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Samuel’s Checkers Player

Definition

Samuel’s Checkers Player is the first machine
learning system that received public recognition.
It pioneered many important ideas in game play-
ing and machine learning. The two main papers
describing his research (Samuel 1959, 1967) be-
came landmark papers in Artificial Intelligence.
In one game, the resulting program was able to
beat one of America’s best players of the time.

Description of the Learning System

Samuel’s checkers player featured a wide vari-
ety of learning techniques. First, his checkers
player remembered positions that it frequently
encountered during play. This simple form of
rote learning allowed it to save time, and to
search deeper in subsequent games whenever a
stored position was encountered on the board
or in some line of calculation. Next, it featured
the first successful application of what is now
known as �Reinforcement Learning for tuning
the weights of its evaluation function. The pro-

gram trained itself by playing against a stable
copy of itself. After each move, the weights of the
evaluation function were adjusted in a way that
moved the evaluation of the root position after
a quiescence search closer to the evaluation of
the root position after searching several moves
deep. This technique is a variant of what is
nowadays known as Temporal-Difference Learn-
ing and commonly used in successful game-
playing programs. Samuel’s program not only
tuned the weights of the evaluation but also em-
ployed on-line �Feature Selection for construct-
ing the evaluation function with the terms that
seem to be the most significant for evaluating the
current board situation. �Feature Construction
was recognized as the key problem that still
needs to be solved. Later, Samuel changed his
evaluation function from a linear combination
of terms into a structure that closely resembled
a 3-layer �Neural Network. This structure was
trained with �Preference Learning from several
thousand positions from master games.
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Abstract

The general structure of a search engine is
described. An overview of those information
retrieval methods that are relevant to web
search in that they take the existence of hy-
perlinks between documents into account, is
provided. A suggested classification of web
queries as either navigational, transactional, or
informational has been suggested. More gen-
erally, a good understanding of users’ needs
and practice allows for query rewriting or for
redirection to domain-specific databases.

Definition

Search engines provide users with Internet
resources—links to websites, documents, text
snippets, images, videos, . . . —in response to
queries. They use techniques that are part of

the field of information retrieval and rely on
statistical and pattern matching methods. Search
engines have to take into account many key
aspects and requirements of this specific instance
of the information retrieval problem. First is the
fact that they have to be able to process hundreds
of millions of searches a day and answer queries
in a matter of milliseconds. Second is the fact
that the resources on the World Wide Web
are constantly updated, with information being
continuously added, removed, or changed—the
overall contents changing by up to 8 % a week—
in a pool consisting of billions of documents.
Third is the fact that users will express possibly
semantically complex queries in a language with
limited expressive power and often not make
use or proper use of available syntactic features
of that language—for instance, the Boolean or
operator occurs in less than 3 % of queries.

Motivation and Background

Web searching is technically initiated by sending
a query to a search engine, but the whole search
process starts earlier, in the mind of the person
who conducts the search. To be successful, the
process needs to provide users with words, text
snippets, images, or movies that fulfill the users’
quest for information. So even though a search
is technically the implementation of a procedure
that maps a query to some digital material, it
spans a larger spectrum of activities, from a
psychological trigger to a psychological reward.
For a given set of digital material that, if pro-
vided, would be deemed perfectly satisfactory by
a number of users looking for the same informa-
tion, different users will issue different queries.
That might be because they have varying skills
at conveying what they are after in the form
of a few words. That might be because their
understanding of the technology prompts them
to formulate what they are after in a form that,
rightly or wrongly, they consider appropriate for
a computing device to process. That might be
for a number of different reasons that all point
to the fact that the quality of the search is not
determined by its adequacy to the query, but

http://dx.doi.org/10.1007/978-1-4899-7687-1_936
http://dx.doi.org/10.1007/978-1-4899-7687-1_806
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by its adequacy to the psychological trigger that
produced the query. This makes web searching
an especially challenging and exciting area in the
field of � information retrieval.

In Andrei (2002), it is suggested that web
queries can be classified in three classes.

• Navigational queries expect the search
to return a particular URL. For instance,
http://www.cityrail.info is probably the
expected result to the query Cityrail for a
Sydneysider.

• Transactional queries expect the search
to return links to sites that offer further
interaction, for example, for online shopping
or to download music. For instance, http://
www.magickeys.com/books/, where books for
young children are available for download,
is probably a good result to the query
children stories.

• Informational queries expect the search
to reveal a piece of information that is the
correct answer to a question. This piece of
information can be immediately provided
in the page where theresults of the search

are displayed, as, for instance, Bern for the
query capital of switzerland. Or it
can be provided in the pages accessible from
the first links returned by the search, as for
instance, Italy that is easily found in the
web page accessed from the first link returned
in response to the query football world
champion 1982.

Answering an informational query with the in-
formation itself, rather than with links to docu-
ments where the information is to be found, is
one of the most difficult challenges that search
engine developers have addressed. Some argue
that the final goal is to deliver the best possible
content that a user would like to have in a given
moment and that instead of pulling information,
information be pushed to the user depending on
the context (Ricardo and Prabhakar 2010).

Structure of the Learning System

The general structure of a search engine can be
illustrated as follows:

User

Parsing Postfilering

Repository Matching Postprocessing

Ranking

Qu
er
y

Documents

Results

A � string matching algorithm is applied to the
parsed query issued by the user and to an indexed
representation of a set of documents, resulting in
a ranked subset of the latter. This ranked set of
documents can be subjected to a postprocessing
procedure whose aim is to improve the results by
either refining the query or by analyzing further
the documents, possibly over many iterations,

until the results stabilize and can be returned to
the user, following a postfiltering procedure to
display the information appropriately.

Retrieval Methods
What distinguishes search engines from other
information retrieval applications is the existence
of hyperlinks between documents. All techniques

http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://www.cityrail.info
http://www.magickeys.com/books/
http://www.magickeys.com/books/
http://dx.doi.org/10.1007/978-1-4899-7687-1_791
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developed in the field of information retrieval
are potentially relevant for extracting information
from the web, but will benefit from a proper
analysis of the cross-reference structure. That is,
to measure the degree of relevance of a document
to a given query, one can take advantage of a prior
ranking of all documents independent of that
query or any other, following a sophisticated ver-
sion of the PageRank (Lawrence et al. 1999) link
analysis algorithm. One of the simplest versions
of the algorithm recursively defines the PageRank
PR.T / of a page T which pages T1, . . . , Tn point
to, among the c1, . . . , cn pages T1, . . . , Tn point
to, respectively, as

1 � d

N
C d.T1=c1 C � � � C Tn=cn/

where N is the total number of pages and d , a
damping factor, represents the probability that a
user decides to follow a link rather than randomly
visit another page; normalizing the solution so
that the PageRanks of all pages add up to 1,
PR.T / then represents the probability that a user
visits T by clicking on a link.

Boolean retrieval is one of the simplest meth-
ods to retrieve a set of documents that match
exactly a query expressed as a Boolean combi-
nation of keywords. The match is facilitated by
using an inverted file indexing structure which
associates every possible keyword with links to
the documents in which it occurs (Justin and
Alistair 2006). If extra information is kept on the
occurrences of keywords in documents (number
of occurrences, part of the document in which
they occur, font size and font type used for their
display, etc.), then the results can also be ranked.
But best match models, as opposed to exact match
models, are better suited to producing ranked
results. The vector space model is one of the
earliest and most studied models of this kind.
It represents documents and queries as vectors
over a space each of whose dimensions represents
a possible keyword and measures the similarity
between the vectors Eq and Ed that record for each
keyword whether it occurs at least once in query
and document, respectively, as the cosine of the
angle formed by Eq and Ed , namely,

Eq: Ed

kEqk:k Edk
;

that is all the most closer to 1 that query and
document have more in common. The term-
frequency-inverse-document-frequency (tf-idf)
model refines the encoding given by Ed by
replacing a value of 1 in the i th dimension,
indicating the existence of an occurrence of the
i th keyword in Ed , with

c1: log

�
N

c2

�

where c1 is the number of occurrences of the
i th keyword in the document, N is the total
number of documents, and c2 is the number of
documents in the whole collection that contains
at least one occurrence of the i th keyword; so
more weight is given to keywords that occur
more and that occur “almost exclusively” in the
document under consideration. One of the most
obvious issues with this approach is that the
number of dimensions is huge and the vectors
are sparse. Another important issue is that set
of vectors determined by the set of keywords is
not orthogonal and not even linearly independent,
because two given keywords can be synonyms
(sick and ill), not semantically related (garlic and
manifold), or more or less semantically related
(wheel and tire).

The extended vector space model (Wong et al.
1987) addresses this issue assuming that the sim-
ilarity between two keywords is captured by the
symmetric difference between the set of doc-
uments that contain a keyword and the set of
documents that contain the other, ranging from
identical sets (similar keywords) to disjoint sets
(unrelated keywords). Let D1, . . . , DN 0 be an
enumeration of the quotient relation over the
set of all documents such that two documents
are equivalent if they contain precisely the same
keywords (so N 0 is at most equal to N , the num-
ber of documents in the whole collection). Con-
ceive an N 0-dimensional vector space S which
D1, . . . , DN 0 is a basis of. Associate the i th
keyword with the vector Evi of S defined as

1q
w2

1C���Cw2
N 0

.w1; : : : ;wN 0/ where for all nonzero
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k � N 0, wk is the number of occurrences of the
i th keyword in all documents that belong to class
Dk . Then associate a document with the vector Ed
of S defined as ˛1 Ev1 C � � � C ˛N 00 EvN 00 where N 00

is the number of keywords, and for all nonzero
k � N 00, ˛k is the number of occurrences of
the i th keyword in that document, and associate
a query with the vector Eq of S defined as ˇ1 Ev1 C

� � � CˇN 00 EvN 00 where for all nonzero k � N 00, ˇk
is equal to 1 if the i th keyword occurs in the query
and to 0 otherwise. The similarity between Eq and
Ed is then measured as described for the simple
vector space method.

The topic-based vector space model (Jörg and
Dominik 2003) also replaces the original vector
space with a different vector space of a different
dimension, addressing the issue of nonorthogo-
nality between keywords, thanks to fundamen-
tal topics, assumed to be pairwise independent,
using ontologies; the fundamental topics then
provide the vector basis which a given keyword is
a linear combination of. So the topic-based vector
space model conceives the meaning of words as
the semantic relationships that emerge from the
common use of a language by the members of
a given community, whereas the extended vector
space model conceives the meaning of words as
the syntactic relationship of term co-occurrence
with respect to the repository of documents being
processed.

Probabilistic retrieval frameworks aim at es-
timating the probability that a given document
is relevant to a given query. Given a keyword
w, denote by pCw the probability that w occurs
in a document relevant to w, and denote by p�w
the probability that w occurs in a document not
relevant to w. Many probabilistic retrieval frame-
works then define the relevance of a document
to a query as follows, where w1, . . . , wn are the
keywords that occur both in the query and in the
document:

nX
iD1

log

 
pCwi

.1 � p�wi
/

p�wi
.1 � pCwi

/

!
:

This quantity increases all the more that the
document contains more words more likely to

occur in relevant documents and more words less
likely to occur in irrelevant documents. Different
frameworks suggest different ways to evaluate
the values of pCwi

and p�wi
. For instance, pi

is sometimes assumed to be constant and p�wi

defined as ni=N where N is the total number
of documents and ni the number of documents
in which wi occurs, capturing the fact that a
document containing a keyword appearing in few
other documents is likely to be relevant to that
keyword, in which case the previous formula can
be rewritten

c �

nX
iD1

log

�
N � ni

ni

�
:

for some constant c. More sophisticated methods
have been developed to better estimate the prob-
abilities, such as the Okapi weighting document
score (Stephen et al. 1999) which defines the
relevance of a document to a query as

nX
iD1

log

�
N � ni C 0:5

ni C 0:5

�
:

.k1 C 1/ci�
k1.1 � b/C b lˇ

�
C ci

:
.k3 C 1/di
k3 C di

where the notation is as above, with the addition
of ci to denote the number of occurrences of
wi in the document, di to denote the number of
occurrences of wi in the query, l to denote the
number of bytes in the document, ˇ to denote the
average number of bytes in a document, and b,
k1, and k3 to denote constants.

Query Classification
The development of effective methods of infor-
mation retrieval from web resources requires a
good understanding of users’ needs and prac-
tice. In Karen (2007a), the following questions
are identified as being especially relevant toward
gaining such an understanding:

What characterizes the queries that end users
submit to online IR systems? What search features
do people use? What features would enable
them to improve on the retrievals they have
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in hand? What features are hardly ever used?
What do end users do in response to the systems
retrievals?

This paper indicates that many of the basic fea-
tures of information retrieval systems are poorly
used. For instance, less than 15 %, 3 %, and 2 %
of queries make use of the and, or, and not
Boolean operators, respectively, and less than
15 % of queries of enclosing quotes; the wrong
syntax is often used, resulting in incorrect use
of advanced search features in one third of the
cases; less than 10 % of queries take advantage
of � relevance feedback. Based on those findings,
the second part (Karen 2007b) of the article
suggests two-dozen new research questions for
researchers in information retrieval while noting
that about 70 % of users are satisfied with their
search experience.

Evaluating search satisfaction has received
lots of attention. In Steve et al. (2005), both
explicit and implicit measures of satisfaction
are collected. Explicit measures are obtained
by prompting the user to evaluate a search
result as satisfying, partially satisfying, or not
satisfying and similarly to evaluate satisfaction
gained from a whole search session. Implicit
measures are obtained by recording mouse and
keyboard actions, time spent on a page, scrolling
actions and durations, number of visits to a
page, position of page in results list, number
of queries submitted, number of results visited,
etc. A Bayesian model can be used to infer
the relationships between explicit and implicit
measures of satisfaction. This paper reports
on two �Bayesian networks that were built to
predict satisfaction for individual page visits and
satisfaction for entire search sessions—w.r.t. the
feedback obtained from both kinds of prompts—
with evidence that a combination of well-chosen
implicit satisfaction measures can be a good
predictor of explicit satisfaction. Referring to the
categorization of web queries in Andrei (2002)
as user goals, it is proposed in Uichin et al.
(2005) to build click distributions by sorting
results to a query following the numbers of clicks
they received from all users and suggested that
highly skewed distributions should correspond

to navigational queries, while flat distributions
should correspond to informational queries. The
same kind of considerations are also applied
to anchor-link distributions, the anchor-link
distribution of a query being defined as the
function that maps a URL to the number of times
that URL is the destination of an anchor that has
the same text as the query.

Finer techniques of query classification are
proposed in Steven et al. (2007), where a rule-
based automatic classifier is produced from selec-
tional preferences. A query consisting of at least
two keywords is split into a head x and a tail
y and then converted into a forward pair .x; u/
and a backward pair .u; y/ where u represents
a category, that is, a generic term that refers to
a list of semantically related words in a the-
saurus. For instance, the query “interest rate” can
(only) be split into .interest; rate/ and converted
to the forward pair .interest; personal finance/
where “personal finance” denotes the list consist-
ing of the terms “banks,” “rates,” “savings,” etc;
so the first keyword—“interest”–provides context
for the second one. Given a large query log, the
maximum likelihood estimate (MLE) of P.u=x/,
the probability that a query decomposed as .x; ´/
is such that ´ belongs to category u, is defined as
the quotient between the number of queries in the
log that have .x; u/ as a forward pair and the num-
ber of queries in the log that can be decomposed
as .x; ´/. This allows one to write a forward rule
of the form “x Y classified as u with weight
p” where p is the MLE of P.u=x/, provided
that the selectional preference strength of x be
above some given threshold. The rule can then
be applied to incoming queries, such as “interest
only loan” by matching a final or initial segment
of the query—depending on whether forward
or backward rules are under consideration—and
suggest possible classifications; with the run-
ning example, “interest only loan” would then
be classified as “personal finance with weight
p” if a forward rule of the form “interest Y
classified as personal finance with weight p” had
been discovered. Such a classification can then
be used to rewrite the query or to send it to an
appropriate database backend if many domain-
specific databases are available.

http://dx.doi.org/10.1007/978-1-4899-7687-1_724
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
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Synonyms

Kohonen maps; Self-organizing feature maps;
SOM

Definition
Self-organizing map (SOM), or Kohonen Map,
is a computational data analysis method which
produces nonlinear mappings of data to lower di-
mensions. Alternatively, the SOM can be viewed
as a � clustering algorithm which produces a
set of clusters organized on a regular grid. The
roots of SOM are in neural computation (see
� neural networks); it has been used as an abstract
model for the formation of ordered maps of brain
functions, such as sensory feature maps. Several
variants have been proposed, ranging from dy-
namic models to Bayesian variants. The SOM has
been used widely as an engineering tool for data
analysis, process monitoring, and information vi-
sualization, in numerous application areas.
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Motivation and Background

The SOM (Kohonen 1982, 2001) was originally
introduced in the context of modeling of how
the spatial organization of brain functions forms.
Formation of feature detectors selective to certain
sensory inputs, such as orientation-selective
visual neurons, had earlier been modeled by
� competitive learning in neural networks, and
some models of how the feature detectors become
spatially ordered had been published (von der
Malsburg 1973). The SOM introduced an adapta-
tion kernel or neighborhood function that governs
the adaptation in such networks; while in plain
competitive learning only the winning neuron
that best matches the inputs adapts, in SOM
all neurons within a local neighborhood of the
winner learn. The neighborhood is determined
by the neighborhood function. The SOM is an
algorithm for computing such ordered mappings.

While some of the motivation of the SOM
comes from neural computation, its main uses
have been as a practical data analysis method.
The SOM can be viewed as a topographic
vector quantizer, a nonlinear projection method,
or a clustering method. In particular, it is a
clustering-type algorithm that orders the clusters.
Alternatively, it is a nonlinear projection-type
algorithm that clusters, or more specifically
quantizes, the data.

The SOM was very popular in the 1990s and
still is; it is intuitively relatively easily under-
standable, yet hard to analyze thoroughly. It con-
nects many research traditions and works well in

practice. An impressive set of variants have been
published over the years, of which probabilistic
variants (e.g., Bishop et al. (1998) and Heskes
(2001)) are perhaps closest to the current main-
stream machine learning. While there currently
are excellent alternative choices for many of the
specific tasks SOMs have been applied for over
the years, even the basic SOM algorithm is still
viable as a versatile engineering tool in data-
analysis tasks.

Structure of Learning System

The SOM consists of a regular grid of nodes
(Fig. 1). A model of data has been attached
to each node. For vector-valued data x D

Œx1; : : : ; xd �
T , the models are vectors in the

same space; the model at the i th node is
mi D Œmi1; : : : ; mid ]. The models define a
mapping from the grid to the data space. The
coordinates on the grid are uniquely determined
by the index i of a node, and the model mi gives
the location in the data space. The whole grid
becomes mapped into an “elastic net” in the data
space. While being a mapping from the grid to
the input space, the SOM defines a projection
from the input space to the discrete grid locations
as well; each data point is projected to the node
having the closest model.

The original online SOM algorithm updates
the model vectors toward the current input vector
at time t ,

mi .t C 1/ D mi .t/C hci .t/.x.t/ �mi .t//:

i mi

ecapsataDdirgMOS

Self-Organizing Maps, Fig. 1 A schematic diagram
showing how the SOM grid of units (circles on the
left, neighbors connected with lines) corresponds to an

“elastic net” in the data space. The mapping from the grid
locations, determined by the indices i , to the data space is
given by the model vectors mi attached to the units i

http://dx.doi.org/10.1007/978-1-4899-7687-1_146
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Here c is the index of the unit having the closest
model vector to x(t /, and hci .t/ is the neighbor-
hood function or adaptation kernel. The kernel is
a decreasing function of the distance between the
units i and c on the grid; it forces neighboring
units to adapt toward similar input samples. The
height and width of h are decreasing functions of
time t . In an iteration over time and over the dif-
ferent inputs, the model vectors become ordered
and specialize to represent different regions of the
input space.

The online version of �K-means clustering is
a special case of the SOM learning rule, where
only the closest model vector is adapted. That
is, the neighborhood function is hci .t/ D ˛.t/

for i D c and hci D 0 otherwise. Here ˛.t/ is
the adaptation coefficient, a decreasing scalar. In
short, K-means and SOM use the prototypes in
the same way, but in SOM the prototypes have an
inherent order that stems from fixing them onto
a grid and updating the prototypes to represent
both the data mapped to themselves and to their
neighbors.

A neural interpretation of the SOM adapta-
tion process is that the nodes are feature de-
tector neurons or processing modules that in a
� competitive learning process become special-
ized to represent different kinds of inputs. The
neighborhood function is a plasticity kernel that
forces neighboring neurons to adapt at the same
time. The kernel transforms the discrete set of
feature detectors into feature maps analogous to
ordered brain maps of sensor inputs, and more
generally to maps of more abstract properties of
the input data.

A third interpretation of the SOM is as a vector
quantizer. The task of a vector quantizer is to
encode inputs with indexes of prototypes, often
called codebook vectors, such that a distortion
measure is minimized. If there is noise that may
change the indexes, the distribution of the noise
should be used as the neighborhood function,
and then the distortion becomes minimized by
a variant of SOM (Luttrell 1994). In summary,
the SOM can be viewed as an algorithm for
producing codebooks ordered on a grid.

While it has turned out to be hard to rig-
orously analyze the properties of the SOM al-

gorithm (Fort 2006), its fixed points may be
informative. In a fixed point the models must
fulfill

mi D

P
x hc.x/;ixP

x hc.x;i/
;

that is, each model vector is in the centroid of data
projected to it and its neighbors. The definition of
a principal curve (Hastie et al. 2001), a nonlinear
generalization of principal components (see
� Principal Component Analysis), essentially
is that the curve goes through the centroid of
data projected to it. Hence, one interpretation of
the SOM is a discretized, smoothed, nonlinear
generalization of principal components. In
short, SOMs aim to describe the variation
in the data nonlinearly with their discrete
grids.

Finally, a popular prototype-based classifier,
� learning vector quantization (LVQ) (Kohonen
2001), can be loosely interpreted as a variant of
SOMs, although it does not have the neighbor-
hood function and hence, the prototypes do not
have an order.

Programs and Data

The SOM has been implemented in several
commercial packages and as freeware. Two
examples, SOM PAK written in C and Matlab
SOM Toolbox (http://www.cis.hut.fi/research/
software) came from Kohonen’s group.

Applications

The SOM can be used as a nonlinear dimension-
ality reduction method, by projecting each data
vector into the grid location having the closest
model vector. An image of the grid can be used
for information visualization. Since all grid loca-
tions are clusters, the SOM display actually visu-
alizes an ordered set of clusters, or a quantized
image of the principal manifold in data. More
specifically, the SOM units can be thought of as

http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_146
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_464
http://www.cis.hut.fi/research/software
http://www.cis.hut.fi/research/software
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subclusters, and data clusters may form larger
areas on the SOM grid.

SOM-based visualizations can be used for
illustrating the proximity relationships of data
vectors, such as documents in the WEBSOM doc-
ument maps (Kohonen et al. 2000), or monitoring
the change of a system such as an industrial pro-
cess or the utterances of a speaker, as a trajectory
on the SOM display. More applications can be
found in a collected bibliography (the latest one
is Pöllä et al. 2009).

Cross-References

�ART
�Competitive Learning
�Dimensionality Reduction
�Hebbian Learning
�K-means Clustering
�Learning Vector Quantization
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Abstract

In this article, we present the topic of se-
mantic annotation of text using open semantic
resources. We present an introduction to the
concept and its history, provide basic notions
around semantic annotations and open seman-
tic resources, in particular illustrating com-
monly used open semantic resources repos-
itories such as Wikipedia, Wordnet, or DB-
Pedia. Further, we discuss the issues around
creating open semantic resources, both from
the annotation perspective, and from the for-
mat perspective. Finally, we introduce two
well-known semantic annotation tasks, entity
linking (or named entity disambiguation), and
semantic parsing, with corresponding sample
implementations, explaining in particular how
they work and how make use of open semantic
resources.

Synonyms

Synopsis: Text annotation is the association of
metadata to fragments of text. When the associ-
ated metadata provides a model for interpreting
the fragment of text, we talk about semantic
annotation of text. A common case is the use
of knowledge extracted from thesauri, or ontolo-
gies to provide the machine with structure and
inference mechanisms for the meaning of the text
under consideration (Völkel et al. 2006).

The spreading of the Semantic Web (Berners-
Lee et al. 2001) and Linked Open Data (http://
linkeddata.org/) movements led to the adoption of
open data sets having well defined for semantic
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annotations. Examples include disambiguation
of word senses using knowledge bases or the
analysis of the actions and roles described in a
fragment of text.

Introduction

Semantic annotations are used to improve the
quality of several applications including text clas-
sification, question answering, machine reading,
and understanding. They are used in a variety of
domains including, media, genomics marketing,
and social policies. (Uren et al. 2006).

Using open semantic resources for semantic
annotation has become common in the state-
of-the-art semantic annotation systems. Open
semantic resources provide an accessible
framework for people and applications to
link structured semantic information to text,
effectively allowing ideas like the Semantic Web
to come alive, offering an exponentially large
set of annotated documents (Völkel et al. 2006).
An exemplar is Wikipedia, which provides a
large corpus of semi-structured text associated
with concepts and entities, wide multilingual
coverage, and a large network of internal links
providing both structure and a dictionary of sur-
face forms for the linked concepts and entities. At
the same time, Wikipedia offers limited breadth
in specific domains and an uneven distribution
of quality and thoroughness throughout concepts
and languages (Bradesko et al. 2015).

Background Knowledge

In this section, we present examples of different
types of open semantic resources. Further, we
show some of the problems typically encountered
when obtaining annotated corpora and finally
problems associated with the representation of
annotations.

The most used repositories of open semantic
resources fall in two categories, lexical databases
and knowledge bases. Lexical databases are
repositories of words and metadata associated
with them. Knowledge bases, instead, are
organized collections of structured data and

their relationships. Examples of lexical databases
include WordNet and FrameNet (https://framenet.
icsi.berkeley.edu/fndrupal/about).

WordNet is a lexical database where words
are related through synonymy and are grouped
into synsets, sets of terms having the same mean-
ing. Synsets are related by hyperonimy (ISA re-
lationship), meronimy (part-whole relationship),
and antinomy (opposite relationship), among the
others (Fellbaum 2005).

FrameNet is a lexical database that is both
human and machine readable, containing more
than 10,000 word senses, and more than 170,000
manually annotated sentences provide a unique
training data set for semantic role labeling
(Gildea and Jurafsky 2002). FrameNet is based
on the frame semantics theory (Baker et al. 1998)
in which meaning is conveyed with a semantic
frame structure that includes the type of an event,
the participants, and their roles and relations.
For example, the frame apply heat is used in the
context of cooking and contains frame elements
(FEs): cook, food, heating instrument, and
container. Words such as fry, bake, and boil, are
called lexical units (LUs) of the apply heat frame
and are used to detect if the sentence should be
interpreted in the context of the specified frame.

Knowledge bases, instead, constitute part of
the critical infrastructure of a knowledge sys-
tem. Knowledge bases are traditionally studied
in knowledge representation and reasoning that,
according to Brachman et al., is “the area of
artificial Intelligence (AI) concerned with how
knowledge can be represented symbolically and
manipulated in an automated way by reason-
ing programs” (Brachman and Levesque 2004).
Notable open knowledge bases used in semantic
annotation systems include DBPedia, YAGO, and
Wikidata. DBPedia is a large-scale, multilingual
knowledge base created by extracting structured
data from Wikipedia editions in 111 languages.
The DBPedia project maps Wikipedia infoboxes
from 27 different language editions to a single
shared ontology consisting of 320 classes and
1,650 properties. DBPedia has more than 27
million links to other open data repositories via
the owl::sameas relation, including common
sense ontologies and government data (Lehmann

https://framenet.icsi.berkeley.edu/fndrupal/about
https://framenet.icsi.berkeley.edu/fndrupal/about
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et al. 2015). YAGO is another ontology auto-
matically built from Wikipedia, with links to
Geonames (http://geonames.org) and WordNet.
Among other things, it features spatial and tem-
poral knowledge and inference, and as in the
case of DBpedia, it covers different languages
(Mahdisoltani et al. 2015).

The other knowledge base mentioned,
Wikidata, was created as the knowledge
base of Wikipedia. Later, it absorbed the
popular collaborative knowledge base Freebase
(Bollacker et al. 2008). Wikidata is the central
data management platform of Wikipedia. The
data are highly interlinked and connected to
many other data sets, and, since 2014, RDF
exports that connect Wikidata to the Linked Data
Web are available (Erxleben et al. 2014). Other
open knowledge bases worth mentioning include
BabelNet (http://babelnet.org) and OpenCyc
(http://opencyc.org).

While knowledge bases provide the resources
for systems to perform semantic annotations, cor-
pora annotated with those resources are neces-
sary to train evaluate the performance of sys-
tems. Manually annotated corpora are difficult
and expensive to build, as exemplified by the
CLEF corpus (Roberts et al. 2007), a set of struc-
tured and unstructured annotated health records.
Examples of corpora annotations with open se-
mantic resources include the data sets released
for the shared tasks of the Conference on Natural
Language Learning (CoNLL) (Surdeanu et al.
2008; Hajič et al. 2009) as the treebanks made
available for semantic parsing or named entities
and semantic role labeling. As mentioned before,
Wikipedia, together with its derivative knowledge
bases, constitutes one of the largest manually
annotated corpora, albeit the ever-evolving and
with varying degrees of quality and consistency
in the annotations.

Finally, we want to touch on the choice of the
representation for semantic annotations. First,
we should distinguish between format (i.e., how
to represent, e.g., XML) and model (i.e., what
to represent, e.g., RDF). Annotations formats
and models vary by syntax style (e.g., markup
vs declarative language), expressive power, or
computational complexity. Notably, RDF, the Re-

source Description Framework (http://www.w3.
org/TR/1999/REC-rdf-syntax-19990222/), and
RDF Schema, a data-modeling oriented extension
of RDF, provide the mechanics of the popular
triple representation: subject, predicate, and
object. After the introduction of RDF, other
logical representations such as OWL (W3C
2009), Description Logics (Baader et al. 2010)
and Schema.org (http://schema.org/docs/about.
html) followed, with the aim of implementing
the Semantic Web vision. Formalisms, like the
Knowledge Interchange Format (http://www.ksl.
stanford.edu/knowledge-sharing/kif/), propose
higher-level constructs at the price of a more
complex and verbose language, while others, like
the Knowledge Annotation Format (Bosma et al.
2009), aim to address nesting and integration of
different annotation sources.

Structure of Learning Systems

Common types of semantic annotations include,
but are not limited to, the disambiguation of
terms (words or phrases) and to the parsing of
sentences from a semantic point of view. We
will focus on these two in the remainder of this
section.

The task of disambiguating the meaning of
fragments of text can range from generic word-
sense disambiguation (Navigli 2009), in which
the system is given the task of assigning a unique
sense to a word or expression from a specific
set of canonical senses to more specialized prob-
lems, such as the one commonly known as wik-
ification, the task of linking words or expres-
sion to a Wikipedia entry (Mihalcea and Csomai
2007; Cucerzan 2007; Milne and Witten 2008),
or named-entity disambiguation, that is, word-
sense disambiguation applied to entities bearing
a proper name (e.g., people, organizations, or
locations) (Hoffart et al. 2011; Nguyen et al.
2014; Mendes et al. 2011).

Examples of features used by algorithms for
disambiguation problems include prior proba-
bility, the probability that a given surface form
refers to a specific sense or entity, calculated
from annotated training data sets; similarity, in

http://geonames.org
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which segment of texts are compared with gloss
overlap or other similarity measures (Lesk 1986;
Banerjee and Pedersen 2002); co-occurrence, the
learned probability that a pair of senses or entities
appear together in a document; and coherence a
calculated measure of relatedness between senses
or entities (e.g., number of incoming links shared
by two Wikipedia entries or gloss overlap of
the description of two entities). These features
can be directly used in classification algorithms
like support vector machines or combined to
create different features. For examples, related-
ness graphs between mentions and senses can be
created, using features like the ones mentioned, to
calculate the weights of the graph. In that spirit,
recent state-of-the-art solutions apply algorithms
similar to page rank to such graphs. As a result,
the annotations with the highest ranking form
a reasonably coherent set of annotations (Per-
shina et al. 2015). Other unsupervised approaches
include identifying senses of n-grams based on
contextual windows of text around the candidate
n-gram (Navigli 2009).

Disambiguation algorithms typically follow
three stages: (1) finding the fragments of text
that require disambiguation, (2) producing a list
of candidate senses, and (3) choosing the target
sense for the disambiguation. Implementations
vary in how they tackle these steps. For exam-
ple, named-entity recognition algorithms can be
run on the text to identify the surface forms of
named entities requiring disambiguation, as in
Hoffart et al. (2011), while wikification algo-
rithms rely on either user selection or by auto-
matically selecting n-grams that appear as anchor
links in Wikipedia with a probability higher than
a given threshold (Cucerzan 2007; Milne and
Witten 2008). Candidates are selected by reverse
lookup in dictionaries built from annotated ex-
amples or using lexical similarity functions such
locality-sensitive hashing to address wrong or al-
ternative spellings (e.g., traveling vs travelling).

The other common semantic annotation task is
semantic parsing. Semantic parsing is the process
of mapping fragments of text into a representa-
tion that reflects their meaning. It can also be seen
as the reverse of language generation. Repre-
sentation languages range from more expressive,

such as first-order logic and lambda calculus, to
more simple database query languages designed
specifically for a small domain, like Geoquery
(Zelle and Mooney 1996).

Parsing is usually divided into assigning
meaning representations to lexical units and
composing these representations into a single
one. In some cases, syntactic parsing is
performed on the input text, and the results are
used to derive the semantics from the syntax
tree (Poon and Domingos 2009). Other methods
perform syntactic and semantic parsing together
using formalisms like combinatory categorial
grammars (CCG) (Zettlemoyer and Collins 2009)
or different variations of context-free grammars
(CFG)(Wong and Mooney 2006).

Early semantic parsers were mostly hand-
crafted (Warren 1981). It turned out that
developing training corpora is not more difficult
than manually designing robust semantic parsers.
With the availability of training corpora and
improved hardware, learning approaches started
to emerge. These approaches automatically learn
from sets of sentence meaning representation
pairs. Usually, an expectation-maximization-
like algorithm is used to train a model, which
selects the most likely representation for a given
sentence.

