
V

Value Function Approximation

Michail G. Lagoudakis
Technical University of Crete, Chania,
Greece

Abstract

The goal in sequential decision making un-
der uncertainty is to find good or optimal
policies for selecting actions in stochastic en-
vironments in order to achieve a long-term
goal; such problems are typically modeled as
Markov decision processes (MDPs). A key
concept in MDPs is the value function, a real-
valued function that summarizes the long-term
goodness of a decision into a single number
and allows the formulation of optimal deci-
sion making as an optimization problem. An
exact representation of value functions in large
real-world problems is infeasible; therefore, a
large body of research has been devoted to
value-function approximation methods, which
sacrifice some representation accuracy for the
sake of scalability. These approaches have de-
livered effective approaches to deriving good
policies in hard decision problems and laid the
foundation for efficient reinforcement learning
algorithms, which learn good policies in un-
known stochastic environments through inter-
action.

Synonyms

Approximate dynamic programming; Cost-to-go
function approximation; Neuro-dynamic pro-
gramming

Definition

Value Function Approximation is a collection
of function approximation representations, tech-
niques, and methods aiming at providing a scal-
able and effective approximation to an exact
value function (a real-valued function indicating
the long-term goodness of making decisions at
any state within a sequential decision problem).

Motivation and Background

Markov Decision Processes
A Markov decision process (MDP) is a 6-tuple
.S;A;P;R; �;D/, where S is the state space of
the process, A is a finite set of actions, P is a
Markovian transition model (P.s0js; a/ denotes
the probability of a transition to state s0 when
taking action a in state s), R is a reward function
(R.s; a/ is the reward for taking action a in
state s), � 2 .0; 1� is the discount factor for
future rewards (a reward received after t steps
is weighted by � t), and D is the initial state
distribution (Puterman 1994). MDPs are discrete-
time processes. The process begins at time t D 0

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_100018
http://dx.doi.org/10.1007/978-1-4899-7687-1_100093
http://dx.doi.org/10.1007/978-1-4899-7687-1_100331

1312 Value Function Approximation

in some state s0 2 S drawn from D. At each time
step t , the decision maker observes the current
state of the process st 2 S and chooses an action
at 2 A. The next state of the process stC1 is
drawn stochastically according to the transition
model P.stC1jst ; at /, and the reward rt at that

time step is determined by the reward function
R.st ; at /. The horizon h is the temporal extent of
each run of the process and is typically infinite.
A complete run of the process over its horizon is
called an episode and consists of a long sequence
of states, actions, and rewards:

s0
a0

�����!
r0

s1
a1

�����!
r1

s2
a2

�����!
r2

s3
a3

�����!
r3

s4 : : : sh�1
ah�1
�����!

rh�1
sh:

The quantity of interest is the expected total
discounted reward from any state s:

E
�
r0 C �r1C�2r2C�3r3C� � � C �hrh

ˇ̌
ˇ s0Ds

�

D E

hX

tD0

� t rt

ˇ̌
ˇ s0 D s

!
;

where the expectation is taken with respect to all
possible trajectories of the process in the state
space under the decisions made and the transition
model, assuming that the process is initialized in
state s. The goal of the decision maker is to make
decisions so that the expected total discounted
reward, when s is drawn from D, is optimized.
(The optimization objective could be maximiza-
tion or minimization depending on the problem.
Here, we adopt a reward maximization viewpoint,
but there are analogous definitions for cost mini-
mization. There are also other popular optimality
measures, such as maximization/minimization of
the average reward/cost per step.)

Policies
A policy dictates how the decision maker chooses
actions in each state. A stationary, deterministic
policy � is a mapping � W S 7! A from states to
actions; �.s/ denotes the action the agent takes in
state s. In this case, there is a single action choice
for each state, and this choice does not change
over time. In contrast, a stationary, stochastic
policy � is a mapping � W S 7! ˝.A/, where
˝.A/ is the set of all probability distributions
over A. Stochastic policies are also called soft, for

they do not commit to a single action per state;
�.ajs/ stands for the probability of choosing
action a in state s under policy � . Each policy �

(deterministic or stochastic) is characterized by
the expected total discounted reward it accumu-
lates during an episode. An optimal policy �� for
an MDP is a policy that maximizes the expected
total discounted reward from any state s 2 S . It
is well known that for every MDP, there exists at
least one, not necessarily unique, optimal policy,
which is stationary and deterministic.

Value Functions
The quality of any policy � can be quantified for-
mally through a value function, which measures
the expected return of the policy under different
process initializations. For any MDP and any
policy � , the state value function V assigns a
numeric value to each state. The value V �.s/ of
a state s under a policy � is the expected return,
when the process starts in state s and the decision
maker follows policy � (all decisions at all steps
are made according to �):

V �.s/DEat �� I st �P I rt �R

1X

tD0

� t rt

ˇ̌
ˇ s0Ds

!
:

Similarly, the state-action value function Q as-
signs a numeric value to each pair .s; a/ of states
and actions. The value Q�.s; a/ of taking action
a in state s under a policy � is the expected return
when the process starts in state s, and the decision
maker takes action a for the first step and follows
policy � thereafter:

Value Function Approximation 1313

V

Q�.s; a/

DEat �� I st �P I rt �R

1X

tD0

� t rt

ˇ̌
ˇs0Ds; a0Da

!
:

The state and the state-action value functions for
a deterministic policy � are related as follows:

V �.s/ D Q�
�
s; �.s/

�
:

For a stochastic policy � this relationship needs
to take into account the probability distribution
over actions:

V �.s/ D
X
a2A

�.ajs/Q�.s; a/:

The state-action value function of a policy �

(either deterministic or stochastic) can also be
expressed in terms of the state value function:

Q�.s; a/ D R.s; a/C �
X
s02S

P.s0js; a/V �.s0/:

The optimal value functions V � D V ��

and
Q� D Q��

are the state and the state-action
value functions of any optimal policy ��. Even
if there are several distinct optimal policies, they
all share the same unique optimal value functions.

Bellman Equations
Given the full MDP model, the state or the state-
action value function of any given policy can be
computed by solving a linear system formed us-
ing the linear Bellman equations. In general, the
linear Bellman equation relates the value of the
function at any point to the values of the function
at several – in fact, all – other points. This is
achieved by separating the first step of an episode
from the rest and using the definition of the value
function recursively in the next step. In particular,
for any deterministic policy � , the linear Bellman
equation for the state value function is

V �.s/DR.s; �.s//C�
X
s02S

P.s0js; �.s//V �.s0/;

whereas for a stochastic policy � , it becomes

V �.s/ D
X
a2A

�.ajs/

�
R.s; a/

C �
X
s02S

P.s0js; a/V �.s0/

�
:

The exact V � values for all states can be found by
solving the .jSj � jSj/ linear system that results
from writing down the linear Bellman equation
for all states.

Similarly, the linear Bellman equation for the
state-action value function given any determinis-
tic policy � is

Q�.s; a/ D R.s; a/

C �
X
s02S

P.s0js; a/Q�
�
s0; �.s0/

�
;

whereas for a stochastic policy � , it becomes

Q�.s; a/ D R.s; a/C �
X
s02S

P.s0js; a/

�
X
a02A

�.a0js0/Q�.s0; a0/:

The exact Q� values for all state-action pairs can
be found by solving the .jSjjAj � jSjjAj/ linear
system that results from writing down the linear
Bellman equation for all state-action pairs.

