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Abstract

Gaussian distributions are one of the most
important distributions in statistics. It is a con-
tinuous probability distribution that approxi-
mately describes some mass of objects that
concentrate about their mean. The probability
density function is bell shaped, peaking at the
mean. Its popularity also arises partly from
the central limit theorem, which says the av-
erage of a large number of independent and
identically distributed random variables is ap-
proximately Gaussian distributed. Moreover,
under some reasonable conditions, posterior
distributions become approximately Gaussian
in the large data limit. Therefore, the Gaussian
distribution has been used as a simple model
for many theoretical and practical problems in
statistics, natural science, and social science.

Synonyms

Normal distribution

© Springer Science+Business Media New York 2017

Definition

The simplest form of Gaussian distribution is the
one-dimensional standard Gaussian distribution,
which can be described by the probability density
function (pdf):
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p(x) = p(x) = le_ﬂ

where —— ensures the normalization, i.e.,

fR p(x)dx = 1. This distribution centers around
x = 0, and the rate of decay or “width” of the
curve is 1.

More generally, we can apply translation and
scaling to obtain a Gaussian distribution that
centers on arbitrary . € R and with arbitrary
width o > 0. The pdf is

) = 2o (F1)

o
o1 (x —p)?
= \/EO- exXp (— 202 ) .

Technically, p is called the mean and o is called
the variance. Obviously, u is the peak/mode of
the density and is also the mean and median of the
distribution due to the symmetry of the density
around p. If a random variable X has this density,
then we write

X ~ N(p,0?).
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Gaussian Distribution

Gaussian Distribution, Fig. 1 Gaussian probability density functions. (a) One dimension. (b) Two dimension

Example density functions are plotted in Fig. 1a.

As an extension to multivariate random vari-
ables, the multivariate Gaussian distribution is a
distribution on d-dimensional column vector x
with mean column vector p and positive definite
variance matrix 3. This gives

1
C @Qn)d2det'?

(—%(x— WS (x— u)) ,

p(xX|p, X) exp

and is denoted by X ~ A (u, X). An example pdf
for the two-dimensional case is plotted in Fig. 1b.

Motivation and Background

In history, Abraham de Moivre first introduced
this distribution in 1733 under the name “normal
distribution” (of course, he did not call it Gaus-
sian distribution since Gauss had not yet been
born). Then Laplace used it to analyze experi-
ment errors, based on which Legendre invented
the least squares in 1805. Carl Friedrich Gauss
rigorously justified it in 1809 and determined
the formula of its probability density function.
Finally this distribution is named the Gaussian
distribution after Gauss. The name “normal dis-
tribution” is also widely used, meaning it is a typ-
ical, common, or usual distribution. It was coined
by Peirce, Galton, and Lexis around 1875 and

made popular by Karl Pearson near the inception
of the twentieth century.

Theory/Solution

Canonical Form

The standard definition allows one to easily read
off the moments from the pdf. Another useful
parameterization is called canonical parameteri-
zation:

1 1
px|n, A)= exp ()]TX - EXT/\X —3 (d log(2m)

—logdet A + nT/\n)),

where n = X 7!p and A = 7' A is often
called precision. This parameterization is useful
when posing the distribution as a member of the
exponential family.

Cumulative Distribution Function

For one-dimensional Gaussian distribution, the
cumulative distribution function (cdf) is defined
by

D(x) = [_ o (t)dt.

Formally, it can be conveniently represented by
the error function and its complement:
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2 Yo
erf(x) = ﬁ/o e_t dt,

2 * _»
erfc(x) = 1 —erf(x) = —/ e dt.
NER

So

D(x) = % (1 + erf(%)) - %erfe (—%) .

The inverse of the cdf, called quantile function,
can be written as
O '(s) = V2erf ' (25 — 1), fors € (0,1).

The cdf error function erf() and its inverse
erf '() do not usually have a closed form and
can be computed numerically by functions like
ERF in Fortran and double erf (double
x) in C/C++. For the multivariate case, the
corresponding cdf is highly challenging to
compute numerically.

Moments

The first order moment is E[X] = pu, the variance
is Var[X] = X, and all higher order cumulants
are 0. Any central moments with odd terms are 0,
ie., E[ﬂlil(xi —ui)Pi] = O when )_; p; is odd.

Entropy and Kullback-Leibler Divergence

The differential entropy of multivariate Gaussian
is

mm=—4ﬂwmw®m
- %m ((2ne)d det 2) .

The Kullback-Leibler divergence from N (1,
%) to N(p,. o) is

KL(N(IM! Z1)||-/\[(l‘v2’ %))

1 ( det 2>
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Properties Under Affine Transform
Let X ~ N(u,X). Suppose A is a linear trans-
form from R¥ to RS and ¢ € RS, then

AX+c¢ ~N(Ap + ¢, ATAT)
E[(x —p)T A(x — p)] = rAS
Var[(x — ) TA(X — p)] = 2rATAY

where the last two relations require s = d.

Conjugate Priors

Conjugate  priors  where  discussed in
<the entry on Prior Probabilitiess
(Springer formatters, we want to reference this
entry in-line, please format appropriately.). With
known variance, the conjugate prior for the mean
is again a multivariate Gaussian. With known
mean, the conjugate prior for the variance matrix
is the Wishart distribution, while the conjugate
prior for the precision matrix is the Gamma
distribution.

Parameter Estimation

Given n iid observations Xi, ..., X,, the maxi-
mum likelihood estimator of the mean is simply
the sample mean

S| =

p=X=

n
> X
i=1

The maximum likelihood estimator of the covari-
ance matrix is

)

ln . V . vy T
;Zm—mm—n.

i=1

This estimator is biased, and its expectation is
E[X] = ”T_IE. An unbiased estimator is

S ==

! " . % . vy T
n_lg}&—xmn—m.

Distributions Induced by the Gaussian
If X ~ N(0,), then X " X~'X has a Gamma
distribution Gamma(d /2, 2).
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Let X1, X2 ~ N(0,1) and they are indepen-
dent. Their ratio is the standard Cauchy distribu-
tion, X1/ X, ~ Cauchy(0, 1).

Given n independent univariate random vari-
ables X; ~ N(0,1), the random variable Z :=

N Xl.2 has a y distribution with degree of

freedom n. And Z? has a y? distribution with
degree of freedom n.

Using Basu’s theorem or Cochran’s theorem,
one can show that the sample mean of X, ..., X,
and the sample standard deviation are indepen-
dent. Their ratio

Vi [ =+ (X — X))

l__)? LXi+ ...+ Xn)
s

has the student’s 7-distribution with degree of
freedom n — 1.

