼ vðNÞ (EFF requires that φ

allocates the total worth of the grand coalition, v(N ), among the players).

NPP: φ satisfies NPP if, for each v2GN, and each null player i2N, φiðvÞ ¼ 0

(NPP says that players that contribute zero to every coalition, i.e., they do

not generate any benefit, should receive nothing).

SYM: φ satisfies SYM if, for each pair i, j2N of symmetric players, φiðvÞ ¼
φjðvÞ (SYM asks φ to treat these players equally).

ADD: φ satisfies ADD if, for each pair v,w2GN, φðvþ wÞ ¼ φðvÞ þ φðwÞ
(despite of being a natural requirement, ADD is not motivated by any

fairness notion).

For the class of superadditive games, the Shapley value belongs to the set of

imputations. However, the Shapley value for a game may lie outside its core, even

when the latter is nonempty. A class of superadditive games that satisfy that the

Shapley value is always a core allocation is the class of convex games. A TU-game
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v2GN is convex if, for each i2N and each pair S,TN ∖{i}, with S T,
VðS [ figÞ � vðSÞ � VðT [ figÞ � vðTÞ. The most important result for convex

games relates convex games, vectors of marginal contributions and the core, and

establishes that, given a game v2GN, the following statements are equivalent:

(i) v is convex.
(ii) For each π 2Π(N ), mπ(v)2C(v).
(iii) CðvÞ ¼ confmπðvÞ : π2ΠðNÞg, where con denotes the convex hull of

the set.

The second part of the equality in (iii) is the convex hull of the set of vectors of

marginal contributions. It is commonly known as the Weber set, formally intro-

duced as a solution concept by Weber (1988).

As a consequence of the above result, for convex games, the Shapley value is

always a core allocation.

9.2.2.3 The Least Core and the Nucleolus

A very important allocation rule, besides the Shapley value, is the nucleolus
(Schmeidler, 1969).

Let v2GN and let x2 IRN an allocation. Given a coalition SN, the excess of

coalition S with respect to x is defined by eðS, xÞ :¼ vðSÞ �
X

i2Sxi. This a measure

of the degree of dissatisfaction of coalition Swhen allocation x is realized. Note that
for each x2C(v), and each SN, e(S, x)� 0. The least core of the game consists of

those allocations that minimize the maximum excess among the coalitions, that is,

those allocations for which the player or the coalition with the higher degree of

dissatisfaction can not be better.

Now define the vector of ordered excesses, θðxÞ2 IR2N as the vector whose

components are the excesses of the coalitions in 2N arranged in non increasing

order. The nucleolus consists of those imputations that minimize the vector of

non-increasing ordered excesses according to the lexicographic order within the set

of imputations. The nucleolus is actually a singleton, i.e., it is never empty and it

contains an unique allocation. We refer to the nucleolus of v as ν(v). Moreover, for

TU-games with non-empty core, the nucleolus is a core element.

9.3 Nash Bargaining Approaches to DEA

A number of DEA studies have used Nash bargaining game theory (NBGT)

approaches to solve different types of problems. In this group of studies we include

those that apply the Nash Bargaining (NB) solution plus others than use the Kalai-

Smorodinsky (KS) solution or the Nash extension (NE) solution. In addition, as we

will see in this section, some researchers do not apply the original NB approach but
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an ad hoc variant. One thing that all these DEA models share is that they use a

multiplier formulation. Another common feature is that the resulting optimization

models are always non-linear. Table 9.1 shows a summary of the below-reviewed

papers.

The DEA problem most frequently solved using NBGT is the computation of a

common set of weights with which to assess the efficiency of all DMUs. Thus,

while in conventional DEA each DMU chooses its own set of weights for the inputs

and outputs (and does so seeking to appear under the best possible light), in this type

of DEA models, the same set of weights is used to compute the efficiency scores of

all DMUs. In all these applications the players represent the DMUs and their

payoffs are their respective efficiency scores. The first paper to propose NBGT

for this sort of situations was Wu et al. (2009a) which use a NB variant that

maximizes the product, for all DMU, of two differences: on one hand the difference

between the CCR efficiency score (imposed as upper bound) and, on the other hand,

the difference between the efficiency score and the cross efficiency score (imposed

as lower bound). They apply the method to the classical dataset of 37 R&D projects

from Green et al. (1996).

Wang and Li (2014) propose an improvement over Wu et al. (2009a) to

overcome the drawback that the cross efficiency of a DMU may not be unique.

Hence, they propose to use as lower bound a so-called minimum cross efficiency,

which is obtained by using a target aggression model. They present an application

to supplier evaluation.

Wu et al. (2013) also use a common set of weights approach for efficiency

assessment after the reallocation of a reduced, fixed input. They do not apply the

original NB solution but a variant with no disagreement point (therefore assumed to

be zero) and with special constraints. The approach is applied to reallocate the

greenhouse gases emissions of 15 European Union members.

Sugiyama and Sueyoshi (2014) propose to use the KS bargaining solution (over

the comprehensive hull of the feasible efficiency scores) for finding a common set

of weights. The resulting model, although still non-linear, is relatively simple. The

approach is applied to a dataset of 9 Japanese electric power companies.

Omrani et al. (2015) use a different approach in which each DMU chooses its

own set of inputs and outputs weights. Therefore, the number of players is equal to

the number of DMU but, in addition, the game is played as many times as the

number of DMUs. For each player, the payoff is the efficiency of the DMU being

assessed (labeled DMU 0) and the disagreement point is the minimum cross

efficiency each DMU could obtain in a conventional approach. This disagreement

point is supposedly imposed as lower bound on the efficiency score of DMU

0. They apply this approach to a sample of 37 Iranian electricity distribution

companies.

A completely different type of DEA problems to which NBGT has been applied

is to compute the process efficiency in a Network DEA context. The players here

are the processes whose efficiency score is to be computed, and the game is played

for each DMU separately. So far only simple network topologies have been studied.

Thus, Du et al. (2011) and Zhou et al. (2013) considered a two stage in series
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Table 9.1 Summary of NBGT approaches to DEA

DEA problem

type

#Times

game

played #Players Reference

Solution

concept Remarks

Common set of

weights

Once #DMUs Wu

et al. (2009a)

NB

variant

CRS efficiency score

as upper bound, cross-

efficiency score as

lower bound

Wu et al. (2013) NB Reallocation of fixed

input, zero disagree-

ment point

Wang and

Li (2014)

NB

variant

CRS efficiency score

as upper bound, mini-

mum cross-efficiency

score as lower bound

Sugiyama and

Sueyoshi (2014)

KS Comprehensive hull of

feasible efficiency

scores

#DMUs #DMUs Omrani

et al. (2015)

NB Efficiency of DMU

0 as payoff for all

players, minimum

cross-efficiency score

as lower bound

Network DEA

process

efficiency

#DMUs #Processes Du et al. (2011) NB Two-stage series

system

Zhou

et al. (2013)

NB Two-stage series

system

Jalali-Naini

et al. (2013)

NB

variant

First stage (leader) +

two parallel processes

(followers), minimiza-

tion product of differ-

ences w.r.t. upper

bound

Hinojosa

et al. (2015a)

NE Multistage series

system

Different

input/output

specifications

#DMUs #Specifications Jahangoshai

Rezaee

et al. (2012a)

NB Minimum cross-

efficiency for each

specification as dis-

agreement point

Jahangoshai

Rezaee

et al. (2012b)

NB Minimum cross-

efficiency for each

specification as dis-

agreement point

Yang and

Morita (2013)

NB For each specification,

minimum efficiency

along a given

improvement direction

as disagreement point
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system. Du et al. (2011) consider different ways of setting the disagreement point.

One possibility, which the authors do not recommend, is to use the zero as

disagreement point. They also try using the efficiency score of the anti ideal

operation points of each of the two stages, imposing those efficiencies as lower

bounds on the efficiency of the respective stages. Another possibility is to use the

centralized efficiency scores or the efficiency scores computed by using a leader-

follower approach as disagreement points. They apply the method to two datasets

from the literature, involving 30 US commercial banks (Liang et al., 2008) and

24 Taiwanese non-life insurance companies (Kao and Hwang, 2008).

Zhou et al. (2013) also apply NBGT to a two-stage system but they use as

disagreement points the minimum efficiency scores of each stage compatible with

the overall system efficiency score. They can find the NB solution analytically

leading to an efficiency decomposition in which the efficiency score of each stage is

the geometric mean of its minimum and maximum efficiency scores. This simple

and elegant result occurs because for these two-stage systems the overall system

efficiency is the product of the efficiency of the two stages. Since this property is

valid for multistage systems, Hinojosa et al. (2015a) have proposed a NE solution to

the more general case of multistage systems. This includes as a special case the

system studied by Zhou et al. (2013).

Jalali-Naini et al. (2013) also use NBGT but they consider a slightly more

complex network topology that includes a first stage followed by two processes

in parallel. However, since a leader-follower approach is used, the efficiency of the

first stage is computed in a conventional way and it is just for the two follower

parallel processes for which the NBGT approach is used. They propose a variant of

NB solution in which, instead of using a disagreement point representing lower

bounds of the payoffs, the “basic efficiency of each parallel stage” is used as upper

bound, and a function that corresponds to the product of the differences between the

efficiency score of each process and that upper bound is minimized. They apply

their method to two different datasets, one involving 35 Iranian bank branches and

the other 20 Iranian power plants.

Finally, a third type of NBGT applications to DEA, apart from the common set

of weights and Network DEA problems mentioned above, corresponds to the

approaches in Jahangoshai Rezaee et al. (2012a,b) and, Yang and Morita (2013).

In the first two papers the idea is to consider two different groups of inputs so that

computing the efficiency with each type of inputs leads to a different efficiency

score for each DMU. The NB game is played, therefore, for each DMU separately

and the two players represent the two types of inputs. The disagreement point used

for each DMU is its minimum cross efficiency score, computed using each type of

inputs separately. Jahangoshai Rezaee et al. (2012a) apply this method to 54 health

centers while Jahangoshai Rezaee et al. (2012b) apply it to 24 Iranian power plants.

The approach in Yang and Morita (2013) is somewhat more complex. They

consider different perspectives to assess the DMUs. Each perspective corresponds

to a different specification of the inputs and outputs. Depending on the perspective

the efficiencies of the DMUs differ. The NB game is played separately for each

DMU and the players represent the different perspectives. For each DMU 0, its
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disagreement point for each perspective is the lowest efficiency score of that

perspective allowing for improving that DMU along any given direction. In this

way the model, not only computes the efficiency scores for the different perspec-

tives, but also projects the DMUs along the corresponding improvement direction.

They apply the method to a dataset of 65 Japanese banks.

9.4 TU Cooperative Game Approaches to DEA

As in the case of NBGT, there are three groups of TU cooperative games (TUCG)

approaches to DEA. They are summarized in Table 9.2. The first group of papers

comprises those based on the Egoist’s dilemma (ED, Nakabayashi and Tone 2006).

This is a consensus-building problem that consists in reaching an aggregate score

for each player when several scoring criteria exist. The players must choose how to

weight the different criterion. The problem appears also when a given amount must

be allocated among the players and there are different allocation criteria.

Nakabayashi and Tone (2006) studied this problem from a DEA perspective and

proposed two TUCG based on it labeled, respectively, max DEA game (N, c) and
minDEA game (N, d ). The former is subadditive and leads to a supperadditive zero-

normalized and balanced (hence, with non-empty core) TUCG (N, v). The min DEA

game is also superadditive and balanced. Moreover, because (N, c) and (N, d ) are
dual TUCGs, their Shapley value coincide. They also show that this does not

necessarily occur with their respective nucleoli. Independently of the solution

concept used, a final Linear programming (LP) model is proposed to achieve a

common set of weights that gives aggregated scores as close as possible (using a

Tchebycheff metric) to the TUCG imputation. They also propose a Benefit-Cost

(BC) DEA game. They enumerate several potential applications, such as research

grants allocation to applicants by a foundation, burden sharing in UN, NATO and

similar organizations, comparison of cities for quality of life, etc.

Jahanshahloo et al. (2006) extend the ED to interval data by applying the

approach twice (once for each of the interval limits) and defining the corresponding

sum game. In this way the max DEA game, min DEA game and BC DEA game are

studied. They apply the method to a dataset of 20 commercial bank branches.

Nakabayashi et al. (2009) study an ED setting with two criteria and show that the

Shapley Value and the nucleolus (which always coincide in the case of two players)

also coincide with the traditional allocation rule expressed as add them up and

divide by two. They show the advantage of ED by incorporating Assurance Region

(AR) weight constraints, commonly used in DEA.

Wu et al. (2009b) study the ED problem using the normalized cross efficiency

matrix as scoring matrix. The Shapley value of either the max or the min DEA game

provides an allocation which is input to a common weights LP model to determine

what the authors call ultimate cross-efficiency. Wu et al. (2008) also use ED on the

normalized cross efficiency matrix but they propose as ultimate cross efficiency scores

the nucleolus of the max DEA game, computed by using a Genetic Algorithm (GA).
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Sekine et al. (2014) propose a different TUCG approach to the ED problem.

Based on the strategic form DEA game, the authors define a superadditive,

constant-sum DEA game. In this type of games the core is empty unless the game

is inessential (which occurs if the score of each player is the same for all criteria, a

trivial case). They study the Shapley value, which for constant-sum games can be

computed with a simpler formula, as well as the nucleolus. They show that both

solution concepts coincide in the case of 3 players but that this is not necessarily the

case for more than 3 players.

A second group of TUCG approaches to DEA revolve about the idea that if

several organizations cooperate and share the data about the feasible input/output

operating points they can enlarge their production possibility sets and thus obtain

more outputs with the available resources or, alternatively, produce given amount

of outputs more cost efficiently. Lozano (2012) was the first to propose TUCG,

based on a minimum cost DEA model, to allocate the benefits of input/output

information sharing among cooperating organizations. This cost TUCG is

subadditive and balanced. Two additional LP models are formulated: one to

compute the τ-value and another to check its stability. The approach is applied to

a 12 hospitals dataset from the literature (Tone, 2002).

Lozano (2013a) also uses TUCG to measure and allocate the advantages that

cooperation brings to DEA. In this case, the problem dealt with is the selection of

the best partner to form a joint venture. The synergies of that cooperation depend on

the complementarity of their respective technologies, i.e. with which partner(s) will

the Production Possibility Set (PPS) of the joint venture be bigger and thus lead to a

more cost efficient operation. The Shapley value is proposed as a solution concept

to allocate the advantages of the cooperation. The approach can be extended to

consider multiple production facilities and a multi-period horizon.

Lozano (2013b) proposes the so-called DEA production games, in which several

organizations can cooperate by both sharing their technologies and pooling their

resources. A revenue maximization DEA model is used to compute the character-

istic function. This TUCG is shown to be superadditive and totally balanced.

A simple way of computing a stable solution (based on the Owen point) is proposed.

The method is applied to a randomly generated dataset.

For cases in which some of the outputs are not marketable or not all output prices

are available, Lozano et al. (2014) study set-valued DEA production games. In this

case, the DEA model used does not just maximize revenue but has to consider the

whole output Pareto efficient frontier of the total output vectors generated by

the coalitions. Two different excess functions measuring the dissatisfaction of the

coalitions with respect to a given output allocation are considered, giving rise to

two different core concepts: the dominance core and the preference core. While the

former is always non-empty the latter, more strict, is very often empty. Models for

computing a solution in the corresponding Least Core are proposed.

Hinojosa et al. (2015b) also extend DEA production games but in a different

direction. Thus, they consider the situation when the output prices are fuzzy

numbers. As in crisp DEA production games, if the organizations cooperate the

coalitions can obtain a higher revenue. The problem is how to allocate the
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fuzzy payoff resulting from the cooperation. By using standard fuzzy orders based

on α-cuts, fuzzy DEA production games can be treated as set valued production

games and an LP model for computing a preference least core solution can be

formulated.

Apart from the two strands of DEA TUCG approaches commented above

(namely, ED and DEA production games) there are other possibilities of applying

TUCG to DEA. Thus, for example, Li and Liang (2010) present an ingenious

approach to measure the importance of variables (inputs and outputs) in a DEA

application by looking at the change in the efficiency scores of the whole DMU

sample depending on the variables considered. In this game the players are the

variables and the characteristic function is the sum, for all DMUs, of the efficiency

change ratios due to considering the variables in the coalition with respect to

ignoring them. The Shapley Value of such a TUCG gives an estimation of the

contribution of each variable to the increase in the discriminant power of the DEA

model. This value is thus proposed as a measure of the importance of each variable.

9.5 Further Potential Applications

In this section a number of novel applications of cooperative games to DEA are

suggested. These applications involve both Nash bargaining game theory (NBGT)

and TU cooperative games (TUCG).

An interesting application of NBGT would be in the context of centralized DEA,

in which the players would be the operating units whose production is to be planned

and the payoffs would be the monetary value (assuming output prices are known) of

the production they would obtain with the allocated inputs. The input allocation is

precisely what the players need to agree on. As disagreement point the null vector

can be used, i.e. zero payoffs for all players if they do not agree on how to allocate

the inputs. The KS solution can be found if the ideal solution is previously

computed as the payoff that each operating unit would obtain if it could use all

the available inputs. Although the NB solution is harder to obtain, other bargaining

solutions (like the egalitarian solution or the cooperative solution) can also be

computed and used for comparison.

Another possible application of NBGT is the ED problem mentioned in the

previous section. Using the minimum score along the different criteria for each

player as its disagreement value and the maximum as its ideal payoff the KS

solution can be obtained by solving a simple LP, while the NB solution would

require solving a non-linear optimization model subject to the convexity constraints

on the allowed weights.

There are other possible applications of NBGT to DEA. For example, the

problem of determining a common set of weights to assess the efficiency of the

DMUs can be approached using NBGT. The players would be the DMUs and their

payoffs can be the efficiency scores that the common set of weights would assign to

each DMU. The minimum efficiency score that a DMU can obtain using common
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set of weights can be the disagreement point. Using the conventional DEA effi-

ciency score (i.e. letting each DMU choose the weights so as to appear under the

best possible light) as the ideal point, the KS bargaining solution can be computed

by solving a LP optimization model.

As regards TUCG, additional applications to DEAmay involve, for example, the

ranking of efficient DMUs. The players would be the efficient DMUs and the

characteristic function for a given coalition would be the sum, for all inefficient

DMUs, of the difference between their efficiency scores assuming the DMUs in the

coalition were removed from the sample, and their original efficiency scores

computed with the whole sample of DMUs. The idea is that the more important a

DMU (or a coalition of DMUs) is, the more affected are the efficiency scores of the

inefficient DMUs by its removal. Thus, if an efficient DMU is removed from

the sample the efficient frontier shifts backwards and the efficiency scores of the

inefficient DMUs increase. The larger the shift of efficient frontier, the higher this

increase in the efficiency scores of the inefficient DMUs. By using the Shapley

value, a measure of the marginal contribution of each player to this effect can be

computed, and this index can be used to rank the efficient DMUs.

To finish this section we present a more detailed description of the ideas behind

recent research works by the authors, currently under revision for publication. One

of the papers deals with the problem of computing the process efficiency decom-

position in a multistage production system. The others correspond to extensions and

variants of DEA production games (Fig. 9.4).

9.5.1 Nash Decomposition for Process Efficiency
in Multistage Production Systems

In this research, DEA models in which each DMU is organized internally as a

sequence of processes or stages are considered.

Conventional DEA models consider a DMU as a black box that directly trans-

forms inputs into outputs. There exist, however, a number of DEA applications in

x j1 x j1 = z0
j1 z1

j1 z2
j1 · · · zP−1

j1 zP
j1 = y j1 y j1

−→ −→ −→ −→ ·· · −→ −→ −→
x j2 x j2 = z0

j2 Sub- z1
j2 Sub- z2

j2 · · · zP−1
j2 Sub- zP

j2 = y j2 y j2

−→ −→ process −→ process −→ ·· · −→ process −→ −→
...

... 1
... 2

...
. . .

... P
...

...
x jm x jm = z0

jr(0) z1
jr(1) z2

jr(2) · · · zP−1
jr(P−1) zP

jr(P) = y js y js

−→ −→ −→ −→ ·· · −→ −→ −→

Fig. 9.4 Production process of DMU j ( j¼ 1, 2. . . n)
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which several interrelated stages are distinguished so that intermediate products,

internally generated and consumed within the system, are also considered. This

more fine-grained approach is generally labelled Network DEA (e.g. Färe and

Grosskopf 1996). Many Network DEA models have been proposed in the last

years, including, among others, game-theory approaches (Liang et al. 2008), rela-

tional Network DEA (Kao and Hwang, 2008, 2010), weighted additive efficiency

decomposition (Chen et al., 2009; Cook et al., 2010), Network Slack-Based Mea-

sure (NSBM) of efficiency (Tone and Tsutsui 2009), Slacks-Based Inefficiency

measure (Fukuyama and Weber 2010), dynamic Network DEA (Tone and

Tsutsui 2014), Malmquist index approach (Kao and Hwang 2014), etc.

Kao (2014) and Halkos et al. (2014) provide extensive and up-to-date reviews of

Network DEA models.

Some of the proposed Network DEA models are based on the so-called multi-

plier DEA formulation. When solving these models multiple alternative optima

may arise and, therefore, alternative efficiency decompositions are possible (see,

e.g., Kao and Hwang 2008, Liang et al. 2008). This problem can also affect the

decomposition into technical and scale efficiencies (Kao and Hwang 2011) and not

only in the case of two-stage systems, but also in the case of the efficiency

decomposition of general multistage systems (Kao 2014). In the case of

two-stage systems, some authors have proposed different ways of solving the

uncertainty about how the processes efficiencies should be computed. One common

approach is to compute the best and worst possible efficiency scores of each

process, by choosing the best score for one process and the worst for the other

process, depending on which process efficiency is the decision maker more

concerned with Liang et al. (2008), and Kao and Hwang (2014). Another alterna-

tive, proposed also in Liang et al. (2008), is to look for efficiency decompositions

which can be regarded as “fair” in relation to some rationality principles. Du

et al. (2011) and Zhou et al. (2013) have proposed the use of the Nash bargaining

solution for the case of two-stage systems. Recently Wang and Li (2014), deal with

an interesting extension. Our research follows the latter path and investigates the

decomposition of efficiency in a general multistage system based on the Nash

bargaining solution. When the efficiency decomposition problems addressed here

are regarded as bargaining problems, a main feature is that they are not convex.

Thus, in order to propose a solution for the decomposition and to identify the

properties in which it is supported, the so called Nash extension solution is

considered. We first prove that for this class of problems, the decomposition

generated by the Nash extension solution coincides with that obtained by applying

the Nash solution, and subsequently, it is shown that this Nash decomposition can

be computed by using a simple and elegant formula. We also provide the interpre-

tation of the properties that the solution fulfills in this context.

232 S. Lozano et al.



9.5.2 DEA Production Games

DEA production games have recently been introduced in a paper by

Lozano (2013b). It is an interesting approach to linear production processes show-

ing how a set of recorded observations of the production process can be used to plan

future production on the basis of a technology inspired in DEA. In these DEA

models the production technology is assumed to be implicit in the input-output data

given by the set of recorded observations, and the efficient units are those located on

the frontier of the production possibility set defined by the set of observations and

the quantities of resources.

Borrero et al. (2016) have recently further investigated these cooperative games.

The links between the class of DEA production games and the classes of linear

programming games (see Curiel 1997) and linear production games have been

established. It is shown that if the agents share both the resources and the technol-

ogy, then the production can be centralized and taken over by any of the agents in

the coalition. Another interesting fact is that if the technology is assumed to exhibit

constant returns to scale, then the DEA production game which arises does not

depend on the level of cooperation. When the technology exhibits variable returns

to scale, the final profit depends on the level of cooperation, and if solely the

resources are shared, then in general, optimal production is only achieved when

different agents produce.

It is proven that any DEA production game with constant returns to scale can be

seen as a linear production game, and vice versa, any linear production game can be

written as a DEA production game with constant returns to scale. The transforma-

tions needed to establish this equivalence are explicitly provided. In relation to

DEA production games with variable returns to scale, a significant subclass is

considered: those games for which all coalitions are able to produce with the

resources available. In this case, transformations are also provided which enables

us to prove that the games in this class are non-negative linear programming games,

and hence they can also be considered linear production games.

On the other hand, Owen (1975) used cooperative game theory to study the

general class of linear production games and proved that these games have a

non-empty core. He also proposed an allocation scheme of the total revenue

obtained when all the players cooperate, which yields allocations in the core of

the cooperative production game. These core allocations are obtained by assigning

to each player the sum of the amount of each resource that this player brings to the

production process valued using the dual prices corresponding to the model when

all agents cooperate.

The Owen set of DEA production games has been also analyzed in Borrero

et al. (2016), and the interpretation of these allocations for different levels of

cooperation between agents has been discussed. New insights into the interpretation

of these sets of allocations for the various versions of these production games are

presented.
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DEA production processes have also been modeled as vector-valued DEA

production problems (Lozano et al. 2014). This is convenient (even necessary)

whenever the price of at least one output is unreliable or unavailable. This can occur

because an output is not marketable‘ (e.g. public services or non-tradable emis-

sions), or because its price is uncertain or volatile and cannot be reliably forecasted

(e.g. tradable emissions permits). In these cases, it is not possible to aggregate all

the outputs in a revenue function, and the output amounts that result from the

production process are multi-dimensional. This means that the payoff of each

coalition consists of a vector of output quantities that must be allocated among

the players in the coalition. Some possible situations in which a vector-valued DEA

production problem can be envisaged are: Companies or institutions that may

cooperate on their worker training programs; Cooperation of several private or

public sector health care providers, each one supplying its own resources and skills;

Different associated or independent fitness centers that, through cooperation, may

virtually pool their equipment, sports facilities and instructors; Agribusiness com-

panies (e.g. wine producers, see Aparicio et al. 2013) that can benefit from

cooperating in the cultivation and harvesting of their respective plots of land;

Banks and other financial institutions that may cooperate in some of their backoffice

operations; Logistic service providers or other companies that may cooperate in

their transportation operations (see Lozano et al. 2013).

Apart from the above mentioned, a different approach has also been conducted

by the authors of the present book chapter. In DEA production models, the

objective function represents the total revenue obtained from selling certain kinds

of products, and the problem is formulated as a linear programming problem in

which the revenue is maximized in the production possibility set induced by the set

of recorded observations. However, very often, in real world-situations, the

assumption of certainty with respect to the nature of the parameters is unrealistic

and in many applications, the use of fuzzy logic (Zadeh 1965) has proved to be

advantageous to deal with the imprecise nature of the data involved. Particularly, in

the analysis of efficiency by using DEA models, imprecision in the data is a main

drawback and their representation as fuzzy numbers enables a more realistic

assessment of the efficiency of the decision making units (see for instance,

Hatami-Marbini et al. 2011 and Emrouznejad et al. 2014).

Hinojosa et al. (2015b) study DEA production games with fuzzy prices. The

introduction of uncertainty into the cooperative model raises new and interesting

issues, since coalitions can form prior to the resolution of uncertainty and they must

discuss divisions of the uncertain revenue by taking into account their potential

worths which may also be uncertain. The lack of precision in the parameters of the

linear production problem is modeled via fuzzy logic, that is, some of the param-

eters involved in the objective function and/or in the constraints of the production

game are represented by fuzzy numbers.

Several cooperative models involving fuzzyness can be found in the literature.

The line initiated in Aubin (1981) studies games with fuzzy coalitions, where the

agents may consider different levels of participation in cooperation. Recent work in

this line is, for instance, Wu (2012), and Li and Zhang (2009). Our investigation
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deals with models in which the fuzziness concerns the values that the coalitions can

achieve. Nishizaki and Sakawa (2001) have previously addressed the special case

of fuzzy cooperative games arising from linear production programming problems

with fuzzy parameters for which they proposed an infinite family of cores, each of

which consists of a set of non-fuzzy payoff vectors. Recently, in Hinojosa

et al. (2013) and in Monroy et al. (2013), a different approach has been presented

to analyse the solutions of cooperative games with fuzzy payoffs and applied to the

cases of fuzzy linear production games and fuzzy assignment games.

As a first step to analyze DEA production problems in a fuzzy environment, a

partial order has to be considered in the set of fuzzy numbers. Hence, the concept of

maximization of fuzzy objective functions on a feasible set must be understood as

the search for the maximal elements with respect to this partial order. As a

consequence, the game arising from the production situation, when the pool of

resources is controlled by several agents, is a set-valued game in which each

element of the set is a fuzzy number. In this situation, since there is not a total

order among the payoffs, the comparisons between the payoffs obtained by the

players and by the coalitions are not straightforward as in scalar games and,

therefore, classic solution concepts are not applicable.

Previous literature has addressed this difficulty by establishing a utility function

in order to induce a scalar game and to obtain allocations of the associated total

revenue based on different solution concepts. However, this approach seldom helps

towards an accurate analysis of the situation, since the results are non-fuzzy

payoffs.

In Hinojosa et al. (2015b) an ex-ante analysis of the production situation has

been carried out, and a solution for the DEA production game with fuzzy prices

which is applicable before the fuzziness is resolved has been proposed, namely the

preference least core. In this solution the fuzzy nature of the allocations is pre-

served, and therefore, the quantity finally assigned to each agent is a fuzzy number.

The preference least core has recently been introduced in Lozano et al. (2014) for

set-valued DEA production games, and is based on the same idea as the least core in

standard TU games. Its main drawback in the fuzzy environment is the difficulty

involved in the effective computation of the fuzzy allocations.

Standard fuzzy orders in the set of fuzzy numbers are adopted (see González and

Vila 1992, and Ramı́k and R̆ı́mánek 1985), and the excess of the coalitions is

defined accordingly. For DEA production games, the fuzzy allocations in the

preference least core allocate the revenue obtained with one of the efficient pro-

duction vectors which minimize the excess of the coalitions. The main contribution

in the paper is the proposal of a procedure to compute allocations in the preference

least core. The procedure requires solving a single linear programming model,

which at the same time yields the efficient fuzzy revenue obtained by cooperation

and the allocation to the agents of this fuzzy quantity.

The approach is applied in a case study, for which allocations in the preference

least core are obtained, both for the case where uncertain prices are represented by

triangular fuzzy numbers and trapezoidal fuzzy numbers.

9 DEA and Cooperative Game Theory 235



Acknowledgements This research has been partially financed by the Spanish Ministry of Science

and Innovation, projects, ECO2011-29801-C02-01 and ECO2011-29801-C02-02, and by the

Consejerı́a de Innovación de la Junta de Andalucı́a, project P11-SEJ-7782 and P10-TEP-6332.

References

Aparicio, J., Borras, F., Pastor, J. T., & Vidal, F. (2013). Accounting for slacks to measure and

decompose revenue efficiency in the Spanish designation of origin wines with DEA. European
Journal of Operational Research, 231, 443–451.

Aubin, J. P. (1981). Cooperative fuzzy games. Mathematics of Operations Research, 6, 1–13.
Aumann, R. J., & Maschler, M. (1964). The bargaining set for cooperative games. In M. Dresher,

L. S. Shapley, & A. Tucker (Eds.), Advances in game theory (Vol. 52, pp. 443–476). Princeton:
Princeton University Press.

Bondareva, O. (1963). Some applications of linear programming methods to the theory of

cooperative games. Problemy Kybernetiki, 10, 119–139.
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Chapter 10

Measuring Bank Performance: From Static
Black Box to Dynamic Network Models

Hirofumi Fukuyama and William L. Weber

Abstract This chapter presents the recently developed dynamic-network bank

technology and performance measures of Fukuyama and Weber (Efficiency and

productivity growth: Modelling in the financial services industry. Wiley, London,

pp. 193–213, 2013; J Product Anal 44(3):249–264, 2015a; Ann Oper Res, in press,

2015b; Japanese bank productivity, 2007-2012: A dynamic network approach.

Mimeo, 2016). The method uses DEA to represent the production technology and

directional distance functions to measure bank performance. A two stage bank

technology where an intermediate product is produced in a first stage and then used

to produce final outputs in a second stage is extended over time. The performance

measure allows the researcher to compare observed inputs and outputs, including

undesirable outputs, with the outputs and inputs that might be produced if a

producer were able to optimally choose production plans relative to a dynamic

benchmark technology. Although Fukuyama and Weber’s studies apply the

dynamic network technology to measure the performance of Japanese banks, the

method can be applied to banks in other countries and to other types of financial

institutions.

Keywords Data envelopment analysis (DEA) • Network DEA model • Dynamic

DEAmodel • Dynamic-network DEAmodel • Bad outputs • Nonperforming loans •

Productivity

H. Fukuyama (*)

Fukuoka University, 8-19-1 Nanakuma, Jonan-Ku, Fukuoka 814-0180, Japan

e-mail: fukuyama@fukuoka-u.ac.jp

W.L. Weber

Department of Economics and Finance, Southeast Missouri State University,

Girardeau, MO, USA

e-mail: wlweber@semo.edu

© Springer Science+Business Media New York 2016

S.-N. Hwang et al. (eds.), Handbook of Operations Analytics Using Data
Envelopment Analysis, International Series in Operations Research

& Management Science 239, DOI 10.1007/978-1-4899-7705-2_10

241

mailto:wlweber@semo.edu
mailto:fukuyama@fukuoka-u.ac.jp


10.1 Introduction

In this chapter we present a dynamic-network model of the bank technology which

can be used to measure bank performance. The model accounts for exogenous

inputs, excess reserves which can be carried over from period to period and final

outputs that include desirable outputs and jointly produced undesirable by-products

in the form of nonperforming loans. The framework is based on the performance

measures of Fukuyama and Weber (2013, 2015a, b, 2016). These models measure

bank performance accounting for the following characteristics of the bank technol-

ogy: (i) banks face a two-stage network technology where deposits and other funds

are produced in a first stage and then in a second stage those deposits are used to

generate a portfolio of interest-bearing assets (loans) and non-interest bearing assets

(securities investments), (ii) banks face credit risk in that the loan production

process generates a jointly produced by-product of nonperforming loans, (iii) in

the second stage of production bank managers can choose to make loans and

securities investments or carry-over some excess reserves for use in a future period,

(iv) nonperforming loans produced in one period become an undesirable input to

the first stage of production in a future period.

The dynamic aspect of the technology incorporates two outcomes of current

period production on future production. First, a bank can choose to either produce

final outputs of securities investments and loans, including jointly produced non-

performing loans or they can choose to carry-over some of their raised funds to the

second stage of production in a future period. Thus, current production decisions

affect future production possibilities. Second, nonperforming loans generated in the

current period have a negative effect on the first stage of production in a subsequent

period. This is because when nonperforming loans are generated, a bank must raise

more financial equity capital or curtail their deposit taking and other fund-raising

activities. Thus, static performance indicators that account for only current period

outputs and inputs are biased to the extent that bank managers optimize over many

periods. Although the lending process links desirable and jointly produced unde-

sirable outputs, securities investments made by the bank are not linked to nonper-

forming loans.1 As a consequence we separate the jointly produced linked outputs

of performing and nonperforming loans and the unlinked outputs of securities

investments following Epure and Lafuente (2015) and Fukuyama and Weber

(2016). Since nonperforming loans are an unavoidable by-product of loan produc-

tion and negatively affect the ability of banks to raise deposits, they are treated as an

undesirable input to stage 1 in a subsequent period. On the other hand, carryover

assets from a previous period augment future lending and investment opportunities

and are treated as a desirable input to stage 2.

1 Securities investments generally are subject to interest rate risk (Saunders and Cornett 2011)

rather than credit risk.
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10.2 Selective Literature Review

10.2.1 Network DEA and Dynamic DEA

In the static black-box form of data envelopment analysis (DEA) due to Farrell

(1957) and Charnes et al. (1978), inputs and outputs are assumed to be independent

across production periods. That is, the inputs and outputs observed in one period

have no effect on the production technology in future periods. Färe and Grosskopf

(1996) extended the static black box technology and laid the theoretical foundation

for network DEA. A two-stage network model where intermediate products are

produced in stage 1 and then become the only inputs to stage 2 is commonly used

(see Fig. 10.1). The popularity of this model is mainly due to its simple mathemat-

ical structure although this network model can be easily extended to more than two

stages and to parallel production technologies as well. Sexton and Lewis (2003),

Liang et al. (2008), Chen et al. (2009b) and Chen et al. (2010) investigated the static

two-stage network method without undesirable outputs. Fukuyama and Weber

(2010) presented a static two-stage network model of bank production accounting

for the undesirable output of nonperforming loans. Their model used the directional

technology distance function to measure performance and accounted for slacks in

the constraints that define the DEA technology.

Lewis and Sexton (2004) developed a multi-stage network DEA model which

extended the Sexton and Lewis (2003) two-stage network model. Kao and Hwang

(2008) provided a two-stage method that simultaneously determined the efficiency

of each division and the entire system. Tone and Tsutsui (2009) introduced a

network DEA method that compared actual division outputs with potential outputs

accounting for slacks in the output and inputs constraints that defined the network

technology. Kao (2009) used a multiplier form and introduced a network DEA

method by considering the relations among sub-process efficiencies in terms of

series, parallel, and mixed methods.

Fukuyama and Mirdehghan (2012) and Mirdehghan and Fukuyama (2016)

suggested a two-phase algorithm for identifying the Pareto-Koopmans efficiency

status of the decision making unit (DMU). Lozano (2015) presented a network DEA

model that compared outputs of all divisions with the outputs of all divisions that

intermediate  products
Q
+z

undesirable outputs
L
+b

inputs
N
+x

desirable outputs
M
+y

Production of 
Final Outputs

Production of 
Intermediate Outputs

SN

Stage 1

1tT
SN

Stage 2

2tT

Fig. 10.1 Static two-stage network production with bad outputs. Legend: T1tSN: static network

stage 1 technology; T2tSN: static network stage 2 technology; SN: static network

10 Measuring Bank Performance: From Static Black Box to Dynamic Network Models 243



could be produced if a central decision-maker allocated inputs to each division or

sub-process instead of taking divisional inputs as given. Extending Fukuyama and

Weber’s (2010) two-stage network SBI (slack-based inefficiency) model, Lozano

(2016) generalized Fukuyama and Weber’s (2010) two-stage network model by

accounting for undesirable outputs. A comprehensive survey of the literature on

network DEA is provided by Kao (2014) who categorized network DEA models

into nine classes: (i) independent models, (ii) system distance measure models, (iii)

process distance models, (iv) factor distance models, (v) slacks-based measure

models, (vi) ratio-form system (overall) efficiency models, (vii) ratio-form

sub-process efficiency models, (viii) game theoretic models, and (ix) value-based

models.

While dynamic DEA studies are sparse compared to those of network DEA, the

number of dynamic network DEA studies has been growing. Färe, Grosskopf and

Margaritis (2011) extended Shephard and Färe’s (1980) basic dynamic production

framework by connecting a sequence of single-period technologies and allowing

producers to produce either final outputs or carryover some output to augment

production in a subsequent period. Färe and Grosskopf (1996) used investment

spending as an example of a carryover with producers deciding the mix of GDP to

be allocated to the final output of consumer spending and private investment

spending that enhances future production possibilities. Sengupta (1994) and

Nemoto and Goto (2003) used adjustment cost theory and provided optimal

control-theoretic models for assessing the dynamic efficiency of DMUs. To exam-

ine the impact of public capital investment on private productivity, Bogetoft

et al. (2009) derived a DEA model and calculated the optimal paths and levels

of public and private investment spending. Tone and Tsutsui (2014) proposed a

slacks-based dynamic-network model that allowed carryover assets to have pos-

itive or negative effects on future production. In an examination of Bangladeshi

banks Akther et al. (2013) constrained the current-period bank technology on the

amount of nonperforming loans generated in a previous period. Fukuyama and

Weber (2013, 2015a, b, 2016) extended Akther et al. (2013) to multiple periods

and allowed a bank to reduce the current production of loans and securities

investments and to save carryovers for use in a future period if future production

could be enhanced by more than the loss of current production.

Färe et al. (1992) and Färe et al. (1994) proposed static Malmquist productivity

indices which can be decomposed into indexes of efficiency change and techno-

logical change. Färe et al. (2011) presented a multiplicative dynamic Malmquist

index that allowed DMUs to make inter-temporal decisions on the allocation of

scarce resources so as to maximize production over all periods. Similarly, Fuku-

yama and Weber (2015b, 2016) proposed a dynamic-network Luenberger bank

productivity indicator and its additive components of efficiency change and tech-

nological change.

De Mateo et al. (2006) and Fallah-Fini et al. (2014) addressed various inter-

temporal aspects of production technologies and performance measures. De Mateo

et al. (2006) studied various concepts associated with inter-temporal production
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including the cost, path, and period of adjustment, the appraisal period, profits, and

dynamic DEA. Fallah-Fini et al. (2014) determined five main factors that influence

the inter-temporal dependence between inputs and outputs: production delays,

inventories, quasi-fixed factors, adjustments costs, and disembodied technical

change.

10.2.2 Bank Production and Risk

Berger and Humphrey (1997) provide a comprehensive survey of financial institu-

tion performance measures. Here we selectively examine studies that estimated

bank performance controlling for the effects of bank risk. McAllister and McManus

(1993) showed that large US banks had even greater measured scale economies

controlling for bank risk. Altunbas et al. (2000) estimated a parametric cost frontier

for a sample of Japanese commercial banks to examine the impact of risk and

quality factors on bank costs. Altunbas et al. (2000) defined the loan quality as the

ratio of nonperforming loans to total loans. For a sample of Japanese banks

operating in 1996, Drake and Hall (2003) reported evidence that financial capital

had the greatest impact on scale efficiency.

Liu and Tone (2008) used the ratio of credit costs to potential loan losses as an

input and found that Japanese banks appeared to be “learning by doing” as

efficiency improved during the sample period of 1997–2001. Park and Weber

(2006) and Fukuyama and Weber (2003, 2004, 2005) controlled for bank risk by

using financial equity capital as an input in their static measures of bank perfor-

mance. Fukuyama and Weber (2008a, b) estimated the shadow price of nonper-

forming loans. Drake et al. (2009) documented the importance of accounting for

loans and risk in the analysis of Japanese bank efficiency.

Fukuyama and Weber (2010) proposed a two-stage network model for Japanese

cooperative Shinkin banks. In stage 1 banks use labor, physical capital and financial

equity capital to produce deposits. Then, in stage 2 those deposits serve as an input

as banks produce a portfolio of securities investments and loans with some of the

loans becoming nonperforming. In a study of Bangladeshi banks Akther, Fukuyama

and Weber (2013) advanced this specification by allowing nonperforming loans

generated in a preceding period to decrease the production possibility set in a

subsequent period. All above-mentioned bank efficiency studies have the view

that risk associated to nonperforming loans need to be considered in bank efficiency

measurement.

Compared with network DEA, fewer studies have been devoted to the dynamic

DEA studies of bank efficiency. Fukuyama and Weber (2013) extended the Färe

and Grosskopf (1996) dynamic model to a network setting by specifying a bank

technology where a bank can forego current loans and the jointly produced non-

performing loans by expanding carryover assets (excess reserves) for use in a

subsequent period when better lending conditions might exist. Although their

dynamic model considered only three periods for bank managers to optimize over
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Fukuyama and Weber (2015b, 2016) extended the model to more than three

periods. Fukuyama and Weber (2015a) added a financial regulatory restraint that

constrained the feasible technology by requiring banks to hold a minimum ratio of

financial equity capital to assets. Furthermore, Fukuyama and Weber (2015a, b)

showed how the primal envelopment form that incorporated the regulatory con-

straint could be estimated by its dual multiplier form with financial regulatory

restraint and how the Luenberger dynamic productivity indicator could be

decomposed into productivity gains due to technological progress and productivity

gains due to greater efficiency. Epure and Lafuente (2015) accounted for bank risk

and distinguished between desirable outputs linked to nonperforming loans and

desirable outputs such as securities investments and service fees not linked to

jointly produced undesirable outputs.

Table 10.1 presents a summary of the assumptions behind the models of Fuku-

yama andWeber (2013, 2015a, b, 2016) and the data sets on Japanese banks used in

their empirical work. The primary purpose of the current study is to unify these

models and provide an extension by incorporating the condition of weak dispos-

ability between desirable outputs and jointly produced undesirable outputs when

banks operate under variable returns to scale.

10.3 Preliminaries

10.3.1 Black-Box Technology

Let the exogenous inputs that can be employed by a bank in period t be represented

by xt ¼ x t1; . . . ; x
t
N

� �2ℜN
þ and let total desirable outputs be represented by

yt ¼ y t1; . . . ; y
t
M

� �2ℜM
þ . The static black-box (SBB) technology for period t is

defined as

T t
SBB ¼ xt, ytð Þ2ℜN

þ �ℜM
þ xt can produce ytj� �

: ð10:1Þ

The SBB technology considers only one period and neglects the possible effects of

past production outcomes such as nonperforming loans and carryover assets that

might make a bank appear less efficient than it would otherwise be if those

carryover assets were incorporated into the technology. We assume that TtSBB
satisfies strong disposability of exogenous inputs xt and desirable outputs yt along

with other standard properties (Shephard 1970; Färe and Primont 1995). Strong

disposability of inputs and outputs means that if x t
0, y t

0

� �2T t
SBB then x t

0, � y t
0

� �
� x t

1, � y t
1

� �
implies x t

1, y t
1

� �2T t
SBB. That is, it is feasible for banks to use more

input to produce less output.
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10.3.2 Network Technology with Bad Outputs

To specify a bank technology and measure DMU performance researchers must

determine what inputs are used to produce what outputs. In their examination of

Japanese banks Fukuyama and Weber (2003, 2004, 2005) adopted the intermedi-

ation approach of Sealey and Lindley (1977) and assumed that Japanese banks

employed variable inputs of labor, physical capital, and deposits and a quasi-fixed

Table 10.1 Previous dynamic-network bank efficiency studies with NPLs

Unique model characteristics Data used

Common

model

characteristics

Fukuyama

and Weber

(2013)

• Envelopment form Shinkin banks

(265� 8 ¼ 2120)

1. CRS

frontiers

• 3-period directional technology

distance function

Period: FY2002–

FY2009

2. NPLs as

undesirable

output

Fukuyama

and Weber

(2015a)

• Envelopment form and multiplier form Commercial banks

(101� 5 ¼ 505)

3. Past NPLs

affect pre-

sent

production

• Financial regulatory constraints Period: FY2006–

FY2010

4. Two-stage

network

structure

• 3-period directional technology dis-

tance function

5. Multi-period

dynamic

structureFukuyama

and Weber

(2015b)

• Envelopment form Commercial

banks

(103� 7 ¼ 721)

• Multi-period directional technology

distance function

Shinkin banks

(265� 7 ¼ 1855)

• Luenberger indicator Period: FY2006–

FY2012

Fukuyama

and Weber

(2016)

• Envelopment Form Commercial

banks

(100� 7 ¼ 700)

• Multi-period directional output dis-

tance function

Period: FY2006–

FY2012

• Luenberger indicator

• Distinction between linked desirable

and undesirable outputs and desirable

outputs not linked to undesirable

outputs

FW Fukuyama and Weber, DN dynamic-network, NPLs nonperforming loans, FY fiscal year

Notes: Data size changes due to data availability, differences in research objectives and the

functional differences in bank activities. (1) Commercial banks consist of joint-stock city and

regional banks. (2) Shinkin banks are credit cooperatives
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input in the form of financial equity capital to produce loans and securities invest-

ments. Although the SBB technology represented by (10.1) has frequently been

used in bank efficiency measurement studies, disagreement exists regarding

whether deposits should be treated as an output or as an input. Berger and Hum-

phrey (1997) and Fethi and Pasiouras (2010) provide background on this on-going

discussion. To cope with this problem, various authors have used static two-stage

network models where deposits are an intermediate output of stage 1 production

and an intermediate input of stage 2 production. Let zt ¼ z t1; . . . ; z
t
Q

� �
2ℜQ

þ
represent the vector of intermediate products that are produced in stage 1 and

then subsequently used as an input in stage 2. The static stage 1 network

(SN) technology is denoted

T1 t
SN ¼ xt, ztð Þ 2ℜN

þ �ℜQ
þ xt2ℜN

þ can produce zt2ℜQ
þ

���n o
: ð10:2Þ

In the second stage of production it is commonly assumed that the main activity of a

bank is lending to the customers and hence it faces the credit risk associated with

lending, i.e., nonperforming loans arise in the stage 2 production process. Let bt

¼ bt
1; . . . ; b

t
L

� �2ℜL
þ represent the undesirable outputs that are jointly produced as

part of the lending process. Accounting for these undesirable outputs the static stage

2 network technology is denoted

T2 t
SN ¼ zt, yt, btð Þ 2ℜN

þ �ℜM
þ �ℜL

þ xt can produce yt; btð Þj� �
: ð10:3Þ

Nonperforming loans are generally classified by the various stages of delinquency–

loans delinquent for less than 3 months, loans delinquent less than 6 months but

more than 3 months, etc. Following Wang et al. (1997) and Chen et al. (2009a, b,

2010) the SBB technology can be extended to a static two-stage network technol-

ogy that accounts for undesirable outputs. This static network technology is denoted

T t
SN ¼ xt, zt, ytð Þ2ℜN

þ �ℜM
þ xt, ztð Þ 2T1 t

SN, zt, yt,btð Þ 2T2 t
SN

��� �
: ð10:4Þ

Figure 10.1 depicts the two-stage network system with undesirable outputs.

10.3.3 Dynamic Technology with Carryovers

To move from a static to a dynamic technology we follow Färe and Grosskopf

(1996) and assume that bank managers have discretion in how to allocate total

output produced, yt ¼ y t
1; . . . ; y

t
M

� �2RM
þ , between final outputs,

fyt ¼ fy t
1, . . . , fy

t
M

� �2RM
þ , and carryover assets, ct ¼ c t1; . . . ; c

t
M

� �2ℜM
þ where
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yt ¼ fyt þ ct2ℜM
þ : ð10:5Þ

See also Fukuyama and Weber (2013, 2015a, b). For instance, total outputs can be

thought of as the total amount of assets–less required reserves and physical capital

assets–that can be allocated to the various divisions that make loans and securities

investments. After the managers of those divisions receive their allocation (yt) they
can choose to use their funds to make loans or securities investments (fyt) or they

can save their allocation for use in a future period (ct) when better lending and

investment opportunities might be available because of technological progress or

because of a more robust economy (Fig. 10.2).

Intermediate  Products
deposits in 
other raised funds in 
...

t
t

t=z

Undesirable input  
NPLs in 11
...

Inputs linked to past NPLs
labor in 
physical capital in 
equity capital in 
...

tt

t
tt

t

−− =

=

b

x

Stage1 technology

1tT

Stage 2 technology

2tT

Uundesirable outputs
NPLs in 
...

t t
=b

Outputs linked to NPLs
loans in 
...

t t
=fy

Carryovers
carryover assets in 
...

t t
=c

1

Carryover Inputs from the previous period
carryovers from loans in 1
carryovers from securities in 1
...

t
t

t−

−

−=c

Outputs unlinked to NPLs
securities in 
...

t t
=fy

Fig. 10.2 Bank intermediation process with NPLs and carryovers. Notes: T1t: dynamic network

Stage 1 technology; T2t: dynamic network Stage 2 technology; NPLs: nonperforming loans
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Therefore, we define the dynamic black-box (DBB) technology as

TDBB ¼ x, fy, c, bð Þ ct�1,bt�1, xt, fyt þ ct, bt
� �

is a feasible

production plan for t ¼ 1, . . . ,T

����� �
ð10:6Þ

where x ¼ x1; x2; . . . ; xTð Þ, fy ¼ fy1, fy2, . . . , fyTð Þ, c ¼ c0, c1, . . . , cTð Þ and
b ¼ b0; b1; . . . ; bT

� �
. Akther et al. (2013) considered lagged nonperforming loans

as an undesirable input when studying the efficiency of commercial banks in

Bangladesh.

10.3.4 Dynamic-Network Technology

Our final goal is to link the static network technology with the dynamic black box

technology. Nonperforming loans generated in a previous period, bt�1, are an

undesirable input to stage 1 in period t. Undesirable inputs have the property that

if the current level of production is to be maintained, greater use of the undesirable

input must be offset by the use of larger amounts of the desirable inputs. For

instance, financial equity capital is necessary for banks to engage in fund raising

activities. When some of a bank’s loans become nonperforming, the ratio of equity

capital to total assets falls and bank regulations require banks to either seek

additional sources of financial equity capital (the desirable stage 1 input) or reduce

fund raising activities. Therefore, we define the dynamic-network stage 1 technol-

ogy as

T1t¼ bt�1;xt;zt
� �2ℜM

þ �ℜN
þ �ℜQ

þ bt�1;xt
� �2ℜN

þ can produce zt2ℜQ
þ

���n o
:

ð10:7Þ

Stage 2 of production also has a dynamic element. Along with the intermediate

outputs of raised funds and deposits, carryover assets from a previous period are a

desirable input in the production of the portfolio of loans and securities investments

in the current period. When lending and other investment opportunities are plentiful

in the current period, bank managers might seek to keep carryover assets (excess

reserves) to a minimum which reduces production possibilities in a subsequent

period. In contrast, bank managers might choose to keep final outputs relatively

small and hold a large amount of carryover assets for use in a future, more positive

lending environment. Thus, carryover assets, ct ¼ c t1; . . . ; c
t
M

� �2ℜM
þ represent the

unused assets in period t that are held until period tþ 1, similar to an inventory.

When current economic conditions are weakening or when technological progress

is expected a bank can delay some portion of the assets for use to a future period at
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the expense of the current production of outputs. Therefore, we denote the stage

2 technology as

T2t ¼ ct�1, zt, fyt,bt
� �2ℜN

þ �ℜM
þ �ℜL

þ ct�1, zt, fyt þ ct,bt
� �

is feasible
��� �

:

ð10:8Þ

We combine (10.7) and (10.8) to obtain the period t network technology

NTt ¼ bt�1, ct�1, xt, zt, fyt, bt, ct
� � bt�1, xt, zt

� �2T1t,
ct�1, zt, fyt,btð Þ2T2t

����� �
: ð10:9Þ

The dynamic-network technology (DNT) is formed by extending (10.9) over t ¼ 1,

. . . , T periods:

DNT ¼ x, y, c, bð Þ
b0, c0, x1, z1, fy1, b1, c1
� �2NT1,

⋮
bT�1, cT�1, xT , zT , fyT , bT , cT
� �2NTT

������
8<:

9=;: ð10:10Þ

To measure bank performance we use a variant of the directional distance

function. Directional distance functions were developed by Chambers et al. (1998)

as a functional representation of the production technology, similar to Luenberger’s

(1992, 1995) benefit function that was used to represent the consumer’s choice

problem. A single period directional distance function measures the simultaneous

expansion in desirable outputs and contraction in undesirable outputs and inputs for

the directional scaling vector g ¼ gf y; gb; gx
� �

. We extend the directional distance

function to the dynamic network technology given by (10.10). Let

Ωk ¼ bt�1k , _c t�1
k , €ct�1k , b t

k, x t
k, f _y t

k, _c t
k, f€y t

k, €c tk, 8t ¼ 1, . . . ,T
� �

represent

the observed inputs, outputs, and carryovers for bank k in each production period.

We define a weighted DN-directional distance function as

DN~D Ωk;gð Þ¼ maximize
βt, zt, ct

XT
t¼1

wtβt
(

b0,c0, x1�β1gx, z
1, fy1þβ1gy, b

1�β1gb,c
1

� �2NT1,

b1�β1gb,c
1, x2�β2gx, z

2, fy2þβ2gy, b
2�β2gb,c

2
� �2NT1,

⋮
bT�1�βT�1gb,cT�1, xT�βTgx, z

T , fyTþβTgy, b
T�βTgb,c

T
� �2NTT :

��������
9>>=>>;

ð10:11Þ

The weights (wt) for each period are exogenously chosen. Following Nemoto and

Goto (2003), De Mateo et al. (2006) and Fukuyama andWeber (2015a, b, 2016) one

might choose the present value factors for the predetermined weights. That is,

wt ¼ 1þ Rð Þt�1, where R is the producer’s rate of time preference. Inefficient

producers have DN~D Ωk; gð Þ > 0 and in stage 1 of period t they can contract inputs
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by βtgx while in stage 2 of the same period they can simultaneously expand

desirable outputs by βtgy and contract undesirable outputs by βtgb. The contraction
in stage 2’s undesirable outputs means that in the next period the amount of

undesirable inputs that enter stage 1 will also decline. A producer who is efficient

in a single period has βt ¼ 0 and a producer who is efficient in every period has

DN~D Ωk; gð Þ ¼ 0. We note that in the initial period the lagged value of undesirable

outputs (b0) are fixed. Furthermore, while the producer chooses the amount of

carryover assets (ct) in each of the t ¼ 1, . . . , T periods, the lagged value of

carryover assets (c0) in period t ¼ 1 are taken as exogenous. Figure 10.3 depicts

the multi-period dynamic-network structure for a bank.

10.4 DEA Implementation

We specify the dynamic network technology and estimate the performance of each

DMU using DEA. To incorporate the idea that nonperforming loans from a

previous period are an undesirable input to stage 1 of the current period we assume

that nonperforming loans bt�1
� �

and other inputs (xt) satisfy joint weak input

disposability (JWID). The condition of JWID is written as

11T

12T

21T

22T

1TT

2TT

1x 2x Tx

1fy
2fy Tfy

0b 1b

1T−b

Tb

1z 2z Tz

0c 1c 1T−c Tc

2b

2c

Tfy
2fy1fy. ... ..

. ..

Fig. 10.3 Dynamic network structure of bank production. Note: We adapted the multi-period

dynamic-network representations given in Fukuyama and Weber (2015b, 2016)
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JWID : bt�1, xt, zt
� �2T1t � ℜLþNþQ

þ and φ � 1

) φbt�1, φxt, zt
� �2T1t ð10:12Þ

which indicates that any proportional expansion of undesirable inputs bt�1 and

current desirable inputs xt can still feasibly produce a fixed level of intermediate

products zt.

Our DEA technology also distinguishes between desirable outputs that are

linked to undesirable byproducts and desirable outputs that are not linked to

undesirable outputs. To make the distinction we assume that _M of the desirable

outputs are linked to undesirable outputs and that €M of the desirable outputs are not

linked to undesirable outputs where M ¼ _M þ €M. That is,

yt ¼ fyt þ ct ¼ f _y t þ _c t, f€yt þ €ctð Þ: ð10:13Þ

In addition to JWID we assume that stage 2 desirable outputs linked to undesirable

outputs satisfy joint weak output disposability (JWOD). This condition is written as

follows:

JWOD : zt, f _y tþ _c t, f€ytþ €ct, btð Þ2T2t�ℜQþ _Mþ €MþL
þ

and 0� θt� 1 ) zt, θt f _y tþ _c tð Þ, f€ytþ €ct, θbtð Þ2T2t
ð10:14Þ

which means that it is feasible to produce proportionally less of the desirable and

undesirable outputs with the same amount of input. Weak disposability of outputs is

in contrast to the more typical assumption of strong disposability where it is

possible to produce less of a single output. Weak disposability means there is an

opportunity cost of producing fewer undesirable outputs–fewer desirable outputs

must also be produced.