The unique optimal state or state-action value
function can be computed even for an unknown
optimal policy �� using the nonlinear Bellman
optimality equation, which relates values of the
function at different points while exploiting the
fact that there exists a deterministic optimal pol-
icy that achieves the maximum value at each
point. In particular, the nonlinear Bellman opti-
mality equation for the state value function is

V �.s/ D max
a2A

�
R.s; a/

C �
X
s02S

P.s0js; a/V �.s0/

	
;

1314 Value Function Approximation

whereas for the state-action value function is

Q�.s; a/ DR.s; a/

C �
X
s02S

P.s0js; a/ max
a02A

˚
Q�.s0; a0/

:

The functions V � and Q� can be approximated
arbitrarily closely by the iterative application of
the operator formed by the right-hand side of the
equations above (Bellman optimality operator).
This iteration is a contraction with rate � , so start-
ing with any arbitrary initialization, it eventually
converges to V � or Q�.

Significance of Value Functions
Value functions play a critical role in sequential
decision making because they address two core
problems: policy evaluation and policy improve-
ment. Policy evaluation refers to the problem of
quantifying the quality of any given policy � in
a given MDP. Apparently, computing the value
function V � or Q� using the Bellman equations
provides the solution to this problem. Policy
improvement, on the other hand, refers to the
problem of deriving an improved policy � 0 given
any base policy � , so that � 0 is at least as good
as � and possibly better. The knowledge of V �

or Q� allows for the derivation of an improved
deterministic policy � 0 through a simple one-step
look-ahead maximization procedure:

� 0.s/ D arg max
a2A

�
R.s; a/

C �
X
s02S

P.s0js; a/V �.s0/

	

� 0.s/ D arg max
a2A

˚
Q�.s; a/

:

Note that this maximization does not need the
MDP model when using the state-action value
function. Once policy evaluation and policy im-
provement have been addressed, the derivation
of an optimal policy for any MDP is straight-
forward. One can alternate between policy eval-
uation and policy improvement producing a se-
quence of improving policies until convergence
to an optimal policy; this algorithm is known as

policy iteration. Alternatively, one can iteratively
compute an optimal value function V � or Q�

and extract an optimal policy through a trivial
step of policy improvement on top of V � or Q�;
this algorithm is known as value iteration. In
either case, value functions provide the means to
the end.

The problem of deriving an optimal policy
using the full MDP model is known as planning.
Nevertheless, in many real-world sequential deci-
sion domains, the model is unknown. The prob-
lem of optimal decision making in an unknown
stochastic environment is known as reinforce-
ment learning, because the decision maker relies
on the feedback received through interaction with
the environment to reinforce or discourage past
decisions. More specifically, the learner interacts
with an unknown MDP and typically observes
the state of the process and the immediate re-
ward at every step; however, P and R are not
accessible. At each step of interaction, the learner
observes the current state s, chooses an action
a, and observes the resulting next state s0 and
the reward received r , thus learning is based
on .s; a; r; s0/ samples. The core problems in
reinforcement learning are known as prediction
and control. Prediction refers to the problem of
learning the value function of a given policy �

in an unknown MDP through interaction. Well-
known algorithms for the prediction problem are
Monte Carlo estimation and temporal difference
(TD) learning. Control, on the other hand, refers
to the problem of gradually learning a good
or even optimal policy in an unknown MDP
through interaction. Well-known algorithms for
the control problem are SARSA and Q-learning.
Again, value functions play a critical role in rein-
forcement learning; they are absolutely necessary
for the prediction problem, and the majority of
control approaches are value-function based.

Structure of Learning System

Value-Function Approximation
Most algorithms for planning or learning in
MDPs rely on computing or learning a value
function. However, if the state space of the

Value Function Approximation 1315

V

process is fairly large, the exact (tabular)
representation of a value function becomes
problematic. Not only does memory space
become insufficient very quickly, but also
computing or learning accurately all the distinct
entries of the function requires a tremendous
amount of computation and data. This is
known as the curse of dimensionality: the
exponential growth of the state or action space
as a function of the dimensionality of the state
or action. The urgent need for solutions to
large real-world sequential decision problems
has drawn attention to approximate methods.
These methods use function approximation
techniques for approximating value functions;
therefore, they sacrifice some representational
accuracy in order to make the representation
manageable in practice. Sacrificing accuracy
in the representation of the value function is
acceptable, since the ultimate goal is to find
a good policy and not necessarily an accurate
value function. As a result, value-function
approximation methods cannot guarantee optimal
solutions, but only good solutions. This is not
to say that they are doomed to always finding
suboptimal solutions; if an optimal solution lies
within the space spanned by the value-function
approximation scheme, it is possible that an
optimal solution will be discovered.

Let OV �.sIw/ be an approximation to the state
value function V �.s/ represented by a parametric
approximation architecture with free parameters
w. The key idea of value- function approximation
is that the parameters w can be adjusted appro-
priately so that the approximate values are “close
enough” to the original values,

OV �.sIw/ � V �.s/;

and, therefore, OV � can be used in place of the ex-
act value function V � . Similarly, let OQ�.s; aIw/

be an approximation to the state-action value
function Q�.s; a/. Again, the goal is to adjust the
parameters w so that

OQ�.s; aIw/ � Q�.s; a/;

and, therefore, OQ� can be used in place of the ex-
act value function Q� . Approximations OV � and

OQ� of the optimal value functions V � and Q�

are defined similarly. The characterization “close
enough” (�) accepts a variety of interpretations
in this context, and it does not necessarily refer to
the minimization of some norm. Value-function
approximation should be regarded as a functional
approximation rather than as a pure numerical
approximation, where “functional” refers to the
ability of the approximation to play closely the
functional role of the original value function
within a decision making algorithm.

The benefits of value-function approximation
are obvious. The storage requirements are much
smaller compared to the tabular case, since only
the parameters w need to be stored along with a
compact description of the functional form of the
architecture. In general, for most approximation
architectures, the storage needs are independent
of the size of the state space and/or the size of
the action space. Furthermore, for most approxi-
mation architectures there is no restriction on the
state space to be a finite set; it could be an infinite,
or even a continuous, space. This flexibility nev-
ertheless reveals the need for good generalization
abilities on behalf of the architecture, since the
approximate value function will have to pro-
vide good values over the entire state/state-action
space, using data only from a limited subset of
the space.

The main difficulty associated with value-
function approximation, beyond the loss in
accuracy, is the choice of the projection method,
which is the method of finding appropriate
parameters that maximize the accuracy of the
approximation according to certain criteria and
with respect to the target function. Typically, for
ordinary function approximation, this is accom-
plished using a training set of examples of the
form

˚
s; V �.s/

,
˚
s; V �.s/

,
˚
.s; a/; Q�.s; a/

,

or
˚
.s; a/; Q�.s; a/

that provide the true value

of the target function at certain sample points s or
.s; a/ (supervised learning). Unfortunately, in the
context of sequential decision making, the target
value function is completely unknown. Had it
been possible to compute it easily, value-function
approximation would have been unnecessary. In
fact, it is not possible to analytically compute
the true value of the target value function

1316 Value Function Approximation

even at certain isolated sample points due to
interdependencies between the values at all
points. The implication of this difficulty is that
evaluation and projection to the approximation
architecture must be blended together. This is
usually achieved by trying to find values for
the free parameters so that the approximate
function retains some properties of the original
exact value function. Another implication of
using approximation for value functions is that
all convergence properties of exact planning or
learning algorithms are compromised. Therefore,
significant attention must be paid to the choice of
the approximation architecture and the evaluation
and projection method to minimize the chances
for divergence or oscillations.

