
P

PAC Identification

� PAC Learning

PAC Learning

Thomas Zeugmann
Hokkaido University, Sapporo, Japan

Synonyms

Distribution-free learning; PAC identification;
Probably approximately correct learning

Motivation and Background

A very important learning problem is the task
of learning a concept. �Concept learning has
attracted much attention in learning theory. For
having a running example, we look at humans
who are able to distinguish between different
“things,” e.g., chair, table, car, airplane, etc. There
is no doubt that humans have to learn how to
distinguish “things.” Thus, in this example, each
concept is a thing. To model this learning task, we
have to convert “real things” into mathematical
descriptions of things. One possibility to do this
is to fix some language to express a finite list of
properties. Afterward, we decide which of these
properties are relevant for the particular things we
want to deal with and which of them have to be

fulfilled or not to be fulfilled, respectively. The
list of properties comprises qualities or traits such
as “has four legs,” “has wings,” “is green,” “has a
backrest,” “has a seat,” etc. So these properties
can be regarded as Boolean predicates, and, pro-
vided the list of properties is large enough, each
thing can be described by a conjunction of these
predicates. For example, a chair is described by
“has four legs and has a backrest and has a seat
and has no wings.” Note that the color is not
relevant and thus, “is green” has been omitted.

Assume that we have n properties, where n is a
natural number. In the easiest case, we can denote
the n properties by Boolean variables x1; : : : ; xn,
where range.xj / � f0; 1g for j D 1; : : : ; n. The
semantics is then obviously defined as follows.
Setting xj D 1 means property j is fulfilled,
while xj D 0 refers to property j is not fulfilled.
Now, setting Ln D fx1; Nx1; x2; Nx2; : : : ; xn; Nxng

(set of literals), we can express each thing as a
conjunction of literals. As usual, we refer to any
conjunction of literals as a monomial.

Therefore, formally we have as learning do-
main (also called � instance space) the set of all
Boolean vectors of length n, i.e., f0; 1gn, and, in
the learner’s world, each thing (concept) is just a
particular subset of f0; 1gn. As far as our example
is concerned, the concept chair is then the set of
all Boolean vectors for which the monomial “has
four legs and has a backrest and has a seat and
has no wings” evaluates to 1.

Furthermore, it is usually assumed that the
concept c to be learned (the target concept) is
taken from a prespecified class C of possible

© Springer Science+Business Media New York 2017
C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,
DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_100119
http://dx.doi.org/10.1007/978-1-4899-7687-1_100354
http://dx.doi.org/10.1007/978-1-4899-7687-1_100377
http://dx.doi.org/10.1007/978-1-4899-7687-1_154
http://dx.doi.org/10.1007/978-1-4899-7687-1_408

950 PAC Learning

concepts called the concept class. In our example
above, the concept class is the set of all concepts
describable by a monomial. Consequently, we
see that formally learning a concept is equivalent
to identifying (exact or approximately) a set from
a given set of possibilities by learning a suitable
description (synonymously called representation)
of it.

As in complexity theory, we usually assume
that the representations are reasonable ones. Then
they can be considered as strings over some fixed
alphabet and the set of representations constitutes
the � representation language. Note that a
concept may have more than one representation
in a given representation language (and should
have at least one) and that there may be different
representation languages for one and the same
concept class. For example, every Boolean func-
tion can be expressed as a � conjunctive normal
form (CNF) and as a � disjunctive normal form
(DNF), respectively. For a fixed representation
language, the size of a concept is defined to be
the length of a shortest representation for it. Since
we are interested in a model of efficient learning,
usually the following additional requirements
are made: given any string over the underlying
alphabet, one can decide in time polynomial in
the length of the string whether or not it is a
representation. Furthermore, given any element
x from the underlying learning domain and
a representation r for any concept, one can
uniformly decide in time polynomial in the length
of both inputs whether or not x belongs to the
concept c described by r .

So, we always have a representation language
used to define the concept class. As we shall see
below, it may be advantageous to choose a pos-
sibly different representation language used by
the learner. The class of all sets described by this
representation language is called � hypothesis
space (denoted by H), and the elements of it are
said to be hypotheses (commonly denoted by h).

The learner is specified to be an algorithm.
Further details are given below. We still have
to specify the information source, the criterion
of success, the hypothesis space, and the
prior knowledge in order to define what PAC
learning is.

The abbreviation PAC stands for probably
approximately correct and the corresponding
learning model has been introduced by Valiant
(1984), while its name was dubbed by Angluin
(1988). Valiant’s (1984) pioneering paper
triggered a huge amount of research the results
of which are commonly called computational
learning theory (see also the COLT and ALT
conference series). Comprehensive treatises of
this topic include Anthony and Biggs (1992),
Kearns and Vazirani (1994), as well as Natarajan
(1991).

Informally, this means that the learner has
to find, on input, a randomly drawn set of
labeled examples (called sample), with high
probability a hypothesis such that the error of
it is small. Here the error is measured with
respect to the same probability distribution
D with respect to which the examples are
drawn.

LetX ¤ ; be any learning domain and let C �
}.X/ be any nonempty concept class (here }.X/
denotes the power set of X). If X is infinite, we
need some mild measure theoretic assumptions to
ensure that the probabilities defined below exist.
We refer to such concept classes as well-behaved
concept classes. In particular, each c 2 C has to
be a Borel set. For a more detailed discussion, see
Blumer et al. (1989).

Next, we formally define the information
source. We assume any unknown probability
distribution D over the learning domain X . No
assumption is made concerning the nature of D
and the learner has no knowledge concerning
D. There is a sampling oracle EX. /, which has
no input. Whenever EX. / is called, it draws
an element x 2 X according to D and returns
the element x together with an indication of
whether or not x belongs to the target concept c.
Thus, every example returned by EX. / may be
written as .x; c.x//, where c.x/ D 1 if x 2 c
(positive examples) and c.x/ D 0 otherwise
(negative examples). If we make s calls to the
example EX. /, then the elements x1; : : : ; xs are
drawn independently from one another. Thus,
the resulting probability distribution over all s-
tuples of elements from X is the s-fold product
distribution of D, i.e.,

http://dx.doi.org/10.1007/978-1-4899-7687-1_100412
http://dx.doi.org/10.1007/978-1-4899-7687-1_158
http://dx.doi.org/10.1007/978-1-4899-7687-1_223
http://dx.doi.org/10.1007/978-1-4899-7687-1_373

PAC Learning 951

P

Pr.x1; : : : ; xs/ D

sY

iD1

D.xi / ; (1)

where Pr.A/ denotes the probability of event A.
Hence, the information source for a target con-
cept c is any randomly drawn s-sample S.c; Nx/ D
.x1; c.x1/; : : : ; xs; c.xs// returned by EX. /.

The criterion of success, i.e., probably approx-
imately correct learning, is parameterized with
respect to two quantities, the accuracy parameter
", and the confidence parameter ı, where "; ı 2
.0; 1/. Next, we define the difference between two
sets c; c0 � X with respect to the probability
distribution D as

d.c; c0/ D
X

x2c4c0

D.x/;

where c4c0 denotes the symmetric difference,
i.e., c4c0 D c n c0 [c0 n c. We say that
hypothesis h is an "-approximation of a concept
c, if d.c; h/ � ". A learner is successful, if it
computes an "-approximation of the target con-
cept, and it should do so with probability at least
1 � ı.

The hypothesis space H is any set such that
C � H, and the only prior knowledge is that the
target concept is from the concept class.

A further important feature of the PAC learn-
ing model is the demand to learn efficiently.
Usually, in the PAC learning model, the effi-
ciency is measured with respect to the number of
examples needed and the amount of computing
time needed, and in both cases the requirement
is to learn with an amount that is polynomial
in the “size of the problem.” In order to arrive
at a meaningful definition, one has to discuss
the problem size and, in addition, to look at
the asymptotic difficulty of the learning problem.
That is, instead of studying the complexity of
some fixed learning problem, we always look at
infinite sequences of similar learning problems.
Such infinite sequences are obtained by allowing
the size (dimension) of the learning domain to
grow or by allowing the complexity of the con-
cepts considered to grow. In both cases we use n
to denote the relevant parameter.

Definition

A learning method A is said to probably approx-
imately correctly learn a target concept c with
respect to a hypothesis space H and with sample
complexity s D s."; ı/ (or s D s."; ı; n/), if for
any distributionD overX and for all "; ı 2 .0; 1/,
it makes s calls to the oracle EX. /, and after
having received the answers produced by EX. /
(with respect to the target c), it always stops and
outputs a representation of a hypothesis h 2 H
such that

Pr.d.c; h/ � "/ � 1 � ı:

A learning method A is said to probably ap-
proximately correctly identify a target concept
class C with respect to a hypothesis space H
and with sample complexity s D s."; ı/, if it
probably approximately correctly identifies every
concept c 2 C with respect to H and with sample
complexity s.

A learning method A is said to be efficient,
if there exists a polynomial pol such that the
running time of A and the number s of examples
seen are at most pol.1="; 1=ı; n/.

Remarks
This looks complicated, and so, some explanation
is in order. First, the inequality

Pr.d.c; h/ � "/ � 1 � ı

says that with high probability (quantified by
ı), there is not too much difference (quanti-
fied by ") between the conjectured concept (de-
scribed by h) and the target c. Formally, let A
be any fixed learning method, and let c be any
fixed target concept. For any fixed "; ı 2 .0; 1/,
let s D s."; ı/ be the actual sample size. We
have to consider all possible outcomes of A
when run on every labeled s-sample S.c; Nx/ D
.x1; c.x1/; : : : ; xs; c.xs// returned by EX. /. Let
h.S.c; Nx// be the hypothesis produced by A
when processing S.c; Nx/. Then we have to con-
sider the set W of all s-tuples over X such that
d.c; h.S.c; Nx/// � ". The condition Pr.d.c; h/ �
"/ � 1 � ı can now be formally rewritten as
Pr.W / � 1 � ı. Clearly, one has to require that

952 PAC Learning

Pr.W / is well defined. Note that the sample size
is not allowed to depend on the distribution D.

To exemplify this approach, recall that our set
of all concepts describable by a monomial over
Ln refers to the set of all things. We consider
a hypothetical learner (e.g., a student, a robot)
that has to learn the concept of a chair. Imagine
that the learner is told by a teacher whether
or not particular things visible by the learner
are instances of a chair. What things are visible
depends on the environment the learner is in.
The formal description of this dependence is
provided by the unknown distribution D. For
example, the learner might be led to a kitchen, a
sitting room, a bookshop, a beach, etc. Clearly,
it would be unfair to teach the concept of a
chair in a bookshop and then testing the learning
success at a beach. Thus, the learning success is
measured with respect to the same distribution
D with respect to which the sampling oracle
has drawn its examples. However, the learner is
required to learn with respect to any distribution.
That is, independently of whether the learner is
led to a kitchen, a bookshop, a sitting room, a
beach, etc., it has to learn with respect to the
place it has been led to. The sample complexity
refers to the amount of information needed to
ensure successful learning. Clearly, the smaller
the required distance of the hypothesis produced
and the higher the confidence desired, the more
examples are usually needed. But there might be
atypical situations. To have an extreme example,
the kitchen the learner is led to turned out to
be empty. Since the learner is required to learn
with respect to a typical kitchen (described by
the distribution D), it may well fail under this
particular circumstance. Such failure has to be
restricted to atypical situations, and this is ex-
pressed by demanding the learner to be successful
with confidence 1 � ı.

This corresponds to real-life situations. For
example, a student who has attended a course
in learning theory might well suppose that she
is examined in learning theory and not in graph
theory. However, a good student, say in computer
science, has to pass all examinations successfully,
independently of the particular course attended.
That is, she must successfully pass examinations

in computability theory, complexity theory, cryp-
tology, parallel algorithms, etc. Hence, she has
to learn a whole concept class. The sample com-
plexity refers to the time of interaction performed
by the student and teacher. Also, the student may
come up with a different representation of the
concepts taught than the teacher. If we require
C D H, then the resulting model is referred to
as proper PAC learning.

The Finite Case

Having reached this point, it is natural to ask
which concept classes are (efficiently) PAC learn-
able. We start with the finite case, i.e., learning
domains X of finite cardinality. As before, the
s-sample of c generated by Nx is denoted by
S.c; Nx/ D .x1; c.x1/; : : : ; xs; c.xs//. A hypoth-
esis h 2 H is called consistent for an s-sample
S.c; Nx/, if h.xi / D c.xi / for all 1 � i � s. A
learner is said to be consistent if all its outputs
are consistent hypotheses. Then the following
strategy (also known as �Occam’s razor) may be
used to design a PAC learner:

(1) Draw a sufficiently large sample from the
oracle EX. /, say s examples.

(2) Find some h 2 H that is consistent with all
the s examples drawn.

(3) Output h.

This strategy has a couple of remarkable fea-
tures. First, provided the learner can find a con-
sistent hypothesis, it allows for a uniform bound
of the number of examples needed. That is,

s �
1

"

�
ln jHj C ln

�
1

ı

��
(2)

examples will always suffice (here jS j denotes
the cardinality of any set S).

The first insight obtained here is that increas-
ing the confidence is exponentially cheaper than
reducing the error.

Second, we see why we have to look at the
asymptotic difficulty of the learning problem. If
we fix f0; 1gn as learning domain and define
C to be the set of all concepts describable by

http://dx.doi.org/10.1007/978-1-4899-7687-1_614

PAC Learning 953

P

a Boolean function, then there are 22n
many

concepts over f0; 1gn. Consequently, ln jHj D
O.2n/ resulting in a sample complexity that is for
sure infeasible if n � 50. Thus, we set Xn D

f0; 1gn, consider Cn � }.Xn/, and study the
relevant learning problem for .Xn; Cn/n�1. So,
finite means that all Xn are finite.

Third, using Inequality (2), it is not hard to
see that the set of all concepts over f0; 1gn that
are describable by a monomial is efficiently PAC
learnable. Let Hn be the set of all monomials
containing each literal from Ln at most once plus
the conjunction of all literals (denoted by mall)
(representing the empty concept). Since there are
3n C 1 monomials in Hn, by (2), we see that
O.1=" � .n C ln.1=ı/// many examples suffice.
Note that 2n is also an upper bound for the size
of any concept from Hn.

Thus it remains to deal with the problem to
find a consistent hypothesis. The learning algo-
rithm can be informally described as follows.
After having received the s examples, the learner
disregards all negative examples received and
uses the positive ones to delete all literals from
mall that evaluate to 0 on at least one positive
example. It then returns the conjunction of the
literals not deleted frommall. After a bit of reflec-
tion, one verifies that this hypothesis is consis-
tent. This is essentially Haussler’s (1987) Wholist
algorithm and its running time is O.1=" � .n2 C

ln.1=ı///. Also note that the particular choice
of the representation for the empty concept was
crucial here. It is worth noticing that the sample
complexity is tight up to constant factors.

Using similar ideas one can easily show that
the class of all concepts over f0; 1gn describable
by a k-CNF or k-DNF (where k is fixed) is
efficiently PAC learnable by using as hypothesis
space all k-CNF and k-DNF, respectively (cf.
Valiant 1984). Note that a k-CNF is a conjunctive
normal form in which each clause has at most k
literals, and a k-DNF is a disjunctive normal form
in which each monomial has at most k literals.

So, what can we say in general concerning
the problem to find a consistent hypothesis? An-
swering this question gives us the insight to
understand why it is sometimes necessary to
choose a hypothesis space that is different from

the target concept class. This phenomenon was
discovered by Pitt and Valiant (1988). First, we
look at the case where we have to efficiently PAC
learn any Cn with respect to Cn. Furthermore, an
algorithm is said to solve the consistency problem
for Cn if, on input any s-sample S.c; Nx/, where
c � Xn, it outputs a hypothesis consistent with
S.c; Nx/ provided there is one, and “there is no
consistent hypothesis,” otherwise.

Since we are interested in efficient PAC learn-
ing, we have to make the assumption that jCnj �

2pol.n/ (cf. Inequality (2)). Also, it should be
noted that for the proof of the following result,
the requirement that h.x/ is polynomial time
computable is essential (cf. our discussion of rep-
resentations). Furthermore, we need the notion of
an RP-algorithm (randomized polynomial time).
The input is any s-sample S.c; Nx/, where c �
Xn and the running time is uniformly bounded
by a polynomial in the length of the input. In
addition to its input, the algorithm can flip a coin
in every step of its computation and then branch
in dependence of the outcome of the coin flip.
If there is no hypothesis consistent with S.c; Nx/,
the algorithm must output “there is no consistent
hypothesis,” independently of the sequence of
coin flips made. If there is a hypothesis consistent
with S.c; Nx/, then the RP-algorithm is allowed
to fail with probability at most ı.

Interestingly, under the assumptions made
above, then one can prove the following
equivalence for efficient PAC learning.

PAC learning Cn with respect to Cn is equiva-
lent to solving the consistency problem for Cn by
an RP-algorithm.

We continue by looking at the class of all
concepts describable by a k-term DNFn. A term
is a conjunction of literals from Ln, and a k-
term DNFn is a disjunction of at most k terms.
Consequently, there are .3n C 1/k many k-term
DNFs and thus the condition jCnj � 2pol.n/ is
fulfilled. Then one can show the following (see
Pitt and Valiant 1988).

For all integers k � 2, if there is an algorithm
that efficiently learns k-term DNFnwith respect
to k-term DNFn, then RP D NP .

For a formal definition of the complexity
classes RP and NP , we refer the reader to Arora

954 PAC Learning

and Barak (2009). This result is proved by show-
ing that deciding the consistency problem for
k-term DNFn is NP-complete for every k � 2.
The difference between deciding and solving the
consistency problem is that we only have to de-
cide if there is a consistent hypothesis in k-term
DNFn. However, by the equivalence established
above, we know that an efficient proper PAC
learner for k-term DNFn can be transformed into
an RP-algorithm even solving the consistency
problem. It should be noted that we currently
do not know whether or not RP D NP (only
RP � NP has been shown), but it is widely
believed that RP ¤ NP . On the other hand, it
easy to see that every concept describable by a k-
term DNFn is also describable by a k-CNFn (but
not conversely). Thus, we can finally conclude
that there is an algorithm that efficiently PAC
learns k-term DNFn with respect to k-CNFn.

For more results along this line of research, we
refer the reader to Pitt and Valiant (1988), Blum
and Singh (1990), and Jerrum (1994). As long
as we do not have more powerful lower bound
techniques allowing one to separate the relevant
complexity classes RP and NP or P and NP ,
no unconditional negative result concerning PAC
learning can be shown. Another approach to show
hardness results for PAC learning is based on
cryptographic assumptions (cf., e.g., Kearns and
Valiant 1989, 1994), and recently one has also
tried to base cryptographic assumptions on the
hardness of PAC learning (cf., e.g., Xiao (2009)
and the references therein).

Further positive results comprise the efficient
proper PAC learnability of rank k � decision trees
(cf. Ehrenfeucht and Haussler 1989) and of k-
� decision lists for any fixed k (cf. Rivest 1987).

Finally, it must be noted that the bounds on the
sample size obtained via Inequality (2) are not
the best possible. Sometimes, better bounds can
be obtained by using the �VC dimension (see
Inequality (4) below).

The Infinite Case

Let us start our exposition concerning infinite
concept classes with an example due to Blumer

et al. (1989). Consider the problem of learning
concepts such as “medium built” animals. For the
sake of presentation, we restrict ourselves to the
parameters “weight” and “length.” To describe
“medium built,” we use intervals “from-to.” For
example, a medium built cat might have a weight
ranging from 3 to 7 kg and a length ranging from
25 cm to 50 cm. By looking at a finite database
of randomly chosen animals giving their respec-
tive weight and length and their classification
(medium built or not), we want to form a rule that
approximates the true concept of “medium built”
for each animal under consideration.

This learning problem can be formalized as
follows. Let X D E

2 be the two-dimensional
Euclidean space, and let C � }.E2/ be the
set of all axis-parallel rectangles, i.e., products
of intervals on the x-axis with intervals on the
y-axis. Furthermore, let D be any probability
distribution over X . Next we show that C is
efficiently PAC learnable with respect to C by the
following Algorithm LR (cf. Blumer et al. 1989):

Algorithm LR: “On input any "; ı 2 .0; 1/,
call the oracle EX. / s times, where s D
4=" � ln.4=ı/. Let .r1; c.r1/; r2; c.r2/; : : : ;

rs; c.rs// be the s-sample returned by EX. /,
where ri D .xi ; yi /, i D 1; : : : s.

Compute xminDminfxi j1 � i � s; c.ri /D1g

xmaxDmaxfxi j1 � i � s; c.ri /D1g

yminDminfyi j1 � i � s; c.ri /D1g

ymaxDmaxfyi j1 � i � s; c.ri /D1g

Output h D Œxmin; xmax� � Œymin; ymax�. In case
there is no positive example, return h D ;.
end.”

It remains to show that Algorithm LR PAC learns
the concept class C with respect to C. Let c D
Œa; b� � Œc; d � be the target concept. Since LR
computes its hypothesis from positive examples,
only, we get h � c. That is, h is consistent. We
have to show that d.c; h/ � " with probability
at least 1 � ı. We distinguish the following
cases.

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_64
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

PAC Learning 955

P

Case 1. D.c/ � "
Then d.c; h/ D

P
r2c4h

D.r/ D
P

r2cnh

D.r/ �

D.c/ � ".
Hence, in this case we are done.

Case 2. D.c/ > "
We define four minimal side rectangles within
c that each cover an area of probability of at
least "=4. Let
Left = Œa; x� � Œc; d �, where x D inff Qx j
D.Œa; Qx� � Œc; d �/ � "=4g,
Right = Œ´; b� � Œc; d �, where ´ D inff Qx j
D.Œ Qx; b� � Œc; d �/ � "=4g,
Top = Œa; b� � Œy; d �, where y D inff Qx j
D.Œa; b� � Œ Qx; d �/ � "=4g, and
Bottom = Œa; b� � Œc; t �, where t D inff Qx j
D.Œa; b� � Œc; Qx�/ � "=4g.

All those rectangles are contained in c,
since D.c/ > ". If the sample size is s, the
probability that a particular rectangle from
fLeft; Right; Top; Bottomg contains no
positive example is at most .1 � "=4/s . Thus,
the probability that some of those rectangles
does not contain any positive example is at
most 4.1 � "=4/s . Hence, incorporating s D

4=" � ln.4=ı/ gives

4.1 � "=4/s < 4e�."=4/s D 4e� ln.4=ı/ D ı :

Therefore, with probability at least 1 � ı, each
of the four rectangles Left, Right, Top, and Bot-
tom contains a positive example. Consequently,
we get

d.c; h/ D
X

r2c4h

D.r/

D
X

r2cnh

D.r/ D D.c/ �D.h/ :

Furthermore, by construction

D.h/ � D.c/ �D.Left/ �D.Right/

�D.Top/ �D.Bottom/ � D.c/ � " ;

and hence d.c; h/ � ".
Having reached this point, it is only natural

to ask what makes infinite concept classes PAC
learnable. Interestingly, there is a single param-
eter telling us whether or not a concept class
is PAC learnable. This is the so-called Vapnik-
Chervonenkis dimension commonly abbreviated
as �VC dimension. In our example of axis-
parallel rectangles, the VC dimension of C is 4.

In order to state this result, we have to exclude
trivial concept classes. A concept class C is said to
be trivial if jCj D 1 or C D fc1; c2gwith c1\c2 D

; and X D c1 [c2. A concept class C is called
nontrivial if C is not trivial. Then Blumer et al.
(1989) showed the following:

A nontrivial well-behaved concept class is
PAC learnable if and only if its VC dimension is
finite.

Moreover, if the VC dimension is finite, es-
sentially the same strategy as in the finite case
applies, i.e., it suffices to construct a consistent
hypothesis from C (or from a suitably chosen
hypothesis space H which must be well behaved)
in random polynomial time.

So, it remains to estimate the sample complex-
ity. Let d be the VC dimension of H. Blumer
et al. (1989) showed that

s � max

�
4

"
log

2

ı
;

8d

"
log

13

"

�
(3)

examples do suffice. This upper bound has been
improved by Anthony et al. (1990) to

s �
1

".1 �
p
"/

�
log

�
d=.d � 1/

ı

�
C 2d log

�
6

"

��
: (4)

Based on the work of Blumer et al. (1989)
(and the lower bound they gave), Ehrenfeucht
et al. (1988) showed that if C is nontrivial,

then no learning function exists (for any H)
if s < 1�"

2"
log 2

ı
C d�1

64"
. These results give

a precise characterization of the number of

http://dx.doi.org/10.1007/978-1-4899-7687-1_881

956 PAC Learning

examples needed (apart from the gap of a factor
of O.log 1

"
/) in terms of the VC dimension.

Also note the sharp dichotomy here, either any
consistent learner (computable or not) will do or
no learner at all exists.

Two more remarks are in order here. First,
these bounds apply to uniform PAC learning,
i.e., the learner is taking " and ı as input, only.
As outlined in our discussion just before we
gave the formal definition of PAC learning, it is
meaningful to look at the asymptotic difficulty of
learning. In the infinite case, we can increment
the dimension n of the learning domain as we
did in the finite case. We may set Xn D E

n

and then consider similar concept classes Cn �

}.Xn/. For example, the concept classes similar
to axis-parallel rectangles are axis-parallel paral-
lelepipeds in E

n. Then the VC dimension of Cn

is 2n, and all that is left is to add n as input to
the learner and to express d as a function of n
in the bound (4). Clearly, the algorithm LR can
be straightforwardly generalized to a learner for
.Xn; Cn/n�1.

Alternatively, we use n to parameterize the
complexity of the concepts to be learned. As an
example consider X D E and let Cn be the set of
all unions of at most n (closed or open) intervals.
Then the �VC dimension of Cn is 2n, and one
can design an efficient learner for .X; Cn/n�1.
Another example is obtained for X D E

2 by
defining Cn to be the class of all convex poly-
gons having at most n edges (cf. Linial et al.
1991).

Second, all the results discussed so far are
dealing with static sampling, i.e., any sample
containing the necessary examples is drawn be-
fore any computation is performed. So, it is
only natural to ask what can be achieved when
dynamic sampling is allowed. In dynamic sam-
pling mode, a learner alternates between drawing
examples and performing computations. Under
this sampling mode, even concept classes having
an infinite VC dimension are learnable (cf. Linial
et al. 1991 and the references therein). The main
results in this regard are that enumerable concept
classes and decomposable concept classes are
PAC learnable when using dynamic sampling.

Let us finish the general exposition of PAC
learning by pointing to another interesting in-
sight, i.e., learning is in some sense data com-
pression. As we have seen, finding consistent
hypotheses is a problem of fundamental impor-
tance in the area of PAC learning. Clearly, the
more expressive the representation language for
the hypothesis space, the easier it may be to find
a consistent hypothesis, but it may be increas-
ingly difficult to say something concerning its
accuracy (in machine learning this phenomenon
is also known as the over-fitting problem). At
this point, �Occam’s razor comes into play. If
there is more than one explanation for a phe-
nomenon, then Occam’s razor requires to “prefer
simple explanations.” So, an Occam algorithm
is an algorithm which, given a sample of the
target concept, outputs a consistent and relatively
simple hypothesis. That is, it is capable of some
data compression. Let us first look at the Boolean
case, i.e., Xn D f0; 1gn. Then an Occam al-
gorithm is a randomized polynomial time algo-
rithm A such that there is a polynomial p and
a constant ˛ 2 Œ0; 1/ fulfilling the following
demands:

For every n � 1, every target concept c 2 Cn

of size at most m and every " 2 .0; 1/, on input
any s-sample for c, algorithm A outputs with
probability at least 1 � " the representation of a
consistent hypothesis from Cn having size at most
p.n;m; 1="/ � s˛ .

So, the parameter ˛ < 1 expresses the amount
of compression required. If we have such an
Occam algorithm, then .Xn; Cn/ is properly PAC
learnable (cf. Blumer et al. 1987). The proof is
based on the observations that a hypothesis with
large error is unlikely to be consistent with a
large sample and that there are only few short
hypotheses. If we replace in the definition of an
Occam algorithm the demand on the existence of
a short hypothesis by the existence of a hypoth-
esis space having a small VC dimension, then a
similar result can be obtained for the continuous
case (cf. Blumer et al. 1989). To a certain extent,
the converse is also true, that is, under quite
general conditions, PAC learnability implies the
existence of an Occam algorithm. We refer the

http://dx.doi.org/10.1007/978-1-4899-7687-1_881
http://dx.doi.org/10.1007/978-1-4899-7687-1_614

PAC Learning 957

P

reader to Kearns and Vazirani (1994) for further
details.

Variations

Further variations of PAC learning are possible
and have been studied. So far, we have only
considered one sampling oracle. Hence, a natural
variation is to have two sampling oracles EXC. /
and EX�. / and two distributions DC and D�,
i.e., one for positive examples and one for nega-
tive examples. Clearly, further natural variations
are possible. A larger number of them has been
shown to be roughly equivalent and we refer the
reader to Haussler et al. (1991) for details.

We continue with another natural variation
that turned out to have a fundamental impact to
the whole area of machine learning, i.e., weak
learning.

Weak Learning

An interesting variation of PAC learning is ob-
tained if we weaken the requirements concerning
the confidence and the error. That is, instead of
requiring the PAC learner to succeed for every
" and ı, one may relax this demand as follows.
We only require the learner to succeed for " D
1=2�1=pol.n/ (n is as above) and ı D 1=poly.n/
(n is as above), where pol and poly are any two
fixed polynomials. The resulting model is called
weak PAC learning.

Quite surprisingly, Schapire (1990) could
prove that every weak learner can be efficiently
transformed into an ordinary PAC learner. While
it is not too difficult to boost the confidence,
boosting the error is much more complicated and
has subsequently attracted a lot of attention. We
refer the reader to Schapire (1990, 1999) as well
as Kearns and Vazirani (1994) and the references
therein for a detailed exposition. Interestingly
enough, the techniques developed to prove the
equivalence of weak PAC learnability and PAC
learnability have an enormous impact to machine
learning and may be subsumed under the title
� boosting.

Relations to Other Learning Models

Finally, we point out some relations of PAC
learning to other learning models. Let us start
with the mistake bound model also called online
prediction model. The mistake bound model has
its roots in � inductive inference and was intro-
duced by Littlestone (1988). It is conceptionally
much simpler than the PAC model, since it does
not involve probabilities. For the sake of presen-
tation, we assume a finite learning domainXn and
any Cn � }.Xn/ here.

In this model the following scenario is re-
peated indefinitely. The learner receives an in-
stance x and has to predict c.x/. Then it is given
the true label c.x/. If the learner’s prediction was
incorrect, then a mistake occurred. The learner
is successful, if the total number of mistakes is
finite. In order to make this learning problem
nontrivial, one additionally requires that there is
a polynomial pol such that for every c 2 Cn and
any ordering of the examples, the total number
of mistakes is bounded by pol.n; size.c//. In the
mistake bound model, a learner is said to be
efficient if its running time per stage is uniformly
polynomial in n and size.c/.

Then, the relation to PAC learning is as fol-
lows:

If algorithm A learns a concept class C in the
mistake bound model, then A also PAC learns C.
Moreover, if A makes at most M mistakes, then
the resulting PAC learner needs M

"
� ln M

ı
many

examples.
So, efficient mistake bound learning translates

into efficient PAC learning.

Another interesting relation is obtained when
looking at the � query-based learning model,
where the only queries allowed are equivalence
queries. As pointed out by Angluin (1988,
1992), any learning method that uses equivalence
queries only and achieves exact identification can
be transformed into a PAC learner. The number of
equivalence queries necessary to achieve success
in the query learning model is polynomially
related to the number of calls made to the sample
oracle.

http://dx.doi.org/10.1007/978-1-4899-7687-1_84
http://dx.doi.org/10.1007/978-1-4899-7687-1_134
http://dx.doi.org/10.1007/978-1-4899-7687-1_694

958 PAC Learning

However, the converse is not true. This
insight led to the definition of a minimally
adequate teacher (cf. Angluin (1988) and the
references therein). In this setting, the teacher
answers equivalence queries and membership
queries. Maas and Turán (1990) provide a
detailed discussion of the relationship between
the different models.

These results in turn led to another modifica-
tion of the PAC model, where the learner is, in
addition to the s-sample returned, also allowed
to ask membership queries, i.e., PAC learning
with membership queries. This and the original
PAC learning model may be further modified
by restricting the class of probability distribu-
tions, e.g., by considering PAC learning (with
or without membership queries) with respect to
the uniform distribution. Having the additional
power of membership queries allowed for a series
of positive polynomial time learnability results,
e.g., the class of deterministic finite automata
(cf. Angluin 1987), monotone DNF formulae (cf.
Angluin 1988), polynomial size decision trees
(cf. Bshouty 1993), and sparse multivariate poly-
nomials over a field (cf. Schapire and Sellie
1996). Furthermore, Jackson (1997) showed the
class of DNF formulae to be PAC learnable with
membership queries under the uniform distri-
bution, and Bshouty et al. (2004) presented a
modification of Jackson’s (1997) algorithm that
substantially improves its asymptotic efficiency.
Further variations of the PAC learning model are
presented in Bshouty et al. (2005).

Let us finish this entry by mentioning that the
PAC model has been criticized for two reasons.
The first one is the independence assumption,
that is, the requirement to learn with respect to
any distribution. This is, however, also a very
strong part of the theory, since it provides uni-
versal performance guarantees. Clearly, if one has
additional information concerning the underlying
distributions, one may be able to prove better
bounds. The second reason is the “noise-free” as-
sumption, i.e., the requirement to the sample or-
acle to return exclusively correct labels. Clearly,
in practice we never have noise-free data. So, one
has also studied learning in the presence of noise,
and we refer the reader to Kearns and Vazirani

(1994) as well as to conference series COLT and
ALT for results along this line.