To fully specify the DEA technology we assume that there are j¼ 1,. . ., J banks

observed in t ¼ 1, . . . ,T periods. Let λ1t ¼ λ1t1 ; . . . ; λ
1t
J

� �2ℜ J
þ and

λ2t ¼ λ2t1 ; . . . ; λ
2t
J

� �2ℜ J
þ represent the intensity variable vectors that form convex

combinations of observed inputs for the stage 1 and stage 2 technologies. Account-

ing for JWID, the stage 1 DEA technology in period t is

T1t ¼ bt�1,xt, zt
� �

bt�1, xt
� �

can produce zt
��� �

¼ bt�1, xt, zt
� �2ℜLþNþQ

þ
bt�1�

X J

j¼1φ
tbt�1j λ1tj , xt�

X J

j¼1φ
tx t

j λ
1t
j ,

zt�
X J

j¼1 z
t
j λ

1t
j , λ

1t� 0, φt� 1

������
8<:

9=;
ð10:15Þ
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where “0” indicates an appropriate dimensional zero vector. The existence of

nonperforming loans from a preceding period requires the bank to raise a greater

amount of equity capital and utilize more of the other inputs.

The stage 2 DEA technology for period t is denoted by

T2t ¼ zt, fytþ ct, btð Þ2ℜQþLþM
þ ct�1, ztð Þ can produce ytþ ct, btð Þ��n o

¼ zt, f _y tþ _c t, bt,

f€ytþ€ct

� �
2ℜQþLþM

þ

X J

j¼1 z
t
j λ

t
j � z2t, bt�

X J

j¼1 θ
tb t

j λ
2t
j ,

f _y tþ _c t�
X J

j¼1 θ
t _y t

j λ
2t
j ,

f€ytþ€ct�
X J

j¼1 €y
t
j λ

2t
j ,

_c t�1�
X J

j¼1 _c
t�1
j λ2tj , €ct�1�

X J

j¼1€c
t�1
j λ2tj ,

λ2tj � 0, 0� θt� 1, 8t¼ 1, . . . ,T

���������������

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
:

ð10:16Þ

Combining (10.15) and (10.16), we obtain the DEA-based technology for t denoted
as

NTt

¼
bt�1, xt, ct�1,
f _y tþ _c t,

f€ytþ€ct, bt

0@ 1A 2ℜLþNþMþ _Mþ €MþL
þ

bt�1�
XJ
j¼1

φtbt�1j λ1tj , xt�
X J

j¼1φ
tx t

j λ
1t
j ,X J

j¼1 z
t
j λ1tj � λ2tj

� �
� 0, bt�

X J

j¼1 θ
tb t

j λ
2t
j ,

f _y tþ _c t�
XJ
j¼1

θt _y t
j λ

2t
j ,

f€ytþ€ct�
X J

j¼1 €y
t
j λ

2t
j ,

_c t�1�
X J

j¼1 _c
t�1
j λ2tj , €ct�1�

X J

j¼1€c
t�1
j λ2tj , zt� 0,

λ1t� 0, λ2t� 0, φt� 1, 0� θt� 1, 8t¼ 1, . . . ,T

����������������������

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

:

ð10:17Þ

We usebt �
X J

j¼1 θ
tb t

j λ
2t
j rather thanbt ¼

X J

j¼1 θ
tb t

j λ
2t
j in (10.16) and (10.17), but

this treatment does not indicate that undesirable outputs are inputs due to the

condition that 0 � θt � 1. In fact, Färe et al. (2016) also replaced the equality

“¼” by the inequality “�” in a static black-box setting where no distinction was

made between desirable outputs linked with jointly produced undesirable outputs

and desirable outputs not linked to undesirable outputs. They stated that such a

treatment was consistent with treating bt as undesirable outputs, rather than inputs.

In (10.17) two sets of constraints link the two stages of production. These

constraints are for the intermediate outputs produced in stage 1 which are then

used as an input to stage 2. The constraints are
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XJ
j¼1

z tj λ
1t
j � z and

XJ
j¼1

z tj λ
2t
j � z ,

XJ
j¼1

z tj λ1tj � λ2tj

� �
� 0: ð10:18Þ

See Fukuyama and Weber (2010, 2014) and see also Chen et al. (2009b) and Chen

et al. (2010). Equation (10.18) allows some of the intermediate outputs produced in

stage 1 to be wasted in that not all of the intermediate outputs are needed to produce

the final outputs in stage 2. Fukuyama and Weber (2015a) found that Japanese

commercial banks produced more deposits in stage 1 than were needed to produce

the portfolio of loans and securities investments in stage 2. An et al. (2015) also

studied the relation between the degree of centralization and the internal resource

waste for a two-stage network DEA problem. Fukuyama and Mirdehghan (2012)

and Mirdehghan and Fukuyama (2016) examined (10.18) in a more general net-

work DEA framework from a Pareto-Koopmans efficiency perspective.

The dynamic network directional distance function can be estimated using DEA

by substituting the dynamic network DEA technology (10.17) into (10.11). Let g

¼ gx, g _y, g€y, gb
� �

be a predetermined directional vector for exogenous inputs,

linked outputs, unlinked outputs and undesirable outputs and let wt represent the

pre-determined weights for each period. The T-period DN-directional technology

distance function is estimated using DEA as

DN~D Ωk;gð Þ ¼ maximize
βt, _c t, €ct, λ1t, λ2t, φt, θt

w1β1þw2β2þ . . .þwTβT

subject to :

bank k in t¼ 1 and technology at t¼ 1

b0k �
X J

j¼1φ
1b0j λ

1,1
j , x1k�β1gx�

X J

j¼1φ
1x1j λ

1,1
j ,

X J

j¼1 z
1
j λ1,1j � λ2,1j

� �
� 0,

_c 0
k �
X J

j¼1 _c
0
j λ

2,1
j , €c0k �

X J

j¼1€c
0
j λ

2,1
j , b1k�β1gb�

XJ
j¼1

θ1b1j λ
2,1
j ,

f _y 1
kþ _c 1þβ1g _y �

X J

j¼1 θ
1 _y 1

j λ
2,1
j , f€y1kþ€c1þβ1g€y�

X J

j¼1 €y
1
j λ

2,1
j ,

β1� 0, λ1,1� 0, λ2,1� 0, _c 1� 0, €c1� 0 , φ1� 1, 0� θ1� 1

ð10:19Þ
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bankk int¼2, ...Tandtechnologyatt¼2, ...,T
bt�1k �βt�1gb�

X J

j¼1φ
tbt�1j λ1tj , x

t
k�βtgx�

X J

j¼1φ
tx t

j λ
1t
j ,
X J

j¼1z
t
j λ1tj �λ2tj
� �

�0,
_c t�1�

X J

j¼1 _c
t�1
j λ2,tj , €ct�1�

X J

j¼1€c
t�1
j λ2,tj , b t

k�βtgb�
X J

j¼1θ
tb t

j λ
2t
j ,

f _y t
kþβtg _yþ _c t�

X J

j¼1θ
t _y t

j λ
2t
j , f€y

t
kþβtg€yþ€ct�

X J

j¼1€y
t
j λ

2t
j ,

βt�0, λ1t�0, λ2t�0, _c t�0, €ct�0, φt�1, 0�θt�1:

The T-period DN-directional technology distance function is a dynamic network

version of the directional technology distance function due to Chambers

et al. (1996).

Although (10.19) is a nonlinear program it can be transformed into a linear

program by transforming the intensity variables using the Kuosmanen’s (2005)

procedure. Let γ1tj ¼ φtλ1tj and let μ1tj ¼ 1� φtð Þλ1tj where μ1tj j ¼ 1, . . . , Jð Þ are
non-positive. Consequently, the stage 1 intensity variables can be written as

λ1tj ¼ γ1tj þ μ1tj . Similarly, let γ2tj ¼ θtλ2tj and let μ2tj ¼ 1� θtð Þλ2tj where

μ2tj j ¼ 1, . . . , Jð Þ are non-negative. Thus, the stage 2 intensity variables can be

written as λ2tj ¼ γ2tj þ μ2tj . Note that γ
1t
j and γ2tj are non-negative. Substituting these

transformed variables into (10.19) yieldsXT

t¼1 w
tβt t½ � ¼ maximize

βt, _c t, €ct, γ1tj , μ1tj , γ2tj , μ2tj

w1β1 þ w2β2 þ . . .þ wTβT

subject to :

bank k in t ¼ 1 and technology in t ¼ 1

b0k �
X J

j¼1 b
0
j γ

1,1
j , x1k � β1gx �

X J

j¼1 x
1
j γ

1,1
j ,X J

j¼1 z
1
j γ1,1j þ μ1,1j

� �
� γ2,1j þ μ2,1j

� �� �
� 0,

_c 0
k �

X J

j¼1 _c 0
j γ2,1j þ μ2,1j

� �
, €c0k �

X J

j¼1 €c
0
j γ2,1j þ μ2,1j

� �
,

b1 � β1gb �
X J

j¼1 b
1
j γ

2,1
j ,

f _y 1
k þ β1g _y þ _c 1 �

X J

j¼1 _y 1
j γ

2,1
j ,

f€y1k þ β1g€y þ €c1 �
X J

j¼1 €y
1
j γ2,1j þ μ2,1j

� �
,

β1 � 0, λ1,1 � 0, λ2,1 � 0, _c 1 � 0, €c1 � 0 ,

γ1,1j � 0, μ1,1j � 0, γ2,1j � 0, μ2,1j � 0 j ¼ 1, . . . , Jð Þ
γ1,1j þ μ1,1j � 0 j ¼ 1, . . . , Jð Þ, γ2,1j þ μ2, tj � 0 j ¼ 1, . . . , Jð Þ;

ð10:20Þ
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bank k in t¼ 2, . . .T and technology at t¼ 2, . . . ,T

bt�1k �βt�1gb�
X J

j¼1b
t�1
j γ1tj , x t

k�βtgb�
X J

j¼1 x
t
j γ

1t
j , ,X J

j¼1 z
t
j γ1tj þμ1tj

� �
� γ2tj þμ2tj

� �� �
� 0,

_c t�1�
X J

j¼1 _c
t�1
j γ2tj þμ2tj

� �
, €ct�1�

X J

j¼1€c
t�1
j γ2tj þμ2tj

� �
,

bt�βtgb�
X J

j¼1b
t
j γ

2t
j ,

f _y t
kþβtg _y þ _c t�

X J

j¼1 _y
t
j γ

2t
j ,

f€y t
kþβtg€yþ€ct�

X J

j¼1 €y
t
j

�
γ2tj þμ2tj

�
,

βt� 0, λ1t� 0, λ2t� 0, _c t� 0, €ct� 0 ,

γ1tj � 0, μ1tj � 0, γ2tj � 0, μ2tj � 0 j¼ 1, . . . ,Jð Þ
γ1tj þμ1tj � 0 j¼ 1, . . . ,Jð Þ, γ2tj þμ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T:

where carryover assets, _c t, €ct 8t ¼ 1, . . . ,Tð Þ are choice variables and the

optimized values βt[t] represent bank inefficiency in period t with

DN~D Ωk; gð Þ ¼
XT

t¼1 w
tβt t½ �.

The dynamic-network performance problem (10.20) selects the maximal value

of the weighted sum of scaling factors related to exogenous inputs, the undesirable

output of nonperforming loans and the desirable outputs of loans and securities

investments. The model (10.20) differs from those of Fukuyama and Weber (2013,

2015a, b) by incorporating joint weak input-disposability (JWID) given by (10.12)

and joint weak output-disposability (JWOD) given by (10.14). The multi-period

dynamic-network directional distance function DN~D Ωk; gð Þ extends the static

black-box directional technology distance function due to Chambers et al. (1998).

The optimal values of the intermediate outputs, zt, can be calculated using the

optimal intensity variables with
X J

j¼1 z
t
j γ1tj þ μ1tj

� �
providing an upper bound

estimate for zt and
X J

j¼1 z
t
j γ2tj þ μ2tj

� �
providing a lower bound estimate of zt.

Values of DN~Dk ¼ DN~D Ωk; gð Þ ¼ 0 indicate that DMU k is efficient in every

period with no ability to simultaneously expand final outputs and contract undesir-

able outputs given the DEA technology. When DN~Dk > 0, DMU k is inefficient

with larger values indicating greater inefficiency.

The objective function of (10.20) is a weighted bank performance score equal to

the sum of the product of the weights (wt) and the period t directional technology
distance functions βt[t] over the t ¼ 1, . . . ,T periods. For the estimation of various

productivity indicators we need to calculate cross-period directional technology

distance functions βtþ1 t½ � and βt tþ 1½ �, t ¼ 1, . . . ,T � 1, where βtþ1 t½ �measures the

distance of the observed banks inputs and outputs in period t relative to the
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technology in period tþ 1 and βt tþ 1½ � measures the observed bank’s inputs and

outputs in period tþ 1 relative to the technology in period t. We estimate the

cross-period DN-directional technology distance functions by building on Pastor,

Asmild, and Lovell’s (2011) biennial Malmquist index and Färe et al. (2011)

dynamic Malmquist index.

Using the cross-period estimates, the DN-Luenberger productivity indicator

DNLt, tþ1
� �

is obtained as

DNLt, tþ1 ¼ 1

2
wtβt t½ � � wtβt tþ 1½ �ð Þ þ wtþ1βtþ1 t½ � � wtþ1βtþ1 tþ 1½ �� �� �

,

t ¼ 1, . . . , T � 1:

ð10:21Þ

A DMU experiences productivity growth (decline) between periods t and tþ 1 if

DNLt, tþ1 is positive (negative). The DN-Luenberger productivity indicator extends

Chambers’ (2002) static Luenberger productivity indicator for a dynamic network

technology. The DN-Luenberger productivity indicator can also be thought of as an

additive version of the static Malmquist productivity index of Färe et al. (1994).

To estimate βt tþ 1½ � we solve the following optimization problem:XT�1
t¼1 wtβt tþ 1½ � ¼ maximize

βt, _c t, €ct, γ1tj , μ1tj , γ2tj , μ2tj

XT�1
t¼1 wtβt

subject to :

bank k in t ¼ 2 and technology in t ¼ 1

b1k �
X J

j¼1 b
0
j γ

1,1
j , x2k � β1gx �

X J

j¼1 x
1
j γ

1,1
j ,X J

j¼1 z
1
j γ1,1j þ μ1,1j

� �
� γ2,1j þ μ2,1j

� �� �
� 0, _c 1

k �
X J

j¼1 _c 0
j γ2,1j þ μ2,1j

� �
,

€c1k �
X J

j¼1 €c
0
j γ2,1j þ μ2,1j

� �
, b2 � β1gb �

X J

j¼1 b
1
j γ

2,1
j ,

f _y 2
k þ β1g _y þ _c 2 þ _s 2 ¼

X J

j¼1 _y 1
j γ

2,1
j ,

f€y2k þ β1g€y þ €c2 þ €s2 ¼
X J

j¼1 €y
1
j

�
γ2,1j þμ2,1j

�
,

β1 : free, λ1,1 � 0, λ2,1 � 0, _c 2 � 0, €c2 � 0 , _s 2 : free, €s2 : free,

γ1,1j � 0, μ1,1j � 0, γ2,1j � 0, μ2,1j � 0 j ¼ 1, . . . , Jð Þ
γ1,1j þ μ1,1j � 0 j ¼ 1, . . . , Jð Þ, γ2,1j þ μ2,1j � 0 j ¼ 1, . . . , Jð Þ

ð10:22Þ
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bank k in t¼ 3, . . .T and technology at t¼ 2, . . . ,T�1

b t
k�βt�1gb�

X J

j¼1b
t�1
j γ1tj , xtþ1k �βtgx�

X J

j¼1 x
t
j γ

1t
j ,X J

j¼1 z
t
j γ1tj þμ1tj

� �
� γ2tj þμ2tj

� �� �
� 0,

_c t�
X J

j¼1 _c
t�1
j γ2tj þμ2tj

� �
, €ct�

X J

j¼1€c
t�1
j γ2tj þμ2tj

� �
,

btþ1k �βtgb�
X J

j¼1b
t
j γ

2t
j ,

f _y tþ1
k þβtg _y þ _c tþ1þ _s tþ1¼

X J

j¼1 _y
t
j γ

2t
j ,

f€ytþ1k þβtg€yþ€ctþ1þ €stþ1¼
X J

j¼1 €y
t
j

�
γ2tj þμ2tj

�
,

βt : free in sign, _c t� 0, €ct� 0 ,
_s tþ1 : free in sign, €stþ1 : free in sign,
γ1tj � 0, μ1tj � 0, γ2tj � 0, μ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1

γ1tj þμ1tj � 0 j¼ 1, . . . ,Jð Þ, γ2tj þμ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1:

The cross-period distance functions, βtþ1 t½ �, t ¼ 1, 2, . . . , T � 1, measure how

far a bank’s observed inputs and outputs in period t are from the period tþ 1

production frontier. These cross-period distance functions are found by solving

the linear programming problemXT�1
t¼1 wtþ1βtþ1 t½ � ¼ max

βt, _c t, €ct, γ1tj , μ1tj , γ2tj , μ2tj

XT�1
t¼1 wtþ1βtþ1

subject to :

bank k in t ¼ 1 and technology in t ¼ 2

b0k �
X J

j¼1 b
1
j γ

1,2
j , x1k � β2gx �

X J

j¼1 x
2
j γ

1,2
j ,X J

j¼1 z
2
j γ1,2j þ μ1,2j

� �
� γ2,2j þ μ2,2j

� �� �
� 0,

_c 0
k �

X J

j¼1 _c 1
j γ2,2j þ μ2,2j

� �
, €c0k �

X J

j¼1 €c
1
j γ2,2j þ μ2,2j

� �
,

b1k � β2gb �
X J

j¼1 b
1
j γ

2,2
j ,

f _y 1
k þ β2g _y þ _c 1 þ _s 1 ¼

X J

j¼1 _y 2
j γ

2,2
j ,

f€y1k þ β2g€f þ €c1 þ €s1 ¼
X J

j¼1 €y
2
j

�
γ2,2j þ μ2,2j

�
,

β2 : free in sign, _c 1 � 0, €c1 � 0,
_s 1 : free in sign, €s1 : free in sign,

γ1,2j � 0, μ1,2j � 0, γ2,2j � 0, μ2,2j � 0 j ¼ 1, . . . , Jð Þ
γ1,2j þ μ1,2j � 0 j ¼ 1, . . . , Jð Þ, γ2,2j þ μ2,2j � 0 j ¼ 1, . . . , Jð Þ

ð10:23Þ
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bank k in t¼ 2, . . .T�1 and technology at t¼ 3, . . . ,T

bt�1k �βtgb�
X J

j¼1b
t
j γ

1,tþ1
j , x t

k�βtþ1gx�
X J

j¼1x
tþ1
j γ1,tþ1j ,X J

j¼1 z
tþ1
j γ1,tþ1j þμ1,tþ1j

� �
� γ2,tþ1j þμ2,tþ1j

� �� �
� 0,

_c t�1�
X J

j¼1 _c
t
j γ2,tþ1j þμ2,tþ1j

� �
, €ct�1�

X J

j¼1€c
t
j γ2,tþ1j þμ2,tþ1j

� �
,

b t
k�βtþ1gb�

X J

j¼1b
t
j γ

2t
j ,

f _y t
kþβtþ1g _y þ _c tþ _s t¼

X J

j¼1 _y
tþ1
j γ2,tþ1j ,

f€y t
kþβtþ1g€yþ€ctþ €st¼

X J

j¼1 €y
tþ1
j γ2,tþ1j þμ2,tþ1j

� �
,

βtþ1 : free in sign, _c t� 0, €ct� 0 ,
_s t : free in sign, €st : free in sign,
γ1tj � 0, μ1tj � 0, γ2tj � 0, μ2tj � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1

γ1,tþ1j þμ1,tþ1j � 0 j¼ 1, . . . ,Jð Þ, γ2,tþ1j þμ2,tþ1j � 0 j¼ 1, . . . ,Jð Þ, t¼ 2, . . . ,T�1:

After solving the linear programming problems (10.20), (10.22), and (10.23), we

can obtain the DN-Luenberger productivity indicator, DNLt, tþ1, given in (10.21).

This productivity indicator can be decomposed into a dynamic-network efficiency

change indicator, DNECt, tþ1, and a dynamic-network technical change indicator,

DNTCt, tþ1:

DNLt, tþ1 ¼ wtβt t½ � � wtþ1βtþ1 tþ 1½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DNECt, tþ1

þ 1

2
wtþ1βtþ1 t½ � � wtβt t½ �� �þ wtþ1βtþ1 tþ 1½ � � wtβt tþ 1½ �� �� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DNTCt, tþ1

;

ð10:24Þ

A bank exhibits an efficiency gain (loss) if DNECt, tþ1 is positive (negative).

Similarly, a bank exhibits technological progress (regress) if DNTCt, tþ1 is positive
(negative).

10.5 A Choice of Variables and Regulatory Constraints

10.5.1 Variable Selection: An Example

In this sub-section, we describe the bank inputs and outputs that were used by

Fukuyama and Weber (2015a) in their dynamic network model. In their basic

model, banks transform labor (x1), physical capital (x2) and financial equity capital

(x3) to produce deposits (z1) and other raised funds (z2) in stage 1. Then, in stage

2, banks use the intermediate products of stage 1 as inputs in producing loans f _y1ð Þ
and securities investments ( fÿ2) as well as carryover assets c ¼ _c 1, €c2ð Þð Þ and an
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undesirable by-product of nonperforming loans (b1). Carryover assets are divided

into carryover assets that come from loans _c 1ð Þ and carryover assets that come from

securities €c2ð Þ. The total carryover assets _c1 þ €c2ð Þ are derived as:

_c 1 þ €c2 ¼ Assets� Required Reserves� Physical capitalðx2Þ
�Performing loansðf _y 1Þ � Securities investments ðf€y2Þ
�Nonperforming loans ðb1Þ:

ð10:25Þ

In their study, all carryover assets correspond with securities, i.e., c1¼ 0 and c2 > 0.

Since all carryovers are from securities investments, the network technology

(10.17) exhibits null-jointness, because a proportional reduction in linked desirable

and undesirable outputs is technologically feasible given the condition of JWOD.

For the calculation of required reserves, see Fukuyama andWeber (2013, 2015a, b).

10.5.2 Imposing Bank Regulatory Constraint

Banks face a variety of financial regulations which constrain their ability to reduce

certain kinds of inputs such as financial equity capital or to expand deposits and

other raised funds without the use of extra financial equity capital, even if the

technology would allow them to do so. In addition, financial regulations also

constrain the ability of banks to make certain kinds of risky loans without additional

financial equity capital. Fukuyama and Weber (2015a) incorporated these financial

regulatory constraints into the DEA technology. Since Japanese domestic banks are

required to have qualifying equity capital as a percent of risk-weighted assets (wAt
k)

greater than 4%, bank k’s capital adequacy ratio is expressed as

CARt
k ¼

Tier 1 t
k þ Tier 2 t

k � deduct tk
wAt

k

� 0:04 ð10:26Þ

where Tier 1tk is core tier 1 bank capital (primarily shareholders’ equity), Tier 2tk is

supplementary bank capital and deducttk is a deduction that includes goodwill.

Domestically operating banks are required to have a capital adequacy ratio of at

least 4%, whereas the international banks need to have a capital adequacy ratio of at

least 8% (see for example Montgomery and Shimizutani 2009).

Weber and Devaney (1999) and Färe et al. (2004) were the early DEA studies

which incorporated risk-based capital constraints in bank efficiency measurement.

Let Wt
ka be the risk-weight of asset a and let At

ka be the value of asset a. For assets

a ¼ 1, . . . ,Z the weighted sum wAt
k ¼

XZ
a¼1

Wt
kaA

t
ka represents risk-weighted assets.

The dynamic-network model of Fukuyama and Weber (2015a) assumed that

equity capital equals the sum of Tier 1 and Tier 2 capital, less deductions. Their

data source did not report the risk-weights for loans and securities although it did
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report total risk-weighted assets (wAt
k). Therefore, they imputed the risk-weights for

the two outputs of loans and securities investments from total risk-weighted assets

and by using the regulatory risk-weights for various classes of assets. Their imputa-

tion procedure is as follows. A bank’s total securities consist of central government

bonds (Govtk), local and municipal bonds (Localtk), corporate bonds (Corptk), and
other securities (otherSectk), and securities have risk weights between zero and one

with various government bonds having lower risk weights than corporate bonds

and other securities. Following Fukuyama and Weber (2015a) the risk-weight

for total securities can be computed as Wt
2k ¼ 0�Gov t

kþ0:2�Local tkþ0:75�Corp t
kþ1�otherSec t

k

f y t
2k

.

Fukuyama and Weber (2015a) also assumed that cash representing carryover

assets has a risk weight of 0 and physical capital has a risk weight of 1; and

other assets (otherAt
k) have a risk-weight of 1. Since

wAt
k ¼ 0� Cash t

k þWt
1kf y

t
1k þWt

2kf y
t
2k þ 1� x t2k þ 1� otherAt

k, the risk-weight

for loans is computed as Wt
1k ¼ wA t

k�W t
2k�f y t

2k
�1�x t

2k
�1�otherA t

k

f y t
1k

. Therefore, the

capital adequacy restriction given by (10.26) can be written as
x t
3k

W t
1k�f y t

1k
þW t

2k�f y t
2k
þ1�x t

2k
þ1�otherA t

k
� 0:04 which can be rearranged to yield

x t
3k

0:04 � Wt
1k � f y t1k þWt

2k � f y t2k þ 1� x t2k þ 1� otherAt
k

� �
. Thus, taking ineffi-

ciency into consideration yields the following regulatory inequality constraint:

x t3k
0:04

� Wt
1k � f y t1k þWt

2k � f y t2k þ x t2k þ otherAt
k

þ βt W t
1k � gy1 þWt

2k � gy2 � gx2 þ
gx3
:04

� �
: ð10:27Þ

Therefore, the financial regulatory constraints can be expressed as

Ft
k � βtG t

k t ¼ 1, . . . , Tð Þ: ð10:28Þ

where Ft
k ¼ x t

3k

0:04�Wt
1k � f y t1k �Wt

2k � f y t2k � x t2k � otherAt
k and Gt

k ¼ Wt
1k�

gy1 þW t
2k � gy2 � gx2 þ gx3

0:04. Therefore, the financial regulatory constraint can be

imposed by adding (10.28) to (10.19). A consequence of financial regulatory

constraints is that measures of inefficiency–the ability to expand desirable outputs

and contract inputs–is less than what might be achieved given the technology

without the financial regulatory constraint.

Note that the dual multiplier representation of (10.19) with the financial regula-

tory constraint (10.28) can be developed similar to the method of Fukuyama and

Weber (2015a).
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10.6 A Summary

Specifying an appropriate technology and measuring financial institution perfor-

mance has been a fertile area among operations researchers in the past 30 years.

Much of the early work relied on a black box technology where inputs entered and

outputs emerged from the black box and the performance of a particular financial

institution was measured relative to the best-practice producer in a single period.

This research was extended to network models that allowed various production

divisions within a financial institution to contribute to the production of final

outputs. One of the common network models assumed that banks used various

exogenous inputs in stage 1 to produce intermediate outputs of deposits and then

used those deposits as an input in stage 2 to generate a portfolio of interest bearing

assets such as loans and securities investments. These network models were

extended to account for the fact that the lending process generates a jointly

produced undesirable output in the form of delinquent or nonperforming loans.

Furthermore, nonperforming loans generated in one period constrain bank produc-

tion possibilities in future periods. In addition, instead of immediately making loans

as deposits are generated banks can instead choose to carryover some of their

deposits if they expect enhanced future production possibilities. Dynamic models

extended the black box technology by allowing inter temporal dependence between

the input and output decisions of one period on the production possibilities of

subsequent periods.

In this chapter, the dynamic network bank technology and performance mea-

sures developed by Fukuyama and Weber (2013, 2015a, b) were studied and

extended accounting for weak disposability between desirable and undesirable

inputs and accounting for weak disposability between desirable and undesirable

outputs. Static black box efficiency measures tend to be biased because they ignore

inter-temporal dependencies among inputs and outputs. The performance measures

that were developed in this chapter help reduce the bias in static black box

efficiency measures by comparing observed bank input and output decisions rela-

tive to a dynamic best-practice technology that accounts for the effects of input and

output decisions of one period on the ability of banks to produce in future periods.
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Chapter 11

Evaluation and Decomposition of Energy
and Environmental Productivity Change
Using DEA

Ke Wang

Abstract In this chapter, we present an input specific Luenberger energy and

environmental productivity indicator. The data envelopment analysis (DEA)

approach is utilized to estimate the directional distance function for composing

the Luenberger energy and environmental productivity indicator. We further

decompose the Luenberger productivity indicator in two ways. Firstly, it can be

decomposed into four components that measure the changes of pure efficiency,

scale efficiency, pure technology, and scale technology to energy and environmen-

tal productivity change. This decomposition helps to identify the effects of catching

up to the frontier and the frontier shift, as well as the economy of scale (both from

an efficiency perspective and a technical perspective) towards energy and environ-

mental productivity change. Secondly, it can be additionally decomposed into the

productivity changes of specific energy input factors and undesirable output (emis-

sion) factor. This decomposition enables to examine the contributions of specific

input and undesirable output factors toward energy and environmental productivity

change. An illustrative empirical application of the Luenberger energy and envi-

ronmental productivity indicator and its decompositions are also provided in this

chapter.
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11.1 Introduction

Many current studies of energy productivity or environmental productivity changes

have attempted to identify the sources of observed productivity increase or decrease

in major energy consuming and carbon emitting countries. Several hypotheses have

been proposed such as environmental regulations or carbon emission control

policies impose burdens on economic development since pollutant abatement

activities or carbon emission reduction activities are implemented to be in response

to environmental policies and these activities are usually costly. Carbon control

policies divert part of the energy inputs, which are initially used for producing

desirable outputs, to carbon emission abatement activities and thus, it may result in

reducing the production of desirable outputs. In other words, the carbon control

policies may require a decision maker to employ more energy inputs to produce the

same level of the desirable outputs and therefore, it leads to the underestimation of

energy productivity growth from the traditional productivity measuring indicators

(Färe et al. 2007a). Several researches had provided evidences on this underesti-

mation such as Chung et al. (1997), Färe et al. (2001), and Hailu and Veeman

(2001), in which the estimated productivity improvements with the consideration of

undesirable (i.e., pollutant emissions) are higher than the traditional productivity

improvement measures when undesirable outputs are ignored. Their estimation

results support the so called Porter Hypothesis arguing that environmental regula-

tions will lead to enhanced competitiveness (measured by productivity growth)

through stimulating innovation on emission control and environmental protection

(Porter 1990). However, other studies provide contradicts evidence. For instance,

Kumar (2006) indicated that developing countries shown lower productivity growth

when the undesirable outputs (e.g., carbon emission) are taken into account and

treated as weakly disposable outputs. Similarly, Zhang et al. (2011) pointed out

that, in the case of China, the productivity growth was overestimated if undesirable

outputs are ignored, and this overestimation indicates that the increase speed of

desirable output (production) exceeds the decrease speed (in absolute value) of

undesirable output (carbon emission) (Färe et al. 2001). Therefore, the evidence of

China does not support the Porter Hypothesis.

The concept of energy and environmental productivity is an extension of eco-

logical productivity which could be defined as ratio between environmental impacts

added (e.g., global warming effect caused by carbon emission) and value added

from the consumption of energy. Energy and environmental productivity aims to

achieve more desirable output productions with the current energy consumptions

and pollutant emissions, or to maintain the current goods and service outputs with

less energy inputs as well as less carbon emission. Energy and environmental

productivity is essentially an indicator of economic performance and resources

utilization performance, and thus the measurement of it is important to determine

the benchmark of success (best practice of desirable and undesirable output pro-

ductions), identify the areas for performance improvement (energy consumption

and carbon emission reduction potentials), and prioritize actions for keeping
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economic growth as well as controlling pollutant emissions (Mahlberg and

Luptacik 2014).

Malmquist and Luenberger productivity indicators are capable of calculating

productivity changes, and under the evaluation framework proposed by Chung

et al. (1997), these indicators allow for taking undesirable outputs into account

without requiring price information on them. In addition, these indicators credit

observations under evaluation for promotions in production or reductions in

resources and pollutions, as well as providing a measurement of productivity

change. These indicators also provide the information on whether the productivity

change is caused by efficiency change (catching up to the best practice frontier) or

technical change (best practice frontier shift). In order to provide a more general

decomposition framework of productivity change and to avoid so-called scale bias

of technical change, Simar andWilson (1998) and Zofio and Lovell (1998) provides

a unifying decomposition of productivity indicator which may deal with a complete

characterization of efficiency change and technical change both from a technical

and a scale perspective.

The productivity indicators mentioned above are not able to attribute energy and

environmental productivity change to changes in consumption of specific energy

input factors or in production of specific pollutant undesirable output factors. In

order to separately identify the productivity change of each energy input and carbon

emission undesirable output, this study, based on the general decomposition frame-

work of Simar and Wilson (1998) and Zofio and Lovell (1998), proposes an input

specific Luenberger energy and environmental productivity indicator. This indica-

tor can be further decomposed in the way that enables examining the contribution of

specific input and undesirable output factors to energy and environmental produc-

tivity change. These decompositions help to identify the catch-up effect, frontier

shift effect, and economy of scale towards energy and environmental productivity

change, as well as provide the information on which energy inputs and emission

output of an observation under evaluation are the driving forces of energy and

environmental productivity change. The Luenberger indicators proposed in this

study are all computed through the directional distance functions that are estimated

using the data envelopment analysis (DEA) approach (Cooper et al. 2011; Zhu

2015).

This chapter is structured as follows. Section 11.2 presents the Luenberger

productivity indicator and its decomposition. Section 11.3 presents the DEA

approach used for computing the directional distance functions of energy and

environmental efficiency measures. An application of the energy and environmen-

tal productivity indicator to China’s regional energy and environmental productiv-

ity change is illustrated in Sect. 11.4. Section 11.5 provides the conclusions.
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11.2 Luenberger Productivity Indicator and Its
Decomposition

Two commonly used indicators for calculating productivity change and its compo-

nents (e.g., efficiency change and technical change) are Malmquist productivity

index (Färe et al. 1989, 1994) and Luenberger productivity indicator (Chambers

et al. 1996). Malmquist index has a ratio structure while Luenberger indicator has

an additive structure. Usually, Malmquist index is associated with Russell measure

of inefficiency (Färe et al. 1982, 1985; Pastor et al. 1999) which is multiplicative by

nature; while Luenberger indicator is associated with slack-based measure of

inefficiency through directional distance function or with directional Russell mea-

sure of inefficiency (Färe and Grosskopf 2010; Fukuyama and Weber 2009) which

is additive by nature.

For decomposing the productivity indicators, Färe et al. (1992) derived an input-

oriented Malmquist index for measuring productivity change and decomposed it

into indicators measuring changes in efficiency and technology. Then, Färe

et al. (1994) proposed an output-oriented Malmquist index and provided an alter-

native decomposition identifying changes in efficiency, scale and technology.

Simar and Wilson (1998) additionally decomposed the Malmquist index into four

factors: pure efficiency change, scale efficiency change, pure technology change,

and scale of technology change. On the other hand, Chambers et al. (1996) derived

a decomposition of non-oriented Luenberger indicator into its efficiency change

component and technical change component. This non-oriented Luenberger indi-

cator is constructed through directional distance function that simultaneously

adjusts inputs and outputs.

Following, we first introduce the directional distance function and the

Luenberger productivity indicators proposed in Chambers et al. (1996), and then

propose another decomposition of Luenberger indicator for the evaluation and

decomposition of energy and environmental productivity change.

Firstly, the production technology can be described by a set T which defined as:

T ¼ x; yð Þ : xcan produceyf g ð11:1Þ

where x is a non-negative vector of inputs and y is a non-negative vector of outputs.
Then, the directional distance function denoted by DT(x, y; gx, gy) is defined as:

DTðx, y; gx, gyÞ ¼ sup fβ : ðx�βgx, yþ βgyÞ2Tg ð11:2Þ

where (gx, gy) is a nonzero directional vector.

The following Fig. 11.1 illustrates the directional distance function assuming

constant returns to scale. The input and output vector (x, y) is expanded along a

direction, which is given by (gx, gy), as much as is feasible, and the maximal

expansion is measured as DT(x, y; gx, gy).
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If inputs and outputs are freely disposable, the directional distance function DT

completely characterizes the technology:

DT x, y; gx, gy

� �
� 0, x, yð Þ2T ð11:3Þ

And if T exhibits constant returns to scale, then it follows for λ > 0 that:

DT λx, λy; gx, gy

� �
¼ λDT x, y; gx, gy

� �
ð11:4Þ

If we choose gx ¼ 0 and gy ¼ y, the directional distance function is related to

Shephard output distance function as:

DTðx, y; 0, yÞ ¼ 1=D0ðx, yÞ�1 ð11:5Þ

where Shephard output distance function is defined as:

D0ðx, yÞ ¼ inf fθ : ðx, y=θÞ2Tg ð11:6Þ

and that

D0 x, yð Þ � 1 , x; yð Þ2T ð11:7Þ

Equation (11.5) indicates that Shephard output distance function is a special case of

the directional distance function.

Next, we introduce Chambers et al. (1996)’s Luenberger productivity indicator.

Different from the Malmquist productivity indicator, Luenberger productivity

indicator has an additive structure, and it can be formulated as differences rather

than ratios of efficiency measures. The Luenberger productivity indicator for

periods t and tþ 1 is defined as:

(–gx, gy)

(x, y)

(x– gx, y+ gy) (x, y/ )

x

y

T

qb b

Fig. 11.1 Directional distance function and output distance function
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L xt; yt; xtþ1; ytþ1ð Þ ¼ 1

2
Dtþ1

T xt; yt; gx; gy

� �
� Dtþ1

T xtþ1; ytþ1; gx; gy
� �h

þDt
T xt; yt; gx; gy

� �
� Dt

T xtþ1; ytþ1; gx; gy
� �i ð11:8Þ

Positive value of L indicates productivity improvement and negative value of

L indicates productivity decline.

Following Chambers et al. (1996), the Luenberger productivity indicator can be

further decomposed into two components of efficiency change measure (LEFCH)
and technical change measure (LTECH) as:

LEFCH ¼ Dt
T xt; yt; gx; gy

� �
� Dtþ1

T xtþ1; ytþ1; gx; gy
� �

ð11:9Þ

and

LTECH ¼ 1

2
½Dtþ1

T ðxtþ1, ytþ1; gx, gyÞ � Dt
Tðxtþ1, ytþ1; gx, gyÞ

þ Dtþ1
T ðxt, yt; gx, gyÞ � Dt

Tðxt, yt; gx, gyÞ�
ð11:10Þ

Then, we have:

L xt; yt; xtþ1; ytþ1
� � ¼ LEFCH þ LTECH ð11:11Þ

The efficiency change measures how close two observations (i.e., one decision

making unit in two periods t and tþ 1) are to the frontiers of two technologies

T (i.e., technologies of two periods t and tþ 1), while the technical change measures

the (average) distance between the two technologies.

In the current study, since we plan to measure and decompose energy and

environmental productivity change through Luenberger productivity indicator, in

which energy inputs, desirable outputs of economic productions, and undesirable

outputs of emissions caused by energy consumptions need to be simultaneously

measured, we will give another measurement and decomposition of productivity

change based on the Luenberger indicator. Before doing this, we first introduce a

production technology set that considers a production process of employing a

vector of energy inputs (e) and a vector of other resources inputs (x) such as labor

and capital to generate a vector of desirable outputs (y) such as gross domestic

product, and a vector of undesirable outputs (b), such as CO2 emission, as

byproducts of desirable outputs. This production technology set can be defined as:

T’ ¼ e, x, y , bð Þ : e, xð Þ can produce y, bð Þf g ð11:12Þ

where T’ is often assumed to be a closed and bounded set, and in addition, inputs

and desirable outputs are supposed to be freely (or strongly) disposable.
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For a reasonable modeling of a production technology that includes both desir-

able and undesirable outputs, additional assumptions need to be imposed. Färe

et al. (1989) first proposed to use the weak disposability of undesirable outputs on

the production technology set, which implies that the reduction of undesirable

outputs is costly and a proportional reduction in both desirable and undesirable

outputs is necessary. Moreover, the nulljointness also need to be introduced on the

production technology set, which implies that for producing desirable outputs,

some undesirable outputs must be generated as well.

The jointly weak disposability of desirable and undesirable outputs assumption

is defined as:

If e, x, y, bð Þ2T0 and θ2�0, 1�, then e, x, θy, θbð Þ2T0 ð11:13Þ

And the nulljointness assumption is defined as:

If e, x, y, bð Þ2T0 and b ¼ 0, then y ¼ 0 ð11:14Þ

Then, the directional distance function with the consideration of desirable and

undesirable outputs denoted by D(e, x, g, b; ge, gx, gg, gb) can be defined as:

Dðe, x, g, b; ge, gx, gy, gbÞ¼ sup fβ : ðe�βge,x�βgx,yþβgy,b�βgbÞ2T
0 g
ð11:15Þ

where (ge, gx, gy, gb) is a nonzero directional vector.

The following Fig. 11.2 illustrates part of the directional distance function of

desirable and undesirable outputs

(y, b) which is expanded along a direction denoted by (gy, gb) as much as is

feasible. The maximal expansion is measured as D(e, x, y, b; ge, gx, gy, gb).
Similarly, we have the property of the directional distance function D as:

D e, x, y, b; ge, gx, gy, gb

� �
� 0 , e; x; y; bð Þ2T0: ð11:16Þ

Next, according to the concept of Chambers et al. (1996), we propose the following

Luenberger productivity indicator for periods t and tþ 1:

LPtþ1
t

¼ 1

2
Dt et; xt; yt; bt; ge; gx; gy; gb

� �
� Dt etþ1; xtþ1; ytþ1; btþ1; ge; gx; gy; gb

� �h
þDtþ1 et; xt; yt; bt; ge; gx; gy; gb

� �
� Dtþ1 etþ1; xtþ1; ytþ1; btþ1; ge; gx; gy; gb

� �i
ð11:17Þ
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Positive and negative LP values respectively represent productivity increase and

decrease. LP can also be decomposed into two components, namely efficiency

change (LPEFCH) and technical change (LPTECH) as:

LPEFCHtþ1
t ¼ Dt et; xt; yt; bt; ge; gx; gy; gb

� �
� Dtþ1 etþ1; xtþ1; ytþ1; btþ1; ge; gx; gy; gb

� �
ð11:18Þ

and

LPTECHtþ1
t

¼ 1

2
½Dtþ1ðetþ1,xtþ1,ytþ1,btþ1;ge,gx,gy,gbÞ�Dtðetþ1,xtþ1,ytþ1,btþ1;ge,gx,gy,gbÞ
þDtþ1ðet,xt,yt,bt;ge,gx,gy,gbÞ�Dtðet,xt,yt,bt;ge,gx,gy,gbÞ�

ð11:19Þ

The sum of LPEFCH and LPTECH is equal to LP. The efficiency change compo-

nent measures the catch up effect that indicates the change in distance of an

observation to the production frontiers at periods t and t+ 1. The technical change
component measures the frontier shift effect that reflects the shift in the production

frontiers at periods t and tþ 1.

Figure 11.3 provides an illustration of the LP. Suppose that the multiple line

segments 0ABCD and 0A’B’C’D’ respectively represent the production technologies
of periods t and tþ 1, and assume that points a and d respectively represent one

observation, consuming the same amounts of inputs to produce different amounts of

desirable and undesirable outputs, at periods t and tþ 1. Thus, the period t desirable
and undesirable output vector (yt, bt) is denoted by a, and the period tþ 1 desirable

and undesirable output vector ytþ1, btþ1
� �

is denoted by d. The two technologies at

b

y

T

(gy, –gb) (y,

’

b)

(y+ gy, b– gb)b b

Fig. 11.2 Directional

distance function of

desirable and undesirable

outputs
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periods t and tþ 1 are T’t and T’t+1. Moreover, the direction (gy, gb) is denoted by g.
Then, we can have:

c ¼ aþ Dt a; gð Þ � g ð11:20Þ
e ¼ aþ Dtþ1 a; gð Þ � g ð11:21Þ
f ¼ d þ Dtþ1 d; gð Þ � g ð11:22Þ
h ¼ d þ Dt d; gð Þ � g ð11:23Þ

and

LPEFCH ¼ ðc�aÞ�ðf�dÞ ¼ ½Dtða; gÞ�Dtþ1ðd; gÞ� � g ð11:24Þ

LPTECH ¼ 1

2
½ðf�hÞ þ ðe�cÞ�

¼ 1

2
½Dtþ1ðd; gÞ�Dtðd; gÞ þ Dtþ1ða; gÞ�Dtða; gÞ� � g

ð11:25Þ

In this study, we apply the Luenberger productivity indicator to measure and

decompose energy and environmental productivity change. Inspired by the decom-

position of the Malmquist index in Simar and Wilson (1998) and Zofio (2007), we

go one step further, than the decomposition introduced above, to decompose

Luenberger energy and environmental productivity indicator into four components

of pure efficiency change, scale efficiency change, pure technical change, and scale

technical change. This decomposition is considered a more comprehensive decom-

position that remains generally accepted productivity change definition, as well as

efficiency change and technical change definitions from both a technical perspec-

tive and a scale perspective, and this decomposition can avoid the scale biases of

efficiency change and technical change.

b

y

g T’t

T’t+1

a

0

A
A’

B
C

D D’

C’B’

e d

f

c

h

Fig. 11.3 The Luenberger

productivity indicator for

desirable and undesirable

outputs
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Next, we propose these four components, namely Luenberger pure efficiency

change (LPEC), Luenberger scale efficiency change (LSEC), Luenberger pure

technical change (LPTC), and Luenberger scale technical change (LSTC) as:

LPECtþ1
t ¼ Dt

V et; xt; yt; bt; ge; gx; gy; gb

� �
� Dtþ1

V etþ1; xtþ1; ytþ1; btþ1; ge; gx; gy; gb
� �

ð11:26Þ

LSECtþ1
t ¼ Dt

C et;xt;yt;bt;ge;gx;gy;gb

� �
�Dt

V et;xt;yt;bt;ge;gx;gy;gb

� �h i
� Dtþ1

C etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �

�Dtþ1
V etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �h i

ð11:27Þ
LPTCtþ1

t ¼
1

2
Dtþ1

V et;xt;yt;bt;ge;gx;gy;gb

� �
�Dt

V et;xt;yt;bt;ge;gx;gy;gb

� �h
þDtþ1

V etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �

�Dt
V etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �i

ð11:28Þ
LSTCtþ1

t

¼ 1

2
Dtþ1

C et;xt;yt;bt;ge;gx;gy;gb

� �
�Dtþ1

V et;xt;yt;bt;ge;gx;gy;gb

� �h in
� Dt

C et;xt;yt;bt;ge;gx;gy;gb

� �
�Dt

V et;xt;yt;bt;ge;gx;gy;gb

� �h i
þ Dtþ1

C etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �

�Dtþ1
V etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �h i

� Dt
C etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �

�Dt
V etþ1;xtþ1;ytþ1;btþ1;ge;gx;gy;gb
� �h io

ð11:29Þ

where DC indicates directional distance function under constant returns to scale

assumption, while DV indicates directional distance function under variable returns

to scale assumption.

LPEC measures contemporaneous pure efficiency change of observation at

periods t and tþ 1. Positive and negative LPEC values respectively indicate

increase and decrease on pure technical efficiency. Note that two directional

distance functions used for LPEC are all under variable returns to scale.

LSEC measures scale efficiency change resulted from the change in the location

of observation in its input and output space between periods t and tþ 1, or change in

the shape of the technology, or some combination of these two changes. Positive

and negative LSEC values respectively indicate increase and decrease on scale

efficiency. Note that two sets in the first and the second brackets in (11.27)

respectively measure the difference between the two directional distance functions

under variable returns to scale and constant returns to scale at periods t and tþ 1.

LPTC measures pure technical change which measures the shift of the technol-

ogy. It is defined as the arithmetic mean of two shifts respectively relative to

observation at periods t and tþ 1. Positive and negative LPTC values respectively

indicate technical progress (i.e., upward shift of technology) and technical regress
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(i.e., downward shift of technology). Note that four directional distance functions

used for LPTC are all under variable returns to scale.

LSTCmeasures scale technical change which is denoted by the change in returns

to scale of technology at two fix position of an observation at periods t and tþ 1. It

is also defined as the arithmetic mean of two differences which respectively

measure the change in distance between two directional distance functions under

variable returns to scale and constant returns to scale. Positive and negative LSTC
values respectively indicate technology is moving toward constant returns to scale

or opposite constant returns to scale.

In the next section, we develop a DEA model for calculating the Luenberger

productivity indicator of energy and environmental productivity change measure

and decomposition.

11.3 DEA Model for Energy and Environmental Efficiency
Measurement

The calculation of Luenberger productivity indicator (LP) and its four decomposi-

tions: LPEC, LSEC, LPTC, and LSTC requires the computation of eight directional

distance functions utilized in (11.17) and (11.26) to (11.29). DEA models are

applied for estimating these directional distance functions. We assume that at

each period t ¼ 1, . . . , p, there are j ¼ 1, . . . , n observations of energy (e) and
other resources (x) inputs, as well as desirable (y) and byproduct undesirable (b)
outputs:

e tj ; x
t
j ; y

t
j ; b

t
j

� �
j ¼ 1, . . . , n, t ¼ 1, . . . , p ð11:30Þ

where e, x, y, and b are all vectors respectively with h ¼ 1, . . . , k; i ¼ 1, . . . ,m;

r ¼ 1, . . . , s; and f ¼ 1, . . . , l elements in each vector.

Following Färe et al. (1994), the production technology set derived from the data

(11.30) and that meets (i) the jointly weak disposability and nulljointness of

desirable and undesirable outputs, (ii) strong disposability of inputs and desirable

outputs, and (iii) constant returns to scale is:

T0 ¼ e; x; y; bð Þf :
Xn

j¼1 λje
t
hj � e th, h ¼ 1, . . . , k,Xn

j¼1 λjx
t
ij � x ti , i ¼ 1, . . . ,m,Xn

j¼1 λjy
t
rj � y tr , r ¼ 1, . . . , s,Xn

j¼1 λjb
t
f j ¼ bt

i , f ¼ 1, . . . , h,

λj � 0, j ¼ 1, . . . , n
�

ð11:31Þ

11 Evaluation and Decomposition of Energy and Environmental Productivity. . . 277



Then, we adapt an additive featured directional distance function to computing our

Luenberger productivity indicator. The computation is conducted through solving

the following linear programming problem. For the observation j0:

Dt
C et; xt; yt; bt; ge; gx; gy; gb

� �
¼ maxβ

s:t:
Xn

j¼1 λje
t
hj � e thj0 � βge, h ¼ 1, . . . , k,Xn

j¼1 λjx
t
ij � x tij0 � βgx, i ¼ 1, . . . ,m,Xn

j¼1 λjy
t
rj � y trj0 þ βgy, r ¼ 1, . . . , s,Xn

j¼1 λjb
t
f j ¼ bt

f j0
� βgb, f ¼ 1, . . . , l,

λj � 0, j ¼ 1, . . . , n

ð11:32Þ

where β is the inefficiency measure and λj is the intensity variable that connects

inputs of each observation with its outputs by a convex combination.

Model (11.32) provides the estimation of directional distance function for

observation at period t against the technology at the same period. For the estimation

at period tþ 1, just change the t period data to tþ 1 period data in Model (11.32). If

we need to compute the mixed period directional distance function, then the t period
data (etj, x

t
j, y

t
j, b

t
j) is used in the left hand side of the constraints and the t+ 1 period

data etþ1j ; xtþ1j ; ytþ1j ; btþ1j

� �
is used in the right hand side of the constraints in Model

(11.32) for computing Dt
C etþ1; xtþ1; ytþ1; btþ1; ge; gx; gy; gb
� �

, or on the contrary,

the tþ 1period data is used in the left hand side while the t period data is used in the

right hand side for computing Dtþ1
C et; xt; yt; bt; ge; gx; gy; gb

� �
.

Model (11.32) is under constant returns to scale assumption. Next, we propose

the following programming for calculating directional distance function under

variable returns to scale. Similarly, for the observation j0:

Dt
V et; xt; yt; bt; ge; gx; gy; gb

� �
¼ maxβ

s:t:
Xn

j¼1 λje
t
hj � e thj0 � βge, h ¼ 1, . . . , k,Xn

j¼1 λjx
t
ij � x tij0 � βgx, i ¼ 1, . . . ,m,Xn

j¼1 θjλjy
t
rj � y trj0 þ βgy, r ¼ 1, . . . , s,Xn

j¼1 θjλjb
t
f j ¼ bt

f j0
� βgb, f ¼ 1, . . . , lXn

j¼1 λj ¼ 1

λj � 0, 0 � θj � 1, j ¼ 1, . . . , n

ð11:33Þ

where θj is an abatement factor to keep the reductions of desirable and undesirable

outputs are proportional, i.e., to satisfy weak disposability of undesirable under the

variable returns to scale assumption. Model (11.33) is a non-linear programming
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problem which can be linearized through the following the changes. If we set θjλj
¼ ηj and 1� θj

� �
λj ¼ δj, then λj ¼ ηj þ δj. Model (11.33) can be translated into:

Dt
V et; xt; yt; bt; ge; gx; gy; gb

� �
¼ maxβ

s:t:
Xn

j¼1 ηj þ δj
� �

e thj � e thj0 � βge, h ¼ 1, . . . , k,Xn

j¼1 ηj þ δj
� �

x tij � x tij0 � βgx, i ¼ 1, . . . ,m,Xn

j¼1 ηjy
t
rj � y trj0 þ βgy, r ¼ 1, . . . , s,Xn

j¼1 ηjb
t
f j ¼ bt

f j0
� βgb, f ¼ 1, . . . , l,Xn

j¼1 ηj þ δj
� � ¼ 1,

ηj, δj � 0, j ¼ 1, . . . , n

ð11:34Þ

Model (11.34) computes the directional distance function under variable returns to

scale at period t. Similarly, replacing the t period data with the tþ 1 period data,

Model (11.34) provides the estimation at period tþ 1. For the calculation of the

mixed period, the t period data is used in the left hand side of the constraints and the
tþ 1period data is used in the right hand side of the constraints in Model (11.34) for

calculating Dt
V etþ1; xtþ1; ytþ1; btþ1; ge; gx; gy; gb
� �

; the tþ 1 period data is used in

the left hand side while the t period data is used in the right hand side for calculating

Dtþ1
V et; xt; yt; bt; ge; gx; gy; gb

� �
.

Our next task is to determine the directions utilized for computing the eight

directional distance functions. From the perspective of energy utilization conserva-

tion but keep the generation of outputs unchanged, we could choose

ge, gx, gy, gb

� �
¼ 1, 0, 0, 0ð Þ ; or from the perspective of simultaneously

increasing desirable outputs and decreasing undesirable outputs with the consump-

tion of energy inputs unchanged, we could choose ge, gx, gy, gb

� �
¼ 0, 0, 1, 1ð Þ.

In this study, we plan to minimize the energy consumption and decrease the unde-

sirable carbon emissions as much as possible while keep the desirable production

fixed, so as to provide an appropriate evaluation of energy and environmental

productivity change, therefore, we should choose the direction vector as

ge; gx; gy; gb

� �
¼ 1, 0, 0, 1ð Þ.

There is one important feature of the above setting of direction that should be

noted. The directional distance function utilized in this study has an additive

structure (e.g., e–βge, b–βgb), and as pointed out in Färe et al. (2007b), this additive
directional distance function has the advantages that the estimation results are easy

to aggregate and it provides a clear connection to production function. However, the

estimation results of it could be affected by the data scale, i.e., the estimation results

from additive directional distance function is not unit-invariant. To avoid this
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problem, we chose another direction as follows, which is the observed energy input

and undesirable output value of each decision making unit:

ge, gx, gy, gb

� �
¼ e, 0, 0, bð Þ ð11:35Þ

Then we have the right hand side of the constraints in Models (11.32) to (11.34) as:

e thj0 � βe thj0 ,x
t
ij0
,y trj0 ,b

t
f j0
� βbt

f j0

h iT
¼ 1� βð Þe thj0 ,x tij0 ,y trj0 , 1� βð Þbt

f j0

h iT
ð11:36Þ

The choosing of the above direction satisfies the unit-invariance of the estimation of

directional distance function.

The energy and environmental inefficiency measure β proposed in Models

(11.32) to (11.34) is considered an integrated inefficiency measure that is not able

to identify the inefficiency of a specific energy input resource, or to distinguish the

different contribution of energy inputs and undesirable emission outputs in the

inefficiency measure. In order to provide an insight of the different contribution of a

specific energy resource among all input factors, as well as the impact of undesir-

able outputs in the evaluation of energy and environmental productivity change, we

further modify Models (11.32) and (11.34) and propose the following Models in

which the singe inefficiency measure β is replaced with a set of energy input

specific inefficiency measure βh, h ¼ 1, . . . , k; and undesirable output specific

inefficiency measure βf , f ¼ 1, . . . , l:

Dt
C et; xt; yt; bt; ge; gx; gy; gb

� �
¼ max we

X k

h¼1 whβh þ wb

X l

f¼1 wf βf

� �
s:t:
Xn

j¼1 λje
t
hj � e thj0 � βhge, h ¼ 1, . . . , k,Xn

j¼1 λjx
t
ij � x tij0 , i ¼ 1, . . . ,m,Xn

j¼1 λjy
t
rj � y trj0 , r ¼ 1, . . . , s,Xn

j¼1 λjb
t
f j ¼ bt

f j0
� βf b

t
f j0
, f ¼ 1, . . . , l,

λj � 0, j ¼ 1, . . . , n

ð11:37Þ

and
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Dt
V et; xt; yt; bt; ge; gx; gy; gb

� �
¼ max we

X k

h¼1 whβh þ wb

X l

f¼1 wf βf

� �
s:t:
Xn

j¼1 ηj þ δj
� �

e thj � e thj0 � βhe
t
hj0
, h ¼ 1, . . . , k,Xn

j¼1 ηj þ δj
� �

x tij � x tij0 , i ¼ 1, . . . ,m,Xn

j¼1 ηjy
t
rj � y trj0 , r ¼ 1, . . . , s,Xn

j¼1 ηjb
t
f j ¼ bt

f j0
� βf b

t
f j0
, f ¼ 1, . . . , l,Xn

j¼1 ηj þ δj
� � ¼ 1,

ηj, δj � 0, j ¼ 1, . . . , n

ð11:38Þ

where wh and wf are, respectively, the normalized user specified weights associated

with energy input and emission output; we and wb are the normalized user specified

weights respectively associated with energy inefficiency measure and environmen-

tal inefficiency measure.

11.4 Application to China’s Regional Energy
and Environmental Productivity Change

In this section, we utilize the Luenberger productivity indicator and its decompo-

sition based on DEA directional distance function proposed in Sects. 11.2 and 11.3

to evaluate the energy and environmental productivity of China’s regions during the

period of 1997–2012 and further decompose the productivity indicator so as to

identify the contributions of its change.