Applications

This section discusses some applications and
properties of the Gaussian.

Central Limit Theorem

Given n independent and identically distributed
observations drawn from a distribution whose
variance is finite, the average of the observations
is asymptotically Gaussian distributed when n
tends to infinity. Under certain conditions, the
requirement for identical distribution can be re-
laxed, and asymptotic normality still holds.

Approximate Gaussian Posterior

Consider n independent and identically dis-
tributed observations drawn from a distribution
p(X;]0), so the data setis X = (X;,...,X,)".
Under certain conditions, saying roughly that
the posterior on 6 converges in probability to a
single interior point in its domain as n — oo,
the posterior for @ is approximately Gaussian for

large n, 0|X =~ N(@\,I (5)), where 8 is the
maximum likelihood or aposterior value for 6
and I (0) is the observed (Fisher) information,

Gaussian Distribution

the negative of the second derivative (Hessian) of
the likelihood w.r.t. the parameters 6.

The Gaussian approximation to the posterior,
while a poor approximation in many cases, serves
as a useful insight into the nature of asymptotic
reasoning. It is justified based on the multidimen-
sional Taylor expansion of the log likelihood at
the maximum likelihood or a posterior value, to-
gether with its asymptotic convergence property.

3-0 Rule

For standard Gaussian distribution, 99.7 % of the
probability mass lie within the three standard
deviations [-30, 30], i.e., [°7 ¢ (x)dx > 0.997.
About 95 % mass lies within two standard devia-
tions and about 68 % within one standard devia-
tion. This empirical rule is called 3-o0 rule and can
be easily extended to general one-dimensional
Gaussian distributions.

Combination of Random Variables

Let d-dimensional random variables X; ~
N(p;, Z;). If they are independent, then for any
set of linear transforms A4; from RY to RS , We
have Zi AiX,' ~ N(Zl A,'[Li, Zi AiEiAIT).
The converse is also true by the Cramer’s
theorem: if X; are independent and their sum
> ; X; is Gaussian distributed, then all X; must
be Gaussian.

Correlations and Independence

In general, independent random variables must
be uncorrelated but not vice versa. However, if
a multivariate random variable is jointly Gaus-
sian, then any uncorrelated subset of the random
variables must be independent. Notice the pre-
condition of joint Gaussian. It is possible for two
Gaussian random variables to be uncorrelated but
not independent, for the reason that they are not
jointly Gaussian. For example, let X ~ A(0,1)
andY = —X if |X| <c,and Y = X if | X| > c.
By properly setting ¢, ¥ and X can be made
uncorrelated but obviously not independent.

Marginalization, Conditioning, and
Agglomeration

Suppose the vector x can be written as (x/ ,x) )T
and correspondingly the mean and covariance
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matrix can be written as

"y X 212)
= s E =
f= () == (35
Then the marginal distribution of x; is Gaussian

N (i1, 211), and the conditional distribution of
x; conditioned on X, is N(/L1|2, X1}2), where

Rip=p + T1E5 (X2 — 1y),
Xip =X — T35 ot

Suppose the multivariate Gaussian vector X; ~
N (1, 211) and a vector X, is a linear func-
tion of x; with Gaussian noise, i.e., X|X; ~
N(AX| + gy, Z12). Then the joint distribution
of (x;'—, x;r)—'— is also Gaussian:

X 7y
N ()
(XZ) Apy+ Ry
(211 +ATEA —ATEn))
—ZpA PP '
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Recommended Reading

For a complete treatment of Gaussian dis-
tributions from a statistical perspective, see
Casella and Berger (2002), and Mardia et al.
(1979) provides details for the multivariate case.
Bernardo and Smith (2000) shows how Gaussian
distributions can be used in the Bayesian theory.
Bishop (2006) introduces Gaussian distributions
in Chap. 2 and shows how it is extensively used in
machine learning. Finally, some historical notes
on Gaussian distributions can be found at Miller
et al., especially under the entries “NORMAL”
and “GAUSS.”
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Synonyms

Expectation propagation; Kernels; Laplace esti-
mate; Nonparametric Bayesian

Definition

Gaussian processes generalize multivariate
Gaussian distributions over finite-dimensional
vectors to infinite dimensionality. Specifically, a
Gaussian process is a stochastic process that has
Gaussian-distributed finite-dimensional marginal
distributions, hence the name. In doing so, it
defines a distribution over functions, i.e., each
draw from a Gaussian process is a function.
Gaussian processes provide a principled,
practical, and probabilistic approach to inference
and learning in kernel machines.

Motivation and Background

Bayesian probabilistic approaches have many
virtues, including their ability to incorporate
prior knowledge and their ability to link related
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Gaussian Process, Fig. 1 (a) Ten observations (one-
dimensional input x and output y variables) generated
from a » Linear Regression model y = —3x + 2 + €
with Gaussian noise €. The task is to learn the functional
relationship between x and y. Assuming the parametric
model y =wx + wy + €, ie., = (w;,w»), is the
vector of parameters, and the prior distribution over w is
a two-dimensional Gaussian as shown in (b), the posterior
distribution over @ can be estimated as shown in (c). Its

sources of information. Typically, we are given
a set of data points sampled from an underlying
but unknown distribution, each of which includes
input x and output y, such as the ones shown
in Fig.la. The task is to learn a functional
relationship between x and y. Traditionally, in
a parametric approach, an assumption on the
mathematical form of the relationship such as
linear, polynomial, exponential, or a combination
of them needs to be chosen a priori. Subsequently,
weights (or parameters) are placed on each
of the chosen forms, and a prior distribution

Gaussian Process

T
-10 -5 0 5 10
X

mean (—2.9716, 1.9981) is close to the true parameters
(—3,2). The inference, however, was performed in an
ideal situation where in the relationship between x and y
was indeed linear. If the true relationship is not known in
advances and/or cannot easily be described using a finite
set of parameters, this approach may fail. For example,
in (d), infinite number of parameters might be required to
recover the functional relationship

is then defined over parameters. Thus, the
learning task is now reduced to the Bayesian
estimation over the parameters, cf. Fig. la—c.
This approach, however, may not always be
practical, as illustrated in Fig. 1d. To discover
the latent input—output relationship in Fig. 1d, we
might need infinitely many functional forms, and
this translates to infinite number of parameters.
Instead of working over a parameter space,
Gaussian processes place a prior directly on
the space of functions without parameterizing the
function, hence nonparametric. As will be shown,


http://dx.doi.org/10.1007/978-1-4899-7687-1_481
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the computational complexity of inference now
scales as the number of data points instead of the
number of parameters.

