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Synonyms

PAC-MDP learning

Definition

An agent acting in a world makes observations,
takes actions, and receives rewards for the actions
taken. Given a history of such interactions, the
agent must make the next choice of action so as
to maximize the long-term sum of rewards. To do
this well, an agent may take suboptimal actions
which allow it to gather the information neces-
sary to later take optimal or near-optimal actions
with respect to maximizing the long-term sum of
rewards. These information gathering actions are
generally considered exploration actions.

Motivation

Since gathering information about the world
generally involves taking suboptimal actions
compared with a later learned policy, minimizing
the number of information gathering actions
helps optimize the standard goal in reinforcement
learning. In addition, understanding exploration
well is key to understanding reinforcement
learning well, since exploration is a key aspect
of reinforcement learning which is missing from
standard supervised learning settings (Fig. 1).

Efficient Exploration in Markov
Decision Processes

One simplification of reinforcement learning is
the �Markov decision process setting. In this
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A Key Lock Structure MDP

Efficient Exploration in Reinforcement Learning,
Fig. 1 An example of a keylock MDP. The state are
arranged in a chain. In each state, one of the two actions
leads to the next state while the other leads back to the
beginning. The only reward is in the transition to the last
state in the chain. Keylock MDPs defeat simple greedy
strategies, because the probability of randomly reaching
the last transition is exponentially small in the length of
the chain

setting, an agent repeatedly takes an action a, re-
sulting in a transition to a state according to a con-
ditional probability transition matrix P.s0js; a/,
and a (possibly probabilistic) reward R.s0; a; s/ 2

Œ0; 1�. The goal is to efficiently output a policy �

which is "-optimal over T timesteps. The value
of policy � in a start state s is defined as

�.�; s/ D E.a;s;r/T �.�;P;R/T

TX

tD1

rt ;

which should be read as the expectation over T -
length sequences drawn from the interaction of
the policy � with the world as represented by P

and R. An "-optimal policy � therefore satisfies:

max
� 0

�.� 0; s/ � �.�; s/ � ":

There are several notable results in this setting,
typically expressed in terms of the dependence
on the number of actions A, and the number
of states S . The first is for the ˇ-greedy strat-
egy commonly applied when using �Q-learning
(Watkins and Dayan 1992) which explores ran-
domly with probability ˇ.

Theorem 1 There exists MDPs such that with
probability at least 1=2; ˇ-greedy requires Θ.AS )
explorations to find an "-optimal policy.

This is essentially a negative result, saying
that a greedy exploration strategy cannot quickly
discover a good policy in some settings. The
proof uses an MDP with a key-lock like structure
where for each state all actions but one take the
agent back to the beginning state, and the reward
is at the end of a chain of states.

It turns out that there exists algorithms capable
of finding a near-optimal policy in an MDP with
only a polynomial number of exploratory transi-
tions.

Theorem 2 For all MDPs, for any ı > 0, with
probability 1 � ı, the algorithm Explicit-Explore-
or-Exploit finds an "-optimal policy after Õ(S2A)
explorations.

In other words, E3 (Kearns and Singh 1998)
requires exploration steps at most proportional
to the size of the probability table driving the
dynamics of the agent’s world. The algorithm
works in precisely the manner which might be
expected: it builds a model of the world based
on its observations and solves the model to de-
termine whether to explore or exploit. The basic
approach was generalized to stochastic games
and reformulated as an “optimistic initialization”
style algorithm named R-MAX (Brafman and
Tennenholtz 2002).

It turns out that an even better dependence
is possible using the delayed Q-learning (Strehl
et al. 2006) algorithm.

Theorem 3 For all MDPs, for any ı > 0,
with probability 1 � ı, the algorithm delayed Q-
learning finds an "-optimal policy after Õ(SA)
explorations.

The delayed Q-learning algorithm requires ex-
plorations proportional to the size of the solution
policy rather than proportional to the size of
world dynamics. At a high level, delayed Q-
learning operates by keeping values for explo-
ration and exploitation of observed state-actions,
uses these values to decide between exploration
and exploitation, and carefully updates these val-
ues. Delayed Q-learning does not obsolete E3,
because the (nonvisible) dependence on " and T

are worse (Strehl 2007).

http://dx.doi.org/10.1007/978-1-4899-7687-1_689
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This is a best possible result in terms of the
dependence on S and A (up to log factors), as the
following theorem (Kakade 2003) states:

Theorem 4 For all algorithms, there exists an
MDP such that with Ω(SA) explorations are re-
quired to find an " optimal policy with probability
at least 1

2 .

Since even representing a policy requires
a lookup table of size SA, this algorithm-
independent lower bound is relatively unsur-
prising.

Variations on MDP Learning

There are several minor variations in the setting
and goal definitions which do not qualitatively
impact the set of provable results. For example,
if rewards are in a bounded range, they can be
offset and rescaled to the interval [0, 1].

It’s also common to use a soft horizon (or dis-
counting) where the policy evaluation is changed
to:

�� .�; s/ D E
.a;s;r/1�.�;P;R/1

1P
tD1

� t rt

for some value � < 1. This setting is not precisely
equivalent to the hard horizon, but since

sum1
tD.1n.1=�/C1n.1=1��//=1�� � t rt � "

similar results are provable with 1=.1 � �/ taking
the role of T and slightly altered algorithms.

One last variation changes the goal. Instead
of outputting an "-optimal policy for the next T

timesteps, we could have an algorithm to handle
both the exploration and exploitation, then ret-
rospectively go back over a trace of experience
and mark a subset of the actions as “exploration
actions,” with a guarantee that the remainder of
the actions are according to an "-optimal pol-
icy (Kakade 2003). Again, minor alterations to
known algorithms in the above setting appear to
work here.

Alternative Settings

There are several known analyzed variants of
the basic setting formed by making additional
assumptions about the world. This includes
Factored MDPs (Kearns and Koller 1999), Metric
MDPs (Kakade et al. 2003), Continuous MDPs
(Brunskill et al. 2008), MDPs with a Bayesian
prior (Poupart et al. 2006), and apprenticeship
learning where there is access to a teacher for
an MDP (Abbeel and Ng 2005). The structure
of these results are all similar at a high level:
with some additional information, it is possible
to greatly ease the difficulty of exploration
allowing tractable application to much larger
problems.
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Emerging Patterns

Definition

Emerging pattern mining is an area of
� supervised descriptive rule induction. Emerg-
ing patterns are defined as itemsets whose
support increases significantly from one data
set to another (Dong 1999). Emerging patterns
are said to capture emerging trends in time-
stamped databases, or to capture differentiating
characteristics between classes of data.
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Definition

The goal of learning is usually to find a model
which delivers good generalization performance
over an underlying distribution of the data. Con-
sider an input space X and output space Y .
Assume the pairs .X � Y / 2 X � Y are random
variables whose (unknown) joint distribution is
PXY . It is our goal to find a predictor f W X 7! Y
which minimizes the expected risk:

P.f .X/ ¤ Y / D E.X;Y /�PXY
Œı.f .X/ ¤ Y /� ;

where ı.´/ D 1 if ´ is true, and 0 otherwise.
However, in practice we only have n pairs

of training examples .Xi ; Yi / drawn identically
and independently from PXY . Since PXY is un-
known, we often use the risk on the training
set (called empirical risk) as a surrogate of the
expected risk on the underlying distribution:

1

n

nX

iD1

ı.f .Xi / ¤ Yi /:

Empirical Risk Minimization (ERM) refers to the
idea of choosing a function f by minimizing
the empirical risk. Although it is often effective
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and efficient, ERM is subject to � overfitting, i.e.
finding a model which fits the training data well
but predicts poorly on unseen data. Therefore,
� regularization is often required.

More details about ERM can be found in
Vapnik (1998).

Recommended Reading

Vapnik V (1998) Statistical learning theory. John Wiley
and Sons, New York

Ensemble Learning

Gavin Brown
The University of Manchester, Manchester, UK

Synonyms

Committee machines; Multiple classifier systems

Definition

Ensemble learning refers to the procedures em-
ployed to train multiple learning machines and
combine their outputs, treating them as a “com-
mittee” of decision makers. The principle is that
the decision of the committee, with individual
predictions combined appropriately, should have
better overall � accuracy, on average, than any
individual committee member. Numerous empir-
ical and theoretical studies have demonstrated
that ensemble models very often attain higher
accuracy than single models.

The members of the ensemble might be pre-
dicting real-valued numbers, class labels, poste-
rior probabilities, rankings, clusterings, or any
other quantity. Therefore, their decisions can be
combined by many methods, including averag-
ing, voting, and probabilistic methods. The ma-
jority of ensemble learning methods are generic,
applicable across broad classes of model types
and learning tasks.

Motivation and Background

If we could build the “perfect” machine learning
device, one which would give us the best possible
answer every time, there would be no need for
ensemble learning methods – indeed, there would
be no need for this encyclopedia either. The
underlying principle of ensemble learning is a
recognition that in real-world situations, every
model has limitations and will make errors. Given
that each model has these “limitations,” the aim
of ensemble learning is to manage their strengths
and weaknesses, leading to the best possible de-
cision being taken overall. Several theoretical and
empirical results have shown that the accuracy
of an ensemble can significantly exceed that of
a single model.

The principle of combining predictions has
been of interest to several fields over many years.
Over 200 years ago, a controversial question had
arisen, on how best to estimate the mean of
a probability distribution given a small number
of sample observations. Laplace (1818) demon-
strated that the sample mean was not always
optimal: under a simple condition, the sample
median was a better combined predictor of the
population mean. The financial forecasting com-
munity has analyzed model combination for sev-
eral decades, in the context of stock portfolios.
The contribution of the machine learning (ML)
community emerged in the 1990s – automatic
construction (from data) of both the models and
the method to combine them. While the majority
of the ML literature on this topic is from 1990
onward, the principle has been explored briefly
by several independent authors since the 1960s.
See Kuncheva (2004b) for historical accounts.

The study of ensemble methods, with model
outputs considered for their abstract properties
rather than the specifics of the algorithm which
produced them, allows for a wide impact across
many fields of study. If we can understand pre-
cisely why, when, and how particular ensemble
methods can be applied successfully, we would
have made progress toward a powerful new tool
for Machine Learning: the ability to automat-
ically exploit the strengths and weaknesses of
different learning systems.

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
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http://dx.doi.org/10.1007/978-1-4899-7687-1_100318
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Methods and Algorithms

An ensemble consists of a set of models and
a method to combine them. We begin this sec-
tion by assuming that we have a set of models,
generated by any of the learning algorithms in
this encyclopedia; we explore popular methods
of combining their outputs, for classification and
regression problems. Following this, we review
some of the most popular ensemble algorithms,
for learning a set of models given the knowledge
that they will be combined, including extensive
pointers for further reading. Finally, we take a
theoretical perspective, and review the concept
of ensemble diversity, the fundamental property
which governs how well an ensemble can per-
form.

Methods for Combining a Set of Models
There exist numerous methods for model com-
bination, far too many to fully detail here. The
linear combiner, the product combiner, and the
voting combiner are by far the most commonly
used in practice. Though a combiner could be
specifically chosen to optimize performance in
a particular application, these three rules have
shown consistently good behavior across many
problems, and are simple enough that they are
amenable to theoretical analysis.

The linear combiner is used for models that
output real-valued numbers, so is applicable for
� regression ensembles, or for � classification
ensembles producing class probability estimates.
Here, notation for the latter case is only shown.
We have a model ft .yjx/, an estimate of the
probability of class y given input x. For a set of
these, t D f1; : : : ; Tg, the ensemble probability
estimate is,

Nf .yjx/ D

TX

tD1

wt ft .yjx/: (1)

If the weights wt D 1=T , 8t , this is a simple
uniform averaging of the probability estimates.
The notation clearly allows for the possibility of
a nonuniformly weighted average. If the clas-
sifiers have different accuracies on the data, a

nonuniform combination could in theory give a
lower error than a uniform combination. How-
ever, in practice, the difficulty of estimating the w
parameters without overfitting, and the relatively
small gain that is available (see Kuncheva 2004b,
p. 282), have meant that in practice the uniformly
weighted average is by far the most commonly
used. A notable exception, to be discussed later in
this article, is the mixture of experts paradigm – in
MoE, weights are nonuniform, but are learnt and
dependent on the input value x. An alternative
combiner is the product rule:

Nf .yjx/ D
1

Z

TY

tD1

ft .yjx/wt ; (2)

where Z is a normalization factor to ensure
Nf is a valid distribution. Note that Z is not

required to make a valid decision, as the or-
der of posterior estimates remain unchanged be-
fore/after normalization. Under the assumption
that the class-conditional probability estimates
are independent, this is the theoretically optimal
combination strategy. However, this assumption
is highly unlikely to hold in practice, and again
the weights w are difficult to reliably determine.
Interestingly, the linear and product combiners
are in fact special cases of the generalized mean
(Kuncheva 2004b) allowing for a continuum of
possible combining strategies.

The linear and product combiners are applica-
ble when our models output real-valued numbers.
When the models instead output class labels, a
majority (or plurality) vote can be used. Here,
each classifier votes for a particular class, and
the class with the most votes is chosen as the
ensemble output. For a two-class problem the
models produce labels, ht .x/ 2 f�1; C1g. In this
case, the ensemble output for the voting combiner
can be written as

H.x/ D sign

 
TX

tD1

wt ht .x/

!
: (3)

The weights w can be uniform for a simple
majority vote, or nonuniform for a weighted vote.

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_100055
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We have discussed only a small fraction of the
possible combiner rules. Numerous other rules
exist, including methods for combining rankings
of classes, and unsupervised methods to combine
clustering results. For details of the wider litera-
ture, see Kuncheva (2004b) or Polikar (2006).

Algorithms for Learning a Set of Models
If we had a committee of people taking decisions,
it is self-evident that we would not want them
all to make the same bad judgments at the same
time. With a committee of learning models, the
same intuition applies: we will have no gain from
combining a set of identical models. We wish the
models to exhibit a certain element of “diversity”
in their group behavior, though still retaining
good performance individually.

We therefore make a distinction between two
types of ensemble learning algorithms, those
which encourage diversity implicitly, and those
which encourage it explicitly. The vast majority
of ensemble methods are implicit, in that they
provide different random subsets of the training
data to each learner. Diversity is encouraged
“implicitly” by random sampling of the data
space: at no point is a measurement taken
to ensure diversity will emerge. The random
differences between the datasets might be in the
selection of examples (the �Bagging algorithm),
the selection of features (�Random Subspace
Method, Ho (1998) or �Rotation Forests,
Rodriguez et al. 2006), or combinations of the
two (the Random Forests algorithm, Breiman
2001). Many other “randomization” schemes are
of course possible.

An alternative is to explicitly encourage
diversity, constructing each ensemble member
with some measurement ensuring that it is
substantially different from the other members.
�Boosting algorithms achieve this by altering
the distribution of training examples for each
learner such that it is encouraged to make more
accurate predictions where previous predictors
have made errors. The DECORATE algorithm
(Melville and Mooney 2005) explicitly alters the
distribution of class labels, such that successive
models are forced to learn different answers to the
same problem. �Negative correlation learning

(see Brown 2004; Brown et al. 2005), includes
a penalty term when learning each ensemble
member, explicitly managing the accuracy-
diversity trade-off.

In general, ensemble methods constitute a
large class of algorithms – some based on
heuristics, and some on sound learning-theoretic
principles. The three algorithms that have
received the most attention in the literature are
reviewed here. It should be noted that we present
only the most basic form of each; numerous
modifications have been proposed for a variety
of learning scenarios. As further study the reader
is referred to the many comprehensive surveys of
the field (Brown et al. 2005; Kuncheva 2004b;
Polikar 2006).

Bagging
In the Bagging algorithm (Breiman 1996) each
member of the ensemble is constructed from
a different training dataset, and the predictions
combined either by uniform averaging or vot-
ing over class labels. Each dataset is generated
by sampling from the total N data examples,
choosing N items uniformly at random with re-
placement. Each sample is known as a bootstrap;
the name Bagging is an acronym derived from
Bootstrap AGGregatING. Since a bootstrap sam-
ples N items uniformly at random with replace-
ment, the probability of any individual data item
not being selected is p D .1�1=N /N . Therefore
with large N , a single bootstrap is expected to
contain approximately 63. 2 % of the original set,
while 36. 8 % of the originals are not selected.

Like many ensemble methods, Bagging works
best with unstable models, that is those that
produce differing generalization behavior with
small changes to the training data. These are
also known as high variance models, examples of
which are � decision trees and � neural networks.
Bagging therefore tends not to work well with
very simple models. In effect, Bagging samples
randomly from the space of possible models to
make up the ensemble – with very simple mod-
els the sampling produces almost identical (low
diversity) predictions.

Despite its apparent capability for variance re-
duction, situations have been demonstrated where

http://dx.doi.org/10.1007/978-1-4899-7687-1_925
http://dx.doi.org/10.1007/978-1-4899-7687-1_696
http://dx.doi.org/10.1007/978-1-4899-7687-1_736
http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_956
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_586
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Algorithm 1 Bagging
Input: Required ensemble size T
Input: Training set S D f.x1; y1/; .x2; y2/; : : :

.xN ; yN /g
for t D 1 to T do

Build a dataset St , by sampling N items, randomly
with replacement from S .

Train a model ht using St , and add it to the ensemble
end for
For a new testing point (x0; y0),
If model outputs are continuous, combine them by

voting.

Bagging can converge without affecting variance
(see Brown et al. 2005). Several other explana-
tions have been proposed for Bagging’s success,
including links to Bayesian model averaging.
In summary, it seems that several years from
its introduction, despite its apparent simplicity,
Bagging is still not fully understood.

Adaboost

Adaboost (Freund and Schapire 1996) is the most
well known of the Boosting family of algorithms
(Schapire 2003). The algorithm trains models
sequentially, with a new model trained at each
round. At the end of each round, mis-classified
examples are identified and have their emphasis
increased in a new training set which is then
fed back into the start of the next round, and a
new model is trained. The idea is that subsequent
models should be able to compensate for errors
made by earlier models.

Adaboost occupies somewhat of a special
place in the history of ensemble methods. Though
the procedure seems heuristic, the algorithm
is in fact grounded in a rich learning-theoretic
body of literature. (Schapire 1990) addressed a
question posed by Kearns and Valiant (1988) on
the nature of two complexity classes of learning
problems. The two classes are strongly learnable
and weakly learnable problems. Schapire showed
that these classes were equivalent; this had the
corollary that a weak model, performing only
slightly better than random guessing, could be
“boosted” into an arbitrarily accurate strong

Algorithm 2 Adaboost
Input: Required ensemble size T
Input: Training set S D f.x1; y1/, .x2; y2/; : : : ;

.xN ; yN /g, where yj 2 f�1; C1g
Define a uniform distribution D1.i/ over elements of

S .
for t D 1 to T do

Train a model ht using distribution Dt .
Calculate et D PDt

.ht .x/ ¤ y/
If �t � 0:5 break

Set ˛t D 1
2 ln

�
1��t

�t

�

Update DtC1.i/ D
Dt .i/ exp.�˛t yi ht .xi //

Zt

where Zt is a normalization factor so that DtC1 is a
valid distribution.

end for
For a new testing point .x0; y0/ ,
H.x0/ D sign.ΣT

tD1˛t ht .x0//

model. The original Boosting algorithm was
a proof by construction of this equivalence,
though had a number of impractical assumptions
built-in. The Adaboost algorithm (Freund and
Schapire 1996) was the first practical Boosting
method. The authoritative historical account of
the development can be found in Schapire (1999),
including discussion of numerous variants and
interpretations of the algorithm. The procedure
is shown in Algorithm 2. Some similarities with
Bagging are evident; a key differences is that at
each round t , Bagging has a uniform distribution
Dt , while Adaboost adapts a nonuniform
distribution.

The ensemble is constructed by iteratively
adding models. Each time a model is learnt, it is
checked to ensure it has at least "t < 0:5, that is,
it has performance better than random guessing
on the data it was supplied with. If it does not,
either an alternative model is constructed, or the
loop is terminated.

After each round, the distribution Dt is up-
dated to emphasize incorrectly classified exam-
ples. The update causes half the distribution mass
of DtC1 to be over the examples incorrectly
classified by the previous model. More precisely,P

ht .x1/¤yi
DtC1.i/ D 0:5. Thus, if ht has an

error rate of 10 %, then examples from that small
10 % will be allocated 50 % of the next model’s
training “effort,” while the remaining examples
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(those correctly classified) are underemphasized.
An equivalent (and simpler) writing of the dis-
tribution update scheme is to multiply Dt .i/ by
1=2.1 � "t / if ht .xi / is correct, and by 1=2"t

otherwise.
The updates cause the models to sequentially

minimize an exponential bound on the error rate.
The training error rate on a data sample S drawn
from the true distribution D obeys the bound,

Px;y�S .yH.x/ < 0/ �

TY

tD1

2
p

"t .1 � "t /: (4)

This upper bound on the training error (though
not the actual training error) is guaranteed to
decrease monotonically with T , given "t < 0:5.

In an attempt to further explain the perfor-
mance of Boosting algorithms, Schapire also de-
veloped bounds on the generalization error of
voting systems, in terms of the voting margin,
the definition of which was given in (10). Note
that, this is not the same as the geometric margin,
optimized by � support vector machines. The dif-
ference is that the voting margin is defined using
the one-norm jjwjj1 in the denominator, while
the geometric margin uses the two-norm jjwjj2.
While this is a subtle difference, it is an important
one, forming links between SVMs and Boosting
algorithms – see Rätsch et al. (2002) for details.
The following bound holds with probability 1�ı,

P x; y � D.H.x/ ¤ y/

� Px;y�S.yH.x/ < �/ C QO

 r
d

N�2
� lnı

!
;

(5)

where the QO notation hides constants and log-
arithmic terms, and d is the �VC-dimension
of the model used. Roughly, this states that the
generalization error is less than or equal to the
training error plus a term dependent on the voting
margin. The larger the minimum margin in the
training data, the lower the testing error. The
original bounds have since been significantly im-
proved, see Koltchinskii and Panchenko (2005)
as a comprehensive recent work. We note that this

bound holds generally for any voting system, and
is not specific to the Boosting framework.

The margin-based theory is only one expla-
nation of the success of Boosting algorithms.
Mease and Wyner (2008) present a discussion
of several questions on why and how Adaboost
succeeds. The subsequent 70 pages of discussion
demonstrate that the story is by no means simple.
The conclusion is, while no single theory can
fully explain Boosting, each provides a different
part of the still unfolding story.

Mixtures of Experts
The mixtures of experts architecture is a widely
investigated paradigm for creating a combination
of models (Jacobs et al. 1991). The principle
underlying the architecture is that certain models
will be able to “specialize” to particular parts
of the input space. It is commonly implemented
with a neural network as the base model, or some
other model capable of estimating probabilities.
A Gating network receives the same inputs as
the component models, but its outputs are used
as the weights for a linear combiner. The Gating
network is responsible for learning the appro-
priate weighted combination of the specialized
models (“experts”) for any given input. Thus, the
input space is “carved-up” between the experts,
increasing and decreasing their weights for par-
ticular examples. In effect, a mixture of experts
explicitly learns how to create expert ensemble
members in different portions of the input space,
and select the most appropriate subset for a new
testing example (Fig. 1).

The architecture has received wide at-
tention, and has a strong following in the
probabilistic modeling community, where it
may go under the pseudonym of a “mixture
model.” A common training method is the
� expectation-maximization algorithm.

Theoretical Perspectives: Ensemble
Diversity

We have seen that all ensemble algorithms in
some way attempt to encourage “diversity.” In

http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_881
http://dx.doi.org/10.1007/978-1-4899-7687-1_344
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Ensemble Learning,
Fig. 1 The mixtures of
experts architecture
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Input
Output

Gating net

this section, we take a more formalized perspec-
tive, to understand what is meant by this term.

What Is Diversity?
The optimal “diversity” is fundamentally a credit
assignment problem. If the committee as a whole
makes an erroneous prediction, how much of this
error should be attributed to each member? More
precisely, how much of the committee prediction
is due to the accuracies of the individual models,
and how much is due to their interactions when
they were combined? We would ideally like to
reexpress the ensemble error as two distinct com-
ponents: a term for the accuracies of the individ-
ual models, plus a term for their interactions, i.e.,
their diversity.

It turns out that this so-called accuracy-
diversity breakdown of the ensemble error is not
always possible, depending on the type of error
function, and choice of combiner rule. It should
be noted that when “diversity” is referred to in
the literature, it is most often meant to indicate
classification with a majority vote combiner,
but for completeness we address the general
case here. In the following sections, the existing
work to understand diversity in three distinct
cases is described: for regression tasks (a linear

combiner), and classification tasks, with either a
linear combiner or a voting combiner.

Regression Error with a Linear
Combination Rule
In a regression problem, it is common to use the
squared error criterion. The accuracy-diversity
breakdown for this case (using a linear combiner)
is called the ambiguity decomposition (Krogh and
Vedelsby 1995). The result states that the squared
error of the linearly combined ensemble, Nf .x/,
can be broken into a sum of two components:

. Nf .x/ � d/2 D
1

T

TX

tD1

.ft .x/ � d/2

�
1

T

TX

tD1

.ft .x/ � Nf .x//2: (6)

The first term on the right hand side is the average
squared error of the individual models, while the
second term quantifies the interactions between
the predictions. Note that this second term, the
“ambiguity,” is always positive. This guarantees
that, for an arbitrary data point, the ensemble
squared error is always less than or equal to the
average of the individual squared errors.
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The intuition here can be understood as fol-
lows. Imagine five friends, playing “guess the
weight of the cake” (an old English fairground
game): if a player’s guess is close enough to the
true weight, they win the cake. Just as they are
about to play, the fairground manager states that
they can only submit one guess. The dilemma
seems to be in whose guess they should submit –
however, the ambiguity decomposition shows us
that taking the average of their guesses, and sub-
mitting that, will always be closer (on average)
than choosing a person at random and submitting
their guess. Note that this is qualified with “on
average” – it may well be that one of the pre-
dictions will in fact be closer than the average
prediction, but we presume that we have no way
of identifying which prediction to choose, other
than random. It can be seen that greater diversity
in the predictions (i.e., a larger ambiguity term)
results in a larger gain over the average individual
performance. However, it is also clear that there
is a trade-off to be had: too much diversity and
the average error is extremely large.

The idea of a trade-off between these two
terms is reminiscent of the � bias-variance de-
composition (Geman et al. 1992); in fact, there
is a deep connection between these results. Tak-
ing the expected value of (6) over all possi-
ble training sets gives us the ensemble analogy
to the bias-variance decomposition, called the
� bias-variance-covariance decomposition (Ueda
and Nakano 1996). This shows that the expected
squared error of an ensemble Nf .x/ from a target
d is:

EDf. Nf .x/ � d/2g D bias
2

C
1

T
var C

�
1 �

1

T

�
covar; (7)

where the expectation is with respect to all
possible training datasets D. While the bias and
variance terms are constrained to be positive,
the covariance between models can become
negative – thus the definition of diversity
emerges as an extra degree of freedom in the
bias-variance dilemma. This extra degree of
freedom allows an ensemble to approximate

functions that are difficult (if not impossible)
to find with a single model. See Brown et al.
(2005) for extensive further discussion of this
concept.

Classification Error with a Linear
Combination Rule
In a classification problem, our error criterion
is the misclassification rate, also known as the
zero-one loss function. For this type of loss, it is
well known there is no unique definition of bias-
variance; instead there exist multiple decompo-
sitions each with advantages and disadvantages
(see Kuncheva 2004b, p. 224). This gives us a
clue as to the situation with an ensemble – there
is also no simple accuracy-diversity separation of
the ensemble classification error. Classification
problems can of course be addressed either by
a model producing class probabilities (where we
linearly combine), or directly producing class la-
bels (where we use majority vote). Partial theory
has been developed for each case.

For linear combiners, there exist theoretical
results that relate the correlation of the probabil-
ity estimates to the ensemble classification error.
Tumer and Ghosh (1996) showed that the re-
ducible classification error (i.e., above the Bayes
rate) of a simple averaging ensemble, eave, can be
written as

eave D eadd

�
1 C ı.T � 1/

T

�
; (8)

where eadd is the classification error of an indi-
vidual model. The ı is a correlation coefficient
between the model outputs. When the individual
models are identical, the correlation is ı D 1.
In this case, the ensemble error is equal to the
individual error, eave D eadd. When the models
are statistically independent, ı D 0, and the
ensemble error is a fraction 1 =T of the individual
error, eave D 1=T � eadd. When ı is negative,
the models are negatively correlated, and the en-
semble error is lower than the average individual
error. However, (8) is derived under quite strict
assumptions, holding only for a local area around
the decision boundary, and ultimately resting on

http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_932


400 Ensemble Learning

the bias-variance-covariance theory from regres-
sion problems. Further details, including recent
work to lift some of the assumptions (Kuncheva
2004b).

Classification Error with a Voting
Combination Rule
The case of a classification problem with a major-
ity vote combiner is the most challenging of all.
In general, there is no known breakdown of the
ensemble classification error into neat accuracy
and diversity components. The simplest intuition
to show that correlation between models does
affect performance is given by the Binomial the-
orem. If we have T models each with identical
error probability p D P.ht .x/ ¤ y/, assuming
they make statistically independent errors, the
following error probability of the majority voting
committee holds,

P.H.x/ ¤ y/ D

TX

k>T=2

�
T

k

�
pk.1 � p/T �k :

(9)

For example, in the case of T D 21 ensemble
members, each with error p D 0:3, the majority
voting error will be 0. 026, an order of magnitude
improvement over the individual error. However,
this only holds for statistically independent
errors. The correlated case is an open problem.
Instead, various authors have proposed their
own heuristic definitions of diversity in majority
voting ensembles. Kuncheva (2004b) conducted
extensive studies of several suggested diversity
measures; the conclusion was that “no measure
consistently correlates well with the majority
vote accuracy.” In spite of this, some were found
useful as an approximate guide to characterize
performance of ensemble methods, though
should not be relied upon as the “final word”
on diversity. Kuncheva’s recommendation in
this case is the Q-statistic (Kuncheva 2004b,
p. 299), due to its simplicity and ease of
computation.

Breiman (2001) took an alternative approach,
deriving not a separation of error components,
but a bound on the generalization error of a voting

ensemble, expressed in terms of the correlations
of the models. To understand this, we must in-
troduce concept of voting margin. The voting
margin for a two-class problem, with y 2 f �

1; C1g, is defined,

m D
yt

PT
tD1 wt ht .x/

PT
tD1 jwt j

D yH.x/: (10)

If the margin is positive, the example is correctly
classified, if it is negative, the example is in-
correctly classified. The expected margin s D

EDfmg measures the extent to which the average
number of votes for the correct class exceeds the
average vote for any other class, with respect
to the data distribution D. The larger the voting
margin, the more confidence in the classification.
Breiman’s bound shows,

PD.H.x/ ¤ y/DPD.yH.x/ < 0/ ¤
N�.1 � s2/

s2
:

(11)

Here N� is the average pairwise correlation
between the errors of the individual models.
Thus, the generalization error is minimized by
a small N�, and an s as close to 1 as possible.
The balance between a high accuracy (large s/

and a high diversity (low N�) constitutes the
tradeoff in this case, although the bound is quite
loose.

Summary
In summary, the definition of diversity depends
on the problem. In a regression problem, the
optimal diversity is the trade-off between the
bias, variance and covariance components of the
squared error. In a classification problem, with
a linear combiner, there exists partial theory to
relate the classifier correlations to the ensemble
error rate. In a classification problem with a vot-
ing combiner, there is no single theoretical frame-
work or definition of diversity. However, the
lack of an agreed definition of diversity has not
discouraged researchers from trying to achieve
it, nor has it stalled the progress of effective
algorithms in the field.
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Conclusions and Current Directions
in the Field

Ensemble methods constitute some of the most
robust and accurate learning algorithms of the
past decade (Caruana and Niculescu-Mizil 2006).
A multitude of heuristics have been developed for
randomizing the ensemble parameters, to gener-
ate diverse models. It is arguable that this line of
investigation is nowadays rather oversubscribed,
and the more interesting research is now in meth-
ods for nonstandard data. �Cluster ensembles
(Strehl and Ghosh 2003) are ensemble techniques
applied to unsupervised learning problems. Prob-
lems with nonstationary data, also known as
concept drift, are receiving much recent attention
(Kuncheva 2004a). The most up to date innova-
tions are to be found in the biennial International
Workshop on Multiple Classifier Systems (Roli
et al. 2000).
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Entailment

Synonyms

Implication; Logical consequence

Definition

The term entailment is used in the context of
logical reasoning. Formally, a logical formula T

entails a formula c if and only if all models of T

are also a model of c. This is usually denoted as
T � c and means that c is a logical consequence
of T or that c is implied by T .

