
O

Object

� Instance

Object Consolidation

�Entity Resolution

Object Identification

�Record Linkage

Object Matching

�Record Linkage

Object Space

� Instance Space

Objective Function

� Partitional Clustering

Observation Language

Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
Leiden Institute of Advanced Computer Science,
Heverlee, Belgium

Synonyms

Instance language

Definition

The observation language used by a machine
learning system is the language in which the
observations it learns from are described.

Motivation and Background

Most machine learning algorithms can be seen as
a procedure for deriving one or more hypotheses
from a set of observations. Both the input (the
observations) and the output (the hypotheses)
need to be described in some particular lan-
guage and this language is called the observation
language or the �Hypothesis Language respec-
tively. These terms are mostly used in the context
of symbolic learning, where these languages are
often more complex than in subsymbolic or sta-
tistical learning.

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_81
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_712
http://dx.doi.org/10.1007/978-1-4899-7687-1_408
http://dx.doi.org/10.1007/978-1-4899-7687-1_637
http://dx.doi.org/10.1007/978-1-4899-7687-1_100219
http://dx.doi.org/10.1007/978-1-4899-7687-1_372

918 Observation Language

The following sections describe some of the
key observation languages.

Attribute-Value Learning

Probably the most used setting in machine
learning is the attribute-value setting (see
�Attribute-Value Learning). Here, an example
(observation) is described by a fixed set of
attributes, each of which is given a value from
the domain of the attribute. Such an observation
is often called a vector or, in relational database
terminology, a tuple. The attributes are usually
atomic (i.e., not decomposable in component
values) and single-valued (i.e., an attribute has
only one value, not a set of values). So we have
an instance space (or space of observations)

O D A1 � � � � � An;

elements of which are denoted using an ob-
servation language that typically has the same
structure:

LO D LA1 � � � � � LAn
;

(the language contains tuples of objects that rep-
resent the attribute values).

The attribute-value framework easily allows
for both supervised and unsupervised learning;
in the supervised learning setting, the label of an
instance is simply included as an attribute in the
tuple, where as for unsupervised learning, it is
excluded.

The attribute-value setting assumes that all
instances can be represented using the same fixed
set of attributes. When instances can be of dif-
ferent types or are variable-sized (e.g., when an
instance is set-valued), this assumption may not
hold, and more powerful languages may have to
be used instead.

Learning from Graphs, Trees, or Sequences
We here consider the case in which a single
instance is a graph, or a node in a graph. Note that
trees and sequences are special cases of graphs.

A graph is defined as a pair (V , E), where V
is a set of vertices and E a set of edges each edge
being a pair of vertices. If the pair is ordered,
the graph is directed; otherwise it is undirected.
For simplicity, we restrict ourselves to undirected
graphs.

A graph can, in practice, not be encoded in
attribute-value format without the loss of infor-
mation. That is, one could use a number of prop-
erties of graphs as attributes in the encoding, but
several graphs may then still map onto the same
representation, which implies loss of information.
In theory, one could imagine defining a total order
on (certain classes of) graphs and representing
each graph by its rank in that order (which is
a single numerical attribute), thus representing
graphs as numbers without loss of information;
but then it is not obvious how to map patterns
in this numerical representation to patterns in the
original representation. No such approaches have
been proposed till now.

Describing the instance space is more difficult
here than in the attribute value case. Consider a
task of graph classification, where in observations
are of the form (G, y) with G a graph and y a
value for a target attribute Y . Then we can define
the instance space as

O D f.V;E/jV � N ^E � V 2g � Y;

where N is the set of all natural numbers. (For
each graph, there exists a graph defined over
N that is isomorphic with it, so O contains all
possible graphs up to isomorphism.)

A straightforward observation language in the
case of graph classification is then

f.G; y/jG

D .V;E/ ^ V � LV ^E � V 2 ^ y 2 Y g;

where LV is some alphabet for representing
nodes.

In learning from graphs, there are essentially
two settings: those where a prediction is made
for entire graphs, and those where a prediction
is made for single nodes in a graph. In the first
case, observations are of the form (G, y/, where

http://dx.doi.org/10.1007/978-1-4899-7687-1_43

Observation Language 919

O

Algebra

Calculus

Databases

Biology

Adams

Baeck

Cools

Adams

Adams Calculus

Baeck

Cools Calculus

DatabasesCools

Biology

Algebra

1999

1998

1999

1999

1998

Anne

Bernard

Celine

Daniel

Elisa

Fabian

1997

1996

1999

1999

1997

1999

Algebra

Calculus

Databases

Biology

Databases

Calculus

1999

2000

1998

A

B

A

B

2000 A

Anne

Anne

Bernard

Celine

Celine

Celine

B

1998

1998

Observation Language, Fig. 1 A small database of students

as, in the second case, they are of the form (G,
v, y), where G D .V;E/ and v 2 V. That is, a
node is given together with the graph in which
it occurs (its “environment”), and a prediction
is to be made for this specific node, using the
information about its environment.

In many cases, the set of observations one
learns from is of the form .G; vi ; yi /, where each
instance is a different node of exactly the same
graph G. This is the case when, for instance,
classifying web pages, we take the whole web as
their environment.

In a labeled graph, labels are associated with
each node or edge. Often these are assumed
atomic, being elements of a finite alphabet or real
numbers, but they can also be vectors of reals.

Relational Learning
In � relational learning, it is assumed that rela-
tionships may exist between different instances of
the instance space, or an instance may internally
consist of multiple objects among which relation-
ships exist.

This essentially corresponds to learning from
graphs, except that in a graph only one binary
relation exists (the edges E), whereas here there
may be multiple relations and they may be non
binary. The expressiveness of the two settings
is the same, however, as any relation can be
represented using only binary relations.

In the attribute-value setting, one typically
uses one table where each tuple represents all the

relevant information for one observation. In the
relational setting, there may be multiple tables,
and information on a single instance is contained
in multiple tuples, possibly belonging to multiple
relations.

Example 1 Assume we have a database about
students, courses, and professors (see Fig. 1). We
can define a single observation as all the infor-
mation relevant to one student, that is: the name,
year of entrance, etc. of the student and also
the courses they take and the professors teaching
these courses.

The most obvious link to the graph represen-
tation is as follows: create one node for each
tuple, labeled with that tuple, and create a link
between two nodes if the corresponding tuples
are connected by a foreign key relationship.

Defining a single observation as a set of tuples
that are connected through foreign keys in the
database corresponds to representing each obser-
vation (G; v; y) as (G0; v; y), where G0 is the
connected component of G that contains v. The
actual links are usually not explicitly written in
this representation, as they are implicit: there is
an edge between two tuples if they have the same
value for a foreign key attribute.

Inductive Logic Programming
In � inductive logic programming, a language
based on first order logic is used to represent
the observations. Typically, an observation is then

http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

920 Occam’s Razor

represented by a ground fact, which basically cor-
responds to a single tuple in a relational database.
In some settings an observation is represented by
an interpretation, a set of ground facts, which
corresponds to the set of tuples mentioned in the
previous subsection.

While the target variable can always be rep-
resented as an additional attribute, ILP systems
often learn from examples and counterexamples
of a concept. The target variable is then implicit:
it is true or false depending on whether the
example is in the positive or negative set, but it
is not explicitly included in the fact.

Typical for the inductive logic programming
setting is that the input of a system may contain,
besides the observations, background knowledge
about the application domain. The advantage of
the ILP setting is that no separate language is
needed for such background knowledge: the same
first order logic-based language can be used for
representing the observations as well as the back-
ground knowledge.

Example 2 Take the following small dataset:

sibling(bart,lisa).
sibling(lisa,bart).
:- sibling(bart, bart).
:- sibling(lisa, lisa).
father(homer, bart).
mother(marge, bart).
father(homer, lisa).
mother(marge, lisa).

There are positive and negative (preceded by
:-) examples of the Sibling relation. The following
hypothesis might be learned:

sibling(X,Y) :- father(Z,X),
father(Z,Y), X ¤ Y.
sibling(X,Y) :- mother(Z,X),
mother(Z,Y), X ¤ Y.

If the following clauses as included as back-
ground knowledge:

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

then the same ILP system might learn the follow-
ing more compact definition:

sibling(X,Y) :- parent(Z,X),
parent(Z,Y), X ¤ Y.

Further Reading

Most of the literature on hypothesis and observa-
tion languages is found in the area of inductive
logic programming. Excellent starting points to
become familiar with this field are Relational
Data Mining by Džeroski and Lavraè (2001) and
Logical and Relational Learning by De Raedt
(2008).

De Raedt (1998) compares a number of dif-
ferent observation and hypothesis languages with
respect to their expressiveness, and indicates re-
lationships between them.

Cross-References

�Hypothesis Language
� Inductive Logic Programming
�Relational Learning

Recommended Reading

De Raedt L (1998) Attribute-value learning versus
inductive logic programming: the missing links
(extended abstract). In: Page D (ed) Proceedings
of the eighth international conference on inductive
logic programming. Lecture notes in artificial intel-
ligence, vol 1446. Springer, Berlin, pp 1–8

De Raedt L (2008) Logical and relational learning.
Springer, Berlin

Džeroski S, Lavraè N (eds) (2001) Relational data
mining. Springer, Berlin.

Occam’s Razor

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Ockham’s Razor

http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_100346

One-Step Reinforcement Learning 921

O

Definition

Occam’s Razor is the maxim that “entities are
not to be multiplied beyond necessity,” or as it
is often interpreted in the modern context “of two
hypotheses H and H’, both of which explain E,
the simpler is to be preferred” (Good 1977)

Motivation and Background

Most attempts to learn a model from data
confront the problem that there will be many
models that are consistent with the data. In order
to learn a single model, a choice must be made
between the available models. The factors taken
into account by a learner in choosing between
models are called its learning biases (Mitchell
1980). A preference for simple models is a
common learning bias and is embodied in many
learning techniques including pruning, minimum
message length, and minimum description length.
Regularization is also sometimes viewed as an
application of Occam’s razor.

Occam’s razor is an imperative, rather than a
proposition. That is, it is neither true nor false.
Rather, it is a call to act in a particular way with-
out making any claim about the consequences
of doing so. In machine learning the so-called
Occam thesis is sometimes assumed that: given a
choice between two plausible classifiers that per-
form identically on the training set, the simpler
classifier is expected to classify correctly more
objects outside the training set. (Webb 1996)

While there are many practical advantages
in having a learning bias toward simple mod-
els, there remains controversy as to whether the
Occam thesis is true (Webb 1996; Domingos
1999; Blumer et al. 1987).

Cross-References

�Learning Bias
�Language Bias
�Minimum Description Length Principle
�Minimum Message Length
� Pruning
�Regularization

Recommended Reading

Blumer A, Ehrenfeucht A, Haussler D, Warmuth
MK (1987) Occam’s razor. Inf Process Lett 24(6):
377–380

Domingos P (1999) The role of Occam’s razor in
knowledge discovery. Data Min Knowl Discov
3(4):409–425

Good IJ (1977) Explicativity: a mathematical theory of
explanation with statistical applications. Proc R Soc
Lond Ser A 354:303–330

Mitchell TM (1980) The need for biases in learning
generalizations. Department of computer science,
Technical report CBM-TR-117, Rutgers University

Webb GI (1996) Further experimental evidence against
the utility Of occams razor. J Artif Intell Res 4:397–
417. AAAI Press, Menlo Park

Ockham’s Razor

�Occam’s Razor

Offline Learning

�Batch Learning

One-Against-All Training

�Class Binarization

One-Against-One Training

�Class Binarization

1-Norm Distance

�Manhattan Distance

One-Step Reinforcement Learning

�Associative Reinforcement Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_100246
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_614
http://dx.doi.org/10.1007/978-1-4899-7687-1_58
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_511
http://dx.doi.org/10.1007/978-1-4899-7687-1_40

922 Online Controlled Experiments and A/B Testing

Online Controlled Experiments and
A/B Testing

Ron Kohavi1 and Roger Longbotham2

1Application Services Group, Microsoft,
Bellevue, WA, USA
2Data and Decision Sciences Group, Microsoft,
Redmond, WA, USA

Abstract

The Internet connectivity of client software
(e.g., apps running on phones and PCs), web-
sites, and online services provide an unprece-
dented opportunity to evaluate ideas quickly
using controlled experiments, also called A/B
tests, split tests, randomized experiments, con-
trol/treatment tests, and online field experi-
ments. Unlike most data mining techniques
for finding correlational patterns, controlled
experiments allow establishing a causal rela-
tionship with high probability. Experimenters
can utilize the scientific method to form a
hypothesis of the form “If a specific change is
introduced, will it improve key metrics?” and
evaluate it with real users.

The theory of a controlled experiment
dates back to Sir Ronald A. Fisher’s
experiments at the Rothamsted Agricultural
Experimental Station in England in the 1920s,
and the topic of offline experiments is well
developed in Statistics (Box et al., Statistics
for experimenters: design, innovation, and
discovery. Wiley, Hoboken, 2005). Online-
controlled experiments started to be used
in the late 1990s with the growth of the
Internet. Today, many large sites, including
Amazon, Bing, Facebook, Google, LinkedIn,
and Yahoo!, run thousands to tens of
thousands of experiments each year testing
user interface (UI) changes, enhancements
to algorithms (search, ads, personalization,
recommendation, etc.), changes to apps,
content management system, etc. Online-
controlled experiments are now considered
an indispensable tool, and their use is growing
for startups and smaller websites. Controlled

experiments are especially useful in com-
bination with Agile software development
(Martin, Clean code: a handbook of Agile
software craftsmanship. Prentice Hall, Upper
Saddle River, 2008; Rubin, Essential scrum:
a practical guide to the most popular Agile
process. Addison-Wesley Professional, Upper
Saddle River, 2012), Steve Blank’s Customer
Development process (Blank, The four steps
to the epiphany: successful strategies for
products that win. Cafepress.com., 2005),
and MVPs (minimum viable products)
popularized by Eric Ries’s Lean Startup (Ries,
The lean startup: how today’s entrepreneurs
use continuous innovation to create radically
successful businesses. Crown Business, New
York, 2011).