Our study period covers approximately four Five-Year Plan (FYP) periods of

China, namely the later years of the 9th FYP (1997–2000), the 10th and 11th FYP

(2001–2010), and the early years of the 12th FYP (2011–2012) periods. The

calculations are based on the data of at the provincial level (China’s 30 provinces,

autonomous regions and municipalities) and the results are reported at the regional

level (China’s eight economic-geographic areas) for illustrating convenience.

These eight economic-geographic areas are northeast area, north coast area, east

coast area, south coast area, middle Yellow River area, middle Yangtze River area,

southwest area, and northwest area. This cluster is according to the characters of the

regional economic development and geography of China’s 30 provinces (excluding

Tibet, Taiwan, Hong Kong, and Macau due to data absence). Figure 11.4 illustrates

the distribution of these provinces and areas.

During the study period, China’s economic growth mode, energy consumption

pattern, energy intensity and carbon emission intensity reduction effort, and gov-

ernment’s regulation and policy on national sustainable development changed

significantly. Thus the evaluation of China’s energy and environmental productiv-

ity change over this period is helpful to understand the difference and the trend on

11 Evaluation and Decomposition of Energy and Environmental Productivity. . . 281



productivity change in China’s different regions, and furthermore, to understand the

contributions of different energy input and undesirable output factors toward such

productivity change over time. This evaluation helps to improve the performance of

energy and environmental policy making and implementation.

11.4.1 Data and Variables

The inputs are total energy consumption (e), labor force (x1) and capital stock (x2);
the desirable output (y) is GDP (at national level) or GRP (at regional level); the

undesirable output (b) is CO2emissions. Moreover, for computing the different

contributions of specific energy resources, the total energy consumption is further

decomposed into four final energy consumptions of coal, oil, natural gas and

electricity (e1 to e4). Input and output data at provincial level are obtained from

China Statistical Yearbook and China Energy Statistical Yearbook (for all e, and x1, y)
or calculated ourselves (for x2 and b) (Wang et al. 2012, 2013).

Table 11.1 summarizes the descriptive statistics of the input and output data for

China’s eight economic-geographic areas for selected years. Take the total data of

2012 as instances, the consumptions of both the total energy and its composition of

coal, oil and electricity in the north coast area were highest and those in the

Fig. 11.4 China’s eight economic-geographic areas and their energy consumption structures
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northwest area were lowest. The only exception appeared in the consumption of

natural gas that the southwest area was the largest consumer and the middle

Yangtze River area had the lowest consumption in China. Different from the

regional distribution of energy consumption, the middle Yellow River area was

accounted as the largest CO2 emitter, and the CO2 emissions from the northwest

area were lowest.

During the study period, China’s total energy consumption significantly

increased by more than two times and in which the most significant increase

(more than six times) is in natural gas consumption. Electricity consumption

increased by nearly four times. However, the structure of energy consumption

rarely changed which is characterized by the feature of “rich in coal, short of oil,

and lack of natural gas”. Figure 11.5 illustrates the distribution of total energy

consumption for four specific energy consumptions in China and the distributions

of energy consumption for China’s eight areas. In addition, the distribution of total

energy consumption for four specific energy consumptions in China’s eight areas

can be found in Fig. 11.4.

In general, the north coast area was the largest energy consumer, which

accounted for about 1/5 of the nation’s total energy consumption, followed by the

middle Yellow River area (16%) and the east coast area (14%). The total energy

consumption of the northwest area was the lowest in China (5%). The relative high

deviations of energy consumptions and emissions reveal that the regional inequality

on energy consumption evolves differently in regional economic development and

geographical distribution.

The deviations can be further identified in Fig. 11.6, in which the ratios of GDP

over energy consumptions and CO2 emissions of China and its eight economic-

geographic areas over 1997–2012 are presented. It can be seen that the economic

well-developed south and east coast areas enjoyed relatively high desirable output-

energy input (GDP-energy) ratios and desirable output-undesirable output

(GDP-CO2) ratios, while the economic less-developed northwest area suffered

both the comparatively low GDP-energy ratio and low GDP-CO2 ratio. In addition,

the largest CO2 emitter (middle Yellow River area) also experienced low GDP-CO2

ratio. These phenomena reveal that China’s coastal areas may have higher energy

and environmental productivities over their western and middle counterparts.

Figure 11.6 also shows that, over the entire study period, most of China’s eight

economic-geographic areas have improvements on their ratios of GDP over energy

and CO2 emissions, which indicates that their GDP outputs grew faster than their

energy inputs and carbon emissions. However, the improvements were not contin-

uous, since there were temporal drop downs and fluctuations in the ratios from 2004

to 2006 and several individual years.

Based on these phenomena, we expect overall increases in energy and environ-

mental productivities for most of China’s economic-geographic areas over the

entire study period, while the productivity changes over different FYP periods

may vary.
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11.4.2 Results and Discussions

We compute eight directional distance functions through Models (11.32), (11.34),

(11.37) and (11.38), as well as the Luenberger productivity indicator and its

decompositions through (11.26) to (11.29) respectively for each China’s province

at each 2-year period (e.g., 1997/1998, 2011/2012). The energy and environmental

Fig. 11.5 Average energy consumption structure of China (1997–2012)

Fig. 11.6 Ratios of GDP over energy and CO2 of China and its eight areas
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productivity indicators (LP) are obtained which identifies the energy and environ-

mental productivity change over time. Then the LP is further decomposed from two

perspectives: (i) The LP is decomposed into the measures of pure efficiency change,

scale efficiency change, pure technical change, and scale technical change; (ii) The

LP is decomposed into its specific energy inputs (coal, oil, natural gas and elec-

tricity) productivity changes and CO2 emission undesirable output productivity

change. The former decomposition helps to identify the effect of efficiency change

or technical change on productivity change, while the latter decomposition helps to

identify the contribution of the productivity change of a specific energy resource

and carbon emission on the integrated energy and environmental productivity

change.

Since the economic development levels and patterns, as well as the natural

resources endowments of China’s eight economic-geographic areas are quite dif-

ferent, it is expected that the energy and environmental productivity changes of

these areas will be quite different, and furthermore, the driving force for their

productivity changes and the contributions of different energy inputs towards

productivity change for these areas also will be quite different. In this section, we

analysis and compare the productivity indicators for China’s eight economic-

geographic areas during 1997–2012. The evaluation results are reported in

Table 11.2.

Note that, in Table 11.2, the last column indicates the energy and environmental

productivity change directly computed based on the results of Models (11.32) and

(11.34) with the direction of ge, gx, gy, gb

� �
¼ e, 0, 0, bð Þ. For comparative

analysis, we further compute (i) the integrated energy productivity change (reported

in column three) based on Models (11.32) and (11.34) with the direction of

ge, gx, gy, gb

� �
¼ e, 0, 0, 0ð Þ and a single inefficiency measure β; and (iii)

the aggregated specific energy productivity change (reported in column four) based

on Models (11.37) and (11.38) with the direction of

ge; gx; gy; gb

� �
¼ ge1 ; ge2 ; ge3 ; ge4

� �
; gx; gy; gb

� �
¼ e1; e2; e3; e4ð Þ; 0; 0; 0ð Þ, and

four energy input specific inefficiency measure βh h ¼ 1, . . . , 4ð Þ. It can be seen

that the effect of energy consumption structure (i.e., contribution of specific energy

resource on productivity change) and the effect of undesirable output are not consid-

ered in the integrated energy productivity change measures. Moreover, the effect of

energy consumption structure is taken in to account, but the effect of undesirable

output are omitted in the aggregated specific energy productivity change measures.

For the weights, we simply choose we ¼ wb ¼ 1=2,wh ¼ 1=4 h ¼ 1, . . . , 4ð Þ, and
wf ¼ 1 f ¼ 1ð Þ, which indicate that the inefficiency measure of energy and carbon

emissions have the same importance in the computation of energy and environmental

productivity indicator, as well as the inefficiency measure of four specific energy

resources have the same importance in the computations of both aggregated specific

energy productivity indicator and energy and environmental productivity indicator.
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The scores on LP of integrated energy productivity, aggregated specific energy

productivity, and energy and environmental productivity of eight Chinese areas

over the period of 1997–2012 are illustrated in Fig. 11.7.

With regard to the integrated energy productivity change, east coast area ranked

first, followed by northeast area, middle Yangtze River area, middle Yellow River

area, and north coast area. Their LP scores are all positive indicating integrated

energy productivity progress over the study period, in which northeast area shows

the highest increase of 12.7%, and the increase in north coast area is 1.3%. The

remaining three areas all have negative LP scores indicating integrated energy

productivity regress over the same period. Among which, south coast area experi-

ences the most obvious regress of �6.6%, followed by northwest area (�2.5%)

and southwest area (�1.2%).

With respect to the energy and environmental productivity, northwest area has

the most significant productivity progress (8.37%), followed by middle Yangtze

River area (1.7%), east coast area (1.3%), and northeast area (1.2%). On the

contrary, north coast area has the most obvious productivity regress (�13.5%),

followed by southwest area (�13.0%), south coast area (�7.9%), and middle

Yellow River area (�0.9%).

Compared with the integrated energy productivity, it can be found that, when

taking the carbon emissions, i.e., environmental effect, into productivity change

computation, almost all areas (seven out of eight areas) show productivity indicator

reductions. This finding indicates that in general China’s energy productivity

growth may be overestimated over the period 1997–2012 if ignoring the carbon

emission, since for China’s most areas, the LP scores under energy and environ-

mental productivity indicator are below than those under integrated energy produc-

tivity indicator. The only exception happens in northwest area whose energy and

environmental productivity indicator is higher than its integrated energy

Fig. 11.7 LP based comparison of energy and environmental productivity changes of China’s

eight areas
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productivity indicator. This indicates that, the measure of energy productivity that

ignores undesirable outputs underestimates the “true” energy productivity growth

in northwest area. One possible explanation for this underestimation is that envi-

ronmental regulations, i.e., energy conservation and carbon emission reduction

policies, play a positive impact on the energy utilization and production activities

in this area over the study period. With the emissions reduction policies, part of

energy resources are diverted from desirable output production to pollutant abate-

ment activity, however, integrated energy productivity indicator ignores the posi-

tive effect of energy inputs for pollutant abatement activity, and assumes these

energy inputs are unproductive for desirable output production. As a matter of fact,

these energy resources are utilized for emission reduction and environment promo-

tion through the encouragement of emission reduction policies of adopting pollut-

ant abatement technology and management, or switching from traditional energy

consumption process to cleaner production process. Therefore, integrated energy

productivity fail to identify northwest area’s effort on emission reduction and

underestimate it “true” energy productivity growth.

When taking energy utilization structure into evaluation, the aggregated specific

energy productivity shows a different distribution among China’s eight areas over

the period of 1997–2012. Firstly, northeast area (12.9%), middle Yangtze River

area (6.8%), and north coast area (3.7%) remain to have positive LP scores under

aggregated specific energy productivity, which are higher than those under inte-

grated energy productivity. Secondly, LP scores of east coast area and middle

Yellow River area decline if energy utilization structure is taken into account.

East coast area shows no change on aggregated specific energy productivity, and

middle Yellow River area even switches to productivity decrease (�8.1%).

Thirdly, the remaining three areas still suffer aggregated specific energy produc-

tivity regresses and among which the regresses of northwest area (�13.9%) and

southwest area (�15.4%) become more obvious. These comparative results reveal

that energy consumption structure plays different roles in energy productivity

change measures among different areas. It positively affects energy productivity

change in China’s economic well-developed northern and eastern areas (northeast,

north coast, and middle Yangtze River), but negatively affects energy productivity

change in China’s economic less-developed western area (northwest and south-

west). This difference may rise from the different contributions of LPEC, LPTC,
LSEC, and LSTC to LP under the aggregated specific energy productivity among

China’s eight different areas, and may also cause by the different roles of individual

energy inputs to energy productivity changes among China’s eight different areas.

To answer this question, we further provide a productivity decomposition analysis

for different areas in the following part of this section.

Figure 11.8 illustrates the contributions of pure efficiency change, pure technical

change, scale efficiency change, and scale technical change to aggregate specific

energy productivity of China’s eight areas. East coast area is omitted for its zero LP
score over the study period. It can be seen that, first of all, the largest driving force

for the productivity growths of northeast, north coast, and middle Yangtze River

areas are different. Energy utilization efficiency growth, i.e., the catch-up effect, is
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the largest contributor in northeast area, which accounts for nearly 50% of the

growth. This finding indicates that in general, provinces in northeast area experi-

enced comparatively higher increases in energy utilization efficiency than other

part of China during 1997–2012. Scale efficiency change is the major driving force

both in north coast area and middle Yellow River area, which takes approximate

25–35% of the productivity growth. This result reveals that in general, the move-

ments of approaching the optimal energy utilization and desirable output produc-

tion scale are more obvious in provinces of these two areas than other parts of China

during 1997–2012.

Secondly, scale efficiency change is the largest driving force for the productivity

decrease in almost all of the areas shown aggregated specific energy productivity

decline, except middle Yellow River area. It can be seen that in south coast,

southwest, and northwest areas, the decreases on scale efficiency are obvious,

which account for 30–55% of the productivity decrease. However, the major

driving force in Middle Yellow River area is pure efficiency change on energy

utilization. These findings reveal that in general, provinces in south coast, south-

west, and northwest areas experienced opposite movements against optimal pro-

duction scale over the observation period, and provinces in middle Yellow River

area suffered more significant comparative energy utilization efficiency reduction

than other parts of China.

Fig. 11.8 Comparison of energy specific productivity and its decompositions of China’s eight

areas
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Thirdly, change in returns to scale of the technology plays an obvious positive

role on productivity change in China’s economic less-developed west areas,

although these areas show aggregate specific energy productivity decline during

1997–2012. Figure 11.9 shows the scores on LSTC which account for approximate

25% of the productivity changes in southwest and northwest areas. This indicates

that in general, energy utilization technology in these areas is moving towards

constant returns to scale.

Figure 11.9 additionally illustrates the contributions of specific energy inputs,

i.e., coal, oil, natural gas and electricity, to the energy productivity change during

1997–2012 for China’s eight areas. Firstly, it is obvious that coal plays a negative

role in energy productivity change in each of these areas, especially in southwest

and middle Yellow River areas, the significant regress on coal specific productivity

accounts for more than 75% of energy productivity decrease of these two areas.

Secondly, natural gas is measured as a positive contributor for energy productivity

growth in almost all areas except south coast and east coast areas. Although the

contribution of natural gas is not large compared with coal, oil and electricity, its

productivity score is positive in six out of eight areas in China over the entire study

period. Thus, increase the consumption percentage of natural gas will have a

positive effect in China’s energy productivity promotion. Thirdly, the role of oil

specific productivity and electricity specific productivity are diversified in different

areas. For example, oil specific productivity is the largest driving force for energy

productivity decrease in south coast area, but the largest driving force for energy

Fig. 11.9 Contribution of specific energy input to energy productivity of China’s eight areas
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productivity increase in middle Yangtze River area. Similarly, electricity specific

productivity is identified as the largest positive contributor of energy productivity

change in northeast area, but it is also the second largest negative contributor of

energy productivity change in northwest area.

11.5 Conclusions

This chapter proposed an input specific Luenberger energy and environmental

productivity indicator for productivity change measurement, and the data envelop-

ment analysis (DEA) approach is utilized to estimate the directional distance

functions for composing the Luenberger energy and environmental productivity

indicator. Then, the Luenberger productivity indicator is further decomposed from

two perspectives. It is decomposed into four components that respectively measure

the pure efficiency change, scale efficiency change, pure technical change, and

scale technical change which identify the catch-up effect, frontier shift effect, and

economy of scale towards energy and environmental productivity change. It is also

decomposed into the specific energy inputs productivity changes which examine

the different contribution of productivity change of each specific energy resource

towards the integrated energy and environmental productivity change.

The Luenberger productivity indicator and its decompositions are applied to

measure China’s regional energy and environmental productivity change over

1997–2012 and the major results regarding to China’s eight economic-geographic

areas are as follows.

Firstly, energy consumption structure plays different roles in energy productivity

measurement among different areas. It positively affects productivity change in

China’s economic well-developed areas but negatively affects productivity change

in China’s economic less-developed areas. Secondly, the overestimations of energy

productivity when ignoring emissions are observed in seven out of eight economic-

geographic areas in China over the study period, which indicates that the evidence

of China does not fully support the Porter Hypothesis. Finally, specific energy input

of coal plays a negative role in energy productivity growth in each of the eight

areas, and natural gas is identified as the positive contributor for energy productiv-

ity growth in almost all eight areas. Thus, the enlarging of consumption percentage

of natural gas will continuously help to promote China’s energy productivity.
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Chapter 12

Identifying the Global Reference Set in DEA:
An Application to the Determination
of Returns to Scale

Mahmood Mehdiloozad and Biresh K. Sahoo

Abstract In data envelopment analysis (DEA), any set of observed decision

making units (DMUs) that produce a projection point of an inefficient DMU is

called a reference set of this DMU. Based on this definition, however, the concept

of reference set is not mathematically well defined in the non-radial DEA setting.

This is because a given projection point may be generated by multiple unary
reference sets, and different projection points may result in multiple maximal
reference sets. In this chapter, first, we address this issue by differentiating between
the uniquely found reference set, called the global reference set (GRS), and the

unary and maximal types of the reference set for which the multiplicity issue may

occur. Second, to identify the GRS, we propose a general linear programming based

approach that is computationally more efficient than its alternatives. Third, we

define the returns to scale (RTS) of an inefficient DMU at its projection point that is

produced by all—but not some—of the units in its GRS. By this definition, the

notion of RTS is unambiguous, since the GRS is unique and the projection points

generated by all the possible reference units all exhibit the same type of RTS.

Fourth, using a non-radial DEA model, we develop two precise multiplier- and

envelopment-based methods to determine RTS possibilities of the DMUs. To

demonstrate the ready applicability of our approach, we finally conduct an empir-

ical analysis based on a real-life data set.
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12.1 Introduction

Data envelopment analysis (DEA), introduced by Charnes et al. (1978, 1979), is a

linear programming (LP) based method for measuring the relative efficiency of a

homogeneous group of decision making units (DMUs) with multiple inputs and

multiple outputs. Based on observed data and a set of postulates, DEA defines a

reference technology set relative to which a DMU can be classified as efficient or
inefficient. To evaluate the performance of an inefficient DMU, each standard DEA

model projects it—in a unique or multiple way(s)—onto efficiency frontier of the

technology set. As the benchmark-units of the inefficient DMU, it also identifies a

set of observed efficient DMUs that produce its projection point. This identified set

is referred to as a reference (or peer) set of the inefficient DMU and each of its

elements is called a reference DMU.
The identification of all the possible reference DMUs of an inefficient unit is an

important issue in DEA. This issue has received significant attention in the litera-

ture due to its wide range of potential applications in ranking (Jahanshahloo

et al. 2007), benchmarking and target setting (Bergendahl 1998; Camanho and

Dyson 1999), and measuring returns to scale (RTS) (Tone 1996, 2005; Tone and

Sahoo 2006; Cooper et al. 2007; Sueyoshi and Sekitani 2007a, b; Krivonozhko

et al. 2014; Mehdiloozad et al. 2015; Mehdiloozad and Sahoo 2015).

From a managerial perspective, identification of all the reference DMUs is

specifically important for two reasons. First, to improve the performance of an

inefficient DMU, it may not be practical to introduce an unobserved (virtual)

projection as its benchmark. In such a situation, however, the identification offers

the possibility to derive practical guidelines from benchmarking against the refer-

ence DMUs. Second, when some—but not all—reference DMUs are identified for

an inefficient DMU, the decision maker may be still of the opinion that the

identified reference DMUs are not appropriate benchmarks and may wish to have

more options in choosing benchmarks. In such a case, the identification allows

him/her to incorporate the preference information into analysis in order to yield a

projection with the most preferred (i) closeness (Tone 2010), (ii) values of inputs

and outputs, and (iii) shares of reference units in its formation.

The pioneering attempt to find out all the reference DMUs via non-radial DEA

models was made by Sueyoshi and Sekitani (2007b). Based on the strong comple-

mentary slackness conditions1 of linear programming, they proposed a primal–dual

based method by means of the range-adjusted measure (RAM) model of Cooper

et al. (1999). The proposed method in their impressive study is very interesting as a

theoretical idea. However, as Krivonozhko et al. (2012b) argued, not only the

computational burden of Sueyoshi and Sekitani’s (2007b) approach is high, but it

also seems that the basic matrices defined in their approach are likely to be

ill-conditioned, which may lead to erroneous and unacceptable results even for

1 For more details about these conditions, the interested readers may refer to Mehdiloozad

et al. (2016).
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medium-size problems. Furthermore, the economic interpretation of some of the

constraints of their proposed model does not make much sense. In a conscious

attempt to overcome these difficulties, Krivonozhko et al. (2014) later proposed

another primal–dual based procedure. Although their proposed procedure outper-

forms the approach of Sueyoshi and Sekitani (2007b), it requires solving several LP

problems.

The studies by Sueyoshi and Sekitani (2007b) and Krivonozhko et al. (2014)

correctly found all the observed DMUs on minimum face—a face of minimum

dimension on which all the projection points are located—as a unique reference set
of the DMU under evaluation. At the same time, they pointed out that the occur-

rence of multiple reference sets (we call this as the multiplicity issue) was likely.

However, none of these studies explicitly made a clear distinction between the

uniquely found reference set and other types of reference set for which the issue of

multiplicity might occur. This lack of discrimination creates an ambiguity about the

uniqueness, and consequently, about the mathematical well-definedness of the

concept of reference set.

In a more recent study, Mehdiloozad et al. (2015) effectively eliminated this

ambiguity by defining three types of the reference set in a mathematically well-

defined manner. To identify all the reference units of an inefficient DMU, they then

proposed an LP model. In this regard, Mehdiloozad (2016) subsequently formulated

a mixed 0–1 LP model and demonstrated that the LP model of Mehdiloozad

et al. (2015) can be alternatively derived from his model. As an important applica-

tion for finding all the reference units, Mehdiloozad et al. (2015) and Mehdiloozad

and Sahoo (2015) developed two RTS measurement methods, one by applying the

BCC model (Banker et al. 1984) and the other by the CCR (Charnes et al. 1978)

model.

In this chapter, we discuss and present the results established by Mehdiloozad

et al. (2015), Mehdiloozad (2016), and Mehdiloozad and Sahoo (2015) in two parts,

with Part I dealing with the identification of all the reference DMUs, and Part II

with the measurement of RTS.

Part I: On Identification of the Global Reference Set

First, we identify potential sources of the origin of the multiplicity issue and define

three types of the reference set. The first source of the origin is that a given

projection may be generated by multiple convex combinations of the observed

DMUs. In other words, the presence of alternative optimal intensity vectors for the

given projection (hereafter referred to as problem Type I) is the first source of the

origin. We call the reference sets identified by such vectors as the unary reference
sets (URSs). That is, we define a URS as the set of efficient DMUs that are active in

a specific convex combination producing the given projection. To deal with prob-

lem Type I, we define the notion of maximal reference set (MRS) as the union of all
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the URSs associated with the given projection. The second source of the origin in

the RAM model is the occurrence of multiple projections (hereafter referred to as

problem Type II). To deal with problem Type II, we further define the union of all

the MRSs as the unique global reference set (GRS) of the evaluated DMU. Note that

• the three introduced concepts are all mathematically well defined.

• the URS and MRS help demonstrate the occurrence of the multiplicity issue

associated with a single and multiple projection(s), respectively.

• while both URS and MRS may face with the issue of multiplicity, the GRS

presents a unique reference set that contains all the possible reference DMUs.

Then, as to the linkage between the GRS and the minimum face, we prove that

the convex hull of the GRS is equal to the minimum face. As to our formulation of

the set of all possible optimal intensity vectors of the RAMmodel, we show that the

GRS can be identified by finding a maximal element of this set—an element with

the maximum number of positive components. Based on this finding, we formulate

a mixed 0–1 LP model for identifying the GRS and then, transform it into an

equivalent LP model using the LP relaxation method.

The proposed approach has several important features. First, it can deal effec-

tively with the simultaneous occurrence of problems Type I and II. Second, this

approach is computationally more efficient than its two primal–dual based coun-

terparts. This is because it involves solving a single LP problem, and it is based on

the primal (envelopment) form that is computationally more efficient than the dual

(multiplier) form (Cooper et al. 2007). Third, the computational efficiency can be

enhanced by using the simplex algorithm2 adopted for solving the LP problems

with upper-bounded variables. Fourth, the developed approach can be used readily

in the ‘additive model’ (Charnes et al. 1985), the ‘BAMmodel’ (Pastor 1994; Pastor

and Ruiz 2007; Cooper et al. 2011), the ‘RAM/BCC model’ (Aida et al. 1998), the

‘DSBM model’ (Jahanshahloo et al. 2012), the ‘GMDDF model’ (Mehdiloozad

et al. 2014), and any radial DEA model like the ‘BCC model’. Fifth, the proposed

approach is free from the restricting assumption that the input–output data must be

non-negative, so it can deal effectively with negative data. Finally, this approach

that is developed based on the assumption of variable RTS can be successfully

adapted to the case of constant RTS, just by removing the convexity constraint.

2 The simplex algorithm for bounded variables was published by Dantzig (1955) and was inde-

pendently developed by Charnes and Lemke (1954). This algorithm is much more efficient than

the ordinary simplex algorithm for solving the LP problem with upper-bounded variables

(Winston 2003).
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Part II: On Determination of the RTS

As is well known in the literature,3 the concept of RTS is meaningful only when the

relevant DMU lies on efficiency frontier of the technology set. With regard to this,

the RTS of an inefficient DMU is determined at its projection point on the efficiency

frontier. Obviously, if the used projection point is unique, the RTS of this inefficient

DMU is determined without any ambiguity. However, under the occurrence of

problem Type II, determining the RTS uniquely and, consequently, achieving the

mathematical precision of this definition are not guaranteed, and these may lead to

erroneous inferences as to RTS possibilities of the inefficient DMUs. This is

because multiple projections may reveal different types of RTS for an inefficient

DMU. Without consideration of this fact, any RTS determination method may yield

conflicting inferences on RTS possibilities for the inefficient DMUs facing with

multiple projections.

To resolve the above-mentioned issue, the RTS must be defined over a subset of

the projection set—the set of all the possible projection points—that its elements all

exhibit the same RTS possibility. In this regard, Krivonozhko et al. (2012c) have

shown that all relative interior points of the minimum face operate under the same

type of RTS. This interesting finding reveals that the definition of RTS for an

inefficient DMU can be made unambiguous by requiring its projection point to be in

the relative interior of the associated minimum face. Hence, following Krivonozhko

et al. (2014), Mehdiloozad et al. (2015) and Mehdiloozad and Sahoo (2015), we

define the RTS of an inefficient DMU over the intersection of the projection set with

the relative interior of the minimum face.

Based on this definition, we develop two precise RTS determination algorithms

by using the LP model proposed for finding the GRS. The first one is a three-stage

algorithm that uses the multiplier form of the BCC model, whereas the second one

is a two-stage algorithm that applies the envelopment form of the CCR model. On a

comparison between these two algorithms, the second one is computationally more

efficient than the first one.

The remainder of this chapter unfolds as follows. Section 12.2 deals with

description of the technology followed by a brief review of the RAM model.

Section 12.3, first, presents the three notions URS, MRS, and GRS; second,

investigates the properties of the GRS; third, proposes an approach for the identi-

fication of the GRS; fourth, discusses the properties of this approach; and finally,

elaborates on the proposed approach with a numerical example. Section 12.4, first,

defines the RTS of the inefficient DMUs; second, develops two RTS determination

algorithms; and finally, presents illustrations of these algorithms. Section 12.5

3 See, e.g., Banker et al. (1996), Førsund (1996), Sahoo et al. (1999), Fukuyama (2000, 2001,

2003), Tone and Sahoo (2003, 2004, 2005), Sengupta and Sahoo (2006), Sahoo (2008), Podinovski

et al. (2009), Podinovski and Førsund (2010), Sahoo et al. (2012), Sahoo and Tone (2013, 2015),

Sahoo and Sengupta (2014), Sahoo et al. (2014a, b), among others.
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provides an illustrative empirical application. Section 12.6 presents summary of the

chapter with some concluding remarks.

12.2 Background

As far as notations are concerned, let ℝd
þ be the non-negative Euclidean d-orthant.

We denote vectors and matrices in bold letters, vectors in lower case and matrices in

upper case. All vectors are column vectors. We denote the transpose of vectors and

matrices by a superscript T. We use 0d and 1d to show d-dimensional vectors with

the values of 0 and 1 in every entry, respectively. The identity matrix of order d is

also symbolized by Id.

Throughout this chapter, we consider a set of n observed DMUs (with the index

set J), where each uses m inputs to produce s outputs. We denote, respectively, the

input and output vectors of each DMUj ( j2J ) by xj ¼ x1j; . . . ; xmj
� �T 2ℝm

þ and

yj ¼ y1j; . . . ; ysj

� �T
2ℝ s

þ, and the input and output matrices byX ¼ x1 . . . xn½ � and
Y ¼ y1 . . . yn½ �. We also consider DMUo (o2J) to be the DMU under evaluation.

12.2.1 Technology Set

The technology set, T, is defined as the set of all feasible input–output combina-

tions, i.e.,

T ¼ x; yð Þ2ℝm
þ � ℝ s

þ x can produce yj� �
: ð12:1Þ

Under the variable returns to scale (VRS) framework, the nonparametric DEA

representation of T can be set up as follows (Banker et al. 1984):

TDEA
VRS ¼ x; yð Þ2ℝm

þ � ℝ s
þ Xλ � x , Yλ � y , 1T

n λ ¼ 1, λ � 0n
��� �

: ð12:2Þ

In the following definition, we introduce two basic notions. For more details, see

Rockafellar (1970) and Davtalab-Olyaie et al. (2015).

Definition 1 Let H ¼ x; yð Þ uT y� yð Þ � vT x� xð Þ ¼ 0jf g be a supporting hyper-

plane of TDEAVRS at x; yð Þ. Then, H and its corresponding face, i.e., F ¼ H \ TDEA
VRS , are

called strong if and only if components of the coefficient vectors u and v are all

positive.
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12.2.2 The RAM Model

In reference to TDEAVRS , the RAM model of Cooper et al. (1999) is set up as

ρo ¼ min 1� 1

mþ s
w�Ts� þ wþTsþ
� �

subject to

Xλþ s� ¼ xo,

Yλ� sþ ¼ yo,

1T
n λ ¼ 1,

λ � 0n, s
� � 0m, s

þ � 0s;

ð12:3Þ

where s� and sþ represent, respectively, the input and output slack vectors; and,w�

and wþ are defined, respectively, as

1

w�i
¼ max

j2J
xij
� ��min

j2J
xij
� �

, i ¼ 1, . . . ,m;

1

wþr
¼ max

j2J
yrj

n o
�min

j2J
yrj

n o
, r ¼ 1, . . . , s:

ð12:4Þ

Let λ*; s�*; sþ*
� �

be an optimal solution to model (12.3). Then, the efficiency and

improvement of DMUo are defined as follows.

Definition 2 (RAM-efficiency) DMUo is said to be efficient if and only if ρo ¼ 1,

i.e., s�* ¼ 0m and sþ* ¼ 0s. Otherwise, it is called inefficient.

Definition 3 (RAM-improvement) For an inefficient DMUo, a projection is

defined by

P :¼ xRAM
o ; yRAM

o

� � ¼ Xλ*,Yλ*
� � ¼ xo � s�*, yo þ sþ*

� �
: ð12:5Þ

The set of all the possible projection points, denoted byΛo, is called the projection
set. It can be easily verified thatΛo � E, where E represents the set of all the efficient

DMUs. Henceforth, XE and YE denote the input and output matrices of the efficient

DMUs, respectively; and, e denotes the cardinality of E. For sake of convenience and
without loss of generality, we assume that E ¼ x1; y1ð Þ; . . . ; xe; yeð Þf g.

12.3 Identifying the Global Reference Set (GRS)

12.3.1 Definition of the GRS

Here, we present some key definitions, concepts and results, which are all essential

in the sequel.
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Definition 4 Let λ* be a partial optimal solution to model (12.3) that is associated

with a given projection P. We define the set of DMUs with positive λ∗j as the unary

reference set (URS) for DMUo and denote it by RU
oP as

RU
oP ¼ xj; yj

� �
λ∗j > 0
���n o

: ð12:6Þ

We refer to each member of RU
oP as a reference DMU of DMUo. The reference

units of DMUo are all efficient, and are all located on the supporting hyperplane

(s) of TDEAVRS at P.
Since the projection Pmay be expressed as multiple convex combinations of the

observed DMUs, multiple optimal values may take place for the intensity vector λ
(problem Type I), leading to the occurrence of multiple URSs.4 To deal with

problem Type I, we define a reference set containing all the URSs.

Definition 5 We define the union of all the URSs associated with a given projec-

tion P as the maximal reference set (MRS) for DMUo and denote it by RM
oP as

RM
oP¼[RU

oP

¼ xj;yj
� �

λ∗j > 0 in some optimal solution of model 12:3ð Þ associatedwithP
���n o

:

ð12:7Þ

Because the RAM model is non-radial in nature, it may produce multiple pro-

jections (problem Type II) for DMUo, resulting thus in the occurrence of multiple

MRSs.5 To deal with problem Type II, we use the concept of minimum face6 that was
discussed in detail by Sueyoshi and Sekitani (2007b) and Krivonozhko et al. (2014)

from different perspectives. Toward this, first we define Ωo as the set of intensity

variables that are associated with all the optimal solutions of model (12.3), that is,

Ωo :

¼ μ

XE Im 0m�s
YE 0s�m �Is
1T
e 0T

m 0T
s

0T
e w�T wþT

2664
3775 μ

s�

sþ

24 35 ¼ xo
yo
1

mþ sð Þ 1� ρoð Þ

2664
3775, μ

s�

sþ

24 35 � 0eþmþs

��������
8>><>>:

9>>=>>;:

ð12:8Þ

4 Under such an occurrence, the determination of RTS via Tone’s (1996, 2005) method may be

problematic. For a detailed discussion on this issue, interested readers may refer to the illustrative

Figs. 1 and 2 in Krivonozhko et al. (2012c).
5 The occurrence of multiple MRSs is illustrated via an example in Sect. 3 in Sueyoshi and Sekitani

(2007b).
6 For a graphical illustration of the minimum face, see Fig. 4 in Sueyoshi and Sekitani (2007b).
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Note that each μ inΩo is an e-dimensional intensity vector whose components are

associated with the efficient DMUs. If μ2Ωo, the n-dimensional vector

λ*μ ¼
μ

0n�e

� �
is an optimal intensity vector for model (12.3), and vice versa.

From (12.8), the projection set Λo can be expressed as follows:

Λo ¼ XEμ,YEμð Þ μ2Ωojf g: ð12:9Þ

As demonstrated by Krivonozhko et al. (2014), there exists a face of minimum

dimension, Γmin
o , which contains Λo. This face is referred to as the minimum face

and is, indeed, the intersection of all the faces of TDEAVRS that contain Λo, i.e.,

Γmin
o ¼ \

F is a face of TDEA
VRS

and Λo�F

F: ð12:10Þ

Now, we provide the following definition that takes the occurrence of multiple

MRSs associated with multiple projections into consideration.

Definition 6 We define the union of all the MRSs of DMUo as its global reference

set (GRS) and denote it by RG
o as

RG
o ¼ [

P2Λo

RM
oP

¼ xj; yj
� �

λ∗j > 0 in some optimal solution of model 12:3ð Þ
���n o

: ð12:11Þ

12.3.2 Properties of the GRS

In this section, we investigate some important properties of the GRS. First, we

provide the following lemma to geometrically characterize the GRS.

Lemma 1 The convex hull of the GRS, conv(RG
o ), is a strong face of TDEAVRS .

Proof It is easy to verify that Λo is a convex set. Let x; yð Þ be a relative interior

point of this set. Since x; yð Þ is efficient, the strong complementary slackness

conditions of linear programming imply the existence of a strong supporting

hyperplane of TDEAVRS at this point. Without loss of generality, let HS be such a

hyperplane whose associated strong face FS :¼ HS \ TDEA
VRS is of minimum dimen-

sion. By Theorem 6.4 in Rockafellar (1970), the convexity of Λo implies that HS is

binding on all the DMUs in RG
o . Therefore, conv RG

o

� � � HS, indicating that

conv RG
o

� � � FS.
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To prove the equality, first note that FS is a polytope (bounded polyhedral set) as

per Theorem 2 in Davtalab-Olyaie et al. (2014). Hence, the equality holds if

Λo \ ri FS
� � 6¼∅, where ri(FS) denotes the relative interior of FS. This is because

this relation implies that all the observed DMUs on FS belong to RG
o . Assume on the

contrary, that Λo \ ri FS
� � ¼∅ or, equivalently, that Λo � ∂ FS

� �
. Then, there

exists a unique face of FS of minimum dimension, namely KS, for which

( )S S S
o F FL Í K Í ¶ � . Following Rockafellar (1970), KS is a strong face of

TDEAVRS that contains Λo. Since the dimension of KS is less than that of FS, we have

a contradiction. Thus, the proof is complete by Definition 1. ∎

Applying the above lemma, the following theorem establishes a linkage between

the GRS and the minimum face. Precisely, it shows that the GRS spans the

minimum face.

Theorem 1 The minimum face is equal to the convex hull of the GRS, i.e.,

Γmin
o ¼ conv RG

o

� �
.

Proof As proved in Lemma 1, conv(RG
o ) is a strong face of TDEAVRS that contains Λo.

Thus, according to (12.10), it will suffice to show that conv RG
o

� � � Γmin
o . By the

definition of a face, there exists a supporting hyperplane, namely Hmin, such that

Γmin
o ¼ Hmin \ TDEA

VRS . Since Hmin is binding at each projection, it passes through

each DMU in RG
o . Thus, by the convexity of Hmin, we have that conv RG

o

� � � Hmin,

which completes the proof. ∎

As an immediate corollary of Theorem 1, the minimum face can be expressed in

terms of the units in the GRS.

Corollary 1 The minimum face is a polytope that can be explicitly represented as

Γmin
o ¼ x; yð Þ x ¼

X
j2J G

o

δjxj, y ¼
X
j2J G

o

δjyj,
X
j2J G

o

δj ¼ 1, δj � 0, 8j2J G
o

������
8<:

9=;;

ð12:12Þ

where JGo is the index set of the units in RG
o .

We now turn to present a theorem that plays an important role in developing an

approach to finding the GRS in the immediately subsequent section. Toward this,

we first provide the following lemma as a straightforward consequence of Defini-

tions 5 and 6 and (12.9).

Lemma 2 DMUj lies in RG
o if and only if μj > 0 in some μ2Ωo. That is,

RG
o ¼ [

μ2Ωo

xj; yj
� �

μj > 0
��� �

: ð12:13Þ
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Theorem 2 Let μmax
o be a maximal element of Ωo—an element with the maximum

number of positive components. Then,

RG
o ¼ xj; yj

� �
μmax
oj > 0

���n o
: ð12:14Þ

Proof By assumption, we have μmax
o 2Ωo. Hence, from equation (12.13), we need

only to prove that RG
o � xj; yj

� �
μmax
oj > 0

���n o
. Again from (12.13), this is equiva-

lent to demonstrating that μmax
o takes positive values in any positive component of

any μ2Ωo.

By contradiction, assume that there exists an element μ2Ωo and an index

j02 j μj > 0
��� �

for which μmax
oj0
¼ 0. Further, let μ̂ be a strict convex combination

of μmax
o and μ. Then, μ̂ 2Ωo since Ωo is a convex set. Moreover, j μ̂ j > 0

��� � ¼
j μmax

oj > 0
���n o

[ j μj > 0
��� �

and { } { }max ˆ 0  0oj jj jm m> >� , accordingly. This

contradicts the maximality of μmax
o and, thus, the proof is complete. ∎

Theorem 2 shows that the problem of identifying the GRS is the same as the

problem of finding a maximal element of Ωo.

12.3.3 Identification of the GRS

As shown in the previous section, identifying the GRS is equivalent to finding a

maximal element of Ωo. To find such an element, we develop the following simple

algorithm:

Stage 1 (Initialization) Let J1 ¼ E and set t ¼ 1.

Stage 2 Solve the following LP problem:

LPt½ � max
X
j2Jt

μj

subject to

μ2Ωo:

Stage 3 Let μt be an optimal solution to LPt and set Jtþ1 :¼ Jt � j μ t
j > 0

���n o
.

Stage 4 If
X
j2Jt

μ t
j > 0, set t tþ 1and return to Stage 2; otherwise, the algorithm is

terminated.
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If the algorithm terminates at iteration T, then it returns μmax
o as μmax

o ¼ 1
T

XT
t¼1

μt.

While the implementation of the above algorithm is straightforward, it may require

solving many problems when n is considerably large. This motivates us to propose a

new approach that requires the execution of a single LP problem. Toward this end,

we set up the following mixed 0–1 LP problem:

max 1Tαþ σ
subject to
XE Im 0m�s
YE 0s�m �Is
1T
e 0T

m 0T
s

0T
e w�T wþT

2664
3775 μ

s�

sþ

24 35� xo
yo
1

mþ sð Þ 1� ρoð Þ

2664
3775δ ¼ 0mþsþ2,

α � μ, σ � δ,
α : binary, σ : binary,
μ � 0e, s

� � 0m, s
þ � 0s, δ � 0:

ð12:15Þ

The idea behind developing model (12.15) originates from two points. First,

αj > 0 (σ > 0) implies that μj > 0 (δ > 0). Second, since α and σ are both binary,

maximizing 1Tαþ σ results in the identification of μmax
o , which is formally

demonstrated below.

Lemma 3 For any μ2Ωo, there exists a feasible solution μ0 ; s�0 ; sþ
0
; δ
0
;α0 ; σ0

� �
with σ

0 ¼ 1 to model (12.15) such that 1Tα0 ¼ nþ μð Þ, where nþ �ð Þ denotes the

number of positive components of a vector.

Proof of Lemma 3 Let μ2Ωo and define l as

l :¼ min μj μj > 0
��� �

, k :¼
1 if l � 1,
1

l
if l < 1:

(

Then, from the definition of Ωo in (12.8), the solution μ0 ; s�0 ; sþ
0
; δ
0
;α0 ; σ0

� �
defined by

98%μ0 :¼ kμ, s�0 :¼ ks�, sþ
0
:¼ ksþ, δ

0
:¼ k, α

0
j :¼

1 μj
0
> 0,

0 μj
0 ¼ 0,

(
σ
0
:¼ 1

ð12:16Þ

is feasible to model (12.15) and 1T
e α

0 ¼ nþ μð Þ. ∎
By using Lemma 3, the following theorem shows that μmax

o can be found by

virtue of an optimal solution of model (12.15).
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Theorem 3 Let λ*; s�*; sþ*; δ*;α*; σ*
� �

be an optimal solution to model (12.15).

Then, μmax
o ¼ 1

δ*
μ*.

Proof of Theorem 3 Let μ∗; s�∗; sþ∗; δ∗;α∗; σ∗ð Þbe an optimal solution to model

(12.8). Since the first mþ sþ 2 constraints of model (12.8) constitute a homoge-

neous system of linear equalities, it can be proved (by the way of contradiction) that

μ∗j � 1 for any j that μ∗j > 0. Since model (12.8) is a maximization LP problem, we

therefore have α∗j ¼ 1 for any j that μ∗j > 0. This indicates that nþ μ∗ð Þ ¼ 1T
e α∗.

We claim that δ∗ > 0. To prove our claim, assume on the contrary that δ∗ ¼ 0.

Then, the constraints of model (12.8) imply that σ∗ ¼ 0. Now, consider an arbitrary

element μ of Ωo. Then, the solution μ0 ; s�0 ; sþ
0
; δ
0
;α0 ; σ 0

� �
defined by (12.16) is

feasible to model (12.8). Consequently, the solution μ̂; ŝ�; ŝþ; δ̂; α̂; σ̂
� �

defined by

μ̂; ŝ�; ŝþ; δ̂; α̂; σ̂
� �

:¼ μ∗ þ μ0 , ŝ �∗ þ s�
0
, ŝ þ∗ þ sþ

0
, δ
0
,α∗, 1

� �
ð11Þ

is feasible to model (12.8) and its corresponding objective function value is strictly

greater than1T
e α∗. This contradicts the optimality of μ∗; s�∗; sþ∗; δ∗;α∗; σ∗ð Þ and

hence, proves our claim.

By dividing both sides of the first mþ sþ 2 constraints of model (12.8) at

optimality by δ∗, we have 1
δ∗ μ

∗2Ωo, implying nþ μ*
� � � nþ μmax

o

� �
. Therefore, the

equality holds immediately by Lemma 3. ∎

Theorem 3 follows that the GRS can be found with the help of model (12.15).

However, as is known, this method is not computationally efficient when the size of

the model is considerably large. In what follows, we deal effectively with this issue

by demonstrating that the LP relaxation of model (12.15) provides an equivalent LP

model, which is computationally more efficient and, hence, practically more

relevant.

Theorem 4 Model (12.15) is equivalent to the following LP model:

max 1Tαþ σ
subject to
XE Im 0m�s
YE 0s�m �Is
1T
e 0T

m 0T
s

0T
e w�T wþT

2664
3775 μ

s�

sþ

24 35� xo
yo
1

mþ sð Þ 1� ρoð Þ

2664
3775δ ¼ 0mþsþ2,

α � μ, σ � δ,
0e � α � 1e, 0 � σ � 1,

μ � 0e, s
� � 0m, s

þ � 0s, δ � 0:

ð12:17Þ
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Proof Since model (12.17) is the LP relaxation of model (12.15), the optimal

objective function value of model (12.17) is an upper bound to that of model

(12.15). Hence, by letting μ*; s�*; sþ*; δ*;α*; σ*
� �

be an optimal solution to

model (12.17), it will suffice to show that σ* ¼ 1 and α*j ¼ 1 for any j that α*j > 0.

Since Ωo is a non-empty convex set and model (12.17) is a maximization LP

problem, it can be easily verified—by the way of contradiction—that σ* > 0. We

claim that σ* ¼ 1. To prove our claim, assume by contradiction that σ* < 1. Then,

dividing both sides of the constraints of model (12.17) at optimality by σ* yields

that the vector μ0 ; s�0 ; sþ
0
; δ
0
; α
0
; σ
0

� �
, defined by

μ0 :¼ 1

σ*
μ*, s�

0
:¼ 1

σ*
s�*, sþ

0
:¼ 1

σ*
sþ*, δ

0
:¼ δ*

σ*
, α

0
j :¼ min 1;

α*j
σ*

( )
, σ

0
:¼ 1;

ð12:18Þ

is a feasible solution to model (12.17). Since α
0
j � α*j for any j ¼ 1, . . . , e and

σ
0
> σ*, the objective function value associated with this solution is strictly greater

than 1Tα* þ σ*. This contradicts the optimality of λ*; s�*; sþ*; δ*;α*; σ*
� �

and

proves our claim. In a similar way, it can also be proved that α*j ¼ 1 for any j that

α*j > 0 and so the proof is complete. ∎

Notice that, as per Theorems 3 and 4, μmax
o can be identified via the LP relaxation

model (12.17). To reduce the number of constraints, we now make the substitutions

β :¼ μ� α and φ :¼ δ� σ in model (12.17) that transform it to the following

upper-bounded LP model:

max 1Tαþ σ
subject to
XE Im 0m�s
YE 0s�m �Is
1T
e 0T

m 0T
s

0T
e w�T wþT

2664
3775 αþ β

s�

sþ

24 35� xo
yo
1

mþ sð Þ 1� ρoð Þ

2664
3775 σ þ φð Þ ¼ 0mþsþ2,

0e � α � 1e, 0 � σ � 1,

β � 0e, s
� � 0m, s

þ � 0s, φ � 0:

ð12:19Þ

Let α*; β*; s�*; sþ*; σ*;φ*
� �

be an optimal solution to model (12.19). From

Theorems 3 and 4, we then have μmax
o ¼ 1

σ*þφ* α* þ β*
� �

. The projection associated

with μmax
o is given by

Pmax
o ¼ xmax

o ; ymax
o

� � ¼ XEμmax
o ,YEμmax

o

� �
; ð12:20Þ

which lies in the relative interior of Γmin
o by Corollary 1.
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12.3.4 Properties of the Proposed Approach

Some useful properties of the proposed approach are presented below.

• Computational efficiency
In any practical application that involves determination of the GRS, the

proposed approach is computationally more efficient than the ones by Sueyoshi

and Sekitani (2007b) and Krivonozhko et al. (2014) due to two reasons. First, it

involves the execution of a single LP problem. Second, unlike the previous

primal–dual based methods, it is based only on the primal (envelopment) form

that is computationally more efficient than the dual (multiplier) form (Cooper

et al. 2007).

Note that since model (12.19) contains several upper-bounded variables, its

computational efficiency can be enhanced by using the simplex algorithm

adopted for solving the LP problems with upper-bounded variables. This is

because considering model (12.19) as an LP problem with upper-bounded vari-

ables leads to a further reduction in its size. More precisely, the size of the basic

matrices during the solution process becomes mþ sþ 2ð Þ � mþ sþ 2ð Þ, which
is one times greater than that of the size of the basic matrices in model (12.3).

• Extension to other DEA models
The proposed approach can readily be used without any change in the

‘additive model’ (Charnes et al. 1985) and the ‘BAM model’ (Pastor 1994;

Pastor and Ruiz 2007; Cooper et al. 2011). This is because the difference

between each of these two models and the RAM model lies only in the

objective-function weights associated with the input and output slacks. With

some minor changes, it can also be adopted for the ‘RAM/BCC model’ of Aida

et al. (1998), the ‘DSBMmodel’ of Jahanshahloo et al. (2012) and the ‘GMDDF

model’ of Mehdiloozad et al. (2014). Furthermore, it can be implemented in any

radial DEA model, as has been used in Mehdiloozad and Sahoo (2015).7

• Extension to constant returns to scale case
The assumption of VRS is maintained in the proposed approach. This is

because when a data set contains some negative values, one may not be able

to define an efficient frontier, passing through the origin, as is assumed under

constant returns to scale (CRS). Therefore, as argued by Silva Portela and

Thanassoulis (2010), the assumption of CRS is untenable with negative data.

It is, however, worth noting that while the minimum face is a polytope in the

VRS-based technology, it is an unbounded polyhedral cone in the CRS-based

technology that is generated by the reference units in the GRS. Despite this

structural difference between the two technologies,8 the presented results can

7 To the best of our knowledge, the other studies on identification of all the possible reference

DMUs using the BCC model include Sueyoshi and Sekitani (2007a), Jahanshahloo et al. (2008),

Krivonozhko et al. (2012a), and Roshdi et al. (2014).
8 For more details about the facial structure of the CRS- and VRS-based technologies, see, e.g.,

Davtalab-Olyaie et al. (2014a; b) and Jahanshahloo et al. (2013).
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still be successfully adapted to the case of CRS by removing the convexity

constraint, i.e., 1T
n λ ¼ 1. This is because the proposed approach is primarily

based on finding a maximal element of a convex set, and is independent of the

existence of the convexity constraint, accordingly.

• Dealing with negative input–output data
Being independent of the data sets used, the proposed approach is free from

the restricting assumption that the input–output data must be non-negative,

which makes identification of the GRS possible in the presence of negative

data. From a practical point of view, this can be very beneficial since negative

inputs or outputs may appear in many real-life applications.9

12.3.5 Numerical example

We consider a data set from Mehdiloozad et al. (2015) that is exhibited in

Table 12.1. It consists of eight hypothetical DMUs with one input and one output.

Based on these data, Fig. 12.1 depicts the frontier spanned in the two-dimensional

input–output space.

To illustrate the application of the approach proposed in Sect. 12.3.3, we first

evaluate each DMU using the RAM model. Table 12.2 exhibits the efficiency score

and the projection point for each DMU. The results reveal that DMU1, DMU2,

DMU3, and DMU4 form the efficient frontier, and are, hence, efficient. Amongst the

inefficient DMUs (DMU5, DMU6, DMU7, and DMU8), DMU8 has the minimum

efficiency score of ρ8 ¼ 0:643.
To comprehend the results better, we first illustrate the geometric properties of the

GRS and the minimum face. As far as DMU5 and DMU6 are concerned, their

corresponding projections are unique (i.e., DMU4 for DMU5 and DMU2 for DMU6).

For units such as DMU7 and DMU8, DMU3 is found to be one of their projections.

Moreover, since none of these units is uniquely projected, the projection sets ofDMU7

and DMU8 are, respectively, the line segment connecting DMU2 and DMU3 and

the line segment connectingDMU2 and DMU4 (w
�
1 ¼ 1=7andwþ1 ¼ 1=7). Therefore,

Table 12.1 Input and output data for Example 12.3.5

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8

Input 1 2 3 5 8 2 3 6

Output 2 5 6 8 8 1 3 4

9While dealing with the estimation of a piecewise log-linear technology, one may encounter

negative data since the log transformation of values less than 1 are always negative (Mehdiloozad

et al. 2014). One may also refer to, e.g., Pastor and Ruiz (2007), Sahoo and Tone (2009) and Sahoo

et al. (2012), among others, for several examples of applications with negative data.
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the minimum face associated with each of these units is the line segment connecting

DMU2 and DMU4. This indicates that some units with different projection sets may

have the same minimum face.

Having obtained the efficiency score for each DMU, we use model (12.19) to

identify its GRS and determine a relative interior point of its corresponding

minimum face. The results are all presented in Table 12.3.

Since DMU5 and DMU6 have unique, efficient projection points (i.e., DMU4 for

DMU5 and DMU2 for DMU6), the GRS for each of these units is the same as its

unique projection point. Formally, J G
5 ¼ 4f g and JG

6 ¼ 2f g.
Now, consider the case of DMU7 suffering from the simultaneous occurrence of

problems Type I and II:

• Type I: The sets {DMU3}, {DMU2,DMU4} and {DMU2,DMU3, DMU4} are the

three URSs for DMU7 associated with the projection DMU3. So, the MRS of

DMU7 associated with DMU3 is {DMU2, DMU3,DMU4}.

• Type II: Λ7 is the line segment connecting DMU2 and DMU3.

Table 12.2 The results obtained from the RAM model

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8

ρo 1 1 1 1 0.786 0.714 0.786 0.643

(xRAMo , yRAMo ) DMU1 DMU2 DMU3 DMU4 DMU4 DMU2 DMU3 DMU4

Table 12.3 The GRSs of the inefficient DMUs

DMU5 DMU6 DMU7 DMU8

(xmax
o , ymax

o ) DMU4 DMU2 DMU3 (3.333,6.333)

Reference weights λmax
1

λmax
2 1 0.500 0.333

λmax
3 0.250 0.333

λmax
4 1 0.250 0.333
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Ascanbeseen inTable12.2, theGRSofDMU7consistsofDMU2,DMU3andDMU4

with the respective weights of 0.5, 0.25 and 0.25, i.e., J G
7 ¼ 2; 3; 4f g. This finding

confirms to our Theorem 1 and its corollary, i.e., the convex hull of DMU2, DMU3 and

DMU4 is Γmin
7 . Moreover, DMU3 is determined as a relative interior point of Γmin

7 .

DMU2, DMU3 and DMU4 with the respective weights of 0.5, 0.25 and 0.25 also

constitute the GRS of DMU8, i.e., J
G
8 ¼ 2; 3; 4f g.

12.4 Determination of Returns to Scale (RTS)

12.4.1 Definition of RTS for an Inefficient DMU

As is well known, the concept of RTS is meaningful only if the relevant DMU is

efficient. Based on this, the standard approach followed in the DEA literature for

evaluating the RTS of an inefficient DMU is first to project it onto the efficiency

frontier and then to determine its RTS at its projection point (xRAMo , yRAMo ) as

defined in (12.5). However, determining the RTS uniquely and, consequently,

achieving the mathematical preciseness of this standard definition cannot be always

guaranteed since multiple projections may reveal different types of RTS for the

DMU under evaluation.

Therefore, in order to resolve this issue, theRTSmust be defined over a subset ofΛo

that its elements all exhibit the sameRTS possibility. To accomplish the task, we resort

to the concept of minimum face. As demonstrated by Krivonozhko et al. (2012c), all

relative interior points of theminimum face operate under the same type of RTS. Thus,

followingKrivonozhko et al. (2014),Mehdiloozad et al. (2015), andMehdiloozad and

Sahoo (2015), theRTSof an inefficientDMU iswell defined over the intersection ofΛo

with the relative interior of the minimum face. Based on this fact, we present the

following precise definition of RTS for the inefficient DMUs.

Definition 7 The RTS of an inefficient DMU is defined at Pmax
o ¼ xmax

o ; ymax
o

� �
, as

given in (12.20).

12.4.2 Determination of RTS Via the BCC Model

The multiplier form of the BCC model (Banker et al. 1984) for DMUo is set up as:

max uTyo � u0
subject to

vTxo ¼ 1,

uTY� vTX� u01n � 0n,

u � 0s, v � 0m, u0 : free in sign:

ð12:21Þ
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To determine the RTS possibility of DMUo, one needs to find the lower and

upper bounds of u0 in the set of all the optimal solutions of model (12.21). Letu0 and

�u0 be, respectively, the min and max of u0, which can be obtained from the

following models:

u0 u0ð Þ ¼ min maxð Þ u0
subject to

uTyo � u0 ¼ 1,

vTxo ¼ 1,

uTYE � vTXE � u01
T
e � 0T

e ,

u � 0s, v � 0m, u0 : free in sign:

ð12:22Þ

Then, the following theorem identifies RTS based on the signs of u0 and �u0.

Theorem 5 (Banker and Thrall 1992; Banker et al. 2004) Let DMUo be

efficient. Then,

(i) increasing RTS prevail at DMUo if and only if u0 < 0.

(ii) constant RTS prevail at DMUo if and only if u0 � 0 � u0.

(iii) decreasing RTS prevail at DMUo if and only if u0 > 0.

In this theorem, DMUo is assumed to be efficient; otherwise, it is replaced by its

projection point defined in (12.5). Based on Definition 5 and Theorem 5, we design

the following three-stage algorithm to determine the RTS possibility of DMUo:

Algorithm I

Stage 1: Solve the RAM model for (xo, yo).

• If (xo, yo) is efficient, go to Stage 2.

• Else, solve model (12.19) and obtain (xmax
o , ymax

o ) from (12.20). Then, replace

(xo, yo) with (xmax
o , ymax

o ) and go to Stage 2.

Stage 2: Solve the minimization form of model (12.22) for (xo, yo).

• If u0 ¼ 0, then constant RTS prevail.

• Else if u0 > 0, decreasing RTS prevail.

• Else, go to Step 3.

Stage 3: Solve the maximization form of model (12.22) for (xo, yo).

• If u0 < 0, increasing RTS prevail.

• Else, constant RTS prevail.