Let us elaborate this definition for proposi-
tional clausal logic, where the formulae T could
be the following expression:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.

Here, the first clause or rule can be read as flies
if normal and bird, that is, normal birds fly, the
second and third one as stating that blackbirds,
resp. ostriches, are birds. An interpretation is then
an assignment of truth-values to the propositional
variables. For instance, for the above domain

fostrich, birdg

fblackbird, bird, normalg

are interpretations, specified through the set of
propositional variables that are true. This means
that in the first interpretation, the only true propo-
sitions are ostrich and bird. An interpre-
tation specifies a kind of possible world. An
interpretation I is then a model for a clause h :
�b1; : : : bn if and only if fb1; : : : ; bng � I !

h 2 I and it is model for a clausal theory if
and only if it is a model for all clauses in the

theory. Therefore, the first interpretation above
is a model for the theory, but the second one is
not because the interpretation is not a model for
the first clause (as fbird, normalg � I but
flies … I /. Using these notions, it can now be
verified that the clausal theory T above logically
entails the clause

flies :- ostrich, normal.

because all models of the theory are also a model
for this clause.

In machine learning, the notion of entailment
is used as a covers relation in � inductive logic
programming, where hypotheses are clausal the-
ories, instances are clauses, and an example is
covered by the hypothesis when it is entailed by
the hypothesis.

Cross-References

� Inverse Entailment
�Logic of Generality

Recommended Reading

Russell S, Norvig P (1995) Artificial intelligence: a
modern approach, 2nd edn. Prentice Hall, Engle-
wood Cliffs

Entity Resolution

Indrajit Bhattacharya1 and Lise Getoor2

1IBM India Research Laboratory, New Delhi,
India
2University of Maryland, College Park, MD,
USA

Abstract

References to real-world entities are often am-
biguous, more commonly across data sources
but frequently within a single data source
as well. Ambiguities occur due to multiple
reasons, such as incorrect data entry, or mul-
tiple possible representations of the entities.
Given such a collection of ambiguous en-
tity references, the goal of entity resolution
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is to discover the unique set of underlying
entities, and map each reference to its cor-
responding entity. Resolving such entity am-
biguities is necessary for removing redun-
dancy and also for accurate entity-level anal-
ysis. This is a common problem that comes
up in many different applications and has
been studied in different branches of computer
science. As evidences for entity resolution,
traditional approaches consider pair-wise sim-
ilarity between references, and many sophisti-
cated similarity measures have been proposed
to compare attributes of references. The sim-
plest solution classifies reference pairs with
similarity above a threshold as referring to the
same entity. More sophisticated solutions use a
probabilistic framework for reasoning with the
pair-wise probabilities. Recently proposed re-
lational approaches for entity resolution make
use of relationships between references when
available as additional evidences. Instead of
reasoning independently for each pair of ref-
erences, these approaches reason collectively
over related pair-wise decisions over refer-
ences. One line of work within the relational
family uses supervised or unsupervised prob-
abilistic learning using probabilistic graphi-
cal models, while another uses more scalable
greedy techniques for merging references in
a hyper-graph. Beyond improving entity res-
olution accuracy, such relational approaches
yield additional knowledge in the form of
relationships between the underlying entities.

Synonyms

Co-reference resolution; Deduplication; Dupli-
cate detection; Identity uncertainty; Merge-purge;
Object consolidation; Record linkage; Reference
reconciliation

Definition

A fundamental problem in data cleaning and
integration (see �Data Preparation) is dealing
with uncertain and imprecise references to real-

world entities. The goal of entity resolution is to
take a collection of uncertain entity references (or
references, in short) from a single data source or
multiple data sources, discover the unique set of
underlying entities, and map each reference to its
corresponding entity. This typically involves two
subproblems – identification of references with
different attributes to the same entity and disam-
biguation of references with identical attributes
by assigning them to different entities.

Motivation and Background

Entity resolution is a common problem that
comes up in different guises (and is given
different names) in many computer science
domains. Examples include computer vision,
where we need to figure out when regions in two
different images refer to the same underlying
object (the correspondence problem), natural
language processing when we would like to
determine which noun phrases refer to the same
underlying entity (co-reference resolution), and
databases, where, when merging two databases or
cleaning a database, we would like to determine
when two tuple records are referring to the
same real-world object (deduplication and
data integration). Deduplication is important
for removing redundancy and for accurate
analysis. In information integration, determining
approximate joins is important for consolidating
information from multiple sources; most often
there will not be a unique key that can be used to
join tables across databases.

Such ambiguities in entity references can oc-
cur due to multiple reasons. Often times, data
may have data entry errors, such as typographical
errors. Multiple representations, such as abbrevi-
ations, are also possible. Different databases typ-
ically have different keys – one person database
may use social security numbers, while another
uses name and address.

Traditional entity resolution approaches focus
on matching attributes of different references for
resolving entities. However, many data sources
have explicit or implicit relationships present
among the entity references. These relations

http://dx.doi.org/10.1007/978-1-4899-7687-1_100087
http://dx.doi.org/10.1007/978-1-4899-7687-1_100105
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are indicative of relationships between the
underlying entities themselves. For example,
person records in census data are linked by family
relationships such as sibling, parent, and spouse.
Researchers collaborate mostly within their
organization, or their research community, as
a result of which references to related researchers
tend to occur closely together. Recent entity
resolution approaches in statistical relational
learning make use of relationships between
references to improve entity resolution accuracy
and additionally to discover relationships
between the underlying entities.

Theory/Solution

As an illustration of the entity resolution prob-
lem, consider the task of resolving the author
references in a database of academic publications
similar to DBLP, CiteSeer, or PubMed. Let us
take as an example the following set of four
papers:

1. W. Wang, C. Chen, and A. Ansari, “A mouse
immunity model”

2. W. Wang and A. Ansari, “A better mouse
immunity model”

3. L. Li, C. Chen, and W. Wang, “Measuring
protein-bound fluoxetin”

4. W. W. Wang and A. Ansari, “Autoimmunity in
biliary cirrhosis”

Now imagine that we would like to find out,
given these four papers, which of these author
names refer to the same author entities. This
process involves determining whether paper 1
and paper 2 are written by the same author named
Wang, or whether they are different authors. We
need to answer similar questions about all such
similar author names in the database.

In this example, it turns out there are six under-
lying author entities, which we will call Wang1
and Wang2, Chen1 and Chen2, Ansari, and Li.
The three references with the name “A. Ansari”
correspond to author Ansari and the reference
with name “L. Li” to author Li. However, the
two references with name “C. Chen” map to two

different authors Chen1 and Chen2. Similarly,
the four references with name “W. Wang” or
“W. W. Wang” map to two different authors.
The “Wang” references from the first, second,
and fourth papers correspond to author Wang1,
while that from the third paper maps to a different
author Wang2. This inference illustrates the twin
problems of identifying “W. Wang” and “W. W.
Wang” as the same author and disambiguating
two references with name “W. Wang” as different
authors. This is shown pictorially in Fig. 1, where
references that correspond to the same authors are
shaded identically. In the entity resolution pro-
cess, all those and only those author references
that are shaded identically should be resolved as
corresponding to the same underlying entity.

Formally, in the entity resolution problem,
we are given a set of references R D

fri g, where each reference r has attributes
r:A1; r:A2; : : : ; r:Ak , such as observed names
and affiliations for author references, as in
our example above. The references correspond
to some set of unknown entities E D fei g.
We introduce the notation r:E to refer to the
entity to which reference r corresponds. The
goal is to recover the hidden set of entities
E D fei g and the entity labels r:E for individual
references given the observed attributes of the
references. In addition to the attributes, in some
data sources we have information in the form
of relationships between the references, such as
coauthor relationships between author references
in publication databases. We can capture the
relationships with a set of hyper-edges H D fhi g.
Each hyper-edge h may have attributes as well to
capture the attributes of relationships, which we
denote h:A1; h:A2; : : : ; h:Al , and we use h:R to
denote the set of references that it connects. In
our example, each rectangle denotes one hyper-
edge corresponding to one paper in the database.
The first hyper-edge corresponding to P aper1
has as its attribute the title “A mouse immunity
model” and connects the three references having
name attributes “W. Wang,” “C. Chen,” and “A.
Ansari.” A reference r can belong to zero or more
hyper-edges, and we use r:H to denote the set of
hyper-edges in which r participates. For example,
if we have paper, author, and venue references,
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W Wang A Ansari W Wang A Ansari

A AnsariW W Wang

A Mouse Immunity Model A Better Mouse Immunity Model

Autoimmunity in Biliary CirrhosisMeasuring Protien−bound Fluoxetin

C Chen

C Chen

Paper 2

Paper 4Paper 3

Paper 1

L LiL Li W WangW WangL Li W WangW Wang

Entity Resolution, Fig. 1 The references in different papers in the bibliographic example. References to the same
entity are identically shaded

then a paper reference may be connected to
multiple author references and also to a venue
reference. In general, the underlying references
can refer to entities of different types, as in a
publication database or in newspaper articles,
which contain references to people, places,
organizations, etc. When the type information
is known for each reference, resolution decisions
are restricted within references of the same type.
Otherwise, the types may need to be discovered
as well as part of the entity resolution process.

Traditional entity resolution approaches pose
entity resolution as a pairwise decision problem
over references based on their attribute similarity.
It can also be posed as a � graph clustering
problem, where references are clustered together
based on their attribute similarities and each clus-
ter is taken to represent one underlying entity.
Entity resolution approaches differ in how the
similarities between references are defined and
computed and how the resolution decisions are
made based on these similarities. Traditionally,
each pairwise decision is made independently of
the others. For example, the decision to resolve
the two Wang references from papers 1 and 3
would be made independently of the decision to
resolve the two Chen references from the same
papers.

The first improvement is to account for the
similarity of the coauthor names when such re-
lationships are available. However, this still does
not consider the “entities” of the related ref-

erences. For the two “Wang” references in the
earlier example, the two “C. Chen” coauthors
match regardless of whether they refer to Chen1
or Chen2. The correct evidence to use here is that
the “Chens” are not co-referent. In such a setting,
in order to resolve the “W. Wang” references, it is
necessary to resolve the “C Chen” references as
well and not just consider their name similarity.
In the collective relational entity resolution ap-
proach, resolutions are not made independently,
but instead one resolution decision affects other
resolutions via hyper-edges.

Below, we discuss the different entity resolu-
tion approaches in greater detail.

Attribute-Based Entity Resolution

As discussed earlier, exact matching of attributes
does not suffice for entity resolution. Several
sophisticated similarity measures have been de-
veloped for textual strings (Cohen et al. 2003;
Chaudhuri et al. 2003) that may be used for un-
supervised entity resolution. Finally, a weighted
combination of the similarities over the different
attributes for each reference is used to compute
the attribute similarity between two references.
An alternative is to use adaptive supervised algo-
rithms that learn string � similarity metrics from
labeled data (Bilenko and Mooney 2003). In the
traditional entity resolution approach (Fellegi and
Sunter 1969; Cohen et al. 2003), similarity is

http://dx.doi.org/10.1007/978-1-4899-7687-1_348
http://dx.doi.org/10.1007/978-1-4899-7687-1_766
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computed for each pair of references ri ; rj based
on their attributes, and only those pairs that have
similarity above some threshold are considered
co-referent.

Efficiency

Even the attribute-only approach to entity reso-
lution is known to be a hard problem compu-
tationally, since it is infeasible to compare all
pairs of references using expensive similarity
measures. Therefore, efficiency issues have long
been a focus for data cleaning, the goal being the
development of inexpensive algorithms for find-
ing approximate solutions. The key mechanisms
for doing this involve computing the matches
efficiently and employing techniques commonly
called “blocking” to quickly find potential dupli-
cates (Hernández and Stolfo 1995; Monge and
Elkan 1997), using cheap and index-based sim-
ilarity computations to rule out non-duplicate
pairs. Sampling approaches can quickly compute
cosine similarity between tuples for fast text-joins
within an SQL framework (Gravano et al. 2003).
Error-tolerant indexes can also be used in data
warehousing applications to efficiently look up a
small but “probabilistically safe” set of reference
tuples as candidates for matching for an incoming
tuple (Chaudhuri et al. 2003). Generic entity res-
olution frameworks also exist for resolving and
merging duplicates as a database operator and
minimize the number of record-level and feature-
level operations (Menestrina et al. 2006).

Probabilistic Models for Pairwise
Resolution

The groundwork for posing entity resolution as
a probabilistic � classification problem was done
by Fellegi and Sunter (1969), who studied the
problem of labeling pairs of records from two
different files to be merged as “match” (M ) or
“non-match” (U ) on the basis of agreement �

among their different fields or attributes. Given
an agreement pattern � , the conditional probabil-
ities P.� jM/ and P.� jU / of � given matches
and non-matches are computed and compared

to decide whether the two references are dupli-
cates or not. Fellegi and Sunter showed that the
probabilities P.� jM/ and P.� jU / of field agree-
ments can be estimated without requiring labeled
training data if the different field agreements are
assumed to be independent. Winkler (2002) used
the EM algorithm to estimate the probabilities
without making the independence assumption.

Probabilistic Models for Relational
Entity Resolution

Probabilistic models that take into account in-
teraction between different entity resolution de-
cisions through hyper-edges have been proposed
for named-entity recognition in natural language
processing and for citation matching (McCallum
and Wellner 2004; Singla and Domingos 2004).
Such � relational learning approaches introduce
a decision variable yij for every pair of references
ri and rj , but instead of inferring the yij’s inde-
pendently, use conditional random fields for joint
reasoning. For example, the decision variables for
the “Wang” references and the “Chen” references
in papers 1 and 3 would be connected to each
other; features and functions would be defined
to ensure that they are more likely to take up
identical values.

Such relational models are supervised and
require labeled data to train the parameters. One
of the difficulties in using a supervised method
for resolution is constructing a good training
set that includes a representative collection of
positive and negative examples. Accordingly, un-
supervised relational models have also been de-
veloped (Li et al. 2005; Pasula et al. 2003; Bhat-
tacharya and Getoor 2006). Instead of introduc-
ing pairwise decision variables, this category of
approaches uses generative models for references
using latent entity labels. Note that, here, the
number of entities is unknown and needs to be
discovered automatically from the available refer-
ences. Relationships between the references, such
as co-mentions or co-occurrences, are captured
using joint distributions over the entity labels.

All of these probabilistic models have been
shown to perform well in practice and have the

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
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advantage that the match/non-match decisions
do not depend on any user-specified similar-
ity measures and thresholds but are learned di-
rectly from data. However, this benefit comes
at a price. Inference in relational probabilistic
models is an expensive process. Exact inference
is mostly intractable and approximate strategies
such as loopy belief propagation and Monte Carlo
sampling strategies are employed. Even these
approximate strategies take several iterations to
converge, and extending such approaches to large
datasets is still an open problem.

Other Approaches for Relational
Entity Resolution

Alternative approaches (Bhattacharya and Getoor
2007; Kalashnikov et al. 2005; Dong et al. 2005)
consider relational structure of the entities for
data integration but avoid the complexity of
probabilistic inference. By avoiding a formal
probabilistic model, these approaches can handle
complex and longer-range relationships between
different entity references, and the resolution
process is significantly faster as well. Such
approaches also create pairwise decision nodes
between references and create a dependency
graph over them to capture the relationships in
the data. But instead of performing probabilistic
inference, they keep updating the value asso-
ciated with each decision node by propagating
relational evidence from one decision node to
another over the dependency graph.

When the relationships between the references
and the entities can be captured in a single graph,
the matching entity for a specific reference may
be identified using path-based similarities be-
tween their corresponding nodes in the graph.
The connection strength associated with each
edge in the graph can be determined in the un-
supervised fashion given all the references, their
candidate entity choices, and the relationships
between them, by solving a set of nonlinear equa-
tions (Kalashnikov et al. 2005). This approach is
useful for incremental data cleaning when the set
of entities currently in the database is known and

an incoming reference needs to be matched with
one of these entities.

An alternative approach to performing collec-
tive entity resolution using relational evidence is
to perform collective relational clustering (Bhat-
tacharya and Getoor 2007). The goal here is to
cluster the references into entities by taking into
account the relationships between the references.
This is achieved by defining a similarity measure
between two clusters of references that take into
account not only the attribute similarity of the
references in the two clusters but also the neigh-
boring clusters of each cluster. The neighboring
clusters of any reference cluster c are defined
by considering the references r 0 connected to
references r belonging to c via hyper-edges and
the clusters to which these related references be-
long. If the r:C represents the current cluster for
reference c, then N.c/ D

S
r 0:C , where r:H D

r 0:H and r:C D c. For instance, the neighbor-
ing clusters for a W ang cluster in our example
containing the W ang references from papers 1,
2, and 4 are the Ansari cluster and the C hen

clusters containing the other references from the
same papers. The relational similarity between
two clusters is then computed by comparing their
neighborhoods. This relational similarity comple-
ments attribute similarity in the combined simi-
larity between two clusters. Intuitively, two enti-
ties are likely to be the same if they are similar
in attributes and are additionally connected to the
same other entities. Collective relational cluster-
ing can be efficiently implemented by maintain-
ing a priority queue for merge-able cluster pairs
and updating the “neighboring” queue elements
with every merge operation.

Applications

Data cleaning and reference disambiguation ap-
proaches have been applied and evaluated in
a number of domains. The earliest applications
were on medical data. Census data is an area
where detection of duplicates poses a significant
challenge and Winkler (2002) has successfully
applied his research and other baselines to this
domain. A great deal of work has been done
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making use of bibliographic data (Pasula et al.
2003; Singla and Domingos 2004; Bhattacharya
and Getoor 2007). Almost without exception, the
focus has been on the matching of citations. Work
in co-reference resolution and disambiguating
entity mentions in natural language processing
(McCallum and Wellner 2004) has been applied
to text corpora and newswire articles like the
TREC corpus. There have also been significant
applications in information integration in data
warehouses (Chaudhuri et al. 2003).
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Epsilon Cover

Thomas Zeugmann
Hokkaido University, Sapparo, Japan

Motivation and Background

Epsilon covers were introduced in calculus. So
we provide here a very general definition.
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Definition

Let .M; %/ be a metric space, let S � M , and
let " > 0. A set E � M is an "-cover for S ,
if for every s 2 S there is an e 2 E such that
%.s; e/ � ".

An "-cover E is said to be proper, if E � S .

Application

The notion of an "-cover is frequently used in
kernel-based learning methods.

For further information, we refer the reader to
Herbrich (2002).

Cross-References

� Statistical Machine Translation
� Support Vector Machines

Recommended Reading

Herbrich R (2002) Learning kernel classifiers: theory
and algorithms. MIT, Cambridge

Epsilon Nets

Thomas Zeugmann
Hokkaido University, Sapparo, Japan

Motivation and Background

Epsilon nets were introduced by Haussler and
Welz (1987), and their usefulness for compu-
tational learning theory has been discovered
by Blumer et al. (1989).

Let X ¤ ; be any learning domain and
let C � }.X/ be any nonempty concept class.
For the sake of simplicity, we also use C here
as hypothesis space. In order to guarantee that
all probabilities considered below do exist, we

restrict ourselves to well-behaved concept classes
(see � PAC Learning).

Furthermore, let D be any arbitrarily
fixed probability distribution over the learning
domain X and let c 2 C be any fixed
concept.

A hypothesis h 2 C is said to be bad for c

iff

d.c; h/ D
X

x2c4h

D.x/ > ":

Furthermore, we use

Δ.c/ Ddf fh 4 c j h 2 Cg

to denote the set of all possible error regions of c

with respect to C and D. Moreover, let

Δ".c/ Ddf fh 4 c j h 2 C; d.c; h/ > "g

denote the set of all bad error regions of c with
respect to C and D.

Now we are ready to formally define the no-
tion of an "-net.

Definition

Let " 2 .0; 1/, and let S � X . The set S is said
to be an "-net for Δ.c/ iff S \ r ¤ ; for all r 2

Δ".c/.

Remarks
Conceptually, a set S constitutes an "-net for
Δ.c/ iff every bad error region is hit by at least
one point in S .

Example

Consider the one-dimensional Euclidean space E,
and let X D Œ0; 1� � E. Furthermore, let C
be the set of all closed intervals Œa; b� � Œ0; 1�.
Consider any fixed c 2 C, and let D be the
uniform distribution, i.e., D.Œa; b�/ D 1=.b � a/

for all Œa; b� 2 C. Furthermore, let h 2 C; then we

http://dx.doi.org/10.1007/978-1-4899-7687-1_783
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_631


410 Equation Discovery

may write c 4 h D I1 [ I2, where I1; I2 2 C. Let
" 2 .0; 1/ be arbitrarily fixed, and let

S D fk"=2 j 0 � k � d2="e; k 2 Ng :

Then, S forms an "-net for Δ.c/. This can be seen
as follows. Assume r 2 Δ".c/. Then, D.I1/ >

"=2 or D.I2/ > "=2. Now, by the definition of S ,
it is obvious that D.Ii / > "=2 implies Ii \S ¤ ;,
i D 1; 2.

Application

Recall that in � PAC Learning, the general strat-
egy to design a learner has been to draw a suf-
ficiently large finite sample and then to find a
hypothesis that is consistent with it. For showing
that this strategy is always successful, the notion
of an "-net plays an important role. This can be
expressed by the following observation.

Observation. Let S D fx1; : : : ; xmg be an "-net
for Δ.c/, and let h 2 C be any hypothesis such
that h.xi / D c.xi / for all 1 � i � m, i.e., h is
consistent. Then we have d.c; h/ � ".

It then remains to show that the �VC Dimen-
sion of C and of Δ.c/ are the same and to apply
Sauer’s lemma to complete the proof.

For further information, we refer the reader
to Blumer et al. (1989) as well as to Kearns and
Vazirani (1994).

Cross-References
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�VC Dimension

Recommended Reading

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM 36(4):929–965

Haussler D, Welz E (1987) Epsilon nets and simplex
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Equation Discovery

LjupLco Todorovski
University of Ljubljana, Ljubljana, Slovenia

Synonyms

Computational discovery of quantitative laws;
Symbolic regression

Definition

Equation discovery is a machine learning task
that deals with the problem of learning quanti-
tative laws and models, expressed in the form
of equations, in collections of measured numeric
data. Equation discovery methods take at input
a � data set consisting of measured values of a
set of numeric variables of an observed system
or phenomenon. At output, equation discovery
methods provide a set of equations, such that,
when used to calculate the values of system
variables, the calculated values closely match the
measured ones.

Motivation and Background

Equation discovery methods can be used to solve
complex modeling tasks, i.e., establishing a math-
ematical model of an observed system. Modeling
tasks are omnipresent in many scientific and
engineering domains.

Equation discovery is strongly related to sys-
tem identification, another approach to mathe-
matical modeling. System identification methods
work under the assumption that the structure of
the model (the form of the model equations) is
known or comes from a well-defined class of
model structures, such as polynomials or neural
networks. Therefore, they are mainly concerned
with the parameter estimation task, that is, the
task of determining the values of the model pa-
rameters that minimize the discrepancy between
measured data and data obtained by simulating
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the model. Equation discovery methods, on the
other hand, aim at identifying both, an adequate
structure of the model equations and appropriate
values of the model parameters.

�Regression also deals with building pre-
dictive models from numeric data. The focus
of regression methods is on building descrip-
tive black-box models that can reconstruct the
training data with high accuracy. In contrast,
equation discovery methods focus on establishing
explanatory models that, beside accurate predic-
tions, provide explanations of the mechanisms
that govern the behavior of the modeled system.

Early equation discovery methods dealt with
rediscovering empirical laws from the history
of science (this is where the synonym “compu-
tational discovery of quantitative laws” comes
from). Through the years, the focus of the equa-
tion discovery methods has shifted from discov-
ering quantitative laws to modeling real-world
systems.

Structure of the Learning System
The task of equation discovery can be decom-
posed into two closely coupled subtasks of struc-
tural identification and parameter estimation. The
first task of structural identification deals with the
problem of finding the optimal structure of an
equation. The second task of parameter estima-
tion deals with the problem of finding the optimal
values of the constant parameters in the equation.
General approaches to and specific methods for
equation discovery use different techniques to
solve these two subtasks.

Approaches and Methods
There are two general and fundamentally differ-
ent approaches to equation discovery. The first
approach relies on a definition of a space of can-
didate equation structures. Following this defini-
tion, a generate-and-test (or � learning as search)
approach is used to generate different equation
structures, solve the parameter estimation task
for each of them, and report those equations that
most closely approximate the data. The second
approach relies on heuristics, used by scientists
and engineers in the discovery or modeling pro-

cesses, to establish an appropriate equation struc-
ture.

The first equation discovery system, Bacon
(Langley 1981), follows the second approach
described above. It incorporates a set of data-
driven heuristics for detecting regularities (con-
stancies and trends) in measured data and for
formulating hypotheses based on them. An exam-
ple heuristic would, when faced with a situation
where the values of two observed variables in-
crease/decrease simultaneously, introduce a new
equation term by multiplying them. Furthermore,
Bacon builds equation structure at different levels
of description. At each level of description, all
but two variables are held constant and hypothe-
ses connecting the two changing variables are
considered. Using a relatively small set of data-
driven heuristics, Bacon is able to rediscover a
number of physical laws including the ideal gas
law, the law of gravitation, the law of refraction,
and Black’s specific heat law.

An alternative set of heuristics for equation
discovery can be derived from dimensional
analysis that is routinely used to check the
plausibility of equations by using rules that
specify the proper ways to combine variables
and terms with different measurements units,
different measurement scales, or types thereof.
Following these rules, equation discovery method
Coper (Kokar 1986) considers only equation
structures that properly combine variables and
constants, given the knowledge about their exact
measurement units. Equation discovery method
SDS (Takashi and Hiroshi 1998) extends Coper to
cases, where the exact measurement units of the
variables and constants involved in the equation
are not known, but only knowledge about the
types of the �measurement scales is available.

Finally, the heuristics and design of the equa-
tion discovery method E* (Schaffer 1993) is
based on a systematic survey of more than a hun-
dred laws and models published in the Physical
Review journal. The review shows that many of
the published laws and models follow one of
five different equation structures. By including
only these five structures as its main heuristic for
solving the structure identification task (imple-
menting it as a � language bias), E* was able to

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
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reconstruct the correct laws and models in about
a third of the test cases collected from the same
journal.

Abacus (Falkenhainer and Michalski 1990)
was the first equation discovery method that
followed the generate-and-test (or � learning
as search) approach, mentioned above. Abacus
experimented with different search strategies
within a fixed space of candidate equation
structures. Other methods that follow the
generate-and-test approach differ in the ways
they define the space of candidate equation
structures and solve the parameter estimation
task.

Equation discovery methods EF (Zembowitz
and Zytkow 1992) and Lagrange (Džeroski and
Todorovski 1995) explore the space of polyno-
mial equation structures that are linear in the con-
stant parameters, so they apply � linear regres-
sion to estimate parameters. The user can shape
the space of candidate structures by specifying
parameters, such as, the maximal polynomial de-
gree, the maximal number of multiplicative terms
included in a polynomial, and a set of functions
that can be used to transform the original vari-
ables before combining them into multiplicative
terms.

While all of the above methods assume a
fixed predefined � language bias (via specifica-
tion of the class of candidate equation struc-
tures or via heuristics for establishing appropriate
structure), equation discovery method Lagramge
(Todorovski and Džeroski 1997) employs dy-
namic declarative � language bias, that is, let the
user of the equation discovery method choose
or specify the space of candidate equation struc-
tures. In its first version, Lagramge uses the for-
malism of context-free grammars for specifying
the space of equation structures. The formalism
has been shown to be general enough to allow
users to build their specification upon many dif-
ferent types of modeling knowledge, from mea-
surement units to very specific knowledge about
building models in a particular domain of interest
(Todorovski and Džeroski 2007). For solving
the structure identification task, Lagramge de-
fines a refinement operator that orders the search
space of candidate equation structures, defined

by the user-specified grammar, from the simplest
ones to more complex. Exhaustive and � beam
search strategies are then being employed to
the search space and for each structure consid-
ered during the search, Lagramge uses gradient-
descent methods for nonlinear optimization to
solve the parameter estimation task. The heuristic
function that guides the search is based on the
�mean squared error that measures the discrep-
ancy between the measured and simulated values
of the observed system variables. Alternatively,
Lagramge can use heuristic function that takes
into account the complexity of the equation and
is based on the �minimum description length
principle.

Successors of Lagramge, equation discovery
methods, Lagramge 2 (Todorovski and Džeroski
2007), IPM (Bridewell et al. 2008), and HIPM
(Todorovski et al. 2005), primarily focus on the
improvement of the knowledge representation
formalism used to formalize the modeling knowl-
edge and transform it to � language bias for equa-
tion discovery. All of them follow the paradigm
of � inductive process modeling.

Types of Equations
At first, equation discovery methods dealt with
the problem of learning algebraic equations
from data. Equation discovery method Lagrange
(Džeroski and Todorovski 1995) extended
the scope of equation discovery to modeling
dynamics from � time series data with ordinary
differential equations. It took a naı̈ve approach
based on transforming the task of discovering
ordinary differential equations to the simpler
task of discovering algebraic equations, by
extending the set of observed system variables
with numerically calculated time derivatives
thereof. By doing so, any of the existing
equation discovery methods could be, in
principle, used to discover differential equations.
However, the naı̈ve approach has a major
drawback of introducing large numerical errors,
due to instability of methods for numerical
differentiation. Equation discovery method
GoldHorn (Križman et al. 1995) replaced the
instable numerical differentiation with the stable
numerical methods for the inverse problem of
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integration. Goldhorn also upgrades Lagrange
with filtering methods to cope with measurement
errors and noisy data.

While ordinary differential equations can
model systems that change their state along
a single dimension, time, partial differential
equations can be used to model systems that
change along many (temporal and spatial)
dimensions. The naı̈ve approach of introducing
numerically calculated partial derivatives
has been used in the Paddles (Todorovski
et al. 2000) method for discovery of partial
differential equations. The method first slices the
measurement data into narrow spatial subsets,
induces ordinary differential equations in each of
them, and uses most frequently obtained equation
structures to extend them with partial derivatives
and to obtain a relatively small class of partial
differential equation structures to explore. All the
equation discovery tasks in Paddles are solved
using Lagramge (Todorovski and Džeroski
1997).

Applications

Equation discovery methods have been applied
to various tasks of discovering equation-
based laws and models from measured and/or
simulation data. Application domains range from
physics (mechanical and electrical engineering,
fluid dynamics) (Takashi and Hiroshi 1998;
Todorovski and Džeroski 1997, 2007), through
ecology (population dynamics) (Todorovski
and Džeroski 2007; Todorovski et al. 2005) to
biochemistry (chemical kinetics) (Džeroski and
Todorovski 2008; Langley et al. 2006).
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Error

�Error Rate

Error Correcting Output Codes

Synonyms

�ECOC

Definition

Error correcting output codes are an � ensemble
learning technique. It is applied to a problem
with multiple classes, decomposing it into several
binary problems. Each class is first encoded as a
binary string of length T , assuming we have T

models in the ensemble. Each model then tries
to separate a subset of the original classes from
all the others. For example, one model might
learn to distinguish “class A” from “not class A.”
After the predictions, with T models we have a
binary string of length T . The class encoding that
is closest to this binary string (using Hamming
distance) is the final decision of the ensemble.

Recommended Reading

Kong EB, Dietterich TG (1995) Error-correcting out-
put coding corrects bias and variance. In: Interna-
tional conference on machine learning, Tahoe City

Error Curve

�Learning Curves in Machine Learning

Error Rate

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Synonyms

Error

Definition

Error rate refers to a measure of the degree of
prediction error of a model made with respect to
the true model.

The term error rate is often applied in the
context of � classification models. In this context,
error rate D P(�.X/ ¤ Y ), where XY is a joint
distribution and the classification model � is a
function X ! Y . Sometimes this quantity is
expressed as a percentage rather than a value
between 0.0 and 1.0.

The error rate of a model is often assessed or
estimated by applying it to � test data for which
the class labels (Y values) are known. The error
rate of a classifier on test data may be calculated
as number of incorrectly classified objects/total
number of objects. Alternatively, a smoothing
function may be applied, such as a �Laplace
estimate or an m-estimate.