Training corpora are usually expensive to de-
velop and limited to a particular domain. This
led to the development of methods that are large
scale, domain independent, and to the use of other
forms of supervision. The level of supervision
ranges from unsupervised methods (Poon and
Domingos 2009), which bootstrap from a small
set of training pairs, to weakly supervised meth-
ods (Cai and Yates 2013), which use knowledge
from a target knowledge base, like Freebase, to
methods that learn from question answer pairs
(Berant et al. 2013). Lately, methods that use
neural models to model the semantics have been
developed (Bordes et al. 2012). The evaluation of
semantic parsing can be performed by manually
inspecting the generated meaning representations
or in a question answer setting, where questions
are mapped to database queries. The queries are
then executed to obtain a set of answers, which
are compared to the golden set of answers.
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Notable systems for semantic annotations
include AIDA, a system developed by the Max
Planck Institute for named-entity disambiguation,
able to link named entities contained in text
to entities in the YAGO2 ontology; DBPedia
Spotlight (https://github.com/dbpedia-spotlight/
dbpedia-spotlight/wiki), a system from Free
University of Berlin for extracting entities from
text and linking them to the DBpedia ontology;
and Babelfy (http://babelfy.org).
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Definition

Semi-naive Bayesian learning refers to a field of
� Supervised Classification that seeks to enhance
the classification and conditional probability esti-
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mation accuracy of � naive Bayes by relaxing its
attribute independence assumption.

Motivation and Background

The assumption underlying � naive Bayes is that
attributes are independent of each other, given
the class. This is an unrealistic assumption for
many applications. Violations of this assumption
can render naive Bayes’ classification subopti-
mal. There have been many attempts to improve
the classification accuracy and probability esti-
mation of naive Bayes by relaxing the attribute
independence assumption while at the same time
retaining much of its simplicity and efficiency.

Taxonomy of Semi-naive Bayesian
Techniques

Semi-naive Bayesian methods can be roughly
subdivided into five high-level strategies for re-
laxing the independence assumption.

• The first strategy forms an attribute subset by
deleting attributes to remove harmful inter-
dependencies and applies conventional naive
Bayes to this attribute subset.

• The second strategy modifies naive Bayes by
adding explicit interdependencies between at-
tributes.

• The third strategy accommodates violations
of the attribute independence assumption by
applying naive Bayes to a subset of training
set. Note that the second and third strategies
are not mutually exclusive.

• The fourth strategy performs adjustments to
the output of naive Bayes without altering its
direct operation.

• The fifth strategy introduces hidden variables
to naive Bayes.

Methods that Apply Naive Bayes to a
Subset of Attributes

Due to the attribute independence assumption,
the accuracy of naive Bayes is often degraded

by the presence of strongly correlated attributes.
Irrelevant attributes may also degrade the accu-
racy of naive Bayes, in effect increasing variance
without decreasing bias. Hence, it is useful to
remove both strongly correlated and irrelevant
attributes.

Backward sequential elimination (Kittler
1986) is an effective wrapper technique to select
an attribute subset and has been profitably applied
to naive Bayes. It begins with the complete
attribute set and iteratively removes successive
attributes. On each iteration, naive Bayes is
applied to every subset of attributes that can
be formed by removing one further attribute.
The attribute whose deletion most improves
training set accuracy is then removed, and the
process repeated. It terminates the process when
subsequent attribute deletion does not improve
training set accuracy. Conventional naive Bayes
is then applied to the resulting attribute subset.

One extreme type of interdependencies be-
tween attributes results in a value of one being a
generalization of a value of the other. For exam-
ple, GenderD female is a generalization of Preg-
nantD yes. Subsumption resolution (SR) (Zheng
et al. 2012) identifies at classification time pairs
of attribute values such that one appears to sub-
sume (be a generalization of) the other and delete
the generalization. It uses the criterion jTxi j D
jTxi ;xj

j � u to infer that attribute value xj is a
generalization of attribute value xi , where jTxi

j

is the number of training cases with value xi ,
jTxi

; xj j is the number of training cases with
both values, and u is a user-specified minimum
frequency. When SR is applied to naive Bayes,
the resulting classifier acts as naive Bayes except
that it deletes generalization attribute-values at
classification time if a specialization is detected.

Methods that Alter Naive Bayes by
Allowing Interdependencies Between
Attributes

Interdependencies between attributes can be ad-
dressed directly by allowing an attribute to de-
pend on other non-class attributes. Sahami (1996)
introduces the terminology of the ´-dependence

http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
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Semi-naive Bayesian Learning, Fig. 1 Bayesian Network. (a) one-dependence classifier, (b) SuperParent one-
dependence classifier and (c) ´-dependence classifier .´ � 0/

Bayesian classifier, in which each attribute de-
pends upon the class and at most ´ other at-
tributes. Figure 1 depicts methods in this group
from the �Bayesian Network perspective.

In Fig. 1a, each attribute depends on the
class and at most one another attribute. �Tree
Augmented Naive Bayes (TAN) (Friedman
et al. 1997) is a representative one-dependence
classifier. It efficiently finds a directed spanning
tree by maximizing the log-likelihood and
employs this tree to perform classification.
SuperParent TAN (Keogh and Pazzani 1999)
is an effective variant of TAN.

A SuperParent one-dependence classifier
(Fig. 1b) is a special case of one-dependence
classifiers, in which an attribute called the
SuperParent (X1 in this graph), is selected as
the parent of all the other attributes. �Averaged
One-Dependence Estimators (AODE) (Webb
et al. 2005) selects a restricted class of
one-dependence classifiers and aggregates
the predictions of all qualified classifiers
within this class. Maximum a posteriori linear
mixture of generative distributions (MAPLMG)
(Cerquides and Mántaras 2005) extends AODE
by assigning a weight to each one-dependence
classifier.

Two ´-dependence classifiers .´ � 0/ are
NBTree (Kohavi 1996) and lazy Bayesian
rules (LBR) (Zheng and Webb 2000), both
of which may add any number of non-class-
parents for an attribute. In Fig. 1c, attributes in
fXiqC1 ; : : : ; Xing depend on all the attributes in
fXi1 ; : : : ; Xiq g. The main difference between
these two methods is that NBTree builds a
single tree for all training instances while LBR
generates a Bayesian rule for each test instance.

Methods that Apply Naive Bayes to a
Subset of the Training Set

Another effective approach to accommodating vi-
olations of the conditional independence assump-
tion is to apply naive Bayes to a subset of the
training set, as it is possible that the assumption,
although violated in the whole training set, may
hold or approximately hold in a subset of the
training set. NBTree and LBR use a local naive
Bayes to classify an instance and can also be
classified into this group. Locally weighted naive
Bayes (LWNB) (Frank et al. 2003) applies naive
Bayes to a neighborhood of the test instance, in
which each instance is assigned a weight decreas-
ing linearly with the Euclidean distance to the test
instance. The number of instances in the subset is
determined by a user-specified parameter. Only
those instances whose weights are greater than
zero are used for classification.

Methods that Calibrate Naive Bayes’
Probability Estimates

Methods in this group make adjustments to the
distortion in estimated posterior probabilities
resulting from violations of independence
assumption. Isotonic regression (IR) (Zadrozny
and Elkan 2002) is a nonparametric calibration
method which produces a monotonically
increasing transformation of the probability
outcome of naive Bayes. It uses a pair-adjacent
violators algorithm (Ayer et al. 1955) to perform
calibration. To classify a test instance, IR
first finds the interval in which the estimated
posterior probability fits and predicts the

http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_850
http://dx.doi.org/10.1007/978-1-4899-7687-1_48
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isotonic regression estimate of this interval as
the calibrated posterior probability. Adjusted
probability naive Bayesian classification (Webb
and Pazzani 1998) makes adjustments to class
probabilities, using a simple hill-climbing
search to find adjustments that maximize
the � leave-one-out cross validation accuracy
estimate. Starting with the conditional attribute-
value frequency table generated by naive Bayes,
iterative Bayes (Gama 2003) iteratively updates
the frequency table by cycling through all training
instances.

Methods that Introduce Hidden
Variables to Naive Bayes

Creating hidden variables or joining attributes
is another effective approach to relaxing the at-
tribute independence assumption. Backward se-
quential elimination and joining (BSEJ) (Pazzani
1996) extends BSE by creating new Cartesian
product attributes. It considers joining each pair
of attributes and creates new Cartesian product at-
tributes if the action improves leave-one-out cross
validation accuracy. It deletes original attributes
and also new Cartesian product attributes during
a hill-climbing search. This process of joining
or deleting is repeated until there is no further
accuracy improvement. Hierarchical naive Bayes
(Zhang et al. 2004) uses conditional mutual infor-
mation as a criterion to create a hidden variable
whose value set is initialized to the Cartesian
product over all the value sets of its children.
Values of a hidden variable are then collapsed
by maximizing conditional log-likelihood via the
�minimum description length principle (Rissa-
nen 1978).

Selection Between Semi-naive
Bayesian Methods

No algorithm is universally optimal in terms of
generalization accuracy. General recommenda-
tions for selection between semi-naive Bayesian
methods is provided based on � bias-variance
tradeoff together with characteristics of the appli-
cation to which they are applied.

Error can be decomposed into bias and vari-
ance (see � bias variance decomposition). Bias
measures how closely a learner is able to ap-
proximate the decision surfaces for a domain and
variance measures the sensitivity of a learner to
random variations in the training data. Unfor-
tunately, we cannot, in general, minimize bias
and variance simultaneously. There is a bias-
variance tradeoff such that bias typically de-
creases when variance increases and vice versa.
Data set size usually interacts with bias and
variance and in turn affects error. Since differ-
ences between samples are expected to decrease
with increasing sample size, differences between
models formed from those samples are expected
to decrease and hence variance is expected to
decrease. Therefore, the bias proportion of er-
ror may be higher on large data sets than on
small data sets and the variance proportion of
error may be higher on small data sets than on
large data sets. Consequently, low bias algorithms
may have advantage in error on large data sets
and low variance algorithms may have advantage
in error on small data sets (Brain and Webb
2002).

Zheng and Webb (2005) compare eight semi-
naive Bayesian methods with naive Bayes. These
methods are BSE, FSS, TAN, SP-TAN, AODE,
NBTree, LBR, and BSEJ. NBTree, SP-TAN, and
BSEJ have relatively high training time com-
plexity, while LBR has high classification time
complexity. BSEJ has very high space complex-
ity. NBTree and BSEJ have very low bias and
high variance. Naive Bayes and AODE have
very low variance. AODE has a significant ad-
vantage in error over other semi-naive Bayesian
algorithms tested, with the exceptions of LBR
and SP-TAN. It achieves a lower error for more
data sets than LBR and SP-TAN without SP-
TAN’s high training time complexity and LBR’s
high test time complexity. Subsequent researches
(Cerquides and Mántaras 2005; Zheng and Webb
2006) show that MAPLMG and SR can in prac-
tice significantly improve both classification ac-
curacy and the precision of conditional proba-
bility estimates of AODE. However, MAPLMG
imposes very high training time overheads on
AODE, while SR imposes no extra training time

http://dx.doi.org/10.1007/978-1-4899-7687-1_469
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_28
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
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overheads and only modest test time overheads
on AODE.

Within the prevailing computational complex-
ity constraints, we suggest using the lowest bias
semi-naive Bayesian method for large training
data and lowest variance semi-naive Bayesian
method for small training data. An appropriate
tradeoff between bias and variance should be
sought for intermediate size training data. For
extremely small data, naive Bayes may be
superior and for large data NBTree and BSEJ
may be more appealing options if their compu-
tational complexity satisfies the computational
constraints of the application context. AODE
achieves very low variance, relatively low bias
and low training time and space complexity.
MAPLMG and SR further enhance AODE by
substantially reducing bias and error and im-
proving probability prediction with modest time
complexity. Consequently, they may prove com-
petitive over a considerable range of classification
tasks. Furthermore, MAPLMG may excel if the
primary consideration is attaining the highest
possible classification accuracy and SR may have
an advantage if one wishes efficient classification.
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Semi-supervised Learning

Xiaojin Zhu
University of Wisconsin-Madison, Madison,
WI, USA

Synonyms

Co-training; Learning from labeled and unlabeled
data; Transductive learning

Definition

Semi-supervised learning uses both labeled
and unlabeled data to perform an otherwise
� supervised learning or � unsupervised learning
task.

In the former case, there is a distinction
between inductive semi-supervised learning
and transductive learning. In inductive semi-
supervised learning, the learner has both labeled

training data f.xi ; yi /gliD1
i id
� p.x; y/ and

unlabeled training data fxiglCu
iDlC1

i id
� p.x/, and

learns a predictor f W X 7! Y; f 2 F , where
F is the hypothesis space. Here x 2 X is an
input instance, y 2 Y its target label (discrete for
� classification or continuous for � regression),
p(x, y/ the unknown joint distribution and p(x)
its marginal, and typically l � u. The goal is
to learn a predictor that predicts future test data
better than the predictor learned from the labeled
training data alone. In transductive learning, the
setting is the same except that one is solely
interested in the predictions on the unlabeled
training data fxiglCu

iDlC1, without any intention to
generalize to future test data.

In the latter case, an unsupervised learning
task is enhanced by labeled data. For example, in
semi-supervised clustering (a.k.a. � constrained

clustering) one may have a few must-links (two
instances must be in the same cluster) and cannot-
links (two instances cannot be in the same cluster)
in addition to the unlabeled instances to be
clustered; in semi-supervised � dimensionality
reduction one might have the target low-
dimensional coordinates on a few instances.

This entry will focus on the former case of
learning a predictor.

Motivation and Background

Semi-supervised learning is initially motivated
by its practical value in learning faster, better,
and cheaper. In many real world applications,
it is relatively easy to acquire a large amount
of unlabeled data fxg. For example, documents
can be crawled from the Web, images can be
obtained from surveillance cameras, and speech
can be collected from broadcast. However, their
corresponding labels fyg for the prediction task,
such as sentiment orientation, intrusion detec-
tion, and phonetic transcript, often requires slow
human annotation and expensive laboratory ex-
periments. This labeling bottleneck results in a
scarce of labeled data and a surplus of unlabeled
data. Therefore, being able to utilize the surplus
unlabeled data is desirable.

Recently, semi-supervised learning also finds
applications in cognitive psychology as a com-
putational model for human learning. In human
categorization and concept forming, the environ-
ment provides unsupervised data (e.g., a child
watching surrounding objects by herself) in ad-
dition to labeled data from a teacher (e.g., Dad
points to an object and says “bird!”). There is
evidence that human beings can combine labeled
and unlabeled data to facilitate learning.

The history of semi-supervised learning goes
back to at least the 1970s, when self-training,
transduction, and Gaussian mixtures with the
expectation-maximization (EM) algorithm first
emerged. It enjoyed an explosion of interest since
the 1990s, with the development of new algo-
rithms like co-training and transductive support
vector machines, new applications in natural lan-
guage processing and computer vision, and new

http://dx.doi.org/10.1007/978-1-4899-7687-1_100094
http://dx.doi.org/10.1007/978-1-4899-7687-1_100253
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http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
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theoretical analyses. More discussions can be
found in section 1.1.3 in Chapelle et al. (2006).

Theory

Unlabeled data fxiglCu
iDlC1 by itself does not carry

any information on the mapping X 7! Y . How
can it help us learn a better predictor f W X 7!
Y? Balcan and Blum pointed out in 2009 that the
key lies in an implicit ordering of f 2 F induced
by the unlabeled data. Informally, if the implicit
ordering happens to rank the target predictor f �

near the top, then one needs less labeled data to
learn f �. This idea will be formalized later on
using PAC learning bounds. In other contexts, the
implicit ordering is interpreted as a prior over F
or as a regularizer.

A semi-supervised learning method must ad-
dress two questions: what implicit ordering is
induced by the unlabeled data, and how to al-
gorithmically find a predictor near the top of
this implicit ordering and fits the labeled data
well. Many semi-supervised learning methods
have been proposed, with different answers to
these two questions (Abney 2007; Chapelle et al.
2006; Seeger 2001; Zhu and Goldberg 2009). It is
impossible to enumerate all methods in this entry.
Instead, we present a few representative methods.

Generative Models
This semi-supervised learning method assumes
the form of joint probability p.x; y j �/ D
p.y j �/p.x j y; �/. For example, the class
prior distribution p.y j � ) can be a multinomial
over Y , while the class conditional distribution
p.x j y; �/ can be a multivariate Gaussian in X
(Castelli and Cover 1995; Nigam et al. 2000). We
use � 2 ‚ to denote the parameters of the joint
probability. Each � corresponds to a predictor f�
via Bayes rule:

f� .x/ 	 argmaxyp.yjx; �/

D argmaxy
p.x; yj�/P
y0 p.x; y0j�/

:

Therefore, F D ff� W � 2 �g.
What is the implicit ordering of f� induced

by unlabeled training data fxiglCu
iDlC1? It is the

large to small ordering of log likelihood of � on
unlabeled data:

logp
�
fxig

lCu
iDlC1

ˇ̌
ˇ��D

lCuX
iDlC1

log

0
@X
y2Y

p.xi ; yj�/

1
A:

The top ranked f� is the one whose � (or rather
the generative model with parameters � ) best
fits the unlabeled data. Therefore, this method
assumes that the form of the joint probability is
correct for the task.

To identify the f� that both fits the labeled
data well and ranks high, one maximizes the log
likelihood of � on both labeled and unlabeled
data:

argmax� logp.fxi ; yigliD1j�/

C � logp.fxiglCu
iDlC1j�/;

where � is a balancing weight. This is a non-
concave problem. A local maximum can be found
with the EM algorithm, or other numerical opti-
mization methods. (See also, � generative learn-
ing.)

Semi-supervised Support Vector Machines
This semi-supervised learning method assumes
that the decision boundary f .x/ D 0 is situated in
a low-density region (in terms of unlabeled data)
between the two classes y 2 f�1; 1g (Joachims
1999; Vapnik 1998). Consider the following hat
loss function on an unlabeled instance x:

max.1 � jf .x/j; 0/;

which is positive when �1 < f .x/ < 1, and zero
outside. The hat loss thus measures the violation
in (unlabeled) large margin separation between
f and x. Averaging over all unlabeled training
instances, it induces an implicit ordering from
small to large over f 2 F :

1

u

lCuX
iDlC1

max.1 � jf .x/j; 0/:

The top ranked f is one whose decision bound-
ary avoids most unlabeled instances by a large
margin.

http://dx.doi.org/10.1007/978-1-4899-7687-1_333
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To find the f that both fits the labeled data
well and ranks high, one typically minimizes the
following objective:

argminf
1

l

lX
iD1

max.1 � yi .xi /; 0/

C�1kf k
2 C �2

1

u

lCuX
iDlC1

max.1 � jf .x/j; 0/;

which is a combination of the objective for su-
pervised support vector machines, and the av-
erage hat loss. Algorithmically, the optimization
problem is difficult because the hat loss is non-
convex. Existing solutions include semi-definite
programming relaxation, deterministic annealing,
continuation method, concave-convex procedure
(CCCP), stochastic gradient descent, and Branch
and Bound. (See also � support vector machines.)

Graph-Based Models
This semi-supervised learning method assumes
that there is a graph G D fV;Eg such that
the vertices V are the labeled and unlabeled
training instances, and the undirected edges E
connect instances i , j with weight wij (Blum
and Chawla 2001; Zhu et al. 2003; Belkin et al.
2006). The graph is sometimes assumed to be a
random instantiation of an underlying manifold
structure that supports p(x). Typically, wij re-
flects the proximity of xi , xj . For example, the
Gaussian edge weight function defines wij D
exp.�kxi � xj k2=�2/. As another example, the
kNN edge weight function defines wij D 1
if xi is within the k nearest neighbors of xj
or vice versa, and wij D 0 otherwise. Other
commonly used edge weight functions include "-
radius neighbors, b-matching, and combinations
of the above.

Large wij implies a preference for the predic-
tions f .xi / and f .xj / to be the same. This can be
formalized by the graph energy of a function f :

lCuX
i;jD1

wij .f .xi / � f .xj //2:

The graph energy induces an implicit ordering of
f 2 F from small to large. The top ranked func-

tion is the smoothest with respect to the graph
(in fact, it is any constant function). The graph
energy can be equivalently expressed using the
so-called unnormalized graph Laplacian matrix.
Variants including the normalized Laplacian and
the powers of these matrices.

To find the f that both fits the labeled data
well and ranks high (i.e., being smooth on the
graph or manifold), one typically minimizes the
following objective:

argminf
1

l

lX
iD1

c.f .xi /; yi /C �1kf k
2

C�2

lCuX
i;jD1

wij .f .xi / � f .xj //2;

where c.f (x), y/ is a convex loss function such
as the hinge loss or the squared loss. This is
a convex optimization problem with efficient
solvers.

Co-training and Multiview Models
This semi-supervised learning method assumes
that there are multiple, different learners trained
on the same labeled data, and these learners
agree on the unlabeled data. A classic algorithm
is co-training (Blum and Mitchell 1998). Take
the example of web page classification, where
each web page x is represented by two subsets
of features, or “views” x D hx.1/; x.2/i. For
instance, x.1/ can represent the words on the page
itself, and x.2/ the words on the hyperlinks (on
other web pages) pointing to this page. The co-
training algorithm trains two predictors: f .1/ on
x.1/ (ignoring the x.2/ portion of the feature)
and f .2/ on x.2/, both initially from the labeled
data. If f .1/ confidently predicts the label of an
unlabeled instance x, then the instance-label pair
(x, f .1/(x)) is added to f .2/’s labeled training
data, and vice versa. Note this promotes f .1/

and f .2/ to predict the same on x. This repeats
so that each view teaches the other. Multiview
models generalize co-training by utilizing more
than two predictors, and relaxing the requirement
of having separate views (Sindhwani et al. 2005).

http://dx.doi.org/10.1007/978-1-4899-7687-1_810
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In either case, the final prediction is obtained
from a (confidence weighted) average or vote
among the predictors.

To define the implicit ordering on the hy-
pothesis space, we need a slight extension. In
general, let there be m predictors f .1/, . . . , f .m/.
Now let a hypothesis be an m-tuple of predictors
hf .1/; : : : ; f .m/i. The disagreement of a tuple on
the unlabeled data can be defined as

lCuX
iDlC1

mX
u;vD1

c.f .u/.x1/; f
.v/.xi //;

where c() is a loss function. Typical choices of
c() are the 0–1 loss for classification, and the
squared loss for regression. Then the disagree-
ment induces an implicit ordering on tuples from
small to large.

It is important for these m predictors to be of
diverse types, and have different � inductive bi-
ases. In general, each predictor f .u/, u D 1 : : : m
may be evaluated by its individual loss function
c.u/ and regularizer �.u

/
. To find a hypothesis

(i.e., m predictors) that fits the labeled data well
and ranks high, one can minimize the following
objective:

argmin
hf .1/;:::f .m/i

mX
uD1

 
1

l

lX
iD1

c.u/.f .u/.xi /; yi /C �1�
.u/.f .u//

!

C�2

lCuX
iDlC1

mX
u;vD1

c.f .u/.xi /; f .v/.xi //:

Multiview learning typically optimizes this ob-
jective directly. When the loss functions and
regularizers are convex, numerical solution is
relatively easy to obtain. In the special cases
when the loss functions are the squared loss, and
the regularizers are squared `2 norms, there is a
closed form solution. On the other hand, the co-
training algorithm, as presented earlier, optimizes
the objective indirectly with the iterative proce-
dure. One advantage of co-training is that the
algorithm is a wrapper method, in that it can use
any “blackbox” learners f .1/ and f .2/ without
the need to modify the learners.

A PAC Bound for Semi-supervised
Learning
Previously, we presented several semi-supervised
learning methods, each induces an implicit or-
dering on the hypothesis space using the unla-
beled training data, and each attempts to find
a hypothesis that fit the labeled training data
well as well as rank high in that implicit order-
ing. We now present a theoretical justification
on why this is a good idea. In particular, we

present a uniform convergence bound by Balcan
and Blum (Theorem 11 in Balcan and Blum
2009). Alternative theoretical analyses on semi-
supervised learning can be found by following
the recommended reading.

First, we introduce some notations. Consider
the 0–1 loss for classification. Let c� W X 7!

f0; 1g be the unknown target function, which may
not be in F . Let err .f / D Ex�pŒf .x/ ¤
c�.x/� be the true error rate of a hypothesis f ,
and cerr.f / D 1

l

Pl
iD1 f .xi / ¤ c�.xi / be the

empirical error rate of f on the labeled training
sample. To characterize the implicit ordering, we
defined an “unlabeled error rate” errunl .f / D 1�
Ex�pŒ�.f; x/�, where the compatibility function
X W F � X 7! Œ0; 1� measures how “compatible”
f is to an unlabeled instance x. As an example,
in semi-supervised support vector machines, if x
is far away from the decision boundary produced
by f , then �.f , x) is large; but if x is close
to the decision boundary, �.f , x) is small. In
this example, a large errunl .f / then means that
the decision boundary of f cuts through dense
unlabeled data regions, and thus f is undesirable
for semi-supervised learning. In contrast, a small

http://dx.doi.org/10.1007/978-1-4899-7687-1_390
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errunl .f / means that the decision boundary of
f lies in a low density gap, which is more
desirable. In theory, the implicit ordering on f 2
F is to sort errunl .f / from small to large. In
practice, we use the empirical unlabeled error rate
cerrunl.f / D 1 � 1

u

PlCu
iDlC1 X .f; xi /.

Our goal is to show that if an f 2 F “fits
the labeled data well and ranks high,” then f is
almost as good as the best hypothesis in F . Let
t 2 Œ0; 1�: We first consider the best hypothesis
f �t in the subset of F that consists of hypotheses
whose unlabeled error rate is no worse than t W
f �t D argminf 0F ;errunl.f 0/�terr.f 0/. Obviously,
t D 1 gives the best hypothesis in the whole
F . However, the nature of the guarantee has the
form err.f / � err(ft� ) + EstimationError(t /Cc,
where the EstimationError term increases with t .
Thus, with t = 1 the bound can be loose. On the
other hand, if t is close to 0, EstimationError(t /
is small, but err(ft� ) can be much worse than
err(f �tD1). The bound will account for the opti-
mal t .

We introduce a few more definitions. Let
F.f / D ff 0 2 F W cerrunl .f

0/ � cerrunl .f /g

be the subset of F with empirical error
no worse than that of f . As a complexity
measure, let ŒF.f /� be the number of different
partitions of the first l unlabeled instances
xlC1 : : : x2l , using f 2 F.f /. Finally, let

O	.f / D
q

24
l

log.8ŒF.f /�/. Then we have the

following agnostic bound (meaning that c� may
not be in F , and cerrunl.f / may not be zero for
any f 2 F):

Theorem 1 Given l labeled instances and suf-
ficient unlabeled instances, with probability at
least 1 – ı, the function

f D argminf 02Fcerr.f 0/C O	.f 0/

satisfies the guarantee that

err.f / � min
t
.err.f �t //C 5

r
log.8=ı/

l
:

If a function f fits the labeled data well, it has
a small cerr.f /. If it ranks high, then F.f / will
be a small set, consequently O	.f / is small. The

argmin operator identifies the best such function
during training. The bound account for the mini-
mum of all possible t tradeoffs. Therefore, we see
that the “lucky” case is when the implicit ordering
is good such that f �tD1, the best hypothesis in F ,
is near the top of the ranking. This is when semi-
supervised learning is expected to perform well.
Balcan and Blum also give results addressing the
key issue of how much unlabeled data is needed
for cerrunl.f / and errunl.f / to be close for all
f 2 F .

Applications

Because the type of semi-supervised learning
discussed in this entry has the same goal of
creating a predictor as supervised learning, it
is applicable to essentially any problems where
supervised learning can be applied. For example,
semi-supervised learning has been applied
to natural language processing (word sense
disambiguation (Yarowsky 1995), document
categorization, named entity classification,
sentiment analysis, machine translation),
computer vision (object recognition, image
segmentation), bioinformatics (protein function
prediction), and cognitive psychology. Follow the
recommended reading for individual papers.

Future Directions

There are several directions to further enhance the
value semi-supervised learning. First, we need
guarantees that it will outperform supervised
learning. Currently, the practitioner has to
manually choose a particular semi-supervised
learning method, and often manually set learning
parameters. Sometimes, a bad choice that does
not match the task (e.g., modeling each class
with a Gaussian when the data does not have this
distribution) can make semi-supervised learning
worse than supervised learning. Second, we need
methods that benefit from unlabeled when l , the
size of labeled data, is large. It has been widely
observed that the gain over supervised learning
is the largest when l is small, but diminishes as l
increases. Third, we need good ways to combine
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semi-supervised learning and � active learning.
In natural learning systems such as humans, we
routinely observe unlabeled input, which often
naturally leads to questions. And finally, we need
methods that can efficiently process massive
unlabeled data, especially in an � online learning
setting.

Cross-References

�Active Learning
�Classification
�Constrained Clustering
�Dimensionality Reduction
�Online Learning
�Regression
� Supervised Learning
�Unsupervised Learning
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Semi-supervised Text Processing

Ion Muslea
Language Weaver, Inc., Marina del Rey, CA,
USA

Synonyms

Learning from labeled and unlabeled data; Trans-
ductive learning

Definition

In contrast to supervised and unsupervised learn-
ers, which use solely labeled or unlabeled exam-
ples, respectively, semi-supervised learning sys-
tems exploit both labeled and unlabeled exam-
ples. In a typical semi-supervised framework, the
system takes as input a (small) training set of
labeled examples and a (larger) working set of
unlabeled examples; the learner’s performance is
evaluated on a test set that consists of unlabeled
examples. Transductive learning is a particular
case of semi-supervised learning in which the
working set and the test set are identical.

Semi-supervised learners use the unlabeled
examples to improve the performance of the sys-
tem that could be learned solely from labeled
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data. Such learners typically exploit – directly
or indirectly – the distribution of the available
unlabeled examples. Text processing is an ideal
application domain for semi-supervised learning
because the abundance of text documents avail-
able on the Web makes it impossible for humans
to label them all. We focus here on two related
types of text processing tasks that were heavily
studied in the semi-supervised framework: text
classification and text �Clustering.

Motivation and Background

In most applications of machine learning, col-
lecting large amounts of labeled examples is an
expensive, tedious, and error-prone process. In
contrast, one may often have cheap or even free
access to large amounts of unlabeled examples.
For example, for text classification, which is the
task of classifying text documents into categories
such as politics, sports, entertainment, etc., one
can easily crawl the Web and download billions
of Web pages; however, manually labeling all
these documents according to the taxonomy of
interest is an extremely expensive task.

The key idea in semi-supervised learning is
to complement a small amount of labeled data
by a large number of unlabeled examples. Un-
der certain conditions, the unlabeled examples
can be mined for knowledge that will allow the
semi-supervised learner to build a system that
performs better than one learned solely from
the labeled data. More precisely, semi-supervised
learners assume that the learning model matches
the structure of the application domain. If this
is the case, the information extracted from the
unlabeled data can be used to guide the search
towards the optimal solution (e.g., by modifying
or re-ranking the learned hypotheses); otherwise,
the unlabeled examples may hurt rather than help
the learning process (Cozman et al. 2003).

For the sake of concision and clarity, we have
had to make several compromises in terms of the
algorithms and the applications presented here.
Given the vastness of the field of text processing,
we have decided to focus only on the two related
tasks of text classification and text clustering.

They are the most studied text processing ap-
plications within the field of machine learning;
furthermore, virtually all the main types of semi-
supervised algorithms were applied to these two
tasks. This decision has two main consequences.
First, we do not consider many other text process-
ing tasks, such as information extraction, natural
language parsing, or base noun–phrase identifi-
cation; for these we refer the interested reader to
Muslea et al. (2006). Second, we discuss and cite
approaches that were applied to text classification
or clustering there is however, alone an excellent
survey by Zhu (2005) covering seminal work on
semi-supervised learning that was not applied to
text processing.

Structure of the Learning System

Generative Models
The early work on semi-supervised text catego-
rization (Nigam et al. 2000) was based primarily
on generative models (see � generative learning).
Such approaches make two major assumptions:
(1) the data is generated by a mixture model,
and (2) there is a correspondence between the
components of the mixture and the classes of
the application domain. Intuitively, if these as-
sumptions hold, the unlabeled examples become
instrumental in identifying the mixture’s compo-
nents, while the labeled examples can be used to
label each individual component.

The iterative approach proposed by Nigam
et al. (2000) is based on The EM Algorithm and
works as follows. First, the labeled examples are
used to learn an initial classifier, which is used to
probabilistically label all unlabeled data; then the
newly labeled examples are added to the training
set. Finally, a new classifier is learned from all
the data, and the entire process is repeated till
convergence is reached (or, alternatively, till the
number of iterations is fixed).

Nigam et al. (2000) noticed that, in practice,
the two above-mentioned assumptions about the
generative model may not hold; in order to deal
with this problem, the authors propose two ex-
tensions of their basic approach. First, they allow
each class to be generated by multiple mixture

http://dx.doi.org/10.1007/978-1-4899-7687-1_943
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components. Second, they introduce a weight-
ing factor that adjusts the contribution of the
unlabeled examples; this factor is tuned during
the learning process so that the influence of the
unlabeled examples correlates with the degree in
which the data distribution is consistent with the
mixture model.

The same general framework can also be ap-
plied to the related task of text clustering. In
the clustering framework, the learner is not con-
cerned with the actual label of an example; in-
stead, it tries to find a partitioning of the examples
in clusters that are similar respect to a predefined
objective function. For example, Seeded-KMeans
(Basu et al. 2002) is a semi-supervised text clus-
tering algorithm that uses the few available la-
beled examples to seed the search for the data
clusters. In order to optimize the target objective
function, Seeded-KMeans uses an EM algorithm
on a mixture of Gaussians.

Discriminative Approaches

� Support vector machines (SVMs) (Joachims
1999) are particularly well suited for text
classification because of their ability to deal
with high-dimensional input spaces (each word
in the corpus is a feature) and sparse feature-
value vectors (any given document contains only
a small fraction of the corpus vocabulary). SVMs
are called maximum margin classifiers because
they minimize the empirical classification error
by maximizing the geometric margin between
the domain’s positive and negative examples.
Intuitively, this is equivalent to finding a
discriminative decision boundary that avoids the
high-density regions in the instance space.

Transductive SVMs (Joachims 1999) are de-
signed to find an optimal decision boundary for
a particular test set. More precisely, they have
access to both the (labeled) training set and the
unlabeled test set. Transductive SVMs work by
finding a labeling of the test examples that max-
imizes the margin over all the examples in the
training and the test set. This transductive ap-
proach has shown significant improvements over

the traditional inductive SVMs, especially if the
size of the training set is small.

In contrast to transductive SVMs, semi-
supervised SVMs (S3VM) work in a true semi-
supervised setting in which the test set is not
available to the learner. A major difficulty
in the S3VM framework is the fact that the
resulting optimization problem is not convex,
thus being sensitive to the issue of (non-
optimal) local minima. CS3VMs (Chapelle et al.
2006) alleviate this problem by using a global
optimization technique called continuation. On
binary classification tasks CS3VMs compare
favorably against other S3VM approaches, but
applying it on multiclass domains is still an open
problem.