Approximation Architectures
There are a variety of architectures available
for value-function approximation: perceptrons,
neural networks, splines, polynomials, radial ba-
sis functions, support vector machines, decision
trees, CMACs, wavelets, etc. These architectures
have diverse representational power and general-
ization abilities, and the most appropriate choice
will heavily depend on the properties of the
decision making problem at hand. The projection
methods associated with these approximation ar-
chitectures are typically designed for a super-
vised learning setting. For successful use in the
context of decision making, combined evaluation
and projection methods are necessary.

A broad categorization of approximation ar-
chitectures distinguishes between nonlinear and
linear architectures. The characterization “non-
linear” or “linear” refers to the way the free
parameters enter into the architecture and not
to the approximation ability of the architecture.
Nonlinear architectures are usually more expres-
sive than the linear ones, due to the complex in-
teractions among their free parameters; however,
tuning their parameters is a much more elaborate
task compared to tuning the parameters of their
linear counterparts. Linear architectures are per-
haps the most popular choice for value-function
approximation; interestingly, most theoretical re-
sults on convergence properties in the context of

value-function approximation are restricted to
linear architectures.

A linear approximation architecture approxi-
mates a function V �.s/ or Q�.s; a/ as a linear
weighted combination of k basis functions (also
called features):

OV �.sIw/ D

kX
j D1

�j .s/wj D �.s/>w

OQ�.s; aIw/ D

kX
j D1

�j .s; a/wj D �.s; a/>w:

The free parameters of the architecture are the
coefficients wj of the combination (also called
weights). The basis functions �j are fixed, but
arbitrary and, in general, nonlinear functions of
s or .s; a/. It is required that the basis functions
�j are linearly independent to ensure that there
are no redundant parameters and that the matrices
involved in the computations are full rank. In
general, k � jSj and k � jSjjAj and the basis
functions �j have small compact descriptions.
As a result, the storage requirements of a linear
approximation architecture are much smaller than
those of the tabular representation of a value
function. There is a large variety of linear approx-
imation architectures, and in fact, many common
schemes for value-function approximation can be
cast as linear architectures.

– Lookup Table. This is the exact tabular rep-
resentation (There is no approximation under
this scheme; it is included only to illustrate
that exact representation belongs in the family
of linear architectures.) suitable for problems
with discrete state variables. Each basis func-
tion is an indicator function whose value is 1
only for a specific discrete input point (state or
state-action) and 0 otherwise. Each parameter
stores one value/entry of the table.

– Discretization. This is a common technique
for turning a continuous space into discrete
using a uniform- or variable-resolution grid.
One indicator basis function is assigned to
each cell of the discretization, and the cor-
responding parameter holds the value of that
cell.

Value Function Approximation 1317

V

– Tile Coding (CMAC). This scheme utilizes
several overlapping discretizations (tilings)
for better accuracy. It generates indicator
basis functions for each cell of each tiling
and concatenates the basis functions for all
tilings. Each parameter corresponds to one
cell in one tiling, but the value at each input
point is computed additively from the values
of all containing cells from all tilings.

– State Aggregation. This is a family of schemes
where “similar” (by some metric) states
are grouped together and are treated as
one state. The similarity metric is usually
formed through dimensionality reduction
techniques for identifying the most significant
dimensions in a high-dimensional input space,
unlike conventional proximity measures in
the same space. There is one indicator basis
function for each group and a single value for
all states in the group.

– Polynomials. This is a generic approximation
scheme suitable for problems with several
(continuous) state variables. Each basis func-
tion is a polynomial term composed of state
variables up to a certain degree.

– Radial Basis Functions (RBFs). This is
another generic approximation scheme
suitable for continuous state variables. Each
basis function is a Gaussian with fixed mean
and variance; the Gaussians are topologically
arranged so that they cover the input space
with some overlap.

– Kernel Methods. Kernels are symmetric func-
tions between two points, and they are used
to represent compactly dot products of feature
vectors in high- or even infinite-dimensional
spaces. The compactness of kernels allows
for approximation schemes that essentially
enjoy the flexibility provided by a huge or
infinite number of basis functions. The basis
functions, in this case, are implicitly defined
through the choice of the kernel.

– Partitioning. This technique is used for con-
structing complex approximators by partition-
ing the state space in several subsets and using
a different approximator in each one of them.
If linear architectures are used in all partitions,
then a set of basis functions for the global

architecture can be constructed by concatenat-
ing the basis functions of the smaller linear
architectures multiplying each subset with an
indicator function for the corresponding parti-
tion.

Linear architectures offer several advantages:
they are easy to implement and use, and their
behavior is fairly transparent, both from an
analysis standpoint and from a debugging and
feature engineering standpoint. It is usually
relatively easy to get some insight into the
reasons for which a particular choice of features
succeeds or fails. This is facilitated by the fact
that the magnitude of each parameter is related to
the importance of the corresponding feature in the
approximation (assuming normalized features).

A nonlinear approximation architecture ap-
proximates a function V �.s/ or Q�.s; a/ using
arbitrary parametric functions of s and .s; a/,
possibly in conjunction with some features �

computed over s and .s; a/. The best-known
representative of this category is the multilayer
feed-forward neural networks, which use one or
more layers of linear combinations followed by
a nonlinear sigmoidal transformation (threshold-
ing). In their simplest form (one layer), neural
networks approximate value functions as

OV �.sIw; �/ D

mX
iD1

�i �

0
@

kX
j D1

�j .s/wj i

1
A

D

mX
iD1

�i �
�
�.s/>wi

�

OQ�.s; aIw; �/ D

mX
iD1

�i �

0
@

kX
j D1

�j .s; a/wj i

1
A

D

mX
iD1

�i �
�
�.s; a/>wi

�
:

Common choices for the differentiable, bounded,
and monotonically increasing function � are the
hyperbolic tangent function �.x/ D tanh.x/ D

.ex � e�x/=.ex C e�x/ and the logistic function
�.x/ D 1=.1C e�x/. The free parameters of the

1318 Value Function Approximation

architecture (also called weights) are the coeffi-
cients wj i of the linear combinations of the inputs
and the coefficients �i of the linear combination
of the sigmoidal transformations for the output.
Notice that the parameters wj i enter nonlinearly
into the approximation.

A key question in all approximation architec-
tures is how features are generated and selected.
The feature generation and selection problem is
an open question that spans most of machine
learning research and admits no easy and general
answer. Prior domain-specific knowledge and ex-
perience can be very helpful in choosing appro-
priate features. Several recent studies also de-
scribe methods for automatically generating fea-
tures targeted for value-function approximation
(Menache et al. 2005; Mahadevan and Maggioni
2007; Parr et al. 2007).