Algorithm I is based on a multiplier-based DEA model and determines the RTS

of a DMU by examining the intercept(s) of the supporting hyperplane(s) at, the

given DMU if it is efficient or, its projection point if it is inefficient. Obviously,

Algorithm I encounters no problem as long as there is a unique supporting hyper-

plane. Moreover, as we show below, it precisely determines RTS under the occur-

rence of multiple supporting hyperplanes (problem Type III).
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First, let DMUo be efficient. Then, the face of minimum dimension containing

DMUo, denoted by F xo;yoð Þ, is the intersection of TDEAVRS with all the supporting

hyperplanes at (xo, yo). Hence, if the dimension of F xo;yoð Þ is mþ s� 1—i.e., it is

a ‘Full Dimensional Efficient Facet’ (Olesen and Petersen 1996, 2003), then there is

a unique supporting hyperplane at (xo, yo). Otherwise, problem Type III arises due

to the non-full dimensionality of F xo;yoð Þ as the unique source of its origin.

According to Theorem 5, Algorithm I deals with the difficulty arising from this

source in its second and third stages.

For an inefficient DMU, problem Type III originates from two sources. The first

one is the non-full dimensionality of FPmax
o
¼ Γmin

o , which is circumvented in the

second and third stages of Algorithm I. The second one is Problem Type II in which

case, multiple projections are associated with multiple MRSs, and each MRS

characterizes at least one supporting hyperplane at the corresponding projection.

The effective way to address the difficulty arising from Problem Type II is to

determine RTS using the supporting hyperplanes that are characterized by all of the

MRSs, i.e., the GRS, but not by any specific MRS. This is done in the first stage of

Algorithm I by applying the projection point Pmax
o .

12.4.3 Determination of RTS Via the CCR Model

Let us consider the envelopment form of the CCR model (Charnes et al. 1978), as

given in the following form:

θCCRo ¼ min θ
subject to

Xλ � θxo,
Yλ � yo,

λ � 0n:

ð12:23Þ

We refer to θCCRo as the CCR-efficiency score. The following theorem enables us

to determine the RTS of DMUo by looking at the optimal solution of model (12.23).

Theorem 6 (Zarepisheh et al. 2006) Let DMUo be efficient. Then,

(i) constant RTS prevail at DMUo if and only if θCCRo ¼ 1.

(ii) decreasing RTS prevail at DMUo if and only if θ
CCR
o < 1 and 1T

n λ
* > 1 in any

optimal solution of model (12.23).

(iii) increasing RTS prevail at DMUo if and only if θCCRo < 1 and 1T
n λ

* < 1 in any

optimal solution of model (12.23).
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To apply this theorem for an inefficient DMU, it is replaced by its projection

point defined in (12.5). Based on Definition 5 and Theorem 6, we propose the

following two-stage algorithm to determine the RTS possibility of DMUo:

Algorithm II

Stage 1: Solve the RAM model for (xo, yo).

• If (xo, yo) is efficient, go to Stage 2.

• Else, solve model (12.19) and obtain (xmax
o , ymax

o ) from (12.20). Then, replace

(xo, yo) with (xmax
o , ymax

o ) and go to Stage 2.

Stage 2: Solve the CCR model for (xo, yo).

• If θCCRo ¼ 1, then constant RTS prevail.

• Else if 1T
n λ

* > 1, decreasing RTS prevail.

• Else, increasing RTS prevail.

Algorithm II is based on an envelopment-based DEAmodel and determines RTS

based on the CCR-efficiency score and the optimal sum of the intensity variables.

The main advantage of this algorithm lies in its computational efficiency, which is

due to two reasons. First, to find out the projection point of an inefficient DMU, the

approach by Mehdiloozad et al. (2015) is computationally more efficient than its

alternatives. Second, to determine RTS, only the envelopment form of the CCR

model is required to be solved.

12.4.4 Numerical Example

Here, we illustrate Algorithms I and II by applying them to the data set exhibited in

Table 12.1, which was also used in Example 12.3.5. Using each algorithm, we

estimate RTS of the observed DMUs by executing the following three main steps:

Step 1 We first evaluate all the DMUs via the RAM model to determine their

efficiency statuses.

Step 2 We determine RTS statuses of the efficient DMUs.

Step 3 We determine RTS statuses of the inefficient DMUs.

Remark 1 Note that after determining the RTS possibilities of all the efficient

DMUs in Step 2, the method of Tone (1996, 2005) can be applied in Step 3. This is

sensible from a computational perspective because it avoids the requirement of

solving any additional model.
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12.4.4.1 Determining RTS Statuses of the DMUs Using Algorithm I

As can be seen in Table 12.2, out of eight units, only four units (DMU1, DMU2,

DMU3, and DMU4) are efficient. First, we determine the RTS status of each

efficient unit by using Algorithm I and report the results in Table 12.4.

Foreachof theseunits,wedirectlyproceed toStage2andsolve theminimizationform

of model (12.22). Since u03 ¼ 1 and u04 ¼ 0:6, DMU3 and DMU4 exhibit decreasing

RTS. Since u01 ¼ �1 < 0 and u02 ¼ �0:167 < 0, we go to Step 3 and solve the

maximization form of model (12.22) for DMU1 and DMU2. The results reveal that

DMU1 and DMU2 operate under increasing RTS and constant RTS, respectively.

We now turn to determine the RTS statuses of the remaining inefficient units.

For each of these inefficient units, first, we solve model (12.19) to obtain a

projection point in the relative interior of its corresponding minimum face from

(12.20). As can be seen in Table 12.3, model (12.19) projects DMU5, DMU6, and

DMU7 onto the observed efficient units DMU4, DMU2, and DMU3, respectively.

Hence, without solving any additional models, the RTS statuses of these units are

determined at their corresponding projection points. However, by applying model

(12.19) to DMU8, we obtain the unobserved activity (3.333, 6.666) as its projection

point and identify DMU2, DMU3, and DMU4 as its reference units. Since these

reference units exhibit either constant RTS or decreasing RTS, the RTS status of

DMU8 is found to be decreasing as per Remark 1.

In summary, Algorithm I requires solving of six LP models for determining the

RTS statuses of all the eight DMUs.

12.4.4.2 Determining RTS Statuses of the DMUs Using Algorithm II

Here, we illustrate the use of Algorithm II, as developed in Sect. 12.4.3, for

determining the RTS possibilities of the DMUs. First, we determine the RTS

statuses of DMU1, DMU2, DMU3, and DMU4 using Algorithm II. Since these

units are all efficient, we directly evaluate them via the CCR model. For each

DMU, the second and third rows of Table 12.5 present the CCR efficiency score and

the optimal sum of the intensity variables, respectively.

Table 12.4 The RTS statuses of eight DMUs determined via Algorithm I

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8

u0 �1 �0.167 1 0.6 – – – –

�u0 �0.333 1.5 – – – – – –

RTS I C D D D C D D

Note: C, D, and I stand for constant RTS, decreasing RTS, and increasing RTS, respectively
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Since the CCR efficiency score for DMU2 is equal to one, this unit operates

under constant RTS. Since for DMU1, . . ., we have θCCR1 < 1 and 1T
n λ

∗ < 1, . . .,
Theorem 6 implies that this unit exhibits increasing RTS. Similarly, Theorem

6 implies that DMU3 and DMU4 operate under decreasing RTS, since θCCRo < 1

and 1T
n λ

* > 1 hold for these units. As discussed in Sect. 12.4.4.1, the RTS

possibilities of the inefficient units can be determined at their projection points

obtained by model (12.19), without solving any additional model. Hence, Algo-

rithm II enables us to estimates the RTS statuses of all the eight DMUs by solving

the CCR model four times.

12.5 Empirical Application

To demonstrate the ready applicability of our proposed approach, we conduct an

illustrative empirical analysis based on a real-life data set of 70 public schools in the

United States, which was taken from Charnes et al. (1981).

The data consists of five inputs and three outputs. The inputs of schools are the

education level of mother as measured in terms of percentage of high school

graduates among female parents (x1), the highest occupation of a family member

according to a pre-arranged rating scale (x2), the parental visit index representing

the number of visits to the school site (x3), the parent counseling index calculated

from data on the time spent with child on school-related topics such as reading

together, etc. (x4), and the number of teachers at a given site (x5). The outputs are
the Total Reading Score as measured by the Metropolitan Achievement Test (y1),
the Total Mathematics Score as measured by the Metropolitan Achievement Test

(y2), and the Coopersmith Self-Esteem Inventory, intended as a measure of self-

esteem (y3).

Table 12.5 The RTS statuses of eight DMUs determined via Algorithm II

DMU1 DMU2 DMU3 DMU4 DMU5 DMU6 DMU7 DMU8

θCCRo
0.8 1 0.8 0.64 – – – –

1Tnλ* 0.4 – 1.2 1.6 – – – –

RTS I C D D D C D D

Note: C, D, and I stand for constant RTS, decreasing RTS, and increasing RTS, respectively
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12.5.1 Evaluation of Schools via the RAM Model

We first make efficiency assessment of the schools using the RAM model. The

results show that 26 (37%) schools are efficient. For the remaining 44 (63%)

inefficient schools, Table 12.6 provides summary statistics of the efficiency scores

and the inputs and outputs of the projection points. It can be observed that the values

of ρo range from 0.844 to 0.965 with the mean efficiency score of 0.938.

12.5.2 Determining RTS Statuses of the Efficient Schools

We apply our Algorithm I and II for the 26 efficient schools in order to determine

their RTS possibilities. The results are all provided in Table 12.7. Out of these

efficient schools, schools S5, S32, S38, and S45 are found operating under increas-

ing RTS, schools S11 and S12 under decreasing RTS and the remaining ones under

constant RTS.

12.5.3 Determining RTS Statuses of the Inefficient Schools

Now, we proceed to determine RTS statuses of the inefficient schools. First, we

apply model (12.19) to each inefficient school, to identify its reference schools as its

benchmarks, and to obtain a projection point in the relative interior point of its

corresponding minimum face. For the 44 inefficient schools, the results on the

GRSs together with their associated intensity vectors are all reported in the first six

columns of Table 12.8.

For example, the efficient schools S44, S58, and S59 with the respective weights

of 0.052, 0.915, and 0.033 appear in the GRS of the most inefficient school S66.

This means that the target inputs and outputs of school S66 are a convex combina-

tion of the inputs and outputs of schools S44, S58, and S59. Thus, in order for

school S66 to become efficient, it must adjust its inputs and outputs so that it

produces the output vector 0:052� yS44 þ 0:915� yS58 þ 0:033� yS59 by consum-

ing the input vector 0:052� xS44 þ 0:915� xS58 þ 0:033� xS59.

Table 12.6 Descriptive statistics of efficiency scores and projection points obtained by the RAM

model for the inefficient schools

ρo xRAM1 xRAM2 xRAM3 xRAM4 xRAM5 yRAM1 yRAM2 yRAM3

Min 0.844 4.379 2.233 7.958 8.170 2.274 8.817 9.369 6.350

Max 0.985 39.969 14.650 51.902 52.132 8.314 54.530 63.557 39.100

Mean 0.938 15.634 8.396 28.938 29.847 4.947 30.319 36.529 22.367
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Once the GRS and the intensity vector λmax
o are identified for each school, its

corresponding projection Pmax
o is obtained from (12.20). Table 12.9 gives the

statistics of the obtained projection points. By applying Algorithms I and II to the

obtained projection points, the RTS statuses of the inefficient schools are then

classified. The results are reported in the last five columns of Table 12.8. As the

results show, out of 44 inefficient schools, 3 (7%) schools exhibit decreasing RTS,

1 (2%) school exhibits increasing RTS, and the remaining 40 (91%) schools

exhibit constant RTS.

As an interesting point, note that the RTS statuses for schools such as S1, S10,

S28, and S50 cannot be determined directly from their GRSs. This is because the

reference units of each of these schools all exhibit constant RTS.

Table 12.7 The RTS statuses

of the 26 efficient schools
DMU

Algorithm I Algorithm II

RTSu0 �u0 θCCRo 1Tnλ*
S5 �1 �0.26 0.929 0.564 I

S11 0.026 0.686 0.976 1.919 D

S12 0.072 0.668 0.973 1.615 D

S15 �0.518 0.157 1 – C

S17 �1 0.18 1 – C

S18 �0.011 0.243 1 – C

S20 �0.165 0.88 1 – C

S21 �0.023 0.405 1 – C

S22 �0.017 0.054 1 – C

S24 �0.318 0.46 1 – C

S27 �0.167 0.439 1 – C

S32 �1 �0.606 0.895 0.703 I

S35 �0.006 0.368 1 – C

S38 �1 �0.249 0.873 0.394 I

S44 �0.051 1.477 1 – C

S45 �1 �0.325 0.88 0.418 I

S47 �0.166 0.455 1 – C

S48 �1 0.003 1 – C

S49 �0.083 0.125 1 – C

S52 �0.052 0.617 1 – C

S54 �0.03 0.929 1 – C

S56 �0.263 0.082 1 – C

S58 �0.407 0.279 1 – C

S59 �0.29 0 1 – C

S62 �1 0.099 1 – C

S69 �1 0.374 1 – C

Note: C, D, and I stand for constant RTS, decreasing RTS, and

increasing RTS, respectively
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12.6 Summary and Concluding Remarks

The crucial issue concerning identification of the reference set of an inefficient

DMU is the occurrence of multiple reference sets, i.e., the issue of multiplicity. To

deal effectively with this issue, this chapter proposes a general LP-based approach

for identifying all the possible reference units of an inefficient DMU, and then

applies it for determining RTS. Toward these two objectives, first, two potential

sources of the origin of the multiplicity issue are identified. The first one is the

presence of alternative optimal intensity vectors for a given projection point

(problem Type I), and the second one is the occurrence of multiple projection

points (problem Type II).

Obviously, the reference set of an inefficient DMU is not well defined under the

issue of multiplicity, and under either problem Types I or Type II or both, accord-

ingly. To overcome the problem of the multiplicity issue, the uniquely found

reference set containing all the possible reference units must be discriminated

from the two other types of reference set for which the multiplicity issue occurs

due to problems Types I and II. In this chapter, this discrimination is made by

introducing three types of the reference set—i.e., URS, MRS and GRS.

Corresponding to a given projection point of an inefficient DMU, the URS is

defined as the set of efficient DMUs that are active in a specific convex combination

generating this point. The union of all the URSs associated with the given projec-

tion is defined as its associated MRS. The union of the MRSs associated with all the

projection points is also defined as the GRS of the evaluated DMU.

With the help of the introduced notions, it is then demonstrated that the convex

hull of the GRS is equal to the minimum face, from which it is immediately

concluded that the minimum face is a polytope. It is also proved that the GRS

can be accurately identified by finding a maximal element of the set of all intensity

vectors at optimality of the RAM model. To find out such an element, first, a mixed

0–1 LP model is proposed in the envelopment form and then, it is transformed into

an equivalent upper-bounded LP model by using the LP relaxation method. The

proposed approach has several advantages as outlined below:

• It is computationally more efficient than its alternatives, since it requires the

execution of a single LP model.

• Its computational efficiency is higher than those of its primal–dual based alter-

natives, as it is primal based.

• Its computational efficiency can be substantially improved by using the simplex

algorithm adopted for solving the LP problems with upper-bounded variables.

Table 12.9 Descriptive statistics of relative interior points of the minimum faces

DMU xmax
1 xmax

2 xmax
3 xmax

4 xmax
5 ymax

1 ymax
2 ymax

3

Min 4.379 2.233 7.958 8.170 2.274 8.817 9.369 6.350

Max 39.969 14.650 51.902 52.132 8.314 54.530 63.557 39.100

Mean 15.634 8.396 28.938 29.847 4.947 30.319 36.529 22.367
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• It can be easily applied to both radial and non-radial DEA models.

• It is independent of the imposed RTS assumption.

As an important application of the proposed approach, two precise methods are

developed to determine RTS statuses of the DMUs. In this regard, first, the RTS of

an inefficient DMU is defined at its projection point that lies in the relative interior

of the minimum face. This definition is precise since the minimum face is spanned

by the GRS, and all the relative interior points of the minimum face exhibit the

same type of RTS. Then, based on this definition, two RTS determination algo-

rithms are proposed by extending those of Banker et al. (2004) and Zarepisheh

et al. (2006). The first one is a three-stage algorithm that uses the multiplier form of

the BCCmodel and determines RTS by examining the intercept(s) of the supporting

hyperplane(s). This algorithm deals effectively with the occurrence of multiple

supporting hyperplanes that arises either from problem Type II or from the non-full

dimensionality of the minimum face. The second one is a two-stage algorithm that

applies the envelopment form of the CCR model and determines RTS by looking at

the sum of the optimal intensity variables. From computational perspective, the

second algorithm is superior to the first one.
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Chapter 13

Technometrics Study Using DEA on Hybrid
Electric Vehicles (HEVs)

Dong-Joon Lim, Shabnam R. Jahromi, Timothy R. Anderson,

and Anca-Alexandra Tudorie

Abstract The Toyota Prius was first introduced in 1997 and since then over

150 hybrid electric vehicles (HEVs) have been brought to the automobile market

around the world. This was spurred by a major interest in the future of vehicles

using ‘alternative fuel’ for addressing environmental and fuel dependency con-

cerns. This study evaluates and compares the technological advancement observed

in different HEV market segments over the past 15 years. The results indicate that

the introduction of a wide range of midsize HEVs is posing a threat to the

two-seaters and compact HEV segments while an SUV segment shows a fast

adoption with a significant performance improvement. The rates of change for

each segment are also provided to give insights into the estimation of the future

performance levels for new product development target setting purposes.

Keywords Hybrid electric vehicle • Technological forecasting • Data

envelopment analysis • Market segment • Rate of change
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13.1 Introduction

Increasing fuel prices, government regulation, and a general desire to reduce

environmental concerns have resulted in increased sales for fuel efficient vehicles.

The Toyota Prius, introduced in 1997, was the first major hybrid electric vehicle

(HEV) and since then most other manufacturers have introduced HEVs with

varying success. While popular, the Prius and other vehicles were small and did

not satisfy the needs of many other market segments. Over the following years,

manufacturers have developed HEVs to serve other segments.

Electric vehicles can be broadly categorized as ‘pure-electric’ (i.e., using only a

battery and an electric motor for propulsion without tailpipe) or ‘hybrid-electric’

(i.e., combining the conventional internal combustion engine with an electric motor

and battery). As the electric vehicle market grows, related technologies are

progressing every year especially in terms of driving range and fuel economy. In

particular, the anxiety on the travel range of pure electric vehicles has been reduced

by the advent of HEV. Besides, the fuel economy of the HEV has been greatly

improved in plug-in HEV that can be recharged from an external grid.

Building on prior works (Jahromi et al. 2013a; Tudorie 2012), this study pro-

poses a Technometrics model using data envelopment analysis (DEA) and applies it

to the HEV industry so that technological advancement patterns in different market

segments can be investigated. In addition, the rates of change for each segment are

provided to give insights into the estimation of the future performance levels for

new product development target setting purposes.

13.2 Methodology

Technometrics is a discipline aiming for the measurement of scientific or techno-

logical changes (Sahal 1985). As in traditional statistical literature, technometrics

models can be conveniently divided into two groups: parametric and nonparametric

approaches. The former approach constitutes the technology frontier by fitting it to

a predefined functional form such as hyper-plane (Alexander and Nelson 1973),

ellipsoid (Dodson 1985), generalized convex curve (Martino 1985), or iso-time

surface derived from multiple S-curves (Danner 2006). Parametric models there-

fore tend to be robust to noise by filtering them with a predefined ‘general’ pattern.

The latter approach, in contrast, purely adapts the technology frontier to data

without being shaped a priori, which renders resulting frontier to be a piecewise

linear combination rather than a curved surface (Lim 2015a).

Technology forecasting using DEA (TFDEA), which may be classified as one of

the nonparametric RAND1 techniques, iterates a technology frontier formation

1 The term RAND was originated from the RAND Corporation. It is a generic term for

technometrics model using time as a dependent variable whereas price is used in the hedonic

approach.
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through accumulating technologies over time to capture the rate of technological

change (Inman 2004) (Fig. 13.1).

As previously noted, its nonparametric nature makes it possible to identify

multiple facets constructing the technology frontier in which tradeoffs of

corresponding design process can be explicitly considered. This feature is best

exemplified by the segmented rate of change which varies along the frontier and

therefore it becomes possible to obtain a relevant rate of technological change

considering each technology’s characteristics (Fig. 13.2). Lim and Anderson’s

study showed that capturing local rates of change from identified frontier facets

and utilizing them for individual forecasting targets improve the forecasting accu-

racy in general (Lim et al. 2015a; Lim and Anderson 2014).

Fig. 13.2 Illustration of segmented rate of change

Fig. 13.1 Two-dimensional illustration of technology forecasting using DEA
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To formulate the TFDEA model, suppose there are n decision making units

(DMUs), i.e., technologies, and let x ¼ x1; . . . ; xmð Þ2ℜM
þ denote an input vector,

y ¼ y1; . . . ; ysð Þ2ℜS
þ denote an output vector. Following the minimum extrapola-

tion principle (Banker et al. 1984), the production possibility set (PPS) for each

DMU k can be constructed as (13.1). Note that variable returns to scale (VRS) is

assumed and the frontier separation is imposed to deal with the external

nondiscretionary factor. This restricts the reference set for each technology being

evaluated to technologies presenting only same or more disadvantageous conditions

in terms of the categorical index (Ruggiero 1996; Banker and Morey 1986).

Therefore, this requires the categorical variables to be arranged in a rank order

according to the favorable condition. We introduce a categorical variable for this

study in the following section to account for the nondiscretionary factor.

PPSk ¼ x; yð Þ

Xn
j¼1

λjkxij � xik,
Xn
j¼1

λjkyrj � yrk, 8i, rXn
j¼1

λjk ¼ 1, λjk � 0, 8j

λjk ¼ 0, 8j �� yrj < yrk f or r2ND

������������

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
ð13:1Þ

Having specified the PPS, efficiency measurement can take a various forms. In

this study, we employ an output-oriented model as can be denoted in (13.2).

ϕk
* ¼ max ϕk : x,ϕkyð Þ2PPSkf g ð13:2Þ

The evolution of technology frontier is then captured by the efficiency changes

of past DMUs. To quantify this, let ϕt
k* be an obtained efficiency score of DMU

k from PPSk including DMUs up to time t, tk be the release date of DMU k, and T be

the vantage point from which the rate of change is being captured. Then ϕtk
k * ¼ 1

and ϕT
k * > 1 indicates that DMU k was located on the technology frontier at the

time of release but later superseded by the newly created technology frontier at T.
Combining this information with the time gap between technology frontiers, the

rate of change observed by each DMU can be obtained as formulated in (13.3).2

γ Tk ¼ ϕT
k *

� �
1Xn

j¼1λT
*

jk
tjXn

j¼1λT
*

jk

�tk

, 8k ϕtk
k * ¼ 1, ϕT

k *
�� �

1 ð13:3Þ

2 Note that (13.3) may suffer from the issue of alternative optimal solutions and in such case the

secondary objective can be applied as described in (Lim et al. 2014).
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Next, the local rate of change is computed for DMU(s) located on the technol-

ogy frontier at T, that is, for peer DMU j of surpassed past DMU k. Each local rate
of change therefore represents a growth pattern of adjacent frontier facets based

on the technological advancement observed from related past technologies (Lim

2015b). Consequently, this enables an identification of how much frontier expan-

sion has been made by each benchmark technology among others. This is denoted

as below.

δTj ¼
Xn

k¼1λ
T*

jk γ
T
kXn

k¼1, γ T
k
>0
λT

*

jk

, 8j �� ϕT
j * ¼ 1 ð13:4Þ

13.3 Research Model and Dataset

13.3.1 TFDEA Parameters

13.3.1.1 Input Variable

MSRP: Manufacturer’s suggested retail price can be considered as a reasonable

proxy for manufacturing cost due to a high presumed correlation. The vehicles in

the dataset were from different countries and released in different years therefore

the actual MSRP for each vehicle was converted into 2013 U.S. dollar value

through the following steps:

1. The vehicle’s MSRP in the year of release was found through the manufacturers’

website or car review websites.

2. If the MSRP was in currency other than U.S. dollars, the value was converted to

the equivalent amount in U.S. dollars using the exchange rate of the year of

release. This study used the historical exchange rates provided by OANDA

Corporation for the conversions (OANDA Corporation 2013). Equation (13.5)

shows the formula to convert the MSRPs in the original currency to U.S. dollar

equivalent:

MSRPU:S: dollar equivalent ¼ Exchange rateyear of release*MSRPin original currency

ð13:5Þ

3. To inflate a past dollar value into present value, (13.6) was used by applying the

historical consumer price index (CPI) and the CPI of the year 2013. The CPI
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values were obtained from the Bureau of Labor Statistics and the formula can be

found as below (Boskin et al. 1998):

MSRP2013 equivalent ¼ MSRPyear of release* 2013 CPIð Þ = Year of release CPIð Þ
ð13:6Þ

13.3.1.2 Output Variables

Acceleration rate: This value determines the time (in seconds) it takes for a vehicle

to go from 0 to 100 km (or 60 miles). Equation (13.7) shows the formula to calculate

the acceleration rate:

Acceleration rate
km

hour
per second

� �
¼ speed range km

h

� �
time secondð Þ ð13:7Þ

Fuel economy: Fuel economy shows the distance a vehicle can travel in one unit

of fuel. The Environmental Protection Agency (EPA) provides information on fuel

economy for the vehicles available in the U.S. market (Environmental Protection

Agency (EPA) 2013). This study used the fuel economy value for combined city

and highway driving cycles that was officially announced by the EPA.

Note that the fuel economy estimation is complicated for plug-in HEVs as they

can drive in pure electric mode from having been charged with the grid. Therefore

the fuel economy of plug-in HEV was modified so that it takes account of hybrid

mode only. To consider the additional dimension of plug-in HEV’s performance,

i.e., pure electric mode, another output of fuel economy is needed to be incorpo-

rated in the model as discussed below.

Max of MPG and MPG equivalent: The EPA developed a mile per gallon

equivalent (MPGe) for plug-in HEVs to take all-electric range into account. This

value is based on the gasoline-equivalent energy of electricity (Hybrid Vehicle

Research and Development, Demonstration Program 2000). Specifically, 1 gal of

gasoline can be approximated to 33.7 kW/h of electric energy. For vehicles that

were not introduced in the U.S. market, the value of MPGe was calculated using

(13.8):

MPG equivalent ¼ 33:7*driving range

battery capacity
ð13:8Þ

Since this parameter takes the maximum of MPG and MPGe, conventional

HEVs have the same value as their fuel economy. Consequently, adding this

parameter can address the additional feature of plug-in HEV without penalizing

conventional hybrid cars in TFDEA model.
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13.3.1.3 Categorical Parameter

Vehicle class: Unlike the earlier work by Jahromi et al. (Jahromi et al. 2013b) that

included seating capacity as one of the output parameters to take capacity of the

vehicle into account, this study used vehicle class as a categorical parameter. This is

because seating capacity is more of design characteristics suitably determined for

the target market than performance characteristic that manufacturers want to

increase. Furthermore, vehicle class can be used to classify the different types of

vehicle more precisely than seating capacity. For example, Prius C is a compact

vehicle and Prius V is a midsize vehicle while they have the same seating capacity

of five.

The EPA defines vehicle classes based on interior passenger and cargo volumes

as well as design purposes (Environmental Protection Agency (EPA) 2013). This

study adopted the EPA’s criteria and grouped HEVs into seven classes: two-seaters

(TS), compact (C), midsize (M), large (L), sport utility vehicle (SUV), minivan

(MV), and pickup truck (PT). By using the above order of vehicle classes3 as

categorical indices, HEVs can only be compared to HEVs in the same or following

classes. For example, HEVs in the last class (i.e., pickup truck) are only compared

with HEVs in the same class, but HEVs in category M are compared with HEVs in

the same and/or following classes (i.e., M, L, SUV, MV, and PT) in terms of per

price performances. Intuitively, the category M vehicle will not be compared

against any vehicles from preceding classes (i.e., TS and C). Consequently, this

enables to reflect a great deal of information contained in each HEV market

segment that would be lost in any point-comparison without consideration on

environmental factors (Ruggiero 1996).

13.3.2 Dataset

The dataset has been updated to cover total 154 HEVs including 11 plug-in HEVs

from 1997 to 2013 (see Table 13.1). The EPA database was the main source to

collect the required information of technical attributes. Other sources were cross

referenced especially for the vehicles released outside the U.S. and, in such a case,

information was prioritized in order of technical report, product manual,

benchmarking journals, and review sites. The whole dataset is available in (Lim

et al. 2015b).

3 This should be understood as the order of difficulty to achieve per price performances due to

structural requirements for each market segment rather than mere vehicle sizes. For example,

while pickup trucks have a range of sizes, the industrial loads that need to be carried in pickup

trucks may cause design demands beyond that of minivans that are typically reflected in lower fuel

economy. Also, note that EPA only applies volume criteria for cars (TS, C, M, and L) and weight

criteria for trucks (SUV, MV, and PT).

13 Technometrics Study Using DEA on Hybrid Electric Vehicles (HEVs) 337



T
a
b
le

1
3
.1

D
at
as
et

su
m
m
ar
y

V
eh
ic
le

cl
as
s

T
w
o
-s
ea
te
rs

C
o
m
p
ac
t

M
id
si
ze

L
ar
g
e

S
U
V

M
in
iv
an

P
ic
k
u
p
tr
u
ck

N
u
m
b
er

o
f
v
eh
ic
le
s

9
3
2

5
6

8
3
7

4
8

F
ir
st
in
tr
o
d
u
ct
io
n
(Y

ea
rs
)

2
0
0
0

1
9
9
7

2
0
0
4

2
0
0
9

2
0
0
4

2
0
0
3

2
0
0
4

M
S
R
P
(2
0
1
3
eq
u
iv
al
en
t)

M
ax

$
2
1
,4
3
5

$
4
9
,6
5
0

$
1
1
8
,5
4
4

$
1
0
4
,3
0
0

$
9
7
,2
3
8

$
3
8
,0
8
5

$
5
7
,0
9
5

A
v
er
ag
e

$
1
9
,5
2
1

$
2
7
,9
0
8

$
3
7
,3
3
5

$
8
5
,2
5
1

$
4
7
,4
9
5

$
2
9
,6
1
6

$
3
9
,8
1
9

M
in

$
1
8
,9
3
6

$
1
4
,0
7
2

$
1
1
,8
4
9

$
2
5
,2
0
0

$
1
7
,0
4
5

$
1
6
,3
9
4

$
3
0
,0
9
0

A
cc
el
er
at
io
n
(k
m
/h
/s
)

M
ax

1
2
.2
0

1
4
.9
3

1
9
.6
1

2
0
.4
1

1
8
.5
2

9
.2
6

1
2
.3
5

A
v
er
ag
e

9
.9
9

9
.8
4

1
2
.6
3

1
5
.9
7

1
2
.9
9

7
.8
5

1
1
.1
2

M
in

9
.2
4

7
.0
4

7
.1
4

1
2
.3
5

8
.3
3

6
.2
9

9
.0
9

M
P
G

M
ax

6
0
.6
9

6
8
.2
1

7
2
.9
2

4
3
.0
0

3
3
.6
4

5
8
.8
0

2
2
.3
5

A
v
er
ag
e

5
0
.0
8

4
3
.5
4

3
5
.8
2

2
6
.0
6

2
6
.2
2

4
9
.2
8

1
9
.8
9

M
in

3
7
.0
0

2
8
.0
0

2
0
.0
0

2
1
.0
0

1
8
.8
2

4
0
.4
6

1
7
.0
0

M
ax

o
f
M
P
G
an
d
M
P
G
e

M
ax

6
0
.6
9

9
8
.0
0

1
0
0
.0
0

4
3
.0
0

3
8
.0
0

5
8
.8
0

2
2
.3
5

A
v
er
ag
e

5
0
.0
8

5
0
.9
5

4
1
.4
2

2
6
.0
6

2
6
.4
5

4
9
.2
8

1
9
.8
9

M
in

3
7
.0
0

2
8
.0
0

2
0
.0
0

2
1
.0
0

1
8
.8
2

4
0
.4
6

1
7
.0
0

338 D.-J. Lim et al.



13.4 Analysis of the Technological Advancement Patterns

The model was implemented using the software4 developed by Lim and Anderson

(2012). Figure 13.3 provides a sketch of what segment has been dominating the

market in terms of technological superiority by showing how the state-of-the-art

frontier of hybrid electric vehicles over time has been made up of vehicles from

different segments. That is, the percentage indicates the amount of which each HEV

segment stakes out the state-of-the-art frontier that any particular HEV is aiming

for. In 1997 for example, the state-of-the-art frontier was constructed by a sole

compact HEV, the first generation of Prius, without a competition therefore the dark

blue region (i.e., compact segment) filled up the entire frontier space. As other types

of HEVs began to be released in the market over time, the state-of-the-art frontier

has been made up of a wide variety HEVs.

Fig. 13.3 State-of-the-art HEV distribution

4 R package for a standard TFDEA is available at http://cran.r-project.org/web/packages/TFDEA/

index.html

A web-based version and Excel add-in are also available at http://tfdea.com and in (Lim and

Anderson 2012) respectively.
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13.4.1 Two-Seaters and Compact Segments: “Stagnated”

Until 2003, all HEVs in our dataset were either two-seaters or compact automo-

biles. This resulted in these two segments dominating the HEV market but the

introduction of vehicles in other segments resulted in an erosion of this dominance.

Despite consecutive introductions of successful lineups such as Honda Insight and

Toyota Prius C, the technological dominance has been shrinking as the other types

of HEVs’ market advance.

Note that there were no two-seaters or compact HEVs on the state-of-the-art

frontier in 2013. This indicates that two-seaters and compact HEVs are no longer

competitive with vehicles in other segments, though they presumably have a light

weight advantage. This is particularly attributed to the encroachment of the midsize

HEVs that is extending its target market with a fast technological advancement

recently. One can verify this by the list of benchmarks of two-seaters and compact

HEVs in 2013. Table 13.2 contains this information. The combination of bench-

mark and dominated set can be understood as a competitor group in terms of their

product spec where the former is found to be outperforming the latter. For example,

Prius (first generation), indicated as vehicle number of 1, has become obsolete since

its introduction in 1997 and it was superseded by its benchmarks: Accord Hybrid

(21), Prius alpha (V) (80), and Fit Shuttle Hybrid (82).

Except for the Fit Shuttle Hybrid (82), benchmarks of all two-seaters and

compact HEVs were found to be midsize HEVs. This suggests that midsize

HEVs are outperforming HEVs from those two segments with similar technical

characteristics. That is, midsize HEVs are penetrating the market niche that has

been dominated by two-seaters and compact HEVs. In fact, the bar for energy

efficiency is constantly being raised as more competitors including bigger vehicles

have come into the market place with innovative features such as plug-in

Table 13.2 Benchmarks of two-seaters and compact HEVs

Benchmarks

(class)

Dominated seta

Two-seaters Compact

21 (M) 4, 6, 7, 9, 12,

18, 55, 90, 136

1, 3, 5, 10, 16, 19, 43, 47, 63, 66, 71, 77, 78, 79, 88, 97, 102,

111, 112, 113, 117, 138, 140, 141

40 (M) 10

56 (M) 99

67 (M) 2, 46, 81

80 (M) 4, 6, 7, 9, 12,

18, 55, 90, 136

1, 2, 3, 5, 16, 19, 43, 46, 47, 54, 63, 66, 71, 77, 78, 79, 81,

88, 97, 102, 111, 112, 113, 117, 138, 140, 141

82 (MV) 4, 6, 7, 9, 12,

18, 55, 90, 136

1, 3, 5, 10, 16, 19, 43, 47, 63, 66, 77, 88, 97, 102, 111, 117

145 (M) 46, 71, 78, 79, 112, 113, 138, 140, 141

152 (M) 68, 99, 154

153 (M) 103
aList of HEVs who cited the corresponding state-of-the-art HEV as a benchmark
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technology. Hence, high fuel economy is not entirely the domain of smaller

vehicles any more (Sanchez 2013). This instigated makers of small HEVs to engage

in more ingenious designs and development improvement (e.g., Toyota’s new

global architecture project) (Toyota 2012).

13.4.2 Midsize Segment: “Flourishing”

Continuing the previous discussion, it is noteworthy that midsize segment has

shown a fast adoption rate with a superior technological performance recently.

Indeed, hybrid technology has gained substantial popularity not only in fuel prices

but also in reliability and longevity of power train that almost every auto manufac-

turers began to add hybrid version of their conventional midsize models to their

brochures (CarsDirect 2013).

Figure 13.4 further explains the market penetration of midsize HEVs into the

compact segment. Although the average price of midsize HEVs is still slightly

higher than compact HEVs, not only the acceleration of midsize HEVs outperforms

compact HEVs but also the gap of average fuel economy between compact and

midsize HEVs is getting narrower. Especially, recent midsize plug-in HEVs such as

Ford C-Max Energi (152) and Fusion Energi (153) have surpassed the fuel economy

of any other compact HEVs as shown in the bottom right figure. This would attract

customers who pine for a sportier vehicle in addition to roomier interior and safety

features to the midsize segment with a variety of purchase options.

Almost by definitions, benchmarks (i.e., state-of-the-art HEVs) targeting a niche

market won’t have a big dominated set who cited them as a benchmark (Doyle and

Green 1991). In contrast, state-of-the-art HEVs with a broad scope must have been

cited as a benchmark by many other competitors. Consequently, it would be

possible to reveal whether an HEV on the 2013 state-of-the-art frontier is the

niche or the broad player if the information on which and how many HEVs were

compared with them was available. This has been done in Table 13.3.

In the midsize segment, three dominant players can be identified: Honda Accord

Hybrid (21), Toyota Prius alpha (V) (80), and Infiniti M35h (145). One can further

classify them such that Accord Hybrid as a low-end, Prius alpha (V) a middle-end, and

M35h a high-end benchmark based on their MSRPs and performance characteristics.

Local rates of change of state-of-the-art HEVs indicate how much technological

advancement has been observed from their dominated sets. Using the foregoing

classifications, middle-end midsize HEVs have shown the fastest rate of change,

i.e., 3.66% of annual improvement for acceleration and fuel economies, whereas

low-end and high-end midsize HEVs’ progresses were relatively moderate, 1.56%

and 1.96% respectively.

It is also interesting to note that BYD F3DM (56) and Ford C-Max Energi (152)

were found to be state-of-the-art plug-in HEVs that have been competed against

other plug-in HEVs listed in their dominated sets. However the technological

advancement of plug-in HEV in midsize segment appeared to be modest so far
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possibly due to the fact that the current battery technology has been struggling with

technical challenges along with cost and complexity coming from dual power trains

(U.S. Department of Energy 2006; Shao et al. 2009).

13.4.3 Large Segment: “Emerging”

Two large HEVs are on the 2013 state-of-the-art frontier: the BMW ActiveHybrid

7 Series (61) and the Ford C-Max Hybrid FWD (116). One may notice that these

HEVs are representing two very different regions within a large HEV segment.

Indeed, the BMW ActiveHybrid 7 Series, which has a 2013 equivalent MSRP of

$104,300, constitutes the most expensive HEV market segment. This is a noteworthy

segment in that it is penetrating a niche of luxury market with a powerful engine and

electric motor combination while still getting satisfactory MPG. In fact, the high-end

automakers have finally begun to push green cars, e.g., Mercedes’ S hybrid series or

Porsche’s Panamera S series, right after Tesla proved that there is a sufficient number

of upscale customers in the electric vehicle market (Garthwaite 2013).

In contrast, the Ford C-Max Hybrid FWD, which has a 2013 equivalent MSRP of

$25,200, stakes out the other end of the large segment. This unique vehicle is, in

fact, targeting the niche between midsize and minivan segments to satisfy

Fig. 13.4 Encroachment of midsize segment into the compact segment
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Table 13.3 Benchmarks and local rates of change observed from 2013 state-of-the-art HEVs

Class

State-of-

the-art

HEV Dominated seta
Local rate

of change

Midsize 21 1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 16, 18, 19, 21, 24, 27, 33,

38, 39, 43, 45, 47, 50, 55, 60, 62, 63, 64, 66, 70, 71,

77, 78, 79, 83, 84, 86, 88, 89, 90, 91, 92, 97, 102, 104,

105, 106, 107, 111, 112, 113, 114, 115, 117, 118,

119, 120, 121, 122, 123, 124, 125, 126, 136, 137,

138, 139, 140, 141

1.01562

40 10, 40, 60 1.00422

56 38, 56, 99 1.00083

67 2, 25, 36, 46, 49, 67, 81, 100, 101, 108, 144, 146, 147 1.00867

80 1, 2, 3, 4, 5, 6, 7, 9, 12, 13, 16, 18, 19, 24, 25, 27, 33,

36, 39, 43, 45, 46, 47, 49, 50, 54, 55, 62, 63, 64, 66,

70, 71, 77, 78, 79, 80, 81, 83, 84, 86, 88, 89, 90, 91,

92, 97, 101, 102, 104, 105, 106, 107, 111, 112, 113, 114,

115, 117, 118, 119, 120, 121, 122, 123, 124, 125,

126, 136, 137, 138, 139, 140, 141, 144, 146, 147

1.03664

145 24, 25, 27, 30, 33, 39, 45, 46, 49, 50, 62, 64, 70, 71, 78,

79, 83, 84, 86, 89, 91, 92, 96, 100, 101, 104, 105,

106, 107, 108, 112, 113, 115, 118, 119, 120, 121,

122, 123, 124, 125, 126, 137, 138, 139, 140, 141,

144, 145, 146, 147

1.01961

152 38, 68, 99, 152, 153, 154 1.01367

Large 61 30, 44, 58, 61, 76, 96, 103, 109, 148, 149, 150 N/A

116 116, 148 N/A

SUV 51 17, 20, 28, 31, 34, 51, 52, 69, 72, 87, 93, 95, 110,

128, 131

1.04067

58 11, 17, 23, 28, 29, 31, 32, 41, 53, 58, 69, 72, 73, 74, 87,

93, 110, 127, 128, 129, 131, 133, 134

1.03854

59 20, 34, 59 1.05082

94 11, 15, 23, 28, 29, 32, 37, 41, 42, 48, 52, 53, 57, 65, 73,

74, 94, 95, 110, 127, 128, 129, 130, 131, 132, 133, 134,

135, 148

1.03080

Minivan 26 8, 26 1.03721

82 1, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20,

23, 29, 31, 32, 34, 37, 41, 42, 43, 44, 47, 53, 55, 57,

60, 63, 65, 66, 69, 72, 73, 74, 76, 77, 82, 85, 87, 88,

90, 93, 97, 102, 109, 111, 114, 117, 127, 129, 130, 132,

133, 134, 135, 136, 149, 150

1.01971

Pickup

truck

142 8, 142 1.03721

Kruskal-Wallis test has been conducted to verify the non-parametric significance of differences

between groups. It was shown that identified segments are non-identical populations with respect

to the local rates of change (chi-squared¼ 9.8938, df¼ 3, p-value¼ 0.02964)
aList of HEVs who cited the corresponding state-of-the-art HEV as a benchmark
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customers craving for stylish and spacious HEV but not as big as minivans

(Voelcker 2013). Besides, the kinetic design deliberately shrinking the cargo

space enables to deliver MPG of 43 which is the highest fuel economy in the

large segment.

The local rates of change for the large segment could not be calculated due to

their recent debut on the state-of-the-art frontier. That is, successive introductions

of large HEVs could show two notable sub-segments within the frontier but the

evolution of corresponding frontier facets hasn’t occurred yet. Nevertheless, this

emerging large HEV segment may be signaling one of the disruptive paths of future

HEV development such as the recent adoption of diesel hybrid sheds light on an

attempt to get a substantial boost in MPG and meet the stringent CO2 regulations at

the same time (Hazeldine et al. 2009; Borras 2013).

13.4.4 SUV Segment: “Forging Ahead”

Many industry reports point out that the SUV market is declining mostly due to the

growing crossover segments as well as a low fuel economy (Siu 2013). However, at

the same time, SUV is still recognized as a pure utility of a ‘go anywhere’ spirit that

no other segment can replace in today’s auto market. This motivated manufacturers

to incorporate hybrid technology, especially plug-in, into the SUV market so that

the hybrid SUV segment can address a market demand with the improved fuel

economy (Duvall 2002; Greene et al. 2004).

The fast rates of change observed by all four state-of-the-art SUVs, Saturn Vue

Hybrid (51), Audi Q5 (58), Jeep Patriot EV (59), and Porsche Cayenne S Hybrid

(94), are supporting the previous argument. In particular, a relatively inexpensive

SUV niche represented by Jeep Patriot EV and its dominated set show the fastest

local rate of change of 5.08% across all HEV segments. Furthermore, the dominant

vehicles of medium and large SUVs: Audi Q5 and Cayenne S Hybrid, show local

rates of change of 3.85% and 3.08% respectively. One may find it interesting to see

how these cheap plug-in SUV and full-size luxury SUV segments would leverage

the SUV market with current rate of technological advancement as opposed to the

other crossover vehicles.

13.4.5 Minivan Segment: “Crossover”

As previously discussed, the cardinality of dominated set may imply the state-of-

the-art HEV’s positioning in the market. According to this, the Fit Shuttle Hybrid

(82) can be regarded as a good all-round performer. Specifically, its dominated set

includes all types of HEVs, which indicates that this vehicle would be one of the

most representative designs across all HEV segments. However, the local rate of
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change of this cheap and economic minivan was found to be 1.97%. This is slower

than the larger minivan segment’s, represented by Estima Hybrid (26), 3.72%.

It should be noted here that minivans have been successful in Asia and Europe

but have yet to be produced for the U.S. market. It is often pointed out that

minivan’s signature feature of three rows for seven (or eight) passenger capacity

would face a difficulty in the U.S. market without ensuring sufficient cargo and

legroom space (Young 2013). In addition, carmakers claim that minivans wouldn’t

get much fuel economy improvement due to their big and boxy structure. Further-

more, minivan customers want to have not only high fuel efficiency but also long

cruising ranges, which requires the optimal placement of hybrid battery packs to

keep them from using up valuable space. Therefore one may have to keep in mind

that current minivan segment represented by Fit Shuttle Hybrid might be valid in a

specific market that values economic design, hence, not be applicable to the

U.S. market nor for the expected rate of technological advancement.

13.4.6 Pickup Truck Segment: “Steady”

There is actually only one hybrid pickup truck model (under two different brand

names: Chevrolet Silverado and GMC Sierra both from General Motors) and

therefore this segment reflects how much performance of this product line has

advanced throughout the generations. Not surprisingly, the most recent model,

Silverado 15 Hybrid 2WD (142), was found to be a state-of-the-art truck with

annualized performance improvement of 3.72%.

However, the hybrid pickup truck segment requires a cautious view on its future.

The state-of-the-art hybrid truck today has fuel economy of 21 MPG and acceler-

ation of 12.35 km/h/s with MSRP of $41,135. One may find it unclear if this hybrid

truck is more appealing than its solid gasoline version, i.e., Silverado C15 2WD

with 17 MPG, acceleration of 13.70 km/h/s, and $23,590 price tag. Assuming $5 a

gallon gasoline and 20,000 miles per year, the payback period would be over

15 years. Although hybrid technology may be a good choice for other reasons,

current efficiency-cost analysis suggests that the premium upfront cost for hybrid

trucks is not likely offset by fuel savings. This indicates a faster rate of change

through additional innovation may be needed for hybrid pickup trucks to become

more prominent in the future HEV market.

13.5 Conclusion

This study evaluates and compares the technological advancement observed in

different HEV market segments over the past 15 years. The results indicate that

three sub-segments exist in midsize HEVs and middle class represented by Prius

alpha (V) showed the faster technological progress than other two. The
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performance growth as well as diversification of midsize HEVs seems to be posing

a threat to two-seaters and compact segments. The overall rate of the SUV seg-

ment’s technological advancement, from low price plug-in to full-size, was shown

to be the fastest across the all HEV segments. The large HEVs are targeting a luxury

market niche whereas minivans are showing the universal design characteristics in

non U.S. markets. Finally, hybrid pickup trucks showed a steady performance

upgrade however they are competing against their own solid gasoline versions to

prove the utility of hybrid technologies.

In addition, the rate of technological advancement identified in each market

(sub) segment was found to give an insight into the target setting practice for a new

product development planning. Therefore, manufacturers may position their prod-

ucts within the current state-of-the-art frontier and utilize the corresponding rate of

change to see whether their design targets would locate on the estimated future

frontiers.

As a future work, trade-offs between technological characteristics need to be

examined so that various future technological possibilities can be estimated based

on identified rate of changes. Technological forecasting for Battery Electric Vehi-

cles (BEV) using a similar approach could suggest another future work with the

growing interest in pure electric vehicles.

Appendix: 2013 State-of-the-Art Frontiers of Different HEV
Segments
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Chapter 14

A Radial Framework for Estimating
the Efficiency and Returns to Scale
of a Multi-component Production
System in DEA

Jingjing Ding, Chenpeng Feng, and Huaqing Wu

Abstract This chapter provides radial measurements of efficiency for the produc-

tion process possessing multi-components under different production technologies.

Our approach is based on the construction of various empirical production possi-

bility sets. Then we propose a procedure that is unaffected affected by multiple

optima for estimating returns to scale. The theoretical connections between the

traditional black box and the proposed multi-component approach are established,

which ascertains consistency in estimating the efficiency and returns to scale.

Moreover, we introduce two homogeneity conditions, which clarify the difference

between our approach and the existing one, and are important for evaluating

performance in multi-component setting. Finally, an empirical study of the pollu-

tion treatment processes in China is presented, and compared to the results from

black-box approach. Many insightful findings related to the operations of the

pollution treatment processes in China are secured.

Keywords Data envelopment analysis • Efficiency • Returns to scale • Multi-

component • Pollution treatment process

J. Ding (*) • C. Feng

School of Management, Hefei University of Technology, No. 193 Tunxi Road,

Hefei, Anhui Province 230009, P.R. China

e-mail: jingding@hfut.edu.cn; cpfeng@hfut.edu.cn

H. Wu

School of Economics, Hefei University of Technology, No. 193 Tunxi Road,

Hefei, Anhui Province 230009, P.R. China

e-mail: wuhuaqing@hfut.edu.cn

© Springer Science+Business Media New York 2016

S.-N. Hwang et al. (eds.), Handbook of Operations Analytics Using Data
Envelopment Analysis, International Series in Operations Research

& Management Science 239, DOI 10.1007/978-1-4899-7705-2_14

351

mailto:wuhuaqing@hfut.edu.cn
mailto:cpfeng@hfut.edu.cn
mailto:jingding@hfut.edu.cn


14.1 Introduction

We consider the estimation of the efficiency and returns to scale (RTS) for a

production system which can be modeled as having multi-components based on

data envelopment analysis (DEA). There are many production systems bearing this

situation. For example, Beasley (1995) studied the performances of universities,

each of which had two components: research and teaching. Cook et al. (2000)

modeled a banking production system as having two components: service and sales.

We are mainly concerned with radial measurements, and the theoretical connection

with the existing black-box approach.

DEA is a nonparametric technique for measuring the relative efficiencies of a set

of peer decision-making units (DMUs) involving multiple inputs and outputs.

Charnes et al. (1978) first introduced it. In this pioneer paper, the authors

constructed a nonlinear programming model to evaluate the efficiency of activity

conducted by a non-profit organization. The model is known as the CCR model in

the literature. As is known, the CCR model captures both technical and scale

inefficiencies. Banker et al. (1984) proposed a new model (BCC model) which

extended the CCR model by separating technical efficiency and scale efficiency.

Recently, DEA has been extended to many areas in management science and

operational research field.

At the early stage of development, DEA treats a DMU under evaluation as a

black box. Thus, it cannot provide users with specific information concerning the

sources of inefficiency within an organization. Färe and Grosskopf (2000) intro-

duced a network DEA technique, which opened the black box, and explicitly

modeled the internal mechanism of a DMU. Lewis and Sexton (2004) also

published a research paper in this direction. Färe and Grosskopf (2000) and

Lewis and Sexton (2004) proposed radial measurements of efficiency in network

DEA literature. By contrast, Tone and Tsutsui (2009) extended radial measure-

ments in network DEA to non-radial measurements of efficiency by introducing

slack-based network DEA model. Kao and Hwang (2008) and Kao (2009a, b)

proposed models for evaluating DMUs with serial network structure, parallel

network structure and the mixture of the above two structures. DMUs with a

two-stage production process have been extensively studied both from a theoretical

and from a practical perspective. Included among these studies are Liang

et al. (2008) and Chen et al. (2006, 2009a, b, 2010). We refer the reader to review

papers, such as Cook et al. (2010) and Castelli et al. (2010) for more references.

The value of returns to scale (RTS) measures the percentage change in output

from a given percentage change in inputs in economic theory. Unlike main

researches in economic literature, which are concerned about production processes

with a single output, extensions to the situations of multiple outputs are spurred by

Banker et al. (1984). Since then, RTS has been studied extensively. Banker

et al. (2004) published an excellent review on different methods used to handle

RTS. According to the paper, there are two approaches followed in the literature to

study RTS. The first approach is proposed by Färe et al. (1985, 1994) and the other
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one is devised by Banker et al. (1984). In this paper, we follow the first approach,

which has the advantage of being unaffected by the possible existence of multiple

optima.

The existing papers concerning RTS are mainly based on the black-box assump-

tion. However, very few of these papers deal with RTS, when the black-box

assumption is dropped. Research papers with RTS consideration include Chen

et al. (2009a), Tsai and Molinero (2002). Those two papers both follow the

framework proposed by Banker et al. (1984), and could suffer from the existence

of multiple optima.

Our current paper studies a production process with a multi-component

structure. Before moving on, we firstly differentiate two cases of production

processes having a multi-component according to data availability. The first case

has the data on how the shared inputs and shared outputs are split among sub-

decision making units (SDMUs). The second case does not have data on how the

shared inputs/outputs are split among SDMUs. Beasley (1995) and Cook

et al. (2000) investigated models for evaluating performance in the second case,

but did not study the RTS of the productions. In addition, how to extend their

models to treat RTS is not clear. The difficulties are twofold in multi-component

setting: (1) the nonlinearity of the proposed models and (2) the impact of potential

multiple optima on testing RTS by following Banker’s approach. Our work focuses

on production processes with multi-components of (1). In doing so, we avoid the

problem of nonlinearity, to center on investigating RTS.

The contributions of our work mainly lie in three aspects. Firstly, we propose

radial measurements for efficiency evaluation and a procedure to determine the

RTS of a DMU that is unaffected by possible multiple optima. Secondly,

we establish theoretical connection between the black-box approach by

Färe et al. (1985, 1994) and our multi-component approach, which helps to connect

the black-box approach with the network approach, and ensures consistency

between both approaches in dealing with RTS. In addition, two homogeneity

conditions are proposed and are important for evaluating performance in multi-

component setting. They are not pointed out before in the literature. Thirdly, in this

work, we use the proposed method to study the efficiency and RTS of pollution

treatment processes in China based on real data. We model the processes as having

two components, which is different from the traditional approach, and secure

various insightful findings related to the operations of the pollution treatment

processes in China.

The paper unfolds as follows: Section 14.2 proposes a radial evaluation model

under variable returns to scale assumption (14.2.1), and establishes the theoretical

connection of the proposed model to the black-box model (14.2.2). Section 14.3

provides a procedure for determining the RTS of a DMU. Section 14.4 establishes

the theoretical connection of the proposed approach for estimating RTS to Färe

et al. (1985, 1994). In Sect. 14.5, we apply the prospective method to study

the performance of pollution treatment processes in China. Section 14.6 concludes

the paper.
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14.2 Radial Performance Measurement
for a Multi-component System

A production unit (denoted as a DMU) with multi-component structure studied in

this paper is depicted in Fig. 14.1. The DMU consists of two sub-decision-making

units (SDMUs) without loss of generality. It is assumed that some inputs of DMU

are shared by SDMU1 and SDMU2, and some outputs are the results of SDMU1 and

SDMU2. In addition to shared inputs and outputs, there are inputs and outputs of the

DMU dedicated to, or are the results of, SDMU1 or SDMU2 exclusively. We

assume to deal with n DMUs in this paper. In the sequel, when referring to a

specific DMU, we denote it by a subscript j, that is, DMUj, SDMU1j, and SDMU2j

( j¼ 1,. . .,n).

The variables in Fig. 14.1 are defined as follows: X1 ¼ x11; . . . ; x
1
m

� �
indicates

m inputs dedicated to SDMU1; X2 ¼ x21; . . . ; x
2
h

� �
indicates h inputs dedicated to

SDMU2; Xs ¼ xs1; . . . ; x
s
l

� �
indicates l inputs shared by SDMU1 and SDMU2; Y1 ¼

y11; . . . ; y
1
s

� �
indicates s outputs produced exclusively by SDMU1; Y2 ¼ y21; . . . ; y

2
q

� �
indicates q outputs produced exclusively by SDMU2; Ys ¼ ys1; . . . ; y

s
u

� �
indicates

u outputs produced together by SDMU1 and SDMU2. When referring to the specific

data of DMUj, we shall use a secondary index j. For instance, them inputs dedicated to

SDMU1j, the SDMU1 of DMUj, are denoted as X1j ¼ x11j; . . . ; x
1
mj

� �
.

We differentiate two cases of production processes with multi-component struc-

ture according to data availability. In the first case, the data on how the shared

inputs and shared outputs are split between SDMU1 and SDMU2 are available. In

this case, we useXs1 ¼ xs11 ; . . . ; x
s1
l

� �
,Xs2 ¼ xs21 ; . . . ; x

s2
l

� �
, andYs1 ¼ ys11 ; . . . ; y

s1
u

� �
,

Ys2 ¼ ys21 ; . . . ; y
s2
u

� �
to denote the observational data fulfilling Xs ¼ Xs1 þ Xs2 and

Ys ¼ Ys1 þ Ys2. Note that these are component wise additions indicating Xs(i)¼
Xs1(i) +Xs2(i), i,. . .,l, and Ys( j)¼ Ys1( j) + Ys2( j), j¼ 1,. . .,u. In the second case, it is
not known how the shared inputs/outputs are split. We deal with the former case in
this paper.

To be specific, we take pollution treatment processes in China as an example.

If we are going to investigate the performances of pollution treatment processes in

all provinces, provinces are naturally modeled as DMUs. When the black box of a

Fig. 14.1 Structure of

multi-component system
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DMU is opened, it can be found that cities can be further classified into two

SDMUs: capital city and non-capital cities. The capital city is the political,

economic and cultural center of a province. Thus, the environment beyond the

control of the management of the pollution treatment process in capital city and

non-capital cities is arguably different. This makes sense: For example, a capital

city often consumes more inputs such as capital inputs: pollution treatment

facilities. As will be shown in this paper, the average capital city consumes

approximately more than one fifth of the total inputs, but produces less than one

fifth of the total outputs. In this case, we might reasonably claim that the capital city

consumes more inputs as compared with noncapital cities.

14.2.1 Basic Model

Let us begin with the construction of production possibility set (PPS) of each

SDMU. Based on the PPS of SDMUs, the PPS of a DMU is derived. We assume

first variable returns of scale for all SDMUs. Note that the PPS considered is similar

to that in Tsai and Molinero (2002).

