
Chapter 6
Effectively Unpaired Electrons for Singlet
States: From Diatomics to Graphene
Nanoclusters

Anatoliy V. Luzanov

Abstract Formal and computational models within the effectively unpaired elec-
tron (EUE) theory are reviewed and extended. In the first part, we analyze
open-ended aspects of the existing EUE measures and find additional advantages of
the Head-Gordon index (2003) over the very first (Yamaguchi et al. 1978) index. In
particular, for ground states the Head-Gordon index estimates an average occupa-
tion of virtual holes and particles, which occur due to electron correlation. Addi-
tional hole-particle indices for describing EUE are proposed and analyzed. The
second part of the paper is focuses on practical aspects and EUE computational
schemes in small molecules (at the ab initio level) and large-scale polyaromatic and
graphene-like structures (at the semi-empirical level). Here the unrestricted
Hartree-Fock (UHF) schemes and their recently proposed simplistic versions turn
out to be a suitable tool producing meaningful EUE characteristics for the extended
π-electron systems (with number of carbon atoms ∼103 and more) in a fast and
simple way. We emphasize that UHF solutions should be regarded not as invalid
spin-contaminated states but as precursors of the appropriate spin-projected states
of the Lowdin’s extended Hartree-Fock type. The influence of the static and vari-
able electric fields on π-electron systems is also studied. It is shown that strong
perturbations drastically increase the electron unpairing in aromatic hydrocarbons,
especially those with the initially stable Clar-type structure.
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6.1 Introduction

The notion of effectively unpaired electrons (EUE) in molecules originates from the
seminal paper of Yamaguchi and colleague [1]. The EUE analysis of wave functions
has become a very useful tool for understanding electronic structure of complex in
particular, conjugated molecules. In case of singlet states all the approaches to EUE
are inevitably rooted in high-level many-electron theories because no unpaired
electrons are possible in a one-electron picture of closed-shell systems. Indeed, by
construction, each electron pair (with opposite spins) occupies exactly one suitable
MO, as prescribed by any correct independent-particle model. Hence, only bona fide
wave functions accounting for electron correlation should be employed for treating
EUE. This makes the problem interesting and difficult simultaneously.

It should be also emphasized that there exist no spin density effects in
spin-singlet (diamagnetic) molecules if relativistic effects are neglected (see
Eqs. (5.2) and (5.3) in Ref. [2]). Hence, “effectively unpaired electrons” (as in the
dissociated hydrogen molecule or in radical pairs) remain, as a whole, in the singlet
state due to the total spin conservation law. This fact indicates some type of spin
correlation between particles, particularly between spatially separated ones, as it is
in the classical Einstein-Podolsky-Rosen pair [3, 4]. At the same time, systems with
large unpairing effects behave as singlet diradicaloids or even polyradicals which
feature many unusual properties. The problem is significant because a considerable
occurrence of the effectively unpaired electrons is an instability factor of the system
of interest. In particular, an EUE analysis of wave functions can easily point to a
diradical or, generally, polyradical character of electronic states. In this respect, the
EUE problem is also important for designing new molecular-based materials con-
taining giant molecules. A separate issue is electron unpairing in excited states,
which has attracted attention only recently.

There exist various quantum chemical approaches to define and quantify “odd”
electrons (this very term is used in [1] for effectively unpaired electrons). Obvi-
ously, it is important to rightly choose the scheme describing EUE. Two key
approaches are now popular in this field. The first employs the so-called Yamaguchi
index from [1]; the other uses the Head-Gordon indices from [5]. A noteworthy
progress was recently made in ab initio applications of the EUE theory [6–11]. And
yet, high-level electron correlation methods are very computationally demanding
or, more frequently, not available for large-scale and super-large-scale systems.
Therefore, it was important to develop a simplified semi-empirical, but at the same
time physically meaningful EUE theory for huge systems such as π-
electron-containing graphene-like structures and finite-sized carbon nanotubes.
Preliminary attempts in this direction were made in [12, 13]. It is worth mentioning
some interesting results produced for giant graphene molecules obtained by the
density functional theory (DFT) [14]. At the same time, in practice standard DFT
approaches typically fail to produce correctly formed density matrices, which
presents a stumbling block for the consistent analysis of molecular electronic
structures.
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In light of the above, the goal of the present contribution is to describe main trends
in this field and to give a comparable analysis of different approaches as well as to
demonstrate the utility of the EUE indices for interpreting complex structures—up to
covalent polymeric networks. In our applications of the EUE theory the stress will be
on strongly correlated molecular states, in particular large π-conjugated systems.
Here, we revisit the EUE problem in the context of previous studies [12, 15, 16], and
find the Head-Gordon index to be more appropriate and more consistent from a
physical viewpoint as well. We also describe new applications of EUE indices for
molecules in strong static and nonstationary electric fields. We aim to provide a
self-contained introduction to and a concise overview of the EUE theory.

6.2 General Definitions and Yamaguchi’s Index

We start with paper [1]. This work had put forward a first possible definition of the
EUE density for an arbitrary wave function with any permitted spin value s≥ 0. As
mentioned in the introduction, our main interest is the case of singlet states, and for
them the EUE effects are really important and interesting. Indeed, for nonzero spin
states (doublet-state radicals, triplet-state diradicals etc.), the manifestations of
unpaired electrons can be described even within the restricted open-shell
Hartree-Fock (ROHF) theory. The latter characterizes the unpaired spins by stan-
dard spin density matrices. In the singlet state, the spin density matrix disappears
[2], and yet, electron correlation enforces electrons to be unpaired if physical and
chemical circumstances require it (e.g., in bond breaking processes).

First, we provide the main EUE definitions using the conventional reduced
density matrix (RDM) methods. In singlet states, the first-order RDM (1-RDM) can
be defined as a spin-free matrix which is also termed the charge density matrix.
Throughout the paper, the capital letter D will be denoted the charge density matrix.
In Dirac’s bra-ket notation, D conveniently takes a compact form of a spectral
resolution, that is the following diagonal form:

D= ∑
k
λk φkj ⟩⟨φkj, ð6:1Þ

with φkj ⟩ being the eigenvectors (natural orbitals), and λkð≥ 0Þ being the respective
eigenvalues. The quantities λk are usually called natural orbital occupancy numbers
(NOON). Due to Pauli’s principle, 0≤ λk ≤ 2. Furthermore, NOON are usually
normalized to a total (always even in our case) number of electrons, N =2n, where
n is a number of electron pairs in the given spin-singlet molecule. Thus,

TrD= ∑
k
λk =N. ð6:2Þ
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If unpaired electrons are absent then all molecular orbitals are doubly occupied.
Obviously, for the fully closed-shell system the all nonzero NOON are equal to 2:

λi =2, 1≤ i ≤ n ð6:3Þ

(pair orbital occupancies), other λk> n =0. In this case one deals actually with the
customary independent-particle model, more exactly, the restricted Hartree-Fock
(RHF) approach. The RHF density matrix is denoted as D0. Explicitly,

D0 = 2∑ 1≤ i≤ n φij ⟩⟨φij. ð6:4Þ

The structure (6.4) is certainly changed under the influence of electron corre-
lation. So, expression (6.1) with a more involved NOON spectrum fλkg is generally
valid, and a deviation of a realistic NOON distribution from Eq. (6.3) properly
characterizes EUE. In [1] this simple reasoning was the underlying rationale for
introducing the EUE notion and the corresponding deviation measure.

Proceeding in a more formal fashion, we introduce the EUE density matrix, Deff ,
as a function of density matrix D (in the operatorial sense). It means that

Deff = ∑
k
λeffk φkj ⟩⟨φkj, ð6:5Þ

and the new, also nonnegative, ‘occupation numbers’ λeffk are generated by a certain
function of the initial NOON spectrum, that is

λeffk = f ðλkÞ ð6:5′Þ

(see [5]). The total EUE number, or better still, the EUE index, Neff , can be
identified with a sum of these λeffk :

Neff = Tr Deff = ∑
k
λeffk . ð6:6Þ

For singlet states, the natural requirement is f ðλkÞ≡ 0 for any one-determinant
wave function satisfying Eq. (6.3). In this case λ2k =2λk , and this can be condensed
into the matrix identity

2D0 − ðD0Þ2 = 0 ð6:7Þ

(the duodempotency relation). Thus, function f ðλÞ=2λ− λ2 provides an admissible
choice for a function which vanishes in the case of singlet state determinants. This
leads to the simplest solution of the EUE problem: λeffk = λoddk where
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λoddk =2λk − λ2k . ð6:7′Þ

Here and elsewhere superscript and subscript ‘odd’ denote that the Yamaguchi
index and related quantities are considered. As a result, the matrix representation of
Eq. (6.5) takesthe form

Dodd = 2D−D2, ð6:8Þ

and we can easily specify Eq. (6.6) as

Nodd = 2N −Tr D2 = 4n− ∑
k
λ2k . ð6:9Þ

The above approach gained more attention after this method was restated in [17]
(see also [18] about the history of Nodd and related measures in earlier literature on
valency). We now understand that for singlet states, Yamaguchi’s index Nodd is
merely a possible measure of the wave function departure from a single determi-
nant. In a different context, a closely related nonidempotency measure of 1-RDM
was independently introduced in Mestechkin’s book [19]. Furthermore, Nodd was
examined, carefully analyzed and extended in many later works, such as [6, 20–24].

Let us now give a simple example of using Nodd. Following mainly [1, 5, 12], we
consider the unrestricted Hartree-Fock (UHF) method for singlet states. In this case
Eqs. (6.8) and (6.9) can be easily rewritten, based on the known UHF relation

D= ρα + ρβ, ð6:10Þ

where ρα and ρβ are usual one-electron density matrices for α - и β-shells of the
UHF determinant. Then, the working equation is

Nodd½UHF�=N − 2Tr ðραρβÞ, ð6:11Þ

that is equivalent to

Nodd½UHF�=N − 2Tr ðρβραρβÞ, ð6:12Þ

as a result of idempotency relations ρα = ðραÞ2 and ρβ = ðρβÞ2. The equivalent
representation is

Nodd½UHF�= jjρα − ρβjj2,

where Zk k= ðTr Z + ZÞ1 2̸ is the familiar Euclidean (Frobenius) matrix norm for an
arbitrary matrix Z. When ρβ = ρα (no spin polarization) we return to RHF, and
Nodd = 0, as it should be. Another form of Eq. (6.11) is

6 Effectively Unpaired Electrons for Singlet States … 155



Nodd½UHF�=2⟨S2⟩UHF, ð6:13Þ

with ⟨S2⟩ being an average value of the squared spin [18].

6.3 Head-Gordon’s Index

In spite of many useful applications of Yamaguchi’s index, it fails in many cases. It
was first shown in [5] where one interesting example (dissociation of the triplet
oxygen molecule) was considered, and an incorrect behavior of Nodd was observed
for the dissociation limit. In this work a new approach was formulated in such a
way that could handle difficult cases as well. We will further refer to the EUE index
from [5] as the Head-Gordon index, and use the more compact term “H-G index”,
denoting it simply by Neff . This index is based on the following choice:

λeffk =1− jλk − 1j≡Min½λk , 2− λk�, ð6:14Þ

so that

Neff = ∑
k
Min½λk , 2− λk�. ð6:15Þ

By construction, the index satisfies the inequality

Neff ≤Nodd ð6:16Þ

(see Fig. 1 in [5]). The inequality is rather easy to demonstrate by considering the
UHF model. Using the corresponding spectrum fλkg from [25] an explicit
expression is derived to be

Neff ½UHF�=N − 2 ∑
n

j=1

ffiffiffiffiffiffi
λαβj

q
, ð6:17Þ

where λαβj are eigenvalues of ρβραρβ. We see that indeed Neff ½UHF�≤Nodd½UHF�
because eigenvalues of the product of idempotent matrices are less than 1, and
moreover, in the same notation we have from Eq. (6.12)

Nodd½UHF�=N − 2 ∑
n

j=1
λαβj .

There are many researchers who exploit H-G index (e.g., see [6–12, 26, 27]). In
several papers, indices Nodd and Neff are considered concurrently, and only few
authors advocate a preference of Nodd. Notice the polemic papers [28, 29] which
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present conficting viewpoints on the EUE problem. We will discuss a difference
between Nodd and Neff in Sects. 6.5, 6.14, and Appendix C. Based on this con-
sideration it appears that Neff provides a more consistent way to quantify the
diradical (or polyradical) character in terms of traditional NOON. It is worth
mentioning the earlier works [30] where NOON have been applied for a qualitative
identification of diradical states and diagnostics of multiconfigurational character.

Let us review some common properties of the Nodd and Neff measures and the
corresponding EUE occupancies, that is numbers λoddk in Eq. (6.7′) and λeffk in
Eq. (6.14). Returning to Eq. (6.5′) we write understandable requirements of the
nonnegative EUE function f ðλÞ to be defined only in the closed interval [0, 2], so
that

f ð0Þ= f ð2Þ=0, f ð1Þ=1.