Error rate is directly related to � accuracy,
such that error rate D 1:0 � accuracy (or when
expressed as a percentage, error rate D 100 �

accuracy).
Two common measures of error rate for

� regression models are �mean squared error
and �mean absolute error.
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�Mean Squared Error

http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_100131
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_452
http://dx.doi.org/10.1007/978-1-4899-7687-1_100139
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_818
http://dx.doi.org/10.1007/978-1-4899-7687-1_100240
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_528
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_528


Evaluation of Learning Algorithms 415

E

Error Squared

Synonyms

� Squared error

Definition

Error squared is a common � loss function used
with � regression. This is the square of the differ-
ence between the predicted and true values.

Error-Correcting Output Codes
(ECOC)

�Class Binarization

Estimation of Density Level Sets

�Density-Based Clustering

Evaluation

Evaluation is a process that assesses some prop-
erty of an artifact. In machine learning, two
types ofnbreak artifacts are most commonly eval-
uated, models and falgorithmsg. �Model eval-
uation often focuses on the predictive efficacy
of the model, but may also assess factors such
as its complexity, the ease with which it can be
understood, or the computational requirements
for its application. �Algorithm evaluation often
focuses on evaluation of the models an algorithm
produces, but may also appraise its computational
efficiency.

Evaluation Data

�Test Data
�Test Set

Evaluation of Learning Algorithms

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Abstract

It is often desirable to assess the properties of
a learning algorithm. Frequently such evalu-
ation take the form of comparing the relative
suitability of a set of algorithms for a spe-
cific task or class of tasks. Learning algorithm
evaluation is the process of performing such
assessment of a learning algorithm.

Synonyms

Algorithm Evaluation; Learning Algorithm Eval-
uation

Definition

Learning algorithm evaluation is the process of
assessing a property or properties of a learning
algorithm.

Motivation and Background

It is often valuable to assess the efficacy of
a learning algorithm. In many cases, such
assessment is relative, that is, evaluating which
of several alternative algorithms is best suited to
a specific application.

Processes and Techniques

Many learning algorithms have been proposed. In
order to understand the relative merits of these
alternatives, it is necessary to evaluate them. The
primary approaches to evaluation can be char-
acterized as either theoretical or experimental.
Theoretical evaluation uses formal methods to
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infer properties of the algorithm, such as its com-
putational complexity (Papadimitriou 1994), and
also employs the tools of computational learning
theory to assess learning theoretic properties.
Experimental evaluation applies the algorithm to
learning tasks in order to study its performance in
practice.

There are many different types of property
that may be relevant to assess depending upon
the intended application. These include algorith-
mic properties, such a time and space complex-
ity. These algorithmic properties are often as-
sessed separately with respect to performance
when learning a model, that is, at training time,
and performance when applying a learned model,
that is, at test time.

Other types of property that are often studied
are the properties of the models that are learned
(see �model evaluation). Strictly speaking, such
properties should be assessed with respect to
a specific application or class of applications.
However, much machine learning research in-
cludes experimental studies in which algorithms
are compared using a set of data sets with lit-
tle or no consideration given to what class of
applications those data sets might represent. It
is dangerous to draw general conclusions about
relative performance on any application from
relative performance on such a sample of some
unknown class of applications. Such experimen-
tal evaluation has become known disparagingly
as a bake-off.

An approach to experimental evaluation that
may be less subject to the limitations of bake-
offs is the use of experimental evaluation to
assess a learning algorithm’s bias and variance
profile. Bias and variance measure properties of
an algorithm’s propensities in learning models
rather than being directly properties of the models
that are learned. Hence they may provide more
general insights into the relative characteristics of
alternative algorithms than do assessments of the
performance of learned models on a finite number
of applications. One example of such use of bias-
variance analysis is found in Webb (2000).

Techniques for experimental algorithm eval-
uation include bootstrap sampling, cross valida-
tion, and holdout evaluation.
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Event Extraction from Media Texts
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Abstract

The chapter describes the topic of using news
content to automatically detect world events
mentioned in the news. Various tasks required
for identifying events are presented, such as
semantic annotation, article clustering and
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cross-lingual cluster matching. Given the
identified events we also describe how date,
location, relevant entities and other core event
details can be determined automatically.

Definition

Event extraction from text is an area of research
that involves identifying mentions of significant
world events described in media documents, such
as news articles. The goal is to identify the
world events and extract as much information as
possible about them in a structured form. Ideally,
the extracted information should contain details
about what happened, when, where, and who was
involved in the event. Since relevant events are
reported in numerous articles, the methods for de-
tection of events can exploit this fact when iden-
tifying events and extracting event properties.

Motivation and Background

News outlets produce large amounts of news
content every day. Most of the news articles
describe recent happenings in the world, such as
meetings of important politicians, natural disas-
ters, societal issues, sports events, or pastimes
of celebrities. The importance of the generated
news content varies significantly – news about
an approaching hurricane can be considered as
much more important and relevant than a news
article about a party held by a local politician. For
the purposes of this paper, we will call important
happenings events. There is no objective way to
distinguish between important and non-important
news stories, but a practical approach that can be
used is to treat news as important if it is being
reported by several news publishers. For practical
purposes we can therefore define an event as a
happening that is being covered in news articles
by several news publishers.

News articles are written in a natural lan-
guage which makes them easy to understand
by humans, but hard to process by computers.
Understanding information being described in
an article requires the use of common sense,

common knowledge, implicit information, and
knowledge on how to disambiguate. Since it’s
hard to extract knowledge from the articles, it
is also difficult to perform accurate information
retrieval. Imagine, for example, that you would
like to learn from the news about the events that
happened in Washington state in the last month.
The word “Washington” is for the computer just
a sequence of letters. One can use it to perform
a keyword search, which will however return
various articles – from the ones about the state
of Washington, about any of the 40 cities names
Washington, as well as numerous people who
are also named Washington. Even if all articles
would be relevant, they are not grouped – there
would be tens or hundreds of articles describing
the same event, and it would be up to the reader
to find if an article describes some event you have
already seen or not. Additionally, there would
also be no summary of what the event was about –
the reader would have to read the articles and
learn about that himself.

To make learning about the events a more
pleasant experience, we would like to convert
the unstructured information expressed in news
articles into a structured form that can be stored
in a machine-readable way. This is not a trivial
task and requires several steps of processing.
These steps include syntactic analysis, semantic
enrichment, entity linking, document clustering,
and information extraction. The final result of
the processing is a structured database of world
events. Due to the extensive metadata, it is pos-
sible to find events based on the date, location,
or relevant entities. Articles about an event are
grouped together which helps significantly to
reduce the information overload. A summary of
an event can also be obtained by aggregating
common information from multiple news articles.

To our knowledge, there are at least three sys-
tems that are identifying world events by analyz-
ing news media. GDELT project (Gao et al. 2013;
Leetaru et al. 2013) performs event detection
by extracting information from individual sen-
tences in the news articles. Since several events
are potentially extracted from a single article, it
contains a huge collection of events (over 200
million) that were extracted from 1979 to the
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present. European media monitor (Steinberger
et al. 2005; Pouliquen et al. 2008) focuses on the
identification of current political events by com-
bining and processing news articles in multiple
languages. Event Registry (Leban et al. 2014a,b)
similarly extracts world events with the additional
metadata from articles in several languages. In
the next sections, we will describe some of the
core components that are needed by these sys-
tems.

Structure of Learning System

The identification of events from news articles
requires a pipeline of services or components that
provide specific functionalities. These services
are shown in the Fig. 1 and will be described next.

News Collection
The first step in identification of events from news
is to obtain the news content from a large set of
news publishers. The content can be collected by
either crawling the website of the news publishers
or by identifying their RSS feeds and extracting
article information from them. The use of RSS
feeds, which are almost always available, is a
better approach since they are significantly less

data and time intensive compared to repeatedly
crawling the whole websites. The RSS feeds
do however often contain only article excerpts
and crawling of the article page is therefore still
needed. The main technical challenge with crawl-
ing the page is the identification of the article
content and removal of the rest of the page. It is
also important to extract as much metadata about
the article as possible. This metadata can include
the title of the article, publisher’s name, date of
publishing, author, etc.

Text Annotation
The collected news articles contain just plain
text – there is no semantic information avail-
able about its content. In order to be able to
extract semantic information about the described
event, the text first needs to be annotated with
semantic information that can be detected in
the text. Common types of annotations are the
named entities (people, locations, organizations)
mentioned in the text and article topics. The
challenge in annotation is twofold: first, the token
or phrase that represents a named entity (such
as “Paris”) has to be identified, and second, it
needs to be linked to a resource identifier that
semantically represents the entity (such as a URI
in a knowledge base). The first task is called

Event Extraction from Media Texts, Fig. 1 Various components required in the process of extracting events from
news articles
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named entity recognition and can be best solved
using conditional random fields or more recently
with convolutional neural networks. The second
task is called entity linking and requires the use of
a knowledge base containing an extensive set of
relevant entities. Systems for entity linking such
as Wikipedia Miner (Milne and Witten 2013)
rely on the use of open knowledge bases such as
DBpedia, Freebase, or YAGO.

An important type of data annotations are also
temporal expressions mentioned in the text. Their
detection is crucial in order to determine the date
of the event that is being described in the news.
Dates can be expressed in an absolute (“July 15th,
2015”, “2015-07-12”) or relative form (“yester-
day morning,” “last week”). The detection of
absolute temporal expressions can be efficiently
performed using a set of regular expressions. The
relative expressions can either be identified using
rule-based or sequence labeling approaches. The
detected relative expressions can then be normal-
ized into the absolute form using the article’s
publish date.

Clustering Approach to Event
Identification
In order to identify events, a clustering approach
can then be applied in order to group similar arti-
cles that describe the same event. The reasoning
behind using clustering is the reasonable assump-
tion that if articles are describing the same event,
they will share similar vocabulary and mention
similar entities. The most valuable features for
the clustering algorithm are therefore the article
text itself as well as the detected named entities
and topics. The article text can be transformed
into the bag-of-words form where each term
in the document is normalized according to a
chosen weighting scheme, such as TF-IDF. A
feature vector can be generated for each article
by concatenating the weights of the article terms
and the mentioned named entities. A similarity
measure, such as cosine similarity, can then be
used to compute the similarity between individual
articles.

Given the article feature vectors and the sim-
ilarity measure, the clusters representing events
can be identified using various clustering meth-

ods. European media monitor, for example, uses
an agglomerative bottom-up clustering algorithm
to group all articles published in a 24-h time win-
dow. Articles are grouped into the same cluster
as long as their similarity is above the selected
threshold. Centroid vectors of the obtained clus-
ters are also compared with clusters identified
on a previous day. The clusters that are found
to be similar enough are merged and therefore
represented as a single event. This allows the
method to identify events that span across several
days.

Event registry, on the other hand, uses an
online approach to clustering. Each new article
is clustered immediately after being added to
the system. The clustering approach works as
follows. The feature vector of the article is first
being compared to the feature vectors of the
centroids of all existing clusters. If the cosine
similarity to the most similar centroid is above the
selected threshold, the article is simply assigned
to the cluster. Otherwise, a new, so-called micro-
cluster is created containing only the single ar-
ticle. As new articles are added to the system,
the micro-clusters can grow in size as articles
are being added to them. Once they reach a
certain size (depending on the language, this can
be between three and ten articles), they are no
longer considered as micro-clusters but instead as
proper events. Micro-clusters that never reach the
necessary size are not considered as events and
are eventually removed. There are also different
validation methods that are being called regularly
in order to ensure the highest quality of the clus-
ters. As clusters grow, for example, it can occur
that the centroids of two clusters become more
and more similar. One of the validation methods
therefore checks different pairs of clusters and
merges them in case their similarity, as measured
by the cosine similarity of their centroid vectors,
is above the threshold. Additionally, a separate
method also checks each cluster if it is still
sufficiently coherent or should instead be split
into two separate clusters. The main idea behind
splitting is to project all articles in the cluster onto
a line and divide them into two groups depending
on whether their projection was left or right of
the centroid. This is repeated several times. In
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the first iteration the first principal component of
the original cluster is used as the projection line.
In the following steps, the articles are projected
onto the line that passes the centroids of the two
groups obtained in the previous iteration. Once
the two groups become stable, the method com-
pares the original cluster and the two identified
groups using the Bayesian information criterion
in order to determine whether the cluster should
be split or not. The last maintenance method is
responsible for removing obsolete clusters. An
event is reported in the media only for a limited
number of days. To avoid assigning new articles
to obsolete clusters, the method removes (micro-)
clusters once the oldest member articles reach a
certain age. In case of Event Registry, clusters are
removed after they become 5 days old.

Both described approaches for identifying
events using clustering have their advantages and
disadvantages. The approach used in European
media monitor works in batch mode which makes
the identified events more stable. The downside
is however that it is not suitable for real-time
monitoring and detection of breaking events.
On the other hand, the approach used by Event
Registry can identify new events as soon as the
sufficient number of articles about it has been
written. However, because of the online mode
of the algorithm, the identified clusters can be
merged or split during their lifetime which makes
them more volatile.

Cross Lingual Event Detection
Until this point we have not considered the
fact that news articles are written in different
languages. Since the described clustering
approaches rely on the article text, the methods
are evidently language dependent. It is not
sensible, for example, to compute cosine
similarity between an English and German
article; therefore content from each language
has to be clustered separately. As a result, events
represented by the clusters will contain only
articles in a single language. Since most events
are reported in multiple languages, we want to
find methods for identifying clusters in different
languages that describe the same event. This will
allow us to see how the same news is reported in

different languages, what topics are more or less
likely to break the language barrier, how fast does
the information spreads through the languages,
etc.

In order to link the appropriate clusters, we
can represent the problem as a binary classifi-
cation problem. Given a cluster pair c1 and c2

in languages l1 and l2, we need to compute a
set of discriminative features that will help us to
determine if both clusters describe the same event
or not. A machine learning model can then be
trained to classify the cluster pairs based on the
values of the computed features.

One set of learning features can be computed
by inspecting individual articles assigned to the
clusters. Using a method such as canonical cor-
relation analysis (CCA), it is possible to compute
an estimated score of relatedness of two articles
in different languages. The method is trained on
a comparable corpus, which is a collection of
documents in multiple languages, with alignment
between documents that are on the same topic or
even rough translations of each other. An example
of such corpus is Wikipedia, where each entry
can be described in multiple languages. Using
the CCA, we can compare pairs of documents
in the tested clusters c1 and c2 and compute
features such as the maximum or the average
score of similarity between the documents in the
two clusters.

Additional set of important learning features
can be computed by aggregating the annotated
entities mentioned in the articles. Given the ar-
ticles in each cluster, we can analyze how often
do individual entities appear in the articles in
order to estimate their relevance for the event –
entities that appear more frequently can be con-
sidered as more important to the event compared
to entities that are mentioned fewer times. One
way to score an entity in a cluster is simply to
compute the ratio of articles in the cluster that
mention it. A more advance approach can also
take into account the number of times the entity
is mentioned in each article and its mentioned
location – an entity is likely more relevant if
it is mentioned at the beginning of the article
than if at the end. Since entities are language
independent (same entity, although mentioned in
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different languages, is represented with the same
identifier), we can construct for each cluster a
weighted vector of relevant entities. For a pair of
clusters, a similarity measure can again be used
to compute similarity of the clusters according to
the mentioned entities. Since events are mostly
centered around entities, the similarity score can
be an important feature when deciding if two
clusters are about the same event or not.

Additionally, time similarity is also an im-
portant feature. If articles in one cluster were
published in a similar time period as articles in
another cluster, they are more likely about the
same event as if they were published several days
apart. If dates mentioned in the articles are being
extracted, the ratio of common dates mentioned
in the two clusters can also be a relevant feature.

In order to train the classification model, we
first need the learning data. A human expert
should therefore provide a set of positive and
negative examples – cluster pairs that are about
the same events as well as pairs that are not. For
each cluster pair, values of the mentioned features
can be computed and concatenated into a single
feature vector. A machine learning classifier, such
as SVM, can then be trained to best distinguish
between the positive and negative examples based
on the learning features. An experiment using the
described approach (Rupnik et al. 2016) reports
the cluster linking accuracy of 0.893 as measured
using F1 score.

Extraction of Event Properties
Based on the described approach, an event con-
sists of one or more clusters, where each cluster
contains articles from a single language. As the
final step, we wish to extract from the articles
in the clusters as much structured information as
possible about the event.

To determine the date of the event, we can
analyze the publishing date of the articles in the
clusters. The simplest method can be to use the
date of the first article as the date of the event.
This approach can generate erroneous results
for events that are reported in advance (such
as various meetings of politicians, product an-
nouncements, etc.) as well as when the collected
publishing dates of the articles are potentially

inaccurate. A more error-prone approach is to
analyze the density of reporting and use the time
point where the reporting intensified as the date
of the event. Additional input can be provided by
the mentioned date references – a particular date
that is consistently mentioned across the articles
is likely the correct date of the event.

In order to determine who is involved in the
event, we can analyze and aggregate the entities
mentioned in the articles. A list of relevant enti-
ties and their score of relevance can be obtained
by analyzing the frequency of their occurrence
in the articles as well as the locations of the
mentions in text. Entities that appear in event’s
articles more frequently and early in the text
are more important than entities that are just
rarely mentioned and appear late. Entities can
be scored and ranked according to this criterion
which provides an accurate aggregated view on
what and who is the event about.

Another core property of the event is also
the location where the event occurred. Since
the event location is commonly mentioned in
the articles, we can identify it by analyzing the
frequently mentioned entities that are of type
location – knowledge about the entity type can be
retrieved from the knowledge base used in entity
linking. Additional signal for determining the lo-
cation can be obtained by inspecting the datelines
of the articles. A dateline is a brief piece of text
at the beginning of the news article that describes
where and when the described story happened.
The problem with datelines is that they are not
present in all news articles, and even when they
are, they sometimes represent the location where
the story was written and not the actual location
of the event. To determine the event location,
one can simply use the city that is mentioned the
most in the articles. A more advanced approach
can again rely on machine learning. Each city
that is mentioned in the articles about an event
can be considered as a candidate for the event
location. For each city we therefore generate a
set of features based on which a classification
model can compute the probability that it is the
location of the event. The features can be the
number or ratio of times the city is mentioned in
the articles, the number of times it is mentioned in
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the dateline, how commonly the city is mentioned
in all the articles, etc. To train the classification
model, we again need the experts to manually
provide information about the correct location
of various events. Using the training data, we
can then train a model that will classify each
candidate city independently. Because they are
evaluated independently, it is possible that the
model finds several locations to be the event
location. To choose the most likely city, it is
important to use a probabilistic classifier that
can also return a degree of certainty – in such
cases, one can simply choose the location with
the highest probability.

There are many other properties that could
be extracted which are specific for individual
event types. In case of an earthquake, for ex-
ample, important properties would include the
number of casualties and the strength of the
earthquake. Similarly, for a football game, the
relevant information would be the names of the
teams that played and the final score. Identifying
such properties and their values is a cumbersome
task. It first requires that each event is classified
into an event type (such as earthquake, football
game, meeting, etc.). To perform classification, a
taxonomy of event types is first needed together
with a model that can perform classification into
the taxonomy. Next, for each event type, a set of
properties/slots need to be identified that are rel-
evant for the event type. A pattern or rule-based
approach can then be used to determine the values
for these properties.
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Synonyms

Cluster optimization; Evolutionary grouping; Ge-
netic clustering; Genetic grouping

Definition

Evolutionary clustering refers to the application
of evolutionary algorithms (also known as ge-

netic algorithms) to data clustering (or cluster
analysis), a general class of problems in machine
learning with numerous applications throughout
science and industry. Different definitions of data
clustering exist, but it generally concerns the
identification of homogeneous groups of data
(clusters) within a given data set. That is, data
items that are similar to each other should be
grouped together in the same cluster or group,
while (usually) dissimilar items should be placed
in separate clusters. The output of any cluster-
ing method is therefore a specific collection of
clusters. If we have an objective way to evaluate
(calculate the quality of) a given grouping into
clusters, then we can consider the clustering task
as an optimization problem. In general, this opti-
mization problem is NP hard, and it is common
to address it with advanced heuristic or meta-
heuristic methods. Evolutionary algorithms are
prominent among such methods and have led to
a variety of promising and successful techniques
for cluster optimization.

Motivation and Background

In many problem-solving scenarios, we have
large amounts of data. We need to cluster those
data sensibly into groups in order to help us
understand the problem and decide how to
proceed further (see clustering). It is common,
in fact, for this initial “cluster analysis” stage
to be the most important (or only) stage in the
investigation. In bioinformatics, for example,
a frequent activity is the clustering of gene
expression data (data that indicate, for a specific
cell, how active each of several thousands of
genes are at different points in time or under
different experimental conditions). A very
important current challenge is to understand
the role of each gene; by clustering such data,
which means arranging genes into groups such
that genes in the same group have similar patterns
of activity, we find important clues about genes
whose role is currently unknown, simply by
assigning their putative role as being related to
that of genes (whose role is known) that are in the
same cluster. Meanwhile, a ubiquitous situation
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in industry and commerce is the clustering of
data about customers or clients. Here, the role
of clustering is all about identifying what types
of clients (e.g., based on age, income, postcode,
and many other attributes that may make up a
customer’s profile) buy or use certain kinds of
products and services. Effective ways to identify
groups enable companies to better target their
products and their direct marketing campaigns
and/or make more effective decisions about
loans, credit, and overdrafts. Many machine
learning techniques can be used to predict things
about customers, predict things about genes, and
so forth. However, the value of clustering (in a
similar way to visualization of the data) is that
it can lead to a much deeper understanding of
the data, which in turn informs the continuing
process of applying machine learning methods to
it. In this general context, there are many well-
known and well-used clustering methods, such as
k-means, hierarchical agglomerative clustering,
neighbor joining, and so forth. However, there are
also well-known difficulties with these methods;
in particular, there is often a need to choose
in advance the number of clusters to find in
the data, and they tend to be strongly biased
toward finding certain types of groupings. For
these reasons, methods that are more flexible
have been recently investigated, and evolutionary
clustering techniques are prominent among these.
They are flexible in that (e.g., unlike k-means) the
choice of the number of clusters does not have
to be made a priori, and the method is not tied
to any particular way of identifying the distance
between two items of data, nor is there any a
priori inductive bias concerning what counts as
a good clustering. That is, in broad terms, an
evolutionary clustering algorithm allows a user
to flexibly make these decisions in view of the
actual problem at hand; these decisions are then
“plugged into” the algorithm which proceeds to
search for good clusterings.

Given a data set to be clustered, the concept of
evolutionary clustering covers two distinct ways
in which we can address the problem of finding
the best clustering. Each of these approaches is
under continuing research and has proven suc-
cessful under different conditions. The first ap-

proach is to use an evolutionary algorithm to
search the space of candidate groupings of the
data; this is the most straightforward approach
and perhaps the most flexible in the sense dis-
cussed above. The second approach is to “wrap”
an evolutionary algorithm around a simpler clus-
tering algorithm (such as k-means) and either use
the evolutionary algorithm to search the space
of features for input to the clustering algorithm
(i.e., the evolutionary algorithm is doing fea-
ture selection in this case) or to search a space
of parameters, such as the number of clusters,
feature weights, and/or other parameters of the
clustering algorithm in use. Central in all of these
approaches is a way to measure the quality of
a clustering, which in turn depends on some
given metric that provides a distance between any
pair of data items. Although some applications
come with pre-identified ways to measure dis-
tance and cluster quality, in the following we will
assume the most common approach, in which
distance is the Euclidean distance between the
data items, and the measure of quality for a given
clustering is some ratio of within-cluster and
between-cluster similarities.

We illustrate the two main approaches to evo-
lutionary clustering in Fig. 1.

There are several examples of the first type
of approach, called “indirect” evolutionary clus-
tering in Fig. 1 (left). This approach is often
used where the “internal” clustering method (“C”
in the figure) is very sensitive to initialization
conditions and/or parameters of the metric in use
to measure distance between items. For example,
if C is the k-means algorithm, then, for each ap-
plication of C, we need choices for the parameter
k and for each of k initial cluster center positions
in the data space. The parameter vectors referred
to in the figure would be precisely these; the
evolutionary algorithm searches this parameter
space, finding those that lead to an optimized
clustering from k-means. Figure 2 illustrates why
this will often be a more effective approach than
k-means alone. In this case, it is entirely unclear
whether these data form two, four, or even five
clusters. There are two widely separated groups
of points, and this two-cluster solution may be
easily found by a 2-means algorithm. However,
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Initialise a population of 
parameter vectors for a specific
clustering algorithm C

Evaluate the quality of each 
vector, by running C on the data,
and evaluating the quality of the
resulting clustering

Has a termination condition
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Via selection and generation,
generate a new population of 
parameter vectors

Evaluate the quality of each
clustering in the population

No

Has a termination condition
been reached?

Initialize a population of
clusterings

Start

No

Stop

Yes

Yes

Via selection and generation,
generate a new population of 
clusterings

Evolutionary Clustering, Fig. 1 Evolutionary clustering. The two main approaches to evolutionary clustering:
indirect (left) and direct (right)

Evolutionary Clustering,
Fig. 2 An example data
set with many potential
interpretations of the
number of clusters

to the human eye, there is also a clear four-
cluster solution, further analysis of which may
lead to better understanding of these data. This
four-cluster solution is difficult for a 4-means
algorithm to find, depending on very fortunate
initial settings for the cluster centers. The embed-
ding of k-means within an evolutionary algorithm
allows for the iterative optimization of parameters
and starting conditions to arrive at this optimal
solution.

On the right in Fig. 1, we see the direct
approach, in which the evolutionary algorithm

searches the space of clusterings of the data. The
key features in this approach are the encoding
and genetic operators. After evaluating the
quality of each of a population of clusterings,
a new population is generated from the old one
via selection and variation. Essentially, some
individuals from the current population are
treated as “parents,” and new ones are produced
from these by using genetic operators. The
encoding dictates precisely how a specific data
clustering is represented, while the operators
determine how new clusterings are derived from
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the old ones. To take a simple example, suppose
we needed to cluster ten items (A, B, C,: : :, J)
into an arbitrary number of groups. In a simple
encoding, we might represent a clustering as
a vector of ten labels, independently chosen
from 1 to 10, in which the i th element gives the
group label of the i th item. Hence, the following
individual in our population of clusterings 2 3
5 5 1 5 7 3 2 7 would represent the following
grouping: (A, I) (B, H) (C, D, F) (E) (G, I). Given
such a representation, a typical genetic operator
might be to randomly change a single label in a
single parent. For example, we may choose the
fifth element in the above vector and change it
randomly to 7, effectively placing item E in the
same group as items G and I. Further notes about
operators for this and other encodings are given
in a special subsection below. Going back to the
example in Fig. 2, meanwhile, it is worth noting
that there are potentially five clusters, as the
group on the right can be perceived as a central
group of two items, surrounded by a single
backward-C-shaped group. The “backward-C”
cluster is an example that cannot be reliably
detected (as a distinct cluster from the group of
two items contained within it) with most standard
cluster analysis methods. Traditional approaches
typically incorporate the assumption that clusters
will be centered around a particular position, with
the likelihood of a point belonging to that cluster
falling monotonically with its distance from that
position. One of the strengths of evolutionary
clustering is that it provides the flexibility to work
effectively with arbitrary definitions of what may
constitute a valid cluster.

Objective Functions for Evolutionary
Clustering

It can be strongly argued that the clustering prob-
lem is inherently multiobjective, yet most meth-
ods employ only a single performance criterion
to optimize. In fact, there are at least three groups
of criteria commonly used (but usually one at
a time) in clustering (both evolutionary cluster-
ing and other methods). These are compactness,
connectedness, and spatial separation. When an

algorithm optimizes for compactness, the idea is
that clusters should consist of highly homoge-
neous data items only – that is, the distance (or
other measure of variation) between items in the
same cluster should be small. In contrast, if we
optimize the degree of connectedness, then we
are increasing the extent to which neighboring
data items should share the same cluster. This can
deal with arbitrarily shaped clusters, but can lack
robustness when there is little spatial separation
between clusters. Finally, spatial separation is
usually used as a criterion in combination with
compactness or with a measure of the balance of
cluster sizes.

In multiobjective clustering, the idea is to
explicitly explore the solutions that are trade-offs
between the conflicting criteria, exploiting the
fact that these trade-off solutions are often the
ones that most appeal as intuitively “correct”
solutions to a clustering problem. Handl and
Knowles (2007) introduced a multiobjective
evolutionary algorithm, MOCK, which treats
a clustering problem as a two-objective
problem, using measures of compactness and
connectedness for the two objectives. MOCK’s
multiobjective search process is based on the
PESA-II evolutionary multiobjective optimizer
(Corne et al. 2001). Following the use of
MOCK for a clustering problem, an intermediate
result (inherent in multiobjective optimization
methods) is a (possibly large) collection of
different clusterings. These will range from
clusterings that score very well on compactness
but poorly on connectedness through clusterings
that achieve excellent connectedness at the
expense of poor compactness. It is useful to note
that the number of clusters tends to increase
as we go from poor connectedness to high-
connectedness clusters. Arguably, in many
applications, such a collection of alternative
solutions is useful for the decision-maker.
Nevertheless, the MOCK approach incorporates
an automated model selection process that
attempts to choose an ideal clustering from
the discovered approximate Pareto front. This
process is oriented around the notion of
determining the “right” number of clusters and
makes use of Tibshirani et al. (2001) gap statistic
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(full details are in Handl and Knowles 2007).
Extensive comparison studies, using a wide
variety of clustering problems and comparing
with many alternative clustering methods,
show consistent performance advantages for
the MOCK’s approach. Recent work has
explored different objectives, encodings, and
model selection mechanisms for multiobjective
clustering, including the interpretation of the
approximation set as a clustering ensemble
(Handl and Knowles 2013).

Encodings and Operators for
Evolutionary Clustering

The encoding methods used in indirect
approaches to evolutionary clustering are
fairly straightforward, as they only require the
specification of the parameters (and, potentially,
initialization points) for the clustering method(s)
used. Arguably, the development of direct
approaches to evolutionary clustering is more
involved, as the choice of a suitable encoding
method is nontrivial and has been shown
to have significant impact on optimization
performance.

Encodings range from the straightforward rep-
resentation noted above (with the i th gene cod-
ing for the cluster membership of the i th data
item) to more complex representations, such as
matrix-based or permutation-based representa-
tions. Before providing a brief description of
other encodings, it is worth briefly examining a
well-known disadvantage of the simple encod-
ing. Given that they have a population, evolu-
tionary algorithms offer the opportunity to use
multi-parent genetic operators – that is, we can
design operators that produce a new candidate
clustering given two or more “parent” cluster-
ings. Such operators are neither mandatory nor
necessarily beneficial in evolutionary algorithms,
and there is much literature discussing their mer-
its and how this depends on the problem at
hand. However, they are often found helpful,
especially in cases where we can see some in-
tuitive merit in combining different aspects of
parent solutions, resulting in a new solution that

seems to have a chance at being good, but which
we would have been immensely unlikely to ob-
tain from single-parent operators given the cur-
rent population. In this context, we can see,
as follows, that the opposite seems to be the
case when we use standard multi-parent opera-
tors with the simple encoding. Suppose the fol-
lowing are both very good clusterings of ten
items:

Clustering 1: 1111122222
Clustering 2: 2222211111

Clearly, a good clustering of these items places
items 1–5 together, and items 6–10 together, in
separate groups. It is also clear, however, that
using a standard crossover operator between
these two parents (e.g., producing a child by
randomly choosing between clusterings for
each item in turn) will lead to a clustering that
mixes items from these two groups, perhaps
even combining them all into one group. The
main point is that a crossover operation destroys
the very relationships between the items that
underpinned the fitness of the parents. One of the
more prominent and influential representations
for clustering, incorporating a design for far
more effective multi-parent operators, was that
of Falkenauer’s “Grouping Genetic Algorithm,”
which also provides a general template for
the implementation of evolutionary algorithms
for grouping problems. The essential element
of Falkenauer’s method is that multi-parent
operators recombine entire groups rather than
item labels. For example, suppose we encode two
clusterings explicitly as follows:

Clustering 3: (A,I,B,H)(C,G)(D,E,F,J)
Clustering 4: (A,I,B,H)(C,D,J)(E,F,G)

A Falkenauer-style crossover operator works as
follows. First, we randomly choose some entire
groups from the first parent and some entire
groups from the second parent; the child in this
case might then be:

(A,I,B,H)(C,G)(E,F,G)
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in which the groups that come from the first
parent are underlined. Typically, we will now
have some repeated items; we remove the entire
groups that contain these items and came from
the first parent, in this case leaving us with:

(A,I,B,H)(E,F,G)

The final step is to add back the missing items,
placing them one by one into one of the existing
groups or perhaps forming one or more new
groups. The application in hand will often sug-
gest heuristics to use for this step. In clustering,
for example, we could make use of the mean
Euclidean distance from items in the groups so
far. Whatever the end result in this case, note
that the fact that A, I, B, and H were grouped
together in both parents will be preserved in the
child. Similarly, the E, F, G grouping is inherited
directly from a parent.