The PPS of SDMU1:

TVRS
1 ¼ X1; Y1

� �
Xn
j¼1

λ1j x
1
ij � x1i , i ¼ 1, . . . ,m,

Xn
j¼1

λ1j y
1
rj � y1r , r ¼ 1, . . . , s

Xn
j¼1

λ1j x
s1
ij � xs1i , i ¼ 1, . . . , l,

Xn
j¼1

λ1j y
s1
rj � ys1r , r ¼ 1, . . . , u

Xn
j¼1

λ1j ¼ 1, λ1j � 0

���������������

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð14:1Þ

where X1; Y1
� � ¼ x11; . . . ; x

1
m; x

s1
1 ; . . . ; x

s1
l ; y

1
1; . . . ; y

1
s ; y

s1
1 ; . . . ; y

s1
u

� �
.

The PPS of SDMU2:

TVRS
2 ¼ X2; Y2

� �
Xn
j¼1

λ2j x
2
ij � x2i , i ¼ 1, . . . , h,

Xn
j¼1

λ2j y
2
rj � y2r , r ¼ 1, . . . , q

Xn
j¼1

λ2j x
s2
ij � xs2i , i ¼ 1, . . . , l,

Xn
j¼1

λ2j y
s2
rj � ys2r , r ¼ 1, . . . , u

Xn
j¼1

λ2j ¼ 1, λ2j � 0

���������������

8>>>>>>>>><>>>>>>>>>:

9>>>>>>>>>=>>>>>>>>>;
ð14:2Þ

where X2; Y2
� � ¼ x21; . . . ; x

2
h; x

s2
1 ; . . . ; x

s2
l ; y

2
1; . . . ; y

2
q; y

s2
1 ; . . . ; y

s2
u

� �
.
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The PPS of DMU:

TVRS¼ X;Yð Þ

Xn
j¼1

λ1j x
1
ij� x1i , i¼ 1, . . . ,m,

Xn
j¼1

λ1j x
s1
ij þ

Xn
j¼1

λ2j x
s2
ij � xsi , i¼ 1, . . . , l

Xn
j¼1

λ2j x
2
ij� x2i , i¼ 1, . . . ,h,

Xn
j¼1

λ1j y
1
rj� y1r ,r¼ 1 . . .s

Xn
j¼1

λ1j y
s1
rj þ

Xn
j¼1

λ2j y
s2
rj � ysr ,r¼ 1, . . . ,u,

Xn
j¼1

λ2j y
2
rj� y2r ,r¼ 1, . . . ,q

Xn
j¼1

λ1j ¼ 1,
Xn
j¼1

λ2j ¼ 1,λ1j ,λ
2
j � 0

����������������������

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;
ð14:3Þ

where X; Yð Þ ¼ x11; . . . ; x
1
m; x

s
1; . . . ; x

s
l ; x

2
1; . . . ; x

2
h; y

1
1; . . . ; y

1
s ; y

s
1; . . . ; y

s
u; y

2
1; . . . ; y

2
q

� �
.

It should be noted that the PPS of DMU is the addition of the PPS’s of SDMU1

and SDMU2. We assume that if SDMU1 (X1, Y1) and SDMU2 (X2, Y2) are

possible, then one can set up a DMU consisting of a SDMU1 and a SDMU2. Most

importantly, the two SDMUs do not interfere with each other and carry out (X1, Y1)
and (X2, Y2) independently. The result is then that DMU built in this way consumes

(X1+X2), and produces (Y1+ Y2).
The performance of a DMU can be measured under two different situations: first,

price information is given, and second, prices are not available. In the latter

situation, Shephard’s input distance function is a frequently used measurement

(Shephard’s 1970). Suppose L(Y ) is the input requirement set derived from TVRS.
Shephard’s input distance function is given below.

D X; Yð Þ ¼ max λ : X=λ 2 L Yð Þ, λ 2 Rf g ð14:4Þ

Clearly,D(X, Y) is greater than or equal to 1, ifX 2 L Yð Þ, with D(X,Y)¼ 1, if and

only if it is impossible to improve input vector X proportionately without worsening

the output vector. Let θ ¼ 1=λ. It follows that

D X; Yð Þ½ ��1 ¼ min θ : θX 2 L Yð Þf g ð14:5Þ

According to (14.3) and (14.5), the performance of DMU0 with multi-

components can be estimated by the following linear programming model.
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θ*T ¼ min θ

s:t:
X2
k¼1

Xn
j¼1

λ kj x
sk
ij � θxsio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ1j x
1
ij � θx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ2j x
2
ij � θx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ kj y
sk
rj � ysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ1j y
1
rj � y1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ2j y
2
rj � y2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ kj ¼ 1 k ¼ 1, 2

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:6Þ

where the decision variables are λ kj j ¼ 1, . . . , n; k ¼ 1, 2ð Þ and θ. It should be

noted that xkij, x
sk
ij , y

k
rj and yskrj are observational data that correspond to the types of

inputs and outputs labeled in (14.6).

14.2.2 Theoretical Connection with Black-Box Approach

In this section, we formally derive the black-box equivalent PPS that corresponds to

TVRS, which can give an insight into model (14.6). Before moving on, we assume

that the structure depicted in Fig. 14.1 consumes all inputs shared by SDMU1 and

SDMU2, and all the outputs of DMU are the results of SDMU1 and SDMU2. We

adopt the convention that DMU consumes m inputs Xj ¼ x1j; . . . ; xmj
� �

and pro-

duces s outputsYj ¼ y1j; . . . ; ysj

� �
. Thus, based on the notations provided above for

DMUs with multi-component structure, the assumption here implies that Xsk
j ¼

xsk1j ; . . . ; x
sk
mj

� �
and Ysk

j ¼ ysk1j ; . . . ; y
sk
sj

� �
with Xs1

j þ Xs2
j ¼ Xs

j ¼ Xj, and

Ys1
j þ Ys2

j ¼ Y s
j ¼ Yj. Later in the paper, the s in the superscript is deleted for
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simplicity. In cases where inputs or outputs are not entirely shared by SDMU1 and

SDMU2 (See Fig. 14.1), the values of those inputs/outputs dedicated to SDMU1

(SDMU2) are zeros for SDMU2 (SDMU1). Therefore, the structure of the DMU in

Fig. 14.1 reduces to structure provided in Fig. 14.2.

In light of the structure depicted in Fig. 14.2, TVRS1 , TVRS2 and TVRS in the previous
section are rewritten as follows:

TVRS
1 ¼ X1; Y1

� ���Xn
j¼1

λ1j x
1
ij � x1i , i ¼ 1, . . . ,m,

(
Xn
j¼1

λ1j y
1
rj � y1r , r ¼ 1, . . . , s,

Xn
j¼1

λ1j ¼ 1, λ1j � 0

) ð14:7Þ

where X1; Y1
� � ¼ x11; . . . ; x

1
m; y

1
1; . . . ; y

1
s

� �
.

TVRS
2 ¼ X2; Y2

� ���Xn
j¼1

λ2j x
2
ij � x2i , i ¼ 1, . . . ,m,

(
Xn
j¼1

λ2j y
2
rj � y2r , r ¼ 1, . . . , s,

Xn
j¼1

λ2j ¼ 1, λ2j � 0

) ð14:8Þ

where X2; Y2
� � ¼ x21; . . . ; x

2
m; y

2
1; . . . ; y

2
s

� �
.

TVRS ¼ X; Yð Þ

X2
k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr, r ¼ 1, . . . , s

Xn
j¼1

λ kj ¼ 1, λ kj � 0, k ¼ 1, 2

����������

8>>>><>>>>:

9>>>>=>>>>;
ð14:9Þ

where X; Yð Þ ¼ x1; . . . ; xm; y1; . . . ; ysð Þ.

Fig. 14.2 Structure of

DMU with all shared inputs

and outputs
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We proceed to give a result on the convexity of TVRS that is necessary for the

exposition of this paper.

Property 1 TVRS is convex set.

Proof Suppose (X1,Y1) and (X2, Y2) belong to TVRS. By definition, there are sets of

nonnegative multipliers λk1 �j , λk2 �j with
Xn
j¼1

λk1*j ¼ 1 and
Xn
j¼1

λk2*j ¼ 1 such that

X2
k¼1

Xn
j¼1

λk1*j ykrj � y1r , r ¼ 1, . . . , s,
X2
k¼1

Xn
j¼1

λk1*j x kij � x1i , i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λk2*j ykrj � y2r , r ¼ 1, . . . , s,
X2
k¼1

Xn
j¼1

λk2*j x kij � x2i , i ¼ 1, . . . ,m:

For any convex pair α, β, we have
X2
k¼1

Xn
j¼1

�
αλk1*j þ βλk2*j

�
ykrj � αy1r

þβy2r , r ¼ 1, . . . , s;
X2
k¼1

Xn
j¼1

�
αλk1*j þ βλk2*j

�
xkij � αx1i þ βx2i , i ¼ 1, . . . ,m; and

Xn
j¼1

�
αλk1*j þ βλk2*j

� ¼ 1. This ensures that α X1; Y1ð Þ þ β X2; Y2ð Þ ¼

αX1 þ βX2, αY1 þ βY2ð Þ 2 TVRS. □

Assumption 1 Assume there are n DMUs, each of which consists of two produc-

tion units SDMU1j, SDMU2j, j¼ 1,. . .,n using the production technology charac-

terized by TVRS1 and TVRS2 respectively. Let there be an extended data set (EDS) of n2

distinct DMUs, each of which comprises SDMU1j and SDMU2k with

j, k 2 1; . . . ; nf g.
Let (xij, yrj) denote the input and output bundle of DMUj in EDS. Define TVRSb ,

TCRSb , and TNIRSb as below, where the superscripts CRS and NIRS, respectively, stand

for constant returns to scale and non-increasing returns to scale:

TVRS
b ¼ X;Yð Þ��Xn2

j¼1
λjxij� xi, i¼ 1, . . . ,m,

Xn2
k¼1

λjyrj� yr,r¼ 1, . . . ,s,
Xn2
j¼1

λj¼ 1,λj� 0

( )

TCRS
b ¼ X;Yð Þ��Xn2

j¼1
λjxij� xi, i¼ 1, . . . ,m,

Xn2
k¼1

λjyrj� yr,r¼ 1, . . . ,s,λj� 0

( )

14 A Radial Framework for Estimating the Efficiency and Returns to Scale. . . 359



T NIRS
b ¼ X; Yð Þ��Xn2

j¼1
λjxij � xi, i ¼ 1, . . . ,m,

Xn2
k¼1

λjyrj � yr, r ¼ 1, . . . , s,

(
Xn2
j¼1

λj � 1, λj � 0

)

where X; Yð Þ ¼ x1; . . . ; xm; y1; . . . ; ysð Þ.
We now establish that the PPS of the general multi-component system with two

different SDMUs can be recovered by DMUs in EDS through the black-box

approach. The connections between the multi-component PPS’s and the above

mentioned black-box PPS’s are summarized in Theorem 1.

Theorem 1 TVRS
b ¼ TVRS, TCRS

b ¼ TCRS, and T NIRS
b ¼ TNIRS, where

TCRS ¼ X; Yð Þ

X2
k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr, r ¼ 1, . . . , s

Xn
j¼1

λ1j ¼
Xn
j¼1

λ2j , λ
k
j � 0, k ¼ 1, 2

�����������

8>>>>><>>>>>:

9>>>>>=>>>>>;
and

TNIRS ¼ X; Yð Þ

X2
k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr, r ¼ 1, . . . , s

Xn
j¼1

λ1j ¼
Xn
j¼1

λ2j � 1, λ kj � 0, k ¼ 1, 2

�����������

8>>>>><>>>>>:

9>>>>>=>>>>>;

Proof See Appendix. □

Let us close this section by pointing out the difference between TCRS and T
CRS

,

which is defined by

T
CRS ¼ X;Yð Þ��X2

k¼1

Xn
j¼1

λ kj x
k
ij � xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj � yr , r ¼ 1, . . . , s,

(
λ kj � 0, k ¼ 1, 2g.

Researchers in the literature tend to define T
CRS

as the CRS PPS for the

production system in Fig. 14.1. Tsai and Molinero (2002) is a case in point.

Obviously, the production frontier determined by TCRS is dominated by the one

defined by T
CRS

. In Fig. 14.3, we use a set of two DMUs with one input and one

output for illustration.
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Here, DMU1 and DMU2 comprise of (SDMU11, SDMU21) and (SDMU12,

SDMU22) respectively. DMUA and DMUB are generated by combining respec-

tively SDMU11 and SDMU22, SDMU21 and SDMU22. In light of Theorem 1, TCRS is
the conic hull constructed by DMU1, DMU2, DMUA and DMUB. This is the

region to the right of frontier F2. PPS provided by T
CRS

is the region to the right

of frontier F1.

Figure 14.3 shows that the production frontier ofT
CRS

is determined by SDMU11.

Apparently, the production process of SDMU is arguably different from that of

DMU. Therefore, the use of SDMU as a benchmarking point for DMU is not

appropriate. To highlight the difference between SDMU and DMU, criteria for

homogeneity are essential. The homogeneity in this context refers to the character-

istic of the efficient frontier that a benchmarking point on the frontier constructed

for evaluating the performance of a DMU should be comparable to the DMU in

terms of the internal production process. Two homogeneity conditions for the

construction of a virtual DMU, i.e., weak condition and strong condition, are

introduced below:

(1) Weak homogeneity condition: t1 ¼ 0 if and only if t2 ¼ 0.

(2) Strong homogeneity condition: t1 ¼ t2.

Fig. 14.3 Graphical illustration of TCRS and T
CRS
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Clearly, if a virtual DMU built by SDMU1 and SDMU2 satisfies the strong

homogeneity condition, the weak homogeneity condition is automatically satisfied.

However, the opposite is not true. Comparing the definition of TCRS with that of

T
CRS

, the difference is the distinct requirements of the sum of the levels of ele-

mentary activities involved (i.e., t1 ¼
X n

j¼1 λ
1
j , t2 ¼

Xn

j¼1 λ
2
j ). Specifically, T

CRS

requires t1 ¼ t2, while T
CRS

does not. T
CRS

is claimed to violate the strong

homogeneity condition.

This small example shows that SDMU11 is chosen as a benchmarking point, as

can be seen from Fig. 14.3 where F1 is completely specified by SDMU11. If we do

not set conditions for choosing a benchmarking point, the frontier is arguably too

ideal. The main consequence is the potential under estimation of the efficiency of a

DMU, since an improper benchmarking point is chosen. This specification of

conditions is comparable to the modeling consideration in the evaluation consider-

ing environment constraints. One might expect that the performance of a DMU be

evaluated by comparing it to the DMUs possessing similar environment character-

istics (See, for example, Ruggiero (1998)).

14.3 Procedure for Estimating the Returns to Scale

In economic theory, the value of RTS measures the percentage change in output

from a given percentage change in inputs. Let y ¼ f xð Þdenote a production function
for a single-output technology. The production function is said to have IRS if

f axð Þ > af xð Þ, for any a > 1. The production function exhibits DRS if

f axð Þ > af xð Þ, for any a 2 �0, 1�. If f axð Þ ¼ af xð Þ for all scalars a � 0, the

production function exhibits CRS. Banker et al. (1984), who introduced the concept

of Most Productive Scale Size (MPSS) into the DEA literature, spurred extensions

to the situations of multiple inputs and outputs. For a technically efficient DMU0

with input and output bundle (X0,Y0) to be MPSS, the following optimization model

should achieve a value of one. Note that the subscript 0 is usually used to indicate

the DMU under evaluation in the literature. In the sequel, we shall frequently refer

to DMU0 when a specific DMU is discussed.

max
β

α
s:t: αX0, βY0ð Þ 2 T

α, β � 0:

ð14:10Þ

where T is the empirical production possibility set. If the optimal value is larger

than 1, it means that either the current input level can be reduced with a less

percentage of losses in outputs, or it can be increased with a larger percentage of

gains in outputs. Therefore, DMU0 can benefit from the adjustment of input levels.
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By analogy, the following model is proposed for testing whether DMU0 with multi-

component structure is MPSS, where T in (14.10) is substituted by TVRS.

max
ϕ

θ

s:t:
X2
k¼1

Xn
j¼1

λ kj x
sk
ij þ ss� ¼ θxsio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ1j x
1
ij þ s1�i ¼ θx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ2j x
2
ij þ s2�i ¼ θx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ kj y
sk
rj � ssþr ¼ ϕysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ1j y
1
rj � s1þr ¼ ϕy1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ2j y
2
rj � s2þr ¼ ϕy2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ kj ¼ 1 k ¼ 1, 2,

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:11Þ

Cooper et al. (1996) proposed an approach to transform the above non-linear

model to an equivalent linear model. Firstly, let us divide both sides of the constraints

by ϕ. The resulting model is given in (14.12). Secondly, by letting θ=ϕ ¼ t,

ssþr =ϕ ¼ ssþr , s1þr =ϕ ¼ s1þr , s2þr =ϕ ¼ s2þr , ss�i =ϕ ¼ ss�i , s1�i =ϕ ¼ s1�i , s2�i =ϕ ¼ s2�i
and λ kj =ϕ ¼ λ

k

j , we can obtain model (14.13). Since ϕ in (14.13) is a free variable, it

is safe to delete it. Finally, model (14.13) can be further reduced to an equivalent

model (14.14). Note that we call two optimization problems equivalent if from a

solution of one, a solution of the other is readily found, and vice versa.
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max
ϕ

θ

s:t:
X2
k¼1

Xn
j¼1

λ kj
ϕ
xskij þ

ss�i
ϕ
¼ θ

ϕ
xsio i¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ1j
ϕ
x1ijþ

s1�i
ϕ
¼ θ

ϕ
x1io i¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ2j
ϕ
x2ijþ

s2�i
ϕ
¼ θ

ϕ
x2io i¼ 1, . . . ,h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ kj
ϕ
yskrj �

ssþr
ϕ
¼ ysro r¼ 1, . . . ,u shared outputsð Þ

Xn
j¼1

λ1j
ϕ
y1rj�

s1þr
ϕ
¼ y1ro r¼ 1, . . . ,s outputs produced bySDMU1ð Þ

Xn
j¼1

λ2j
ϕ
y2rj�

s2þr
ϕ
¼ y2ro r¼ 1, . . . ,q outputs produced bySDMU2ð Þ

Xn
j¼1

λ kj
ϕ
¼ 1

ϕ
k¼ 1,2

λ kj ,ϕ� 0,k¼ 1,2, j¼ 1, . . . ,n:

ð14:12Þ

max
1

t

s:t:
X2
k¼1

Xn
j¼1

λ
k

j x
sk
ij þ ss�i ¼ tx sio i¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ
1

j x
1
ijþ s1�i ¼ tx1io i¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ
2

j x
2
ijþ s2�i ¼ tx2io i¼ 1, . . . ,h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ
k

j y
sk
rj � ssþr ¼ ysro r¼ 1, . . . ,u shared outputsð Þ

Xn
j¼1

λ
1

j y
1
rj� s1þr ¼ y1ro r¼ 1, . . . ,s outputs produced bySDMU1ð Þ

Xn
j¼1

λ
2

j y
2
rj� s2þr ¼ y2ro r¼ 1, . . . ,q outputs produced bySDMU2ð Þ

Xn
j¼1

λ
1

j ¼
Xn
j¼1

λ
2

j ¼
1

ϕ

λ kj � 0,k¼ 1,2, j¼ 1, . . . ,n:

ð14:13Þ
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t* ¼ min t

s:t:
X2
k¼1

Xn
j¼1

λ
k

j x
sk
ij þ ss�i ¼ tx sio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ
1

j x
1
ij þ s1�i ¼ tx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ
2

j x
2
ij þ s2�i ¼ tx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ
k

j y
sk
rj � ssþr ¼ ysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ
1

j y
1
rj � s1þr ¼ y1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ
2

j y
2
rj � s2þr ¼ y2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ
1

j ¼
Xn
j¼1

λ
2

j

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:14Þ

Assume that t*, λ
k*

j are the optimal solution to model (14.14). It follows that

ϕ* ¼ 1=
Xn

j¼1 λ
2*
j and θ* ¼ t*ϕ* ¼ t*=

Xn

j¼1 λ
1*

j ¼ t*=
Xn

j¼1 λ
2*

j . Apparently,

Proposition 1 holds.

Proposition 1 If t* ¼ 1, then DMU is MPSS, and constant returns to scale prevails
at DMU; Otherwise, the unit is not MPSS.

RTS generally has an unambiguous meaning only if DMU0 is on the efficiency

frontier. For any inefficient DMU0 to become efficient, based on the optimal

solutions of model (14.6), it can be projected onto the efficient frontier by formulas

as follows:

(1) ysro ¼ ysro þ sþs*r , y1ro ¼ y1ro þ sþ1*r , y2ro ¼ y2ro þ sþ2*r .

(2) xsio ¼ t*x sio � s�s*i , x1io ¼ t*x1io � s�1*i , x2io ¼ t*x2io � s�2*i .

For those who are interested in the projection operation and the concept of

efficient frontier, we recommend Cooper et al. (2004). A full treatment of the topics

is beyond the scope of this paper. Before proceeding to discuss how to determine

RTS of a DMU, we now introduce the scale efficiency of a production unit in

Definition 1.
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Definition 1 Scale efficiency: θ*S ¼ t*=θ*T .

Scale efficiency reflects the RTS characteristic of DMU0. It should be noted that

if DMU0 is not an efficient unit, the scale efficiency actually reflects the RTS

characteristic of the corresponding projection on the efficient frontier by formulas

(14.1) and (14.2). Let us denote it as DMU�o for the convenience of reference.
Obviously, it can be seen that θ*S � 1, since the feasible set of model (14.6) is a

subset of the feasible set of model (14.14). If θ*S ¼ 1, DMU�o should achieve an

efficiency rating of 1 by model (14.14). If not, it contradicts that θ*S ¼ 1, i.e.,

t* ¼ θ*T . Therefore, by Proposition 1, DMU�0 is MPSS. In other words, DMU0

exhibits or is projected onto a region of the efficient frontier exhibits constant

returns to scale.

If θ*S < 1, or equivalently, the optimal objective function (ϕ/θ) of model (14.11)

is larger than 1, the current input–output data of DMU�0 can be improved in

productivity by adjusting the scale of it. This is because the percentage by which

the outputs gain equiproportionate increase due to the adjustment of the scale will

outweigh the percentage by which the inputs increase equiproportionate, or the

input equiproportionate reduction will outweigh the output equiproportionate

reduction. To sum up, if θ*S < 1, DMU0 is currently not located in CRS region of

the frontier or not projected onto a region of the frontier that exhibits CRS.

Below we provide Proposition 2 to shed light on how to determine whether IRS

or DRS prevail at DMU0 with the aid of model (14.15).

Proposition 2. (Conditions for the Determination of RTS (Multi-component))

(1) If θ*S ¼ 1, then DMU0 exhibits or is projected onto a region of the efficient
frontier exhibits constant returns to scale.

(2) If θ*S < 1 and the optimal values of models (14.14) and (14.15) below coincide,
then DMU0 exhibits or is projected onto a region of the efficient frontier that
exhibits increasing returns to scale.

(3) If θ*S < 1 and the optimal values of models (14.6) and (14.15) below coincide,
DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits
decreasing returns to scale.

A short proof of the proposition is in order. We consider the condition (2):

θ*S < 1 and the optimal values of models (14.14) and (14.15) coincide. The

condition (3) can be established similarly.

Let λ
1*

j and λ
2*

j be the optimal solutions of models (14.14) and (14.15). It is clear

that
Xn

j¼1 λ
1*

j ¼
X n

j¼1 λ
2*

j < 1. DMU�0 can make improvement through output

augmentation since ϕ* ¼ 1=
Xn

j¼1 λ
1*

j > 1. As DMU�0 is technically efficient, the

only way that it can increase the output level is by increasing the level of inputs. As

the percentage by which the outputs increase outweighs the percentage by which

the inputs increase, DMU0 is currently located in the region that shows increasing

returns to scale.
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We have to show now it is impossible to lower its output level, and at the same

time improve the productivity, i.e., achieve MPSS, since we have not checked if

model (14.15) can achieve an value less than that of model (14.6) (i.e., θ�T) ifXn

j¼1 λ
1
j ¼

Xn

j¼1 λ
2
j � 1 is replaced by

Xn

j¼1 λ
1
j ¼

Xn

j¼1 λ
2
j � 1. It should be

noted that an optimal value less than θ�T in this context indicates DMU�0 can gain

benefits by lowering its input level. If this were true, the RTS of DMU�0 will have an
ambiguous meaning, since it can gain positive change in productivity by either

lowering or augmenting its input level.

We claim impossibility by contradiction. Suppose λ
1*

1j , λ
2*

1j , t
�
1 and λ

1*

2j , λ
2*

2j , t
�
2 are the

respective optimal solutions of model (14.15) and the model similar to model (14.15)

except that
Xn

j¼1 λ
1*
1j ¼

Xn

j¼1 λ
2*
1j < 1 is replaced by

Xn

j¼1 λ
1*
2j ¼

X n

j¼1 λ
2*
2j > 1. In

addition, t*1 ¼ t* � t*2 < θ*T (i.e., θ
*
S < 1). Thus, there exists a convex combination of

the two solutions with t* ¼ at*1 þ 1� að Þt*2 < θ*T , and
Xn

j¼1 aλ1*1j þ 1� að Þλ1*2j
� �

¼Xn

j¼1 aλ2*1j þ 1� að Þλ2*2j
� �

¼ 1, which contradicts the premise that θ�T is the optimal

value of model (14.6). Thus, impossibility holds and condition (2) has an unambigu-

ous meaning.

t*nirs ¼ min t

s:t:
X2
k¼1

Xn
j¼1

λ
k

j x
sk
ij þ ss�i ¼ tx sio i ¼ 1, . . . , l shared inputsð Þ

Xn
j¼1

λ
1

j x
1
ij þ s1�i ¼ tx1io i ¼ 1, . . . ,m inputs dedicated to SDMU1ð Þ

Xn
j¼1

λ
2

j x
2
ij þ s2�i ¼ tx2io i ¼ 1, . . . , h inputs dedicated to SDMU2ð Þ

X2
k¼1

Xn
j¼1

λ
k

j y
sk
rj � ssþr ¼ ysro r ¼ 1, . . . , u shared outputsð Þ

Xn
j¼1

λ
1

j y
1
rj � s1þr ¼ y1ro r ¼ 1, . . . , s outputs produced by SDMU1ð Þ

Xn
j¼1

λ
2

j y
2
rj � s2þr ¼ y2ro r ¼ 1, . . . , q outputs produced by SDMU2ð Þ

Xn
j¼1

λ
1

j ¼
Xn
j¼1

λ
2

j � 1

λ kj � 0, k ¼ 1, 2, j ¼ 1, . . . , n:

ð14:15Þ
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14.4 Theoretical Connection Between Black Box Approach
and Multi-component Approach

In this section, we establish the equivalence between the method proposed in the

previous section and the traditional black approach provided by Färe et al. (1985,

1994). This further ensures consistency in transition from black box to multi-

component setting.

The efficiency measurements based on CRS, VRS, and NIRS respectively are

provided as follows:

1. Efficiency index based on CRS;

θcrsb ¼ min θ

s:t:
Xn2
j¼1

λjyrj � yro r ¼ 1, . . . , s:

Xn2
j¼1

λjxij � θxio i ¼ 1, . . . ,m:

λj � 0, j ¼ 1, . . . , n2:

ð14:16Þ

2. Efficiency index based on VRS;

θvrsb ¼ min θ

s:t:
Xn2
j¼1

λjyrj � yro r ¼ 1, . . . , s:

Xn2
j¼1

λjxij � θxio i ¼ 1, . . . ,m:

Xn2
j¼1

λj ¼ 1

λj � 0, j ¼ 1, . . . , n2:

ð14:17Þ

3. Efficiency index based on NIRS;

θ nirs
b ¼ min θ

s:t:
Xn2
j¼1

λjyrj � yro r ¼ 1, . . . , s:

Xn2
j¼1

λjxij � θxio i ¼ 1, . . . ,m:

Xn2
j¼1

λj � 1

λj � 0, j ¼ 1, . . . , n2:

ð14:18Þ
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Färe et al. (1985, 1994) provided the following proposition for determining RTS.

Proposition 3 (Conditions for Determination of RTS (Black Box))

(1) DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits

constant returns to scale, if θcrsb ¼ θvrsb ¼ θ nirs
b .

(2) DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits

increasing returns to scale, if θcrsb ¼ θ nirs
b < θvrsb .

(3) DMU0 exhibits or is projected onto a region of the efficient frontier that exhibits

decreasing returns to scale, if θcrsb < θ nirs
b ¼ θvrsb .

Formally, the following theorem holds.

Theorem 2 Proposition 2 is equivalent to Proposition 3.

Proof In light of Theorem 1, we can derive that θvrsb ¼ θ*T ; θ
crs
b ¼ t* and θcrsb ¼ t*nirs,

since the corresponding PPS’s are equal. Since θ*s ¼ 1 indicates t* ¼ θ*T ¼ t*nirs, it
follows that the first condition of Proposition 3 is equivalent to the first condition of

Proposition 2. By the same reasoning, condition 2 of the propositions is equivalent

as well as their conditions 3. Thus, Proposition 3 is equivalent to Proposition 2. □

14.5 Application

In this section, data extracted from Environmental Statistics 2009 are used for

illustration. We analyze the performances (efficiency and RTS) of the pollution

treatment processes for waste water and waste air in China. Provinces are deemed

as DMUs, each of which consists of two SDMUs, namely, capital city and

non-capital cities. The pollution treatment process is depicted in Fig. 14.4.

Fig. 14.4 Treatment process for wastewater and gas
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The inputs involved in this application are three indicators: (1) number of

facilities for treatment of wastewater in set (X1); (2) number of facilities for

treatment of waste gas in set (X2); (3) annual expenditures in 10,000 Yuan (X3).

The outputs include (1) the industrial wastewater meeting discharge standards in

10,000 t (Y1), (2) industrial sulphur dioxide removed in 10,000 t (Y2), (3) industrial
soot removed in 10,000 t (Y3), and (4) industrial dust removed in 10,000 t (Y4).

The inputs (X1,X2,X3) are shared by capital city (SDMU1) and non-capital cities

(SDMU2), and the outputs are the results of SDMU1 and SDMU2 fulfilling

Xi ¼
X2

k¼1 xik and Yr ¼
X2

k¼1 yrk.
Table 14.1 provides the input/output data by DMU (province), and Table 14.2

provides data on inputs/outputs by SDMU1 (capital city). Table 14.3 presents the

descriptive statistics of the data on inputs/outputs. In light of Table 14.3, capital city

consumes relative more inputs and produces comparatively less outputs. An aver-

age capital city consumes inputs 19%, 21% and 26% of the means of X1, X2 and X3

respectively. However, the amounts produced account for 20%, 17%, 17% and

14% respectively of the means of Y1, Y2, Y3 and Y4 by an average capital city. Thus,
roughly speaking, the average capital city consumes approximately more than one

fifth of the total inputs, but produces less than one fifth of the total outputs. In this

case, we might reasonably claim that the capital city consumes more inputs as

compared with the noncapital cities. In the sequel, we will present the computa-

tional results associated with efficiency and returns to scale.

14.5.1 Efficiency

The efficiencies of DMUs by using the black-box approach and the proposed multi-

component approach are presented in Table 14.4. From the black-box approach, the

results of θ
crs

o (CCR model), θ
nirs

o and θ
vrs

o (BCC model) are reported in columns 2–4.

Column 5 presents results by Kao’s parallel model which, in fact, are based on the

T
CRS

(see Kao (2009b)). Using the multi-component approach the results of

t*, θ�nirs, θ
�
T by models (14.14), (14.15) and (14.6) are presented in columns 6–8.

Now we focus on the results of θ
vrs

o and θ�T , both of which are based on the VRS

assumption. Note that θ
vrs

o is the result of the black-box approach without consid-

ering the internal mechanism of a DMU, and θ�T is the result of multi-component

approach. The difference between the two efficiency indexes can be attributed to

the level of information requirements. Obviously, if more information is available,

we are able to refine the results from the black-box approach. Overall, notice from

Table 14.4 that the mean of θ�T is approximately 87.6% of the mean of θ
vrs

o , with a

standard deviation of 0.103. Their distributions are provided in Fig. 14.5. The

distribution of θ�T is more bell-shaped, while the distribution of θ
vrs

o is obviously

skewed to the left.
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Furthermore, according to Fig. 14.5, 15 provinces are classified as efficient by

the BCC. It can be seen the discrimination power of BCC model in this application

is too weak. By contrast, 12 of them are degraded in efficiencies by the multi-

component approach. They are Hebei, Liaoning, Zhejiang, Jiangxi, Shandong,

Henan, Guangdong, Guangxi, Tibet, Gansu, Qinghai, and Ningxia. Seven of them

are given efficiency scores lower than 0.9.

Finally, we point out that the efficiency scores based on TCRS are almost the same

as those based onT
CRS

. Though the differences of θ�Kao and t* are negligible, we can
find that the efficiencies of some DMUs such as Zhejiang and Hunan are adjusted

slightly.

14.5.2 Returns to Scale

The RTS of provinces can be determined by Proposition 3 (black box), and

Proposition 2 (multi-component). The results are presented in Table 14.5.

Table 14.5 shows that approximately half of the provinces which are classified

by the black-box approach as CRS and IRS are reclassified as DRS or CRS by the

multi-component approach. Those classified as DRS by the black-box approach

remain the same by the both approaches. We concentrate here on the results of the

multi-component approach. In summary, six provinces show IRS, five provinces

show CRS and the rest show DRS. Among those that show CRS, Inner Mongolia

and Jilin have the MPSS because the optimal value in Model (14.10) that corre-

sponds to t* in Table 14.4 equals one. We proceed to rearrange the results by the

multi-component approach according to the administrative regions of China. The

results are provided in Table 14.6.

From Table 14.6, the developed provinces are more likely to show DRS. In

particular, East China shows DRS entirely. Another obvious finding is that the

provinces that show IRS are mainly located in the west of China, which is less

developed area of China.

Table 14.3 Descriptive statistics on input and output variables

Variables

Mean

(province)

Std. dev.

(province)

Mean

(capital

city)

Std. dev.

(capital

city)

Mean

(non-capital

city)

Std. dev.

(non-capital

city)

X1 (set) 2539.5 2368.8 483.03 494.6 2056.5 2188.7

X2 (set) 5618.2 3920.8 1155.7 949.74 4462.5 3801.1

X3 (10,000

Yuan)

395,580 319,360 101,600 122,600 293,980 302,330

Y1 (10,000 t) 72,064 67,491 14,265 17,043 57,799 61,115

Y2 (10,000 t) 73.748 59.378 12.616 16.88 61.132 57.118

Y3 (10,000 t) 985.26 758.18 170.96 134.95 814.3 711.99

Y4 (10,000 t) 273.27 210.9 38.332 35.447 234.94 212.8
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14.6 Summary and Conclusion

This paper studies the efficiency evaluation and RTS estimation in the situation

where a DMU has multi-component structure. Radial measurements for efficiency

evaluation and a procedure to determine the RTS of a DMU that is unaffected by

possible multiple optima are provided. In doing so, we emphasize the theoretical

connections between the black-box approach, which has been extensively studied in

the literature, and the proposed methods. The strong relationship as is given by

theorem 1 ensures a consistent transition from the black-box approach to the multi-

component approach.

Table 14.4 Results of various models

Provinces θcrsb θnirsb θvrsb θKao t* θ�nirs θ�T
Beijing 0.4944 0.4944 0.5062 0.373 0.373 0.373 0.373

Tianjin 0.4681 0.4681 0.4748 0.3937 0.3937 0.4003 0.4003

Hebei 0.5428 1 1 0.4718 0.4718 0.8754 0.8754

Shanxi 0.5161 0.5654 0.5654 0.4952 0.4952 0.536 0.536

Inner Mongolia 1 1 1 1 1 1 1

Liaoning 0.902 1 1 0.7609 0.7609 0.8761 0.8761

Jilin 1 1 1 1 1 1 1

Heilongjiang 0.7037 0.7037 0.7049 0.5528 0.5528 0.6043 0.6043

Shanghai 0.5177 0.5177 0.519 0.3241 0.3241 0.3756 0.3756

Jiangsu 0.9221 1 1 0.6711 0.6711 1 1

Zhejiang 0.5352 1 1 0.5034 0.5036 0.7536 0.7536

Anhui 0.9099 0.9405 0.9405 0.7872 0.7872 0.7941 0.7941

Fujian 0.8612 0.8612 0.8614 0.7703 0.7703 0.8023 0.8023

Jiangxi 1 1 1 0.9605 0.9618 0.9709 0.9709

Shandong 0.8142 1 1 0.6254 0.6254 0.9473 0.9473

Henan 0.9133 1 1 0.7209 0.7209 0.9412 0.9412

Hubei 0.8199 0.8199 0.8201 0.6874 0.6874 0.7555 0.7555

Hunan 0.774 0.774 0.7742 0.7004 0.7006 0.7006 0.7006

Guangdong 0.5486 1 1 0.4723 0.4723 0.7266 0.7266

Guangxi 1 1 1 0.9612 0.9614 0.9708 0.9708

Hainan 0.6608 0.6608 0.7323 0.4066 0.4066 0.4066 0.4243

Chongqing 0.9163 0.9163 0.9203 0.6495 0.6495 0.7123 0.7123

Sichuan 0.6593 0.6593 0.6596 0.615 0.6154 0.6179 0.6179

Guizhou 0.8909 0.8909 0.8961 0.8397 0.8397 0.8407 0.8407

Yunnan 0.6877 0.6877 0.6882 0.5962 0.5965 0.5965 0.597

Tibet 0.711 0.711 1 0.5031 0.5031 0.5031 0.8519

Shananxi 0.5248 0.5248 0.5274 0.4946 0.495 0.495 0.4953

Gansu 1 1 1 0.9309 0.9346 0.9346 0.9351

Qinghai 0.9673 0.9673 1 0.6992 0.6992 0.6992 0.706

Ningxia 1 1 1 0.889 0.8903 0.8903 0.8903

Xinjiang 0.5407 0.5407 0.5434 0.4591 0.4591 0.5198 0.5198
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In the application section, we use the proposed method to study the efficiencies

and RTS of pollution treatment processes in China. The results show that the multi-

component approach has strong discrimination power: the efficiency scores

obtained are distributed in a bell-shaped manner, contrast this to the weak discrim-

ination power as evidenced by the black-box approach with the distribution of

efficiency scores skewed to the left. It is also found that six provinces show IRS,

five provinces show CRS, and the rest show DRS. Among those that show CRS,

Inner Mongolia and Jilin have the MPSS. Furthermore, the developed provinces are

more likely to show DRS. In particular, East China shows DRS entirely. In contrast,

the provinces that show IRS are mainly located in the west, which is a less

developed area of China.
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Appendix

Proof of Theorem 1 Before we prove theorem 1, we establish Lemma 1.

Fig. 14.5 Distribution of efficiency scores
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Lemma A1 Define T̂
VRS

b , T̂
VRS

as follows:

T̂
VRS

b ¼ X; Yð Þ��Xn2
j¼1

λjxij ¼ xi, i ¼ 1, . . . ,m,

(
Xn2
j¼1

λjyrj ¼ yr, r ¼ 1, . . . , s,
Xn2
j¼1

λj ¼ 1, λj � 0

)

and

Table 14.5 Results of various models

Provinces RTS (black box) RTS (multi-component)

Beijing IRS CRS

Tianjin IRS DRS

Hebei DRS DRS

Shanxi DRS DRS

Inner Mongolia CRS CRS

Liaoning DRS DRS

Jilin CRS CRS

Heilongjiang IRS DRS

Shanghai IRS DRS

Jiangsu DRS DRS

Zhejiang DRS DRS

Anhui DRS DRS

Fujian IRS DRS

Jiangxi CRS DRS

Shandong DRS DRS

Henan DRS DRS

Hubei IRS DRS

Hunan IRS CRS

Guangdong DRS DRS

Guangxi CRS DRS

Hainan IRS IRS

Chongqing IRS DRS

Sichuan IRS DRS

Guizhou IRS DRS

Yunnan IRS IRS

Tibet IRS IRS

Shananxi IRS IRS

Gansu CRS IRS

Qinghai IRS IRS

Ningxia CRS CRS

Xinjiang IRS DRS
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T̂
VRS ¼ X; Yð Þ��X2

k¼1

Xn
j¼1

λ kj x
k
ij ¼ xi, i ¼ 1, . . . ,m,

X2
k¼1

Xn
j¼1

λ kj y
k
rj ¼ yr, r ¼ 1, . . . , s,

(
Xn
j¼1

λ kj ¼ 1, λ kj � 0g. Then T̂
VRS

b ¼ T̂
VRS

.

Proof (1) T̂
VRS

b � T̂
VRS

;

Let DMUj be some DMU in EDS, and (x1j, . . ., xmj, y1j, . . ., yrj) be its input–

output bundle. Suppose it is made of SDMU1k, and SDMU2m, where

k,m 2 1; . . . ; nf g. Obviously, x1j; . . . ; xmj; y1j; . . . ; yrj

� �
2 T̂

VRS

b , since it can be

decomposed into input–output bundle of SDMU1k, and that of SDMU2m. To put

it another way, if we set a multiplier corresponding to SDMU1k and SDMU2m equal

to 1 and other multipliers equal to zero, we can see that (x1j, . . ., xmj, y1j, . . ., yrj)

satisfies the condition to be an element of T̂
VRS

. Therefore T̂
VRS

b � T̂
VRS

holds.

(2) T̂
VRS

b � T̂
VRS

;

For any X; Yð Þ 2 T̂
VRS

, there exist two sets of convex multipliers (λ11, . . ., λ
1
n) and

λ21; . . . ; λ
2
n

� �
λ1j , λ

2
j � 0,

Xn
j¼1

λ1j ¼ 1,
Xn
j¼1

λ2j ¼ 1

 !
such that

xi ¼
Xn
j¼1

λ1j x
1
ij þ

Xn
j¼1

λ2j x
2
ij i ¼ 1, . . . ,mð Þ,

yr ¼
Xn
j¼1

λ1j y
1
rj þ

Xn
j¼1

λ2j y
2
rj r ¼ 1, . . . , sð Þ:

ð14:19Þ

Table 14.6 RTS by administrative regions

Region

Provinces

IRS CRS DRS

North China Beijing, Inner

Mongolia

Tianjin, Hebei, Shanxi

Northeast Jilin Liaoning, Heilongjiang

East China Shanghai, Jiangsu, Zhejiang, Anhui,

Fujian, Jiangxi, Shandong

South-central China Hainan Hunan Henan, Hubei, Guangdong, Guangxi

Southwest Yunnan, Tibet Chongqing, Sichuan, Guizhou

Northwest Shaanxi,

Gansu,

Qinghai

Ningxia Xinjiang

Total 6 5 20
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We need to show that there always exists a convex multiplierXn2

j¼1 λj ¼ 1, λj � 0, such that xi ¼
Xn2

j¼1 λjxij, yr ¼
Xn2

j¼1 λjyrj, where (x1j, . . .,

xmj, y1j, . . ., yrj) is the input–output bundle of DMUj in EDS. In other words, there is
a convex multiplier such that the following equations hold:

xi¼
Xn
j¼1

λj x1i1þ x2ij

� �
þ
X2n
j¼nþ1

λj x1i2þ x2i j�nð Þ
� �

þ , . . . , þ
Xn2

j¼n2�nþ1
λj x1inþ x2i j�n2�nð Þ
� �

yr ¼
Xn
j¼1

λj y1r1þ y2rj

� �
þ
X2n
j¼nþ1

λj y1r2þ y2r j�nð Þ
� �

þ , . . . , þ
Xn2

j¼n2�nþ1
λj y1rnþ y2r j�n2�nð Þ
� �

ð14:20Þ

where (x11j, . . ., x
1
mj, y

1
1j, . . ., y

1
sj) and (x21j, . . ., x

2
mj, y

2
1j, . . ., y

2
sj), j ¼ 1, . . . , n, are the

respective input bundle and output bundle of SDMU1j, and SDMU2j. That is to

say,
Xn2
j¼1

λj ¼ 1, λj � 0 must satisfy the following conditions:

λ1j ¼
Xj�1ð Þnþn

k¼ j�1ð Þnþ1
λk, λ

2
j ¼

Xn
k¼1

λn j�1ð Þþk, j ¼ 1, . . . , n ð14:21Þ

To facilitate understanding, we organize the conditions as matrix products.

λ1 λnþ1 . . . λn2�nþ1
λ2 λnþ2 . . . λn2�n
. . . . . . . . . . . .
λn λnþn . . . λn2

2664
3775

1

1

. . .
1

2664
3775 ¼

λ21
λ22
. . .

λ2n

266664
377775 ð14:22Þ

λ1 λnþ1 . . . λn2�nþ1
λ2 λnþ2 . . . λn2�n
. . . . . . . . . . . .
λn λnþn . . . λn2

2664
3775
T

1

1

. . .
1

2664
3775 ¼

λ11
λ12
. . .

λ1n

266664
377775 ð14:23Þ

The above illustration indicates that the row j of the matrix is summed to λ2j , and

the column j the matrix is summed to λ1j . Let us now combine (14.22) and (14.23)

into the following equations where A is 2n by n2.

380 J. Ding et al.



Aλ¼

11, . . . ,1
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

. . . 00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0 11, . . . ,1 00, . . . ,0 . . . 00, . . . ,0

. . . . . . . . . . . . . . .

00, . . . ,0 00, . . . ,0 00, . . . ,0 . . . 11, . . . ,1

10, . . . ,0 10, . . . ,0 10, . . . ,0 . . . 10,. . . , 0

01, . . . ,0 01, . . . ,0 01, . . . ,0 . . . 01,. . . , 0

. . . . . . . . . . . . . . .

00, . . . ,1 00, . . . ,1 00, . . . ,1 . . . 00,. . . , 1

2666666666666664

3777777777777775

λ1
λ2
. . .
λn2

2664
3775¼

λ11
λ12
. . .

λ1n
λ21
λ22
. . .

λ2n

26666666666664

37777777777775
¼Γ ð14:24Þ

We are going to prove (14.24) always has a nonnegative solution λ*1, . . . , λ
*
n2 .

Note that
Xn2
j¼1

λ*j ¼ 1 automatically holds provided
Xn
j¼1

λ1j ¼ 1 and
Xn
j¼1

λ2j ¼ 1. Our

problem reduces to the existence of nonnegative solution to (14.24). We claim the

nonnegative solution always exists, by way of contradiction. Before moving on, we

reduce (14.24) to (14.25).

Aλ¼

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

11, . . . ,1
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

. . .00, . . . ,0
zfflfflfflffl}|fflfflfflffl{n

00, . . . ,0 00, . . . ,0 11, . . . ,1 . . . 00, . . . ,0

. . . . . . . . . . . . . . .

00, . . . ,0 00, . . . ,0 00, . . . ,0 . . . 11, . . . ,1

10, . . . ,0 10, . . . ,0 10, . . . ,0 . . . 10, . . . ,0

01, . . . ,0 01, . . . ,0 01, . . . ,0 . . . 01, . . . ,0

. . . . . . . . . . . . . . .

00, . . . ,1 00, . . . ,1 00, . . . ,1 . . . 00, . . . ,1

2666666666666664

3777777777777775

λ1
λ2
. . .
λn2

2664
3775¼

λ12
λ13
. . .

λ1n
λ21
λ22
. . .

λ2n

26666666666664

37777777777775
¼Γ ð14:25Þ

Note that we have eliminated the first row of A and the first element of Γ by

elementary row operation. Assume, now, that Aλ ¼ Γ doesn’t have a nonnegative

solution, i.e.,Γdoesn’t belong to the conic hull constructed by the column vectors of

Ā. By Farkas lemma, there exists x 2 R2n�1, such that

(1) xTΓ > 0;

(2) xTA ið Þ � 0,A ið Þ denotes the i th column of Ā, i ¼ 1, . . . , n2.

By (2), it follows that

(1) x ið Þ � 0, i ¼ n, . . . , 2n� 1,
�
x ið Þ denotes the ith component of vector x);

(2) For any k ¼ 1, . . . , n� 1, we have x kð Þ þ x ið Þ � 0, i ¼ n, . . . , 2n� 1, i.e.,

x kð Þ � min
j¼n, :::2n�1

�x jð Þ:

Combining the previous two conditions, we obtain
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xTΓ ¼
Xn�1
k¼1

x kð Þλ1kþ1 þ
X2n�1
j¼n

x jð Þλ2j � min
j¼n, ..., 2n�1

�x jð Þ
� �Xn�1

k¼1
λ1kþ1 þ

X2n�1
j¼n

x jð Þλ2j

¼ � max
j¼n, ..., 2n�1

x jð Þ
� �Xn�1

k¼1
λ1kþ1 þ

X2n�1
j¼n

x jð Þλ2j

� � max
j¼n, ..., 2n�1

x jð Þ
� �Xn�1

k¼1
λ1kþ1 þ max

j¼n, ..., 2n�1
x jð Þ

¼ max
j¼n, ..., 2n�1

x jð Þ
� �

1�
Xn�1
k¼1

λ1kþ1

 !
� 0

ð14:26Þ

To see why the last relation holds, note that
Xn

j¼1 λ
1
j ¼ 1 and

x ið Þ � 0, i ¼ n, . . . , 2n� 1. So it follows that 1�
Xn�1

k¼1 λ
1
kþ1 ¼ λ11 � 0, and

max
j¼n, ..., 2n�1

x jð Þ � 0. Therefore, the product of the two parts is less than or equal

to zero.

This contradicts xTΓ > 0. Therefore, Γ belongs to the conic hull constructed by

the column vectors of Ā, i.e., there is λ ¼ λ1; λ2; . . . ; λn2ð Þ � 0 such that Aλ ¼ Γ,
which also means that Aλ ¼ Γ. By our construction, we know that there exists

λ ¼ λ1; λ2; . . . ; λn2ð Þ � 0 such that (14.22) and (14.23) hold. In turn, this estab-

lishes that X; Yð Þ 2 T̂
VRS

b . □

Proof of Theorem 1 Let (x1j, . . ., xmj, y1j, . . ., yrj) be an arbitrary point in TVRSb . We

first prove that TVRS
b � TVRS. By definition, there exists one point

x1j; . . . ; xmj; y1j; . . . ; yrj

� �
in T̂

VRS

b such that xij � xij and yrj � yrj. In light of

Lemma 1, x1j; . . . ; xmj; y1j; . . . ; yrj

� �
also belongs to T̂

VRS
. Therefore

x1j; . . . ; xmj; y1j; . . . ; yrj

� �
2 TVRS, since there is a point in TVRS such that xij � xij

and yrj � yrj hold. By analogy, we can prove TVRS
b � TVRS. Therefore, TVRS

b ¼ TVRS

holds.

By substituting the convex condition in the definition of TVRS and TVRSb forXn

j¼1 λ
k
j ¼ t k ¼ 1, 2ð Þ and

Xn2

j¼1 λj ¼ t t � 0ð Þ respectively, it follows that

TVRS tð Þ ¼ TVRS
b tð Þ, since they are obtained by scaling up or down TVRS and TVRSb

by the same factor t. Given the fact that TCRS
b ¼ [

t2½0,1Þ
TVRS
b tð Þ,

T NIRS
b ¼ [

t2 0;1½ �
TVRS
b tð Þ, and TCRS ¼ [

t2½0,1Þ
TVRS tð Þ, TNIRS ¼ [

t2 0;1½ �
TVRS tð Þ, it follows

TCRS
b ¼ TCRS and TNIRS

b ¼ TNIRS. □

382 J. Ding et al.



References

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for the estimation of technical

and scale inefficiencies in data envelopment analysis.Management Science, 30(9), 1078–1092.
Banker, R. D., Cooper, W. D., Seiford, L. M., Thrall, R. M., & Zhu, J. (2004). Returns to scale in

different DEA models. European Journal of Operational Research, 154(2), 345–362.
Beasley, J. E. (1995). Determining teaching and research efficiencies. Journal of the Operational

Society, 46(4), 441–452.
Castelli, L., Pesenti, R., & Ukovich, W. (2010). A classification of DEA models when the internal

structure of the decision making units is considered. Annals of Operations Research, 173(1),
207–235.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making

units. European Journal of Operational Research, 2(6), 429–444.
Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009a). Additive efficiency decomposition in two-stage

DEA. European Journal of Operational Research, 196(3), 1170–1176.
Chen, Y., Cook, W. D., & Zhu, J. (2010). Deriving the DEA frontier for two-stage processes.

European Journal of Operational Research, 202(1), 138–142.
Chen, Y., Liang, L., Yang, F., & Zhu, J. (2006). Evaluation of information technology investment:

A data envelopment analysis approach. Computers & Operations Research, 33(5), 1368–1379.
Chen, Y., Liang, L., & Zhu, J. (2009b). Equivalence in two-stage DEA approaches. European

Journal of Operational Research, 193(2), 600–604.
Cook, W. D., Hababou, M., & Tuenter, H. J. H. (2000). Multicomponent efficiency measurement

and shared inputs in data envelopment analysis: An application to sales and service perfor-

mance in bank branches. Journal of Productivity Analysis, 14(3), 209–224.
Cook, W. D., Liang, L., & Zhu, J. (2010). Measuring performance of two-stage network structures

by DEA: A review and future perspective. Omega, 38(6), 423–430.
Cooper, W.W., Seiford, L. M., & Zhu, J. (2004).Handbook on data envelopment analysis. Boston:

Kluwer Academic.

Cooper, W. W., Thompson, R. G., & Thrall, R. M. (1996). Extensions and new developments in

DEA. Annals of Operations Research, 66(2), 1–45.
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Chapter 15

DEA and Accounting Performance
Measurement

Julie Harrison and Paul Rouse

Abstract This chapter considers the use of accounting information in DEA. We

examine some of the advantages and pitfalls of using this type of information in

DEA models. We also discuss some typical accounting measures used in DEA and

suggest three models using publicly available accounting information. The chapter

also examines how DEA can be used in conjunction with accounting approaches to

measurement, including the balanced scorecard and activity-based costing. We

demonstrate, using case studies, how the combined use of these methods can

improve the insights obtained. The chapter concludes by discussing contingency

theory and how it can be used to inform DEA research on the relationship between

performance and environmental factors.

Keywords Data envelopment analysis • Accounting performance measurement •

GAAP • Inflation adjusted inputs and outputs • Activity-based costing • Balanced

scorecard • Indexing • Ratio analysis • Contingency theory

15.1 Introduction

In this chapter we discuss the potentially valuable complementary relationships

between Data Envelopment Analysis (DEA) and Accounting Performance Mea-

surement (APM). We illustrate these relationships and discuss how they can be best

exploited. Also, we examine potential pitfalls that can arise when accounting

information is used for productivity analysis.

DEA can be based on a productivity model usually comprising specification of

inputs to produce a set of outputs, the construction of an efficient frontier, and use of

distance measures to provide efficiency scores for units of interest, called decision

making units (DMUs). However, as Cook et al. (2014: 1) point out “it must be

remembered that ultimately DEA is intended as a method for performance
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evaluation and benchmarking against best-practice.” Contextual variables about the

DMUs’ environments can also be used to explore reasons for variability in effi-

ciency or performance. In many cases accounting information is used in DEA

models either to provide proxies for physical measures, to facilitate the identifica-

tion of allocative efficiencies, or to model financial processes within businesses.

Accounting performance measurement (APM) is a broader topic that ranges

from an examination of specific ratios within common frameworks, such as the

Balanced Scorecard, to the preparation of data needed for financial accounts

prepared in compliance with regulatory reporting requirements. There are also

links to costing systems, especially Activity Based Costing, that often inform

performance and productivity ratios concerning processes and resource utilization.

Furthermore, there is a large area of management accounting research that uses

contingency theory that examines the influence of contextual variables on aspects

of organisational structure, operation, and/or performance. This theory provides a

valuable theoretical complement to research into contextual variables in DEA.

This chapter therefore focuses on the nexus between DEA and APM and aims to

fill a gap in understanding how APM can be used in DEA and where care needs to

be taken in using APM in productivity models. We start by discussing accounting

information generally, its advantages and disadvantages and our view on how it can

be best used in supplying information for productivity modelling.

15.2 Accounting Information

Practically all accounting systems in the Western world produce similar types of

information. These are typically reported in Income Statements, Balance Sheets and

Statements of Cash Flow (or names similar to these). Regulatory reporting require-

ments in most countries ensure that a large proportion of firms and often public

sector organisations, report this information publicly. Over the past two decades,

these reports are increasingly available in electronic form in databases such as

Compustat, often in XBRL1 format and available from Government websites

(e.g. SEC Financial Statement Data Sets2).

In addition to the ubiquity of financial accounting information in readily avail-

able forms, there are certain advantages that this information provides to

researchers. First, the accounting information system is the primary data system

in every organisation from large to small. Naturally large and even medium-size

organisations have other data systems, but the accounting system remains the base

essential for any organisation. Second, financial reports for firms that are listed on a

stock exchange are required to be prepared in accordance with local Generally

1 eXtensible Business Reporting Language (XBRL) is an open source digital standard for reporting

financial data, see www.xbrl.org (accessed 24 September 2015).
2 http://www.sec.gov/dera/data/financial-statement-data-sets.html (accessed 7 September 2015).
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Accepted Accounting Practice (GAAP), meaning that comparability of financial

data across such entities within a country is high. Third, external reporting require-

ments in almost all cases require that this information is audited independently by

an external party so the quality of the data is exceptionally high. Fourth, Interna-

tional Financial Reporting Standards3 (IFRS) have been adopted in many countries

reducing the variability of accounting choices available resulting in increasing

comparability of financial statements across countries, as well as increasing the

amount of information required to be reported. Lastly, as noted this information is

available in electronic form and forms an important part of the trend to “big data”

resource availability for researchers.

Conversely, there are also disadvantages with financial reporting data that

researchers need to be aware of. First, there are limits to what is disclosed and the

type of information disclosed will be affected by operational decisions, such as

whether to lease or buy an asset. If the lease falls under the category of a finance

lease, it must be capitalised and depreciated with an equivalent liability recognised

in the balance sheet. An operating lease can still be expensed in the income

statement but recent work by the International Accounting Standards Board and

the Financial Accounting Standards Board may change this. Organisations report

only the information legally required,4 which may not include separate disclosure

of items such as salary and wages, marketing expenses and other administrative

items. Of particular concern, are organisations that use subcontractors instead of

employees, as even if information on salaries and wages is disclosed, information

on contractors is unlikely to be separately disclosed. This will create problems

when selecting financial variables that adequately capture the factors of production

used by companies being compared (e.g. labour).

The Balance Sheet generally contains most items of interest, but care must be

taken with using this data as it brings us to our second disadvantage: mixed

measurement bases. Historic cost has traditionally been the main measurement

principle for fixed assets (also called non-current assets) and some items of inven-

tory. Recent changes towards “fair value accounting” have diluted the historic cost

convention, but it is likely that the value for most fixed assets (especially goodwill

and other intangible assets) will differ from the realisable value or replacement cost.

On the liability side, debt may be reported using a variety of valuation methods

depending on the terms of the debt and materiality. Thus the assets and liabilities in

the balance sheet can be a mix of current and historic values.

Third, there may not always be a “good” relationship or matching between

inputs and outputs. For example, Smith (1990) notes that research and development

is often not recorded in the same accounting period as any benefits it might provide.