Multiview Approaches

Multiview learners are a class of algorithms for
domains in which the features can be partitioned
in disjoint subsets (views), each of which is
sufficient to learn the target concept. For exam-
ple, when classifying Web pages, one can use
either the words that appear in the documents or
those that appear in the hyper-links pointing to
them. Co-training (Blum and Mitchell 1998) is
a semi-supervised, multiview learner that, intu-
itively, works by bootstrapping the views from
each other. First, it uses the labeled examples to
learn a classifier in each view. Then it applies
the learned classifiers to the unlabeled data and
detects the examples on which each view makes
the most confident prediction; these examples are
labeled by the respective classifiers and added
to the (labeled) training set of the other view.
The entire process is repeated for a number of
iterations.

Multiview learners rely on two main assump-
tions, namely that the views are compatible and
uncorrelated. The former requires that each ex-
ample is identically labeled by the target concept
in each view; the latter means that given an
example’s label, its description in each view are
independent. In practice, both these assumptions
are likely to be violated; in order to deal with
the first issue, one can use the adaptive view

http://dx.doi.org/10.1007/978-1-4899-7687-1_810
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validation algorithm (Muslea et al. 2002b), which
predicts whether the views are sufficiently com-
patible for multiview learning.

With respect to view correlation Muslea
et al. (2002a) have shown that by interleaving
active and semi-supervised learning, multiview
approaches become robust the view correlation.
A similar idea was previously used in the
generative, single-view framework: McCallum
and Nigam (1998) have shown that by allowing
the algorithm to (smartly) choose which
examples to include in the training set, one can
significantly improve over the performance of
both supervised and semi-supervised learners
that used randomly chosen training sets.

The main limitation of multiview learning is
the requirement that the user identifies at least
two suitable views. In order to cope with this
problem, researchers have proposed algorithms
that work in a way similar to co-training, but ex-
ploit multiple � inductive biases instead of mul-
tiple views. For example, tri-training (Zhou and
Li 2005) uses all domain features to train three
supervised classifiers (e.g., a decision tree, a neu-
ral network, and a Naive Bayes classifier). These
classifiers are then applied to each unlabeled
example; if two of them agree on the example’s
label, they label it accordingly and add it to
the third classifier’s training set. A degenerate
case is represented by self-training, which uses
a single classifier that repeatedly goes through
the unlabeled data and adds to its own training
set, the examples on which its predictions are the
most confident.

Graph-Based Approaches
The work on graph-based, semi-supervised text
learning is based on the idea of representing the
labeled and unlabeled examples as vertices in
a graph. The edges of this graph are weighted
by the pair-wise similarity between the corre-
sponding examples, thus offering a flexible way
to incorporate prior domain knowledge. With the
learning task encoded in this manner, the problem
to be solved becomes one of graph theory, namely
finding a partitioning of the graph that agrees
with the labeled examples. A major challenge for
the graph-based approaches is to find a balanced

partitioning of the graph (e.g., in a degenerate
scenario, one can propose an unbalanced, unde-
sirable partition in which, except for the negative
examples in the training set, all other examples
are labeled as positive).

One possible approach to cope with the issue
on unbalanced partitions is to use randomized
min-cuts (Blum et al. 2004). The algorithm starts
with the original graph and repeatedly adds ran-
dom noise to the weights of the edges. Then, for
each modified graph, it finds a partitioning by
using minimum cuts. Finally, the results from the
various runs aggregated in order to create prob-
abilistic labels for the unlabeled examples. This
approach has the additional benefit of offering
a measure of the confidence in each particular
prediction.

The SGT algorithm (Joachims 2003)
uses spectral methods to perform the graph
partitioning. SGT can be seen as a transductive
version of the k nearest-neighbor classifier;
furthermore Joachims (2003) also show that co-
training emerges as a special case of SGT. In
contrast to transductive SVMs and co-training,
SGT does not require additional heuristics for
avoiding unbalanced graph partitionings (e.g., in
the original co-training algorithm, the examples
that are added to the training set after each
iteration must respect the domain-dependent ratio
of negative-to-positive examples).

LapSVM (Sindhwani et al. 2005) is a graph-
based kernel method that uses a weighted com-
bination a regularizer learned solely from labeled
data and a graph Laplacian obtained from both
the labeled and unlabeled examples. This ap-
proach allows LapSVM to perform a principled
search for a decision boundary that is both con-
sistent with the labeled examples and reflects the
underlying geometry of all available data points.

Approaches that Exploit Background
Knowledge
WHIRL-BG (Zelikovitz and Hirsh 2000) is an
algorithm for classifying short text fragments.
It uses an information integration approach that
combines three different information sources: the
training set, which consists of the labeled exam-
ples; the test set that WHIRL-BG must label;

http://dx.doi.org/10.1007/978-1-4899-7687-1_390
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and a secondary corpus that consists longer, re-
lated documents that are not labeled. Intuitively,
WHIRL-BG exploits the secondary corpus as
background knowledge that allows the system
to link a test example to the most similar la-
beled training example. In other words, instead
of trying to measure directly a (unreliable) sim-
ilarity between two short strings (i.e., a test and
a training example), the system searches for a
background document that may include (a large
fraction of) both strings.

HMRF-KMEANS (Basu et al. 2004) unifies
the two main approaches to semi-supervised
text clustering: the constraint-based one and
the adaptive distance one. The former exploits
user-provided background knowledge to find an
appropriate partitioning of the data; for HMRF-
KMEANS, the domain knowledge consists of
must-link or cannot-link constraints, which
specify whether two examples should or should
not have the same label, respectively. The
later uses a small number of labeled examples
to learn a domain-specific distance measure
that is appropriate for the clustering task at
hand. HMRF-KMEANS can use any Bregman
divergence to measure the clustering distortion,
thus supporting a wide variety of learnable
distances.

HMRF-KMEANS exploits the labeled exam-
ples in three main ways. First, it uses the neigh-
borhoods induced from the constraints to initial-
ize the cluster centroids. Second, when assign-
ing examples to clusters, the algorithm tries to
simultaneously minimize both the similarity to
the cluster’s centroid and the number of violated
constraints. Last but not least, during the clus-
tering process, HMRF-KMEANS iteratively re-
estimates the distance measure so that it takes into
account both the background knowledge and the
data variance.
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Sensitivity

Synonyms

Recall; True positive rate

Sensitivity is the fraction of positive examples
predicted correctly by a model. See � Sensitivity
and Specificity, �Precision and Recall.

Sensitivity and Specificity

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Definition

Sensitivity and specificity are two measures used
together in some domains to measure the predic-
tive performance of a classification model or a
diagnostic test. For example, to measure the ef-
fectiveness of a diagnostic test in the medical do-
main, sensitivity measures the fraction of people
with disease (i.e., positive examples) who have a
positive test result; and specificity measures the
fraction of people without disease (i.e., negative
examples) who have a negative test result. They
are defined with reference to a special case of
the � confusion matrix, with two classes, one
designated the positive class and the other the
negative class, as indicated in Table 1.

Sensitivity and Specificity, Table 1 The outcomes of
classification into positive and negative classes

Assigned class

Positive Negative

A
ct

ua
l

cl
as

s Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Sensitivity is sometimes also called true
positive rate. Specificity is sometimes also
called true negative rate. They are defined as
follows:

SensitivityD TP/(TP C FN)
Specificity D TN/(TNC FP)

Instead of two measures, they are sometimes
combined to provide a single measure of predic-
tive performance as follows:

Sensitivity � Specificity

D TP � TN/[(TPC FN) � (TNC FP)]

Note that sensitivity is equivalent to � recall.

Cross-References

�Confusion Matrix

Sentiment Analysis

� Sentiment Analysis and Opinion Mining

Sentiment Analysis and Opinion
Mining

Lei Zhang1 and Bing Liu2

1LinkedIn, San Francisco, CA, USA
2University of Illinois at Chicago, Chicago, IL,
USA

Abstract

With the rapid growth of social media, senti-
ment analysis, also called opinion mining, has
become one of the most active research areas
in natural language processing. Its application
is also widespread, from business services to
political campaigns. This article gives an in-
troduction to this important area and presents
some recent developments.
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Synonyms

Opinion extraction; Opinion mining; Sentiment
analysis; Sentiment mining

Definition

Sentiment analysis or opinion mining is the com-
putational study of people’s opinions, sentiments,
appraisals, attitudes, and emotions toward entities
and their aspects expressed in text.

Motivation and Background

Sentiment and opinion and their related con-
cepts, such as evaluation, appraisal, attitude, af-
fect, emotion, and mood, are about people’s sub-
jective beliefs and feelings. They are key influ-
encers of human behaviors. Whenever we need
to make a decision, we often seek out others’
opinions. This is true for both individuals and
organizations.

The development of sentiment analysis co-
incides with the growth of social media (i.e.,
reviews, forum discussions, and blogs) on the
Web. For the first time in human history, we now
possess a huge volume of opinion data recorded
in digital forms. These user-generated contents
(UGC) are full of people’s opinions. Mining use-
ful knowledge from these corpora gives rise to the
task of sentiment analysis. Since the early 2000s,
it has been one of the most active research areas
in natural language processing (NLP) (Pang and
Lee 2008; Liu 2012). The research and applica-
tions have also spread from computer science to
management science and social sciences because
of its importance to business and society as a
whole. Sentiment analysis techniques have been
widely applied in practice, from business services
to political campaigns.

Structure of the Task

In a nutshell, the task of sentiment analysis is
to mine people’s opinions and emotions from

text. The term opinion is used as a concept
represented with a quadruple (s, g, h, t /

covering four components (Liu 2012): sentiment
orientation s, sentiment target g opinion holder
h, and time t . Sentiment is the underlying feeling,
attitude, evaluation, or emotion associated with
an opinion. Sentiment orientation can be positive,
negative, or neutral. Sentiment target, also
known as the opinion target, is an entity or an
aspect of the entity that the sentiment has been
expressed upon. Opinion holder is an individual
or organization that holds an opinion. Time is
when the opinion is expressed. We will discuss
emotion specifically later.

We use the following camera review as an
example (an ID number is associated with each
sentence for easy reference):

Posted by John Smith
Date: September 10, 2011
(1) I bought a Canon G12 camera six months

ago. (2) I simply love it. (3) The picture quality
is amazing. (4) The battery life is also long.
(5) However, my wife thinks it is too heavy for her.

Given the review, the task of sentiment analy-
sis aims to extract the following opinion quadru-
ples from sentences 2, 3, 4, and 5, respectively:

(positive, Canon G12 camera, author, 2011/09/10)
(positive, picture quality of Canon G12 camera

author, 2011/09/10)
(positive, battery life of Canon G12 camera,

author, 2011/09/10 )
(negative, weight of Canon G12 camera, author’s

wife, 2011/09/10 )

The opinion target can be an entity (Canon G12
camera) or an aspect of the entity (picture quality,
battery life, and weight of the Canon G12 cam-
era). An aspect can be explicit (e.g., battery life)
or implicit (e.g., weight is indicated by heavy)
(Hu and Liu 2004).

In many applications, it is useful to decom-
pose opinion target to entity and aspect for more
fine-grained analysis. Then, the above quadruples
become the following quintuples, where GEN-
ERAL represents the entity itself (Liu 2012):

(positive, Canon G12 camera, GENERAL,
author, 2011/09/10)

http://dx.doi.org/10.1007/978-1-4899-7687-1_100510
http://dx.doi.org/10.1007/978-1-4899-7687-1_100511
http://dx.doi.org/10.1007/978-1-4899-7687-1_100512
http://dx.doi.org/10.1007/978-1-4899-7687-1_100513
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(positive, Canon G12 camera picture quality,
author, 2011/09/10)

(positive, Canon G12 camera, battery life,
author, 2011/09/10 )

(negative, Canon G12 camera, weight, author’s
wife, 2011/09/10 )

An opinion from a single opinion holder is
usually not actionable in an opinion mining ap-
plication. The user often needs opinions from
a large number of opinion holders, which leads
to opinion summary. A summary of opinions is
normally constructed based on positive and neg-
ative sentiments about opinion targets, which is
called aspect-based opinion summary (or feature-
based opinion summary) (Hu and Liu 2004).
Figure 1 shows an opinion summary generated
from product reviews of Apple iPad by Google
products. Generally, opinion summary needs to
be quantitative, which is reflected by the pro-
portions or the numbers of positive and negative
opinions for each sentiment target or aspect.

Sentiment Analysis Methods

Researchers have studied sentiment analysis at
three main levels of granularities: document, sen-
tence, and aspect levels.

Document Sentiment Classification

Document sentiment classification classifies an
opinion document (e.g., a product review) as
expressing a positive or negative sentiment. It

does not study or extract any information within
the document. The task is also known as the
document-level sentiment classification.

Document sentiment classification is com-
monly formulated as a supervised learning
problem with two classes (positive and negative)
or rating scores (e.g., 1–5 stars). Standard
supervised learning methods such naı̈ve Bayesian
classification and support vector machines
(SVM) can be applied for classification
directly. Pang et al. (2002) first adopted those
classification methods to classify movie reviews
into two classes. Since this work, numerous other
works have been reported. Like most supervised
learning approaches, the main task of these works
is to engineer a set of effective features. See Liu
(2012) for an overview of this line of research.

There are also unsupervised approaches to
document sentiment classification, which are
mainly based on sentiment words and language
patterns. It is quite clear that sentiment words
(also called opinion words) that indicate positive
or negative sentiments (e.g., good and nice are
positive sentiment words, and horrible and bad
are negative sentiment words) play an important
role in sentiment classification (Turney 2002;
Hu and Liu 2004; Kim and Hovy 2004). Turney
(2002) proposed an unsupervised approach based
on syntactic opinion patterns and Web search.
Taboada et al. (2011) adapted a lexicon-based
approach for document sentiment classification.
It basically uses a set of sentiment words
and phrases with appropriate scores and an
aggregation scheme to aggregate the scores of

Reviews
Summary - Based on 1,668 reviews

1 2 3 4 stars

What people are saying
ease of use
value
battery
size
picture/video
design/style
graphics

5 stars

''Fun and easy to use''.
''Great product at a great price''.
''use for email, skype,great battery life''.
''This pad is light weight and very durable''.
''Crisp clear and fast''.
''Fast and stylish tablet''.
''The graphics are great''.

Sentiment Analysis and Opinion Mining, Fig. 1 Opinion summary for iPad from Google products
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the sentiment words appeared in a document
to perform the classification. The lexicon-based
approach was originally proposed for aspect-
level and sentence-level sentiment classification
(Hu and Liu 2004; Kim and Hovy 2004).

Researchers found that supervised sentiment
classification is domain-sensitive, that is, a
classifier trained using opinion documents from
one domain performs poorly when it is applied
or tested on opinion documents from another
domain. The reason is that words used in
different domains for expressing opinions can be
different. Furthermore, the same word may mean
positive in one domain but negative in another
domain. Domain adaptation or transfer learning
techniques have been employed to address the
problem (Blitzer et al. 2007; Pan et al. 2010; Liu
2012).

Another interesting topic is cross-language
sentiment classification, which focuses on using
the extensive resources and tools available in
English and automated translation to help build
sentiment classifiers in other languages with few
resources or tools (Wan 2009; Mihalcea et al.
2007). Existing research proposed three main
strategies: (1) translate test documents in the
target language into the source language and
classify them using a source language classifier,
(2) translate a source language training corpus
into the target language and build a classifier in
the target language, and (3) translate a sentiment
lexicon in the source language to the target lan-
guage and build a lexicon-based classifier in the
target language.

Sentence Sentiment Classification

Sentence sentiment classification is similar to
document sentiment classification as sentences
can be regarded as short documents. However,
sentence classification is usually harder because
the information contained in a typical sentence
is much less than that contained in a typical
document. Furthermore, sentence sentiment clas-
sification needs to consider the neutral class (or
no opinion) because there are many factual sen-
tences that express no positive or negative opin-

ion in an opinion document. Document classifica-
tion normally does not consider the neutral class.

Document sentiment classification techniques
can be naturally applied for sentence senti-
ment classification. Some sentence-specific
approaches have also been proposed, e.g.,
hierarchical sequence learning model (McDonald
et al. 2007) and deep learning methods (Socher
et al. 2013). In addition, researchers found that
different types of sentences may need different
kinds of classification methods, e.g., conditional
sentences and integrative sentences (Liu 2012).

For example, a conditional sentence describes
implications or hypothetical situations and their
consequences. Such a sentence typically contains
two clauses that are dependent on each other: the
condition clause and the consequent clause. Their
relationship has significant impact on whether the
sentence expresses a positive or negative senti-
ment (Narayanan et al. 2009). For example, the
sentence If someone makes a reliable car, I will
buy it expresses no sentiment toward any particu-
lar car, although it contains the positive sentiment
word reliable. In Narayanan et al. (2009), super-
vised learning was used to deal with the problem
using a set of linguistic features, e.g., sentiment
words or phrases and their locations, part-of-
speech tags of sentiment words, tense patterns,
and conditional connectives.

Another type of difficult sentences is the sar-
casm sentences. Sarcasm is a sophisticated form
of speech act in which the speakers or the writers
say or write the opposite of what they mean.
In the context of sentiment analysis, it means
that when one says something positive, one ac-
tually means negative, and vice versa. Sarcastic
sentences are very difficult to deal with because
commonsense knowledge and discourse analysis
are often required to recognize them (Tsur et al.
2010; Riloff et al. 2013).

At the sentence level, another popular research
problem is to identify subjectivity and objective
sentences. Subjective expressions express
opinions, appraisals, evaluations, allegations,
desires, beliefs, suspicions, speculations, or
stances (Wiebe et al. 2004). Some of these
concepts indicate positive or negative sentiments.
Some of them do not, e.g., I want to buy a
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camera that can take good photos which is
a subjective sentence but does not express a
positive or negative sentiment about anything.
Objective sentences state facts. However, we
should note that objective sentences can imply
positive or negative sentiments of their authors
because there are desirable facts and undesirable
facts (Zhang and Liu 2011). For example, the
sentence I bought the mattress a week ago and a
valley has formed in the middle states a fact, but
the fact is undesirable. It thus implies a negative
opinion about the quality of the mattress.

Aspect Sentiment Classification

Aspect-level classification classifies or deter-
mines sentiment on individual targets, which
both the document-level and the sentence-level
classification do not do because no sentiment
target is involved at these two coarse levels of
analysis. However, in applications, one often
needs to know opinion targets. Without targets,
any positive or negative sentiment is of limited
use. For example, the sentence trying out Chrome
because Firebox works poorly expresses a
negative sentiment. But if we do not know that
the negative sentiment is toward Firefox, not
Chrome, the sentiment is of little use and can
even be misleading. Many sentences also have
mixed sentiments, e.g., The performance of the
car is great but the price is too high. Aspect senti-
ment classification should find the opinion on the
performance aspect of the car to be positive and
the opinion on the price aspect of the car to be
negative. In short, aspect sentiment classification
determines sentiments expressed on entities and
aspects of entities, which gives more useful infor-
mation than document or sentence classification.

Although supervised learning can be applied,
the kinds of features used for document and
sentence sentiment classification are no longer
sufficient or appropriate. The key reason is that
those features do not consider (or are indepen-
dent of) opinion targets and are thus unable to
determine to which target an opinion refers. To
remedy this problem, opinion target needs to be
considered in learning. Two kinds of approaches

have been proposed. The first one is to generate a
set of features that are dependent on each opinion
target in the sentence, e.g., weighing features
based on their distances to a target. The second
approach is to check the application scope of each
sentiment expression to determine whether it cov-
ers the target in the sentence. For example, in
the sentence Apple is doing very well in this bad
economy, the sentiment word bad’s application
scope covers only economy, not Apple. Current
supervised learning methods mainly use the first
approach but also have a flavor of the second
approach (Jiang et al. 2011).

The lexicon-based approach can be employed
as well. It computes the sentiment orientation
on a target in a sentence by using a sentiment
aggregation function that takes into account the
distances of the sentiment expressions (senti-
ment words or phrases) and the opinion target
in the sentence and/or by exploiting syntactic re-
lationships of sentiment expressions and opinion
targets to find the application scope of each sen-
timent expression. At the high level, the lexicon-
based approach works as follows: it uses (1) a
lexicon of sentiment expressions including sen-
timent words, phrases, idioms, and composition
rules, (2) a set of rules for handling different
language constructs (e.g., sentiment shifters and
but-clauses) and different types of sentences, and
(3) a sentiment aggregation function or a set of
sentiment and target relationships derived from
the parse tree to determine the sentiment orien-
tation on each target (Ding et al. 2008; Liu 2012).

Comparative Sentences

Unlike a regular opinion sentence, a comparative
sentence expresses a relation based on similarities
or differences of more than one entity. In English,
comparisons are usually conveyed using the com-
parative or superlative forms of adjectives or ad-
verbs, e.g., The picture quality of Canon cameras
is better than that of Sony cameras. To mine
comparative opinions, aspect sentiment analysis
is necessary because it does not make much sense
to classify a comparative sentence as expressing
a positive, negative, or neutral sentiment. See
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Jindal and Liu (2006) and Liu (2015) for more
details.

Supervised Learning vs.
Lexicon-Based Approach

The key advantage of supervised learning for sen-
timent classification is that it can automatically
learn from all kinds of features for classification
through optimization. Most of these features are
difficult to use by a lexicon-based method. How-
ever, supervised learning depends on the training
data, which needs to be manually labeled for each
domain. A shortcoming of the approach is that a
supervised classifier trained from the labeled data
in one domain often does not work in another
domain. Thus, for each domain, new training data
needs to be labeled, which is time consuming.
Another shortcoming is that it is hard to learn
things that do not occur frequently. The lexicon-
based approach is able to avoid these issues to
some extent and has been shown to perform well
in a large number of applications. Its main ad-
vantage is domain independence, that is, it can be
applied to any domain without manual labeling
of a large amount of training data as required in
the supervised learning approach. The lexicon-
based method is also flexible in the sense that
the system can be easily extended and improved.
If an error occurs, the user simply corrects some
existing rules and/or adds new rules to the sys-
tem’s rule base. However, the lexicon-based ap-
proach also has its disadvantages. It needs heavy
investments in time and effort to build the ini-
tial knowledge base of lexicon, patterns, and
rules. Furthermore, although the lexicon-based
approach is supposed to be domain independent,
some additional work is still needed to take care
of the idiosyncrasies of each domain. The main
issue is that it is quite hard to deal with domain-
dependent or context-dependent sentiment words
and phrases (see below and Liu 2015).

Aspect and Entity Extraction

The task of aspect and entity extraction is to iden-
tify and extract opinion targets (aspect or entity)

from opinion documents. Since aspect extraction
and entity extraction are closely related tasks,
ideas and methods proposed for aspect extrac-
tions can also be shared with the entity extraction
task. Much of the existing research focused on
aspect extraction. Current aspect extraction meth-
ods can be roughly grouped into four categories:
mining frequent noun phrases, utilizing syntactic
relations of sentiment words and their targets, and
applying supervised sequence learning models
and topic modeling. All these approaches are
used in practice.

Finding Frequent Noun Phrases

Since people often use the same words when
they comment on the same product aspects, Hu
and Liu (2004) makes use of this observation to
mine aspects by simply finding frequent nouns
and noun phrases in reviews using frequent item-
set mining (Agrawal and Srikant 1994). Those
more frequent noun phrases are also likely to be
more important aspects because people usually
comment on those more important aspects more
frequently.

Exploiting Syntactic Relations of
Sentiment and Target

It was observed in Hu and Liu (2004) that adjec-
tive sentiment words often modify (or describes)
noun aspects (e.g., great picture). Hu and Liu
(2004) used such relations to identify aspects that
are hard to find by the frequency-based method
above. Zhuang et al. (2006) formulated the idea
based on the dependency grammar and extracted
aspect and sentiment word pairs from movie
reviews using a set of dependency relations. Qiu
et al. (2011) developed the idea further and pro-
posed an algorithm called double propagation
(DP). DP uses a set of manually compiled depen-
dency rules derived from some dependency rela-
tions to identify both aspects and sentiment words
simultaneously through a bootstrapping process.
These methods are all based on the idea that
opinion always has target, and there are often syn-
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tactic relations that connect sentiment words and
targets in a sentence. Thus, sentiment words can
be recognized by identified aspects, and aspects
can be identified by known sentiment words.
The extracted sentiment words and aspects are
utilized to identify new sentiment words and new
aspects, which are used again to extract more
sentiment words and aspects. This is the approach
used in the DP method. Recently, this method
was improved with automated rule selection (Liu
et al. 2015) and word alignment from the machine
translation research (Liu et al. 2013).

Applying Supervised Sequence
Learning Models

Sequence learning models such as Hidden
Markov models (HMM) and conditional random
fields (CRF) are widely used in information
extraction. They are thus also used for aspect
extraction. Aspect extraction can be regarded
as a sequence labeling task since entity, aspect,
and opinion expressions are often interdependent
and occur in a sequence in a sentence. Jin and
Ho (2009) utilized lexicalized HMM to extract
product aspects and opinion expressions from
reviews. Different from traditional HMM, they
integrated linguistic features such as part of
speech and lexical patterns into HMM. Jakob
and Gurevych (2010) utilized CRF to extract
opinion aspects from opinion sentences.

Topic Modeling

Topic models such as PLSA (probabilistic latent
semantic analysis) and LDA (latent Dirichlet
allocation) have been popularly used to mine
hidden topics from the document corpora. In the
context of aspect extraction, aspects are basically
topics in topic modeling. Mei et al. (2007)
proposed a model for extracting both aspects
and sentiment words. Titov and McDonald
(2008) pointed out that global topic models such
as PLSA and LDA might not be suitable for
detecting aspects from reviews. To tackle this
problem, they proposed some multigrain topic
models to discover aspects, which models two

distinct types of topics: global topics and local
topics. Lin and He (2009) proposed a joint topic-
sentiment model, which extended LDA by adding
a sentiment layer. It detects sentiment and aspect
simultaneously from the corpus. Further works
along a similar line have been done in Brody and
Elhadad (2010), Wang et al. (2010), Zhao et al.
(2010), and Jo and Oh (2011). Recently, two
new types of models were proposed: knowledge-
based models (Mukherjee and Liu 2012) which
can exploit prior domain knowledge to produce
better results and lifelong topic models (Chen
and Liu 2014) which exploit the big data to
automatically mine prior knowledge to be used
in the modeling process.

Sentiment Lexicon

It is quite clear that sentiment words are instru-
mental for sentiment analysis. Positive sentiment
words are used to express some desired states,
while negative ones are used to express some
undesired states. Examples of positive sentiment
words are beautiful, wonderful, and good. Ex-
amples of negative sentiment words are bad,
poor, and terrible. Apart from individual words,
there are also sentiment phrases and idioms. To
compile a sentiment word list or lexicon, two
approaches have been studied: dictionary-based
approach and corpus-based approach.

Dictionary-Based Approach

This approach is based on bootstrapping using
a small set of seed sentiment words and an on-
line dictionary, e.g., WordNet or thesaurus. The
strategy is to first collect a small set of sentiment
words manually with known orientations and
then to grow this set by searching in the WordNet
or an online thesaurus to find their synonyms
and antonyms. The newly found words are added
to the seed list. The next iteration starts. The
iterative process stops when no more new words
are found (Hu and Liu 2004; Kim and Hovy
2004; Kamps et al. 2004).
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Corpus-Based Approach

The corpus-based approach relies on syntactic
patterns and also a seed list of sentiment words
to find other sentiment words in a large corpus.
One of the key ideas was proposed in Hatzivas-
siloglou and McKeown (1997). The technique
uses the set of seed sentiment words and a set of
linguistic constraints or conventions on connec-
tives to identify additional sentiment words and
their orientations. One of the constraints is about
the conjunction AND, which says that conjoined
adjectives usually have the same sentiment orien-
tation. For example, if beautiful is known to be
positive, we can infer that spacious is also posi-
tive from the sentence This car is beautiful and
spacious. Rules or constraints are also designed
for other connectives, OR, BUT, EITHER-OR,
and NEITHER-NOR. This constraint is called
sentiment consistency. Kanayama and Nasukawa
(2006) and Ding et al. (2008) expanded this
approach to intra-sentential and inter-sentential
sentiment consistency. Ding et al. (2008) further
showed that the same word may indicate positive
sentiment in one sentence context but negative
sentiment in another sentence context. For ex-
ample, in the domain of car reviews, the word
“quiet” expresses opposite sentiments or opinions
in the following two sentences: This car is very
quiet (positive) and The audio system in the car
is very quiet (negative). The authors proposed to
consider both the sentiment word and the aspect
together in determining the sentiment orientation
of the sentiment word. To determine the senti-
ment orientation of the pair, the above sentiment
consistency idea is still used. In a similar vein,
Choi and Cardie (2009) studied the problem of
adapting a general-purpose sentiment lexicon to
a specific domain of application.

Sentiment Analysis of Emotions

Emotions are human feelings. They are similar
and also different from opinions. An opinion
expresses an evaluation or appraisal about
some objects, whereas an emotion expresses a
human inner feeling. Human beings have many

different types of emotions. However, there is
still no agreement among researchers on how
many kinds of emotions there are and what
they are. According to Parrott (2001), humans
have six basic emotions: joy, love, anger, fear,
sadness, and surprise. Existing sentiment
analysis of emotions is focused on classification
of emotion types expressed in sentences.
Both supervised learning and lexicon-based
approaches have been attempted by researchers.

In supervised learning, Alm et al. (2005) clas-
sified the emotional affinity of sentences in the
narrative domain of children’s fairy tales. The
features are not the traditional word n-grams but
fourteen groups of Boolean features about each
sentence and its context in the document. The
classes are only two: neutral and emotional. In
Mohammad (2012), a Twitter data set was anno-
tated with emotion types based on emotion words
or hashtags in Twitter posts. The author then
performed classification of emotions using SVM
with binary features that capture the presence
or absence of unigrams and bigrams. Additional
references can be found in Liu (2015).

In the lexicon-based approach, Yang et al.
(2007) first constructed an emotion lexicon
and then performed emotion classification
at the sentence level using the lexicon. To
construct the emotion lexicon, the proposed
algorithm uses only sentences with a single user-
provided emoticon. For each word, it computes a
collocation (or association) strength of the word
with each emoticon using a measure similar to
pointwise mutual information (PMI). Those top-
scoring words are very likely to indicate different
types of emotions. For emotion classification of
sentences, it experimented with two approaches:
the lexicon-based approach and the supervised
learning approach. For supervised learning, only
the top k emotion words were used as features.

Summary

This article gave a brief introduction to sen-
timent analysis. Interested readers can refer to
Liu (2015) for an in-depth and comprehensive
coverage of the topic. Sentiment analysis is a
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highly challenging research problem with almost
unlimited applications. It has been one of the
most active research areas in natural language
processing for many years. Although significant
progresses have been made and numerous in-
dustrial systems have been built, the problem
remains to be very difficult. The accuracy results
in many cases are still unsatisfactory. However,
the practical application needs and technical chal-
lenges will keep the field vibrant and lively for
years to come.
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Sequence Data

� Sequential Data

Sequential Data

Synonyms

Sequence Data

Sequential Data refers to any data that contain
elements that are ordered into sequences.
Examples include � time series, DNA sequences
(see � biomedical informatics) and sequences
of user actions. Techniques for learning from
sequential data include �Markov models,
�Conditional Random Fields and � time series
techniques.

Sequential Inductive Transfer

�Cumulative Learning

Sequential Learning

�Online Learning

Set

�Class

Shannon’s Information

If a message announces an event E1 of
probability P.E1/ its information content is
� log2 P.E1/. This is also its length in bits.

Shattering Coefficient

Synonyms

Growth function

Definition

The shattering coefficient SF .n/ is a function that
measures the size of a function class F when
its functions f W X ! R are restricted to
sets of points x D .x1; : : : ; xn/ 2 X n of size
n. Specifically, for each n 2 N the shattering
coefficient is the maximum size of the set of
vectors Fx D f.f .x1/; : : : : ; f .xn// W f 2 Fg 

R
n that can be realized for some choice of x 2

X n. That is,

SF .n/ D sup
x2Xn

jFxj:

The shattering coefficient of a hypothesis
class H is used in � generalization bounds as
an analogue to the class’s size in the finite
case.

Sigmoid Calibration

�Classifier Calibration

Similarity Measures

Michail Vlachos
IBM Research, Zurich, Switzerland

Synonyms

Distance; Distance functions; Distance measures;
Distance metrics
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Introduction

The term similarity measure refers to a function
that is used for comparing objects of any
type. The objects can be data structures,
database records, or even multimedia objects
(audio, video, etc). Therefore the input of
a similarity measure is two objects, and the
output is, typically, a number between 0 and
1; “zero” meaning that the objects are completely
dissimilar and “one” signifying that the two
objects are identical. Similarity is related to
distance, which is the inverse of similarity, that is,
a similarity of 1 implies a distance of 0 between
two objects.

Background

Similarity measures are typically used for quanti-
fying the affinity between objects in search opera-
tions, in which the user presents an object (query)
and requests other objects “similar” to the given
query. Therefore, a similarity measure is a math-
ematical abstraction for comparing objects and it
assigns a single number that indicates the affinity
between the said pair of objects. The results of the
search are customarily presented to the user in the
order suggested by the similarity value returned.
Objects with higher similarity value are presented
first because they are deemed to be more relevant
to the query posed by the user. For example, when
searching for specific keywords on an internet
search engine, internet pages that are more rele-
vant/similar to the query posed are presented first.
The selection of the proper similarity function
is an important parameter in many applications,
including � instance-based learning, � clustering,
and � anomaly detection.

Most similarity measures attempt to model
(imitate) the human notion of similarity between
objects. If a similarity function resembles very
closely the similarity ranking between objects as
returned by a human, then it is considered suc-
cessful. This, however, is also where the difficulty
lies because in general similarity is something
that is very subjective.

Consider the case where a user poses the
keyword query “crane” at a search engine while
searching for images. The results returned would
contain images of machinery, birds, or even
origami creations. This is because when the
similarity measure used is solely based on textual
information then all such images are indeed
proper answers to the query. If one were also
interested in the semantics of an image, then
perhaps additional features such as texture, color,
or shape could have been used. Therefore, to
define an effective similarity measure, one first
has to extract the proper object features and
then evaluate the similarity using an appropriate
distance function.