Of course, Nodd and Neff obey these equations. Less trivial is that f ðλÞ is sym-
metric with respect to axis λ=1, that is

f ðλÞ= f ð2− λÞ. ð6:18Þ

In other words, Eq. (6.18) is satisfied by an appropriate function
f ðλÞ=Fðjλ− 1jÞ. Obviously, λoddk and λeffk obey the above relations. The reason for
symmetry (6.18) will be explained in Appendix A in terms of a duality transfor-
mation well-known in the multilinear algebra literature. In Appendix A one can also
find a possible generalization of indices Nodd and Neff . Various examples of Neff and
related indices will be given throughout the rest of this chapter.

6.4 Unpairing Indices from Collectivity and Entropy
Numbers

Another EUE quantification scheme appeared in [15, 31]. This scheme is based on
the so-called collectivity numbers first introduced in [32] for describing electronic
excitations within the single configuration interaction (CIS) method. More general
collectivity numbers were subsequently given in [33] for the full configuration
interaction (FCI). The related logarithmic measures are considered in [15, 34, 35].
Below we follow [15] from which a few illustrations (with a slight modification) are
taken as well.

The collectivity number can be treated as a statistical measure. A similar sta-
tistical measure has been defined before in [36] for analyzing localization of
vibrational modes. It was named the participation ratio. We define it as an average
rank, κ, of the given normalized probability distribution fwkg:
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κ=1 ̸∑
k
ðwkÞ2, ð6:19Þ

(for more detail see [15, 32, 37]). The squared expansion coefficients can be used as
a possible fwkg set. Generally, the resulting κ will be crucially dependent of the
representation chosen (the AO or MO representation, for instance). To make
Eq. (6.19) basis-independent, a matrix construction is required. The result is
automatically attained within the FCI matrix theory [38] based on the conventional
determinant FCI method [39].

For singlet states the FCI wave function Ψj ⟩ can be cast as follows:

Ψj ⟩= ∑I, J XIJ I; Jj ⟩. ð6:20Þ

Here real-valued (for simplicity) expansion coefficients XIJ are normalized, and
I; Jj ⟩ symbolizes the N-electron Slater determinants comprised of spin-up orbital

subset fχi1
+
, . . . , χin

+ g and spin-down orbital subset fχ p̄1 , . . . , χ ̄png. The orbitals are
all taken from the chosen “full” basis set

fjχμ⟩g.

Furthermore, in Eq. (6.20) indices I and J are in fact ordered multi-indices
(strings in [39]) of the form

I ≡ fi1, i2 . . . , ing, J ≡ fj1, j2, . . . , jng.

As a consequence of the determinantal nature of the basis set f I; Jj ⟩g used in
Eq. (6.20), the matrix

X = jjXIJ jj

has regular transformation properties, and thus all matrix invariants of X are
basis-independent. Moreover, for singlet states X should be a symmetric
(XIJ =XJ I ) and normalized matrix (due to ⟨Ψ j Ψ⟩=1), so that
∑I, J ðXIJÞ2 =Tr(X2Þ=1. The eigenvalues fxkg of X produce a normalized proba-
bility distribution, that is fwkg= fx2kg. Thus, the counterpart of Eq. (6.19) for FCI is

κ=1 ̸∑
k
x4k =1 T̸r(X4Þ. ð6:21Þ

This is just the collectivity number which was introduced in [33] and system-
atically studied in [15]. For single-determinant models we have X2 =X. In this case,
Ψj ⟩ in Eq. (6.19) can be reduced to one term, that is to a single determinant, so
κ=1. More preferable is a logarithmic quantity which we define by the expression:
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Nκ = − 2 ln Tr ðX4Þ ̸ ln2. ð6:22Þ

We term this quantity as the EUE κ-index, or simply κ-index. As shown in [15,
31], this index provides the needed properties (nonnegativity, additive separability,
and clearly interpreted results for simple chemical systems in extreme cases).

Consider two examples. The first is the two-electron hydrogen molecule treated
in a minimal basis of two atom-centred orthonormal AOs, { χ1j ⟩, χ2j ⟩}. From the
symmetry and normalization we directly obtain matrix X, as follows

X½H2�= 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
1− z

p ffiffi
z

p
ffiffi
z

p ffiffiffiffiffiffiffiffiffiffi
1− z

p
����

����, ð6:23Þ

with z being a variational parameter. This z has a meaning of a covalency parameter
(a weight of the Heitler-London geminal χ1 χ2 + χ2 χ1j ⟩ ̸

ffiffiffi
2

p
in the total wave

function). Elementary computations on Eq. (6.22) give

Nκ =2− ð2 ̸ ln2) lnð1+ 4z− 4z2Þ. ð6:24Þ

It can be compared with the respective values of Nodd and Neff indices:

Nodd½H2�=2ð1− 2zÞ2, Neff ½H2�=2 ð1− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− zÞz

p
Þ ð6:25Þ

(they follow from the respective density matrix D½H2�=2ðX½H2�Þ2. Notice that there
is a misprint for κ½H2� in [15, 31]. The value z=1 ̸2 describes the Hartree-Fock
ground state. All indices, Eqs. (6.24) and (6.25), go to 2 when z→ 1, that corre-
sponds to the dissociation limit of the hydrogen molecule (see Fig. 6.1).

0.5 1
z

1

2

Neff
Fig. 6.1 Dependence of EUE
indices from the covalency
parameter z in the H2

molecule treated in minimal
basis: Yamaguchi’s index
Nodd in blue, κ-index Nκ in
green, and Head-Gordon’s
index Neff in red
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We see from Fig. 6.1 that the κ-index is intermediate between Yamaguchi’s and
Head-Gordon’s indices: Neff ≤Nκ ≤Nodd. As our experience testifies, this is, in fact,
the typical result.

As a second more complex example, consider the insertion reaction:

Be+H2 →BeH2 ð6:26Þ

(see [40] for the molecular geometry in the selected 10 points on the reaction path).
For reaction (6.26) the results (partially taken from [15]) are presented in Fig. 6.2.
Evidently, each of the approaches gives a similar picture with a maximum near a
transition region (the fifth and sixth points in Fig. 6.2). A more detailed analysis
reveals that the transition state (TS) corresponds, only very approximately, to a
diradicaloid state in which unpaired electrons should be significantly localized on
the H-atoms. Really, from the NOON spectrum (the right panel in Fig. 6.2) it is
clear that there are no NOON near 1. Only the values 1.45 and 0.51 in this spectrum
appear to give a quasi open-shell TS structure. The value Neff = 1.26 for the fifth
point is quite compatible with this situation. At the same time, the diradical char-
acter of this TS appears to be overestimated by the corresponding values
Nodd = 1.94 and Nκ =1.75. The fact that Nodd and Nκ overestimate the radicaloid
character is typical.

6.5 Hole-Particle Densities and Head-Gordon’s Index

We now look at the EUE problem from the viewpoint of the general theory of
hole-particle distributions given in [16]. The related indices (in a different disguise)
appeared in [15, 31]. In these works, Kutzelnigg’s original idea [41] about an
openness measure of electronic shells was discussed as well. A suitable description

path

1

1.5

2

N NOON
2

1

0.5

1 3 6 9 12
k

eff

Fig. 6.2 Left panel Nodd (in blue), Nκ (in green), and Neff (in red) for insertion reaction (6.26)
within FCI/6-31G. Right panel the NOON spectrum corresponding to the region near the transition
state (for point 5 on the reaction path)
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of EUE follows from a direct analysis of the RDM hole-particle components [16].
We introduce the latter by considering the general type of wave functions in terms
of the so-called excitation operators [39, 42]. They create the CI (configuration
interaction) wave-function of arbitrary order, up to FCI. Expansions of this type are
well known long ago [43, 44]. But only in [45] the one-electron and two-electron
RDMs were presented explicitly in terms of excitation operator matrices, more
exactly, elementary transition matrices (see also [16, 46]).

As usual, we must choose an appropriate reference determinant Φj ⟩ from which

one can generate singly excited f Φa
i

�� ⟩g, doubly excited f Φab
ij

��� ⟩g, and so on con-

figurations (as usually, indices i, j,… refer to occupied orbitals of the reference, and
indices a, b,… refer to virtual orbitals). Thus, the k-excited configurations are taken
from the set f Φa1...ak

i1...ik

�� ⟩g, and all possible k must be taken into account in an exact
(FCI) consideration. Each configuration contributes, to the considered FCI function,
with a respective configuration coefficient, Ca1...ak ; i1...ik , or explicitly

Ψj ⟩= ∑
0≤ k ≤N

∑
i1...ik
a1...ak

Ca1...ak ; i1...ik Φ
a1...ak
i1...ik

�� ⟩. ð6:27Þ

For our formal consideration, the full set

fCa1...ak ; i1...ikg, 0≤ k≤N, ð6:28Þ

is assumed to be fully known for a while. As usual, it is normalized to 1. Coeffi-
cients (6.28) can be packed into the corresponding multi-index matrices

Ck = ½Ca1...ak ; i1...ik �, 0≤ k≤N. ð6:29Þ

The same quantities (6.28) are identified with hole-particle amplitudes which are
just equal to matrix elements of hole-particle excitation operators Ck̂ . By definition,
Ck̂ generates the superposition of k-excited configurations of the corresponding
order k (for more detail see [39, 42]). Within the customary hole-particle formalism,
the first k indices a1 . . . ak in Ca1...ak ; i1...ik are related to states of ‘particles’ which are
excited above a ‘sea’ of occupied states, whereas the second k indices i1 . . . ik
(occupied orbitals) are related to the possible hole states in the same sea. This
well-known interpretation is also suitable for designing correlation indices. To this
end, let us consider the normalization condition which is, evidently,

∑
N

k=0
jjCkjj2 = 1 ð6:30Þ
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where obviously

jjCkjj2 = ∑
a1...ak ; i1...ik

jCa1...ak ; i1...ik j2. ð6:31Þ

The squared norm jjCkjj2 can be presented in two equivalent forms: as
jjCkjj2 = Tr CkðCkÞ+ , and as jjC +

k jj2 = Tr (CkÞ+Ck . Evidently, the first form is
relevant to the particles, whereas the second to the holes.

Now look at an average number of holes, that is index Nh (in notations from
[16]):

Nh = ∑
N

k=0
kjjC +

k jj2.

But the same expression is valid for the average number of particles:

Np = ∑
N

k=0
k jjCkjj2.

so

Nh =Np = ∑
N

k=0
k Tr CkðCkÞ+ . ð6:32Þ

Thus, we find the sum

Nh− p =Np +Nh ≡ 2Np ð6:33Þ

as an admissible hole-particle EUE measure [16, 31]. It remains to add that the
reference determinant Φj ⟩ in expansion (6.27) should be built up from natural
orbitals of the state in question. But sometimes another choice can be also
informative.

No practical difficulties exist in calculating Nh− p because in terms of spin-free
RDMs we have the explicit relations

Nh =TrDh, Np = TrDp, ð6:34Þ

and Dh and Dp are the hole, and, respectively, particle components of D. These
components, as defined in [16], are

Dh = 2ρ− ρDρ, Dp = ðI − ρÞDðI − ρÞ, ð6:35Þ

Here and elsewhere, ρ=D0 2̸, that is the spin-free projector on n maximally
occupied natural orbitals of the reference determinant:
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ρ= ∑
n

i=1
φij ⟩⟨φij. ð6:36Þ

(the Dirac-Fock density matrix, in other terms). In the same notations the total
hole-particle density matrix is Dhp = Dh +Dp, or

Dh− p = 2ρ+D− ρD−Dρ. ð6:37Þ

Within the given hole-particle approach, Dhp is a counterpart of the corre-
sponding EUE density matrix (6.5). Technical details for computing FCI and
closed-shell CCSD (singles and doubles coupled cluster) approaches are given in
[16, 47]. We write here only the simplest relation

Nh− p = 2 ðN −TrDρÞ ð6:38Þ

following from Eqs. (6.37). The corresponding spectral sum is

Nh− p = 2N − 2 ∑
i≤ n

λi =2 ∑
a> n

λa. ð6:39Þ

It is this quantity from in [15] which was derived based on [41]. More than that,
the numerical experience revealed that our hole-particle index (6.39) actually
provides the same characterization of EUE, as H-G index does. This fact was
recently subject to closer scrutiny [12]. The main inference from the analysis [12] is
that the identity

Neff =Nh− p ð6:40Þ

is true for ‘normal’ ground states, which have no pathology in the NOON spectrum
fλkg (see below). This becomes transparent if one considers the spectral
representation

Dh− p = ∑
i≤ n

ð2− λiÞ φij ⟩⟨φij+ ∑
a> n

λa φaj ⟩⟨φaj. ð6:41Þ

The latter follows from Eqs. (6.1) and (6.37), as moment’s inspection of defi-
nitions shows it. In the same fashion one can rephrase the matrix Deff , Eq. (6.5),
which is associated with H-G index by Eq. (6.14):

Deff = ∑
i≤ n0

ð2− λiÞ φij ⟩⟨φij+ ∑
a> n0

λa φaj ⟩⟨φaj. ð6:42Þ

Here n0 is a number of NOONs greater than 1. If n0 = n we have, by definition,
the normal state, and then
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Deff =Dh− p. ð6:43Þ

Otherwise the state in question falls into the category of ‘pathological’ states. In
practice, the excited states can be such ones, and in Sect. 6.10 (Table 6.4) we will
provide an example of the pathological state.