Synonyms

A/B Testing; Randomized Experiments; Split
Tests

Motivation and Background

Many good resources are available with moti-
vation and explanations about online-controlled
experiments (Siroker and Koomen 2013; Goward
2012; McFarland 2012b; Schrage 2014; Kohavi
et al. 2009, 2014, 2013).

We provide a motivating visual example of
a controlled experiment that ran at Microsoft’s
Bing. The team wanted to add a feature allowing
advertisers to provide links to the target site. The
rationale is that this will improve ads’ quality
by giving users more information about what
the advertiser’s site provides and allows users
to directly navigate to the subcategory matching
their intent. Visuals of the existing ads layout
(control) and the new ads layout (treatment) with
site links added are shown in Fig. 1.

In a controlled experiment, users are randomly
split between the variants (e.g., the two differ-
ent ads layouts) in a persistent manner (a user
receives the same experience in multiple visits).
Their interactions with the site are instrumented

http://dx.doi.org/10.1007/978-1-4899-7687-1_100507
http://dx.doi.org/10.1007/978-1-4899-7687-1_100394
http://dx.doi.org/10.1007/978-1-4899-7687-1_100439

Online Controlled Experiments and A/B Testing 923

O

Online Controlled Experiments and A/B Testing, Fig. 1 Ads with site link experiment. Treatment (bottom) has site
links. The difference might not be obvious at first but it is worth tens of millions of dollars

and key metrics computed. In this experiment,
the Overall Evaluation Criterion (OEC) was sim-
ple: increasing average revenue per user to Bing
without degrading key user engagement metrics.
Results showed that the newly added site links
increased revenue, but also degraded user metrics
and page load time, likely because of increased
vertical space usage. Even offsetting the space
by lowering the average number of mainline ads
shown per query, this feature improved revenue
by tens of millions of dollars per year with neutral
user impact, resulting in extremely high ROI
(return on investment).

Running online-controlled experiments is not
applicable for every organization. We begin with
key tenets, or assumptions, an organization needs
to adopt (Kohavi et al. 2013).

Tenet 1: The Organization Wants to Make
Data-Driven Decisions and Has Formalized
the Overall Evaluation Criterion (OEC)
You will rarely hear someone at the head of an
organization say that they don’t want to be data-
driven, but measuring the incremental benefit to
users from new features has costs, and objec-
tive measurements typically show that progress
is not as rosy as initially envisioned. In any
organization, there are many important metrics
reflecting revenue, costs, customer satisfaction,
loyalty, etc., and very frequently an experiment
will improve one but hurt another of these met-
rics. Having a single metric, which we call the
Overall Evaluation Criterion, or OEC, that is at a

higher level than these and incorporates the trade-
off among them is essential for organizational
decision-making.

An OEC has to be defined, and it should be
measurable over relatively short durations (e.g.,
2 weeks). The hard part is finding metrics that are
measurable in the short-term that are predictive
of long term goals. For example, “profit” is not
a good OEC, as short-term theatrics (e.g., raising
prices) can increase short-term profit, but hurt it
in the long run. As shown in Trustworthy Online
Controlled Experiments: Five Puzzling Outcomes
Explained (Kohavi et al. 2012), market share can
be a long-term goal, but it is a terrible short-
term criterion: making a search engine worse
forces people to issue more queries to find an
answer, but, like hiking prices, users will find
better alternatives long-term. Sessions per user,
or repeat visits, is a much better OEC for a
search engine. Thinking of the drivers of lifetime
value can lead to a strategically powerful OEC
(Kohavi et al. 2009). We cannot overemphasize
the importance of coming up with a good OEC
that the organization can align behind.

Tenet 2: Controlled Experiments Can Be
Run and Their Results Are Trustworthy
Not every decision can be made with the sci-
entific rigor of a controlled experiment. For ex-
ample, you cannot run a controlled experiment
on the possible acquisition of one company by
another. Hardware devices may have long lead
times for manufacturing, and modifications are

924 Online Controlled Experiments and A/B Testing

hard, so controlled experiments with actual users
are hard to run on a new phone or tablet. For
customer-facing websites and services, changes
are easy to make through software, and running
controlled experiments is relatively easy.

Assuming you can run controlled experiments,
it is important to ensure their trustworthiness.
When running online experiments, getting
numbers is easy; getting numbers you can trust
is hard, and we have had our share of pitfalls
and puzzling results (Kohavi et al. 2012, 2010;
Kohavi and Longbotham 2010).

Tenet 3: We Are Poor at Assessing the
Value of Ideas
Features are built because teams believe they
are useful, yet in many domains, most ideas
fail to improve key metrics. Only one third of
the ideas tested on the Experimentation Platform
at Microsoft improved the metric(s) they were
designed to improve (Kohavi et al. 2009). Success
is even harder to find in well-optimized domains
like Bing. Jim Manzi (2012) wrote that at Google,
only “about 10 percent of these [controlled ex-
periments, were] leading to business changes.”
Avinash Kaushik wrote in his Experimentation
and Testing primer (Kaushik 2006) that “80 % of
the time you/we are wrong about what a customer
wants.” Mike Moran (2007, 240) wrote that Net-
flix considers 90 % of what they try to be wrong.
Regis Hadiaris from Quicken Loans wrote that
“in the five years I’ve been running tests, I’m only
about as correct in guessing the results as a major
league baseball player is in hitting the ball. That’s
right - I’ve been doing this for 5 years, and I can
only “guess” the outcome of a test about 33 %
of the time!” (Moran 2008). Dan McKinley at
Etsy wrote (McKinley 2013) “nearly everything
fails” and “it’s been humbling to realize how rare
it is for them [features] to succeed on the first
attempt. I strongly suspect that this experience is
universal, but it is not universally recognized or
acknowledged.” Finally, Colin McFarland wrote
in the book Experiment! (McFarland 2012b, 20)
“No matter how much you think it’s a no-brainer,
how much research you’ve done, or how many
competitors are doing it, sometimes, more often

than you might think, experiment ideas simply
fail.”

Not every domain has such poor statistics,
but most who have run controlled experiments in
customer-facing websites and applications have
experienced this humbling reality: we are poor at
assessing the value of ideas, and that is the great-
est motivation for getting an objective assessment
of features using controlled experiments.

Structure of an Experimentation
System

Elements of an Experimentation System
The simplest experimental setup is to evaluate a
factor with two levels, a control (version A) and a
treatment (version B). The control is normally the
default version, and the treatment is the change
that is tested. Such a setup is commonly called an
A/B test. It is commonly extended by having sev-
eral levels, often referred to as A/B/n split tests.
An experiment with multiple factors is referred to
as multivariable (or multivariate).

Figure 2 shows the high-level structure of an
A/B experiment. In practice, one can assign any
percentages to the treatment and control, but 50 %
provides the experiment the maximum statistical
power, and we recommend maximally powering
the experiments after a ramp-up period at smaller
percentages to check for egregious errors.

In a general sense, the analysis will test if the
statistical distribution of the treatment is different
from that of the control. In practice, the most
common test is whether the two means are equal
or not. For this case, the effect of version B (or
treatment effect) is defined to be

E.B/ D NXB � NXA (1)

where X is a metric of interest and NXB is the
mean for variant B . However, for interpretability,
the percent change is normally reported with a
suitable (e.g., 95 %) confidence interval. See, for
example, Kohavi et al. (2009).

Control of extraneous factors and randomiza-
tion are two essential elements of any exper-
imentation system. Any factor that may affect

Online Controlled Experiments and A/B Testing 925

O

Online Controlled
Experiments and A/B
Testing, Fig. 2 High-level
structure of an online
experiment

100%
Users

50%
Users

50%
Users

Control:
Existing System

Treatment:
Existing System
with Feature X

Users interactions instrumented,
analyzed & compared

Analyze at the end of the
experiment

an online metric is either a test factor (one you
intentionally vary to determine its effect) or a
non-test factor. Non-test factors could either be
held fixed, blocked, or randomized. Holding a
factor fixed can impact external validity and is
thus not recommended. For example, if week-
end days are known to be different from week
days, you could run the experiment only on
weekdays (or weekends), but it would be better
to have complete weeks in the experiment for
better external validity. Blocking (e.g., pairing)
can reduce the variance relative to randomiza-
tion and is recommended when experimentation
units in each block are more homogenous than
between blocks. For example, if the randomiza-
tion unit is a user page view, then blocking by
weekend/weekday can reduce the variance of the
effect size, leading to higher sensitivity. Time
is a critical non-test factor, and because many
external factors vary with time, it is important to
randomize over time by running the control and
treatment(s) concurrently with a fixed percentage
to each throughout the experiment. (If the rela-
tive percentage changes, you will be subject to
Simpson’s paradox (Malinas and Bigelow 2009;
Kohavi and Longbotham 2010).) Controlling a
non-test factor assures it will have equal influence

on the control and treatment, hence not affecting
the estimate of the treatment effect.

Experimentation Architecture Alternatives
Controlled experiments on the web: survey and
practical guide (Kohavi et al. 2009) provides
a review of many architecture alternatives. The
main three components of an experimentation ca-
pability involve the randomization algorithm, the
assignment method (i.e., how the randomly as-
signed experimental units are given the variants),
and the data path (which captures raw observation
data and processes it). Tang et al. (2010) give
a detailed view of the infrastructure for experi-
ments as carried out by Google.

To validate an experimentation system, we
recommend that A/A tests be run regularly to test
that the experimental setup and randomization
mechanism is working properly. An A/A test,
sometimes called a null test (Peterson 2004),
exercises the experimentation system, assigning
users to one of two groups, but exposes them
to exactly the same experience. An A/A test
can be used to (i) collect data and assess its
variability for power calculations and (ii) test
the experimentation system (the null hypothesis
should be rejected about 5 % of the time when

926 Online Controlled Experiments and A/B Testing

a 95 % confidence level is used) (Kohavi et al.
2009; Martin 2008).

Planning Experiments
Several aspects of planning an experiment are
important: estimating adequate sample size,
gathering the right metrics, tracking the right
users, and randomization unit.

Sample size. Sample size is determined by the
percent of users admitted into the experiment
variants (control and treatments) and how long
the experiment runs. As an experiment runs
longer, more visitors are admitted into the
variants, so sample sizes increase. Experimenters
can choose the relative percent of visitors that
are in the control and treatment which affects
how long you will need to run the experiment.
Several authors (Deng et al. 2013; Kohavi et al.
2009) have addressed the issue of sample size
and length of experiment in order to achieve
adequate statistical power for an experiment,
where statistical power of an experiment is the
probability of detecting a given effect when it
exists (technically, the probability of correctly
rejecting the null hypothesis when it is false). In
addition to planning an experiment for adequate
power, a best practice is to run the experiment for
at least one week (to capture a full weekly cycle)
and then multiple weeks beyond that. When
“novelty” or “primacy” effects are suspected (i.e.,
the initial effect of the treatment is not the same
as the long-term effect), the experiment should
be run long enough to estimate the asymptotic
effect of the treatment. Finally, measuring the
effect on high-variance metric, such as loyalty
(sessions/user), will generally require more users
than for other metrics (Kohavi et al. 2012).

Observations, Metrics, and the OEC. Gath-
ering observations (i.e., logging events) so that
the right metrics can be computed is critical to
successful experimentation. Whenever possible
and economically feasible, one should gather
as many observations as possible that relate to
answering potential questions of interest, whether
user related or performance related (e.g., latency,
utilization, crashes). We recommend computing

many metrics from the observations (e.g., hun-
dreds) because they can give rise to surprising
insights, although care must be taken to correctly
understand and control for the false-positive rate
(Kohavi et al. 2013; Hochberg and Benjamini
1995). While having many metrics is great for
insights, decisions should be made using the
Overall Evaluation Criterion (OEC). See Tenet 1
earlier for a description of the OEC.

Triggering. Some treatments may be relevant to
all users who come to a website. However, for
many experiments, the difference introduced is
relevant for a subset of visitors (e.g., a change
to the checkout process, which only 10 % of
visitors start). In these cases, it is best to include
only those visitors who would have experienced a
difference in one of the variants (this commonly
requires counterfactual triggering for the control).
Some architectures (Kohavi et al. 2009) trigger
users into an experiment either explicitly or using
lazy (or late-bound) assignment. In either case,
the key is to analyze only the subset of the popu-
lation that was potentially impacted. Triggering
reduces the variability in the estimate of treat-
ment effect, leading to more precise estimates.
Because the diluted effect is often of interest, the
effect can then be diluted (Deng and Hu 2015).