Classes of Similarity Functions

There are two major classes of similarity func-
tions: metric and nonmetric functions. For a func-
tion d to be a metric, it has to satisfy all of
the following three properties for any objects
X; Y;Z:

1. d.X; Y / D 0 iff X D Y (identity axiom)
2. d.X; Y / D d.Y;X/ (symmetry axiom)
3. d.X; Y / C d.Y;Z/ � d.X;Z/ (triangle in-

equality)

Metric similarity functions are very widely
used in search operations because they support
the triangle inequality. The triangle inequality can
help prune much of the search space by eliminat-
ing objects from examination that are guaranteed
to be distant to the given query (Agrawal et al.
1993; Zezula 2005). The most frequently used
metric similarity function is the Euclidean dis-
tance. For two objects X and Y that are charac-
terized by set of n features X D .x1; x2; : : : ; xn/

and similarly Y D .y1; y2; : : : ; yn/, the Eu-
clidean distance is defined as

D D

vuut nX
iD1

.xi � yi /2

http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_912
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Similarity Measures, Fig. 1 Mapping achieved by the
Euclidean distance between time-series data

1. Bat 
similar to 
batman

2. 

similar 
to man

3. But, man 
is not similar 

to bat…

2.
Batman
similar
to man

Similarity Measures, Fig. 2 Nonmetric similarity that
disobeys the triangle inequality

If we represent the objects X and Y as an
ordered sequence of their features, we can visual-
ize the linear mapping achieved by the Euclidean
distance in Fig. 1.

Nonmetric similarity measures resemble more
closely the human notion of similarity by allow-
ing a more flexible matching between the objects
examined, for example, by allowing nonlinear
mappings or even by accommodating occlusion
of points or features. The human visual system
is in general considered to be nonmetric. Non-
metric measures typically disobey the triangle
inequality. For example, consider the following
nonmetric relationship: “Batman” is similar to
“man,” and “bat” is also similar to “batman,” but
this does not imply that “bat” is similar to “man.”
This is illustrated in Fig. 2.

Examples for Time-Series Data

Consider the case of time-series data. Widely
used nonmetric similarity functions are the
warping distance and the longest common
subsequence (LCSS). The warping distance (also
known as dynamic time warping or DTW) has
been used very extensively in the past in voice-
recognition tasks because of its ability to perform
compression or decompression of the features,
allowing flexible nonlinear mappings. In Fig. 3,
we depict the outcome of the measures for time-
series data mentioned above. The Euclidean
distance performs a rigid linear mapping of
points, the DTW can perform nonlinear one-
to-many mappings, and the LCSS constructs a
one-to-one nonlinear mapping.

Recently, similarity metrics based on infor-
mation theory, and in specific, on Kolmogorov
complexity, have been presented (Li 2004; Keogh
2004) and can also be considered as compression-
based measures. A very simple and easily im-
plementable version of a compression-based dis-
tance is

dc.X; Y / D
C.XY /

C.X/C C.Y /

where C.X/ is the compressed size (bytes) of
X given a certain compression algorithm. The
distance will be close to 1 if X and Y are
dissimilar and less than 1 if X and Y are related.
Therefore we exploit the fact that if X and Y
are “similar,” they should compress equally well
(approximately same number of bytes) when con-
sidered either separately or together because the
compression dictionaries will be similar when the
two objects are related. In summary, the choice
of similarity measure is highly dependent on the
application at hand. The practitioner should also
closely consider on which object features the
similarity measure will be applied. Ultimately,
the combination of both feature selection and
similarity measure will define the quality of a
search process.
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Similarity Measures,
Fig. 3 Comparison of
Euclidean, warping, and
longest common
subsequence measures
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�Dimensionality Reduction
� Feature Selection
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Simple Bayes

�Naı̈ve Bayes

Simple Recurrent Network

Risto Miikkulainen
Department of Computer Science, The
University of Texas at Austin, Austin, TX, USA

Synonyms

Elman network; Feedforward recurrent network

Definition

The simple recurrent network is a specific version
of the � backpropagation neural network that
makes it possible to process sequential input and
output (Elman 1990). It is typically a three-layer
network where a copy of the hidden layer activa-
tions is saved and used (in addition to the actual
input) as input to the hidden layer in the next time
step. The previous hidden layer is fully connected
to the hidden layer. Because the network has no
recurrent connections per se (only a copy of the

activation values), the entire network (including
the weights from the previous hidden layer to the
hidden layer) can be trained with the backpropa-
gation algorithm as usual. It can be trained to read
a sequence of inputs into a target output pattern,
to generate a sequence of outputs from a given
input pattern, or to map an input sequence to an
output sequence (as in predicting the next input).
Simple recurrent networks have been particularly
useful in � time series prediction, as well as in
modeling cognitive processes, such as language
understanding and production.

Recommended Reading

Elman JL (1990) Finding structure in time. Cognit Sci
14:179–211

SMT

� Statistical Machine Translation

Solution Concept

A criterion specifying which locations in the
search space are solutions and which are not.
In designing a coevolutionary algorithm, it
is important to consider whether the solution
concept implemented by the algorithm (i.e.,
the set of individuals to which it can con-
verge) corresponds with the intended solution
concept.

Solving Semantic Ambiguity

�Word Sense Disambiguation

SOM

� Self-Organizing Maps

http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
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http://dx.doi.org/10.1007/978-1-4899-7687-1_100135
http://dx.doi.org/10.1007/978-1-4899-7687-1_100171
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http://dx.doi.org/10.1007/978-1-4899-7687-1_972
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http://dx.doi.org/10.1007/978-1-4899-7687-1_882
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Sort

�Class

Spam Detection

�Text Mining for Spam Filtering

Specialization

Specialization is the converse of � generalization.
Thus, if h1 is a generalization of h2 then h2 is a
specialization of h1.

Cross-References

�Generalization
� Induction
�Learning as Search
�Logic of Generality
� Subsumption

Specificity

Synonyms

True negative rate

Specificity is the fraction of negative examples
predicted correctly by a model. See � Sensitivity
and Specificity.

Spectral Clustering

�Graph Clustering
�K-Way Spectral Clustering

Speedup Learning

Alan Fern
Science, Oregon State University, Corvallis, OR,
USA

Definition

Speedup learning is a branch of machine learning
that studies learning mechanisms for speeding up
problem solvers based on problem-solving expe-
rience. The input to a speedup learner typically
consists of observations of prior problem-solving
experience, which may include traces of the prob-
lem solver’s operations and/or solutions to solve
the problems. The output is knowledge that the
problem solver can exploit to find solutions more
quickly than before learning without seriously ef-
fecting the solution quality. The most distinctive
feature of speedup learning, compared with most
branches of machine learning, is that the learned
knowledge does not provide the problem solver
with the ability to solve new problem instances.
Rather, the learned knowledge is intended solely
to facilitate faster solution times compared to the
solver without the knowledge.

Motivation and Background

Much of the work in computer science
and especially artificial intelligence aims at
developing practically efficient problem solvers
for combinatorially hard problem classes such
as automated planning, logical and probabilistic
reasoning, game playing, constraint satisfaction,
and combinatorial optimization. While it
is often straightforward to develop optimal
problem solvers for these problems using brute-
force, exponential-time search procedures, it is
generally much more difficult to develop solvers
that are efficient across a wide range of problem
instances. The main motivation behind speedup
learning is to create adaptive problem solvers
that can learn patterns from problem-solving
experience that can be exploited for efficiency

http://dx.doi.org/10.1007/978-1-4899-7687-1_940
http://dx.doi.org/10.1007/978-1-4899-7687-1_828
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_800
http://dx.doi.org/10.1007/978-1-4899-7687-1_100491
http://dx.doi.org/10.1007/978-1-4899-7687-1_758
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_433
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gains. Such adaptive solvers have the potential
to significantly outperform traditional static
solvers by specializing their behavior to the
characteristics of a single problem instance or
to an entire class of related problem instances.
The exact form of knowledge and learning
mechanism is tightly tied to the problem class
and the problem-solver architecture.

Most branches of machine learning, such as
� supervised classification, aim to learn funda-
mentally new problem-solving capabilities that
are not easily programmed by hand even when ig-
noring efficiency issues – for example, learning to
recognize handwritten digits. Speedup learning is
distinct in that it is typically applied in situations
where hand-coding an optimal, but inefficient,
problem solver is straightforward – for example,
solving satisfiability problems. Rather, learning is
aimed exclusively at finding solutions in a more
practical time frame.

Work in speedup learning grew out of various
subfields of artificial intelligence and more gen-
erally computer science. An early example, from
automated planning, involved learning knowl-
edge for speeding up the original STRIPS planner
(Fikes et al. 1972) via the learning of triangle
tables or macros that could later be exploited by
the problem solver. Throughout the 1980s and
early 1990s, there was a great deal of additional
work on speedup learning in the area of auto-
mated planning as overviewed in Minton (1993)
and Zimmerman and Kambhampati (2003).

Another major source of speedup learning
research has originated from the areas of AI
search and constraint satisfaction. Many of the
� intelligent backtracking mechanisms from
these areas, which are critical to perform,
can be viewed as speedup learning techniques
(Kambhampati 1998) where knowledge is
learned, while solving a problem instance that
better informs later search decisions. Such
methods have also come out of the area of
logic programming (Kumar and Lin 1988), where
search efficiency plays a central role.

In addition, various branches of AI have de-
veloped speedup learning approaches based on
learning-improved heuristic evaluation functions.
Samuel’s checker player (Samuel 1959) was one

such early example, where learned evaluation
functions allowed for the performance of deep
game tree search to be approximated by a shal-
lower, less expensive search.

Structure of Learning System

Figure 1 shows a generic diagram of a speedup
learning system. The main components are the
problem solver and the speedup learner. The role
of the problem solver is to receive problem in-
stances from a problem generator and to produce
solutions for those instances. For example, prob-
lem solvers might include constraint-satisfaction
engines, automated planners, or A� search. The
role of the speedup learner is to produce knowl-
edge that the problem solver can use to improve
its solution time. The input to the speedup learner,
which is analyzed in order to produce the knowl-
edge, can include one or more of the following
data sources: (1) the input problem instances, (2)
traces of the problem solver’s decisions while
solving the input problems, and (3) solutions to
solved problems.

Clearly there is a large space of possible
speedup learning systems that result from
different problem solvers, forms of learned
knowledge, learning methods, and intended
mode of applicability. Some of the main
dimensions are described in the following section
in which speedup learning approaches can be
characterized. Examples of typical learners that
span this space are provided, noting that the
examples are far from an exhaustive list.

Dimensions of Speedup Learning

Intra-problem Versus Inter-problem Speedup.
Intra-problem speedup learning is when knowl-
edge is learned during the solution of the current
problem instance and is only applicable to speed-
ing up the solution of the current instance. After
a solution is found, the knowledge is discarded as
it is not applicable for the future instances. Inter-
problem speedup learning is when the learned
knowledge is applicable not only to the prob-
lem(s) it was learned on but also to new problems

http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_411


Speedup Learning 1169

S

Problem SolverProblem
generator Solution

Speedup
Learner

Problem solver
traces

Learned
knowledge

Problem
instance

Speedup Learning, Fig. 1 Schematic diagram of a
speedup learning system. The problem solver receives
problem instances from a problem generator and produces
solutions. The speedup learner can observe the input
problem instances, traces of the problem solver while
solving the problem instances, and sometimes also the

solutions to previously solved problem instances. The
speedup learner outputs knowledge that can be used by
the problem solver to speed up its solution time either on
the current problem instance (intra-problem speedup) or
future related instances (inter-problem speedup)

to be encountered in the future. In this sense, the
learned knowledge can be viewed as a general-
ized knowledge about how to find solutions more
quickly for an entire class of problems.

Typically in the inter-problem learning, the
problem generator produces instances that are re-
lated in some way and, thus, share common struc-
ture that can be learned from the earlier instances
and exploited when solving the later instances.
Rather intra-problem speedup learners treat each
problem instance as completely distinct from the
rest. Also note that inter-problem learners have
the potential to benefit from the analysis of solu-
tions to previous problem instances. Rather, intra-
problem learners are unable to use this source
of information, since once the current problem is
solved, no further learning is warranted.

Types of Learned Knowledge. Most problem
solvers can be viewed as search procedures,
which is the view that will be taken when
characterizing the various forms of learned
knowledge in speedup learning. Four types of
commonly used knowledge are listed below,
noting that this is far from an exhaustive
list. First, pruning constraints are the sets of

constraints on search nodes that signal when
certain branch of the search space can be safely
pruned. Second, macro operators (macros) are
sequences of search operators that are typically
useful when executed in order. Problem solvers
can often utilize macros in order to decrease the
effective solution depth of the search space by
treating macros as additional search operators.
It is important that the decrease in effective
depth is enough to compensate for the increase
in number of operators, which increases the
search complexity. Third, search-control rules
are the sets of rules that typically test the current
problem-solving state and suggest problem-
solving actions such as rejecting, selecting,
or preferring a particular search operator. In
the extreme case, learned search-control rules
can completely remove the need for search.
Fourth, heuristic evaluation functions are used
to measure the quality of a particular search
node. Learning-improved heuristics can result in
better directed search behavior.

Deductive Versus Inductive Learning. �Dedu-
ctive learning refers to a learning process for
which the learned knowledge can be deductively

http://dx.doi.org/10.1007/978-1-4899-7687-1_206
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proven to be correct. For example, in the case
of learned pruning constraints, a deductive
learning mechanism would provide a guarantee
that the pruning was sound in the sense that
the optimality of the problem solver would be
unaffected. � Inductive learning mechanisms
rather are statistical in nature and typically do not
produce knowledge with associated deductive
guarantees. Rather, inductive methods focus on
finding statistical regularities that are typically
useful, though perhaps not correct in all cases.
For example, an inductive learner may discover
patterns that are strongly correlated to pruning
opportunities, though these patterns may have a
small probability of leading to unsound pruning.

In cases where one must guarantee a sound
and complete problem solver, deductive learning
approaches are always applicable, though their
utility depends on the particular application. In
certain cases, inductively learned knowledge can
also be utilized in a way that does not affect
the correctness of the problem solver. For ex-
ample, inductively learned search-control rules
that assert preferences, rather than prune nodes
from the search, do not lead to incompleteness.
Traditionally, the primary disadvantage of deduc-
tive learning, compared with inductive learning,
is that the inductive methods typically produce
knowledge that generalizes to a wider range of
situations than deductive methods. In addition,
deductive learning methods are often more costly
in terms of learning time as they rely on expen-
sive deductive reasoning mechanisms. Naturally,
a number of speedup learning systems exist that
utilize a combination of inductive and deductive
learning techniques.

Examples of Intra-problem Speedup
Learning
Much of the speedup learning work arising from
research in AI search and constraint satisfaction
falls into the intra-problem paradigm. The most
common forms of learning are deductive and are
based on computing explanations of “search fail-
ures” that occur during the solution of a particular
problem. Here a search failure typically corre-
sponds to a point where the problem solver must
backtrack. By computing and forming such fail-

ure explanations, the problem solver is typically
able to avoid similar types of failures in the future
by detecting that a search path will lead to fail-
ure without fully exploring that path. �Nogood
learning is a very successful, and commonly
used, example of the general failure-explanation
approach (Schiex and Verfaillie 1994). Nogoods
are combinations of variable values that lead to
search failures. By computing and recording no-
goods, it is possible to immediately prune search
states that consider those value combinations.
There are many variations of nogood learning,
with different techniques utilizing different ap-
proaches to analyzing search failures to extract
general nogoods.

Another example of the failure-explanation
approach, which is commonly utilized in satis-
fiability solvers, is � clause learning. The idea
is similar to nogood learning. When a failure
occurs during the systematic search, a proof of
the failure is constructed and analyzed to extract
implied constraints, or clauses, that the solution
must satisfy. These learned clauses are then added
to the set of clauses of the original satisfiability
problem and in later search trigger early pruning
when they, or their consequences, are violated.
Efficient implementations of this idea have led to
huge gains in satisfiability solvers. In addition, it
has been shown theoretically that clause learning
can improve solution times by an exponential
factor (Beame et al. 2004).

Inductive techniques for learning heuristic
evaluation functions have also been investigated
in the intra-problem speedup paradigm. Here
we discuss just two such approaches, where in
both cases the key idea is to observe the problem
solver and extract training examples that can be
used to learn an accurate evaluation function. A
particularly successful example of this approach
is the STAGE system (Boyan and Moore 1998)
for solving combinatorial optimization problems
such as traveling salesman and circuit layout. The
problem-solving architecture used by STAGE is
based on repeated random restarts of a fast hill-
climbing local optimizer, which, when given
an initial configuration of the combinatorial
object, performs a greedy search to a local
minimum configuration. The speedup learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_395
http://dx.doi.org/10.1007/978-1-4899-7687-1_593
http://dx.doi.org/10.1007/978-1-4899-7687-1_117
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mechanism for STAGE is to learn an approximate
function that maps initial configurations to the
performance of the local optimizer when started
at that configuration. Note that on each restart
of the problem solver, the learning component
gets a training example that can be used to
improve the function. The problem solver uses
the learned function in order to select promising
configurations from which to restart, rather
than choosing randomly. In particular, STAGE
attempts to restart from a configuration that
optimizes the learned function, which is the
predicted best starting point for the hill climber.
This overall approach has shown impressive
performance gains in a number of combinatorial
optimization domains.

As a second example of inductive learning
of heuristics in the intra-problem paradigm,
there has been work within the more traditional
problem-solving paradigm of best-first search
(Sarkar et al. 1998). Here the speedup learner
observes the sequence of search nodes traversed
by the problem solver. For any pair of nodes
observed to be on the same search path, the
learner creates a training example in an attempt
to train a heuristic to better predict the distance
between those two nodes. Ideally, this updated
heuristic function better reflects the distance from
nodes in the search queue to the goal node of the
current problem instance and, hence, results in
improved search performance.

Examples of Inter-problem Speedup
Learning
Much of the work on inter-problem speedup
learning came out of AI planning research,
where researchers have long studied learning
approaches for speeding up planners. Speedup in
planning is focused in this chapter, noting that
similar ideas have also been pursued in other
research areas such as constraint satisfaction. For
a collection and survey of work on speedup in
planning, see Minton (1993) and Zimmerman
and Kambhampati (2003). Typically in this work,
one is interested in learning knowledge for an
entire planning domain, which is a collection
of problems that share the same set of actions.
The Blocksworld is a classic example of such a

planning domain. After experiencing and solving
a number of problems from a target domain,
such as the Blocksworld, the learned knowledge
is then used to speed up performance on new
problems from the same domain.

There have been a number of deductive
learning approaches to speed up learning
in planning, which are traditionally cited as
� explanation-based learning (EBL) approaches
(Minton et al. 1989). EBL for AI planning
is strongly related to the failure-explanation
approaches developed for CSPs as characterized
nicely by Kambhampati (1998). There are two
main differences between the inter-problem EBL
work in planning and the intra-problem EBL
approaches for CSPs. First, EBL approaches in
planning produce more general explanations that
are applicable not only in the problem in which
they were learned but also new problems. This is
often made possible by introducing variables in
the place of specific objects into the explanations
derived from a particular problem. This allows
the explanations to apply to contexts in new
problems that share similar structure but involve
different objects. The second difference is that
inter-problem EBL approaches in planning often
produce explanations of successes and not just
of failures. These positive explanations are not
possible in the context of intra-problem speedup
since the intra-problem learner is only interested
in solving a single problem.

Despite the relatively large effort invested in
inter-problem EBL research, the best approaches
typically did not consistently lead to significant
gains and even hurt performance in many cases.
A primary way that EBL can hurt performance is
by learning too many explanations, which results
in the problem solver spending too much time
simply evaluating the explanations at the cost of
reducing the number of search nodes considered.
This problem is commonly referred to as the EBL
utility problem (Minton 1988) as it is difficult to
determine which explanations have high enough
utility to be worth keeping.

In addition to EBL, there has also been work
on inductive mechanisms for acquiring search-
control rules to speed up AI planners. Typically,
statistical learning mechanisms are used to find

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
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common patterns that can distinguish between
good and bad search decisions. As one example,
Huang et al. learn action-rejection and selection
rules based on the solutions to planning problems
from a common domain (Huang et al. 2000). The
learned rules were then added as constraints to
the constraint satisfaction engine, which served to
guide the solver to solution plans more quickly.
Another approach, which has been studied at
a theoretical and empirical level, is to learn
heuristic functions to guide a bounded search
process (Xu and Fern 2009), in particular, bread-
first beam search. Results in a number of planning
domains demonstrate significant improvements
over planners that do not incorporate a learning
component. One other class of approach is based
on attempting to learn knowledge that removes
the need for a problem solver altogether, in
particular, to learn a reactive policy for quickly
selecting actions in any given state of the
environment. Such policies can be learned via
statistical techniques by simply trying to learn
an efficient function that maps planning states
to the actions selected by the planner. Despite
its simplicity, this approach has demonstrated
considerable success (Khardon 1999) and has
also been characterized at a theoretical level
(Tadepalli and Natarajan 1996).

Cross-References

�Explanation-Based Learning

Recommended Reading

Beame P, Kautz H, Sabharwal A (2004) Towards
understanding and harnessing the potential of clause
learning. J Artif Intell Res 22:319–351

Boyan JA, Moore AW (1998) Learning evaluation
functions for global optimization and boolean sat-
isfiability. In: National conference on artificial intel-
ligence, Madison. AAAI, Menlo Park, pp 3–10

Fikes R, Hart P, Nilsson N (1972) Learning and execut-
ing generalized robot plans. Artif Intell 3(1–3):251–
288

Huang Y-C, Selman B, Kautz H (2000) Learning
declarative control rules for constraint-based plan-
ning. In: International conference on machine learn-
ing, Stanford. Morgan Kaufmann, San Francisco,
pp 415–422

Kambhampati S (1998) On the relations between intel-
ligent backtracking and failure-driven explanation-
based learning in constraint satisfaction and plan-
ning. Artif Intell 105(1–2):161–208

Khardon R (1999) Learning action strategies for plan-
ning domains. Artif Intell 113(1–2):125–148

Kumar V, Lin Y (1988) A data-dependency based
intelligent backtracking scheme for prolog. J Log
Program 5(2):165–181

Minton S (1988) Quantitative results concerning the
utility of explanation-based learning. In: National
conference on artificial intelligence, St. Paul. Mor-
gan Kaufmann, St. Paul, pp 564–569

Minton S (ed) (1993) Machine learning methods for
planning. Morgan Kaufmann, San Francisco

Minton S, Carbonell J, Knoblock CA, Kuokka DR,
Etzioni O, Gil Y (1989) Explanation-based learning:
a problem solving perspective. Artif Intell 40:63–
118

Samuel A (1959) Some studies in machine learning us-
ing the game of checkers. IBM J Res Dev 3(3):211–
229

Sarkar S, Chakrabarti P, Ghose S (1998) Learning
whiles solving problems in best first search. IEEE
Trans Syst Man Cybern A Syst Hum 28(4):553–541

Schiex T, Verfaillie G (1994) Nogood recording for
static and dynamic constraint satisfaction problems.
Int J Artif Intell Tools 3(2):187–207

Tadepalli P, Natarajan B (1996) A formal framework
for speedup learning from problems and solutions. J
Artif Intell Res 4:445–475

Zimmerman T, Kambhampati S (2003) Learning-
assisted automated planning: looking back, taking
stock, going forward. AI Mag 24(2):73–96

Speedup Learning for Planning

�Explanation-Based Learning for Planning

Spike-Timing-Dependent Plasticity

A biological form of Hebbian learning where the
change of synaptic weights depends on the exact
timing of presynaptic and postsynaptic action
potentials.
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Split Tests

�Online Controlled Experiments and A/B Test-
ing

Sponsored Search

�Text Mining for Advertising

Squared Error

�Error Squared

Squared Error Loss

�Mean Squared Error

Stacked Generalization

Synonyms

Stacking

Definition

Stacking is an � ensemble learning technique.
A set of models are constructed from bootstrap
samples of a dataset, then their outputs on a hold-
out dataset are used as input to a “meta”-model.
The set of base models are called level-0, and
the meta-model level-1. The task of the level-1
model is to combine the set of outputs so as to
correctly classify the target, thereby correcting
any mistakes made by the level-0 models.

Recommended Reading

Wolpert DH (1992) Stacked generalization. Neural
Netw 5(2):241–259

Stacking

� Stacked Generalization

Starting Clause

�Bottom Clause

State

In a �Markov decision process, states repre-
sent the possible system configurations facing
the decision-maker at each decision epoch. They
must contain all variable information relevant to
the decision-making process.

Statistical Learning

� Inductive Learning

Statistical Machine Translation

Miles Osborne
University of Edinburgh, Edinburgh, UK

Synonyms

SMT

Definition

Statistical machine translation (SMT) deals with
automatically mapping sentences in one human
language (for example, French) into another hu-
man language (such as English). The first lan-
guage is called the source and the second lan-
guage is called the target. This process can be
thought of as a stochastic process. There are
many SMT variants, depending upon how trans-
lation is modeled. Some approaches are in terms
of a string-to-string mapping, some use trees-
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to-strings, and some use tree-to-tree models. All
share in common the central idea that translation
is automatic, with models estimated from parallel
corpora (source-target pairs) and also from mono-
lingual corpora (examples of target sentences).

Motivation and Background

Machine Translation has widespread commer-
cial, military, and political applications. For
example, increasingly, the Web is accessed
by non-English speakers reading non-English
pages. The ability to find relevant information
clearly should not be bounded by our language-
speaking capabilities. Furthermore, we may
not have sufficient linguists in some language
of interest to cope with the sheer volume
of documents that we would like translated.
Enter automatic translation. Machine translation
poses a number of interesting machine learning
challenges: data sets are typically very large,
as are the associated models; the training
material used is often noisy and plagued with
sparse statistics; the search space of possible
translations is sufficiently large that exhaustive
search is not possible. Advances in machine
learning, such as maximum-margin methods,
frequently appear in translation research. SMT
systems are now sufficiently mature that they
can be deployed in production systems. A good
example of this is Google’s online Arabic-
English translation, which is based upon SMT
techniques.

Structure of the Learning System

Modeling
Formally, translation can be described as finding
the most likely target sentence e� for some source
sentence f :

e� D argmaxeP.f je/P.e/

(e conventionally stands for English and f for
French, but any language pairs can be substi-
tuted.)

This approach has three major aspects:

• A translation model (P.f je//, which specifies
the set of possible translations for some target
sentence. The translation model also assigns
probabilities to these translations, represent-
ing their relative correctness.

• A language model (P.e//, which models
the fluency of the proposed target sentence.
This assigns a distribution over strings,
with higher probabilities being assigned to
sentences which are more representative
of natural language. Language models are
usually smoothed n-gram models, typically
conditioning on two (or more) previous words
when predicting the probability of the current
word.

• A search process (the argmax operation),
which is concerned with navigating through
the space of possible target translations. This
is called decoding. Decoding for SMT is
NP-hard, so most approaches use a beam
search.

This is called the Source-Channel approach
to translation (Brown et al. 1994). Most modern
SMT systems instead use a � log-linear model, as
it is more flexible and allows for various aspects
of translation to be balanced together (Och and
Ney 2001):

e� D argmaxe

 X
i

f i.e; f /�i

!

Here, feature functions fi .e; f / capture some
aspect of translation and each feature function
has an associated weight �i . When we have the
two feature functions P.f je/ and P.e/, we have
the Source-Channel model. The weights are scal-
ing factors (balancing the contributions that each
feature function makes) and are optimized with
respect to some � loss function which evaluates
translation quality. Frequently, this is in terms
of the BLEU evaluation metric Papineni et al.
(2001). Typically, the error surface is nonconvex
and the loss function is nondifferentiable, so
search techniques which do not use first-order

http://dx.doi.org/10.1007/978-1-4899-7687-1_100278
http://dx.doi.org/10.1007/978-1-4899-7687-1_500
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derivatives must be employed. It is worth noting
that machine translation evaluation is a complex
problem and that methods such as BLEU are not
without criticism.

SMT systems usually decompose entire
sentences into a sequence of strings called
phrases (Koehn et al. 2003). The modeling
task then becomes one of determining how to
break a source sentence into a sequence of
contiguous phrases and how to specify which
source phrase should be associated with each
target phrase. Figure 1 shows an example
English-French sentence pair. Figure 2 shows
that sentence pair decomposed into phrase-pairs.
Phrase-based systems represented an advance
over previous word-based models, since phrase-
based translation can capture local (within a
phrase) word order. Furthermore, phrase-based

Those people have grown up, lived and worked for many

years in a farming district.

Ces gens ont grandi, vécu et oeuvré des dizaines d’années

dans le domain agricole.

Statistical Machine Translation, Fig. 1 A sentence
pair

evahelpoepesohTtnosnegseC

gens ont grandi people have

grown up

,punworgevah,idnargtno

devil,punworgucév,idnarg

dnadevil,teucév,

dekrowdnadevilérvueoteucév

et oeuvré des dizaines d’ oeuvré and worked many

oeuvré des dizaines d’ années dizaines worked many years

des dizaines d’ années dans many years in

anisraeyelsnadseénna

le domaine agricole a farming districtle

domaine agricole . farming district .

Statistical Machine Translation, Fig. 2 Example
phrase pairs

translation approaches need to make fewer
decisions than word-based models. This means
there are fewer errors to make.

A major aspect of any SMT approach is deal-
ing with phrasal reordering. Typically, the trans-
lation of each source phrase need not follow
the same temporal order in the target sentence.
Simple approaches model the absolute distance a
target phrase can “move” from the originating tar-
get phrase. More sophisticated reordering models
condition this movement upon the aspects of the
phrase pair.

Our description of SMT is in terms of a string-
to-string model. There are numerous other SMT
approaches, for example those which use notions
of syntax (Chiang 2005). These models are now
showing promising results, but are significantly
more complex to describe.

Estimation
The translation model of a SMT system is
estimated using parallel corpora. Because
the search space is so large and that parallel
corpora is not aligned at the word level, the
estimation process is based upon a large-scale
application of Expectation-Maximization, along
with heuristics. This consists of the following
steps:

• Determine how each source word translates to
zero or more target words. The IBM models
are used for this task, which are based upon
the Expectation-Maximization algorithm for
parameter estimation (Brown et al. 1994).

• Repeat this process, but instead determine
how each target word translates to zero or
more source words.

• Harmonize the previous two steps, creating
a set of word alignments for each sentence
pair. This process is designed to use the two
directions as alternative views on how words
should be translated. Figure 3 shows the sen-
tence pair aligned at the word level.

• Heuristically, determine which sequence of
source words translates to a sequence of target
words. This produces a set of phrase-pairs:
a snippet of text in the source sentence and
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Statistical Machine Translation, Fig. 3 The sentence
pair in Fig. 1 aligned at the word-level

the associated snippet of text in the target
sentence.

• Relative frequency estimators can then be
used to characterize how each source phrase
translates to a given target phrase.

Parallel corpora varies in size tremendously;
for language pairs such as Arabic to English,
we have on the order of ten million sentence
pairs. Most other language pairs (for example,
Finnish to Irish) will have far smaller parallel
corpora available. Parallel corpora exists for all
European languages and for many other pairs,
such as Mandarin to English.

The language model is instead estimated from
monolingual corpora, typically using relative fre-
quency estimates, which are then smoothed. For
languages such as English, typically billion (and
more) words are used. Deploying such large mod-
els can pose significant engineering challenges.
This is because the language model can easily be
so large that it will not fit into the memory of
conventional machines. Also, the language model
can be queried millions of times when trans-
lating sentences, which precludes storing it on
disk.

Programs and Data

All of the code and data necessary to begin work
on SMT is available either as public source, or for
a small payment (in the case of corpora from the
LDC):

• The standard software to estimate word-based
translation models is Giza++: http://www.
fjoch.com/GIZA++.html

• Converting word-based to phrase-based
models and decoding can be achieved using
the Moses decoder and associated sets of
scripts: http://www.statmt.org/jhuws/?n=
Moses.HomePage

• Translation performance can be evaluated us-
ing BLEU: http://www.nist.gov/speech/tests/
mt/resources/scoring.htm

• The SRILM is the standard toolkit for build-
ing and using language models: http://www.
speech.sri.com/projects/srilm/

• Europarl is a set of parallel corpora, dealing
with European languages: http://www.statmt.
org/europarl/

• The Linguistics Data Consortium (LDC)
maintains corpora of various kinds, including
large volumes of monolingual data which can
be used to train language models: http://www.
ldc.upenn.edu/
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guage Processing

Statistical Physics of Learning

� Phase Transitions in Machine Learning

Statistical Relational Learning

Luc De Raedt1 and Kristian Kersting2;3

1Department of Computer Science, Katholieke
Universiteit Leuven, Heverlee, Leuven, Belgium
2Knowledge Discovery, Fraunhofer IAIS, Sankt
Augustin, Germany
3Technische Universität Dortmund, Dortmund,
Germany

Definition

Statistical relational learning a.k.a. probabilistic
inductive logic programming deals with machine
learning and data mining in relational domains
where observations may be missing, partially
observed, or noisy. In doing so, it addresses one
of the central questions of artificial intelligence –
the integration of probabilistic reasoning with
machine learning and first-order and relational
representations – and deals with all related as-
pects such as reasoning, parameter estimation,
and structure learning.

Motivation and Background

One of the central questions of artificial intel-
ligence is concerned with combining expressive
knowledge representation formalisms such as re-
lational and first-order logic with principled prob-
abilistic and statistical approaches to inference
and learning. While traditionally relational and
logical representations, probabilistic and statisti-
cal reasoning, and machine learning have been
studied independently of one another, statisti-
cal relational learning investigates them jointly,
cf. Fig. 1. A major driving force is the explo-
sive growth in the amount of heterogeneous data
that is being collected in the business and sci-
entific world in domains such as bioinformat-
ics, transportation systems, communication net-
works, social network analysis, citation analy-
sis, and robotics. Characteristic for these do-
mains is that they provide uncertain information
about varying numbers of entities and relation-
ships among the entities, that is, about rela-
tional domains. Traditional machine learning ap-
proaches are able to cope either with uncertainty
or with relational representations but typically not
with both.

Many formalisms and representations have
been developed in statistical relational learning.
For instance, Eisele (1994) has introduced a prob-
abilistic variant of comprehensive unification for-

Statistical
relational
learning

Probabilities

LearningLogic

Statistical Relational Learning, Fig. 1 Statistical rela-
tional learning a.k.a. probabilistic inductive logic pro-
gramming combines probability, logic, and learning
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malism (CUF). In a similar manner, Muggle-
ton (1996) and Cussens (1999) have upgraded
stochastic grammars toward stochastic logic pro-
grams. Sato (1995) has introduced probabilis-
tic distributional semantics for logic programs.
Taskar et al. (2002) have upgraded Markov net-
works toward relational Markov networks, and
Richardson and Domingos (2006) toward Markov
logic networks. Neville and Jensen (2004) have
extended dependency networks toward relational
dependency networks. Another research stream
has investigated logical and relational extensions
of Bayesian networks. It includes Poole’s in-
dependent choice logic (Poole 1993), Ngo and
Haddawy’s probabilistic logic programs (Ngo
and Haddawy 1997), Jäger’s relational Bayesian
networks (Jäger 1997), Koller, Getoor, and Pf-
effer’s probabilistic relational models (Getoor
2001; Pfeffer 2000), and Kersting and De Raedt’s
Bayesian logic programs (Kersting and De Raedt
2007).