As usual, the ground state is normal in this categorization. It means that in
reality, identities (6.40) and (6.43) are valid even for highly correlated ground
states. This fact serves as additional argument in favor of Neff since a clear physical
meaning can be ascribed to this index within the conventional hole-particle picture.
Namely, for the normal ground states the Neff index is the average number of holes
and particles which are excited in the reference one-determinant state due to
electron correlation. As for molecular excited states themselves, the situation is
generally more involved, and will be addressed in Sect. 6.10. Incidentally, from
Eq. (6.41) it follows that the hole and, respectively, particle occupancy spectra are
of the form

f2− λig, fλag, ð6:41′Þ

where λi are related to ‘occupied’ natural orbitals (λi >1), and λa to ‘vacant’ natural
orbitals (λa ≤ 1). A possible generalization of hole-particle EUE measure (6.39) is
postponed to Sect. 6.14.

6.6 Using the High-Order Density Matrices

The fact that the EUE theory [1, 5, 15] can be chiefly founded on the one-electron
RDM is remarkable per se. However, electron correlation effects are at least
two-electron in nature, and it is no wonder that the second-order RDM was applied
for quantifying EUE and related electron-correlation properties. Seemingly, the first
investigation in this direction was presented in book [19] where in Sect. 6.5 a
special operator named ‘correlation operator’ was introduced. Actually, in [19] the
two-electron counterpart of Deff was examined. In this section we will denote
RDMs of order k by Dso

k . The superscript ‘so’ shows that the full RDM (in
spin-orbital basis) is considered. For instance, Dso

1 and Dso
2 are the conventional

one-electron and two-electron RDMs.
As well known, for the single Slater determinant (SD), that is for

independent-particle models, the two-electron RDM is the antisymmetrized product
of one-electron RDMs [48, 49]:

Dso
2 ⟶

SD 1
2
ðI −P12ÞDso

1 ð1ÞDso
1 ð2Þ, ð6:44Þ
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where P12 represents the full (with spin variables) transposition operator. Following
[19], we introduce the correlation operator Δso

2 as a difference between the exact
two-electron RDM and the SD approximation (6.44):

Δso
2 =Dso

2 −
1
2
ðI −P12ÞDso

1 ð1ÞDso
1 ð2Þ. ð6:45Þ

By contracting Δso
2 over variables of the second electron, we find

− 2Trð2ÞΔso
2 =Dso

1 − ðDso
1 Þ2, ð6:46Þ

that is but a ‘nonidempotency matrix’. This fact was independently discovered later
in [21] (the first paper in this reference entry). Really, contracting Eq. (6.46) over
spin variables just produces the EUE density matrix Dodd in Eq. (6.8). We see that
using Eq. (6.46) does not provide us a new quantification scheme, not to men-
tioning that Eq. (6.8) gives not very good approach, as argued previously.

A significant advance has been made in [50] where the completely two-electron
measure was introduced. In this work the squared norm of Δso

2 , that the quantity
jjΔso

2 jj2, was proposed as a new correlation and entanglement measure. Admittedly,
the EUE aspect was not within the scope of [50]. This aspect is discussed in [35]
(among other approaches). An appropriate rescaling, by constant factor 8/7, guar-
antees a correct number of unpaired electrons in the dissociated H2 molecule and in
arbitrary cluster of dissociated two-electron systems. Therefore, it is simply to
modify the above-mentioned measure, as follows:

Ncum =
8
7
jjΔso

2 jj2. ð6:47Þ

Here subscript ‘cum’ in Ncum means that this EUE index is produced by the
so-called cumulant density matrix (6.45), as such RDM constructions are termed in
the current RDM theory [51]. For practical computations, within FCI or RAS-CI
(restricted active space CI), more suitable is a spin-free expression from [35].

Some results (the data partially from [35]) are presented in Table 6.1. We see
that Ncum gives the values which are somewhat close to Neff than other indices. We
also observe that all the indices provide a similar qualitative picture. For instance, in
a case of the fully dissociated BeH2, we must obtain Neff ½Be+H+H�=Neff ½Be�+2
where Neff ½Be� is a non-zero value which results from the effect of intra-atomic
electron correlation in a free Be atom. At the FCI/6-31G level, we obtain
Nodd½Be� = 0.74 and Neff ½Be� = 0.39. Thus, it is expected that for the full disso-
ciation Nodd = 2.74 and Neff = 2.39, as it is the case, judging from Table 6.1. We
note also that at present using Ncum is rather restricted because a direct handling
with 2-RDM is avoided as a rule when treating large scale problems.
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6.7 Algorithmic Aspects

Several schemes are possible for practical calculations of the main EUE indices.
Frequently, all the elements of D are needed, e.g. for computing Nodd by Eq. (6.9)
and Neff by Eq. (6.15). In a number of cases we can simply exploit the explicit
expressions, as in the case of the rather easily performed UHF-like models. When
sophisticated multiconfigurational models are used, it is necessary to employ the
technique which is elaborated for obtaining D within the restricted active space CI
(RAS-CI) and coupled cluster schemes [39, 42]. However, the direct way is too
demanding when large-scale systems need to be addressed. Sometimes, one can
employ the RDM-free scheme from [52] that avoids the tedious computations of all
matrix elements of D. This scheme (see Eqs. (107) and (111) in [52]) can be applied
to the hole-particle quantification scheme described above. The respective tech-
nique is based on reverting the obvious relationship which connects expectation
values to RDM. Namely, for the given spinless one-particle operator Z we have

Tr Z D= ⟨Ψj ∑
1≤ k≤N

ZðkÞ Ψj ⟩. ð6:48Þ

Then the Neff index is simply computed in the equivalent form of Nh− p,
Eq. (6.38), that is as usual one-electron average (6.48) with

Z =2ðI − ρÞ.

In this case we imply that ρ is known. This is a case when the Hartree-Fock
reference determinant can be approximately used in the EUE analysis. Another case
is the Brueckner coupled-cluster method [42] producing the reference molecular
orbitals, almost the same as natural orbitals.

Additional indices which can by obtained by using Eq. (6.48) are the
hole-particle atomic localization indices fDeff

A g which are related to Nh− p

Table 6.1 Comparison of
Yamaguchi’s index Nodd, κ-
index Nκ , cumulant index
Ncum, and Head-Gordon’s
index Neff , for small
molecules at the FCI/6-31G
level

System Geometry Nodd Nκ Ncum Neff

BeH2 Re 0.24 0.17 0.14 0.12
BeH2 3Re 2.74 2.59 2.47 2.39
BH Re 0.62 0.48 0.39 0.33
BH 3Re 2.38 2.24 2.15 1.86
CH2 Re 0.62 0.44 0.37 0.32
CH2 3Re 4.17 4.09 4.04 3.62
H2O Re 0.36 0.22 0.21 0.18
H2O 3Re 4.07 3.98 3.93 3.57
HF Re 0.27 0.16 0.16 0.14
HF 3Re 2.09 2.01 1.98 1.73
Re is the equilibrium bond length, and 3Re corresponds to the
triply stretched equilibrium length
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(in practice, Neff ). They can be defined by the customary partition procedure well
known for other atomic indices [53, 54]. Let us introduce projector IA on atomic
orbitals belonging to the given atom (or fragment) A:

IA = ∑
μ∈A

χμ
�� ⟩⟨χμ

��. ð6:49Þ

Then

Deff
A =Tr IA Deff = ∑

μ∈A
ðDeffÞμμ, ð6:50Þ

where index μ numbers the standard orthonormalized AOs. Here the full
orthonormalized AO basis is

f χμ
�� ⟩g1≤ μ≤ dim, ð6:51Þ

(dim is a size of the basis set). Hence, performing calculations using Eq. (6.48) with
Z = IA + 1

n ðTr IAρÞ I − IA ρ− ρ IA for each atom A, we find the full atomic distri-
bution of the unpaired electrons in molecule. Obviously, the identity

∑
A
Deff

A =Neff ð6:52Þ

is guaranteed. For computing D and fDeff
A g in case of the CCSD model one can

apply a suitable algorithm which resembles that of the CISD (CI singles and
doubles) method (see Appendix in [47]).

6.8 Spin Correlations

In the introduction, we mentioned that the presence of unpaired electrons in singlet
states gives indirect evidence in favor of the essential spin correlations between the
electrons, especially when they are strongly localized. The following discussion
highlights this issue. It is well known from the quantum theory of magnetism that
spin correlations can be interpreted consistently by invoking the spin correlator
formalism. In quantum chemistry, spin correlators had been introduced by Penny
[55]. In the last two decades the interest to them revived (see [35, 56–60] and many
others). We follow the notations and techniques from [35, 59].

For the given atoms or molecular subunits A and B, spin correlator ⟨SA ⋅ SB⟩ is an
average of the form
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⟨SA ⋅SB⟩≡ ⟨Ψj SA ⋅ SB Ψj ⟩ ð6:53Þ

where the local spin operator SA can be taken as follows: SA = ∑
1≤ i≤N

sðiÞ IAðiÞ.
Here sðiÞ is the spin operator for the ith electron, and IAðiÞ is a local projector (6.49)
for the ith electron. The diagonal correlators ⟨SA ⋅ SA⟩≡ ⟨S2A⟩ are usually named the
(squared) local spins. The useful identity is

∑
B
⟨SA ⋅ SB⟩= ðs+1ÞQA 2̸, ð6:54Þ

where QA is a spin density localized on A, and s is the total spin value for the state
in study [35, 59]. For singlet states, spin densities identically dissappear, so

∑
B
⟨SA ⋅ SB⟩=0. ð6:55Þ

Obviously, the full sum rule is

∑
A,B

⟨SA ⋅ SB⟩= sðs+1Þ. ð6:56Þ

When analyzing spin correlators it is also suitable to pack the correlators into the
matrix

Kspin = ⟨SA ⋅ SB⟩k k, ð6:57Þ

where subscripts A and B run over all atoms in molecule.
As a simple application of these rules, consider the system divided into two parts

(subsystems) A and B. From Eq. (6.55) it follows

⟨S2A⟩+ ⟨SA ⋅ SB⟩=0, ⟨S2B⟩+ ⟨SA ⋅SB⟩=0.

Thus, the spin-correlator matrix is of the form

Kspin = ⟨S2A⟩
1 − 1

− 1 1

����
����, ð6:58Þ

where local correlator ⟨S2A⟩ takes the specific values. If the subsystems A and B are
in a singlet state (as in the case of a van der Waals (vdW) dimer of singlet mole-
cules) then the spin-correlator matrix is evidently

Kspin =
0 0
0 0

����
����.
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Now let A and B be subsystems which we assume to be in a triplet state. Then for
a resulting singlet state of the entire system, matrix (6.57) is

Kspin =
2 − 2
− 2 2

����
����. ð6:59Þ

This case occurs when we treat the singlet excited states of the vdW dimers and
complexes (the so-called triplet-triplet (TT) excitations). The spin-correlator anal-
ysis for the vdW dimers was shortly mentioned in [61] where the singlet fission
models are discussed. In context of the EUE problems we can connect spin cor-
relators with the Neff measure of the TT-type excited states. For instance, when no
charge transfer effects are involved, the local spins ⟨S2A⟩≡ ⟨S2B⟩ provide an estimate
of a weight of double excitations A*

s=1B
*
s=1

�� ⟩ in the total excited state of dimer AB
(see Appendix C in [61]). Then Neff ≈ 2⟨S2A⟩ because the singlet excitation
A*
s=1B

*
s=1

�� ⟩ has four unpaired electrons. In more general situation we must take into
account interfragment charge-transfer states. It leads to a more complicated analysis
which will be given in a forthcoming paper in collaboration with D. Casanova and
A. Krylov. Additional aspects of the EUE analysis for excited states are considered
in Sect. 6.10.

6.9 Spin-Polarization Indices and Antiferromagnetic
Image of Molecule

We briefly considered in Sects. 6.2 and 6.3 how to treat EUE within the UHF
approximation which admits to different orbitals for different spin (DODS). For
singlet states the UHF scheme is usually called the spin-polarized HF method (then
ρα ≠ ρβ, unlike RHF where ρα = ρβ). Here we look at the problem from the more
general viewpoint which allow us to introduce relevant spin-polarization indices for
any singlet many-electron states [62].

It is well known that for singlet states, the UHF solutions with ρα ≠ ρβ are really
possible when electron correlations become sufficiently strong. More exactly, the
spin-polarized HF determinant Φj ⟩ appear only under the non-singlet (triplet)
instability which was defined by Cizek and Paldus in [63]. At the same time,
solutions of the spin-projected variational HF method (the Löwdin’s extended HF
scheme) always exist [19]. The wave functions of this type will be signified by
Φextj ⟩. This is usually defined by (apart from a normalization factor)

Φextj ⟩=Os Φj ⟩, ð6:60Þ

with Os being a projection operator onto a spin-pure N-electron state with the spin
z-projection sz = s and the total spin value s.
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In this context, it is pertinent to recall that in many cases one can obtain the
so-called best overlap orbitals [64] of DODS type which are produced by the given
many-electron wave function. These orbitals were considered in [65] where they
were identified with spin-polarized Brueckner orbitals. However, they exist if and
only if the so-called nonsinglet Brueckner instability conditions are satisfied. At
last, if the correct spin-projected determinant Φextj ⟩ is involved in the consideration,
then it is always possible to construct the best overlap orbitals of DODS type for the
given exact or approximate state vector Ψj ⟩. These orbitals were recently introduced
[62] and named the spin-polarized extended Brueckner (SPEB) orbitals. By con-
struction, they maximize ⟨Φext j Ψ⟩.