Cross-References

� Statistical Machine Translation
� Stochastic Finite Learning
�VC Dimension

Recommended Reading

Angluin D (1987) Learning regular sets from queries
and counterexamples. Inf Comput 75(2):87–106

Angluin D (1988) Queries and concept learning. Mach
Learn 2(4):319–342

Angluin D (1992) Computational learning theory: sur-
vey and selected bibliography. In: Proceedings of
the 24th annual ACM symposium on theory of
computing. ACM Press, New York, pp 351–369

Anthony M, Biggs N (1992) Computational learning
theory. Cambridge tracts in theoretical computer
science, vol 30. Cambridge University Press, Cam-
bridge

Anthony M, Biggs N, Shawe-Taylor J (1990) The
learnability of formal concepts. In: Fulk MA, Case
J (eds) Proceedings of the third annual workshop on
computational learning theory. Morgan Kaufmann,
San Mateo, pp 246–257

Arora S, Barak B (2009) Computational complexity:
a modern approach. Cambridge University Press,
Cambridge

Blum A, Singh M (1990) Learning functions of k
terms. In: Proceedings of the third annual workshop
on computational learning theory. Morgan Kauf-
mann, San Mateo, pp 144–153

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1987) Occam’s razor. Inf Process Lett 24(6):377–
380

Blumer A, Ehrenfeucht A, Haussler D, Warmuth MK
(1989) Learnability and the Vapnik-Chervonenkis
dimension. J ACM 36(4):929–965

Bshouty NH (1993) Exact learning via the monotone
theory. In: Proceedings of the 34rd annual sym-
posium on foundations of computer science. IEEE
Computer Society Press, Los Alamitos, pp 302–311

Bshouty NH, Jackson JC, Tamon C (2004) More
efficient PAC-learning of DNF with membership
queries under the uniform distribution. J Comput
Syst Sci 68(1):205–234

Bshouty NH, Jackson JC, Tamon C (2005) Exploring
learnability between exact and PAC. J Comput Syst
Sci 70(4):471–484

Ehrenfeucht A, Haussler D (1989) Learning deci-
sion trees from random examples. Inf Comput
82(3):231–246

Ehrenfeucht A, Haussler D, Kearns M, Valiant L
(1988) A general lower bound on the number of

http://dx.doi.org/10.1007/978-1-4899-7687-1_783
http://dx.doi.org/10.1007/978-1-4899-7687-1_793
http://dx.doi.org/10.1007/978-1-4899-7687-1_881

Partially Observable Markov Decision Processes 959

P

examples needed for learning. In: Haussler D, Pitt
L (eds) Proceedings of the 1988 workshop on com-
putational learning theory (COLT’88), 3–5 Aug.
MIT/Morgan Kaufmann, San Francisco, pp 139–
154

Haussler D (1987) Bias, version spaces and Valiant’s
learning framework. In: Langley P (ed) Proceedings
of the fourth international workshop on machine
learning. Morgan Kaufmann, San Mateo, pp 324–
336

Haussler D, Kearns M, Littlestone N, Warmuth MK
(1991) Equivalence of models for polynomial learn-
ability. Inf Comput 95(2):129–161

Jackson JC (1997) An efficient membership-query
algorithm for learning DNF with respect to the
uniform distribution. J Comput Syst Sci 55(3):414–
440

Jerrum M (1994) Simple translation-invariant concepts
are hard to learn. Inf Comput 113(2):300–311

Kearns M, Valiant L (1994) Cryptographic limitations
on learning Boolean formulae and finite automata. J
ACM 41(1):67–95

Kearns M, Valiant LG (1989) Cryptographic limi-
tations on learning Boolean formulae and finite
automata. In: Proceedings of the 21st symposium
on theory of computing. ACM Press, New York,
pp 433–444

Kearns MJ, Vazirani UV (1994) An introduction to
computational learning theory. MIT Press, Cam-
bridge

Linial N, Mansour Y, Rivest RL (1991) Results on
learnability and the Vapnik-Chervonenkis dimen-
sion. Inf Comput 90(1):33–49

Littlestone N (1988) Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Mach Learn 2(4):285–318

Maas W, Turán G (1990) On the complexity of learn-
ing from counterexamples and membership queries.
In: Proceedings of the 31st annual symposium on
foundations of computer science (FOCS 1990), St.
Louis, 22–24 Oct 1990. IEEE Computer Society,
Los Alamitos, pp 203–210

Natarajan BK (1991) Machine learning: a theoretical
approach. Morgan Kaufmann, San Mateo

Pitt L, Valiant LG (1988) Computational limitations on
learning from examples. J ACM 35(4):965–984

Rivest RL (1987) Learning decision lists. Mach Learn
2(3):229–246

Schapire RE (1990) The strength of weak learnability.
Mach Learn 5(2):197–227

Schapire RE (1999) Theoretical views of boosting
and applications. In: Algorithmic learning theory,
10th international conference (ALT ’99), Tokyo,
Dec 1999, Proceedings. Lecture notes in artificial
intelligence, vol 1720. Springer, pp 13–25

Schapire RE, Sellie LM (1996) Learning sparse mul-
tivariate polynomials over a field with queries and
counterexamples. J Comput Syst Sci 52(2):201–213

Valiant LG (1984) A theory of the learnable. Commun
ACM 27(11):1134–1142

Xiao D (2009) On basingZK ¤ BPP on the hardness
of PAC learning. In: Proceedings of the 24th an-
nual IEEE conference on computational complexity
(CCC 2009), Paris, 15–18 July 2009. IEEE Com-
puter Society, Los Alamitos, pp 304–315

PAC-MDP Learning

�Efficient Exploration in Reinforcement Learn-
ing

Pairwise Classification

�Class Binarization

Parallel Corpus

A parallel corpus (pl. corpora) is a document
collection composed of two or more disjoint
subsets, each written in a different language, such
that documents in each subset are translations of
documents in each other subset. Moreover, it is
required that the translation relation is known,
i.e., that given a document in one of the subset
(i.e., languages), it is known what documents in
the other subset are its translations. The statistical
analysis of parallel corpora is at the heart of most
methods for � cross-language text mining.

Part of Speech Tagging

� POS Tagging

Partially Observable Markov
Decision Processes

Pascal Poupart
University of Waterloo, Waterloo, ON, Canada

Synonyms

Belief state Markov decision processes; Dual
control; Dynamic decision networks; POMDPs

http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_189
http://dx.doi.org/10.1007/978-1-4899-7687-1_643
http://dx.doi.org/10.1007/978-1-4899-7687-1_100039
http://dx.doi.org/10.1007/978-1-4899-7687-1_100123
http://dx.doi.org/10.1007/978-1-4899-7687-1_100126
http://dx.doi.org/10.1007/978-1-4899-7687-1_100365

960 Partially Observable Markov Decision Processes

Definition

A partially observable Markov decision process
(POMDP) refers to a class of sequential
decision-making problems under uncertainty.
This class includes problems with partially
observable states and uncertain action effects.
A POMDP is formally defined by a tuple
hS;A;O; T;Z;R; b0; h; �i where S is the set
of states s;A is the set of actions a;O is the set
of observations o, T .s, a, s0/ = Pr(s0js, a/ is the
transition function indicating the probability of
reaching s0 when executing a in s, Z.a, s0; o0/ =
Pr(o0ja, s0/ is the observation function indicating
the probability of observing o0 in state s0 after
executing a, R.s, a/ 2 R is the reward function
indicating the (immediate) expected utility of
executing a in s, b0 = Pr(s0/ is the distribution
over the initial state (also known as initial belief),
h is the planning horizon (which may be finite
or infinite), and � 2 [0, 1] is a discount factor
indicating by how much rewards should be
discounted at each time step. Given a POMDP,
the goal is to find a policy to select actions that
maximize rewards over the planning horizon.

Motivation and Background

Partially observable Markov decision processes
(POMDPs) were first introduced in the Opera-
tions Research community (Drake 1962; Aström
1965) as a framework to model stochastic dynam-
ical systems and to make optimal decisions. This
framework was later considered by the artificial
intelligence community as a principled approach
to planning under uncertainty (Kaelbling et al.
1998). Compared to other methods, POMDPs
have the advantage of a well-founded theory.
They can be viewed as an extension of the well-
known, fully observable �Markov decision pro-
cess (MDP) model (Puterman 1994), which is
rooted in probability theory, utility theory, and
decision theory. POMDPs do not assume that
states are fully observable, but instead that only
part of the state features are observable, or more
generally, that the observable features are sim-
ply correlated with the underlying states. This

naturally captures the fact that in many real-
world problems, the information available to the
decision maker is often incomplete and typically
measured by noisy sensors. As a result, the deci-
sion process is much more difficult to optimize.
POMDP applications include robotics (Pineau
and Gordon 2005), assistive technologies (Hoey
et al. 2010), health informatics (Hauskrecht and
Fraser 2010), spoken dialogue systems (Thomson
and Young 2010), and fault recovery (Shani and
Meek 2009).

Structure of Model and Solution
Algorithms

We describe below the POMDP model, some
policy representations, the properties of optimal
value functions, and some solution algorithms.

POMDP Model
Figure 1 shows the graphical representation of
a POMDP, using the notation of influence di-
agrams: circles denote random variables (e.g.,
state variables St and observation variables Ot),
squares denote decision variables (e.g., action
variables At), and diamonds denote utility vari-
ables (e.g., Ut ’s). The variables are indexed by
time and grouped in time slices, reflecting the fact
that each variable may take a different value at
each time step. Arcs indicate how nodes influence
each other over time. There are two types of arcs:
probabilistic and informational arcs. Arcs point-
ing to a chance node or a utility node indicate

Z2

A1 A2 A3
Z1 Z3

U1 U2 U3

S1 S2 S3

Partially Observable Markov Decision Processes,
Fig. 1 POMDP represented as an influence diagram

http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Partially Observable Markov Decision Processes 961

P

a probabilistic dependency between a child and
its parents, whereas arcs pointing to a decision
node indicate the information available to the
decision maker (i.e., which nodes are observable
at the time of each decision). Probabilistic de-
pendencies for the state and observation variables
are quantified by the conditional distributions
Pr(StC1jSt ; At / and Pr(OtC1jStC1; At /, which
correspond to the transition and observation func-
tions. Note that the initial state variable S0 does
not have any parent, hence its distribution Pr(S0/

is unconditioned and corresponds to the initial
belief b0 of the decision maker. Probabilistic de-
pendencies for the utility variables are also quan-
tified by a conditional distribution Pr(Ut jSt ; At /

such that its expectation
P

uPr(ujSt , At /u D
R.St , At / corresponds to the reward function.

Fully observable MDPs are a special case of
POMDPs since they arise when the observation
function deterministically maps each state to a
different unique observation. POMDPs can also
be viewed as � hidden Markov models (HMMs)
(Rabiner 1989) extended with decision and utility
nodes since the transition and observation dis-
tributions essentially define an HMM. POMDPs
also correspond to a special case of decision net-
works called dynamic decision networks (Buede
1999) where it is assumed that the transition,
observation, and reward functions are stationary
(i.e., they do not depend on time) and Markovian
(i.e., the parents of each variable are in the same
time slice or immediately preceding time slice).

Policies
Given a tuple hS;A;O; T;Z;R; b0; h; �i spec-
ifying a POMDP, the goal is to find a policy
� to select actions that maximize the rewards.
The informational arcs indicate that each ac-
tion at can be selected based on the history of
past actions and observations. Hence, in its most
general form, a policy � : hb0; ht i ! at is
a mapping from initial beliefs b0 and histories
ht D ho0; a0; o1; a1; : : : ; ot�1; at�1; ot r to actions
at . For a fixed initial belief, the mapping can be
represented by a tree such as the one in Fig. 2. We
will refer to such policy trees as conditional plans
since in general a policy may consist of several
conditional plans for different initial beliefs. The

a1

a3

a6a5a4 a7

a2

o1

o2

o2

o1 o2
o1

Conditional plan

2

1

3

Stages to go

Partially Observable Markov Decision Processes,
Fig. 2 Three representation of a three-step conditional
plan

a1

a2

o1
o2

o2

o2

o2

o1
o1

o1 a2a1

Partially Observable Markov Decision Processes,
Fig. 3 Finite state controller for a simple POMDP with
two actions and two observations

execution of a conditional plan follows a branch
from the root to some leaf by executing the
actions of the nodes traversed and following the
edges labeled by the observations received.

Unfortunately, as the number of steps
increases, the number of histories grows
exponentially and it is infeasible to represent
mappings over all such histories. Furthermore,
infinite-horizon problems require mappings over
arbitrarily long histories, which limit the use of
trees to problems with a short horizon. Note,
however, that it is possible to have mappings over
infinite cyclic histories. Such mappings can be
represented by a finite state controller (Hansen
1997), which is essentially a cyclic graph of
nodes labeled by actions and edges labeled by
observations (see Fig. 3 for an example). Similar
to conditional plans, finite state controllers are
executed by starting at an initial node, executing
the actions of the nodes traversed, and following
the edges of the observations received.

Alternatively, it is possible to summarize his-
tories by a sufficient statistic that encodes all

http://dx.doi.org/10.1007/978-1-4899-7687-1_124

962 Partially Observable Markov Decision Processes

the relevant information from previous actions
and observations for planning purposes. Recall
that the transition, reward, and observation func-
tions exhibit the Markov property, which means
that the outcome of future states, rewards, and
observations depend only on the current state and
action. If the decision maker knew the current
state of the world, then she would have all the
desired information to make an optimal action
choice. Thus, histories of past actions and obser-
vations are only relevant to the extent that they
provide information about the current state of
the world. Let bt be the belief of the decision
maker about the state of the world at time step t ,
which we represent by a probability distribution
over the state space S . Using Bayes theorem (see
Bayes Rules), one can compute the current belief
bt from the previous belief bt�1, previous action
at�1, and current observation ot :

bt .s
0/Dk

X

s2S
bt�1.s/Pr.s0js; at�1/Pr.ot jat�1; s

0/

(1)

where k denotes a normalizing constant. Hence,
a policy � can also be represented as a mapping
from beliefs bt to actions at . While this gets
around the exponentially large number of
histories, the space of beliefs is an jSj � 1-
dimensional continuous space, which is also
problematic. However, a key result by Smallwood
and Sondik (1973) allows us to circumvent the
continuous nature of the belief space. But first,
let us introduce value functions and then discuss
Smallwood and Sondik’s solution.

Value Functions
Given a set of policies, we need a mechanism to
evaluate and compare them. Roughly speaking,
the goal is to maximize the amount of reward
earned over time. This loosely defined criterion
can be formalized in several ways: one may wish
to maximize total (accumulated) or average re-
ward, expected or worst-case reward, discounted
or undiscounted reward. The rest of this arti-
cle assumes an expected total discounted reward
criterion, since it is by far the most popular in
the literature. We define the value V �.b0/ of
executing some policy � starting at belief b0 to

be the expected sum of the discounted rewards
earned at each time step:

V �.b0/ D

hX

tD0

� t
X

s2S
bt .s/R.s; �; .bt // (2)

where �.bt / denotes the action prescribed by
policy � at belief bt . A policy �� is optimal
when its value function V � is at least as high
as any other policy for all beliefs (i.e., V �.b/ �
V �.b/8b/.

As with policies, representing a value function
can be problematic because its domain is an
.jSj � 1/-dimensional continuous space corre-
sponding to the belief space. However, Small-
wood and Sondik (1973) showed that optimal
value functions for finite-horizon POMDPs are
piecewise-linear and convex. The value of execut-
ing a conditional plan from any state is constant.
If we do not know the precise underlying state,
but instead we have a belief corresponding to
a distribution over states, then the value of the
belief is simply a weighted average (according
to b/ of the values of the possible states. Thus,
the value function V ˇ .b/ of a conditional plan ˇ
is linear with respect to b. This means that V ˇ .b/

can be represented by a vector ˛ˇ of size jSj such
that V ˇ .b/ D †sb.s/˛ˇ .s/.

For a finite horizon h, an optimal policy �h

consists of the best conditional plans for each
initial belief. More precisely, the best conditional
plan ˇ� for some belief b is the one that yields
the highest value: ˇ� = argmaxˇV

ˇ .b/. Although
there are uncountably many beliefs, the set of h-
step conditional plans is finite and therefore an
h-step optimal value function can be represented
by a finite collection �h of ˛-vectors. For infinite
horizon problems, the optimal value function
may require an infinite number of ˛-vectors.

Figure 4 shows an optimal value function for
a simple two-state POMDP. The horizontal axis
represents the belief space and the vertical axis
indicates the expected total reward. Assuming the
two world states are s and Ns, then a belief is
completely determined by the probability of s.
Therefore, the horizontal axis represents a con-
tinuum of beliefs determined by the probability

Partially Observable Markov Decision Processes 963

P

Optimal value function

a3

a4

a5

a2

a1

E
xp

ec
te

d
to

ta
l r

ew
ar

d

10 b(s)

Belief space

Partially Observable Markov Decision Processes,
Fig. 4 Geometric view of value function

b.s/. Each line in the graph is an ˛-vector, which
corresponds to the value function of a conditional
plan. The upper surface of those ˛-vectors is
a piecewise-linear and convex function corre-
sponding to the optimal value function V � D

max˛2�h ˛.b/.
Note that an optimal policy can be recovered

from the optimal value function represented by
a set � of ˛-vector. Assuming that an action is
stored with each ˛-vector (this would typically be
the root action of the conditional plan associated
with each ˛-vector), then the decision maker
simply needs to look up the maximal ˛-vector for
the current belief to retrieve the action. Hence,
value functions represented by a set of ˛-vectors,
each associated with an action, implicitly define
a mapping from beliefs to actions.

Optimal value functions also satisfy Bellman’s
equation

V hC1.b/ D maxaR.b; a/

C �
X

o0

Pr.o0jb; a/V h.bao0

/ (3)

where R.b; a/ D
P

s b.s/R.s; a/, Pr(s0js; a/
Pr(o0js0; a/, and bao0

is the updated belief after
executing a and observing b according to Bayes
theorem (Eq. 1). Intuitively, this equation says
that the optimal value for h C 1 steps to go
consists of the highest sum of the current reward
with the future rewards for the remaining h steps.
Since we do not know exactly what rewards will
be earned in the future, an expectation (with
respect to the observations) is used to estimate

future rewards. For discounted infinite horizon
problems, the optimal value function V � is a
fixed point of Bellman’s equation:

V �.b/DmaxaR.b; a/C�
X

o0

Pr.o0jb; a/V �.bao0

/

Solution Algorithms
There are two general classes of solution al-
gorithms to optimize a policy. The first class
consists of online algorithms that plan while exe-
cuting the policy by growing a search tree. The
second class consists of offline algorithms that
precompute a policy which can be executed with
minimal online computation. In practice, it is best
to combine online and offline techniques since
we may as well obtain the best policy possible in
an offline phase and then refine it with an online
search at execution time.

Forward Search
Online search techniques generally optimize a
conditional plan for the current belief by per-
forming a forward search from that belief. They
essentially build an expecti-max search tree such
that expectations over observations and maxi-
mizations over actions are performed in alterna-
tion. Figure 5 illustrates such a tree for a two-
step horizon (i.e., two alternations of actions and
observations). An optimal policy is obtained by
computing the beliefs associated with each node
in a forward pass, followed by a backward pass
that computes the optimal value at each node.
A recursive form of this approach is described
in Algorithm 1. Beliefs are propagated forward
according to Bayes theorem, while rewards are
accumulated backward according to Bellman’s
equation.

Since the expecti-max search tree grows ex-
ponentially with the planning horizon h, in prac-
tice, the computation can often be simplified by
pruning suboptimal actions by branch and bound
and sampling a small set of observations instead
of doing an exact expectation (Ross et al. 2008).
Also, the depth of the search can be reduced by
using an approximate value function at the leaves
instead of 0.

964 Partially Observable Markov Decision Processes

1

Stages to go

2

Expecti-max search tree

o1 o2o2o1

a2a1

a1 a2 a1 a2a1 a2 a1 a2

o1 o2o1 o2o1 o2o1 o2 o1 o2 o1 o2 o1 o2 o1 o2

max

expexp

maxmax max max

expexpexp pxepxepxepxepxe

Partially Observable Markov Decision Processes,
Fig. 5 Two-step expecti-max search tree

Algorithm 1 Forward search
Inputs: Belief b and horizon h
Outputs: Optimal value V �.
if h D 0 then

V � 0
else

for all a; o do
bao0

.s0/ k
P

s b.s/Pr.s0js; a/Pr.o0js0; a0/8s0

V ao0

 forward Search.bao0

; h� 1/
end for
V � maxa R.b; a/C �

P
o0 Pr.o0jb; a/V ao0

end if

The value functions computed by of-
fline techniques can often be used for this
purpose.

Value Iteration
Value iteration algorithms form an important
class of offline algorithms that iteratively
estimate the optimal value function according to
Bellman’s equation (3). Most algorithms exploit
the piecewise-linear and convex properties
of optimal value functions to obtain a finite
representation. In other words, optimal value
functions V h are represented by a set �h of
˛-vectors that correspond to conditional plans.
Algorithm 2 shows how to iteratively compute
� t by dynamic programming for an increasing
number of time steps t .

Algorithm 2 Value iteration
Inputs: horizon h
Outputs: Optimal value function �h.
�0 f0g
for t D 1 to h do

for all a 2 A; < ˛1; : : : ; ˛jOj >2 .�t�1/jOj do
˛0.s/ R.s; a/C
�

P
o0;s0 Pr.s0js; a/Pr.o0js0; a/˛o0 .s0/8s

�t �t [f˛0g
end for

end for

Algorithm 3 Point based value iteration
Inputs: Horizon h and set of beliefs B
Outputs: Value function �h.
�0 f0g
for t D 1 to h do

for all b 2 B do
for all a 2 A; o0 2 O do

bao0

.s0/ k
P

s b.s/Pr.s0js; a/Pr.o0js0; a/8s0

˛ao0

 argmaxalpha2�t�1 ˛.bao0

/
end for
a� argmaxaR.b; a/C �

P
o0 Pr.s0js; a/Pr˛ao0

˛0.s/R.s; a/C �
P

o0;s0 Pr.s0js; a/Pr.o0js0; a/
˛o0 .s0/8s
�t �t [f˛0g

end for
end for

Unfortunately, the number of ˛-vectors in
each � t increases exponentially with O and
doubly exponentially with t . While several
approaches can be used to prune ˛-vectors that
are not maximal for any belief, the number of
˛-vectors still grows exponentially for most
problems. Instead, many approaches compute
a parsimonious set of ˛-vectors, which defines
a lower bound on the optimal value function.
The class of point-based value iteration (Pineau
et al. 2006) algorithms computes the maximal
˛-vectors only for a set B of beliefs. Algorithm 3
describes how the parsimonious set �h of
˛-vectors associated with a given set B of beliefs
can be computed in time linear with h and jOj
by dynamic programming. Most point-based
techniques differ in how they choose B (which
may vary at each iteration), but the general rule
of thumb is to include beliefs reachable from the
initial belief b0 since these are the beliefs that are
likely to be encountered at execution time.

Partially Observable Markov Decision Processes 965

P

Policy Search
Another important class of offline algo-
rithms consists of policy search techniques.
These techniques search for the best pol-
icy in a predefined space of policies. For
instance, finite state controllers are a pop-
ular policy space due to their generality
and simplicity. The search for the best
(stochastic) controller of N nodes can be
formulated as a non-convex quadratically
constrained optimization problem (Amato et al.
2007):

max
x;y;´

X

s

b0.s/ ˛0.s/„ƒ‚…
x

s.t. ˛n.s/„ƒ‚…
x

D
X

a

ŒPr.ajn/„ ƒ‚ …
y

R.S; a/

C �
X

s0;00;n0

Pr.s0js; a/

Pr.00js0; a/Pr.a; n0jn; 00/„ ƒ‚ …
´

˛n0.s0/�„ ƒ‚ …
x

8s; n

Pr.a; n0jn; 00/„ ƒ‚ …
x

� 08a; n0; n; 00

X

n0a

Pr.a; n0jn; 0/„ ƒ‚ …
´

D 18n; 0

X

n0

Pr.a; n0jn; 00/„ ƒ‚ …
´

D Pr.ajn/„ ƒ‚ …
y

8a; n; 00

The variables of the optimization problem
are the ˛-vectors and the parameters of the
controller (Pr(ajn/ and Pr(a, n0jn; o0//. Here,
Pr(ajn/ is the action distribution for each node
n and Pr(a, n0jn; o0/ D Pr(ajn/Pr(n0ja; n; o0/
is the product of the action distribution and
successor node distribution for each n; o0-pair.
While there does not exist any algorithm that
reliably finds the global optimum due to the non-
convex nature of the problem, several techniques
can be used to find locally optimal policies,
including sequential quadratic programming,
bounded policy iteration, expectation maxi-
mization, stochastic local search, and gradient
descent.

Related Work
Although this entry assumes that states, actions,
and observations are defined by a single variable,
multiple variables can be used to obtain a fac-
tored POMDP (Boutilier and Poole 1996). As a
result, the state, observation, and action spaces
often become exponentially large. Aggregation
(Shani et al. 2008; Sim et al. 2008) and compres-
sion techniques (Poupart and Boutilier 2004; Roy
et al. 2005) are then used to speed up computa-
tion. POMDPs can also be defined for problems
with continuous variables. The piecewise-linear
and convex properties of optimal value functions
still hold in continuous spaces, which allows
value iteration algorithms to be easily extended
to continuous POMDPs (Porta et al. 2006). When
a planning problem can naturally be thought as
a hierarchy of subtasks, hierarchical POMDPs
(Theocharous and Mahadevan 2002; Pineau et al.
2003; Toussaint et al. 2008) can be used to exploit
this structure.

In this article, we also assumed that the
transition, observation, and reward functions
are known, but in many domains they may be
(partially) unknown and therefore the decision
maker needs to learn about them while acting.
This is a problem of reinforcement learning.
While several policy search techniques have been
adapted to simultaneously learn and act (Meuleau
et al. 1999; Aberdeen and Baxter 2002), it turns
out that one can treat the unknown parameters of
the transition, observation, and reward functions
as hidden state variables, which lead to a Bayes-
adaptive POMDP (Ross et al. 2007; Poupart and
Vlassis 2008). We also assumed a single decision
maker, however POMDPs have been extended for
multiagent systems. In particular, decentralized
POMDPs (Amato et al. 2009) can model multiple
cooperative agents that share a common goal
and interactive POMDPs (Gmytrasiewicz and
Doshi 2005) can model multiple competing
agents.

Cross-References

�Markov Decision Processes

http://dx.doi.org/10.1007/978-1-4899-7687-1_512

966 Partially Observable Markov Decision Processes

Recommended Reading

Aberdeen D, Baxter J (2002) Scalable internal-state
policygradient methods for POMDPs. In: Interna-
tional conference on machine learning, Sydney,
pp 3–10

Amato C, Bernstein DS, Zilberstein S (2009) Optimiz-
ing fixed-size stochastic controllers for POMDPs
and decentralized POMDPs. J Auton Agents Multi-
agent Syst 21:293–320

Amato C, Bernstein DS, Zilberstein S (2007) Solv-
ing POMDPs using quadratically constrained lin-
ear programs. In: International joint conferences
on artificial intelligence, Hyderabad, pp 2418–
2424

Aström KJ (1965) Optimal control of Markov decision
processes with incomplete state estimation. J Math
Anal Appl 10:174–2005

Boutilier C, Poole D (1996) Computing optimal poli-
cies for partially observable decision processes us-
ing compact representations. In: Proceedings of the
thirteenth national conference on artificial intelli-
gence, Portland, pp 1168–1175

Buede DM (1999) Dynamic decision networks: an ap-
proach for solving the dual control problem. Spring
INFORMS, Cincinnati

Drake A (1962) Observation of a Markov Process
through a noisy channel. PhD thesis, Massachusetts
Institute of Technology

Hansen E (1997) An improved policy iteration algo-
rithm for partially observable MDPs. In: Neural
information processing systems, Denver, pp 1015–
1021

Hauskrecht M, Fraser HSF (2010) Planning treatment
of ischemic heart disease with partially observ-
able Markov decision processes. Artif Intell Med
18:221–244

Hoey J, Poupart P, von Bertoldi A, Craig T, Boutilier
C, Mihailidis A (2010) Automated handwashing
assistance for persons with dementia using video
and a partially observable Markov decision process.
Comput Vis Image Underst 114:503–519

Kaelbling LP, Littman M, Cassandra A (1998) Plan-
ning and acting in partially observable stochastic
domains. Artif Intell 101:99–134

Meuleau N, Peshkin L, Kim K-E, Kaelbling LP
(1999) Learning finite-state controllers for partially
observable environments. In: Uncertainty in artifi-
cial intelligence, Stockholm, pp 427–436

Pineau J, Gordon G (2005) POMDP planning for
robust robot control. In: International symposium on
robotics research, San Francisco, pp 69–82

Pineau J, Gordon GJ, Thrun S (2003) Policy-
contingent abstraction for robust robot control.
In: Uncertainty in artificial intelligence, Acapulco,
pp 477–484

Pineau J, Gordon G, Thrun S (2006) Anytime point-
based approximations for large POMDPs. J Artif
Intell Res 27:335–380

Gmytrasiewicz PJ, Doshi P (2005) A framework for
sequential planning in multi-agent settings. J Artif
Intell Res 24:49–79

Porta JM, Vlassis NA, Spaan MTJ, Poupart P
(2006) Point-based value iteration for continuous
POMDPs. J Mach Learn Res 7:2329–2367

Poupart P, Boutilier C (2004) VDCBPI: an approx-
imate scalable algorithm for large POMDPs. In:
Neural information processing systems, Vancouver,
pp 1081–1088

Poupart P, Vlassis N (2008) Model-based Bayesian
reinforcement learning in partially observable do-
mains. In: International symposium on artificial
intelligence and mathematics (ISAIM), Fort Laud-
erdale

Puterman ML (1994) Markov decision processes. Wi-
ley, New York

Rabiner LR (1989) A tutorial on hidden Markov mod-
els and selected applications in speech recognition.
Proc IEEE 77:257–286

Ross S, Chaib-Draa B, Pineau J (2007) Bayes-adaptive
POMDPs. In: Advances in neural information pro-
cessing systems (NIPS), Vancouver

Ross S, Pineau J, Paquet S, Chaib-draa B (2008)
Online planning algorithms for POMDPs. J Artif
Intell Res 32:663–704

Roy N, Gordon GJ, Thrun S (2005) Finding approxi-
mate POMDP solutions through belief compression.
J Artif Intell Res 23:1–40

Shani G, Meek C (2009) Improving existing fault
recovery policies. In: Neural information processing
systems, Vancouver

Shani G, Brafman RI, Shimony SE, Poupart P (2008)
Efficient ADD operations for point-based algo-
rithms. In: International conference on automated
planning and scheduling, Sydney, pp 330–337

Sim HS, Kim K-E, Kim JH, Chang D-S, Koo M-W
(2008) Symbolic heuristic search value iteration for
factored POMDPs. In: Twenty-third national con-
ference on artificial intelligence (AAAI), Chicago,
pp 1088–1093

Smallwood RD, Sondik EJ (1973) The optimal
control of partially observable Markov decision
processes over a finite horizon. Oper Res 21:1071–
1088

Theocharous G, Mahadevan S (2002) Approxi-
mate planning with hierarchical partially observ-
able Markov decision process models for robot
navigation. In: IEEE international conference on
robotics and automation, Washington, DC, pp 1347–
1352

Thomson B, Young S (2010) Bayesian update of
dialogue state: a POMDP framework for spoken
dialogue systems. Comput Speech Lang 24:562–
588

Toussaint M, Charlin L, Poupart P (2008) Hierarchical
POMDP controller optimization by likelihood max-
imization. In: Uncertainty in artificial intelligence,
Helsinki, pp 562–570

Particle Swarm Optimization 967

P

Particle Swarm Optimization

James Kennedy
U.S. Bureau of Labor Statistics, Washington,
DC, USA

The Canonical Particle Swarm

The particle swarm is a population-based
stochastic algorithm for optimization which is
based on social–psychological principles. Unlike
� evolutionary algorithms, the particle swarm
does not use selection; typically, all population
members survive from the beginning of a trial
until the end. Their interactions result in iterative
improvement of the quality of problem solutions
over time.

A numerical vector of D dimensions, usually
randomly initialized in a search space, is concep-
tualized as a point in a high-dimensional Carte-
sian coordinate system. Because it moves around
the space testing new parameter values, the point
is well described as a particle. Because a number
of them (usually 10 < N < 100) perform this
behavior simultaneously, and because they tend
to cluster together in optimal regions of the search
space, they are referred to as a particle swarm.

Besides moving in a (usually) Euclidean prob-
lem space, particles are typically enmeshed in a
topological network that defines their communi-
cation pattern. Each particle is assigned a number
of neighbors to which it is linked bidirectionally.

The most common type of implementation
defines the particles’ behaviors in two formulas.
The first adjusts the velocity or step size of the
particle, and the second moves the particle by
adding the velocity to its previous position.

On each dimension d :

v
.tC1/

id
 ˛v

.t/

id
C U.0; ˇ/

�
pid � x

.t/

id

	

C U.0; ˇ/
�
pgd � x

.t/

id

	
(1)

x
.tC1/

id
 x

.t/

id
C v

.tC1/

id
(2)

where i is the target particle’s index, d is the
dimension, Exi is the particle’s position, Evi is the
velocity, Epi is the best position found so far by
i; g is the index of i ’s best neighbor, ˛ and ˇ
are constants, and U (0, ˇ) is a uniform random
number generator.

Though there is variety in the implementations
of the particle swarm, the most standard version
uses ˛ D 0:7298 and ˇ D = 2, where D
2:9922, following an analysis published in Clerc
and Kennedy (2002). The constant ˛ is called an
inertia weight or constriction coefficient, and ˇ is
known as the acceleration constant.

The program evaluates the parameter vector of
particle i in a function f .Ex/ and compares the
result to the best result attained by i thus far,
called pbesti . If the current result is i ’s best so far,
the vector Epi is updated with the current position
Exi , and the previous best function result pbesti is
updated with the current result.

When the system is run, each particle cycles
around a region centered on the centroid of the
previous bests Epi and Epg ; as these variables are
updated, the particle’s trajectory shifts to new
regions of the search space, the particles begin
to cluster around optima, and improved function
results are obtained.

The Social–Psychological Metaphor
Classical social psychology theorists considered
the pursuit of cognitive consistency to be an
important motivation for human behavior (Heider
1958; Festinger 1957; Abelson et al. 1968). Cog-
nitive elements might have emotional or logical
aspects to them which could be consistent or
inconsistent with one another; several theorists
identified frameworks for describing the degree
of consistency and described the kinds of pro-
cesses that an individual might use to increase
consistency or balance, or decrease inconsistency
or cognitive dissonance.

Contemporary social and cognitive psycholo-
gists frequently cast these same concepts in terms
of connectionist principles. Cognitive elements
are conceptualized as a network with positive
and negative vertices among a set of nodes. In
some models, the elements are given and the
task is to reduce error by adjusting the signs

http://dx.doi.org/10.1007/978-1-4899-7687-1_270

968 Particle Swarm Optimization

and values of the connections between them,
and in other models the connections are given
and the goal of optimization is to find activation
values that maximize coherence (Thagard 2000),
harmony (Smolensky 1986), or some other mea-
sure of consistency. Typically, this optimization
is performed by gradient-descent programs which
psychologically model processes that are private
to the individual and are perfectly rational, that is,
the individual always decreases error or increases
consistency among elements. The particle swarm
simulates the optimization of these kinds of struc-
tures through social interaction; it is commonly
observed, not only in the laboratory but in ev-
eryday life, that a person faced with a problem
typically solves it by talking with other people.

A direct precursor of the particle swarm is
seen in Nowak et al. (1990) cellular automaton
simulation of social impact theory’s predictions
about interaction in human social populations.
Social impact theory predicted that an individual
was influenced to hold an attitude or belief in
proportion to the Strength, Immediacy, and Num-
ber of sources of influence holding that position,
where Strength was a measure of the persua-
siveness or prestige of an individual, Immediacy
was their proximity, and Number was literally
the number of sources of influence holding a
particular attitude or belief. In the simulation,
individuals iteratively interacted, taking on the
prevalent state of a binary attitude in their neigh-
borhood, until the system reached equilibrium.

The particle swarm extends this model by
supposing that various states can be evaluated,
for instance, that different patterns of cognitive
elements may be more or less dissonant; it as-
sumes that individuals hold more than one atti-
tude or belief, and that they are not necessarily
binary; and Strength is replaced with a measure
of self-presented success. One feature usually
found in particle swarms and not in the paper by
Nowak et al. is the phenomenon of persistence or
momentum, the tendency of an individual to keep
changing or moving in the same direction from
one time-step to the next.

Thus, the particle swarm metaphorically rep-
resents the interactions of a number of individu-
als, none knowing what the goal is, each knowing

its immediate state and its best performance in
the past, each presenting its neighbors with its
best success-so-far at solving a problem, each
functioning as both source and target of influ-
ence in the dynamically evolving system. As
individuals emulate the successes of their neigh-
bors, the population begins to cluster in optimal
regions of a search space, reliably discovering
good solutions to difficult problems featuring, for
instance, nonlinearity, high dimension, deceptive
gradients, local optima, etc.