Randomization Unit. Most experiments use the
visitor as the randomization unit for several rea-
sons. First, for many changes being tested, it is
important to give the user a consistent online
experience. Second, most experimenters evaluate
metrics at the user level, such as sessions per
user and clicks per user. Ideally, the randomiza-
tion by the experimenter is by a true user, but
in many unauthenticated sites, a cookie stored
by the user’s browser is used, so in effect, the
randomization unit is the cookie. In this case,
the same user will appear to be different users if
she comes to the site using a different browser,
different device, or having deleted her cookie
during the experiment. The next section will
discuss how the choice of randomization unit af-
fects how the analysis of different metrics should
be carried out. The randomization unit can also
affect the power of the test for some metrics.

Online Controlled Experiments and A/B Testing 927

O

For example, Deng et al. (2011) showed that the
variance of page level metrics can be greatly re-
duced if randomization is done at the page level,
but user metrics cannot be computed in such
cases. In social-network settings, spillover effects
violate the standard no-interference assumption,
requiring unique approaches, such as clustering
(Ugander et al. 2013).

Analysis of Experiments
If an experiment is carried out correctly, the
analysis should be a straightforward application
of well-known statistical methods. Of course, this
is much preferred than trying to recover from a
poor experimental design or implementation.

Confidence Intervals. Most reporting systems
will display the treatment effect (actual and per-
cent change) along with suitable confidence inter-
vals. For reasonably large sample sizes, generally
considered to be thousands of users in each vari-
ant, the means may be considered to have normal
distributions (see Kohavi et al. (2014) for detailed
guidance), making the formation of confidence
intervals routine. However, care must be taken to
use the Fieller theorem formula (Fieller 1954) for
percent effect since there is a random quantity in
the denominator.

Decision-making. A common approach to de-
ciding if the treatment is better than the con-
trol is the usual hypothesis-testing procedure,
assuming the normal distribution if the sample
size is sufficient (Kohavi et al. 2009). Alter-
natives to this when normality cannot be as-
sumed are transformations of the data (Bickel
and Doksum 1981) and nonparametric or re-
sampling/permutation methods to determine how
unusual the observed sample is under the null
hypothesis (Good 2005). When conducting a test
of whether the treatment had an effect or not (e.g.,
a test of whether the treatment and control means
are equal), a p value of the statistical test is often
produced as evidence. More precisely, the p value
is the probability to obtain an effect equal to or
more extreme than the one observed, presuming
the null hypothesis of no effect is true (Biau et al.
2010).

Another alternative is to use Bayes’ theorem
to calculate the posterior odds that the treatment
had a positive impact versus the odds it had no
impact (Stone 2013).

Analysis Units. Metrics may be defined with
different analysis units, such as user, session, or
other appropriate bases. For example, an ecom-
merce site may be interested in metrics such as
revenue per user, revenue per session, or revenue
per purchaser. Straightforward statistical methods
(e.g., the usual t-test and variants) apply to any
metric that has user as its analysis unit if users
are the unit of randomization since users may be
considered independent. However, if the analysis
unit is not the same as the randomization unit,
the analysis units may not be considered indepen-
dent, and other methods need to be used to calcu-
late standard deviation or to compare treatment
to control. Bootstrapping (Efron and Tibshirani
1993) and the delta method (Casella and Berger
2001) are two commonly used methods when the
analysis unit is not the same as the randomization
unit.

Variance Reduction. Increasing the sample size
is one way to increase power. However, online
researchers are continually looking for ways to
increase the power of their experiments while
shortening, or at least not extending, the length of
the tests. One way to do this is to use covariates
such as pre-experiment user metrics, user de-
mographics, location, equipment, software, con-
nection speed, etc. (Deng et al. 2013) gave an
example where a 50 % reduction in variance for
a metric could be achieved by using only the pre-
experiment metric values for the users.

Diagnostics. In order to assure the experimen-
tal results are trustworthy, every experimentation
system should have some diagnostic tools built
in. Graphs of the number of users in each variant,
metric means, and treatment effects over time
will help the researcher see unexpected prob-
lems or upsets to the experiment. In addition,
diagnostic tests that trigger an alarm when an
expected condition is not met should be built
in. One critical diagnostic test is the “sample

928 Online Controlled Experiments and A/B Testing

ratio mismatch” or SRM. A simple statistical test
checks if the actual percentage for each variant
is close enough to the planned percentages. We
have found this one diagnostic is frequently the
“canary in the coal mine” for online experiments.
There are many possible ways an experiment can
skew the number of visitors to one variant or
another, and many of them will cause a large bias
in the treatment effect. Another common useful
test is that the performance, or latency, of the
two versions is similar when expected to be so.
It some cases, the treatment may be slower due to
caching issues (e.g., cold start), or if the variant
are unbalanced (e.g., 90/10 %), a shared resource
like an LRU cache (Least Recently Used) will
give an advantage to the larger variant (Kohavi
and Longbotham 2010). When an experimen-
tation platform allows overlapping experiments,
a diagnostic to check for interactions between
overlapping experiments is also helpful. Anytime
an alarm or graph indicates a potential problem,
the researcher should investigate to determine the
source.

Robot Removal. Robots must be removed from
any analysis of web data since their activity can
severely bias experiment results; see Kohavi et al.
(2009). Some robots may slip through robot-
filtering techniques and should be considered
when diagnostics suggest there may be a problem
with the experiment.

Summary

The Internet and online connectivity of client
software, websites, and online services provide
a fertile ground for scientific testing methodol-
ogy. Online experimentation is now recognized
as a critical tool to determine whether a soft-
ware or design change should be made. The
benefit of experimenting online is the ability to
set up a software platform for conducting the
tests, which makes experimentation much more
scalable and efficient and allows evaluating ideas
quickly.

Recommended Reading

Biau DJ, Jolles BM, Porcher R (2010) P value and the
theory of hypothesis testing. Clin Orthop Relat Res
468(3):885–892

Bickel PJ, Doksum KA (1981) An analysis of trans-
formations revisited. J Am Stat Assoc 76(374):296–
311. doi:10.1080/01621459.1981.10477649

Blank SG (2005) The four steps to the epiphany:
successful strategies for products that win. Cafe-
press.com.

Box GEP, Hunter JS, Hunter WG (2005) Statistics for
experimenters: design, innovation, and discovery.
Wiley, Hoboken

Casella G, Berger RL (2001) Statistical inference, 2nd
edn. Cengage Learning. http://www.amazon.com/
Statistical-Inference-George-Casella

Deng A, Hu V (2015) Diluted treatment effect es-
timation for trigger analysis in online controlled
experiments. In: WSDM, Shanghai 2015

Deng A, Xu Y, Kohavi R, Walker T (2013) Improving
the sensitivity of online controlled experiments by
utilizing pre-experiment data. In: WSDM, Rome
2013

Deng S, Longbotham R, Walker T, Xu Y (2011) Choice
of randomization unit in online controlled exper-
iment. In: Joint statistical meetings proceedings,
Miami Beach, pp 4866–4877

Efron B, Tibshirani RJ (1993) An introduction to the
bootstrap. Chapman & Hall, New York

Fieller EC (1954) Some problems in interval es-
timation. J R Stat Soc Ser B 16(2):175–185.
doi:JSTOR2984043

Good PI (2005) Permutation, parametric and bootstrap
tests of hypotheses, 3rd edn. Springer, New York

Goward C (2012) You should test that: conversion
optimization for more leads, sales and profit or the
art and science of optimized marketing. Sybex.
http://www.amazon.com/You-Should-Test-That-Opti
mization/dp/1118301307

Hochberg Y Benjamini Y (1995) Controlling the false
discovery rate: a practical and powerful approach to
multiple testing Series B. J R Stat Soc 57(1):289–
300

Kaushik A (2006) Experimentation and testing: a
primer. Occam’s razor. http://www.kaushik.net/
avinash / 2006 / 05 / experimentation-and-testing-a-
primer.html. Accessed 22 May 2008

Kohavi R, Deng A, Frasca B, Longbotham R, Walker
T, Xu Y (2012) Trustworthy online controlled ex-
periments: five puzzling outcomes explained. In:
Proceedings of the 18th conference on knowledge
discovery and data mining. http://bit.ly/expPuzzling

Kohavi R, Deng A, Frasca B, Walker T, Xu Y,
Pohlmann N (2013) Online controlled experiments
at large scale. In: Proceedings of the 19th ACM
SIGKDD international conference on knowledge
discovery and data mining (KDD 2013). http://bit.
ly/ExPScale

http://www.amazon.com/Statistical-Inference-George-Casella
http://www.amazon.com/Statistical-Inference-George-Casella
http://www.amazon.com/You-Should-Test-That-Optimization/dp/1118301307
http://www.kaushik.net/avinash/2006/05/experimentation-and-testing-a-primer.html
http://bit.ly/expPuzzling
http://bit.ly/ExPScale
http://bit.ly/ExPScale

Online Learning 929

O

Kohavi R, Deng A, Longbotham R, Xu Y (2014) Seven
rules of thumb for web site. In: Proceedings of the
20th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD ’14).
http://bit.ly/expRulesOfThumb

Kohavi R, Longbotham R (2010) Unexpected results
in online controlled experiments. In: SIGKDD Ex-
plorations. http://bit.ly/expUnexpected

Kohavi R, Longbotham R, Walker T (2010) Online ex-
periments: practical lessons. IEEE Comput Sept:82–
85. http://bit.ly/expPracticalLessons

Kohavi R, Longbotham R, Sommerfield D, Henne
RM (2009) Controlled experiments on the web:
survey and practical guide. Data Min Knowl Discov
18:140–181. http://bit.ly/expSurvey

Kohavi R, Crook T, Longbotham R (2009) Online
experimentation at microsoft. In: Third workshop on
data mining case studies and practice prize. http://
bit.ly/expMicrosoft

Malinas G, Bigelow J (2009) Simpson’s paradox.
Stanford Encyclopedia of Philosophy. http://plato.
stanford.edu/entries/paradox-simpson/

Manzi J (2012) Uncontrolled: the surprising payoff
of trial-and-error for business, politics, and
society. Basic Books. https://www.amazon.com/
Uncontrolled-Surprising-Trial-Error-Business-
ebook/dp/B007V2VEQO

Martin RC (2008) Clean code: a handbook of Agile
software craftsmanship. Prentice Hall, Upper Sad-
dle River

McFarland C (2012a) Experiment!: website conversion
rate optimization with A/B and multivariate. New
Riders. http://www.amazon.com/Experiment-
Website-conversion-optimization-multivariate/dp/
0321834607

McFarland C (2012b) Experiment!:
website conversion rate optimization
with A/B and multivariate testing.
New Riders. http://www.amazon.com/Experiment-
Website-conversion-optimization-multivariate/dp/03
21834607

McKinley D (2013) Testing to cull the living flower.
http://mcfunley.com/testing-to-cull-the-living-
flower

Moran M (2007) Do it wrong quickly: how the
web changes the old marketing rules. IBM Press.
http://www.amazon.com/Do-Wrong-Quickly-
Changes-Marketing/dp/0132255960/

Moran M (2008) Multivariate testing in action:
Quicken Loan’s Regis Hadiaris on multivariate
testing. www.biznology.com/2008/12/multivariate
testing in action/

Peterson ET (2004) Web analytics demystified: a
marketer’s guide to understanding how your web
site affects your business. Celilo Group Media
and CafePress. http://www.amazon.com/Web-
Analytics-Demystified-Marketers-Understanding/dp/
0974358428/

Ries E (2011) The lean startup: how today’s en-
trepreneurs use continuous innovation to create rad-

ically successful businesses. Crown Business, New
York

Rubin KS (2012) Essential scrum: a practical guide
to the most popular Agile process. Addison-Wesley
Professional, Upper Saddle River

Schrage M (2014) The innovator’s hypothesis:
how cheap experiments are worth more than
good ideas. MIT Press. http://www.amazon.com/
Innovators-Hypothesis-Cheap-Experiments-Worth/
dp/0262528967

Siroker D, Koomen P (2013) A/B testing: the
most powerful way to turn clicks into cus-
tomers. Wiley. http://www.amazon.com/Testing-
Most-Powerful-Clicks-Customers/dp/1118792416

Stone JV (2013) Bayes’ rule: a tutorial introduction
to Bayesian analysis. Sebtel Press. http://www.
amazon.com/Bayes-Rule-Tutorial-Introduction-
Bayesian/dp/0956372848

Tang D, Agarwal A, O’Brien D, Meyer M (2010)
Overlapping experiment infrastructure: more, better,
faster experimentation. In: KDD 2010: The 16th
ACM SIGKDD international conference on knowl-
edge discovery and data mining, Washington, DC,
25–28 July

Ugander J, Karrer B, Backstrom L, Kleinberg J
(2013) Graph cluster randomization: network expo-
sure to multiple universes. In: Proceedings of the
19th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD ’13),
Chicago

Online Learning

Peter Auer
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Online learning and its variants are one
of the main models of computational
learning theory, complementing statistical
PAC learning and related models. An
online learner needs to make predictions
about a sequence of instances, one after
the other, and receives feedback after each
prediction. The performance of the online
learner is typically compared to the best
predictor from a given class, often in terms
of its excess loss (the regret) over the
best predictor. Some of the fundamen-
tal online learning algorithms and their

http://bit.ly/expRulesOfThumb
http://bit.ly/expUnexpected
http://bit.ly/expPracticalLessons
http://bit.ly/expSurvey
http://bit.ly/expMicrosoft
http://bit.ly/expMicrosoft
http://plato.stanford.edu/entries/paradox-simpson/
http://plato.stanford.edu/entries/paradox-simpson/
https://www.amazon.com/Uncontrolled-Surprising-Trial-Error-Business-ebook/dp/B007V2VEQO
https://www.amazon.com/Uncontrolled-Surprising-Trial-Error-Business-ebook/dp/B007V2VEQO
https://www.amazon.com/Uncontrolled-Surprising-Trial-Error-Business-ebook/dp/B007V2VEQO
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://www.amazon.com/Experiment-Website-conversion-optimization-multivariate/dp/0321834607
http://mcfunley.com/testing-to-cull-the-living-flower
http://mcfunley.com/testing-to-cull-the-living-flower
http://www.amazon.com/Do-Wrong-Quickly-Changes-Marketing/dp/0132255960/
www.biznology.com/2008/12/multivariate_testing_in_action/
www.biznology.com/2008/12/multivariate_testing_in_action/
http://www.amazon.com/Web-Analytics-Demystified-Marketers-Understanding/dp/0974358428/
http://www.amazon.com/Innovators-Hypothesis-Cheap-Experiments-Worth/dp/0262528967
http://www.amazon.com/Testing-Most-Powerful-Clicks-Customers/dp/1118792416
http://www.amazon.com/Testing-Most-Powerful-Clicks-Customers/dp/1118792416
http://www.amazon.com/Bayes-Rule-Tutorial-Introduction-Bayesian/dp/0956372848
http://www.amazon.com/Bayes-Rule-Tutorial-Introduction-Bayesian/dp/0956372848
http://www.amazon.com/Bayes-Rule-Tutorial-Introduction-Bayesian/dp/0956372848

930 Online Learning

variants are discussed: weighted majority,
follow the perturbed leader, follow the
regularized leader, the perceptron algorithm,
the doubling trick, bandit algorithms, and the
issue of adaptive versus oblivious instance
sequences. A typical performance proof of an
online learning algorithm is exemplified for
the perceptron algorithm.