Learning
Learning (or training or parameter estimation) in
value-function approximation refers to parameter
tuning methods that take as input a policy � ,
an approximation architecture for V �=Q� , and
the full MDP model or samples of interaction
with the process and output a set of parameters
w� such that OV �= OQ� is a good approximation
to V �=Q� . Learning also covers methods for
the harder problem of taking an approximation
architecture for V �=Q� and the model or samples
and outputting a set of parameters w� such that
OV �= OQ� is a good approximation to V �=Q�.

The former problem is somewhat easier because
the policy � , unlike an optimal policy ��,
is known, and therefore in the presence of a
simulator of the process, the value function can
be estimated at any isolated point using Monte
Carlo estimation techniques based on repeated
policy rollouts from that point. Each rollout
is an execution of an episode starting from a
state s (or state-action .s; a/) using policy � to
obtain an unbiased estimate of the return of the
policy from s (or .s; a/). In this case, value-
function approximation can be cast as a classic
supervised learning problem; the true value of
V �=Q� is estimated at a subset of points to
form a training set, which can be subsequently

used to train the approximation architecture
using supervised learning techniques. However,
in the absence of a simulator or when seeking
approximations to V �=Q�, evaluation and
projection into the architecture have to be carried
out simultaneously.

The true value function has two key properties:
it satisfies the Bellman equations, and it is the
fixed point of the Bellman operator. Learning
in value-function approximation strives to find
values for the free parameters so that the ap-
proximate function retains at least one of these
properties to the extent this is possible. Learning
methods that focus on satisfying the Bellman
equations attempt to find an approximate function
that minimizes the Bellman residual, the differ-
ence between the left- and the right-hand sides
of the system of Bellman equations. On the other
hand, learning methods that focus on the fixed
point property attempt to find an approximate
function that exhibits a fixed point behavior under
the combined application of the Bellman operator
and projection onto the space spanned by the
basis functions. Experimental evidence suggests
that it is really hard to satisfy both properties
under approximation, and therefore these two
approaches differ significantly in their solutions.
The majority of existing learning methods fo-
cus on fixed point approximation, which exper-
imentally has been shown to exhibit more stable
behavior and delivers better policies. There are
also proposals for combining the benefits of both
approaches into a hybrid method (Johns et al.
2009).

The most widely used learning approach is
based on gradient descent and is applicable to any
approximation architecture that is differentiable
with respect to its parameters. Any stochastic
approximation learning method for tabular repre-
sentations of value functions can be extended to
approximate representations. For example, given
any sample .s; a; r; s0/ of interaction with the
process, the temporal difference (TD) learning
update rule

V �.s/ V �.s/C ˛
�
r C �V �.s0/ � V �.s/

�

Value Function Approximation 1319

V

for tabular representations, where ˛ 2 .0; 1� is
the learning rate, becomes

w� w� C ˛
�
r C � OV �.s0Iw�/

� OV �.sIw�/
�
rw� OV �.sIw�/

under an approximation scheme OV � . Similarly,
the SARSA update rule

Q�.s; a/ Q�.s; a/

C ˛
�
r C �Q�.s0; �.s0// �Q�.s; a/

�

for tabular representations becomes

w� w� C ˛
�
r C � OQ�.s0; �.s0/Iw�/

� OQ�.s; aIw�/
�
rw� OQ�.s; aIw�/

under an approximation scheme OQ� . Finally, the
Q-learning update rule

Q�.s; a/ Q�.s; a/

C ˛
�
r C � max

a02A

˚
Q�.s0; a0/

�Q�.s; a/

�

for tabular representations under an approxima-
tion scheme OQ� becomes

w� w� C ˛
�
r C � max

a02A

˚
OQ�.s0; a0Iw�/

� OQ�.s; aIw�/
�
rw�

OQ�.s; aIw�/ :

These rules are applicable to any approximation
architecture, linear or nonlinear. However, when
using linear architectures they can be greatly
simplified, because the gradient with respect to
a parameter wj is simply the corresponding basis
function �j , for j D 1; 2; : : : ; k.

TD: w�
j w�

j C ˛
�
r C ��.s0/>w� � �.s/>w�

�
�j .s/

SARSA: w�
j w�

j C ˛
�
r C ��.s0; �.s0//>w� � �.s; a/>w�

�
�j .s; a/

Q-learning: w�
j w�

j C ˛
�
r C � max

a02A

˚
�.s0; a0/>w�

� �.s; a/>w�

�
�j .s; a/

More sophisticated learning approaches rely on
retaining the desired value-function property
in a batch manner by processing several
samples collectively. A variety of least-squares
techniques have been proposed for linear
architectures giving rise to several least-
squares reinforcement learning methods, such
as least-squares temporal difference (LSTD)
learning (Bradtke and Barto 1996), least-squares
policy evaluation (LSPE) (Nedić and Bertsekas
2003), hybrid least-squares approximation
(Johns et al. 2009), and least-squares policy
iteration (LSPI) (Lagoudakis and Parr 2003).
The parameters of a linear architecture can
also be estimated using Linear Programming
(de Farias and Van Roy 2003). Specialized

learning algorithms have been proposed when
using a kernel-based approximation architecture,
based either on Gaussian process TD (GPTD)
(Engel et al. 2003), Gaussian process SARSA
(GPSARSA) (Engel et al. 2005), kernelized
LSTD (KLSTD) and LSPI (KLSPI) (Xu et al.
2007), support vector regression (Bethke et al.
2008), or Gaussian process regression (Ras-
mussen and Kuss 2004; Bethke and How 2009).
A unified view of kernelized value-function
approximation is offered by Taylor and Parr
(2009). On the other hand, boot-strapping – the
updating of a value estimate based on other value
estimates – is the main learning approach behind
batch methods for nonlinear architectures, such
as fitted Q-iteration (FQI) (Ernst et al. 2005).

1320 Value Function Approximation

Examples

Very close approximations of the state value
function of optimal policies in two well-known
problems are presented to illustrate the diffi-
culty of value-function approximation. To obtain
these close approximations, a fine discretization
of the two-dimensional state space into a uni-
form grid of 250 � 250 was used for represen-
tation. The state-action value function Q was
initially computed using approximate policy it-
eration (a sparse-matrix version of LSPI) with
a set of indicator basis functions over the state
grid and all actions and 500 .s; a; r; s0/ samples
for each one of the 187;500 discrete cells .s; a/,
until convergence to a near-optimal policy; the
state value function V was extracted from the Q

values.

Inverted Pendulum
The inverted pendulum problem is to balance a
pendulum of unknown length and mass at the
upright position by applying forces to the cart
it is attached to (Fig. 1, left). Three actions are
allowed: left force LF (�50 Newtons), right force
RF (C50 Newtons), or no force NF (0 Newtons).
All three actions are noisy; Gaussian noise with
� D 0 and �2 D 10 is added to the chosen action.
The state space of the problem is continuous and
consists of the vertical angle � and the angular
velocity P� of the pendulum. The transitions are

governed by the nonlinear dynamics of the sys-
tem and depend on the current state and the
current (noisy) control u:

R�D
g sin.�/�˛ml. P�/2 sin.2�/=2�˛ cos.�/u

4l=3 � ˛ml cos2.�/
;

where g is the gravity constant (g D 9:8 m=s2),
m is the mass of the pendulum (default: m D

2:0 kg), M is the mass of the cart (default: M D

8:0 kg), l is the length of the pendulum (default:
l D 0:5 m), and ˛ D 1=.mCM/. The simulation
step is 0:1 s, thus the control input is given at
a rate of 10 Hz, at the beginning of each time
step, and is kept constant during any time step.
A reward of 0 is given as long as the angle of the
pendulum does not exceed �=2 in absolute value
(the pendulum is above the horizontal line). An
angle greater than �=2 in absolute value signals
the end of the episode and a reward (penalty)
of �1. The discount factor of the process is 0:95.