Typical overlap integrals between Φextj ⟩ and Ψj ⟩ are found to be around 0.98
even for dissociated covalent molecules [62]. The corresponding EUE measures
(6.1) and (6.5) were also studied in [62] along with appropriate spin-polarization
indices. The latter are computed for Φextj ⟩ from matrices ρα and ρβ in another way
than in Eqs. (6.11) or (6.17). Following the cited work, let us introduce the inter-
mediate matrices

υ0 = ðI − ρβÞρα, π0 = ðI − ραÞρβ, ð6:61Þ

and define for SPEB the special spin-polarization matrices

Dα
pol = ðυ+

0 υ0Þ2, Dβ
pol = ðπ +

0 π0Þ2. ð6:62Þ

Then the indices

Nα
pol = Tr Dα

pol, N
β
pol = Tr Dβ

pol,

and the total spin-polarization index

Npol =Nα
pol +Nβ

pol = 2Nβ
pol ð6:63Þ

serve for the spin-up and spin-down characterization of EUE in the singlet states.
Additionally, we can introduce the associated EUE α-and β-distributions which are
composed of the atomic contributions, viz.,

Πα
A = ∑

μ∈A
ðDα

polÞμμ, Πβ
A = ∑

μ∈A
ðDβ

polÞμμ. ð6:64Þ

They are also helpful for the visual interpretation of the ESPB computations.
Here, A is a selected atom in molecule, and subscript μμ, as previously in
Eq. (6.50), indicates a diagonal element of the matrix in the orthonormal AO basis.
The total spin polarization index assigned to atom A is evidently equal to
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ΠA =Π α
A +Π β

A, ð6:65Þ

so that summing ΠA over all A reproduces Npol.
Let us look at Table 6.2 to understand what one can gain from this analysis. In

the table, along with the above indices and distributions, we also give coefficient
Cnat ≡ ⟨Φ0

�� Ψ⟩ at the reference determinant Φ0
�� ⟩ (the latter is taken as is the

closed-shell natural orbital determinant). From Table 6.2 we see that
⟨Φext j Ψ⟩≅Cnat (so that Cnat ≅ 1) only for normal molecules which are far from
quasi-degeneracy (H6, CH2 etc. in the table). In the H8 cluster, due to the frontier
orbital degeneracy, the ground state allows no symmetrical closed-shell structure,
and it leads to the fact that even Cnat is not large. At the same time, the SPEB
orbitals generate the spin-projected determinant which provides a sufficiently high
overlap with the exact wave function. The same is true for dissociative states in
Table 6.2. Interestingly, in this table the Npol indices turn out, as a rule, to be more
close to the Neff values than to the Nodd ones. The spin–polarization diagrams (two
columns in Table 6.2) deserve attention too. From them we see that the spin-up
EUE distributions are preferably localized in those parts of molecules where the
spin-down EUE distributions are localized poorly, and vice versa. This behaviour
outwardly resembles features of the alternant MOs introduced by Löwdin (e.g., see
Fig. 3 in [66]). The distinction between the two descriptions is in the fact that the
fΠα

Ag and fΠβ
Ag describe the “spin” localization of EUE, that is purely correlation

effects, whereas the spin-up and spin-down orbitals in UHF, EHF etc. correspond to
individual one-electron states without specifying correlations per se. In particular,
UHF orbitals are always nonzero whereas the spin-polarization indices can disap-
pear (e.g. in ‘one-electron’ limit). It is a matter of no small importance that the
SPEB orbitals and corresponding distributions fΠα

Ag, fΠβ
Ag are generated by exact

(FCI or RAS-CI) wave functions or high-level many-electron approximations.
Opposite to the latter, UHF and EHF frequently provide only a small part of
correlation effects for molecules in equilibrium or not too far from it (e.g., see [67]).

Alternatively, the EUE structure (within the SPEB) can be depicted by the
special spin-arrow diagrams representing together the fΠα

Ag and fΠβ
Ag distributions.

One may think of such diagrams as giving the antiferromagnetic EUE images of
molecules. Some examples are given in Fig. 6.3. Notice that the interpretation of
molecular structures in terms of antiferromagnetic coupling has a long history.
Implicitly, it was used in the Hartmann work [68]. Usually this terminology is
invoked when analyzing π-conjugated polymers and atomic clusters [69–75].
However, the nature of antiferromagnetism for the overall singlet state in molecules
is not so simple as in the case of the solid state ferromagnetism [69, 70]. We return
to this issue in Sect. 6.11.

6 Effectively Unpaired Electrons for Singlet States … 171



T
ab

le
6.
2

T
he

re
fe
re
nc
e
co
ef
fi
ci
en
tC

na
t,
ov

er
la
p
in
te
gr
al
⟨
Φ

ex
t
jΨ

⟩,
E
U
E
in
di
ce
s
N
od
d
an
d
N
ef
f,
to
ta
lp

ol
ar
iz
at
io
n
in
de
x
N
po
l,
an
d
at
om

ic
di
st
ri
bu

tio
ns

fΠ
α A
g,

fΠ
β A
gf

or
sm

al
l
m
ol
ec
ul
es

in
th
e
ba
si
s
se
t
of

6-
31

G
qu

al
ity

Sy
st
em

C
na
t

⟨
Φ

ex
t
jΨ

⟩
N
od
d

N
ef
f

N
po
l

fΠ
α A
g

fΠ
β A
g

H
6

0.
97

0.
99

0.
48

0.
24

0.
44

H
8

0.
65

0.
98

2.
71

2.
36

2.
24

C
H
2

(1
R
e)

0.
96

0.
98

0.
62

0.
32

0.
65

C
H
2

(3
R
e)

0.
50

0.
98

4.
17

3.
62

3.
94

vi
ny

lid
en
e

0.
97

0.
97

0.
80

0.
41

0.
41

(c
on

tin
ue
d)

172 A.V. Luzanov



T
ab

le
6.
2

(c
on

tin
ue
d)

Sy
st
em

C
na
t

⟨
Φ

ex
t
jΨ

⟩
N
od
d

N
ef
f

N
po
l

fΠ
α A
g

fΠ
β A
g

C
yc
lo
pr
op

en
yl
i

de
ne

0.
97

0.
97

0.
61

0.
31

0.
27

A
lle
ne

0.
96

0.
98

0.
29

0.
57

0.
47

A
lle
ne

(T
S)

0
1.
00

2.
20

2.
39

2.
28

Fo
r
th
e
C
H
2
m
ol
ec
ul
e,

FC
I
w
ith

fr
oz
en

co
re

is
us
ed
;
fo
r
ot
he
r
ca
rb
on

-c
on

ta
in
in
g
sy
st
em

s,
a
C
A
SS

C
F-
lik

e
sc
he
m
e
is
ex
pl
oi
te
d

6 Effectively Unpaired Electrons for Singlet States … 173



6.10 Unpairing in Excited States

The molecular excited states are just those in which the electron unpairing is one of
the key points in understanding the nature and properties of the electronic transi-
tions. But only in few works, such as [15, 62, 76–78], the EUE characteristics were
explicitly invoked for analyzing excited states. Recall that the simplified approxi-
mations are typically based on CIS (CI singles) and TDDFT (time-dependent DFT)
models. For singlet excitations the CIS density matrices were first derived by
McWeeny [79]. Then they were generalized [80] and extended to RPA (random
phase approximation) and TDDFT [81, 82].

The CIS wave function, as a particular case of Eq. (6.27), can be written as
follows:

ΨCIS
�� ⟩= ∑

i
∑
a
Cai Φa

i

�� ⟩, ð6:66Þ

with Φa
i

�� ⟩ being the singly excited configurations, and Cai the normalized ampli-
tudes (configurational coefficients). For our purposes we will use the equivalent
form of Eq. (6.66) which is based on spinless amplitudes τai, so that

ΨCIS
�� ⟩= ∑

n

i=1
∑
r

a= n+1
τai Φi→ aj ⟩, ð6:67Þ

where

Φi→ aj ⟩= Φa
+

i
+

��� ⟩+ Φa
−

i
−

��� ⟩
� �

̸
ffiffiffi
2

p
ð6:68Þ

are the standard spin-singlet configurations [83]. The charge density matrix for this
ΨCIS
�� ⟩ is

Fig. 6.3 Antiferromagnetic EUE images for the H8 cluster, vinylidene and twisted allene
molecules
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DCIS = 2ρ+ ττ+ − τ+ τ, ð6:69Þ

where the spin-free transition matrix τ is defined by the formula

τ= ∑
n

i=1
∑
r

a= n+1
τai φaj ⟩⟨φij, ð6:70Þ

and ρ is the previously defined projector (6.36) on occupied spin-free MOs of the
reference determinant (e.g., the RHF determinant). To guarantee the normalization
condition ⟨ΨCIS

�� ΨCIS⟩=1 we impose the condition Trτ+ τ=1.
Having at disposal density matrix (6.69) it is easy to perform the hole-particle

analysis of the CIS method. In this case, Eqs. (6.40) and (6.43) are valid because the
CIS states have no anomalies in the density matrix spectrum. Simple manipulations
on Eq. (6.37) lead to

Deff ½CIS�= ττ+ + τ+ τ, ð6:71Þ

so

Neff ½CIS �=Nh− p½CIS �=2 ð6:72Þ

for any CIS state [15]. The result is quite natural, and it is in agreement with the
standard spin structure of each singlet-spin configuration Φi→ aj ⟩, Eq. (6.68). The
same result is obtained for κ-index (6.22): Nκ

eff ½CIS�=2. On the other hand, com-
putations on Eq. (6.9) give

Nodd½CIS�=2f 2−Trðτ+ τÞ2 g. ð6:73Þ

From this it follows that 2≤Nodd½CIS�<4. Thus, we see that again Yamaguchi’s
index overestimates the EUE measure even for the discussed (very restricted) CI
wave function. More important is the result (6.71). This EUE density matrix exactly
coincides with the excitation localization operator, which was first introduced in
[84] (see also Eq. (6.5) in [82]). In the notation adopted here this is of the form

L̂*½CIS�= ðττ+ + τ+ τÞ 2̸, ð6:74Þ

Thus, in terms of Eq. (6.5),

L
*̂½CIS�=Deff ½CIS� 2̸. ð6:75Þ

We see that within the CIS approximation the excitation localization indices can
be additionally treated as the localization indices (6.50) of the unpaired electrons
occurring under excitation:
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L*A½CIS�=Deff
A ½CIS� 2̸. ð6:76Þ

This aspect of the EUE theory for CIS and CIS-like models was briefly outlined
in the recent review [76] (in Sect. 14.4). It would be interesting to understand to
what extend this holds true for more general models. We provide here only pre-
liminary insight on this rather difficult question.

For the lowest transitions, the CIS and the related TDDFT excitation energies are
often found in satisfactory or even good agreement with more refined theoretical
estimates. Nevertheless, there are low-lying transitions that cannot be usefully
studied in these popular approximations. Among such are the so-called
double-excitation transitions for which the excited-state wave function has a sig-
nificant proportion of a doubly excited configurations. Even sometimes, more
efficient methods may fail as in the case presented for the methylene CH2 in [85].
The methylene singlet excited states were also examined in terms of
spin-polarization diagrams [62]. Here relevant supplementary results are added
(Table 6.3). In the table, along with excitation energies and EUE indices, we present
the most important squared norms jjCkjj2 defined by Eq. (6.31). These norms are
computed in the basis of the ground-state natural orbitals.

From the table we observe that 1B1 and 1A2 terms are CIS-like states
( C1k k2 ≅ 1, all Neff ≅ 2). The 2A1, excited state is the doubly excited state
( C2k k2 ≅ 1), which, however, has almost the same small Neff value as that of the
ground state (see Tables 6.2 and 6.3). Thus, the EUE indices may not reflect the
multiconfigurational character of excited states. To elucidate this issue, let us
consider the main part of the NOON spectrum for the ground and excited states of
CH2 (Table 6.4). In the table we omitted the maximal NOON value 2, which is due
to the ð1sÞ2 frozen core of the carbon atom. Additionally, we included in Table 6.4

the main hole-particle index Nh− p, Eq. (6.39), and the related index NðrefÞ
h− p. The

latter was computed by Eq. (6.38) with ρ taken as the projector on the occupied MO
of the reference determinant used in the CI expansion (6.27). Recall that in
agreement with definitions (6.32) and (6.33), hole-particle index Nh− p can serve as
a suitable measure for multiconfigurational character in the corresponding CI
expansion (6.27). From Table 6.4 it is clear that the 1A1 and 2A1 states are very
similar in their NOON spectrum. Only in the case of the 2A1 state its closed-shell

Table 6.3 Electronic characteristics of the CH2 lowest excited states at the FCI/6-31G level

State λ ðC0Þ2 jjC1jj2 jjC2jj2 Nodd Nκ Neff

1B1 1.74
(0.005)

0. 0.957 0.019 2.27 2.21 2.12

2A1 4.48
(0.006)

0.028 0.002 0.931 0.68 0.49 0.35

1A2 6.00 0. 0.926 0.051 2.33 2.27 2.16
Vertical excitation energy λ in eV, oscillator strength in parenthesis
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nature is combined with the high multiconfigurational character when C2k k2 ≅ 1

(see Table 6.3). This picture is in accordance with NðrefÞ
h− p ½2A1� = 3.997. The

example demonstrates a usefulness of the hole-particle indices as supplementary
characteristics of excited states. Incidentally, one can observe from Table 6.4 that
the 1B1 state of CH2 provides an example of the pathological state (for definition,
see Sect. 6.4).