Synonyms

Mistake-bounded learning; Prediction with ex-
pert advice; Sequential learning

Definition

In the online learning model, the learner needs
to make predictions or choices about a sequence
of instances, one after the other, and receives a
loss or reward after each prediction or choice.
Typically, the learner receives a description of the
current instance before making a prediction. The
goal of the learner is to minimize its accumulated
losses (or equivalently maximize the accumulated
rewards).

The performance of the online learner is usu-
ally compared to the best predictor in hindsight
from a given class of predictors. This compar-
ison with a predictor in hindsight allows for
meaningful performance bounds even without
any assumptions on how the sequence of in-
stances is generated. In particular, this sequence
of instances may not be generated by a random
process but by an adversary that tries to prevent
learning.

In this sense performance bounds for online
learning are typically worst-case bounds that hold
for any sequence of instances. This is possible
since the performance bounds are relative to
the best predictor from a given class. Often
these performance guarantees are quite strong,
showing that the learner can do nearly as well
as the best predictor from a large class of
predictors.

Motivation and Background

Online learning is one of the main models of
learning theory, complementing the statistical ap-
proach of the PAC learning model by allowing
a more general process for generating learning
instances. The distinctive properties of the online
learning model are:

• Learning proceeds in trials,
• There is no designated learning phase, the

performance of the learner is evaluated con-
tinuously from the start,

• No assumptions on the generation of the in-
puts to the learner are necessary; they may
depend even adversarially on previous predic-
tions of the learner,

• Sequential predictions model an interaction
between the learner and its environment,

• Performance guarantees for learning al-
gorithms are typically relative to the
performance of the best predictor in hindsight
from some given class.

The first explicit models of online learning
were proposed by Angluin (1988) and Littlestone
(1988), but related work on repeated games by
Hannan (1957) dates back to 1957. Littlestone
proposed online learning as a sequence of trials,
where in each the learner receives some input,
makes a prediction of the associated output, and
receives the correct output. It was assumed that
some function from a known class maps the
inputs to correct outputs. The performance of the
learner is measured by the number of mistakes
made by a learner, before it converges to the
correct predictor. Angluin’s equivalence query
model of learning is formulated differently but is
essentially equivalent to Littlestone’s model.

The restriction that some function from the
class must predict all outputs correctly was then
removed, e.g., Vovk (1990) and Littlestone and
Warmuth (1994). In their setting the learner com-
petes with the best predictor from the given class.
As the class of predictors can be seen as a set
of experts advising the learner about the correct
predictions, this led to the term “prediction with

http://dx.doi.org/10.1007/978-1-4899-7687-1_100303
http://dx.doi.org/10.1007/978-1-4899-7687-1_100371
http://dx.doi.org/10.1007/978-1-4899-7687-1_100426

Online Learning 931

O

expert advice.” A comprehensive treatment of bi-
nary predictions with expert advice can be found
in Cesa-Bianchi et al. (1997). Relations of online
learning to several other fields (e.g., compression,
competitive analysis, game theory, and portfolio
selection) are discussed in the excellent book
on sequential prediction by Cesa-Bianchi and
Lugosi (2006).

Structure of Learning System

The online learning model is formalized as fol-
lows. In each trial t D 1; 2; : : :, the learner

1. Receives input xt 2 X ,
2. Chooses a prediction or output yt 2 Y ,
3. Receives response ´t 2 Z,
4. Incurs loss `t D `.yt ; ´t /,

where ` W Y �Z 7! R is some loss function. The
performance of a learner up to trial T is measured
by its accumulated loss LT D

PT
tD1 `t . For now

it is assumed that inputs xt and responses ´t

are independent from the learner’s predictions yt .
Such sequences of instances are called oblivious
to the learner. Adaptive sequences of instances
will be discussed later.

Performance bounds for online learning
algorithms are typically in respect to the
performance of an optimal predictor (or
expert) E� in hindsight from some class E ,
E� 2 E . A predictor E maps the past given
by .x1; y1; ´1/; : : : ; .xt�1; yt�1; ´t�1/ and the
current input xt to a prediction yE

t . As for
the learner, the performance of a predictor
is measured by its accumulated loss LE

T D
PT

tD1 `
E
t , where `E

t D `.yE
t ; ´t /. Most bounds

for the loss of online algorithms are of the
form

LT � amin
E2E

LE
T C bC.E/;

where the constants a and b depend on the loss
function and C.E/ measures the complexity of
the class of predictors (e.g., the complexity C.E/
could be log jE j for a finite class E .) Often it
is possible to trade the constant a against the
constant b such that bounds

LT � L�
T C o.L�

T /

can be achieved, where L�
T D minE2E L

E
T is the

loss of the best predictor in hindsight up to time
T . These bounds are of particular interest as they
show that the loss of the learning algorithm is
only little larger than the loss of the best predictor.
For such bounds the regret RT of the learning
algorithm,

RT D LT � L�
T ;

is the relevant quantity that measures the cost of
not knowing the best predictor in advance.

The next section makes this general definition
of online learning more concrete by presenting
some important online learning algorithms.

Theory/Solution

The Weighted Majority Algorithm
The weighted majority algorithm developed by
Littlestone and Warmuth (1994) is one of the fun-
damental online learning algorithms, with many
relatives using similar ideas. We will present it for
the basic scenario with a finite set of experts E ,
binary predictions yt 2 f0; 1g, binary responses
´t 2 f0; 1g, and the discrete loss which just
counts mistakes, `.y; ´/ D jy � ´j, such that
`.y; ´/ D 0 if y D ´ and `.y; ´/ D 1 if y ¤ ´.
(We will use the terms experts and predictors
interchangeably. In the literature finite sets of
predictors are often called experts.)

The weighted majority algorithm maintains
a weight wE

t for each expert E 2 E that is
initialized as wE

1 D 1. The weights are used to
combine the predictions yE

t of the experts by a
weighted majority vote: yt D 1 if

P
E wE

t y
E
t �

1
2

P
E wE

t , and yt D 0 otherwise. After receiving
the response ´t , the weights of experts that made
incorrect predictions are reduced by multiplying
with some constant ˇ < 1, wE

tC1 D ˇwE
t if

yE
t ¤ ´t , and wE

tC1 D wE
t if yE

t D ´t . As
a performance bound for the weighted majority
algorithm one can achieve

LT � 2L�
T C 2

q
2L�

T log jE j C 4 log jE j

932 Online Learning

with L�
T D minE2E L

E
T and an appropriate

ˇ. (Better constants on the square root and the
logarithmic term are possible.)

While in this bound the loss of the
deterministic weighted majority algorithm
is twice the loss of the best expert, the
randomized version of the weighted majority
algorithm almost achieves the loss of the
best expert. Instead of using a deterministic
prediction, the randomized weighted majority
algorithm tosses a coin and predicts yt D

1 with probability
P

E wE
t y

E
t =

P
E wE

t .
Below we prove the following bound on
the expected loss of the randomized algo-
rithm:

E ŒLT � �
log.1=ˇ/

1 � ˇ
L�

T C
1

1 � ˇ
log jE j: (1)

Approximately optimizing for ˇ yields ˇ D

1 � ", where " D minf1=2;
p

2.log jE j/=L�
T g,

and

E ŒLT � � L�
T C

q
2L�

T log jE j C 2 log jE j: (2)

The expectation in these bounds is only in
respect to the randomization of the algorithm,
no probabilistic assumptions on the experts or
the sequence of responses are made. These
bounds hold for any set of experts and any
oblivious sequence of responses that does
not depend on the randomization of the
algorithm. It can be even shown that the
following similar bound holds with probability
1 � ı (in respect to the randomization of the
algorithm):

LT � L�
T C

p
T log.jE j=ı/: (3)

The proof of bound (1) shows many of the
ideas used in the proofs for online learning algo-
rithms. Key ingredients are a potential function
and how the changes of the potential function re-
late to losses incurred by the learning algorithm.
For the weighted majority algorithm, a suitable
potential function is the sum of the weights,
Wt D

P
E wE

t . Then, since the losses are
0 or 1,

WtC1

Wt

D

P
E wE

tC1P
E wE

t

D

P
E ˇ

`E
t wE

tP
E wE

t

D

P
E Œ1 � .1 � ˇ/`E

t �w
E
tP

E wE
t

D 1 � .1 � ˇ/

P
E `

E
t wE

tP
E wE

t

: (4)

Since the probability that the randomized
weighted majority algorithm makes a mistake
is given by E Œ`t � D

P
E `

E
t wE

t =
P

E wE
t , we

get by taking logarithms that

logWtC1 � logWt D log.1 � .1 � ˇ/E Œ`t �/

� �.1 � ˇ/E Œ`t � (5)

(since log.1�x/ � �x for x 2 .0; 1/). Summing
over all trials t D 1; : : : ; T , we find

logWT C1 � logW1 � �.1 � ˇ/E ŒLt � :

Since W1 D jE j and WT C1 D
P

E wE
T C1 D

P
E ˇ

LE
T � ˇL�

T , rearranging the terms
gives (1).

Extensions and Modifications of the
Weighted Majority Algorithm
Variants and improved versions of the weighed
majority algorithm have been analyzed for vari-
ous learning scenarios. An excellent coverage of
the material can be found in Cesa-Bianchi and
Lugosi (2006). In this section we mention a few
of them.

General loss functions. The analysis of the
weighted majority algorithm can be generalized
to any convex set of predictions Y and any set of
outcomes Z, as long as the loss function `.y; ´/
is bounded and convex in the first argument.
Typically it is possibly to derive a learning
algorithm with loss bound

LT � aL�
T C b log jE j

for suitable values a and b. Of particular interest
is the smallest b for which a loss bound with a D

Online Learning 933

O

1 can be achieved. Some algorithms for convex
prediction sets Y will be discussed later.

Tracking the best expert and other structured
experts. For a large number of experts, the loss
bound of the weighted majority algorithm is still
interesting since it scales only logarithmically
with the number of experts. Nevertheless, the
weighted majority algorithm and other online
learning algorithms become computationally de-
manding as they need to keep track of the perfor-
mance of all experts (computation time scales lin-
early with the number of experts). If the experts
exhibit a suitable structure, then this computa-
tional burden can be avoided.

As an example we consider the problem of
tracking the best expert. Let E0 be a small set of
base experts. The learning algorithm is required
to compete with the best sequence of at most
S experts from E0: the trials are divided into S
periods, and in each period another expert might
predict optimally. Thus the minimal loss of a
sequence of S experts is given by

L�
T;SD min

0DT0�T1�T2�����TS DT

SX

iD1

min
E2E0

TiX

tDTi�1C1

`E
t ;

where the trials are optimally divided into S

periods ŒTi�1 C 1; Ti �, and the best base expert
is chosen for each period. Such sequences of
base experts can be seen as experts themselves,
but the number of such compound experts is�

T �1
S�1

�
jE0jS and thus computationally prohibitive.

Fortunately, a slightly modified weighted major-
ity algorithm applied to the base experts achieves
almost the same performance as the weighted
majority algorithm applied to the compound ex-
perts. The modification of the weighted majority
algorithm just lower bounds the relative weight of
each base expert. This allows the relative weight
of a base expert to grow large quickly if this
expert predicts best in the current period. Hence,
also the learning algorithm will predict almost
optimally in each period. A recent and improved
version of the weighted majority algorithm with
many related references is given in Luo and
Schapire (2015).