The Population Topology
Several kinds of topologies have been most
widely used in particle swarm research; the topic
is a current focus of much research. In the gbest
topology, the population is conceptually fully
connected; every particle is linked to every other.
In practice, with the best neighbor canonical
version, this is simpler to implement than it
sounds, as it only means that every particle
receives influence from the best performing
member of the population.

The lbest topology of degree Ki comprises
a ring lattice, with the particle linked to its Ki

nearest neighbors on both sides in the wrapped
population array.

Another structure commonly used in particle
swarm research is the von Neumann or “square”
topology. In this arrangement, the population is
laid out in rows and columns, and each individual
is connected to the neighbors above, below, and
on each side of it in the toroidally wrapped
population. Numerous other topologies have been
used, including random (Suganthan 1999), hi-
erarchical (Janson and Middendorf 2005), and
adaptive ones (Clerc 2006).

The most important effect of the population
topology is to control the spread of proposed
problem solutions through the population. As
a particle finds a good region of the search
space, it may become the best neighbor to one of
the particles it is connected to. That particle
then will tend to explore in the vicinity of
the first particle’s success, and may eventually
find a good solution there, too; it could then
become the best neighbor to one of its other
neighbors. In this way, information about good

Particle Swarm Optimization 969

P

regions of the search space migrates through the
population.

When connections are parallel, e.g., when the
mean degree of particles is relatively high, then
information can spread quickly through the popu-
lation. On unimodal problems this may be accept-
able, but where there are local optima there may
be a tendency for the population to converge too
soon on a suboptimal solution. The gbest topol-
ogy has repeatedly been shown to be vulnerable
to the lure of locally optimal attractors.

On the other hand, where the topology is
sparse, as in the lbest model, problem solutions
spread slowly, and subpopulations may search
diverse regions of the search space in parallel.
This increases the probability that the population
will end up near the global optimum. It also
means that convergence will be slower.

Vmax and Convergence
The particle swarm has evolved very much since
it was first reported by Kennedy and Eberhart
(1995) and Eberhart and Kennedy (1995). Early
versions required a system constant Vmax to limit
the velocity. Without this limit, the particles’
trajectories would swing wildly out of control.

Following presentation of graphical represen-
tations of a deterministic form of the particle
swarm by Kennedy (1998), early analyses by
Ozcan and Mohan (1999) led to some under-
standing of the nature of the particle’s trajectory.
Analytical breakthroughs by Clerc (reported in
Clerc and Kennedy (2002)), and empirical dis-
coveries by Shi and Eberhart (1998), resulted in
the application of the ˛ constant in concert with
appropriate values of the acceleration constant
ˇ. These parameters brought the particle under
control, allowed convergence under appropriate
conditions, and made Vmax unnecessary. It is still
used sometimes, set to very liberal values such
as a half or third of the initialization range of a
variable for more efficient swarm behavior, but it
is not necessary.

Step Size and Consensus
Step size in the particle swarm is inherently
scaled to consensus among the particles. A par-
ticle goes in one direction on each dimension

until the sign of its velocity is reversed by the
accumulation of (p � x) differences; then it turns
around and goes the other way. As it searches
back and forth, its oscillation on each dimension
is centered on the mean of the previous bests
(pid C pgd /=2, and the standard deviation of the
distribution of points that are tested is scaled to
the difference between them. In fact this func-
tion is a very simple one: the standard deviation
of a particle’s search, when pid and pgd are
constants, is approximately j.pid � pgd /j. This
means that when the particles’ previous best
points are far from one another in the search
space, the particles will take big steps, and when
they are nearer the particles will take little steps.

Over time, this usually means that exploring
behavior is seen in early iterations and exploiting
behavior later on as particles come to a state of
consensus. If it happens, however, that a particle
that has begun to converge in one part of the
search space receives information about a good
region somewhere else, it can return to the ex-
ploratory mode of behaving.

The Fully Informed Particle Swarm (FIPS)
Mendes (2004) reported a version of swarm that
featured an alternative to the best neighbor strat-
egy. While the canonical particle is influenced
by its own previous success and the previous
success of its best neighbor, the fully informed
particle swarm (FIPS) allowed influence by all of
a particle’s neighbors. The acceleration constants
were set to ˇ D = 2 in the traditional version;
it was defined in this way because what mattered
was their sum, which could be distributed among
any number of difference terms. In the standard
algorithm there were two of them, and thus the
sum was divided by 2. In FIPS a particle of Ki

degree has coefficients ˇ D =Ki .
The FIPS particle swarm removed two aspects

that were considered standard features of the
algorithm. First of all, the particle i no longer
influenced itself directly, e.g., there is no Epi in
the formula. Second, the best neighbor is now
averaged in with the others; it was not necessary
to compare the successes of all neighbors to find
the best one.

970 Particle Swarm Optimization

Mendes found that the FIPS swarm was more
sensitive than the canonical versions to the differ-
ences in topology. For instance, while in the stan-
dard versions the fully connected gbest topology
meant influence by the best solution known to the
entire population, in FIPS gbest meant that the
particle was influenced by a stochastic average of
the best solutions found by all members of the
population; the result tended to be near-random
search.

The lesson to be learned is that the meaning of
a topology depends on the mode of interaction.
Topological structure (and Mendes tested more
than 1,340 of them) affects performance, but the
way it affects the swarm’s performance depends
on how information is propagated from one par-
ticle to another.

Generalizing the Notation

Equation 2 above shows that the position is de-
rived from the previous iteration’s position plus
the current iteration’s velocity. By rearranging the
terms, it can be shown that the current iteration’s
velocity Ev.tC1/

i is the difference between the new

position and the previous one: Ev.tC1/
i D Ex

.tC1/
i �

Ex
.t/
i . Since this happened on the previous time-

step as well, it can be shown that Ev.t/
i D Ex

.t/
i �

Ex
.t�1/
i ; this fact makes it possible to combine the

two formulas into one:

x
.tC1/

id
 x

.t/

id
C ˛

�
x

.t/

id
� x

.t�1/

id

	

C
X

U

�
0;

Ψ

Ki

� �
pkd � x

.t/

id

	
(3)

whereKi is the degree of node i; k is the index of
i ’s kth neighbor, and adapting Clerc’s (Clerc and
Kennedy 2002) scheme ˛ D 0:7298 and D
2:9922.

In the canonical best neighbor particle swarm,
Ki D 2;8i W i D 1; 2; : : : ; N and k 2 .i; g/, that
is, k takes the values of the particle’s own index
and its best neighbor’s index. In FIPS, Ki may
vary, depending on the topology, and k takes on
the indexes of each of i ’s neighbors. Thus, Eq.3

is a generalized formula for the trajectories of the
particles in the particle swarm.

This notation can be interpreted verbally as:

NEW POSITION

D CURRENT POSITION

C PERSISTENCE

C SOCIALINFLUENCE (4)

That is, on every iteration, every particle on every
dimension starts at the point it last arrived at,
persists some weighted amount in the direction
it was previously going, then makes some ad-
justments based on the differences between the
best previous positions of its sources of influ-
ence and its own current position in the search
space.

The Evolving Paradigm

The particle swarm paradigm is young, and inves-
tigators are still devising new ways to understand,
explain, and improve the method. A divergence
or bifurcation of approaches is observed: some
researchers seek ways to simplify the algorithm
(Peña et al. 2006; Owen and Harvey 2007), to find
its essence, while others improve performance
by adding features to it, e.g., Clerc (2006). The
result is a rich unfolding research tradition with
innovations appearing on many fronts.

Although the entire algorithm is summarized
in one simple formula, it is difficult to understand
how it operates or why it works. For instance,
while the Social Influence terms point the particle
in the direction of the mean of the influencers’
successes, the Persistence term offsets that move-
ment, causing the particle to bypass what seems
to be a reasonable target. The result is a spiral-like
trajectory that goes past the target and returns to
pass it again, with the spiral tightening as the
neighbors come to consensus on the location of
the optimum.

Further, while authors often talk about the
particle’s velocity carrying it “toward the previ-
ous bests,” in fact the velocity counterintuitively

Particle Swarm Optimization 971

P

carries it away from the previous bests as often
as toward them. It is more accurate to say the
particle “explores around” the previous bests,
and it is hard to describe this against-the-grain
movement as “gradient descent,” as some writers
would like.

It is very difficult to visualize the effect of
ever-changing sources of influence on a parti-
cle. A different neighbor may be best from one
iteration to the next; the balance of the ran-
dom numbers may favor one or another or some
compromise of sources; the best neighbor could
remain the same one, but may have found a better
Epi since the last turn; and so on. The result is
that the particle is pulled and pushed around in
a complex way, with many details changing over
time.

The paradoxical finding is that it is best not
to give the particle information that is too good,
especially early in the search trial. Premature
convergence is the result of amplified consensus
resulting from too much communication or over-
reliance on best neighbors, especially the pop-
ulation best. Various researchers have proposed
ways to slow the convergence or clustering of
particles in the search space, such as occasional
reinitialization or randomization of particles, re-
pelling forces among them, etc., and these tech-
niques typically have the desired effect. In many
cases, however, implicit methods work as well
and more parsimoniously; the effect of topology
on convergence rate has been mentioned here, for
instance.

Binary Particle Swarms
A binary particle swarm is easily created by
treating the velocity as a probability threshold
(Kennedy and Eberhart 1997). Velocity vector
elements are squashed in a sigmoid or other
function, for instance S.�/ D 1=.1C exp.��//,
producing a result in (0..1). A random number is
generated and compared to S.�id / to determine
whether xid will be a 0 or a 1. Though discrete
systems of higher cardinality have been proposed,
it is difficult to define such concepts as distance
and direction in a meaningful way within nominal
data.

Alternative Probability Distributions
As was noted above, the particle’s search is cen-
tered around the mean of the previous bests that
influence it, and its variance is scaled to the differ-
ences among them. This has suggested to several
researchers that perhaps the trajectory formula
can be replaced, wholly or partly, by some type of
random number generator that directly samples
the search space in a desirable way.

Kennedy (2003) suggested simple Gaussian
sampling, using a random number generator
(RNG) G(mean, s.d .) with the mean centered
between Epi and Epg , and with the standard
deviation defined on each dimension as s:d: D
j.pid � pgd /j. This “bare bones” particle swarm
eliminated the velocity component; it performed
rather well on a set of test functions, but not as
well as the usual version.

Krohling (2004) simply substituted the
absolute values of Gaussian-distributed random
numbers for the uniformly distributed values
in the canonical particle swarm. He and his
colleagues have had success on a range of prob-
lems using this approach. Richer and Blackwell
(2006) replaced the Gaussian distribution of
bare bones with a Lévy distribution. The Lévy
distribution is bell-shaped like the Gaussian
but with fatter tails. It has a parameter ˛

which allows interpolation between the Cauchy
distribution (˛ D 1) and Gaussian (˛ D 2)
and can be used to control the fatness of the
tails. In a series of trials, Richer and Blackwell
(2006) were able to emulate the performance
of a canonical particle swarm using ˛ D 1:4.
Kennedy (2005) used a Gaussian RNG for
the social influence term of the usual formula,
keeping the “persistence” term found in the
standard particle swarm. Variations on this format
produced results that were competitive with the
canonical version.

Numerous other researchers have begun ex-
ploring ways to replicate the overall behavior
of the particle swarm by replacing the tradi-
tional formulas with alternative probability distri-
butions. Such experiments help theorists under-
stand what is essential to the swarm’s behavior
and how it is able to improve its performance on
a test function over time.

972 Particle Swarm Optimization

Simulation of the canonical trajectory behav-
ior with RNGs is a topic that is receiving a great
deal of attention at this time, and it is impossi-
ble to predict where the research is leading. As
numerous versions have been published showing
that the trajectory formulas can be replaced by al-
ternative strategies for selecting a series of points
to sample, it becomes apparent that the essence of
the paradigm is not to be found in the details of
the movements of the particles, but in the nature
of their interactions over time, the structure of
the social network in which they are embedded,
and the function landscape with which they in-
teract, with all these factors working together
gives the population the ability to find problem
solutions.

Recommended Reading

Abelson RP, Aronson E, McGuire WJ, Newcomb TM,
Rosenberg MJ, Tannenbaum RH (eds) (1968) The-
ories of cognitive consistency: a sourcebook. Rand
McNally, Chicago

Clerc M (2006) Particle swarm optimization. Hermes
Science Publications, London

Clerc M, Kennedy J (2002) The particle swarm:
explosion, stability, and convergence in a multi-
dimensional complex space. IEEE Trans Evol Com-
put 6:58–73

Eberhart RC, Kennedy J (1995) A new optimizer
using particle swarm theory. In: Proceedings of
the 6th international symposium on micro machine
and human science, Nagoya. IEEE Service Center,
Piscataway, pp 39–43

Festinger L (1957) A theory of cognitive dissonance.
Stanford University Press, Stanford

Heider F (1958) The psychology of interpersonal rela-
tions. Wiley, New York

Janson S, Middendorf M (2005) A hierarchical particle
swarm optimizer and its adaptive variant. IEEE
Trans Syst Man Cybern Part B Cybern 35(6):1272–
1282

Kennedy J (1998) The behavior of particles. In: Porto
VW, Saravanan N, Waagen D, Eiben AE (eds) Evo-
lutionary programming VII. Proceedings of the 7th
annual conference on evolutionary programming,
San Diego

Kennedy J (2003) Bare bones particle swarms. In:
Proceedings of the IEEE swarm intelligence sym-
posium, Indianapolis, pp 80–87

Kennedy J (2005) Dynamic-probabilistic particle
swarms. In: Proceedings of the genetic and evo-

lutionary computation conference (GECCO-2005),
Washington, DC, pp 201–207

Kennedy J, Eberhart RC (1995) Particle swarm op-
timization. In: Proceedings of the 1995 IEEE in-
ternational conference on neural networks, Perth.
IEEE Service Center, Piscataway, pp 1942–
1948

Kennedy J, Eberhart RC (1997) A discrete binary
version of the particle swarm algorithm. In: Pro-
ceedings of the 1997 conference on systems, man,
and cybernetics. IEEE Service Center, Piscataway,
pp 4104–4109

Krohling RA (2004) Gaussian Swarm. A novel particle
swarm optimization algorithm. Proc 2004 IEEE
Conf Cybern Intell Syst 1:372–376

Mendes R (2004) Population topologies and their
influence in particle swarm performance. Doc-
toral thesis, Escola de Engenharia, Universidade do
Minho

Nowak A, Szamrej J, Latané B (1990) From private
attitude to public opinion: a dynamic theory of
social impact. Psychol Rev 97:362–376

Owen A, Harvey I (2007) Adapting particle swarm
optimisation for fitness landscapes with neutrality.
In: Proceedings of the 2007 IEEE Swarm intelli-
gence symposium. IEEE Press, Honolulu, pp 258–
265

Ozcan E, Mohan CK (1999) Particle swarm opti-
mization: surfing the waves. In: Proceedings of the
congress on evolutionary computation, Mayflower
hotel, Washington, DC. IEEE Service Center, Pis-
cataway, pp 1939–1944

Peña J, Upegui A, Eduardo Sanchez E (2006) Particle
Swarm optimization with discrete recombination:
an online optimizer for evolvable hardware. In:
Proceedings of the 1st NASA/ESA conference on
adaptive hardware and systems (AHS-2006), Is-
tanbul. IEEE Service Center, Piscataway, pp 163–
170

Richer TJ, Blackwell TM (2006) The Levy particle
Swarm. In: Proceedings of the 2006 congress on
evolutionary computation (CEC-2006). IEEE Ser-
vice Center, Piscataway

Shi Y, Eberhart RC (1998) Parameter selection in parti-
cle Swarm optimization. In: Evolutionary program-
ming VII: proceedings EP98. Springer, New York,
pp 591–600

Smolensky P (1986) Information processing in dy-
namical systems: foundations of harmony theory.
In: Rumelhart DE, McClelland JL, the PDP Re-
search Group (eds) Parallel distributed processing:
explorations in the microstructure of cognition,
vol 1, Foundations. MIT Press, Cambridge, pp 194–
281

Suganthan PN (1999) Particle Swarm optimisation
with a neighbourhood operator. In: Proceedings of
congress on evolutionary computation, Washington
DC

Thagard P (2000) Coherence in thought and action.
MIT Press, Cambridge

Partitional Clustering 973

P

Partitional Clustering

Xin Jin1 and Jiawei Han2

1PayPal Inc., San Jose, CA, USA
2University of Illinois at Urbana-Champaign,
Urbana, IL, USA

Abstract

Partitional clustering is a type of clustering
algorithms that divide a set of data points into
disjoint subsets. Each data point is in exactly
one subset.

Synonyms

Objective function

Definition

Partitional clustering (Han et al. 2011) decom-
poses a data set into a set of disjoint clusters.
Given a data set of N points, a partitioning
method constructs K (N � K) partitions of the
data with each partition representing a cluster.
That is, it classifies the data into K groups by
satisfying the following requirements: (1) each
group contains at least one point, and (2) each
point belongs to exactly one group. For fuzzy
partitioning, a point can belong to more than one
group. The quality of the solution is measured by
clustering criteria.

Some partitional clustering algorithms work
by minimizing an objective function. For exam-
ple, in K-means and K-medoids, the function
(also referred as the distortion function) is

KX

iD1

jCi jX

jD1

Dist.xj ; center.i// (1)

where jCi j is the number of points in cluster i
andDist.xj ; center.i// is the distance between
point xj and center i . Depending on the need of
the applications, different distance functions can
be used, such as Euclidean distance and L1 norm.

Major Algorithms

Many algorithms can be used to perform parti-
tional data clustering; representative technologies
include K-means (Lloyd 1957), K-medoids
(Kaufman and Rousseeuw 2005), quality
threshold (QT) (Heyer et al. 1999), expectation-
maximization (EM) (Dempster et al. 1977),
mean shift (Comaniciu and Meer 2002), locality-
sensitive hashing (LSH) (Gionis et al. 1999),
K-way spectral clustering (Luxburg 2007),
etc. In the K-means algorithm, each cluster is
represented by the mean value of the points in
the cluster. For the K-medoids algorithm, each
cluster is represented by one of the points located
near the center of the cluster. Instead of setting
the cluster number K, the QT algorithm uses the
maximum cluster diameter as a parameter to find
clusters with guaranteed quality. Expectation-
maximization clustering performs expectation-
maximization analysis based on statistical
modeling of the data distribution, and it has
more parameters. Mean shift is a nonparameter
algorithm to find any shape of clusters using
density estimator. Locality-sensitive hashing-
based method performs clustering by hashing
similar points to the same bin. K-way spectral
clustering algorithm represents the data as a
graph and performs graph partitioning to find
clusters.

Cross-References

�K-Means Clustering
�K-Medoids Clustering
�K-Way Spectral Clustering
�Quality Threshold Clustering

Recommended Reading

Comaniciu D, Meer P (2002) Mean shift: a robust
approach toward feature space analysis. IEEE Trans
Pattern Anal Mach Intell 24(5):603–619

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc Ser B (Methodol) 39(1):1–38

Gionis A, Indyk P, Motwani R (1999) Similarity search
in high dimensions via hashing. In: proceedings of
the 25th international conference on very large data

http://dx.doi.org/10.1007/978-1-4899-7687-1_100345
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_432
http://dx.doi.org/10.1007/978-1-4899-7687-1_433
http://dx.doi.org/10.1007/978-1-4899-7687-1_692

974 Passive Learning

bases (VLDB’99), San Francisco. Morgan Kauf-
mann Publishers Inc, pp 518–529

Han J, Kamber M, Pei J (2011) Data mining: concepts
and techniques, 3rd edn. Morgan Kaufmann, San
Francisco

Heyer L, Kruglyak S, Yooseph S (1999) Exploring
expression data: identification and analysis of coex-
pressed genes. Genome Res 9:1106–1115

Kaufman L, Rousseeuw PJ (2005) Finding groups in
data: an introduction to cluster analysis. Wiley se-
ries in probability and statistics. Wiley-Interscience,
Hoboken

Lloyd SP (1957) Least squares quantization in PCM.
Technical report RR-5497, Bell Lab

Luxburg U (2007) A tutorial on spectral clustering. Stat
Comput 17(4):395–416

Passive Learning

A � passive learning system plays no role in the
selection of its � training data. Passive learning
stands in contrast to � active learning.

PCA

� Principal Component Analysis

PCFG

� Probabilistic Context-Free Grammars

Phase Transitions in Machine
Learning

Lorenza Saitta1 and Michele Sebag2

1Università del Piemonte Orientale, Alessandria,
Italy
2CNRS � INRIA � Université Paris-Sud, Orsay,
France

Synonyms

Statistical physics of learning; Threshold phe-
nomena in learning; Typical complexity of learn-
ing

Definition

Phase transition (PT) is a term originally used in
physics to denote a sudden transformation of a
system from one state to another, such as from
liquid to solid or to gas state (phase). It is used, by
extension, to describe any abrupt change in one
of the order parameters describing an arbitrary
system, when a control parameter approaches a
critical value.

Far from being limited to physical systems,
PTs are ubiquitous in sciences, notably including
computational science. Typically, hard combina-
torial problems display a PT with regard to the
probability of existence of a solution. Note that
the notion of PT cannot be studied in relation
to single-problem instances: it refers to emergent
phenomena in an ensemble of problem instances,
governed by a given probability distribution.

Motivation and Background

Cheeseman et al. (1991) were most influential in
starting the study of PTs in artificial intelligence,
experimentally showing the presence of a PT
containing the most difficult instances for various
NP-complete problems. Since then, the literature
flourished both in breadth and depth, witnessing
an increasing transfer of knowledge and results
between statistical physics and combinatorics.

As far as machine learning (ML) can be for-
mulated as a combinatorial optimization problem
(Mitchell 1982), it is no surprise that PTs emerge
in many of its facets. Early results have been
obtained in the field of relational learning, either
logic (Botta et al. 2003; Giordana and Saitta
2000) or kernel (Gaudel et al. 2008) based. PTs
have been studied in neural networks (Demon-
geot and Sené 2008; Engel and Van den Broeck
2001), grammatical inference (Cornuéjols and
Sebag 2008), propositional classification (Bask-
iotis and Sebag 2004; Rückert and De Raedt
2008), and sparse regression (Donoho and Tanner
2005).

Two main streams of research emerge from the
study of PT in computational problems. On the
one hand, locating the PT enables very difficult

http://dx.doi.org/10.1007/978-1-4899-7687-1_632
http://dx.doi.org/10.1007/978-1-4899-7687-1_840
http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_665
http://dx.doi.org/10.1007/978-1-4899-7687-1_669
http://dx.doi.org/10.1007/978-1-4899-7687-1_100447
http://dx.doi.org/10.1007/978-1-4899-7687-1_100473
http://dx.doi.org/10.1007/978-1-4899-7687-1_100494

Phase Transitions in Machine Learning 975

P

problem instances to be generated, those which
are most relevant to benchmarks and comparative
assessment of new algorithms. On the other hand,
PT studies stimulate the analysis of algorithmic
typical case complexity, as opposed to the stan-
dard worst-case analysis of algorithmic complex-
ity. It is well known that while many algorithms
require exponential resources in the worst case,
they are effective for a vast majority of problem
instances. Studying their typical runtime thus
makes sense in a probabilistic perspective. The
typical runtime not only reflects the most proba-
ble runtime; overall, the probability of deviating
from this typical complexity goes to zero as the
problem size increases.

Relational Learning

In a seminal paper, Mitchell characterized ML as
a search problem (Mitchell 1982). Much attention
has ever since been devoted to every component
of a search problem: the search space, the search
goal, and the search engine.

The search space H reflects the language
L chosen to express the target knowledge,
termed � hypothesis language. The reader is
referred to other entries of the encyclopedia
(�Attribute-value representation, �First-order
logic, �Relational learning, and � Inductive
Logic Programming) for a comprehensive
presentation of the hypothesis languages and
related learning approaches.

Typically, a learner proceeds iteratively: given
a set E of examples labeled after a target concept
!, the learner maintains a list of candidate hy-
potheses, assessing their completeness (the pro-
portion of positive examples they cover) and their
consistency (the proportion of negative examples
they do not cover) using a � covering test. The
covering test, checking whether some hypothesis
h covers some example e, is thus a key com-
ponent of the learning process, launched a few
hundred thousand times in each learning run on
medium-size problems.

While in propositional learning the covering
test is straightforward and computationally effi-
cient, in first-order logics, one must distinguish

between learning from interpretation (h covers
a set of facts e iff e is a model for h) and
learning from entailment (h covers a clause e
iff h entails e) (De Raedt 1997). A correct, but
incomplete covering test, the � � -subsumption
test defined by Plotkin (1970), is most often used
for its decidability properties, and much attention
has been paid to optimizing it (Maloberti and
Sebag 2004).

As shown by Giordana and Saitta (2000), the
� -subsumption test is equivalent to a constraint
satisfaction problem (CSP). A finite CSP is a
tuple (X, R, D), where X D fx1; : : : xng is
a set of variables, R D fR1; : : : Rcg is a set
of constraints (relations), and D is the variable
domain. Each relation Rh involves a subset of
variables xi1 ; : : : ; xik in X; it specifies all tuples
of values .ai1 ; : : : ; aik / in Dk such that the as-
signment (Œxi1 D ai1 � ^ : : : ^ Œxik D aik �)
satisfies Rh. A CSP is satisfiable if there exists a
tuple .a1; : : : ; an/ 2 D

n such that the assignment
.Œxi D ai �; i D 1; : : : ; n/ satisfies all relations in
R. Solving a CSP amounts to finding such a tuple
(solution) or showing that none exists.

The probability for a random CSP instance
to be satisfiable shows a PT with respect to
the constraint density (control parameter p1 D

2c
n.n�1/

) and constraint tightness (p2 D 1 � N
L2),

where N denotes the cardinality of each con-
straint (assumed to be equal for all constraints)
and L is the number of constants in the example
(the universe).

The relational covering test being a CSP, a
PT was expected and has been confirmed by
empirical evidence (Botta et al. 1999; Giordana
and Saitta 2000). The order parameter is the
probability of hypothesis h to cover example
e; the control parameters are the number m of
predicates and the number n of variables in h,
on the one hand, and the number N of literals
built on each predicate symbol (relation) and the
number L of constants in the example e, on the
other hand. As shown in Fig. 1a, the covering
probability is close to 1 (YES region) when h is
general comparatively to e; it abruptly decreases
to 0 (NO region) as the number m of predicates
in h increases and/or the number L of constants
in e decreases. In the PT region, a high peak

http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_43
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_275
http://dx.doi.org/10.1007/978-1-4899-7687-1_800

976 Phase Transitions in Machine Learning

Psol

100

50

0

5000

10000

0

15 20 25 30
M

a b

L
35 40 45 15

20
25

30
35

40
45

15 20 25
30

M

L

35
40

45
15

20
25

30
35

40
45

Phase Transitions in Machine Learning, Fig. 1 PT of
the covering test .h; e/ versus the number m of predicates
in h and the number L of constants in e. The number
n of variables is set to 10, and the number N of literals

per predicate is set to 100. (a) Percentage of times the
covering test succeeds. (b) Runtime of the covering test,
averaged over 100 pairs .h; e/ independently generated
for each pair .m; L/

of empirical complexity of the covering test is
observed (Fig. 1b).

The PT of the covering test has deep and
far-reaching effects on relational learning. By
definition, nontrivial hypotheses (covering some
examples but not all) mostly belong to the PT
region. The learner, searching for hypotheses
covering the positive and rejecting the negative
examples, must explore this region and thus
cannot avoid the associated computational cost.
More generally, the PT region acts as an attractor
for any learner aimed at complete and consistent
hypotheses.

Secondly, top-down learners must traverse the
plateau of overly general hypotheses (YES re-
gion) before arriving at the PT region. In the YES
region, as all hypotheses cover most examples,
the learner does not have enough information to
make relevant choices; the chance of gradually
arriving at an accurate description of the target
concept thus becomes very low. Actually, a blind
spot has been identified close to the PT (Botta
et al. 2003): when the target concept lies in
this region (relatively to the available examples),
every state-of-the-art top-down relational learner
tends to build random hypotheses, that is, the
learned hypotheses behave like random guessing
on the test set (Fig. 2).

This negative result has prompted the design
of new relational learners aimed at learning in the
PT region and using either prior knowledge about
the size of the target concept (Ales Bianchetti
et al. 2002) or near-miss examples (Alphonse and
Osmani 2008).

Relational Kernels and MIL Problems

Relational learning has been revisited through
the so-called kernel trick (Cortes and Vapnik
1995), first pioneered in the context of �Support
Vector Machines. Relational kernels, inspired
from Haussler’s convolutional kernels (Haussler
1999), have been developed for, e.g., strings,
trees, or graphs. For instance, K.x; x0/ might
count the number of patterns shared by relational
structures x and x0. Relational kernels thus
achieve a particular type of � propositionalization
(Kramer et al. 2001), mapping every relational
example onto a propositional space defined after
the training examples.

The question of whether relational kernels
enable to avoid the PT faced by relational
learning, described in the previous section, was
investigated by Gaudel et al. (2007), focusing
on the so-called �multi-instance learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_810
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_955

Phase Transitions in Machine Learning 977

P

45

40

35

30

L

m

25

20

15

10
5 10 15 20 25 30

Phase Transitions in Machine Learning, Fig. 2
Competence map of FOIL versus number m of predicates
in the target concept and number L of constants in the
examples. The target concept involves n D 4 variables
and each example contains N D 100 literals built on
each predicate symbol. For each pair .m; L/, a target
concept ! has been generated independently, balanced

200-example training, and test sets have been generated
and labeled after !. FOIL has been launched on the
training set, and the predictive accuracy of the hypothesis
has been assessed on the test set. Symbol “�” indicates
a predictive accuracy greater than 90 %; symbol “�”
indicates a predictive accuracy close to 50 % (akin random
guessing)

(MIL) setting. The MIL setting, pioneered
by Dietterich et al. (1997), is considered to
be the “missing link” between relational and
propositional learning (De Raedt 1998).

Multi-instance Learning: Background and
Kernels
Formally, an MI example x is a bag of (propo-
sitional) instances noted x.1/, : : :, x.N /, where
x. j / 2 IRd . In the original MI setting (Dietterich
et al. 1997), an example is labeled positive iff
it includes at least one instance satisfying some
target concept C :

pos.x/ iff 9 i 2 1 : : : N s:t: C.x.i//:

More generally, in application domains such as
image categorization, the example label might
depend on the properties of several instances:

pos.x/ iff 8 j D 1 : : : m; 9 ij 2 1 : : : N s:t: Cj

.x.ij //:

In this more general setting, referred to as
presence-based setting, it has been shown that
MIL kernels also have a PT (Gaudel et al. 2007).

Let us consider bag kernelsK, built on the top
of propositional kernels k on IRd as follows:

K.x; x0/ D f .x/:f .x0/
NX

kD1

N 0X

`D1

k.x.k/; x0 .`//

(1)
where x D .x.1/; : : : ; x.N // and x0 D

.x0 .1/; : : : ; x0 .N
0// denote two MI examples and

f .x/ corresponds to a normalization term, e.g.,
f .x/ D 1 or 1=N or 1=

p
K.x; x/.

By construction, such MI-kernels thus con-
sider the average similarity among the exam-

978 Phase Transitions in Machine Learning

ple instances, while relational learning is usually
concerned with finding existential concepts.

The MI-SVM PT
After Botta et al. (2003) and Giordana and Saitta
(2000), the competence of MI-kernels was ex-
perimentally assessed using artificial problems.
Each problem involves m sub-concept s Ci : a
given sub-concept corresponds to a region of the
d -dimensional space, and it is satisfied by an MI
example x if at least one instance in x belongs to
this region. An instance is said to be relevant if it
belongs to some Ci region.

Let n (respectively n0) denote the number of
relevant instances in positive (respectively nega-
tive) examples. Let further � denote the number
of sub-concept s not satisfied by negative exam-
ples (by definition, a positive example satisfies all
sub-concept s).

Empirical investigations (Gaudel et al. 2007)
show that:

• The n D n0 region is a failure region, where
hypotheses learned by relational MI-SVMs do
no better than random guessing (Fig. 3). In
other words, while MI-SVMs grasp the notion
of relevant instances, they still fail in the “truly
relational region” where positive and negative
examples only differ in the distribution of the
relevant instances.

• The width of the failure region increases as
� increases, i.e., when fewer sub-concept s
are satisfied by negative examples. This un-
expected result is explained from the variance

of the kernel-based propositionalization: the
larger � , the more the distribution of the pos-
itive and negative propositionalized examples
overlap, hindering the discrimination.

Propositional Learning and Sparse
Coding

Interestingly, the emergence of a PT is not limited
to relational learning. In the case of (context-free)
grammar induction, for instance (Cornuéjols and
Sebag 2008), the coverage of the candidate gram-
mar was found to abruptly go to 1 along (uni-
form) generalization, as depicted in Fig. 4.

Propositional learning also displays some PTs
both in the classification (Baskiotis and Sebag
2004; Rückert and De Raedt 2008) and in the re-
gression (Cands 2008; Donoho and Tanner 2005)
context.

Propositional Classification
Given a target hypothesis language, classifica-
tion in discrete domains most often aims at the
simplest expression complying with the training
examples.

Considering randomly generated positive and
negative examples, Rückert and De Raedt (2008)
investigated the existence of k-term DNF so-
lutions (disjunction of at most k conjunctions
of literals) and showed that the probability of
solution abruptly drops as the number of negative
examples increases. They proposed a combinato-
rial optimization algorithm to find a k-term DNF

Phase Transitions in
Machine Learning, Fig. 3
MI-SVM failure region in
the (n, n0) plane. Each (n,
n0) point reports the test
error, averaged on 40
artificial problems

0
0.1
0.2
0.3
0.4
0.5

n

n

30 40 50 60 70 80 90 100
0

20

40

60

80

100

Phase Transitions in Machine Learning 979

P

Phase Transitions in
Machine Learning, Fig. 4
Gap emerging during
learning in the relationship
between the number of
nodes of the inferred
grammar and the coverage
rate

100

90

80

70

60

50

40

30

20

10

0

Number of states PTAUA

Generalization

C
ov

er
ag

e
ra

te

0 200 400 600 800 1000 1200

Coverage P_c

C
4.

5
E

rr
or

0.1

a b

0.3 0.5 0.7 0.9
0

10

20

30
k=10
k=15
k=20
k=25

Error vs coverage (K=10)

Average term coverage

C
4.

5
E

rr
or

0 0.1 0.2 0.3 0.4 0.5

0

10

20

30
k=10
k=15
k=20
k=25

Error vs average term coverage (K=100)

Phase Transitions in Machine Learning, Fig. 5 C4.5
error versus concept coverage (a) and average term cov-
erage (b) in k-term DNF languages. The reported curve

is obtained by Gaussian convolution with empirical data
(15,000 learning problems, each one involving a 800-
example dataset)

complying with the training examples except at
most "% of them (Rückert and De Raedt 2008).

Considering positive and negative examples
generated after some k-term DNF target concept
!, Baskiotis and Sebag examined the solutions
built by C4.5 Rules (Quinlan 1993), among the
oldest and still most used discrete learning al-
gorithms. The observed variable is the general-
ization error on a test set; the order variables
are the coverage of ! and the average coverage
of the conjuncts in !. Interestingly, C4.5 dis-
plays a PT behavior (Fig. 5): the error abruptly

increases as the coverage and average coverage
decrease.