Several nonparametric Bayesian models have
been developed for different tasks such as den-
sity estimation, regression, classification, survival
time analysis, topic modeling, etc. Among the
most popular ones are » Dirichlet Processes and
Gaussian processes. Just as the Gaussian pro-
cess, a Dirichlet process has Dirichlet-distributed
finite-dimensional marginal distributions, hence
the name.

Gaussian processes were first formalized for
machine-learning tasks by Williams and Ras-
mussen (1996) and Neal (1996).

Theory

Formally, a Gaussian process is a stochastic pro-
cess (i.e., a collection of random variables) in
which all the finite-dimensional distributions are
multivariate Gaussian distributions for any finite
choice of variables. In general, Gaussian pro-
cesses are used to define a probability distribution
over functions f : X — R such that the set of
values of f evaluated at an arbitrary set of points
{xi}lNzl € X will have an N -variate Gaussian
distribution. Note that, for x; € R2, this may also
be known as a Gaussian random field.

Gaussian Process

A Gaussian distribution is completely specified
by its mean and covariance matrix. Similarly, a
Gaussian process is characterized by its mean
function m(x) := E[f(x)] and covariance
function

C(x,x") ;== E[(f(x) —=m(x))(f(x") —m(x")] .

We say a real process f(x) is a Gaussian
process distributed with a mean function m(x)
and a covariance function C(x,x’), written as
f ~ GP(m(x),C(x,x")).

The mean function can be arbitrarily chosen
(for convenience, it is often taken to be a zero
function since we can always center our observed
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outputs to have a zero mean), but the covari-
ance function must be a positive-definite function
to ensure the existence of all finite-dimensional
distributions. That is, the positive definiteness
of C(.,.) ensures the positive (semi-)definiteness
of all covariance matrices, X', appearing in the
exponent of the finite-dimensional multivariate
Gaussian distribution.

The attractiveness of Gaussian processes is
that they admit the marginalization property
(» Gaussian Distribution), i.e., if the Gaussian
process specifies (f(x1), f(x2)~N(u,X),
then it must also specify f(x;) ~N (i1, X11),
where X, is the relevant submatrix of X.
This means addition of novel points will not
influence the distribution of existing points.
The marginalization property allows us to
concentrate on distribution of only observed
data points with the rest of unobserved points
considered to be marginalized out; thus, a finite
amount of computation for inference can be
achieved.

Covariance Functions

A covariance function bears an essential role
in a Gaussian process model as its continuity
properties determine the continuity properties of
samples (functions) from the Gaussian process.
In the literature, covariance functions are also
known as positive (semi-)definite kernels or
Mercer’s kernels.

There are generally two types of covariance
functions: stationary and nonstationary. A
stationary covariance function is a function that
is translation invariant, i.e., C(x, x’) = D(x—x')
for some function D. The typical examples
include squared exponential, Matérn class, y-
exponential, exponential, and rational quadratic,
while examples of nonstationary covariance
functions are dot product and polynomial.

Squared exponential (SE) is a popular form of
stationary covariance function, and it corresponds
to the class of sums of infinitely many Gaussian-
shaped basis functions placed everywhere,
S ) = limpoo 5 277 vi exp (—((x — x7)/20)%)
with y; ~ N(0,1) Vi. This covariance function
is in the form of


http://dx.doi.org/10.1007/978-1-4899-7687-1_219
http://dx.doi.org/10.1007/978-1-4899-7687-1_107

538

Gaussian Process

Gaussian Process, Fig. 2 a 4
(a) Three functions drawn
at random from a Gaussian

process prior. (b) Three 9
random functions drawn
from the posterior, i.e., the

distribution learned with oo e

the prior from Fig. 2a and
the ten observations from .

Fig. 1d. In both plots, the s,

shaded area within two —9

solid lines shows the
pointwise mean plus and
minus two times the

standard deviation for each
input value, i.e., the 95 %
confidence region.
Animations, if they are b 4-

-10 -8 -6

visible, are generated using
the method described in
Hennig (2013)

-10 -8 -6

Clx.x') = ELf () /()]
— sexp (_% - xf||§) .

Typical functions sampled from this covariance
function can be seen in Fig.2a. This covariance
function has the characteristic length scale £ and
the signal variance s2 as free parameters (hyper-
parameters). The longer the characteristic length
scale, the more slowly varying the typical sam-
ple function is. The signal variance defines the
vertical scale of variations of a sample function.
Figure 3 illustrates prediction with SE covariance
function with varying characteristic length scale.
Several other covariance functions are listed in
Table 1.

For a comprehensive review on the field of co-
variance functions, we refer interested readers to
Abrahamsen (1992).

Applications

For Gaussian processes, there are two main
classes of applications: regression and classifi-
cation. We will discuss each of them in turn.

Regression

In a » Regression problem, we are interested
to recover a functional dependency y; =
f(xi) + € from N observed training data points
{(x;, y,-)}lN=1, where y; € R is the noisy observed
output at input location x; € R?. Traditionally,
in the Bayesian » Linear Regression model,
this regression problem is tackled by requiring
us to parameterize the latent function f by
a parameter weRH, f(x):= (¢(x),w) for
H fixed basis functions {¢y(x)}f_ . A prior
distribution is then defined over parameter w. The
idea of the Gaussian process regression (in the


http://dx.doi.org/10.1007/978-1-4899-7687-1_716
http://dx.doi.org/10.1007/978-1-4899-7687-1_481
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Gaussian Process, Fig. 3 The Gaussian process predic-
tion with the SE kernel. (a) Mean of the prediction distri-
bution with length scale 1.0 and signal variance 1.0 (the
hyperparameters of the original process used to generate

the data in Fig. 1). The other two plots show the prediction
setting of the length scale: (b) longer (3.0) and (c) shorter

10

(0.1). In all plots, the 95 % confidence region is shown

Gaussian Process, Table 1 Examples of covariance functions. ., denotes the set of hyperparameters

Name

Squared exp. (SE)
Matérn class
y-exponential
Exponential

Rational quadratic

Dot product
Polynomial

C(x,x")
s2exp (—5bs llx — x'I13)

-V —x/ v
Fay () K

0(30\/
{s, 4}

{v, £}

exp(—(|x — x’|/£)¥), with0 <y <=2 {{}

exp (7_”@_)”)

N
(1 + szazcz\lz)
o2 {x,x") + o}
({x,x") +02)?