Other examples of structured experts
include tree experts and shortest path problems
(see Cesa-Bianchi and Lugosi (2006) for further
references). For the shortest path problem in a
graph, the learner has to compete with the single
best path in hindsight, while edge costs may
change at each time t . In principle the weighted
majority algorithm could be employed with one
expert for each path, but since the number of
paths is usually exponential in the size of the
graph, this might be computationally infeasible.
Instead, the follow the perturbed leader strategy
can be used as an alternative to the weighted
majority algorithm.

Follow the perturbed leader. This is a simple
prediction strategy that was originally proposed
by Hannan (1957). In each trial t , it generates
identically distributed random values E

t for ev-
ery expert E, adds these random values to the
losses of the experts so far, and predicts with the
expert that achieves the minimum sum,

OEt D arg min
E2E

LE
t�1 C E

t ;

yt D y
OEt

t :

For carefully chosen distributions of the E
t , this

prediction strategy achieves loss bounds similar
to the weighted majority like algorithms.

To apply this strategy to the shortest path
problem described above, it is assumed that all
paths have an equal number of edges (by possibly
adding dummy edges). Then instead of gener-
ating random values E

t for each path E, a
random value for each edge is generated, and
the value E

t for a path is given by the sum
of the random values for its edges. This allows
to find the best path OEt efficiently by a shortest
path calculation according to the accumulated
and randomly modified edge costs.

The doubling trick. The optimal choice of ˇ in
the performance bound (1) requires knowledge
about the loss of the best expert L�

T . If such
knowledge is not available, the doubling trick
can be used. The idea is to start with an initial

934 Online Learning

guess OL� and choose ˇ according to this guess.
When the loss of the best expert exceeds this
guess, the guess is doubled, ˇ is modified, and
the learning algorithm is restarted. The bound (2)
increases only slightly whenL�

T is not known and
the doubling trick is used. It can be shown that
still

E ŒLT � � L�
T C c1

q
L�

T log jE j C c2 log jE j

for suitable constants c1 and c2. A thorough
analysis of the doubling trick can be found in
Cesa-Bianchi et al. (1997). Variations of the dou-
bling trick can be used for many online learn-
ing algorithms to “guess” unknown quantities. A
drawback of the doubling trick is that it restarts
the learning algorithm and forgets about all previ-
ous trials. An alternative approach is an iterative
adaptation of the parameter ˇ, which can be
shown to give better bounds than the doubling
trick. The advantage of the doubling trick is that
its analysis is quite simple.

Prediction with limited feedback and the
multiarmed bandit problem. In the setting
considered so far, the learner has full in-
formation of the past, as all past outcomes
´1; : : : ; ´t�1 2 f0; 1g and all predictions of the
experts yE

1 ; : : : ; y
E
t , E 2 E , are available, before

prediction yt is made. In some learning scenarios,
the learner might not have such full information.
One example is the multiarmed bandit problem,
and a more general case is prediction with partial
monitoring.

In the multiarmed bandit problem the learner
chooses to follow one of K experts, observes
the loss of this expert, and also incurs the loss
of this expert. Formally, the learner chooses an
expert yt D Et 2 E D f1; : : : ; Kg, receives
the loss of the chosen prediction ´t D `t .Et /,
and incurs loss `.yt ; ´t / D ´t D `t .Et /. (Here
`t .E/ denotes the loss of expert E at time t .) The
losses of the other experts, `t .E/, E ¤ Et , are
not revealed to the learner. The goal of the learner
is to compete with the loss of the single best
expert, L�

T D minE2E L
E
T , LE

T D
PT

tD1 `t .E/.
The multiarmed bandit problem looks very much

like the original online learning problem with the
predictions y 2 Y as experts.

Since at each time t the learner observes only
the loss of the chosen expert, it needs to estimate
the unseen losses of the other experts and use
these estimates when choosing an expert. Since
accurate estimates need a sufficient amount of
data, this leads to a trade-off between choosing
the (apparently) best expert to minimize losses
and choosing a different expert for which more
data are needed. This exploration-exploitation
trade-off also appears elsewhere in online learn-
ing, but it is most clearly displayed in the bandit
problem. An algorithm that deals well with this
trade-off is again a simple variant of the weighted
majority algorithm. This algorithm does explo-
ration trials with some small probability, and
in such exploration trials, it chooses an expert
uniformly at random. This algorithm has been
analyzed in Auer et al. (2002) for gains instead
of losses. For losses ` 2 Œ�1; 0� the accumulated
loss of the algorithm can be bounded as

E ŒLT � � L�
T C 3

q
KjL�

T j logK:

Compared with (2), the regret increases only
by a factor of

p
K. Further results, including

lower bounds and results for stochastic bandit
problems, are summarized in Bubeck and Cesa-
Bianchi (2012). For the stochastic multiarmed
bandit problem, it is assumed that the losses of the
experts are generated independently at random
by some distribution for each expert. This allows
for specialized algorithms with substantially im-
proved regret bounds.

A generalization of bandit problems are par-
tial monitoring games (Bartók 2014), where the
learner receives only indirect feedback about the
losses of the experts. Depending on how much the
feedback reveals about the incurred losses, partial
monitoring games can be classified as games with
either 0, ‚.T 1=2/, ‚.T 2=3/, or ‚.T / regret.

The Perceptron Algorithm
In this section we consider an example for an
online learning algorithm that competes with a
continuous set of experts, in contrast to the finite

Online Learning 935

O

sets of experts we have considered so far. This
algorithm—the perceptron algorithm (Rosenblatt
1958)—was among the first online learning al-
gorithms developed. Another of this early on-
line learning algorithms with a continuous set
of experts is the Winnow algorithm by Little-
stone (1988). A unified analysis of these algo-
rithms can be found in Cesa-Bianchi and Lugosi
(2006). This analysis covers a large class of
algorithms, in particular the p-norm perceptrons,
which smoothly interpolate between the percep-
tron algorithm and Winnow.

The perceptron algorithm aims at learning
a linear classification function. Thus inputs are
from a Euclidean space,X D R

d , the predictions
and responses are binary, Y D Z D f0; 1g, and
the discrete misclassification loss is used. Each
expert is a linear classifier, represented by its
weight vector v 2 R

d , whose linear classification
is given by ˆv W X ! f0; 1g, ˆv.x/ D 1 if
v � x � 0 and ˆv;� .x/ D 0 if v � x < 0.

The perceptron algorithm maintains a weight
vector wt 2 R

d that is initialized as w1 D

.0; : : : ; 0/. After receiving input xt , the percep-
tron’s prediction is calculated using this weight,

yt D ˆwt
.xt /;

and the weight vector is updated,

wtC1 D wt C �.´t � yt /xt ;

where � > 0 is a learning rate parameter. Thus,
if the prediction is correct, yt D ´t , then the
weights are not changed. Otherwise, the product
wtC1 � xt is moved into the correct direction: since
wtC1 � xt D wt � xt C�.´t �yt /jjxt jj

2, wtC1 � xt >

wt � xt if yt D 0 but ´t D 1, and wtC1 � xt <

wt � xt if yt D 1 but ´t D 0.
We may assume that the inputs are normal-

ized, jjxt jj D 1, otherwise a normalized xt can be
used in the update of the weight vector. Further-
more, we note that the learning rate � is irrelevant
for the performance of the perceptron algorithm,
since it scales only the size of the weights but
does not change the predictions. Nevertheless, we
keep the learning rate since it will simplify the
analysis.

Analysis of the perceptron algorithm. To com-
pare the perceptron algorithm with a fixed (and
optimal) linear classifier v, we again use a poten-
tial function, jjwt � vjj2. For the change of the
potential function when yt ¤ ´t , we find

jjwtC1 � vjj2 � jjwt � vjj2

D jjwt C �.´t � yt /xt � vjj2 � jjwt � vjj2

D jjwt � vjj2 C 2�.´t � yt /.wt � v/ � xt

C �2.´t � yt /
2 jjxt jj

2 � jjwt � vjj2

D 2�.´t � yt /.wt � xt � v � xt /C �2:

Since wt � xt < 0 if yt D 0 and wt � xt � 0 if
yt D 1, we get .´t � yt /.wt � xt / � 0 and

jjwtC1�vjj2�jjwt �vjj2��2�.´t �yt /.v � xt /C�
2:

Analogously, the linear classifier v makes a mis-
take in trial t if .´t � yt /.v � xt / < 0, and in this
case �.´t � yt /.v � xt / � jjvjj. Hence, summing
over all trials (where yt ¤ ´t) gives

jjwT C1 � vjj2 � jjw1 � vjj2 � �2�
X

t W`t D1;`v
t D0

jv � xt j C 2�jjvjjLv
T C �2LT ; (6)

where the sum is over all trials where the per-
ceptron algorithm makes a mistake but the linear
classifier v makes no mistake. To proceed, we as-
sume that for the correct classifications of the lin-
ear classifier v, the product v � xt is bounded away
from 0 (which describes the decision boundary).
We assume jv � xt j � �v > 0. Then

jjwT C1 � vjj2 � jjw1 � vjj2 � �2��v.LT � Lv
T /

C 2�jjvjjLv
T C �2LT ; (7)

and

LT .2��v � �2/ � jjvjj2 C Lv
T .2��v C 2�jjvjj/;

since jjwT C1 � vjj2 � 0 and w1 D .0; : : : ; 0/.
For � D �v the following loss bound for the
perceptron algorithm is achieved:

936 Online Learning

LT � jjvjj2=�2
v C 2Lv

T .1 C jjvjj=�v/:

Thus the loss of the perceptron algorithm does
not only depend on the loss of an (optimal) linear
classifier v but also on the gap by which the
classifier can separate the inputs with ´t D 0
from the inputs with ´t D 1. The size of this gap
is essentially given by �v=jjvjj.

Relation between the perceptron algorithm
and support vector machines. The gap �v=jjvjj

is the quantity maximized by support vector ma-
chines, and it is the main factor determining the
prediction accuracy (in a probabilistic sense) of
a support vector machine. It is not coincidental
that the same quantity appears in the perfor-
mance bound of the perceptron algorithm, since
it measures the difficulty of the classification
problem.

As for support vector machines, kernels
K. � ; � / can be used in the perceptron algorithm.
For that, the dot product wt � xt is replaced by the
kernel representation

Pt�1
�D1.´� � y� /K.x� ; x/.

Obviously this has the disadvantage that all
previous inputs for which mistakes were made
must be kept available.

Online Convex Optimization
For online convex optimization, the learner has to
choose a prediction yt from some convex set Y ,
receives as feedback a convex loss function Lt W

Y ! R, and suffers loss `t D Lt .yt /. An excel-
lent exposition of online convex optimization is
given in Shalev-Shwartz (2011).

Many online learning problems and algo-
rithms can be cast in the framework of online
convex optimization, in particular also the
weighted majority algorithm and the perceptron
algorithm. While both algorithms make binary
predictions yt 2 f0; 1g and suffer a discrete
loss, they both can be convexified: For the
weighted majority algorithm we can consider
the probability pt for yt D 1 as the prediction
of the algorithm, such that the expected loss is
E`.yt ; ´t / D j´t �pt j which is a convex function
in pt . For the perceptron algorithm, the discrete
loss can be upper bounded by a convex surrogate

loss function, and the loss analysis can be done
in respect to these surrogate loss functions.

Two simple but often effective strategies for
online convex optimization are follow the leader
and follow the regularized leader. The follow the
leader strategy chooses the prediction that would
minimize the accumulated loss so far,

yt D arg min
y2Y

t�1X

iD1

Li .y/:

For some online convex optimization problems,
this gives very good regret bounds, in particular
for online quadratic optimization, where Y D R

d

and Lt .y/ D jjy � ´t jj
2 is the squared Euclidean

distance to some ´t 2 R
d . It can be shown that in

this case, the regret is bounded by

min
y

TX

tD1

jjy � ´t jj
2 �

TX

tD1

jjyt � ´t jj
2

� 4Z2.1 C logT /; (8)

where Z D max1�t�T jj´t jj. This strategy fails,
though, for other loss functions, for example, for
online linear optimization with losses Lt .y/ D

y � ´t , when the regret might be as large as�.T /.
This problem can be avoided by the follow the
regularized leader strategy which chooses pre-
dictions

yt D arg min
y2Y

"
t�1X

iD1

Li .y/CR.y/

#

for some regularization function R W Y !

R. For online linear optimization with quadratic

regularization R.y/ D Z
B

q
T
2 jjyjj2, follow the

regularized leader achieves regret

min
yWjjyjj�B

TX

tD1

.y � ´t / �

TX

tD1

.yt � ´t / � ZB
p

2T ;

if all jj´t jj � Z. Online convex optimization is a
very active field of research, and a good starting
point is the exposition (Shalev-Shwartz 2011).

Ontology Learning 937

O

Oblivious Versus Adaptive Instance
Sequences
So far we have assumed that the sequence of
instances is not influenced by the predictions
of the learner. If the sequence of instances is
adaptive and depends on the predictions of the
learner, additional care is necessary. In particular
the definition of regret is subtle: since the in-
stances depend on the predictions, the instances
encountered by the learner may be very different
from the instances encountered when following
the prediction of a single expert. Therefore, it
is in general not possible to bound the loss of
a learner by the losses the experts would have
incurred when making their predictions. This no-
tion of regret is called policy regret (Dekel 2012),
and it is easy to construct examples where any
learning algorithm suffers �.T / loss while the
predictions of the best expert suffer zero loss. To
obtain nontrivial bounds on the policy regret, the
adaptiveness of the instance sequence needs to
be restricted, for example, by a bounded memory
assumption: the instance at time t may depend
only on the last m predictions of the learner.