A more recent and effective approach to en-
coding a clustering is one first proposed in Park
and Song (1998) called a link-based encoding.
In this approach, the encoding is simply a list
of item indices and is interpreted as follows.
If the ith element in the permutation is j, then
items i and j are in the same group. So, for
example,

B C E E A E G C B G

represents the following grouping:

(A,B,C,D,E,H,I)(F,G,J)

Standard crossover operators may be used with
this encoding, causing (intuitively) a reasonable
degree of exploration of the space of possible
clusterings, yet preserving much of the essen-
tial “same-group” relationships between items
that were present in the parents. In Handl and
Knowles (2007) it is shown why this encod-
ing is effective compared with some alternatives.
We also briefly note other encodings that have
been prominent in the history of this subfield.

An early approach was that of Jones and Bel-
tramo, who introduced a “permutation with sep-
arators” encoding. In this approach, a cluster-
ing is encoded by a permutation of the items
to be clustered, with a number of separators
indicating cluster boundaries. For example, if
we have ten items to cluster (A–J) and use S
as the separator, the following is a candidate
clustering:

A I B H S C G S D E F J

representing the same grouping as that of “Clus-
tering 3” above. Jones and Beltramo offered a
variant of this encoding that is a cross between
the direct and indirect approaches. In their greedy
permutation encoding, a clustering is represented
by a permutation (with no separator characters),
with the following interpretation: the first k items
in the permutation become the centers of the first
k clusters. The remaining items, in the order they
appear, are added to whichever cluster is best
for that item according to the objective function
(clustering quality metric) in use.

Applications for Evolutionary
Clustering

Recent work on evolutionary clustering has
focused on applications of evolu- tionary
clustering to data-mining problems in a variety of
disciplines, including market segmentation (by
Ying, Sudha, Lusch, and Brusco) and social
network analysis (by Pizutti). As mentioned
above, evolutionary clustering brings key
advantages in terms of its accuracy, but,
possibly, its most important benefit lies in the
flexibility of the approach. The capability to
consider and explore trade-offs with respect
to multiple clustering objectives opens up
new opportu- nities for data integration,
particularly in the context of exploratory
analytics in applications that involve diverse,
noisy (and sometimes poorly understood) data
sources.
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Definition

Evolutionary computation (EC) is a field in com-
putational intelligence that takes its inspiration
from nature to develop methods that resolve
continuous optimization and combinatorial
optimization problems. When it comes to
economics, it is the area of research that involves
the use of EC techniques, also subclassified
as evolutionary algorithms (EAs), cultural
algorithms, and self-organization algorithms,
among others, in order to approach topics in
economic science. The algorithms, defined
as generic population-based metaheuristic
optimization algorithms, are developed on the
basis of the concept of biological evolution and
use iterative processes such as reproduction,
mutation, recombination, and selection. Some
of these methods, such as genetic algorithms
(GAs), genetic programming (GP), evolutionary
programming (EP), estimation of distribution
algorithms (EDA), evolutionary strategies (ESs),
memetic algorithms, harmony search, and
artificial life, have been studied and applied in
computer science for more than 50 years. In
mainstream economics, even though we can track
the early application of GAs in game theory to
as long ago as 30 years, the adoption of these
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methods has been slow. This area of knowledge
is different from the field of evolutionary
economics, which does not necessarily apply
EC techniques to the study of economic
problems. The use of EC in economics pursues
different aims. One is to overcome some of the
limitations of classical economic models and
to loosen some of the strong assumptions such
models make.

Motivation and Background

EC techniques, among many other machine-
learning techniques, have proven to be quite
flexible and powerful tools in many fields and
disciplines, such as computational linguistics,
computational chemistry, and computational
biology. Economics-affiliated fields are by no
means the exception for the widespread use
of these evolutionary-inspired methods. In
addition to the undeniable necessity of computing
in almost every aspect of our modern lives,
numerous problems in economics possess an
algorithmic nature. Economists should consider
computational complexity to be an important
analytical tool due to the fact that some of such
problems belong to the class of NP-complete
(The NP-complete computational complexity
class is a subset of harder problems within the
NP computational class, which is the set of all the
decision problems which can be solved using a
nondeterministic Turing machine in polynomial
time (Papadimitriou 1994).) problems. This
having been said, EC has been intensively
used as an alternative approach to analytical
methods used to tackle numerous NP-complete
problems with considerable success, mainly
in the areas of game theory, econometrics,
and agent-based economic modeling. Game
theory is a branch of applied mathematics that
attempts to model an individual’s strategic
behavior. The first study considered to establish
the fundamentals of the field is the book
Theory of Games and Economic Behavior (John
von and Oskar 1944). The idea behind this
theory is that the success of an individual’s
decisions depends on the decisions of others.

Whereas originally, the aim of the theory was
to study competition, in which one agent does
better at another expense (zero-sum games),
now it has been extended to the study of a
wider class of interactions among individuals.
Furthermore, it is used extensively in economics,
biology, and political science, among other
disciplines.

The first work in economics (The first
such work approached a classic game known
as the prisoner’s dilemma.) that involved the
use of EC dates to the 1980s. In Robert
and Hamilton (1981) and Robert (1987) the
authors used GAs to derive strategies for the
Iterated Prisoner’s Dilemma (IPD). From then
on, EC techniques in economics were used in
areas such as macroeconomics, econometrics,
game theory, auctions, learning, and agent-
based models. There is even a school of
thought in economics known as evolutionary
economics (See, for example, Ulrich (2008)
for an introduction.) in which the approach to
the study of economics involves concepts in
evolution but does not necessarily rely on EC
techniques.

Econometrics is a field within the wider area
of economics which involves the use of statistics
and its tools to measure relationships postulated
by economic theory (William 2003). In particular,
it is applied to macroeconomic analysis to make
out the relationships between the aggregated vari-
ables that explain broad sectors of an economy.
One of the first applications of GP to economet-
rics was made by the creator of GP himself in
John (1992).

Regarding agent-based computational eco-
nomics, this field can be thought of as a branch of
a wider-area, agent-based modeling (Wooldridge
2002). The field of agent-based modeling is not
restricted to economics. It has been applied
to social sciences in general (Robert 2003), to
some classical and not so classical problems in
computer science, and in some other disciplines.
Axelrod provides an account of his experience
using agent-based methodology for several
problems, and he suggests that agent-based
modeling can be seen as a bridge between
disciplines. Axelrod and Tesfatsion provide a
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good guide to the literature relevant to agent-
based modeling in Robert and Leigh (2006). In
Shu-Heng (2007) there is a thorough introduction
to agents in economics and finance. In this
work, Chen conceives of the agents not just
as economic agents but also as computational
intelligent units.

Structure of the Evolutionary
Computation in Economics

The main areas addressed by EC in economics
are game theory, econometrics and economic
models, and agent-based economic modeling. In
game theory, a well-defined mathematical object,
the game, consists of a set of players and a
set of strategies (decisions) available to those
players. In addition, for each combination of
strategies, specification of payoffs is provided.
The aim of traditional applications of game the-
ory was to find a Nash equilibrium, a solution
concept, in which each player of the game adopts
a strategy that is unlikely to be changed. This
solution concept was named after John Nash,
whose work was published in the early 1950s
(John 1950). Nevertheless, it took almost 20 years
to fully realize what a powerful tool Nash had
created. Nowadays, game theory is one of the
best established theories in economics, and it
has been used extensively to model interactions
among economic agents. However, games typi-
cally have many Nash equilibria, and one key
assumption is that the agents behave in a rational
way. In more realistic games, the equilibrium
selection problem does not have an easy solution.
Human behavior observed in real life, indeed,
is frequently irrational. Given these constraints,
evolutionary game theory was proposed as an
application of the mathematical theory of games
to biological contexts. In this field, Maynard
Smith is considered to be the first to define
the concept of an evolutionary stable strategy in
John Maynard (1972). Furthermore, the possibil-
ity of using computer modeling as an extension
of game theory was first explored in Robert
and Hamilton (1981). Since then, computer sci-
ence has been used in traditional game theory

problems, like the strategic behavior of agents
in auctions, auction mechanism design, etc. By
providing approximate solutions to such complex
problems, this approach can be useful where
analytical solutions have not been found. For
instance, the iterative prisoner’s dilemma is one
of the games most studied by researchers from
computer science (Robert 1987). The prisoner’s
dilemma is a classic game that consists of the
decision-making process for two prisoners who
can choose to cooperate or defect from a group.
In the case that the two prisoners choose to
cooperate, they get a payoff of three each. In the
case that both choose to defect, they get a payoff
of one each, and in the case that one decides
to defect and the other to cooperate, the former
gets a payoff of five and the later a payoff of
zero. In equilibrium, both players decide to defect
despite the fact that it would be better for them to
cooperate.

Game theory is one of the most important
areas of economics because it has applications to
many other fields, such as corporate decision-
making, microeconomics, market modeling,
public policy analysis, and environmental
systems. We can find more applications of
EC to game theory than IPD. For example,
other work related to game theory and EC is
that done by John and Engle-Warnick (2001),
which deals with the well-known two-player,
repeated ultimatum game. In this work they
used GP as a means of inferring the strategies
that were played by subjects in economic
decision-making experiments. Other research
related to game theory includes the duopoly
and oligopoly games (Shu-Heng and Ni 2000).
References regarding cooperation, coalition,
and coordination are also frequent and usually
driven by EC techniques (Vriend 1995). In 2006,
the authors applied GP to find strategies for
sequential bargaining procedure and confirmed
that equilibria can be approximated by GP. This
provides an opportunity to find approximate
solutions to more complex situations for
which theoretical solutions have yet to be
found.

Regarding econometrics, in Adriana and
Alexandr (2001) the authors use GAs and
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simulated annealing (SA) for econometric
modeling; they found that the performance
of the evolutionary algorithms (EAs) is better
than the performance of traditional gradient
techniques on the specific models in which
they performed the comparison. Finally,
Ralf Östermark (1999) uses a hybrid GA
in several ill-conditioned econometric and
mathematical optimization problems with good
results.

In addition to the use of EC in econometrics,
some classical economic models like the cobweb
model and exchange-rate models have been ap-
proached with EC techniques. For instance, in
Jasmina (1994) and Shu-Heng and Chia-Hsuan
(1996), in the former work, the author uses GAs
to approach the cobweb model, whereas in the
latter the authors use GP. Furthermore, Arifovic
explores the use of GAs in foreign exchange mar-
kets in Jasmina (1996). The GA mechanism elab-
orated in such works developed decision rules
that were used to determine the composition of
agents’ portfolios in a foreign exchange market.
Arifovic made two observations rarely seen in the
standard overlapping generations (OLG) model
with two currencies. First, she noted that the re-
turns and exchange rates were generated endoge-
nously and, second, that the models’ equilibrium
dynamics were not stable and showed bounded
oscillations (the theoretical model implies a con-
stant exchange rate).

The use of GAs in economic modeling is not
restricted to the abovementioned works. In James
et al. (1995), the authors studied a version of the
growth model in which physical capital is accu-
mulated in a standard form, but human capital
accumulation is subject to increasing returns. In
their model, the agents make two decisions when
they are young: how much to save by renting
physical capital to the companies and how much
to invest in training. Returns on training depend
on the average level of human capital in the
economy. The authors introduce agents’ learning
by means of GAs. In 1990, Marimon develops
an economic model in which the agents adapt by
means of a GA.

The final approach is agent-based computa-
tional models built with EAs for applications in

economics (ACEs). In ACEs, one of the main
goals is to explain the macro-dynamics of an
economy by means of the micro-interactions of
the economic agents. This approach to the study
of an economy has been called a bottom-up ap-
proach in contrast to more traditional approaches.
An additional purpose of ACEs is to handle real-
world issues, something now possible due to
technological advances in computational tools.

Nevertheless, to achieve a realistic represen-
tation of the agent in a model allows us to start
with a critical revision of the assumptions behind
classical economic theory. One of the most im-
portant concepts in this context is rationality. It
is at the core of most economic models. It is fre-
quently assumed that economic agents behave in
a fully rational way. Unfortunately, it is not clear
what this assumption holds, especially in view
of irrational behavior observed during recurrent
financial crises.

Herbert A. Simon is probably the best known
scientist to claim that “decision-making” under
uncertainty is not a fully rational process. He
developed his theory based on the concept of
bounded rationality (Herbert 1957). He was one
of the pioneers in the field of artificial intelligence
(AI), as well as a highly respected psychologist
and economist. Later, in Brian (1991), the author
made important contributions to the development
of agents with bounded rationality using com-
putational tools. Some more recent ideas about
rationality from a computer scientist’s point of
view are found in Edward (2008).

Some other common assumptions behind
classical economic theory are that the participants
of the model have homogeneous preferences and
they interact globally (Robert 2000). Departing
from the assumption of full rationality and
homogeneous expectations, the horizon and
the design issues vary widely. The modeling
of the learning behavior of the agents is a central
part of the research agenda in computational
economics. Regarding the agents’ learning
process, Lucas’ definition for adaptive behavior
from the economic point of view is of extreme
importance (Robert 1986). There are many
useful techniques to implement this adaptive
learning. The application of genetic algorithms
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(GAs) in James and John (1999) and genetic
programming (GP) in Serafin and Edward (2009)
are good examples. GP has been previously
described as a suitable way to model economic
learning in Bruce (1999). In Thomas (2006), the
author provides us a summary of the available
options to model agent behavior and learning in
economics.

With the use of programming languages, the
agent-based approach allows us to represent ex-
plicitly agents with bounded rationality and het-
erogeneous preferences. Given a specific social
structure, the simulation of the interaction among
agents is the strength and heart of agent-based
modeling (ABM). Nowadays ABM is a promis-
ing area of research, which has opened the way to
social scientists to look for new insights in resolv-
ing important real-world issues. Considered the
third way of doing science (Robert 2003), mod-
eling the behavior of the autonomous decision-
making entities allows researchers to simulate
the emergence of certain phenomena in order
to gain better understanding of the object of
study (Robert 2000). In this sense ACE, de-
fined as the computational study of economic
processes modeled as dynamic systems of inter-
acting agents (Leigh 2006), is a growing area
inside the field of agent-based modeling. ACE
research is developing rapidly. By using machine-
learning techniques, researchers model the agents
as software programs able to make autonomous
decisions. Consequently, the interactions among
the individuals at the microlevel give rise to
regularities at the macrolevel (globally). The in-
tention is to observe the emerging self-organizing
process for a certain period of time, in order
to study the presence of patterns or the lack of
them. Currently, the study of this self-organizing
capability is one of the most active areas of ACE
research. EAs have been used for the modeling
of the agents’ learning in multi-agent simula-
tions. In economics, it is possible to find very
different approaches and topics. The following
is a small selection from a large body of litera-
ture:

Electricity Markets (Massoud 2002) (Learning
Classifier System)

Foreign Exchange Markets (Jasmina 1994;
Kiyoshi and Kazuhiro 2001) Genetic Algorithms

Payment Card Markets (Biliana et al. 2011)
(Population Based Incremental Learning)

Retail Petrol Markets (Heppenstall et al. 2007)
(Genetic Algorithms)

Stock Markets (Brian et al. 1997) (Learning
Classifier Systems) and;

(Serafin and Edward 2009) (GP)
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Mexico
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Definition

Evolutionary computation (EC) in finance is an
area of research and knowledge which involves
the use of EC techniques in order to approach top-
ics in finance. This area of knowledge is similar
to EC in economics; in fact, the areas frequently
overlap in some of the topics they approach.
The application of EC in finance pursues two
main purposes: first, to overcome the limitations
of some theoretical models, also departing from
some of the assumptions made in those mod-
els, and, second, to innovate in this extremely
competitive area of research, given the powerful
economic incentives to do so.

EC techniques have been widely used in a
variety of topics in finance. Among the most rel-
evant we find: financial forecasting, algorithmic
and automatic trading, option pricing, portfolio
optimization, artificial financial markets, credit
rating, credit scoring, bankruptcy prediction, and
filtering techniques.

The views expressed here are those of the authors and
do not represent the views of the Mexican central bank.
The authors are grateful with Alberto Romero Aranda
and Dorothy Walton for their valuable comments on
this entry.

Motivation and Background

Evolutionary computation (EC) is a field in ma-
chine learning (ML) in which the techniques
developed apply the principle of evolution in dif-
ferent ways. Among the many techniques which
have been used in financial applications, one can
find genetic algorithms (GAs), genetic program-
ming (GP), learning classifier systems (LCSs),
population-based incremental learning (PBIL),
grammatical evolution (GE), evolutionary strate-
gies (ESs), memetic algorithms (MAs), and evo-
lutionary nearest neighbor classifier algorithm
(ENPC), among many others. In addition, many
of the above mentioned techniques are used in
combination or as meta-techniques on top of
other machine-learning tools. In many financial
markets, competition is at the center of everyday
activities undertaken by individuals and compa-
nies. As a consequence, given this fierce com-
petition and the necessity for innovation, it is
natural to find numerous problems in finance
being approached by existing EC techniques. For
example, in stock markets, individual and institu-
tional investors try to beat the market in order to
make more profits than other market participants.
Coming up with novel algorithms or techniques
is crucial to maintaining their performance and
status in relation to competitors.

This area of research has been given many
different names, including computational finance
and computational intelligence in finance, among
others. Research in this area is still evolving.
Therefore, it is difficult to define the field clearly
or to establish its limits. Moreover, nowadays it
is almost impossible to provide a full account of
all the relevant work that involves any form of
EC in finance. It is also hard to organize the vast
amount of human knowledge implicit in the field.
The number of specialized journals, meetings,
and books is indeed very large and getting larger.
Chen (2002a), Chen and Wang (2004), and Chen
et al. (2007) exemplify important research in this
dynamic field.

Computing in finance is an almost unavoid-
able tool, from Monte Carlo simulation to com-
puter intensive methods used to price complex
derivatives. Furthermore, some of the most crit-
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ical processes in finance make heavy use of
computers. Computational finance is a frequently
mentioned term, sometimes associated with fi-
nancial engineering. However, in this context we
refer to computational finance as the use of non-
conventional computational techniques, like EC
or other machine-learning techniques, to tackle
problems in finance. See, for example, Tsang
and Martinez-Jaramillo (2004) for a good intro-
duction to the field. Additionally, Chen (2002b),
Brabazon and O’Neill (2008), and Brabazon and
O’Neill (2009) illustrate relevant works in the
field.

Financial Forecasting and
Algorithmic and Automatic Trading

In recent years, computers have shown them-
selves to be a powerful tool in financial appli-
cations. For that reason, many machine-learning
techniques have been applied to financial prob-
lems. Financial forecasting is one of the most
important fields in the area of computational
finance (Tsang and Martinez-Jaramillo 2004). EC
has been used to solve a great variety of financial
forecasting problems, such as prediction of stock
prices changes and their volatility, forecasting in
foreign exchange markets, and more. Let us intro-
duce some of the most important research in the
financial forecasting area. This does not pretend
to be either an extensive or detailed survey of
literature in the field. The objective is just to
illustrate the use of EC in financial forecasting
applications.

Machine-learning classifiers, like other fore-
casting techniques, extend past experiences into
the future. The aim is to analyze past data in order
to identify patterns in the interest of creating a
model or a set of rules to predict future events.
In particular, EC techniques have some charac-
teristics that make them useful for financial fore-
casting. For example, evolutionary techniques are
able to produce interpretable solutions. This char-
acteristic is especially important for predictions,
since the main goals of classification are to (1)
generate an accurate classification model that
should be able to predict unseen cases and (2)

discover the predictive structure of a problem
(Breiman et al. 1984).

Models which help to understand the struc-
tural patterns in data provide information that can
be useful for recognizing the variables’ interac-
tions. There are classification models that have
good predictive power. However, these models
provide a poor representation of the solution
(take, e.g., the artificial neural networks). Since
EC techniques provide not just good predictions
but interpretable solutions, they have been used
in financial problems to acquire knowledge of the
event to predict. For example, Tsang et al. (2004)
trained a GP using past data from the financial
stock markets to predict price movements of at
least r % within a period of at most n time units.
The attributes used to train the GP were indicators
from technical analysis. Due to the possibility of
interpreting the solution, the authors were able
to analyze the most successful indicators in the
result. In fact, some researchers have used EC in
order to discover new financial indicators. This
include Allen and Karjalainen (1999), who made
use of a GP system to infer technical trading rules
from past prices. The algorithm was applied to
the S&P 500. Bhattacharyya et al. (2002) used
GP to discover trading decision models from
high-frequency foreign exchange (FX) market
data.

In other related works, Bhattacharyya et al.
(2002) used GA for mining financial time
series to identify patterns, with the aim of
discovering trading decision models. Potvin
et al. (2004) applied GP to automatically
generate short-term trading rules on the stock
markets. The authors used historical pricing and
transaction volume data reported for 14 Canadian
companies from the Toronto Stock Exchange
market. Another approach called grammatical
evolution (GE) (Brabazon and O’Neill 2004)
was applied to discover new technical trading
rules, which can be used to trade on foreign
exchange markets. In that approach, each of the
evolved programs represents a market trading
system.

Additionally, EC techniques are able to gen-
erate a set of solutions for a single problem.
This characteristic has been used to obtain a set
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of results with the aim of applying the most
suitable solution to the particular problem. For in-
stance, Lipinski (2004) analyzed high-frequency
data. The independent variables were composed
by 350 expert rules and observations of stock
price quotations and order books recorded from
the Paris Stock Exchange. In that model, stock
market trading rules were combined into stock
market trading experts, which defined the trad-
ing expertise. The author used a simple GA, a
population-based incremental learning (PBIL), a
compact genetic algorithm (CGA), and an ex-
tended compact genetic algorithm (ECGA) to
discover optimal trading experts in a specific situ-
ation. The author argues that the optimal solution
depends on the specific situation in the stock mar-
ket, which varies with time. Thus, optimal trading
experts must be rebuilt. EC plays an important
role in learning and continual adaptation to the
changing environment.

Taking advantage of the EC’s ability to
generate multiple solutions, Garcia-Almanza
and Tsang (2008) proposed an approach, called
Evolving Comprehensible Rules (ECR), to
discover patterns in financial data sets to detect
investment opportunities. ECR was designed
to classify the minority class in unbalanced
environments, which is particularly useful in
financial forecasting given that very often the
number of profitable opportunities is scarce.
That approach offers a range of solutions to
suit an investor’s risk guidelines. Thus, the
user can choose the best trade-off between
misclassification and false alarm costs according
to the investor’s requirements. The approach
proposed by Ghandar et al. (2008) was designed
to generate trading rules. The authors imple-
mented an adaptive computational intelligent
system by using an evolutionary algorithm and
a fuzzy logic rule-based representation. The
data used to train the system was composed
just of volume and price. The authors’ objective
was to create a system to generate rules to buy
recommendations in dynamic market conditions.
An analysis of the results was provided by
applying the system for portfolio construction
to historical data for companies listed on the
MSCI Europe Index from 1990 to 2005. The

results showed that their approach was able to
generate trading rules that beat traditional fixed
rule-based strategies, such as price momentum
and alpha portfolios, and the approach also beat
the market index.

Given that EC can be used as an optimiza-
tion technique, EC techniques have been com-
bined with other approaches. For example, Chen
et al. (1999) used a genetic algorithm to de-
termine the number of input variables and the
number of hidden layers in an NN for forecasting
Dollar/Deutsche mark foreign exchange rates.
Chen and Lu (1999) used GP to optimize a NN.
That approach is called evolutionary neural trees
(ENTs). The objective was to forecast the high-
frequency stock returns of the Heng Seng stock
index. Schoreels et al. (2004) investigated the
effectiveness of an agent-based trading system.
The system employs a simple GA to optimize
the trading decisions for every agent; the knowl-
edge is based on a range of technical indicators
generating trading signals. In Dempster et al.
(2001) the authors aim to detect buy and sell
signals in the FX markets. The authors analyze
and compare the performance of a GP combined
with a reinforcement learning (RL) system to
a simple linear program (LP) characterizing a
Markov decision process (MDP) and a heuristic
in high-frequency (intraday) FX trading. The au-
thors consider eight popular technical indicators
used by intraday FX traders based on simple
trend indicators such as moving averages as well
as more complex rules. From experimental re-
sults, the authors found that all methods were
able to create significant in-sample and out-of-
sample profits when transaction costs are zero.
The GP approach generated profits for nonzero
transaction costs, although none of the methods
produce significant profits at realistic transaction
costs.

As is evident, EC techniques allow the repre-
sentation of solutions using different structures,
such as decision trees (Potvin et al. 2004), finite-
state automata, graphs, grammar (Brabazon and
O’Neill 2004), networks, and binary vectors (Lip-
inski 2004), among many others. This character-
istic lets us choose the best representation for the
problem.
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Portfolio Optimization
Portfolio optimization is an all-important field
in finance. The portfolio selection problem can
be described in a simple way as the problem of
choosing the assets and the proportion of such
assets in an investor’s wealth in an effort to
maximize profits and minimize risk.

As the name suggests, portfolio optimization
is an optimization problem and EC has proven to
be very useful in difficult (sometimes intractable)
optimization problems. In Maringer (2005), the
author explains extensively the portfolio opti-
mization problem and the possible heuristic ap-
proaches, including Ant Systems (AS), memetic
algorithms (MAs), genetic algorithms (GAs), and
evolutionary strategies (ESs). For an extensive
review from a financial economic perspective, see
Brandt (2009).

Being a multi-objective optimization problem,
EC provides plenty of opportunities to approach
the portfolio optimization problem. For example,
Hassan and Clack (2008) uses a multi-objective
GP to approach this problem. In Diosan (2005),
the author compares different multi-objective
evolutionary algorithms for the portfolio
optimization problem.

The number of papers on portfolio optimiza-
tion using machine-learning techniques is large.
Streichert et al. (2004), Doerner et al. (2004), and
Maringer (2006) are some significant works on
portfolio optimization that use some form of evo-
lutionary computation or artificial intelligence.

Multi-objective evolutionary optimization is
an important field within EC, and the portfolio
optimization problem is not the only application
in finance which can be approached. In Coello
(2006), the author surveys the literature on multi-
objective optimization in economics and finance.

Financial Markets
This section introduces the applications of EC in
artificial financial markets. Due to the extensive-
ness of the literature, only a general overview will
be provided. For a more complete and detailed
guide to the applications of EC techniques in ar-
tificial financial markets, see Martinez-Jaramillo
and Tsang (2009a).

Financial markets are essential for financial
systems. Such markets represent one of the most
efficient ways to allocate financial resources
to companies. However, bubbles and crashes
are recurrent phenomena which have enormous
repercussions for the global economy. Indeed,
nowadays we can see as never before that
one single crash in one market can lead to a
worldwide slump on most of the other stock
markets. Moreover, crisis in financial markets
can affect other aspects of the (real) economy, for
example, interest rates, inflation, unemployment,
etc. This, in turn, can cause even more instability
on the financial markets.

Financial markets are very important in our
lives, whether we like it or not. For example,
everyone suffers the consequences of a stock
market crash such as the international market
crash in 1987. Moreover, this phenomena (mar-
ket crashes) occurs with an unpleasantly higher
frequency than predicted by standard economic
theory. Important references on rare disasters and
asset markets are Barro (2009), Gabaix (2012),
and Gourio (2008). One of the most important
research issues in financial markets is an ex-
planation for the process that determines asset
prices and, as a result, rates of return. There are
many models that can be used to explain such
processes, such as the capital asset pricing model
(CAPM) (Sharpe 1964), arbitrage pricing theory
(APT) (Ross 1976), or Black-Scholes option pric-
ing (Black and Scholes 1973).

Nevertheless, financial markets are very
complex to analyze due to the wide variety
of participants and their ever-changing nature.
The most common approach to study them is
by means of analytical models. However, such
models have some limitations which, in turn,
have led to the search for alternative methods
to approach them. Agent-based computational
economics (ACE) (Tesfatsion 2002) and
computational finance (Tsang and Martinez-
Jaramillo 2004) have risen as alternative ways to
overcome some of the problems of the analytical
models.

Agent-based financial markets with varying
characteristics have been developed for the study
of such markets in the last decade, since the
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influential Santa Fe Artificial Market (The Santa
Fe Artificial Stock Market is a simulated stock
market developed at the Santa Fe Institute. The
market was developed by a team of highly
regarded researchers, among them is John
Holland, the inventor of genetic algorithms
Holland 1975.) (Arthur et al. 1997). Some of
them differ from the original Santa Fe market in
the type of agents used, such as Chen and Yeh
(2001), Gode and Sunder (1992), Yang (2002),
and Martinez-Jaramillo and Tsang (2009b), and
in market mechanisms, such as Bak et al. (1997),
Gode and Sunder (1992), and Yang (2002). Other
markets borrow ideas from statistical mechanics,
such as Levy et al. (1994) and Lux (1998). Some
important research has been done modeling stock
markets inspired by the minority game (The
minority game was first proposed by Yi-Cheng
Zhang and Damien Challet (1997) inspired by
the El Farol bar problem introduced by Brian
Arthur 1994.) like Challet et al. (2000). There are
financially simulated markets in which several
stocks are traded, such as in Cincotti et al. (2005).
However, criticism of this approach centers
on the problem of calibration, the numerous
parameters needed for the simulation program,
and the complexity of simulation, among other
problems. The contradictions between existing
theory and the empirical properties of stock
market returns are the main driving force for
some researchers to develop and use different
approaches to study financial markets. An
additional aspect of the study of financial markets
is the complexity of the analytical models
of such markets. Prior to the development of
some new simulation techniques, very important
simplifying (unrealistic) assumptions had to be
made in order to allow for the tractability of the
theoretical models.

Artificial intelligence and, in particular, EC
have been used in the past to study financial and
economic problems. However, the development
of a well-established community known as the
agent-based computational economics commu-
nity facilitates the study of phenomena in finan-
cial markets that was not previously possible.
Within this community, a vast number of studies
and approaches are being produced in order to

solve or gain more understanding of economic
problems.

The influential study (Arthur et al. 1997) and
previously the development of the concept of
bounded rationality in Simon (1982) and Arthur
(1991) changed the way in which we conceive
and model economic agents. This change in
conception dramatically altered the possibilities
for studying some economic phenomena and, in
particular, financial markets. The new models
of economic agents have changed. There is no
longer any need for fully rational representative
agents or for homogeneous expectations
and information symmetry. Furthermore, the
development of artificially adapted agents
(Holland and Miller 1991) provides a way
forward for economic science to study economic
systems.

Although they all differ in the sorts of as-
sumptions made, methodology, and tools, these
markets share the same essence: the macrobe-
havior of such markets (usually the price) should
emerge endogenously as a result of the micro-
interactions of the (heterogeneous) market par-
ticipants. This approach is in opposition to tradi-
tional techniques used in economics and finance.
Moreover, in Lux and Ausloos (2002) the authors
declare:

Unfortunately, standard modelling practices in eco-
nomics have rather tried to avoid heterogeneity and
interaction of agents as far as possible. Instead, one
often restricted attention to the thorough theoretical
analysis of the decisions of one (or few) represen-
tative agents.

The representative agent is a common, yet
very strong, assumption in the modeling of finan-
cial markets. This concept has been the source of
controversy and strong criticism. For example, in
Kirman (1992), the author criticizes the represen-
tative individual approach in economics.

In order to understand the approaches in ar-
tificial (simulated) financial markets, it is useful
to describe the different types of markets on
the basis of the framework proposed in LeBaron
(2001). In this study, LeBaron identifies the key
design issues present in every artificial financial
market and describes some of the most important
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studies up to then. In LeBaron (2006), LeBaron
surveys again the literature existing until then.
The main design issues identified in LeBaron
(2001) are:

• Agents
• Market mechanisms
• Assets
• Learning
• Calibration
• Time

In addition to describing the different
approaches in artificial financial markets by using
the above-described framework, there is a fairly
detailed extension of it in Grothmann (2002) that
is worth looking at. In this study, the basic design
issues proposed in LeBaron (2001) are extended
and given more detail.