Propositional Regression
�Linear regression aims at expressing the target
variable as the weighted sum of theN descriptive
variables according to some vector w. When the
number N of variables is larger than the num-
ber n of examples, one is interested in finding
the most sparse w complying with the training
examples (s.t. < w; xi >D yi). The sparsity
criterion consists of minimizing the L0 norm of

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

980 Phase Transitions in Machine Learning

w (number of nonzero coefficients in w), which
defines an NP optimization problem. A more
tractable formulation is obtained by minimizing
the L1 norm instead:

Find arg minw2IRN fjjwjj1 subject to < w; xi >

D yi; i D 1 : : : ng: (2)

A major result in the field of sparse coding can
be stated as: Let w� be the solution of Eq. (2); if
it is sufficiently sparse, w� also is the most sparse
vector subject to < w; xi > D yi (Donoho and
Tanner 2005). In such cases, the L0 norm mini-
mization can be solved by L1 norm minimization
(an NP optimization problem is solved using
linear programming). More generally, the equiv-
alence between L0 and L1 norm minimization
shows a PT behavior: when the sparsity of the
solution is lower than a given threshold w.r.t the
problem size (lower curve in Fig. 6), the NP/LP
equivalence holds strictly; further, there exists a
region (between the upper and lower curves in
Fig. 6) where the NP/LP equivalence holds with
high probability.

This highly influential result bridges the gap
between the statistical and algorithmic objectives.
On the statistical side, the importance of sparsity
in terms of robust coding (hence learning) is
acknowledged since the beginnings of informa-
tion theory; on the algorithmic side, the sparsity
criterion cannot be directly tackled as it boils
down to solving a combinatorial optimization
problem (minimizing a L0 norm). The above

result reconciles sparsity and tractability by not-
ing that under some conditions, the solution of
the L0 minimization problem can be found by
solving the (tractable) L1 minimization problem:
whenever the solution of the latter problem is
“sufficiently” sparse, it is also the solution of the
former problem.

Perspectives

Since the main two formulations of ML involve
constraint satisfaction and constrained optimiza-
tion, it is no surprise that CSP PTs manifest
themselves in ML. The diversity of these mani-
festations, ranging from relational learning (Botta
et al. 2003) to sparse regression (Donoho and
Tanner 2005), has been illustrated in this entry,
without pretending exhaustivity.

Along this line, the research agenda and
methodology of ML can benefit from the lessons
learned in the CSP field. Firstly, algorithms must
be assessed on problems lying in the PT region;
results obtained on problems in the easy regions
are likely to be irrelevant (playing in the sandbox
Hogg et al. 1996).

In order to do so, the PT should be localized
through defining control and order parameters,
thus delineating several regions in the control
parameter space (ML landscape). These regions
expectedly correspond to different types of ML
difficulty, beyond the classical computational
complexity perspective.

1

0.9

0.8

0.7

0.6

0.5
k–n

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

n /N

Phase Transitions in Machine Learning, Fig. 6 Strong
and weak PT in sparse regression (Donoho and Tanner
2005). The x-axis is the ratio between the number n of

constraints and the number N of variables; the y-axis is
the ratio between the number k of variables involved in
the solution and n

Phase Transitions in Machine Learning 981

P

Secondly, the response of a given algorithm to
these difficulties can be made available through
a competence map, depicting its average perfor-
mance conditionally to the value of the control
parameters as shown in Figs. 2 and 3.

Finally, such competence maps can be used to
determine whether a given algorithm is a priori
relevant in a given region of the control parameter
space and support the algorithm selection
task (a.k.a. meta-learning; see, e.g., http://
www.cs.bris.ac.uk/Research/MachineLearning/
metal.html).

Recently, phase transitions have also emerged
in learning more complex structures, such
as complex networks. For instance, Xhang
et al. (Zhang et al. 2014), following previous
work, investigated the transitions occurring
in the possibility of discovering communities
in sparse networks using a semisupervised
clustering approach. In their approach, the
control parameter is the fraction ˛ of nodes in
the network, whose label is known, and they
found both a first-order and a second-order phase
transition.

Recommended Reading

Ales Bianchetti J, Rouveirol C, Sebag M (2002)
Constraint-based learning of long relational con-
cepts. In: Sammut C (ed) Proceedings of interna-
tional conference on machine learning, ICML’02.
Morgan Kauffman, San Francisco, pp 35–42

Alphonse E, Osmani A (2008) On the connection
between the phase transition of the covering test and
the learning success rate. Mach Learn 70(2–3):135–
150

Baskiotis N, Sebag M (2004) C4.5 competence map: a
phase transition-inspired approach. In: Proceedings
of international conference on machine learning.
Morgan Kaufman, Banff, pp 73–80

Botta M, Giordana A, Saitta L (1999) An experimental
study of phase transitions in matching. In: Proceed-
ings of the 16th international joint conference on
artificial intelligence, Stockholm, pp 1198–1203

Botta M, Giordana A, Saitta L, Sebag M (2003) Rela-
tional learning as search in a critical region. J Mach
Learn Res 4:431–463

Cands EJ (2008) The restricted isometry property and
its implications for compressed sensing. Compte
Rendus de l’Academie des Sciences, Paris, Serie I
346:589–592

Cheeseman P, Kanefsky B, Taylor W (1991) Where
the really hard problems are. In: Myopoulos R,
Reiter J (eds) Proceedings of the 12th international
joint conference on artificial intelligence, Sydney.
Morgan Kaufmann, San Francisco, pp 331–340

Cornuéjols A, Sebag M (2008) A note on phase tran-
sitions and computational pitfalls of learning from
sequences. J Intell Inf Syst 31(2):177–189

Cortes C, Vapnik VN (1995) Support-vector networks.
Mach Learn 20:273–297

De Raedt L (1997) Logical setting for concept-
learning. Artif Intell 95:187–202

De Raedt L (1998) Attribute-value learning versus
inductive logic programming: the missing links.
In: Proceedings inductive logic programming, ILP.
LNCS, vol 2446. Springer, London, pp 1–8

Demongeot J, Sené S (2008) Boundary conditions and
phase transitions in neural networks. Simulation
results. Neural Netw 21(7):962–970

Dietterich T, Lathrop R, Lozano-Perez T (1997) Solv-
ing the multiple-instance problem with axis-parallel
rectangles. Artif Intell 89(1–2):31–71

Donoho DL, Tanner J (2005) Sparse nonnegative solu-
tion of underdetermined linear equations by linear
programming. Proc Natl Acad Sci 102(27):9446–
9451

Engel A, Van den Broeck C (2001) Statistical me-
chanics of learning. Cambridge University Press,
Cambridge

Gaudel R, Sebag M, Cornuéjols A (2007) A phase
transition-based perspective on multiple instance
kernels. In: Proceedings of international conference
on inductive logic programming, ILP, Corvallis,
pp 112–121

Gaudel R, Sebag M, Cornuéjols A (2008) A phase
transition-based perspective on multiple instance
kernels. Lect Notes Comput Sci 4894:112–121

Giordana A, Saitta L (2000) Phase transitions in rela-
tional learning. Mach Learn 41(2):17–251

Haussler D (1999) Convolutional kernels on discrete
structures. Technical report, Computer Science De-
partment, University of California at Santa Cruz

Hogg T, Huberman BA, Williams CP (eds) (1996)
Artificial intelligence: special issue on frontiers in
problem solving: phase transitions and complexity,
vol 81(1–2). Elsevier

Kramer S, Lavrac N, Flach P (2001) Propositional-
ization approaches to relational data mining. In:
Dzeroski S, Lavrac N (eds) Relational data mining.
Springer, New York, pp 262–291

Maloberti J, Sebag M (2004) Fast theta-subsumption
with constraint satisfaction algorithms. Mach Learn
J 55:137–174

Mitchell TM (1982) Generalization as search. Artif
Intell 18:203–226

Plotkin G (1970) A note on inductive generalization.
In: Machine intelligence, vol 5. Edinburgh Univer-
sity Press, Edinburgh

Quinlan JR (1993) C4.5: programs for machine learn-
ing. Morgan Kaufmann, San Francisco

http://www.cs.bris.ac.uk/Research/MachineLearning/metal.html

982 Piecewise Constant Models

Rückert U, De Raedt L (2008) An experimental eval-
uation of simplicity in rule learning. Artif Intell
172(1):19–28

Zhang P, Moore C, Zdeborova L (2014) Phase tran-
sitions in semisupervised clustering of sparse net-
works. CoRR vol abs/1404.7789

Piecewise Constant Models

�Regression Trees

Piecewise Linear Models

�Model Trees

Plan Recognition

� Inverse Reinforcement Learning

Polarity Learning on a Stream

�Opinion Stream Mining

Policy Gradient Methods

Jan Peters1;2;4 and J. Andrew Bagnell3
1Department of Empirical Inference,
Max-Planck Institute for Intelligent Systems,
Tübingen, Germany
2Intelligent Autonomous Systems, Computer
Science Department, Technische Universität
Darmstadt, Darmstadt, Hessen, Germany
3Carnegie Mellon University, Pittsburgh, PA,
USA
4Max Planck Institute for Biological
Cybernetics, Tübingen, Germany

Abstract

Already Richard Bellman suggested that
searching in policy space is fundamen-
tally different from value function-based

reinforcement learning — and frequently
advantageous, especially in robotics and
other systems with continuous actions. Policy
gradient methods optimize in policy space
by maximizing the expected reward using a
direct gradient ascent. We discuss their basics
and the most prominent approaches to policy
gradient estimation.

Definition

A policy gradient method is a � reinforcement
learning approach that directly optimizes a
parametrized control policy by a variant of
gradient descent. These methods belong to the
class of � policy search techniques that maximize
the expected return of a policy from a fixed class,
in contrast with � value function approximation
approaches that derive policies indirectly from
an estimated value function. Policy gradient
approaches have various advantages: they enable
the straightforward incorporation of domain
knowledge in policy parametrization; often an
optimal policy is more compactly represented
than the corresponding value function; many
such methods guarantee to convergence to at
least a locally optimal policy; the methods
naturally handle continuous states and actions
and often even imperfect state information. The
countervailing drawbacks include difficulties in
off-policy settings, the potential for very slow
convergence and high sample complexity, as well
as identifying local optima that are not globally
optimal.

Structure of the Learning System

Policy gradient methods center around a
parametrized policy �� , also known as a � direct
controller, with parameters � that defines the
selection of actions a given the state s. Such a
policy may either be deterministic a D �� .s/ or
stochastic a � �� .ajs/. This choice also affects
the class of policy gradient algorithms applicable
(stochastic policies often lead to smooth

http://dx.doi.org/10.1007/978-1-4899-7687-1_717
http://dx.doi.org/10.1007/978-1-4899-7687-1_558
http://dx.doi.org/10.1007/978-1-4899-7687-1_142
http://dx.doi.org/10.1007/978-1-4899-7687-1_905
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_100113

Policy Gradient Methods 983

P

differentiable objective with gradients that can be
estimated via likelihood ratio methods (Williams
1992), where a deterministic policy may lead to a
non-smooth optimization problem), influences
how the exploration-exploitation dilemma is
addressed (e.g., a stochastic policy naturally
chooses novel actions while a deterministic
policy requires the perturbation of policy
parameters or sufficient stochasticity in the
system to achieve exploration), and may affect
the quality of optimal solution (e.g., for a time-
invariant or stationary policy, the optimal policy
can be stochastic Sutton et al. 2000). Frequently
used policy classes include Gibbs distributions
�� .ajs/ D exp.	.s; a/T �/=

P
b exp.	.s; b/T �/

for discrete problems (Sutton et al. 2000; Bagnell
2004) and, for continuous problems, Gaussian
policies �� .ajs/ D N .	.s; a/T �1; �2/ with an
exploration parameter �2 (Williams 1992; Peters
and Schaal 2008).

Expected Return
Policy gradient methods seek to optimize the
expected return of a policy �� ,

J.�/ D Z�E

(
HX

kD0

�krk

)
;

where � 2 Œ0; 1� denotes a discount factor, a
normalization constant Z� , and H the planning
horizon. For finite H , we have an episodic rein-
forcement learning scenario where the truly opti-
mal policy is nonstationary and the normalization
does not matter. For an infinite horizon H D1 ,
we choose the normalization to be Z� 	 .1 � �/
for � < 1 and Z1 	 lim�!1.1 � �/ D 1=H for
� average reward reinforcement learning problem
where � D 1.

Gradient Descent in Policy Space
Policy gradient methods follow an estimate the
gradient of the expected return

�kC1 D �k C ˛kg.�k/;

where g.�k/
 r�J.�/j�D�k
is a gradient esti-

mate for the policy with parameters � D �k after

update k (with an initial policy �0) and ˛k denotes
a learning rate. If the gradient estimator is unbi-
ased,

P1
kD0 ˛k ! 1 while

P1
kD0 ˛

2
k

remains
bounded, convergence to a local minimum can
be guaranteed. In optimal control, model-based
gradient methods have been used for optimizing
policies since the 1960s (Pontryagin et al. 1962).
While these are used machine learning commu-
nity (e.g., differential dynamic programming with
learned models), they may be numerically brittle
and must rely on accurate, deterministic models.
Hence, they may suffer significantly from opti-
mization biases (i.e., if possible, they will reach a
higher average return on the approximate model
than possible on the real system by exploiting the
shortcomings of the model) and are not generally
applicable as learning problems often include
discrete elements and maybe very difficult to
learn effective predictive models.

Several model-free alternatives can be found
in the simulation-based optimization literature
(Fu 2006), including, e.g., finite-difference
gradients, likelihood ratio approaches, response-
surface methods, and mean-valued, weak
derivatives. The advantages and disadvantages
of these different approaches remain a fiercely
debated topic (Fu 2006). In machine learning,
the first two approaches have largely dominated
gradient-based approaches to � policy search,
although response surface methods are arriving
especially in the context of Bayesian optimization
for policy search.

Finite Difference Gradients
The simplest policy gradient approaches with
perhaps the most practical applications (see Bag-
nell (2004) and Peters and Schaal (2008) for
robotics application of this method) estimate the
gradient by perturbing the policy parameters. For
a current policy �k with expected return J.�k/,
this approach will create perturbed policies O�i D

�k C ı�i with the approximated expected re-
turns given by J. O�i /
 J.�k/ C ı�T

i g where
g D r�J.�� /j�D�k

: Such returns are typically
estimated by simulation. The gradient can then
be estimated by linear regression; i.e., we obtain

g D .
‚T
‚/�1
‚T
J;

http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_100364

984 Policy Gradient Methods

with parameter perturbations
‚DŒı�1; : : : ; ı�n�

and mean-subtracted roll-out returns ıJn D

J. O�i / � J.�k/ form
J D ŒıJ1; : : : ; ıJn�. The
choice of the parameter perturbation largely
determines the performance of the approach
(Spall 2003). Limitations particular to this
approach include the need for many exploratory
samples, the sensitivity of the system with respect
to each parameter may differs by orders of
magnitude, small changes in a single parameter
may render a system unstable, and stochasticity
requires particular care in optimization (e.g.,
multiple samples, fixed random seeds, etc.), see
Glynn (1990) and Spall (2003). This method is
additionally referred to as the naive Monte-Carlo
policy gradient.

Likelihood Ratio Gradients
The likelihood ratio method relies upon the
stochasticity of either the policy for model-free
approaches, or the system in the model-based
case. Hence, it requires no explicit parameter
exploration and may cope better with noise
as well as parameter perturbation sensitivity
problems. Moreover, in the model-free setting,
in contrast with naive Monte-Carlo estimation,
it potentially benefits from more assumptions on
the policy parameterization. Denoting a time-
indexed sequence of states, actions, and rewards
of the joint system composed of the policy
and environment as a path, a parameter setting
induces a path distribution p� .�/ and rewards
R.�/ D Z�

PH
kD0 �

krk along a path � . Thus, we
may write the gradient of the expected return as

r�J.�/ D r�

Z
p� .�/R.�/d�

D

Z
p� .�/r� logp� .�/R.�/d�

D Efr� logp� .�/R.�/g:

If our system p.s0js; a/ is Markovian, we may use
p� .�/ D p.s0/

QH
hD0 p.skC1jsk ; ak/�� .akjsk/

for a stochastic policy a � �� .ajs/ to obtain
the model-free policy gradient estimator known
as Episodic REINFORCE (Williams 1992)

r�J.�/ D Z�E

(
HX

hD0

�kr� log�� .akjsk/

HX

kDh

�k�hrk

)
;

and for the deterministic policy a D �� .s/, the
model-based policy gradient

r�J.�/ D Z�E

(
HX

hD0

�k
�
ra logp.skC1jsk ; ak/

T

r��� .s/
	 HX

kDh

�k�hrk

)
;

follows from p� .�/ D p.s0/
QH

hD0 p.skC1jsk ;

�� .sk//.
Note that all rewards preceding an action

may be omitted as the cancel out in expec-
tation. Using a state-action value function

Q�� .s; a; h/ D E
nPH

kDh �
k�hrk

ˇ̌
ˇ s; a; ��

o

(see � value function approximation), we can
rewrite REINFORCE in its modern form

r�J.�/ D Z�E

(
HX

hD0

�kr� log�� .akjsk/

.Q�� .s; a; h/ � b.s; h//

)
;

known as the policy gradient theorem where the
baseline b.s; h/ is an arbitrary function that may
be used to reduce the variance, and Q�� .s; a; h/

represents the action-� value function.
While likelihood ratio gradients have been

known since the late 1980s, they have recently
experienced an upsurge of interest due to their
demonstrated effectiveness in applications;
see, e.g., Peters and Schaal (2008)), progress
toward variance reduction using optimal
baselines (Lawrence et al. 2003), rigorous
understanding of the relationships between value
functions and policy gradients (Sutton et al.
2000), policy gradients in reproducing kernel
Hilbert space (Bagnell 2004), as well as faster,

http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_876

POS Tagging 985

P

more robust convergence using natural policy
gradients (Bagnell 2004; Peters and Schaal 2008)

A recent major development (Silver et al.
2014) demonstrates that many of the key results
from model-free stochastic policy search can be
transferred to deterministic policy classes by con-
sidering the limiting case of a likelihood ratio
method. Importantly, this estimation of a deter-
ministic policy gradient can be much more sam-
ple efficient than existing techniques; the caveat
remains that the total return may indeed fail to be
differentiable and both practical performance and
theory in such settings are poorly understood.

Cross-References

� Policy Search
�Reinforcement Learning
�Value Function Approximation

Recommended Reading

Bagnell JA (2004) Learning decisions: robustness,
uncertainty, and approximation. Doctoral disserta-
tion, Robotics institute, Carnegie Mellon University,
Pittsburgh

Fu MC (2006) Stochastic gradient estimation. In: Hen-
derson SG, Nelson BL (eds) Handbook on opera-
tions research and management science: simulation,
vol 19. Elsevier, Burlington, pp 575–616

Glynn P (1990) Likelihood ratio gradient estimation
for stochastic systems. Commun ACM 33(10):75–
84

Lawrence G, Cowan N, Russell S (2003) Efficient
gradient estimation for motor control learning. In:
Proceedings of the international conference on un-
certainty in artificial intelligence (UAI), Acapulco

Peters J, Schaal S (2008) Reinforcement learning of
motor skills with policy gradients. Neural Netw
21(4):682–697

Pontryagin LS, Boltyanskii VG, Gamkrelidze RV,
Mishchenko E (1962) The mathematical theory of
optimal processes. International series of mono-
graphs in pure and applied mathematics. Inter-
science publishers, New York

Silver D, Lever G, Heess N, Degris T, Wierstra D,
Riedmiller M (2014) Deterministic policy gradient
algorithms. In: Proceedings of the 31st international
conference on Machine learning (ICML), Bejing

Spall JC (2003) Introduction to stochastic search and
optimization: estimation, simulation, and control.
Wiley, Hoboken

Sutton RS, McAllester D, Singh S, Mansour Y (2000)
Policy gradient methods for reinforcement learning
with function approximation. In: Solla SA, Leen
TK, Mueller KR (eds) Advances in neural informa-
tion processing systems (NIPS). MIT, Denver

Williams RJ (1992) Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach Learn 8:229–256

Policy Search

�Markov Decision Processes

POMDPs

� Partially Observable Markov Decision
Processes

POS Tagging

Walter Daelemans
CLIPS University of Antwerp, Antwerpen,
Belgium

Synonyms

Grammatical tagging; Morphosyntactic disam-
biguation; Part of speech tagging; Tagging

Definition

Part-of-speech tagging (POS tagging) is a process
in which each word in a text is assigned its
appropriate morphosyntactic category (for exam-
ple noun-singular, verb-past, adjective, pronoun-
personal, and the like). It therefore provides in-
formation about both morphology (structure of
words) and syntax (structure of sentences). This
disambiguation process is determined both by
constraints from the lexicon (what are the pos-
sible categories for a word?) and by constraints
from the context in which the word occurs (which

http://dx.doi.org/10.1007/978-1-4899-7687-1_100364
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_629
http://dx.doi.org/10.1007/978-1-4899-7687-1_100191
http://dx.doi.org/10.1007/978-1-4899-7687-1_100313
http://dx.doi.org/10.1007/978-1-4899-7687-1_100357
http://dx.doi.org/10.1007/978-1-4899-7687-1_100463

986 POS Tagging

of the possible categories is the right one in this
context?). For example, a word like table can be
a noun-singular, but also a verb-present (as in I
table this motion). This is lexical knowledge. It
is the context of the word that should be used to
decide which of the possible categories is the cor-
rect one. In a sentence like Put it on the table, the
fact that table is preceded by the determiner the,
is a good indication that it is used as a noun here.
Systems that automatically assign parts of speech
to words in text should take into account both
lexical and contextual constraints, and they are
typically found in implementations as a lookup
module and a disambiguation module.

Motivation and Background

In most natural language processing (NLP) ap-
plications, POS tagging is one of the first steps
to allow abstracting away from individual words.
It is not to be confused with lemmatization, a
process that reduces morphological variants of
words to a canonical form (the citation form,
for example, infinitive for verbs and singular for
nouns). Whereas lemmatization allows abstrac-
tion over different forms of the same word, POS
tagging abstracts over sets of different words that
have the same function in a sentence. It should
also not be confused with tokenization, a process
that detects word forms in text, stripping off
punctuation, handling abbreviations, and so on.
For example, the string don’t could be converted
to do not. Normally, a POS tagging system would
take tokenized text as input. More advanced to-
kenizers may even handle multiword items, for
example treating in order to not as three separate
words but as a single lexical item.

Applications. A POS tagger is the first dis-
ambiguation module in text analysis systems. In
order to determine the syntactic structure of a
sentence (and its semantics), we have to know
the parts of speech of each word. In earlier
approaches to syntactic analysis (parsing), POS
tagging was part of the parsing process. However,
individually trained and optimized POS taggers
have increasingly become a separate module in
shallow or deep syntactic analysis systems. By

extension, POS tagging is also a foundational
module in text mining applications ranging from
information extraction and terminology/ontology
extraction to summarization and question an-
swering.

Apart from being one of the first modules in
any text analysis system, POS tagging is also
useful in linguistic studies (corpus linguistics) –
for example for computing frequencies of dis-
ambiguated words and of superficial syntactic
structures. In speech technology, knowing the
part of speech of a word can help in speech
synthesis (the verb “subJECT” is pronounced
differently from the noun “SUBject”), and in
speech recognition, POS taggers are used in some
approaches to language modeling. In spelling and
grammar checking, POS tagging plays a role in
increasing the precision of such systems.

Part-of-speech tag sets. The inventory of POS
tags can vary from tens to hundreds depending
on the richness of morphology and syntax that
is represented and on the inherent morphological
complexity of a language. For English, the tag
sets most used are those of the Penn Treebank
(45 tags; Marcus et al. 1993), and the CLAWS C7
tag set (146 tags; Garside and Smith 1997). Tag
sets are most often developed in the context of
the construction of annotated corpora. There have
been efforts to standardize the construction of tag
sets to increase translatability between different
tag sets, such as Eagles. (http://www.ilc.cnr.it/
EAGLES96/browse.html) and ISO/TC 37/SC 4.
(http://www.tc37sc4.org/)

The following example shows both tag sets.
By convention, a tagged word is represented by
attaching the POS tag to it, separated by a slash.

Pierre/NNP Vinken/NNP ,/, 61/CD years/NNS
old/JJ ,/, will/MD join/VB the/DT board/NN
as/IN a/DT nonexecutive/JJ director/NN
Nov./NNP 29/CD ./. [Penn Treebank]

Pierre/NP1 Vinken/NP1 ,/, 61/MC years/NNT2
old/JJ ,/, will/VM join/VVI the/AT Board/NN1
as/II a/AT1 nonexecutive/JJ director/NN1
Nov./NPM1 29/MC ./. [CLAWS C7]

As can be seen, the tag sets differ in level
of detail. For example, NNT2 in the C7 tag set
indicates a plural temporal noun (as a specializa-
tion of the word class noun), whereas the Penn

http://www.ilc.cnr.it/EAGLES96/browse.html
http://www.ilc.cnr.it/EAGLES96/browse.html
http://www.tc37sc4.org/

POS Tagging 987

P

Treebank tag set only specializes to plural noun
(NNS).

Like most tasks in NLP, POS tagging is a dis-
ambiguation task, and both linguistic knowledge-
based handcrafting methods and corpus-based
learning methods have been proposed for this
task. We will restrict our discussion here to the
statistical and machine learning approaches to
the problem, which have become mainstream
because of the availability of large POS tagged
corpora and because of better accuracy in gen-
eral than handcrafted systems. A state of the
art system using a knowledge-based approach is
described in Karlsson et al. (1995).

A decade old now, but still a complete and
informative book-length introduction to the field
of POS tagging is van Halteren (1999). It dis-
cusses many important issues that are not covered
in this article (performance evaluation, history,
handcrafting approaches, tag set development is-
sues, handling unknown words, and more.). A
more recent introductory overview is Chap. 5 in
Jurafsky and Martin (2008).

Statistical and Machine Learning
Approaches to Tagging

In the late 1970s, statistical approaches based on
n-gram probabilities (probabilities that sequences
of n tags occur in a corpus) computed on fre-
quencies in tagged corpora have already been
proposed by the UCREL team at the University of
Lancaster (Garside and Smith 1997). These early
models lacked a precise mathematical framework
and a principled solution to working with zero-
or low probability frequencies. It was realized
that Hidden Markov Models (HMM) in use in
speech recognition were applicable to the tagging
problem as well.

HMMs

HMMs are probabilistic finite state automata
that are flexible enough to combine n-gram
information with other relevant information to
a limited extent. They allow supervised learning

by computing the probabilities of n-grams from
tagged corpora, and unsupervised learning using
the Baum-Welch algorithm. Finding the most
probable tag sequence given a sequence of words
(decoding) is done using the Viterbi search.
In combination with smoothing methods for
low-frequency events and special solutions for
handling unknown words, this approach results
in a state-of-the-art tagging performance. A good
implementation is TnT (Trigrams’n Tags Brants
2000).

Transformation-Based Error-Driven
Learning (Brill-Tagging)

Transformation-based learning is an eager learn-
ing method in which the learner extracts a series
of rules, each of which transforms a tag into
another tag given a specific context. Learning
starts with an initial annotation (e.g., tag each
word in a text by the POS tag it is most fre-
quently associated with in a training corpus), and
compares this annotation with a gold standard
annotation (annotated by humans). Discrepancies
trigger the generation of rules (constrained by
templates), and in each cycle, the best rule is
chosen. The best rule is the one that most often
leads to a correct transformation in the whole
training corpus (Brill 1995a). An unsupervised
learning variant (using a lexicon with word-tag
probabilities) is described in Brill (1995b). Fully
unsupervised POS tagging can also be achieved
using distributional clustering techniques, as pio-
neered by Schutze (1995). However, these meth-
ods are hard to evaluate and compare to super-
vised approaches. The best way to evaluate them
is indirectly, in an application-oriented way, as in
Ushioda (1996).

Other Supervised Learning Methods

As a supervised learning task, POS tagging has
been handled mostly as in a sliding window
representation. Instances are created by making
each word in each sentence a focus feature of an
instance, and adding the left and right context as

988 POS Tagging

additional features. The class to be predicted is
the POS tag of the focus word. Instead of using
the words themselves as features, information
about them can be used as features as well (e.g.,
capitalized or not, hyphenated or not, the POS tag
of the word for left context words as predicted
by the tagger previously, a symbol representing
the possible lexical categories of the focus word
and right context words, first and last letters of the
word in each position, and so on.).

The following table lists the structure of in-
stance representations for part of the sentence
shown earlier. In this case the words themselves
are feature values, but most often other derived
features would replace these because of sparse-
ness problems.

Focus Class

= = Pierre Vinken NNP

= Pierre Vinken 61 NNP

Pierre Vinken 61 years

Vinken 61 years old CD

Most classification-based, supervised machine
learning methods can be, and have been applied
to this problem, including decision tree learning
(Schmid 1994b), memory-based learning (Daele-
mans et al. 1996), maximum entropy models
(Ratnaparkhi 1996), neural networks (Schmid
1994a), ensemble methods (van Halteren et al.
2001), and many others. All these methods seem
to converge to a 96–97 % accuracy rate on the
Wall Street Journal corpus using the Penn Tree-
bank tag set. In a systematic comparison of some
of the methods listed here, van Halteren et al.
(2001) found that TnT outperforms maximum
entropy and memory-based learning methods,
which in turn outperform Brill tagging. Non-
propositional supervised learning methods have
been applied to the task as well (Cussens 1997)
with grammatical structure as background knowl-
edge with similar results. The best results re-
ported on the WSJ corpus so far is bidirectional
perceptron learning (Shen et al. 2007) with a
97.33 % accuracy.

Because of these high scores, POS tagging (at
least for English) is considered by many a solved

problem. However, as for most machine-learning
based NLP systems, domain adaptation is still
a serious problem for POS tagging. A tagger
trained to high accuracy on newspaper language
will fail miserably on other types of text, such as
medical language.

Cross-References

�Classification
�Clustering
�Decision Tree
�Document Categorization
� Inductive Logic Programming
� Information Retrieval
�Lazy Learning
�Maxent Models
�Text Mining

Recommended Reading

Brants T (2000) TnT – a statistical part-of-speech
tagger. In: Proceedings of the sixth applied natural
language processing conference ANLP-2000, Seat-
tle

Brill E (1995a) Transformation-based error-driven
learning and natural language processing: a case
study in part-of-speech tagging. Comput Linguist
21(4):543–565

Brill E (1995b) Unsupervised learning of disambigua-
tion rules for part of speech tagging. In: Proceedings
of the third workshop on very large corpora. Ohio
State University, Ohio, pp 1–13

Cussens J (1997) Part-of-speech tagging using progol.
In: Lavrac N, Dzeroski S (eds) Proceedings of the
seventh international workshop on inductive logic
programming. Lecture notes in computer science,
vol 1297. Springer, London, pp 93–108

Daelemans W, Zavrel J, Berck P, Gillis S (1996) MBT:
a memory-based part of speech tagger generator. In:
Proceedings of the fourth workshop on very large
corpora, Copenhagen, pp 14–27

Garside R, Smith N (1997) A hybrid grammatical
tagger: CLAWS4. In: Garside R, Leech G, McEnery
A (eds) Corpus annotation: linguistic information
from computer text corpora. Longman, London,
pp 102–121

Jurafsky D, Martin J (2008) Speech and language
processing: an introduction to natural language
processing, computational linguistics, and speech
recognition, 2nd edn. Prentice Hall, Upper Saddle
River

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_100120
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_403
http://dx.doi.org/10.1007/978-1-4899-7687-1_449
http://dx.doi.org/10.1007/978-1-4899-7687-1_100289
http://dx.doi.org/10.1007/978-1-4899-7687-1_831

Posterior Probability 989

P

Karlsson F, Voutilainen A, Heikkilä J, Anttila A (1995)
Constraint grammar. A language-independent sys-
tem for parsing unrestricted text. Mouton de
Gruyter, Berlin/New York, p 430

Marcus M, Santorini B, Marcinkiewicz M (1993)
Building a large annotated corpus of English: the
Penn Treebank. Comput Linguist 19(2):313–330

Ratnaparkhi A (1996) A maximum entropy part of
speech tagger. In: Proceedings of the ACL-SIGDAT
conference on empirical methods in natural lan-
guage processing, Philadelphia, pp 17–18

Schmid H (1994a) Part-of-speech tagging with neural
networks. In: Proceedings of COLING-94, Kyoto,
pp 172–176

Schmid H (1994b) Probabilistic part-of-speech tagging
using decision trees. In: Proceedings of the inter-
national conference on new methods in language
processing (NeMLaP), Manchester, pp 44–49

Schutze H (1995) Distributional part-of-speech tag-
ging. In: Proceedings of EACL 7, Dublin, pp 141–
148

Shen L, Satta G, Joshi A (2007) Guided learning for
bidirectional sequence classification. In: Proceed-
ings of the 45th annual meetings of the association
of computational linguistics (ACL 2007), Prague,
pp 760–767

Ushioda A (1996) Hierarchical clustering of words and
applications to NLP tasks. In: Proceedings of the
fourth workshop on very large corpora, Somerset,
pp 28–41

van Halteren H (ed) (1999) Syntactic wordclass tag-
ging. Kluwer Academic Publishers, Boston

van Halteren H, Zavrel J, Daelemans W (2001)
Improving accuracy in NLP through combination
of machine learning systems. Comput Linguist
27(2):199–229

Positive Definite

� Positive Semidefinite

Positive Predictive Value

� Precision

Positive Semidefinite

Synonyms

Positive definite

Definition

A symmetric m � m matrix K satisfying 8x 2
cm W x� Kx � 0 is called positive semidefinite. If
the equality only holds for x D E0 the matrix is
positive definite.

A function k W X � X ! c;X ¤ Ø, is
positive (semi-) definite if for all m 2 n and
all x1; : : : ; xm 2 X the m � m matrix EK with
elements Kij WD k.xi ; xj / is positive (semi-)
definite.

Sometimes the term strictly positive definite
is used instead of positive definite, and positive
definite refers then to positive semidefiniteness.

Posterior

� Posterior Probability

Posterior Probability

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Posterior

Definition

In Bayesian inference, a posterior probability of
a value x of a random variable X given a context
a value y of a random variable Y , P(X D xjY D
y/, is the probability of X assuming the value x
in the context of Y D y. It contrasts with the
� prior probability, P(X D x/, the probability
of X assuming the value x in the absence of
additional information.

For example, it may be that the prevalence of
a particular form of cancer, exoma, in the popu-
lation is 0.1 %, so the prior probability of exoma,

http://dx.doi.org/10.1007/978-1-4899-7687-1_961
http://dx.doi.org/10.1007/978-1-4899-7687-1_658
http://dx.doi.org/10.1007/978-1-4899-7687-1_100366
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_100368
http://dx.doi.org/10.1007/978-1-4899-7687-1_962

990 Post-pruning

P(exoma = true), is 0.001. However, assume 50 %
of people who have skin discolorations of greater
than 1 cm width (sd > 1 cm) have exoma. It fol-
lows that the posterior probability of exoma given
sd >1 cm, P(exomaD true j sd >1 cmD true), is
0.500.

Cross-References

�Bayesian Methods

Post-pruning

Definition

Post-pruning is a �Pruning mechanism that first
learns a possibly �Overfitting hypothesis and
then tries to simplify it in a separate learning
phase.

Cross-References

�Overfitting
� Pre-pruning
� Pruning

Postsynaptic Neuron

The neuron that receives signals via a synap-
tic connection. A chemical synaptic connection
between two neurons allows to transmit signals
from a presynaptic neuron to a postsynaptic neu-
ron.

Precision

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Synonyms

Positive predictive value

Precision, Table 1 The outcomes of classification into
positive and negative classes

Assigned class

Positive Negative

A
ct

ua
l

cl
as

s Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

Definition

Precision is defined as the ratio of true positives
(TP) and the total number of positives predicted
by a model. This is defined with reference to a
special case of the � confusion matrix, with two
classes: one designated the positive class and the
other the negative class, as indicated in Table 1.