In contrast, the loss of the learner can often
be bounded by the loss of the best expert on the
sequence generated in response to the predictions
of the learner. The difference between the loss
of the learner and the loss of the best expert
on the same sequence of instances is called the
external regret. As explained above, the notion
of external regret is not fully satisfactory for
adaptive sequences, but it allows to carry over
many result for oblivious sequences to adaptive
sequences. For an example, the high probability
bound (3) for the weighted majority algorithm,

LT � L�
T C

p
T log.jE j=ı/;

holds also for any adaptive instance sequence that
depends on the past predictions of the learner.

Recommended Reading

Angluin D (1988) Queries and concept learning. Mach
Learn 2:319–342

Auer P, Cesa-Bianchi N, Freund Y, Schapire R
(2002) The nonstochastic multiarmed bandit prob-
lem. SIAM J Comput 32:48–77

Bartók G, Foster D, Pál D, Rakhlin A, Szepesvári
C (2014) Partial monitoring—classification, re-
gret bounds, and algorithms. Math Oper Res 39:
967–997

Bubeck S, Cesa-Bianchi N (2012) Regret analysis
of stochastic and nonstochastic multi-armed bandit
problems. Found Trends Mach Learn 5:1–122

Cesa-Bianchi N, Freund Y, Haussler D, Helmbold D,
Schapire R, Warmuth M (1997) How to use expert
advice. JACM 44:427–485

Cesa-Bianchi N, Lugosi G (2006) Prediction, learn-
ing, and games. Cambridge University Press, Cam-
bridge/New York

Dekel O, Tewari A, Arora R (2012) Online ban-
dit learning against an adaptive adversary: from
regret to policy regret. In: Proceedings of the
29th international conference on machine learning,
Edinburgh

Hannan J (1957) Approximation to Bayes risk in re-
peated play. Contrib Theory Games 3:97–139

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2:285–318

Littlestone N, Warmuth M (1994) The weighted major-
ity algorithm. Inf Comput 108:212–261

Luo H, Schapire RE (2015) Achieving all with no pa-
rameters: Adanormalhedge. In: Proceedings of the
28th conference on learning theory, Paris, pp 1286–
1304

Rosenblatt F (1958) The perceptron: a probabilistic
model for information storage and organization in
the brain. Psychol Rev 65:386–408

Shalev-Shwartz S (2011) Online learning and online
convex optimization. Found Trends Mach Learn 4:
107–194

Vovk V (1990) Aggregating strategies. In: Proceed-
ings of 3rd annual workshop on computational
learning theory, Rochester. Morgan Kaufmann,
pp 371–386

Ontology Learning

Different approaches have been used for building
ontologies, most of them to date mainly using
manual methods (�Text Mining for the Semantic
Web). An approach to building ontologies was
set up in the CYC project, where the main step
involved manual extraction of common sense
knowledge from different sources. Ontology con-
struction methodologies usually involve several
phases including identifying the purpose of the
ontology (why to build it, how will it be used, the
range of the users), building the ontology, evalu-

http://dx.doi.org/10.1007/978-1-4899-7687-1_831

938 Opinion Extraction

ation and documentation. Ontology learning re-
lates to the phase of building the ontology using
semiautomatic methods based on text mining or
machine learning.

Opinion Extraction

� Sentiment Analysis and Opinion Mining

Opinion Mining

� Sentiment Analysis and Opinion Mining

Opinion Stream Mining

Myra Spiliopoulou1, Eirini Ntoutsi2;3, and
Max Zimmermann4

1Otto-von-Guericke University-Magdeburg,
Magdeburg, Germany
2Leibniz Universität Hannover, Hannover,
Germany
3Ludwig Maximilians Universität München,
Munich, Germany
4Swedish Institute of Computer Science (SICS
Swedish ICT), Kista, Sweden

Abstract

Opinion stream mining aims at learning and
adaptation of a polarity model over a stream
of opinionated documents, i.e., documents
associated with a polarity. They comprise a
valuable tool to analyze the huge amounts
of opinions generated nowadays through the
social media and the Web. In this chapter, we
overview methods for polarity learning in a
stream environment focusing especially on
how these methods deal with the challenges
imposed by the stream nature of the data,

Work partially done while with the Ludwig-
Maximilians University, Munich.

namely the nonstationary data distribution and
the single pass constraint.

Synonyms

Mining a Stream of Opinionated Documents;
Polarity Learning on a Stream

Definition

Opinion stream mining is a variant of stream
mining, of text mining and of opinion mining.
Its goal is learning and adaptation of a polarity
model over a stream of opinionated documents.
An “opinionated document” is a text associated
with a “polarity.” Polarity is a value that rep-
resents the “strength” and the “direction” of an
opinion. The strength can be a categorical value
(e.g., C, �) or a ranking value (e.g., zero to
five stars) or a continuous value (e.g., in the
interval Œ0; 1�). The direction refers to whether the
opinion is positive, negative, or neutral. Strength
and direction are often mixed. For example, in a
ranking using stars, five stars may stand for a very
positive opinion, zero stars for a very negative
one, and three stars for a neutral one.

As a variant of stream mining, opinion stream
mining is subject to challenges of learning on a
stream: adapting to changes in the data generating
distribution – a phenomenon often called concept
drift and processing the data as they arrive (in
a single pass), since they cannot be retained
permanently.

As a variant of text mining, opinion stream
mining is subject to challenges of learning
from texts: identifying the parts of speech that
are in the text (e.g., verbs, adjectives, etc.);
bringing the individual words into stem form
(e.g., “opinions”!“opinion”); deciding which
words will constitute the feature space and
which are not informative and should be ignored;
modeling the similarity between texts, taking
(among other issues) differences in the length of
texts into account; extracting the “entities” from

http://dx.doi.org/10.1007/978-1-4899-7687-1_907
http://dx.doi.org/10.1007/978-1-4899-7687-1_907
http://dx.doi.org/10.1007/978-1-4899-7687-1_100301
http://dx.doi.org/10.1007/978-1-4899-7687-1_100363

Opinion Stream Mining 939

O

the text (e.g., persons, products); and detecting
the “topics” of discourse in the texts.

As a variant of opinion mining, opinion stream
mining faces further challenges: distinguishing
between words that bear sentiment (e.g., “nice,”
“ugly”) and those referring to facts (e.g., “sauna,”
“phone”) and discerning different forms of sen-
timent (e.g., anger, joy). For static data, these
challenges are addressed with techniques of nat-
ural language processing (NLP), text mining,
and Sentiment Analysis and Opinion Mining
(cf. lemma).

The aforementioned challenges are exacer-
bated in the stream context. Opinion stream min-
ing provides solutions for learning and adapting
a polarity model in a volatile setting: the topics
in the opinionated documents may change; the
attitude of people toward an entity (e.g., person,
product, event) may change; the words used by
people to express polarity may change; and even
the words used by people, i.e., the vocabulary,
may also evolve over time.

Motivation, Main Tasks, and
Challenges

With the rise of WEB 2.0, more and more people
use social media to upload opinions on essentially
every subject – on products, persons, institutions,
events, and topics of discourse. These accumu-
lating opinionated data are valuable sources of
information that can deliver valuable insights on
the popularity of events; on the properties of
products that are deemed important; on the pos-
itive or negative perception people have toward
a product, person, or institution; on their attitude
toward a specific subject of discourse; etc.

Background: The analysis of opinionated data
is investigated in the research areas of senti-
ment analysis and opinion mining. These two
areas overlap, whereby research on sentiment
analysis puts more emphasis in understanding
different types of “sentiment” (e.g., irony, anger,
sadness, etc.), while opinion mining focuses more
on learning models and discerning trends from
data that simply have positive or negative “polar-

ity” (or are neutral). For an extensive discussion
of the subject, the reader is referred to the lemma
Sentiment Analysis and Opinion Mining.

In Liu (2012), Bing Liu defines four opinion
mining tasks as follows:

1. Entity extraction: “Extract all entity ex-
pressions in a document, and categorize or
group synonymous entity expressions into
entity clusters. Each entity expression cluster
indicates a unique entity ei .”

2. Property extraction: “Extract all property ex-
pressions of the entities, and categorize these
property expressions into clusters. Each prop-
erty expression cluster of entity ei represents
a unique property aij .”

3. Opinion holder extraction: “Extract opinion
holders for opinions from text or structured
data and categorize them. The task is analo-
gous to the above two tasks.”

4. Sentiment classification: “Determine whether
an opinion on a property aij is positive, nega-
tive, or neutral, or assign a numeric sentiment
rating to the property.”

Among these tasks, the first one is not peculiar
to opinion mining: entity extraction (EEX) is
a subtask of document analysis. A widespread
special case of EEX is named-entity recognition
(NER); a minister is an entity, and a specific
minister is a named entity. The goal of EEX and
NER is to identify and annotate all entities in a
document. To this purpose, NLP techniques are
used, as well as collections of “named entities”;
a list of the towns in a country is an example of
such a collection.

The second task can be generalized in two
ways. First, the properties need not be associated
to an explicitly defined entity (e.g., a person
or city); they may also be topics or subtopics
under a subject of discourse (e.g., air pollution
as a subtopic of environment pollution). Further,
clustering is not the only way of identifying
properties/topics: aspect-based opinion mining is
a subdomain of topic modeling (cf. lemma Topic
Models for NLP Applications for the general
domain). In this subdomain, a document is per-
ceived as a mixture of topics and sentiments.

940 Opinion Stream Mining

In opinion stream mining, the collection of
opinionated documents is not perceived as a
static set but as an ongoing stream. While the
first and third of the aformentioned tasks remain
largely unchanged, the second and forth task must
be redefined in the stream context. The task of
property extraction on the stream is addressed
with methods of dynamic topic modeling (see
Blei and Lafferty (2006) for the core concepts)
and with methods of text stream clustering
(Aggarwal and Yu 2006).

The task of sentiment classification becomes
a stream classification problem for an evolving
text stream. Hereafter, we denote this task as
“learning a polarity model” or simpler “polar-
ity model learning,” without referring explic-
itly to the fact that the model is learned on a
stream.

Challenges of opinion stream mining: The
challenges faced in opinion stream mining for
property extraction and polarity learning emanate
from the different aspects of volatility in the
opinionated stream:

(a) The data evolve with respect to the target
variable: The attitude of people toward a
subject of discourse, a person, a product, or
some property of this product may change
over time. This corresponds to a change in the
priors of the polarity class.

(b) The topics evolve: New subjects of discourse
emerge, some product properties become un-
interesting while others gain momentum. The
learning algorithm must recognize that peo-
ple discuss different topics.

(c) The vocabulary evolves: New words show up,
some words fall out of use, and the polarity
of some words may change. This means that
the high-dimensional feature space used by
the learning algorithm changes during the
process of learning and adaption.

(d) Labels are scarce: In conventional stream
classification, it is assumed that fresh
labels are timely available for classifier
adaption. Opinionated streams are fast and
the inspection of opinions is a tedious
task. So, the demand for human interven-

tion/supervision for document labeling must
be limited.

Main tasks of opinion stream mining: In
response to challenges (a) and (c), opinion stream
mining encompasses solutions for polarity model
learning and adaption and also when the class
priors change and when the vocabulary evolves.
Next to fully supervised solutions, there are also
semi-supervised learning methods and active
learning methods, in response to challenge (d).
In the following, we elaborate on supervised,
semi-supervised, and active stream mining
approaches for the classification of opinionated
streams.

For challenge (b), we refer the reader to litera-
ture on text stream clustering, starting, e.g., with
Aggarwal and Yu (2006), and to literature on
dynamic topic modeling, starting with Blei and
Lafferty (2006) and Wang and McCallum (2006).
Dynamic topic modeling for opinionated docu-
ment streams gained momentum in the last years,
resulting in several works on dynamic topic mix-
ture models that capture both aspects (properties)
and sentiment. An example is Fu et al. (2015)
on dynamic nonparametric hierarchical Dirichlet
process topic modeling. An important character-
istic of this work is that the number of topics can
be determined automatically and adjusted over
time. Further, an aging (time-decay) component
is incorporated into the learning process; this
allows for forgetting old topics (Fu et al. 2015).
As we discuss in the next section, the issue of
forgetting is also essential in supervised learning
over the stream, as means of adaptation to con-
cept drift.

Polarity Learning in an Opinionated
Stream

Polarity learning is a supervised task that in-
volves model learning and model adaption over
an opinionated stream, i.e., an infinite sequence
D of arriving instances d1; � � � ; di ; � � � . An in-
stance/opinionated document is a vector over
a word vocabulary V , which is built up and
changes over time.

Opinion Stream Mining 941

O

An instance has a polarity label c. We denote
the class attribute by C . Much of the research on
opinion stream mining considers streams where
documents have positive or negative polarity and
are mixed with neutral documents. We use this
convention in the following, i.e., we assume that
the polarity label is one of positive (C), negative
(�), or neutral (;).

Workflow
The fully supervised stream learning scenario
implies that the model is continuously learned
on arriving, labeled instances. To deal with the
label scarcity challenge, opinion stream mining
research also contributes semi-supervised meth-
ods that learn with only an initial seed of la-
beled instances and active learning methods that
request a label for only some of the arriving
instances. An abstract workflow of the learn-
ing tasks is depicted in Fig. 1, distinguishing
among supervised, semi-supervised, and active
learning.