The above outlined peculiarities in using EUE indices for the multiconfigura-
tional states return us to the problem of constructing excitation localization indices
for arbitrary excitations. We can proceed in many ways. In the scheme [82, 84] the
operator modulus of density matrix difference, ΔD, is used. Namely, the normal-

ized excitation operator, L̂*, can be naturally introduced as follows:

L
*̂
= ðTrjΔDjÞ− 1ΔD, ð6:77Þ

ΔD=D* −D,

where D* is the charge density matrix for the excited state of interest, and by
definition, jΔDj = ½ðΔDÞ2�1 2̸. Then, as usual, the atomic indices

L*A = ∑
μ∈A

ðL*̂Þμμ ð6:78Þ

furnish the excitation localization measure assigned to each atom of the excited
molecule. Doing so for CIS-type states (6.67) we automatically produce indices
(6.76).

To solve the same problem by another way, take atomic EUE distributions (6.50)
and compute the corresponding normalized indices

L*ðeffÞA = j ðD*ÞeffA −Deff
A j ̸∑B j ðD*ÞeffB −Deff

B j. ð6:79Þ

Table 6.4 Hole-particle EUE indices Nh− p and NðrefÞ
h− p, and NOON spectra for methylene’s lowest

states at the FCI/6-31G level

State Nh− p NðrefÞ
h− p

NOON

1A1 0.32 0.32 1.9754, 1.9676, 1.8974, 0.0856, 0.0278 …

1B1 2.13 2.14 1.9735, 1.9640, 0.9954, 0.9919, 0.0255 …

2A1 0.35 4.00 1.9600, 1.9476, 1.9155, 0.0979, 0.0276 …

1A2 2.16 2.19 1.9617, 1.9562, 1.0025, 0.9932, 0.0292 …
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These indices characterize the excitation localization in its own manner. For

CIS-like states the distributions fL*Ag and fL*ðeffÞA g are sufficiently close, as the
methylene molecule example shows. In particular, we have

L*C½1B1�=0.921, L*H½1B1�=0.039,

L*ðeffÞC ½1B1�=0.971, L*ðeffÞH ½1B1�=0.015.

However, for the double excited state the compared results are markedly
different:

L*C½2A1�=0.933, L*H½2A1�=0.034,

L*ðeffÞC ½2A1�=0.760, L*ðeffÞH ½2A1�=0.120.

We conclude that for the depiction of excitation localization, the EUE indices
should be used with a certain care.

6.11 Conjugated Hydrocarbons in π-Electron Schemes

In this section we consider computations of the EUE indices for moderate-sized
systems within the easily implementable semi-empirical methods. Before doing so,
we briefly touch on simplified ab initio approaches to polyaromatic hydrocarbons
(PAHs). Many of the ab initio studies are based on various UHF and unrestricted
DFT schemes [86–88]. By these schemes, crude estimates of EUE effects can be
made even from the ⟨S2⟩UHF values. Really, for slightly correlated systems the
semi-quantitative relation

Neff ≈ Nodd 2̸ ð6:80Þ

holds (e.g., compare with the results of Table 6.2 for equilibrium geometries). As an
additional example, take the benzene molecule for which we have (in 6-31G basis
set): Nodd½UHF� = 1.101, and Neff ½UHF� = 0.584. Recalling Eq. (6.13), we can
expect that the rough estimate

Neff ≈ ⟨S2⟩UHF ð6:81Þ

can be utilized for a simplistic description in other moderately correlated systems.
Such estimates are easy because the needed data can be routinely obtained by most
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quantum chemical programs. Besides, in the current literature, the ⟨S2⟩UHF data are
available for many PAHs (e.g., see [87, 88]).

To be more specific, consider linear polyacenes for which a model geometry will
be used here and throughout the paper: the carbon backbone is formed by regular
hexagons with the C-C bond length of 1.4 Å and the C-H bond length of 1.09 Å.
Using the Gaussian program package [89], we computed ⟨S2⟩UHF for the first ten
linear polyacenes C4n+2H2n+4 at the UHF/6-31G level. The results are conveniently
expressed via the linear regression

⟨S2⟩UHFðnÞ = 0.6462 ⋅ n, ð6:82Þ

with residual variance 10− 3, thus reflecting a size-consistent behavior of the index.
In the case of large carbon-containing systems it is suitable to compare the EUE

index value per carbon atom. For instance, we introduce

⟨S2⟩
UHF

≡ ⟨S2⟩
UHF

N̸C, ð6:83Þ

where Nc is a number of carbon atoms (Nc = 4n+2 for Eq. (6.82)). For large linear
acenes we have from Eq. (6.82)

⟨S2⟩
UHF

≅ 0.16.

Likewise, other EUE indices per carbon atom are defined:

N ̄odd ≡ Nodd N̸c, ð6:84Þ

N ēff ≡Neff N̸c, ð6:85Þ

Returning to Eqs. (6.81) and (6.83) we suggest a rough estimate,

N ēff ≅ 0.16, ð6:86Þ

is reasonable for sufficiently large linear polyacenes treated with the 6-31G basis
set.

An interesting point is a measure of the participation of π-electrons in the total
unpairing. Our experience with small conjugated systems tells that usually ≈2 3̸ of
the average Deff

C value is from π-electrons. Together with Eq. (6.85) it gives a crude
estimate

N ̄eff ½π� ≅ 0.1. ð6:87Þ

This approach is in concordance with the fact that in large conjugated systems,
electron correlation largely influences the outer π- electron shells. That is why most
physical models of conjugated polymers are based on one or another version of the
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π-electron approximation (most often in the form of a many-electron Hubbard
model, see reviews [69, 90]). Furthermore, previous non-empirical studies [8, 9, 11]
in large conjugated molecules (by using DMRG and MR-AQCC) have considered
only π-electron contribution to EUE. All this has motivated us to undertake a
detailed study [12] of the EUE effects within the conventional π-electron theory.
Below we shortly outline the main results of this study.

For the selected PAHs, the results are presented in Table 6.5 where in the
structural formulas the EUE atomic distributions are displayed in a qualitative

manner. All EUE indices (except for ⟨S2⟩
UHF

) are computed within the hole-particle
approach, Eqs. (6.37) and (6.38), which, for ground states, is equivalent to the
Head-Gordon approach. Here, the Parizer-Parr-Pople (PPP) π-electron approxi-
mation is employed. We see that again the UHF scheme based on Eqs. (6.10) and
(6.17) works well (in respect to the CCD results), and this fact was emphasized in
[12]. The π-electron UHF scheme (π-UHF) is favorable because of its simplicity of
computation, and ease of interpretation. However, this method is not recommended
for systems with a relatively small π-electron correlation effects, e.g. in the per-
opyrene molecule (the third entry in Table 6.5). In the case of too little electron
correlation, the half-projected Hartree-Fock (HPHP) [91] and EHF schemes are

Table 6.5 Specific EUE indices NUHF
eff , NEHF

eff , NCCD
eff , and ⟨S2⟩

UHF
for π-systems in pentacene

bisanthene, peropyrene, and pyranthrene within π-UHF

π-Structure
⟨S2⟩

UHF NUHF
eff NEHF

eff NCCD
eff

0.056 0.061 0.059 0.061

0.045 0.056 0.055 0.057

0.025 0.027 0.041 0.047

0.032 0.036 0.042 0.049
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applicable. We remark that the EHF results in Table 6.5 are sufficiently close to the
CCD ones even for the peropyrene and pyranthrene molecules which have modest
electron correlation effects. These observations are the basis on which the UHF
method, with obligatory use of Eq. (6.17) or more refined indices, can be recom-
mended for studying EUE effects in large graphene-like molecules [12]. The use-
fulness of this approach shows Table 6.6 containing two examples taken from the
cited paper. To the previously defined quantities, Eqs. (6.83) and (6.85), we have
included in the table one additional characteristic index, ℵloc. The index ℵloc gives a
mean number of atoms (sites) on which the unpaired electrons are preferentially
localized. Explicitly,

ℵloc = ½∑
A
ðDeff

A Þ2�2 ½̸∑
A
ðDeff

A Þ4. ð6:88Þ

This equation is a generalization of the participation ratio (6.19) and gives a
more sharp estimate for a number of strongly localized atomic centers (sites). The
related index was employed in [92] where it is shown that the index can well
distinguish between localized and extended states. From Table 6.6 we see that
indeed ℵloc gives an acceptable average number of the essentially localized
unpaired electrons. When using ℵloc one must keep in mind that this index is
informative if ℵloc ≪Nc, that is in the case of a sufficiently sharp EUE localization.

Now we remark on the NOON spectrum fλkg given in the fourth column of
Table 6.6. Similar plots are frequently displayed when considering the nature of
EUE in large molecules [8, 9, 11–13, 26]. The first system in the table belongs to
the so-called periacene family. The earlier theoretical study of this family was given
in [93] where a simplified Hubbard-like π-UHF method was applied. In the recent
papers [8, 9, 11] the EUE analysis for the periacenes was given at the high-level
ab initio level. Here, we can directly compare these reliable ab initio results and
ours, thanking to the fact that the needed ab initio data were kindly provided by the
authors of [9, 11]. The results are displayed in Fig. 6.4, where the same nomen-
clature of periacenes, as in [9, 11], is used. Comparing the corresponding plots, we
observe their really close similarity. More specifically, the same localization of few
NOON in the vicinity of 1 is found in the ab initio as well as the π-electron
calculations, and this localization corresponds to a genuine open-shell (polyradical)
singlet structure. A general view of the plots is also similar. Moreover, in the (5a,
6z) periacene the EUE atomic localization is comparable (see [12] for detail). On
this account, we suggest that the π-electron EUE model, which is based on the
simple UHF expression (6.17), should be useful for other large-scale conjugated
systems, at least at a qualitative level. The symmetry (exact or approximate) of the
NOON in respect to point λ=1 is also deserve attention. For alternant hydrocarbons
within any correct PPP scheme this symmetry is exact, and it is easy to prove (see
the last paragraph in Appendix B). The ab initio results [9, 11] approximately fulfil
this symmetry which implicitly reflects the physical equivalence of the holes and
the particles in alternant π-systems [94] (see again plots in Fig. 6.4).
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Notice that the above cited EUE ab initio study was performed for active π-
orbitals. Thus, the EUE indices obtained from corresponding NOON spectra, are
related to respective π-electron contributions. In case of the periacenes (5a, 4z), (5a,
5z), and (5a, 6z), we find, from the respective NOON spectra, the following
ab initio N ̄eff ½π� values: 0.111, 0.108, 0.108, in agreement with rough estimation
(6.87). The analogous π-electron PPP data will be given in Sect. 6.14, Table 6.11.
They are approximately twice less than the ab initio values. At the same time, if we
exploit the so-called Mataga formula for two-electron two-center integrals γμν (with
a Coulomb-like distance dependence), then we obtain the results closer to the
ab initio ones. In particular, for the (5a, 6z) periacene the π-UHF scheme with
Mataga’s γμν gives N ̄eff = 0.129. Nevertheless, the standard π-parametrization we
use (γμν by Ohno’s formula) is more appropriate for π-electron correlation effects,

as was established long ago. We also computed index ⟨S2⟩
UHF

(by using the pro-
gram package [89]) and get a crude ab initio estimate via Eqs. (6.81) and (6.83). For
the (5a, 6z) periacene at the 6-31G level we thus obtained N ̄eff ½π�≅ 0.09 which
seems quite reasonable in comparison with the above non-empirical value
N ēff ½π�≅ 0.108 from [9].

As mentioned in Sect. 6.9, the EUE structure can be interpreted in somewhat
notional terms of antiferromagnetism [95, 96]. Indeed, a local spin density is absent
in any correctly defined singlet state, and, strictly speaking, the Néel-like spin
structure is not possible for the single spin-singlet molecule. Thence, we cannot
introduce, as usual, the antiferromagnetic order parameter (such as average differ-
ence of spin density between neighboring atoms). For the correlated singlet states,
spin density matrix can be substituted with EUE density matrix (6.5). Conse-
quently, index N ̄eff might serve as an appropriate order parameter for polymer
structures,. This index satisfies inequality: 0≤N ēff ≤ 1, that is natural to expect from
the order parameter. In our case, N ēff = 1 corresponds to the ordered Néel state with
the maximal ‘spin’ value in each sublattice of the bipartite structure. The given
interpretation introduces an obviousness in understanding EUE for bipartite net-
work structures. By adopting this reasoning, one can, moreover, invoke the best
spin-polarized orbitals, that is the SPEB solutions discussed in Sect. 6.9. It allows

(5a, 4z)
2 2

1

1 33
k 1 39 78

k

1

2

66

1

1 27 54
k

(5a, 5z) (5a, 6z)

Fig. 6.4 Comparison of the ab initio [9] (violet color), and semi-empirical (green color) NOON
spectra for (5a, nz) periacenes
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us to reinterpret N ̄eff as a “spin” order parameter for exact or almost exact wave
functions too.