Precision can then be defined in terms of true
positives and false positives (FP) as follows.

PrecisionDTP/(TPC FP)

Cross-References

� Precision and Recall

Precision and Recall

Kai Ming Ting
Federation University, Mount Helen, VIC,
Australia

Definition

� Precision and recall are the measures used in
the information retrieval domain to measure how
well an information retrieval system retrieves
the relevant documents requested by a user. The
measures are defined as follows:

PrecisionDTotal number of documents re-
trieved that are relevant/total number of docu-
ments that are retrieved

RecallDTotal number of documents retrieved
that are relevant/total number of relevant docu-
ments in the database

http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_663
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_100367
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_659
http://dx.doi.org/10.1007/978-1-4899-7687-1_659

Predicate Logic 991

P

Precision and Recall, Table 1 The outcomes of classifi-
cation into positive and negative classes

Assigned class

Positive Negative

A
ct

ua
l

cl
as

s Positive True positive (TP) False negative (FN)

Negative False positive (FP) True negative (TN)

We can employ the same terminology used in a
� confusion matrix to define these two measures.
Let relevant documents be positive examples and
irrelevant documents, negative examples. The
two measures can be redefined with reference to
a special case of the confusion matrix, with two
classes: one designated the positive class and the
other the negative class, as indicated in Table 1.

PrecisionDTrue positives/total number of
positives predictedDTP/(TPCFP)

RecallD True positives/total number of actual
positivesDTP/(TPCFN)

Instead of two measures, they are often com-
bined to provide a single measure of retrieval
performance called the � F-measure as follows:

F-measure = 2 * recall * precision/(recall +
precision)

Cross-References

�Confusion Matrix

Predicate

A predicate or predicate symbol is used in logic
to denote properties and relationships. Formally,
if P is a predicate with arity n, and t1; : : : ; tn is
a sequence of n terms (i.e., constants, variables,
or compound terms built from function symbols),
then P.t1; : : : ; tn/ is an atomic formula or atom.
Such an atom represents a statement that can be
either true or false. Using logical connectives,
atoms can be combined to build well-formed
formulae in �first-order logic or � clauses in
� logic programs.

Cross-References

�Clause
� First-Order Logic
�Logic Program

Predicate Calculus

� First-Order Logic

Predicate Invention

Definition

Predicate invention is used in � inductive logic
programming to refer to the automatic introduc-
tion of new relations or predicates in the hypoth-
esis language. Inventing relevant new predicates
is one of the hardest tasks in machine learning,
because there are so many possible ways to in-
troduce such predicates and because it is hard
to judge their quality. As an example, consider
a situation where in the predicates fatherof
and motherof are known. Then it would make
sense to introduce a new predicate that is true
whenever fatherof or motherof is true. The
new predicate that would be introduced this way
corresponds to the parentof predicate. Predi-
cate invention has been introduced in the context
of inverse resolution.

Cross-References

� Inductive Logic Programming
�Logic of Generality

Predicate Logic

� First-Order Logic

http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_298
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_489
http://dx.doi.org/10.1007/978-1-4899-7687-1_103

992 Prediction with Expert Advice

Prediction with Expert Advice

�Online Learning

Predictive Software Models

� Predictive Techniques in Software Engineering

Predictive Techniques in Software
Engineering

Jelber Sayyad Shirabad
University of Ottawa, Ottawa, ON, Canada

Synonyms

Predictive software models

Introduction

Software engineering (SE) is a knowledge- and
decision-intensive activity. From the initial stages
of the software life cycle (i.e., requirement anal-
ysis), to the later stage of testing the system,
and finally maintaining the software through its
operational life, decisions need to be made which
impact both its success and failure. For instance,
during project planning one needs to be able to
forecast or predict the required resources to build
the system. At the later stages such as testing or
maintenance it is desirable to know which parts of
the system may be impacted by a change, or are
more risky or will require more intensive testing.

The process of developing software can poten-
tially create a large amount of data and domain
knowledge. The nature of the data, of course,
depends on the phase in which the data were
generated. During the requirement analysis, this
data most times is manifested in the form of
documentations. As the process moves forward,
other types of artifacts such as code and test
cases are generated. However, what, when, how
accurately, and how much is recorded varies from

one organization to the next. More mature or-
ganizations have a tendency to maintain larger
amount of data about the software systems they
develop.

The data generated as part of the software
engineering process captures a wide range of
latent knowledge about the system. Having such
a source of information, the question one needs
to ask is that whether there is any technology
that can leverage this potentially vast amount of
data to:

• Better understand a system
• Make more informative decisions as needed

through the life of an existing system
• Apply lessons learned from building other

systems to the creation of a new system

As this chapter will show, machine learning
(ML), which provides us with a host of algo-
rithms and techniques to learn from data, is such a
technology. In preparing this entry we have drawn
from over two decades of research in applying
ML to various software engineering problems.
The number of potential uses of ML in SE is
practically enormous and the list of applications
is expanding over time. The focus of this chapter
is a subset of these applications, namely the ones
that aim to create models for the purpose of
making a prediction regarding some aspect of a
software system. One could dedicate a separate
article for some of these prediction tasks, as there
is a large body of research covering different
aspects of interest, such as algorithms, estimation
methods, features used, and the like. However,
due to space constraints, we will only mention a
few representative research examples. The more
general topic of the application of ML in SE can
be studied from different points of view. A good
discussion of many such aspects and applications
can be found in Zhang and Tsai (2003).

Traditionally, regression-based techniques
have been used in software engineering for
building predictive models. However, this
requires making a decision as to what kind of
regression method should be used (e.g., linear or
quadratic), or alternatively what kind of curve
should be fit to the data. This means that the

http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_661
http://dx.doi.org/10.1007/978-1-4899-7687-1_100372

Predictive Techniques in Software Engineering 993

P

general shape of the function is determined first,
and then the model is built. Some researcher, have
used ML as a way to delegate such decisions to
the algorithm. In other words, it is the algorithm
that would produce the best fit to the data. Some
of the most common replacements in the case of
regression problems have been neural networks
(NN) and genetic programming (GP). However,
obviously the use of such methods still requires
other types of decisions, such as the topology of
the network, the number of generations, or the
probability of mutations to be made by humans.
Sometimes, a combination of different methods
such as genetic algorithms and neural networks
are used, where one method explores possible
parameters for the actual method used to build
the model.

Software engineering-related datasets, similar
to many other real world datasets, are known to
contain noise. Another justification for the use of
ML in software engineering applications is that
it provides algorithms that are less sensitive to
noise.

The Process of Applying ML to SE

To apply ML to SE, similar to other applications,
one needs to follow certain steps, which include:
Understanding the problem. This is an essen-
tial step that heavily influences the decisions
to follow. Examples of typical problems in the
software engineering domain are the need to be
able to estimate the cost or effort involved in de-
veloping a software, or to be able to characterize
the quality of a software system, or to be able to
predict what modules in a system are more likely
to have a defect.

Casting the original problem as a learning prob-
lem. To use ML technology, one needs to decide
on how to formulate the problem as a learning
task. For instance, the problem of finding mod-
ules that are likely to be faulty can be cast as a
classification problem, (e.g., is the module faulty
or not) or a numeric prediction problem (e.g.,
what the estimated fault density of a module is).
This mapping is not always straightforward, and

may require further refinement of the original
problem statement or breaking down the original
problem into sub-problems, for some of them ML
may provide an appropriate solution.

Collection of data and relevant background
knowledge. Once the ML problem for a particular
SE application is identified, one needs to collect
the necessary data and background knowledge
in support of the learning task. In many SE
applications data is much more abundant or easier
to collect than the domain theory or background
knowledge relevant to a particular application.
For instance, collecting data regarding faults
discovered in a software system and changes
applied to the source to correct a fault is a
common practice in software projects. On the
other hand, there is no comprehensive and agreed
upon domain theory describing software systems.
Having said that, in the case of some applications,
if we limit ourselves to incomplete background
knowledge, then it can be automatically
generated by choosing a subset that is considered
to be relevant. For instance, in Cohen and
Devanbu (1999), the authors apply inductive
logic programming to the task of predicting faulty
modules in a software system. They describe
the software system in terms of cohesion and
coupling-based relations between classes, which
are generated by parsing the source code.

Data preprocessing and encoding. Preprocessing
the data includes activities such as reducing the
noise, selecting appropriate subsets of the col-
lected data, and determining a proper subset of
features that describe the concept to be learned.
This cleaner data will be input to a specific al-
gorithm and implementation. Therefore, the data
and background knowledge, if any, may need
to be described and formatted in a manner that
complies with the requirements of the algorithm
used.

Applying machine learning and evaluating the
results. Running a specific ML algorithm is fairly
straightforward. However, one needs to measure
the goodness of what is learned. For instance, in
the case of classification problems, models are
frequently assessed in terms of their accuracy

994 Predictive Techniques in Software Engineering

by using methods such as holdout and cross-
validation. In case of numeric prediction, other
standard measures such as mean magnitude of
relative error (MMRE) are commonly used. Ad-
ditionally, software engineering researchers have
sometimes adopted other measures for certain
applications. For instance PRED(x), which is
percentage of the examples (or samples) with
magnitude of relative error (MRE)� x. Accord-
ing to Pfleeger and Atlee (2003), most man-
agers use PRED(25) to assess cost, effort, and
schedule models, and consider the model to func-
tion well if the value of PRED(25) is greater
than 75 %. As for MMRE, a value of less than
25 % is considered to be good; however, other
researchers, such as Boehm, would recommend
a value of 10 % or less. Assessing the usefulness
of what is learned sometimes requires feedback
from domain experts or from end users. If what
is learned is determined to be inadequate, one
may need to either retry this step by adjusting the
parameters of the algorithms used, or reconsider
the decisions made in earlier stages and proceed
accordingly.

Field testing and deployment. Once what is
learned is assessed to be of value, it needs to
actually be used by the intended users (e.g.,
project managers and software engineers).
Unfortunately, despite the very large body of
research in software engineering in general and
use of ML in specific applications in SE, the
number of articles discussing the actual use and
impact of the research in industry is relatively
very small. Very often, the reason for this is the
lack of desire to share what the industry considers
to be confidential information. However, there
are numerous research articles that are based
on industrial data, which is an indication of the
practical benefits of ML in real-world SE.

Applications of Predictive Models
in SE

The development of predictive models is proba-
bly the most common application of ML in soft-
ware engineering. This observation is consistent

with findings of previous research (Zhang and
Tsai 2003). In this section, we mention some
of the predictive models one can learn from
software engineering data. Our goal is to provide
examples of both well established and newer
applications. It should be noted that the termi-
nology used by researchers in the field is not
always consistent. As such, one may argue that
some of these examples belong to more than one
category. For instance, in Fenton and Neil (1999)
the authors consider predicting faults as a way
of estimating software quality and maintenance
effort. The paper could potentially belong to any
of the categories of fault, quality, or maintenance
effort prediction.

Software Size Prediction
Software size estimation is the process of predict-
ing the size of a software system. As software
size is usually an input to models that estimate
project cost schedule and planning, an accurate
estimation of software size is essential to proper
estimation of these dependent factors. Software
size can be measured in different ways, most
common of which is the number of lines of
code (LOC); however, other alternatives, such as
function points, which are primarily for effort
estimation, also provide means to convert the
measure to LOC. There are different methods for
software sizing, one of which is the component-
based method (CBM). In a study to validate the
CBM method, Dolado (2000) compared models
generated by multiple � linear regression (MLR)
with the ones obtained by neural networks and
genetic programming. He concluded that both
NN- and GP-based models perform as well or
better than the MLR models. One of the cited
benefits of NN was its ability to capture non-
linear relations, which is one of the weaknesses of
MLR, while GP was able to generate models that
were interpretable. Regolin et al. (2003) also used
NN- and GP-based models to predict software
size in terms of LOC. They use both function
points and number of components metrics for
this task. Pendharkar (2004) uses decision tree
regression to predict the size of OO components.
The total size of the system can be calculated
after the size of its components is determined.

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Predictive Techniques in Software Engineering 995

P

Software Quality Prediction
The ISO 9126 quality standard decomposes qual-
ity to functionality, reliability, efficiency, usabil-
ity, maintainability, and portability factors. Other
models such as McCall’s, also define quality in
terms of factors that are themselves composed of
quality criteria. These quality criteria are further
associated with measurable attributes called qual-
ity metrics, for instance fault or change counts
(Fenton and Pfleeger 1998) However, as stated
in Fenton and Pfleeger (1998), many software
engineers have a narrower view of quality as the
lack of software defects. A de facto standard for
software quality is fault density. Consequently, it
is not surprising to see that in many published
articles the problem of predicting the quality of
a system is formulated as prediction of faults. To
that end, there has been a large body of work over
the years that has applied various ML techniques
to build models to assess the quality of a system.
For instance, Evett and Khoshgoftar (1998) used
genetic programming to build models that predict
the number of faults expected in each module.
Neural networks have appeared in a number of
software quality modeling applications such as
Khoshgoftaar et al. (1997), which applied the
technique to a large industrial system to clas-
sify modules as fault-prone or not fault-prone,
or Quah and Thwin (2003) who used object-
oriented design metrics as features in developing
the model. In El Emam et al. (2001) the authors
developed fault prediction models for the purpose
of identifying high-risk modules. In this study,
the authors investigated the effect of various pa-
rameter settings on the accuracy of these models.
The models were developed using data from a
large real-time system. More recently, Xing et al.
(2005) used SVMs and Seliya and Khoshgoftaar
(2007) used an EM semi-supervised learning al-
gorithm to develop software quality models. Both
these works cite the ability of these algorithms
to generate models with good performance in the
presence of a small amount of labeled data.

Software Cost Prediction
Software cost prediction typically refers to the
process of estimating the amount of effort needed
to develop a software system. As this definition

suggests, cost and effort estimations are often
used interchangeably. Various kinds of cost esti-
mations are needed throughout the software life
cycle. Early estimation allows one to determine
the feasibility of a project. More detailed esti-
mation allows managers to better plan for the
project. As there is less information available in
the early stages of the project, early predictions
have a tendency to be the least accurate. Software
cost and effort estimation models are among
some of the oldest software process prediction
models. There are different methods of estimat-
ing costs including:

(1) Expert opinion; (2) analogy based on sim-
ilarity to other projects; (3) decomposition of the
project in terms of components to deliver or tasks
to accomplish, and to generate a total estimate
from the estimates of the cost of individual com-
ponents or activities; and (4) the use of estimation
models (Fenton and Pfleeger 1998).

In general, organization-specific cost estima-
tion datasets tend to be small, as many organi-
zations deal with a limited number of projects
and do not systematically collect process level
data, including the actual time and effort ex-
penditure for completion of a project. As cost
estimation models are numeric predictors, many
of the original modeling techniques were based
on regression methods.

The study in Briand et al. (1999) aims to
identify methods that generate more accurate
cost models, as well as to investigate the ef-
fects of the use of organization-specific versus
multi-organization datasets. The authors com-
pared the accuracy of models generated by us-
ing ordinary least squares regression, stepwise
ANOVA, CART, and analogy. The measures used
were MMRE, median of MRE (MdMRE), and
PRED(25). While their results did not show a sta-
tistical difference between models obtained from
these methods, they suggest that CART models
are of particular interest due to their simplicity of
use and interpretation.

Shepperd and Schofield (1997) describes
the use of analogies for effort prediction.
In this method, projects are characterized in
terms of attributes such as the number of
interfaces, the development method, or the size

996 Predictive Techniques in Software Engineering

of the functional requirements document. The
prediction for a specific project is made based
on the characteristics of projects most similar
to it. The similarity measure used in Shepperd
and Schofield (1997) is Euclidean distance in
n-dimensional space of project features. The
proposed method was validated on nine different
industrial datasets, covering a total of 275
projects. In all cases, the analogy-based method
outperforms algorithmic models based upon
stepwise regression when measured in terms
of MMRE. When results are compared using
PRED(25) the analogy-based method generates
more accurate models in seven out of nine
datasets. Decision tree and neural network-based
models are also used in a number of studies on
effort estimation models.

In a more recent paper, (Oliveira 2006), a
comparative study of support vector regression
(SVR), radial basis function � neural networks
(RBFNs), and � linear regression-based models
for estimation of a software project effort is
presented. Both linear as well as RBF kernels
were used in the construction of SVR models.
Experiments using a dataset of software projects
from NASA showed that SVR significantly out-
performs RBFNs and linear regression in this
task.

Software Defect Prediction
In research literature one comes across different
definitions for what constitutes a defect: fault and
failure. According to Fenton and Pfleeger (1998)
a fault is a mistake in some software product due
to a human error. Failure, on the other hand, is the
departure of the system from its required behav-
ior. Very often, defects refer to faults and failures
collectively. In their study of defect prediction
models, Fenton and Neil observed that, depend-
ing on the study, defect count could refer to a
post-release defect, the total number of known
defects, or defects that are discovered after some
arbitrary point in the life cycle. Additionally,
they note that defect rate, defect density, and
failure rate are used almost interchangeably in
the literature (Fenton and Neil 1999). The lack
of an agreed-upon definition for such a funda-
mental measure makes comparison of the models

or published results in the literature difficult.
Two major reasons cited in research literature for
developing defect detection models are assessing
software quality and focusing testing or other
needed resources on modules that are more likely
to be defective. As a result, we frequently find
ourselves in a situation where a model could be
considered both a quality prediction model and a
defect prediction model. Therefore, most of the
publications we have mentioned under software
quality prediction could also be referred to in
this subsection. Fenton and Neil suggest using
Bayesian Belief Networks as an alternative to
other existing methods (Fenton and Neil 1999).

Software Reliability Prediction
The ANSI Software Reliability Standard defines
software reliability as:

“the probability of failure-free operation of a com-
puter program for a specified time in a specified
environment.”

Software reliability is an important attribute
of software quality. There are a number of
publications on the use of various neural network-
based reliability prediction models, including
Sitte (1999) where NN-based software reliability
growth models are compared with models
obtained through recalibration of parametric
models. Results show that neural networks
are not only much simpler to use than the
recalibration method, but that they are equal
or better trend predictors. In Pai and Hong
(2006) the authors use SVMs to predict software
reliability. They use simulated annealing to
select the parameters of the SVM model. Results
show that an SVM-based model with simulated
annealing performs better than existing Bayesian
models.

Software Reusability Prediction
The use of existing software artifacts or software
knowledge is known as software reuse. The aim
of software reuse is to increase the productivity of
software developers, and increase the quality of
end product, both of which contribute to overall
reduction in software development costs. While
the importance of software reuse was recognized

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_481

Predictive Techniques in Software Engineering 997

P

as early as 1968 by Douglas McIlroy, applica-
tions of ML in predicting reusable components
are relatively few and far between. The typical
approach is to label the reusable piece of code
(i.e., a module or a class) as one of reusable or
non-reusable, and to then use software metrics to
describe the example of interest. An early work
by Esteva (1990) used ID3 to classify Pascal
modules from different application domains as
either reusable or not-reusable. These modules
contained different number of procedures. Later
work in Mao et al. (1998) uses models built using
C4.5 as a means to verify three hypothesis of
correlation between reusability and the quantita-
tive attributes of a piece of software: inheritance,
coupling, and complexity. For each hypothesis, a
set of relevant metrics (e.g., complexity metrics
for a hypothesis on the relation between com-
plexity and reuse) is used to describe examples.
Each example is labeled as one of four classes
of reusability, ranging from “totally reusable” to
“not reusable at all.” If the learned model per-
forms well then this is interpreted as the existence
of a hypothesized relation between reuse and one
of the abovementioned quantitative attributes.

Other Applications
In this section, we discuss some of the more re-
cent uses of ML techniques in building predictive
models for software engineering applications that
do not fall into one the above widely researched
areas.

In Padberg et al. (2004) models are learned
to predict the defect content of documents after
software inspection. Being able to estimate how
many defects are in a software document (e.g.,
specifications, designs) after the inspection, al-
lows managers to decide whether to re-inspect the
document to find more defects or pass it on to the
next development step. To capture the non-linear
relation between the inspection process metrics,
such as total number of defects found by the
inspection team and the number of defects in
the document, the authors train a neural network.
They conclude that these models yield much
more accurate estimates than standard estimation
methods such as capture-recapture and detection
profile.

Predicting the stability of object-oriented soft-
ware, defined as the ease by which a software
system or component can be changed while main-
taining its design, is the subject of research in
Grosser et al. (2002). More specifically, stability
is defined as preservation of the class interfaces
through evolution of the software. To accomplish
the above task, the authors use Cased-Base Rea-
soning. A class is considered stable if its public
interface in revision J is included in revision
J C 1. Each program class or case is represented
by structural software metrics, which belong to
one of the four categories of coupling, cohesion,
inheritance, and complexity.

Models that predict which defects will be es-
calated are developed in Ling et al. (2006). Esca-
lated defects are the ones that were not addressed
prior to release of the software due to factors such
as deadlines and limited resources. However, af-
ter the release, these defects are escalated by the
customer and must be immediately resolved by
the vendor at a very high cost. Therefore, the
ability to predict the risk of escalation for existing
defect reports will prevent many escalations, and
result in large savings for the vendor. The authors
in this paper show how the problem of maximiz-
ing net profit (the difference in cost of follow-
ing predictions made by the escalation predic-
tion model versus the existing alternative policy)
can be converted to cost-sensitive learning. The
assumption here is that net profit can be repre-
sented as a linear combination of true positive,
false positive, true negative, and false negative
prediction counts, as is done for cost-sensitive
learning that attempts to minimize the weighted
cost of the abovementioned four factors. The re-
sults of the experiments performed by the authors
show that an improved version of the CSTree
algorithm can produce comprehensible models
that generate a large positive unit net profit.

Most predictive models developed for soft-
ware engineering applications, including the ones
cited in this article, make prediction regarding a
single entity – for instance, whether a module is
defective, how much effort is needed to develop
a system, is a piece of code reusable, and so
on. Sayyad Shirabad et al. (2007) introduced
the notion of relevance relations among multiple

998 Predictive Techniques in Software Engineering

entities in software systems. As an example of
such relations, the authors applied historic prob-
lem report and software change data to learned
models for the Co-update relation among files in
a large industrial telecom system. These models
predict whether changing one source file may
require a change in another file. Different sets of
attributes, including syntax-based software met-
rics as well as textual attributes such as source
file comments and problem reports, are used to
describe examples of the Co-update relation. The
C5.0 decision tree induction algorithm was used
to learn these predictive models. The authors
concluded that text-based attributes outperform
syntactic attributes in this model-building task.
The best results are obtained for text-based at-
tributes extracted from problem reports. Addi-
tionally, when these attributes are combined with
syntactic attributes, the resulting models perform
slightly better.

Future Directions

As we mentioned earlier due to its decision-
intensive nature, there is potential for learning
a large number of predictive models for
software engineering tasks. A very rich area
of research for future applications of predictive
models in software engineering is in Autonomic
Computing. Autonomic computing systems, as
was put forward in Ganek and Corbi (2003),
should be:

• Self-configuring: able to adapt to changes in
the system in a dynamic fashion.

• Self-optimizing: able to improve performance
and maximize resource allocation and utiliza-
tion to meet end users’ needs while minimiz-
ing human intervention.

• Self-healing: able to recover from mistakes by
detecting improper operations proactively or
reactively and then initiate actions to remedy
the problem without disrupting system appli-
cations.

• Self-protecting: able to anticipate and take ac-
tions against intrusive behaviors as they occur,

so as to make the systems less vulnerable to
unauthorized access.

Execution of actions in support of the capabil-
ities mentioned above follows the detection of a
triggering change of state in the environment. In
some scenarios, this may entail a prediction about
the current state of the system; in other scenarios,
the prediction may be about the future state of the
system. In a two-state scenario, the system needs
to know whether it is in a normal or abnormal
(undesired) state. Examples of undesired states
are needs optimization or needs healing. The
detection of the state of a system can be cast as
a classification problem. The decision as to what
attributes should be used to represent each ex-
ample of a normal or an abnormal state depends
on the specific prediction model that we would
like to build and on the monitoring capabilities of
the system. Selecting the best attributes among a
set of potential attributes will require empirical
analysis. However, the process can be further
aided by:

• Expert knowledge: Based on their past experi-
ence, hardware and software experts typically
have evidence or reasons to believe that some
attributes are better indicators of desired or
undesired states of the system.

• Documentation: System specification and
other documents sometimes include the range
of acceptable values for certain parameters of
the system. These parameters could be used
as attributes.

• Feature selection: This aims to find a subset
of available features or attributes that result in
improving a predefined measure of goodness,
such as the accuracy of the model. Reducing
the number of features may also result in a
simpler model. One of the benefits of such
simpler models is the higher prediction speed,
which is essential for timely responses by the
autonomic system to changes in the environ-
ment.

Obviously, given enough examples of different
system states, one can build multi-class models,

Predictive Techniques in Software Engineering 999

P

which can make finer predictions regarding the
state of the system.

In the context of autonomic computing, be-
sides classification models, numeric predictors
can also be used for resource estimation (e.g.,
what is the appropriate database cache size con-
sidering the current state of the system). Fur-
thermore, an autonomic system can leverage the
ability to predict the future value of a variable
of interest, such as the use of a particular re-
source based on its past values. This can be
accomplished through � time series predictions.
Although researchers have used neural networks
and support vector machines for time series pre-
diction in various domains, we are not aware of
an example of the usage of such algorithms in
autonomic computing.

Recommended Reading

Briand L, El Emam K, Surmann D, Wieczorek I (1999)
An assessment and comparison of common software
cost estimation modeling techniques. In: Proceed-
ings of 21st international conference on software
engineering, Los Angeles, pp 313–322

Cohen W, Devanbu P (1999) Automatically exploring
hypotheses about fault prediction: a comparative
study of inductive logic programming methods. Int
J Softw Eng Knowl Eng 9(5):519–546

Dolado JJ (2000) A validation of the component-based
method for software size estimation. IEEE Trans
Softw Eng 26(10):1006–1021

El Emam K, Benlarbi S, Goel N, Rai S (2001) Compar-
ing case-based reasoning classifiers for predicting
high risk software components. J Syst Softw 55(3):
301–320

Esteva JC (1990) Learning to recognize reusable soft-
ware modules using an inductive classification sys-
tem. In: Proceedings of the fifth Jerusalem confer-
ence on information technology, Jerusalem, pp 278–
285

Evett M, Khoshgoftar T (1998) GP-based software
quality prediction. In: Proceedings of the third an-
nual conference on genetic programming, pp 60–65

Fenton N, Neil M (1999) A critique of software
defect prediction models. IEEE Trans Softw Eng
25(5):675–689

Fenton NE, Pfleeger SL (1998) Software metrics: a
rigorous and practical approach, 2nd edn. PWS,
Boston

Ganek AG, Corbi TA (2003) The dawning of auto-
nomic computing era. IBM Syst J 42(1):5–18

Grosser D, Sahraoui HA, Valtchev P (2002) Predicting
software stability using case-based reasoning. In:

Proceedings of 17th IEEE international conference
on automated software engineering (ASE), Edin-
burgh, pp 295–298

Khoshgoftaar T, Allen E, Hudepohl J, Aud S (1997)
Applications of neural networks to software quality
modeling of a very large telecommunications sys-
tem. IEEE Trans Neural Netw 8(4):902–909

Ling C, Sheng V, Bruckhaus T, Madhavji N (2006)
Maximum profit mining and its application in soft-
ware development. In: Proceedings of the 12th
ACM international conference on knowledge dis-
covery and data mining (SIGKDD), Philadelphia,
pp 929–934

Mao Y, Sahraoui H, Lounis H (1998) Reusability
hypothesis verification using machine learning tech-
niques: a case study. In: Proceedings of the 13th
IEEE international conference on automated soft-
ware engineering, Honolulu, pp 84–93

Oliveira A (2006) Estimation of software project effort
with support vector regression. Neurocomputing
69(13–15):1749–1753

Padberg F, Ragg T, Schoknecht R (2004) Using ma-
chine learning for estimating the defect content after
an inspection. IEEE Trans Softw Eng 30(1):17–28

Pai PF, Hong WC (2006) Software reliability fore-
casting by support vector machines with simulated
annealing algorithms. J Syst Softw 79(6):747–755

Pendharkar PC (2004) An exploratory study of object-
oriented software component size determinants and
the application of regression tree forecasting mod-
els. Inf Manag 42(1):61–73

Pfleeger SL, Atlee JM (2003) Software engineering:
theory and practice. Prentice-Hall, Upper Saddle
River

Quah TS, Thwin MMT (2003) Application
of neural networks for software quality
prediction using object-oriented metrics.
In: Proceedings of international conference
on software maintenance, Amsterdam,
pp 22–26

Regolin EN, de Souza GA, Pozo ART, Vergilio SR
(2003) Exploring machine learning techniques for
software size estimation. In: Proceedings of the 23rd
international conference of the Chilean computer
science society (SCCC), Chillan, pp 130–136

Sayyad Shirabad J, Lethbridge TC, Matwin S (2007)
Modeling relevance relations using machine learn-
ing techniques. In: Tsai J, Zhang D (eds) Advances
in machine learning applications in software engi-
neering. IGI, pp 168–207

Seliya N, Khoshgoftaar TM (2007) Software quality
estimation with limited fault data: a semi-supervised
learning perspective. Softw Qual J 15(3):327–344

Shepperd M, Schofield C (1997) Estimating software
project effort using analogies. IEEE Trans Softw
Eng 23(11):736–743

Sitte R (1999) Comparison of software-reliability-
growth predictions: neural networks vs parametric-
recalibration. IEEE Trans Reliab 48(3):285–
291

http://dx.doi.org/10.1007/978-1-4899-7687-1_972

1000 Preference Learning

Xing F, Guo P, Lyu MR (2005) A novel method for
early software quality prediction based on support
vector machine. In: Proceedings of IEEE interna-
tional conference on software reliability engineer-
ing, Chicago, pp 213–222

Zhang Du, Tsai JP (2003) Machine learning and soft-
ware engineering. Softw Qual J 11(2):87–119

Preference Learning

Johannes Fürnkranz1;3 and Eyke Hüllermeier2

1Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
2Department of Computer Science, Paderborn
University, Paderborn, Germany
3Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Preference learning refers to the task of learn-
ing to predict (contextualized) preferences on
a collection of alternatives, which are often
represented in the form of an order relation,
on the basis of observed or revealed preference
information. Supervision in preference learn-
ing is typically weak, in the sense that only
partial information about sought structures or
indirect information about an underlying value
function are provided; a common example is
feedback in the form of pairwise comparisons
between alternatives. Especially important in
preference learning are ranking problems, in
which preferences are represented in terms of
total or partial order relations. Such problems
can be approached in two fundamentally dif-
ferent ways, either by learning binary prefer-
ences on pairs of alternatives or by inducing
an underlying (latent) value function on single
alternatives.

Synonyms

Comparison training; Constraint classification;
Learning from preferences

Motivation and Background

Preference information plays a key role in au-
tomated decision-making and appears in vari-
ous guises in artificial intelligence (AI) research
(Domshlak et al. 2011). In particular, the for-
mal modeling of preferences can be considered
an essential aspect of autonomous agent design.
Yet, in spite of the existence of formalisms for
representing preferences in a compact way, such
as CP-networks (Boutilier et al. 2004), modeling
preferences by hand is a difficult task. This is
an important motivation for preference learning,
which is meant to support and partly automatize
the design of preference models. Roughly speak-
ing, preference learning is concerned with the
automated acquisition of preference models from
observed or revealed preference information, that
is, data from which (possibly uncertain) prefer-
ence representations can be deduced in a direct
or indirect way.

Computerized methods for revealing the
preferences of individuals (users) are useful not
only in AI but also in many other fields showing
a tendency for personalization of products and
services, such as computational advertising, e-
commerce, and information retrieval, where
such techniques are also known as � learning
to rank (Liu 2011). Correspondingly, a number
of methods and tools have been proposed with
the goal of leveraging the manifold information
that users provide about their preferences,
either explicitly via ratings, written reviews,
etc. or implicitly via their behavior (shopping
decisions, websites visited, and so on). Typical
examples include � recommender systems and
� collaborative filtering, which can be viewed
as special cases of preference learning. A first
attempt at setting a common framework for this
emerging subfield of machine learning was made
by Fürnkranz and Hüllermeier (2010).

Ranking is one of the key tasks in the realm of
preference learning. One can distinguish between
two important types of ranking problems, namely,
learning from object and learning from label pref-
erences. A ranking is a special type of preference
structure, namely, a strict total order, that is, a
binary relation � on a set A of alternatives that

http://dx.doi.org/10.1007/978-1-4899-7687-1_100073
http://dx.doi.org/10.1007/978-1-4899-7687-1_100080
http://dx.doi.org/10.1007/978-1-4899-7687-1_100256
http://dx.doi.org/10.1007/978-1-4899-7687-1_893
http://dx.doi.org/10.1007/978-1-4899-7687-1_964
http://dx.doi.org/10.1007/978-1-4899-7687-1_945

Preference Learning 1001

P

is total, irreflexive, and transitive. In agreement
with our preference semantics, a � b suggests
that alternative a is preferred to alternative b.
However, in a wider sense, the term “preference”
can simply be interpreted as any kind of order
relation. For example, a � b can also mean that
a is an algorithm that outperforms b on a certain
problem or that a is a student finishing her studies
before another student b.

Structure of the Learning System

An important difference between object and label
ranking concerns the formal representation of
the preference context and the alternatives to be
ordered. In object ranking, the alternatives them-
selves are characterized by properties, typically
in terms of a feature vector (attribute-value rep-
resentation). Thus, the learner has the possibility
to generalize via properties of the alternatives,
whence a ranking model can be applied to arbi-
trary sets of such alternatives. In label ranking,
the alternatives to be ranked are labels as in clas-
sification learning, i.e., mere identifiers without
associated properties. Instead, the ranking con-
text is characterized in terms of an instance from
a given instance space, and the task of the model
is to rank alternatives depending on properties of
the context. Thus, the context may change (as
opposed to object ranking, where it is implicitly
fixed), but the objects to be ranked remain the
same. Stated differently, object ranking is the
problem to rank varying sets of objects under
invariant preferences, whereas label ranking is
the problem to rank an invariant set of objects
under varying preferences.

Both problems can be approached in two prin-
cipal ways, either by learning a value function
that induces the sought ranking by evaluating
individual alternatives or by comparing pairs of
alternatives, that is, learning a binary prefer-
ence relation. Note that the first approach implic-
itly assumes an underlying total order relation,
since numerical (or at least totally ordered) utility
scores enforce the comparability of alternatives.
The second approach is more general in this
regard, as it also allows for partial order relations.

On the other hand, this approach may lead to
additional complications, since a set of hypothet-
ical binary preferences induced from empirical
data may exhibit inconsistencies in the form of
preferential cycles.

Learning from Object Preferences
The most frequently studied problem in learning
from preferences is to induce a ranking function
r. � / that is able to order any (finite) subset O
of an underlying (possibly infinite) class X of
objects. That is, r. � / assumes as input a subset
O � X of objects and returns as output a
permutation � of f1; : : : ; jOjg. The interpretation
of this permutation is that, for objects xi ; xj 2 O,
the former is preferred to the latter whenever
�.i/ < �.j /. The objects themselves are typi-
cally characterized by a finite set of features as in
conventional attribute-value learning. The train-
ing data consists of a set of exemplary pairwise
preferences x � x0 with x; x0 2 X . A survey of
object ranking approaches is given by Kamishima
et al. (2010).