£}

{o, £}
{aw’ GC}

{oc}

Remark

Strong smoothness assumption

Less smooth than SE
Includes both Exp. and SE

v = 1/2 in the Matérn class

An infinite sum of SE

Effective for
classification
grayscale input

high-dimensional
with  binary or
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geostatistical literature, this is also called kriging;
see, e.g., Krige 1951; Matheron 1963) is to place
a prior directly on the space of functions without
parameterizing the function (vide Motivation and
Background).

Likelihood Function and Posterior Distribution
Assuming independent and normally distributed
noise terms, ¢; "% A(0, o2...), the likelihood
model on an output vector ¥ € RY and an input
matrix X € RV*? will be

N
p(Y1 fx) =] pilxi. f)

i=1

= N(Y| vaanzoiseI)7

with fx = (f(x1)..... f(xy))T be an N-
dimensional vector of function values at N input
locations x;. That is, the data likelihood is dis-
tributed according to a Gaussian distribution with
the function values evaluated at training input
locations as its mean and the variance of the noise
terms as its variance.

Placing a (zero mean) Gaussian process prior
over functions

f ~GP(m(x) = 0,k(x,x)). o))

will lead us to a Gaussian process posterior (this
form of posterior process is described in the next
section):

f1X, Y ~ gp(mpost(x)
=k(x,X)[K + 02, 1Y, Kpost(x, x)

=k(x,x") —k(x, X)[K + 02 1]k, X)).
2

noise

In the above equations, K € RV*V denotes the
Gram matrix with elements K;; = k(x;,x;), and
k(x, x’) is the kernel function. The term k(x, X)
denotes a kernel function with one of the inputs
fixed at training points.

Gaussian Process

Predictive Distribution

The final goal in regression is to make an output
prediction for a novel input x., given a set of
input—output training points. By the marginaliza-
tion property, instead of working with a prior over
infinite-dimensional function spaces as in (1), we
can concentrate on the marginal distribution over
the training inputs:

fx ~ N, K). 3)

Subsequently, the marginal distribution over
training outputs (conditioned on inputs) can be
computed via

p(Y|X) = f p(Y] fo)p(f)df

=N, K + op. 1) 4)
The above integration is computed by using the
standard result for the convolution of two Gaus-
sian distributions (» Gaussian Distribution).
Therefore, given inputs X, the joint distribu-
tion over outputs Y and the latent function fx is
given by

p(Y. fx|X) = N(0.C), ®)

where C € RCN)*C@N) g the joint covariance
matrix. We can partition this joint covariance
matrix as follows:

C = K+O—r?0ise]K
K K

The noise variance appears only at the diagonal
elements of the covariance matrix C; this is
due to the independence assumption about the
noise. Using a standard Gaussian property on
computing conditional distribution from a joint
Gaussian distribution (» Gaussian Distribution),
the Gaussian posterior distribution can be seen
to admit the following form: p(fx|X,Y) =
N(usy, Xy, with the mean pr, = K(K +
02,:])”'Y and the covariance X, = K —
K(K +o02, I)'K.

From the posterior distribution, we can com-
pute the predictive distribution on the new output


http://dx.doi.org/10.1007/978-1-4899-7687-1_107
http://dx.doi.org/10.1007/978-1-4899-7687-1_107
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y* at an input location x*, as follows:

Palin X.Y) = / POal fuoxe)
x / p(fl f)p(fx|X. V)d fxd fu. (6)

The p(f«|fx) is a conditional multivariate
Gaussian with mean 7, | 7, = k}’x* K~ fx and
variance af’*lfx = k(Xx, Xx) — k;';’x* K 'kx .
due to the GP marginalization property, where
the vector kyx x, € R¥ has elements k(x;, x4)
fori = 1,...,N and T denotes a transpose
operation. Equation (6) is a general equation
for computing the predictive distribution
in a Gaussian process framework and is
applicable, among others, for both regression
and classification settings. For regression,
since all the terms are Gaussians, the inner
integration [ p(f«|fx)p(fx|X.Y)dfx is a
Gaussian with mean p s, = k;,x* K 'y, and
variance of,* = k(Xx, Xs) — k;,x* K 'kx x, +
k;’x*K_lZ’fXK_lkx,x*. Subsequently, the
outer integration [ N'(fx, 02 JN (i £, 0/2,*)d S
is also a Gaussian, and therefore the above
p(V«|x«, X,Y) is a Gaussian distribution, and
it is in the form of

P(elxa, X, Y) = N (1, 07), (7
with

fx =k, (K + 0py . 1)7'Y, ®)

oise
02 = k(Xs, Xx)

- k;,x* (K + Gr%oisel)_lkX,x* + Ur%oise' )]

Note that (8) and (9) are the mean function and
the covariance function of the posterior process
in (2) for any novel inputs. The only difference
is the additional term anzoise, since there exists
observation noise €, such that y, = fx + €.

Point Prediction

The previous section has shown how to
compute a predictive distribution for outputs
Vs« associated with the novel test inputs x.. To
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convert this predictive distribution into a point
prediction, we need the notion of a loss function,
L(Ytrues Yprediction)- This function specifies the loss
incurred for predicting the value yprediction, While
the true value is Y. Thus, the optimal point
prediction can be computed by minimizing the
expected loss as follows:

Yoptimal | Xy = argmin
Yprediction €R

/ L(yx, yPrediction)

XPp(|xs, X, Y )dys. (10)

For a squared loss function (or any other
symmetric loss functions) and predictive distribu-
tion (7), the solution to the above equation is the
mean of the predictive distribution, i.e.,

yoptimal|x* = Ey*~p(y*|x*,X,Y)[y*] = Mx.

The above Gaussian process regression de-
scription is known as a function space view in
the literature (Rasmussen and Williams 2006).
Equivalently, a Gaussian process regression can
also be viewed from the traditional Bayesian
linear regression with a possibly infinite num-
ber of basis functions ¢(x) and with a zero
mean and arbitrary positive-definite covariance
matrix Gaussian prior on the parameter w; see,
e.g., Rasmussen and Williams (2006).