Figure 1 shows a close approximation to the
state value function V � of an optimal policy
for the inverted pendulum domain over the two-
dimensional state space .�; P�/. The value func-
tion indicates that states which potentially offer
high return are clustered within a zone where
� and P� have different signs and therefore the
gravity force can be counteracted. Notice the
nonlinearity of the function and the difficult ap-
proximation problem it presents.

theta

d(
th
et
a)

−1.5 −1 −0.5 0 0.5 1 1.5
−6

−4

−2

0

2

4

6

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1
0

–0.1
–0.2
–0.3
–0.4
–0.5
–0.6
–0.7
–0.8
–0.9

ϑ

–1
–1 –0.5

0.5 1 1.5 –6–4
–2 0 2 4 6

d(theta)
0

theta

–1.5

v*

Value Function Approximation, Fig. 1 Inverted pendulum: state value function of an optimal policy (3D and 2D)
(Courtesy of Ioannis Rexakis)

Value Function Approximation 1321

V

x

d(
x)

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.04

−0.06

−0.02

0

0.02

0.04

0.06

−60

−50

−40

−30

−20

−10

0

10
0

–10Goal
–20
–30v*

–40
–50
–60
–70
0.1

0.05
0

d(x)
–0.05

–0.1 –1.5
–0.5 0

x

0.5
1

–1

Value Function Approximation, Fig. 2 Mountain car: state value function of an optimal policy (3D and 2D)
(Courtesy of Ioannis Rexakis)

Mountain Car
The mountain car problem is to drive an
underpowered car from the bottom of a valley
between two mountains to the top of the
mountain on the right (Fig. 2, left). The car
is not powerful enough to climb any of the
hills directly from the bottom of the valley
even at full throttle; it must build some energy
by climbing first to the left (moving away
from the goal) and then to the right. Three
actions are allowed: forward throttle FT (C1),
reverse throttle RT (�1), or no throttle NT
(0). All three actions are noisy; Gaussian noise
with � D 0 and �2 D 0:2 is added to the
chosen action. The state space of the problem is
continuous and consists of the position x and the
velocity Px of the car along the horizontal axis.
The transitions are governed by the nonlinear
dynamics of the system and depend on the
current state .x.t/; Px.t// and the current (noisy)
control u.t/:

x.t C 1/ D BOUNDx Œx.t/C Px.t C 1/�

Px.t C 1/ D BOUND Px Œ Px.t/

C0:001u.t/�0:0025 cos.3x.t//� ;

where BOUNDx is a function that keeps x within
Œ�1:2; 0:5�, while BOUND Px keeps Px within
Œ�0:07; 0:07�. If the car hits the bounds of the

position x, the velocity Px is set to zero. A
penalty of �1 is given at each step as long as
the position of the car is below the right bound
(0:5). As soon as the car position hits the right
bound of the position, it has reached the goal;
the episode ends successfully and a reward of
0 is given. The discount factor of the process is
0:99.

Figure 2 shows a close approximation to
the state value function V � of an optimal
policy for the mountain car domain over
the two-dimensional state space .x; Px/. The
value function indicates that in order to gain
high return, the car has to follow a spiral
in the state space that goes through states
with progressively higher value. In practice,
this means that the car has to move back
and forth between the two mountains until
sufficient energy is built to escape from the
valley. Again, notice the high nonlinearity of the
function and the hard approximation problem it
presents.

Notation

The table summarizes the differences in names
and symbols between the common notation
(adopted here) and the alternative notation used
in the literature.

1322 Value Function Approximation

Common notation Alternative notation

Name Symbol Symbol Name

State space S S States

State s, s0 i , j State

Action space A U Controls

Action a u Control

Transition model P.s0js; a/ pij .u/ Transition probabilities

Reward function R g Cost function

Discount factor � ˛ Discount factor

Policy � � Policy

State value function V J Cost-to-go function

State-action value function Q Q Q-factors

Parameters/weights w r Parameters

Learning rate ˛ � Step size

Cross-References

�Curse of Dimensionality
�Dynamic Programming
� Feature Selection
�Gaussian Process Reinforcement Learning
�Least-Squares Reinforcement Learning Meth-

ods
�Q-Learning
�Radial Basis Function Approximation
�Reinforcement Learning
�Relational Value Iteration
�Temporal Difference Learning

Recommended Reading

Bertsekas DP, Tsitsiklis JN (1996) Neuro-dynamic
programming. Athena Scientific, Belmont

Bethke B, How JP (2009) Approximate dynamic pro-
gramming using Bellman residual elimination and
Gaussian process regression. In: Proceedings of the
American control conference, St. Louis, pp 745–750

Bethke B, How JP, Ozdaglar A (2008) Approximate
dynamic programming using support vector regres-
sion. In: Proceedings of the IEEE conference on
decision and control, Cancun, pp 745–750

Bradtke SJ, Barto AG (1996) Linear least-squares
algorithms for temporal difference learning. Mach
Learn 22(1–3):33–57

Buşoniu L, Babuška R, Schutter BD, Ernst D (2010)
Reinforcement learning and dynamic programming
using functions approximators. CRC, Boca Raton

de Farias DP, Van Roy B (2003) The linear program-
ming approach to approximate dynamic program-
ming. Oper Res 51(6):850–865

Engel Y, Mannor S, Meir R (2003) Bayes meets Bell-
man: the Gaussian process approach to temporal
difference learning. In: Proceedings of the inter-
national conference on machine learning (ICML),
Washington, DC, pp 154–161

Engel Y, Mannor S, Meir R (2005) Reinforcement
learning with Gaussian processes. In: Proceedings
of the international conference on machine learning
(ICML), Bonn, pp 201–208

Ernst D, Geurts P, Wehenkel L (2005) Tree-based batch
mode reinforcement learning. J Mach Learn Res
6:503–556

Johns J, Petrik M, Mahadevan S (2009) Hybrid least-
squares algorithms for approximate policy evalua-
tion. Mach Learn 76(2–3):243–256

Lagoudakis MG, Parr R (2003) Least-squares policy
iteration. J Mach Learn Res 4:1107–1149

Mahadevan S, Maggioni M (2007) Proto-value func-
tions: a Laplacian framework for learning represen-
tation and control in Markov decision processes.
J Mach Learn Res 8:2169–2231

Menache I, Mannor S, Shimkin N (2005) Basis func-
tion adaptation in temporal difference reinforcement
learning. Ann Oper Res 134(1):215–238

Nedić A, Bertsekas DP (2003) Least-squares policy
evaluation algorithms with linear function approxi-
mation. Discret Event Dyn Syst Theory Appl 13(1–
2):79–110