Note that, in order to evaluate the predictive
performance of a ranking algorithm, an accuracy
measure (or loss function) is needed that com-
pares a predicted ranking with a given reference
ranking. To this end, one can refer, for example,
to statistical measures of � rank correlation.
Expected or empirical loss minimization is a
difficult problem for measures of that kind,
especially because they are not (instance-wise)
decomposable.

Many � learning to rank problems may be
viewed as object ranking problems. For example,
Joachims (2002) studies a scenario where the
training information could be provided implicitly
by the user who clicks on some of the links in a
query result and not on others. This information
can be turned into binary preferences by assum-
ing a preference of the selected pages over those
nearby pages that are not clicked on. Applications
in information retrieval typically suggest loss
functions that put more emphasis on the top and
less on the bottom of a ranking; for this purpose,
specific measures have been proposed, such as
the (normalized) discounted cumulative gain (Liu
2011).

http://dx.doi.org/10.1007/978-1-4899-7687-1_705
http://dx.doi.org/10.1007/978-1-4899-7687-1_893

1002 Preference Learning

Learning from Label Preferences
In label ranking, preferences are contextualized
by elements x of an instance space X , and the
goal is to learn a ranking function X �! Sm

for a fixed m � 2. Thus, for any instance x 2
X (e.g., a person), a prediction in the form of
an associated ranking �x of a finite set L D
f�1; : : : ; �mg of labels or alternatives is sought,
where �i �x �j means that instance x prefers
�i to �j . Again, the quality of a prediction of
that kind is typically captured in terms of a rank
correlation measure (or an associated loss func-
tion). The training information consists of a set of
instances for which (partial) knowledge about the
associated preference relation is available. More
precisely, each training instance x is associated
with a subset of all pairwise preferences. Thus,
despite the assumption of an underlying (“true”)
target ranking, the training data is not expected
to provide full information about such rankings
(and may even contain inconsistencies, such as
pairwise preferences that are conflicting due to
observation errors).

The above formulation essentially follows
Fürnkranz and Hüllermeier (2010), though
similar formalizations have been proposed
independently by several authors; for an
overview, see the survey papers by Vembu
and Gärtner (2010) and Zhou et al. (2014).
Label ranking contributes to the general trend of
extending machine learning methods to complex
and structured output spaces (Tsochantaridis
et al. 2005). Moreover, label ranking can be
viewed as a generalization of several standard
learning problems. In particular, the following
well-known problems are special cases of
learning label preferences: (i) � classification,
where a single class label � is assigned to
each instance x; this is equivalent to the set
of preferences f� �x �j j�j 2 L n f�gg, and (ii)
�multi-label classification, where each training
example x is associated with a subset L � L of
possible labels. This is equivalent to the set of
preferences f�i �x �j j�i 2 L; �j 2 L n Lg.
In each of the former scenarios, the sought
prediction can be obtained by post-processing
the output of a ranking model f W X �! Sm

in a suitable way. For example, in multi-class

classification, where only a single label is
requested, it suffices to project a label ranking
to the top-ranked label.

Applications of this general framework can be
found in various fields, for example, in marketing
research; here, one might be interested in discov-
ering dependencies between properties of clients
and their preferences for products. Another ap-
plication scenario is �meta-learning, where the
task is to rank learning algorithms according
to their suitability for a new dataset, based on
the characteristics of this dataset (Schäfer and
Hüllermeier 2015). Moreover, every preference
statement in the well-known CP-nets approach
(Boutilier et al. 2004), a qualitative graphical rep-
resentation that reflects conditional dependence
and independence of preferences under a ceteris
paribus interpretation, formally corresponds to a
label ranking function that orders the values of
a certain attribute depending on the values of the
parents of this attribute (predecessors in the graph
representation).

Other Settings
A number of variants of the above ranking prob-
lems have been proposed and studied in the
literature. For example, a setting referred to as
instance ranking is very similar to object ranking.
However, instead of relative (pairwise) compar-
isons, training data consists of absolute ratings
of alternatives; typically these ratings are taken
from an ordinal scale, such as 1 to 5 stars. More-
over, a predicted ranking is not compared with
another (ground-truth) ranking but with the multi-
partition induced by the rating of the alternatives
(Fürnkranz et al. 2009).

Attempts have also been made at combining
object and label ranking, that is, to exploit feature
representations of both the preference context and
the alternatives to be ranked. One approach is to
combine both pieces of information by means of
a joint feature map 	 W X � Y �! Z and to
learn a value function f W Z �! R; here, Y
is a parametric or structured space of alternatives
and Z � R

d a joint feature space (Tsochantaridis
et al. 2005; Schäfer and Hüllermeier 2015).

http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_910
http://dx.doi.org/10.1007/978-1-4899-7687-1_543

Preference Learning 1003

P

Learning Utility Functions
Evaluating alternatives in terms of a value or
utility function is a very natural way of repre-
senting preferences, which has a long tradition in
economics and decision theory (Fishburn 1969).
In the object preferences scenario, such a function
is a mapping f W X �! R that assigns a utility
degree f .x/ to each object x and, thereby, in-
duces a linear order on X . In the label preferences
scenario, a utility function fi W X �! U is
needed for every label �i , i D 1; : : : ; m. Here,
fi .x/ is the utility assigned to alternative �i in
the context x. To obtain a ranking for x, the
alternatives are ordered according to their utility
scores, i.e., a ranking �x is derived such that
�i �x �j implies fi .x/ � fj .x/.

If the training data offers the utility scores
directly, preference learning essentially reduces
to a standard � regression or an ordinal regres-
sion problem, depending on the underlying utility
scale. This information can rarely be assumed,
however. Instead, usually only constraints derived
from comparative preference information of the
form “this alternative should have a higher utility
score than that alternative” are given. Thus, the
challenge for the learner is to find a value function
that is as much as possible in agreement with a set
of such constraints.

For object ranking approaches, this idea has
first been formalized by Tesauro (1989) under
the name comparison training. He proposed a
symmetric neural-network architecture that can
be trained with representations of two states and
a training signal that indicates which of the two
states is preferable. The elegance of this approach
comes from the property that one can replace
the two symmetric components of the network
with a single network, which can subsequently
provide a real-valued evaluation of single states.
Similar ideas have also been investigated for
training other types of classifiers, in particular
support vector machines. We already mentioned
Joachims (2002) who analyzed “click-through
data” in order to rank documents retrieved by a
search engine according to their relevance. Ear-
lier, Herbrich et al. (1998) proposed an algorithm
for training SVMs from pairwise preference rela-
tions between objects.

For the case of label ranking, a corresponding
method for learning the functions fi . � /, i D
1; : : : ; m, from training data has been proposed in
the framework of constraint classification, which
allows for reducing a label ranking to a single
binary classification problem (Har-Peled et al.
2002). The learning method proposed in this
work constructs two training examples, a positive
and a negative one, for each given preference
�i �x �j , where the original N -dimensional
training example (feature vector) x is mapped
into an .m�N/-dimensional space. In this space,
the learner finds a linear model (hyperplane)
f that separates the positive from the negative
examples. Finally, the model f is “split” into m
linear value functions f1; : : : ; fm, one for each
label.

Learning Preference Relations
An alternative to learning latent utility functions
consists of learning binary preference relations,
which essentially amounts to reducing prefer-
ence learning to binary classification. For object
ranking, the pairwise approach has been pursued
in Cohen et al. (1999). The authors propose
to solve object ranking problems by learning
a binary preference predicate Q.x; x0/, which
predicts whether x is preferred to x0 or vice versa.
A final ordering is found in a second phase by
deriving a ranking that is maximally consistent
with these (possibly conflicting) predictions.

For label ranking, the pairwise approach has
been introduced in Hüllermeier et al. (2008) as
a natural extension of pairwise classification, a
well-known � class binarization technique. The
idea is to train a separate model (base learner)
Mi;j for each pair of labels .�i ; �j / 2 L, 1 �
i < j � m; thus, a total number of m.m � 1/=2
models are needed. For training, a preference
information of the form �i �x �j is turned into
a (classification) example .x; y/ for the learner
Ma;b , where a D min.i; j / and b D max.i; j /.
Moreover, y D 1 if i < j and y D 0 otherwise.
Thus, Ma;b is intended to learn the mapping
that outputs 1 if �a �x �b and 0 if �b �x

�a. This mapping can be realized by any binary
classifier. Instead of a f0; 1g-valued classifier, one
can of course also employ a scoring classifier. For

http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_915

1004 Preference Learning

example, the output of a probabilistic classifier
would be a number in the unit interval Œ0; 1�
that can be interpreted as a probability of the
preference �a �x �b .

At classification time, a query x0 2 X is
submitted to the complete ensemble of binary
learners. Thus, a collection of predicted pairwise
preference degrees Mi;j .x/, 1 � i; j � m,
is obtained. The problem, then, is to turn these
pairwise preferences into a ranking of the label
set L. To this end, different ranking procedures
can be used. The simplest approach is to extend
the (weighted) voting procedure that is often
applied in pairwise classification: For each label
�i , a score

Si D
X

1�j¤i�m

Mi;j .x0/

is derived (where Mi;j .x0/ D 1 �Mj;i .x0/ for
i > j), and then the labels are ordered accord-
ing to these scores. Despite its simplicity, this
ranking procedure has several appealing proper-
ties. Apart from its computational efficiency, it
turned out to be relatively robust in practice, and,
moreover, it possesses some provable optimality
properties in the case where Spearman’s rank
correlation is used as an underlying accuracy
measure. Roughly speaking, if the binary learners
are unbiased probabilistic classifiers, the simple
“ranking by weighted voting” procedure yields a
label ranking that maximizes the expected Spear-
man rank correlation (Hüllermeier and Fürnkranz
2010). Finally, it is worth mentioning that, by
changing the ranking procedure, the pairwise ap-
proach can also be adjusted to accuracy measures
other than Spearman’s rank correlation.

Other Approaches

Referring to the type of training data and the loss
function to be minimized on this data, learning
value functions and learning preference relations
are sometimes called the “pointwise” and “pair-
wise” approach to preference learning, respec-
tively. This is distinguished from the “listwise”
approach, in which a loss is defined on a predicted

ranking directly. This can be done, for example,
on the basis of probabilistic models of ranking
data, such as the Plackett-Luce model. The idea,
then, is to learn the parameters of a probabilistic
model using statistical methods such as maxi-
mum likelihood estimation (or, equivalently, min-
imizing logarithmic loss). Methods of this kind
have been proposed both for object ranking (Cao
et al. 2007) and label ranking (Cheng et al. 2010).

Yet another alternative is to resort to the idea
of local estimation techniques as prominently
represented, for example, by the � nearest
neighbor estimation principle: Considering
the rankings observed in similar situations as
representative, a ranking for the current situation
is estimated on the basis of these neighbor
rankings, namely, by finding a suitable consensus
among them; essentially, this is a problem of rank
aggregation (Cheng et al. 2009).

Future Directions

As already said, preference learning is an emerg-
ing branch of machine learning and still de-
veloping quite dynamically. In particular, new
settings or variants of existing frameworks will
certainly be proposed and studied in the future.
As for ranking problems, for example, an obvious
idea and reasonable extension is to go beyond
strict total order relations and instead allow for
incomparability or indifference between alter-
natives and for representing uncertainty about
predicted relations (Cheng et al. 2012). Another
interesting direction is to combine preference
learning with � online learning, i.e., to predict
preferences in an online setting. First steps in the
direction of online preference learning have re-
cently been made with a preference-based variant
of the �multiarmed bandit problem (Busa-Fekete
and Hüllermeier 2014).

Cross-References

�Class Binarization
�Classification
�Metalearning

http://dx.doi.org/10.1007/978-1-4899-7687-1_579
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_100316
http://dx.doi.org/10.1007/978-1-4899-7687-1_915
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_543

Pre-pruning 1005

P

�Multi-armed bandit
�Online Learning
�Rank Correlation
�Regression

Recommended Reading

Boutilier C, Brafman R, Domshlak C, Hoos H, Poole
D (2004) CP-nets: a tool for representing and rea-
soning with conditional ceteris paribus preference
statements. J AI Res 21:135–191

Busa-Fekete R, Hüllermeier E (2014) A survey of
preference-based online learning with bandit algo-
rithms. In: Proceedings of ALT, 25th international
conference on algorithmic learning theory, Bled.
Springer, pp 18–39

Cao Z, Qin T, Liu TY, Tsai MF, Li H (2007) Learning
to rank: from pairwise approach to listwise ap-
proach. In: Proceedings of ICML, 24th international
conference on machine learning, pp 129–136

Cheng W, Hühn J, Hüllermeier E (2009) Decision
tree and instance-based learning for label rank-
ing. In: Proceedings of ICML–2009, 26th interna-
tional conference on machine learning, Montreal,
pp 161–168

Cheng W, Dembczynski K, Hüllermeier E (2010) La-
bel ranking based on the Plackett-Luce model. In:
Proceedings of ICML–2010, international confer-
ence on machine learning, Haifa, pp 215–222

Cheng W, Hüllermeier E, Waegeman W, Welker
V (2012) Label ranking with partial abstention
based on thresholded probabilistic models. In: Pro-
ceedings of NIPS–2012, 26th annual conference
on neural information processing systems, Lake
Tahoe

Cohen WW, Schapire RE, Singer Y (1999) Learning to
order things. J Artif Intell Res 10(1):243–270

Domshlak C, Hüllermeier E, Kaci S, Prade H (2011)
Preferences in AI: an overview. Artif Intell 175(7–
8):1037–1052

Fishburn PC (1969) Utility-theory for decision mak-
ing. Wiley, New York

Fürnkranz J, Hüllermeier E (eds) (2010) Preference
learning. Springer, Heidelberg/New York

Fürnkranz J, Hüllermeier E (2010) Preference learn-
ing: an introduction. In: Preference learning.
Springer, Heidelberg/New York, pp 1–18

Fürnkranz J, Hüllermeier E, Vanderlooy S (2009) Bi-
nary decomposition methods for multipartite rank-
ing. In: Proceedings of ECML/PKDD–2009, Euro-
pean conference on machine learning and knowl-
edge discovery in databases, Bled

Har-Peled S, Roth D, Zimak D (2002) Constraint
classification: a new approach to multiclass classi-
fication. In: Proceedings of 13th international con-
ference on algorithmic learning theory, Lübeck.
Springer, pp 365–379

Herbrich R, Graepel T, Bollmann-Sdorra P, Ober-
mayer K (1998) Supervised learning of preference
relations. In: Proceedings des Fachgruppentreffens
Maschinelles Lernen (FGML-98), pp 43–47

Hüllermeier E, Fürnkranz J (2010) On predictive accu-
racy and risk minimization in pairwise label rank-
ing. J Comput Syst Sci 76(1):49–62

Hüllermeier E, Fürnkranz J, Cheng W, Brinker K
(2008) Label ranking by learning pairwise prefer-
ences. Artif Intell 172:1897–1917

Joachims T (2002) Optimizing search engines us-
ing clickthrough data. In: Proceedings of KDD–
02, 8th ACM SIGKDD international conference on
knowledge discovery and data mining. ACM Press,
pp 133–142

Kamishima T, Kazawa H, Akaho S (2010) A survey
and empirical comparison of object ranking meth-
ods. In: Fürnkranz J, Hüllermeier E (eds) Pref-
erence learning. Springer, Heidelberg/New York,
pp 181–202

Liu TY (2011) Learning to rank for information re-
trieval. Springer, Berlin/Heidelberg/New York

Schäfer D, Hüllermeier E (2015) Dyad ranking us-
ing a bilinear Plackett-Luce model. In: Proceed-
ings of ECML/PKDD–2015, European conference
on machine learning and knowledge discovery in
databases, Porto

Tesauro G (1989) Connectionist learning of expert
preferences by comparison training. In: Advances in
neural information processing systems 1 (NIPS-88).
Morgan Kaufmann, pp 99–106

Tsochantaridis I, Joachims T, Hofmann T, Altun Y
(2005) Large margin methods for structured and
interdependent output variables. J Mach Learn Res
6:1453–1484

Vembu S, Gärtner T (2010) Label ranking: a survey.
In: Fürnkranz J, Hüllermeier E (eds) Preference
learning. Springer, Heidelberg/New York

Zhou Y, Lui Y, Yang J, He X, Liu L (2014) A taxonomy
of label ranking algorithms. J Comput 9(3):557

Pre-pruning

Synonyms

Stopping criteria

Definition

Pre-pruning is a �Pruning mechanism that mon-
itors the learning process and prevents further
refinements if the current hypothesis becomes too
complex.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100315
http://dx.doi.org/10.1007/978-1-4899-7687-1_618
http://dx.doi.org/10.1007/978-1-4899-7687-1_705
http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_100449
http://dx.doi.org/10.1007/978-1-4899-7687-1_687

1006 Presynaptic Neuron

Cross-References

�Overfitting
� Post-pruning
� Pruning

Presynaptic Neuron

The neuron that sends signals across a synap-
tic connection. A chemical synaptic connection
between two neurons allows to transmit signals
from a presynaptic neuron to a postsynaptic neu-
ron.

Principal Component Analysis

Synonyms

PCA

Definition

Principal Component Analysis (PCA) is a
� dimensionality reduction technique. It is
described in � covariance matrix.

Prior

� Prior Probability

Prior Probability

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

Prior

Definition

In Bayesian inference, a prior probability of a
value x of a random variable X , P(X D x/, is
the probability of X assuming the value x in the
absence of (or before obtaining) any additional
information. It contrasts with the � posterior
probability, P(X D xjY D y), the probability of
X assuming the value x in the context of Y D y.

For example, it may be that the prevalence of
a particular form of cancer, exoma, in the popu-
lation is 0.1 %, so the prior probability of exoma,
P(exomaD true), is 0.001. However, assume
50 % of people who have skin discolorations
of greater than 1 cm width (sd > 1 cm) have
exoma. It follows that the posterior probability
of exoma given sd > 1 cm, P(exomaD true j
sd > 1 cmD true), is 0.500.

Cross-References

�Bayesian Methods

Privacy-Preserving Data Mining

� Privacy-Related Aspects and Techniques

Privacy-Related Aspects and
Techniques

Stan Matwin
University of Ottawa, Ottawa, ON, Canada
Polish Academy of Sciences, Warsaw, Poland

Synonyms

Privacy-preserving data mining

Definition

The privacy-preserving aspects and techniques of
machine learning cover the family of methods

http://dx.doi.org/10.1007/978-1-4899-7687-1_960
http://dx.doi.org/10.1007/978-1-4899-7687-1_649
http://dx.doi.org/10.1007/978-1-4899-7687-1_687
http://dx.doi.org/10.1007/978-1-4899-7687-1_100358
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_57
http://dx.doi.org/10.1007/978-1-4899-7687-1_962
http://dx.doi.org/10.1007/978-1-4899-7687-1_100373
http://dx.doi.org/10.1007/978-1-4899-7687-1_648
http://dx.doi.org/10.1007/978-1-4899-7687-1_63
http://dx.doi.org/10.1007/978-1-4899-7687-1_668
http://dx.doi.org/10.1007/978-1-4899-7687-1_100375

Privacy-Related Aspects and Techniques 1007

P

and architectures developed to protect the pri-
vacy of people whose data are used by machine
learning (ML) algorithms. This field, also known
as privacy-preserving data mining (PPDM), ad-
dresses the issues of data privacy in ML and data
mining. Most existing methods and approaches
are intended to hide the original data from the
learning algorithm, while there is emerging inter-
est in methods ensuring that the learned model
does not reveal private information. Another re-
search direction contemplates methods in which
several parties bring their data into the model-
building process without mutually revealing their
own data.

Motivation and Background

The key concept for any discussion of the privacy
aspects of data mining is the definition of privacy.
After Alan Westin, we understand privacy as
the ability “of individuals : : : to determine for
themselves when, how, and to what extent infor-
mation about them is communicated to others”
(Westin 1967). One of the main societal con-
cerns about modern computing is that the storing,
keeping, and processing of massive amounts of
data may jeopardize the privacy of individuals
whom the data represent. In particular, ML and
its power to find patterns and infer new facts
from existing data makes it difficult for people to
control information about themselves. Moreover,
the infrastructure normally put together to con-
duct large-scale model building (e.g., large data
repositories and data warehouses), is conducive
to misuse of data. Personal data, amassed in
large collections that are easily accessed through
databases and often available online to the entire
world, become – as phrased by Moor in an apt
metaphor (Moor 2004) – “greased.” It is difficult
for people to control the use of this data.

Theory/Solutions

Basic Dimensions of Privacy Techniques
Privacy-related techniques can be characterized
by: (1) the kind of source data modification they

perform, e.g., data perturbation, randomization,
generalization, and hiding; (2) the ML algorithm
that works on the data and how is it modified to
meet the privacy requirements imposed on it; and
(3) whether the data are centralized or distributed
among several parties, and – in the latter case –
on what the distribution is based. But even at
a more basic level, it is useful to view privacy-
related techniques along just two fundamental
dimensions.

The first dimension defines what is protected
as private – is it the data itself, or the model (the
results of data mining)? As we show below, the
knowledge of the latter can also lead to identify-
ing and revealing information about individuals.
The second dimension defines the protocol of the
use of the data: are the data centralized and owned
by a single owner, or are the data distributed
among multiple parties? In the former case, the
owner needs to protect the data from revealing
information about individuals represented in the
data when that data is being used to build a model
by someone else. In the latter case, we assume
that the parties have limited trust in each other:
they are interested in the results of data mining
performed on the union of the data of all the
parties, while not trusting the other parties to see
their own data without first protecting it against
disclosure of information about individuals to
other parties.

Moreover, work in PPDM has to apply a
framework that is broader than the standard ML
methodology. When privacy is an important goal,
what matters in performance evaluation is not
only the standard ML performance measures, but
also some measure of the privacy achieved, as
well as some analysis of the robustness of the
approach to attacks.

In this article, we structure our discussion of
the current work on PPDM in terms of the taxon-
omy proposed above. This leads to the following
bird’s-eye view of the field.

Protecting Centralized Data
This subfield emerged in 2000 with the seminal
paper by Agrawal and Srikant (2000). They stated
the problem as follows: given data in the stan-
dard � attribute-value representation, how can an

http://dx.doi.org/10.1007/978-1-4899-7687-1_43

1008 Privacy-Related Aspects and Techniques

accurate � decision tree be built so that, instead
of using original attribute values xi , the decision
tree induction algorithm takes input values xiCr ,
where r belongs to a certain distribution (Gaus-
sian or uniform). This is a data perturbation tech-
nique: the original values are changed beyond
recognition, while the distributional properties of
the entire data set that decision tree � induction
uses remain the same, at least up to a small (em-
pirically, less than 5 %) degradation in accuracy.
There is a clear trade-off between the privacy
assured by this approach and the quality of the
model compared to the model obtained from
the original data. This line of research has been
continued in Evfimievski et al. (2002) where the
approach is extended to association rule mining.
As a note of caution about these results, Kar-
gupta et al. (2003) have shown, in 2003, how the
randomization approaches are sensitive to attack.
They demonstrate how the noise that randomly
perturbs the data can be viewed as a random ma-
trix, and that the original data can be accurately
estimated from the perturbed data using a spectral
filter that exploits some theoretical properties of
random matrices.

The simplest and most widely used privacy
preservation technique is anonymization of data
(also called de-identification). In the context of
de-identification, it is useful to distinguish three
types of attributes.

Explicit identifiers allow direct linking of
an instance to a person (e.g., a cellular phone
number or a driver’s license number to its
holder).

Quasi-identifiers, possibly combined with
other attributes, may lead to other data sources
capable of unique identification. For instance,
Sweeney (2001) shows that the quasi-identifier
triplet <date of birth, 5 digit postal code,
gender>, combined with the voters’ list (publicly
available in the USA) uniquely identifies 87 % of
the population of the country. As a convincing
application of this observation, using quasi-
identifiers, Sweeney was able to obtain health
records of the governor of Massachusetts from
a published dataset of health records of all state
employees in which only explicit identifiers have
been removed.

Finally, non-identifying attributes are those for
which there is no known inference linking to
an explicit identifier. Usually performed as part
of data preparation, anonymization removes all
explicit identifiers from the data.

While anonymization is by far the most com-
mon privacy-preserving technique used in prac-
tice, it is also the most fallible one. In August
2006, for the benefit of the Web Mining Research
community, AOL published 20 million search
records (queries and URLs the members had
visited) from 658,000 of its members. AOL had
performed what it believed was anonymization,
in the sense that it removed the names of the
members. However, based on the queries – which
often contained information that would identify a
small set of members or a unique person – it was
easy, in many cases, to manually re-identify the
AOL member using secondary public knowledge
sources. An inquisitive New York Times journal-
ist identified one member and interviewed her.

L. Sweeney is to be credited with sensitizing
the privacy community to the fallacy of
anonymization: “Shockingly, there remains a
common incorrect belief that if the data look
anonymous, it is anonymous” (Sweeney 2001).
Even if information is de-identified today, future
data sources may make re-identification possible.
As anonymization is very commonly used prior
to model building from medical data, it is
interesting that this type of data is prone to
specific kinds of re-identification, and therefore
anonymization of medical data should be done
with particular skill and understanding of the
data. Malin (2005) shows how the four main de-
identification techniques used in anonymization
of genomic data are prone to known, published
attacks that can re-identify the data. Moreover,
he points out that there will never be certainty
about de-identification for quasi-identifiers, as
new attributes and data sources that can lead to
a linkage to explicitly identifying attributes are
constantly being engineered as part of genetics
research.

Other perturbation approaches targeting
binary data involve changing (flipping) values
of selected attributes with a given probability
(Du and Zhan 2003; Zhan and Matwin 2004), or

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_388

Privacy-Related Aspects and Techniques 1009

P

replacing the original attribute with a value that
is more general in some pre-agreed taxonomy
(Iyengar 2002). Generalization approaches often
use the concept of k-anonymity: any instance in
the database is indistinguishable from other k�1
instances (for every row in the database there are
k � 1 identical rows). Finding the least general
k-anonymous generalization of a database (i.e.,
moving the least number of edges upward in
a given taxonomy) is an optimization task,
known to be NP-complete. There are heuristic
solutions proposed for it; e.g., Iyengar (2002)
uses a � genetic algorithm for this task. Friedman
et al. (2006) shows how to build k-anonymity
into the decision tree induction. Lately, PPDM
researchers have pointed out some weaknesses of
the k-anonymity approach. In particular, attacks
on data with some properties (e.g., skewed
distribution of values of a sensitive attribute,
or specific background knowledge) have been
described, and techniques to prevent such attacks
have been proposed. The notion of p-sensitivity
or l-diversity proposed in Machanavajjhala
et al. (2007) addresses these weaknesses
of k-anonymity by modifying k-anonymity
techniques so that the abovementioned attacks
do not apply. Furthermore, t -closeness (Ninghui
et al. 2007) shows certain shortcomings of these
techniques and the resulting potential attacks,
and proposes a data perturbation technique which
ensures that the distribution of the values of the
sensitive attribute in any group resulting from
anonymization is close to its distribution in the
original table. Some authors, e.g., Domingo-
Ferrer et al. (2008), propose the integration of
several techniques addressing shortcomings of k-
anonymity into a single perturbation technique.
The drawback of these solutions is that they
decrease the utility of the data more than the
standard k-anonymity approaches.

Protecting the Model (Centralized Data)
Is it true that when the data are private, there will
be no violation of privacy? The answer is no. In
some circumstances, the model may reveal pri-
vate information about individuals. Atzori et al.
(2005) gives an example of such a situation for
association rules: suppose the � association rule

a1 ^ a2 ^ a3) a4 has support sup = 80, confi-
dence conf = 98.7 %. This rule is 80-anonymous,
but considering that

sup.fa1; a2; a3g/ D
sup.fa1; a2; a3; a4g/

conf

D
80

0:0987

 81:05

and given that the pattern a1^a2^a3^a4 holds for
80 individuals, and the pattern a1 ^ a2 ^ a3 holds
for 81 individuals, clearly the pattern a1^a2^a3^

:a4 holds for just one person. Therefore, the rule
unexpectedly reveals private information about a
specific person. Atzori et al. (2005) proposes to
apply k-anonymity to patterns instead of data,
as in the previous section. The authors define
inference channels as � itemsets from which it
is possible to infer other itemsets that are not
k-anonymous, as in the above example. They
then show an efficient way to represent and com-
pute inference channels, which, once known, can
be blocked from the output of an association
rule finder. The inference channel problem is
also discussed in Oliveira et al. (2004), where
itemset “sanitization” removes itemsets that lead
to sensitive (non-k-anonymous) rules.

This approach is an interesting continuation
of Sweeney’s classical work (Sweeney 2001),
and it addresses an important threat to privacy
ignored by most other approaches based on data
perturbation or cryptographic protection of the
data.

Distributed Data
Most of the work mentioned above addresses the
case of centralized data. The distributed situation,
however, is often encountered and has important
applications. Consider, for example, several hos-
pitals involved in a multi-site medical trial that
want to mine the data describing the union of
their patients. This increases the size of the popu-
lation subject to data analysis, thereby increasing
the scope and the importance of the trial. In
another example, a car manufacturer performing
data analysis on the set of vehicles exhibiting
a given problem wants to represent data about
different components of the vehicle originating in

http://dx.doi.org/10.1007/978-1-4899-7687-1_334
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_317

1010 Privacy-Related Aspects and Techniques

databases of the suppliers of these components. In
general, if we abstractly represent the database as
a table, there are two collaborative frameworks in
which data is distributed. Horizontally partitioned
data is distributed by rows (all parties have the
same attributes, but different instances – as in the
medical study example). Vertically partitioned
data is distributed by columns (all parties have the
same instances; some attributes belong to specific
parties, and some, such as the class, are shared
among all parties – as in the vehicle data analysis
example).

An important branch of research on learning
from distributed data while parties do not reveal
their data to each other is based on results from
computer security, specifically from cryptogra-
phy and from the secure multiparty computa-
tion (SMC). Particularly interesting is the case
when there is no trusted external party – all
the computation is distributed among parties that
collectively hold the partitioned data. SMC has
produced constructive results showing how any
Boolean function can be computed from inputs
belonging to different parties, so that the parties
never get to know input values that do not belong
to them. These results are based on the idea of
splitting a single data value between two parties
into “shares,” so that none of them knows the
value but they can still do computation on the
shares using a gate such as exclusive or Yao
(1986). In particular, there is an SMC result
known as secure sum: k parties have private
values xi and they want to compute �Ixi without
disclosing their xi to any other party. This result,
and similar results for value comparison and
other simple functions, are the building blocks of
many privacy-preserving ML algorithms. On that
basis, a number of standard � classifier induction
algorithms, in their horizontal and vertical parti-
tioning versions, have been published, including
decision tree (ID3) induction (Friedman et al.
2006), Naı̈ve Bayes, the �Apriori association
rule mining algorithm (Kantarcioglu and Clifton
2004; Vaidya and Clifton 2002), and many others.

We can observe that data privacy issues extend
to the use of the learned model. For horizontal
partitioning, each party can be given the model
and apply it to the new data. For vertical partition-

ing, however, the situation is more difficult: the
parties, all knowing the model, have to compute
their part of the decision that the model delivers,
and have to communicate with selected other par-
ties after this is done. For instance, for decision
trees, a node n applies its test and contacts the
party holding the attribute in the child c chosen
by the test, giving c the test to perform. In this
manner, a single party n only knows the result
of its test (the corresponding attribute value) and
the tests of its children (but not their outcomes).
This is repeated recursively until the leaf node is
reached and the decision is communicated to all
parties.

A different approach involving cryptographic
tools other than Yao’s circuits is based on the
concept of homomorphic encryption (Paillier
1999). Encryption e is homomorphic with respect
to some operation � in the message space if
there is a corresponding operation �0 in the
ciphertext space, such that for any messages m1,
m2, e(m1)�0 e(m2) D e(m1�m2). The standard
RSA encryption is homomorphic with �0 being
logical multiplication and � logical addition on
sequences of bytes. To give a flavor of the use of
homomorphic encryption, let us see in detail how
this kind of encryption is used in computing the
scalar product of two binary vectors.

Assume just two parties, Alice and Bob. They
both have their private binary vectors A1;:::N ,
B1;:::;N . In association rule mining, Ai and Bi

represent A’s and B’s transactions projected on
the set of items whose frequency is being com-
puted. In our protocol, one of the parties is ran-
domly chosen as a key generator. Assume Alice
is selected as the key generator. Alice generates
an encryption key (e/ and a decryption key (d/.
She applies the encryption key to the sum of each
value of A and a digital envelope Ri

�X of Ai

(i.e., e.Ai i C Ri
�X//, where Ri is a random

integer and X is an integer that is greater than
N . She then sends e.Ai C Ri

�X/s to Bob. Bob
computes the multiplicationM D

QN
jD1 [e.AjC

Ri
�X/ � Bj] when Bj D 1 (as when Bj D 0,

the result of multiplication does not contribute to
the frequency count). Now, M D e.A1 C A2 C

� � � CAj C .R1 CR2 C � � � CR1/
�X/ due to the

property of homomorphic encryption. Bob sends

http://dx.doi.org/10.1007/978-1-4899-7687-1_112
http://dx.doi.org/10.1007/978-1-4899-7687-1_27

Privacy-Related Aspects and Techniques 1011

P

Privacy-Related Aspects
and Techniques, Table 1
Classification taxonomy to
systematize the discussion
of the current work in
PPDM

Data centralized Data distributed

Protecting the data Agrawal and Srikant (2000),
Evfimievski et al. (2002), Du
and Zhan (2003), and Iyengar
(2002)

Vaidya and Clifton (2002),
Vaidya et al. (2008), and
Kantarcioglu and Clifton
(2004)

Protecting the model Oliveira et al. (2004), At-
zori et al. (2005), Felty and
Matwin (2002), and Fried-
man et al. (2006)

Jiang and Atzori (2006)

the result of this multiplication to Alice, who
computes [d.e.A1CA2C� � �CAj C.R1CR2C

� � � CR1/
�X/]) mod X = (A1 CA2 C � � � CA1 +

(R1 C R2 C � � � C Rj /
�X/ mod X and obtains

the scalar product. This scalar product is directly
used in computing the frequency count of an
itemset, where N is the number of items in the
itemset, and Ai , Bi are Alice’s and Bob’s trans-
actions projected on the itemset whose frequency
is computed.

While more efficient than the SMC-based ap-
proaches, homomorphic encryption methods are
more prone to attack, as their security is based
on a weaker security concept (Paillier 1999) than
Yao’s approach. In general, cryptographic solu-
tions have the advantage of protecting the source
data while leaving it unchanged: unlike data mod-
ification methods, they have no negative impact
on the quality of the learned model. However,
they have a considerable cost impact in terms
of complexity of the algorithms, computation
cost of the cryptographic processes involved, and
the communication cost for the transmission of
partial computational results between the parties
(Subramaniam et al. 2004). Their practical appli-
cability on real-life-sized datasets still needs to be
demonstrated.

The discussion above focuses on protecting
the data. In terms of our diagram in Table 1, we
have to address its right column. Here, methods
have been proposed to mainly address mainly
the north-east entry of the diagram. In partic-
ular, in Vaidya and Clifton (2002) propose a
method to compute association rules in an envi-
ronment where data is distributed. In particular,
their method addresses the case of vertically
partitioned data, where different parties hold dif-
ferent attribute sets for the same instances. The

problem is solved without the existence of a
trusted third party, using SMC. Independently,
we have obtained a different solution to this
task using homomorphic encryption techniques
(Zhan et al. 2007). Many papers have presented
solutions for both vertically and horizontally par-
titioned data, and for different data mining tasks,
e.g., Friedman et al. (2006) and Vaidya et al.
(2006).