Option Pricing
Derivatives (See Hull (2008) for an introduction
to derivatives.) are financial instruments whose
main purpose is to hedge risk. However, deriva-
tives can also be used to speculate with very
negative effects on the financial health of com-
panies, as we all know now. Derivative markets
have seen significant expansion in recent years.
Futures, forwards, swaps, and options are the
best known types of derivatives. Option pricing
is an extremely important task in finance. The
Black-Scholes model for option pricing is the
reference analytical model since it has an impor-
tant theoretical framework behind it. However, in
practice, prices deviate from the prices obtained
with this model. One possible reason for the
departure is the assumptions being made in the
model (the assumption of constant volatility and
the assumption that prices follow a geometric
Brownian motion). This is why GP was used as
an alternative to perform option pricing in Chen
et al. (1998), Chidambaran et al. (2002), Fan et al.
(2007), and Yin et al. (2007). Interestingly, not
only has GP been used to perform option pricing,
but also ant colony optimization (ACO) has been
explored to approach this important problem in
finance (Kumar et al. 2008).

Credit Rating, Credit Scoring, and
Bankruptcy Prediction
Credit rating and credit scoring are two examples
of financial problems that have been traditionally
approached through statistical analysis. A credit
rating is an estimate of a corporation’s worthiness
to be given a credit and is generally expressed
in terms of an ordinal value. Credit scoring is
a technique used to express the potential risk of
lending money to a given consumer in terms of a
probability measure. Both techniques are similar
in their ends but applied to different domains.

The seminal work in the field of credit scoring
is that of Altman (1968), who proposed the ap-
plication of linear discriminant analysis (Fisher
1936) to a set of measurements known as fi-
nancial ratios, i.e., indicators of a corporation’s
financial health obtained from the corporation’s
financial statements. One of the main applications
of Altman’s method, also known as the Z-score, is
bankruptcy prediction. Understandably, a series
of improvements have been achieved by means
of applying more powerful classifiers, such as
decision trees, genetic programming, neural net-
works, and support vector machines, among oth-
ers. References that apply such techniques or con-
duct a review of the literature on their application
are Atiya (2001), Sung et al. (1999), West (2000),
Ong et al. (2005), Shin and Lee (2002), Martens
et al. (2007), and Huang et al. (2007).

Another method to evaluate credit worthiness
is that provided by specialized agencies. The so-
called credit ratings are nothing more than ordinal
values expressing the financial history, current as-
sets, and liabilities of entities such as individuals,
organizations, or even sovereign countries, such
that they represent the likelihood of default on
any type of debt. Although each rating agency
uses its own methodology and scale and these
are usually not disclosed, in the academic realm,
nevertheless, several superseding techniques to
ordinal regression have been applied. For ex-
ample, Huang et al. (2004), Dutta and Shekhar
(1988), Paleologo et al. (2009), and Zhou et al.
(2006) have proposed computationally oriented
methods to solve this problem.

Related to bankruptcy prediction, NNs have
been the standard selection apart from the tradi-
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tional statistical methods (discriminant analysis,
logit and probit models). Quintana et al. (2008)
explore the feasibility of using the evolution-
ary nearest neighbor classifier (ENPC) algorithm
suggested by Fernández and Isasi (2004) in the
domain of early bankruptcy prediction. They as-
sess its performance comparing it to six alter-
natives; their results suggest that this algorithm
might be considered as a good choice. Another
relevant study is Turku et al. (1996) in which
the authors compare discriminant analysis, logit
analysis, and GAs for the selection of the inde-
pendent variables used for the prediction model.

Filtering Techniques
Many real-life problems involve the estimation
of unknown data from observed (probably
noisy) values. Direct estimation methods like
the Markov chain Monte Carlo (Andrieu et al.
2003), the sequential Monte Carlo (Doucet et al.
2001), and the particle filter (Gordon et al. 1993)
methods are very useful for this task. In addition
to the many applications of filtering techniques,
filters are also very important tools in finance
and economics. Their applications in the fields of
macroeconomics, microeconomics, and finance
are numerous. To enumerate them all is beyond
the scope of this entry.

Among the many variations of filtering
techniques, the Kalman filter (Kalman 1960),
the extended Kalman filter (Jazwinski 1970), the
unscented Kalman filter (Julier and Uhlmann
1997), the particle filter (Gordon et al. 1993),
and the hidden Markov model (Baum et al. 1970)
are some of those which practitioners use most
widely in finance. In economics the Hodrick-
Prescott filter (Hodrick and Prescott 1997) is one
of the most widely used.

These methods have benefited from the ap-
plication of EC techniques to optimize over the
parameter space and to improve the performance
of the methods in particular applications. For
example, in O’Sullivan (2007), the authors op-
timize over the parameter space by using an
evolutionary optimizer known as differential evo-
lution (DE) for a Cox, Ingersoll, and Ross term-
structure model. The authors in Rezaei et al.
(2008) make use of EC techniques to improve

the performance of a Kalman filter by means of
GAs. In Kumar et al. (2010) the authors tune an
extended Kalman filter using different EAs.

In an interesting application of EC techniques
in the tuning of Kalman filters, (Huo et al.
2014) determines the initial parameterization
of a Kalman filter with a GA, and the
parameterization is adaptively updated by means
of a Fuzzy Inference System (FIS).
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Motivation and Background

The Internet and social networks are key factors
that have strongly affected market competition,
as they provide customers with more choice in
products, services, and prices. For instance, well-
established electronic commerce companies such
as Amazon, Booking, TripAdvisor, and others
provide rankings of their products based on past
customer reviews. In the same vein, social net-
works are a powerful tool to spread good or
bad comments about products or services, and
they can directly influence potential clients, since
the members of the same social network usually
share interests and have similar economic levels.
For those reasons, marketing teams have focused
efforts on creating intelligent business strategies.
New artificial intelligence approaches to mar-
keting have emerged, especially evolutionary al-
gorithms used to solve a variety of marketing
problems such as the design of attractive prod-
ucts and services for consumers, the analysis of
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populations or social networks to target potential
clients, the design of new marketing strategies,
and more. Nowadays, a huge amount of data on
almost any kind of human activity has been stored
in structured and unstructured forms. The data is
a gold mine, the analysis of which can provide
useful information for competing more efficiently
in the market. For that reason, machine learning
techniques have been used to discover useful
patterns for creating user-friendly interfaces and
new market segments, among other aims. Many
evolutionary computational techniques have been
applied to marketing problems in order to obtain
a commercial advantage over competitors.

Applications

Marketing is a very dynamic area, as it evolves
alongside technology and aims to keep promoted
products alive in the market.

The Design of New Products
One of the goals of marketing is to discover
products of superior value and quality. To achieve
this goal in Fruchter et al. (2006), the authors
propose to design a product line rather than a
single product. The authors argue that by offering
a product line, the manufacturer can customize
products according to the needs of different mar-
ket niches, which would result in higher customer
satisfaction and more buyers. Nevertheless, as
the time required by the amount of data on
customer preferences increases, the optimization
process of the product line becomes very hard
to manage. For that reason, the authors applied
the use of genetic algorithms (GAs) to solve
the problem heuristically, and the performance
of each solution was valued according to the
manufacturer’s profits. In a similar way, Liu and
Ong (2008) used a GA to solve a marketing
segmentation problem. In this case, the evolution-
ary algorithm was applied to reach all customers
effectively.

In the approach proposed by Sundar Balakr-
ishnan and Jacob (1996), a GA was used to opti-
mize for customer preference in product design.
The authors followed a three-step methodology

in order to create a new product. First, the set of
attributes subject to adjustment, such as color or
shape, was determined. Second, customer prefer-
ences were collected. Finally, a GA was applied
to select those attributes that satisfy a larger
number of customers.

Targeting Potential Clients
Bhattacharyya (2000) proposed a GA in combi-
nation with a case-based reasoning (CBR) system
to predict customer purchasing behavior. The
objective was to identify potential customers for
a specific product or service. This approach was
developed and tested with real cases by direct
marketing from a worldwide insurance company.
An optimization mechanism was integrated into
the classification system in order to select those
customers most likely to acquire an insurance.

Advertisement
Advertisement is an important area of market-
ing. It is defined as the activity of attracting
public attention to a product or business. Since
personalized advertisement improves marketing
efficiency, Kwon and Moon (2001) proposed a
personalized prediction model to be used in email
marketing. A circuit model combined with ge-
netic programs (GPs) was proposed to analyze
customer information. The result was a set of
recommended rules. It was tested over a general
mass marketing. According to the authors, the
model showed a significant improvement in sales.
In another approach, Naik et al. (1998) used a
GA combined with a Kalman filter procedure to
determine the best media schedule for advertise-
ment, which at the time was constrained by a
budget. This approach evaluated a large number
of alternative media schedules to decide upon
an optimal media planning solution. The Internet
has become very popular and convenient for of-
fering and purchasing, since many products and
services can be found easily in a very short time,
increasing competition among providers. Since
these kinds of sales do not directly involve human
interaction, it is essential to design new and better
strategies to personalize Web pages. For instance,
Abraham and Ramos (2003) proposed an ant
clustering algorithm to discover Web usage pat-
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terns and a linear genetic programming to analyze
visitor behavior. The objective was to discover
useful knowledge from user interactions with the
Web. The knowledge was used to design adaptive
Web sites, business and support services, person-
alization, network traffic flow analysis, and more.

According to Scanlon (2008), the company
Staples used a software called Affinnova to re-
design and relaunch its paper brand. Affinnova
was designed by Waltham, and it uses a GA
to simulate the evolution of consumer markets
where strong products survive and weak ones die
out. The strongest possible design emerges after
several generations. A panel of 750 consumers
selected their favorite options from each gener-
ation. The software analyzed customer choices
over multiple generations to identify preference
patterns. Surveys included consumer profiles that
contain basic demographic information, customer
beliefs, and consumer habits. Clients can also
segment results and understand how different de-
signs appeal to different consumers. Affinnova’s
research also helped to identify the imagery and
messaging that would most appeal to consumers.

To summarize, EC has been used to solve a
wide variety of marketing problems. Given that
ECs are global optimization methods, they can
be applied to forecasting and data mining. In
this respect, they have great potential for use in
the field of marketing. EC techniques allow for
the extraction and analysis of customer patterns
among large amounts of data, and forecasts of
purchasing tendencies, among many other aims.
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Abstract

Representation of input data has an essen-
tial influence on the performance of machine
learning systems. Evolutionary algorithms can
be used to transform data representation by
selecting some of the existing features (evolu-
tionary feature selection) or constructing new
features from the existing ones (evolutionary
feature construction). This entry provides the
rationale for both these approaches and sys-
tematizes the research and applications in this
area.

Synonyms

EFSC; Evolutionary constructive induction; Evo-
lutionary feature selection; Evolutionary feature
synthesis; Genetic attribute construction; Genetic
feature selection

Definition

Evolutionary feature selection and construction
(EFSC) is a bio-inspired methodology for explicit
modification of input data of a learning system.
It uses evolutionary computation (EC) to con-
struct a mapping from the original data repre-
sentation space onto a secondary representation
space. In evolutionary feature selection (EFS),
that mapping consists in dropping off some of the
features (� attributes) from the original represen-
tation so that the dimensionality of the resulting
representation space is not greater than that of the
original space. In evolutionary feature construc-
tion (EFC), an evolutionary algorithm creates
(synthesizes) new features (derived attributes)
that complement and/or replace the original ones.

Therefore, EFS may be considered as a special
case of EFC.

A typical EFSC algorithm maintains a pop-
ulation of solutions, each of them encoding a
specific mapping. The best mapping found in
evolutionary search becomes the data preproces-
sor for the classifier. Usually, EFSC takes place in
the training phase only, and the evolved mapping
does not undergo further changes in the testing
phase.

Though EFSC is technically a form of data
preprocessing (see �Data Preparation), some of
its variants may as well involve an internal in-
ductive process in the fitness function. Also, EFS
and EFC may be considered as special cases of
� Feature Selection and �Feature Construction,
respectively. EFC is also partially inspired by
�Constructive Induction.

Motivation and Background

Real-world machine-learning problems often in-
volve a multitude of attributes, which individ-
ually have low informative content and cannot
provide satisfactory performance of the learn-
ing system. This applies in particular to data-
abundant domains like image analysis and signal
processing. When faced with many low-quality
attributes, induction algorithms tend to build clas-
sifiers that perform poorly in terms of classifica-
tion accuracy. This problem may be alleviated by
removing some features from the original repre-
sentation space ( feature selection) or introducing
new features defined as informative expressions
(arithmetic, logical, etc.) built of multiple at-
tributes ( feature construction).

Many learning algorithms lack the ability
of discovering intricate dependencies between
attributes, which is a necessary precondition for
successful feature selection and construction.
This gap is filled out by EFSC, which uses
EC to get rid of superfluous attributes and
to construct new features. Benefits of EFSC
are similar to those of general � Feature
Selection and � Feature Construction and include
reduced dimensionality of the input space, better
predictive accuracy of the learning system, faster
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training and querying, and better readability of
the acquired knowledge.

Feature selection and feature construction may
be conveniently formulated as an optimization
problem with each solution corresponding to a
particular feature subset (for feature selection) or
to a particular definition of new features (for fea-
ture construction). The number of such solutions
grows exponentially with the number of orig-
inal features, rendering the exact search meth-
ods infeasible. EC techniques are particularly
well-suited to heuristically search these solution
spaces. They do not make any assumptions about
the optimized function (in contrast to, e.g., the
branch-and-bound algorithm) and perform global
heuristic search, typically finding high-quality
solutions in acceptable time. These virtues are
important in EFSC, where the objective function
depends on the training data, and it is difficult to
predict its properties.

Another strength of EC is easy tailoring to a
given task. For instance, a subset of features in
EFS is usually encoded as a bit-string solution in
genetic algorithm (GA), where a bit at a particular
position determines the selection or exclusion
of the corresponding feature (Vafaie and Imam
1994; Yang and Honavar 1998). In EFC, def-
initions of constructed features may be conve-
niently represented as genetic programming (GP)
expressions (Rizki et al. 2002; Teller and Veloso

1997). Also, an evolutionary algorithm naturally
produces many solutions. This makes it a conve-
nient tool for, e.g., parallel construction of multi-
ple representations (feature subsets) that may be
subsequently used in a compound classifier.

Structure of Learning System

Typically, EFSC uses a variant of evolutionary
algorithm (usually GA for EFS or genetic pro-
gramming for EFC) to maintain a population of
solutions (individuals), each of them encoding a
particular subset of features (for EFS) or defi-
nition of new features (for EFC). Solutions un-
dergo mutations, recombinations, and selection.
Selective pressure is exerted by a fitness function
that estimates a solution’s quality by analyzing
selected properties of the secondary representa-
tion space (see Fig. 1). This usually involves three
steps:

1. Decoding of solution (retrieving the mapping
from the encoded solution).

2. Transforming the training set into the sec-
ondary representation space according to the
mapping.

3. Estimating the quality of the secondary rep-
resentation space, which becomes a solution’s
fitness.

Evolutionary Feature Selection and Construction, Fig. 1 Evolutionary feature selection and construction
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The quality measures employed in step 3 may
be grouped into two categories. Filter approach
relies on the measures that characterize the de-
sired properties of training data in the secondary
space (e.g., class separability), abstracting from
any particular induction algorithm. Wrapper ap-
proach estimates the predictive ability in the
secondary representation space by a specific in-
duction algorithm, usually by partitioning the
training set into several subsets and performing
multiple train-and-test experiments (e.g., cross-
validation). The wrapper approach, though com-
putationally more expensive, takes into account
the inductive and representational biases of the
employed induction algorithm and thanks to that
often proves superior in terms of classification
accuracy.

The result of a typical EFSC procedure is
the best solution found in an evolutionary run,
i.e., the most fit representation mapping. This
mapping serves as a preprocessor of input data
and is subsequently used to induce the final clas-
sifier from the training set. The trained classi-
fier together with the preprocessing provided by
the mapping is the final outcome of the EFSC-
enriched training process and may be used for
classification of new examples.

EFS is the simplest variant of EFSC. In this
case, a solution encodes the indices of attributes
that should remain in the resulting secondary
representation. This leads to straightforward en-
coding characteristic for GA, with each solution
being a bit string as long as the number of
original attributes. EFS may be thus easily im-
plemented using off-shelf EA software packages.
More sophisticated EFS approaches have been
also considered, like evolving GP individuals that
rank or score features (Zhang and Rockett 2011).

Evolutionary feature weighting (EFW) is a
direct generalization of EFS, where the evolu-
tionary search weighs the features instead of
selecting them. Solutions in EFW are real-valued
vectors. EFW requires a wrapper fitness function
that can take attribute weights into account. In
Komosiński and Krawiec (2000), EFW has been
used with a nearest neighbor-based wrapper fit-
ness function to weigh features for a medical
diagnosing problem.

EFC usually employs genetic programming
to represent feature transformation. Each
GP solution encodes an expression tree that
uses the original attributes and numeric
constants as leaves (terminals) and functions
from a predefined vocabulary as internal tree
nodes (nonterminals). The value returned
by such an expression when applied to an
example is interpreted as the new feature.
Function set usually encompasses simple
arithmetics and elementary functions. The
evolved features replace or extend the original
ones. If a single new feature is insufficient
to provide satisfactory discriminative ability,
several GP trees can be encoded within each
solution.

EFC is particularly useful in image analy-
sis and computer vision tasks, which naturally
tend to involve large numbers of attributes. In
such contexts, an EFC algorithm evolves GP
solutions that construct higher-level features from
low-level image attributes (Krawiec and Bhanu
2005) or implement advanced feature detectors
(Howard et al. 2006; Puente et al. 2009). Alterna-
tively, solutions encode chains of operations that
process the entire image globally according to the
goal specified by the fitness function. Other rep-
resentations of EFC solutions have been studied
as well in GP, including, e.g., graphs (Teller and
Veloso 1997) or sequences of operations (Bhanu
et al. 2005).

It has been demonstrated that an EFC task may
be decomposed into several semi-independent
subtasks using cooperative coevolution, a variant
of evolutionary algorithm that maintains several
populations hosting individuals that encode
partial solutions (Krawiec and Bhanu 2005).
Other work demonstrates that fragments of
GP expressions encoding feature definitions
may help to discover good features in other
learning tasks (Jaśkowski, Krawiec, and Wieloch
2007).

Applications

Real-world applications of EFSC are numerous
and include medical and technical diagnosing,
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genetics, detection of intrusions in computer net-
works, air quality forecasting, brain-computer
interfaces, seismography, robotics, face recogni-
tion, handwriting recognition, vehicle detection
in visual, infrared, and radar modality, image
segmentation, satellite imaging, and stereovision.
EFS has been built into several machine learn-
ing and neural network software packages (e.g.,
WEKA, Statistica). A ready-to-use implementa-
tion of EFC is available in RapidMiner; alterna-
tively, it can be facilitated with the existing EC
frameworks like ECJ (http://cs.gmu.edu/�eclab/
projects/ecj/). More examples of real-world ap-
plications of EFSC may be found in Langdon
et al. (2009).

Future Directions

Nowadays, EFC becomes more and more uni-
fied with GP-based classification and regression,
where solutions are expected to perform the com-
plete classification or regression task rather than
to implement only feature definitions. Recently,
EFSC has also witnessed the growing popularity
of the multiobjective evolutionary techniques. In
EFC, it is now common to include the complexity
of feature definition (reflected by program size
in GP) as an additional objective alongside the
accuracy of classification (Neshatian and Zhang
2011). This is intended to reduce the so-called
program bloat (the excessive growth of programs
that often pesters GP systems) and so curtail over-
fitting, because complex features are less likely
to generalize well. Other studies involve more
“helper objectives,” like Bayes error estimate
(Olague and Trujillo 2012) or Fisher criterion.
Domain-specific measures are also occasionally
employed in this character. For instance, in a
computer vision study (Arnaldo et al. 2014),
interest point detectors are evolved using three
objectives that capture detector’s stability, spatial
dispersion of detected points, and their informa-
tion content.

The online genetic programming bibliography
(Langdon et al. 2009) covers most of the
works in evolutionary feature selection and
construction. A concise review of contemporary

GP research involving feature construction for
image analysis and object detection may be
found in Krawiec et al. (2007). A systematization
of different evolutionary approaches to feature
construction is also presented in Bhanu et al.
(2005).
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Evolutionary Fuzzy Systems
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Definition

An evolutionary fuzzy system is a hybrid au-
tomatic learning approximation that integrates
� fuzzy systems with � evolutionary algorithms,
with the objective of combining the optimization
and learning abilities of evolutionary algorithms
together with the capabilities of fuzzy systems
to deal with approximate knowledge. Evolution-
ary fuzzy systems allow the optimization of the
knowledge provided by the expert in terms of
linguistic variables and fuzzy rules, the genera-
tion of some of the components of fuzzy systems
based on the partial information provided by the
expert, and in some cases even the generation of
fuzzy systems without expert information. Since
many evolutionary fuzzy systems are based on
the use of genetic algorithms, they are also known
as genetic fuzzy systems. However, many models
presented in the scientific literature also use ge-
netic programming, evolutionary programming,
or evolution strategies, making the term evo-
lutionary fuzzy systems more adequate. Highly
related is the concept of evolutionary neuro-fuzzy
systems, where the main difference is that the rep-
resentation is based on neural networks. Recently,
the related concept of evolving fuzzy systems has
been introduced, where the main objective is to
apply evolutionary techniques to the design of
fuzzy systems that are adequate to the control
of nonstationary processes, mainly on real-time
applications.

Motivation and Background

One of the most interesting properties of a fuzzy
system is its ability to represent expert knowl-
edge by using linguistic terms of everyday com-
mon use, allowing the description of uncertainty,
vagueness, and imprecision in the expert knowl-
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edge. The linguistic terms, which are imprecise
by their own nature, are, however, defined very
precisely by using fuzzy theory concepts.

The usual approach to build a fuzzy system
consists in the definition of the membership
functions and the rule base in terms of expert
knowledge. Compared with other rule-based
approaches, the process of extracting knowledge
from experts and representing it formally is
simpler, since linguistic terms can be defined
to match the terms used by the experts. In this
way, rules are defined establishing relations
between the input and output variables using
these linguistic terms. However, even if there is
a clear advantage of using the terms defined as
� fuzzy sets, the knowledge extraction process
is still difficult and time consuming, usually
requiring a very difficult manual fine tuning
process. It should be noted that no automatic
framework to determine the parameters of the
components of the fuzzy system exists yet,
generating the need for methods that provide
adaptability and learning ability for the design of
fuzzy systems.

Since it is very easy to map a fuzzy system
into a feedforward neural network structure, it is
not surprising that many methods based on neural
network learning have been proposed to automate
the fuzzy system building process (Hoffmann
2001; Karr and Gentry 1993). The combined
approach provides advantages from both worlds:
the low level learning and computational power
of neural networks is joined together with the
high level human-like thinking and reasoning of
fuzzy systems. However, this approach can still
face some problems, such as the potential risk
of its learning algorithms to get trapped in local
minimum, the possible need for restriction of
the membership functions to follow some mathe-
matical properties (like differentiability), and the
difficulties of inserting or extracting knowledge
in some approaches, where the obtained linguistic
terms can exhibit a poor semantic due to the usual
black-box processing of many neural networks
models.

Evolutionary algorithms provide a set of
properties that make them ideal candidates for
the optimization and design of fuzzy systems,

and in fact, there are many methods that
have been proposed in the literature to design
or tune the different components of fuzzy
systems. Evolutionary systems exhibit robust
performance and global search characteristics,
while requiring only a simple quality measure
from the environment. There is no need for
gradient information or input/output patterns.
Other strengths come from its parallel nature:
instead of selecting a single solution and refining
it, in most evolutionary methods, a set of
alternative solutions is considered and evolved
in parallel.

Structure of the Learning System

The learning process defined by an evolutionary
fuzzy system starts from the knowledge provided
by the expert, which can include all or just some
of the components of the knowledge base of a
fuzzy system. The evolutionary algorithm that
is behind this learning approach can perform
the optimization of all the parameters that are
provided by the expert, plus the generation of the
missing components of the fuzzy system based on
the partial specifications provided by the expert.

The model shown in Fig. 1 presents a gen-
eral architecture of the learning and optimization
process in evolutionary fuzzy systems. An ini-
tial knowledge base KBi is built based on the
knowledge provided by the expert. Note that KBi

could be (and usually is) a incompletely speci-
fied knowledge base. Based on this initial expert
knowledge, the evolutionary algorithm creates a
population of individuals, which can represent
complete fuzzy systems or just a few components
of them. The evaluation of the individuals is
performed by creating a temporary knowledge
base KBt , which can also be complete or not. By
using the information in KBt , combined with the
initial knowledge base KBi , the individuals are
evaluated by determining the error in the approx-
imation of patterns if there are examples avail-
able, computing the reinforcement signal (typical
situation in control problems), or in any other
way depending on the problem characteristics
(Babuska 1998; Cordon et al. 2004). The result

http://dx.doi.org/10.1007/978-1-4899-7687-1_321
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of the evaluation is typically a single fitness mea-
sure, which provides the necessary information
for the selection and the variational operators
of the evolutionary algorithm. These operators,
which can be standard or defined specifically for
the problem, combine and mute the individuals
based on the fitness value and their specific pa-
rameters. The process is repeated till a predefined
criterion is fulfilled, obtaining as a final result the
fuzzy system FS.

Depending on the information provided by
the expert, the learning or optimization process
performed by the evolutionary fuzzy system can
be applied to the database, the fuzzy rule base
or both of them. These three approaches are
described below.

Optimization and Learning of the Fuzzy
Database
In this case, it is assumed that the fuzzy rule
base is known and provided by the expert. The
initial knowledge base KBi contains the fuzzy
rule base, and if provided, the initial approxi-
mation of the parameters of antecedents and/or
consequents. Since the expert has to define the
rule base, and in order to do that, he/she needs to
know the labels of the linguistic terms used for
the antecedents and consequents, it is usual that
the number of fuzzy sets is predefined and kept
constant during the evolution.

The representation of the individuals contains
only the parameters of the fuzzy sets associated
to the input linguistic variables, and the fuzzy sets
associated to the output variables in the case of a
Mamdani fuzzy system, or the associated lineal
approximators in the case of a Takagi-Sugeno

fuzzy system. Other parameters could also be
specified if necessary (scale factors, etc.). Usu-
ally, individuals are represented as a fixed length
string that is defined as the concatenation of all
parameters of the input and output fuzzy sets or
approximators. Of course, the representation for
the fuzzy sets depends on their particular class:
for example, three values are required to repre-
sent triangular fuzzy sets, four values to represent
trapezoidal fuzzy sets, and two for sigmoidal
fuzzy sets. As an example, Fig. 2 shows that three
values are necessary to represent a triangular
fuzzy set: the center, the left width, and the right
width, labeled as c, ol, and od, respectively. From
this example, it can be seen that 15 values are
required in order to represent the 5 fuzzy sets
associated to this single linguistic variable.

However, it is usual to apply fuzzy logic con-
cepts (Zadeh 1988) to simplify the representa-
tion, with the implied reduction in the search
space, and also, to en- hance the interpretabil-
ity (Casillas et al. 2003) of the resulting fuzzy
system. As an example, it is desirable that the
partition associated to a linguistic variable fulfills
the completeness property, which establishes that
for each point in the input domain, the summation
of the membership values of all membership
functions must be equal to 1. It is also desirable
that the position of the fuzzy sets remains always
the same during the evolution, for example in
Fig. 2, it means that it is expected that the fuzzy
set L1 will be always at the left of L2, L2 always
at the left of L3, and so on. A representation that
considers these two requirements can be defined
by representing the whole partition specifying the
distance from the center of a fuzzy set to the
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evaluation of individuals in
the (a) Michigan and (b)
Pittsburgh approaches

Population

KBi

ba

Population

KBi

center of the next one (Hoffmann 2001). The rep-
resentation of five fuzzy sets then requires only
five values (labeled in the figure as 	i /, which re-
duces largely the search space and keeps the order
of fuzzy sets, while fulfilling the completeness
property. Most implementations use real values
to represent the parameters.

The operators of the evolutionary algorithm
can be standard operators or can be defined
specifically based on the selected representation.
As an example, operators that modify the width
of fuzzy sets, shift the centers, or perform other
operations on the fuzzy set representations, linear
approximators, or other parameters have been
defined in the scientific literature.

Optimization and Learning of the Fuzzy
Rule Base
In this case, the fuzzy rule base is not known,
or only an initial approximation to it is provided.
The other parameters of the knowledge base are
known and provided by the expert. The three
most usual approximations are

1. Michigan approximation: Each individual of
the population codifies a single rule (Bonarini
1996), which means that each individual by
itself cannot represent a complete solution to

the problem. The knowledge base for evalu-
ation KBt is built based on the information
defined in KBi and the rules defined by all
the individuals from the population combined
together (see Fig. 3a). Rules are penalized or
rewarded based on its performance during the
evaluation. The fuzzy system is then built
through the competition of a set of indepen-
dent rules that have to be learned to collabo-
rate during the evolution.

2. Pittsburgh approximation: Each individual
represents the complete rule base. If dynamic
creation and removal of rules is allowed,
it is necessary to define special variational
operators to deal with variable length
individuals. Compared with the Michigan
approach the evaluation is simpler, since by
just combining each individual with KBi it
is possible to build KBt for evaluation (see
Fig. 3b). However, usually, the search space
is larger when compared with the Michigan
approach.

3. Iterative approximation: Each individual cod-
ifies a single rule (Cordon et al. 2001) like
in the Michigan approach. However, in each
iteration of the algorithm, only the best rule
is selected discarding all the others. This se-
lection is based by considering the properties
of the rule, such as for example, its covering
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degree on a set of examples. The algorithm
is then competitive and not cooperative. It
is usually necessary to apply algorithms to
refine the fuzzy rule set obtained at the end
of the evolutionary process, which can include
operations, such as for example, the removal
of similar rules.

The representation in all of these approxima-
tions usually consists of individuals that contain
references to the fuzzy sets already defined in
KBi . The representation of each individual can
be a sequence of integers where each one is an
index to the fuzzy sets associated to the corre-
sponding linguistic variable. As an example, the
fuzzy rule base could be represented as a matrix
where each cell corresponds to the intersection
of the input fuzzy sets, containing the index of
the output fuzzy set associated to the rule. It is
also possible to represent the fuzzy rule base as
a decision table or simply as a list of rules. In
these last two cases, the representation can have
variable length, allowing to represent fuzzy rule
sets with variable size.

The fitness calculation depends on the se-
lected approximation. On a Pittsburgh approxi-
mation, the fitness corresponds to the evaluation
of the complete fuzzy system on the correspond-
ing problem. It is also possible to include in the
fitness calculation other factors, such as for ex-
ample, penalization for fuzzy rule bases that con-
tains many rules or fuzzy rules with superposed
application areas, etc. On a Michigan or Iterative
model, the fitness indicates the degree of ade-
quacy of the rule measured independently, con-
sidering also in the Michigan model its degree of
cooperation with the other rules in the population.

The definition of the variational operators de-
pends of course on the selected approximation.
If the representation allows it, standard operators
of crossover and mutation can be used. However,
it can be convenient (or necessary) to define
specific operators. As an example, variational
operators can consider factors such as the time
period since the rule has been used for the last
time, its overall contribution to the final result,
its performance when evaluated on the set of
examples, etc.

Optimization and Learning of the
Complete Knowledge Base
This case is a combination of the two models
described before. The knowledge base KBi con-
tains the initial approximation to the definition of
the antecedents and consequents, and the initial
approximation to the fuzzy rule base as provided
by the expert. Note that KBi can also be empty
if it is expected that the algorithm must gener-
ate all the parameters of the fuzzy system by
itself.