Classification

Gaussian process models can also be applied
to classification problems. In a probabilistic ap-
proach to classification, the goal is to model
posterior probabilities of an input point x; be-
longing to one of 2 classes, y; € {l,...,Q}.
These probabilities must lie in the interval [0, 1];
however, a Gaussian process model draws func-
tions that lie on (—o0, 00). For the binary clas-
sification (2 = 2), we can turn the output of a
Gaussian process into a class probability using
an appropriate nonlinear activation function. In
the following, we will show this for the case of
binary classification. For the more general cases,
see, e.g., Rasmussen and Williams (2006).
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Likelihood Function and Posterior Distribution

In a regression problem, a Gaussian likelihood
is chosen and combined with a Gaussian process
prior, which leads to a Gaussian posterior process
over functions where in all required integrations
remain analytically tractable. For classification,
however, Gaussian likelihood is not the most
suitable owing to the discreteness nature of the
class labels. The most commonly used likelihood
functions are

1
pil fixi) = m or
J’ifx,-
pOil fixi) = /_ N, )dr
= (pO,l(yifxi)’ (11)

known as logistic and cumulative Gaussian like-
lihood functions, respectively. Assuming that the
class labels (conditioned on f) are generated
independent and identically distributed, the joint
likelihood over N data points can be expressed as
p(Y| fx) = [T/, p(3i| f. x1). By Bayes’ rule,
the posterior distribution over latent functions
is given by p(/xIX.Y) = At
This posterior is no longer analytically tractable
(due to intractable integration in the denomina-
tor), and an approximation is needed.

There are several approximation methods to
handle intractability of the inference stage in the
Gaussian process classification such as Laplace
approximation, expectation propagation, varia-
tional bounding, and MCMC, among others (see
Nickisch and Rasmussen (2008) for a compre-
hensive overview of approximate inference in
binary Gaussian process classification). Most of
the methods (if not all) approximate the non-
Gaussian posterior with a tractable Gaussian dis-
tribution. We describe in detail the straightfor-
ward Laplace approximation method, but note
that the more complicated expectation propaga-
tion (» Expectation Propagation) is almost al-
ways the method of choice unless the compu-
tational budget is very tight (Nickisch and Ras-
mussen 2008).

Laplace method approximates the non-
Gaussian posterior with a Gaussian one by
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performing a second-order Taylor expansion
of the log posterior, log p(fx|X,Y) at the
maximum point of the posterior

p(fxIX.Y) ~ p(fx|X,Y) = N(fx, H™Y),
(12)

where fAX = argmaxs, log p(fx|X,Y) and
H = —VVlogp (fX|X’Y)|fX=fX is the
Hessian of the negative log posterior at the
maxima. Since the denominator of the Bayes’
theorem is independent of the latent function, the
mode of the posterior can be computed instead
from the log un-normalized posterior:

V(fx) =logp(Y| fx) +1logp(fx). (13)

with the expression for p( fx) given in (3). Com-
putation of the mode requires us to evaluate the
gradient of W( fx) which is given as

VU(fx)=Viogp(Y| fx)— K" fx. (14)

To find the stationary point, however, we cannot
simply set this gradient to zero as Vlog p(Y| f)
depends nonlinearly on fx. We need to resort
to an iterative scheme based on the Newton—
Raphson’s method with the updated equation
given by

Y = (VVU(fx) 'V (fx). (15)

and the Hessian given by

VVU(fx)=-W —K!, (16)

and W := —VVlogp(Y| fx) is a diagonal
matrix. It is important to note that if the likelihood
function p(Y|fx) is log-concave, the diagonal
elements of W are nonnegative, and the Hessian
in (16) is negative definite (since —K and its
inverse are negative definite by construction and
the sum of two negative-definite matrices is also
negative definite). Thus, W( fx) is concave and
has a unique maxima point.
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Predictive Distribution
The latent function fx plays the role of a nui-
sance function, i.e., we do not observe values
of fx itself, and more importantly, we are not
particularly interested in the values of fx. What
we are interested in is a class conditional pos-
terior probability, p(y« = +1]x«, X,Y), for a
novel input x,. We note that a class conditional
probability of a class label of not 1 is p(y« =
—1x, X, Y)=1—=p(ys« = +1|x4, X, Y).

We use Equation (6) to compute the predictive
distribution on the new output y* at an input loca-
tion x*, restated here for the sake of readability:

P(«lxs, X, Y) = /P(J’*|f*,x*)
x / p(fl ) p(fx X, Y)d fxd fu.

As in regression, the term p(f«|fx) is a
conditional multivariate Gaussian with the
assumption that the underlying Gaussian process
model is a noise-free process. Another approach
would be assuming an independent Gaussian
noise in combination with a step function
likelihood function. However, this is equivalent
to the noise-free latent process with a cumulative
Gaussian likelihood function (Rasmussen and
Williams 2006). With Laplace approximation
of posterior distribution p(fx|X,Y) A
J\f(fx, (K7! + W)™!), we can now compute
the inner integration of the predictive distri-
bution, fN(Mf*IfX’G}*\fX)N(fX* (K7' +
W)~1)d fx, by using the standard result for the
convolution of two Gaussian distributions. It is
again a Gaussian with mean p 5, = k;y oK -1 f X
and variance 0}* = k(Xs,X5) — k;x* (K +
W_l)_lkX,x*-

The predictive distribution can now be com-
puted as follows:

7T = p(ysx = +1|xe, X, Y)

= [ PO =+ e xIN a3

The above integral can be solved analytically for
a cumulative Gaussian likelihood function,
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and can be approximated for a logistic likelihood
function (MacKay 1992),

1
L exp(—p gk (07,))

T

with k(c) = (1 + c/8)~"/2.

Point Prediction

Similar to the regression case, we might need
to make a point prediction from the predictive
distribution described in the section above. For a
zero-one loss function, i.e., a loss of one unit is
suffered for a wrong classification and O for not
making a classification mistake, the optimal point
prediction (in the sense of expected loss) is

Yoptimal| X* = argmax p(y«|xs, X,Y). (17)
ye€{l,, 2}

It is worth noting that the probabilistic approach
to classification allows the same inference stage
to be reused with different loss functions. In some
situations, a cost-sensitive loss function, i.e.,
different classification mistakes incur different
losses, is more desirable. The optimal point
prediction is now taken by minimizing expected
cost-sensitive loss with respect to the same
P(xlxs, X, Y).

Extension of binary classification to multiclass
Gaussian process classification (2 > 2) can
be achieved via the softmax activation function,
i.e., a generalization of logistic activation func-
tion (refer to Williams and Barber (1998) for
the Laplace approximation of the posterior dis-
tribution). Recently, Bratieres, Quadrianto, and
Ghahramani (to appear) propose a Gaussian pro-
cess classification approach to structured out-
put problems (2 > 2) using a generalization
of softmax function called a structured softmax
function. Examples of structured outputs are a
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tree, a grid, or a sequence, where the output
consists of interdependent categorical atoms.

Practical Issues

We have seen how to do regression and classifica-
tion using Gaussian processes. Like other kernel-
based methods such as support vector machines,
they are very flexible in that all operations are
kernelized, i.e., the operations are performed in
the (possibly infinite dimensional) feature space.
However, this feature space is only defined im-
plicitly via positive-definite kernels (covariance
functions), which only require computation in the
(lower dimensional) input space. Compared to
other non-Bayesian kernel approaches, Gaussian
processes provide an explicit probabilistic formu-
lation of the model. This directly provides us with
confidence intervals (for regression) or posterior
class probabilities (for classification).