Moreover, Jiang and Atzori (2006) have ob-
tained a solution for the model-protection case
in a distributed setting (south-east quadrant in
Table 1). Their work is based on a cryptographic
technique, and addresses the case of vertical par-
titioning of the data among parties.

Evaluation
The evaluation of privacy-related techniques
must be broader than standard ML evaluation.
Besides evaluating the performance of the ML
component using the appropriate tool (e.g.,
� accuracy, �ROC, support/confidence), one
also needs to evaluate the various privacy
aspects of a learned model. This is difficult,
as there is no commonly accepted definition of
privacy. Even if there were one, it would not
be in quantitative, operational terms that can
be objectively measured, but most certainly
with references to moral and social values.
For instance, Clifton (2005) points out that
a definition of privacy as the “freedom from
unauthorized intrusion” implies that we need
to understand what constitutes an intrusion
and that we can measure its extent. For these
reasons, most definitions in current privacy-
preserving data mining research are method-
specific, without any comparison between

http://dx.doi.org/10.1007/978-1-4899-7687-1_3
http://dx.doi.org/10.1007/978-1-4899-7687-1_739

1012 Privacy-Related Aspects and Techniques

different methods. For example, the classic work
of Agrawal and Srikant (2000) measures privacy
after data perturbation as the size of the interval
to which the original value can be estimated. If
we know that the original value was 0.5, and
following a perturbation its best estimate is, with
95 % confidence, within the interval [0.3, 0.7],
then the amount of privacy is the size of this
interval, (i.e., 0.4, with a confidence of 95 %).
Later, Agrawal and Aggarwal (2001) proposed a
more general measure of data privacy measuring
this property of a dataset that has been subject
to one of the data perturbation techniques. The
idea is that if noise from a random variable A is
added to the data, we can measure the uncertainty
of the perturbed values using differential entropy
inherent in A. Specifically, if we add noise from
a random variable A, the privacy is

Y
.A/ D 2�f

fA.a/ log2 fA.a/da

�A ;

where A is the domain of A. Privacy is 0 if the
exact value is known (the entropy is 1); if it is
known that the data is in the interval of length
a;

Q
.A/ D a.

Clifton (2005) argues that if disclosure is only
possible to a group of people rather than a single
person, then the size of the group is a natural mea-
sure of privacy. This is the case for k-anonymity
methods. He further argues that a good evaluation
measure should not only capture the likelihood
of linking an ML result to an individual, but
should also capture how intrusive this linking is.
For instance, an association rule with a support
value of 50 and a confidence level of 100 % is
50-anonymous, but it also reveals the consequent
of the rule to all 50 participants.

Finally, the style of evaluation needs to take
into account attack analysis, as in Malin (2005).

Future Directions

One of the most pressing challenges for the com-
munity is to work out a quantifiable and socially
comprehensible definition of privacy for the pur-
pose of privacy-preserving techniques. This is
clearly a difficult problem, likely not solvable by

ML or even computer science alone. As privacy
has basic social and economic dimensions, eco-
nomics may contribute to an acceptable defini-
tion, as already explored in Rossi (2004).

Another important question is the ability to
analyze data privacy, including inference from
data using ML, in the context of specific rules
and regulations, e.g., HIPAA (Health and Ser-
vices 2003) or the European Privacy Directive
(1995). First forays in this direction using formal
methods have already been made, e.g., Barth et al.
(2006) and Felty and Matwin (2002).

Finally, the increasing abundance and avail-
ability of data tracking mobile devices will bring
new challenges to the field. People will become
potentially identifiable by knowing the trajecto-
ries their mobile devices leave in fixed times
and time intervals. Clearly such data, already
collected, present an important asset from the
public security point of view, but also a very
considerable threat from a privacy perspective.
There is early work in this area (Gianotti and
Pedreschi 2008). Such data are already being
collected. This is an important asset for public
security, but also a considerable threat for privacy.

Recommended Reading

Agrawal D, Aggarwal CC (2001) On the design
and quantification of privacy preserving data min-
ing algorithms. In: Proceedings of the 20th ACM
SIGMOD-SIGACT-SIGART symposium on princi-
ples of database systems. ACM, Santa Barbara

Agrawal R, Srikant R (2000) Privacy-preserving data
mining. ACM SIGMOD Rec. 29(Part 2):439–450

Atzori M, Bonchi F, Giannotti F, Pedreschi D (2005)
k-Anonymous patterns. In: Proceedings of the ninth
European conference on principles and practice
of knowledge discovery in databases (PKDD 05),
Porto

Barth A, Datta A, Mitchell JC, Nissenbaum H (2006)
Privacy and contextual integrity: framework and
applications. IEEE Symp Secur Priv 184–198

Clifton CW (2005) What is privacy? Critical steps
for privacy-preserving data mining, workshop on
privacy and security aspects of data mining

Directive (1995) Directive 95/46/EC of the European
Parliament on the protection of individuals with
regard to the processing of personal data and on
the free movement of such data. Off J Eur Commun
38(L281):0031–0050

Probabilistic Context-Free Grammars 1013

P

Domingo-Ferrer J, Sebé F, Solanas A (2008) An
anonymity model achievable via microaggregation.
In: VLDB workshop on secure data management,
Auckland. Springer, pp 209–218

Du W, Zhan Z (2003) Using randomized response
techniques for privacy-preserving data mining. In:
Proceedings of the ninth ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining, Washington, DC, vol 510

Evfimievski A, Srikant R, Agrawal R, Gehrke J (2002)
Privacy preserving mining of association rules. In:
Proceedings of the eighth ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining, Edmonton, pp 217–228

Felty A, Matwin S (2002) Privacy-oriented data mining
by proof checking. In: Sixth European conference
on principles of data mining and knowledge discov-
ery, Helsink, vol 2431, pp 138–149

Friedman A, Schuster A, Wolff R (2006) k-anonymous
decision tree induction. In: PKDD 2006, Berlin,
pp 151–162

Health UDo, Services H (eds) (2003) Summary of
HIPAA privacy rule. US Department of Health and
Human Services, Washington, DC

Gianotti F, Pedreschi D (2008) Mobility, data min-
ing and privacy: geographic knowledge discovery.
Springer, Berlin

Iyengar VS (2002) Transforming data to satisfy pri-
vacy constraints. In: Proceedings of the eighth
ACM SIGKDD international conference on knowl-
edge discovery and data mining, Edmonton,
pp 279–288

Jiang W, Atzori M (2006) Secure distributed
k-Anonymous pattern mining. In: Proceedings
of the sixth international conference on data
mining, Hong Kong. IEEE Computer Society

Kantarcioglu M, Clifton C (2004) Privacy-preserving
distributed mining of association rules on horizon-
tally partitioned data. IEEE Trans Knowl Data Eng
16:1026–1037

Kargupta H, Datta S, Wang Q (2003) On the privacy
preserving properties of random data perturbation
techniques. In: Third IEEE international conference
on data mining (ICDM 2003), Melbourne, pp 99–
106

Machanavajjhala A, Kifer D, Gehrke J, Venkitasub-
ramaniam M (2007) L-diversity: privacy beyond
k-anonymity. ACM Trans Knowl Discov Data 1:3

Malin BA (2005) An evaluation of the current state of
genomic data privacy protection technology and a
roadmap for the future. J Am Med Inf Assoc 12:28

Moor J (2004) Towards a theory of privacy in the
information age. In: Bynum T, Rodgerson S (eds)
Computer ethics and professional responsibility.
Blackwell, Malden

Ninghui L, Tiancheng L, Venkatasubramanian S
(2007) t-closeness: privacy beyond k-anonymity and
l-diversity. In: IEEE 23rd international conference
on data engineering (ICDE 2007), Istanbul, pp 106–
115

Oliveira SRM, Zaı̈ane OR, Saygin Y (2004) Secure as-
sociation rule sharing. In: Proceedings of the eighth
PAKDD and advances in knowledge discovery and
data mining, Sydney, pp 74–850

Paillier P (1999) The 26th international conference on
privacy and personal data protection, advances in
cryptography (EUROCRYPT’99), Prague, pp 23–
38

Rossi G (2004) Privacy as quality in modern economy.
In: The 26th international conference on privacy and
personal data protection, Wroclaw

Subramaniam H, Wright RN, Yang Z (2004) Ex-
perimental analysis of privacy-preserving statistics
computation. In: Proceedings of the VLDB work-
shop on secure data management, Toronto, pp 55–
66

Sweeney L (2001) Computational disclosure con-
trol: a primer on data privacy protection. Mas-
sachusetts Institute of Technology, Deptartment
of Electrical Engineering and Computer Science,
Cambridge

Vaidya J, Clifton C (2002) Privacy preserving associ-
ation rule mining in vertically partitioned data. In:
Proceedings of the eighth ACM SIGKDD interna-
tional conference on knowledge discovery and data
mining. ACM, Edmonton, pp 639–644

Vaidya J, Clifton C, Kantarcioglu M, Patterson AS
(2008) Privacy-preserving decision trees over ver-
tically partitioned data. ACM Trans Knowl Discov
Data 2:1–27

Vaidya J, Zhu YM, Clifton CW (2006) Privacy preserv-
ing data mining. Springer, New York

Website of the GeoPKDD Project (2006)
Westin A (1967) Privacy and freedom. Atheneum, New

York
Yao A (1986) How to generate and exchange secrets.

In: 27th FOCS, Toronto
Zhan J, Matwin S, Chang L (2007) Privacy-preserving

collaborative association rule mining. J Netw Com-
put Appl 30:1216–1227

Zhan JZ, Matwin S (2004) Privacy-prteserving data
mining in electronic surveys. In: ICEB 2004, Bei-
jing, pp 1179–1185

Probabilistic Context-Free
Grammars

Yasubumi Sakakibara
Keio University, Hiyoshi, Kohoku-ku, Japan

Synonyms

PCFG

http://dx.doi.org/10.1007/978-1-4899-7687-1_100359

1014 Probabilistic Context-Free Grammars

Definition

In formal language theory, formal grammar
(phrase-structure grammar) is developed to
capture the generative process of languages
(Hopcroft and Ullman 1979). A formal grammar
is a set of productions (rewriting rules) that
are used to generate a set of strings, that is, a
language. The productions are applied iteratively
to generate a string, a process called derivation.
The simplest kind of formal grammar is a regular
grammar.

Context-free grammars (CFG) form a more
powerful class of formal grammars than regu-
lar grammars and are often used to define the
syntax of programming languages. Formally, a
CFG consists of a set of nonterminal symbols N ,
a terminal alphabet †, a set P of productions
(rewriting rules), and a special nonterminal S
called the start symbol. For a nonempty set X
of symbols, let X� denote the set of all finite
strings of symbols in X . Every CFG production
has the form S ! ˛, where S 2 N and
˛ 2 .N [†/�. That is, the left-hand side
consists of one nonterminal and there is no re-
striction on the number or placement of non-
terminals and terminals on the right-hand side.
The language generated by a CFG G is denoted
L.G/.

A probabilistic context-free grammar (PCFG)
is obtained by specifying a probability for each
production for a nonterminal A in a CFG, such
that a probability distribution exists over the set
of productions for A.

A CFG G D (N , ˙ , P , S/ is in Chomsky
normal form if each production rule is of the form
A ! BC or A ! a, where A, B , C 2 N and
a 2 †.

Given a PCFG G and a string w D a1 : : : am,
there are three basic problems:

1. Calculating the probability Pr(wjG/ that the
grammar G assigns to w

2. Finding the most likely derivation (parse tree)
of w by G

3. Estimating the parameters of G to maximize
Pr(wjG/

The first two problems, calculating the proba-
bility Pr(wjG/ of a given string w assigned by a
PCFGG and finding the most likely derivation of
w by G, can be solved using dynamic program-
ming methods analogous to the Cocke-Younger-
Kasami or Early parsing methods. A polynomial-
time algorithm for solving the second problem is
known as Viterbi algorithm, and a polynomial-
time algorithm for the third problem is known
as the inside-outside algorithm (Lari and Young
1990).

Derivation Process

A derivation is a rewriting of a string in (N [†/�

using the production rules of a CFG G. In each
step of the derivation, a nonterminal from the
current string is chosen and replaced with the
right-hand side of a production rule for that non-
terminal. This replacement process is repeated
until the string consists of terminal symbols only.
If a derivation begins with a nonterminal A and
derives a string ˛ 2 .N [†/�, we write A) ˛.

For example, the grammar in Fig. 1 generates
an RNA sequence AGAAACUUGCUGGCCU
by the following derivation: Beginning with the
start symbol S , any production with S left of
the arrow can be chosen to replace S . If the
production S ! AX1U is selected (in this case,
this is the only production available), the effect is
to replace S with AX1U. This one derivation step
is written S) AX1U, where the double arrow
signifies application of a production. Next, if the
production X1 ! GX2C is selected, the deriva-
tion step is AX1U) AGX2CU. Continuing with
similar derivation operations, each time choosing
a nonterminal symbol and replacing it with the
right-hand side of an appropriate production, we
obtain the following derivation terminating with
the desired sequence:

S) AX1U) AGX2CU) AGX3X4CU

) AGAX5UX4CU) AGAAX6UUX4CU

) AGAAACUUX4CU

Probabilistic Context-Free Grammars 1015

P

Probabilistic Context-Free Grammars, Fig. 1 This set
of productions P generates RNA sequences with a certain
restricted structure. S; X1; : : : ; X16 are nonterminals; A,

U, G, and C are terminals representing the four nu-
cleotides. Note that only for X6 is there a choice of
productions

) AGAAACUUGX15CCU

) AGAAACUUGCX16GCCU

) AGAAACUUGCUGGCCU:

Such a derivation can be arranged in a tree struc-
ture called a parse tree.

The language generated by a CFG G is de-
noted L.G/, that is, L.G/= fwjS) w;w 2
†�g. Two CFGs G and G0 are said to be equiv-
alent if and only if L.G/ D L.G0/.

Probability Distribution

A PCFG assigns a probability to each string
which it derives and hence defines a probability
distribution on the set of strings. The probability
of a derivation can be calculated as the product
of the probabilities of the productions used to
generate the string. The probability of a string
w is the sum of probabilities over all possi-
ble derivations that could generate w, written as
follows:

Pr.wjG/ D
X

all derivations d

Pr.S
d
) wjG/

D
X

˛1;:::;˛n

Pr.S) ˛1jG/ � Pr.˛1) ˛2jG/

: : : Pr.˛n) wjG/:

Parsing Algorithm

Efficiently computing the probability of a string
w, Pr(sjG/, presents a problem because the num-

ber of possible derivations for w is exponential
in the length of the string. However, a dynamic
programming technique analogous to the Cocke-
Kasami-Young or Earley methods for nonproba-
bilistic CFGs can accomplish this task efficiently
(in time proportional to the cube of the length
of w).

The CYK algorithm is a polynomial time
algorithm for solving the parsing (membership)
problem of CFGs using dynamic programming.
The CYK algorithm assumes Chomsky normal
form of CFGs, and the essence of the algorithm
is the construction of a triangular parse table T.
Given a CFG GD (N , †, P , S/ and an input
string w D a1a2 . . . an in †� to be parsed
according to G, each element of T , denoted ti;j ,
for 1 � i � n and 1 � j � n � i C 1, has
a value which is a subset of N . The interpre-
tation of T is that a nonterminal A is in ti;j if
and only if A) aiaiC1 : : : aiCj�1, that is, A
derives the substring of w beginning at position
i and of length j . To determine whether the
string w is in L.G/, the algorithm computes the
parse table T and look to see whether S is in
entry t1;n.

In the first step of constructing the parse table,
the CYK algorithm sets ti;1 D f AjA ! ai is
in P g. In the j th step, the algorithm assumes
that ti;j 0 has been computed for 1 � i � n

and 1 � j 0 < j , and it computes ti;j by exam-
ining the nonterminals in the following pairs of
entries:

.ti;1; tiC1;j�1/;.ti;2; tiC2;j�2/; : : : ;

.ti;j�1; tiCj�1;1/;

1016 Probabilistic Context-Free Grammars

S A
S A S A
S A S S A
S A S S

j A S A A A

i
a b a a a

Probabilistic Context-Free Grammars, Fig. 2 The
parse table T of G for “abaaa”

and if B is in ti;k and C is in tiCk;j�k for some k
(1 � k < j) and the production A!BC is in P ,
A is added to ti;j .

For example, we consider a simple CFG
G = (N , †, P , S/ of Chomsky normal form
where N = fS , Ag, †= fa, bg and

P D fS ! AA; S ! AS; S ! b;

A! SA;A! ag:

This CFG generates a string “abaaa,” that is,
S) abaaa, and the parse table T for abaaa is
shown in Fig. 2. The parse table can efficiently
store all possible parse trees of G for abaaa.

Learning

The problem of learning PCFGs from exam-
ple strings has two aspects: determining a dis-
crete structure (topology) of the target grammar
and estimating probabilistic parameters in the
grammar (Sakakibara 1997). Based on the max-
imum likelihood criterion, an efficient estima-
tion algorithm for probabilistic parameters has
been proposed: the inside-outside algorithm for
PCFGs. On the other hand, finding an appropri-
ate discrete structure of a grammar is a harder
problem.

The procedure to estimate the probabilistic
parameters of a PCFG is known as the inside-
outside algorithm. Just like the forward-backward
algorithm for HMMs, this procedure is an
expectation-maximization (EM) method for
obtaining maximum likelihood of the grammar’s
parameters. However, it requires the grammar to

be in Chomsky normal form, which is inconve-
nient to handle in many practical problems (and
requires more nonterminals). Further, it takes
time at least proportional to n3, whereas the
forward-backward procedure for HMMs takes
time proportional to n2, where n is the length of
the string w. There are also many local maxima
in which the method can get caught. Therefore,
the initialization of the iterative process is crucial
since it affects the speed of convergence and the
goodness of the results.

Application to Bioinformatics

An effective method for learning and building
PCFGs has been applied to modeling a family
of RNA sequences (Durbin et al. 1998; Sakak-
ibara 2005). In RNA, the nucleotides adenine
(A), cytosine (C), guanine (G), and uracil (U)
interact in specific ways to form characteristic
secondary-structure motifs such as helices, loops,
and bulges. In general, the folding of an RNA
chain into a functional molecule is largely gov-
erned by the formation of intramolecular A-U
and G-C Watson–Crick pairs. Such base pairs
constitute the so-called biological palindromes in
a genome and can be clearly described by a CFG.
In particular, productions of the forms X ! A Y

U, X ! U Y A, X ! G Y C, and X ! C Y

G describe a structure in RNA due to Watson–
Crick base pairing. Using productions of this
type, a CFG can specify a language of biological
palindromes.

For example, the application of productions
in the grammar shown in Fig. 1 generates the
RNA sequence CAUCAGGGAAGAUCUCUUG
and the derivation can be arranged in a tree
structure of a parse tree (Fig. 3, left). A parse
tree represents the syntactic structure of a se-
quence produced by a grammar. For the RNA
sequence, this syntactic structure corresponds to
the physical secondary structure (Fig. 3, right).
PCFGs are applied to perform three tasks in
RNA sequence analysis: to discriminate RNA-
family sequences from nonfamily sequences, to
produce multiple alignments, and to ascertain the
secondary structure of new sequences.

Programming by Demonstration 1017

P

A U

G C

A U

A U

A U

G C

A

U G

G C

C G

U G

G C

A U

A

G C

X1

X9

X10

X11

X12

X13

X14

X15

X16

X5

X3 X4

X6

X7 X8

X2

S

CG

U

A
A

A

A
C

G

C

C

G

C

G

G

U
U

U

U

U

U

A

A

A

G

G

G

C

X8

S

X7
X9

X10
X11

X12

X1

X2
X3 X4X5

X6

X13
X14

X15

X16

Probabilistic Context-Free Grammars, Fig. 3 A parse
tree (left) generated by a simple context-free grammar
(CFG) for RNA molecules and the physical secondary

structure (right) of the RNA sequence which is a reflection
of the parse tree

Recommended Reading

Durbin R, Eddy S, Krogh A, Mitchison G (1998)
Biological sequence analysis. Cambridge University
Press, Cambridge

Hopcroft JE, Ullman JD (1979) Introduction to
automata theory, languages and computation.
Addison-Wesley, Reading

Lari K, Young SJ (1990) The estimation of stochastic
context-free grammars using the inside-outside al-
gorithm. Comput Speech Lang 4:35–56

Sakakibara Y (1997) Recent advances of grammatical
inference. Theor Comput Sci 185:15–45

Sakakibara Y (2005) Grammatical inference in bioin-
formatics. IEEE Trans Pattern Anal Mach Intell
27:1051–1062

Probability Calibration

�Classifier Calibration

Probably Approximately Correct
Learning

� PAC Learning

Process-Based Modeling

� Inductive Process Modeling

Program Synthesis from Examples

� Inductive Programming

Programming by Demonstration

Pierre Flener1 and Ute Schmid2

1Department of Information Technology,
Uppsala University, Uppsala, Sweden
2Faculty of Information Systems and Applied
Computer Science, University of Bamberg,
Bamberg, Germany

Abstract

Programming by demonstration (PBD) is in-
troduced as family of approaches to teach a
computer system new behavior by demonstrat-
ing it in the context of a concrete example.

Most of the work by this author was done while on
leave of absence in 2006/2007 as a Visiting Faculty
Member and Erasmus Exchange Teacher at Sabancı
University, Turkey.

http://dx.doi.org/10.1007/978-1-4899-7687-1_900
http://dx.doi.org/10.1007/978-1-4899-7687-1_631
http://dx.doi.org/10.1007/978-1-4899-7687-1_397
http://dx.doi.org/10.1007/978-1-4899-7687-1_137

1018 Programming by Example (PBE)

References to classical and current PBD sys-
tems are given.

Synonyms

Programming by example (PBE)

Definition

Programming by demonstration (PBD) describes
a collection of approaches for the support of end-
user programming with the goal of making the
power of computers fully accessible to all users.
The general objective is to teach computer sys-
tems new behavior by demonstrating (repetitive)
actions on concrete examples. A user provides
examples of how a program should operate, either
by demonstrating trace steps or by showing ex-
amples of the inputs and outputs, and the system
infers a generalized program that achieves those
examples and can be applied to new examples.
Typical areas of application are macro generation
(e.g., for text editing), simple arithmetic functions
in spreadsheets, simple shell programs, XML
transformations, or query-replace commands, as
well as the generation of helper programs for
web agents, geographic information systems, or
computer-aided design. The most challenging ap-
proach to PBD is to obtain generalizable ex-
amples by minimal intrusion, where the user’s
ongoing actions are recorded without an explicit
signal for the start of an example and without
explicit confirmation or rejection of hypotheses.
An early example of such a system is EAGER

(Cypher 1993a).
Current PBD approaches incorporate some

simple forms of generalization learning, but
typically no or only highly problem-dependent
methods for the induction of loops or recursion
from examples or traces of repetitive commands.
Introducing inductive programming or trace-
based programming methods into PBD applica-
tions could significantly increase the possibilities
of end-user programming support. This is
demonstrated impressively with the Microsoft
Excel plug-in Flash Fill (Gulwani et al. 2012).

Cross-References

� Inductive Programming
�Trace-Based Programming

Recommended Reading

Cypher A (1993a) Programming repetitive tasks by
demonstration. In: Cypher A (ed) Watch what I do:
programming by demonstration. MIT, Cambridge,
pp 205–217

Cypher A (ed) (1993b) Watch what I do: programming
by demonstration. MIT, Cambridge

Gulwani S, Harris WR, Singh R (2012) Spreadsheet
data manipulation using examples. Commun ACM
55(8):97–105

Lieberman H (ed) (2001) Your wish is my command:
programming by example. Morgan Kaufmann, San
Francisco

Programming by Example (PBE)

� Programming by Demonstration

Programming by Examples

� Inductive Programming

Programming from Traces

�Trace-Based Programming

Projective Clustering

Cecilia M. Procopiuc
AT&T Labs, NJ, USA

Synonyms

Local feature selection; Subspace clustering

http://dx.doi.org/10.1007/978-1-4899-7687-1_100380
http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_844
http://dx.doi.org/10.1007/978-1-4899-7687-1_679
http://dx.doi.org/10.1007/978-1-4899-7687-1_137
http://dx.doi.org/10.1007/978-1-4899-7687-1_844
http://dx.doi.org/10.1007/978-1-4899-7687-1_100272
http://dx.doi.org/10.1007/978-1-4899-7687-1_100453

Projective Clustering 1019

P

Definition

Projective clustering is a class of problems in
which the input consists of high-dimensional
data, and the goal is to discover those subsets
of the input that are strongly correlated in
subspaces of the original space. Each subset of
correlated points, together with its associated
subspace, defines a projective cluster. Thus,
although all cluster points are close to each
other when projected on the associated subspace,
they may be spread out in the full-dimensional
space. This makes projective clustering al-
gorithms particularly useful when mining or
indexing datasets for which full-dimensional
clustering is inadequate (as is the case for
most high-dimensional inputs). Moreover, such
algorithms compute projective clusters that
exist in different subspaces, making them more
general than global dimensionality-reduction
techniques.

Motivation and Background

Projective clustering is a type of data mining
whose main motivation is to discover correlations
in the input data that exist in subspaces of
the original space. This is an extension of
traditional full-dimensional clustering, in which
one tries to discover point subsets that are
strongly correlated in all dimensions. Figure 1a
shows an example of input data for which full-
dimensional clustering cannot discover the three
underlying patterns. Each pattern is a projective
cluster.

It is well known (Beyer et al. 1999) that
for a broad class of data distributions, as the
dimensionality increases, the distance to the near-
est neighbor of a point approaches the distance
to its farthest neighbor. This implies that full-
dimensional clustering will fail to discover sig-
nificantly correlated subsets on such data, since
the diameter of a cluster is almost the same as
the diameter of the entire dataset. In practice,
many applications from text and image process-
ing generate data with hundreds or thousands of
dimensions, which makes them extremely bad

candidates for full-dimensional clustering meth-
ods.

One popular technique to classify high-
dimensional data is to first project it onto a much
lower-dimensional subspace, and then employ
a full-dimensional clustering algorithm in that
space. The projection subspace is the same for
all points, and is computed so that it best “fits”
the data. A widely used dimensionality-reduction
technique, called � principal component analysis
(PCA), defines the best projection subspace to be
the one that minimizes least-square error. While
this approach has been proven successful in
certain areas such as text mining, its effectiveness
depends largely on the characteristics of the
data. The reason is that there may be no way
to choose a single projection subspace without
encountering a significant error; or alternatively,
setting a maximum bound on the error results in
a subspace with high dimensionality. Figure 1b
shows the result of PCA on a good candidate set.
The points are projected on the subspace spanned
by vectors V1 and V2, along which they have
greatest variance. However, for the example in
Fig. 1a, no plane or line fits the data well enough.
Projective clustering can thus be viewed as a
generalized dimensionality-reduction method, in
which different subsets of the data are projected
on different subspaces.

There are many variants of projective clus-
tering, depending on what quality measure one
tries to optimize for the clustering. Most such
measures, however, are expressed as a function of
the distances between points in the clusters. The
distance between two cluster points is computed
with respect to the subspace associated with that
cluster. Alternative quality measures consider the
density of cluster points inside the associated
subspace.

Megiddo and Tamir (1982) showed that it is
NP-Hard to decide whether a set of n points in the
plane can be covered by k lines. This early result
implies not only that most projective clustering
problems are NP-Complete even in the planar
case, but also that approximating the objective
function within a constant factor is NP-Complete.
Nevertheless, several approximation algorithms
have been proposed, with running time polyno-

http://dx.doi.org/10.1007/978-1-4899-7687-1_665

1020 Projective Clustering

V3
V1 V2

ba

Projective Clustering, Fig. 1 Dimensionality reduction via (a) projective clustering and (b) principal component
analysis

mial in the number of points n and exponen-
tial in the number of clusters k. Agrawal et al.
(1998) proposed a subspace clustering method
based on density measure that computes clusters
in a bottom-up approach (from lower to higher
dimensions). Aggarwal et al. (1999) designed a
partitioning-style algorithm.

Theory

Many variants of projective clustering problems
use a distance-based objective function and thus
have a natural geometric interpretation. In gen-
eral, the optimization problem is stated with re-
spect to one or more parameters that constrain
the kind of projective clusters one needs to in-
vestigate. Examples of such parameters are: the
number of clusters, the dimensionality (or aver-
age dimensionality) of the clusters, the maximum
size of the cluster in its associated subspace, the
minimum density of cluster points, etc. Below we
present the most frequently studied variants for
this problem.

Distance-Based Projective Clustering
Given a set S of n points in R

d and two inte-
gers k < n and q � d , find kq-dimensional
flats h1; : : : ; hk and partition S into k subsets
C1; : : : ; Ck so that one of the following objective
functions is minimized:

max
1�i�k

max
p2Ci

d.p; hi / .k � center/

X

1�i�k

X

p2Ci

d.p; hi / .k �median/

X

1�i�k

X

p2Ci

d.p; hi / .k �means/

These types of problems are also referred to as
geometric clustering problems. They require all
cluster subspaces to have the same dimensional-
ity, i.e., d � q (the subspace associated with Ci is
orthogonal to hi). The number of clusters is also
fixed, and the clustering must be a partitioning of
the original points.

Further variants are defined by introducing
slight modifications in the above framework. For
example, one can allow the existence of outliers,
i.e., points that do not belong to any projec-
tive cluster. This is generally done by providing
an additional parameter, which is the maximum
percentage of outliers. The problems can also
be changed to a dual formulation, in which a
maximum value for the objective function is
specified, and the goal is to minimize the number
of clusters k.

Special cases for the k-center objective func-
tion are q D d � 1 and q D 1. In the first
case, the problem is equivalent to finding k hyper-
strips that contain S so that the maximum width
of a hyper-strip is minimized. If q D 1, then

Projective Clustering 1021

P

the problem is to cover S by k congruent hyper-
cylinders of smallest radius. Since this is equiv-
alent to finding the k lines that are the axes of
the hyper-cylinders, this problem is also referred
to as k-line-center. Figure 1a is an example of
3-line-center.

In addition, k-median problems have also been
studied when cluster subspaces have different di-
mensionalities. In that case, distances computed
in each cluster are normalized by the dimension-
ality of the corresponding subspace.

Density-Based Projective Clustering
A convex region in a subspace is called dense if
the number of data points that project inside it
is larger than some user-defined threshold. For a
fixed subspace, the convex regions of interest in
that subspace are defined in one of several ways,
as detailed below. Projective clusters are then
defined to be connected unions of dense regions
of interest. The different variants for defining
regions of interest can be broadly classified in
three classes:

("-Neighborhoods) Regions of interest are
Lp-balls of radius " centered at the data points.
In general, Lp is either L2 (hyper-spheres) or
L1 (hyper-cubes).

(Regular Grid Cells) Regions of interest are
cells defined by an axis-parallel grid in the
subspace. The grid hyper-planes are equidistant
along each dimension.

(Irregular Grid Cells) Regions of interest are
cells defined by an irregular grid in the sub-
space. Parallel grid hyper-planes are not neces-
sarily equidistant, and they may also be arbitrarily
oriented.

Another variant of projective clustering de-
fines a so-called quality measure for a projective
cluster, which depends both on the number of
cluster points and the number of dimensions in
the associated subspace. The goal is to compute
the clusters that maximize this measure. Projec-
tive clusters are required to be Lp-balls of fixed
radius in their associated subspace, which means
that clusters in higher dimensions tend to have
fewer points, and vice-versa. Hence, the quality
measure provides a way to compare clusters that

exist in different number of dimensions. It is
related to the notion of dense "-neighborhoods.

Many other projective clustering problems are
application driven and do not easily fit in the
above classification. While they follow the gen-
eral framework of finding correlations among
data in subspaces of the original space, the notion
of projective cluster is specific to the application.
One such example is presented later in this sec-
tion.

Algorithms
Distance-based projective clustering problems
are NP-Complete when the number of clusters
k is an input parameter. Moreover, k-center
problems cannot be approximated within a
constant factor, unless P = NP. This follows
from the result of Meggido and Tamir (1982),
who showed that it is NP-Hard to decide whether
a set of n points in the plane can be covered by k
lines.

Agarwal and Procopiuc (2003) first proposed
approximation algorithms for k-center projective
clustering in two and three dimensions. The algo-
rithms achieve constant factor approximation by
generating more clusters than required.

Subsequent work by several other authors led
to the development of a general framework in
which (1 C ")-approximate solutions can be de-
signed for several types of full-dimensional and
projective clustering. In particular, k-center and
k-means projective clustering can be approxi-
mated in any number of dimensions. The idea is
to compute a so-called coreset, which is a small
subset of the points, such that the optimal projec-
tive clusters for the coreset closely approximate
the projective clusters for the original set. Com-
puting the optimal solution for the coreset has
(super) exponential dependence on the number
of clusters k, but it is significantly faster than
computing the optimal solution for the original
set of points. The survey by Agarwal et al. (2005)
gives a comprehensive overview of these results.

While the above algorithms have approxima-
tion guarantees, they are not practical even for
moderate values of n, k, and d . As a result,
heuristic methods have also been developed for
these problems. The general approach is to iter-

1022 Projective Clustering

atively refine a current set of clusters, either by
re-assigning points among them, or by merging
nearby clusters. When the set of points in a cluster
changes, the new subspace associated with the
cluster is also recomputed, in a way that tries to
optimize the objective function for the new clus-
tering. Aggarwal et al. (1999) proposed the PRO-
CLUS algorithm for k-median projective clus-
tering with outliers. The cluster subspaces can
have different dimensionalities, but they must be
orthogonal to coordinate axes. Aggarwal and Yu
(2000) subsequently extended the algorithm to ar-
bitrarily oriented clusters, but with the same num-
ber of dimensions. Agarwal and Mustafa (2004)
proposed a heuristic approach for k-means pro-
jective clustering with arbitrary orientation and
different dimensionalities.

The first widely used method for density-
based projective clustering was proposed by
Agrawal et al. (1998). The algorithm, called
CLIQUE, computes projective clusters based
on regular grid cells in orthogonal subspaces,
starting from the lowest-dimensional subspaces
(i.e., the coordinate axes) and iterating to higher
dimensions. Pruning techniques are used to skip
subspaces in which a large fraction of points
lie outside dense regions. Subsequent strategies
improved the running time and accuracy by
imposing irregular grids and using different
pruning criteria.

Böhm et al. (2004) designed an algorithm
called 4C for computing density-connected "-
neighborhoods in arbitrarily oriented subspaces.
The method is agglomerative: It computes the lo-
cal dimensionality around each point p by using
PCA on all points inside the (full-dimensional) "-
neighborhood of p. If the dimensionality is small
enough and the neighborhood is dense, then p
and its neighbors form a projective cluster. Con-
nected projective clusters with similarly oriented
subspaces are then repeatedly merged.

The OptiGrid algorithm by Hinneburg and
Keim (1999) was the first method to propose
irregular grid cells of arbitrary (but fixed) orienta-
tion. Along each grid direction, grid hyper-planes
are defined to pass through the local minima of
a probability density function. This significantly
reduces the number of cells compared with a reg-

ular grid that achieves similar overall accuracy.
The probability density function is defined using
the kernel-density estimation framework. Input
points are projected on the grid direction, and
their distribution is extrapolated to the entire line
by the density function

f .x/ D
1

nh

nX

iD1

K
�x � si

h

	
;

where s1; : : : ; sn denote the projections of the
input points, and h is a parameter. The function
K.x/, called the kernel, is usually the Gaussian
function, although other kernels can also be used.