Before closing this section let us comment on the UHF calculations presented
above. From the formal viewpoint, UHF is the one-electron model which deals with
a single determinant wave function Φj ⟩. However, for strongly correlated systems
the UHF wave function well mimics many properties of the spin-projected deter-
minant Φextj ⟩ which is, of course, many-determinant state and which takes into
account electron correlation. The closeness between Φj ⟩ and Φextj ⟩ had been
demonstrated long ago [70] with the infinite polyene chain treated analytically
within the ‘diagonal’ Hubbard Hamiltonian approximation. The authors had sug-
gested that it is a general feature of UHF solutions in polymeric π-problems. Our
experience with EHF computations on large π-systems confirms these expectations.
In particular, for the large systems the UHF charge RDM, Duhf , as in Eq. (1.10), is a
good approximation to the EHF charge RDM, Dext, which is provided by the
variational Φextj ⟩ state. Nevertheless, the UHF spin density matrix does not vanish
for the UHF (spin-polarized) singlet ground state. Therefore, upon obtaining the
UHF solution, the spin density matrix should be ignored (fixed to zero) what
corresponds to an implicit purification of the spin-contaminated singlet state. At the
same time, charge density Duhf is well defined, and indeed very close to the EHF
counterpart. For instance, we find the following squared norms, jjDext −Duhf jj2 N̸
(deviation of Duhf from Dext per π-electron): 0.0007 for decacene C42Hc4, and 0.
0002 for acene C102H54, respectively. These and many other examples (recall also
Table 6.5) allow us to consider, for large systems, the usual spin-contaminated UHF
solutions as a good approximation to main properties of the spin-adapted EHF
solutions.

6.12 Giant Hydrocarbons and Nanographenes
in a Spin-Polarized Hückel-like Scheme

In case of huge conjugated systems with several thousands of atoms, even the π-
electron UHF method, in its full version, necessitates using high-performance
computer clusters. Meanwhile, many important problems of nanoelectronics require
studying novel molecular materials, including graphene nanoribbons, nanoislands,
nanowiggles and other unusual giant honeycomb structures [74, 97–100]. Most of
these structures are based on the so-called bipartite lattices. By definition, the
bipartite lattice is formed by two interpenetrating sublattices, and each of these
sublattices contains only one kind of atoms. Following [101], we will use the term
“lattice” in an extended meaning, allowing the term for finite lattices and even for
any finite-size atomic structures. In the theory of π-conjugated molecules, the
standard term “alternant system” is a full counterpart of the term “bipartite lattice”.

There are many remarkable theorems dealing with abstract and realistic models
of bipartite lattices [94, 101–104]. The well-known Coulson-Rushbrooke pairing
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theorem [102] is one of them. Additionally, the pairing theorem has a nice and
useful matrix representation due to Hall [105]. The Hall formula (see below
Eq. (6.90)) is valid within the Hückel method, and there is its analogue within the
PPP one-electron approximation. In solid state physics, the counterpart of the
Hückel approach is known as the tight-binding (TB) model. TB schemes, now more
refined than before in the old solid-state physics days, are very popular because they
have advantages to handle atomic cluster with thousands of atoms, reaching
experimental sizes [106, 107]. Unfortunately, all these methods ignore electron
correlation. In [13] we modified the TB model for bipartite lattices in such a way
that it can handle strongly correlated bipartite lattices, and describe in them the
relevant EUE effects. Below we sketch the main results of this work, and leave most
formal details to Appendix B.

We recall few simple facts from the TB (or Hückel) theory of bipartite lattices.
For the carbon-containing conjugated systems, the usual basis set f χμ

�� ⟩g of the
orthonormalized 2pz-orbitals is employed. The corresponding one-electron
Hamiltonian can be represented by the 2 × 2 block-structure matrix

h0 = − 0 B
B+ 0

� �
, ð6:89Þ

where all entries are expressed in units of jβ0j with β0 being the standard hopping
(resonance) integral between nearest-neighbor sites (π-centers). The block B in
Eq. (6.89) is the biadjacency matrix, that is Bμν =1, if μ and ν are nearest-neighbor
sites, otherwise Bμν =0. Obviously, due to a bipartite structure of the considered
lattices we can always renumber lattice sites in such a way that Eq. (6.89) holds
true. From Eq. (6.89) it is not difficult to deduce the Hall formula [105] for the
charge density matrix (or Coulson’s bond-order matrix):

D0 =
I BðB+BÞ− 1 2̸

ðB+BÞ− 1 2̸ B+ I

� �
. ð6:90Þ

This and somewhat more general relations are rederived in Appendix B.
Certainly, Eq. (6.89) is only a specific case of Eq. (6.4), and no EUE effects are

possible at this level of description. It would be important to extend the Hückel
model in order to somehow account for electron correlation effects without over-
simplifying the model. The approximation of this kind was given in [108] and
applied to EUE problems in [13]. The most important expressions of this work are
reproduced here (see cit. loc. for the argumentation and precursors of the model).
The model was referred as to the quasi-correlated tight-binding (QCTB) method.
Within QCTB, we construct the effective Hamiltonians matrices

hα = − δ I B
B+ − δ I

� �
, hβ = − δ I B

B+ − δ I

� �
ð6:91Þ
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where δ is treated as a fixed auxiliary parameter. The hα and hβ matrices are the
counterparts of common Fock matrices for spin-up and spin-down electrons,
respectively. Unlike UHF, no self-consistency procedure is needed for obtaining the
corresponding density matrices ρα and ρβ. The approach used is the most similar to
the earlier approximate one-parameter UHF theory (e.g., see [101], the second
citation). However, we can always obtain nonzero correlation effects by a suitable
choice of the fitting parameter δ, and it allows to extend the applicability of the
whole approach. Only for very strongly correlated systems, QCTB and the
one-parameter UHF theory scheme are virtually equivalent.

Now turn to computational aspects. For matrices ρα and ρβ, a block represen-
tation is easy to find by simple algebra (see Appendix B). As a result, we get charge
density matrix of the QCTB model, Eq. (B4), and the respective NOON spectrum,
Eq. (B5). It comes to a suitable working formula for the main EUE index:

Neff =Nh− p =N − 2 ∑
n

i=1
εi ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2i

q
. ð6:92Þ

Here εi ≡ εij j are eigenvalues of ðB+BÞ1 2̸, that is fεig is precisely the Hückel
energy spectrum (in modulus) of the respective alternant system (the bipartite graph
spectrum). In specific computations we will use value δ=7 2̸4 which was found by
fitting. Incidentally, remark that for small δ it is easy to check that with
second-order accuracy in δ, Nodd = 2Neff , as suggested before from a numerical
experience (see Eq. (6.80)).

The above quasi-Hückel approach to EUE turns out to be reasonable and suf-
ficiently close to the UHF and even CCD schemes (see Table 1 in [12]). Here we
extract from this reference two kind of representative examples. One kind of them is
related to the conjugated polymer structures (Table 6.7), the other to the finite-size
graphene nanoflakes (Table 6.8). Before considering Table 6.7, let us make brief
preliminary remarks. For many π-electron structure, particularly, with translation
symmetry the analytical solution of the Hückel band spectrum is well known. For
instance, consider a long polyene chain [–(CH=CH)–]n (polyacetylene) as a
paradigmatic example of strong correlation in the physics of conjugated polymers
[69, 109]. In case of the finite polyene chain the Hückel spectrum is
εk =2 cos½π k ð̸2n+1Þ�(see any quantum chemistry textbook). For the asymptotic
case, n→∞, straightforward computations on Eq. (6.92) (with approximating a
sum by integration method) lead to

Neff =N 1−
2
π
arcsin½1 ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ δ2 4̸

p
�

� �
. ð6:93Þ

We see from this equation that in the limit of large δ (very strong correlation
effects) the EUE index Neff →N, as it should be. Evidently, the value Neff =N
corresponds to breaking each of π-bonds, when all π-electrons are unpaired.
Remark that for infinite polymer chains the NOON spectrum fλkg generally covers
a whole interval [0, 2]. Therefore, instead of discrete set fλkg, the continuous (more
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exactly, quasi-continuous) function λðkÞ of the continuous variable k makes its
appearance. For convenience we make using the unity interval [0, 1] for continuous
variable k.

A more general case is the polyene chain with alternating resonance integrals
βμ, μ+1 = ½1+ ð− 1Þμ+1η�β0, where η is usually small quantity (we put η=0.07). The

Hückel spectrum is of the form [110]: εðkÞ= ffiffiffi
2

p ½1+ η2 + ð1− η2Þ cos π k�1 2̸, where
0≤ k≤ 1. This case is intractable analytically, but numerical computations are easily
performed, and the results are given in Table 6.7 (the first two systems in the table).
Another interesting example is the linear polyacene (the third system in Table 6.7), for

Table 6.7 The Neff index and quasi-continuous NOON spectrum λðkÞ (0≤ k≤ 1) for infinite π-
conjugated polymer chains

Polymer N ̄eff Spectrum

0.092

0.076

0.098

0.086

0.041
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which in accordance with Coulson [111] we have εðkÞ= ½1±ð9+ 8 cos π kÞ1 2̸ � 2̸. In
order to present a more complete comparison we add in the table the results for the
graphene nanoribbon (4-ZGNR in the standard nomenclature) and for the poly(pe-
rianthracene) chain. The π-electron band structure of these two systems is computed
by a code from [112].

As seen from Table 6.7, only the polyacetylene with alternating bonds and poly
(perianthracene) molecules exhibit a gap in their NOON spectra. In contrast, the
polyacene and 4-ZGNR demonstrate a quasi-continuous NOON spectrum covering
the whole interval [0, 2]. Furthermore, crowding λðkÞ near a ‘polyradical range’,
that is near λ=1, is observed in these spectra. A significant difference, in the N ēff
index, between the 4-ZGNR and poly(perianthracene) can be simply understood in
terms of Clar’s aromatic sextet theory (for the latter see, e.g., [74, 113]).

Now we will discuss in brief the QCTB results for three graphene nanoclusters
with N∝103, presented in Table 6.8. We only note that an unprecedented rise of
interest in the graphene engineering researches generated the enormous literature in
which recent books [74, 114, 115] only minimally reflect this graphene popularity.
The first two systems in Table 6.8 are of a nanoflake family with the D6h symmetry
(hexagonal graphene nanoflakes). The cluster system, C1302, is with the
armchair-shaped edge, and the second, C1350, with the zigzag-shaped edge. From
the table we see that these two clusters have a small difference in energy stability
(within QCTB), but a significant difference in the EUE characteristics. In
zigzag-edge nanocluster C1350, the third system in Table 6.8, more electrons are
unpaired, and again these unpaired electrons are preferentially localized on edge

atoms. It is revealed by localization index N ̄bordeff (sum of atomic EUE occupancies
divided by a number of the border atoms). On this account the zigzag edge atoms
should be more unstable, or more reactive than the armchair edge atoms, and
thereby the armchair nanoflakes be more stable in accordance with experiment (see
[116], p. 382) and a model DFT study [117]. Chemical reactivity of graphene
structures is a rather frequent issue discussed in current chemical literature [74,
118–122], and the principal inference we can make is that the major reactivity
contribution comes from the edge states of nanoclusters. The very different models,
from simplistic semiempirical to high-level nonempirical ones, predict the same
qualitative trends. Notice that in the case of graphene nanoribbons with zigzag
edges the strongly localized edge states were first reported almost 20 years ago [72]
where the Hubbard π-UHF model was used. Apparently, in all models the char-
acteristic effects of chemical topology are exhibited, and this fact demonstrates the
practical usefulness of even naive models for studying large conjugated systems.
We close this chapter by noting that the proposed π-electron QCTB scheme can be
modified for an all valence-electron treatment by using the extended Hückel MO
theory [123]. In this case the ionization potentials of 2p-electrons in the respective
Wolfsberg-Helmholtz relation should be changed similar to Eq. (6.89).
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6.13 Electron Unpairing in Strong Fields

The behavior of molecules under external perturbation shows the interesting, but
not unexpected, fact that the electron unpairing greatly increases in strong fields.
We consider here some representative examples carried over from [124, 125]. First,
we discuss the effects of static electric fields for small molecules. A typical illus-
tration is provided by an example of the rhombic cluster of Li4 in an atomic-scale
electric field (∼ 0.1 atomic units). The results of the FCI/STO-3G calculations are
shown in Fig. 6.5 where we plotted, in atomic units, the dipole moment dx and Neff
as functions of the electric field strength E, and the static field is applied along the
longest diagonal (x-direction) of the rhombus.