Nonetheless, expenses are meant to be recognised in the income statement on the

3 Previously International Accounting Standards (IAS).
4 This is a grey area. For example, IAS1 states that “Material Omissions or misstatements of items

are material if they could, individually or collectively, influence the economic decisions that users

make on the basis of the financial statements.”
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basis of a direct association between the costs incurred and the earning of specific

items of income. This notion of “matching” is incorporated within the accruals

concept and provides some assurance that there is a good relationship between

expenses and revenues.

Fourth, while GAAP generally limits the choices available to organisations in

the recognition and measurement of financial items, there are still many alternatives

available. Furthermore, organisations are not restricted to their initial choices and

changes in accounting policies can significantly impact the treatment and value of

individual items. However, an entity can only change their accounting policy if it is

required by an applicable accounting standard or the change results in the income

statement providing more reliable and relevant information. For example, although

organisations generally use straight line depreciation for fixed assets, there can still

be considerable variability in the estimation of useful lives and future salvage

values, both of which significantly affect the annual depreciation expense which

affects both the income statement and balance sheet. Firms can choose their own

estimates of useful life and salvage value, which can lead to major issues in

assuming comparability among organisations even in the same industry. Morell

(2013) described how Singapore Airlines changed its depreciation policy for its

aircraft from 10 years useful life and salvage value of 20% to a useful life of

15 years and salvage value of 10%. The impact on its 2001/2002 profits was

expected to be an increase of US$160 million with a significant reduction in

depreciation expense as well as an increase in the balance sheet value for its aircraft.

Any panel data that contains these types of changes can result in a much distorted

time series of productivity results. For other items such as inventory, organisations

can use different measurement bases such as FIFO (first in, first out) or weighted

average. These can produce significant differences in cost of sales (Income State-

ment) and inventory valuations (Balance Sheet).

Nonetheless, financial reporting data can be extremely useful for the advantages

listed above but care should be taken when using it. For the purposes of calculating

allocative efficiency, splitting revenue and expense flows into quantities and prices

can be problematic depending on the organisation type and market. For example, in

the case of banks the price of debt can be estimated using interest expense in

relation to the debt amount; similarly with interest income. However, this can be

more difficult for manufacturing firms where individual prices for each firm may

not be known for their sales and materials; however, if there are market prices then

sector wide prices could be used for this purpose. One area that is particularly

challenging concerns estimating prices for fixed assets. We do not believe that

using depreciation or repairs and maintenance or combinations of the two provides

a good estimate of prices since depreciation is merely an allocation of cost with

almost non-existent consideration of market prices; while repairs and maintenance

are the costs of ensuring the asset operates as required.
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15.3 Accounting Ratios for Performance Measurement

Ratios are one of the most common methods managers use when appraising

performance. One of the classic accounting ratio models is the DuPont model

(or DuPont Analysis), developed by the DuPont company in the 1920s. This

model provides a decomposition of an important financial ratio, return on invest-
ment (variations examine return on equity and return on assets). The purpose of the
model is to break down the overall return into the component parts to identify the

source of increases and/or decreases in firm performance. Figure 15.1 provides an

illustration of the Du Pont decomposition.

Reading from left to right, it shows how changes in underlying financial items

affect overall performance. In Fig. 15.1 investment is defined as Assets and the first

decomposition is into Profit Margin (Net Income divided by Sales) divided by Asset

Turnover (Sales divided by Total Assets). These in turn can be decomposed into

their respective subcomponents.

There are other decompositions used in accounting. The key similarity is their

focus on ratios and shared objective of isolating the causes of changes in perfor-

mance. More recent models often include non-financial measures as well as finan-

cial data in recognition of the limitations of performance assessments based solely

on financial data. While most decompositions focus on businesses, similar models
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Expenses
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Non-Current
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Fig. 15.1 The DuPont return on investment decomposition

15 DEA and Accounting Performance Measurement 389



have been developed to capture important ratios for public sector organisations.

One of the more useful models is that provided by Ramanathan (1985) for the

benefit cost ratio (15.1):

B

C
¼ B

OC
� OC

O
� O

I
� I

C
ð15:1Þ

Where the financial data are (B) the financial measures of the benefits and (C) costs,

and the non-financial measures are outcomes (OC), outputs (O), and inputs (I).

These can be further interpreted as measures of effectiveness (OC/O), efficiency

(O/I) and economy (I/C). Other variations are possible such as cost effectiveness

using the ratio (OC/C) or cost efficiency (O/C). Rouse and Chiu (2009) used these

classifications to determine the optimal mix of road maintenance activities for

New Zealand highway maintenance by identifying best practice in terms of both

efficiency and effectiveness.

Accounting performance measures often use partial productivity ratios with the

numerator in the form of an output and denominator as an input e.g. sales per

employee, net income per branch. Bragg (2012) provided a comprehensive list of

around 250 ratios for general and more specialised use in support departments.

There are also ratios that combine profitability with capacity in the area of revenue

management. These take the form of revenue per unit of available capacity. For

example, a measure used for restaurants, RevPASH, represents the amount of

revenue per available seat hour thus combining the revenue obtained from diners

with restaurant seating capacity for a period of time. Many of these are described by

Sheryl Kimes at Cornell, as illustrated by Kimes and Singh (2009).

As noted above,managers are very familiar with ratios and tend to understand ratios

better than a model comprising multiple inputs and multiple outputs. Accordingly,

using ratios in a DEAmodel is oftenmore understandable and acceptable to managers.

One of the first studies to incorporate ratios into DEA was Greenberg and Nunamaker

(1987) in their “DEA-based multiple control model” which used five ratios to measure

the performance of 16 small (under 100 beds) hospitals. The ratios were quite diverse

(i.e. of a formative nature) and comprised percent occupancy, total inpatient revenue

per inpatient day, accounts receivable turnover, total cost per routine patient day and

average length of stay. As stated by the authors, these are familiar measures in practice

and are easily understandable by managers. The form of the DEAmodel was different

from most DEA models at that time since the ratios for each hospital were maximised

(requiring the last two ratios to be inverted), therewas only one input, which is set equal

to one for each DMU, and the model was constant returns to scale (CRS).

Smith (1990) applied DEA to financial statements using inputs and outputs

based upon the ratio of return on capital employed. The inputs used were average

equity and average debt (components of capital employed), and outputs were

earnings available for shareholders, interest payments and tax payments with the

latter two treated as “bad” outputs. Thanassoulis (1995) examined the performance

of police forces using DEA with ratios constructed using the inputs and outputs

from a DEA model. A noteworthy observation from this paper is the use of
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performance indicators (PIs) to better communicate the DEA results. For example,

the ratios for DMUs from the efficient reference set were reported to enable forces

to compare their own (familiar) ratios with these. Thanassoulis et al. (1996) com-

pared ratio analysis and DEA for district health authorities in England finding

significant differences in rankings between the two approaches. Notwithstanding

they comment insightfully that for health authorities that had similar results “it can

be seen that PIs can be thought of as a subset of possible DEA efficiency measures,

and indeed any unit which has the maximum value on a PI will appear with 100%

or almost 100% efficient under DEA. . . The units with maximum PI values will

thus also appear as subsets of DEA efficient or almost efficient units” (Thanassoulis

et al. 1996: 238).

A similar comparison was made by Bowlin (1999) who developed a DEA model

using only accounting measures such as operating profit, assets, operating expenses

as the outputs and inputs. He also used these measures to perform traditional ratio

analysis and compared the results of the two approaches. To our knowledge Bowlin

(1999) and Smith (1990) were the first studies to use solely financial accounting

numbers in the DEA analysis. Oral and Yalalan (1990) used non-monetary items for

part of their analysis of banks and financial statement data for the second part. This

was followed by Feroz et al. (2003) who employed the DuPont model in their

selection of inputs (sales,5 total assets and common equity) and output (net income).

Bradbury and Rouse (2002) used risk factors associated with auditing the

branches of a large pharmaceutical company to construct a frontier of high and

low risk branches in order to better allocate audit resources. Although previous

studies had described themselves as “audits”, this was the first study to measure

audit risk in the proper sense. Risk factors from a previous study by Miltz

et al. (1991) were used and included quality of internal control, size, internal

pressure on management and activities of the branch. Risk measures ranged from

one (low risk) to five (high risk) so a branch that had high scores on all six risk

factors would lie on the high risk frontier. A low risk frontier could be easily

constructed by reversing the measurement order so that a score of 1 denoted high

risk and 5 low risk. Applying DEA to the data provided a ranking of branches in

terms of high risk or low risk. A refinement to the model was the inclusion of weight

restrictions to reflect experts’ opinion from the Miltz et al. (1991) study on

appropriate upper and lower bounds for each risk factor.

Notwithstanding the attraction of using ratios that are well understood in prac-

tice, Hollingsworth and Smith (2003: 735) pointed out a problem with using ratios

with different denominators and recommended the use of variable returns to scale to

ensure that “all comparison between units is by interpolation only”. This avoids

unrealistic target values for inefficient DMUs exceeding the maximum range.

When convexity is assumed, Emrouznejad and Amin (2009) show that this can

lead to inappropriate convex combinations of efficient units on the production

5 The treatment of sales as an input is unusual although one can see their logic. Usually, sales is

treated as an output.
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possibility frontier. They propose two models to overcome this problem which

involve including the numerator and denominator as separate output and input

constraints.

In summary, ratios have the advantage of being readily understood by managers

and are often readily available. Managers are familiar with ratios calculated using

both financial and non-financial measures, but often rely on partial productivity

measures. Non-accounting ratios are frequently used in DEA research on compiling

indices in topics such as human development (Despotis 2005), and best city (Zhu

2001). While there are some issues, both technical and conceptual, around the use

of ratios, their widespread use and familiarity suggest that they could be very useful

in “selling” DEA to practitioners as a useful tool.

We turn next to using accounting information as the basis for inputs and outputs

in DEA models.

15.4 Accounting Information and Its Interpretation
in Productivity Measurement

There are a number of studies that use accounting information in productivity

measurement. Since the focus of this book is on DEA, we confine our discussion

to DEA models. As noted, accounting information has a number of advantages but

care needs to be taken in its use and selection of appropriate accounting items.

Christensen and Hemmer (2007) examined the relationship between production

functions and cost systems and noted that where production is constant returns to

scale (and assuming a Leontief structure), a two-(cost) pool procedure can replicate

the marginal cost for all products simultaneously; under variable returns to scale,6

bias can arise. “The economics of production and the interaction among products

are determinant of the efficiency of the accounting system” (Christensen and

Hemmer, 2007: 562). This needs to be considered when using both product level

cost data as well as firm-level aggregated data.

The classic economics model typically assumes production is a function of

labour and capital (and land). According to Reddy and Saraswathi (2007), raw

materials are omitted since they have a constant relation to output at all levels

of production. “This constancy of input-output relations leaves the methods of

production unaffected” (Reddy and Saraswathi, 2007: 162). Typically labour is

regarded as a variable input and capital as fixed in the short run. Most DEA models

of technical efficiency use quantities of inputs and outputs which may be in physical

quantities, but occasionally can include monetary measures. On the other hand

there are some models that use entirely monetary measures for inputs and outputs

e.g. the intermediation models in banking studies. The combination of price and

quantities into a single measure calls into question whether it is technical, allocative

6 Plus economies of scope.
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or a combination of the two which is represented by the resulting efficiency score.

Indeed Banker et al. (2007) describe an approach to decomposing an aggregated

efficiency score into its technical and allocative components.

To illustrate the range of inputs and outputs used, Table 15.1 details a number of

DEA studies that have used only financial data. This shows the variation in the data

Table 15.1 Financial inputs and outputs from the literature

Study Inputs Outputs Comments

Smith

(1990)

Equity EBIT Interest and tax are treated as bad out-

puts although it is unclear how they

were treated
Debt Interest

expense

Tax

Oral and

Yalalan

(1990)

Personnel expenses Interests on

loans

Admin expenses Non-inter-

est income

Depreciation

Interests on deposits

Bowlin

(1999)

Operating expenses Operating

profit

Assets appear to be fixed assets

Identifiable assets

(equipment, facilities

etc.)

Operating

cash flows

Sales

Feroz

et al. (2003)

Sales Net income The classification of sales as an input is

unusualTotal assets

Common equity

Rodriguez-

Perez

et al. (2011)

Total expenses Total

revenueLand and buildings

Financial investments

in associated and group

companies

Other financial

investments

Other assets

Demerjian

et al. (2012)

Cost of goods sold Sales The close relationship between cost of

sales and sales suggests the need for a

weight constraint explicitly linking

these

Selling and administra-

tion expenses

Net property, plant and

equipment

Net operating leases

Net research and

development

Purchased goodwill

Other intangibles

assets
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used and in their treatment as either inputs, outputs, or “bad” outputs. There appears

to be no consensus on the items to include in the analysis and there is generally little

discussion on the rationale for including/excluding different items. Another con-

cern is the large numbers of inputs and outputs used in some models, which would

require a reasonable number of DMUs to satisfy the dimensionality requirements.7

There are also issues around whether some of the items should have weight

restrictions as per ARII of Allen et al. (1997). There is also some question whether

some inputs used such as purchased goodwill, research and development expendi-

ture and other intangible assets either relate to the generation of sales or profit or

match to the same period of sales occurrence e.g. research and development

expenditure in a current year may not eventuate in sales until later years.

An essential question when using accounting data is the purpose of the model.

Are the accounting numbers proxies for some underlying economic measure or are

the data being used to produce an accounting production model? For example, are

total assets a proxy for capital and sales a proxy for produced output?

We provide some models below that provide guidance for the appropriate

selection of accounting data. Note that these are confined to items found in publicly

available financial statement data; other data may be available from other sources

such as numbers of employees, physical volumes of output or input, specific capital

equipment utilisation such as machine hours. Also, note that these models may

require modification to reflect industry differences that significantly affect the

recognition, measurement and disclosure of financial items e.g. banking and insur-

ance industries.

15.4.1 Model 1: Production Process

Purpose: To use financial data to model a firm’s technical efficiency.

Inputs: Property, plant and equipment (PPE), operating expense (with depreci-

ation added back if included).

Outputs: Cost of production (equal to cost of sales (COS) plus closing inventory
minus opening inventory). If this is not available, then use sales as an alternative

proxy.

This is a fairly specific model that focuses on PPE as the capital input. Operating

expense is used instead of labour cost as typically this is not disclosed separately,

consequently, it will include non-manufacturing labour. As PPE is already included

as an input, depreciation should be added back if it has been included in operating

expenses. If selling, general and administrative expenses are disclosed, there is an

argument for excluding these from operating expense to focus on the manufacturing

or production side.

7 See footnote 10 for a rule of thumb. However, for benchmarking purposes the size of the sample

or number of DMUs may be irrelevant (Cook et al. 2014).
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We suggest COS with inventory adjustments is the best proxy for production

volume as it is not affected by pricing margins, which are included in sales

(although, we note that it may be affected by changes in input prices if these change

during the period). A possible complication is in manufacturing situations where

the cost of production labour is already contained in the cost of production and thus

also in COS and inventory. Given that this information is not conventionally

available, we argue that COS with inventory adjustments provides the best proxy.

It can be argued this model provides a mix of technical and allocative efficiency

depending on how the accounting items are envisaged. If as proxies, then the DEA

score can be argued to be a measure of technical efficiency. If as production items in

their own right, then the scores could be viewed as aggregate efficiency comprising

technical and allocative efficiency.

15.4.2 Model 2: Firm Financial Efficiency Model

Purpose: To use financial data to model a firm’s financial efficiency.

Inputs: Total assets, operating expense (with depreciation added back if already

included).

Outputs: Sales, net income.

There are several options for the measurement of total assets: non-current assets

plus current assets or non-current assets plus working capital. For non-current

assets, items that could be excluded include intangibles such as goodwill, adjust-

ments relating to mark-to-market of assets or liabilities, deferred tax (although this

is normally a liability), and some long-term investments that are not directly

connected to a firm’s trading strategy. As noted above, operating expense will

include non-manufacturing expenses, which in the case of firm efficiency, are

legitimate for inclusion.

Outputs in this model include sales to represent the output activity of the firm

and net income as a measure of the quality of sales. Efficiency, therefore, relates to

how well a firm generates revenue for the assets invested.

15.4.3 Model 3: Funding Efficiency Model

Purpose: To use financial data to model a firm’s funding efficiency.

Inputs: Equity, debt.
Outputs: Earnings before Interest and Tax (EBIT).

There are several options for the measurement of Equity. This could refer to

ordinary shareholders funds excluding any preference capital. While there might be

some reserves included under shareholders’ funds that are unusual, it is probably

best to leave them in the measure to ensure consistency in treatment across firms.

Debt should capture longer-term financing and, therefore, should consist of
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non-current liabilities, excluding any provisions such as deferred tax. The basic

principle is to identify the long-term providers of finance for the firm. Some might

argue that bank overdrafts should be included in this and that could be a valid

argument in some circumstances.

The output is EBIT which encapsulates the overall return to the long term pro-

viders of funds. Efficiency, therefore, relates to how well a firm generates profits from

its different sources of capital, that is, how well it maximises its return on investment.

15.5 Indexing Dollar Values and Translation of Foreign
Currencies

While inflation rates are low currently, they can still impact on DEA modelling

especially where panel data are used and a pooled analysis is undertaken

i.e. combining several years within the one analysis for a set of DMUs. To provide

the intuition for this, consider a firm with two employees and production output of

200 units which is sold for a price of $10 per unit. The sales per employee is thus

$1000. Assuming inflation of 10% and no change in employees or output, the

following year the selling price is $11, sales of output are 200 units, but the ratio

increases to $1100 per employee purely because of inflation and without any

change in productivity. If inflation is ignored, we would run the risk of assuming

that productivity has improved by 10%. This is easy to see in a simple example

where one item is financial and the other is non-financial. It is tempting to think that

when all items are in financial terms that somehow or other it all cancels out since

the inputs and outputs have the same “value” because they are in the same year and

are not affected by other years.

To illustrate the potential problems of ignoring inflation in pooled datasets

consider the financial data provided in Table 15.2, which contains input and output

data in dollars for six DMUs for two time periods: Year 1 and Year 3, with no

restatement for inflation.

The left hand graph of Fig. 15.2 plots the data for year 1 and it can be seen that all

DMUs lie on a variable returns to scale (VRS) efficiency frontier with DMUs C1

and D1 comprising the constant returns to scale (CRS) section of the frontier. The

right hand graph of Fig. 15.2 plots the DMUs for the pooled sample of Years 1 and

Table 15.2 Input and output data in dollars for years 1 and 3

DMU year 1 Input Output DMU year 3 Input Output

A1 1.20 1.00 A3 1.45 1.21

B1 1.50 2.30 B3 1.82 2.78

C1 2.00 3.50 C3 2.42 4.24

D1 3.00 5.25 D3 3.63 6.35

E1 4.00 6.00 E3 4.84 7.26

F1 5.00 6.50 F3 6.05 7.87
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3. DMUs lying on the frontier are A1, B1, C1, C3, D1, D3, E3 and F3 with all others

lying below the frontier. Are these other DMUs inefficient?

Assume that inflation over the period was 10% per annum. Restating the year

1 amounts for 2 years compounded inflation results in exactly the same numbers as

the Year 3 input and output columns. In other words, productivity has not changed

at all but inflation has increased both inputs and outputs from Year 1 to Year 3. In

fact all DMUs are still efficient. The effect of inflation in this case is to leave the

DMUs that were increasing returns to scale (IRS) efficient in Year 1 unchanged

while the Year 3 IRS DMUs appear to be inefficient; DMUs on the decreasing

returns to scale (DRS) part of the frontier now dominate their Year 1 counterparts

who have now become inefficient. Note that the DMUs on the CRS segment are

efficient for both years.

Thus, for any pooled analysis when dealing with inputs and/or outputs measured in

financial terms, the amounts must be restated to take inflation into account. Failure to

do so can result in incorrect efficiency scores unless the technology assumes CRS.

Even relatively low rates of inflation can lead to distortions in the analysis particularly

when several time periods are involved. This problem becomes more complicated

when inputs and outputs are subject to different rates of price inflation.

A final complication can arise with the analysis of panel financial data from

several countries. Based on the example above, one should restate the financial

amounts to take inflation into account. But if the currency exchange rates have

fluctuated over time, then should one translate the currency into a common currency

(e.g. $US) and then reflate using a US price index or restate the local currency using

the local price index and then translate into $US?8 We favour the second option,

restate-translate, for several reasons. First, it recognises the local price changes and

Fig. 15.2 DMU input and output data for year 1 and years 1 and 3

8 These alternatives, known as the translate-restate versus restate-translate options, were discussed

thoroughly in the Financial Accounting Standards Board Discussion Document in the early 1970s

concerning FASB 8 Accounting for the Translation of Foreign Currency Transactions and
Foreign Currency Financial Statements.

15 DEA and Accounting Performance Measurement 397



makes more sense than restating using another country’s price index. Second,

although the exchange rate is likely to behave in the long run according to

purchasing power parity theory, this may not happen in the short to medium term.

Third, the translate-restate method results in a mix of exchange rate and price

changes making it difficult to interpret any trend in the dollar amounts. The restate-

translate method provides a much clearer notion of trends and has the advantage of

using only one exchange rate.

We next describe the similarity between DEA and activity-based costing (ABC)

with an application to child immunisation in New Zealand medical General

Practices.

15.6 Activity-Based Costing and DEA: Congenial Twins

The foundations of Activity-Based Costing (ABC) probably lie in activity analysis

(Koopmans 1951) and were first introduced into the accounting literature by

Staubus (1971), which was largely ignored until the 1980s when Cooper and Kaplan

successfully promulgated its adoption through a series of articles in the Harvard

Business Review e.g. Kaplan and Cooper (1988). The essence of ABC is a focus on

activities in a two-stage model where the first stage measures the consumption of

resources by activities to construct activity cost pools which feed the second stage

which measures the consumption of activities (cost pools) by cost objects

(e.g. products or services). It is thus a consumption model and, as noted by Christensen

and Demski (1995), is linear with separable and additive activities. An important

aspect to note is the use of resource drivers, which are used to trace consumption of

resources by activities (e.g. square footage, number of personnel) and activity drivers,

which are used to trace consumption of activities (or their cost pools) by cost objects

(e.g. machine hours, labour hours) as shown in Fig. 15.3. These drivers are usually

non-financial and often correspond to the inputs and outputs used in DEA.

Compare ABC with its focus on an activity consuming resources to produce

some product or service with DEA. DEA focuses on a process that consumes inputs

to produce outputs. The similarity is obvious, but there are differences. Generally

DEA uses fairly aggregated inputs and outputs and the process is often at firm or

branch level i.e. the process contains activities. ABC deals with specific activities,

outputs and resources, and the activities can be at fairly micro levels.

Figure 15.3 illustrates the interactions between ABC and DEA. The top part of

Fig. 15.3 shows a conventional DEA model where the process can be influenced by

environmental or contextual factors. The lower part of the figure shows the ABC

model (horizontal) plus a vertical section labelled Activity Based Management

(ABM). ABM is the action part of ABC systems where management use the ABC

information to find ways to improve the process by improving activities. This

involves better understanding activities through identifying cost drivers: those

things that explain why an activity exists and the level at which it operates, see,

for example, Turney (1992). Measuring the performance of activities provides
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insights into whether improvement is possible and in Fig. 15.3 is the interface

between ABC and DEA.

The arrows connecting input selection with resources and inputs determine which

and how resources are to be aggregated or translated into inputs for the DEA model.

Similarly the arrows connecting output selection with cost objects and outputs

determine which and how cost objects are to be aggregated or translated into outputs

for the DEA model. Finally cost drivers and environmental factors are linked as both

are attempting to explain behaviour either at the activity level or process level.

We illustrate the interactions between the models through a study of

immunisation activities of New Zealand (NZ) general practices (GPs) reported in

Rouse et al. (2010). Twenty-four general practices agreed to participate in detailed

time keeping and provision of information to identify the cost of immunisations

provided. Data collected included total practice overheads and specific costs relat-

ing to immunisation and the total hours worked by all practice staff, total

immunisation time involvement over an average week, and a daily log of the

tasks involved in immunisation service delivery. In addition, questionnaires cover-

ing the less common, monthly events were completed by all staff involved in

immunisation tasks.

DEA Modelling

Activity-Based
Management

Activity-Based Resource Activity

Costing Drivers Drivers

Cost Drivers

Activity
Analysis

Performance
Measurement

Resources Cost objects

Inputs Outputs

Input selection
Output

selection

Process

Environmental
Factors

Fig. 15.3 DEA and ABC interactions
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An Activity Based Costing (ABC) model was developed in which the main

immunisation related activities were identified and traced to vaccination events via

measurement of both resources and activities. These activities were checking

registration, vaccine preparation, obtaining informed consent, administering the

vaccine, documentation, checking and routine follow-up. Resources consumed

were mainly nurse time and the cost object was the child immunisation. Other

activities were at the batch level (activities required to manage the service) such as

waste removal costs specifically for sharps (needles), printing, postage and stationery

incurred in making appointments and other correspondence concerning

immunisations, vaccine ordering, audit procedures, generating routine immunisation

appointments and reminders, and late immunisations. There were other costs at the

product sustaining level (activities to provide “resource capability”) e.g. initial vac-

cination training, annual staff training and updates, and at the facility level (practice

level costs/activities required to meet the infrastructure or organisation requirements)

e.g. administration (rent, utilities, subscriptions, insurance, depreciation), the cost of

support staff, including receptionists and practice managers.

The ABC model was used to provide more aggregated inputs for the DEA model

as shown in Fig. 15.3. The DEA model had 24 DMUs and 2 inputs (the main

immunisation activities aggregated by time and aggregated batch costs) and a single

output (number of vaccinations). Results are reported in Table 15.3.

Efficiency scores improved considerably under the assumption of VRS as

opposed to CRS and there was a higher level of efficiency when adopting an output

as opposed to an input orientation. Approximately one-fifth (5 out of 24) of the

practices were fully-efficient under VRS and over half were 76% efficient or more.

Scale efficiency scores show that there was considerable differences in scale effects

(87% for input and 80% for output orientations). This suggests that the practices

varied in terms of size (reflected in the total vaccinations for each practice which

ranged from 65 to 4949) and that the VRS model was probably a better fit than the

CRS model.

As noted, the DEA inputs aggregated primary activities time and batch level

costs from the ABC model. The detailed information from ABC in terms of

resource drivers and disaggregated activities can be used to analyse the DEA results

to identify environmental factors that influenced efficiency scores, which in turn

can provide insights into cost drivers.

The details of each aggregated input are shown in Table 15.4 organised by

quartile efficiency scores. Thus in the top panel, which reports the VRS output

Table 15.3 DEA results for the 24 GP practices

Constant returns to scale Variable returns to scale Scale efficiency

DMU CRS Input Output Input Output

Mean 60% 69% 75% 87% 80%

Median 47% 68% 76% 94% 74%

Stdev 24% 24% 21% 14% 17%

# efficient 3 5 5 4 3
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orientation results, there are four quartiles of GP practices with mean efficiency

scores of 48%, 66%, 86% and 100%, respectively. The corresponding mean times

for each activity at unit level are shown across the columns for each row.

A “Y” was placed in the row below columns where there appears to be a trend.9

For example, higher levels of efficiency are associated with lower times for vaccine

preparation, informed consent, giving the vaccination etc. Column 11 (number of

registered patients) reveals increasing efficiency with larger practices with a weaker

trend in column 12 (registered patients under 5 years old). There was a counter-

intuitive trend in the deprivation index (higher scores indicate higher deprivation)

where more inefficient practices were associated with lower levels of deprivation.

The explanation for this was that practices in affluent areas took more time with

clients, who were more likely to seek in-depth information about immunisation

benefits and risks. In deprived areas clients asked fewer questions, were more

trusting of the health professional, so informed consent was often obtained in less

time. Furthermore, in more deprived areas there was the possibility of multiple

vaccinations if larger families were all immunised in the same visit.

The lower panel of Table 15.4 shows batch level costs by activity. The CRS

results are reported since batch level costs are not volume driven but are more time

related. Using the CRS results, it can be seen that DEA inefficiency was affected by

activities pertaining to claiming from the health authorities, GP time, vaccine

ordering and audit requirements, reminding clients of appointments and chasing

up no-shows i.e., late immunisations. Late immunisations were regarded as a major

nuisance by most practices and the rightmost column shows a clear trend for the

CRS results with the most efficient practices having the lowest late immunisation

costs.

15.7 DEA and the Balanced Scorecard: A New Approach
to an Old Problem

Variable selection is always an issue with performance measurement. The old

adage that “what you measure is what you get” should always be foremost in the

minds of those selecting measures and constructing models. In DEA, the problem

is, in theory, mitigated by the use of a productivity model. This imposes the

requirement that selected measures relate to production inputs and outputs. How-

ever, in practice this does not eliminate all choice as most production processes

have many inputs and outputs that could be included. One option would be to

9 Regression results were not significant due to, we believe, the small number of GP practices in

our sample. While our interpretation of trends is not supported statistically, it proved of interest to

clinicians involved in the study and health specialists in this area.
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include all possible inputs and outputs; however, the greater the number of mea-

sures used in a DEA model the higher the average efficiency scores10 for the DMUs

being compared and the lower the discriminatory power of the model. Accordingly,

a well-designed DEA model should be parsimonious in the inclusion of inputs and

outputs, restricting the model to the key production inputs and outputs.

Golany and Roll (1989: 239) set out some guidelines for selecting DMUs and

measures where the “initial list of factors to be considered for assessing DMU

performance should be as wide as possible”. The next step is to refine this list using

expert judgement, non-DEA quantitative analysis and DEA based analysis. The

latter two include correlations and regressions between inputs and outputs, aggre-

gation possibilities, and examination of the DEA weights for inputs and outputs

used in the DEA analysis (a close to zero weight across DMUs for a measure

suggests it is a candidate to be dropped).

While this is a worthwhile process, Rouse et al. (1997) proposed an alternative

approach where measures should be located within a holistic framework compris-

ing a linked structure performance pyramid based upon the Balanced Scorecard of

Kaplan and Norton (1992):

“The pyramid represents a comprehensive, fully integrated performance measurement

system that captures multiple perspectives, ensures that measures reflect strategic directions

and provides explanation and choice of actions through identification of underlying drivers.

. . . The DEA analysis provides information for productivity and performance measure-

ment, benchmarking and comparisons of actual versus target measures which can be fed

back into the performance measurement system.” Rouse et al. (1997: 131)

Measures can be located within the pyramid and their appropriateness and

validity can be established in terms of their links to strategy and underlying process

drivers. Only those measures that can be so located are included in the DEA model.

Furthermore, the DEA results can be interpreted and explained by reference to the

pyramid and traced to these process drivers for deciding upon actions to be taken.

Examples of such actions were described in Rouse et al. (2002) where an airline

maintenance division combined the linked structure performance pyramid with

DEA for performance management purposes.

Further studies have examined integrating DEA with the BSC by using measures

from the four perspectives to construct linked DEA models. Eilat et al. (2008) used

a BSC tailored to research and development projects adding a fifth perspective,

uncertainty. Twenty four measures were identified and grouped under the five

perspectives (or “cards” in their description). Preferences (referred to as “balance”)

among the cards were effected through bounds on the proportions of the card scores

with increasing discrimination among projects as more balancing constraints were

10 In the absence of weight restrictions on the inputs and outputs in a DEAmodel, an increase in the

number of measures will, ceteris paribus, result in higher average efficiency scores as individual

DMUs are more likely to be able to find a combination of inputs and outputs that compares

favourably to other DMUs. To mitigate this problem a rule of thumb of twice the number of inputs

multiplied by the number of outputs is suggested as a minimum sample size (Dyson et al. 2001).
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included. Their model thus focused on managerial preferences among the five

perspectives to obtain greater discriminatory power.

Garcı́a-Valderrama et al. (2009) refined the integration process further by

constructing DEA models linking pairs of five BSC perspectives, the normal four

perspectives plus an innovation perspective. This is in line with the spirit of the

linked perspectives of the strategy maps proposed by Kaplan and Norton (2001).

For example, the first DEA model took the financial perspective measures as

outputs and the customer perspective measures as inputs; the second DEA model

took the customer measures as outputs and the internal perspective measures as

inputs and so on until they had five DEA models. This enabled them to examine

differences in efficiencies in different parts of the organisation as modelled by the

BSC. Parts of their work suggest the possibility of using network DEA, an approach

subsequently applied by Amado et al. (2012).11

Amado et al. (2012) focused on strategy maps and developed strategic objectives

with associated critical success factors which in turn informed the identification of

performance indicators. Similar to Garcı́a-Valderrama et al. (2009), their DEA

models were “interconnected following the cause and effect relationships

hypothesised in the BSC literature” (Amado et al., 2012: 395). Thus the outputs

of the perspectives below the financial perspective were the inputs for the perspec-

tive above. While describing their approach as “network DEA”, it appears that the

models were run independently as opposed to a network model with intermediate

outputs becoming inputs to successive perspectives.

Notwithstanding, this selection of research into combining DEA and the BSC

reveals some potentially powerful insights from this more incisive and informed

analysis with areas for future research using network DEA and possibly hyperbolic

or directional distance functions. As mentioned at the start of this section, the BSC

provides a good model of the organisation since the measures contained are those

considered to be important by management thus enabling the DEA modeller to be

better informed as to the validity or appropriateness of the measures selected for

DEA study.

The earlier discussion around cost drivers and environmental or contextual

variables leads us to the final section concerning contextual performance and

contingency theory.

15.8 Understanding Contextual Performance
to “Do Better”

The importance of contextual variables has long been recognised in accounting and,

in particular, the study and design of management control systems, including

performance measurement systems. Contingency theorists have considered the

impact on the effectiveness of management controls of a variety of exogenous

11 This study contains a good literature review of research into DEA and BSC.
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factors including the environment, technology, strategy and culture of different

organisations (Chenhall 2003). Emanating from general systems theory, contin-

gency theory is based on the assumption that “organisation variables are in a

complex interrelationship with one another and with conditions in the environment”

(Lawrence and Lorsch 1967: 157). In contrast to a systems theory view of an

organisation’s form being determined independently, contingency theory argues

that the form is determined by external pressures which vary depending upon the

size of the organisation, its strategy for operation and the external environment

itself (Donaldson 2001). Thus, an organisation matches its form and strategy to the

contingency pressures it faces. While the environment impacts upon the organisa-

tion the latter is also involved in a process of “. . .mutual influence and

interdependence” (Burrell and Morgan 1979: 168). In other words, organisations

both shape and are shaped by their environment.

In short, contingency theory posits that the behaviour of a system is contingent

or depends on its environment. More specifically, we could say that the perfor-

mance of a unit of interest is affected by factors that comprise its immediate

contextual and broader environments as depicted in Fig. 15.4.

If we accept that performance is contingent on such contextual and environmen-

tal factors, then any attempt to measure performance requires a broader exploration

of these. Defining performance measurement as the “comparison of actual against

expectations with the implied objective of learning to do better” (Rouse and

Putterill 2003: 795) poses two tasks: first, how to gauge the comparative expecta-

tions and, second, how to learn to do better. Frontier based methods such as

Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis (DEA) can

provide answers to the first; using this information to do better is the subject of

contingency theory and various DEA models suggested in the literature.

Consistent with contingency theory, an early distinction between discretionary

and non-discretionary resources recognised the existence of inputs or outputs

beyond the control of DMU managers (Charnes et al. 1980). These could encom-

pass physical environmental circumstances as well as constraints arising from

Social, political, physical
environments

Contextual
Environment

DMU

Fig. 15.4 The DMU and its

contingent environments
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organisational and managerial policies i.e. contextual variables. Define X as

inputs and Y as outputs split into subsets for controllable inputs (Xc) and outputs

(Yc) and noncontrollable inputs (Xnc) and outputs (Ync); then z for the exoge-

nous contextual input (Zx) and output (Zy) variables. Early approaches (Bessent

and Bessent 1980; Bessent et al. 1982; Jesson et al. 1987) using single-stage

models treated both controllable and environmental factors as discretionary

inputs or outputs as shown in Fig. 15.5a.12 Note that environmental factors

could be treated as either inputs (Zx) or outputs (Zy) or even both.

These were refined by modified DEA models that separated controllable from

uncontrollable (including environmental factors) where the former are used to

evaluate efficiency with the latter determining the reference peers for evaluation

purposes (Banker and Morey 1986a).

Figure 15.5b shows this “all-inclusive” approach where controllable inputs and

outputs and non-controllable/environmental factors were incorporated directly into

the DEA model, but the latter are not subject to direct evaluation for efficiency

purposes.

A further refinement known as the “categorical model” was made by Banker and

Morey (1986b) in the situation where some of the non-controllable or environmen-

tal factors can be used to rank the DMUs using an ordinal scale from least to most

favourable in terms of the influence of these factors. The ranking is then used to

separate DMUs into groups which are evaluated from the lowest to highest ranking

whereby lower ranked groups retain their efficiency score from their respective peer

ranking evaluation.

Figure 15.5c shows how the categorical variable (in this figure depicted by an

input or output environmental factor) lies outside of the input and output set (which

could include non-controllable items13). Several non-controllable or environmental

factors can be reduced to a single categorical variable using a weighted “index”

according to the results of a regression analysis (Ruggiero 1998).

Finally, a multi-stage approach can be followed where the first stage DEAmodel

uses only controllable inputs and outputs followed by a second stage regression

where the dependent variable can be the efficiency score or the amount of radial

(possibly including nonradial) slack (see for example, Ray 1988; Fried et al. 1999,

2002). The results of the regression can be used to adjust the controllable inputs and

outputs which are then used in a third stage DEA model.

Figure 15.5d illustrates this third approach which only includes controllable

factors in the first DEA model and regresses either the efficiency score or slack on

the environmental factors (note that these could also include the non-controllable

factors). The results are then used to remove the impact of both non-controllable

and exogenous variables from the calculation of managerial inefficiency i.e. this

last approach is the only one to isolate the portion of inefficiency solely due to the

12Given the controllability element, we prefer to call these controllable and non-controllable

items.
13Which raises the possibility of a mixed non-discretionary and categorical model.
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actions of the DMU managers. By using the stochastic frontier analysis method in

the second stage, Fried et al. (2002) are able to decompose stage one inefficiency

into that attributable to the environment and that attributable to managerial

inefficiency.

a

ProcessXc,Xnc,Zx Yc, Ync, Zy

b

Process

Xc

Xnc / Zx Ync / Zy

Yc

c

d

ProcessXc Yc

Θ = f(Z)
Or

S = f(Z)

ProcessadjXc Yc

Process

Xc Yc

Xnc

Z(x,y)

Ync

Fig. 15.5 (a) Single stage with all inputs and outputs treated as discretionary. (b) Single stage

separating controllable from non-controllable/environmental. (c) Categorical model using envi-

ronmental factor(s) to evaluate DMUs by ranking. (d) Three stage DEA approach showing

controllable inputs adjusted in the third stage
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There are many more variations on the above reported in the literature

e.g. Harrison et al. (2012), Fried et al. (2008). It is obvious from the discussion

above, that the terminology between controllable (discretionary), non-controllable

(non-discretionary) and environmental is fairly loose. We attempt to tighten this

terminology next by reference to the management accounting literature that has

been influenced by contingency theory notions.

Endogenous inputs and outputs are those resources and objects that are traceable
to a process (albeit not necessarily traceable to a specific object from a product

costing perspective). These may be controllable or non-controllable depending on

the time period (e.g. short versus long term), availability (e.g. labour/capital

markets), level of management being evaluated (e.g. branch versus division) and

management or legislative policy (e.g. management policy on overtime, trading

hours).

Environmental variables, in contrast, are exogenously determined and tend to be

not explicitly traceable to a process even though they may be recognised as

affecting such process. Table 15.5 provides some examples of these distinctions.

Although usually noncontrollable in the short term, some environmental vari-

ables may be controllable partially in a longer term time horizon e.g. stabilisation of

terrain for road maintenance, obtaining of licences to control market competition.

In addition, whether a variable is controllable or non-controllable can also reflect

the management level being evaluated e.g., factors, such as policy, that are

non-controllable to operations-level managers, may be controllable by senior

managers.

In summary, contingency theory provides a theoretical basis for this analysis of

contextual variables in DEA models. Furthermore, it provides a framework for the

identification of potential variables and consideration of whether they are endoge-

nous inputs and outputs that are only non-controllable at certain levels of manage-

ment or in the short term versus those environmental variables that are exogenously

determined.

Table 15.5 Distinctions between different contextual variables

Endogenously determined

Exogenously

determined

Inputs (X) Outputs (Y)

Environmental

(Z)

Controllable Material Services Market

conditionsLabour Units of production

Plant

Non-

controllable

Land Level of service provision (e.g. traffic

volume, contracted output)

Climate

Buildings Geography

(e.g. topology)

Assets with high

specificity
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15.9 Summary

This chapter has focused on the use of accounting information in DEA and provided

some caveats regarding its use. We have also mentioned its advantages and

discussed some typical accounting measures in the form of ratios. Ratios should

not be overlooked in DEA research given not only that the original (Charnes

et al. 1978) model started with a ratio, but also their familiarity to managers and

ease of communication. We also examined the types of accounting measures

commonly used in DEA models and suggest three models with publicly available

accounting information that could be useful in DEA research.

We discussed some common problems in DEA and how accounting can inform

the approaches used. When using financial information over time it is essential to

adjust for price changes if any pooled analysis over years is to be performed. We

show how failure to do this can distort DEA results. We then extended our

discussion to the use of activity-based costing models and show their correspon-

dence and links to DEA together with a case study of child immunisation. Next, we

discussed research using both DEA and balanced scorecards and their mutually

supporting roles in the selection of variables for DEA models as well as the

potential to integrate DEA into a balanced scorecard. We concluded with a discus-

sion of contingency theory and its relationship to contextual and environmental

factors. Most DEA studies of contextual or environmental factors ignore theory so

we believe that awareness of an underpinning theory can add to this literature’s

rigour.
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Chapter 16

DEA Environmental Assessment (I):
Concepts and Methodologies

Toshiyuki Sueyoshi

Abstract This study consists of two chapters (I and II, in Chaps. 16 and 17,

respectively). One of the two chapters discusses an empirical study in which this

research explains how to use DEA environmental assessment to establish corporate

sustainability. The other chapter summarizes previous works on the research area.

The first chapter (I) discusses that environmental assessment and protection are

important concerns in modern business. Consumers are interested in environmental

protection and they avoid purchasing products from dirty-imaged companies even

if their prices are much less than the ones produced by green-imaged companies. A

green image (often, not reality) of corporations is recently becoming very important

for corporate survivability in a global market. By extending previous works on

environment assessment and corporate sustainability, where companies need to

consider both economic prosperity and pollution prevention in their business

operations, this study discusses a use of Data Envelopment Analysis (DEA) for

environmental assessment by utilizing the radial measurement. The proposed

approach analytically incorporates different combinations of disposability concepts

into the proposed radial models. It is easily envisioned that the proposed radial

measurement for environmental assessment can guide corporate leaders and man-

agers in identifying how to invest for eco-technology innovation on the abatement

of undesirable outputs (e.g., industrial pollution). To document the practicality, this

study applies the proposed approach to 153 observations on S&P 500 corporations

in 2012 and 2013. The empirical investigation confirms that investors pay more

serious attention on company’s green image for corporate sustainability in a long

horizon than profitability in a short horizon.
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16.1 Introduction

This study consists of two chapters. This chapter discusses an empirical study in

which this research explains how to use DEA environmental assessment1 to estab-

lish corporate sustainability within U.S. industrial sectors where DEA stands for

Data Envelopment Analysis and U.S. stands for the United States of America. The

other section summarizes previous works on the research area.

The Intergovernmental Panel on Climate Change (IPCC),2 established by United

Nations environmental program, has recently reported a policy suggestion in April

(2014) that it is necessary for us to reduce an amount of Greenhouse Gas (GHG)

emissions, in particular CO2, by 40–70% (compared with 2010) until 2050 and to

reduce it at the level of almost zero by the end of this twenty-first century via

shifting our current systems to energy-efficient ones. Otherwise, the global

warming and climate change will destroy our natural and socio-economic systems.

Although it is almost impossible to establish our societies that do not produce

any GHG emissions, the global warming and climate change have been influencing

corporate behaviors and operations because all firms need to change their business

strategies in order to adapt various regulation changes for preventing industrial

pollutions at the level of U.S. federal and local governments. More importantly,

consumers do not purchase any products and services from a dirty-imaged company

even if the price is much less than that of a green-imaged company. The conven-

tional business logic and practice (e.g., less expensive price and high quality) do not

function anymore in modern corporations because they are now belonging to part of

a world-wide trend toward a sustainable society.

The benefits from adapting GHG technologies range from intangible ones, such

as improved public images as good (green) corporate citizen, to measurable ones

such as their lower direct and indirect emission levels. Unfortunately, acknowledg-

ing the importance of reducing GHG emissions, many companies often misunder-

stand a business linkage between the cost of GHG technologies and their overall

performances and business opportunities. It may be true in a myopic horizon that

1Glover and Sueyoshi (2009) discussed the history of DEA from the contributions of Professor

William W. Cooper who first invented DEA from the linkage of L1 regression proposed in

eighteenth century. Both DEA and L1 regression have a close linkage in these developments.

See also Ijiri and Sueyoshi (2010) that discussed the contributions of Professor Cooper from the

perspective of “social economics” and “social accounting”, both have provided DEA development

with a conceptual backbone. A contribution of the previous DEA efforts for environmental

assessment was that they found the importance of separating outputs into desirable and undesirable

outputs. That was a contribution, indeed. Previous DEA research efforts in the past decades,

including Boccard (2014), Chitkara (1999), Cooper et al. (1996), Korhonen and Luptacik (2004),

Mou (2014), Sarica and Or (2007), Shrivastava et al. (2012), Sueyoshi and Goto (2011), Sueyoshi

and Yuan (2015a, 2015b), Zhang et al. (2013), Zhou et al. (2013) and many other articles. An

important feature of these previous DEA studies was that they mainly used radial models for DEA

environmental assessment.
2 See IPCC’s webpage (http://ipcc.ch/index.htm).
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environmental protection requires a large amount of investment for GHG reduction

and the investment does not produce any direct benefit to them.

However, such a business concern is different in a long term horizon. As

discussed by Porter and van der Linde (1995), “environmental regulation does

not jeopardize corporate performance, but rather providing firms with an opportu-

nity to improve efficiency and competitiveness through environmental innovations

in processes and products”. In modern business reality, some companies clearly

understand the trade-off between their investments for low GHG emissions, includ-

ing low-carbon technologies, and enhancement in operational performance and its

related profit. The companies with a green image become more competitive and

strategic in today’s environmentally conscious markets. This clearly indicates that

modern corporations in all the sectors need to consider their technology invest-

ments on environmental protection and corporate performance enhancement from

the perspective of corporate sustainability in short and long term horizons.

A business difficulty, associated with attaining such corporate sustainability, is

that business leaders and academia do not have a practical methodology for

assessing the performance of firms in terms of their operational and environmental

achievements. Furthermore, is there any methodology that can guide their invest-

ment strategies for attaining the corporate stainability?

In replying such important inquiries, this study proposes a holistic methodology,

or DEA, to evaluate the performance of firms from their levels of corporate

sustainability. The proposed use of DEA, referred to as “DEA environmental

assessment”, has four research concerns to be explored in this study. First, it

incorporates two disposability concepts such as natural disposability and manage-

rial disposability, where operational performance is the first priority and environ-

mental performance is the second priority in the natural disposability. An opposite

priority order is found in the managerial disposability. Outputs and inputs, charac-

terizing their operational and environmental performance, are separated under

disposability combinations. Second, this study investigates the concept of conges-

tion on undesirable outputs, referred to as “Desirable Congestion (DC)”, in order to

identify effective investment for preventing industrial pollutions. The conventional

concept of congestion is “Undesirable Congestion (UC)”, which is applied to

desirable outputs. Third, as an empirical study, this research applies the proposed

approach, originated from different disposability combinations, for the perfor-

mance evaluation of S&P 500 companies. It is necessary for us to examine different

disposability concepts and methodologies to obtain useful policy and business

suggestions for guiding a large policy issue such as the global warming and climate

change. See Wang et al. (2014), Sueyoshi and Wang (2014a, b) and Sueyoshi and

Yuan (2015b). Finally, this study describes business implications obtained from the

proposed DEA application.

The remainder of this study is organized as follows. Section 16.2 provides a brief

literature review on DEA environmental assessment. See Chap. 17 of this study

provides a detailed literature study on DEA environmental assessment. Section 16.3

discusses underlying concepts incorporated into the proposed approach. Sec-

tion 16.4 describes radial models under different disposability concepts.
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Section 16.5 summarizes investment strategy. Section 16.6 applies the proposed

approach to evaluate the unified (environmental and operational) performance of

S&P 500 companies and summarizes empirical results obtained from the applica-

tion. Section 16.7 concludes this research along with future extensions.

16.2 Literature Review

First of all, see Chap. 17 of this study that lists 407 previous studies. Therefore, it is

important for us to note only the position of this research. That is, a limited number

of previous studies on applied energy have discussed corporate sustainability and

investment strategy by using DEA environmental assessment. Exceptions can be

found in Wang et al. (2014), Sueyoshi and Wang (2014a, b) and Sueyoshi and Yuan

(2015b). Such a business concern is very important for environmental assessment

for all industrial sectors in not only the U.S. but also other industrial nations. This

research will explore the issue as an empirical study. That is the purpose of this

study.

16.3 Underlying Concepts for DEA Environmental
Assessment

16.3.1 Abbreviations and nomenclatures

All abbreviations and nomenclatures used in this study (Chaps. 16 and 17) are

summarized as follows.

DC: Desirable Congestion,

DMU: Decision Making Unit,

DEA: Data Envelopment Analysis,

DTS: Damages to Scale,

DTR: Damages to Return,

EPA: Environmental Protection Agency

GHG: Greenhouse Gas

IPCC: Intergovernmental Panel on Climate Change

OPEC: Organization of the Petroleum Exporting Counties

RTS: Returns to Scale,

UC: Undesirable Congestion,

URS: Unrestricted,

UE: Unified Efficiency,

UEN: Unified Efficiency under Natural disposability,

UEM: Unified Efficiency under Managerial disposability,

UENM: Unified Efficiency under Natural & Managerial disposability,
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X: A column vector of m inputs,

G: A column vector of s desirable outputs,
B: A column vector of h undesirable outputs,

dxi : An unknown slack variable of the ith input,

dgr : An unknown slack variable of the rth desirable output,

dbf : An unknown slack variable of the fth undesirable output,

λ: An unknown column vector of intensity (or structural) variables,

Rx
i : A data range related to the ith input,

Rg
r : A data range related to the rth desirable output,

Rb
f : A data range related to the fth undesirable output,

vi: A dual variable of the ith input,

ur: A dual variable of the rth desirable output,

wf: A dual variable of the fth undesirable output and

σ: A dual variable to indicate the intercept of a supporting hyperplane on a

production and pollution possibility set.

16.3.2 Natural and Managerial Disposability

Let us consider X2Rm
þ as an input vector, G2Rs

þ as a desirable output vector and

B2Rh
þ as an undesirable output vector. These vectors are referred to as “production

factors” in this study. In addition to the vectors, the subscript ( j) is used to stand for
the jth DMU (Decision Making Unit: corresponding to an organization in private

and public sectors) and λj indicates the jth intensity variable ( j¼ 1, . . . , n) which is
used for connecting production factors.

Using an axiomatic expression, unified (operational and environmental) produc-

tion and pollution possibility sets to express natural and managerial disposability

are specified by the following two types of output vectors and an input vector,

respectively:

PN Xð Þ¼ G;Bð Þ :G�
Xn
j¼1

Gjλj, B�
Xn
j¼1

Bjλj, X�
Xn
j¼1

Xjλj,
Xn
j¼1

λj¼ 1, λj� 0 j¼ 1, . . . ,nð Þ
( )

&

PM Xð Þ¼ G;Bð Þ :G�
Xn
j¼1

Gjλj, B�
Xn
j¼1

Bjλj, X�
Xn
j¼1

Xjλj,
Xn
j¼1

λj¼ 1, λj� 0 j¼ 1, . . . ,nð Þ
( )

:

ð16:1Þ

The difference between the two concepts on disposability is that production

technology under natural disposability, or PN(X), has X �
Xn

j¼1 Xjλj. Meanwhile,

the managerial disposability, or PM(X), has X �
Xn

j¼1 Xjλj. The two disposability

concepts intuitively appeal to us because an efficiency frontier for desirable outputs

locates above or on all observations, while that of undesirable outputs locates below
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or on the observations. See Porter and van der Linde (1995) on a description on the

use of managerial disposability from corporate strategy.

It is important to note that the operational performance is the first priority and the

environmental performance is the second one under natural disposability in

assessing the unified efficiency. In contrast, the managerial disposability has an

opposite priority order in the assessment. This study considers the disposability

concepts as two different criteria for environmental assessment.

In the previous research efforts by DEA environmental assessment, an input

vector is usually assumed to project toward a decreasing direction. This assumption

is often inconsistent with the reality of environmental protection in a private sector.

For example, let us consider a manufacturing firm that can increase the input vector

if its marginal (or average) cost is less than the marginal (or average) sale because

the business condition produces profit to the firm. Thus, the conventional use of

DEA is often unacceptable in a private sector because the previous DEA studies

have implicitly assumed the minimization on total production cost. The cost

concept may be acceptable for the performance analysis of many organizations in

a public sector, but not for a private sector. Thus, it can be easily imagined that DEA

environmental assessment in the private sector, as discussed in this study, is

different from that of the public sector. The cost concept for guiding organizations

in the private sector is marginal cost or average cost, not the total cost. Furthermore,

the opportunity cost, originated from business risk due to industrial pollutions and

the other types of various problems (e.g., the disaster of Fukushima Daiichi nuclear

power plant), has a major role in modern business. As mentioned previously, no

consumer buys products from dirty-imaged companies even if their prices are much

less than those of green-imaged companies. Such opportunity cost is very important

in managing modern business. See, for example, the corporate sandal of

Volkswagen, found in 2015, that has been long cheating on CO2 emission produced

by its cars. It will take a long time for the car company to recover the trust from

consumers.

16.3.3 Unification Between Natural and Managerial
Disposability

Figure 16.1, adapted from Sueyoshi and Yuan (2015b), depicts a unification process

for combining desirable and undesirable outputs, which is separated into the three

stages (from I to III). For our visual convenience, Fig. 16.1 depicts the case of a

single component of the three production factors. It is easily extendable to the case

of multiple components in the proposed DEA formulation.

First stage (I) has two components (A) and (B). The first component (A) of the

stage (I) indicates the production relationship between an input (x) and a desirable

output (g) under the assumption that all DMUs produce a same amount of undesir-

able output (b). The production possible set (PrPS) is listed below a convex curve
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(Fg) in the x-g space. The set, indicating the location of all DMUs under the convex

curve, is structured by the concept of natural disposability.

Here, it is important to note that, as summarized in Table 17.1, most of previous

studies on DEA environmental assessment belong to Stage I(A) in their conceptual

frameworks.

The Stage I has the other component (B) which is structured by the concept of

managerial disposability. A pollution possibility set (PoPS), locating above the

concave curve of a pollution function (Fb), indicates the location of all DMUs in the

x-b space under the assumption that they produce a same amount of a desirable

output (g).
The second stage (II) unifies the two components of Stage I. The horizontal and

vertical coordinates for Stage II indicate x and g&b, respectively. The unification

makes it possible to identify the production and pollution possibility sets

(Pr&PoPS) between the convex (Fg) and concave (Fb) curves. All DMUs, locating

within the Pr&PoPS, is shaped by an intersection between the production and

pollution possibility sets.

Assumption for Output Unification: The third stage (III) incorporates the

assumption that “undesirable outputs are by-products of desirable outputs”.

The assumption seems trivial to us, but it drastically changes the structure of DEA

environmental assessment. For example, the assumption changes the two curves

(Fg and Fb) to be shaped by a convex form, as depicted in the bottom-right hand
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side of Fig. 16.1. Here, it is important to note that the production curve (Fg) should

have an increasing trend along with an input enhancement. However, the pollu-

tion curve (Fb) should have an increase tread due to the assumption, and then it

should have a decrease trend because of eco-technology innovation or other types

of environmental efforts for pollution reduction (a fuel mix strategy or a use of

inputs with less CO2 emission). Consequently, both curves should have a convex

form, which is structurally different from the two (I and II) stages of Fig. 16.1.

Thus, Fig. 16.1 visually describes a rationale regarding why DEA environmental

assessment is more complicated and more difficult than a conventional use of

DEA, as mentioned previously. Thus, the existence of undesirable outputs makes

the assessment very difficult from the conventional use of DEA, as depicted in

Fig. 16.1.

16.3.4 Desirable Congestion (DC)

Figure 16.2 exhibits a desirable output (g) on the horizontal axis and an undesirable
output (b) on the vertical axis. The negative slope of a supporting hyperplane

indicates an occurrence of DC, or eco-technology to reduce an amount of an

undesirable output. The occurrence of DC implies that an enlarged input (x)
increases a desirable output (g) and decreases an undesirable output vector (b).
This study is interested in an occurrence of DC because we look for corporate

sustainability that indicates economic prosperity and environmental protection by

eco-technology innovation. Equality constraints should be assigned to desirable

outputs (G) in the case.
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It is important to note the following two concerns on Fig. 16.2.

(a) The convex curve needs an assumption that undesirable outputs are

by-products of desirable output. It becomes a concave curve without the

assumption.

(b) An occurrence of desirable congestion (DC) implies that we can measure

eco-technology innovation to reduce the amount of undesirable outputs.

16.4 Unified Efficiency

16.4.1 Unified Efficiency (UE)

The unified (operational and environmental) performance, or often referred to as

Debrew3-Farrell4 measure, of DMUs (Decision Making Unites: organizations to be

3Gérard Debreu (July 4, 1921–December 31, 2004) was a French economist and mathematician,

who came to have United States citizenship. Best known as a professor of economics at the

University of California, Berkeley, where he began working in 1962. Gerard Debreu’s contribu-

tions are in general equilibrium theory—highly abstract theory about whether and how each

market reaches equilibrium. In a famous paper, coauthored with Kenneth Arrow and published

in 1954, Debreu proved that under fairly unrestrictive assumptions, prices may exist for bring

markets into equilibrium. In his 1959 book, The Theory of Value, Debreu introduced more general

equilibrium theory, using complex analytic tools from mathematics—set theory and topology—to

prove his theorems. In 1983 Debreu was awarded the Nobel Prize for having incorporated new

analytical methods into economic theory and for his rigorous reformulation of the theory of

general equilibrium. See http://books.google.co.jp/books?id¼Z6Oy4L6LSwC&pg¼PA140&
lpg¼PA140&dq¼debreu+farrell&source¼bl&ots¼aLkVeuwk9u&sig¼SYkaHtL56JXvZjUW0j

JHg33cw0o&hl¼ja&sa¼X&ei¼QZ03VPP1CtXc8AWAyoCQDA&ved¼0CEoQ6AEwBg#v¼o
nepage&q¼debreu%20farrell&f¼false
4 His name was Michael James Farrell who was an applied economist at University of Cambridge,

UK. Unfortunately, his study had a difficulty in finding his personal information on his birth and

death dates. Since his contribution had been long supported by many production economists, this

study needs to review his contributions from the perspective of DEA. Our review discussion is

based upon the three articles (Farrell 1954; Farrell 1957; Farrell and Fieldhouse 1962). The first

article (Farrell 1954: An application of activity analysis to the theory on the firm) was prepared

when he visited Yale University (USA) where he could meet T.C. Koopmans and J. Tobin. In the

article (1954, p. 292), he discussed “activity analysis”, proposed by Koopmans, which could

explore the corporate behavior of a firm by an application of “linear programming”. In his article,

the production relationship between production factors could be expressed by a static model in

multiple periods. As a result, linear programming could be applicable to the assessment of

corporate behavior. The second article (Farrell 1957: The measurement of productive efficiency)

was innovative and it was closely related to the classical DEA development by providing the

methodology with a conceptual basis. The article discussed an efficient production function,

inspired by the activity analysis of linear programming (1957, p. 11) and started discussing an

efficiency measure, referred to as “technical efficiency”, which was first discussed in Debreu’s

“coefficient of resource utilization” (Debreu 1951). In addition to the concept of technical

efficiency, According to his article (1957, p. 255), “an efficient production function might be
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measured) is characterized by their production activities that utilize inputs to yield

desirable and undesirable outputs. This study considers n DMUs, or organizations

to be evaluated by DEA. An important feature of DEA environmental assessment is

that the achievement of each DMU is relatively compared with those of the

remaining others. The performance level is referred to as “an efficiency measure”.