The benefits of employing logical abstraction
and relations within statistical learning are many-
fold:

1. Relations among entities allow one to
use information about one entity to help
reach conclusions about other, related
entities.

2. Variables, that is, placeholders for entities al-
low one to make abstraction of specific enti-
ties.

3. Unification allows one to share information
among entities. Thus, instead of learning reg-
ularities for each single entity independently,
statistical relational learning aims at finding
general regularities among groups of entities.

4. The learned knowledge is often declarative
and compact, which makes it easier for people
to understand and to validate.

5. In many applications, there is a rich back-
ground theory available, which can efficiently
and elegantly be represented as a set of general
regularities. This is important because back-
ground knowledge may improve the quality
of learning as it focuses the learning on the
relevant patterns, that is, it restricts the search
space.

6. When learning a model from data, relational
and logical abstraction allow one to reuse
experience in that learning about one entity
improves the prediction for other entities; and
this may even generalize to objects that have
never been observed before.

Thus, relational and logical abstraction make
statistical learning more robust and efficient. This
has proven to be beneficial in many fascinating
real-world applications in citation analysis, web
mining, natural language processing, robotics,
bio- and chemo-informatics, electronic games,
and activity recognition.

Theory

Whereas most of the existing works on statistical
relational learning have started from a statistical
and probabilistic learning perspective and ex-
tended probabilistic formalisms with relational
aspects, statistical relational learning can ele-
gantly be introduced by starting from � inductive
logic programming (De Raedt 2008; Muggleton
and De Raedt 1994), which is often also called
multi-relational data mining (MRDM) (Džeroski
and Lavrač 2001). Inductive logic programming
is a research field at the intersection of ma-
chine learning and logic programming. It forms
a formal framework and has introduced practical
algorithms for inductively learning relational de-
scriptions (in the form of logic programs) from
examples and background knowledge. So, the
only difference to statistical relational learning
is that it does not explicitly deal with uncer-
tainty.

Essentially, there are only two changes to ap-
ply to inductive logic programming approaches in
order to arrive at statistical relational learning:

1. � clauses (i.e., logical formulae that can be
interpreted as rules; cf. below) are annotated
with probabilistic information such as condi-
tional probabilities; and

2. the covers relation (which states the conditions
under which a hypothesis considers an exam-
ple as positive) becomes probabilistic.

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
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A probabilistic covers relation softens the hard
covers relation employed in traditional inductive
logic programming and is defined as the proba-
bility of an example given the hypothesis and the
background theory.

Definition 1 (Probabilistic Covers Relation)
A probabilistic covers relation takes as arguments
an example e, a hypothesis H and possibly the
background theory B, and returns the probability
value P(e jH , B) between 0 and 1 of the example
e given H and B, that is, covers(e, H , B/ =
P(e jH , B).

It specifies the likelihood of the example given
the hypothesis and the background theory. Dif-
ferent choices of the probabilistic covers relation
lead to different statistical relational learning ap-
proaches; this is akin to the learning settings in
inductive logic programming.

Statistical Relational Languages
There is a multitude of different languages and
formalisms for statistical relational learning.
For an overview of these languages we refer
to Getoor and Taskar (2007) and De Raedt et al.
(2008). Here, we choose two formalisms that
are representatives of the two main streams in
statistical relational learning. First, we discuss
Markov logic (Richardson and Domingos
2006), which upgrades Markov network toward
first-order logic, and second, we discuss
ProbLog (De Raedt et al. 2007), which is a
probabilistic Prolog based on Sato’s distribution
semantics (Sato 1995). While Markov logic
is a typical example of knowledge-based
model construction, ProbLog is a probabilistic
programming language.

Case Study: Markov Logic Networks
Markov logic combines first-order logic with
�Markov networks. The idea is to view logical
formulae as soft constraints on the set of
possible worlds, that is, on the interpretations (an
interpretation is a set of facts). If an interpretation
does not satisfy a logical formula, it becomes
less probable, but not necessarily impossible as
in traditional logic. Hence, the more formulae
an interpretation satisfies, the more likely it

becomes. In a Markov logic network, this is
realized by associating a weight to each formula
that reflects how strong the constraint is. More
precisely, a Markov logic network consists of
a set of weighted clauses H D fc1; : : : ; cmg.
(Markov logic networks, in principle, also allow
one to use arbitrary logical formulae, not just
clauses. However, for reasons of simplicity, we
only employ clauses and make some further
simplifications.) The weights wi of the clauses
then specify the strength of the clausal constraint.

Example 1 Consider the following example
(Adapted from Richardson and Domingos 2006).
Friends & Smokers is a small Markov logic
network that computes the probability of a
person having lung cancer on the basis of her
friends smoking. This can be encoded using the
following weighted clauses:

1.5: cancer(P) smoking(P)
1.1: smoking(X)  friends(X,Y),

smoking(Y)
1.1: smoking(Y)  friends(X,Y),

smoking(X)

The first clause states the soft constraint that
smoking causes cancer. So, interpretations in
which persons that smoke have cancer are more
likely than those where they do not (under
the assumptions that other properties remain
constant). The second and third clauses state that
friends of smokers are typically also smokers.

A Markov logic network together with a Her-
brand domain (in the form of a set of constants
fd1; : : : ; dkg) then induces a grounded Markov
network, which defines a probability distribution
over the possible Herbrand interpretations.

The nodes, that is, the random variables in the
grounded network, are the atoms in the Herbrand
base, that is, the facts of the form p.d 01; : : : ; d

0
n

where p is a predicate or relation and the d 0i are
constants. Furthermore, for every ground instance
ci� of a clause ci in H , there will be an edge
between any pair of atoms a� , b� that occurs in
ci� . The Markov network obtained for the con-
stants anna and bob is shown in Fig. 2. To obtain
a probability distribution over the Herbrand inter-
pretations, we still need to define the potentials.

http://dx.doi.org/10.1007/978-1-4899-7687-1_515
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Statistical Relational
Learning, Fig. 2 The
Markov network for the
constants ann and bob
(Adapted from Richardson
and Domingos 2006)

fr(a,b)

fr(a,a) smok(a) smok(b) fr(b,b)

can(a)

fr(b,a)

can(b)

The probability distribution over interpretations
I is

P.I / D
1

Z

Y
cWclause

fc.I / (1)

where the fc are defined as

fc.I / D e
nc.I /wc (2)

and nc.I / denotes the number of substitutions
� for which c� is satisfied by I , and Z is a
normalization constant. The definition of a po-
tential as an exponential function of a weighted
feature of a clique is common in Markov net-
works; cf. � graphical models. The reason is that
the resulting probability distribution is easier to
manipulate.

Note that for different (Herbrand) domains,
different Markov networks will be produced.
Therefore, one can view Markov logic networks
as a kind of template for generating Markov
networks, and, hence, Markov logic is based on
knowledge-based model construction. Notice
also that Markov logic networks define a
probability distribution over interpretations,
and nicely separate the qualitative from the
quantitative component.

Case Study: ProbLog
Many formalisms do not explicitly encode a set
of conditional independency assumptions, as in

Bayesian or Markov networks, but rather extend
a (logic) programming language with probabilis-
tic choices. Stochastic logic programs (Cussens
2001; Muggleton 1996) directly upgrade stochas-
tic context-free grammars toward definite clause
logic, whereas Prism (Sato 1995), probabilis-
tic Horn abduction (PHA) (Poole 1993), and
the more recent independent choice logic (ICL)
(Poole 1997) specify probabilities on facts from
which further knowledge can be deduced. As a
simple representative of this stream of work, we
introduce the probabilistic Prolog called ProbLog
(De Raedt et al. 2007).

The key idea underlying Problog is that some
facts f for probabilistic predicates are annotated
with a probability value. This value indicates
the degree of belief, that is the probability, that
any ground instance f � of f is true. It is also
assumed that the f � are marginally independent.
The probabilistic facts are then augmented with a
set of definite clauses defining further predicates
(which should be disjoint from the probabilistic
ones). An example adapted from De Raedt et al.
(2007) is given below.

Example 2 Consider the facts

0.9: edge(a,c) 
0.7: edge(c,b) 
0.6: edge(d,c) 
0.9: edge(d,b) 

http://dx.doi.org/10.1007/978-1-4899-7687-1_119
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which specify that with probability 0.9 there is
an edge from a to c. Consider also the following
(simplified) definition of path/2.

path(X,Y)edge(X,Y) 
path(X,Y)edge(X,Z), path(Z,Y) 

One can now define a probability distribution
on (ground) proofs as follows. The probability of
a ground proof is the product of the probabilities
of the (ground) clauses (here, facts) used in the
proof. For instance, the only proof for the goal
 path(a,b) employs the facts edge(a,c) and
edge(c,b); these facts are marginally independent,
and hence the probability of the proof is 0:9�0:7.
The probabilistic facts used in a single proof are
sometimes called an explanation.

It is now tempting to define the probability of
a ground atom as the sum of the probabilities of
the proofs for that atom. However, this does not
work without additional restrictions, as shown in
the following example.

Example 3 The fact path(d,b) has two explana-
tions:

1. fedge(d,c), edge(c,b)g with probability
0:6 � 0:7 D 0:42, and

2. fedge(d,b)g with probability 0.9.

Summing the probabilities of these explana-
tions gives a value of 1.32, which is clearly
impossible.

The reason for this problem is that the differ-
ent explanations are not mutually exclusive, and
therefore their probabilities may not be summed.
The probability P (path(d,b) = true) is, however,
equal to the probability that a proof succeeds, that
is,

p.path.d,b/ D t rue/ D P Œ(e(d,c) ^ e(c,b))

_ e(d,b)�

which shows that computing the probability of
a derived ground fact reduces to computing the
probability of a boolean formula in disjunctive
normal form (DNF), where all random variables
are marginally independent of one another. Com-

puting the probability of such formulae is an NP-
hard problem, the disjoint-sum problem. Using
the inclusion-exclusion principle from set theory,
one can compute the probability as

p.path(d,b) D t rue/ D P Œ(e(d,c) ^ e(c,b))

_ e(d,b)�

D P (e(d,c) ^ e(c,b))

C P (e(d,b))

� P..e(d,c) ^ e(c,b))

^ e(d,b))

D 0:6 � 0:7C 0:9 � 0:6

� 0:7 � 0:9 D 0:942

There exist more effective ways to compute
the probability of such DNF formulae (De
Raedt et al. 2007), where binary decision
diagrams are employed to represent the DNF
formulae.

The above example shows how the probability
of a specific fact is defined and can be computed.
The distribution at the level of individual facts
(or goals) can easily be generalized to a possible
world semantics, specifying a probability distri-
bution on interpretations. It is formalized in the
distribution semantics of Sato (1995), which is
defined by starting from the set of all probabilis-
tic ground facts F for the given program. For
simplicity, we shall assume that this set is finite,
though Sato’s results also hold for the infinite
case. The distribution semantics then starts from a
probability distributionPF .S/ defined on subsets
S � F :

PF .S/ D
Y
f 2s

P.f /
Y
f 62s

.1 � P.f //: (3)

Each subset S is now interpreted as a set of log-
ical facts and combined with the definite clause
program R that specifies the logical part of the
probabilistic logic program. Any such combina-
tion S [ R possesses a unique least Herbrand
model M.S [ R/, which corresponds to a pos-
sible world. The probability of such a possible
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world is then the sum of the probabilities of the
subsets S yielding that possible world, that is,

PW .M/ D
X

s�F WM.S[R/DM

PF .S/ (4)

For instance, in the path example, there are 16
possible worlds, which can be obtained from
the 16 different truth assignments to the facts,
and whose probabilities can be computed using
Eq. (4). As for graphical models, the probability
of any logical formula can be computed from a
possible world semantics (specified here by PW /.

Because computing the probability of a fact
or goal under the distribution semantics is hard,
systems such as Prism (Sato 1995) and PHA
(Poole 1993) impose additional restrictions that
can be used to improve the efficiency of the
inference procedure. The key assumption is that
the explanations for a goal are mutually exclusive,
which overcomes the disjoint-sum problem. If the
different explanations of a goal do not overlap,
then its probability is simply the sum of the
probabilities of its explanations. This directly
follows from the inclusion-exclusion formulae as
under the exclusive-explanation assumption the
conjunctions (or intersections) are empty.

Learning
Essentially, any statistical relational approach can
be viewed as lifting a traditional inductive logic
programming setting by associating probabilistic
information to clauses and by replacing the de-
terministic coverage relation by a probabilistic
one. In contrast to traditional graphical models
such as Bayesian networks or Markov networks,
however, we can also employ “counterexamples”
for learning. Consider a simple kinship domain.
Assume rex is a male person. Consequently, he
cannot be the daughter of any other person,
say ann. Thus, daughter(rex,ann) can be listed
as a negative example although we will never
observe it. “Counterexamples” conflict with the
usual view on learning examples in statistical
learning.

In statistical learning, we seek to find that
hypothesis H�, which is most likely given the
learning examples:

H� D arg max
H
P.H jE/

D arg max
H

P.EjH/ �P.F /

P.E/

with P.E/ > 0:

Thus, examples E in traditional statistical
learning are always observable, that is,
P.E/ > 0. However, in statistical relational
learning, as in inductive logic programming,
we may also employ “counterexamples” such as
daughter(rex,ann), which have probability “0,”
and that actually never can be observed.

Definition 2 (SRL Problem) Given a set E D
Ep [ Ei of positive and negative examples Ep
and Ei (with Ep \ Ei D Ø) over some ex-
ample language LE , a probabilistic covers rela-
tion covers(e, H , B/ D P.e jH , B/, a proba-
bilistic logical language LH for hypotheses, and
a background theory B , find a hypothesis H�

in LH such that H� = argmaxH score(E, H ,
B/ and the following constraints hold: 8 ep 2
Ep : covers(ep , H�, B/ > 0 and 8 ei 2

Ei : covers(ei, H�, B/ = 0. The score is
some objective function, usually involving the
probabilistic covers relation of the observed ex-
amples such as the observed likelihood

Q
ep2Ep

covers.ep;H
�; B/ or some penalized variant

thereof.

This learning setting unifies inductive logic
programming and statistical learning in the fol-
lowing sense: using a deterministic covers rela-
tion (either 1 or 0), it yields the classical inductive
logic programming learning problem; sticking to
propositional logic and learning from positive ex-
amples, that is, P.E/ > 0, only yields traditional
statistical learning.

To come up with algorithms solving the SRL
problem, say for density estimation, one typically
distinguishes two subtasks because H D .L; �)
is essentially a logical theory L annotated with
probabilistic parameters �:

1. Parameter estimation where it is assumed that
the underlying logic program L is fixed, and
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the learning task consists of estimating the
parameters � that maximize the likelihood.

2. Structure learning where bothL and � have to
be learned from the data.

In the following paragraphs, we will sketch the
basic parameter estimation and structure learning
techniques, and illustrate them for each setting.

Parameter Estimation
The problem of parameter estimation is con-
cerned with estimating the values of the param-
eters � of a fixed probabilistic program H D

.L; �) that best explains the examples E. So, �
is a set of parameters and can be represented as
a vector. As already indicated above, to measure
the extent to which a model fits the data, one
usually employs the likelihood of the data, that is,
P.EjL, �), though other scores or variants could
be used as well.

When all examples are fully observable, max-
imum likelihood reduces to frequency counting.
In the presence of missing data, however, the
maximum likelihood estimate typically cannot
be written in closed form. It is a numerical op-
timization problem, and all known algorithms
involve nonlinear optimization. The most com-
monly adopted technique for probabilistic logic
learning is the expectation-maximization (EM)
algorithm (Dempster et al. 1977; McLachlan and
Krishnan 1997). EM is based on the observation
that learning would be easy (i.e., correspond
to frequency counting), if the values of all the
random variables would be known. Therefore,
it estimates these values, maximizes the likeli-
hood based on the estimates, and then iterates.
More specifically, EM assumes that the param-
eters have been initialized (e.g., at random) and
then iteratively performs the following two steps
until convergence:

(E-Step) On the basis of the observed data and
the present parameters of the model, it com-
putes a distribution over all possible comple-
tions of each partially observed data case.

(M-Step) Treating each completion as a fully
observed data case weighted by its probability,

it computes the improved parameter values
using (weighted) frequency counting.

The frequencies over the completions are called
the expected counts. Examples for parameter es-
timation of probabilistic relational models can be
found in Getoor and Taskar (2007) and De Raedt
et al. (2008).

Structure Learning
The problem is now to learn both the structure L
and the parameters � of the probabilistic program
H D .L; �) from data. Often, further infor-
mation is given as well. As in inductive logic
programming, the additional knowledge can take
various different forms, including a � language
bias that imposes restrictions on the syntax of L,
and an initial hypothesis (L, �) from which the
learning process can start.

Nearly all (score-based) approaches to struc-
ture learning perform a heuristic search through
the space of possible hypotheses. Typically, hill-
climbing or beam-search is applied until the hy-
pothesis satisfies the logical constraints and the
score(H , E/ is no longer improving. The steps
in the search-space are typically made using re-
finement operators, which make small, syntactic
modifications to the (underlying) logic program.

At this point, it is interesting to observe that
the logical constraints often require that the pos-
itive examples are covered in the logical sense.
For instance, when learning ProbLog programs
from entailment, the observed example clauses
must be entailed by the logic program. Thus, for
a probabilistic program H D .LH , �H / and
a background theory B D .LB , �B/ it holds
that 8ep 2 Ep : P.ejH;B/ > 0 if and only if
covers(e, LH ; LB/ D 1, where LH (respectively
LB/ is the underlying logic program (logical
background theory) and covers(e, LH ; LB/ is
the purely logical covers relation, which is either
0 or 1.

Applications

Applications of statistical relational learning can
be found in many areas such as web search

http://dx.doi.org/10.1007/978-1-4899-7687-1_440
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and mining, text mining, bioinformatics, natural
language processing, robotics, and social network
analysis, among others. Due to space restrictions,
we will only name a few of these exciting appli-
cations.

For instance, Getoor et al. (2001) have used
statistical relational models to estimate the result
size of complex database queries. Segal et al.
have employed probabilistic relational models to
cluster gene expression data (Segal et al. 2001)
and to discover cellular processes from gene
expression data (Segal et al. 2003). Getoor et al.
have used probabilistic relational models to un-
derstand tuberculosis epidemiology (Getoor et al.
2004). McGovern et al. (2003) have estimated
probabilistic relational trees to discover publica-
tion patterns in high-energy physics. Probabilistic
relational trees have also been used to learn
to rank brokers with respect to the probability
that they would commit a serious violation of
securities regulations in the near future (Neville
et al. 2005). Anguelov et al. (2005) have used
relational Markov networks for segmentation of
3D scan data. Markov networks have also been
used to compactly represent object maps and to
estimate trajectories of people (Limketkai et al.
2005). Kersting et al. have employed relational
hidden Markov models for protein fold recogni-
tion (Kersting et al. 2006). Poon and Domingos
(2008) have shown how to use Markov logic to
perform joint unsupervised coreference resolu-
tion. Xu et al. have used nonparametric relational
models for analyzing social networks (Xu et al.
2010). Kersting and Xu (2009) have used rela-
tional Gaussian processes for learning to rank
search results. Recently, Poon and Domingos
(2009) have shown how to perform unsupervised
semantic parsing using Markov logic networks.

Future Directions

We have provided an overview of the new and
exciting area of statistical relational learning.
It combines principles of probabilistic reason-
ing, logical representation, and statistical learning
into a coherent whole. The techniques of proba-
bilistic logic learning were analyzed starting from

an inductive logic programming perspective by
lifting the coverage relation to a probabilistic one
and annotating the logical formulae. Different
choices of the probabilistic coverage relation lead
to different representational formalisms, two of
which were introduced.

Statistical relational learning is an active area
of research within the machine learning and the
artificial intelligence community. First, there is
the issue of efficient inference and learning. Most
current inference algorithms for statistical rela-
tional models require explicit state enumeration,
which is often impractical: the number of states
grows very quickly with the number of domain
objects and relations. Lifted inference algorithms
seek to avoid explicit state enumeration and di-
rectly work at the level of groups of atoms,
eliminating all the instantiations of a set of atoms
in a single step, in some cases independently
of the number of these instantiations. Despite
various approaches to lifted inference (de Salvo
Braz et al. 2005; Jaimovich et al. 2007; Kersting
et al. 2009; Kisynski and Poole 2009; Milch et al.
2008; Poole 2003; Sen et al. 2008; Singla and
Domingos 2008), it largely remains a challenging
problem. For what concerns learning, advanced
principles of both statistical learning and log-
ical and relational learning can be employed
for learning the parameters and the structure of
probabilistic logics such as statistical predicate
invention (Kok and Domingos 2007) and boost-
ing (Gutmann and Kersting 2006). Recently, peo-
ple started to investigate learning from weighted
examples (see e.g., Chen et al. 2008) and to link
statistical relational learning to support vector
machines (see e.g., Passerini et al. 2006). Second,
there is the issue of closed-world versus open-
world assumption that is, do we know how many
objects there are (see e.g., Milch et al. 2005).
Third, there is interest in dealing with continuous
values within statistical relational learning (see
e.g., Chu et al. 2006; Silva et al. 2007; Wang
and Domingos 2008; Xu et al. 2009). This is
mainly motivated by the fact that most real-world
applications actually contain continuous values.
Nonparametric Bayesian approaches to statistical
relational learning have also been developed (see
e.g., Kemp et al. 2006; Xu et al. 2006; Yu and
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Chu 2007; Yu et al. 2006), to overcome the typ-
ically strong parametric assumptions underlying
current statistical relational learning. People have
also started to investigate relational variants of
classical statistical learning tasks such as matrix
factorizations (see e.g., Singh and Gordon 2008).
Finally, while statistical relational learning ap-
proaches have been used successfully in a number
of applications, they do not yet cope with the
dynamic environments in an effective way.
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Stochastic Finite Learning

Thomas Zeugmann
Hokkaido University, Sapporo, Japan

Motivation and Background

Assume that we are given a concept class C and
should design a learner for it. Next, suppose we
already know or could prove C not to be learnable
in the model of �PAC learning. But it can be
shown that C is learnable within Gold’s (1967)
model of � inductive inference or learning in the
limit. Thus, we can design a learner behaving
as follows. When fed any of the data sequences
allowed in this model, it converges in the limit
to a hypothesis correctly describing the target
concept. Nothing more is known. Let M be any
fixed learner. If .dn/n�0 is any data sequence,
then the stage of convergence is the least integer
m such that M.dm/ D M.dn/ for all n � m

provided such an n exists (and infinite, other-

wise). In general, it is undecidable whether or
not the learner has already reached the stage
of convergence, but even if it is decidable for
a particular concept class, it may be practically
infeasible to do so. This uncertainty may not be
tolerable in many applications.

When we tried to overcome this uncertainty,
the idea of stochastic finite learning emerged.
Clearly, in general nothing can be done, since
in Gold’s (1967) model the learner has to learn
from any data sequence. So for every concept
that needs more than one datum to converge, one
can easily construct a sequence where the first
datum is repeated very often and where therefore
the learner does not find the right hypothesis
within the given bound. However, such data se-
quences seem unnatural. Therefore, we looked at
data sequences that are generated with respect
to some probability distribution taken from a
prespecified class of probability distributions and
computed the expected total learning time, i.e.,
the expected time until the learner reaches the
stage of convergence (cf. Erlebach et al. 2001;
Zeugmann 1998). Clearly, one is then also in-
terested in knowing how often the expected total
learning time is exceeded. In general, Markov’s
inequality can be applied to obtain the relevant
tail bounds. However, if the learner is known to
be rearrangement-independent and conservative,
then we always get exponentially shrinking tail
bounds (cf. Rossmanith and Zeugmann 2001). A
learner is said to be rearrangement-independent
if its output depends exclusively on the range and
length of its input (but not on the order) (cf., e.g.,
Lange and Zeugmann (1996) and the references
therein). Furthermore, a learner is conservative,
if it exclusively performs mind changes that can
be justified by an inconsistency of the abandoned
hypothesis with the data received so far (see
Angluin (1980b) for a formal definition).

Combining these ideas results in stochastic fi-
nite learning. A stochastic finite learner is succes-
sively fed data about the target concept. Note that
these data are generated randomly with respect to
one of the probability distributions from the class
of underlying probability distributions. Addition-
ally, the learner takes a confidence parameter ı
as input. But in contrast to learning in the limit,

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
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the learner itself decides how many examples it
wants to read. Then it computes a hypothesis,
outputs it, and stops. The hypothesis output is
correct for the target with probability at least
1 � ı.

The description given above explains how
it works, but not why it does. Intuitively, the
stochastic finite learner simulates the limit learner
until an upper bound for twice the expected total
number of examples needed until convergence
has been met. Assuming this to be true, by
Markov’s inequality the limit learner has now
converged with probability 1=2. All what is left
is to decrease the probability of failure. This can
be done by using again Markov’s inequality, i.e.,
increasing the sample complexity by a factor of
1=ı results in a confidence of 1 � ı for having
reached the stage of convergence.

Note that the stochastic finite learner has to
calculate an upper bound for the stage of con-
vergence. This is precisely the point where we
need the parameterization of the class D of un-
derlying probability distributions. Then a bit of
prior knowledge must be provided in the form
of suitable upper and/or lower bounds for the
parameters involved. A more serious difficulty is
to incorporate the unknown target concept into
this estimate. This step depends on the concrete
learning problem on hand and requires some
extra effort.

It should also be noted that our approach may
be beneficial even in case that the considered
concept class is PAC learnable.

Definition

Let D be a set of probability distributions on the
learning domain, let C be a concept class, H a
hypothesis space for C, and let ı 2 .0; 1/. The
pair .C;D/ is said to be stochastically finitely
learnable with ı-confidence with respect to H
iff there is a learner M that for every c 2 C
and every D 2 D performs as follows. Given
any random data sequence � for c generated
according toD, M stops after having seen a finite
number of examples and outputs a single hypoth-
esis h 2 H. With probability at least 1 � ı (with

respect to distribution D), h has to be correct,
i.e., c D h.

If stochastic finite learning can be achieved
with ı-confidence for every ı > 0, then we say
that .C;D/ can be learned stochastically finite
with high confidence.

Detail

Note that there are subtle differences between
our model and PAC learning. By its definition,
stochastic finite learning is not completely dis-
tribution independent. A bit of additional knowl-
edge concerning the underlying probability distri-
butions is required. Thus, from that perspective,
stochastic finite learning is weaker than the PAC
model. On the other hand, we do not measure
the quality of the hypothesis with respect to the
underlying probability distribution. Instead, we
require the hypothesis computed to be exactly
correct with high probability. Note that exact
identification with high confidence has been con-
sidered within the PAC paradigm, too (cf., e.g.,
Goldman et al. 1993). Conversely, we also can
easily relax the requirement to learn probably
exactly correct but whenever possible we shall
not do it.

Furthermore, in the uniform PAC model as
introduced in Valiant (1984), the sample com-
plexity depends exclusively on the VC dimen-
sion of the target concept class and the error
and confidence parameters " and ı, respectively.
This model has been generalized by allowing the
sample size to depend on the concept complexity,
too (cf., e.g., Blumer et al. 1989; Haussler et al.
1991). Provided no upper bound for the concept
complexity of the target concept is given, such
PAC learners decide themselves how many exam-
ples they wish to read (cf. Haussler et al. 1991).
This feature is also adopted to our setting of
stochastic finite learning. However, all variants of
efficient �PAC learning we are aware of require
that all hypotheses from the relevant hypothe-
sis space are uniformly polynomially evaluable.
Though this requirement may be necessary in
some cases to achieve (efficient) stochastic finite

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
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learning, it is not necessary in general as we shall
see below.

In the following, we provide two sample ap-
plications of stochastic finite learning. We always
choose as hypothesis space the concept class C
itself.

Learning Monomials

Let Xn D f0; 1gn be the learning domain, let
Ln D fx1; Nx1; x2; Nx2; : : : ; xn; Nxng (set of literals)
and consider the class Cn of all concepts describ-
able by a conjunction of literals. As usual, we
refer to any conjunction of literals as a monomial.
A monomialm describes a concept c � Xn in the
obvious way: the concept contains exactly those
binary vectors for which the monomial evaluates
to 1. For a monomial m, let #.m/ denote its
length, i.e., the number of literals in it.

The basic ingredient to the stochastic finite
learner is Haussler’s (1987) Wholist algorithm,
and thus the main emphasis is on the resulting
complexity. The Wholist algorithm can also
be used to achieve � PAC learning of the
class Cn, and the resulting sample complexity
is O.1=" � .n C ln.1=ı/// for all "; ı 2 .0; 1�.
Since the Wholist algorithm learns from positive
examples only, it is meaningful to study the
learnability of Cn from positive examples
only. So, the stage of convergence is not
decidable.

Since the Wholist algorithm immediately con-
verges for the empty concept, we exclude it from
our considerations. That is, we consider concepts
c 2 Cn described by a monomial m D

V#.m/
jD1 `ij

such that k D k.m/ D n�#.m/ > 0. A literal not
contained inm is said to be irrelevant. Bit i is said
to be irrelevant for monomial m if neither xi nor
Nxi appears in m. There are 2k positive examples
for c. For the sake of presentation, we assume
these examples to be binomially distributed with
parameter p. So, in a random positive example,
all entries corresponding to irrelevant bits are
selected independently to one another. With some
probability p, this will be a 1, and with probabil-
ity 1�p, this will be a 0. Only distributions where
0 < p < 1 are considered, since otherwise exact

identification is impossible. Now, one can show
that the expected number of examples needed
by the Wholist algorithm until convergence is
bounded by dlog k.m/e C 
 C 2, where  WD

min
n

1
1�p ;

1
p

o
and 
 WD max

n
p

1�p ;
1�p
p

o
.

Let CON denote a random variable for the
stage of convergence. Since the Wholist algo-
rithm is rearrangement-independent and conser-
vative, we can conclude (cf. Rossmanith and
Zeugmann 2001)

Pr.CON > 2 t �EŒCON�/ � 2�t

for all natural numbers t � 1 : (1)

Finally, in order to obtain a stochastic fi-
nite learner, we reasonably assume that prior
knowledge is provided by parameters plow and
pup such that plow � p � pup for the true
parameter p. Binomial distributions fulfilling this
requirement are called .plow; pup/-admissible dis-
tributions. Let DnŒplow; pup� denote the set of
such distributions on Xn. Then one can show Let
0 < plow � pup < 1 and  WD minf 1

1�plow
; 1
pup
g.

Then .Cn;DnŒplow; pup�/ is stochastically finitely
learnable with high confidence from positive ex-
amples. To achieve ı-confidence no more than
O
�
log2 1=ı � log n

�
, many examples are neces-

sary.
Therefore, we have achieved an exponential

improvement on the number of examples needed
for learning (compared to the PAC bound dis-
played above), and, in addition, our stochastic
finite learner exactly identifies the target. Note
that this result is due to Reischuk and Zeugmann;
however, we refer the reader to Zeugmann (2006)
for the relevant proofs.

The results obtained for learnability from pos-
itive examples only can be extended mutatis mu-
tandis to the case when the learner is fed positive
and negative examples (cf. Zeugmann (2006) for
details).

Learning Pattern Languages

The pattern languages have been introduced
by Angluin (1980a) and can be informally

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
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defined as follows. Let † D f0; 1; : : : g be
any finite alphabet containing at least two
elements. Let X D fx0; x1; : : :g be a countably
infinite set of variables such that † \ X D ;.
Patterns are nonempty strings over † [ X , e.g.,
01; 0x0111; 1x0x00x1x2x0 are patterns. The
length of a string s 2 †� and of a pattern
� is denoted by jsj and j�j, respectively. A
pattern � is in canonical form provided that
if k is the number of different variables in �

then the variables occurring in � are precisely
x0; : : : ; xk�1. Moreover, for every j with
0 � j < k � 1, the leftmost occurrence of xj in
� is left to the leftmost occurrence of xjC1. The
examples given above are patterns in canonical
form.

If k is the number of different variables in � ,
then we refer to � as to a k-variable pattern.
For example, x0xx is a one-variable pattern,
and x010x1x0 is a two-variable pattern. If � is
a pattern, then the language generated by � is
the set of all strings that can be obtained from
� by substituting a nonnull element si 2 †�

for each occurrence of the variable symbol xi
in � , for all i � 0. We use L.�/ to denote
the language generated by pattern � . So, 1011,
1001010 belong to L.x0xx/ (by substituting 1
and 10 for x, respectively) and 010110 is an
element of L.x010x1x0/ (by substituting 0 for x0

and 11 for x1). Note that even the class of all one-
variable patterns has infinite �VC dimension (cf.
Mitchell et al. 1999).

Reischuk and Zeugmann (2000) designed
a stochastic finite learner for the class of all
one-variable pattern languages that runs in time
O.j�j log.1=ı// for all meaningful distributions
and learns from positive data only. That is, all
data fed to the learner belong to the target
pattern language. Furthermore, by meaningful
distribution essentially the following is meant.
The expected length of an example should be
finite and the distribution should allow to learn
the target pattern. This is then expressed by
fixing some suitable parameters. It should be
noted that the algorithm is highly practical, and
a modification of it also works for the case that
empty substitutions are allowed. Though this
seems to be a minor modification, it is not. The

learnability results for pattern languages resulting
from a definition that also allows for empty
substitutions considerably differ from the case,
where only nonnull substitutions are admitted
(cf. Reidenbach 2006, 2008).

For the class of all pattern languages, one can
also provide a stochastic finite learner identifying
the whole class from positive data. In order to
arrive at a suitable class of distributions, essen-
tially three requirements are made. The first one
is the same as in the one-variable case, i.e., the
expected length EŒƒ� of a generated string should
be finite. Second, the class of distributions is
restricted to regular product distributions, i.e.,
for all variables the substitutions are identically
distributed.

Third, two parameters ˛ and ˇ are introduced.
The parameter ˛ is the probability that a
string of length 1 is substituted, and ˇ is the
conditional probability that two random strings
that get substituted into � are identical under
the condition that both have length 1. These
two parameters ensure that the target pattern
language is learnable at all. The stochastic finite
learner is then using as a priori knowledge a
lower bound ˛� for ˛ and an upper bound ˇ�

for ˇ. The basic ingredient to this stochastic
finite learner is Lange and Wiehagen’s (1991)
pattern language learning algorithm. Rossmanith
and Zeugmann’s (2001) stochastic finite
learner for the pattern languages runs in time
O
�
.1=˛k�/EŒƒ� log1=ˇ�

.k/ log2.1=ı/
�
, where

k is the number of different variables in the
target pattern. So, with increasing k it becomes
impractical.