Parr R, Painter-Wakefield C, Li L, Littman M (2007)
Analyzing feature generation for value-function ap-
proximation. In: Proceedings of the international
conference on machine learning (ICML), Corvallis,
pp 449–456

Puterman ML (1994) Markov decision processes: dis-
crete stochastic dynamic programming. Wiley, New
York

Rasmussen CE, Kuss M (2004) Gaussian processes
in reinforcement learning. In: Thrun S, Saul LK,
Scholkopf B (eds) Advances in neural information

http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_109
http://dx.doi.org/10.1007/978-1-4899-7687-1_473
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_100389
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410
http://dx.doi.org/10.1007/978-1-4899-7687-1_817

VC Dimension 1323

V

processing systems (NIPS). MIT Press, Cambridge
pp 751–759

Sutton R, Barto A (1998) Reinforcement learning: an
introduction. MIT, Cambridge

Taylor G, Parr R (2009) Kernelized value function
approximation for reinforcement learning. In: Pro-
ceedings of the international conference on machine
learning (ICML), Toronto, pp 1017–1024

Xu X, Hu D, Lu X (2007) Kernel-based least-squares
policy iteration for reinforcement learning. IEEE
Trans Neural Netw 18(4):973–992

Variance Hint

� Inductive Bias

VC Dimension

Thomas Zeugmann
Hokkaido University, Sapporo, Japan

Motivation and Background

We define an important combinatorial param-
eter that measures the combinatorial complex-
ity of a family of subsets taken from a given
universe (learning domain) X . This parameter
was originally defined by Vapnik and Chervo-
nenkis (1971) and is thus commonly referred to as
Vapnik-Chervonenkis dimension, commonly ab-
breviated as VC dimension. Subsequently, Dud-
ley (1978, 1979) generalized Vapnik and Chervo-
nenkis’ (1971) results. The reader is also referred
to Vapnik’s (2000) book in which he greatly
extends the original ideas. This results in a theory
which is called structural risk minimization.

The importance of the VC dimension for
� PAC learning was discovered by Blumer
et al. (1989) who introduced the notion to
computational learning theory.

As Anthony and Biggs (1992, Page 71) have
put it, “The development of this notion is probably
the most significant contribution that mathemat-
ics has made to Computational Learning The-
ory.”

Recall that we use jS j and }.S/ to denote the
cardinality and the power set of any set S , re-
spectively. We first define the VC dimension and
provide a short explanation of its importance for
� PAC learning. Then we present some examples.

Definition

Let X ¤ ; be any learning domain, let C � }.X/

be any nonempty concept class, and let S � X be
any finite set. We set

ΠC.S/ D fS \ c j c 2 Cg :

1. S is said to be shattered by C iff ΠC.S/ D

}.S/.
2. The VC dimension of C is the cardinality of

the largest finite set S � X that is shattered
by C.

If arbitrary large finite sets S are shattered
by C, then the VC dimension of C is defined to
be infinite.

Notation: By VC.C/ we denote the VC di-
mension of C.

Remarks
As far as � PAC learning is concerned, for a
sample set S , the notion ΠC.S/ has the following
meaning. Essentially, ΠC.S/ collects the set of
all subsets of the sample set S which are made
positive by some concept c 2 C. Consequently,
S\c represents the elements of S that are labeled
as to be positive by the concept c. Hence, ΠC.S/

is the collection of all such subsets taken over all
c 2 C. If every subset of S can be labeled as to
be positive by some concept c 2 C and c does not
make any other element of S positive, then S is
shattered.

If VC.C/ D d then there exists a finite set
S � X such that jS j D d , and S is shattered by
C. Moreover, every set S � X with jS j > d is
not shattered by C.

It is intuitively clear that an infinite VC di-
mension might enormously complicate learning.
On the other hand, it is by no means obvious

http://dx.doi.org/10.1007/978-1-4899-7687-1_390
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_631

1324 VC Dimension

that a finite VC dimension may always guaran-
tee the learnability of the corresponding concept
class. However, this is a central theorem of the
� PAC learning theory. Moreover, the value of
the VC dimension is a measure of the sample
complexity. This holds for PAC learning and be-
yond. Further models where this is true comprise
the � online learning models (cf. Haussler et al.
1994; Maass and Turán 1990; Littlestone 1988),
models of � query-based learning (cf. Maass and
Turán 1990), and others.

Examples

First, let C be any finite concept class. Then, since
it requires 2d distinct concepts to shatter a set
of cardinality d , no set of cardinality larger than
log jCj can be shattered. Thus, log jCj is always
an upper bound for the VC dimension of finite
concept classes. Here log denotes the logarithm
to the base 2.

However, if the VC dimension can be deter-
mined, it usually gives a better bound than log jCj.
To see this, let Ln D fx1; Nx1; x2; Nx2; : : : ; xn; Nxng,
n � 1 be a set of literals and let X D f0; 1gn

be the n-dimensional Boolean learning domain.
Furthermore, let Cn � }.X/ be the class of all
concepts describable by a monomial including
the empty monomial (representing f0; 1gn) and
the conjunction of all literals (representing ;).
Then jCnj D 3nC1 and thus VC.C/ 	 n.log 3/C

1. But VC.Cn/ D n for all n � 2 and VC.C1/ D 2
as shown by Natschläger and Schmitt (1996).

Note that the same is true for the class of all con-
cepts describable by monotone monomials, i.e.,
monomials containing only non-negated literals.

Next, we consider the concept class C of all
axis-parallel rectangles. So let X D E

2 be the
two-dimensional Euclidean space and C � }.E2/

be the set of all axis-parallel rectangles, i.e.,
products of intervals on the x-axis with intervals
on the y-axis. Then, it is not hard to see that
VC.C/ D 4.

Clearly, we can shatter the empty set and
sets of cardinality 1, 2, and 3. Now, let S D

fr1; r2; r3; r4g be such that r1; r2; r3; r4 are the
middle points of the sides of some square. Then
it is not hard to see that there are 16 concepts ci ,
1 	 i 	 16, in C such that }.S/ D fS \ci j 1 	
i 	 16g. Hence, VC.C/ � 4.

Next, let S D fr1; r2; r3; r4; r5g be any set of
5 pairwise different points. Let c be the small-
est closed axis-parallel rectangle containing the
points of S . Since c has only four sides, there
must be some point r 2 S , say r5, such that r5 lies
either in the interior of c or r5 lies on some side
of c along with another point of S (cf. Fig. 1).
Suppose S is shattered by C. Then, there has to
be a concept c 2 C such that fr1; r2; r3; r4g D

S \ c. However, by construction we obtain that
fr1; r2; r3; r4g D S \ c implies r5 2 S \ c,
a contradiction. Thus, no set of cardinality 5 is
shattered. Hence, VC.C/ D 4.