The representation of the individuals contains
all the parameters that define a knowledge base
in order to allow its learning or optimization.
The three most used representation schemes are
shown in Fig. 4. In the first scheme, each indi-
vidual contains the representation of all fuzzy
sets, and the representation of all fuzzy rules
using indexes to refer to the corresponding fuzzy
sets. In the second scheme, each individual is
structured as a set of rules, where each one spec-
ifies its own input and output fuzzy sets by di-
rectly including the parameters that define them.
The representation (a) is adequate for descriptive
fuzzy systems, since the rules contain references

cba

ant con

DB RB

Rules

KB

ant con ant con

Rule Rule

ant

Rule

con

Evolutionary Fuzzy Systems, Fig. 4 Representations
for the complete knowledge base adequate for (a) de-
scriptive and (b) approximative fuzzy systems in the

Pittsburgh approximation, and (c) representation of a sin-
gle independent rule adequate for Michigan and Iterative
approximations
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to the fuzzy sets used in their definition and can
be shared by all of them. The representation (b) is
adequate for approximative fuzzy systems, where
each rule defines its own fuzzy sets. These two
representations are adequate for the Pittsburgh
approximation, while the third one (c) is adequate
for the Michigan and the Iterative approximation.
Of course, there can be many variations of this
representations. For example, the input space
partition can be predefined or obtained through
fuzzy clustering algorithms, and if this partition
is not expected to go under optimization, then it
is not necessary to include the parameters of the
input fuzzy sets in the representation.

Since this model is a combination of the two
previous models, everything that was mentioned
before concerning the fitness function and the
variational operators also applies in this con-
text. However, the fact that all parameters of the
knowledge base are included in the representa-
tion allows to define more powerful variational
operators. As an example, it is possible to define
operators that decide the creation of new fuzzy
sets, the elimination of some of them, and at
the same time, the adaptation of the associated
fuzzy rules, when for example, it is detected
that there are areas in the input space that are
not well covered, many rules with superimposed
areas, etc. It is also possible to apply genetic
programming techniques (Pedrycz 2003), which
are usually used to modify the structure of the
fuzzy system, adding, removing, or combining
sections of the fuzzy system with the objective
of generating the most adequate structure.

Final Remarks
Clearly, the integration of fuzzy systems with
evolutionary algorithms allows to overcome the
limitations of each model considered indepen-
dently, obtaining a powerful hybrid approach,
which allows to learn and optimize fuzzy systems
based on expert knowledge. Previous sections
have discussed in general terms the evolutionary
learning model. However, in order to get more
details about particular implementations, it is
recommended to read the publications referenced
in the next section. The presentation from Karr
and Gentry (1993) is interesting, not only because

it provides a nice introduction and application of
evolutionary fuzzy systems, but it has the addi-
tional value of being one of the first publications
in the area. The presentation of Hoffmann (2001)
is an excellent introduction to evolutionary fuzzy
systems used for control applications. The other
publications present details on evolutionary fuzzy
systems (Babuska 1998; Bonarini 1996; Cordon
et al. 2001; Juang et al. 2000; Lee and Takagi
1993), including representations based on neu-
ral networks (Hoffmann 2001; Karr and Gen-
try 1993), evolution strategies (Alpaydtn et al.
2002), genetic programming (Pedrycz 2003) and
applications of evolutionary fuzzy systems to the
domain of recurrent fuzzy systems (Kavka et al.
2005). The paper by Cordon et al. (2004) pro-
vides a very comprehensive reference list about
the main developments on evolutionary fuzzy
systems.

It should be stressed that a very important
aspect to consider in the definition of evolution-
ary fuzzy systems is the interpretability of the
resulting fuzzy systems (Casillas et al. 2003).
Even if it has been mentioned that it is possible
to design an evolutionary fuzzy system without
expert information, by allowing the evolution-
ary algorithm to define all the components of
the knowledge base by itself, it must always be
considered that the interpretability of the results
is essential. Designing a system that solves the
problem, but that works as a black box, can be ad-
equate in other contexts, but it is not desirable at
all in the context of evolutionary fuzzy systems.
An evolutionary fuzzy system algorithm must
provide the means so that the expert knowledge
defined in fuzzy terms can be considered and
used appropriately during the evolution, and also,
it must guarantee an adequate interpretability
degree of the resulting fuzzy system.
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Definition

Evolutionary algorithms are a family of algo-
rithms inspired by the workings of evolution by
natural selection, whose basic structure is to:

1. Produce an initial population of individuals,
these latter being candidate solutions to the
problem at hand.

2. Evaluate the fitness of each individual in ac-
cordance with the problem whose solution is
sought.

3. While termination condition not met do:
(a) Select fitter individuals for reproduction
(b) Recombine (crossover) individuals
(c) Mutate individuals
(d) Evaluate fitness of modified individuals

4. End while

Evolutionary games is the application of evo-
lutionary algorithms to the evolution of game-
playing strategies for various games, including
chess, backgammon, and Robocode.

Motivation and Background

Ever since the dawn of artificial intelligence in
the 1950s, games have been part and parcel of this
lively field. In 1957, a year after the Dartmouth
Conference that marked the official birth of AI,
Alex Bernstein designed a program for the IBM
704 that played two amateur games of chess.
In 1958, Allen Newell, J.C. Shaw, and Herbert
Simon introduced a more sophisticated chess
program (beaten in 35 moves by a 10-year-old
beginner in its last official game played in 1960).
Arthur L. Samuel of IBM spent much of the
1950s working on game-playing AI programs,
and by 1961, he had a checkers program that
could play at the master’s level. In 1961 and 1963,
Donald Michie described a simple trial-and-error
learning system for learning how to play tic-tac-
toe (or Noughts and Crosses) called MENACE
(for Matchbox Educable Noughts and Crosses
Engine). These are but examples of highly pop-
ular games that have been treated by AI re-
searchers since the field’s inception.

Why study games? This question was an-
swered by Susan L. Epstein, who wrote:

There are two principal reasons to continue to
do research on games: : : First, human fascination
with game playing is long-standing and pervasive.
Anthropologists have cataloged popular games in
almost every culture: : : Games intrigue us because
they address important cognitive functions: : : The
second reason to continue game-playing research
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is that some difficult games remain to be won,
games that people play very well but computers do
not. These games clarify what our current approach
lacks. They set challenges for us to meet, and they
promise ample rewards (Epstein 1999).

Studying games may thus advance our knowl-
edge in both cognition and artificial intelligence,
and, last but not least, games possess a compet-
itive angle which coincides with our human na-
ture, thus motivating both researcher and student
alike.

Even more strongly, Laird and van Lent pro-
claimed that:

: : : interactive computer games are the killer appli-
cation for human-level AI. They are the application
that will soon need human-level AI, and they can
provide the environments for research on the right
kinds of problems that lead to the type of the incre-
mental and integrative research needed to achieve
human-level AI (Laird and van Lent 2000).

Recently, evolutionary algorithms have proven
a powerful tool that can automatically “design”
successful game-playing strategies for complex
games (Azaria and Sipper 2005a,b; Hauptman
and Sipper 2005b, 2007a,b; Shichel et al. 2005;
Sipper et al. 2007).

Structure of the Learning System

Genetic Programming
Genetic programming is a subclass of evolu-
tionary algorithms, wherein a population of
individual programs is evolved, each program
comprising functions and terminals. The
functions are usually arithmetic and logic
operators that receive a number of arguments
as input and compute a result as output; the
terminals are zero-argument functions that serve
both as constants and as sensors, the latter being
a special type of function that queries the domain
environment.

The main mechanism behind genetic
programming is precisely that of a generic
evolutionary algorithm (Sipper 2002; Tettamanzi
and Tomassini 2001), namely, the repeated
cycling through four operations applied to the
entire population: evaluate-select-crossover-

mutate. Starting with an initial population of
randomly generated programs, each individual
is evaluated in the domain environment and
assigned a fitness value representing how well
the individual solves the problem at hand.
Being randomly generated, the first-generation
individuals usually exhibit poor performance.
However, some individuals are better than others,
that is, (as in nature) variability exists, and
through the mechanism of natural (or, in our
case, artificial) selection, these have a higher
probability of being selected to parent the next
generation. The size of the population is finite
and usually constant.

Specifically, first a genetic operator is chosen
at random; then, depending on the operator, one
or two individuals are selected from the current
population using a selection operator, one exam-
ple of which is tournament selection: Randomly
choose a small subset of individuals, and then
select the one with the best fitness. After the prob-
abilistic selection of better individuals, the cho-
sen genetic operator is used to construct the next
generation. The most common operators are:

• Reproduction (unary): Copy one individual to
the next generation with no modifications. The
main purpose of this operator is to preserve a
small number of good individuals.

• Crossover (binary): Randomly select an inter-
nal node in each of the two individuals and
swap the subtrees rooted at these nodes. An
example is shown in Fig. 1.

• Mutation (unary): Randomly select a node
from the tree, delete the subtree rooted at
that node, and then “grow” a new subtree
in its stead. An example is shown in Fig. 1
(the growth operator as well as crossover and
mutation are described in detail in Koza 1992).

The generic genetic programming flowchart
is shown in Fig. 2. When one wishes to employ
genetic programming, one needs to define the
following six desiderata:

1. Program architecture
2. Set of terminals
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Evolutionary Games, Fig. 1 Genetic operators in gen-
etic programming. LISP programs are depicted as trees.
Crossover (top): Two subtrees (marked in bold) are
selected from the parents and swapped. Mutation (bot-

tom): A subtree (marked in bold) is selected from the
parent individual and removed. A new subtree is grown
instead

3. Set of functions
4. Fitness measure
5. Control parameters
6. Manner of designating result and terminating

run

Evolving Game-Playing Strategies
Recently, we have shown that complex and suc-
cessful game-playing strategies can be attained
via genetic programming. We focused on three
games (Azaria and Sipper 2005a,b; Hauptman
and Sipper 2005b, 2007a,b; Shichel et al. 2005;
Sipper et al. 2007):

1. Backgammon. Evolves a full-fledged player
for the nondoubling-cube version of the
game (Azaria and Sipper 2005a,b; Sipper
et al. 2007).

2. Chess (endgames). Evolves a player able to
play endgames (Hauptman and Sipper 2005b,
2007a,b; Sipper et al. 2007). While endgames
typically contain but a few pieces, the problem
of evaluation is still hard, as the pieces are usu-
ally free to move all over the board, resulting
in complex game trees – both deep and with
high branching factors. Indeed, in the chess
lore, much has been said and written about
endgames.

3. Robocode. A simulation-based game in which
robotic tanks fight to destruction in a closed
arena (robocode.alphaworks.ibm.com). The
programmers implement their robots in the
Java programming language and can test
their creations either by using a graphical
environment in which battles are held or by
submitting them to a central Web site where

robocode.alphaworks.ibm.com
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Evolutionary Games, Fig. 2 Generic genetic program-
ming flowchart (based on Koza 1992). M is the population
size, and Gen is the generation counter. The termination

criterion can be the completion of a fixed number of
generations or the discovery of a good-enough individual

online tournaments regularly take place.
Our goal here has been to evolve Robocode
players able to rank high in the international
league (Shichel et al. 2005; Sipper et al.
2007).

A strategy for a given player in a game is a
way of specifying which choice the player is to
make at every point in the game from the set
of allowable choices at that point, given all the
information that is available to the player at that
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point (Koza 1992). The problem of discovering a
strategy for playing a game can be viewed as one
of seeking a computer program. Depending on
the game, the program might take as input the en-
tire history of past moves or just the current state
of the game. The desired program then produces
the next move as output. For some games, one
might evolve a complete strategy that addresses
every situation tackled. This proved to work well
with Robocode, which is a dynamic game, with
relatively few parameters and little need for past
history.

In a two-player game, such as chess or
backgammon, players move in turn, each trying
to win against the opponent according to specific
rules (Hong et al. 2001). The course of the game
may be modeled using a structure known as an
adversarial game tree (or simply game tree), in
which nodes are the positions in the game and
edges are the moves. By convention, the two
players are denoted as MAX and MIN, where
MAX is the player who moves first. Thus, all
nodes at odd-numbered tree levels are game
positions where MAX moves next (labeled MAX
nodes). Similarly, nodes on even levels are called
MIN nodes and represent positions in which MIN
(opponent) moves next.

The complete game tree for a given game
is the tree starting at the initial position (the
root) and containing all possible moves (edges)
from each position. Terminal nodes represent
positions where the rules of the game determine
whether the result is a win, a draw, or a loss.
Although the game tree for the initial position
is an explicit representation of all possible paths
of the game, therefore theoretically containing
all the information needed to play perfectly, for
most (nontrivial) games, it is extremely large,
and constructing it is not feasible. For example,
the complete chess game tree consists of roughly
1043 nodes (Shannon 1950).

When the game tree is too large to be gen-
erated completely, only a partial tree (called a
search tree) is generated instead. This is accom-
plished by invoking a search algorithm, deciding
which nodes are to be developed at any given
time and when to terminate the search (typically
at nonterminal nodes due to time constraints).

During the search, some nodes are evaluated by
means of an evaluation function according to
given heuristics. This is done mostly at the leaves
of the tree. Furthermore, search can start from
any position and not just at the beginning of the
game.

Because we are searching for a winning strat-
egy, we need to find a good next move for the cur-
rent player, such that no matter what the opponent
does thereafter, the player’s chances of winning
the game are as high as possible. A well-known
method called the minimax search (Campbell and
Marsland 1983; Kaindl 1988) has traditionally
been used, and it forms the basis for most meth-
ods still in use today. This algorithm performs a
depth-first search (the depth is usually predeter-
mined), applying the evaluation function to the
leaves of the tree and propagating these values
upward according to the minimax principal: at
MAX nodes, select the maximal value and at
MIN nodes – the minimal value. The value is
ultimately propagated to the position from which
the search had started.

With games such as backgammon and chess,
one can couple a current-state evaluator (e.g.,
board evaluator) with a next-move generator.
One can then go on to create a minimax tree,
which consists of all possible moves, counter
moves, counter counter-moves, and so on;
for real-life games, such a tree’s size quickly
becomes prohibitive. The approach we used
with backgammon and chess is to derive a very
shallow, single-level tree and evolve “smart”
evaluation functions. Our artificial player is thus
created by combining an evolved board evaluator
with a simple program that generates all next-
move boards (such programs can easily be written
for backgammon and chess).

In what follows, we describe the definition of
the six items necessary in order to employ genetic
programming, as delineated in the previous sec-
tion: program architecture, set of terminals, set
of functions, fitness measure, control parameters,
and manner of designating result and terminating
run. Due to lack of space, we shall elaborate
upon one game – Robocode – and only sum-
marize the major results for backgammon and
chess.
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Example: Robocode

Program Architecture
A Robocode player is written as an event-driven
Java program. A main loop controls the tank
activities, which can be interrupted on various
occasions, called events. The program is limited
to four lines of code, as we were aiming for
the HaikuBot category, one of the divisions
of the international league with a four-line
code limit. The main loop contains one line
of code that directs the robot to start turning the
gun (and the mounted radar) to the right. This
insures that within the first gun cycle, an enemy
tank will be spotted by the radar, triggering a
ScannedRobotEvent. Within the code for this
event, three additional lines of code were added,
each controlling a single actuator and using a
single numerical input that was supplied by
a genetic programming-evolved subprogram.
The first line instructs the tank to move to a
distance specified by the first evolved argument.
The second line instructs the tank to turn to
an azimuth specified by the second evolved
argument. The third line instructs the gun (and
radar) to turn to an azimuth specified by the third
evolved argument (Fig. 3).

Terminal and Function Sets
We divided the terminals into three groups ac-
cording to their functionality (Shichel et al. 2005)
(Fig. 4):

1. Game-status indicators: A set of terminals that
provide real-time information on the game
status, such as last enemy azimuth, current
tank position, and energy levels.

2. Numerical constants: Two terminals, one pro-
viding the constant 0 and the other being
an ephemeral random constant (ERC). This
latter terminal is initialized to a random real
numerical value in the range [�1, 1] and does
not change during evolution.

3. Fire command: This special function is used to
curtail one line of code by not implementing
the fire actuator in a dedicated line.

Fitness Measure
We explored two different modes of learning:
using a fixed external opponent as teacher and
coevolution – letting the individuals play against
each other; the former proved better. However,
not just one but three external opponents were
used to measure performance; these adversaries
were downloaded from the HaikuBot league
(robocode.yajags.com). The fitness value of an
individual equals its average fractional score
(over three battles).

Control Parameters and Run Termination
The major evolutionary parameters (Koza
1992) were population size (256), generation
count (between 100 and 200), selection
method (tournament), reproduction proba-
bility (0), crossover probability (0.95), and
mutation probability (0.05). An evolutionary
run terminates when fitness is observed to level
off. Since the game is highly nondeterministic, a
“lucky” individual might attain a higher fitness
value than better overall individuals. In order to
obtain a more accurate measure for the evolved
players, we let each of them do battle for 100
rounds against 12 different adversaries (one at
a time). The results were used to extract the

Evolutionary Games,
Fig. 3 Robocode player’s
code layout (HaikuBot
division)

robocode.yajags.com
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Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y() Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative to the current player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC (Ephemeral Random Constant) in the range [–1,1]
Random() Returns a random real number in the range [–1,1]
Zero() Returns the constant 0

a

Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denominator non-zero, otherwise

return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return value of third argument,

else return value of fourth argument
IfPositive(F, F, F) If first argument is positive, return value of second argument, else return

value of third argument
Fire(F) If argument is positive, execute fire command with argument as fire-

power and return 1; otherwise, do nothing and return 0

b

Evolutionary Games, Fig. 4 Robocode representation. (a) Terminal set (b) Function set (F: Float)

top player – to be submitted to the international
league.

Results
We submitted our top player to the HaikuBot
division of the international league. At its
very first tournament, it came in third, later
climbing to first place of 28 (robocode.yajags.
com/20050625/haiku-1v1.html). All other 27
programs, defeated by our evolved strategy, were
written by humans. For more details on GP-

Robocode see Shichel et al. (2005) and Sipper et
al. (2007).

Backgammon and Chess: Major Results

Backgammon
We pitted our top evolved backgammon play-
ers against Pubeval, a free, public-domain board
evaluation function written by Tesauro. The pro-
gram – which plays well – has become the de
facto yardstick used by the growing commu-

robocode.yajags.com/20050625/haiku-1v1.html
robocode.yajags.com/20050625/haiku-1v1.html
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Evolutionary Games, Table 1 Percent of wins, advantages, and draws for the best GP-EndChess player in the
tournament against two top competitors

%Wins %Advs %Draws

Master 6.00 2.00 68.00

CRAFTY 2.00 4.00 72.00

nity of backgammon-playing program develop-
ers. Our top evolved player was able to attain a
win percentage of 62.4 % in a tournament against
Pubeval, about 10 % higher (!) than the previous
top method. Moreover, several evolved strategies
were able to surpass the 60 % mark, and most of
them outdid all previous works. For more details
on GP-Gammon, see Azaria and Sipper (2005a)
and Sipper et al. (2007).

Chess (Endgames)
We pitted our top evolved chess-endgame players
against two very strong external opponents: (1)
a program we wrote (“Master”) based upon con-
sultation with several high-ranking chess players
(the highest being Boris Gutkin, ELO 2400, In-
ternational Master) and (2) CRAFTY – a world-
class chess program, which finished second in
the 2004 World Computer Speed Chess Cham-
pionship (www.cs.biu.ac.il/games/). Speed chess
(“blitz”) involves a time limit per move, which
we imposed both on CRAFTY and on our play-
ers. Not only did we thus seek to evolve good
players, but ones who play well and fast. Results
are shown in Table 1. As can be seen, GP-
EndChess manages to hold its own, and even
wins, against these top players. For more details
on GP-EndChess, see Sipper et al. (2007) and
Hauptman and Sipper (2005b).

Deeper analysis of the strategies developed
(Hauptman and Sipper 2005a) revealed several
important shortcomings, most of which stemmed
from the fact that they used deep knowledge and
little search (typically, they developed only one
level of the search tree). Simply increasing the
search depth would not solve the problem, since
the evolved programs examine each board very
thoroughly, and scanning many boards would
increase time requirements prohibitively. And so
we turned to evolution to find an optimal way
to overcome this problem: How to add more

search at the expense of less knowledgeable (and
thus less time-consuming) node evaluators, while
attaining better performance. In Hauptman and
Sipper (2007b) we evolved the search algorithm
itself, focusing on the Mate-In-N problem: find a
key move such that even with the best possible
counterplays, the opponent cannot avoid being
mated in (or before) move N . We showed that
our evolved search algorithms successfully solve
several instances of the Mate-In-N problem, for
the hardest ones developing 47 % less game-tree
nodes than CRAFTY. Improvement is thus not
over the basic alpha-beta algorithm, but over a
world-class program using all standard enhance-
ments (Hauptman and Sipper 2007b).

Finally, in Hauptman and Sipper (2007a),
we examined a strong evolved chess-endgame
player, focusing on the player’s emergent
capabilities and tactics in the context of a chess
match. Using a number of methods, we analyzed
the evolved player’s building blocks and their
effect on play level. We concluded that evolution
has found combinations of building blocks that
are far from trivial and cannot be explained
through simple combination – thereby indicating
the possible emergence of complex strategies.
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�Evolutionary Algorithms
�Evolutionary Computation
�Evolutionary Computing
�Genetic Programming
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�Evolutionary Clustering

Evolutionary Kernel Learning

Christian Igel
Department of Computer Science, University of
Copenhagen, Copenhagen, Denmark

Definition

Evolutionary kernel learning stands for using
� evolutionary algorithms to design the � kernel
function for a � kernel method.

Motivation and Background

In kernel-based learning algorithms, the kernel
function implicitly defines the feature space in
which the algorithm operates. The kernel deter-
mines the scalar product and thereby the metric
in the feature space. Choosing the right kernel
function is crucial for the training accuracy and
generalization performance of the learning ma-
chine. The choice may also influence the runtime
and storage complexity during and after training.

The kernel is usually not adapted by the
kernel method itself; choosing it is a �model
selection problem. In practice, the kernel function
is selected from an a priori fixed class. When
a parameterized family of kernel functions is
considered, kernel adaptation reduces to finding
appropriate parameters. The most frequently used
method to determine these values is grid search.
In simple grid search, the parameters are varied
with a fixed step-size through a range of values,
and the performance of each combination is mea-
sured. Because of its computational complexity,

http://dx.doi.org/10.1007/978-1-4899-7687-1_86
http://dx.doi.org/10.1007/978-1-4899-7687-1_270
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_551
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grid search is only suitable for the adjustment
of a few parameters. Furthermore, the choice of
the discretization of the search space may be
crucial. Gradient-based approaches are perhaps
the most elaborate techniques for adapting real-
valued kernel parameters, see the articles by
Chapelle et al. (2002) and Glasmachers and
Igel (2005) and references therein. To use
these methods, however, the class of kernel
functions must have a differentiable structure.
Furthermore, score functions for assessing the
parameter performance that are not differentiable
and/or piecewise constant may cause problems.
Evolutionary kernel learning does not suffer
from these limitations. Additionally, it allows for
�multi-objective optimization (MOO) to address
several kernel design criteria.

Structure of Learning System

Canonical evolutionary kernel learning can be
described as an evolutionary algorithm (EA) in
which the individuals encode kernel functions,
see Fig. 1. These individuals are evaluated by
determining the task-specific performance of the
kernel they represent. Two special aspects must
be considered when designing an EA for kernel
learning. First, one must decide how to assess
the performance (i.e., the fitness) of a particular
kernel. That is, model selection criteria have to
be defined depending on the problem at hand.
Second, one must also specify the subset of pos-
sible kernel functions to be searched by the EA.
This leads to the questions of how to encode the
kernels and which variation operators to employ.

Assessing Fitness: Model Selection Criteria
The following presents some performance in-
dices that have been considered for evolutionary

kernel learning. They can be used individually
or in linear combination for single-objective opti-
mization. In MOO several of these criteria can be
used as different objectives.

It is important to note that, although many
of these measures are designed to improve
� generalization, kernel learning can lead to
� overfitting if only limited data are used in
the model selection process (e.g., if in every
generation, the same small data sets are used
to assess performance). Regularization (e.g., in
a Bayesian framework) can be used to prevent
overfitting. If enough data are available, it is
advisable to monitor the generalization behavior
of kernel learning using independent data. For
example, external data can be used for the early
stopping of evolutionary kernel learning (Igel
2013).

Accuracy on Sample Data
The most straightforward way to evaluate a
model is to consider its performance on sample
data. The empirical risk given by the error
on the training data can be considered, but it
does not measure generalization. To estimate
the generalization performance, the accuracy
on data not used for training is evaluated. In
the simplest case, the available data are split
into a training and validation set, with the first
used for learning and the second for subsequent
performance assessment. A theoretically sound
and simple method is � cross-validation (CV).
Cross-validation makes better use of the available
data, but it is more computationally demanding.

Using holdout validation sets alone does not
prevent overfitting if the validation sets are small
and are reused in every generation. If sufficient
data are available, it is advisable to resample the
data used for fitness evaluation in each generation
to prevent overfitting (Igel 2013).

Evolutionary Kernel
Learning, Fig. 1
Canonical evolutionary
kernel learning algorithm

initialize parent population of individuals,
each encoding kernel and perhaps additional parameters
while termination criterion is not met

create offspring individuals from parents
using variation operators
train and evaluate kernel machine encoded by individuals
using sample data
select new parent population based on evaluation

http://dx.doi.org/10.1007/978-1-4899-7687-1_570
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
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If � classification is considered, it may be
reasonable to split the classification error into
false negative and false positive rates and to view
� sensitivity and � specificity as two separate
objectives (Suttorp and Igel 2006).

Measures Derived from Bounds on the
Generalization Performance
Statistical learning theory provides estimates of
and bounds on the expected generalization error
of learning machines. These results can be uti-
lized as criteria for model selection. One has to
keep in mind that the model selection process
may lead to violations of the assumptions under-
lying the corresponding theorems from statistical
learning theory, in which case the computed per-
formance indicators can not be strictly interpreted
as bounds and unbiased estimates.

An example drawing inspiration from radius-
margin bounds for evolving kernels for � support
vector machines (SVMs) for classification is
given by Igel (2005). Furthermore, the number
of support vectors (SVs) was optimized in
combination with the empirical risk (Igel 2005).
For hard-margin SVMs, the fraction of SVs is
an upper bound on the leave-one-out error (e.g.,
Chapelle et al. 2002).

Number of Input Variables
Variable selection refers to the � feature selection
problem of choosing input variables that are best
suited for the learning task. Masking a subset of
variables can be viewed as modifying the kernel.
Considering only a subset of feature dimensions
decreases the computational complexity of the
learning machine. When deteriorating feature di-
mensions are removed, the overall performance
may increase. Reducing the number of input
variables is therefore a common objective, which
can be achieved by using single-objective (Eads
et al. 2002; Fröhlich et al. 2004; Jong et al.
2004; Miller et al. 2003) or multi-objective (Pang
and Kasabov 2004; Shi et al. 2004) evolutionary
kernel learning.

Space and Time Complexity of the Classifier
Sometimes it can be very important to have fast
kernel methods (e.g., for meeting real-time con-

straints). Thus, the execution time may be con-
sidered in the performance assessment during
evolutionary kernel learning.

Reducing the number of input variables speeds
up kernel methods. The space and time complex-
ity of SVMs also scales with the number of SVs.
This is an additional reason to consider mini-
mization of the number of SVs as an objective
in evolutionary model selection for SVMs (Igel
2005; Suttorp and Igel 2006).

Multi-objective Optimization
The design of a learning machine can be con-
sidered as a MOO problem. For example, accu-
racy and complexity can be viewed as different,
and probably conflicting, objectives. The goal of
MOO is to approximate a diverse set of Pareto-
optimal solutions (i.e., solutions that cannot be
improved in one objective without getting worse
in another one), which provide insights into the
trade-offs between the objectives. Evolutionary
multi-objective algorithms have become popular
for MOO. Applications of multi-objective evo-
lutionary kernel learning combining some of the
performance measures listed above can be found
in the work of Igel (2005), Pang and Kasabov
(2004), Shi et al. (2004), and Suttorp and Igel
(2006).

Coevolution
�Coevolutionary learning also finds application
in evolutionary kernel design. For instance,
Gagné et al. (2006) suggest coevolution to speed
up the evaluation and optimization of kernel
nearest neighbor classifiers. They evolve three
different species. The first encodes the kernels,
the second a subset of the training examples used
for building the classifier, and the third a subset
of examples used for fitness evaluation. Kernels
and training examples cooperate, while the third
species competes with the kernels.

Encoding and Variation Operators
The sheer complexity of the space of possible
kernel functions makes it necessary to restrict the
search to a particular class of kernel functions.
This restriction essentially determines the repre-

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_751
http://dx.doi.org/10.1007/978-1-4899-7687-1_770
http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_944
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sentation and the operators used in evolutionary
kernel learning.

When a parameterized family of mappings is
considered, the kernel parameters can be encoded
more or less directly in a real-valued EA. This is
a frequently used representation, for example, for
Gaussian kernel functions.

For variable selection, a binary encoding can
be appropriate. For choosing a subset out of d

variables, bitstrings of length d can be consid-
ered, where each bit indicates whether a partic-
ular input variable is considered in the kernel
computation or not (Pang and Kasabov 2004; Shi
et al. 2004).

Kernels can be built from other kernels.
For example, if k1 and k2 are kernel functions
on X , then ak1.x; ´/ C bk2.x; ´/ and
a exp.�bk1.x; ´// for x; ´ 2 X; a; b 2 R

C are
also kernels on X . This suggests a variable-length
representation in which the individuals encode
expressions that evaluate to kernel functions.

Given these different search spaces, it is not
surprising that the aspects of all major branches
of evolutionary computation have been used in
evolutionary kernel learning: genetic algorithms
(Fröhlich et al. 2004), genetic programming
(Howley and Madden 2005; Gagné et al. 2006),
evolution strategies (Igel 2005; Friedrichs and
Igel 2005), and evolutionary programming
(Runarsson and Sigurdsson 2004).

In general, kernel methods assume that the
kernel (or at least the �Gram matrix in the
training process) is � positive semidefinite (psd).
Therefore, it is advisable to restrict the search
space such that only psd functions evolve. Other
ways of dealing with the problem of ensuring
positive semidefiniteness are to assign lethal fit-
ness values to individuals not encoding proper
kernels or to construct a psd Gram matrix from
the matrix M induced by the training data and
a non-psd “kernel” function. The latter can be
achieved by subtracting the smallest eigenvalue
of M from its diagonal entries.

Gaussian Kernels
Gaussian kernel functions are prevalent. Their
general form is k.x; ´/ D exp

�
�.x � ´/T

A.x � ´/
�

for x; ´ 2 R
n and symmetric

positive definite (pd) matrix A 2 R
n�n.

When adapting A, the issue of ensuring that
the optimization algorithm only generates pd
matrices A arises. This can be achieved by an
appropriate parametrization of A. Often the
search is restricted to matrices of the form �I ,
where I is the unit matrix and � 2 R

C is the
only adjustable parameter. However, allowing
more flexibility has proven to be beneficial in
certain applications (e.g., see Chapelle et al.
2002; Friedrichs and Igel 2005; Glasmachers
and Igel 2005). It is straightforward to consider
diagonal matrices with positive elements to allow
for independent scaling factors weighting the
input components. However, only by dropping
this restriction one can achieve invariance against
both rotation and scaling of the input space. A
real-valued encoding that maps onto the set of all
symmetric pd matrices can be used such that all
modifications of the parameters result in feasible
kernels, see the articles by Friedrichs and Igel
(2005), Glasmachers and Igel (2005), and Suttorp
and Igel (2006) for different parametrizations.

Optimizing Additional Hyperparameters
One of the advantages of evolutionary kernel
learning is that it can be easily combined with
an optimization of additional hyperparameters of
the kernel method. The most prominent example
is to encode not only the kernel but also the
regularization parameter in evolutionary model
selection for SVMs.

Application Example

Notable applications of evolutionary kernel learn-
ing include the design of classifiers in bioinfor-
matics (Mersch et al. 2007; Pang and Kasabov
2004; Shi et al. 2004). Let us consider the work
by Mersch et al. (2007) as an instructive exam-
ple. Here, the parameters of a sequence kernel
are evolved to improve the prediction of gene
starts in DNA sequences. The kernel can be
viewed as a weighted sum of 64 kernels, each
measuring similarity with respect to a particular
trinucleotide sequence (codon). The 64 weights
w1; : : : ; w64 are optimized together with an addi-

http://dx.doi.org/10.1007/978-1-4899-7687-1_100189
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tional global kernel parameter 
 and a regulariza-
tion parameter C for the SVM. Each individual
stores x 2 R

66, where .w1; : : : ; w64; 
; C /T D

.exp.x1/; : : : ; exp.x64/; jx65j; jx66j/T. An evolu-
tion strategy is applied, using additive multi-
variate Gaussian mutation and weighted global
recombination for variation and rank-based selec-
tion. The fitness is determined by five fold cross-
validation. The evolved kernels lead to higher
classification rates, and the adapted weights re-
veal the importance of particular codons for the
task at hand.
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Abstract

Evolutionary robotics uses evolutionary
search methods to fully or partially design
robotic systems, including their control
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systems and sometimes their morphologies
and sensor/actuator properties. Such methods
are used in a range of ways from the
fine-tuning or optimization of established
designs to the creation of completely novel
designs. There are many applications of
evolutionary robotics from wheeled to legged
to swimming to flying robots. A particularly
active area is the use of evolutionary robotics
to synthesize embodied models of complete
agent behaviors in order to help explore and
generate hypotheses in neurobiology and
cognitive science.