As can be seen in the figure, an initial classifier
is trained on a starting set of manually labeled
instances Seed. This set can be a small cor-
pus of carefully selected opinionated documents

that are representative of the stream, at least at
the beginning, or the Seed can consist solely
of the first arriving documents in the stream.
Labels delivered by a human expert are denoted
in the figure as “true labels,” as opposed to
the “predicted labels” that are assessed by the
classifier.

In each subsequent step, the classifier pre-
dicts the labels of the arriving documents. For
supervised learning, a human expert immediately
delivers the true labels, which are then used
for model adaption. In semi-supervised learning,
the classifier adapts by using (a selection of)
instances with predicted labels. In active learn-
ing, the expert is asked to deliver true labels
only for some of the arriving documents which
are then used for model adaption. These three
ways of polarity learning are discussed here-
after.

The instances of the stream may be processed
one by one as they arrive, or they may be
stored into “chunks” (also called “blocks” or
“batches”). In the first case, i.e., in “instance-
based” processing, the classifier is adapted
after seeing each new instance. In “chunk-
based” processing, the classifier adapts after
each chunk. A chunk may be a fixed-sized

Opinion Stream Mining, Fig. 1 Polarity learning on a stream of opinionated documents – fully supervised, semi-
supervised, and active learning options

942 Opinion Stream Mining

block of documents or it may be defined
at different levels of temporal granularity,
e.g., hourly, daily, or weekly. Instance-based
processing allows for fast adaption; however, the
processing cost is higher as the model is updated
after each instance. Chunk-based processing is
more appropriate for streams where changes
in the topics and/or vocabulary are manifested
gradually. A detailed discussion of instance- vs
chunk-based methods can be found in the lemma
Stream Classification.

Fully Supervised Opinion Stream
Classification
Fully supervised polarity learning on an opin-
ionated stream is performed in the same way as
stream classification in a conventional stream.
The reader is referred to the lemma Stream
Classification for a detailed elaboration on the
interaction between the classifier and the stream,
the detection of drift, and the adaption of the
model. For opinionated streams, two aspects are
of particular interest: how to choose a classifica-
tion algorithm for polarity learning and how to
deal with changes in the vocabulary.

Stream classification algorithms for polarity
learning. Since there are many stream classifi-
cation algorithms, it is reasonable to investigate
how appropriate they are for learning on an opin-
ionated stream. Several comparative studies have
emerged at the beginning of the decade, including
Bifet and Frank (2010) and Gokulakrishnan et al.
(2012). In Gokulakrishnan et al. (2012), Goku-
lakrishnan et al. study a Twitter stream (i.e., a
stream of short texts) and evaluate multinomial
Naive Bayes (MNB), support vector machines
(SVM), Bayesian logistic regression, sequential
minimal optimization (SMO), and random forests
(RF); they show that Bayesian classifiers, RF, and
SMO outperform the other methods. In Bifet and
Frank (2010), Bifet et al. compare MNB, stochas-
tic gradient descend (SGD), and a Hoeffding tree
(HT) algorithm; they report that MNB and SGD
perform comparably when the stream is stable,
but MNB has difficulties in adapting to drifts. In
terms of efficiency, MNB is the fastest and HT is
the slowest.

In their survey on concept drift adaption
(Gama et al. 2014), Gama et al. elaborate on
how forgetting of old data can be used to adjust
a model to drift, and they discuss different
forgetting strategies. The Hoeffding tree variant
AdaHT (Bifet and Gavaldà 2009) forgets subtrees
if performance degrades. In an opinionated
stream, it is reasonable to also forget words,
i.e., parts of the feature space, since the choice
of words used in the data (here: documents!)
may also change. The MNB variant proposed in
Wagner et al. (2015) quantifies the contribution
of a word to the polarity model by considering
the number of documents containing this word
and the recency of these documents; this variant
is shown to adapt well to changes in the stream.

Stream classification algorithms for an evolv-
ing vocabulary. The problem of vocabulary
evolution is rarely investigated in the context of
stream mining. There are studies on online topic
modeling and clustering on text streams, in which
the model is adapted when the vocabulary – the
feature space – changes (AlSumait et al. 2008;
Gohr et al. 2009; Zimmermann et al. 2016), but
most studies assume that all words are known in
advance, and only their contribution to the model
may change over time.

Among the stream classification algorithms,
adaption to an evolving vocabulary is possible
for some algorithms. The Hoeffding tree variant
AdaHT (Bifet and Gavaldà 2009) can forget dep-
recated words when it forgets parts of the model
(subtrees) and may be able to include new words
when it builds new subtrees. The multinomial
Naive Bayes variant proposed in Wagner et al.
(2015) does modify the vocabulary, by consider-
ing at each timepoint only words that appear often
in recent documents.

Adaption to an evolving vocabulary is an open
problem. Currently, only few stream classifica-
tion algorithms can deal with changes in the
feature space. How to employ other classification
algorithms over the opinionated stream? The fall-
back solution is to extend the workflow by a task
that regularly recomputes the vocabulary/feature
space from the most recent documents and then
re-initializes the polarity model. This solution has

Opinion Stream Mining 943

O

the disadvantage that the old model is completely
forgotten, but the advantage that any stream clas-
sification algorithm can be used for learning.

Semi-supervised Opinion Stream
Classification
Goal of semi-supervised stream learning is to
learn a model on an initial set of manually la-
beled documents, sometimes called the “seed
set” or “initial seed,” and then adapt the model
by using the arriving unlabeled instances. Semi-
supervised methods have the inherent advantage
of not demanding human intervention after the
initialization of the model.

For this family of methods, the initial seed
is the only available ground truth. Hence, it is
essential that the instances comprising the seed
set are a representative sample. Evidently, this
sample ceases being representative, as soon as
concept drift occurs. Semi-supervised learning
algorithms adapt to drift by building a training
set that consists of the initial seed and arriving
unlabeled instances, to which they themselves
assign the labels. There are two strategies for the
selection of unlabeled instances to be labeled by
the classifier and added to the training set. The
first strategy chooses instances on the grounds
of the classifier’s confidence to the predicted
labels. The second strategy chooses instances by
considering their similarity to previously labeled
instances.

First strategy. Chapelle et al. point out that
“Probably the earliest idea about using unla-
beled data in classification is self-learning, which
is also known as self-training, self-labeling, or
decision-directed learning. This is a wrapper-
algorithm that repeatedly uses a supervised learn-
ing method. It starts by training on the labeled
data only. In each step a part of the unlabeled
points is labeled according to the current decision
function; then the supervised method is retrained
using its own predictions as additional labeled
points . . . ” (Chapelle et al. 2006). However, self-
training may lead to performance deterioration,
because erroneous predictions of the classifier
lead to erroneous labels in the training set.

Another approach is the “co-training” of sev-
eral independent classifiers (Blum and Mitchell
1998). In the context of text classification,
Aggarwal and Zhai propose to split the feature
space into subsets and train an independent
classifier on each subset (Aggarwal and Zhai
2014); then, high-confidence predictions of
each single classifier are used to feed the other
classifiers with new labels, so that no classifier is
trained on its own predictions.

An example of co-training on a stream of
tweets is in Liu et al. (2013): the complete feature
space encompasses both text features (such as
adjectives) and non-text features (e.g., emoticons).
Views are built over this feature space, and a
classifier (multiclass SVM) is trained on each
view, using a small set of labeled instances only.

Second strategy. As an alternative to self-
training and co-training, the second semi-
supervised strategy adds to the training set
those instances that are most similar to already
labeled instances. One way to capitalize
on labeled instances under this strategy is to
cluster labeled and unlabeled instances together,
then determine the label of each cluster from
the labeled instances in it, and finally select for
training some unlabeled instances per cluster
(e.g., those closest to the cluster center).

In the context of opinionated semi-supervised
stream learning, a clustering-based strategy
brings two advantages. First, text stream
clustering algorithms can be used, whereupon the
clusters are updated gradually, as new unlabeled
instances arrive. Further, these clusters reflect
the properties/topics in the opinionated stream,
thus addressing challenge (b) of task 2 on
opinionated streams (cf. section on “Motivation,
Main Tasks, and Challenges”). Example methods
have been proposed by Gan et al. (2013) and by
Zimmermann et al. (2015a).

In the previous section on fully supervised
learning, we point out that forgetting (old data,
part of the model, part of the feature space)
may be beneficial for model adaption (cf. Gama
et al. 2014). When learning in a semi-supervised
way, though, forgetting may have negative side
effects: since the seed set is the only ground

944 Opinion Stream Mining

truth provided by the human expert, forgetting
those “precious” data labels is likely to lead to
performance deterioration.

Active Learning for Opinion Stream
Classification
Similarly to semi-supervised approaches, active
learning methods attempt to learn and adapt to
the ongoing stream without demanding a label
for each arriving instance. Instead of re-acting to
the labels that become available, active methods
proactively (thereof the name “active”) request
labels for the instances expected to be most in-
formative for learning.

In active stream learning, there are two ways
of requesting labels for some of the arriving
instances. In the pool-based scenario, unlabeled
instances are collected into a pool; the active
learning algorithm chooses a subset of them and
asks for their labels. In the sequential scenario,
the algorithm decides for each arriving instance
whether it will request a label for it. An overview
of active learning methods for conventional
streams is in Zliobaite et al. (2011).

Active learning is often used for various text
mining tasks, including sentiment classification
(Zhou et al. 2013). Active algorithms for opinion-
ated streams also gain momentum. CloudFlows is
a cloud-based platform for opinion stream mining
that adheres to the pool-based scenario (Saveski
and Grcar 2011; Kranjc et al. 2015): a first model
of the stream is learned from a large corpus of
tweets that contain emoticons; after initialization,
the stream is partitioned into chunks, and an ac-
tive learning algorithm is used to select instances
and store them in a pool. The instances in the
pool are ranked, and the top-ranked positions are
shown to human experts. This approach has the
advantage that human experts (e.g., in crowd-
sourcing) label the opinionated documents shown
to them offline, whereupon these newly labeled
instances are used for classifier adaption.

The algorithm ACOSTREAM (Zimmermann
et al. 2015b) adheres to the sequential scenario, in
the sense that sampling is done for each instance
individually at its arriving time. This algorithm
uses a variant of multinomial naive Bayes for
classification, which (as in Wagner et al. 2015)

deals with changes in the vocabulary of the arriv-
ing documents.

The multiclass active learning algorithm of
Cheng et al. (2013) combines uncertainty and
likelihood sampling to choose instances that are
close to the current decision boundary, as well as
instances from a yet unseen part of the data space.
This algorithm (which adheres to the sequential
scenario) is particularly interesting for learning
on text streams, where some of the most recent
instances may belong to an area of the data space
that did not contain any instances in the past.

Recent Developments

Opinion stream mining builds upon advances
in opinion mining, stream classification, active
stream learning, and semi-supervised stream
learning. Traditional methods in this domain
have not been designed with big data in mind.
However, opinionated streams have big data
characteristics: volume, variability, variety, and
veracity.

Volume refers to the huge number of opinions
uploaded daily in social media and to the high
dimensionality of the opinionated documents.

Variability refers to changes in the data flow rate
and to changes in the data distribution, i.e., to
concept drift.

Variety refers to the heterogeneous data types,
including plain texts, images, and videos.
The graph structure of the social networks, in
which opinion holders are linked to each other,
also adds to the variety of the data relevant to
opinion mining.

Veracity refers to the uncertainty of the polarity
labels provided by the human experts: labeling
an opinionated stream is an inherently diffi-
cult task, since some opinionated documents
(e.g., documents containing subtle irony) may
be perceived differently by different people.

Challenges associated to these four Vs are
not always peculiar to opinion stream mining:
while challenges associated to variability are ex-
acerbated in the opinion stream mining context,
challenges associated to, e.g., volume can benefit

Opinion Stream Mining 945

O

from general-purpose big data solutions. These
include, among others, scalable machine learn-
ing and online NLP algorithms, crowdsourcing
approaches for data labeling, visualization ad-
vances, and visual analytics for the monitoring
and interpretation of activities on social plat-
forms.

Open Problems

Opinion stream mining is a rather young area.
Open problems include:

• How to extend the traditional notion of “con-
cept drift” so that it also cover changes in the
feature space? How to design algorithms that
detect such changes and adapt to them in an
efficient way?

• How to distinguish between concept drift and
“virtual drift” (Gama et al. 2014), i.e., between
changes that do affect the decision boundary
and changes that do not?
Especially in an opinionated stream, many
changes occur at each moment, e.g., new
words appear, and the number of postings
changes with the hour of the day, but not all of
them require model adaption. How to design
algorithms that recognize virtual drift and
only adapt the model when true concept drift
occurs?

• How to capture changes in the semantics and
polarity of words?
If a word’s semantics or polarity change, how
to inform existing resources (e.g., lexica like
SentiWordNet) that a word’s meaning and
polarity are different for old documents than
for recent ones?

• How to deal with label veracity in the stream?
A promising approach is crowdsourcing, s
is done, e.g., in CloudFlows (Kranjc et al.
2015). Amazon Mechanical Turk is a popu-
lar platform, where one can upload tasks for
crowdsourcing. However, crowdsourcing has
not been designed for learning and adaption on
a fast stream, so solutions that also deal with
stream velocity are necessary.