So far, however, we have assumed a covari-
ance function with the known functional form
and hyperparameters. In many practical applica-
tions, it may not be easy to specify all aspects
of the covariance function by hand. Furthermore,
inverting the corresponding N x N Gram matrix
is the main computational cost, and it may be
prohibitive as it scales as O(N?). We will now
discuss approaches to overcome both limitations
in turn.

Model Selection

In many practical applications, the functional
form of the covariance function needs to be cho-
sen, and any values of hyperparameters associ-
ated with the chosen covariance function and pos-
sible free parameters of the likelihood function
need to be optimally determined. This is called
model selection.

Ideally, we would like to define a prior distri-
bution over the hyperparameters 6, and predic-
tions are made by integrating over different pos-
sible choices of hyperparameters. More formally,

p(y*lx*vX» Y)

:/P(y*lx*,X, Y.0)p(0]X,Y)dh. (18)
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The evaluation of the above integral, however,
may be difficult, and an approximation is
needed either by using the most likely
value of hyperparameters, p(y«|x«, X,Y) =
P(e|x«, X, Y, 00), or by performing the
integration numerically via Monte Carlo meth-
ods. We will focus here on the approximation
approach and show how to use it for regression
and classification problems.

Marginal Likelihood for Regression

The posterior probability of the hyperparameters

0 in (18) is
pOIX,Y) x p(Y|X,0)p(0),  (19)

where the first term is known as marginal likeli-

hood or evidence for the hyperparameters and it

is in the form of (as in (4) but with an explicit
conditioning on 0)

p(Y]X.6) = / p(Y] fx.0)p(fx|0)d fx

=N@©O,K + 02 1),

where the set of free parameters 6 includes both
parameters of the kernel function and the noise
term anoise. We can then set the hyperparameters
by maximizing the logarithm of this marginal
likelihood, and its partial derivative with respect

to hyperparameters is

%logp(YlX, 0)

J

1l +- 0K o, 1 (- 0K
= Y'K' —K'Y —-uwr|K'—]|,
2 8gj 2 39].

with K := K +02,_I. This is known as a type IT
maximum likelihood approximation, ML-II. We
can also maximize the un-normalized posterior
instead, assuming finding the derivatives of the
priors is straightforward.

Marginal Likelihood for Classification
The Laplace approximation of the marginal like-
lihood, p(Y|X,0)~ p(Y | X, 0)
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= [ ewcutronar
A 1 AT
— exp((fx) [ exp(=3(fx = f)
H(fx = fx)dfx.
which is achieved via a Taylor expansion

of (13) locally around fX to obtain W(fy) =~

W( fx)—3(fx — fx)TH(fx — fx). Computing
the integral analytically gives us the approximate
marginal likelihood

) a2 1
10gP(Y|X,9)0<—§fXK 1fx—§10g|K|

. 1
+1log p(Y| fx) — 3 log |[K~' + W|.

Subsequently, the partial derivatives with respect
to hyperparameters is given by

3 X 1 e 0K . &
—log p(Y|X.0) = - ff K~'—K" fx
99, 2 99,
1 oK
— -t | (K B
3 r (( + W) 39,»)
N dlog p(Y|X.6)df,
n Z g il Gl Xi
i=1 9 fx; 99

The familiar multiple local optima problem is
also present in the marginal likelihood maximiza-
tion. However, practical experiences suggest that
local optima are not a devastating problem espe-
cially with simple functional forms of covariance
function.

Sparse Approximation

A significant problem with the Gaussian process
model is associated with the computation cost
of inverting the N x N Gram matrix. A num-
ber of sparse approximation methods have been
proposed to overcome this high computational
demand. Common to all these methods is that
only a subset of the latent function values of size
M < N are treated exactly, and the remaining
latent values are approximated with cheaper com-
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putational demand. Quifionero-Candela and Ras-
mussen (2005) describe a unifying view of sparse
approximation. Several existing sparse methods
are shown to be an instance of it. The framework
is described for regression problems; however, it
should also be applicable for classification learn-
ing settings, albeit with complicacy associated
with the non-Gaussian likelihood.

In this unifying treatment, an additional set of
M latent variables fy € RM, called inducing
variables, is introduced. These latent variables are
latent function values corresponding to a set of
input locations Xy € RM*4 called inducing
inputs. The choice of inducing inputs is not re-
stricted to only form the training or test inputs.
Due to the marginalization property, introducing
more latent variables will not change the distri-
bution of the original variables. Consider (5) but
as a joint distribution over latent training and test
function values, p( fx, f«|X, xx)

= [ pUx fefolX X204

=/mmﬂmmmmmwm,m>

with p(fv) =N(0, Kx,,,x,,)- So far, no approx-
imations have been introduced. Introducing the
key assumption which is fy is conditionally
independent of f given fy, fxll fx | fu, allow
us to approximate (20) as

p(fx: fel X, x4)

:g/mﬁuhmmumxﬁﬂmmMﬁu
@)

where p(f«|x«, fu) and p(fx|X, fu) are again
conditional multivariate Gaussians due to the GP
marginalization property. Different computation-
ally efficient algorithms in the literature corre-
spond to different assumptions made on those two
conditional distributions. Table 2 shows various
sparse approximation methods with their corre-
sponding approximated conditional distributions.
For all sparse approximation methods, the com-
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Gaussian Process, Table 2 Sparse approximation methods

Method p(fx|X, fu)

SR N(Kx.xuKx,, x, fu,0)

PP N(KX,XUK)_(II/.XU fU’O)
N(Kx.xy Kx} x, fu, A1)

SPGPs A, = diag[Kx x—

Kx xy KX x, Kxy.x]
BCM  N(Kx.x, Kx,, x, fu,A2)

Gaussian Process

p(f*lx*a Ju) Ref.

N (K« xyKx!, x,, fu,0) Silverman (1985)

p(fxlx«, fu) Seeger et al. (2003)

p(filx«, fu) Snelson and Ghahra-
mani (2006)

P(flxss fU) Tresp (2000a)

A, = blockdiag[K x x — Kx x, K;(xl/,XU KXU,X]

SR subset of regressors, PP projected process, SPGPs sparse pseudo-input Gaussian processes, BCM Bayesian

committee machine

putational complexity is reduced from O(N?) to
O(NM?).