By inspecting the plots, we see a strong increase of the dipole moment in the
field, but Neff behaves more unpredictably, particularly in the region where the
dipole moment curve undergoes a small inflection. A sharp maximum of Neff in this
region corresponds to a diradical state (Neff ≅ 2.04). Interestingly, in this extremal
state the most unpaired atom (judging from Deff

A ) is the ending atom on the longest
diagonal, whereas the opposite atom on the same diagonal has zero EUE density
and net atomic charge +1 (that is, locally it is Li+ ). This corresponds to the valence
scheme of the form

Practically the same field dependency is obtained within the CISD and EHF
schemes. Furthermore, passing from the STO-3G basis set to the 6-31G basis set,
we obtain similar plots. For other small systems, see [125]. As one can see from
[124], the analogous treatment (at the FCI/PPP level) of small conjugated hydro-
carbons, such as the naphthalene and biphenylene molecules, gives the results
resembling those of the Li4 case. For extended conjugated molecules the results are
even more pronounced. Notice that in [124] we preferred using κ-index, Eq. (6.22),
to using other EUE measures because the Nκ index requires no computations of D,
and this gives a certain advantage when it is necessary to calculate, at the FCI/PPP
level, the κ-index for hundreds or more electric-field points.

25.1
dx Neff

2.04

0.78

0.1 0.2 0.1 0.2

Fig. 6.5 Changes of dipole moment dx and Neff in a uniform electrostatic field of strength E for
the rhombic Li4 cluster at the FCI/STO-3G level
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It is interesting to see a typical difference in behavior between strongly and
slightly correlated systems in a strong static field. For definiteness, we examine two
molecules with the same numbers of carbon atoms. These are the linear decacene
molecule, C42H24, and Clar’s type aromatic hydrocarbon C42H20 (see Table 6.9).
Recall that Clar’s hydrocarbon is described by a structural formula which consists
exclusively of benzenoid rings interlinked by quasi-single bonds [126]. It is quite
natural that the PAHs of the Clar type have significantly less diradical (polyradical)
character. The data from Table 6.9 for the decacene and Clar’s system C42H20 in
zero electric field agree with this. However, the situation is somewhat different in
the case of strong field. Namely, the maximal Neff index of the Clar system is more
than six times larger than that in the field’s absence, and this value becomes still
greater than the maximal Neff index for the decacene molecule. In the latter, we
observe only a modest increase of the electron unpairing in the field (the maximal
Neff is about 1.5 times larger than that in the field’s absence). Note that the dipole
moment shows the qualitatively similar behavior for both systems.

We would like to stress that the observed enhancing of EUE effects in the stable
PAHs under strong fields is not confined to the static electric field. Somewhat similar
effects were reported in [127] where the action of strong magnetic field on small
acenes and antiaromatic systemswas examined at the FCI/PPP level (within London’s
model of magnetic field effects). It turned out that in the strong magnetic field, aro-
matic molecules usually become diradicaloid and non-aromatic. Accordingly, the
antiaromatic systems dramatically reduce their initial diradicaloid character, and thus
lose their initial antiaromaticity. The interconnection between EUE and singlet-triplet
splitting (STS) was also discussed for these π-problems [127]. At the ab initio level, a
more extended study of STS and the polyradical character was presented in [11].

Let us return to the external field effects. Other cases are given in [27] where we
studied small molecules in laser fields which generate transient diradical or more
complex structures. Below we extend this study to the conjugated systems by using

Table 6.9 Dipole moment dx and EUE index Neff for decacene C42H24 and Clar’s structure
C42H20 in a static electric field as functions of the strength field E, applied along the long
molecular axis (x-axis) within π-EHF scheme

π -system dx Neff

C42H24

C42H20
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the π-electron time-dependent UHF (TD-UHF) method. We take again the decacene
molecule, and the same pulsed laser field, as in [27], the first entry in Table 6.1. The
corresponding pulse field is of the form E(t) cos(ωt), where E(t) is an enveloping
function, and ω = 0.06 atomic units. The pulse field and temporal dependencies of
dipole moment, dx, and Neff index are given in Table 6.10. These data show that,
unlike the static field (see Table 6.9), the pulse laser field produces the enormous
electron unpairing in the linear decacene molecule. The similar results are obtained
for other PAHs.

The above considered effects are implicitly connected with other strong per-
turbation effects reported in the literature. For instance, distorted graphene-like
structures are really observed after irradiation generating lattice irregularities, e.g.
vacancies. It leads to appearance the dangling carbon bonds, and thereby to the
electron unpairing. The recent semiempirical study of surface states at a
many-electron (UHF-type) level was given in [128]. In our context, paper [129] is
presented even more relevant as giving the ab initio model of single defects and
treating the EUE effects simultaneously. Summing this section we would like stress
a nontrivial role of electron unpairing in various physical phenomena taking place
in molecular materials.

6.14 In Search of Better EUE Measures

Now we address a difficult issue what is good and what is not for the EUE theory.
The first discussions were started in papers [28, 29]. In the present work the
Yamaguchi index [1] is treated mainly as a historically valuable first quantity for the
EUE characterization, but not recommended for wide practical use (works [130] are
a rare example of using NYam

eff now). Instead, we advocate the H-G index [5] for
which a clear hole-particle physical nature, Eq. (6.40), is established [12]. Never-
theless, one can encounter intrinsic interpretational problems when judging the
adequacy of any quantitative EUE measure, and the Neff index is not the exception.
For instance, we obtained in the anthracene molecule a nonempirical estimate

Table 6.10 TD-UHF temporal behavior of dipole moment dxðtÞ and EUE index NeffðtÞ for the
decacene molecule in the pulse laser field with enveloping function E(t) (all quantities in atomic
units)

E(t) cos(ωt) dxðtÞ NeffðtÞ

Total observation time is about 400
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Neff ≅ 1.9. Given the well known stability of anthracene, is it a reasonable mag-
nitude? Before going on, we must ones again consider a formal side of the issue.

For this, we will include into consideration the second index proposed by
Head-Gordon in [5]. This index denoted by Nodd½2� (as in Appendix A) is defined as
follows:

Nodd½2�= ∑
k
ð2λk − λ2kÞ2. ð6:94Þ

Equation (6.94) was intensively applied in papers [9, 11, 129, 131] as even more
preferable tool for quantifying EUE. By using Nodd½2�, a not so important part of the
NOON spectrum (mainly due to dynamical electron correlation) is effectively cut
off. Another way to approach the EUE problems is to use matrix invariants of the
deviation matrix

ΔD=D− 2ρ. ð6:95Þ

This matrix has a meaning of a hole-particle correction to 2ρ (see Appendix C
for detail). Following the same procedure presented earlier for CIS states [76, 82,
84], we define the matrix modulus

jΔDj = ½ðΔDÞ2�1 2̸ ð6:96Þ

and introduce the hole-particle invariants in form of traces of the jΔDj powers:

Nh− p½q�=TrjΔDjq . ð6:97Þ

The formal analysis of Nh− p½q� is given in Appendix C. In particular, for ground
state we have

Nh− p½1�=Nh− p =Neff . ð6:98Þ

The second-order index Nh− p½2� has a meaning of the squared norm of the
density matrix deviation ΔD:

Nh− p½2�= jjΔD jj2. ð6:99Þ

Our experience shows that the special case q = 3/4, which produced the
hole-particle invariant Nh− p½4 3̸�, can also serve as a good EUE measure. In this
case, as in the case of the above Nodd ½2� index, nonsignificant contributions from
dynamical correlation are effectively suppressed. Apparently, the dynamical cor-
relation has no direct relation to diradicality and polyradicality. However, the
considered procedure may be not well suitable for dissociation states, as one
example in [5] had shown this for the Nodd ½2� measure. Nevertheless, for typical
equilibrium molecular states, such a suppression seems to be quite sensible if one is
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interesting in an estimation of polyradicality. In Table 6.11 we present the results of
using Nh− p (for the ground state Nh− p =Neff ), Nodd ½2� and Nh− p½4 3̸� for peri-
acenes discussed in Sect. 6.11. We supplement the table by the values of average
locality index ℵloc (6.88) for the each EUE measure. It is seen that the Nodd ½2� and
Nh− p½4 3̸� data differ nonsignificantly. With this, Nh− p½4 3̸� is of the hole-particle
origin, as the initial Nh− p index. Moreover, judging from the ℵloc magnitudes in
Table 6.11, both measures, Nodd ½2� and Nh− p½4 3̸� are associated with more
localized EUE distributions than in the Neff case. This fact gives additional support
for using the special measures Nodd ½2� and Nh− p½4 3̸� for describing a polyradical
character in conjugated hydrocarbons and related carbon-based networks.

Seemingly, it would be more preferable to perform EUE studies by invoking
several quantification schemes. One needs also to take into account the specific
features of the problem before deciding what the scheme should be taken as a more
relevant in the problem context. For instance, if we are interesting in the EUE
spatial localization, then the locality index ℵloc (6.88) can be quite appropriate. If
the localization measure of the NOON spectrum fλkg near λ=1 is in question then,
then indices Nh− p½q� and Nodd ½q� with large q, e.g., q=4, are more preferable.

6.15 Concluding Remarks

The initial intent of this chapter was to provide a broad overview and a critical
assessment of various trends in the theory of effectively unpaired electrons. In the
process of preparing the manuscripts some accents were shifted, and we would
unavoidably restrict ourselves to a narrow set of issues and examples for discussion.
For instance, we only slightly touched on the electron unpairing analysis in
structures with a spatial separation of molecular subunits. These are bichromophore
systems, molecular dimers and complexes, radical and ion–radical pairs, etc. The
recent papers [77, 78, 125] are dedicated just to these problems. Besides, many
interesting systems, e.g., semiconductor quantum dots, fell beyond the scope of this
review. Indeed, many-electron aspects of the multiple exciton generation (MEG) in
quantum dots are closely related to the EUE theory, but only circumstantial evi-
dence about EUE effects in MEG can be found in the current literature [127, 128].

Table 6.11 Generalized EUE indices Nh− p½q� and respective localization indices ℵloc for the (5a,
4z), (5a, 5z), and (5a, 6z) periacene molecules within π-UHF scheme

Periacene Nh− p Nodd ½2� Nh− p½4 3̸� ℵloc
h− p ℵloc

odd ½2� ℵloc
h− p½4 3̸�

(5a, 4z) 0.054 0.041 0.041 6.3 5.3 5.5
(5a, 5z) 0.057 0.042 0.042 8.4 7.1 7.0
(5a, 6z) 0.060 0.048 0.045 11.4 10.0 9.7
Here Nh− p coincides with NeffðtÞ
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Before closing, we briefly reiterate the basic points. The conventional formalism
of density matrices was used here in such a way that it helped us to understand
some essential features and interrelations between different EUE measures. In
particular, in Sect. 6.5 we see that the hole-particle index, which was introduced in
[15, 16], is identical, for ground states, to the previously proposed H-G index [5].
We also examined excited states where the situation is more complicated, so that
the H-G and hole-particle indices should be considered concurrently.

We must admit that the EUE theory is a little trickier than it seems. Indeed,
rigorously speaking, the EUE problem is not well-defined, because it does not have
a unique solution [5]. Nevertheless, we tried to understand what are the most
appropriate definitions of the EUE measures. Now, we could report only prepara-
tory results until a subsequent, more substantial analysis. Nevertheless, possible
directions to modifying the existing measures are discussed here. In particular, we
could retain the same hole-particle description for the modified (‘q-extended’) EUE
measures in which unwanted small contributions to EUE are suppressed, as it was
previously done in the case of the second Head-Gordon index, Eq. (6.94). Another
way to produce better EUE indices is to somehow estimate an average localization
of the unpaired electron. This leads to a possible measure ℵloc, Eq. (6.88), giving
the results which are closer to those expected from a ‘common chemistry sense’.

In our specific applications the stress is put on large-scale carbon-containing
molecules. For those we propose a simple semiempirical scheme [13] which has the
same complexity as the ordinary Hückel method. It allows us to make quick and
easy estimates of EUE effects even in gigantic conjugated networks which cannot
be rigorously treated by high-level ab initio methods. It is important that the pro-
posed elementary model yields the results which are qualitatively in agreement with
the existing ab initio data [9, 11] for relatively small systems. The influence of
external perturbations on EUE is another attractive field of application. It turns out
that the systems which have a small polyradical character (hydrocarbons of the Clar
type) become extremely polyradicaloid in a strong static electric field (Sect. 6.14).
The laser field effects on the polyaromatic systems are even more pronounced, as
preliminary studies show.

In sum, we would like to stress that during the last decade or so, the unpaired
electron theory came up with new fruitful insights and techniques. In future, the
semiempirical models and concrete results for large systems should be carefully
examined by more rigorous approaches. We believe that a physical side of the
existing simplified EUE theories remains, and plenty of new intriguing results for
electrons in the conjugated molecules will be revealed.
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Appendix A: Duality Symmetry and Generalized EUE
Indices

In this Appendix we clarify the cause for postulating symmetry relation (6.18). For
this aim we introduce a formal operation which can be named the duality trans-
formation and which is well known in multilinear algebra as the Hodge star
operation, or Hodge dual [132]. In the RDM theory an equivalent transformation
was applied in [19, 133], without recognizing it as a Hodge dual. The following
simple example helps to explain this notion in the more familiar terms of
many-electron state vectors.