Synonyms

Embodied evolutionary learning; Evolution of
agent behaviors; Evolution of robot control

Definition

Evolutionary robotics involves the use of
� evolutionary computing techniques to auto-
matically develop some or all of the following
properties of a robot: the control system, the body
morphology, and the sensor and motor properties
and layout. Populations of artificial genomes
(usually lists of characters and numbers) encode
properties of autonomous mobile robots required
to carry out a particular task or to exhibit some
set of behaviors. The genomes are mutated
and interbred creating new generations of
robots according to a Darwinian scheme in
which the fittest individuals are most likely to
produce offspring. Fitness is measured in terms
of how good a robot’s behavior is according
to some evaluation criteria; this is usually
automatically measured but may, in the manner
of eighteenth-century pig breeders, be based on
the experimenters’ judgment.

Motivation and Background

Turing’s (1950) paper, Computing Machinery
and Intelligence, is widely regarded as one of

the seminal works in artificial intelligence. It
is best known for what came to be called the
Turing test – a proposal for deciding whether
or not a machine is intelligent. However, tucked
away toward the end of Turing’s wide-ranging
discussion of issues arising from the test is
a far more interesting proposal. He suggests
that worthwhile intelligent machines should
be adaptive and should learn and develop
but concedes that designing, building, and
programming such machines by hand is probably
completely infeasible. He goes on to sketch
an alternative way of creating machines based
on an artificial analog of biological evolution.
Each machine would have hereditary material
encoding its structure, mutated copies of which
would form offspring machines. A selection
mechanism would be used to favor better adapted
machines – in this case, those that learned to
behave most intelligently. Turing proposed that
the selection mechanism should largely consist
of the experimenter’s judgment.

It was not until more than 40 years after their
publication that Turing’s long forgotten sugges-
tions became reality. Building on the develop-
ment of principled evolutionary search algorithm
by, among others, Holland (1975), researchers
at CNR, Rome, Case Western University, the
University of Sussex, EPFL, and elsewhere inde-
pendently demonstrated methodologies and prac-
tical techniques to evolve, rather than design, the
control systems for primitive autonomous intel-
ligent machines (Beer and Gallagher 1992; Cliff
et al. 1993; de Garis 1990; Floreano and Mon-
dada 1994; Husbands and Harvey 1992; Parisi
and Nolfi 1993). Thus, the field of Evolutionary
Robotics was born in the early 1990s. Initial
motivations were similar to Turing’s: the hand de-
sign of intelligent adaptive machines intended for
operation in natural environments is extremely
difficult, would it be possible to wholly or partly
automate the process?

Today, the field of evolutionary robotics has
expanded in scope to take in a wide range of ap-
plications, including promising new work on au-
tonomous flying machines (Floreano et al. 2008;
Vargas et al. 2014; Shim and Husbands 2007), as
well as research aimed at exploring specific sci-

http://dx.doi.org/10.1007/978-1-4899-7687-1_100136
http://dx.doi.org/10.1007/978-1-4899-7687-1_100147
http://dx.doi.org/10.1007/978-1-4899-7687-1_100148
http://dx.doi.org/10.1007/978-1-4899-7687-1_100150
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entific issues – for instance, principles from neu-
roscience or questions in cognitive science (Har-
vey et al. 2005; Philippides et al. 2005; Floreano
et al. 2008; Husbands et al. 2014). Such work is
able to exploit the fact that evolutionary robotics
operates with fewer assumptions about neural ar-
chitectures and behavior-generating mechanisms
than other methods; this means that whole gen-
eral classes of designs and processes can be
explored.

Structure of the Learning System

The key elements of the evolutionary robotics
approach are the following:

• An artificial genetic encoding specifying the
robot control systems, body plan, sensor prop-
erties, etc., along with a mapping to the target
system

• A method for measuring the fitness of the
robot behaviors generated from these geno-
types

• A way of applying selection and a set of
“genetic” operators to produce the next gen-
eration from the current

The structure of the overall evolutionary pro-
cess is captured in Fig. 1. The general scheme
is like that of any application of an evolutionary
search algorithm. However, many details of spe-
cific parts of the process, particularly the evalua-
tion step, are peculiar to evolutionary robotics.

The more general parts of the evolutionary
process (selection, breeding, genetic operators
such as mutation and crossover, replacement,
and population structure) are also found in most
other applications of evolutionary computing,
and, just as in those other applications, there are
many well-documented ways of implementing
each (De Jong 2006; Eiben and Smith 2003).
Hence, this section focuses on genetic encoding
and evaluation as a route to more evolutionary
robotics-specific issues. For a much fuller
treatment of the subject, see Vargas et al. (2014),
Doncieux et al. (2011), Floreano et al. (2008),
and Nolfi and Floreano (2000).

Genetic Encoding
While, as already mentioned, many aspects of
the robot design can potentially be under genetic
control, at least the control system always is.
By far the most popular form of controller is
some sort of neural network. These range from
straightforward feedforward networks of simple
elements (Floreano and Mondada 1994) to rel-
atively complex, dynamic, and plastic recurrent
networks (Beer and Gallagher 1992; Floreano
and Urzelai 2000; Philippides et al. 2005), as
illustrated in Fig. 2. In the simplest case, a fixed
architecture network is used to control a robot
whose sensors feed into the network which in turn
feeds out to the robot motors. In this scenario, the
parameters of the network (connection weights
and relevant properties of the units such as thresh-
olds or biases) are coded as a fixed length string
of numerical values.

A more complex case, which has been ex-
plored since the very early days of evolutionary
robotics (Cliff et al. 1993), involves the evolu-
tion of the network architecture as well as the
properties of the connections and units. Typi-
cally, the size of the network (number of units
and connections) and its architecture (wiring di-
agram) are unconstrained and free to evolve.
This involves more complex encodings which
can grow and shrink, as units and connections
are added or lost, while allowing a coherent
decoding of connections between units. These
range from relatively simple strings employing
blocks of symbols that encode a unit’s properties
and connections relative to other units (Cliff et
al.) to more indirect schemes that make use of
developmental, growth processes in some geo-
metric or topological space (Philippides et al.
2005; Stanley et al. 2009) or employ genetic
programming-like tree representations in which
whole subbranches can be added, deleted, or
swapped over (Gruau 1995).

The most general case involves the encoding
of control network and body and sensor prop-
erties. Various kinds of developmental schemes
have been used to encode the construction of
body morphologies from basic building blocks,
both in simulation and in the real world. The
position and properties of sensors can also be
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Evolutionary Robotics,
Fig. 1 General scheme
employed in evolutionary
robotics

Create initial population
of robot genotypes; 
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Evolutionary Robotics, Fig. 2 Evolved neurocon-
trollers. On the left a simple fixed architecture feedforward
network is illustrated. The connection weights, and some-
times the neuron properties, are put under evolutionary
control. On the right a more complex architecture is

illustrated. In this case, the whole architecture, including
the number of neurons and connections, is under
evolutionary control, along with connection and neuron
properties and the morphology of a visual sensor that
feeds into the network

put under evolutionary control. Sometimes one
complex encoding scheme is used for all as-
pects of the robot under evolutionary control,
and sometimes the different aspects are put on
separate genotypes.

Fitness Evaluation
The fitness of members of the population is mea-
sured, via an evaluation mechanism, in terms
of the robot behaviors produced by the control
system or control system plus robot morphol-
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ogy that it encodes. Fitness evaluation, therefore,
consists of translating the genome in question
into a robot instantiation and then measuring the
aspects of the resulting behavior. In the earliest
work aimed at using evolutionary techniques to
develop neurocontrollers for particular physical
robots, members of a population were down-
loaded in turn onto the robot and their behavior
was monitored and measured either automati-
cally by clever experimental setups (Floreano and
Mondada 1994; Harvey et al. 1994) or manually
by an observer (Gruau and Quatramaran 1997).
The machinery of the evolutionary search algo-
rithm was managed on a host computer, while the
fitness evaluations were undertaken on the target
robot.

One drawback of evaluating fitness on the
robot is that this cannot be done any quicker
than in real time, making the whole evolution-
ary process rather slow. However, in the early
work in the field, this approach was taken be-
cause it was felt that it was unlikely that sim-
ulations could be made accurate enough to al-
low proper transfer of evolved behavior onto the
real robot. However, a careful study of accurate
physics-based simulations of a Khepera robot,
with various degrees of noise added, proved this
assumption false (Jakobi et al. 1995). This led
to the development of Jakobi’s minimal simula-
tion methodology (Jakobi 1998a), whereby com-
putationally very efficient simulations are built
by modeling only those aspects of the robot–
environment interaction deemed important to the
desired behavior and masking everything else
with carefully structured noise (so that evolu-
tion could not come to rely on any of those
features). These ultrafast, ultralean simulations
have successfully been used with many different
forms of robot and sensing, with very accurate
transfer of behavior from simulation to reality.
An alternative approach uses plastic controllers
that further adapt through self-organization to
help smooth out the differences between an in-
accurate simulation and the real world (Urzelai
and Floreano 2001). Instead of evolving connec-
tion weights, in this approach “learning rules”
for adapting connection strengths are evolved –
this results in controllers that continually adapt

to changes in their environment. For details of
further approaches, see Floreano et al. (2008).
Much evolutionary robotics work now makes
use of simulations; without them it would be
impossible to do the most ambitious work on the
concurrent evolution of controllers and body mor-
phology (Lipson and Pollack 2000) (to be briefly
described later). However, although simulation
packages and techniques have developed rapidly
in the past few years, there will still inevitably
be discrepancies between simulation and reality,
and the lessons and insights of the work outlined
above should not be forgotten.

An interesting distinction can be made be-
tween implicit and explicit fitness functions in
evolutionary robotics (Nolfi and Floreano 2000).
In this context, an explicit fitness function re-
wards specific behavioral elements – such as
traveling in a straight line – and hence shapes the
overall behavior from a set of specific behavioral
primitives. Implicit fitness functions operate at
a more indirect, abstract level – fitness points
are given for completing some task but they
are not tied to specific behavioral elements. Im-
plicit fitness functions might involve components
such as maintaining energy levels or covering as
much ground as possible, components that can be
achieved in many different ways. In practice, it is
quite possible to define a fitness function that has
both explicit and implicit elements. Often fitness
entails multiple and potentially conflicting ele-
ments, so methods from multi-objective optimi-
sation have been introduced by some researchers,
which can also encourage diversity in robot be-
havior (Mouret and Doncieux 2012).

Advantages
Potential advantages of this methodology
include:

• The ability to explore potentially uncon-
strained designs that have large numbers of
free variables. A class of robot systems (to
be searched) is defined rather than specific,
fully defined robot designs. This means fewer
assumptions and constraints are necessary in
specifying a viable solution.
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• The ability to use the methodology to fine-
tune the parameters of an already successful
design.

• The ability, through the careful design of fit-
ness criteria and selection techniques, to take
into account multiple, and potentially con-
flicting, design criteria and constraints (e.g.,
efficiency, cost, weight, power consumption,
etc.).

• The possibility of developing highly uncon-
ventional and minimal designs.

• The ability to explicitly take into account ro-
bustness and reliability as major driving force
behind the fitness measure, factors that are
particularly important for certain applications.

Applications

For a detailed survey of applications of evolution-
ary robotics, see Floreano et al. (2008) and Vargas
et al. (2014); this section gives a brief overview of
some areas covered by the methodology to give
a better idea of the techniques involved and to
indicate the scope of the field.

Prominent early centers for research in this
area were EPFL and Sussex University, both of
which are still very active in the field. Much of
the early EPFL work used the miniature Khepera
robot (Mondada et al. 1993), which became a
popular tool in many areas of robotics research.
In its simplest form, it is a two-wheeled cylin-
drical robot with a ring of IR sensors around its
body. The first successful evolutionary robotics
experiments at EPFL employed the setup illus-
trated in Figs. 3 and 4. A population of bit strings
encoded the connection weights and node thresh-
olds for a simple fixed architecture feedforward
neural network. Each member of the population
was decoded into a particular instantiation of a
neural network controller which was then down-
loaded onto the robot (Floreano and Mondada
1994). This controlled the robot for a fixed period
of time as it moved around the environment
shown in Fig. 4.

The following simple fitness function was
used to evolve obstacle avoidance behaviors:

Population manager

Mutation

Crossover

Selective reproduction

Evaluation

Evolutionary Robotics, Fig. 3 Setup for early EPFL
evolutionary robotics experiments with the Khepera robot
(see text for details). Used with permission

Evolutionary Robotics, Fig. 4 The simple environment
used for evolving obstacle avoidance behaviors with a
Khepera robot. Used with permission

F D V C .1 �
p

DV / C .1 � I /

where V is the average rotation speed of oppos-
ing wheels, DV is the difference between signed
speed values of opposing wheels, and I is the
activation value of the IR sensor with the highest
input (readings are high if an obstacle is close to
a sensor). Maximizing this function ensures high
speed, a tendency to move in straight lines, and
avoidance of walls and obstacles in the environ-
ment. After about 36 h of real-world evolution
using this setup, controllers were evolved that
successfully generated efficient motion around
the course, avoiding collisions with the walls.

At the same time as this work was going
on at EPFL, a series of pioneering experiments
on evolving visually guided behaviors were be-
ing performed at Sussex University (Cliff et al.
1993; Harvey et al. 1994) in which discrete-
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Evolutionary Robotics, Fig. 5 An early version of the
Sussex gantry robot (right) was a “hardware simulation”
of a robot such as that shown on the left. It allowed

real-world evolution of visually guided behaviors in an
easily controllable experimental setup (see text for further
details)

time dynamical recurrent neural networks and
visual sampling morphologies were concurrently
evolved to allow a gantry robot (as well as other
more standard mobile robots) to perform various
visually guided tasks. An early instantiation of
the Sussex gantry robot is shown in Fig. 5.

A CCD camera points down toward a mirror
angled at 45ı. The mirror can rotate around an
axis perpendicular to the camera’s image plane.
The camera is suspended from the gantry allow-
ing motion in the X , Y , and Z dimensions. This
effectively provides an equivalent to a wheeled
robot with a forward facing camera when only
the X and Y dimensions of translation are used
(see Fig. 5).

The apparatus was initially used in a man-
ner similar to the real-world EPFL evolutionary
robots setup illustrated in Fig. 3. A population
of strings encoding robot controllers and visual
sensing morphologies are stored on a computer
to be downloaded one at a time onto the robot.
The exact position and orientation of the cam-
era head can be accurately tracked and used
in the fitness evaluations. A number of visually
guided navigation behaviors were successfully
achieved, including navigating around obstacles
and discriminating between different objects. In
the experiment illustrated in Fig. 5, starting from
a random position and orientation, the robot has
to move to the triangle rather than the rect-
angle. This has to be achieved irrespective of

the relative positions of the shapes and under
very noisy lighting conditions. The architecture
and all parameters of recurrent neural network
controllers were evolved in conjunction with vi-
sual sampling morphologies – only genetically
specified patches from the camera image were
used (by being fed to input neurons according to
a genetic specification), the rest of the image is
thrown away. This resulted in extremely minimal
systems only using two or three pixels of visual
information yet still able to very robustly perform
the task under highly variable lighting conditions.
Behaviors were evolved in an incremental way,
with more complex capabilities being evolved
from populations of robots that were successful
at some simpler task (for details see Harvey et al.
1994 and Harvey et al. 1997). The highly minimal
yet very robust systems developed highlighted
the potential for evolutionary robotics techniques
in areas such as space exploration where there
is a great pressure to minimize resources while
maintaining reliability (Hobbs et al. 1996).

Since this early work, many different behav-
iors have been successfully evolved on a wide
range of robots (Floreano et al. 2008; Nolfi and
Floreano 2000; Vargas et al. 2014; Doncieux
et al. 2011). There is not enough room to give
an adequate summary of the whole field, so a few
interesting subareas are highlighted below.

Over the past 15 years or so, there has been
a growing body of work on evolving controllers
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for various kinds of walking robots – a nontriv-
ial sensorimotor coordination task. Early work
in this area concentrated on evolving dynami-
cal network controllers for simple simulated in-
sects (often inspired by cockroach studies), which
were required to walk in uncomplicated environ-
ments (e.g., de Garis 1990; Beer and Gallagher
1992). The promise of this work soon led to
versions of this methodology being used on real
robots. Probably, the first success in this direction
was by Lewis et al. (1992) who evolved a neu-
ral controller for a simple hexapod robot, using
coupled oscillators built from continuous-time,
leaky-integrator, artificial neurons. The robot was
able to execute an efficient tripod gait on flat
surfaces. All evaluations were done on the actual
robot with each leg connected to its own pair of
coupled neurons, leg swing being driven by one
neuron, and leg elevation by the other. These pairs
of neurons were cross-connected, in a manner
similar to that used in the neural architecture
shown in Fig. 6, to allow coordination between
the legs. This architecture for locomotion, in-
troduced by Beer et al. (1989), was based on
the studies of cockroaches and has been much
used ever since. Gallagher et al. (1996) used
a generalization of it to evolve controllers for
generating locomotion in a hexapod robot. This
machine was more complex than Lewis et al.’s,
with a greater number of degrees of freedom
per leg. In this work, each leg was controlled
by a fully connected network of five continuous-
time, leaky-integrator neurons, each receiving a
weighted sensory input from that leg’s angle
sensor. The connection weights and neuron time
constants and biases were under genetic control.
This produced efficient tripod gaits for walking
on flat surfaces. In order to produce a wider range
of gaits operating at a number of speeds such that
rougher terrain could be successfully negotiated,
a slightly different distributed architecture, more
inspired by stick insect studies, was found to be
more effective (Beer et al. 1997).

Jakobi (1998b) successfully used his minimal
simulation techniques to evolve controllers for
an eight-legged robot. Evolution in simulation
took less than 2 h on what would today be
regarded as a very slow computer and then
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Evolutionary Robotics, Fig. 6 Schematic diagram of a
distributed neural network for the control of locomotion as
used by Beer et al. Excitatory connections are denoted by
open triangles, and inhibitory connections are denoted by
filled circles. C, command neuron; P, pacemaker neuron;
FT, foot motor neuron; FS and BS, forward swing and
backward swing motor neurons; FAS and BAS, forward
and backward angle sensors. Reproduced with permission

transferred successfully to the real robot. Jakobi
evolved modular controllers based on Beer’s
continuous recurrent network architecture to
control the robot as it engaged in walking about
its environment, avoiding obstacles and seeking
out goals. The robot could smoothly change gait,
move backward and forward, and even turn on
the spot. More recently, related approaches have
been successfully used to evolve controllers for
more mechanically sophisticated robots such
as the Sony Aibo (Tllez et al. 2006). In the
last few years, there has also been successful
work on evolving coupled oscillator style neural



Evolutionary Robotics 477

E

controllers for the highly unstable dynamic
problem of biped walking. Reil and Husbands
(2002) showed that accurate physics-based
simulations using physics engine software could
be used to develop controllers able to generate
successful bipedal gaits. Reil and colleagues
have now significantly developed this technology
to exploit its commercial possibilities in the
animation and games industries (see www.
naturalmotion.com for further details). Vaughan
has taken related work in another direction. He
has successfully applied evolutionary robotics
techniques to evolve a simulation of a 3D ten
degree of freedom bipedal robot. This machine
demonstrates many of the properties of human
locomotion. By using passive dynamics and
compliant tendons, it conserves energy while
walking on a flat surface. Its speed and gait can
be dynamically adjusted and it is capable of
adapting to discrepancies in both its environment
and its body’s construction (Vaughan et al. 2004).
In general, the evolutionary development of
neural network walking controllers, with their
intricate dynamics, produces a wider range of
gaits and generates smoother, more adaptive
locomotion than the more standard use of
finite state machine-based systems employing
parameterized rules governing the timing and
coordination of individual leg movements.

Early single robot research was soon expanded
to handle interactions between multiple robots.
Floreano and Nolfi did pioneering work on the
coevolution of predator–prey behaviors in phys-
ical robots (Floreano et al. 2007). The fitness
of the prey robot was measured by how quickly
it could catch the prey; the fitness of the prey
was determined by how long it could escape the
predator. Two Khepera robots were used in this
experiment, each had the standard set of prox-
imity sensors but the predator also has a vision
system, and the prey was able to move twice
as fast as the predator. A series of interesting
chasing and evasion strategies emerged. Later
Quinn et al. (2003) demonstrated the evolution
of coordinated cooperative behavior in a group of
robots. A group of robots equipped only with IR
proximity sensors were required to move as far
as possible as a coordinated group starting from

a random configuration. The task was solved
by the robots adopting and then maintaining a
specific formation. Analysis of the best evolved
solution showed that it involved the robots adopt-
ing different roles, with the identical robots col-
lectively “deciding” which robot would perform
each role. Given the minimal sensing constraints,
the evolved system would have proved extremely
difficult to have designed by hand. For discussion
of other multiple robot behaviors, see Floreano
et al. (2008) and Vargas et al. (2014).

In the work described so far, control systems
have been evolved for preexisting robots: the
brain is constrained to fit a particular body and
set of sensors. Of course in nature, the nervous
system evolved simultaneously with the rest of
the organism. As a result, the nervous system
is highly integrated with the sensory apparatus
and the rest of the body: the whole operates in
a harmonious and balanced way – there are no
distinct boundaries between the control system,
the sensors, and the body.

Karl Sims started to explore the concurrent
evolution of the brain and the body in his highly
imaginative work involving simulated 3D “crea-
tures” (Sims 1994). In this work, the creatures
coevolved under a competitive scenario in which
they were required to try and gain control of
a resource (a cube) placed in the center of an
arena. Both the morphology of the creatures and
the neural system controlling their actuators were
under evolutionary control.

Lipson and Pollack (2000), working at Bran-
deis University, pushed the idea of fully evolvable
robot hardware about as far as was reasonably
technologically feasible at the time. In an impor-
tant piece of research, directly inspired by Sims’
earlier simulation work, autonomous “creatures”
were evolved in simulation out of basic building
blocks (neurons, plastic bars, and actuators). The
bars could connect together to form arbitrary
truss structures with the possibility of both rigid
and articulated substructures. Neurons could be
connected to each other and to the bars whose
length they would then control via a linear actu-
ator. Machines defined in this way were required
to move as far as possible in a limited time. The
fittest individuals were then fabricated robotically

www.naturalmotion.com
www.naturalmotion.com
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Evolutionary Robotics, Fig. 7 A fully automatically
evolved robot developed on the Golem project (see text
for details). Used with permission

using rapid manufacturing technology (plastic
extrusion 3D printing) to produce results such as
that shown in Fig. 7. They thus achieved auton-
omy of design and construction using evolution in
a “limited universe” physical simulation coupled
to automatic fabrication. The highly unconven-
tional designs thus realized performed as well in
reality as in simulation. The success of this work
points the way to new possibilities in developing
energy-efficient fault-tolerant machines.

Pfeifer and colleagues at Zurich University
have explored issues central to the key motivation
for fully evolvable robot hardware: the balanced
interplay between body morphology, neural pro-
cessing, and environment in the generation of
adaptive behavior, and have developed a set of
design principles for intelligent systems in which
these issues take center stage (Pfeifer and Bon-
gard 2007). Examples of interesting current work
in this direction includes (Bongard 2011; Johnson
et al. 2014).

Future Directions

Major ongoing challenges – methodological, the-
oretical, and technological – include finding the
best way to incorporate development and lifetime
plasticity within the evolutionary framework (this
involves trends coming from the emerging field
of epigenetic robotics), understanding better what
the most useful building blocks are for evolved
neurocontrollers, and finding efficient ways to

scale work on concurrently evolving bodies and
brains, especially in an open-ended way in the
real world. For some grand challenges in the field,
see (Eiben 2014).

There are very interesting developments in the
evolution of group behaviors and the emergence
of communication (Di Paolo 1998; Floreano et al.
2007; Quinn 2001; Vargas et al. 2014), the use
of evolutionary robotics as a tool to illuminate
problems in cognitive science (Beer 2003; Har-
vey et al. 2005) and neuroscience (Di Paolo 2003;
Philippides et al. 2005; Seth 2005; Husbands
et al. 2014), in developing flying behaviors (Flo-
reano et al. 2007; Shim and Husbands 2007;
Vargas et al. 2014), and in robots that have some
form of self-model (Bongard et al. 2006), to name
but a few.
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Abstract

The expectation maximization (EM) based
clustering is a probabilistic method to partition
data into clusters represented by model
parameters. Extensions to the basic EM
algorithm include but not limited to the
stochastic EM algorithm (SEM), the simulated
annealing EM algorithm (SAEM), and the
Monte Carlo EM algorithm (MCEM).
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Mixture model
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Definition

The expectation maximization (EM) algorithm
(Dempster et al. 1977; Fraley and Raftery 1998)
finds maximum likelihood estimates of parame-
ters in probabilistic models. EM is an iterative
method which alternates between two steps, ex-
pectation (E) and maximization (M ). For clus-
tering, EM makes use of the finite Gaussian
mixtures model and estimates a set of parameters
iteratively until a desired convergence value is
achieved. The mixture is defined as a set of
K probability distributions and each distribution
corresponds to one cluster. An instance is as-
signed with a membership probability for each
cluster.

The EM algorithm for partitional clustering
works as follows:

1. Guess initial parameters of the models: mean
and standard deviation (if using normal distri-
bution model).

2. Iteratively refine the parameters with E and
M steps. In the E step: compute the mem-
bership possibility for each instance based on
the initial parameter values. In the M step:
recompute the parameters based on the new
membership possibilities.

3. Assign each instance to the cluster with which
it has highest membership possibility.

Refer to Celeux and Govaert (1995) for details
about the E and M steps for multivariate normal
mixture models parameterized via the eigenvalue
decomposition.

The EM algorithm for clustering becomes
time consuming to compute for models with
very large numbers of components, because the
number of conditional probabilities associated
with each instance is the same as the number of
components in the mixture.

Extensions

There are many extensions to the EM-based clus-
tering algorithm. Celeux et al. (1996) compared
three different stochastic versions of the EM

algorithm: the stochastic EM algorithm (SEM),
the simulated annealing EM algorithm (SAEM),
and the Monte Carlo EM algorithm (MCEM).
SEM was shown to be efficient for locating sig-
nificant maxima of the likelihood function. The
classification EM (CEM) algorithm (Celeux and
Govaert 1992) incorporates a classification step
between the E-step and the M -step using a
maximum a posteriori (MAP) principle. The K-
means algorithm becomes a particular version of
the CEM algorithm corresponding to the uniform
spherical Gaussian model. Yang et al. (2012)
proposed an EM clustering algorithm for Gaus-
sian mixture models, which is robust to initial-
ization and different cluster sizes with a schema
to automatically obtain an optimal number of
clusters.

Softwares

The following softwares have implementations of
the EM clustering algorithm:

• Weka. Open Source Data Mining Software in
Java (Hall et al. 2009), from Machine Learn-
ing Group at the University of Waikato:

http://www.cs.waikato.ac.nz/ml/weka/
index.html

• LNKnet Software. Written in C. A public do-
main software from MIT Lincoln Laboratory:

http://www.ll.mit.edu/mission/communica
tions/cyber/softwaretools/lnknet/lnknet.html

• EMCluster (Chen et al. 2012). R package.
It provides EM algorithms and several effi-
cient initialization methods for clustering of
finite mixture Gaussian distribution with un-
structured dispersion in both unsupervised and
semi-supervised learning.

http://cran.r-project.org/web/packages/EM
Cluster/
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Synonyms

EP

Definition

Expectation propagation is an algorithm for
Bayesian machine learning. It tunes the
parameters of a simpler approximate distribution
(e.g., a Gaussian) to match the exact posterior
distribution of the model parameters given
the data. Expectation propagation operates by
propagating messages, similar to the messages in
(loopy) � belief propagation. Whereas messages
in belief propagation correspond to exact belief
states, messages in expectation propagation
correspond to approximations of the belief states
in terms of expectations, such as means and

variances. It is a deterministic method especially
well suited to large databases and dynamic
systems, where exact methods for Bayesian
inference fail and �Monte Carlo methods are
far too slow.

Motivation and Background

One of the main problems for �Bayesian meth-
ods is their computational expense: computation
of the exact posterior given the observed data typ-
ically requires the solution of high-dimensional
integrals that have no analytical expressions. Ap-
proximation algorithms are needed to approx-
imate this posterior as accurately as possible.
These techniques for approximate inference can
be subdivided in two categories: deterministic ap-
proaches and stochastic sampling (Monte Carlo)
methods. Having the important advantage that
(under certain conditions) they give exact re-
sults in the limit of an infinite number of sam-
ples, �Monte Carlo methods are the method of
choice in Bayesian statistics. However, in par-
ticular, when dealing with large databases, the
time needed for stochastic sampling to obtain a
reasonably accurate approximation of the exact
posterior can be prohibitive. This explains the
need for faster, deterministic approaches, such as
the Laplace approximation, � variational approx-
imations, and expectation propagation.

Expectation propagation was first described by
Thomas Minka in his thesis Minka (2001). It can
be viewed as a generalization and reformulation
of the earlier ADATAP algorithm of Manfred
Opper and Ole Winther (2001). Expectation prop-
agation quickly became one of the most pop-
ular deterministic approaches for approximate
Bayesian inference. Expectation propagation im-
proves upon assumed density filtering, a classical
method from stochastic control, by iteratively
refining local approximations instead of comput-
ing them just once. Furthermore, it encompasses
loopy belief propagation, a popular method for
approximate inference in probabilistic graphical
models, as a special case. Where loopy belief
propagation is restricted to models of discrete
variables only, expectation propagation applies to

http://cran.r-project.org/package=EMCluster
http://cran.r-project.org/package=EMCluster
http://dx.doi.org/10.1007/978-1-4899-7687-1_100138
http://dx.doi.org/10.1007/978-1-4899-7687-1_498
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_952
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
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Expectation Propagation, Fig. 1 (left-hand side) A so-
called factor graph corresponding to the i.i.d. assumption
in Bayesian machine learning. Each box corresponds to a
factor or term. A circle corresponds to a variable. Factors
are connected to the variables that they contain. ‰0 corre-

sponds to the prior, and ‰1 : : : ‰n are the likelihood terms
for the n data points. The right-hand side is a factor graph
of the approximating distribution. The original terms have
been replaced by term approximations

a much wider class of probabilistic � graphical
models with discrete and continuous variables
and complex interactions between them.

Structure of Learning System

Bayesian Machine Learning
In the Bayesian framework for machine learning,
you should enumerate all reasonable models of
the data and assign a prior belief P.w/ to each
of these models w. Then, upon observing the
data D, you compute the likelihood P.Djw/ to
evaluate how probable the data was under each
of these models. The product of the prior and
the likelihood gives you, up to a normalization
constant, the posterior probability P.wjD/ over
models given the data:

P.wjD/ D
P.Djw/P.w/

P.D/
;

where the normalization term P.D/ is called
the probability of the data or “evidence.” This
posterior probability incorporates all you have
learned from the data D regarding the models
w under consideration. As indicated above, exact
calculation of this posterior probability is often
infeasible, because the normalization term re-
quires the solution of intractable sums or inte-
grals.

In its simplest setting, the data D consists of
n observations, x1; : : : ; xn, which are assumed to
be i.i.d. (independent and identically distributed).
The posterior probability then factorizes into n C

1 terms, one for each observation and one for

the prior. With definitions ‰0.w/ � P.w/ and
‰i .w/ � P.xi jw/, we can rewrite

P.wjD/D
P.w/

Qn
iD1 P.xi jw/

P.D/
�

Qn
iD0 ‰i .w/

P.D/
:

This factorization is visualized in the so-called
factor graph in Fig. 1. We will use it as a running
example in the following.