The proposed approach uses the following data ranges related to inputs,

desirable and undesirable outputs:

Rx
i ¼ mþsþhð Þ�1 max xij

��j¼1, ... ,n
� ��min xij

��j¼1, ... ,n� �� ��1
for i¼1, ...,m,

Rg
r ¼ mþsþhð Þ�1ðmaxfgrjjj¼1, ...,ng�minfgrjjj¼1, ...,ng�1 for r¼1, ...,s and

Rb
f ¼ mþsþhð Þ�1 max bf j

��j¼1, ... ,n
� ��min bf j

��j¼1, ... ,n� �� ��1
for f ¼1, ...,h;

respectively. All the three data ranges are identified from an observed data set so

that they are given to us before computing the proposed approach. Later, the inputs

are further separated into two categories by the two disposability concepts. How-

ever, it is not necessary to change anything on the input ranges because they are

determined by observations on each input.

expressed by a theoretical function specified by “engineers”. However, such an engineering-

based empirical function was complicated and practically impossible to measure the theoretical

efficiency function from the perspective of production economics. This study pays attention to the

fact that Farrell (1957) has used the term “technical efficiency” because of his awareness on the

engineering perspective, following Debreu (1951). Here, we may have simple questions such as

“what engineering was” and “what type of technology was” in his economics context. It is very

clear to us that the production technology in the middle of the twentieth century is by far different

from the current one in the beginning of the twenty-first century. Fully acknowledging his

contribution in production economics, this study does not use the term “technical efficiency” to

avoid our confusion with “technology innovation” on industrial pollution that is the gist of this

chapter. The second article (1957, p. 255 and p. 260) also discussed “price efficiency” and

“overall efficiency” under increasing and diminishing RTS. These economic concepts have

long provided us with a conceptual basis on DEA. No wonder why many studies have discussed

his contribution as a staring study of DEA even if he did not mention anything on DEA. Finally,

the third article (1962, Farrell and Fieldhouse: Estimating efficient production function under

increasing returns to scale) extended Farrell’s study (1967) by discussing a linear programming

structure that was solved by the simplex method of linear programming (1967, pp. 265–266).

Their study documented two interesting concerns from our perspective. One of the interesting

concerns was that they knew an occurrence of degeneracy, or multiple solutions. The other

concern was that they discussed the importance of a dual formulation, not discussed by produc-

tion economists even nowadays. As discussed by Glover and Sueyoshi (2009), it is easily

imagined that their appendix on the method of computation (1967, pp. 264–267) was guided by

Alan Hoffman, as a reviewer of their manuscript, who was an operations researcher. Conse-

quently, their description on computation is still useful in modern DEA algorithmic development.

It may be true that many DEA researchers have been long discussing the concept of technical

efficiency, due to Farrell’s engineering concern, but not paying serious attention its dual formu-

lation, as discussed by their works (1967). As documented in their study (1967), the collaboration

between production economics and operations research/management science is essential in

extending new research dimensions on DEA.
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The research efforts by Sueyoshi and Goto (2012b, c, 2013a, b, 2014a, b) have

proposed the following radial model for DEA environmental assessment:

Maximize ξþ εs
Xm
i¼1

Rx
i dxþi þ dx�i
� �þXs

r¼1
Rg
r d

g
r þ

Xh
f¼1

Rb
f d

b
f

" #

s:t:
Xn
j¼1

xijλj � dxþi þ dx�i ¼ xik i ¼ 1, . . . ,mð Þ,
Xn
j¼1

grjλj � d g
r � ξgrk ¼ grk r ¼ 1, . . . , sð Þ,

Xn
j¼1

bf jλj þ d b
f þ ξbf k ¼ bf k f ¼ 1, . . . , hð Þ,

Xn
j¼1

λj ¼ 1,

λj � 0 j ¼ 1, . . . , nð Þ, ξ : URS,
dxþi � 0 i ¼ 1, . . . ,mð Þ, dx�i � 0 i ¼ 1, . . . ,mð Þ,
d g
r � 0 r ¼ 1, . . . , sð Þ, and d b

f � 0 f ¼ 1, . . . , hð Þ;

ð16:2Þ

where ξ is an inefficiency score, indicating a distance between an efficiency frontier
and an observed vector of desirable and undesirable outputs. This study sets εs as
0.0001 for our computation convenience to reduce an influence of slacks. A

subjective decision may occur on the selection of εs. Historically, it was considered
that εs was a Non-Archimedean small number in DEA. However, none knows what

it is in reality. In avoiding such a specification difficulty, it is possible for us to use

εs ¼ 0 in Model (16.2). However, in the case, dual variables may become zero on

some production factors so that information on production factors in a data set is not

fully utilized in Model (16.2). This is problematic and unacceptable as a computa-

tional result of DEA performance assessment.

The two slacks related to the ith input are mathematically defined as dxþi ¼
d x
i

�� ��þ d x
i

� �
=2 and dx�i ¼ d x

i

�� ��� d x
i

� �
=2. They are mutually exclusive so that a

simultaneous occurrence of both dxþi > 0 and dx�i > 0 (i¼ 1, . . . , m) should be

excluded from the optimal solution of Model (16.2). When the simultaneous

occurrence occurs on Model (16.2), a computer code usually produces “an

unbounded solution” because of violating the nonlinear conditions.

To make Model (16.2) satisfy the nonlinear conditions, the previous studies

(e.g., Sueyoshi and Goto 2012a) have suggested the following two computational

alternatives:

(a) One of the two alternatives is that Model (16.2) incorporates the nonlinear

conditions into Model (16.2) as side constraints and then we solve Model

(16.2) with dxþi dx�i ¼ 0 ( i¼ 1, . . . , m) as a nonlinear programming problem.

(b) The other alternative is that Model (16.2) incorporate the following side

constraints: dxþi � Mzþi , d
x�
i � Mz�i , z

þ
i þ z�i � 1, zþi and z�i : binary (i¼ 1,

. . . m) and solve Model (16.2) with the side constraints as a mixed integer
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programming problem. Here,M stands for a very large number that we need to

prescribe before our computational operation.

After solving Model (16.2) with the nonlinear conditions, the level of unified

efficiency (UE) of the kth DMU is determined by

UE ¼ 1� ξ* þ εs
Xm
i¼1

Rx
i dxþ*i þ dx�*i

� �þXs
r¼1

Rg
r d

g*
r þ

Xh
f¼1

Rb
f d

b*
f

 !" #
: ð16:3Þ

Here, the inefficiency score and slacks within the parentheses are obtained from the

optimality of Model (16.2).

16.4.2 Unified Efficiency under Natural Disposability (UEN)

Formulation for Stage I (A): The research efforts of Sueyoshi and Goto (2012b, c,

2013a, b, 2014a, b) and Sueyoshi and Yuan (2015a, b) have proposed the following

radial model to measure the unified efficiency of the kth DMU under natural

disposabilit)y:

Maximize ξþ εs
Xm
i¼1

Rx
i d

x�
i þ

Xs
r¼1

Rg
r d

g
r þ

Xh
f¼1

Rb
f d

b
f

" #

s:t:
Xn
j¼1

xijλj þ dx�i ¼ xik i ¼ 1, . . . ,mð Þ,
Xn
j¼1

grjλj � d g
r � ξgrk ¼ grk r ¼ 1, . . . , sð Þ,

Xn
j¼1

bf jλj þ d b
f þ ξbf k ¼ bf k f ¼ 1, . . . , hð Þ,

Xn
j¼1

λj ¼ 1,

λj � 0 j ¼ 1, . . . , nð Þ, ξ : URS, dx�i � 0 i ¼ 1, . . . ,mð Þ,
d g
r � 0 r ¼ 1, . . . , sð Þ, and d b

f � 0 f ¼ 1, . . . , hð Þ:

ð16:4Þ

A unified efficiency score (UEN) )under natural disposability on the kth DMU is

measured by

UEN ¼ 1� ξ* þ εs
Xm
i¼1

Rx
i d

x�*
i þ

Xs
r¼1

Rg
r d

g*
r þ

Xh
f¼1

Rb
f d

b*
f

 !" #
; ð16:5Þ
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where the inefficiency score and all slack variables are determined on the optimality

of Model (16.4). The equation within the parenthesis, obtained from the optimality

of Model (16.4), indicates the level of unified inefficiency under natural dispos-

ability. The unified efficiency is obtained by subtracting the level of inefficiency

from unity.

16.4.3 Unified Efficiency under Managerial Disposability
(UEM)

Formulation for Stage I (B): Shifting our research interest from natural disposabil-

ity to managerial disposability, where the first priority is environmental perfor-

mance and the second priority is operational performance, this study utilizes the

following radial model that measures the unified efficiency of the kth DMU

(Sueyoshi and Goto 2012b, c, 2013a, b, 2014a, b; Sueyoshi and Yuan 2015a, b):

Maximize ξþ εs
Xm
i¼1

Rx
i d

xþ
i þ

Xs
r¼1

Rg
r d

g
r þ

Xh
f¼1

Rb
f d

b
f

" #

s:t:
Xn
j¼1

xijλj � dxþi ¼ xik i ¼ 1, . . . ,mð Þ,
Xn
j¼1

grjλj � d g
r � ξgrk ¼ grk r ¼ 1, . . . , sð Þ,

Xn
j¼1

bf jλj þ d b
f þ ξbf k ¼ bf k f ¼ 1, . . . , hð Þ,

Xn
j¼1

λj ¼ 1,

λj � 0 j ¼ 1, . . . , nð Þ, ξ : URS, dxþi � 0 i ¼ 1, . . . ,mð Þ,
d g
r � 0 r ¼ 1, . . . , sð Þ, and d b

f � 0 f ¼ 1, . . . , hð Þ:

ð16:6Þ

An important feature of Model (16.6) is that it changes þdx�i of Model (16.4) to

�dxþi in order to attain the status of managerial disposability. No other change is

found in Model (16.6).

A unified efficiency score (UEM) on the kth DMU under managerial disposabil-

ity is measured by

UEM ¼ 1� ξ* þ εs
Xm
i¼1

Rx
i d

xþ*
i þ

Xs
r¼1

Rg
r d

g*
r ;þ

Xh
f¼1

Rb
f d

b*
f

 !" #
; ð16:7Þ

where the inefficiency score and all slack variables are determined on the optimality

of Model (16.6). The equation within the parenthesis, obtained from the optimality
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of Model (16.6), indicates the level of unified inefficiency under managerial

disposability. The unified efficiency is obtained by subtracting the level of ineffi-

ciency from unity.

16.4.4 Unified Efficiency under Natural and Managerial
Disposability (UENM)

Formulation for Stage II: A possible unification between Models (16.4) and (16.6)

is that it combines the two models along with the separation on inputs into two

categories under natural and managerial disposability. Consequently, inputs and

outputs are classified into four categories (2 input groups� 2 output groups) for the

measurement of UENM. This study proposes the following radial model measures

the level of UENM (Goto et al. 2014):

Maximize ξþ εs
Xm�
i¼1

Rx
i d

x�
i þ

Xmþ
q¼1

Rx
qd

xþ
q þ

Xs
r¼1

Rg
r d

g
r þ

Xh
f¼1

Rb
f d

b
f

" #

s:t:
Xn
j¼1

x�ij λj þ dx�i ¼ x�ik i ¼ 1, . . . ,m�ð Þ,
Xn
j¼1

xþqjλj � dxþq ¼ xþqk q ¼ 1, . . . ,mþð Þ,
Xn
j¼1

grjλj � d g
r � ξgrk ¼ grk r ¼ 1, . . . , sð Þ,

Xn
j¼1

bf jλj þ d b
f þ ξbf k ¼ bf k f ¼ 1, . . . , hð Þ,

Xn
j¼1

λj ¼ 1,

λj � 0 j ¼ 1, . . . , nð Þ, ξ : URS,
dx�i � 0 i ¼ 1, . . . ,m�ð Þ, dxþq � 0 q ¼ 1, . . . ,mþð Þ,
d g
r � 0 r ¼ 1, . . . , sð Þ and d b

f � 0 f ¼ 1, . . . , hð Þ:

ð16:8Þ

Here, the number of original m inputs are newly separated into m� (under

natural disposability) and mþ (under managerial disposability), respectively, in

Model (16.8). The model maintains m¼m�+m+. One of the two input catego-

ries uses inputs x�ij
� �

whose slacks dx
�
i

� �
for i¼ 1, . . ., m� are formulated under

natural disposability. For example, the number of employees belongs to the

input category. Meanwhile, the other category contains inputs xþqj
� �

whose
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slacks dx
þ
q

� �
for q¼ 1, . . ., m+ are formulated under managerial disposability.

For example, the amount of capital investment for eco-technology innovation

belongs to the input category. As formulated in Model (16.8), the input vector

of the jth DMU is separated into the two groups under natural and managerial

disposability.

The level of unified efficiency (UENM) under natural and managerial dispos-

ability is measured by

UENM ¼ 1� ξ* þ εs
Xm�
i¼1

Rx
i d

x�*
i þ

Xmþ
q¼1

Rx
qd

xþ*
q þ

Xs
r¼1

Rg
r d

g*
r þ

Xh
f¼1

Rb
f d

b*
f

 !" #
;

ð16:9Þ

The dual formulation of Model (16.8) becomes as follows:

Minimize
Xm�
i¼1

vix
�
ik �

Xmþ
q¼1

zqx
þ
qk�

Xs
r¼1

urgrkþ
Xh
f¼1

wf bf kþσ

s:t:
Xm�
i¼1

vix
�
ij �

Xmþ
q¼1

zqx
þ
qj�

Xs
r¼1

urgrjþ
Xh
f¼1

wf bf jþ σ� 0 j¼ 1, . . . ,nð Þ,

Xs
r¼1

urgrkþ
Xh
f¼1

wf bf k ¼ 1

vi� εsR
x
i i¼ 1, . . . , m�ð Þ,

zq� εsR
x
q q¼ 1, . . . mþð Þ
ur � εsR

g
r r¼ 1, . . . , sð Þ,

wf � εsR
b
f f ¼ 1, . . . , hð Þ,
σ : URS;

ð16:10Þ

wherevi (i¼ 1, . . . ,m�), zq (q¼ 1, . . . ,m+), ur (r¼ 1, . . . , s) and wf (f¼ 1, . . ., h) are
all dual variables related to the first, second, third and fourth groups of constraints in

Model (16.8). The dual variable (σ), which is unrestricted, is obtained from the last

equation of Model (16.8). The objective value of Model (16.8) equals that of Model

(16.10) on optimality.

A contribution of UENM, measured by Models (16.8) and (16.10), is that these

models combine the two disposability concepts into a single criterion where they

are equally treated in environmental assessment. A drawback of UENM is that it

does not incorporate an occurrence of DC, or eco-green technology innovation on

undesirable outputs. See Stage II of Fig. 16.1 that visually describes the methodo-

logical difficulty.

To intuitively describe a rationale onwhyModels (16.8) and (16.10) have a difficulty

in measuring eco-technology innovation, this study returns to Model (16.10) by

which the supporting hyperplane is expressed by vx� � zxþ � ugþ wbþ σ ¼ 0, or
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wb ¼ �vx� þ zxþ þ ug� σ, in the case where all production factors have a single

component. Sincew is positive in its sign, the supporting hyperplane is unacceptable

because an increase in the input under natural disposability ( x� ) decreases

the undesirable output. Such an observation should be reversely applicable to the

input under managerial disposability ( xþ ). The relationship is unacceptable for

this study so that Models (16.8) and (16.10) need to be reorganized as in the

next section.

16.4.5 Unified Efficiency under Natural and Managerial
Disposability: UENM(DC) with a Possible
Occurrence of Desirable Congestion (Eco-technology
Innovation)

Formulation for Stage III: To identify a possible occurrence DC, or eco-technology
innovation, this study reorganizes the hyperplane like vx� � zxþ þ ug� wbþ
σ ¼ 0. The corresponding dual formulation to satisfy the requirement in the case

of multiple production factors becomes as follows:

Minimize
Xm�
i¼1

vix
�
ik �

Xmþ
q¼1

zqx
þ
qkþ

Xs
r¼1

urgrk�
Xh
f¼1

wf bf kþσ

s:t:
Xm�
i¼1

vix
�
ij �

Xmþ
q¼1

zqx
þ
qjþ

Xs
r¼1

urgrj�
Xh
f¼1

wf bf jþσ � 0 j¼ 1, . . . ,nð Þ,
Xs
r¼1

urgrk ¼ 1

vi� εsR
x
i i¼ 1, . . . ,m�ð Þ,

zq� εsR
x
q q¼ 1, . . . ,mþð Þ,
ur : URS r¼ 1, . . . ,sð Þ,

wf � εsR
b
f f ¼ 1, . . . ,hð Þ,
σ : URS;

ð16:11Þ

The primal formulation of Model (16.11) can be specified as follows:
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Maximize ξþ εs
Xm�
i¼1

Rx
i d

x�
i þ

Xmþ
q¼1

Rx
qd

xþ
q þ

Xh
f¼1

Rb
f d

b
f

" #

s:t:
Xn
j¼1

x�ij λj þ dx
�
i ¼ x�ik i ¼ 1, . . . , m�ð Þ,

Xn
j¼1

xþqjλj � dx
þ
q ¼ xþqk q ¼ 1, . . . , mþð Þ,

Xn
j¼1

grjλj þ ξgrk ¼ grk r ¼ 1, . . . , sð Þ,
Xn
j¼1

bf jλj � d b
f ¼ bf k f ¼ 1, . . . , hð Þ,

Xn
j¼1

λj ¼ 1,

λj � 0 j ¼ 1, . . . , nð Þ, ξ : URS, dx
�
i � 0 i ¼ 1, . . . ,m�ð Þ,

dx
þ
q � 0 q ¼ 1, ::,mþð Þ and d b

f � 0 f ¼ 1, ::, hð Þ:
ð16:12Þ

The unified efficiency score, or UENM(DC), is measured by

UENM DCð Þ ¼ 1� ξ* þ εs
Xm�
i¼1

Rx
i d

x�*
i þ

Xmþ
q¼1

Rx
qd

xþ*
q ;þ

Xh
f¼1

Rb
f d

b*
f

 !" #
; ð16:13Þ

where the inefficiency score and slacks are determined on the optimality of Model

(16.12).

16.5 Investment Strategy

After solving Model (16.12), this study can identify an occurrence of DC, or green

technology innovation for pollution mitigation, by the following rule along with the

assumption on a unique optimal solution (Sueyoshi and Goto 2014b):

(a) if uþ*r ¼ 0 for some (at least one) r, then “weak DC” occurs on the kth DMU,

(b) if uþ*r < 0 for some (at least one) r, then “strong DC” occurs on the kth DMU

and

(c) if uþ*r > 0 for all r, then “no DC” occurs on the kth DMU.

Note that if uþ*r < 0 for some r and uþ*
r0
¼ 0 for the other r0, then this study

considers that the strong DC occurs on the kth DMU. It is indeed true that uþ*r < 0

for all r is the best case because an increase in any desirable output always

decreases an amount of undesirable outputs. Meanwhile, if uþ*r < 0 is identified
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for some r, then it indicates that there is a chance to reduce an amount of

undesirable output(s). Therefore, this study also considers the second case as an

investment opportunity because we want to reduce an amount of industrial pollu-

tion as much as possible.

Under an occurrence of strong DC (i.e., uþ*r < 0 for at least one r), the effect of
investment on undesirable outputs is determined by the following rule:

(a) if z*q > εsR
x
q for q in Model (16.12), then the qth input for investment under

managerial disposability can effectively decrease an amount of undesirable

outputs and

(b) if z*q ¼ εsR
x
q for q in Model (16.12), then the qth input for investment has a

limited effect on decreasing an amount of undesirable outputs.

The investment on inputs under managerial disposability is not recommended in

the other two cases (i.e., no and weak DC). Furthermore, this study uses “a limited

effect” in the second case. The term implies that if this study drops the data range on

the qth input in Model (16.12), then there is a high likelihood that z�q may become

zero. Moreover, z*q > εRx
q are required for some q, but not necessary for all q.

Finally, it is important to note that the proposed investment classification needs

at least two desirable outputs because unrestricted u in Model (16.12) cannot

produce a negative value on the dual variable, so being unable to identify an

investment opportunity, in the case of a single desirable output. Thus, the invest-

ment rule discussed in this study needs multiple desirable outputs.

16.6 Empirical Study

This study obtains a data set from Wang et al. (2014) and Sueyoshi and Wang

(2014a) whose data source is the Carbon Disclosure Project (CDP) and

COMPUSTAT. The CDP builds the world’s largest database regarding corporate

performance and climate change by collecting data sets via annual online question-

naire sent out to major firms across the world. This study utilizes the data on S&P

500 companies for 2012 and 2013, including the companies’ direct and indirect

GHG emission, the investment in carbon mitigation and the corresponding total

estimated GHG saving.

It is important to note the two concerns on the data set. One of the two concerns

is that among the S&P 500 companies responding to the CDP survey, some

companies choose not to provide detailed information of their climate change

strategies. This study excludes all of such companies that have refused to disclose

information in any of the above data fields. The other concern is that the usage of

survey data depends upon the accuracy and trustworthiness of the self-reported

information. The CDP data indicates whether a company’s emission has been

verified by a third-party institution. To address the second concern about data

accuracy, this study restricts the data sample to companies that have obtained
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third-party verification of their GHG emissions. Eventually, this study has obtained

a panel of 153 observations from S&P 500 companies over the annual periods

2012–2013. The selected companies include consumer discretionary companies

such as General Motors, consumer staple companies such as PepsiCo, energy

companies such as Chevron, health care companies such as Pfizer, industrial

companies such as Boeing, information technology like Google and Intel, material

companies such as Alcoa. This study has confirmed matching between the CDP

data set and the operational characteristics and financial performance of firms

obtained from COMPUSTAT.

The data set consists of the following operational, environmental and financial

factors:

(a) Estimated CO2 Saving: This indicates the annual CO2 saving from a

company’s current emission level after the investment in abatement technol-

ogies. The variable can be regarded as a measure of a company’s technology

capacity.

(b) Return on Assets: This is defined as the ratio between net income and total

assets. It is incorporated as a measure of firm profitability.

(c) Direct CO2 Emission: This measures an amount of emissions from sources

owned by a company. The cost of adapting pollution prevention practices and

the effectiveness of pollution prevention as a strategy for reducing emissions

may vary with a scale of current emission.

(d) Indirect CO2 Emission: This measures an amount of emissions from genera-

tion of electricity, steam, heating and cooling purchased by a company offsite.

(e) Number of Employees: This is regarded as a proxy for a firm size. Larger firms

may have more resources to adapt CO2 mitigation practices.

(f) Working Capital: This is included to indicate the operating liquidity of a firm.

Firms with higher working capital may invest more in CO2 mitigation.

(g) R&D Expense: This is another measure of a firm’s technology capacity. It is

expected that firms with higher R&D expense is more likely to acquire and

implement efficient emission control technology.

(h) Total Assets: This includes current assets, property, plant and equipment, all of

which are used as another proxy for a corporate size.

(i) Investment in CO2 Abatement: This gives a total amount of investment that a

company is required to make to achieve the estimated annual CO2 saving.

Profit maximizing firms are expected to choose technology according to their

cost performance and effectiveness in mitigating the amount of CO2

emissions.

In summary, this study utilizes two desirable outputs (i.e., estimated annual CO2

saving and return on assets), two undesirable outputs (i.e., direct and indirect CO2

emissions), three inputs under natural disposability (i.e., number of employees,

working capital and total assets), two inputs under managerial disposability (i.e.,

investment in CO2 abatement and R&D expense).

Table 16.1 documents descriptive statistics on the data set used in this study in

which Avg., S.D. Min. and Max. indicate average, standard deviation, minimum
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and maximum, respectively. To control for heterogeneity across sectors, this study

further calculates industry-adjusted index to be used in DEA models for all the

variables. The index of a variable is the ratio of its actual value to the industry

average of that variable.

Table 16.2 summarizes five unified efficiency scores, orUE, UEN, UEM, UENM
and UENM(DC), of firms in the IT industry as an illustrative purpose. As summa-

rized at the bottom of Table 16.2, the five unified efficiency measures are 0.3587 in

UE, 0.4853 in UEN, 0.5800 in UEM, 0.6295 in UENM and 0.7425 in UENM(DC),
respectively, on average. UE is a unified efficiency measure for operational and

environmental performance, UEN is a measure which has the first priority on

operational performance and the second one on environmental performance.

UNM indicates an opposite case. UENM combines the two disposability concepts.

UENM(DC) incorporates a possible occurrence of eco-technology innovation to

reduce the amount of undesirable outputs. For example, Applied Materials Inc.

(2012) exhibited the status of efficiency in the five efficiency measures. The other

firms have some level of inefficiency in these measures.

To explain the implications of the five efficiency measures, let us pay attention to

Yahoo! Inc. The firm had 0.0354 in UE, 0.0622 in UEN, 0.5679 in UEM, 0.3346 in

UENM and 1.0000 inUENM(DC) during 2012. These measures indicated the status

of inefficiency in the first four performance measures. However, the efficiency

(1.0000) in UENM(DC) indicated that the firm had a very high level of investment

opportunity in 2012. Such an investment changed the status of the other four

efficiency measures from inefficiency to efficiency in 2013. As a result of invest-

ment on technology innovation in 2012, the Yahoo! did not need the investment for

technology innovation anymore so that the measure of UENM(DC) dropped to

0.1317 in 2013.

Table 16.3 allows us to compare the performance of the seven main industrial

sectors and their industrial subgroups. In the table, the materials sector exhibited the

best performance (0.501), the energy sector was the second (0.3709) and the IT

sector was the third (0.3587) in their UE measures. Meanwhile, the energy sector

was the best (0.7290), the IT sector was the second (0.6295) and the material sector

was the third (0.5919) in terms of their UENM measures. The major difference

between UE and UENM is that the latter has the input classification under the two

disposability concepts, but the former does not have such a classification. This

study used both R&D expenditure and investment in CO2 abatement as the inputs

under managerial disposability. The computational result of Table 16.3 indicated

that the energy sector had the most promising area for investment on technology

innovation among the seven industrial sectors.

Table 16.4 lists dual variables, the type of DC (S: Strong DC and No: No DC)

and the type of investment effect (E: effective and L: limited) on the IT sector. A

blank space indicates that the type is no DC so that it is not necessary for us to

consider an opportunity for investment. Table 16.5 summarizes the effective and

limited investment opportunities on the seven industrial sectors. On overall aver-

age, 46 observations (30.07%) were rated as efficient observations and 2 firms

434 T. Sueyoshi



Table 16.2 Unified efficiency measures of IT Industry

Company name UE UEN UEM UENM UENM (DC)

Adobe Systems, Inc. (2012) 0.4975 0.5340 0.7685 0.6200 0.1850

Adobe Systems, Inc. (2013) 0.3680 0.4187 0.5834 0.4265 0.2607

Automatic Data Processing, Inc. (2012) 0.0980 0.0756 0.7548 0.0760 0.4584

Automatic Data Processing, Inc. (2013) 0.0715 0.0715 0.5911 0.0747 0.3684

Akamai Technologies Inc. (2012) 0.5275 1.0000 0.7847 1.0000 0.6043

Akamai Technologies Inc. (2012) 0.1480 1.0000 0.1738 1.0000 0.9378

Altera Corp. (2012) 1.0000 1.0000 1.0000 1.0000 0.4993

Altera Corp. (2013) 0.6842 0.8539 1.0000 1.0000 1.0000

Applied Materials Inc. (2012) 1.0000 1.0000 1.0000 1.0000 1.0000

Broadcom Corporation (2012) 0.2210 0.2239 0.6159 0.6638 1.0000

Broadcom Corporation (2013) 0.2427 0.2581 1.0000 1.0000 1.0000

CA Technologies (2012) 0.1491 0.6130 0.2172 1.0000 0.6477

CA Technologies (2013) 0.1570 0.3810 0.2247 0.6239 0.3332

Spansion Inc. (2013) 0.0329 0.0841 0.0329 0.0809 1.0000

Compuware Corp. (2012) 0.3702 1.0000 0.3890 1.0000 1.0000

EMC Corporation (2012) 0.0291 0.0934 0.3527 1.0000 1.0000

EMC Corporation (2013) 0.0352 0.0462 0.4039 1.0000 1.0000

Fairchild Semiconductor (2013) 0.0636 0.0643 0.0248 0.0630 1.0000

Google Inc. (2012) 0.3542 0.2806 1.0000 0.5454 1.0000

Google Inc. (2013) 0.2537 0.0966 1.0000 0.4660 1.0000

Intel Corporation (2013) 1.0000 0.9893 1.0000 1.0000 1.0000

Jabil Circuit, Inc. (2012) 0.1510 1.0000 0.6985 0.3490 0.7048

Jabil Circuit, Inc. (2013) 0.1915 1.0000 1.0000 0.2007 0.8015

JDS Uniphase Corp. (2012) 1.0000 0.3034 0.2235 0.3223 0.7630

Juniper Networks, Inc. (2013) 0.1943 0.1304 0.3533 0.2901 1.0000

KLA-Tencor Corporation (2013) 0.8238 0.8928 0.8579 0.8722 0.2707

LSI Corporation (2012) 0.4624 0.8477 0.5238 1.0000 1.0000

LSI Corporation (2013) 0.2625 0.4659 0.2981 1.0000 1.0000

Lexmark International, Inc. (2013) 0.0989 0.1286 0.1134 0.2311 1.0000

Microchip Technology (2012) 0.0803 0.4493 0.1026 0.4015 0.1773

Microchip Technology (2013) 0.0488 0.0635 0.0401 0.0620 0.4456

Marvell Technology Group Ltd. (2012) 0.2966 0.4010 0.5209 0.6436 1.0000

Marvell Technology Group Ltd. (2013) 0.3975 0.4563 1.0000 1.0000 1.0000

Microsoft Corporation (2012) 0.9168 0.9168 1.0000 1.0000 1.0000

Microsoft Corporation (2013) 0.3524 0.3524 1.0000 1.0000 1.0000

NetApp Inc. (2013) 0.0705 0.0757 0.1953 0.1077 0.5535

NVIDIA Corporation (2012) 0.2959 0.3046 0.6037 0.6131 0.3787

Oracle Corporation (2013) 0.3450 0.3450 1.0000 0.7059 0.4189

SanDisk Corporation (2012) 0.3967 0.6041 0.6451 0.4624 0.3433

Symantec Corporation (2012) 0.0759 1.0000 0.3840 1.0000 1.0000

Symantec Corporation (2013) 0.0666 0.1348 0.2669 0.4339 1.0000

Teradyne Inc. (2012) 0.6609 1.0000 0.6697 1.0000 0.3371

(continued)
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(1.31%) among 153 total observations were rated as limited investments in terms of

developing green technology innovation for corporate sustainability.

In Table 16.5, the energy sector had the highest fraction (46.15%) of effective

investments, marked by E, among the seven industrial sectors, along with limited

investment effect (7.69%). This result indicated that investment for technology

innovation in the energy section was the most effective in developing corporate

sustainability, compared with the other six industrial sectors. In other words, the

energy sector produces a large amount of CO2 emission. Therefore, it is important

for the United States to start controlling the amount of CO2 emission by paying

attention to the investment to firms in the energy sector.

It is important to note that the examination of firms with E (effective investment)

provides us with a guidance on which firms have proper technology to enhance

corporate sustainability. Such a firm selection can reduce the number of technically

advanced firms and makes it possible that we can identify the type of technology to

be used for a specific industry although different industries have distinct technology

structures and developments on production and environmental protection.

Finally, as documented in these tables, DEA environmental assessment may

provide corporate leaders, investors and other individuals who are interested in

corporate sustainability with a guideline on which firm(s) they should invest for

enhancing the corporate sustainability.

16.7 Conclusion and Future Extensions

Environmental assessment and corporate sustainability have recently become a

very important business concern because consumers are interested in environmental

protection. A green image is recently essential for corporate survivability in a

global market where companies must compete with each other in domestic and

international markets.

As a new type of methodology for assessing the corporate sustainability, this

study proposed a use of DEA radial measurement for environmental assessment. By

shifting DEA models from the non-radial measurement (Sueyoshi and Goto 2012a)

Table 16.2 (continued)

Company name UE UEN UEM UENM UENM (DC)

Teradyne Inc. (2013) 0.3803 0.7042 0.4599 0.7226 0.5906

Texas Instruments Incorporated (2012) 0.2582 0.3589 0.2985 0.4565 1.0000

Texas Instruments Incorporated (2013) 0.0518 0.1325 0.1005 0.2741 1.0000

Xerox Corporation (2013) 1.0000 0.0813 1.0000 0.0915 0.4302

Yahoo! Inc. (2012) 0.0354 0.0622 0.5679 0.3346 1.0000

Yahoo! Inc. (2013) 1.0000 1.0000 1.0000 1.0000 0.1317

Avg. 0.3587 0.4853 0.5800 0.6295 0.7425

S.D. 0.3195 0.3653 0.3403 0.3534 0.3074
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to the radial measurement, this study discussed the new use of environmental

assessment to determine the five unified efficiency measures that could serve as

an empirical basis for developing corporate sustainability. Furthermore, in

discussing a use of DEA environmental assessment, this study considered both

R&D expenditure and investment in CO2 abatement as inputs for managerial

Table 16.3 Unified efficiency measures of seven industry sectors

Sector Company type UE UEN UEM UENM

UENM

(DC)

# of

DMUs

Consumer

Discretionary

Automobiles &

Components

0.0797 0.2949 0.3558 0.3136 0.8560 6

Consumer Durables

& Apparel

0.5972 0.8369 0.6003 0.8314 0.8759 5

Retailing 0.1440 0.8089 0.1792 0.4483 0.5593 2

Overall 0.2886 0.5824 0.4227 0.5335 0.8180 13

Consumer

Staples

Food, Beverage &

Tobacco

0.1399 0.1720 0.5395 0.2386 0.6378 8

Household & Per-

sonal Products

0.7649 0.8435 0.8450 0.9032 0.5490 3

Overall 0.3103 0.3551 0.6228 0.4198 0.6136 11

Energy Energy Equipment

& Services

0.3627 0.3686 1.0000 0.9903 0.7288 4

Oil & Gas 0.3746 0.9881 0.5089 0.6128 0.5955 9

Overall 0.3709 0.7975 0.6600 0.7290 0.6365 13

Healthcare Health Care Equip-

ment & Services

0.0967 0.1462 0.4709 0.2100 0.3348 2

Pharmaceuticals &

Biotechnology

0.3422 0.3747 0.3902 0.4898 0.6457 25

Overall 0.3240 0.3578 0.3962 0.4690 0.6227 27

Industrials Capital Goods 0.1903 0.2991 0.3757 0.3100 0.4169 17

Commercial & Pro-

fessional Services

0.5688 1.0000 0.5788 0.7176 0.6159 2

Overall 0.2302 0.3729 0.3971 0.3529 0.4379 19

Information

Technology

Semiconductors 0.3823 0.5032 0.5342 0.6765 0.7736 19

Software & Services 0.3215 0.5157 0.6503 0.6837 0.6859 18

Technology Hard-

ware & Equipment

0.3788 0.4048 0.5441 0.4595 0.7815 11

Overall 0.3587 0.4853 0.5800 0.6295 0.7425 48

Materials Chemicals 0.5738 0.7932 0.8226 0.8268 0.7021 13

Containers &

Packaging

0.4948 0.4251 0.4296 0.3163 0.3565 3

Metals & Mining 0.0684 0.6356 0.1834 0.0474 1.0000 2

Paper & Forest

Products

0.4875 0.6420 0.4353 0.3073 0.5008 4

Overall 0.5014 0.7012 0.6405 0.5919 0.6455 22

Source: Sueyoshi and Wang (2014a)
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disposability. This type of application had never been explored in any previous

DEA studies on environmental assessment. It is easily envisioned that the proposed

DEA approach will provide corporate leaders with guidance on environmental

strategy and investment on technology selection. Such selection, identified by

examining firms with strong DC, is useful in establishing corporate sustainability.

To demonstrate the practicality of the proposed approach, this study applied it to

153 observations of all S&P 500 corporations in 2012 and 2013. The empirical

investigation suggested that it is necessary for investors to pay more serious

attention to company’s green image, so enhancing sustainability, than profitability

in a short term horizon. A contribution of this study was that corporate leaders and

investors could evaluate and plan the development of their corporate sustainability

by utilizing information generated by the proposed approach.

It is true that the proposed environmental assessment is not yet perfect. There are

four research issues as future extensions of this study. First, the technology inno-

vation needs a time lag until it can fully exert its effect. Thus, the proposed

approach needs to incorporate a time horizon in the computational process. For

the research purpose, it is necessary for us to combine the proposed approach with

the time series measurement proposed by the research efforts (Sueyoshi and Goto

2014c, Sueyoshi and Wang 2014b). Second, it is also important to make a theoret-

ical linkage between the proposed approach and investment behavior in portfolio

analysis. Third, technology innovation and selection may depend upon the type of

industry. Different industries need different technology structures. See Sueyoshi

and Yuan (2015b). Hence, the technology selection needs to consider a combina-

tion among different technology structures. This study did not explore the important

aspect on technology. Finally, this study assumes that the proposed DEA approach

produces a unique solution. However, DEA often suffers from an occurrence of

multiple solutions. It is important to incorporate SCSCs (Strong Complementary

Slackness Conditions) into the proposed computational framework. Such research

tasks will be important future extensions of this study.

Table 16.5 Investment strategy on seven industrial sectors

Sector

# of effective

investments

Percentage

(%)

# of limited

investments

Percentage

(%)

Consumer

Discretionary

6 46.15 0 0.00

Consumer Staples 1 9.09 0 0.00

Energy 6 46.15 1 7.69

Healthcare 4 14.81 0 0.00

Industrials 2 10.53 0 0.00

Information

Technology

19 39.58 1 2.08

Materials 8 36.36 0 0.00

Overall 46 30.07 2 1.31

Source: Sueyoshi and Wang (2014a)
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In conclusion, it is hoped that this study makes a contribution in the development

of corporate sustainability. We look forward to seeing research extension, as

discussed in this study.
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Chapter 17

DEA Environmental Assessment (II):
A Literature Study

Toshiyuki Sueyoshi and Yan Yuan

Abstract This chapter systematically summarizes previous research efforts,

including concepts and methodologies, on DEA environmental assessment applied

to energy in the past three decades. Industrial developments are very important for

all nations in terms of their economic prosperities. The problem is that the devel-

opment produces various pollutions on air, water and others types of contamina-

tions, all of which are usually associated with our health problems and climate

changes. Thus, it is necessary for us to think how to make a balance between

economic success and pollution mitigation in order to maintain a high level of

social and corporate sustainability in the world. It is widely considered among

researchers and practitioners that DEA is one of methodologies to examine the level

of sustainability. The purpose of this chapter is to describe the importance of DEA

in assessing unified (operational and environmental) performance of various enti-

ties in public and private sectors by summarizing previous research efforts on

environmental assessment. The literature survey in this chapter covers 407 articles

on DEA applications in energy and environment. It is true that DEA is not a perfect

methodology, rather being an approximation methodology for performance assess-

ment. The methodology has strengths and drawbacks in applications. Therefore, it

is very important for us to carefully use DEA for guiding large policy and business

strategies regarding the global warming and climate change. An underlying premise

of this study is that technology innovation in engineering may solve the pollution

and climate problem by linking it with economic and business concerns. The DEA

provides such a linkage between engineering and social science, so enhancing the

practicality in mitigating environmental pollutions. It is envisioned that the litera-

ture study, along with a summary on conceptual and methodological developments

discussed in Chap. 16, provides researchers and individuals who are interested in

social and corporate sustainability with analytical and methodological guidelines

for their future research works on DEA environmental assessment.
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17.1 Introduction

As discussed in Chap. 16, it is necessary for us to reduce an amount of Greenhouse

Gases (GHG) emissions, in particular CO2, by 40–70% (compared with 2010) until

2050 and to the level of almost zero by the end of the twenty-first century via

shifting our current systems to energy efficient ones. Otherwise, we will have to

bear life threatening consequences, such as strong hurricanes, heat waves, droughts,

floods, food crisis as well as other damages to human health, social and economic

systems. For example, a heat wave in 2003 caused about 50,000 deaths in Europe

and another one in 1995 caused 600 deaths in Chicago. From Environmental

Protection Agency (EPA) report, heat waves cause more deaths in the United States

every year than hurricanes, tornadoes, floods, and earthquakes combined. Not

necessary to mention that air pollution can make asthma and other lung conditions

worse and climate change might allow some infectious diseases to spread. Our

challenge on the climate change makes conventional profit-driven business inap-

propriate on logic and practice and incompatible with a world-wide trend toward a

sustainable society.

To overcome the practical difficulty, many researchers in business and economics

have proposed a use of DEA environmental assessment, as discussed in Chap. 16.

Such importance of DEA1 has been well known in assessing unified (operational and

environmental) performance ofmany different entities in public and private sectors.2

In order to achieve social and corporate sustainability, especially on environmental

protection, DEA is a useful approach to overcome the difficulty. The purpose of this

chapter is to summarize previous works on DEA environmental assessment, cover-

ing 407 articles, by paying attention to conceptual and methodological develop-

ments. It is important to note that this study covers only energy-related articles

because of a page limit of this chapter. We clearly understand that there are many

articles on DEA applications for sustainability developments.

Here, it is necessary to mention that DEA is not a perfect methodology because it

is an approximation methodology for performance assessment. It has methodolog-

ical strengths and drawbacks in applications. Therefore, it is very important for us

to carefully use DEA in guiding large policy and business issues such as the global

warming and climate change in the world. This chapter considers that DEA is just

one of useful mathematical approaches for assessing the status of social and

1 Professor William W. Cooper developed DEA with Professor A, Charnes. His historical contri-

butions are summarized in the two articles. See Glover, F., Sueyoshi, T., 2009. Contributions of

Professor William W. Cooper in operations research and management science. European Journal

of Operational Research 197, 1–16 and Ijiri, Y., Sueyoshi, T., 2010. Accounting essays by

Professor William W. Cooper: revisiting in commemoration of his 95th birthday. ABACUS: A

Journal of Accounting, Finance and Business Studies 46, 464–505.
2 See the third and fourth footnotes of Chap. 16, which discusses why this study uses “operational

efficiency”, not a conventional term “technical efficiency”.
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corporate sustainability (i.e., economic success and environmental protection). An

underlying concept of this study is that eco-technology innovation in engineering

may solve various pollution problems, but such efforts need to be linked to

economic and business concerns. Otherwise, the engineering capability does not

produce expected results on energy efficiency and sustainability. The rule of DEA

is to make a methodological linkage between engineering and social sciences, so

enhancing a level of sustainability by mitigating various environmental pollutions.

It is hoped that this literature survey will provide many researchers and practitioners

with a research guideline for their future works concerning environmental protec-

tion and sustainability.

The remaining structure of this study is structured as follows: Sect. 17.2 dis-

cusses a rationale regrading why we need DEA for environmental assessment.

Section 17.3 describes conceptual developments on weak and strong disposability

as well as natural and managerial disposability. The section also discusses these

disposability concepts from their analytical capabilities. Section 17.4 summarizes

previous research efforts on electric power industry by using DEA environmental

assessment. Section 17.5 summarizes previous research efforts on petroleum and

coal industries. Section 17.6 discusses DEA applications on pollution prevention

efforts in agriculture, fishery, manufacturing, transportation and other industries,

respectively. Section 17.7 summarizes the previous research work on economic

development and corporate strategy. Section 17.8 discusses the methodology

development of DEA environmental assessment. Section 17.9 concludes this

chapter along with future research directions.

At the end of this chapter, it is important to note that a new book prepared

by Sueyoshi and Goto (2017). Environmental Assessment on Energy and Sustain-

ability by Data Envelopment Analysis will be published by John Wiley & Sons,

London, UK. The new book contains 28 chapters on DEA environmental assess-

ment and 693 previous research efforts in the area. Their literature classifications

are different from the ones in this chapter. Readers, who are interested in DEA

environment assessment, may refer to the new book with updated information on

DEA environmental assessment.

17.2 DEA Environmental Assessment

Following their description prepared by Sueyoshi and Goto (2015b), Fig. 17.1

visually describes the importance of DEA as a social intelligence process for both

reducing the amount of various environmental pollutions and enhancing the status

of sustainability. Each organization in public and private sectors needs all of such

intelligence capabilities to mitigate the amount of industrial pollution. A method-

ology selection (e.g., DEA) is determined as part of such an intelligence process,

where “intelligence” implies a social capability of an organization (e.g., an energy

company in a private sector or United Nations in a public sector) for holistic

adjustment to various changes (e.g., a regulation change on industrial pollution),
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so not directly linking to any conventional engineering implication (e.g. artificial

intelligence in computer science). Of course, such a social capability depends upon

the utilization of a data processing ability (i.e., on a modern personal computer) that

can simultaneously deal with many big data sets related to environmental

protection.

As an initial step, an organization (e.g., a petroleum firm in this study) needs to

identify that it faces a serious crisis due to industrial pollution (e.g., air and/or water

pollution). As a result of pollution, consumers do not purchase products from a
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Fig. 17.1 DEA environmental assessment as social I intelligence system. Source: Sueyoshi and
Goto (2015b)
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dirty-imaged company. They purchase products from a green company even if the

prices are much higher than those of the dirty-imaged company. More seriously, a

very large opportunity cost often occurs along with industrial pollutions that make a

serious damage on each organization. For example, the disaster of Fukushima

Daiichi’s nuclear power plant, occurred on March 11, 2011, was such an example

of the opportunity cost. This type of opportunity cost is much larger than any cost

components in modern business. It is necessary for the organization to have a

“sensing capability” by which it can identify the existence of a serious business

crisis due to industrial pollutions. Such a sensing capability may be often found in

an individual member from the top to the bottom or a group of members within the

organization. A result of the sensing capability, incorporated in the organization, is

referred to as “felt crisis” in this study.

The felt crisis is extended for serving as a necessity of “social sustainability” in a

public sector or “corporate sustainability” in a private sector. The concept of “social

sustainability”, supported by many international organizations such as United

Nations, is related to global social responsibility and social welfare by preventing

the climate change and global warming that have been gradually changing our

ecological and economic systems. The concept of social sustainability contains

world-wide implications in a long-term horizon. In contrast, “corporate sustainabil-

ity” has another type of implication, so being different from the social sustainabil-

ity, is related to modern business perspectives. That is, the corporate sustainability

is closely related to its survivability via a public image as a good corporate citizen.

Moreover, the opportunity cost (e.g., damage due to industrial pollutions), which is

much larger than any production-related cost items, may terminate its existence as a

going concern. Thus, it is important for us to clearly distinguish between “social”

and “corporate” sustainability concepts in discussing between world-wide policy

issues (e.g., the global warming and climate change) and modem corporate behav-

iors for preventing industrial pollutions.

After identifying the organizational objective (social or corporate sustainability),

each organization needs to determine what consists of production factors (i.e.,

inputs, desirable and undesirable outputs) for environmental assessment. This

type of social intelligence is referred to as “production factor determination capa-

bility” in this study. The DEA, as a holistic approach, is used in this stage as one of

many methodological alternatives for assessing the level of social or corporate

sustainability. Some member(s) should have the analytical capability to apply DEA

for environmental assessment. This type of social intelligence is referred to as

“measurement capability”.

After applying DEA for performance assessment, the organization can obtain

empirical results, indicating the level of sustainability that is measured by relatively

comparing its performance with others. This is referred to as “performance assess-

ment capability”. Based upon the empirical results, the organization needs to

prepare policy/strategy for pollution prevention. The type of intelligence is referred

to as “policy/strategy making capability”. The organization implements the policy

or strategy for pollution reduction. The type of intelligence is referred to as

“achievement assessment capability”. If the implementation is unsuccessful, the
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result brings the necessity of restarting the crisis feeling within the organization.

A gradual improvement process is necessary in repeating the whole social intelli-

gence process, as depicted in Fig. 17.1, until it can eliminate the crisis feeling due to

environmental pollutions. Therefore, the pollution reduction effort needs to be

explored in a time horizon, as discussed in this study. Finally, note that if one

part of such intelligence capacities does not exist in the organization, then it will be

unable to survive in our modern society and business. Such is the destination of

dirty-imaged companies.

17.3 Disposability Concepts

Färe et al. (1989) did the ground-breaking research work that separated the concept

of disposability into weak and strong categories. Unfortunately, no research clearly

mentioned a rationale regarding why they used the two disposability concepts.

Therefore, it is important for us to describe them more clearly in this section (II).

An underlying premise for separating between the two disposability concepts is

an occurrence of congestion, defined by a conventional economic context. To

describe the concept, this study follows Färe et al. (1989, pp. 91–92). Considering

both undesirable and desirable output vectors, their study (1989, p. 92) reorganized

an output vector into desirable and undesirable output vectors (G, B). Then, the
weak disposability was defined by the following vector notation on the two output

vectors:

Pw Xð Þ¼ G;Bð Þ :G�
Xn
j¼1

Gjλj, B¼
Xn
j¼1

Bjλj, X�
Xn
j¼1

Xjλj,
Xn
j¼1

λj¼ 1&λj� 0 j¼ 1, ::,nð Þ
( )

;

where the subscript ( j) stands for the jth DMU and λj indicates the jth structural or

intensity variable ( j¼ 1, . . ., n). The production technology is listed by P and the

superscript (w) indicates the weak disposability.

Meanwhile, the strong disposability is defined by the following vector notation

on the two output vectors:

Ps Xð Þ¼ G;Bð Þ :G�
Xn
j¼1

Gjλj, B�
Xn
j¼1

Bjλj, X�
Xn
j¼1

Xjλj,
Xn
j¼1

λj¼ 1&λj� 0 j¼ 1, ::,nð Þ
( )

;

where the inequality constraints B �
Xn
j¼1

Bjλj

 !
make it possible to change from

the weak disposability to the strong disposability. The superscript (s) indicates the

strong disposability. Here, G �
Xn
j¼1

Gjλj and B �
Xn
j¼1

Bjλj are structured by the

assumption that “undesirable outputs are by-products of desirable outputs”.
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Thus, the two types of outputs have� in their vector notations. As easily imagined,

B �
Xn
j¼1

Bjλj should be used to express the undesirable output vector. However,

Färe et al. (1989) and many other studies assume that undesirable outputs are

by-products of desirable outputs. As a result, B �
Xn
j¼1

Bjλj as found in the strong

disposability. See Stage III of Fig. 16.1 that visually describes the shapes of

efficiency frontiers on a production and pollution possibility set.

Table 17.1 summarizes part of previous conceptual developments on DEA

environmental assessment. The first part included the studies with the weak and

strong disposability concepts, including a straight-forward use of conventional

DEA (so, only strong disposability), which has followed a pioneering work of

Färe et al. (1989). The second part included the new concepts with natural and

managerial disposability concepts discussed in Chap. 16. As summarized in

Table 17.1, the concept of weak and strong disposability has served a conceptual

basis for DEA environmental assessment.

To describe analytical implications of the weak and strong disposability con-

cepts, this study needs to first introduce the concept of “congestion”, which is

classified into Undesirable Congestion (UC) under weak and strong disposability

concepts, and Desirable Congestion (DC) under natural and managerial disposabil-

ity concepts discussed in Chap. 16. Figure 17.2 visually describes a possible

occurrence of UC or DC.

First, the left hand side of Fig. 17.2 exhibits an undesirable output (b) on the

horizontal axis and a desirable output (g) on the vertical axis. For our visual

convenience, this chapter considers the case of a single component of production

factors. The convex curve indicates the relationship between the two production

factors (g and b). In the figure, a supporting hyperplane visually specifies the shape

of a production curve that indicates an occurrence of UC. For example, a negative

slope of the supporting hyperplane indicates an occurrence of UC. In contrast, a

positive slope implies an opposite case (i.e., no occurrence of UC). Inequality

constrains on B, as specified by the strong disposability, exclude the occurrence

of UC. In contrast, equality constraints on B, as specified by the weak disposability,
allow the occurrence of UC.

An occurrence of inefficiency, discussed in DEA applications, is identified in

such a manner that a reduction in an input(s) results in an increase in a maximum

possible desirable output(s) without worsening other inputs and desirable outputs.

Conversely, an occurrence of UC implies that an increase in an input(s) leads to a

decrease in a desirable output(s) without worsening other production factors. This

type of inefficiency is different from the concept of “operational inefficiency”, that

indicates an existence of an excess amount of input(s) and/or an existence of a

shortfall of a desirable output(s). A typical example can be found in a line limit of

transmission in the electric power industry.
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Acknowledging the importance of previous contributions summarized in

Table 17.2, this chapter needs to mention the other group of studies that shifts the

conceptual framework from weak and strong disposability to natural and manage-

rial disposability. As discussed in Chap. 16, the concept of “natural disposability,”

indicates that a firm decreases a vector of inputs to decrease a vector of undesirable

outputs. Given a reduced vector of inputs, the firm increases a vector of desirable

outputs as much as possible. For example, let us consider a coal-fired power plant

Table 17.1 Classification by disposability concepts

Concept Related papers

Weak/strong disposability Azadeh et al. (2009a, b), Azadi et al. (2015), Bi et al. (2014),

Bian and Yang (2010), Bretholt and Pan (2013), Burnett and

Hansen (2008), Çelen (2013), Chang and Yang (2011),

Chang et al. (2013a, b), Chen et al. (2015a, b), Chiu

et al. (2011), Dai and Kuosmanen (2014), Fallahi

et al. (2011), Fang et al. (2009, 2013), Feng et al. (2015),

Giannakis et al. (2005), Gómez-Calvet et al. (2014), Guo

et al. (2011), Hernández-Sancho et al. (2000, 2001), Honma

and Hu (2008, 2009, 2014a, b), Hu and Lee (2008), Huang

et al. (2014), Iglesias et al. (2010), Jamasb et al. (2004),

Jaraite and Di Maria (2012), Kashani (2005a, b),

Khoshnevisan et al. (2013a, b), Khoshroo et al. (2013),

Kumar Mandal (2010), Kumar (2006), Li et al. (2013), Liu

et al. (2010), Liu (2015), Madlener et al. (2009), Mandal

(2010), Menegaki (2013), Meng et al. (2013), Molinos-

Senante et al. (2014), Mousavi-Avval et al. (2012), Oggioni

et al. (2011), Olatubi and Dismukes (2000), Oude Lansink

and Bezlepkin (2003), Pacudan and de Guzman (2002), Pan

et al. (2013), Pasurka (2006), Picazo-Tadeo et al. (2005),

Rao et al. (2012), Riccardi et al. (2012), Sala-Garrido

et al. (2012), Sarkis and Cordeiro (2012), Scheel (2001), Shi

et al. (2010), Song and Wang (2014), S€ozen et al. (2012),

Taghavifar et al. (2014), Tao and Zhang (2013), Tone and

Tsutsui (2007), Tsolas (2011), Vaninsky (2006), Vasco

Correa (2012), Wang and Wei (2014), Wang et al. (2007,

2012a, b, c, 2013a, b, c, d, e, f, 2014a, b, 2015), Wei

et al. (2011), Wu et al. (2012, 2013a, b, c, d), Yang and

Pollitt (2009, 2010), Yeh et al. (2010), Zaim and Taskin

(2000a, b), Zhang and Choi (2013a, 2014), Zhang

et al. (2011, 2013a, b), Zhou and Ang (2008a, b), Zhou

et al. (2008a, b, 2010, 2012a, b, 2013, 2014a, b)

Natural/managerial disposability

and RTS/DTS/DTR

Goto et al. (2014), Sueyoshi and Goto (2011a, b, 2012a, c, g,

h, i, j, k, 2013d, 2014a, 2015a, b, c), Sueyoshi et al. (2010,

2013a), Sueyoshi and Yuan (2015a, b), Goto et al. (2014),

Wang et al. (2014b)

(a) See Chap. 16 of this study that describes the concept of natural and managerial disposability.

(b) The weak disposability can be used to identify an occurrence of UC. The natural disposability

with equality on B (undesirable outputs) is also used to identify the occurrence of DC. Meanwhile,

the managerial disposability with equality onG (desirable outputs) is used to identify an occurrence

of DC, or eco-technology innovation. See Fig. 17.2 on a visual difference between UC and DC
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where CO2 emission is produced by coal combustion. The coal is used as an input

for the operation of a coal-fired power plant. Consequently, if the coal-fired power

plant reduces the amount of coal combustion, the reduction immediately decreases

the amount of CO2 emission at the level that it can satisfy the amount determined by

governmental regulation. Given the amount of coal combustion, the coal-fired

power plant maximizes the amount of electricity generation. That is the natural

disposability. In this case, the coal-fired power plant may attain the reduction of
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Fig. 17.2 Undesirable and desirable congestion concepts. (a) The left hand of the figure indicates

a possible occurrence of Undesirable Congestion (UC) under natural disposability. The occurrence

of UC is classified into three categories: no, weak and strong. This type of congestion has been

long discussed in the DEA community. In DEA environmental assessment, the strong UC

indicates that an enhanced component(s) of an input vector increases some component(s) of an

undesirable output vector, but decreases some component(s) of a desirable output vector. This type

of congestion indicates a capacity limit on generation and/or a line limit on transmission in the

electric power industry. No UC implies no congestion on the whole grid system. The weak UC is

between weak and strong UC. For identifying a possible occurrence of strong UC, the equality

constraints (so, no slack) are assigned to undesirable outputs in DEA environmental assessment.