The latter result can be easily generalized. Let
X D E

n, and let C be the set of all axis-parallel
parallelepipeds in E

n. Then VC.C/ D 2n.
A further generalization is as follows. Let

X be the real line (one-dimensional Euclidean

VC Dimension, Fig. 1 No
set of cardinality 5 can be
shattered by axis-parallel
rectangles

� �

�� r1

r2r5

r1

r2

r5

xx

yy

r4 r4

r3 r3

∗

∗∗ ∗
∗

∗

∗
∗

∗ ∗

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_694

VC Dimension 1325

V

space), i.e., X D E, and let C be the set of all
unions of at most s (closed or open) intervals for
some fixed constant s � 1. Let S D fxi j 1 	
i 	 2s; xi < xiC1 for all 1 	 i < 2sg. Then
one easily verifies that S is shattered by C. Hence,
VC.C/ � 2s. On the other hand, if S is any set of
2s C 1 pairwise different points with xi < xiC1

for all 1 	 i 	 2s, then no concept in C contains
x1; x3; : : : ; x2sC1 without also containing a point
in x2; x4; : : : ; x2s . Thus, no such S is shattered.
Consequently, we have VC.C/ D 2s.

Furthermore, we can generalize the observa-
tions made above by deriving some rules that
turn out to be very useful to estimate the VC
dimension of more complicated concept classes
provided they can be constructed from simpler
classes.

First, let C1 and C2 be concept classes such that
C1 � C2. Then we clearly have

VC.C1/ 	 VC.C2/ :

Second, let X be any learning domain, let C �
}.X/ and define the complement of C to be C D
fX n c j c 2 Cg. Then we have

VC.C/ D VC.C/ :

Third, consider two concept classes C1 and C2

defined over the same learning domain X . Let
C D C1 [C2 be the union of C1 and C2. Then,

VC.C/ 	 VC.C1/C VC.C2/C 1 :

Fourth, let C be any concept class such that
VC.C/ D d . Consider the Cs union (or intersec-
tion) of at most s concepts from C, where s � 1
is any fixed constant, i.e., Cs D fc j c DS

1�i�s ci ; ci 2 Cg (or Cs D fc j c DT
1�i�s ci ; ci 2 Cg). Then one can show that

VC.Cs/ 	 2ds � log.3s/ :

Numerous further examples can be found in,
e.g., Vapnik and Chervonenkis (1974), Haussler
and Welz (1987), Anthony and Bartlett (1999),
Wenocur and Dudley (1981), Karpinski and

Werther (1994), Karpinski and Macintyre (1995),
Sakurai (1995), and Mitchell et al. (1999).

Applications

Let us return to the notion ΠC.S/ and let us
generalize it a bit as follows. For any natural
number m 2 N and any nonempty concept class
C � }.S/ , we set

ΠC.m/ D maxfjΠC.S/j j S � X; jS j D mg :

We can use the new notion to give an equivalent
definition of the VC dimension of a concept class
C, i.e.,

VC.C/ D maxfd j d 2 N; ΠC.d/ D 2d g :

Looking at ΠC.m/ from the perspective of
learning, we see the following. The argument m

refers to the sample size. ΠC.m/ is describing the
maximum number of ways a sample of size m can
be labeled by concepts taken from C. Hence, the
number ΠC.m/ behaves as a measure of concept
class complexity. What can be said about ΠC.m/?
Suppose d D VC.C/; then m 	 d implies
ΠC.m/ D 2m. On the other hand, m > d

directly implies ΠC.m/ < 2m. Therefore, we
are interested in learning how fast ΠC.m/ really
grows provided m > d . The key ingredient to
obtain the desired information is usually referred
to as Sauer’s Lemma (cf. Sauer 1972). Under the
assumptions made above, it states that

ΠC.m/ 	

dX
iD0

m

i

!
;

where

m

i

!
D 0 if i > m :

Like many important results, Sauer’s Lemma
(cf. Sauer 1972) has several proofs and gener-
alizations have been studied, too. We refer the
reader to Anthony and Biggs (1992), Kearns and
Vazirani (1994), and Gurvits (1997) for a more
detailed exposition.

1326 VC Dimension

Let us first look at the case m 	 d already con-
sidered. For this case Sauer’s Lemma is telling us
that

ΠC.m/ 	

dX
iD0

m

i

!
D 2m;

and thus, we get an exponential bound. The inter-
esting aspect is that in the remaining cases, the
bound is polynomial. For simplifying notation,
we set

Φ.d; m/ D

dX
iD0

m

i

!
:

Using combinatorial arguments and Stirling ap-
proximation, one can show that

1. Φ.0; m/ D
�

m
0

�
D 1 for all m 2 N.

2. Φ.d; 1/ D
�1

0

�
C
�1

1

�
D 2 for all d 2 N, d � 1.

3. Φ.d; m/ D Φ.d; m � 1/CΦ.d � 1; m � 1/

for all d; m 2 N, d � 1; m � 2.
4. Φ.d; m/ 	 md C 1 for all d � 0, m � 0.
5. Φ.d; m/ 	 md for all d � 2, m � 2.
6. Φ.d; m/ 	 . em

d
/d for all m � d � 1.

That is, (4) through (6) provide a bound poly-
nomial in m for ΠC.m/ whenever VC.C/ is finite.
This insight is fundamental for �PAC learning
and other learning models.

Linial et al. (1991) initiated the study of the
complexity problem of computing the VC dimen-
sion of a finite family of concepts defined over a
finite learning domain. Given any finite learning
domain X of cardinality n and any concept class
C � }.X/ of cardinality r , one can represent
the concept class C by an r � n matrix M such
that Mij D 1 iff xj 2 ci . Then each row
of M represents a concept c 2 C and each
column represents a point in X . The discrete
VC dimension decision problem is then, given a
f0; 1g-valued matrix M and an integer d � 1
as input, to decide whether or not VC.C/ 	 d ,
and the discrete VC dimension problem is, given
a f0; 1g-valued matrix M as input, to determine
VC.C/.

Linial et al. (1991) showed that the discrete
VC dimension decision problem to be solvable in
time O.rnd / and that the discrete VC dimension
problem can be solved in time O.rnlog r /. Further
progress was made by Shinohara (1995) who
showed that the discrete VC dimension decision
problem is in the complexity class SATlog2 n and

hard for the complexity class SATCNF
log2 n

, where

P � SATCNF
log2 n

� SATlog2 n � NP (see Shino-
hara (1995) for details). Moreover, Papadimitriou
and Yannakakis (1996) defined a new complexity
class LOGNP and showed the VC dimension
decision problem to be complete for this class.

However, the matrix representation of a con-
cept class may be exponentially larger than a
parameterized representation of it, e.g., the con-
cept class may be generated by a circuit. Rep-
resenting concept classes by circuits, Schaefer
(1999) showed the discrete VC dimension prob-
lem (modified in the canonical way) to be Σ

p
3

complete. For a definition of the complexity class
Σ

p
3 , we refer to Arora and Barak (2009).

Furthermore, we refer the reader to Goldberg
and Jerrum (1995) who succeeded in bounding
the VC dimension of concept classes parameter-
ized by real numbers.

Finally, the notion of the VC dimension can
be generalized to sets of indicator functions and
to sets of real functions (cf. Vapnik 2000, Sec-
tion 3.6). These generalizations play an important
role in statistical learning theory.