Note that the two stochastic finite learners for
the pattern languages can compute the expected
stage of convergence, since the first string seen
provides an upper bound for the length of the
target pattern.

For further information, we refer the reader
to Zeugmann (2006) and the references therein.
More research is needed to explore the potential
of stochastic finite learning. Such investigations
should extend the learnable classes, should study
the incorporation of noise, and should explore
further possible classes of meaningful probability
distributions.

http://dx.doi.org/10.1007/978-1-4899-7687-1_881
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Stopping Criteria

� Pre-pruning

Stratified Cross Validation

Stratified Cross Validation is a form of � cross
validation in which the class distribution is kept
as close as possible to being the same across all
folds.

Stream Classification

Jerzy Stefanowski and Dariusz Brzezinski
Institute of Computing Science, Poznan
University of Technology, Poznan, Poland

Abstract

Compared to batch learning from static data,
constructing classifiers from data streams
implies new requirements for algorithms, such
as constraints on memory usage, restricted
processing time, and one scan of incoming
examples. Additionally, streams classifiers
have to adapt to concept drifts. The entry
discusses the following stream classification
issues: data stream specific requirements,
processing schemes, categorization of concept
drifts, classifier evaluation criteria and
procedures, forgetting mechanisms, change
detection methods, main algorithms for
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supervised learning of single classifiers
and ensembles, open problems, areas of
application.

Definition

Stream classification is a variant of incremental
learning of classifiers that has to satisfy require-
ments specific for massive streams of data: re-
strictive processing time, limited memory, and
one scan of incoming examples. Additionally,
stream classifiers often have to be adaptive, as
they usually act in dynamic, non-stationary en-
vironments where data and target concepts can
change over time. To fulfill these requirements,
new solutions include dedicated data manage-
ment and forgetting mechanisms, concept drift
detectors that monitor the underlying changes
in the stream, effective online single classifiers,
and adaptive ensembles that continuously react to
changes in the stream.

Motivation and Background

In many data-intensive applications, like sensor
networks, traffic control, market analysis, Web
user tracking, and social media, massive volumes
of data are continuously generated in the form of
data streams. A data stream is a potentially un-
bounded, ordered sequence of data items, which
arrive continuously at high speeds. These data
elements can be simple attribute-value pairs like
relational database tuples or more complex struc-
tures such as graphs.

The main characteristics of streams include:

• continuous flow (elements arrive one after
another),

• huge data volumes (possibly of an infinite
length),

• rapid arrival rate (relatively high with respect
to processing power of the system),

• susceptibility to change (data distributions
generating examples may change on the fly).

Due to the above characteristics, learning from
data streams differs from � batch learning, where
data are stored in finite, persistent data reposi-
tories. The main dissimilarities include the se-
quential nature of the data, massive volumes, pro-
cessing speed restrictions, and the fact that data
elements cannot be accessed multiple times as it
is in the case of learning from static repositories.
Moreover, contrary to � online learning, stream
classification does not assume adversarial actions
from the instance generating process, but rather
focuses on computational restrictions.

One of the most widely studied tasks in
data stream mining is � supervised classifica-
tion. Apart from the aforementioned general
difficulties connected with learning from
streams, classification is also often performed
in non-stationary environments, where the data
distribution and target concepts can change
over time. This phenomenon, called � concept
drift, deteriorates the predictive accuracy of
classifiers as the instances they were trained on
differ from the current data. Typical examples of
real-life concept drifts include content changes
in unwanted emails in spam categorization or
evolving customer preferences.

Several researchers imply the following
requirements on algorithms learning classifiers
from streams (Bifet et al. 2010):

1. Process one example at a time and inspect it
only once.

2. Use a limited amount of memory.
3. Be ready to predict at any time.
4. Be able to react to concept drift in case of

evolving data streams.

Typical batch learning algorithms for super-
vised classification are not capable of fulfill-
ing all of the listed data stream requirements.
� Incremental learning is also insufficient, as it
does not meet tight computational demands and
does not tackle concept drift. Therefore, several
new learning algorithms have been introduced.
Surveys on stream classification, such as Ditzler
et al. (2015), Gama (2010), and Kuncheva (2004),
showcase research on using sliding windows to
manage memory and provide a forgetting mech-

http://dx.doi.org/10.1007/978-1-4899-7687-1_58
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
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anism, sampling techniques, drift detectors, and
new online algorithms.

Structure of the Learning System

Stream classification can be formalized as
follows. Learning instances from a stream S
appear incrementally as a sequence of labeled
� examples fxt ; ytg for t D 1; 2; : : : ; T , where x
is a vector of � attribute values and y is a � class
label .y 2 fK1; : : : ; Klg/. A new example xt

is classified by a classifier C , which predicts
its class label. Here, we consider a completely
supervised framework where after some time the
true class label yt is available and can be used to
update the classifier.

Examples from the data stream can be pro-
vided either online, i.e., instance by instance,
or in portions (blocks). In the first approach,
presented in Fig. 1, algorithms process single
examples appearing one by one in consecutive
moments in time, while in the other approach,
presented in Fig. 2, examples are available only
in larger sets called data blocks (or data chunks)
B1; B2; : : : ; Bn, where n denotes the last element
of the stream up to the current timepoint. Blocks
are usually of equal size and the construction,
evaluation, or updating of classifiers is done when

all examples from a new block are available.
This distinction also refers to the availability of
class labels. For instance, in some problems data
elements are naturally accumulated through some
time and labeled in blocks. However, with class
labels appearing online with single instances,
algorithms have the possibility of reacting to
concept drift much faster than in block-based
environments.

Two basic models of data streams are consid-
ered: stationary, where examples are drawn from
a fixed although unknown probability distribu-
tion, and non-stationary, where data can evolve
over time. As process changes occur in many
real-world problems (Zliobaite et al. 2015), most
stream classification algorithms are capable of
predicting, detecting, and adapting to concept
drifts.

Concept drift can be defined from the perspec-
tive of hidden data contexts, which are unknown
to the learning algorithm. However, in case of
evolving streams, a more probabilistic view on
the matter can be presented (Gama 2010). In each
point in time t , every example is generated by a
source with a joint distribution P t .x; y/ over the
data. Concepts in data are stable if all examples
are generated by the same distribution. If for two
distinct points in time t and tCΔ an x exists such
that P t .x; y/ ¤ P tCΔ.x; y/, then concept drift

X0 X1 X2

...
Xt

Test model on x1 Test model on x2 Test model on xt

Update model with xtUpdate model with x2Update model with x1Train model with x0

Stream Classification, Fig. 1 Online processing

B0 B1

B1

B2

...

Bn

Train model with B0 Update model with B1 Update model with B2 Update model with Bn

Test model on B2
Test model on Bn

Stream Classification, Fig. 2 Block processing

http://dx.doi.org/10.1007/978-1-4899-7687-1_100156
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_940
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occurs. Although different component probabili-
ties of P t .x; y/ may change (Gama et al. 2014),
in case of supervised classification, one is mainly
interested in real drift, i.e., changes in posterior
probabilities of classes P.yjx/.

Usually two basic types of concept drifts are
distinguished: sudden (abrupt) and gradual. The
first type of drift occurs when at a moment
in time t , the source data distribution in S t is
suddenly replaced by a different distribution in
S tC1. Gradual drifts are not so radical and they
are connected with a slower rate of changes that
can be noticed while observing a data stream
for a longer period of time. In some domains,
situations when previous concepts reappear after
some time are separately treated and analyzed as
recurring drifts (Gomes et al. 2014). Moreover,
data streams can contain outliers and � noise,
but these are not considered as concept drifts
and stream classifiers should be robust to these
random changes.

Evaluation

Stream classification requirements make process-
ing time, memory usage, predictive performance,
and the ability to adapt key evaluation criteria.

The time required to process a single instance
and the average memory usage should remain
constant throughout the life of a stream classifier.
That is why training and testing time as well as
model size have to be periodically monitored dur-
ing stream classification. Additionally, processor
time and memory are also considered key costs
when deploying a stream classification system
and are sometimes measured in a single metric
called RAM hours.

The predictive performance of stream classi-
fiers is usually assessed using evaluation mea-
sures known from static supervised classification,
such as � accuracy or � error rate. However, con-
trary to batch learning scenarios, it is assumed
that due to the size and speed of data streams,
repeated runs over the data are not necessary
to estimate these measures on labeled testing
examples. Due to their computational costs, re-
sampling techniques such as � cross-validation

or � bootstrapping are deemed too expensive for
streams. As a result, simpler error-estimation pro-
cedures are used, yet ones that build a picture of
performance over time.

One of such evaluation procedures involves
using a � holdout test set to periodically evaluate
the classifier’s performance. An alternate scheme
of estimating the performance of stream classi-
fiers involves interleaving testing with training.
Each individual example is first used to test
the classifier before it is used for training (see
Fig. 1). This evaluation procedure, often called
test-then-train, has the advantage that it makes
maximum use of the available data. A simi-
lar procedure of interleaving testing with train-
ing can also be performed with blocks of ex-
amples instead of single instances (see Fig. 2).
However, for evolving streams the prequential
evaluation procedure is suggested (Gama 2010).
The term prequential (blend of predictive and
sequential) stems from online learning and is
used in data stream mining literature to denote
algorithms that base their functioning only on the
most recent data rather than the entire stream.
Such a procedure highlights the current rather
than overall performance and, as a result, show-
cases changes in the stream more clearly, which
is especially important for drift detection. All
three of the aforementioned evaluation proce-
dures (holdout, test-then-train, prequential) are
usually used to periodically calculate a selected
metric, e.g., accuracy, and plot its value creating
a line chart depicting classifier performance over
time.

Finally, an important criterion when compar-
ing stream classifiers is their ability to react to
various types of concept changes. Adaptability
can be evaluated by comparing drift reaction
times. This is done by measuring the time be-
tween the start of a drift and the moment when
the tested classifier’s accuracy recovers to a level
from before the drift. More elaborate methods
of assessing the classifier’s ability to adapt in-
clude recovery analysis and controlled permuta-
tions (Krempl et al. 2014). Nevertheless, in order
to calculate reaction times and other adaptability
measures, usually a human expert needs to de-
termine moments when a drift starts and when

http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_977
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
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a classifier recovers from it. Alternately, such
evaluations are carried out with synthetic data
generators.

Algorithms

The simplest categorization of algorithms for
learning stream classifiers makes a distinction
between single classifiers and ensembles. Addi-
tionally, from the perspective of learning from
drifting environments, most of researchers distin-
guish active approaches, which trigger changes
in classifiers when drifts are detected, and pas-
sive approaches, which continuously update the
classifier regardless of whether drifts occur in the
data stream or not (Gama et al. 2014). We discuss
algorithms from the point of view of both of these
taxonomies.

Data Management and Forgetting
Mechanisms
Many approaches to dealing with time-changing
streams involve the use of some sort of data
management or forgetting mechanism. Data man-
agement strategies specify which data is used
for learning, while forgetting strategies specify
how old data are discarded. Both mechanisms are
necessary to meet time and memory requirements
posed by data streams and serve as a way of
reacting to drifts by eliminating those examples
that come from an old concept.

Online classifiers decide if an example will be
included in the learning model on a per-instance
basis. Such an approach promotes gradual adap-
tation to evolving concepts mainly by continu-
ously updating the model with new examples.
As an alternative, several classifiers apply sliding
windows to keep the classifier consistent only
with the most recent data. As sliding windows
encompass a larger set of examples, they can
be used to periodically build classifiers by con-
ventional batch algorithms. From this point of
view, this data management mechanism can be
viewed as a general approach to transforming
batch learners into classifiers for concept-drifting
data streams.

The basic windowing algorithm is straight-
forward. Each example updates the window and
later the classifier is updated by that window. The
key part of this algorithm lies in the definition
of the window, i.e., in the way it models the for-
getting process. In the simplest approach, sliding
windows are of fixed size and include only the
most recent examples from the data stream. With
each new data point, the oldest example that does
not fit in the window is discarded. More complex
approaches vary the window size depending on,
e.g., the indications of a drift detector (Bifet and
Gavaldà 2007).

Sliding windows are also one of the most
popular forgetting mechanisms – examples that
fall outside of the window are instantly excluded
from the model. From this perspective, two basic
types of windows are defined: sequence based,
where the size of a window is characterized by the
number of instances, and timestamp based, where
the size is defined by duration time.

There are two common alternatives to
forgetting using sliding windows: sampling
and fading factors. The first alternative aims
at summarizing the characteristics of the data
stream over a long period of time using a limited
number of examples. One of the best known
data stream sampling algorithms is reservoir
sampling, which keeps a fixed-size sample
of the stream that is updated with randomly
selected instances (Aggarwal 2007). Fading
factors, on the other hand, provide a way of
gradually forgetting examples. This is usually
done with a decay function that assigns a weight
to each example in the entire stream or a large
window. Older examples receive smaller weights
and are gradually treated as less important
by the learner. Popular fading factors include
linear, exponential, polynomial, and chordal
functions.

Drift Detectors
Apart from sliding windows, another group of
techniques that allow to construct a stream clas-
sifier are drift detectors. Their task is to detect
concept drift and alarm a base learner that its
classifier should be rebuilt or updated. For exam-
ple, when a detector signals a sudden change, an
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existing classifier can be discarded and replaced
by a new one trained only on the most recent
data.

Drift detectors are usually implemented us-
ing statistical tests based on sequential analysis,
process control charts, or monitoring differences
between two distributions. Detectors based on
sequential analysis check whether the classifi-
cation error calculated on the most recent in-
stances is significantly different from its value
calculated for range of older instances. Exam-
ples of sequential tests include CUSUM and the
Page-Hinkley test (Gama 2010). Drift detectors
based on control charts take inspiration from
statistical techniques used in quality control dur-
ing product manufacturing. In these approaches,
each prediction a classifier makes is treated as a
Bernoulli trail. Then, the number of classification
errors can be modeled with a Binomial distribu-
tion, which in turn can be tested for significantly
improbable changes. Examples from this group
include algorithms such as DDM, EDDM, and
EWMA (Gama et al. 2014). Finally, several de-
tection methods use two subsets of the stream: a
reference window and a sliding window of the
most recent examples. If the distributions over
these two windows are significantly different, a
change is signaled, suggesting that only examples
from the sliding window should be used to create
a new model.

Single Classifiers
First proposals of stream classifiers concentrated
on processing massive stationary data sets in
constant time per example. Decision trees were
one of the first algorithms to be adapted to meet
these requirements using the Hoeffding bound.
This bound states that with probability 1 � ı,
the true mean of a random variable of range R
will not differ from the estimated mean after n
independent observations by more than:

	 D

r
R2ln.1=ı/

2n
: (1)

Using the Hoeffding bound, Domingos and
Hulten (2000) proposed a classifier called very
fast decision tree (VFDT). This algorithm in-

crementally induces a tree from a massive data
stream, without the need for storing examples
after they have been used to update the tree. Its
key idea is the selection of the split attribute,
which is realized differently than in static trees
(e.g., C4.5). Instead of selecting the best attribute
(in terms of a split evaluation function) after
viewing all the examples, VFDT uses the Hoeffd-
ing bound to calculate the number of examples
necessary to select the right split node with prob-
ability 1 � ı. From the theoretical point of view,
recent studies have shown that other bounds, as
the �McDiarmid inequality, are more suitable
depending on the assumptions made about the
distribution of values of the split evaluation func-
tion.

Many enhancements to the basic VFDT al-
gorithm, often called the Hoeffding tree, have
been proposed. They include methods of limiting
memory usage, the use of alternative bounds
which requires less examples for each split node,
approaches to dealing with numerical attributes,
pruning mechanisms, and the use of sliding win-
dows or drift detectors to adapt the algorithm
to non-stationary settings (Gama 2010). Never-
theless, the VFDT algorithm paved the way for
many other learning algorithms that use the Ho-
effding bound to incrementally process massive
datasets (Ditzler et al. 2015).

Several traditional incremental classifiers
were also adapted to computational and concept
drift requirements. An illustrative example could
be learning neural networks. By abandoning the
epoch protocol and presenting examples in a
single pass, neural networks can be adapted to
changing data streams. Bayesian methods can
also learn incrementally and require constant
memory. To add a forgetting mechanism to
this group of algorithms, sliding windows
are usually employed to “unlearn” the oldest
examples. Similarly, nearest neighbor classifiers
are naturally transformed to incremental versions
with different techniques for selecting the
limited subset of the most “useful” examples
for accurate predictions. Rule-based algorithms
were also adjusted to data stream environments,
in fact, FLORA algorithms developed by Kubat
and Widmer were one of the first classifiers

http://dx.doi.org/10.1007/978-1-4899-7687-1_521
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to cope with concept drift (Deckert 2013).
Other algorithms use a structure similar to a
decision tree to create rules and rule-specific drift
detectors to react to changes (Kosina and Gama
2015).

Ensembles
�Ensembles are easily adapted to non-stationary
data streams. Due to their modular construction,
they are capable of incorporating new data el-
ements by introducing a new component into
the ensemble, updating existing component clas-
sifiers, or changing weights in the aggregation
phase. Ensembles are usually categorized into
block-based and online approaches.

Most block-based ensembles periodically
evaluate component classifiers with the newest
data block and substitute the worst ensemble
member with a new (candidate) classifier.
Additionally, practically all proposed approaches
work with fixed-sized blocks. A generic
block-based ensemble scheme is presented in
Algorithm 1.

For each block Bi , the weights of current
component classifiers Cj 2 E are calculated by
a quality measure Q./, which depends on the
particular algorithm. For instance, in Accuracy
Weighted Ensemble (AWE), Q./ is realized as a
version of the mean square error of the compo-
nent classifier Cj calculated on the recent block
Bi , which is compared to the error of a random

Algorithm 1 Generic block-based ensemble
Input: S, data stream of examples partitioned into
blocks of size d ; k, number of ensemble members; Q./,
classifier quality measure;
Output: E , ensemble of k weighted classifiers

1: for all blocks Bi 2 S do
2: build and weight candidate classifier Cc using Bi

andQ./;
3: weight all classifiers Cj in ensemble E using Bi

andQ./;
4: if jEj < k then
5: E  E [ fCcg;
6: else if 9j WQ.Cc/ > Q.Cj / then
7: replace weakest ensemble member with Cc ;
8: end if
9: end for

classifier on the same block (Wang et al. 2003). In
addition to component re-weighting, a candidate
classifier Cc is built from the recent block Bi
and added to the ensemble if the ensemble’s
size is not exceeded. If the ensemble is full, the
candidate classifier Cc substitutes the weakest
ensemble member. It is worth noting that some al-
gorithms, e.g., Learn++.NSE (Ditzler et al. 2015),
do not limit the number of component classifiers
in order to react to recurring concepts. The label
prediction for new examples is usually based on a
weighted majority vote of component classifiers.
Most block-based ensembles take advantage of
batch learning algorithms as component classi-
fiers. This is not the case for hybrid algorithms,
like the Accuracy Updated Ensemble (Brzezinski
and Stefanowski 2014), which updates classifiers
after processing each block.

The origins of online stationary ensembles
come from research on the Winnow algorithm
and the Weighted Majority Algorithm (Little-
stone and Warmuth 1994), which combine the
predictions of several experts (classifiers) by ma-
jority voting. When the ensemble misclassifies an
instance, the weights of the wrong experts are
decreased by a user-specified coefficient. The Dy-
namic Weighted Majority (DWM) is an extension
of this idea for drifting data streams (Kolter and
Maloof 2007). It uses a set of incremental classi-
fiers, which are generated by the same learning
algorithm. When a new example is available,
the final prediction is obtained as a weighted
vote of all classifiers. The weights of all classi-
fiers that misclassify the example are decreased
in the same way as in the Weighted Majority
Algorithm. However, DWM dynamically creates
and deletes component classifiers in response
to changes in classification performance. If the
ensemble’s overall prediction is incorrect, a new
classifier is added to the ensemble.

Another group of online ensembles includes
generalizations of static ensembles. The most
well known are online versions of � bagging
and � boosting (Oza and Russell 2001). In case
of online bagging, the key idea is to adapt the
� bootstrap sampling step to a streaming setting.
This is done by using single examples multi-
ple times according to the Poisson distribution.

http://dx.doi.org/10.1007/978-1-4899-7687-1_122
http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_977


1198 Stream Classification

This proposal of randomly updating training sets
was an inspiration to develop several other ap-
proaches, e.g., leveraging bagging, online boost-
ing, or the DDD ensemble (Ditzler et al. 2015).

Comprehensive reviews of various ensembles
can be found in Ditzler et al. (2015), Gama
(2010), and Kuncheva (2004).

Other Approaches
Although developing classifiers for concept-
drifting streams is in itself a nontrivial task,
some other characteristics of learning problems
can make this task even more difficult. In
most current algorithms, it is assumed that
all information, in particular class labels of
instances, are complete, immediately available,
and received for free (Krempl et al. 2014).
However, these assumptions may not hold true
in some real-world problems, e.g., in fraud
detection or patient health monitoring, where
the labeling of examples is scarce or missing. In
the case of static data, these problems are studied
with � semi-supervised learning. For adapting
such techniques to streams, the availability of
at least some labeled data from the most recent
distribution is required. For instance, Masud
et al. (2008) divide the stream into blocks
containing partly labeled examples and then
propose various approaches to combine learning
ensemble classifiers with semi-supervised
clustering. �Active learning is also often related
to semi-supervised frameworks. However, many
sampling techniques developed for static data
are not well suited for non-stationary streams
(Spiliopoulou and Krempl 2013). A review of
recent active learning strategies is presented
in Žliobaitė et al. (2011).

A particularly challenging problem is learning
classifiers from initially labeled non-stationary
streams, where completely labeled examples are
available for the first period only, followed by un-
labeled data which may be drawn from a different
distribution. Research on this topic is still at an
early stage. Yet another problem is dealing with
delayed information. In the case of verification
latency, the class labels of preceding examples
are not available before the subsequent instance
has to be predicted. Therefore, feedback from

correct predictions cannot be instantly used to
improve the classifier. For a review of approaches
that try to deal with this problem, see Ditzler et al.
(2015).

Dealing with the � class imbalance problem
in non-stationary streams also introduces addi-
tional difficulties. Recent proposals to this prob-
lem pay attention to drifts of the minority class
and specialized evaluation methods (Wang et al.
2015). The problem of class imbalance is also
related to an increasing interest in studying other
types of changes (Gama et al. 2014). Finally,
other research concerns more complex represen-
tations of instances in streams, as graphs, semi-
structured documents, or text messages, as well
as complex target outputs, like multi-labeled or
ordinal classification. Other open issues are dis-
cussed in Ditzler et al. (2015) and Krempl et al.
(2014).

Applications

Applications of stream classification can be orga-
nized into three groups: monitoring and control,
information management, and analytics and diag-
nostics (Zliobaite et al. 2015).

Monitoring and control mostly relates to the
detection of abnormal events. Domains from this
group include sensor networks, telecommunica-
tions, traffic control, and fraud detection. Infor-
mation management encompasses applications
such as product recommendation, crime predic-
tion, personalized search, and customer profiling.
Analytics and diagnostics address domains like
evaluation of creditworthiness, budget planning,
or drug resistance prediction.

Each of the aforementioned groups differs also
in the way stream classification is modeled. Mon-
itoring and control usually involves sequential
data where the task is to detect sudden changes.
Information management is mostly based on rela-
tional data and gradual rather than abrupt changes
are to be expected. Finally, diagnostic applica-
tions often involve recurring concepts. For an in-
depth analysis of different application settings,
see Zliobaite et al. (2015).

http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_110
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Gama J, Žliobaitė I, Bifet A, Pechenizkiy M,
Bouchachia A (2014) A survey on concept drift
adaptation. ACM Comput Surv 46(4):44:1–44:37

Gomes JB, Gaber MM, Sousa PAC, Ruiz EM (2014)
Mining recurring concepts in a dynamic fea-
ture space. IEEE Trans Neural Netw Learn Syst
25(1):95–110

Kolter JZ, Maloof MA (2007) Dynamic weighted ma-
jority: an ensemble method for drifting concepts. J
Mach Learn Res 8:2755–2790

Kosina P, Gama J (2015) Very fast decision rules
for classification in data streams. Data Min Knowl
Discov 29(1):168–202
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Stream Mining

A subfield of knowledge discovery called stream
mining addresses the issue of rapidly changing
data. The idea is to be able to deal with the
stream of incoming data quickly enough to be
able to simultaneously update the corresponding
models (e.g., ontologies), as the amount of data
is too large to be stored: new evidence from
the incoming data is incorporated into the model
without storing the data. For instance, modeling
ontology changes and evolution over time using
text mining methods (TextMining for Semantic
Web). The underlying methods are based on the
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machine learning methods of �Online Learning,
where the model is built from the initially avail-
able data and updated regularly as more data
become available.

Examples of data streams include computer
network traffic, phone conversations, ATM trans-
actions, web searches, and sensor data.

Cross-References

�Clustering from Data Streams
�Online Learning

String Kernel

A string kernel is a function from any of var-
ious families of kernel functions (see � kernel
methods) that operate over strings and sequences.
The most typical example is as follows. Suppose
that we are dealing with strings over a finite
alphabet †. Given a string a D a1a2 : : : an 2

†�, we say that a substring p D p1p2 : : : pk
occurs in a on positions i1i2 : : : ik iff 1 � i1 <

i2 < : : : < ik � n and aij D pj for all
j D 1; : : : ; k. We define the weight of this
occurrence as �ik�ii�kC1, where � 2 [0, 1] is
a constant chosen in advance; in other words,
an occurrence weighs less if characters of p are
separated by other characters. Let �p.a/ be the
sum of the weights of all occurrences of p in
a, and let �.a/ D .�p.a//p2

P
� be an infinite-

dimensional feature vector consisting of �p.a/
for all possible substrings p 2 †*. It turns
out that the dot product of two such infinite-
length vectors, K.a; a0/ D �.a/T �.a0/, can be
computed in time polynomial in the length of a
and a0, e.g., using dynamic programming. The
function K defined in this way can be used as
a kernel with various kernel methods. See also
� feature construction in text mining.

String Matching Algorithm

A string matching algorithm returns parts of
text matching a given pattern, such as a regular

expression. Such algorithms have countless
applications, from file editing to bioinformatics.
Many algorithms compute deterministic finite
automata, which can be expensive to build, but
are usually efficient to use; they include the
Knuth–Morris–Pratt algorithm and the Boyer–
Moore algorithm, that build the automaton in
time O.m/ and O.m C s/, respectively, where
m is the length of the pattern and s the size of
the alphabet, and match a text of length n in time
O.n/ in the worst case.

Structural Credit Assignment

�Credit Assignment

Structural Risk Minimization

Xinhua Zhang
NICTA, Australian National University,
Canberra, ACT, Australia
School of Computer Science, Australian
National University, Canberra, ACT, Australia
NICTA London Circuit, Canberra, ACT,
Australia

Abstract

Structural risk minimization is an inductive
principle used to combat overfitting. It seeks a
tradeoff between model complexity and fitness
of the model on the training data.

Definition

The goal of learning is usually to find a model
which delivers good generalization performance
over an underlying distribution of the data. Con-
sider an input space X and output space Y .
Assume the pairs .X � Y / 2 X � Y are random
variables whose (unknown) joint distribution is

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_41
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_185
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PXY . It is our goal to find a predictor f W X 7! Y
which minimizes the expected risk:

P.f .X/ ¤ Y / D E.X;Y /�PXY
Œı.f .X/ ¤ Y /� ;

where ı.´/ D 1 if ´ is true, and 0 otherwise.
In practice we only have n pairs of training

examples .Xi ; Yi / drawn identically and indepen-
dently from PXY . Based on these samples, the
�Empirical Risk can be defined as

1

n

nX
iD1

ı.f .Xi / ¤ Yi /:

Choosing a function f by minimizing the
empirical risk often leads to �Overfitting. To
alleviate this problem, the idea of structural risk
minimization (SRM) is to employ an infinite
sequence of models F1;F2; : : : with increasing
capacity. Here each Fi is a set of functions,
e.g., polynomials with degree 3. We minimize the
empirical risk in each model with a penalty for
the capacity of the model:

fn W D argminf 2Fi ;i2N

1

n

nX
iD1

ı.f .Xi / ¤ Yi /

C capacity.Fi ; n/;

where capacity.Fi ; n/ quantifies the complexity
of model Fi in the context of the given training
set. For example, it equals 2 when Fi is the set of
polynomials with degree 2. In other words, when
trying to reduce the risk on the training set, we
prefer a predictor from a simple model.

Note the penalty is measured on the model
Fi , not the predictor f . This is different from
the regularization framework, e.g., support vector
machines, which penalizes the complexity of the
classifier.

More details about SRM can be found in
Vapnik (1998).

Recommended Reading

Vapnik V (1998) Statistical learning theory. John Wi-
ley, New York
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Structured Induction

Michael Bain
University of New South Wales, Sydney, NSW,
Australia

Definition

Structured induction is a method of applying
machine learning in which a model for a task
is learned using a representation where some of
the components are themselves the outputs of
learned models for specified sub-tasks. The idea
was inspired by structured programming (Dahl
et al. 1972), in which a complex task is solved
by repeated decomposition into simpler sub-tasks
that can be easily analyzed and implemented. The
approach was first developed by Alen Shapiro
(1987) in the context of constructing expert sys-
tems by � decision tree learning, but in principle
it could be applied using other learning methods.

Motivation and Background
Structured induction is designed to solve complex
learning tasks for which it is difficult a priori to
obtain a set of attributes or features in which it is
possible to represent an accurate approximation
of the target hypothesis reasonably concisely. In
Shapiro’s approach, a hierarchy of � decision
trees is learned, where in each tree of the hi-
erarchy the attributes can have values that are
outputs computed by a lower-level � decision
tree. Shapiro showed in computer chess appli-
cations that structured induction could learn ac-

http://dx.doi.org/10.1007/978-1-4899-7687-1_79
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_65
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
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curate models, while significantly reducing their
complexity. Structured induction was first com-
mercialized in the 1980s by a number of com-
panies providing expert systems solutions and
has since seen many applications (Razzak et al.
1984).

A key assumption is that human expertise is
available to define the task structure. Several ap-
proaches have been proposed to address the prob-
lem of learning this structure (under headings
such as � constructive induction, representation
change, � feature construction, and � predicate
invention) although to date, none have received
wide acceptance.

The identification of knowledge acquisition as
the “bottleneck” in knowledge engineering by
Feigenbaum (1977) sparked considerable inter-
est in symbolic machine-learning methods as a
potential solution. Early work on � decision tree
induction around this time was often driven by
problems from computer chess, a challenging
domain by the standards of the time due to
relatively large data sets and the complexity of
the target hypotheses. In a landmark paper on
his ID3 � decision tree learning algorithm, Quin-
lan (1983) reported experiments on learning to
classify positions in a four-piece chess endgame
as winnable (or not) within a certain number of
moves (“lost N -ply”). A set of attributes was
defined as inadequate for a classification task if
two objects belonging to different classes had
identical values for each attribute. He concluded
that “almost all the effort (for a non chess-player,
at least) must be devoted to finding attributes that
are adequate for the classification problem being
tackled”.

The problem is that the effort of developing
the set of attributes becomes disproportionate to
the time taken to do the induction. Quinlan (1983)
reported durations of three weeks and two man-
months, respectively, to define an adequate set
of attributes for the “lost 2-ply” and “lost 3-ply”
experiments. In contrast, the implementation of
ID3 used in that work induced the � decision
trees in 3 s and 34 s, respectively. It is worth
noting that the more complex problem of “lost
4-ply” was abandoned due to the difficulty of
developing an adequate set of attributes.

Although Quinlan’s experiments with ID3
produced exact � classifiers for his chess
problems, the resulting � decision trees were too
large to be comprehensible to domain experts.
This is a serious drawback when machine
learning is used with the goal of installing learned
rules in an expert system, since the system cannot
provide understandable explanations. Shapiro
and Niblett (1982) proposed structured induction
as a solution to this problem, and the method
was developed in Shapiro’s PhD thesis (Shapiro
1987) motivated by expert systems development.

Structure of Learning System

Structured induction is essentially a two-stage
process, comprising a top-down decomposition
of the problem into a solution structure, followed
by a bottom-up series of � classifier learning
steps, one for each of the subproblems. A knowl-
edge engineer and a domain expert are required to
collaborate at each stage, with the latter acting as
a source of examples. The use of machine learn-
ing to avoid the knowledge acquisition bottleneck
is based on the finding that although domain
experts find it difficult to express general and
accurate rules for a problem, they are usually able
to generate tutorial examples in an attribute-value
formalism from which rules can be generalized
automatically. The key insight of structured in-
duction is that the task of specifying an attribute
and its value set can be treated as a subproblem
of the learning task, and solved in the same way.

The approach can be illustrated by a sim-
ple example using the structure shown in Fig. 1.
Suppose the task is to learn a model for some
concept p. Suppose further that the domain expert
proposes three attributes a1, a2, and a3 as ade-
quate for the classification of p. Now the domain
expert consults with the knowledge engineer and
it is decided that while attribute a1 is directly
implementable, the other two are not. An attribute
that is directly implementable by a knowledge en-
gineer is referred to as primitive for the domain.
The other attributes become sub-concepts a2 and
a3, and each in turn is addressed by the domain
expert. In this case, three attributes are proposed

http://dx.doi.org/10.1007/978-1-4899-7687-1_165
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_655
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100249
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055


Structured Induction 1203

S

a1

a21 a22 a23 a31 a32

a2 a3

p

Structured Induction, Fig. 1 A schematic diagram of
a model learned by structured induction (after Shapiro
1987). Concepts to be learned are shown in ovals, and
primitive attributes in boxes. The top-level concept p is

defined in terms of the primitive attribute a1 and two sub-
concepts a2 and a3. Each of the two sub-concepts are
further decomposed into sets of primitive attributes, a21:::3

and a31:::2

as most relevant to the solution of a2, and two for
a3. Since all of these attributes are found to be
primitive, the top-down problem decomposition
stage is therefore complete.

The domain expert, having proposed a set of
primitive attributes for a sub-concept, say a3,
is now required to provide a set of classified
examples defined in terms of values for attributes
a31 and a32. Given these examples, the knowledge
engineer will run a learning algorithm to induce a
� classifier such as a � decision tree. The domain
expert will then inspect the � classifier and can
optionally refine it by supplying further exam-
ples, until they are satisfied that it completely and
correctly defines the sub-concept a3. This process
is repeated in a bottom-up fashion for all sub-
concepts. At every level of the hierarchy, once all
sub-concepts have been defined, they are now di-
rectly executable � classifiers and can be treated
in the same way as primitive attributes and used
for learning. The structured induction solution
is complete once an acceptable � classifier has
been learned for the top-level concept, p in this
example.