The weak disposability can identify an occurrence of UC, as well. Thus, this occurrence of UC is

measured under natural disposability with no slack (i.e., equality) on undesirable outputs. (b) The

right hand side of figure indicates a possible occurrence of Desirable Congestion (DC), or

eco-technology innovation for pollution prevention under managerial disposability. The DC is

classified into three categories: no, weak and strong. In DEA environmental assessment, the

occurrence of DC indicates that an enhanced component(s) of the input vector increases some

component(s) of a desirable output vector, but decreases some component(s) of an undesirable

output vector. This chapter hopes that the eco-technology innovation can solve various pollution

issues. For identifying a possible occurrence of DC, the equality constraints (so, no slack) are

assigned to desirable outputs in the proposed formulations under managerial disposability. (c) The

convex function at the right hand depends upon the assumption that undesirable outputs are “by-

products” of desirable outputs. It should be a concave function without such an assumption. The

assumption is acceptable when we consider the relationship between desirable and undesirable

outputs. That is, an amount of undesirable outputs may proportionally increase along with an

amount of desirable outputs without eco-technology. However, the eco-technology may change

the situation so that it should be shaped by a convex function with a declining trend. (d) Source:
The figure at the right hand side is obtained from Fig. 16.2
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CO2 emission with a limited corporate effort at the level that is required by

governmental regulation.

The other concept, referred to as “managerial disposability”, indicates an oppo-

site case of the natural disposability. In the disposability concept, a firm increases a

vector of inputs to decrease a vector of undesirable outputs by utilizing technology

innovation on undesirable outputs. Given the increased input vector, the firm

Table 17.2 Electric power industry

Fuel Related papers

Coal Boyd and Pang (2000), Byrnes et al. (1988), Chitkara (1999), Fallahi et al. (2011),

Fang et al. (2009), Färe et al. (1983, 1985, 1986, 1990, 1996, Färe et al. 2005),

Fleishman et al. (2009), Galindo et al. (2012), Golany et al. (1994), Goto and

Tsutsui (1998), Hampf and Rødseth (2015), Kulshreshtha and Parikh (2002), Mou

(2014), Nag (2006), Olatubi and Dismukes (2000), Park and Lesourd (2000),

Pasurka (2006), Sarkis and Cordeiro (2012), Sheng et al. (2015), Song

et al. (2015a, b), Sueyoshi and Goto (2012f, 2013a), Tao and Zhang (2013),

Thompson et al. (1995), Tyteca (1997, 1998), Wei et al. (2015), Yang and

Pollitt (2009, 2010), Zhang et al. (2013a, b), Zhang and Choi (2013a), Zhou

et al. (2012a, b)

Oil/gas Azadeh et al. (2013), Barros and Assaf (2009), Barros and Managi (2009),

Chitkara (1999), Erbetta and Rappuoli (2008), Ert€urk and T€ur€ut-Aşık (2011),

Fleishman et al. (2009), Ghiasi and Mohammadi (2014), Hawdon (2003), Kashani

(2005a, b), Lee et al. (2010, 2013), Li et al. (2013a, b, c, d), Price and Weyman-

Jones (1996), Sheng et al. (2015), Song et al. (2015a, b), Thompson et al. (1992,

1996), Zhang et al. (2013a, b)

Renewable Apergis et al. (2015), Barros (2008), Barros and Peypoch (2008), Bi et al. (2014),

Blokhuis et al. (2012), Boubaker (2012a, b), Criswell and Thompson (1996), Duan

et al. (2016), Grigoroudis et al. (2014), Jebaraj and Iniyan (2006), Kim

et al. (2015), Lam and Shiu (2001), Lins et al. (2012), Liu et al. (2010, 2015),

Løken (2007), Mallikarjun and Lewis (2014), Menegaki (2013), Ramanathan

(2001), Sarica and Or (2007), S€ozen et al. (2010, 2012), Stallard et al. (2008),

Sueyoshi and Goto (2014d), Tone and Tsutsui (2007), Woo et al. (2015), Yunos

and Hawdon (1997); Zaneslla et al. (2015)

Nuclear Pollitt (1996), Vaninsky (2006)

Others Abbott (2005, 2006), Agrell and Bogetoft (2005), Arabi et al. (2014), Arocena

(2008), Athanassopoulos et al. (1999), Azadeh et al. (2009a, b), Azadeh and

Mousavi Ahranjani (2014), Bagdadioglu et al. (1996), Burnett and Hansen (2008),

Cambini et al. (2014), Çelen (2013), Çelen and Yalçın (2012), Chang and Yang

(2011), Cherchye et al. (2015), Claggett and Ferrier (1998), Cook and Green

(2005), Dai and Kuosmanen (2014), Giannakis et al. (2005), Goto and Sueyoshi

(2009a, b), Gouveia et al. (2015), Han et al. (2015), Hattori et al. (2005), Huang

et al. (1995), Jamasb et al. (2004), Jamasb and Pollitt (2000, 2003), Jaraite and Di

Maria (2012), Korhonen and Syrjänen (2003), Korhonen and Luptacik (2004),

Kuosmanen et al. (2013), Leme et al. (2014), Lo et al. (2001), Ma and Zhao (2015),

Miliotis (1992), Omrani et al. (2015), Pacudan and de Guzman (2002), Pahwa

et al. (2003), Pombo and Taborda (2006), Resende (2002), Sadjadi and Omrani

(2008), Sueyoshi (1999), Sueyoshi and Goto (2001, 2011a, 2014d), Thakur

et al. (2006), Vaninsky (2006), Vazhayil and Balasubramanian (2013), Wang

et al. (2007), Weyman-Jones (1991), Yadav et al. (2010, 2011, 2013), Yaisawarng

and Klein (1994), Yeh et al. (2010), Zhang and Bartels (1998)
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increases a vector of desirable outputs as much as possible. For example, a coal-

fired power plant increases the amount of coal combustion so that it can increase the

amount of electricity generation. Here, even if the power plant increases the amount

of coal combustion, the increase can reduce the amount of CO2 emission by a

managerial effort by using high quality coal with less CO2 emission and/or an

engineering effort to utilize new generation technology (e.g., clean coal technol-

ogy). Management of the power plant considers a change on environmental regu-

lation as a business opportunity. The challenge of the power plant is a corporate

effort for environmental protection, so implying the status of managerial dispos-

ability. See Chap. 16 on the axiomatic description on both natural and managerial

disposability concepts.

Figure 17.3 visually describes strategies related to the two disposability concepts

from production economics and regulation. The conventional strategy to adapt a

regulation change can be considered in such a manner that a DMU decreases the

amount of an input to decrease an undesirable output so that it can satisfy the

regulation change. The amount of an undesirable output is shifted from bn to br.
However, it can simultaneously increase the amount of the desirable output from gn
to gr by its corporate effort so that the DMU can attain an efficiency frontier, or a

convex curve shaped by g0¼ fn0(b) in Fig. 17.3. The adaptive strategy indicates

concept of natural disposability.

Undesirable Output (b)

Desirable
Output

g0=fn0(b)

No Regulation

g1=fn1(b)

Technology Innovation

Decrease in 
Undesirable 
Output

Increase in 
Desirable 
Output

Regulation

Improvement of Unified Efficiency

grt

gr

gn

bnbrt br

(g)

Fig. 17.3 Natural and managerial disposability by technology innovation. (a) Source: Sueyoshi
et al. (2013b). This study obtains the figure from their research effort. (b) The amount of an input is

not listed in the figure for our descriptive convenience
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The second strategy for the adaptation is considered to utilize technology

innovation, usually along with a managerial change, that shifts the functional

form from g0 to g1¼ fn1(b). The operation of the DMU is improved by its engi-

neering capability. In Fig. 17.3, the adaptive strategy makes it possible for the DMU

to increase an amount of the input to attain a more desirable combination (grt, brt)
by both increasing the desirable output and decreasing the undesirable output from

the previous combination (gr, br). The second adaptive strategy is the concept of

managerial disposability, indicating an opposite case of the natural disposability.

It is important to note that although this study does not address the production

cost minimization in an explicit manner, eco-technological innovation and envi-

ronmental protection are associated with long-term cost saving through increased

competitiveness and successful adaptation to a regulation change.

Finally, a possible occurrence of UC and DC can be incorporated into the natural

and managerial disposability concepts after slightly modifying output vectors and

an input vector, respectively, as follows:

PN
UC Xð Þ¼ G;Bð Þ :G�

Xn
j¼1

Gjλj, B ¼
Xn
j¼1

Bjλj, X�
Xn
j¼1

Xjλj,
Xn
j¼1

λj¼ 1& λj� 0, j ¼ 1, ::, n

( )
and

PM
DC Xð Þ¼ G;Bð Þ :G¼

Xn
j¼1

Gjλj, B�
Xn
j¼1

Bjλj, X�
Xn
j¼1

Xjλj,
Xn
j¼1

λj¼ 1& λj� 0, j ¼ 1, ::, n

( )
:

The first equation incorporates a possible occurrence of UC under natural dispos-

ability. The equation is the same as the weak disposability. The other equation

incorporates a possible occurrence of DC under managerial disposability. The

difference between the two equations can be found on the allocation of the equality

sign on desirable or undesirable outputs, as depicted in Fig. 17.1. See Sueyoshi and

Yuan (2015a, b) for a detailed description on UC and DC.

17.4 Electric Power Industry

Table 17.2 classifies part of previous research efforts on DEA applications to the

electric power industry. The classification is based upon coal, oil and gas, renew-

able, nuclear generations and other types of business function. The business func-

tion of the electric power industry is separated into generation, transmission,

distribution and retailing. The previous research efforts focus on discussing gener-

ation efficiency because DEA is used to measure the efficiency and productivity

performance of their supply capabilities in electric power companies. Therefore,

Table 17.2 summarizes the previous studies based upon the type of fuels or a fuel

mix used in their generation capabilities. Many generation facilities use different

fuel mixes (e.g., coal and gas) so that the classification is not a strength-forward

matter. Hence, this study classifies them based upon main fuel used for a generation

facility. The category of others includes the research about electricity distribution
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(i.e. distribution system, network regulation, maintenance and outage repair), the

impact of GHG control, the impact of government regulation, the comparison of

private versus government ownership, the consequent impact on efficiency levels

and so on.

17.5 Petroleum and Coal Industries

Table 17.3 summarizes part of previous studies on petroleum (i.e., oil and gas) and

coal industries. They are functionally classified into upstream and downstream. The

business components of upstream in petroleum industry include technology and

signal processing, geo-tech analysis, exploration/evaluation delineation, technical

and market evaluation, facility development and production. After production, the

function could be gas processing, crude upgrading and gas-to-liquids, or transport

marine and pipeline. From upstream, gas and oil could be produced. Therefore, in

downstream, gas could be directly sold or used to generate power, which in turn will

be sold in market. On the other hand, after oil is refined, it could be made to primary

chemicals, special chemicals or upgraded environmental fuels. After distribution,

they could be sold on markets. Hence, the function of downstream includes further

production, distribution, marketing and sales.

As summarized in Table 17.3, the previous works discussed the performance of

upstream in many petroleum and coal firms because DEA was used to measure their

supply side capabilities. An interesting concern on the industry was whether a

supply chain capability could enhance the performance of firms because the

industries were considered as a huge network system from production places to

end users. Another research concern was interested in whether firms (e.g., oil firms

in the United States) under private ownership outperformed ones under public

ownership because many oil producers (e.g., OPEC nations) were partly owned

by governments where OPEC stands for Organization of the Petroleum Exporting

Counties. Thus, the supply chain and the ownership issue are important business

concerns in the petroleum and coal industries.

Table 17.3 Petroleum and coal industries

Function Related papers

Upstream Barros and Assaf (2009), Kashani (2005a, b), Lee et al. (2010, 2013), Li

et al. (2013a, b, c, d), Shakouri et al. (2014), Song et al. (2015a, b), Sueyoshi and

Goto (2012a, 2015b), Sueyoshi and Wang (2014b), Thompson et al. (1996)

Downstream Al-Salem (2015), Bevilacqua and Braglia (2002), Erbetta and Rappuoli (2008),

Ert€urk and T€ur€ut-Aşık (2011), Hawdon (2003), Price and Weyman-Jones (1996),

Sueyoshi (2000)
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17.6 Agriculture, Fishery, Manufacturing
and Transportation Industries

Table 17.4 summarizes part of previous studies on DEA applications in agriculture,

fishery, manufacturing, transportation industries. In the manufacturing sector, it

includes many industries such as cement industry, iron and steel industry and

chemical industry and so on. Others include some related research work such as

water usage and wastewater decontamination, service sectors. The previous works

were concerned with how energy was efficiently used to enhance the performance

Table 17.4 Applications in agriculture, fishery, manufacturing and transportation

Industry type Related papers

Agriculture and

fishery

Banaeian et al. (2011), Banaeian and Zangeneh (2011), Blancard and

Martin (2014), Bozo�glu and Ceyhan (2009), Ebrahimi and Salehi (2015),

Ederer (2015), Houshyar et al. (2012), Iglesias et al. (2010), Iribarren

et al. (2013, 2014), Khoshnevisan et al. (2013a, b, c), Khoshroo

et al. (2013), Madlener et al. (2009), Mobtaker et al. (2012), Mohammadi

et al. (2013), Mousavi-Avval et al. (2011a, b, 2012), Nabavi-Pelesaraei

et al. (2014), Nassiri and Singh (2007), Nouri et al. (2013), Odeck (2009),

Omid et al. (2011), Oude Lansink and Bezlepkin (2003), Oude Lansink and

Silva (2003), Pahlavan et al. (2011), Reinhard et al. (2000), Ren

et al. (2014), Serra et al. (2014), Serra and Poli (2015), Skevas et al. (2014),

Vlontzos et al. (2014), Wu et al. (2013a, b, c, d)

Manufacture Aparicio et al. (2015), Azadeh et al. (2007, 2008), Azadi et al. (2015), Boyd

and McClelland (1999), Boyd et al. (2002), Chauhan et al. (2006), Färe

et al. (2001), Ghulam and Jaffry (2015), Han et al. (2015), Hernández-

Sancho et al. (2000), Lee and Zhang (2012), Li and Lin (2015b), Long

et al. (2015), Lozano et al. (2009), Mohan et al. (2009), Mukherjee (2008),

Munksgaard et al. (2005), Oh and Shin (2015), Picazo-Tadeo et al. (2005),

Ramli and Munisamy (2015), Triantis and Otis (2004), Voltes-Dorta

et al. (2013), Zaim (2004), Zofı́o and Prieto (2001)

Transportation Azadi et al. (2014), Chang et al. (2013a, b), Chiu et al. (2011), Cui and Li

(2014, 2015a, b), González et al. (2015), Ramanathan (2000, 2005b), Wei

et al. (2012), Zhou et al. (2013, 2014a, b)

Others Bian et al. (2014), Bian and Yang (2010), Blomberg et al. (2012),

Brännlund et al. (1998), Chien et al. (2003), Chung (2011), Chung

et al. (1997), Diaz-Balteiro et al. (2006), Dyckhoff and Allen (2001), Fang

et al. (2013), Färe et al. (1989, 1994a, b), Ferrier and Hirschberg (1992), He

et al. (2013), Hernández-Sancho et al. (2011, 2009), Herrala et al. (2012),

Hu et al. (2013), Huang and Li (2013), Kumar Mandal and Madheswaran

(2010), Lampe and Hilgers (2015), Lee et al. (2011a, b), Lee and Kung

(2011), Liu et al. (2013), Lv et al. (2013), Mandal (2010), Molinos-Senante

et al. (2014), Oggioni et al. (2011), Ön€ut and Soner (2006), Raczka (2001),

Riccardi et al. (2012), Rogge and De Jaeger (2012), Sala-Garrido

et al. (2012), Sanhueza et al. (2004), Sarkis and Weinrach (2001), Tsolas

(2011), Tyteca (1996), Vasco Correa (2012), Wei et al. (2007), Wu

et al. (2013a, b, c, d), Ylvinger (2003), Yu and Chan (2012), Zhang and

Choi (2014), Zhou et al. (2006a)
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of organizations in these industries under various governmental regulations. For

example, vehicles (e.g., cars and tracks) for the transportation sector produce a large

amount of Greenhouse Gas (GHG) emission. In the United States, federal and state

governments (e.g., the State of California) assign strict regulations to control the

amount of GHG emission. Thus, the gas efficiency became very important for the

transportation industry. The business concern on the transportation industry is also

applicable to the other industries listed in Table 17.4.

17.7 Economic Development and Corporate Strategy

Table 17.5 summarizes part of previous studies on DEA applications on economic

development and corporate strategy. DEA was originally developed for the perfor-

mance assessment of various entities in public sectors. For example, many studies

were interested in the performance of regional sectors in their operational and/or

environmental efficiencies. The previous DEA studies found that there were regional

Table 17.5 Economic development and corporate strategy

Development Related papers

Economy Arcelus and Arocena (2005), Bampatsou et al. (2013), Barla and Perelman

(2005), Bian et al. (2013), Bretholt and Pan (2013), Callens and Tyteca (1999),

Chang (2014, 2015), Chen et al. (2015a, b), Chien and Hu (2007), Chiu

et al. (2012), Choi et al. (2012), Cui et al. (2014), Färe et al. (2004), Feng

et al. (2015), Guo et al. (2011), Hang et al. (2015), He (2015), Honma and Hu

(2008, 2009, 2014a, b), Hu and Lee (2008), Hu and Kao (2007), Hu

et al. (2011), Hu and Wang (2006), Huang et al. (2014), Jin et al. (2014),

Keirstead (2013), Kim and Kim (2012), Kounetas (2015), Kumar (2006), Lee

et al. (2011a, b), Lei et al. (2013), Li et al. (2013a, b, c, d), Li and Hu (2012), Li

and Lin (2015a), Liang et al. (2004), Lin and Du (2015a, b), Lin and Liu

(2012), Liu (2015), Lozano and Gutiérrez (2008), Meng et al. (2013), Murillo-

Zamorano (2005), Pan et al. (2013, 2015), Ramanathan (2005a), Rashidi and

Farzipoor Saen (2015), Rao et al. (2012), Scheel (2001), Shi et al. (2010), Song

et al. (2013a, b), Song andWang (2014), Sueyoshi and Goto (2010b), Sueyoshi

and Goto (2015a, b), Sueyoshi and Yuan (2015a), Taghavifar et al. (2014),

Taskin and Zaim (2001), Wang (2013, 2015), Wang and Wei (2014), Wang

et al. (2012a, b, c, 2013a, b, c, d, e, f, 2014a, b, 2015), Wang and Feng (2015),

Wei et al. (2011), Wu et al. (2012, 2013a, b, c, d, 2015), Yang et al. (2013,

2015), Yang and Wang (2013), Yao et al. (2015), Zaim and Taskin (2000a, b),

Zhang and Choi (2013b), Zhang et al. (2008, 2011, 2015), Zhao et al. (2014),

Zhou and Ang (2008a, b), Zhou et al. (2006b, 2007a, b, 2008b, 2010, 2012a, b,

2014a, b), Zou et al. (2013)

Corporate

strategy

Barla and Perelman (2005), de Castro Camioto et al. (2014), Chang

et al. (2013a, b), Goto et al. (2014), Olanrewaju et al. (2012, 2013), S€ozen and
Alp (2009), Sueyoshi and Goto (2009a, b, 2010a, 2014b, c), Sueyoshi

et al. (2009), Sueyoshi and Wang (2014a), Wang et al. (2014b),

Zhou et al. (2007a, b, 2015)
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differences, leading to social imbalance and often producing income imbalance

among them. Such differences among regions usually produced social imbalance,

which produces a serious chaos in their social systems. Thus, DEAwas considered as

a methodology to measure the social imbalance in the previous studies.

It is important to note that some recent studies started to measure corporate

sustainability by using DEA as a methodology. Through industry comparison, the

investment direction could be determined for the firms. Furthermore, the corporate

performance could be evaluated at different levels so that the corporate planning in

the future could be adjusted according to the department performance and potential

development ability.

17.8 Methodology Developments

Table 17.6 summarizes part of previous methodical efforts on DEA environmental

assessment. The environmental assessment in energy needed to consider a time lag

until it can identify the effect of energy policy and business strategy. Therefore, it

was necessary for them to discuss the performance assessment in a time horizon.

Many previous studies incorporated the Malmquist index into DEA environmental

assessment to examine an occurrence of a frontier shift among multiple periods.

The window analysis, often used in previous DEA studies, was also applied to

examine a time shift in efficiency scores. The time shift of efficiency frontiers

among different periods was considered as a main concern of this previous research

group.

At the end of this section, it is important to describe that DEA is generally

classified into radial and non-radial approaches in discussing the measurement

Table 17.6 Methodology developments

Data Related papers

Cross sectional/

pooled data

Sueyoshi and Goto (2011c), 2012b, d, e), Zhang and Ye (2015)

Time series Abbott (2006), Banaeian and Zangeneh (2011), Barros et al. (2009b),

Barros and Peypoch (2008), Boyd and Pang (2000), Boyd et al. (2002),

Chung et al. (1997), Dai and Kuosmanen (2014), Fleishman et al. (2009),

Giannakis et al. (2005), Goto and Tsutsui (1998), Hattori et al. (2005),

Kashani (2005a, b), Li et al. (2013a, b, c, d), Lin and Liu (2012), Liu

(2015), Murillo-Zamorano (2005), Olanrewaju et al. (2012), Price and

Weyman-Jones (1996), Skevas et al. (2014), Sueyoshi and Goto (2013c,

2015b), Sueyoshi et al. (2013b), Tone and Tsutsui (2007), Vaninsky

(2006), Wang et al. (2013a, b, c, d, e, f), Wang et al. (2007), Zhao

et al. (2014), Yaisawarng and Klein (1994), Yunos and Hawdon (1997),

Zaim and Taskin (2000a, b), Zhang et al. (2013a, b) Zhou et al. (2014a, b)

Others Sueyoshi and Goto (2013b)
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criterion on efficiency. In a similar manner, DEA environmental assessment is

classified into the two categories. The radial approach is based upon the effort of

Debreu3 and Farrell4 while the non-radial approach is based upon Pareto5 and

Koopmans.6 Most of the previous works belong to the radial approach. The

difference between the two groups of measurement is that the radial approach

uses an efficiency score or an inefficiency score to determine the level of efficiency.

Meanwhile, the non-radial approach uses slacks, not an efficiency or inefficiency

score, to determine the level of efficiency. It is difficult for us to discuss which

approach is better in terms of efficiency measurement. However, it is desirable for

us to use both approaches so that they do not produce any major differences. This

type of problem, referred to as “a methodological bias”, should be carefully

discussed in any empirical study.

3 See the third footnote of Chap. 16.
4 See the fourth footnote of Chap. 16.
5 Vilfredo Federico Damaso Pareto (15 July 1848–19 August 1923) was an Italian engineer,

sociologist, economist, political scientist, and philosopher. Pareto is best known for two concepts

that are named after him. The first and most familiar is the concept of Pareto optimality. A Pareto-

optimal allocation of resources is achieved when it is not possible to make anyone better off without

making someone else worse off. The second is Pareto’s law of income distribution. This law, which

Pareto derived from British data on income, showed a linear relationship between each income level

and the number of people who received more than that income. Pareto found similar results for

Prussia, Saxony, Paris, and some Italian cities. Although Pareto thought that his law should be

“provisionally accepted as universal,” he realized that exceptions were possible. As it turns out,

many have been found. See http://books.google.co.jp/books?id¼Z6Oy4L6LSwC&pg¼PA140&
lpg¼PA140&dq¼debreu+farrell&source¼bl&ots¼aLkVeuwk9u&sig¼SYkaHtL56JXvZjUW0jJH

g33cw0o&hl¼ja&sa¼X&ei¼QZ03VPP1CtXc8AWAyoCQDA&ved¼0CEoQ6AEwBg#v¼onepa
ge&q¼debreu%20farrell&f¼false.
6 Tjalling Charles Koopmans (August 28, 1910–February 26, 1985) was a Dutch American

mathematician and economist. He began his university education at the Utrecht University at

seventeen, specializing in mathematics. Three years later, in 1930, he switched to theoretical

physics. In 1933, he met Jan Tinbergen, the 1969 Bank of Sweden prize winner, and moved to

Amsterdam to study mathematical economics under him. Koopmans shared the 1975 Nobel Prize

with Leonid Kantorovich “for their contributions to the theory of optimum allocation of

resources.” In 1938, he succeeded Jan Tinbergen at the League of Nations in Geneva and then

left in 1940 when Hitler invaded the Netherlands. In the United States, Koopmans became a

statistician with the Combined Shipping Adjustment Board in Washington where he tried to solve

the practical problem of how to reorganize shipping to minimize transportation costs. The problem

was complex: the variables included thousands of merchant ships, millions of tons of cargo, and

hundreds of ports. He solved it. The technique he developed to do so was called “activity analysis”

and is now called linear programming. His first write-up of the analysis is in a 1942 memorandum.

His techniques were very similar to those used by Kantorovich, whose work he discovered only

much later. See http://books.google.co.jp/books?id¼Z6Oy4L6LSwC&pg¼PA140&
lpg¼PA140&dq¼debreu+farrell&source¼bl&ots¼aLkVeuwk9u&sig¼SYkaHtL56JXvZjUW0jJ

Hg33cw0o&hl¼ja&sa¼X&ei¼QZ03VPP1CtXc8AWAyoCQDA&ved¼0CEoQ6AEwBg#v¼on
epage&q¼debreu%20farrell&f¼false.
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17.9 Conclusion

This chapter summarized and classified 407 articles in past three decades on

previous research works by using DEA environmental assessment. First of all, the

conceptual development of disposability was discussed from the pioneering work of

Färe et al. (1989). Since then, DEA environmental assessment was often applied to

energy and social sustainability. It is indeed true that industrial developments are

very important for all nations in terms of their economic prosperities. Then, Sections

from 17.3 to 17.6 discussed the application to electric power industry, petroleum

industry, Agriculture, fishery, manufacturing, transportation and others industries.

However, a problem associated with the developments was that their developments

usually produced various pollutions on air, water and others types of contaminations,

all of which were usually associated with our health problems and serious social

issues such as the global warming and climate change. It is necessary for us to

consider how to make a balance between economic success and pollution mitigation

in order to attain a high level of social and corporate sustainability. Therefore,

Sect. 17.7 discussed about economic development and corporate strategy. Finally,

the methodology developments of DEA environmental assessment in assessing

unified (operational and environmental) performance of organization were

discussed in Sect. 17.7, which could be useful to analyze the social and corporate

sustainability in energy and environmental protection in public and private sectors.

The DEA discussed in this chapter is one of the most important methodologies to

examine the level of such sustainability. However, it is true that the methodology

has strengths and drawbacks in applications. It is very important for us to carefully

use the DEA approach for guiding large energy policy and business issues in

nations and corporations related to energy and industrial pollutions. Technology

innovation in engineering can solve various energy and climate change issues by

linking it with political, economic and business concerns. The DEA method can

incorporate such technology innovation into environmental assessment so that it

can provide us with such a methodological linkage between engineering and social

sciences to enhance the level of economic success and to mitigate the amount of

environmental pollution. Consequently, the enhanced economic success and envi-

ronmental protection by utilizing DEA may improve the social sustainability in

public sectors and corporate sustainability in private sectors.

At the end of this concluding section, this chapter needs to mention that many

research efforts on DEA environmental assessment belong to multiple categories.

This study selects one of such multiple categories. Unfortunately, this chapter does

not cover all the research efforts. It is true that there are many other works, not listed

in the references of this chapter. That is clearly a drawback of this study.

In conclusion, it is hoped that this literature study on DEA environmental

assessment, along with a discussion on conceptual and methodological develop-

ments in Chap. 16, may provide researchers and individuals who are interested in

energy and sustainability with analytical and methodological guidelines for their

future research works in the area of energy, business and economics. We look

forward to seeing future research extensions as suggested Chapters 16 and 17.
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Byrnes, P., Färe, R., Grosskopf, S., & Knox Lovell, C. A. (1988). The effect of unions on

productivity: U.S. surface mining of Coal. Management Science, 34, 1037–1053.
Callens, I., & Tyteca, D. (1999). Towards indicators of sustainable development for firms: A

productive efficiency perspective. Ecological Economics, 28, 41–53.
Cambini, C., Croce, A., & Fumagalli, E. (2014). Output-based incentive regulation in electricity

distribution: Evidence from Italy. Energy Economics, 45, 205–216.
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Çelen, A., & Yalçın, N. (2012). Performance assessment of Turkish electricity distribution

utilities: An application of combined FAHP/TOPSIS/DEA methodology to incorporate quality

of service. Utilities Policy, 23, 59–71.
Chang, M.-C. (2014). Energy intensity, target level of energy intensity, and room for improvement

in energy intensity: An application to the study of regions in the EU. Energy Policy, 67,
648–655.

Chang, M.-C. (2015). Room for improvement in low carbon economies of G7 and BRICS

countries based on the analysis of energy efficiency and environmental Kuznets curves.

Journal of Cleaner Production, 99, 140–151.
Chang, D.-S., Kuo, L.-C. R., & Chen, Y.-T. (2013a). Industrial changes in corporate sustainability

performance: An empirical overview using data envelopment analysis. Journal of Cleaner
Production, 56, 147–155.

Chang, D.-S., & Yang, F.-C. (2011). Assessing the power generation, pollution control, and overall

efficiencies of municipal solid waste incinerators in Taiwan. Energy Policy, 39, 651–663.
Chang, Y.-T., Zhang, N., Danao, D., & Zhang, N. (2013b). Environmental efficiency analysis of

transportation system in China: A non-radial DEA approach. Energy Policy, 58, 277–283.
Chauhan, N. S., Mohapatra, P. K. J., & Pandey, K. P. (2006). Improving energy productivity in

paddy production through benchmarking? An application of data envelopment analysis.

Energy Conversion and Management, 47, 1063–1085.
Chen, J., Song, M., & Xu, L. (2015a). Evaluation of environmental efficiency in China using data

envelopment analysis. Ecological Indicators, 52, 577–583.
Chen, P.-C., Yu, M.-M., Chang, C.-C., Hsu, S.-H., & Managi, S. (2015b). The enhanced Russell-

based directional distance measure with undesirable outputs: Numerical example considering

CO2 emissions. Omega, 53, 30–40.
Cherchye, L., De Rock, B., & Walheer, B. (2015). Multi-output efficiency with good and bad

outputs. European Journal of Operational Research, 240, 872–881.
Chien, T., & Hu, J.-L. (2007). Renewable energy and macroeconomic efficiency of OECD and

non-OECD economies. Energy Policy, 35, 3606–3615.
Chien, C.-F., Lo, F.-Y., & Lin, J. T. (2003). Using DEA to measure the relative efficiency of the

service center and improve operation efficiency through reorganization. IEEE Transactions on
Power Systems, 18, 366–373.

Chitkara, P. (1999). A data envelopment analysis approach to evaluation of operational inefficien-

cies in power generating units: A case study of Indian power plants. IEEE Transactions on
Power Systems, 14, 419–425.

Chiu, Y.-H., Huang, C.-W., & Ma, C.-M. (2011). Assessment of China transit and economic

efficiencies in a modified value-chains DEA model. European Journal of Operational
Research, 209, 95–103.

17 DEA Environmental Assessment (II): A Literature Study 465



Chiu, Y.-H., Lee, J.-H., Lu, C.-C., Shyu, M.-K., & Luo, Z. (2012). The technology gap and

efficiency measure in WEC countries: Application of the hybrid meta frontier model. Energy
Policy, 51, 349–357.

Choi, Y., Zhang, N., & Zhou, P. (2012). Efficiency and abatement costs of energy-related CO2

emissions in China: A slacks-based efficiency measure. Applied Energy, 98, 198–208.
Chung, W. (2011). Review of building energy-use performance benchmarking methodologies.

Applied Energy, 88, 1470–1479.
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Färe, R., Grosskopf, S., & Logan, J. (1983). The relative efficiency of Illinois electric utilities.

Resources and Energy, 5, 349–367.
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Chapter 18

Corporate Environmental Sustainability
and DEA

Joseph Sarkis

Abstract Data envelopment analysis (DEA) is a flexible management tool and

methodology that can be utilized in a variety of ways. This flexibility is evident in

the applications of DEA for investigating corporate environmental sustainability

and management. In this chapter an overview of DEA and how it can be utilized

alone and with other techniques to investigate corporate environmental sustainabil-

ity questions is presented. Discussion on how DEA has been used for environmental

sustainability theory development and testing using empirical information makes

up a core aspect of some of the major contributions DEA has provided in this field.

DEA is also used as a management decision support tool, which includes

benchmarking and multiple criteria decision making. Some details on how each

was used with exemplary references are included. Some future DEA directions that

could be used for research and application in corporate environmental sustainability

is also defined.

Keywords Data envelopment analysis • Greening • Environmental • Business •

Benchmarking • Decision making

18.1 Introduction

Data envelopment analysis (DEA) has seen many years of application on issues

related to organizational environmental sustainability in general and environmental

performance in particular. Although emerging from the economics literature as a

production frontier methodology with the traditional economic efficiency of out-

puts generated from inputs, DEA has expanded in perspective and application. The

use of DEA has expanded as a descriptive analysis tool, to generate data for

statistical analysis and inferencing, and as a prescriptive decision support tool for

organizational decision making.
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In this chapter we present how some literature investigates corporate environ-

mental sustainability. Much of the work reviewed here focuses on DEA based

developments and research by the author of this chapter and some of the lessons

learned. A summary of these investigations and future research is also presented.

The discussion will focus on the application and usefulness of the DEA tools.

Mathematical modeling of the DEA models, many of which are covered elsewhere

in this book, will not be detailed. Only general presentation of the DEA-based

models is discussed. Individual DEA models and joint application with supporting

synergistic tools are also mentioned without delving too deeply in to the mathe-

matical notation and development. The original papers provide a better and detailed

exposition of the reviewed models and papers.

Thus, a descriptive and applied perspective will be the methodological approach

used in this chapter.

18.2 Corporate Environmental Sustainability

Concerns about industrial and commerce related environmental issues have

increased over the years. The reasons for this concern are manifold and range

from social, scientific, and technological developments over the years to various

specific regional and global pressures faced by these organizations. Social media,

instant communication, advances in science, evolving regulatory have all contrib-

uted to this increased knowledge and pressures by citizens, communities, regula-

tors, competitors, and consumers.

The science around some of today’s environmental problems has been critical in

convincing society and organizations that the concerns are real and require some

form of alteration on practices. Two areas where this is especially true are in the

depletion of natural resources, necessary for continual production, and climate

change. Socially, there is greater awareness throughout the world, especially in

emerging nations such as China, India, and Brazil, that we must do more to protect

ourselves and our environment. As the world continues to develop economically,

environmental burdens and their impact on quality of life have raised social

awareness. Communications technology, such as the internet and social media,

have made environmental information and social communication easier to access

than at any other time in history. New regulations that are flexible and voluntary,

sometimes supported with market mechanisms or incentives are becoming more

evident and putting organizations in unique positions to more carefully respond to

them. Finally, industrial self-regulation for corporate social responsibility through

certifications, eco-labels, and industrial best practices are also becoming more

evident.

The response by industry has not only been from a risk and liability reduction

perspective with only a focus on minimizing negative regulatory exposure, but also

from more competitive and business case reasons. One of the major reasons that

organizations seek to implement practices and technology to reduce ecological
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footprints is because it can save costs. This win-win opportunity of lowering costs

arises when waste is eliminated from a system. This joint gain arises from building

organizational ‘eco-efficiency’. Eco-efficiency is closely aligned with general effi-

ciency in seeking to minimize inputs and bad outputs, while maximizing good

outputs (Dyckhoff and Allen 2001; Egilmez and Park 2014). Usually waste is

considered a bad output and seeking to be minimized. Waste can be solid, gaseous,

or liquid. Clearly, measuring and evaluating efficiency, eco-efficiency or otherwise

is a DEA goal.

In addition organizations may wish to make investments associated with improv-

ing environmental sustainability performance. DEA can be effectively be used in

this situation as a multiple criteria decision tool (Sarkis 2000a; Gonzalez

et al. 2015). Thus, if an organization seeks to make a selection decision it would

consider multiple dimensions including environmental, economic, and business

dimensions.

Given that DEA is valuable for performance measurement. It can simplify

multiple dimensions to a smaller set of performance metrics. Corporate environ-

mental sustainability and green supply chains are both examples of situations where

performance measurement has gained in interest and importance.

From a research perspective DEA can be used to evaluate large sources of data

for empirical relationships and statistical inferencing. The research questions may

be directly related to DEA outputs to determine if there are differences in efficiency

scores or as dependent or independent variables of standard econometric

approaches.

Each of these DEA-based applications with example situations and references

are now overviewed. Additional resources for application of DEA for corporate

environmental sustainability topics do exist (e.g. see Sarkis and Talluri 2004a, for

additional examples).

18.3 Theory Testing and Statistical Inferencing with DEA:
An Environmental Perspective

DEA results may be statistically evaluated and this approach is valuable for broader

theoretical or econometric evaluation. The major difficulty with DEA data is that it

does not necessarily fall within some of the distribution requirements assumed by

various statistical inferential tools. Thus, there is a reliance on non-parametric

statistical inferential techniques.

Results of DEA are typically relative efficiencies for organizations or units

within organizations. These efficiency scores can then be used to evaluate theory

using non-parametric statistical techniques. The major non-parametric tools that

have been identified by the literature are based on ranking statistics. The two
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models that are specifically recommended by Sarkis (2000a, b) are the Mann-

Whitney U-test and the Kruskal-Wallis rank tests.

Some of the theory testing from a corporate sustainability perspective has

included evaluating waste management location analysis as a comparative analysis

with other multiple criteria decision tool to determine if rank orders were similar

(Sarkis 2000a). In this situation, Kendall’s Tau-b test was utilized to evaluating of

the rankings by outranking and DEA approaches were statistically similar. The

methodology utilized a weight constrained DEA approach and found that the more

constrained the DEA model, based on relative importance considerations, the better

the match to the outranking approaches.

18.3.1 Financial and Environmental Performance
Relationship

In the above approaches a direct ranking relationship and determining whether

significant differences were completed using univariate tests. For more advanced

econometric testing the utilization of multivariate techniques would be more

appropriate. In this situation a number of variations using DEA were utilized.

A direct approach of using DEA to determine environmental efficiency with the

U.S. environmental protection agency’s toxics releases inventory was used as an

independent variable for the following relationship test (Sarkis and Cordeiro 2001):

Firm short-run financial performance

¼ f Environmental efficiency; firm size; firm leverage; errorð Þ

In this situation the statistical and theoretical examination focused on whether a

relationship existed between firm environmental efficiency and short-run financial

performance. This relationship is probably one of the most studied and focuses on

whether ‘doing good’, on environmental performance is related to ‘doing well’

economically. The selection of the input and output variables in this case were

focused on altering the DEA model where one model focused on pollution preven-

tion efficiency, and the other model focused on end-of-pipe efficiency. The theo-

retical proposition was that stronger relationships would exist with pollution

prevention.

The efficiency measures utilize a time difference approach. Where previous

year’s data was compared to current year data to show improvements in

performance.
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18.3.2 Ecological Efficiency and Technological Disposition
Relationship

An ecological modernization perspective (Sarkis and Cordeiro 2009, 2012) argues

that technology can help countries and organizations separate economic growth

from environmental degradation. Ecological modernization theory began as a

broad-based national policy instrument, but has been discussed as an opportunity

for industry and individual organizations. This theory sets the foundation for

investigating the relationship between technological choices and ecological

and/or economic efficiency. For example, the empirical evaluation can be com-

pleted using the following empirical relationship for efficiency at the electrical

plant level.

PlantEfficiency ¼ b0þ b1 AverageGenerator ageð Þ
þ b2 UtilityOwnershipð Þ þ b3 PlantoperatesScrubberð Þ
þ b4

�
PlantusesGasFuel

�þ b5 PlantUsesCoalFuelð Þ
þ b6

�
PlantUsedFGDScrubber Technology toComply, “EndofPipe”

�
þ b7 PlantPurchasedCredits toComplyð Þ
þ b8 PlantChangedFuelsor FuelBlend, “In-Process”ð Þ
þ b9-18 Location,Regions1-9, 11ð Þ þ error

The inputs and outputs for these models can be altered to identify ecological versus

technical (business) efficiency, which is the dependent variable in this empirical

relationship.

The methodologies for each paper, although the data and theory were similar,

had variations in the types of DEA models used and multivariate regression

analysis.

A variety of DEA models can be used to evaluate the efficiency. One charac-

teristic that I typically choose are DEA models that may have a broader variation in

efficiency scores. That is, efficiency scores that are not truncated at either 1 or at

0. One such model is the Tchebycheff radius DEA model (Rousseau and Semple

1995). The efficiency scores in this situation can take on a continuous positive and

negative number values. In these situations, undesireable outputs (e.g. pollution

effluents) were just treated as inputs into the system, where lessening of

undesireable outputs was a goal similar to inputs when seeking to create greater

efficiency. Another DEA model used to help reduce the issue of truncation was the

superefficiency slack based model (Cooper et al. 2007).

The resulting conclusions of these studies were that the inclusion and consider-

ation of ecological factors into performance evaluation by organizations can sig-

nificantly change how organizations view operational and investment decisions. A

complete analysis of goods and bads from a technical and ecological efficiency

perspective rather than from the perspective of technical efficiency alone may alter

management’s perspectives on their operational decisions.
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Another version of DEA models that is very popular in environmental efficiency

modeling is the use of bad inputs and outputs that may be separable or inseparable

(Cooper et al. 2007). This was the model used in the second in the series on

ecological modernization (Sarkis and Cordeiro 2012). The theory was also focused

on whether more proactive measure would be better suited for overall and technical

efficiency. The separable-non-separable factors in inputs and outputs were meant to

determine which factors were more closely and directly aligned. For example boiler

heat was directly related to emissions, but boiler capacity may be more separable

and not as directly correlated with emissions. This modeling allows bad outputs to

remain as outputs.

The multivariate regression analysis utilized Tobit regression when the

Tchebycheff radius methodology and slack-based superefficiency models were

used (Sarkis and Cordeiro 2012). This usage occurred even though the only

truncation of data occurred in the slack-based model. It is acknowledged that the

use of second-stage explanatory regression models in DEA, while frequently

employed, continues to be viewed by some as controversial. If suitable alternatives

are non-existent for second stage multiple regression analysis of DEA results

(e.g. including all variables in a DEA model), the use of truncated multiple

regression approaches may be the only alternative. Other techniques to overcome

some of the correlation issues have been recommended (Simar and Wilson 2007).

18.3.3 Environmental Practices, Performance and Risk
Management

Many organizations seek to adopt environmental practices to help reduce risks. This

risk management perspective requires that organizations consider how to minimize

risks by reducing hazardous waste materials, liability exposure, and improved

human health. In fact, much of the U.S. Environmental Protection Agency pro-

grams have to do with limiting human health exposure with respect to environmen-

tal issues.

In one study (Sarkis 2006) that considered these relationships a series of

questions relating to when and what was adopted in risk management and environ-

mental practices were compared to environmental performance. The research

questions were general and included:

1. Are earlier adopting organizations better environmental performers, and do they

adopt more environmental and risk management programs and practices?

2. Is there a positive relationship between better current environmental performers

and adoption of environmental practices?

3. Is there a positive relationship between organizations that improve their envi-

ronmental performance over time and the amount of environmental and risk

management programs adopted?
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4. Should organizations adopt more environmental and risk management

programs?

To test various hypotheses that seek to answer the above questions, this paper

provided two different modeling approaches. First, it varied the input and output

measures to determine the specific type of environmental performance that was to

be evaluated. Also, variations in the type of DEA model were also used.

Unlike the undesireable outputs approaches described in the previous sections

(e.g. making the outputs inputs, or having a different negative valuation in slack-

based approaches) this study rescales the undesireable outputs. The rescaling was

completed by taking the largest value for each of the outputs and subtracting the

value for each facility from this large value. Thus, with this rescaling a larger value

is considered to be better, as is the requirement for output data.

The Mann-Whitney U non-parametric independent samples test was used to

evaluate a number of hypotheses. This is unlike the use of multivariate regression

models. To be able to complete this analysis two groups were formed those that had

various factor above and below average valuations and then the inference test was

utilized based on efficiency scores and whether statistically significant differences

occurred.

18.4 Benchmarking and Key Performance Indicators
with DEA

In practice and application, DEA can be used to help organizations complete

benchmarking and performance evaluation. DEA as a benchmarking tool can

help identify organizational environmental performance and eco-efficiency weak-

nesses and to address those issues. Alternatively, it can help organizations identify

best practices that can be diffused throughout the organizations. Benchmarking and

performance measurement are ways that managers can continuously improve their

operations. Using DEA as a performance measurement and benchmarking tool has

become commonplace (Zhu 2014).

External benchmarking using DEA has typically been on financial or marketing

performance and measures, for example with the banking industry. Internal

benchmarking has also been developed for internal process improvement.

Benchmarking using DEA has been used with respect to the envelopment side of

the ratio based linear programming formulation. That is, the units that have a

positive efficiency score form the facet set and are regarded as the benchmark

DMUs. In other words, it is these DMUs that should be benchmark partners for the

organization that wishes to improve its operations.

Benchmarking using DEA may not just be focused on using the facet sets from

DEA based models. Another approach that may be useful is through identification

of weights used for identifying efficient units in the objective function. Unfortu-

nately, this is not a guaranteed approach since DEAmodels can generate alternative
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weight sets for the optimal efficiency score. But, if weights are to be used, various

clustering approaches of weights can identify benchmark partners and groups

(e.g. Sarkis and Talluri 2004b).

Using fossil fuel electricity generating utilities benchmarking across plants was

completed using DEA and clustering approaches (Sarkis 2004). This study evalu-

ated the eco-efficiencies of the top 100 major U.S. fossil-fueled electricity gener-

ating plants from 1998 data. The efficiency scores were treated by a clustering

method in identifying benchmarks for improving poorly performing plants. Effi-

ciency measures were based on three resource input measures including boiler

generating capacity, total fuel heat used, and total generator capacity, and four

output measures including actual energy generated, SO2 (sulfur dioxide), NOx

(nitrous oxide), and CO2 (carbon dioxide) emissions. The benchmarking was

completed to show some characteristics of the benchmarked plants and groups.

These characteristics may or may not be in control of management but could

provide insights into what may contribute to various performance characteristics

of DMUs (plants). Cross efficiency approaches can also be applied in these cir-

cumstances to help identify averaged solutions (Talluri and Sarkis 1997, 2002).

The organizational supply chain is an important and emergent area of

benchmarking for organizational environmental sustainability (Yakovleva

et al. 2012). Although much of the current focus on supply chain sustainability is

on the dyadic relationship, extensions to multiple tiers of the supply chain and

identifying critical success factors is a recent area of research (Grimm et al. 2014).

Benchmarking individual dyads or multiple tiers from sustainable supply chain

perspective, in itself, is a complex issue. Not only can their multiple dimensions of

business and activities in the supply chain.

The supply chain operations reference (SCOR) model is an example of the

complexity and variety of measures that can be used for benchmarking supply

chains in general. The SCOR model categorizes the processes of five supply chain

stages: plan, source, make, deliver and return. Within each of these stages there

SCOR categorizes performance measures on cost, time, quality, flexibility, and

innovation dimensions (Bai et al. 2012). Adding these dimensions environmental

factors to economic and business factors only adds to the complexity. The literature

has accepted the multidimensional and complex relationships of supply chain

sustainability performance evaluation (Varsei et al. 2014). Given the potentially

large data sets and the need to capture all this data, finding the best, key perfor-

mance, metrics for sustainable supply chains requires significant development and

thought. DEA alone, or with other tools, can provide some important answers.

Identifying the most pertinent data in terms of additional information provided by

the data may be a way of limiting the complexity.

Along this track, the use of rough set theory, an information set theory method-

ology for data mining, along with DEA can provide a tool for helping to filter and

identify key performance indicators (Bai and Sarkis 2014). The results show that

key performance indicators can be determined using neighborhood rough set by

reducing overlapping and closely related performance metrics. DEA performance

results provide insight into relative performance, benchmarking, of suppliers.
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The supply chain sustainability performance results from both the neighborhood

rough set and DEA can be quite sensitive to the parameters selected and sustain-

ability key performance indicator sets that were determined. Thus, careful moni-

toring of using these joint tools may still be required. Although, the use of rough set

and DEA can greatly reduce the number of metrics and measures that are needed in

this complex environment.

Advances in DEA for supply chain management may include network based

techniques to complete benchmarking and decision making associated with sus-

tainability and supply chains (e.g. Chen and Yan 2011; Aviles-Sacoto et al. 2015).

18.5 Multiple Criteria Decision Making with DEA

DEA as a singular approach or jointly with other approaches can be effectively

applied to decision making contexts. Decisions facing corporate sustainability and

environmental contexts, as mentioned in the previous section are complex. DEA is

a tool that can help with data mining and simplifying complex and multiple

dimensions to a single or smaller subset of dimensions can prove helpful for

decision making.

DEA can be used effectively as a multiple criteria decision making tool (Cook

et al. 2014; Doyle and Green 1993; Sarkis 1997, 1999; Sarkis and Talluri 1999).

The evaluation of environmental projects or programs is one application of the

various DEA models. Since environmental technology and programs are typically

strategic, the use of multiple factors and complex factors is standard practice. These

multiple factors may include tangible and intangible characteristics. DEA is suit-

able for this mixture of criteria and factors. With the DEA ranking approaches

available, the decision making for these programs become clear. Managerial infor-

mation can be integrated with these approaches by introducing weight limitation

constraints, also defined as cone ratios and assurance regions (Sarkis 1999). This

flexibility in DEA allows for a number of ways that ranking and multiple criteria

techniques can be used. Clearly, one of the limitations of this set of models is that

only deterministic and discrete alternatives can initially be considered since the

decision objects and alternatives are typically the DMUs.

In this context DEA can be used as a valuable managerial decision tool. For

example DMU’s can be various environmental technologies that an organization

needs to investigate for potential adoption, or selection of suppliers based on

environmental sustainability criterion (Mahdiloo et al. 2015). The criteria may be

represented as inputs and outputs. Typically, in a multiple criteria decision making

environment, criteria that improve as their value decreases (e.g. cost, emissions)

may be considered inputs. For criteria that improve as their values increase

(e.g. energy delivered) these would be considered outputs in a DEA model. The

results can then be analyzed from a ranking perspective, assuming that there is

ample discrimination amongst the efficiency scores of the DEA methodologies.
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DEA techniques that are good discriminators are more valuable for selection

decisions. Thus, the use of a number of approaches could be considered as more

preferable techniques. Although care should be taken in the selection of the

technique, since in many cases the final rankings are not always similar. A portfolio

selection approach (where sets of environmental decisions are to be made) may also

give different groupings of best choices depending on the technique. To overcome

these discrepancies additional decision tools or other factors can be considered in

final evaluations, or some form of portfolio score can be determined. These are

issues that require additional investigations.

18.5.1 Justifying and Choosing Environmental Technologies

One very important multiple criteria decision making analysis approach is the

justification, selection and management of environmental technologies. Environ-

mental technologies and innovations can be defined broadly. One set of technolo-

gies can include standard hard, tangible technologies, such as scrubbers for end-of-

pipe solutions in the utility industry or purchase of solar panels for renewable

energy generation (Sarkis and Tamarkin 2005; Sarkis and Cordeiro 2009, 2012).

There are softer environmental technologies such as green information systems and

software to help in planning and design of environmentally sound products (Bai and

Sarkis 2013). Examples would include life cycle analysis tools and computer aided

design systems for ecological design of products. Another innovation or technology

category may include control technologies that help monitor and address environ-

mental sustainability issues (Sarkis and Weinrach, 2001). These tools and technol-

ogies can be software or hardware oriented as well, but help to manage processes by

limiting emissions or quality and scrap of materials during processing. They may

also provide information to help manage environmental sustainability such as with

smart grids and energy reporting (Bai and Sarkis 2013; Sarkis et al. 2013). One

additional set of organizational technologies are organizational process innova-

tions. For example environmental management systems and standards such as ISO

14000 may be considered organizational technological innovations. Inter-

organizational innovations would be various green supply chain practices (Zhu

et al. 2012).

A couple of ways to help filter the decisions and incorporate managerial prefer-

ence is through the integration of DEA with other decision tools such as the

analytical hierarchy process (AHP) or analytical network process (ANP) (Saaty

1996) and multiattribute utility theory (Keeney and Raiffa 1976), may help man-

agement filter to a better solution. As mentioned earlier managerial preferences for

criteria may help restrict the weights (or relative weights) that are given to each of

the criteria. One approach of completing this step is by adding assurance regions

(AR).

The concept of AR is described in detail by Thompson et al. (1990). AR requires

a definition of upper and lower bounds for each input and output weight. The upper
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and lower bounds for each weight can help define constraints that relate the weight

values, and potentially managerial importance values, of various factors. A simple

example for defining the AR constraints for two input weights v1 and v2 is initiated

by setting lower (LB) and upper bounds (UB) on each weight. These LB and UB

may be ranges for preference weights for each of the criteria from the decision

makers. The AR constraints relate the weights and their bounds to each other.

These constraints can be added to various DEA models directly. If the upper and

lower bounds of the weights for all the factors are known with certainty, or have

exact agreement among managers, and do not need a range to define them, the AR

constraints would be equalities. From a computational perspective additional con-

straints may slow the procedure down. For examples of this application using AHP

to limit the weights see Sarkis (1997, 1999).

Various factors for decision making in this environment may be mixed and

incorporate business and environmental sustainability dimensions. For example,

Cost, Quality, Recyclability, Process Waste Reduction, Packaging Waste Reduc-

tion, and Regulatory Compliance may all be decision factors that influence the

selection of an environmentally significant technology (Bai and Sarkis, 2012;

Sarkis and Dijkshoorn, 2007). The first two factors, Cost and Quality, would be

considered standard business performance measures that may be used to evaluate

any program or project within an organization. The remaining measures are those that

focus primarily on the environmental operations and manufacturing characteristics.

These environmentally based factors cover a spectrum from reactive environmental

measures (e.g. Regulatory compliance) to proactive measures (e.g. process waste

reduction). There may be many more factors that could be considered, as evidenced

in the benchmarking discussion. Some filtration process, e.g. using information

theoretic approaches, may allow for some initial evaluation of the factors that

eliminates less important ones and considers these factors as the primary ones that

should be used to evaluate these programs.

Others have applied multiattribute utility theory (MAUT) approaches and ANP

as data generators for DEA data. Using these approaches to help generate data can

overcome some of the difficulties of qualitative data while incorporating manage-

rial preferences. Thus, the ordering of methodologies, DEA/ANP/MAUT can work

interchangeably in terms of developing and implementing various measures for

multiple criteria decision making.

18.6 Future Research Directions

Given the hundreds of variations and developments in DEA there remains ample

opportunity for utilizing these tools for further investigations. Multi-tier and net-

work DEA can be utilized to investigate sustainable supply chain issues that allow

for consideration of multiple levels of supply chain tiers. The field of multi-tier

sustainable supply chains is very much in its infancy and even the most basic

models can make a contribution to the body of knowledge in corporate
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environmental sustainability. The difficulty arises in finding practical data and

examples. The integration of DEA with life cycle analysis data may be the most

appropriate approach to link the two techniques. Although some modeling has been

completed to link DEA and life cycle assessment, the analysis is still for a single

stage in the supply chain.

Many applications of DEA and corporate eco-efficiency and environmental

sustainability research has focused on traditionally polluting and industrial organi-

zations. Service organizations can also have significant environmental sustainabil-

ity implications. DEA has been effectively applied for service organization

performance (Sherman and Zhu 2013). Identification of various environmental

measures in this context is important and may include various energy and materials

waste aspects. For example, information technology plays a big role in service

organizations and greening information technology investigations using DEA with

empirical, benchmarking and decision making approaches is a fertile area for

research and application.

Bootstrapping of information and data with application to DEA may be helpful

when data is not available to make a complete analysis or requiring some form of

discrimination amongst DMUs. Bootstrapping methodologies to help randomly

generate data based on current data availability and characteristics is an important

aspect of DEA that has significant room for application in environmental sustain-

ability management within organizations. Although Lothgren (1998)) describes and

evaluates alternative DEA-based bootstrapping estimation, which can be used in

these studies, other techniques do exist. For example, the use and application of

Bayesian analysis based simulation procedures to generate data and their impact on

DEA is a potential bootstrapping approach which is a fruitful direction for future

research. Currently, some modeling using Bayesian for sustainable supplier selec-

tion has been applied (Sarkis and Dhavale 2015), expanding these valuations with

an integration of DEA as a benchmarking or MCDM tool could be a multiple

methodological extension that can address some of the limitations of data genera-

tion and analysis.

Comparing and contrasting DEA with other productivity analysis approaches in

environmental programs provides another opportunity for research. Evaluation

using stochastic frontier analysis (SFA) and DEA can be investigated from an

environmental perspective. One study (Cordeiro et al. 2012) found that results

may be relatively similar, which bodes well in validating some of the DEA

techniques. This methodological finding provides confidence in the pattern of

results, since the approach and assumptions utilized in SFA complement those of

the DEA approach. The technique was applied for environmentally oriented dimen-

sions, comparing and contrasting to a variety of DEA under various experiments

can provide insights into limitations and sensitivity of DEA in these contexts.

Multiple stages of evaluation, as in supply chain management stages with

multiple organizational levels, can also be considered for temporal factors. Time

based panel data to test the evolution of environmental sustainability across indus-

tries and time is a fertile area for model development, applications, and theoretical
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study. Basic questions that can be answered include whether organizations can and

do become more efficient in their environmental sustainability efforts over time and

also whether different industries make more rapid gains in environmental sustain-

ability over time. Moreover the role played by salient environmental practices such

as environmental auditing, waste monitoring, environmental policies and other

support practices for improving sustainability in organizations and across supply

chains is well worth investigating (Bai and Sarkis, 2012).

The further integration of DEAwith a broad variety of methodologies can still be

completed. Multiple criteria tools such as TOPSIS, VIKOR, and Outranking, along

with various data mining tools related to entropy and information theory, can also

be avenues for multi-methodological integration. An important application is to be

able to aid in decision making and management of the extant environmental

sustainability performance measures that exist.

The use of DEA for quantitatively oriented corporate environmental sustainabil-

ity information has been well developed. Extending DEA and research to incorpo-

rate less tangible measures, such as reputation and image outcomes or

programmatic characteristics, may require some adjustment or development of

categorical DEA methodologies. Extensions of research to include social sustain-

ability in organizational and supply chain activities are another important direction

for research (Brandenburg et al. 2014). Broader organizational and supply chain

sustainability investigation that incorporate social sustainability performance mea-

sures may also benefit from models that incorporate intangible characteristics.

Social sustainability is more likely to incorporate intangible dimensions such as

equity, child labor, and diversity issues that are difficult to measure.

18.7 Conclusion

DEA has had a substantial history as a tool to investigate organizational environ-

mental sustainability. It has proven valuable for the understanding and advance-

ment of practice in this field from the perspective of theory evaluation and

development, managerial decision making, and organizational benchmarking.

Whether as a stand-alone tool or with other methodologies insights gained have

been very valuable. DEA is especially beneficial because the complexities involved

in understanding and managing sustainability can be effectively addressed.

Further investigations are warranted and DEA as a tool can help us make our

organizations more thoughtful, efficient, and sustainable, not only for this genera-

tion but for future generations. Hopefully this chapter helps provide insights to old

and new researchers to further advance study in this critically important study.
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