Current and Future Directions

Gaussian processes are an active area of re-
search both within the machine learning and
the Bayesian statistics community. First, there
is the issue of efficient inference and learning
as already discussed in the text above. Some of
the recent approaches include converting Gaus-
sian processes with stationary covariance func-
tions to state-space models (Sirkkd et al. 2013)
and using stochastic variational inference (Hens-
man et al. 2013). Second, there is interest in
adapting Gaussian processes to other learning
settings. They have been used for ordinal re-
gression (Chu and Ghahramani 2005a; Yu et al.
2006b), preference learning (Chu and Ghahra-
mani 2005b), ranking (Guiver and Snelson 2008),
mixtures of experts (Tresp 2000b), transductive
learning (Schwaighofer and Tresp 2003), mul-
titask learning (Yu et al. 2005), dimensional-
ity reduction (Lawrence 2005), matrix factor-
ization (Lawrence and Urtasun 2009), and rein-
forcement learning (Engel et al. 2005; Deisen-
roth and Rasmussen 2009), among other settings.
They have also been extended to handle relational
data (Chu et al. 2006; Yu et al. 2006a; Silva
et al. 2007; Xu et al. 2009; Kersting and Xu
2009). Standard Gaussian processes only exploit
the available information about attributes of in-
stances and typically ignore any relations among
the instances. Intuitively, however, we would like

to use our information about one instance to
help us reach conclusions about other related
instances.

There is the issue of relaxing the assumption
of the standard Gaussian process model that the
noise on the output is uniform throughout the
domain. If we assume that the noise is a smooth
function of the inputs, the noise variance can
be modeled using a second Gaussian process,
in addition to the process governing the noise-
free output values. The resulting heteroscedastic,
i.e., input-dependent noise regression model, has
been shown to outperform state-of-the-art meth-
ods for mobile robot localization (Plagemann
et al. 2007). Heteroscedastic classification has
also been explored by Herndndez-Lobato et al.
(2014) in the context of » Learning Using Priv-
ileged Information.

Finally, Gaussian processes are also of
great interest for practical applications because
they naturally deal with noisy measurements,
unevenly distributed observations, and fill
small gaps in the data with high confidence
while assigning higher predictive uncertainty in
sparsely sampled areas. Two recent applications
areas are Bayesian optimization for automatically
tuning hyperparameters of machine-learning
models (see, e.g., Snoek et al. 2012) and an
automated Bayesian statistician for automating
the process of statistical modeling (see, e.g.,
Lloyd et al. 2014).

In addition to the references embedded in
the text above, we also recommend http://www.
gaussian-process.org/. A highly recommended
textbook is Rasmussen and Williams (2006).
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Gaussian Process Reinforcement
Learning

Yaakov Engel
University of Alberta, Edmonton, AB, Canada

Definition

Gaussian process reinforcement learning gener-
ically refers to a class of » reinforcement learn-
ing (RL) algorithms that use Gaussian processes
(GPs) to model and learn some aspect of the
problem.

Such methods may be divided roughly into
two groups:

1. Model-based methods: Here, GPs are used to
learn the transition and reward model of the
Markov decision process (MDP) underlying
the RL problem. The estimated MDP model is
then used to compute an approximate solution

to the true MDP.

Gaussian Process Reinforcement Learning

2. Model-free methods: Here, no explicit repre-
sentation of the MDP is maintained. Rather,
GPs are used to learn either the MDP’s value
function, state—action value function, or some
other quantity that may be used to solve the
MDP.

This entry is concerned with the latter class
of methods, as these constitute the majority of
published research in this area.

Motivation and Background

Reinforcement learning is a class of learning
problems concerned with achieving long-term
goals in unfamiliar, uncertain, and dynamic envi-
ronments. Such tasks are conventionally formu-
lated by modeling the environment as » MDPs
(or more generally as partially observable MDPs
(» POMDPs)) and modeling the agent as an adap-
tive controller implementing an action-selection
policy.

Markov Decision Processes

Let us denote by P(S) the set of probability
distributions over (Borel) subsets of a set S. A
discrete time MDP is a tuple (X, U, po, p.q,7),
where X and U are the state and action spaces, re-
spectively; po(-) € P(X) is a probability density
over initial states; p(-|x,u) € P(X) is a proba-
bility density over successor states, conditioned
on the current state X and action u; ¢(-|x,u) €
P(R) is a probability distribution over immediate
single-step rewards, conditioned on the current
state and action. We denote by R(x,u) the ran-
dom variable distributed according to g(-|x, u).
Finally, y € [0, 1] is a discount factor. We assume
that both p and g are stationary, that is, they
do not depend explicitly on time. To maintain
generality, we use z to denote either a state X or a
state—action pair (x, u). This overloaded notation
will allow us to present models and algorithms in
a concise and unified form.

In the context of control, it is useful to make
several additional definitions. A stationary policy
un(-|x) € PMU) is a time-independent map-
ping from states to action-selection probabili-
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ties. A stationary policy p induces a Markov re-
ward process (MRP) (Puterman 1994) via policy-
dependent state-transition probability density, de-
fined as (Here and in the sequel, whenever in-
tegration is performed over a finite or discrete
space, the integral should be understood as a
summation.)

PEKIX) = / du o (ulx) p(< |, %),
u

Similarly, the policy p may also be used to de-
fine a state—action transition probability density,
defined as

P W [x,0) = p(x'Ju, x)p(0'[x).

Using our overloaded notational convention, we
refer to either of these as p.‘. Let us denote by
&(z) a path that starts at z. Hence, for a fixed
policy p and a fixed initial state or state—action
pair zo, the probability (density) of observing the
path &(zg) = (zo,21,...,2;) of length ¢ is (we
take 2 as given) P(§(z0)) = [i—, Py (zi|zi—1).
The discounted return D*(&(z)) of a path &(z)
is a random process, defined (with some abuse of
notation) as

D*(z) = D*(£(z)) = Yy R(z:)|(z0 = 2).

i=0

ey
where y €[0, 1] is the discount factor. (When
y =1, the policy must be proper; see Bertsekas
and Tsitsiklis (1996).) The randomness in D#(z),
for any given z, is due both to &(z) being a ran-
dom process and to the randomness, or noise, in
the rewards R(zg), R(z,), .. ., etc., both of which
jointly constitute the intrinsic randomness of the
MDP. Equation (1) together with the stationarity
of the MDP yields the recursive formula

D*(z) = R(z)+yD"(z)) wherez' ~ pl(-|z).
@

Let us define the expectation operator E¢ as
the expectation over all possible trajectories and
all possible rewards collected in them. This al-
lows us to define the value function V*(z) as the
result of applying this expectation operator to the
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discounted return D (z), i.e.,

VH(z) = E¢ D" (z). 3)
Applying the law of total expectation to this
equation results in the MRP (fixed policy) version
of the Bellman equation:

Vi(z) = R(z) + yEy [V (2)]. 4)
A policy that maximizes the expected discounted
return from each state is called an optimal policy
and is denoted by p*. In the case of stationary
MDPs, there exists a deterministic optimal policy
(this is no longer the case for POMDPs and
Markov games; see Kaelbling et al. (1998) and
Littman (1994)). The value function correspond-
ing to an optimal policy is called the optimal
value and is denoted by V* = VA" While
there may exist more than one optimal policy,

the optimal value function is unique (Bertsekas
1995).