Assumed Density Filtering
Expectation propagation can be interpreted by an
iterative refinement of assumed density filtering.
In assumed density filtering, we add terms one
by one and project in each step back to the
“assumed density.” For example, suppose that our
prior probability P.w/ D ‰0.w/ is a (known)
Gaussian distribution over model parameters w,
the terms corresponding to the data points are
non-Gaussian, and we aim to find an appropri-
ate Gaussian approximation Q.w/ to the exact
(non-Gaussian) posterior P.wjD/. Our first ap-
proximation is the prior itself. Assumed-density
filtering now proceeds by adding terms one at
a time, where at each step we approximate the
resulting distribution as closely as possible by
a Gaussian. The pseudo-code is given in Algo-
rithm 1, where Q0Wi .w/ denotes the approxima-
tion obtained after incorporating the prior and the
first i observations.

If we use the Kullback-Leibler divergence as
the distance measure from the non-Gaussian (but
normalized) product of Q0Wi�1.w/ and ‰i .w/ and
the Gaussian approximation, projection becomes
“moment matching”: the result of the projection

http://dx.doi.org/10.1007/978-1-4899-7687-1_119
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Expectation Propagation, Fig. 2 Visualization of expectation propagation when recomputing the term approxima-
tion for observation i

is the Gaussian that has the same mean and
covariance matrix as the non-Gaussian product.

Expectation Propagation
When in assumed density filtering we add the
term ‰i .w/, the Gaussian approximation changes
from Q0Wi�1.w/ to Q0Wi .w/. We will call the
quotient of the two the term approximation (here
and in the following we ignore normalization
constants):

Q‰i .w/ D
Q0Wi .w/

Q0Wi�1.w/
:

In our running example, term approximations
are quotients between two different Gaussian
densities and therefore have a Gaussian form
themselves. Since the prior ‰0.w/ is a Gaussian
density, Q‰0.w/ D ‰0.w/. The approximation
Q0Wn.w/ is equal to the product of all term ap-
proximations and is visualized on the right-hand
side of Fig. 1. In assumed density filtering, the
resulting approximation depends on the ordering
in which the terms have been added. For example,
if the terms had been added in reverse order, their
term approximations might have been (slightly)
different.

Expectation propagation now generalizes as-
sumed density filtering by iteratively refining
these term approximations. When successful, the
final approximation will be independent of the or-
dering. Pseudo-code of expectation propagation
is given in Algorithm 2. In step 1 through 5,
the term approximations are initialized; in step 6
through 12, these term approximations are itera-
tively refined until they no longer change. In step
8, we take out the previous term approximation
from the current approximation. In step 9, we
put back in the exact term and project back to
a Gaussian, like we did in assumed density fil-

tering. It is easy to check that the approximation
Q.w/ after the first loop equals the approximation
Q0Wn.w/ obtained with assumed density filtering.
The recalculation of the term approximation cor-
responding to observation i is visualized in Fig. 2.

Computational Aspects
With expectation propagation, we have to do
a little more bookkeeping than with assumed
density filtering: we have to keep track of the
term approximations. One loop of expectation
propagation is about as expensive as running
assumed density filtering. Typically, about five
iterations are sufficient for convergence.

The crucial operation is in step 3 of Algo-
rithm 1 and step 9 of Algorithm 2. Here we have
to compute the moments of the (non-Gaussian)
probability distribution on the right-hand side. In
most cases, we do not have analytical expressions
for these moments and have to compute them
numerically, e.g., using Gaussian quadrature. We
then obtain the moments (mean and covariance
matrix) of the new approximation Q.w/. Divi-
sions and multiplications correspond to a simple
subtraction and addition of so-called canonical
parameters. For the Gaussian these canonical pa-
rameters are the inverse of the covariance matrix
(precision matrix) and the product of the preci-
sion matrix and the mean. The bottom line is
that we go back and forth between distributions
in terms of moments and in terms of canonical
parameters. For a Gaussian, this requires comput-
ing the inverse of the covariance matrix, which
is roughly on the order of d 3, where d is the
dimension of w. A practical point of concern is
that matrix inversion is numerically instable, in
particular, for matrices that are close to singular,
which can lead to serious roundoff errors.
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Algorithm 1 Assumed density filtering

1: Q0.w/ D ‰0.w/

2: for i D 1 to n do

3: Q0Wi .w/ D Project to Gaussian.Q0Wi�1.w/‰i .w//

4: end for

Algorithm 2 Expectation propagation

1: Q‰0.w/ D ‰0.w/

2: for i D 1 to n do

3: Q‰i .w/ D 1

4: end for

5: Q.w/ D

nY

iD0

Q‰i .w/

6: while not converged do

7: for i D 1 to n do

8: Q�i .w/ D
Q.w/

Q‰i .w/

9: Q.w/ D Project to Gaussian.Q�i .w/‰i .w//

10: Q‰i .w/ D
Q.w/

Q�i .w/

11: end for

12: end while

Convergence Issues
Sadly enough, expectation propagation is not
guaranteed to converge to a fixed point. If it does,
this fixed point can be shown to correspond to
an extremum of the so-called Bethe free energy,
an approximation of the “evidence” log P.D/,
under particular consistency and normalization
constraints (Minka 2001; Herbrich and Graepel
2006; Heskes and Zoeter 2002; Heskes et al.
2005). These constraints relate to the projec-
tion step in Algorithm 2: after convergence, the
moments of Q.w/ should be equal to the mo-
ments of the distribution obtained by taking out
a term approximation and putting back the corre-
sponding exact term. This should hold for all i.i.d.
observations i D 1; : : : ; n in the factor graph of
Fig. 1: so we conclude that, after convergence,
the moments (“expectations”) of all distributions
constructed in this way should be the same.
Expectation consistent approximations are based
on the exact same idea and indeed turn out to
be equivalent to expectation propagation (Heskes
et al. 2005).

When expectation propagation does not con-
verge, we can try “damping”: instead of replacing
the old term approximation by the new one, we
replace it by a logconvex combination of the old
and the new one. In many cases, damping with a
step size 0.1 makes expectation propagation con-
verge, at the expense of requiring more iterations.
However, even damping with an infinitesimally
small step size is not guaranteed to lead to conver-
gence. In those cases, we can try to minimize the
Bethe free energy more explicitly with a so-called
double-loop algorithm (Heskes and Zoeter 2002):
in the outer loop we compute a convex bound on
the Bethe free energy, which we then minimize
in the inner loop with an algorithm very similar
to standard expectation propagation. Double-loop
algorithms are an order of magnitude slower
than standard expectation propagation. Recent
approaches such as Seeger and Nickisch (2010)
provide guaranteed convergence at a much faster
rate, but only for specific models.

Generalizations
The running example above serves to illustrate
the main idea, but is of course rather restrictive.
Expectation propagation can be applied with any
member of the exponential family as approximat-
ing distribution (Minka 2001; Seeger 2008). The
crucial operations are the projection step and the
transformation from moment to canonical form:
if these can be performed efficiently and robustly,
expectation propagation is into play.

In many interesting cases, the model to be
learned (here represented as a single variable w)
contains a lot of structure. This structure can be
exploited by expectation propagation to make it
more efficient. For example, when a term only
contains a subset of the elements of w, so does
its term approximation. Also, we might take as
the approximating distribution a distribution that
factorizes over the elements of w, instead of
a “full” distribution coupling all elements. For
a Gaussian, this would amount to a diagonal
instead of a full covariance matrix. Such a factor-
ization will lead to lower memory requirements
and faster computation, perhaps at the expense
of reduced accuracy. More advanced approxima-
tions include Tree-EP, where the approximating
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structure is a tree, and generalized expectation
propagation, which generalizes expectation prop-
agation to include higher-order interactions in the
same way as generalized belief propagation gen-
eralizes loopy belief propagation (Welling et al.
2005). Systematic higher-order corrections on top
of standard expectation propagation lead to im-
proved approximate inference in Gaussian latent
variable models (Cseke and Heskes 2011; Opper
et al. 2013).

Power expectation propagation (Minka
2005) generalizes expectation propagation by
considering a different distance measure in the
projection step. Instead of taking the Kullback-
Leibler divergence, we can take any so-called ˛-
divergence. ˛ D 1 corresponds to the Kullback-
Leibler divergence and ˛ D �1 to the Kullback-
Leibler divergence with the two probabilities
interchanged. In the latter case, we obtain a
variational method called variational Bayes.

Programs and Data
Code for expectation propagation applied to
Gaussian process classification can be found
at http://www.gaussianprocess.org/gpml/code/
matlab/doc/ or http://becs.aalto.fi/en/research/
bayes/gpstuff/. Kevin Murphy’s Bayes Net
toolbox (https://code.google.com/p/bnt/) can
provide a good starting point to write your own
code for expectation propagation. Expectation
propagation is one of the approximate inference
methods implemented in Infer.NET, Microsoft’s
framework for running Bayesian inference in
graphical models (http://research.microsoft.com/
en-us/um/cambridge/projects/infernet/).

Applications

Expectation propagation has been applied
for, among others, Gaussian process clas-
sification (Csato et al. 2002), inference in
Bayesian networks and Markov random fields,
text classification with Dirichlet models and
processes (Minka and Lafferty 2002), logistic
regression models for rating players (Herbrich
and Graepel 2006), and inference and learning

in hybrid and nonlinear dynamic Bayesian
networks (Heskes and Zoeter 2002).

Future Directions

From an application point of view, expectation
propagation will probably become one of the
standard techniques for approximate Bayesian
machine learning, much like the Laplace ap-
proximation and Monte Carlo methods. Future
research may involve questions like

• When does expectation propagation con-
verge? Can we design variants that are
guaranteed to converge for any type of
model?

• What “power” to use in power expectation
propagation for what kind of purposes?

• Can we adapt expectation propagation to
handle approximating distributions that are
not part of the exponential family? Recent
progress in this direction includes Barthelme
and Chopin (2014).
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Synonyms

Analytical learning; Deductive learning; EBL;
Utility problem

Definition

Explanation-based learning (EBL) is a principled
method for exploiting available domain knowl-
edge to improve � supervised learning. Improve-
ment can be in speed of learning, confidence of
learning, accuracy of the learned concept, or a
combination of these. In modern EBL the domain
theory represents an expert’s approximate knowl-
edge of complex systematic world behavior. It
may be imperfect and incomplete. Inference over
the domain knowledge provides analytic evi-
dence that compliments the empirical evidence of
the training data. By contrast, in original EBL, the
domain theory is required to be much stronger;
inferred properties are guaranteed. Another im-
portant aspect of modern EBL is the interaction
between domain knowledge and labeled training
examples afforded by explanations. Interaction
allows the nonlinear combination of evidence so
that the resulting information about the target
concept can be much greater than the sum of
the information from each evidence source taken
independently.
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Hypothesis
Space H

Training
Set Z

Learning
System

Explanation-Based Learning, Fig. 1 Conventional
learner

Motivation and Background

A conventional machine learning system is illus-
trated in Fig. 1. A hypothesis Oh is selected from
a space of candidates H using a training set of
labeled examples Z as evidence. It is common to
assume that the examples are drawn from some
space of well-formed inputs X according to some
fixed but unknown distribution D. The quality
of Oh is to be judged against different examples
similarly selected and labeled. The correct label
for an example is specified by some ideal tar-
get concept, c�. This is typically some complex
world process whose outcome is of interest. The
target concept, c�, will generally not be a member
of space of acceptable candidates, H . Rather, the
learner tries to find some Oh which is acceptably
similar to c� over XD and can serve as a compu-
tationally tractable stand-in.

Of course, good performance of Oh on Z (its
training performance) alone is insufficient. The
learner must achieve some statistical guarantee of
good performance on the underlying distribution
(test performance). If H is too rich and diverse
or if Z is too impoverished, a learner is likely
to � overfit the data; it may find a pattern in the
training data that does not hold in the underlying
distribution XD. Test performance will be poor
despite good training performance.

An explanation-based learner employs its do-
main theory, � (Fig. 2), as an additional source
of information. This domain theory must not be
confused with � learning bias, which is present in
all learners. Determinations (Russell and Grosof
1987) provide an extreme illustration. These are

Hypothesis
Space H

Training
Set Z

Domain
Knowledge D

Learning
System

Explanation-Based Learning, Fig. 2 EBL learner

logical expressions that make strong claims about
the world but only after seeing a training ex-
ample. EBL domain theories are used only to
explain. An inferred expression is not guaranteed
to hold but only provides analytic evidence.

An explanation for some ´ 2 Z is immedi-
ately and easily generalized: The structure of the
explanation accounts for why ´s assigned classi-
fication label should follow from its features. All
other examples that meet these conditions are as-
signed the same classification by the generalized
explanation for the same reasons.

Early approaches to EBL (e.g., DeJong and
Mooney 1986; Mitchell et al. 1986; Mitchell
1997; Russell and Norvig 2003) were undone
by two difficult problems: (1) unavoidable im-
perfections in the domain theory and (2) the
utility problem. The former stems from assuming
a conventional semantics for the domain theory.
It results in a brittleness and an under-reliance
on the training data. Modern EBL is largely a
reaction to this difficulty. The utility problem is
a consequence of an ill-defined hypothesis space
and, as will be discussed later, can be avoided in
a straightforward manner.

Structure of Learning System

Explanations and Their Generalization
An explanation for a training example is any
causal structure, derivable from �, which justifies
why this training example might merit its teacher-
assigned classification label. A generalized ex-
planation is the structure of an explanation with-

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_100246
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out the commitment to any particular example.
The explanation and generalization processes are
relatively straightforward and not significantly
different from the original EBL algorithms.

The weakness of early EBL is in viewing
the components of � as constraints. This leads
to a view of explanations and their generaliza-
tions as proofs. Real-world brittleness due to
the qualification problem (McCarthy 1980) fol-
lows inevitably. In modern EBL, � is seen as
approximating the underlying world constraints
(DeJong 2006; Kimmig et al. 2007). The domain
theory is fundamentally a statistical device. Its
analytic evidence and the empirical evidence of
the training examples both provide a bridge to the
real world.

The domain theory introduces new predicates
and specifies their significant potential interac-
tions. From a statistical point of view, these
are named latent (hidden) features together with
a kind of grammar for constructing alternative
estimators for them. In short, the domain theory
compactly specifies a large set of conceptual
structures that an expert believes may be useful
in making sense of the domain. If the expert
is correct, then patterns of interest will become
computationally much more accessible via ana-
lytic inference.

One flexible and useful form of a domain
theory is sound inference over a set of first-
order symbolic logic sentences. In such domain
theories, the explanation mechanism can be iden-
tical to logical deduction although using a para-
consistent inference mechanism; inference must
be well behaved despite inconsistencies in the
theory. Generalized explanations are simply “the-
orems” of � that relate a classification label to
the values of observable example features. But
since the sentences of the theory only approx-
imate world constraints, derivation alone, even
via sound inference, is not sufficient evidence to
believe a conclusion. Thus, a generalized expla-
nation is only a conjecture. Additional training
examples beyond those used to generate each
explanation help to estimate the utility of these
generalizations.

But analytic mechanisms need not be limited
to symbolic logic-like inference. For example,

X Example Space

–

–
–

–

+

+

+

+

+

+

+ +

+

+

–
–

–

–

Explanation-Based Learning, Fig. 3 An example
space with two designated positive training items

one EBL approach is to distinguish handwritten
Chinese characters (Lim et al. 2007) employing a
Hough transform as a component of the domain
theory. There, an explanation conjectures (hid-
den) glyph “strokes” to explain how the observed
pixels of the training images may realize the
image’s character label.

Whatever the form of the analytic inferential
mechanism, multiple, quite incompatible expla-
nations can be generated; the same training label
can be explained using different input features
and postulating different interactions. Such ex-
planations will generalize to cover quite different
subsets of X . Figure 3 shows a small training set
with two positive examples highlighted. While
the explanation process can be applied to all
examples both positive and negative, these two
will be used to illustrate. In this illustration, just
two explanations are constructed for each of the
highlighted training examples. Figure 4 shows the
generalized extensions of these four explanations
in the example space. The region enclosed by
each contour is meant to denote the subset of
X conjectured to merit the same classification
as the explained example. Explanations make no
claim about the labels for examples outside their
extension.

Evaluation and Hypothesis Selection
Additional training examples that fall within the
extension of a generalized explanation help to
evaluate it empirically. This is shown in Fig. 5.
The estimated utility of a generalized explanation
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Explanation-Based Learning, Fig. 4 Four constructed
explanations are sufficient to cover the positive examples

Explanation-Based Learning, Fig. 5 Explanations are
evaluated with other training examples

reflects (1) the generalized explanation’s empiri-
cal accuracy on these training examples, (2) the
inferential effort required to derive the explana-
tion (see DeJong 2006), and (3) the redundancies
and interactions with other generalized explana-
tions (higher utility is estimated if its correct
predictions are less commonly shared by other
generalized explanations).

The estimated utilities define an EBL classifier
as a mixture of the generalized explanations each
weighted by its estimated utility:

OcEBL.x/ D
X

g2GE.Z;�/

ug � g.x/;

where GE.Z; �/ denotes the generalized expla-
nations for Z from � and ug is the estimated
utility for g. This corresponds to a voting scheme
where each generalized explanation that claims
to apply to an example casts a vote in proportion
to its estimated utility. The votes are normalized

Explanation-Based Learning, Fig. 6 An element from
H that approximates the weighted explanations

over the utilities of voting generalized explana-
tions. The mixture scheme is similar to that of
sleeping experts (Freund et al. 1997). This EBL
classifier approximates the target concept c�. But
unlike the approximation chosen by a conven-
tional learner, OcEBL reflects the information of �

in addition to Z.
The final step is to select a hypothesis Oh from

H . The EBL concept OcEBL is used to guide this
choice. Figure 6 illustrates the selection of a
Oh 2 H , which is a good approximation to a
utility-blended mixture of Fig. 5. This final step,
selecting a hypothesis from H , is important but
was omitted in original EBL. These systems em-
ployed generalized explanations directly. Unfor-
tunately, such classifiers suffer from a difficulty
known as the utility problem (Minton 1990). Note
this is a slightly different use of the term utility,
referring to the performance of an application
system. This system can be harmed more than
helped by concepts such as OcEBL, even if these
concepts provide highly accurate classification.
Essentially, the average cost of evaluating an EBL
concept may outweigh the average benefit that
it provides to the application system. It is now
clear that this utility problem is simply the mani-
festation of a poorly structured hypothesis space.
Note that, in general, an EBL classifier itself will
not be an element of the space of acceptable
hypotheses H . Previous approaches to the utility
problem (Minton 1990; Gratch and DeJong 1992;
Greiner and Jurisica 1992; Etzioni 1993) identify
and disallow offending EBL concepts. However,
the root cause is addressed by employing the EBL
concept as a guidance in selecting a Oh 2 H
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rather than using OcEBL directly. Without this last
step, H is completely ignored. But H embodies
all of the information in the learning problem
about what makes an acceptable hypothesis. The
“utility problem” is simply the manifestation of
leaving out this important information.

Literature
The roots and motivation for EBL extend at
least to the MACROPs of STRIPS (Fikes et al.
1972). The importance of explanations of training
examples was first suggested in DeJong (1981).
The standard references for the early EBL work
are Mitchell et al. (1986) and DeJong and
Mooney (1986). When covering EBL, current
textbooks give somewhat refined versions of
this early approach (Mitchell 1997; Russell and
Norvig 2003). Important related ideas include
determinations (Russell and Grosof 1987),
chunking (Laird et al. 1986), and knowledge
compilation (Anderson 1986). EBL’s ability to
employ first-order theories make it an attractive
compliment to learning Horn theories with
� Inductive Logic Programming (Hirsh 1987;
Bruynooghe et al. 1989; Pazzani and Kibler
1992; Zelle and Mooney 1993). The problem of
imperfect domain theories was recognized early,
and there have been many approaches (Flann and
Dietterich 1989; Genest et al. 1990; Towell et al.
1991; Cohen 1992; Thrun and Mitchell 1993;
Ourston and Mooney 1994). But with modern
statistical learning ascending to the dominant
paradigm of the field, interest in analytic
approaches waned. The current resurgence of
interest is largely driven by placing EBL in a
modern statistically sophisticated framework that
nonetheless is still able to exploit a first-order
expressiveness (DeJong 2006; Kimmig et al.
2007; Lim et al. 2007; Sun and DeJong 2005).
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Synonyms

Explanation-based generalization for planning;
Speedup learning for planning

Definition

�Explanation-based learning (EBL) involves us-
ing prior knowledge to explain (“prove”) why
the training example has the label it is given and
using this explanation to guide the learning. Since
the explanations are often able to pinpoint the
features of the example that justify its label, EBL
techniques are able to get by with much fewer
number of training examples. On the flip side, un-
like general classification learners, EBL requires
prior knowledge (aka “domain theory/model”) in
addition to labeled training examples – a require-
ment that is not easily met in some scenarios.
Since many planning and problem-solving agents
do start with declarative domain theories (consist-
ing at least of descriptions of actions along with
their preconditions and effects), EBL has been a
popular learning technique for planning.

Dimensions of Variation

The application of EBL in planning varies along
several dimensions: whether the learning was for
improving the speed and quality of the underly-
ing planner (Etzioni 1993; Kambhampati 1994;
Kambhampati et al. 1996; Minton et al. 1989;
Yoon et al. 2008) or acquire the domain model
(Levine and DeJong 2006), whether it was done
from successes (Kambhampati 1994; Yoon et al.
2008) or failures (Minton et al. 1989; Ihrig and
Kambhampati 1997), whether the explanations
were based on complete/correct (Minton et al.
1989; Kambhampati et al. 1996) or partial do-
main theories (Yoon et al.), whether learning is
based on single (Kambhampati 1994; Kambham-
pati et al. 1996; Minton et al. 1989) or multi-
ple examples (Flann and Dietterich 1989; Estlin
and Mooney 1997) (where, in the latter case,
inductive learning is used in conjunction with
EBL), and finally whether the planner whose
performance EBL aims to improve is a means-
ends analysis one (Minton et al. 1989), partial-
order planner (Estlin and Mooney 1997), or a
heuristic search planner (Yoon et al.).

EBL techniques have been used in planning
both to improve search and to reduce domain
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modeling burden (although the former has re-
ceived more attention by far). In the former case,
EBL is used to learn “control knowledge” to
speed up the search process (Minton et al. 1989;
Kambhampati et al. 1996) or to improve the qual-
ity of the solutions found by the search process
(Estlin and Mooney 1997). In the latter case, EBL
is used to develop domain models (e.g., action
models) (Levine and DeJong 2006).

EBL for search improvement involves either
remembering and reusing successful plans or
learning search control rules to avoid failing
search branches. Other variations include
learning effective indexing of stored cases
from retrieval failures (Ihrig and Kambhampati
1997) and learning “adjustments” to the default
heuristic used by the underlying search.

Another important issue is the degree of
completeness/correctness of the underlying
background theory used to explain examples. If
the theory is complete and correct, then learning
is possible from a single example. This type of
EBL has been called “analytical learning.” When
the theory is partial, EBL still is effective in
narrowing down the set of potentially relevant
features of the training example. These features
can then be used within an inductive learner.
Within planning, EBL has been used in the
context of complete/correct as well as partial
domain models.

A final dimension of variation that differen-
tiated a large number of research efforts is the
type of underlying planner. Initially, EBL was
used on top of means-ends analysis planners
(cf. PRODIGY, Minton et al. 1989). Later work
focused on partial-order planners (e.g., Kamb-
hampati et al. 1996; Estlin and Mooney 1997).
More recently, the focus has been on forward
search state-space planners (Yoon et al. 2008).

Learning from Success:
Explanation-Based Generalization

When learning from successful cases (plans), the
training examples comprise of successful plans,
and the explanations involve proofs showing that
the plan, as it is given, is able to support the goals.

Only the parts of the plan that take part in this
proof are relevant for justifying the success of the
plan. The plan is thus “generalized” by removing
extraneous actions that do not take part in the
proof. Object identifiers and action orderings are
also generalized as long as the generalization
does not affect the proof of correctness (Kamb-
hampati 1994). The output of the learning phase
is thus a variablized plan containing a subset of
the constraints (actions, orderings, object identity
constraints) of the original plan. This is then
typically indexed and used as a macro-operator
to speed up later search.

For example, given a planning problem of
starting with an initial state where five blocks, A,
B, C, D, and E, are on the table, and the problem
requires that in the goal state A must be on B and
C must be on D and a plan P that is a sequence of
actions pickup A, stack A on B, pickup E, putdown
E, Pickup C, stack C on D, the explanation-based
learner might output the generalization do in any
order f pickup x, stack x on yg f pick up z, stack z
on wg for the generalized goals on .x; y/ and on
.w; ´/, starting from a state where x, y, ´, and w
are all on the table and clear, and each of them
denotes a distinct block.

One general class of such proof schema in-
volves showing that every top-level goal of the
planning problem as well as the precondition
of every action is established and protected. Es-
tablishment requires that there is an action in
the plan that gives that condition, and protection
requires that once established, the condition is not
deleted by any intervening action.

A crucial point is that the extent of
generalization depends on the flexibility of the
proof strategy used. Kambhampati and Kedar
(1994) discuss a spectrum of generalization
strategies associated with a spectrum of proof
strategies, while Shavlik (1990) discusses how
the number of actions in the plan can also be
generalized.

Learning from Failure

When learning from the failure of a search
branch, EBL starts by analyzing the plans at
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the failing nodes and constructing an explanation
of failure. The failure explanation is just a subset
of constraints in the plan at the current search
node, which, in conjunction with domain theory,
ensures that no successful solution can be reached
by further refining this plan. The explanations can
range from direct constraint inconsistencies (e.g.,
ordering cycles) to indirect violation of domain
axioms (e.g., the plan requiring both clear(B) and
On(A,B) to be satisfied at the same time point).
The explanations at the leaf nodes are “regressed”
over the decisions in the search tree to higher-
level nodes to get explanations of (implicit)
failures in these higher-level nodes. The search
control rules can then essentially recommend
pruning any search node which satisfies a failure
explanation.

The deep affinity between EBL from
search failures and the idea of � nogood learning
and dependency-directed backtracking in CSP
is explored in Kambhampati (1998). As in
dependency-directed backtracking, the more
succinct the explanation, the higher the chance
of learning effective control rules. Note that
effectiveness here is defined in terms of the match
costs involved in checking whether the rule is
applicable and the search reductions provided
when it is applicable. Significant work has been
done to identify classes of failure explanation
that are expected to lead to ineffective rules
(Etzioni 1993). In contrast to CSP that has
a finite depth search tree, one challenge in
planning is that often an unpromising search
node might not exhibit any direct failure with
a succinct explanation and is abandoned by the
search for heuristic reasons (such as the fact
that the node crosses a depth limit threshold).
Strategies for finding implicit explanations of
failure (using domain axioms), as well as getting
by with incomplete explanations of failure, are
discussed in Kambhampati et al. (1996). EBL
from failures has also been applied to retrieval
(rather than search) failures. In this case, the
failure of extending a plan retrieved from the
library to solve a new problem is used to learn
new indexing schemes that inhibit that case
from being retrieved in such situations (Ihrig
and Kambhampati 1997).

Learning Adjustments to Heuristics

Most recent work in planning has been in the con-
text of heuristic search planners, where learning
from failures does not work as well (since the
heuristic search may change directions much be-
fore a given search branch ends in an explainable
failure). One way of helping such planners is to
improve their default heuristic (Yoon et al. 2008).
Given a heuristic h.s/ that gives the heuristic
estimate of state s, the aim in Yoon et al. is to
learn an adjustment ı.s/ that is added to h.s/

to get a better estimate of h�.s/ – the true cost
of state s. The system has access to actual plan
traces (which can be obtained by having the
underlying planner solve some problems from
scratch). For each state s on the trace, we know
the true distance of state s from the goal state,
and we can also compute the h.s/ value with
respect to the default heuristic. This gives the
learner a set of training examples which are pairs
of states and the adjustments they needed to make
the default heuristic meet the true distance. In
order to learn the ı.s/ from this training data,
we need to enumerate the features of state s that
are relevant to it needing the specific adjustment.
This is where EBL comes in. Specifically, one
way of enumerating the relevant features is to
explain why s has the default heuristic value.
This, in turn, is done by taking the features of the
relaxed plan for state s. Since the relaxed plan is
a plan that assumes away all negative interactions
between the actions, relaxed plan features can be
seen as features of the explanation of the label for
state s in terms of a partial domain theory (one
which ignores all the deletes of all actions).

EBL from Incomplete Domain
Theories

While most early efforts for speedup focused
on complete and correct theories, several efforts
also looked at speedup learning from incomplete
theories. The so-called Lazy EBL approaches
(Tadepalli 1989; Chien 1989) work by first con-
structing partial explanations and subsequently
refining the over-general rules learned. Other ap-

http://dx.doi.org/10.1007/978-1-4899-7687-1_593
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proaches that use similar ideas outside planning
include Flann and Dietterich (1989) and Cohen
(1992). As we noted above, the work by Yoon
et al. (2008) can also be seen as basing learning
(in their case of adjustments to a default heuristic
function) w.r.t. a partial domain theory.

EBL to Learn Domain Knowledge

Although most work in EBL for planning has
been focused on speedup, there has also been
some work aimed at learning domain knowledge
(rather than control knowledge). Of particular in-
terest is “operationalizing” a complex, if opaque,
domain model by learning from it a simplified
domain model that is adequate to efficiently solve
an expected distribution of problems. The recent
work by Levine and DeJong (2006) is an example
of such an effort.

EBL and Knowledge-Level Learning

Although the focus of this article is on EBL
as applied to planning, we need to foreground
one general issue: whether EBL is capable of
knowledge-level learning or not. A popular
misconception of EBL is that since it depends
on a complete and correct domain theory,
no knowledge-level learning is possible, and
speedup learning is the only possibility. (The
origins of this misconception can be traced back
to the very beginning. The two seminal articles
on EBL in the very first issue of the Machine
Learning journal differed profoundly in their
interpretations of EBL. While Mitchell et al.
(1986) assumed that EBL by default works with
complete and correct theories (thus precluding
any knowledge-level learning), Levine and
DeJong (2006) provides a more general view of
EBL that uses background knowledge – whether
or not it is complete – to focus the generalization
(and as such can be seen as a knowledge-based
feature-selection step for a subsequent inductive
learner).) As we noted at the outset however,
EBL is not required to depend on complete and

correct domain theories, and when it does not,
knowledge-level learning is indeed possible.

Utility Problem and Its Nonexclusive
Relation to EBL

As we saw above, much early work in EBL for
planning focused on speedup for the underlying
planner. Some of the knowledge learned for
speedup – especially control rules and macro-
operators – can also adversely affect the search
by increasing either the search space size
(macros) or per-node cost (matching control
rules). Clearly, in order for the net effect to be
positive, care needs to be exercised as to which
control rules and/or macros are stored. This has
been called the “utility problem” (Minton 1990),
and significant attention has been paid to develop
strategies that either dynamically evaluate the
utility of the learned control knowledge (and
forget useless rules) (Markovitch and Scott 1988;
Minton 1990) or select the set of rules that best
serve a given distribution of problem instances
(Gratch et al. 1994).

Despite the prominent attention given to
the utility problem, it is important to note the
nonexclusive connection between EBL and
utility problem. We note that any strategy that
aims to provide/acquire control knowledge will
suffer from the utility problem. For example,
utility problem also holds for inductive learning
techniques that were used to learn control
knowledge (cf. Leckie and Zukerman 1993).
In other words, it is not special to EBL but rather
to the specific application task. We note that it
is both possible to do speedup learning that is
less susceptible to the utility problem (e.g., learn
adjustments to heuristics, Yoon et al. 2008) and
possible to use EBL for knowledge-level learning
(Levine and DeJong 2006).

Current Status

EBL for planning was very much in vogue in the
late 1980s and early 1990s. However, as the speed
of the underlying planners increased drastically,
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the need for learning as a crutch to improve
search efficiency reduced. There has however
been a recent resurgence of interest, both in
further speeding up the planners and in learning
domain models. Starting 2008, there is a new
track in the International Planning Competition
devoted to learning methods for planning. In the
first year, the emphasis was on speedup learning.
ObtuseWedge, a system that uses EBL analysis
to learn adjustments to the default heuristic, was
among the winners of the track. The DARPA in-
tegrated learning initiative, and interest in model-
lite planning have also brought focus back to
EBL for planning – this time with partial domain
theories.

Additional Reading

The tutorial (Yoon and Kambhampati 2007)
provides an up-to-date and broader overview of
learning techniques applied to planning and con-
tains significant discussion of EBL techniques.
The paper Zimmerman and Kambhampati
(2003) provides a survey of machine learning
techniques used in planning and includes a more
comprehensive listing of research efforts that
applied EBL in planning.
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