Structured Versus Unstructured
Induction

On two chess end-game domains, Shapiro (1987)
showed that structured induction could generate
more compact trees from fewer examples

compared with an unstructured approach. To
quantify this improvement, Shapiro made an
analysis based on Michie’s finite message
information theory (Michie 1982). This showed
that on one of the domains, the information gain
contributed by the structured induction approach
over learning unstructured trees from the same set
of examples was 84 %. Essentially, this is because
the structure devised by the domain expert
in collaboration with the knowledge engineer
provides a context for each of the induction
tasks required. Since within this context only a
subset of the complete attribute set is used to
specify a sub-concept, it suffices to obtain only
sufficient examples to learn a model for that
sub-concept. However, without the benefit of
such contextual restrictions the task of learning
a complete solution can require considerably
more examples. Shapiro’s analysis is an attempt
to quantify the relative increase in information
per example in structured versus unstructured
induction.

Related Work

While induction can bypass the knowledge ac-
quisition bottleneck, in structured induction the
process of acquiring the structure in collabora-
tion with a domain expert can become a new
bottleneck. In an attempt to avoid this, a num-
ber of researchers have attempted to develop

http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
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methods whereby the structure, as well as the
sub-concept models can be learned automati-
cally.

Muggleton (1987) introduced � inverse reso-
lution as an approach to learning structured � rule
sets in a system called Duce. As part of this
process, a domain expert is required to provide
names for new sub-concepts or predicates that
are proposed by the learning algorithm. A domain
expert is also required to confirm learned rules.
Both these roles are similar to those required
of the expert in constructive induction, but the
key difference is that the learning algorithm is
now the source of both the structure and the
rules. Duce was applied to one of the chess end-
game domains used in Shapiro’s study (Shapiro
1987) and found a solution that was less compact,
but still accepted as comprehensible by a chess
expert.

The Duce system searches for commonly
occurring subsets of attribute-value pairs within
rules, and uses these to construct new sub-
concept definitions. Many approaches have been
developed using related methods to learn new
sub-concepts in the context of � decision tree or
� rule learning; some examples include Pagallo
and Haussler (1990), Zheng (1995), and Zhang
and Honavar (2003). Gaines (1996) proposed
EDAGs (exception directed acyclic graphs) as
a generalization of both � decision trees and
rules with exceptions, and reported EDAG
representations of chess end-game � classifiers
that were more comprehensible than either rules
or � decision trees. Zupan et al. (1999) developed
a system named HINT designed to learn a model
represented as a concept hierarchy based on
methods of function decomposition. Inverse
resolution as used in Duce has been generalized
to first-order logic representations in the field of
inductive logic programming. In this framework,
the construction of new intermediate concepts
is referred to as � predicate invention, but to
date this remains a largely open problem. More
recently, much of the interest in representation
change has focused on approaches like support
vector machines, where the so-called kernel trick
enables the use of implicit � feature construction
(Shawe-Taylor and Cristianini 2004).

Cross-References

�Classifier Systems
�Constructive Induction
�Decision Tree
� Feature Construction in Text Mining
� Predicate Invention
�Rule Learning

Recommended Reading

Dahl OJ, Dijkstra EW, Hoare CAR (eds) (1972)
Structured programming. Academic Press,
London

Feigenbaum EA (1977) The art of artificial intelli-
gence: themes and case studies of knowledge en-
gineering. In: Reddy R (ed) Proceedings of the
fifth international conference on artificial intelli-
gence (IJCAI’77). William Kaufmann, Los Altos,
pp 1014–1029

Gaines B (1996) Transforming rules and trees into
comprehensible knowledge structures. In: Fayyad
U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R
(eds) Advances in knowledge discovery and data
mining. MIT Press, Cambridge, MA, pp 205–226

Michie D (1982) Measuring the knowledge-
content of expert programs. Bull Inst Math
Appl 18(11/12):216–220

Muggleton S (1987) Duce, an oracle-based approach
to constructive induction. In: IJCAI’87. Morgan
Kaufmann, Los Altos, pp 287–292

Pagallo G, Haussler D (1990) Boolean feature discov-
ery in empirical learning. Mach Learn 5:71–99

Quinlan JR (1983) Learning efficient classification
procedures and their application to chess end games.
In: Michalski R, Carbonnel J, Mitchell T (eds) Ma-
chine learning: an artificial intelligence approach.
Tioga, Palo Alto, pp 464–482

Razzak MA, Hassan T, Pettipher R (1984) Extran-7: a
Fortran-based software package for building expert
systems. In: Bramer MA (ed) Research and devel-
opment in expert systems. Cambridge University
Press, Cambridge, pp 23–30

Shapiro A, Niblett T (1982) Automatic induction of
classification rules for a chess endgame. In: Clarke
MRB (ed) Advances in computer chess, vol 3.
Pergamon Press, Oxford, pp 73–91

Shapiro AD (1987) Structured induction in expert sys-
tems. Turing Institute Press with Addison Wesley,
Wokingham

Shawe-Taylor J, Cristianini N (2004) Kernel methods
for pattern analysis. Cambridge University Press,
Cambridge

Zhang J, Honavar V (2003) Learning decision tree
classifiers from attribute value taxonomies and par-
tially specified data. In: ICML-2003: Proceedings of

http://dx.doi.org/10.1007/978-1-4899-7687-1_418
http://dx.doi.org/10.1007/978-1-4899-7687-1_623
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_655
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_941
http://dx.doi.org/10.1007/978-1-4899-7687-1_165
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_655
http://dx.doi.org/10.1007/978-1-4899-7687-1_744


Sublinear Clustering 1205

S

the twentieth international conference on machine
learning. AAAI Press, Menlo Park

Zheng Z (1995) Constructing nominal X-of-N at-
tributes. In: Proceedings of the fourteenth Interna-
tional joint conference on artificial intelligence (IJ-
CAI’95). Morgan Kaufmann, Los Altos, pp 1064–
1070

Zupan B, Bohanec M, Demsar J, Bratko I (1999)
Learning by discovering concept hierarchies. Artif
Intell 109:211–242

Subgroup Discovery

Definition

Subgroup discovery (Klösgen 1996; Lavrač et al.
2004) is an area of � supervised descriptive rule
induction. The subgroup discovery task is defined
as given a population of individuals and a prop-
erty of those individuals that we are interested
in, find population subgroups that are statistically
“most interesting,” for example, are as large as
possible and have the most unusual statistical
(distributional) characteristics with respect to the
property of interest.

Recommended Reading
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edge discovery and data mining. MIT Press, Cam-
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Lavrač N, Kavšek B, Flach PA, Todorovski L (2004)
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Sublinear Clustering

Artur Czumaj1 and Christian Sohler2

1University of Warwick, Coventry, UK
2University of Paderborn, Paderborn, Germany

Definition

Sublinear clustering describes the process of
clustering a given set of input objects using

only a small subset of the input set, which
is typically selected by a random process. A
solution computed by a sublinear clustering
algorithm is an implicit description of the
clustering (rather than a partition of the input
objects), for example in the form of cluster
centers. Sublinear clustering is usually applied
when the input set is too large to be processed
with standard clustering algorithms.

Motivation and Background

�Clustering is the process of partitioning a set of
objects into subsets of similar objects. In machine
learning, it is, for example, used in unsupervised
learning to fit input data to a density model. In
many modern applications of clustering, the input
sets consist of billions of objects to be clustered.
Typical examples include web search, analysis
of web traffic, and spam detection. Therefore,
even though many relatively efficient clustering
algorithms are known, they are often too slow to
cluster such huge inputs.

Since in some applications it is even not possi-
ble to cluster the entire input set, a new approach
is needed to cope with very large data sets. The
approach used in many different areas of science
and engineering in this context is to sample a
subset of the data and to analyze this sample
instead of the whole data set. This is also the un-
derlying method used in sublinear clustering. The
main challenge and innovation in this area lies in
the qualitative analysis of random sampling (in
the form of approximation guarantees) and the
design of non uniform sampling strategies that
approximate the input set provably better than
uniform random sampling.

Structure of the Learning System

In sublinear clustering a large input set of objects
is to be partitioned into subsets of similar objects.
Usually, this input is a point set P either in
the Euclidean space or in the metric space. The
clustering problem is specified by an objective
function that determines the quality or cost of

http://dx.doi.org/10.1007/978-1-4899-7687-1_808
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
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every possible clustering. The goal is to find
a clustering of minimum cost/maximum qual-
ity. For example, given a set P of points in
the Euclidean space the objective of � k-means
clustering is to find a set C of k centers that
minimizes

P
p2P .d.p; C //

2, where d.p, C/ de-
notes the distance of p to the nearest center
from C . Since usually the clustering problems
are computationally hard (NP-hard), one typi-
cally considers approximate solutions: instead of
finding a clustering that optimizes the cost of the
solution, one aims at a solution whose cost is
close to the optimal one.

In sublinear algorithms a solution is computed
for a small representative subset of objects, for
example a random sample. The solution is rep-
resented implicitly, for example, in the form of
cluster centers and it can be easily extended to the
whole input point set. The quality of the output
is analyzed with respect to the original point
set. The challenge is to design and analyzefast
(sublinear-time) algorithms that select a subset of
objects that very well represent the entire input,
such that the solution computed for this subset
will also be a good solution for the original point
set. This can be achieved by uniform and non
uniform random sampling and the computation
of core-sets, i.e., small weighted subsets of the
input that approximate the input with respect to a
clustering objective function.

Theory/Solution

Clustering Problems
For any point p and any set Q in a metric space
(X , d/, let d.p, Q/ D minq2Q d.p, q/. A point
setP is weighted if there is a function w assigning
a positive weight to each point in P .

Radius k-Clustering: Given a weighted set P
of points in a metric space (X , d/, find a set C �
P of k centers minimizing maxp2P d.p; C /.

Diameter k-Clustering: Given a weighted set
P of points in a metric space (X , d/, find a
partition of P into k subsets P1, . . . , Pk , such
that maxkiD1 maxp;q2Pi

d.p; q/ is minimized.

k-Median: Given a weighted set P of points
in a metric space (X , d/, find a set C � P

of k centers that minimizes median(P , C/ DP
p2P w.p/ � d.p, C/.

k-Means: Given a weighted set of points P
in a metric space (X , d/, find a set C � P

of k centers that minimizes mean(P , C/ DP
p2P w.p/ � .d.p; C //2.

Random Sampling and Sublinear-Time Algo-
rithms
Random sampling is perhaps the most natural
approach to design sublinear-time algorithms for
clustering. For the input set P , random sampling
algorithm follows the following scheme:

1. Pick a random sample S of points
2. Run an algorithm (possibly an approxi-

mation one) for (given kind of) clustering
for S

3. Return the clustering induced by the so-
lution for S

The running time and the quality of this algo-
rithm depends on the size of the random sample
S and of the running time and the quality of the
algorithm for clustering of S . Because almost all
interesting clustering problems are computation-
ally intractable (NP-hard), usually the second
step of the sampling scheme uses an approxima-
tion algorithm. (An algorithm for a minimization
problem is called a �-approximation if it always
returns a solution whose cost is at most � times
the optimum.)

While random sampling approach gives very
simple algorithms, depending on the clustering
problem at hand, it often finds a clustering of
poor quality and it is usually difficult to analyze.
Indeed, it is easy to see that random sampling
has some serious limitations to obtain clustering
of good quality. Even the standard assumption
that the input is in metric space is not sufficient
to obtain good quality of clustering because of
the small clusters which are “hidden” for random
sampling approach. (If there is a cluster of size
o.jP j=jS j) then with high probability the random
sample set S will contain no point from that

http://dx.doi.org/10.1007/978-1-4899-7687-1_431
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cluster.) Therefore, another important parameters
used in the analysis is the diameter of the metric
space 
, which is 
 D maxp;q2P d.p; q/.

Quality of Uniformly Random Sampling: The
quality of random sampling for three basic clus-
tering problems (k-means, k-median, and min-
sum k-clustering) have been analyzed in Ben-
David (2004), Czumaj and Sohler (2007), and
Mishra et al. (2001). In these papers, generic
methods of analyzing uniform random sampling
have been obtained. These results assume that the
input point sets are in a metric space and are
unweighted (i.e., when the weight function w is
always 1).

Theorem 1 Let 	 > 0 be an approximation
parameter. Suppose that an ˛-approximation al-
gorithm for the k-median problem in a metric
space is used in step (2) of the uniform sampling,
where ˛ � 1 (Ben-David 2004; Czumaj and
Sohler 2007; Mishra et al. 2001). If we choose
S to be of size at least

c˛.K C



	
.˛ C k ln.k
˛=	///

for an appropriate constant c, then the uniform
sampling algorithm returns a clustering C �

(of S) such that with probability at least
0.99 the normalized cost of clustering for S
satisfies

median.S; C �/

jS j
�

2.˛ C 0:01/OPT .P /

jP j
C 	;

where OPT(S) = minC median(P,C) is the mini-
mum cost of a solution for k-median for P.

Similar results can be shown for the k-means
problem, and also for min-sum k-clustering (cf.
Czumaj and Sohler 2007). For example, for k-
means, with a sample S of size at least c˛.k C
.
2=	/.˛ C k ln.k
2˛=	/// , with probability
at least 0. 99 the normalized cost of k-means
clustering for S satisfy

mean.S; C �/

jS j2
�

4.˛ C 0:01OPT .P //

jP j2
C 	;

where OPT(S/ = minC mean(P , C/ is the mini-
mum cost of a solution for k-means for P .

Improvements of these bounds for the case
when the input consists of points in Euclidean
space are also discussed in Mishra et al. (2001)
and Czumaj and Sohler (2007) discuss also. For
example, for k-median, if one takes S of size at
least c˛.kC
k ln.
=	/=	/ , then with probabil-
ity at least 0.99 the normalized cost of k-median
clustering for S satisfies

median.S; C �/

jS j
�
.˛ C 0:001/OPT .P /

jP j
C 	;

and hence the approximation ratio is better than
that in Theorem 1 by factor of 2.

The results stated in Czumaj and Sohler
(2007) allow to parameterize the constants 0.99
and 0.01 in the claims above.

Property Testing of the Quality of Clustering:
Since most of the clustering problems are com-
putationally quite expensive, in some situations it
might be interesting not to find a clustering (or
its succinct representation), but just to test if the
input set has a good clustering.

Alon et al. (2003) introduced the notion of
approximate testing of good clustering. A point
set P is c-clusterable if it has a clustering of the
cost at most c, that is, OPT(P) � c. To formalize
the notion of having no good clustering, one says
a point set is "-far from .1 C ˇ/c-clusterable, if
more than an "-fraction of the points in P must
be removed (or moved) to make the input set
.1 C ˇ/c-clusterable. With these definitions, the
goal is to design fast algorithms that accept the
input point sets P , which are c-clusterable, and
reject with probability at least 2/3 inputs are "-far
from .1 C ˇ/c-clusterable. If neither holds, then
the algorithms may either accept or reject. The
bounds for the testing algorithms are phrased in
terms of sample complexity, that is, the number
of sampled input points which are considered by
the algorithm (e.g., by using random sampling).

Alon et al. (2003) consider two classical clus-
tering problems in this setting: radius and di-
ameter k-clusterings. If the inputs are drawn
from an arbitrary metric space, then they show



1208 Sublinear Clustering

that to distinguish between input points sets that
are c-clusterable and are "-far from .1 C ˇ/c-
clusterable with ˇ < 1, the sample complex-
ity must be at least �.

p
jP j=	/. However, to

distinguish between inputs that are c-clusterable
and are "-far from 2c-clusterable, the sample
complexity is only O.

p
k=	/.

A more interesting situation is for the input
points drawn from the Euclidean d -dimensional
space. In that case, even a constant-time algo-
rithms are possible.

Theorem 2 For the radius k-clustering, one can
distinguish between points sets in Rd that are
c-clusterable from those "-far from c-clusterable
with the sample complexity QO.dk=	/ (Alon et al.
2003) (The QO -notation ignores logarithms in the
largest occurrence of a variable; QO.f .n// D
O.f .n/ � .logf .n//o.1//.)

Furthermore, for any ˇ > 0, one can
distinguish between points sets in Rd that
are c-clusterable from those "-far from .1 C
ˇ/c-clusterable with the sample complexity
QO.k2=.ˇ2	//.

Theorem 3 For the diameter k-clustering, one
can distinguish between points sets in Rd

that are c-clusterable from those "-far from
.1C ˇ/c-clusterable with the sample complexity
QO.k2d.2=ˇ/2d=	/ (Alon et al. 2003).

Core-Sets: Sublinear Space
Representations with Applications
A core-set is a small weighted set of points S that
provably approximates another point set P with
respect to a given clustering problem (Bǎdoiu
et al. 2002). The precise definition of a core-
set depends on the clustering objective function
and the notion of approximation. For example, a
coreset for the k-median problem can be defined
as follows:

Definition 4 A weighted point set S is called
"-coreset for a point set P for the k-median
problem, if for every set C of k centers, we have
.1�	/ � median .P; C / �median .S; C / � .1C
	/ � median .P; C / (Har-Peled and Mazumdar
2004).

A core-set as defined above is also sometimes
called a strong core-set, because the cost of the
objective function is approximately preserved for
any set of cluster centers. In some cases it can
be helpful to only require a weaker notion of
approximation. For example, for some applica-
tions it is sufficient that the cost is preserved
for a certain discrete set of candidate solutions.
Such a core-set is usually called a weak core-set.
In high-dimensional applications it is sometimes
sufficient that the solution is contained in the
low-dimensional subspace spanned by the core-
set points.

Constructing a Core-Set: There are determin-
istic and randomized constructions for core-sets
of an unweighted set P of n points in the Rd .
Deterministic core-set constructions are usually
based on the movement paradigm. The input
points are moved to a set of few locations such
that the overall movement is at most " times
the cost of an optimal solution. Then the set
of points at the same location are replaced by
a single point whose weight equals the number
of these points. Since for the k-median problem
the cost of any solution changes by at most the
overall movement, this immediately implies that
the constructed weighted set is an "-core-set. For
other similar problems more involved arguments
can be used to prove the core-set property. Based
on the movement paradigm, for k-median a core-
set of size O.k logn=	d / can be constructed
efficiently (Har-Peled and Mazumdar 2004).

Randomized core-set constructions are based
on non uniform sampling. The challenge is to de-
fine a randomized process for which the resulting
weighted point set is with high probability a core-
set. Most randomized coreset constructions first
compute a bi-criteria approximation C 0. Then ev-
ery point is sampled with probability proportional
to its distance to the nearest center of C 0. A
point q is assigned a weight proportional to 1=pq ,
where pq is the probability that p is sampled. For
every fixed set C of k centers, the resulting sam-
ple is an unbiased estimator for median(P , C/.
If the sample set is large enough, it approximates
the cost of every possible set of k centers within a
factor of .1˙	/. The above approach can be used
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to obtain a weak core-set of size independent of
the size of the input point set and the dimension
of the input space (Feldman et al. 2007). A related
construction has been previously used to obtain a
strong core-set of size QO.k2 � d � logn=	2/. Both
constructions have constant success probability
that can be improved by increasing the size of the
core-set.

Applications Core-sets have been used to obtain
improved approximation algorithms for different
variants of clustering problems. Since the core-
sets are of sublinear size and they can be con-
structed in sublinear time, they can be used to
obtain sublinear-time approximation algorithms
for a number of clustering problems.

Another important application is clustering of
data streams. A data stream is a long sequence of
data that typically does not fit into main memory,
for example, a sequence of packet headers in IP
traffic monitoring. To analyze data streams we
need algorithms that extract information from a
stream without storing all of the observed data.
Therefore, in the data streaming model algo-
rithms are required to use logO

.1/
n bits of mem-

ory. For core-sets, a simple but rather general
technique is known, which turns a given construc-
tion of a strong core-set into a data streaming
algorithm, i.e., an algorithm that processes the
input points sequentially and uses only logO.1/

space (for constant k and 	) and computes a
(1 C 	)-approximation for the optimal set of
centers of the k-median clustering (Har-Peled
and Mazumdar 2004). Core-sets can also be used
to improve the running time and stability of
clustering algorithms like the k-means algorithm
(Frahling and Sohler 2006).
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Subspace Clustering

� Projective Clustering

Subsumption

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Subsumption provides a syntactic notion of gen-
erality. Generality can simply be defined in terms
of the cover of a concept. That is, a concept, C ,
is more general than a concept, C 0, if C covers

http://dx.doi.org/10.1007/978-1-4899-7687-1_676
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at least as many examples as C 0 (see �Learning
as Search). However, this does not tell us how to
determine, from their syntax, if one sentence in
a concept description language is more general
than another. When we define a subsumption re-
lation for a language, we provide a syntactic ana-
logue of generality (Lavrač and Džeroski 1994).
For example, � -subsumption (Plotkin 1970) is the
basis for constructing generalization lattices in
� inductive logic programming (Shapiro 1981).
See �Generality of Logic for a definition of
� -subsumption. An example of defining a sub-
sumption relation for a domain specific language
is in the LEX program (Mitchell et al. 1983),
where an ordering on mathematical expressions is
given.

Cross-References

�Generalization
� Induction
�Learning as Search
�Logic of Generality
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Supervised Descriptive Rule
Induction

Petra Kralj Novak1, Nada Lavrač1;2, and
Geoffrey I. Webb3

1Department of Knowledge Technologies, Jožef
Stefan Institute, Ljubljana, Slovenia
2University of Nova Gorica, Nova Gorica,
Slovenia
3Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

SDRI

Definition

Supervised descriptive rule induction (SDRI) is
a machine learning task in which individual pat-
terns in the form of rules (see � classification
rule) intended for interpretation are induced from
data, labeled by a predefined property of interest.
In contrast to standard � supervised rule induc-
tion, which aims at learning a set of rules defin-
ing a classification/prediction model, the goal of
SDRI is to induce individual descriptive patterns.
In this respect, SDRI is similar to � association
rule discovery, but the consequents of the rules
are restricted to a single variable – the property
of interest – and, except for the discrete target
attribute, the data is not necessarily assumed to
be discrete.

Supervised descriptive rule induction assumes
a set of training examples, described by attributes
and their values and a selected attribute of interest
(called the target attribute). Supervised descrip-
tive rule induction induces rules that may each be
interpreted independently of the others. Each rule
is a local model, covering a subset of training ex-
amples, that captures a local relationship between
the target attribute and the other attributes.

Induced descriptive rules are mainly aimed
at human interpretation. More specifically, the
purposes of supervised descriptive rule induction
are to allow the user to gain insights into the data
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domain and to better understand the phenomena
underlying the data.

Motivation and Background

Symbolic data analysis techniques aim at discov-
ering comprehensible patterns or models in data.
They can be divided into techniques for predic-
tive induction, where models, typically induced
from class-labeled data, are used to predict the
class value of previously unseen examples, and
descriptive induction, where the aim is to find
comprehensible patterns, typically induced from
unlabeled data. Until recently, these techniques
have been investigated by two different research
communities: predictive induction mainly by the
machine learning community and descriptive in-
duction mainly by the data mining community.

Data mining tasks where the goal is to find
comprehensible patterns from labeled data have
been addressed by both the machine learning and
the data mining community independently. The
data mining community, using the � association
rule learning perspective, adapted association
rule learners like �Apriori (Agrawal et al. 1996)
to perform tasks on labeled data, like class asso-
ciation rule learning (Liu et al. 1998; Fürnkranz
et al. 2012), as well as � contrast set mining (Bay
and Pazzani 2001) and � emerging pattern min-
ing (Dong and Li 1999). On the other hand, the
machine learning community, which traditionally
focused on the induction of � rule sets from
labeled data for the purposes of classification,
turned to building individual rules for exploratory
data analysis and interpretation. This is the goal
of the task named � subgroup discovery (Wrobel
1997). These are the main areas of supervised
descriptive rule induction. All deal with finding
comprehensible rules from class-labeled data.
However, the methods used and the interpretation
of the results differ slightly from approach
to approach. Other related approaches include
change mining, mining of closed sets for labeled
data, exception rule mining, bump hunting,
quantitative association rules, and impact rules.
See Kralj Novak et al. (2009) for a more detailed
survey of supervised descriptive rule induction.

Structure of the Learning System

Supervised descriptive rule induction assumes
that there is data with the property of interest de-
fined by the user. Let us illustrate supervised de-
scriptive rule induction using data from Table 1,
a very small artificial sample data set, adapted
from Ross Quinlan (1986), which contains the
results of a survey on 14 individuals, concerning
the approval or disproval of an issue analyzed
in the survey. Each individual is characterized
by four attributes that encode rudimentary infor-
mation about the sociodemographic background.
The last column (Approved) is the designated
property of interest, encoding whether the indi-
vidual approved or disproved the issue. Unlike
predictive induction, where the aim is to find a
predictive model, the goal of supervised descrip-
tive rule induction is to find local patterns in the
form of individual rules describing individuals
that are likely to approve or disprove the issue,
based on the four demographic characteristics.

Figure 1 shows six descriptive rules, found for
the sample data using the Magnum Opus (Webb
1995) rule learning software. These rules were
found using the default settings except that the
critical value for the statistical test was relaxed.
This set of descriptive rules differs from a typical
predictive rule set in several ways. The first rule

Supervised Descriptive Rule Induction, Table 1
A sample database

Education Marital status Sex Has children Approved

Primary Single Male No No

Primary Single Male Yes No

Primary Married Male No Yes

University Divorced Female No Yes

University Married Female Yes Yes

Secondary Single Male No No

University Single Female No Yes

Secondary Divorced Female No Yes

Secondary Single Female Yes Yes

Secondary Married Male Yes Yes

Primary Married Female No Yes

Secondary Divorced Male Yes No

University Divorced Female Yes No

Secondary Divorced Male No Yes

http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
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http://dx.doi.org/10.1007/978-1-4899-7687-1_797
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MaritalStatus=single AND Sex=male → Approved=no
Sex=male → Approved=no
Sex=female → Approved=yes
MaritalStatus=married → Approved=yes
MaritalStatus=divorced AND HasChildren=yes → Approved=no
MaritalStatus=single Approved=no

Supervised Descriptive Rule Induction, Fig. 1 Selected descriptive rules, describing individual patterns in the data
of Table 1

is redundant with respect to the second. The first
rule is included as a strong pattern (all three sin-
gle males do not approve), whereas the second is
weaker but more general (four out of seven males
do not approve, which is not highly predictive,
but accounts for four out of all five respondents
who do not approve). Most predictive systems
would include only one of these rules, but either
or both of them may be of interest to someone
trying to understand the data, depending on the
specific application. This particular approach to
descriptive pattern discovery does not attempt
to guess which of the more specific or more
general patterns will be more useful to the end
user. Another difference between predictive and
descriptive rules is that the predictive approach
often includes rules for the sake of completeness,
while some descriptive approaches make no at-
tempt at completeness, as they assess each pattern
on its individual merits.

Exactly which rules will be induced by a
supervised descriptive rule induction algorithm
depends on the task definition, the selected al-
gorithm, as well as the user-defined constraints
concerning minimal rule support, precision, etc.
Different learning approaches and heuristics have
been proposed to induce supervised descriptive
rules.

Applications

Applications of supervised descriptive rule induc-
tion are widely spread. See Kralj Novak et al.
(2009) for a detailed survey.

Subgroup discovery has been used in numer-
ous real-life applications Herrera et al. (2011).
Medical applications include the analysis of coro-

nary heart disease, brain ischemia data analy-
sis, the analysis of cervical cancer, and psychi-
atric emergency, as well as profiling examiners
for sonographic examinations. Spatial subgroup
mining applications include mining of census
data, mining of vegetation data and mining of
demographic data. There are also applications in
marketing, traffic accidents, production control,
election analysis, and social data.

�Contrast set mining has been used with retail
sales data and for designing customized insur-
ance programs. It has also been used in medical
applications to identify patterns in synchrotron x-
ray data that distinguish tissue samples of differ-
ent forms of cancerous tumor and for distinguish-
ing between groups of brain ischemia patients.

�Emerging pattern mining has been mainly
applied to the field of bioinformatics, more
specifically to microarray data analysis. For
example, an interpretable classifier based on
simple rules that is competitive to the state
of the art black-box classifiers on the acute
lymphoblastic leukemia (ALL) microarray data
set was built from emerging patterns. Another
application was about finding groups of genes by
emerging patterns in a ALL/AML data set and
a colon tumor data set. Emerging patterns were
also used together with the unexpected change
approach and the added/perished rule to mine
customer behavior.

Future Directions

A direction for further research is to decompose
SDRI algorithms and preprocessing and eval-
uation methods into basic components and to
reimplement them as connectable web services,

http://dx.doi.org/10.1007/978-1-4899-7687-1_173
http://dx.doi.org/10.1007/978-1-4899-7687-1_250
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which include the definition of interfaces between
SDRI services. For instance, this can include
the adaptation and implementation of subgroup
discovery techniques to solving open problems
in the area of contrast set mining and emerging
patterns. This would allow for the improvement
of algorithms due to the cross-fertilization of
ideas from different SDRI subareas.

Another direction for further research con-
cerns complex data types and the use of back-
ground knowledge. The SDRI attempts in this di-
rection include relational subgroup discovery ap-
proaches like algorithms Midos (Wrobel 2001),
RSD (relational subgroup discovery) (Železný
and Lavrač 2006), and SubgroupMiner (Klösgen
and May 2002), which is designed for spatial
data mining in relational space databases. When
ontologies are used as background knowledge
to define the hypothesis search space and data
are used to constrain and guide the hypothesis
search and evolution, and this is called semantic
subgroup discovery (Vavpetič and Lavrač 2013).
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Supervised Learning

Definition

Supervised learning refers to any machine
learning process that learns a function from an
input type to an output type using data comprising
examples that have both input and output values.
Two typical examples of supervised learning
are � classification learning and � regression.
In these cases, the output types are respectively
categorical (the classes) and numeric. Supervised
learning stands in contrast to � unsupervised
learning, which seeks to learn structure in
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data, and to � reinforcement learning in which
sequential decision-making policies are learned
from reward with no examples of “correct”
behavior.
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Supervised Learning on Text Data

�Document Classification
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Abstract

Support vector machines (SVMs) are a class of
linear algorithms which can be used for clas-
sification, regression, density estimation, nov-
elty detection, etc. In the simplest case of two-
class classification, SVMs find a hyperplane
that separates the two classes of data with
as wide a margin as possible. This leads to
good generalization accuracy on unseen data
and supports specialized optimization meth-
ods that allow SVM to learn from a large
amount of data.

Motivation and Background

Over the past decade, maximum margin models
especially SVMs have become popular in ma-
chine learning. This technique was developed
in three major steps. First, assuming that the

two classes of training examples can be sepa-
rated by a hyperplane, Vapnik and Lerner pro-
posed in 1963 that the optimal hyperplane is
the one that separates the training examples with
the widest margin. From the 1960s to 1990s,
Vapnik and Chervonenkis developed the Vapnik-
Chervonenkis theory, which justifies the maxi-
mum margin principle from a statistical point of
view. Similar algorithms and optimization tech-
niques were proposed by Mangasarian in (1965).

Second, Boser et al. (1992) incorporated
kernel function into the maximum margin
models, and their formulation is close to the
currently popular form of SVMs. Before that,
Wahba (1990) also discussed the use of kernels.
Kernels allow SVM to implicitly construct the
optimal hyperplane in the feature space, and
the resulting nonlinear model is important for
modeling real data.

Finally, in case the training examples are not
linearly separable, Cortes and Vapnik (1995)
showed that the soft margin can be applied,
allowing some examples to violate the margin
condition.

On the theoretical side, Shawe-Taylor et al.
(1998) gave the first rigorous statistical bound on
the generalization of hard-margin SVMs. Shawe-
Taylor and Cristianini (2000) gave statistical
bounds on the generalization of soft-margin
algorithms and for the regression case.

In reality, SVMs became popular thanks to its
significantly better empirical performance than
the neural networks. By incorporating transform
invariances, the SVMs developed at AT&T
achieved the highest accuracy on the MNIST
benchmark set (a handwritten digit recognition
problem). Joachims (1998) also showed clear
superiority of SVMs on text categorization.
Afterwards, SVMs have been shown effective
in many applications including computer vision,
natural language, bioinformatics, finance, etc.

Theory

SVM has a stronger mathematical basis than
some machine learning methods such as neural
networks and is closely related to some well-
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established theories in statistics. As a linear
model, it not only tries to correctly classify the
training data but also maximizes the margin
for better generalization performance. This
formulation leads to a separating hyperplane
that depends only on the (usually small fraction
of) data points that lie on the margin, which
are called support vectors. Hence the whole
algorithm is called support vector machine.
In addition, since real-world data analysis
problems often involve nonlinear dependencies,
SVMs can be easily extended to model such
nonlinearity by means of positive semi-definite
kernels. Moreover, SVMs can be trained via
quadratic programming, which (a) makes
theoretical analysis easier and (b) provides much
convenience in designing efficient solvers that
scale for large datasets. Finally, when applied
to real-world data, SVMs often deliver state-
of-the-art performance in accuracy, flexibility,
robustness, and efficiency.

Optimal Hyperplane for Linearly Separable
Examples
Consider the training set f.xi ; yi /g

n
iD1 where xi 2

R
p is the input feature vector for the i -th example

and yi 2 f1;�1g is its corresponding label
indicating whether the example is positive (yi D
C1) or negative (yi D �1). To begin with,
we assume that the set of positive and negative
examples are linearly separable, i.e., there exists a
function f .x/ D hw; xiCb where w 2 R

p (called
the weight vector) and b 2 R (called bias) such
that

hw; xi i C b > 0 for yi D C1

hw; xi i C b < 0 for yi D �1:

We call hw; xi C b D 0 the decision hyper-
plane, and in fact, there can exist multiple hy-
perplanes that separate the positive and negative
examples; see Fig. 1. However, they are not cre-
ated equal. Associated with each such hyperplane
is a notion called margin, defined as the distance
between the hyperplane and the closest example.
SVM aims to find the particular hyperplane that
maximizes the margin.

Mathematically, it is easy to check that the dis-
tance from a point xi to a hyperplane hw; xiCb D
0 is kwk�1 jhw; xi i C bj. Therefore, SVM seeks
for the optimal w; b of the following optimization
problem:

maximize
w2Rp ; b2R

min
1�i�n

jhw; xi i C bj
kwk

; s:t:

�
hw; xi i C b > 0 if yi D C1
hw; xi i C b < 0 if yi D �1

8i :

It is clear that if .w; b/ is an optimal solution,
then .˛w; ˛b/ is also an optimal solution for
any ˛ > 0. Therefore, to fix the scale, we can

equivalently set the numerator of the objective
min1�i�n jhw; xi i C bj to 1 and minimize the
denominator kwk:

minimize
w2Rp ; b2R

kwk2 ; s:t:

�
hw; xi i C b > 1 if yi D C1
hw; xi i C b < �1 if yi D �1:

8i : (1)

This is a linearly constrained quadratic program,
which can be solved efficiently. Hence, it
becomes the most commonly used (primal)
form of SVM for the linearly separable
case.