An associated open issue that can also be
found in text stream mining, e.g., in the anal-
ysis of news streams, concerns the description
of bursts. A burst is a rapid increase in social
activity and may also be associated with a rapid
change in the class priors and in the words being
used to express polarity and to express facts. Do
these changes disappear after the burst fades out,
or do people take up the new words/expressions
and use them also when they express opinions
on other subjects? Does a burst lead to (more)
permanent changes in the way people express
opinions, on their perception toward a given en-
tity, or on the topics they discuss?

Impact

Opinions have been always important for
decision making. The opinion deluge we
encounter nowadays mainly due to the WWW
and the widespread usage of social networks
is transforming business, society, and our own
decisions on, e.g., what product to buy, which
movie to watch, etc. Opinion (stream) mining
offers solutions for automatically exploiting such
sort of data for decision making, through, e.g.,
prediction models. Beyond its usage as a “stand-
alone tool” for, e.g., polarity prediction, opinion
(stream) mining has an impact on other areas
of research, an example of which is the area of
recommenders: next to the ratings typically used
by recommenders, it is possible to also capitalize
on the user reviews as more and more users
also provide reviews on the rated items. These
reviews are rich in information: they typically
describe the aspects of the items that the users
like/dislike. Further, if there are no ratings, they
may be inferred from the reviews. A recent work
in this area is McAuley and Leskovec (2013).

Cross-References

�Active Learning
�Concept Drift
�Co-training
� Incremental Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_153
http://dx.doi.org/10.1007/978-1-4899-7687-1_100094
http://dx.doi.org/10.1007/978-1-4899-7687-1_130

946 Opinion Stream Mining

�Online Learning
� Semi-supervised Learning
� Sentiment Analysis and Opinion Mining

Recommended Reading

Some of the publications cited thus far elaborate
on issues that were only briefly touched in this
lemma. In Liu (2012), Bing Liu gives a thorough
overview of sentiment analysis and opinion min-
ing. For text classification methods, readers are
referred to the recent book chapter of Aggarwal
and Zhai (2014).

References

Aggarwal CC, Yu PS (2006) A framework for cluster-
ing massive text and categorical data. In: Proceed-
ings of 6th SIAM international conference on data
mining (SDM’06), Bethesda. SIAM, pp 479–483

Aggarwal C, Zhai C (2014) Text classification. In:
Aggarwal C (ed) Data classification: algorithms and
applications, chapter 11. Chapman & Hall/CRC,
Boca Raton, pp 287–336

AlSumait L, Barbara D, Domeniconi C (2008) On-line
LDA: adaptive topic models for mining text streams
with applications to topic detection and tracking.
In: Proceedings of 2008 IEEE conference on data
mining (ICDM’08), Pisa. IEEE, pp 373–382

Bifet A, Frank E (2010) Sentiment knowledge discov-
ery in Twitter streaming data. In: Proceedings of the
13th international conference on discovery science
(DS’10), Canberra. Springer, pp 1–15

Bifet A, Gavaldà R (2009) Adaptive learning from
evolving data streams. In: Proceedings of the 8th
international symposium on intelligent data analy-
sis: advances in intelligent data analysis VIII (IDA),
Lyon. Springer, pp 249–260

Blei DM, Lafferty JD (2006) Dynamic topic models.
In: Proceedings of 23rd international conference on
machine learning (ICML’06), Pittsburgh, pp 113–
120

Blum A, Mitchell T (1998) Combining labeled and
unlabeled data with co-training. In: Proceedings of
11th conference on computational learning theory,
Madison. ACM, pp 92–100

Chapelle O, Schölkopf B, Zien A (2006) Semi-
supervised learning. MIT, Cambridge

Cheng Y, Chen Z, Liu L, Wang J, Agrawal A,
Choudhary A (2013) Feedback-driven multiclass
active learning for data streams. In: Proceedings of
22nd international conference on information and
knowledge management (CIKM’13), San Fransisco,
pp 1311–1320

Fu X, Yang K, Huang JZ, Cui L (2015) Dynamic
non-parametric joint sentiment topic mixture model.
Know-Based Syst 82(C):102–114

Gama J, Žliobaitė I, Bifet A, Pechenizkiy M,
Bouchachia A (2014) A survey on concept
drift adaptation. ACM Comput Surv 46(4):44:
1–44:37

Gan H, Sang N, Huang R, Tong X, Dan Z (2013) Us-
ing clustering analysis to improve semi-supervised
classification. Neurocomputing 101:290–298

Gohr A, Hinneburg A, Schult R, Spiliopoulou M
(2009) Topic evolution in a stream of documents.
In: SIAM data mining conference (SDM’09), Reno,
pp 378–385

Gokulakrishnan B, Priyanthan P, Ragavan T, Prasath
N, Perera A (2012) Opinion mining and sentiment
analysis on a Twitter data stream. In: Proceedings
of the 2012 international conference on advances
in ICT for emerging regions (ICTer), Colombo,
pp 182–188

Kranjc J, Smailovic J, Podpecan V, Grcar M, Znidarsic
M, Lavrac N (2015) Active learning for sentiment
analysis on data streams: methodology and work-
flow implementation in the ClowdFlows platform.
Inf Process Manag 51(2):187–203

Liu B (2012) Sentiment analysis and opinion mining.
Synth Lect Hum Lang Technol 5(1):1–167

Liu S, Li F, Li F, Cheng X, Shen H (2013) Adaptive
co-training SVM for sentiment classification on
tweets. In: Proceedings of 22nd international con-
ference on information and knowledge management
(CIKM’13), San Fransisco, pp 2079–2088

McAuley J, Leskovec J (2013) Hidden factors and
hidden topics: understanding rating dimensions with
review text. In: Proceedings of 7th ACM conference
on recommender systems (RecSys’13), Hong Kong.
ACM, pp 165–172

Saveski M, Grcar M (2011) Web services for stream
mining: a stream-based active learning use case. In:
Proceedings of the workshop “Planning to Learn
and Service-Oriented Knowledge Discovery” at
ECML PKDD 2011, Athens

Wagner S, Zimmermann M, Ntoutsi E, Spiliopoulou
M (2015) Ageing-based multinomial naive bayes
classifiers over opinionated data streams. In: Euro-
pean conference on machine learning and principles
and practice of knowledge discovery in databases
(ECMLPKDD’15), Porto, 07–11 Sept 2015. Vol-
ume 9284 of lecture notes in computer science.
Springer International Publishing

Wang X, McCallum A (2006) Topics over time: a non-
Markov continuous-time model of topical trends. In:
Proceedings of 12th ACM SIGKDD international
conference on knowledge discovery and data mining
(KDD’06), Philadelphia, pp 424–433

Zhou S, Chen Q, Wang X (2013) Active deep learning
method for semi-supervised sentiment classifica-
tion. Neurocomputing 120:536–546

Zimmermann M, Ntoutsi E, Spiliopoulou M (2015a)
Discovering and monitoring product features and

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_749
http://dx.doi.org/10.1007/978-1-4899-7687-1_907

Overfitting 947

O

the opinions on them with OPINSTREAM. Neuro-
computing 150:318–330

Zimmermann M, Ntoutsi E, Spiliopoulou M (2015b)
Incremental active opinion learning over a stream
of opinionated documents. In: WISDOM’15 (work-
shop on issues of sentiment discovery and opinion
mining) at KDD’15, Sydney

Zimmermann M, Ntoutsi E, Spiliopoulou M (2016)
Extracting opinionated (sub)features from a stream
of product reviews using accumulated novelty and
internal re-organization. Inf Sci 329:876–899

Zliobaite I, Bifet A, Pfahringer B, Holmes G (2011)
Active learning with evolving streaming data. In:
Proceedings of ECML PKDD 2011, Athens. Vol-
ume 6913 of LNCS. Springer

Optimal Learning

�Bayesian Reinforcement Learning

Ordered Rule Set

�Decision List

Ordinal Attribute

An ordinal attribute classifies data into cate-
gories that can be ranked. However, the differ-
ences between the ranks cannot be calculated by
arithmetic. See �Attribute and �Measurement
Scales.

Out-of-Sample Data

Out-of-sample data are data that were not used to
learn a model. �Holdout evaluation uses out-of-
sample data for evaluation purposes.

Out-of-Sample Evaluation

Definition

Out-of-sample evaluation refers to � algorithm
evaluation whereby the learned model is
evaluated on � out-of-sample data, which are

data that were not used in the process of learning
the model. Out-of-sample evaluation provides
a less biased estimate of learning performance
than � in-sample evaluation. �Cross valida-
tion, � holdout evaluation and � prospective
evaluation are three main approaches to out-
of-sample evaluation. Cross validation and
holdout evaluation run risks of overestimating
performance relative to what should be expected
on future data, especially if the data set used is
not a true random sample of the distribution on
which the learned models are to be applied in the
future.

Cross-References

�Algorithm Evaluation

Overall and Class-Sensitive
Frequencies

The underlying idea for learning strategies
processing �missing attribute values relies on
the class distribution; i.e., the class-sensitive
frequencies are utilized. As soon as we substitute
a missing value by a suitable one, we take the
desired class of the example into consideration
in order not to increase the noise in the data
set. On the other hand, the overall (class-
independent) frequencies are applied within
classification.

Overfitting

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Clayton, Melbourne, VIC, Australia

Synonyms

Overtraining

http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_529
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_620
http://dx.doi.org/10.1007/978-1-4899-7687-1_405
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_978
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_954
http://dx.doi.org/10.1007/978-1-4899-7687-1_100353

948 Overtraining

Definition

A model overfits the � training data when it
describes features that arise from noise or
variance in the data, rather than the underlying
distribution from which the data were drawn.
Overfitting usually leads to loss of � accuracy on
� out-of-sample data.

Discussion

In general there is a trade-off between the size
of the space of distinct models that a learner can
produce and the risk of overfitting. As the space
of models between which the learner can select
increases, the risk of overfitting will increase.
However, the potential for finding a model that
closely fits the true underling distribution will
also increase. This can be viewed as one facet of
the � bias and variance trade-off.

Figure 1 illustrates overfitting. The points are
drawn randomly from a distribution in which y D

−2−4 0 2 4

−4

−2

0

2

4

x

y

Overfitting, Fig. 1 Linear and polynomial models fitted
to random data drawn from a distribution for which the
linear model is a better fit

x C ", where " is random noise. The best single
line fit to this distribution is y D x. �Linear re-
gression finds a model y D 0:02044 C 0:92978 �

x, shown as the solid line in Fig. 1. In contrast,
second degree polynomial regression finds the
model �0:6311C0:5128�xC0:2386�x2, shown
as the dashed line. The space of second degree
polynomial models is greater than that of linear
models, and so the second degree polynomial
more closely fits the example data, returning the
lower � squared error. However, the linear model
more closely fits the true distribution and is more
likely to obtain lower squared error on future
samples.

While this example relates to � regression, the
same effect also applies to classification prob-
lems. For example, an overfitted � decision tree
may include splits that reflect noise rather than
underlying regularities in the data.

The many approaches to avoiding overfitting
include

• Using low variance learners;
• �Minimum Description Length and �Minimum

Message Length techniques
• � Pruning
• �Regularization

Cross-References

�Bias Variance Decomposition
�Minimum Description Length Principle
�Minimum Message Length
� Pruning
�Regularization

Overtraining

�Overfitting

http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_620
http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_100441
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_894
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

	O
	Object
	Object Consolidation
	Object Identification
	Object Matching
	Object Space
	Objective Function
	Observation Language
	Synonyms
	Definition
	Motivation and Background
	Attribute-Value Learning
	Learning from Graphs, Trees, or Sequences
	Relational Learning
	Inductive Logic Programming

	Further Reading
	Cross-References
	Recommended Reading

	Occam's Razor
	Synonyms
	Definition
	Motivation and Background
	Cross-References
	Recommended Reading

	Ockham's Razor
	Offline Learning
	One-Against-All Training
	One-Against-One Training
	1-Norm Distance
	One-Step Reinforcement Learning
	Online Controlled Experiments and A/B Testing
	Synonyms
	Motivation and Background
	Tenet 1: The Organization Wants to Make Data-Driven Decisions and Has Formalized the Overall Evaluation Criterion (OEC)
	Tenet 2: Controlled Experiments Can Be Run and Their Results Are Trustworthy
	Tenet 3: We Are Poor at Assessing the Value of Ideas

	Structure of an Experimentation System
	Elements of an Experimentation System
	Experimentation Architecture Alternatives
	Planning Experiments
	Analysis of Experiments

	Summary
	Recommended Reading

	Online Learning
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Theory/Solution
	The Weighted Majority Algorithm
	Extensions and Modifications of the Weighted Majority Algorithm
	The Perceptron Algorithm
	Online Convex Optimization
	Oblivious Versus Adaptive Instance Sequences

	Recommended Reading

	Ontology Learning
	Opinion Extraction
	Opinion Mining
	Opinion Stream Mining
	Synonyms
	Definition
	Motivation, Main Tasks, and Challenges
	Polarity Learning in an Opinionated Stream
	Workflow
	Fully Supervised Opinion Stream Classification
	Semi-supervised Opinion Stream Classification
	Active Learning for Opinion Stream Classification

	Recent Developments
	Open Problems
	Impact
	Cross-References
	Recommended Reading
	References

	Optimal Learning
	Ordered Rule Set
	Ordinal Attribute
	Out-of-Sample Data
	Out-of-Sample Evaluation
	Definition
	Cross-References

	Overall and Class-Sensitive Frequencies
	Overfitting
	Synonyms
	Definition
	Discussion
	Cross-References

	Overtraining