The DOC algorithm proposed by Procopiuc
et al. (2002) approximates optimal clusters for
a class of quality measures. Orthogonal projec-
tive clusters are computed iteratively via random
sampling. If a sample is fully contained in a
cluster then it can be used to determine the
subspace of that cluster, as well as (a superset
of) the other cluster points. Such a sample is
called a discriminating set. Using the properties
of the quality measure, the authors show that a
discriminating set is found with high probability
after a polynomial number of trials.

An overview of most of these practical
methods, as well as of subsequent work
expanding their results, can be found in the
survey by Parsons et al. (2004).

Applications
Similar to full-dimensional clustering, projective
clustering methods provide a way to efficiently
organize databases for searching, as well as for
pattern discovery and data compression. In a
broad sense, they can be used in any application
that handles high-dimensional data, and which
can benefit from indexing or mining capabilities.
In practice, additional domain-specific informa-
tion is often necessary. We present an overview of
the generic database usage first, and then discuss
several domain-specific applications.

Data Indexing
An index tree is a hierarchical structure defined
on top of a data set as follows. The root corre-

Projective Clustering 1023

P

sponds to the entire data set. For each internal
node, the data corresponding to that node is
partitioned in some pre-defined manner, and there
is a child of the node corresponding to each
subset in the partition. Often, the partitioning
method is a distance-based clustering algorithm.
In addition, each node stores the boundary of
a geometric region that contains its points, to
make searching the structure more efficient. For
many popular indexes, the geometric region is
the minimum axis-parallel bounding box. Index
trees built with full-dimensional clustering meth-
ods become inefficient for dimensionality about
10 or higher, due to the large overlap in the
geometric regions of sibling nodes. Chakrabarti
and Mehrotra (2000) first proposed an index tree
that uses projective clustering as a partitioning
method. In that case, each node also stores the
subspace associated with the cluster.

Pattern Discovery
A projective cluster, by definition, is a pattern in
the data, so any of the above algorithms can be
used in a pattern discovery application. However,
most applications restrict the projective clusters
to be orthogonal to coordinate axes, since the axes
have special interpretations. For example, in a
database of employees, one axis may represent
salary, another the length of employment, and
the third one the employees’ age. A projective
cluster in the subspace spanned by salary and em-
ployment length has the following interpretation:
there is a correlation between salaries in range A
and years of employment in range B, which is
independent of employees’ age.

Data Compression
As discussed in the introduction, projective clus-
ters can be used as a dimensionality-reduction
technique, by replacing each point with its projec-
tion on a lower dimensional subspace. The pro-
jection subspace is orthogonal to the subspace of
the cluster that contains the point. In general, this
method achieves smaller information loss and
higher compression ratio than a global technique
such as PCA.

Image Processing
A picture can be represented as a high-
dimensional data point, where each pixel
represents one dimension, and its value is
equal to the RGB color value of the pixel.
Since this representation loses pixel adjacency
information, it is generally used in connection
with a smoothing technique, which replaces the
value of a pixel with a function that depends
both on the old pixel value, and the values of its
neighbors. A projective cluster groups images
that share some similar features, while they differ
significantly on others. The DOC algorithm has
been applied to the face detection problem as
follows: Projective clusters were computed on
a set of (pre-labeled) human faces, then used in
a classifier to determine whether a new image
contained a human face.

Document Processing
Text documents are often represented as sparse
high-dimensional vectors, with each dimension
corresponding to a distinct word in the document
collection. Several methods are used to reduce
the dimensionality, e.g., by eliminating so-called
stop words such as “and,” “the,” and “of.” A
non zero entry in a vector is usually a function
of the corresponding word’s frequency in the
document. Because of the inherent sparsity of the
vectors, density-based clustering, as well as k-
center methods, are poor choices for such data.
However, k-means projective clustering has been
successfully applied to several document corpora
(Li et al. 2004).

DNA Microarray Analysis
A gene-condition expression matrix, generated
by a DNA microarray, is a real-valued matrix,
such that each row corresponds to a gene, and
each column corresponds to a different condition.
An entry in a row is a function of the relative
abundance of the mRNA of the gene under that
specific condition. An orthogonal projective clus-
ter thus represents several genes that have similar
expression levels under a subset of conditions.
Genetics researchers can infer connections be-
tween a disease and the genes in a cluster. Due
to the particularities of the data, different notions

1024 Projective Clustering

of similarity are often required. For example,
order preserving clusters group genes that have
the same tendency on a subset of attributes, i.e.,
an attribute has the same rank (rather than similar
value) in each projected gene. See the results of
Liu and Wang (2003).

Principal Component Analysis

PCA also referred to as the Karhunen-Loève
Transform, is a global � dimensionality reduction
technique, as opposed to projective clustering,
which is a local dimensionality reduction method.
PCA is defined as an orthogonal linear transfor-
mation with the property that it transforms the
data into a new coordinate system, such that the
projection of the data on the first coordinate has
the greatest variance among all projections on
a line, the projection of the data on the second
coordinate has the second greatest variance, and
so on. Let X denote the data matrix, with each
point written as a column vector in X , and mod-
ified so that X has empirical mean zero (i.e., the
mean vector is subtracted from each data point).
Then the eigenvectors of the matrix XX T are
the coordinates of the new system. To reduce
the dimensionality, keep only the eigenvectors
corresponding to the largest few eigenvalues.

Coresets

Let P � R
d be a set of points, and � be a

measure function defined on subsets of Rd , such
that � is monotone (i.e., for P1 � P2, �.P1/ �

�.P2//. A subset Q � P is an "-coreset with
respect to � if (1 � "/�.P / � �.Q/. The
objective functions for k-center, k-median, and
k-means projective clustering are all examples of
measure functions �.

Cross-References

�Clustering
�Curse of Dimensionality
�Dimensionality Reduction

�Kernel Methods
�K-Means Clustering
� Principal Component Analysis

Recommended Reading

Agarwal PK, Mustafa N (2004) k-means projective
clustering. In: Proceeding of ACM SIGMOD-
SIGACT-SIGART symposium principles of
database systems, pp 155–165

Agarwal PK, Procopiuc CM (2003) Approximation
algorithms for projective clustering. J Algorithms
46(2):115–139

Agarwal PK, Har-Peled S, Varadarajan KR (2005) Ge-
ometric approximation via coresets. In: Goodman
JE, Pach J, Welzl E (eds) Combinatorial and com-
putational geometry. Cambridge University Press,
Cambridge/New York, pp 1–30

Aggarwal CC, Yu PS (2000) Finding generalized pro-
jected clusters in high dimensional spaces. In: Pro-
ceeding of ACM SIGMOD international conference
management of data, pp 70–81

Aggarwal CC, Procopiuc CM, Wolf JL, Yu PS, Park JS
(1999) Fast algorithms for projected clustering. In:
Proceeding of ACM SIGMOD international confer-
ence management of data, pp 61–72

Agrawal R, Gehrke J, Gunopulos D, Raghavan P
(1998) Automatic subspace clustering of high di-
mensional data for data mining applications. In: Pro-
ceeding of ACM SIGMOD international conference
management of data, pp 94–105

Beyer K, Goldstein J, Ramakrishnan R, Shaft U (1999)
When is “nearest neighbour” meaningful? In: Pro-
ceeding of 7th international conference data theory,
vol 1540, pp 217–235

Böhm C, Kailing K, Kröger P, Zimek A (2004) Com-
puting clusters of correlation connected objects. In:
Proceeding of ACM SIGMOD international confer-
ence management of data, pp 455–466

Chakrabarti K, Mehrotra S (2000) Local dimension-
ality reduction: a new approach to indexing high
dimensional spaces. In: Proceeding of 26th interna-
tional conference very large data bases, pp 89–100

Hinneburg A, Keim DA (1999) Optimal grid-
clustering: towards breaking the curse of dimension-
ality in high-dimensional clustering. In: Proceeding
of 25th international conference very large data
bases, pp 506–517

Li T, Ma S, Ogihara M (2004) Document clustering via
adaptive subspace iteration. In: Proceeding of 27th
international ACM SIGIR conference research and
development in information retrieval, pp 218–225

Liu J, Wang W (2003) Op-cluster: clustering by ten-
dency in high dimensional space. In: Proceeding of
international conference on data mining, pp 187–
194

http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_943
http://dx.doi.org/10.1007/978-1-4899-7687-1_192
http://dx.doi.org/10.1007/978-1-4899-7687-1_71
http://dx.doi.org/10.1007/978-1-4899-7687-1_144
http://dx.doi.org/10.1007/978-1-4899-7687-1_431
http://dx.doi.org/10.1007/978-1-4899-7687-1_665

Propositionalization 1025

P

Megiddo N, Tamir A (1982) On the complexity of
locating linear facilities in the plane. Oper Res Lett
1:194–197

Parsons L, Haque E, Liu H (2004) Subspace clustering
for high dimensional data: a review. ACM SIGKDD
Explor Newslett 6(1):90–105

Procopiuc CM, Jones M, Agarwal PK, Murali TM
(2002) A Monte Carlo algorithm for fast projective
clustering. In: Proceeding of ACM SIGMOD inter-
national conference management of data, pp 418–
427

Prolog

Prolog is a declarative programming language
based on logic. It was conceived by French and
British computer scientists in the early 1970s.
A considerable number of public-domain and
commercial Prolog interpreters are available to-
day. Prolog is particularly suited for applications
requiring pattern matching or search. Prolog pro-
grams are also referred to as � logic programs.

In machine learning, classification rules for
structured individuals can be expressed using
a subset of Prolog. Learning Prolog programs
from examples is called � inductive logic pro-
gramming (ILP). ILP systems are sometimes –
but not always – implemented in Prolog. This
has the advantage that classification rules can be
executed directly by the Prolog interpreter.

Cross-References

�Clause
� First-Order Logic
� Inductive Logic Programming
�Logic Program

Recommended Reading

Colmerauer A, Kanoui H, Pasero R, Roussel P (1973)
Un système de communication homme-machine an
Français. Report, Groupè d’Intelligence Artificielle,
University d’Aix Marseille II, Luminy

Kowalski RA (1972) The predicate calculus as a pro-
gramming language. In: Proceedings of the interna-

tional symposium and summer school on mathemat-
ical foundations of computer science, Jablonna

Roussel P (1975) Prolog: Manual de reference
et d’utilization. Technical report, Groupe
d’Intelligence Artificielle, Marseille-Luminy

Property

�Attribute

Propositional Logic

Propositional logic is the logic of propositions,
i.e., expressions that are either true or false. Com-
plex propositions are built from propositional
atoms using logical connectives. Propositional
logic is a special case of predicate logic, where
all � predicates have zero arity; see the entry on
first-order logic for details.

Cross-References

� First-Order Logic
� Propositionalization

Propositionalization

Nicolas Lachiche
University of Strasbourg, Strasbourg, France

Abstract

Propositionalization is the process of explic-
itly transforming a � relational dataset into a
propositional dataset.

Definition

The input data consists of examples represented
by structured terms (cf. � learning from struc-
tured data), several predicates in �first-order
logic, or several tables in a relational database.
We will jointly refer to these as relational
representations. The output is an � attribute-
value representation in a single table, where

http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_490
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_653
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_686
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_923

1026 Propositionalization

each example corresponds to one row and
is described by its values for a fixed set of
attributes. New attributes are often called features
to emphasize that they are built from the original
attributes. The aim of propositionalization is to
preprocess relational data for subsequent analysis
by attribute-value learners. There are several
reasons for doing this, the most important of
which are to reduce the complexity and speed
up the learning, to separate modeling the data
from hypothesis construction, or to use familiar
attribute-value (or propositional) learners.

Motivation and Background

Most domains are naturally modeled by several
tables in a relational database or several classes
in an object-oriented language, for example, cus-
tomers and their transactions; molecules, their
atoms, and bonds; or patients and their exami-
nations. A proper relational dataset involves at
least two tables linked together. Typically, one
table of the relational representation corresponds
to the individuals of interest for the machine
learning task, and the other tables contain related
information that could be useful. The first table
is the individual or the primary table; the other
tables are complementary tables.

Example 1 Let us consider a simplified medical
domain as an example. This is inspired by a
real medical dataset (Tomečková et al. 2002). It
consists of four tables.

The patient table is the primary table. It con-
tains data on each patient such as the patient
identifier (pid), name, date of birth, height, job,
the identifier of the company where the patient
works, etc.

Patient

pid Name Birth Height Job Company . . .

I Smith 15/06/1956 1:67 Manager a . . .

II Blake 13/02/1968 1:82 Salesman a . . .
:::

:::
:::

:::
:::

::: . . .

The company table contains its name, its lo-
cation, and so on. There is a many-to-one rela-

tionship from the patient table to the company
table: A patient works for a single company, but
a company may have several employees.

Company

cid Name Location . . .

a Eiffel Paris . . .
:::

:::
::: . . .

The examination table contains the informa-
tion on all examinations of all patients. For each
examination, its identifier (eid), the patient iden-
tifier (pid), the date, the patient’s weight, whether
the patient smokes, his or her blood pressure, etc.
are recorded. Of course, each examination cor-
responds to a single patient, and a given patient
can have several examinations, i.e., there is a one-
to-many relationship from the patient table to the
examination table.

Examination

eid pid Date Weight Smokes BP . . .

1 I 10/10/1991 60 Yes 10 . . .

2 I 04/06/1992 64 Yes 12 . . .
:::

:::
:::

:::
:::

::: . . .

23 II 20/12/1992 80 Yes 10 . . .

24 II 15/11/1993 78 No 11 . . .
:::

:::
:::

:::
:::

::: . . .

Additional tests can be prescribed at each ex-
amination. Their identifiers (tid), corresponding
examinations (eid), names, values, and interpre-
tations are recorded in the additional test table.

Additional test

tid eid Date Name Value Interpretation

t237 1 19/10/1991 Red blood cells 35 Bad

t238 1 23/10/1991 Radiography Nothing Good
:::

:::
:::

:::
:::

:::

t574 2 07/06/1992 Red blood cells 43 Good
:::

:::
:::

:::
:::

:::

Propositionalization 1027

P

Several approaches exist to deal directly with
relational data, e.g., � inductive logic program-
ming, � relational data mining (Džeroski and
Lavrač 2001), or � statistical relational learning.
However relational hypotheses can be trans-
formed into propositional
expressions.

Generally, a richer representation language
permits the description of more complex con-
cepts; however, the cost of this representational
power is that the search space for learning greatly
increases. Therefore, mapping a relational rep-
resentation into a propositional one generally
reduces search complexity.

A second motivation of propositionalization
is to focus on the construction of features before
combining them into a hypothesis (Srinivasan
et al. 1996). This is related to � feature
construction and to the use of background
knowledge. One could say that proposition-
alization aims at building an intermediate
representation of the data in order to simplify the
hypothesis subsequently found by a propositional
learner.

A third motivation is pragmatic. Most avail-
able machine learning systems deal with propo-
sitional data only, but tend to include a range
of algorithms in a single environment, whereas
relational learning systems tend to concentrate
on a single algorithm. Propositional systems are
therefore often more versatile and give users the
possibility to work with the algorithms they are
used to.

Solutions

There are various ways to propositionalize
relational data consisting of at least two tables
linked together through a relationship. We will
first focus on a single relationship between two
tables. Most approaches can then iteratively
deal with several relationships as explained
below.

Propositionalization mechanisms depend on
whether that relationship is functional or nonde-
terminate. This distinction explains most com-
mon mistakes made by newcomers.

Functional Relationship (Many-to-One,
One-to-One)
When the primary table has a many-to-one or
one-to-one relationship to the complementary ta-
ble, each row of the primary table links to one
row of the complementary table. A simple join
of the two tables results in a single table where
each row of the primary table is completed with
the information derived from the complementary
table.

Example 2 In our simplified medical domain,
there is a many-to-one relationship from each pa-
tient to his or her company. Let us focus on those
two tables only. A join of the two tables results in
a single table where each row describes a single
patient and the company he or she works for.

Patient and his/her company

pid Name Birth Height Job cid Company Location . . .

I Smith 15/06/ 1.67 Mana- a Eiffel Paris . . .

1956 ger

II Blake 13/02/ 1.82 Sales- a Eiffel Paris . . .

1968 man
:::

:::
:::

:::
:::

:::
:::

::: . . .

The resulting table is suitable for any attribute-
value learner

Nondeterminate Relationship
(One-to-Many, Many-to-Many)
Propositionalization is less trivial in a nonde-
terminate context, when there is a one-to-many
or many-to-many relationship from the primary
table to the complementary table, i.e., when one
individual of the primary table is associated with
a set of rows of the complementary table.

A propositional attribute is built by apply-
ing an aggregation function to a column of the
complementary table over a selection of rows.
Of course a lot of conditions can be used to
select the rows. Those conditions can involve
other columns than the aggregated column. Any
aggregation function can be used, e.g., to check
whether the set is not empty, to count how many
elements there are, to find the mean (for numeri-
cal) or the mode (for categorical) values, etc.

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_100405
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_100

1028 Propositionalization

Example 3 In our simplified medical domain,
there is a one-to-many relationship from the pa-
tient to his or her examinations. Let us focus
on those two tables only. Many features can
be constructed. Simple features are aggregation
functions applied to a scalar (numerical or cate-
gorical) column. The number of occurrences of
the different values of every categorical attributes
can be counted. For instance, the f60 feature in
the table below counts in how many examinations
the patient stated he or she smoked. The maxi-
mum, minimum, average, and standard deviation
of every numerical column can be estimated,
e.g., the f84 and f85 features in the table below,
respectively, estimate the average and the maxi-
mum blood pressure of the patient over his or her
examinations. The aggregation functions can be
applied to any selection of rows, e.g., the f135
feature in the table below estimates the average
blood pressure over the examinations when the
patient smoked.

Patient and his/her examinations

pid Name . . . f60 . . . f84 f85 . . . f135 . . .

I Smith . . . 2 . . . 11 12 . . . 11 . . .

II Blake . . . 1 . . . 10.5 11 . . . 10 . . .
:::

::: . . .
::: . . .

:::
::: . . .

::: . . .

From this example it is clear that nondeterminate
relationships can easily lead to a combinatorial
explosion of the number of features.

Common Mistakes and Key Rules to Avoid
Them
Two mistakes are frequent when machine learn-
ing practitioners face a propositionalization prob-
lem, i.e., when they want to apply a propositional
learner to an existing relational dataset (Lachiche
2005).

The first mistake is to misuse the (universal)
join. Join is valid in a functional context, as ex-
plained earlier. When applied to a nondeterminate
relationship, it produces a table where several
rows correspond to a single individual, leading
to a multiple-instance problem (Dietterich et al.
1997) (cf. �multi-instance learning).

Example 4 In our simplified medical domain,
there is a one-to-many relationship from the pa-
tient table to the examination table. If a join is
performed, each row of the examination table is
completed with the information on the examined
patient, i.e., there are as many rows as examina-
tions.

Examination and its patient

eid Date Weight Smokes BP . . . pid Name . . .

1 10/10/1991 60 Yes 10 . . . I Smith . . .

2 04/06/1992 64 Yes 12 . . . I Smith . . .
:::

:::
:::

:::
::: . . .

:::
::: . . .

23 20/12/1992 80 Yes 10 . . . II Blake . . .

24 15/11/1993 78 No 11 . . . II Blake . . .
:::

:::
:::

:::
::: . . .

:::
::: . . .

In this example, the joined table deals with
the examinations rather than with the patients.
An attribute-value learner could be used to learn
hypotheses about the examinations, not about the
patients

This example reinforces a key representation
rule in attribute-value learning: “Each row
corresponds to a single individual, and vice-
versa.”

The second mistake is a meaningless column
concatenation. This is more likely when a
one-to-many relationship can be misinter-
preted as several one-to-one relationships,
i.e., when the practitioner is led to think
that a nondeterminate relationship is actually
functional.

Example 5 In our simplified medical domain,
let us assume that the physician numbered the
successive examinations (1, 2, 3, and so on) of
each patient. Then given that each patient has
a first examination, it is tempting to consider
that there is a functional relationship from the
patient to his or her “first” examination, “second”
examination, and so on. This would result in
a new patient table with concatenated columns:
weight at the first examination, whether he or she
smoked at the first examination, . . . , weight at the
second examination, etc. This could easily lead

http://dx.doi.org/10.1007/978-1-4899-7687-1_955

Propositionalization 1029

P

Patient and his/her examinations (incorrect representa-
tion!)

pidName. . .
“First” examination“Second” examination. . .

WeightSmokes. . . WeightSmokes.

I Smith. . . 60 Yes . . . 64 Yes

II Blake . . . 80 Yes . . . 78 No
:::

::: . . .
::: . . .

:::
:::

:::

to an attribute-value learner generalizing over a
patient’s weight at their i th examination, which
is very unlikely to be meaningful

Two aspects should warn the user of such
a representation problem: first, the number of
columns depends on the dataset, and as a con-
sequence, lots of columns are not defined for all
individuals. Moreover, when the absolute num-
bering does not make sense, there is no functional
relationship. Such a misunderstanding can be
avoided by remembering that in an attribute-value
representation, “each column is uniquely defined
for each row.”

Further Relationships
The first complementary table can itself have a
nondeterminate relationship with another com-
plementary table and so on. Two approaches are
available.

A first approach is to consider the first com-
plementary table, the one having a one-to-many
relationship, as a new primary table in a recursive
propositionalization.

Example 6 In our simplified medical domain, the
examination table has a one-to-many relationship
with the additional test table. The proposition-
alization of the examination and additional test
tables will lead to a new examination table com-
pleted with new features, such as a count of how
many tests were bad.

Examination and its additional tests

eid pid Date Weight Smokes BP . . . Bad tests . . .

1 I 10/10/1991 60 Yes 10 . . . 1 . . .

2 I 04/06/1992 64 Yes 12 . . . 0 . . .
:::

:::
:::

:::
:::

::: . . .
::: . . .

Then the propositionalization of the patient
table and the already propositionalized examina-
tion tables is performed, producing a new patient
table completed with new features such as the
mean value for each patient of the number of bad
tests among all his or her examinations (f248)

Patient, his/her examinations and additional tests

pid name . . . f60 . . . f248 . . .

I Smith . . . 2 . . . 1 . . .
:::

::: . . .
::: . . .

::: . . .

It is not necessarily meaningful to aggregate
at an intermediate level. An alternative is to
join complementary tables first and apply the
aggregation at the individual level only. A variant
consists in replacing the join by a propagation
of the identifier, i.e., adding the identifier of the
individual into all related tables. Both lead to a
kind of “star schema” where the individual is
directly linked to all complementary tables.

Example 7 In our simplified medical domain,
it is perhaps more interesting to first relate all
additional tests to their patients, then aggregate
on similar tests. First the complementary tables
are joined

Additional test and its examination

tid Name Value InterpretationeidpidWeight. . .

t237Red blood
cells

35 Bad 1 I 60 . . .

t238Radiography NothingGood 1 I 60 . . .
:::

:::
:::

:::
:::

:::
::: . . .

t574Red blood
cells

43 Good 2 I 64 . . .

:::
:::

:::
:::

:::
:::

::: . . .

Let us emphasize the difference with
the propositionalized examination and its
additional tests table of Example 6

1030 Propositionalization

There is a one-to-many relationship from the
patient table to that new additional test and its
examination table. Aggregation functions can be
used to build features such as the minimum per-
centage of red blood cells (f352)

Patient, his/her additional tests and examinations

pid Name . . . f60 . . . f352 . . .

I Smith . . . 2 . . . 35 . . .
:::

::: . . .
::: . . .

::: . . .

Finally, different propositionalization ap-
proaches can be combined, by a simple join.

Future Directions

Propositionalization explicitly aims at leaving
attribute selection to the propositional learner ap-
plied afterward. The number of potential features
is large. No existing propositionalization system
is able to enumerate all imaginable features. His-
torically existing approaches have focused on
a subset of potential features, e.g., numerical
aggregation functions without selection (Knobbe
et al. 2001) and selection based on a single
elementary condition and existential aggregation
(Flach and Lachiche 1999; Kramer et al. 2001).
Most approaches can be combined to provide
more features. The propositionalization should be
guided by the user.

Propositionalization is closely related to
knowledge representation. Specific representa-
tional issues require appropriate propositionaliza-
tion techniques, e.g., Perlich and Provost (2006)
introduce new propositionalization operators to
deal with high-cardinality categorical attributes.
New data sources, such as geographical or
multimedia data, will need an appropriate
representation and perhaps appropriate propo-
sitionalization operators to apply off-the-shelf
attribute-value learners.

Propositionalization raises three fundamental
questions. The first question is related to knowl-
edge representation. That question is whether the
user should adapt to existing representations, and
accept a need to propositionalize, or whether data
can be mined from the data sources, requiring
the algorithms to be adapted or invented. The
second question is whether propositionalization
is needed. Propositionalization explicitly allows
the user to contribute to the feature elaboration
and invites him or her to guide the search,
thanks to that language bias. It separates feature
elaboration from model extraction. Conversely,
relational data mining techniques automate the
elaboration of the relevant attributes during
the model extraction, but at the same time
leave less opportunity to select the features
by hand.

The third issue is one of efficiency. A more ex-
pressive representation necessitates a more com-
plex search. Relational learning algorithms face
the same dilemma as attribute-value learning in
the form of a choice between an intractable search
in the complete search space and an ad hoc
heuristic/search bias (cf. � search bias). They
only differ in the size of the search space (cf.
� hypothesis space). Propositionalization is con-
cerned with generating the search space. Gener-
ating all potential features is usually impossible.
So practitioners have to constrain the proposi-
tionalization, e.g., by choosing the aggregation
functions, the complexity of the selections, etc.;
by restricting the numbers of operations; and so
on. Different operators fit different problems and
might lead to differences in performance (Krogel
et al. 2003).

Cross-References

�Attribute
� Feature Construction in Text Mining
� Feature Selection
� Inductive Logic Programming
�Language Bias

http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_100
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_440

Pruning 1031

P

�Learning from Structured Data
�Multi-instance Learning
�Relational Learning
� Statistical Relational Learning

Recommended Reading

Dietterich TG, Lathrop RH, Lozano-Pérez T(1997)
Solving the multiple-instance problem with axis-
parallel rectangles. Artif Intell 89(1–2):31–71

Džeroski S, Lavrač N (eds) (2001) Relational data
mining. Springer, New York

Flach P, Lachiche N (1999) 1BC: a first-order Bayesian
classifier. In: Džeroski S, Flach P (eds) Proceedings
of the ninth international workshop on inductive
logic programming (ILP’99). Volume 1634 of lec-
ture notes in computer science. Springer, pp 92–
103

Knobbe AJ, de Haas M, Siebes A (2001) Propo-
sitionalisation and aggregates. In: Proceedings
of the sixth European conference on principles of
data mining and knowledge discovery. Volume 2168
of lecture notes in artificial intelligence. Springer,
pp 277–288

Kramer S, Lavrač N, Flach P (2001) Proposi-
tionalization approaches to relational data mining.
In: Džeroski S, Lavrač N (eds) Relational data
mining. Springer, New York, chap 11, pp 262–
291

Krogel M-A, Rawles S, Železný F, Flach PA, Lavrač
N, Wrobel S (2003) Comparative evaluation of
approaches to propositionalization. In: Horváth T,
Yamamoto A (eds) Proceedings of the thirteenth
international conference on inductive logic pro-
gramming. volume 2835 of lecture notes in artificial
intelligence. Springer, pp 197–214

Lachiche N (2005) Good and bad practices in propo-
sitionalisation. In: Bandini S, Manzoni S (eds)
Proceedings of advances in artificial intelligence,
ninth congress of the Italian association for artificial
intelligence (AI*IA’05). Volume 3673 of lecture
notes in computer science. Springer, pp 50–61

Perlich C, Provost F (2006) Distribution-based ag-
gregation for relational learning with identifier at-
tributes. Mach Learn 62:62–105

Srinivasan A, Muggleton S, King RD, Stenberg M
(1996) Theories for mutagenicity: a study of first-
order and feature based induction. Artif Intell 85(1–
2):277–299

Tomečková M, Rauch J, Berka P (2002) Stulong –
data from longitudinal study of atherosclerosis risk
factors. In: Berka P (ed) Discovery challenge
workshop notes, ECML/PKDD’02.

Prospective Evaluation

Prospective evaluation is an approach to
�Out-Of-Sample Evaluation whereby a model
learned from historical data is evaluated by
observing its performance on new data as they
become available. Prospective evaluation is likely
to provide a less biased estimation of future
performance than evaluation on historical data.

Cross-References

�Algorithm Evaluation

Pruning

Johannes Fürnkranz
Knowledge Engineering Group, TU Darmstadt,
Darmstadt, Deutschland
Department of Information Technology,
University of Leoben, Leoben, Austria

Abstract

Pruning describes the idea of avoiding
�Overfitting by simplifying a learned
concept, typically after the actual induction
phase.

Method

The term originates from decision tree learning,
where the idea of improving the decision tree by
cutting some of its branches may be viewed as an
analogy to the concept of pruning in gardening.

Commonly, one distinguishes two types of
pruning:

Pre-pruning monitors the learning process and
prevents further refinements if the current hy-
pothesis becomes too complex.

Post-pruning first learns a possibly overfitting
hypothesis and then tries to simplify it in a
separate learning phase.

http://dx.doi.org/10.1007/978-1-4899-7687-1_458
http://dx.doi.org/10.1007/978-1-4899-7687-1_955
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_786
http://dx.doi.org/10.1007/978-1-4899-7687-1_621
http://dx.doi.org/10.1007/978-1-4899-7687-1_18
http://dx.doi.org/10.1007/978-1-4899-7687-1_960

1032 Pruning Set

Pruning techniques are particularly important
for state-of-the-art �Decision Tree and �Rule
Learning algorithms (see there for more details).

The key idea of pruning is essentially the same
as �Regularization in statistical learning, with
the key difference that regularization incorporates
a complexity penalty directly into the learning
heuristic, whereas pruning uses a separate prun-
ing criterion or pruning algorithm.

Cross-References

�Decision Tree
�Regularization
�Rule Learning

Pruning Set

Definition

A pruning set is a subset of a � training set
containing data that are used by a learning sys-
tem to evaluate models that are learned from a
� growing set.

Cross-References

�Data Set

http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_718
http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_357
http://dx.doi.org/10.1007/978-1-4899-7687-1_196

	P
	PAC Identification
	PAC Learning
	Synonyms
	Motivation and Background
	Definition
	Remarks

	The Finite Case
	The Infinite Case
	Variations
	Weak Learning
	Relations to Other Learning Models
	Cross-References
	Recommended Reading

	PAC-MDP Learning
	Pairwise Classification
	Parallel Corpus
	Part of Speech Tagging
	Partially Observable Markov Decision Processes
	Synonyms
	Definition
	Motivation and Background
	Structure of Model and Solution Algorithms
	POMDP Model
	Policies
	Value Functions
	Solution Algorithms
	Forward Search
	Value Iteration
	Policy Search
	Related Work

	Cross-References
	Recommended Reading

	Particle Swarm Optimization
	The Canonical Particle Swarm
	The Social–Psychological Metaphor
	The Population Topology
	Vmax and Convergence
	Step Size and Consensus
	The Fully Informed Particle Swarm (FIPS)

	Generalizing the Notation
	The Evolving Paradigm
	Binary Particle Swarms
	Alternative Probability Distributions

	Recommended Reading

	Partitional Clustering
	Synonyms
	Definition
	Major Algorithms
	Cross-References
	Recommended Reading

	Passive Learning
	PCA
	PCFG
	Phase Transitions in Machine Learning
	Synonyms
	Definition
	Motivation and Background
	Relational Learning
	Relational Kernels and MIL Problems
	Multi-instance Learning: Background and Kernels
	The MI-SVM PT

	Propositional Learning and Sparse Coding
	Propositional Classification
	Propositional Regression

	Perspectives
	Recommended Reading

	Piecewise Constant Models
	Piecewise Linear Models
	Plan Recognition
	Polarity Learning on a Stream
	Policy Gradient Methods
	Definition
	Structure of the Learning System
	Expected Return
	Gradient Descent in Policy Space
	Finite Difference Gradients
	Likelihood Ratio Gradients

	Cross-References
	Recommended Reading

	Policy Search
	POMDPs
	POS Tagging
	Synonyms
	Definition
	Motivation and Background
	Statistical and Machine Learning Approaches to Tagging
	HMMs
	Transformation-Based Error-Driven Learning (Brill-Tagging)
	Other Supervised Learning Methods
	Cross-References
	Recommended Reading

	Positive Definite
	Positive Predictive Value
	Positive Semidefinite
	Synonyms
	Definition

	Posterior
	Posterior Probability
	Synonyms
	Definition
	Cross-References

	Post-pruning
	Definition
	Cross-References

	Postsynaptic Neuron
	Precision
	Synonyms
	Definition
	Cross-References

	Precision and Recall
	Definition
	Cross-References

	Predicate
	Cross-References

	Predicate Calculus
	Predicate Invention
	Definition
	Cross-References

	Predicate Logic
	Prediction with Expert Advice
	Predictive Software Models
	Predictive Techniques in Software Engineering
	Synonyms
	Introduction
	The Process of Applying ML to SE
	Applications of Predictive Modelsin SE
	Software Size Prediction
	Software Quality Prediction
	Software Cost Prediction
	Software Defect Prediction
	Software Reliability Prediction
	Software Reusability Prediction
	Other Applications

	Future Directions
	Recommended Reading

	Preference Learning
	Synonyms
	Motivation and Background
	Structure of the Learning System
	Learning from Object Preferences
	Learning from Label Preferences
	Other Settings
	Learning Utility Functions
	Learning Preference Relations

	Other Approaches
	Future Directions
	Cross-References
	Recommended Reading

	Pre-pruning
	Synonyms
	Definition
	Cross-References

	Presynaptic Neuron
	Principal Component Analysis
	Synonyms
	Definition

	Prior
	Prior Probability
	Synonyms
	Definition
	Cross-References

	Privacy-Preserving Data Mining
	Privacy-Related Aspects and Techniques
	Synonyms
	Definition
	Motivation and Background
	Theory/Solutions
	Basic Dimensions of Privacy Techniques
	Protecting Centralized Data
	Protecting the Model (Centralized Data)
	Distributed Data
	Evaluation

	Future Directions
	Recommended Reading

	Probabilistic Context-Free Grammars
	Synonyms
	Definition
	Derivation Process
	Probability Distribution
	Parsing Algorithm
	Learning
	Application to Bioinformatics
	Recommended Reading

	Probability Calibration
	Probably Approximately Correct Learning
	Process-Based Modeling
	Program Synthesis from Examples
	Programming by Demonstration
	Synonyms
	Definition
	Cross-References
	Recommended Reading

	Programming by Example (PBE)
	Programming by Examples
	Programming from Traces
	Projective Clustering
	Synonyms
	Definition
	Motivation and Background
	Theory
	Distance-Based Projective Clustering
	Density-Based Projective Clustering
	Algorithms
	Applications
	Data Indexing
	Pattern Discovery
	Data Compression
	Image Processing
	Document Processing
	DNA Microarray Analysis

	Principal Component Analysis
	Coresets
	Cross-References
	Recommended Reading

	Prolog
	Cross-References
	Recommended Reading

	Property
	Propositional Logic
	Cross-References

	Propositionalization
	Definition
	Motivation and Background
	Solutions
	Functional Relationship (Many-to-One, One-to-One)
	Nondeterminate Relationship (One-to-Many, Many-to-Many)
	Common Mistakes and Key Rules to Avoid Them
	Further Relationships

	Future Directions
	Cross-References
	Recommended Reading

	Prospective Evaluation
	Cross-References

	Pruning
	Method
	Cross-References

	Pruning Set
	Definition
	Cross-References