We consider a two-electron problem in the basis of five spin-orbitals

χ1j ⟩, χ2j ⟩, χ3j ⟩ χ4j ⟩, χ5j ⟩f g. ðA1Þ

Let the ket

Ψ½2�j ⟩= χ1χ2j ⟩ ðA2Þ

be the two-electron Slater determinant built from χ1j ⟩ and χ2j ⟩. By definition, the

dual ket, Ψ*
½3�

��� ⟩, is built up from the rest spin-orbitals, giving the three-electron

determinant:

Ψ*
½3�

��� ⟩= χ3χ4χ5j ⟩. ðA3Þ

In the same basis (A1), the maximal Slater determinant Ψmaxj ⟩ is

Ψmaxj ⟩= χ1χ2χ3χ4χ5j ⟩. ðA4Þ

It is not difficult understand that we can produce Ψ*
½3�

��� ⟩ from Ψmaxj ⟩ by anni-
hilating in Eq. (A4) the state vector (A2). More exactly, apart from a prefactor we
have

Ψ*
½3�

��� ⟩= ⟨Ψ½2� j Ψmax⟩. ðA5Þ

They say that the obtained three electron state Ψ*
½3�

��� ⟩ is the Hodge dual of the
two-electron state Ψ½2�j ⟩.

Now consider the respective 1-RDMs. In notation of Sect. 6.6, we have from
determinants (A2) and (A3) the usual Dso

1 matrices in the form of projectors on
occupied spin-orbitals of the respective determinants:
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Dso
1 ð Ψ½2�j ⟩Þ= χ1j ⟩⟨χ1j+ χ2j ⟩⟨χ2j,

Dso
1 ðΨ*

½3�Þ= χ3j ⟩⟨χ3j+ χ4j ⟩⟨χ4j+ χ5j ⟩⟨χ5j.

We see that

Dso
1 ðΨ*

½3�Þ= I −Dso
1 ðΨ½2�Þ ðA6Þ

where unity operator I is a projector on all five spin-orbitals from Eq. (A1).
This line of reasoning can be directly extended to a general case including exact

state vectors as well. It the general case we start with a r-dimensional spin-orbital
basis f χkj ⟩g1≤ k≤ r and build the respective maximal determinant
Ψmaxj ⟩= χ1 . . . χrj ⟩ (clearly, the only r-electron state vector is Ψmaxj ⟩≡ Ψ½r�

�� ⟩ ). The
given exact (or approximate) state-vector Ψ½N� produces the Hodge dual, as
previously:

Ψ*
½r−N�

��� ⟩= ⟨Ψ½N�
�� Ψmax⟩. ðA7Þ

Accordingly, relation (A6) is generalized to be

Dso
1 ðΨ*

½r−N�Þ= I −Dso
1 ðΨ½N�Þ. ðA8Þ

This is the duality transformation in terms of 1-RDM. The analogous relation for
Dso

2 ðΨ*
½r−N�Þ is somewhat more involved [133, 134]. The remarkable property of the

Hodge duality transformation is its ability to preserve correlation operator Δso
2 in

Eq. (6.45), as it is first shown in [19]. The related expression is given in [135].
Thus, the other correlation matrices, e.g., Deff , must be the same as well. It is worth
mentioning in passing that in [128] and many subsequent papers, a somewhat
inconvenient terminology is used for RDMs DsoðΨ*

½r−N�Þ—the latter are loosely
identified with hole RDMs. Certainly, it leads to confusion and even misinterpre-
tation, since generally such RDMs have no relation to the genuine, ‘physical’, hole
RDMs discussed in Sect. 6.4 and in [16]. We prefer to refer to them as the dual
RDMs [16].

We now have to sum over spin indices, making spin trace in Eq. (A8). As a
result, the dual charge density matrix is yielded, viz.

DðΨ*
½r−N�Þ=2−DðΨ½N�Þ. ðA9Þ

Then the NOON spectrum of the dual charge density matrix is simply a set
f2− λkg where we imply that the initial NOON spectrum is the set fλkg. Recalling
that EUE characteristics of the dual state (A7) should be the same as in the initial
state Ψ½N�, the identity
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DeffðΨ½N�Þ=DeffðΨ*
½r−N�Þ ðA10Þ

is necessitated. Taking into account Eqs. (6.1), (6.5) and (6.5′) we arrive at the
relation

∑
k
f ðλkÞ φkj ⟩⟨φkj= ∑

k
f ð2− λkÞ φkj ⟩⟨φkj, ðA11Þ

from whence Eq. (6.18) immediately follows, that is

f ðλÞ= f ð2− λÞ. ðA12Þ

The requirement (A12) allows us to specify a general dependence λeff = f ðλÞ,
namely, λeff is a nonnegative definite function of argument jλ− 1j, with boundary
values f ð0Þ= f ð2Þ=0. Eqs. (6.7′) and (6.14) are evidently of this type. Rather
general types of the functions can be proposed as ‘q-extensions’ of Eqs. (6.9) and
(6.15). These are

Nodd ½q�= ∑
k
ð1− jλk − 1j2Þq, ðA13Þ

Neff ½q�= ∑
k
ð1− jλk − 1jÞq, ðA14Þ

where q≥ 1. We see that Nodd ½1� and Neff ½1� produce the usual Nodd and Neff
measures, respectively. The choice q=2 in Eq. (A13) leads to

Nodd½2�= ∑
k
½1− ðλk − 1Þ2Þ�, ðA15Þ

which is the modified Head-Gordon index from [5]. This expression is trivially
equivalent to Eq. (6.94).

Appendix B: Density Matrix and NOON for QCTB

We consider here in more detail the QCTB model described in Sect. 6.13. Having at
hand the effective Hamiltonian matrices (6.91), we straightforwardly derive pro-
jector matrices ρα and ρβ by using the well known expressions connecting
Hamiltonians and respective projectors [19, 136, 137]). Let h be the Hermitian
operator, such that exactly n eigenvalues of h lie below zero, and P be the projector
on the corresponding eigenvectors. Then
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P= ðI − h j̸hjÞ 2̸, ðB1Þ

where jhj= ½ðhÞ2�1 2̸ is the modulus of operator h. Further, let one-electron
Hamiltonian matrix hδ be defined as follows:

h½δ� = − δ I B
B+ − δ I

� �
.

In particular, hα = h½δ�, hβ = h½− δ�. Then, by applying Eq. (B1) to h= h½δ�, we
obtain the corresponding projector

P½δ� =
1
2

I + δðδ2I +BB+ Þ− 1 2̸ Bðδ2I +B+BÞ− 1 2̸

ðδ2I +B+BÞ− 1 2̸B+ I − δðδ2I +B+BÞ− 1 2̸

� �
. ðB2Þ

In derivation, the block-diagonal structure of ðh½δ�Þ2 is used, that is

ðh½δ�Þ2 = δ2I +BB+ 0
0 δ2I +B+B

� �
.

Equation (B2) was earlier derived by another technique for the special closed π-
shells with alternating electronegativity [138]. Obviously, setting δ=0, we return to
the Hall formula (6.90). By recalling Eq. (6.91) we have

ρα =P½δ�, ρβ =P½− δ�. ðB3Þ

Putting together Eqs. (B2) and (B3), we get from Eq. (6.10) the main result:

D= I Bðδ2I +B+BÞ− 1 2̸

ðδ2I +B+BÞ− 1 2̸B+ I

� �
. ðB4Þ

The problem of diagonalizing this D is a quite elementary, and the full NOON
spectrum takes the form

λi =1+ εi ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2i

q
, λa =1− εa ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2a

q
, ðB5Þ

where 1≤ i, a≤ n, and nonnegative quantities εi ≡ εij j, as well as εa ≡ εaj j, are
eigenvalues of ðB+BÞ1 2̸, that is fεig is the bipartite graph spectrum. From Eq. (B5)
the main EUE indices within QCTB are easily deduced. For instance,

Nodd = 2δ2 ∑
n

i=1
ðδ2 + ε2i Þ− 1. ðB6Þ
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Remark also an evident symmetry of the corresponding hole and particle
occupancies, defined by Eq. (6.41′):

f1− εi ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2i

q
g = f1− εa ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2a

q
g. ðB7Þ

that follows from Eq. (B5). In other words, the hole and particle occupancy spectra
are identical for this π-model.

As a matter of fact, the hole and particle occupancies are identical for any
bipartite networks treated within π-approximation, up to FCI/PPP. This is a simple
corollary of the generalized pairing theorem of McLachlan [94] stating that the π-
electron charge density matrix of the alternant hydrocarbons is of the form

D=
I ∂

∂
+ I

� �
, ðB8Þ

where the 2pz AO basis set is ordered as in Eq. (6.89), and ∂ defines the
inter-sublattice bond order matrix. Clearly, the corresponding NOON spectrum
fλkg is

f1+ ffiffiffiffi
μi

p g, f1− ffiffiffiffiffi
μa

p g ðB9Þ

where μi (or μa) are eigenvalues of ∂
+
∂, and 1≤ i, a≤ n. As a result, the initial π-

NOON spectrum is symmetrical in respect to the point λ=1. From Eq. (B9) we
deduce that indeed the respective hole and particle π-occupancies, defined as in
Eq. (6.41′), are identically the same:

f1− ffiffiffiffi
μi

p g= f1− ffiffiffiffiffi
μa

p g. ðB10Þ

Interestingly, an initio data [9, 11] approximately follow Eqs. (B9) and (B10).
Incidentally, it follows, from this discussion, that the hole occupancy distribution
f1− ffiffiffiffi

μi
p g (generally f2− λig1≤ i≤ n) is sufficient for considering EUE problems.

For instance, instead of plotting NOON spectrum fλkg, one can plot only hole
occupancy spectrum f2− λig as even more suitable in the EUE context. This
occupancy spectrum is in fact the second half of the typical π-NOON spectra which
were presented in Tables 6.6, 6.7, and Fig. 6.4.

Appendix C: Generalized Hole-Particle Indices

Here we analyze the main EUE indices in terms of hole-particle quantities. We
begin with the representation
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D=2ρ+ΔD, ðC1Þ

where ρ is of the form (6.36), and φij ⟩ are the natural orbitals of the state in
question, so ΔD commutes with ρ. Then, using the same notation, as in Eq. (6.41),
we obtain the spectral resolution

ΔD= − ∑
i≤ n

Δi φij ⟩⟨φij+ ∑
a> n

λa φaj ⟩⟨φaj, ðC2Þ

where

Δi ≡ 2− λi ðC3Þ

are new nonnegative quantities (0≤Δi <1, and i≤ n), and λa are related to ‘virtual’
natural orbitals. We see that correlation correction matrix ΔD has a clear
hole-particle structure: Δi are the occupancy numbers for the holes, and λa are the
same for the particles. In manipulations the identity

∑i Δi = ∑a λa ðC4Þ

will be useful as well. It follows from Eqs. (C1), (C2), and normalization (6.2).
Due to the diagonal form (C2) we trivially have the diagonal form of the matrix

jΔDj defined by Eq. (6.96):

jΔDj = ∑i Δi φij ⟩⟨φij + ∑a λa φaj ⟩⟨φaj. ðC5Þ

But this is the same as the hole-particle density in Eq. (6.41), that is

Dh− p = jΔDj. ðC6Þ

It is essential that under duality transformation (A9) the holes and particles in
Eq. (C2) change place, so identity (A10) satisfies automatically for Deff =Dh− p.

The appropriate q-extended (q≥ 1) hole-particle indices can be cast explicitly
into the form

Nh− p½q�=TrðjΔDj qÞ= ∑i Δ
q
i + ∑a λ

q
a. ðC7Þ

Particularly,

Nh− p½2�= ∑i Δ
2
i + ∑a λ

2
a = jjΔD jj2. ðC8Þ

The previously defined EUE indices can be rewritten in terms of the
correlation-dependent quantities {Δi, λa}:
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Nodd = ∑
1≤ i≤ n

ð4Δi +Δ 2
i Þ+ ∑

a> n
λ2a, ðC9Þ

Neff = ∑ i Δi + ∑a λa =2 ∑
1≤ i≤ n

Δi, ðC10Þ

Nodd ½2�= ∑
1≤ i≤ n

½Δið2−ΔiÞ�2 + ∑
a> n

½λað2− λaÞ�2. ðC11Þ

where we used identity (C4).
For slightly correlated systems, the most important are the first order terms in Δi

and λa. It gives Nodd ≅ 4∑Δi, so

Nodd ≅ 2Neff , ðC12Þ

and this goes back to the rude estimation, Eq. (6.80). It is interesting that the exact
interrelation 2Neff −Nodd = jjΔD jj2 is true. Likewise, the first-order estimation of
the modified Head-Gordon index (6.94), that is Eq. (C11), is null:

Nodd ½2�≅ 0. ðC13Þ

Indeed, Eq. (C11) contains only the second-order and higher-order terms:

Nodd ½2�≅ 4 ð ∑i Δ
2
i + ∑a λ

2
aÞ=4jjΔD jj2. ðC14Þ

The above simple analysis now elucidates how small contributions from Δi and
λa are essentially suppressed in the Nodd ½2� and Nh− p½2� indices. As a rule, these
small contributions appear mainly from dynamical correlations. For instance, MP2
(the Moller-Plesset second-order perturbation theory) normally produce the con-
tributions of this kind. Evidently, they have no direct relation to diradicality and
polyradicality, and the Nodd ½2� and Nh− p½2� indices should be rather small without
a significant contribution from non-dynamical correlation. This is a good property
of the generalized indices such as (6.94) and (C8), and apparently, this is the basic
reason why Nodd ½2� is systematically employed in papers [9, 11, 122, 124] for
analyzing the unpaired electrons in large PAHs. At the same time, the dynamical
correlation cannot fully ignored, and the problem of an optimal quantification
remains.
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