Cross-References

�Epsilon Nets
� PAC Learning
� Statistical Machine Translation
� Structural Risk Minimization

Recommended Reading

Anthony M, Bartlett PL (1999) Neural network learn-
ing: theoretical foundations. Cambridge University
Press, Cambridge

Anthony M, Biggs N (1992) Computational learning
theory. Cambridge tracts in theoretical computer
science, Vol 30. Cambridge University Press, Cam-
bridge

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_83
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_783
http://dx.doi.org/10.1007/978-1-4899-7687-1_799

Version Space 1327

V

Arora S, Barak B (2009) Computational complexity:
A Modern approach. Cambridge University Press,
Cambridge

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM 36(4):929–965

Dudley RM (1978) Central limit theorems for empiri-
cal measures. Ann Probab 6(6):899–929

Dudley RM (1979) Corrections to “Central limit
theorems for empirical measures”. Ann Probab
7(5):909–911

Goldberg PW, Jerrum MR (1995) Bounding the
Vapnik-Chervonenkis dimension of concept classes
parameterized by real numbers. Mach Learn 18(2-
3):131–148

Gurvits L (1997) Linear algebraic proofs of VC-
dimension based inequalities. In: Ben-David S
(ed) Proceedings of the third european confer-
ence on computational learning theory, Euro-
COLT ’97, Jerusalem, Israel, March 1997, Lecture
notes in artificial Intelligence, vol 1208. Springer,
pp 238–250

Haussler D, Littlestone N, Warmuth MK (1994) Pre-
dicting f0; 1g functions on randomly drawn points.
Info Comput 115(2):248–292

Haussler D, Welz E (1987) Epsilon nets and simplex
range queries. Discret Comput Geom 2:127–151

Karpinski M, Macintyre A (1995) Polynomial bounds
for VC dimension of sigmoidal neural networks. In:
Proceedings of the 27th annual ACM symposium
on theory of computing, ACM Press, New York,
pp 200–208

Karpinski M, Werther T (1994) VC dimension and
sampling complexity of learning sparse polynomials
and rational functions. In: Hanson SJ, Drastal GA,
Rivest RL (eds) Computational learning theory and
natural learning systems. Constraints and prospects,
vol I, chap. 11. MIT Press, pp 331–354

Kearns MJ, Vazirani UV (1994) An Introduction to
computational learning theory. The MIT Press,
Cambridge, Massachusetts

Linial N, Mansour Y, Rivest RL (1991) Results on
learnability and the Vapnik-Chervonenkis dimen-
sion. Inform Comput 90(1):33–49

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maass W, Turán G (1990) On the complexity of learn-
ing from counterexamples and membership queries.
In: Proceedings of the 31st annual symposium on
foundations of computer science (FOCS 1990), St.
Louis, 22-24 October 1990. IEEE Computer Society
Press, Los Alamitos, pp 203–210

Mitchell A, Scheffer T, Sharma A, Stephan F (1999)
The VC-dimension of subclasses of pattern lan-
guages. In: Watanabe O, Yokomori T (eds) Proceed-
ings of the 10th international conference on algo-
rithmic learning theory, ALT ’99, Tokyo, Dec 1999,
Lecture notes in artificial intelligence, vol 1720.
Springer, pp 93–105.

Natschläger T, Schmitt M (1996) Exact VC-dimension
of Boolean monomials. Infor Process Lett 59(1):
19–20

Papadimitriou CH, Yannakakis M (1996) On limited
nondeterminism and the complexity of the V-C
dimension. J Comput Syst Sci 53(2):161–170

Sakurai A (1995) On the VC-dimension of depth four
threshold circuits and the complexity of Boolean-
valued functions. Theoret Comput Sci 137(1):109–
127

Sauer N (1972) On the density of families of sets. J
Comb Theory (A) 13(1):145–147

Schaefer M (1999) Deciding the Vapnik-Červonenkis
dimension is Σ

p
3 -complete. J Comput Syst Sci

58(1): 177–182
Shinohara A (1995) Complexity of computing Vapnik-

Chervonenkis dimension and some generalized di-
mensions. Theoret Comput Sci 137(1):129–144

Vapnik VN (2000) The nature of statistical learning
theory, 2nd edn. Springer, Berlin

Vapnik VN, Chervonenkis AY (1971) On the uniform
convergence of relative frequencies of events to their
probabilities. Theory Probab Appl 16(2):264–280

Vapnik VN, Chervonenkis AY (1974) Theory of pat-
tern recognition. Nauka, Moskwa (In Russian)

Wenocur RS, Dudley RM (1981) Some special
Vapnik-Chervonenkis classes. Discret Math
33:313–318

Vector Optimization

�Multi-objective Optimization

Version Space

Claude Sammut
The University of New South Wales, Sydney,
NSW, Australia

Definition

Mitchell (1977, 1982) defines the version space
for a learning algorithm as the subset of hypothe-
ses consistent with the training examples. That
is, the � hypothesis language is capable of de-
scribing a large, possibly infinite, number of con-
cepts. When searching for the target concept, we
are only interested in the subset of sentences in
the hypothesis language that are consistent with

http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_372

1328 Viterbi Algorithm

the training examples, where consistent means
that the examples are correctly classified (assum-
ing deterministic concepts and no � noise in the
data). While the version space may be infinite,
it can often be represented in a compact manner
by maintaining only its bounds, the most specific
(�Most Specific Hypothesis) and �most general
hypotheses. Any hypothesis that is more general
than a hypothesis in the most specific bound
and more specific than a hypothesis in the most
general bound is in the version space.

Cross-References

�Learning as Search
�Noise

Recommended Reading

Mitchell TM (1977) Version spaces: a candidate elimi-
nation approach to rule-learning. In: Proceedings of
the fifth international joint conference on artificial
intelligence, Cambridge, pp 305–310

Mitchell TM (1982) Generalization as search. Artif
Intell 18(2):203–226

Viterbi Algorithm

A dynamic programming algorithm for finding
the most likely sequence of hidden states result-
ing in an observed sequence of output events. The
most likely sequence is called the Viterbi path.
The Viterbi algorithm was popularized due to its
usability in Hidden Markov models (HMM).

The Viterbi algorithm was initially proposed
by Andrew Viterbi as an error-correction scheme
for noisy digital communication links. It is now
also commonly used in speech recognition, natu-
ral language processing, and bioinformatics.

Recommended Reading

Viterbi AJ (1967) Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans Inf Theory 3(2):260–269

http://dx.doi.org/10.1007/978-1-4899-7687-1_957
http://dx.doi.org/10.1007/978-1-4899-7687-1_562
http://dx.doi.org/10.1007/978-1-4899-7687-1_560
http://dx.doi.org/10.1007/978-1-4899-7687-1_444
http://dx.doi.org/10.1007/978-1-4899-7687-1_957

	V
	Value Function Approximation
	Synonyms
	Definition
	Motivation and Background
	Markov Decision Processes
	Policies
	Value Functions
	Bellman Equations
	Significance of Value Functions

	Structure of Learning System
	Value-Function Approximation
	Approximation Architectures
	Learning

	Examples
	Inverted Pendulum
	Mountain Car

	Notation
	Cross-References
	Recommended Reading

	Variance Hint
	VC Dimension
	Motivation and Background
	Definition
	Remarks

	Examples
	Applications
	Cross-References
	Recommended Reading

	Vector Optimization
	Version Space
	Definition
	Cross-References
	Recommended Reading

	Viterbi Algorithm
	Recommended Reading