Soft Margins
In practice, most, if not all, datasets are not
linearly separable, i.e., no w and b can satisfy
the constraints of the optimization problem (1).
In this case, we will allow some data points
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H1

H2

Support Vector Machines, Fig. 1 Example of maxi-
mum margin separator. Both H1 and H2 correctly separate
the examples from the two classes. But H2 has a wider
margin than H1

to violate the margin condition and penalize it
accordingly. Mathematically, notice that the con-

1

1
– (

(

〈 〉

〈 〉

)

)

Support Vector Machines, Fig. 2 Graph of hinge loss

straints in (1) can be equivalently written as
yi .hw; xi i C b/ > 1. Now we introduce a new
set of nonnegative slack variables �i into the
constraints:

yi .hw; xi i C b/ > 1 � �i ;

and incorporate a penalty into the original objec-
tive to derive the soft-margin SVM:

minimize
w;b;�i

� kwk2 C
1

n

nX
iD1

�i s:t: yi .hw; xi i C b/ > 1 � �i ; and �i > 0 8i : (2)

� > 0 is a tradeoff factor. It is important
to note that �i can be written as �i D

max f0; 1 � yi .hw; xi i C b/g, which is called
hinge loss and is depicted in Fig. 2. This way, the
optimization problem can be reformulated into
an unconstrained non-smooth problem:

minimize
w2Rp ; b2R

�

2
kwk2

C
1

n

nX
iD1

max f0; 1 � yi .hw; xi i C b/g : (3)

Notice that max f0; 1 � yi .hw; xi i C b/g is also a
convex upper bound of ı.yi .hw; xi i C b/ > 0/,

where ı.x/ D 1 if x is true and 0 otherwise.
Therefore, the penalty we use is a convex up-
per bound of the average training error. When
the training set is actually separable, the soft-
margin problem (2) automatically recovers the
hard-margin problem (1) when � is sufficiently
large.

Dual Forms and Kernelization
As the constraints in the primal form (2) are not
convenient to handle, people have conventionally
resorted to the dual problem of (2). Following
the standard procedures, one can derive the La-
grangian dual

1

2�

X
i;j

yiyj˛i˛j
˝
xi ; xj

˛
�
X
i

˛i ; s:t: ˛i 2 Œ0; n
�1�; and

X
i

yi˛i D 0 : (4)
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which is again a quadratic program but with much
simpler constraints: box constraints plus a single
linear equality constraint. To recover the primal
solution w� from the dual solution ˛�i , we have

w� D
nX
iD1

˛�i yixi ;

and the optimal bias b can be determined by using
the duality conditions.

The training examples can be divided into
three categories according to the value of ˛�i . If
˛�i D 0, it means the corresponding training ex-
ample does not affect the decision boundary, and
in fact it lies beyond the margin, i.e., yi .hw; xi iC
b/ > 1. If ˛�i 2 .0; n

�1/, then the training exam-
ple lies on the margin, i.e., yi .hw; xi iCb/D 1. If
˛�i D n

�1, it means the training example violates
the margin, i.e., yi .hw; xi i C b/ < 1. In the
latter two cases where ˛�i > 0, the i -th training
example is called a support vector.

In many applications, most ˛�i in the optimal
solution are 0, which gives a sparse solution. As
the final classifier depends only on those support
vectors, the whole algorithm is named support
vector machines.

From the dual problem (4), a key observation
can be drawn that the feature of the training
examples fxig influences training only via the
inner product

˝
xi ; xj

˛
. Therefore, we can redefine

the feature by mapping xi to a richer feature space
via �.xi / and then compute the inner product
there: k.xi ; xj / WD

˝
�.xi /; �.xj /

˛
. Furthermore,

one can even directly define k without explicitly
specifying �. This allows us to (a) implicitly
use a rich feature space whose dimension can
be infinitely high and (b) apply SVM to non-
Euclidean spaces as long as a kernel k.xi ; xj /
can be defined on it. Examples include strings
and graphs (Haussler 1999), which have been
widely applied in bioinformatics (Schölkopf et al.
2004). Mathematically, the objective (4) can be
kernelized into

1

2�

X
i;j

yiyj˛i˛jk.xi ; xj / �
X
i

˛i ; s:t: ˛i 2 Œ0; n
�1�; and

X
i

yi˛i D 0 : (5)

However, now the w cannot be expressed
just in terms of kernels because w� DPn
iD1 ˛

�
i yi�.xi /. Fortunately, when predicting

on a new example x, we again only require the
inner product and hence use kernel only:

hw�; xi D
nX
iD1

˛�i yi h�.xi /; �.x/i

D

nX
iD1

˛�i yik.xi ; x/ :

Commonly used kernels on R
n include poly-

nomial kernels .1C
˝
xi ; xj

˛
/d , Gaussian RBF ker-

nels exp.��
		xi � xj

		2
/, Laplace RBF kernels

exp.��
		xi � xj

		/, etc. Kernels on strings and
trees are usually based on convolution which re-
quires involved algorithms for efficient evaluation
(Haussler 1999; Borgwardt 2007). More details
can be found in the kernel section.

Optimization Techniques and Toolkits
The main challenge of optimization lies in scaling
for large datasets, i.e., n and p are large. Decom-
position methods based on the dual problem is
the first popularly used method for solving large-
scale SVMs. For example, sequential minimal
optimization (SMO) optimizes two dual vari-
ables ˛i ; ˛j analytically in each iteration (Platt
1999a). An SMO-type implementation is avail-
able in the LibSVM package http://www.csie.
ntu.edu.tw/�cjlin/libsvm. Another popular pack-
age using decomposition methods is the SVM-
light, available at http://svmlight.joachims.org.
Coordinate descent in the dual is also effective
and converges at linear rate. An implementa-
tion can be downloaded from http://www.csie.
ntu.edu.tw/�cjlin/liblinear.

Primal methods are also popular, most of
which are based on formulating the objective

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://svmlight.joachims.org
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear
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as a non-smooth objective function like (3).
An important type is the subgradient descent
method, which is similar to gradient descent
but uses a subgradient due to the non-smooth
objective. When the dataset is large, one can
further use a random subset of training examples
to efficiently compute the (approximate)
subgradient, and algorithms exist that guarantee
the convergence in probability. This is called
stochastic subgradient descent, and in practice, it
can often quickly find a reasonably good solution.
A package that implements this idea can be found
at http://leon.bottou.org/projects/sgd.

Finally, cutting plane and bundle methods are
also effective (Tsochantaridis et al. 2005; Smola
et al. 2007), and they are especially useful for
generalized SVMs with structured outputs. An
implementation is the bundle method for risk
minimization (BMRM), available for download
at http://users.rsise.anu.edu.au/�chteo/BMRM.
html.

Applications

The above description of SVM focused on binary
class classification. In fact, SVMs, or the ideas of
maximum margin and kernel, have been widely
used in many other learning problems such as
regression, ranking and ordinal regression, den-
sity estimation, novelty detection, quantile re-
gression, etc. Even in classification, SVM has
been extended to the case of multi-class, multi-
label, and structured output (Tsochantaridis et al.
2005; Taskar 2004).

For multi-class classification and structured
output classification where the possible label set
Y can be large, maximum margin machines can
be formulated by introducing a joint feature map
� on pairs of .xi ; y/ (y 2 Y). Letting Δ.yi ; y/

be the discrepancy between the true label yi and
the candidate label y, the primal form can be
written as

minimize
w;�i

�

2
kwk2 C

1

n

nX
iD1

�i ; s:t: hw; �.xi ; yi / � �.xi ; y/i � Δ.yi ; y/ � �i ; 8 i; y;

and the dual form is

minimize
˛i;y

1

2�

X
.i;y/;.i 0;y0/

˛i;y˛i 0;y0

˝
�.xi ; yi / � �.xi ; y/; �.xi 0 ; yi 0/ � �.xi 0 ; y

0/
˛
�
X
i;y

Δ.yi ; y/˛i;y

s:t: ˛i;y � 0; 8 i; yI
X
y

˛i;y D
1

n
; 8i:

Again kernelization is convenient, by simply re-
placing all the inner products h�.xi ; y/; �.xi 0 ; y0/i
with a joint kernel k..xi ; y/; .xi 0 ; y0//. Further
factorization using graphical models is possible;
see (Taskar 2004). Notice when Y D f1;�1g,
setting �.xi ; y/ D y�.xi / recovers the binary
SVM formulation. Effective methods to optimize
the dual objective include SMO, exponentiated
gradient descent, mirror descent, cutting plane,
or bundle methods.

In general, SVMs are not trained to output
the odds of class membership, although the
posterior probability is desired to enable post-
processing. Platt (1999b) proposed training an
SVM and then training the parameters of an
additional sigmoid function to map the SVM
outputs into probabilities. A more principled
approach is the relevance vector machine, which
has an identical functional form to the SVMs
and uses Bayesian inference to obtain sparse
solutions for probabilistic classification.

http://leon.bottou.org/projects/sgd
http://users.rsise.anu.edu.au/~chteo/BMRM.html
http://users.rsise.anu.edu.au/~chteo/BMRM.html
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As mentioned above, the hinge loss used in
SVM is essentially a convex surrogate of the
misclassification loss, i.e., 1 if the current weight
w misclassifies the training example and 0 oth-
erwise. Minimizing the misclassification loss is
proved NP-hard, so for computational conve-
nience, continuous convex surrogates are used,
including hinge loss, exponential loss, and logis-
tic loss. Their statistical properties are studied by
Jordan et al. (2003). For hinge loss, it has the
significant merit of sparsity in the dual, which
leads to robustness and good generalization per-
formance.

SVMs have been widely applied in real-world
problems. In history, its first practical success
was gained in handwritten digit recognition. By
incorporating transform invariances, the SVMs
developed at AT&T achieved the highest accu-
racy on the MNIST benchmark set. It has also
been very effective in computer vision applica-
tions such as object recognition and detection.
With the special advantage in handling high-
dimensional data, SVMs have witnessed wide
application in bioinformatics such as microarray
processing (Schölkopf et al. 2004) and natural
language processing like named entity recogni-
tion, part-of-speech tagging, parsing, and chunk-
ing (Taskar 2004; Joachims 1998).
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Swarm Intelligence

Swarm intelligence is the discipline that studies
the collective behavior of systems composed
of many individuals that interact locally with
each other and with their environment and that
rely on forms of decentralized control and self-
organization. Examples of such systems are
colonies of ants and termites, schools of fish,
flocks of birds, herds of land animals, and also
some artifacts, including swarm robotic systems
and some computer programs for tackling
optimization problems such as � ant colony
optimization and � particle swarm optimization.

Symbolic Dynamic Programming

Scott Sanner1 and Kristian Kersting2;3

1Statistical Machine Learning Group, NICTA,
Canberra, ACT, Australia
2Technische Universität Dortmund, Dortmund,
Germany
3Knowledge Discovery, Fraunhofer IAIS, Sankt
Augustin, Germany

Synonyms

Dynamic programming for relational domains;
Relational dynamic programming; Relational
value iteration; SDP

Definition

Symbolic dynamic programming (SDP) is a gen-
eralization of the � dynamic programming tech-

nique for solving �Markov decision processes
(MDPs) that exploits the symbolic structure in
the solution of relational and first-order logical
MDPs through a lifted version of dynamic pro-
gramming.

Motivation and Background

Decision-theoretic planning aims at constructing
a policy for acting in an uncertain environment
that maximizes an agent’s expected utility along
a sequence of steps. For this task, Markov de-
cision processes (MDPs) have become the stan-
dard model. However, classical dynamic pro-
gramming algorithms for solving MDPs require
explicit state and action enumeration, which is of-
ten impractical: the number of states and actions
grows very quickly with the number of domain
objects and relations. In contrast, SDP algorithms
seek to avoid explicit state and action enumer-
ation through the symbolic representation of an
MDP and a corresponding symbolic derivation of
its solution, such as a value function. In essence,
SDP algorithms exploit the symbolic structure of
the MDP representation to construct a minimal
logical partition of the state space required to
make all necessary value distinctions.

Theory and Solution

Consider an agent acting in a simple variant of the
BoxWorld problem. There are several cities such
as London, Paris etc., trucks truck1, truck2 etc.,
and boxes box1, box2 etc. The agent can load a
box onto a truck or unload it and can drive a truck
from one city to another. Only when a particular
box, say box box1, is in a particular city, say
Paris, the agent receives a positive reward. The
agent’s learning task is now to find a policy for
action selection that maximizes its reward over
the long term.

A great variety of techniques for solving such
decision-theoretic planning tasks have been de-
veloped over the last decades. Most of them
assume atomic representations, which essentially

http://dx.doi.org/10.1007/978-1-4899-7687-1_22
http://dx.doi.org/10.1007/978-1-4899-7687-1_630
http://dx.doi.org/10.1007/978-1-4899-7687-1_100127
http://dx.doi.org/10.1007/978-1-4899-7687-1_100406
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410
http://dx.doi.org/10.1007/978-1-4899-7687-1_100417
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
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• Domain Object Types (i.e., sorts): Box, Truck, City = {paris, . . .}
• Relations (with parameter sorts):

BoxIn(Box,City) , TruckIn(Truck,City) , BoxOn(Box, Truck)

• Reward: if ∃b.BoxIn(b,paris)  else 

• Actions (with parameter sorts):

– load(Box : b, Truck : t,City : c) :

* Success Probability: if (BoxIn(b, c) ∧ TruckIn( t, c)) then . else 

* Add Effects on Success: {BoxOn(b, t)}
* Delete Effects on Success: {BoxIn(b, c)}

– unload(Box : b, Truck : t,City : c) :

* Success Probability: if (BoxOn(b, t) ∧ TruckIn( t, c)) then . else 

* Add Effects on Success: {BoxIn(b, c)}

* Delete Effects on Success: {BoxOn(b, t)}
– drive(Truck : t,City : c,City : c) :

* Success Probability: if (TruckIn( t, c)) then  else 

* Add Effects on Success: {TruckIn( t, c)}

* Delete Effects on Success: {TruckIn( t, c)}
– noop

* Success Probability: 

* Add Effects on Success: ∅
* Delete Effects on Success: ∅

Symbolic Dynamic Programming, Fig. 1 A formal de-
scription of the BoxWorld adapted from Boutilier et al.
(2001). We use a simple STRIPS (Fikes and Nilsson 1971)
add and delete list representation of actions and, as a sim-

ple probabilistic extension in the spirit of PSTRIPS (Kush-
merick et al. 1995), we assign probabilities that an ac-
tion successfully executes conditioned on various state
properties

amounts to enumerating all unique configurations
of trucks, cities, and boxes. It might then be
possible to learn, for example, that taking action
action234 in state state42 is worth 6. 2 and leads
to state state654321. Atomic representations are
simple, and learning can be implemented us-
ing simple lookup tables. These lookup tables,
however, can be intractably large as atomic rep-
resentations easily explode. Furthermore, they
do not easily generalize across different num-
bers of domain objects (We use the term do-
main in the first-order logical sense of an ob-
ject universe. The term should not be confused
with a planning problem such as BOXWORLD or
BLOCKSWORLD.).

In contrast, SDP assumes a relational or first-
order logical representation of an MDP (as given
in Fig. 1) to exploit the existence of domain ob-

jects, relations over these objects, and the ability
to express objectives and action effects using
quantification.

It is then possible to learn that to get box b
to paris, the agent drives a truck to the city of
b, loads box1 on the truck, drives the truck to
Paris, and finally unloads the box box1 in Paris.
This is essentially encoded in the symbolic value
function shown in Fig. 2, which was computed
by discounting rewards t time steps into the
future by 0. 9t . The key features to note here
are the state and action abstraction in the value
and policy representation that are afforded by
the first-order specification and solution of the
problem. That is, this solution does not refer
to any specific set of domain objects, such as
City D f paris, berlin, londong, but rather it
provides a solution for all possible domain ob-
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if (∃b.BoxIn(b,paris)) then do noop (value = .)

else if (∃b,t.TruckIn( t,paris) ∧ BoxOn(b, t)) then do unload(b, t) (value = .)

else if (∃b,c,t.BoxOn(b, t) ∧ TruckIn( t, c)) then do drive( t, c,paris) (value = .)

else if (∃b,c,t.BoxIn(b, c) ∧ TruckIn( t, c)) then do load(b, t) (value = .)

else if (∃b, c, t, c.BoxIn(b, c) ∧ TruckIn( t, c)) then do drive( t, c, c) (value = .)

else do noop (value = .)

Symbolic Dynamic Programming, Fig. 2 A decision-list representation of the optimal policy and expected dis-
counted reward value for the BoxWorld problem

ject instantiations. And while classical dynamic
programming techniques could never solve these
problems for large domain instantiations (since
they would have to enumerate all states and
actions), a domain-independent SDP solution to
this particular problem is quite simple due to the
power of state and action abstraction.

Background: Markov Decision
Processes (MDPs)

In the MDP (Puterman 1994) model, an agent
is assumed to fully observe the current state and
choose an action to execute from that state. Based
on that state and action, nature then chooses a
next state according to some fixed probability
distribution. In an infinite-horizon MDP, this pro-
cess repeats itself indefinitely. Assuming there is
a reward associated with each state and action, the
goal of the agent is to maximize the expected sum
of discounted rewards received over an infinite
horizon (Although we do not discuss it here,
there are other alternatives to discounting such
as averaging the reward received over an infinite
horizon.). This criterion assumes that a reward
received t steps in the future is discounted by � t ,
where � is a discount factor satisfying 0 � � < 1:
The goal of the agent is to choose its actions
in order to maximize the expected, discounted
future reward in this model.

Formally, a finite state and action MDP is
a tuple: hS;A; T;R i, where S is a finite state
space, A is a finite set of actions, T is a transition
function: T W S � A � S ! [0, 1], where
T .s, a, � / is a probability distribution over S for

any s 2 S and a 2 A, and R is a bounded reward
function R W S � A! R.

As stated earlier, our goal is to find a policy
that maximizes the infinite horizon, discounted
reward criterion: E� Œ

P1
tD0 �

t � rt js0], where rt is
a reward obtained at time t , � is a discount factor
as defined earlier, � is the policy being executed,
and s0 is the initial starting state. Based on this
reward criterion, we define the value function for
a policy � as the following:

V�.s/ D E�

"
1X
tD0

� t � rt js0 D s

#
(1)

Intuitively, the value function for a policy � is the
expected sum of discounted rewards accumulated
while executing that policy when starting from
state s.

For the MDP model discussed here, the
optimal policy can be shown to be stationary
(Puterman 1994). Consequently, we use a
stationary policy representation of the form
� W S ! A, with �.s/ denoting the action to
be executed in state s. An optimal policy �� is
the policy that maximizes the value function for
all states. We denote the optimal value function
over an indefinite horizon as V �.s/ and note that
it satisfies the following equality:

V �.s/ D max
a2A

n
R.s; a/

C �
X
s02s

T .s; a; s0/ �V �.s0/
o

(2)

Bellman’s principle of optimality (Bellman 1957)
establishes the following relationship between
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Symbolic Dynamic Programming, Fig. 3 A diagram
demonstrating a dynamic programming regression-based
evaluation of the MDP value function. Dashed lines are
used in the expectation computation of the Q-function:

for each action, take the expectation over the values of
possible successor states. Solid lines are used in the max
computation: determine the highest valued action to be
taken in each state

the optimal value function V t .s/ with a finite
horizon of t steps remaining and the optimal
value function V t�1.s/ with a finite horizon of
t � 1 steps remaining:

V t .s/ D max
a2A

n
R.s; a/

C �
X
s02S

T .s; a; s0/ �V t�1.s0/
o

(3)

A dynamic programming approach for comput-
ing the optimal value function over an indefi-
nite horizon is known as value iteration and di-
rectly implements (3) to compute 1 by successive
approximation. As sketched in Fig. 3, we start
with arbitrary V 0.s/ (e.g., 8sV 0.s/ D 0) and
perform the Bellman backup given in (3) for
each state V 1.s/ using the value of V 0.s/. We
repeat this process for each t to compute V t .s/
from the memorized values for V t�1.s/ until we
have computed the intended t -stages-to-go value
function. V t .s/will converge to V �.s/ as t !1
(Puterman 1994).

Often, the Bellman backup is rewritten in two
steps to separate out the action regression and

maximization steps. In this case, we first compute
the t -stages-to-go Q-function for every action and
state:

Qt .s; a/DR.s; a/C � �
X
s02S

T .s; a; s0/ �V t�1.s0/

(4)

Then we maximize over each action to determine
the value of the regressed state:

V t .s/ D max
a2A
fQt .s; a/g (5)

This is clearly equivalent to (3) but is in a form
that we refer to later, since it separates the
algorithm into its two conceptual components:
decision-theoretic regression and maximization.

First-Order Markov Decision Processes
A first-order MDP (FOMDP) can be thought
of as a universal MDP that abstractly defines
the state, action, transition, and reward tuple
hS , A, T , Ri for an infinite number of ground
MDPs. To make this idea more concrete, consider
the BoxWorld problem defined earlier. While
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we have not yet formalized the details of the
FOMDP representation, it should be clear that the
BoxWorld dynamics hold for any instantiation of
the domain objects: Box, Truck, and City. For
instance, assume that the domain instantiation
consists of two boxes Box D fbox1, box2g, two
trucks Truck = ftruck1, truck2g and two cities
City D fparis, berling. Then the resulting ground
MDP has 12 state-variable atoms (each atom
being true or false in a state), four atoms for
BoxIn such as BoxIn(box1, paris), BoxIn(box2,
paris), . . . , four atoms for TruckIn such as
TruckIn(truck2, paris), . . . and four atoms for
BoxOn such as BoxOn(box2, truck1/, . . . . There
are also 24 possible actions (eight for each of
load,unload, and drive) such as load(box1, truck1,
paris), load(box1, truck1, berlin), drive(truck2,
paris, paris), drive(truck2, paris, berlin), etc.,
where the transition function directly follows
from the ground instantions of the corresponding
PSTRIPS operators. The reward function looks
like: if (BoxIn(box1, paris) _ BoxIn(box 2, paris))
10 else 0.

Therefore, to solve an FOMDP, we could
ground it for a specific domain instantiation to
obtain a corresponding ground MDP. Then we
could apply classical MDP solution techniques
to solve this ground MDP. However, the obvious
drawback to this approach is that the number
of state variables and actions in the ground
MDP grow at least linearly as the domain
size increases. And even if the ground MDP
could be represented within memory constraints,
the number of distinct ground states grows
exponentially with the number of state variables,
thus rendering solutions that scale with state size
intractable even for moderately small numbers of
domain objects.

An alternative idea to solving an FOMDP at
the ground level is to solve the FOMDP directly
at the first-order level using symbolic dynamic
programming, thereby obtaining a solution that
applies universally to all possible domain instan-
tiations. While the exact representation and SDP
solution of FOMDPs differ among the variant
formalisms, they all share the same basic first-
order representation of rewards, probabilities, and
values that we outline next. To highlight this, we

introduce a graphical case notation to allow first-
order specifications of the rewards, probabilities,
and values required for FOMDPs:

�1 W t1
case D W W W

�n W tn

Here the 'i are state formulae and the ti are
terms. Often the ti are constants and the 'i
partition state space. To make this concrete, we
represent our BoxWorld FOMDP reward function
as the following rCase statement:

rCase =
9b:BoxIn.b; paris/ W 10
:9b:BoxIn.b; paris/ W 0

Here we see that the first-order formulae in the
case statement divide all possible ground states
into two regions of constant value: when there
exists a box in Paris, a reward of 10 is achieved,
otherwise a reward of 0 is achieved. Likewise, the
value function case that we derive through SDP
can be represented in exactly the same manner.
Indeed, as we will see shortly, case0 = rCase in
the first-order version of value iteration.

To state the FOMDP transition function for
an action, we decompose stochastic “agent” ac-
tions into a collection of deterministic actions,
each corresponding to a possible outcome of the
stochastic action. We then specify a distribu-
tion according to which “nature” may choose a
deterministic action from this set whenever the
stochastic action is executed.

Letting A.Ex/ be a stochastic action with
nature’s choices (i.e., deterministic actions)
n1.Ex/; : : : nk.Ex/, we represent the distribution
over ni .Ex/ given A.Ex/ using the notation
pCase.nj .Ex/; A.Ex//. Continuing our logistics
example, if the success of driving a truck depends
on whether the destination city is paris (perhaps
due to known traffic delays), then we decompose
the stochastic drive action into two deterministic
actions driveS and driveF, respectively denoting
success and failure. Then we can specify a
distribution over nature’s choice deterministic
outcome for this stochastic action:
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pCase.driveS.t; c1; c2//; =
c2 D paris W 0:6

drive.t; c1; c2// c2 ¤ paris W 0:9

pCase.driveF.t; c1; c2//; =
c2 D paris W 0:4

drive.t; c1; c2// c2 ¤ paris W 0:1

Intuitively, to perform an operation on case
statements, we simply perform the corresponding
operation on the intersection of all case partitions
of the operands. Letting each 'i and  j denote
generic first-order formula, we can perform the
“cross-sum” ˚ of case statements in the follow-
ing manner:

�1 W 10
�2 W 20

˚
 1 W 1
 2 W 2

D

�1 ^  1 W 11
�1 ^  2 W 12
�2 ^  1 W 21
�2 ^  2 W 22

Likewise, we can perform� ,˝ , and max opera-
tions by respectively subtracting, multiplying, or
taking the max of partition values (as opposed to
adding them) to obtain the result. Some partitions
resulting from the application of the ˚ , � ,
and ˝ operators may be inconsistent; we simply
discard such partitions (since they can obviously
never correspond to any world state).

We define another operation on case state-
ments max 9Ex that is crucial for SDP. Intuitively,
the meaning of max 9Ex case.Ex/ is a case state-
ment where the maximal value is assigned to
each region of state space where there exists a
satisfying instantiation of Ex. To make these ideas
concrete, following is an exposition of how the
max 9Ex may be explicitly computed:

max 9Ex
 1.Ex/ W 1
 2.Ex/ W 2
 3.Ex/ W 3

D

9Ex 3.Ex/ W 3
:.9Ex 3.Ex// ^ 9Ex 2.Ex/ W 2
:.9Ex 3.Ex// ^ :.9Ex 2.Ex// ^ 9Ex 1.Ex/ W 1

Here we have simply sorted partitions in order of
values and have ensured that the highest value
is assigned to partitions in which there exists a

satisfying instantiation of Ex by rendering lower
value partitions disjoint from their higher-value
antecedents.

Symbolic Dynamic Programming

SDP is a dynamic programming solution to
FOMDPs that produces a logical case description
of the optimal value function. This is achieved
through the operations of first-order decision-
theoretic regression (FODTR) and symbolic
maximization that perform the traditional
dynamic programming Bellman backup at an
abstract level without explicit enumeration of
either the state or action spaces of the FOMDP.
Among many uses, the application of SDP leads
to a domain-independent value iteration solution
to FOMDPs.

Suppose that we are given a value function in
the form case. The FODTR (Boutilier et al. 2001)
of this value function through an action A.Ex/

yields a case statement containing the logical
description of states and values that would give
rise to case after doing action A.Ex/. This is
analogous to classical goal regression, the key
difference being that action A.Ex/ is stochastic.
In MDP terms, the result of FODTR is a case
statement representing a Q-function.

We define the FODTR operator in the follow-
ing manner:

FODTRŒvcase; A.Ex/� D rcase˚

�Œ˚j fpCase.nj .Ex//˝ RegrŒvcase; A.Ex/�g�

(6)

Note that we have not yet defined the regres-
sion operatorRegrŒvcase; A.Ex/�. As it turns out,
the implementation of this operator is specific to
a given FOMDP language and SDP implementa-
tion. We simply remark that the regression of a
formula  through an action A.Ex/ is a formula
 0 that holds prior to A.Ex/ being performed iff
 holds after A.Ex/. However, regression is a
deterministic operator and thus FODTR takes the
expectation of the regression over all possible
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outcomes of a stochastic action according to their
respective probabilities.

It is important to note that the case statement
resulting from FODTR contains free variables
for the action parameters Ex. That is, for any
constant binding Ec of these action parameters
such that Ex D Ec, the case statement specifies
a well-defined logical description of the value
that can be obtained by taking action A.Ec/ and
following a policy so as to obtain the value
given by vf case thereafter. However, what we
really need for symbolic dynamic programming
is a logical description of a Q-function that tells
us the highest value that can be achieved for
any action instantiation. This leads us to the
following qCase.A.Ex// definition of a first-order
Q-function that makes use of the previously de-
fined 9Ex operator:

qCaset .A.Ex//

D max 9Ex:FODTRŒvcaset�1; A.Ex/� (7)

Intuitively, qCaset .A.Ex// is a logical descrip-
tion of the Q-function for action A.Ex/ indicating
the best value that could be achieved by any
instantiation of A.Ex/. And by using the case
representation and action quantification in the
max 9Ex operation, FODTR effectively achieves
both action and state abstraction.

At this point, we can regress the value func-
tion through a single action, but to complete the
dynamic programming step, we need to know
the maximum value that can be achieved by any
action (e.g., in the BoxWorld FOMDP, our pos-
sible action choices are unload(b, t , c/, load(b,
t , c/, and drive(t , c1, c2//. Fortunately, this turns
out to be quite easy. Assuming we have m ac-
tions fA1.Ex1/; : : : ; Am.Exm/g, we can complete
the SDP step in the following manner using the
previously defined max operator:

vcaset D max
a2fA1.Ex1/;:::;Am.Exm/g

qCaset .a/ (8)

While the details of SDP may seem very ab-
stract at the moment, there are several examples
for specific FOMDP languages that implement
SDP as described earlier, for which we provide
references next. Nonetheless, one should note
that the SDP equations given here are exactly
the “lifted” versions of the traditional dynamic
programming solution to MDPs given previously
in (4) and (5). The reader may verify — on a
conceptual level — that applying SDP to the 0-
stages-to-go value function (i.e., case0 = rCase,
given previously) yields the following 1- and
2-stages-to-go value functions in the BoxWorld
domain ( : “indicating the conjunction of the
negation of all higher value partitions):

caset D

9b:BoxIn.b; paris/ W 19:0
:“ ^ 9b; t:T ruckIn.t; paris/ ^ BoxOn.b; t/ W 9:0
:00 W 0:0

case2 D

9b:BoxIn.b; paris/ W 27:1
:“ ^ 9b; t:T ruckIn.t; paris/ ^ BoxOn.b; t/ W 17:1
:“ ^ 9b; c:BoxOn.b; t/ ^ T ruckIn.t; c/ W 8:1
:00 W 0:0

After sufficient iterations of SDP, the t -stages-
to-go value function converges, giving the op-

timal value function (and corresponding policy)
from Fig. 2.
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Applications

Variants of SDP have been successfully applied
in decision-theoretic planning domains such as
BLOCKSWORLD, BOXWORLD, ZENOWORLD,
ELEVATORS, DRIVE, PITCHCATCH, and
SCHEDULE. The first-order approximate linear
programming (FOALP) system (Sanner and
Boutilier 2005) was runner-up at the probabilistic
track of the 5th International Planning Competi-
tion (IPC-6). Related techniques have been used
to solve path planning problems within robotics
and instances of real-time strategy games, Tetris,
and Digger.

Future Directions

The original SDP (Boutilier et al. 2001) ap-
proach is a value iteration algorithm for solving
FOMDPs based on Reiter’s situations calculus.
Since then, a variety of exact algorithms have
been introduced to solve MDPs with relational
(RMDP) and first-order (FOMDP) structure (We
use the term relational MDP to refer to mod-
els that allow implicit existential quantification,
and FOMDP for those with explicit existential
and universal quantification.). First-order value
iteration (FOVIA) (Hölldobler and Skvortsova
2004; Karabaev and Skvortsova 2005) and the
relational Bellman algorithm (ReBel) (Kersting
et al. 2004) are value iteration algorithms for
solving RMDPs. In addition, first-order decision
diagrams (FODDs) have been introduced to com-
pactly represent case statements and to permit
efficient application of SDP operations to solve
RMDPs via value iteration (Wang et al. 2007) and
policy iteration (Wang and Khardon 2007). All of
these algorithms have some form of guarantee on
convergence to the ("-)optimal value function or
policy. The expressiveness of FOMDPs has been
extended to support indefinitely factored reward
and transition functions in FOMDPs (Sanner and
Boutilier 2007).

A class of linear-value approximation
algorithms have been introduced to approximate

the value function as a linear combination
of weighted basis functions. FOALP (Sanner
and Boutilier 2005) directly approximates
the FOMDP value function using a linear
program. First-order approximate policy
iteration (FOAPI) (Sanner and Boutilier 2006)
approximately solves for the FOMDP value
function by iterating between policy and value
updates in a policy-iteration style algorithm.
Somewhat weak error bounds can be derived for a
value function approximated via FOALP (Sanner
and Boutilier 2005) while generally stronger
bounds can be derived from the FOAPI
solution (Sanner and Boutilier 2006).

Finally, there are a number of heuristic so-
lutions to FOMDPs and RMDPs. Approximate
policy iteration (Fern et al. 2003) induces rule-
based policies from sampled experience in small-
domain instantiations of RMDPs and generalizes
these policies to larger domains. In a similar vein,
inductive policy selection using first-order regres-
sion (Gretton and Thiebaux 2004) uses the action
regression operator in the situation calculus to
provide the first-order hypothesis space for an
inductive policy learning algorithm. Approximate
linear programming (for RMDPs) (Guestrin et al.
2003) is an approximation technique using linear
program optimization to find a best-fit value func-
tion over a number of sampled RMDP domain
instantiations.
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Symmetrization Lemma

Synonyms

Basic lemma

Definition

Given a distribution P over a sample space Z ,
a finite sample z D .´1; : : : ; ´n/ drawn i.i.d.
from P and a function f W Z ! R we define
the shorthand EPf D EP Œf .´/� and Ezf D
1
n

Pn
i�1 f .´i / to denote the true and empirical

average of f . The symmetrization lemma is an
important result in the learning theory as it allows
the true average EPf found in � generalization
bounds to be replaced by a second empirical aver-
age Ez0f taken over an independent ghost sample
z0 D ´01; : : : ´

0
n drawn i.i.d. from P . Specifically,

the symmetrization lemma states that for any 	 >
0 whenever n	2 � 2

P n

 
sup
f 2F

jEPf � Ezf j > 	

!

� 2P 2n

 
sup
f 2F

jEz0f � Ezf j >
	

2

!
: (1)

This means the typically difficult to analyze be-
havior of EPf – which involves the entire sam-
ple space Z – can be replaced by the evaluation
of functions from F over the points in z and z0.

Synaptic Efficacy
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