Reinforcement Learning

Many of the algorithms developed for solving RL
problems may be traced back to the » dynamic
programming value iteration and policy itera-
tion algorithms (Bellman 1957; Bertsekas 1995;
Bertsekas and Tsitsiklis 1996; Howard 1960).
However, there are two major features distin-
guishing RL from the traditional planning frame-
work. First, while in planning it is assumed that
the environment is fully known, in RL no such
assumption is made. Second, the learning process
in RL is usually assumed to take place online,
namely, concurrently with the acquirement of
data by the learning agent as it interacts with its
environment. These two features make solving
RL problems a significantly more challenging
undertaking.

An important algorithmic component of
policy iteration-based RL algorithms is the
estimation of either state or state—action values
of a fixed policy controlling an MDP, a task
known as policy evaluation. Sutton’s TD(A)
algorithm (Sutton 1984) is an early RL algorithm
that performs policy evaluation based on
observed sample trajectories from the MDP,
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while it is being controlled by the policy
being evaluated (see » Temporal Difference
Learning). In its original formulation, TD(1) as
well as many other algorithms (e.g., Watkins’

Q-Learning 1989) employs a lookup table
to store values corresponding to the MDP’s
states or state—action pairs. This approach clearly
becomes infeasible when the size of the MDP’s
joint state—action space exceeds the memory
capacity of modern workstations. One solution to
this problem is to represent the value function
using a parametric function approximation
architecture and allow these algorithms to
estimate the parameters of approximate value
functions. Unfortunately, with few exceptions,
this seemingly benign modification turns
out to have ruinous consequences to the
convergence properties of these algorithms. One
notable exception is TD(A), when it is used
in conjunction with a function approximator
V(z)= Y.\ wi¢i(z), which is linear in its
tunable parameters w= (wy,..., wN)T. Under
certain technical conditions, it has been shown
that in this case, TD(A) converges almost surely,
and the limit of convergence is “close” (in a
well-defined manner) to a projection ITV#
of the true value function V# onto the finite-
dimensional space Hg of functions spanned
by {¢:;li =1,...,N} (Tsitsiklis and Van Roy
1996). Note that this projection is the best one
may hope for, as long as one is restricted to
a fixed function approximation architecture. In
fact, when A = 1, the bound of Tsitsiklis and
Van Roy (1996) implies that TD(1) converges to
ITV* (assuming it is unique). However, as A is
reduced toward 0, the quality of TD(A)’s solution
may deteriorate significantly. If V# happens
to belong to Hg, then V# = ITV* and TD()
converges almost surely to V#, forany A € [0, 1].

As noted in Bertsekas and Tsitsiklis (1996),
TD(A) is a stochastic approximation algorithm
(Kushner and Yin 1997). As such, to ensure con-
vergence to a meaningful result, it relies on mak-
ing small and diminishing updates to its value
function estimates. Moreover, in the typical on-
line mode of operation of TD(1), a sample is
observed, is acted upon (by updating the pa-
rameters of 17), and is then discarded, never to
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be seen again. A negative consequence of these
two properties is that online TD(A) is inherently
wasteful in its use of the observed data. The least-
squares TD(1), or LSTD(A) algorithm (Boyan
1999; Bradtke and Barto 1996), was put forward
as an alternative to TD(A) that makes better use
of data, by directly solving a set of equations
characterizing the fixed point of the TD(A) up-
dates. LSTD(A) is amenable to a recursive imple-
mentation, at a time and memory cost of O(N?)
per sample. A more fundamental shortcoming,
shared by both TD(A) and LSTD(A), is that they
do not supply the user with a measure of the
accuracy of their value predictions.

The discussion above motivates the search
for:

1. Nonparametric estimators for V#, since these
are not generally restricted to searching in any
finite-dimensional hypothesis space, such as
He.

2. Estimators that make efficient use of the data.

3. Estimators that, in addition to value predic-
tions, deliver a measure of the uncertainty in
their predictions.

Structure of Learning System

We first describe the structure and operation of
the basic GP temporal difference (GPTD) algo-
rithm for policy evaluation. We then build on
this algorithm to describe policy-improving algo-
rithms, in the spirit of Howard’s policy iteration
(Howard 1960).

In the preceding section, we showed that the
value V' is the result of taking the expectation
of the discounted return D with respect to the
randomness in the trajectories and in the rewards
collected therein. In the classic or frequentist
approach, V' is no longer random, since it is the
true, albeit unknown value function induced by
the policy u. Adopting the Bayesian approach,
we may still view the value V as a random
entity by assigning it additional randomness, that
is due to our subjective uncertainty regarding
the MDP’s transition model (p,q). We do not
know what the true distributions p and ¢ are,
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Gaussian Process Reinforcement Learning, Fig. 1
An illustration of the frequentist as well as the two
different Bayesian approaches to value function-based
reinforcement learning. In the traditional Bayesian RL
approach, a prior is placed on the MDP’s model, whereas
in our GPTD approach, the prior is placed directly on
the value function. x, u, and r denote state, action, and

which means that we are also uncertain about the
true value function. Previous attempts to apply
Bayesian reasoning to RL modeled this uncer-
tainty by placing priors over the MDP’s transition
and reward model (p,q) and applying Bayes’
rule to update a posterior based on observed
transitions. This line of work may be traced
back to the pioneering works of Bellman (1956)
and Howard (1960) followed by more recent
contributions in the machine learning literature
(Dearden et al. 1999, 1998; Duff 2002; Mannor
et al. 2004; Poupart et al. 2006; Strens 2000;
Wang et al. 2005). A fundamental shortcoming of
this approach is that the resulting algorithms are
limited to solving MDPs with finite (and typically
rather small) state and action spaces, due to the
need to maintain a probability distribution over
the MDP’s transition model. In this work, we
pursue a different path — we choose to model our

reward, respectively. The data required to learn value
estimators typically consists of a temporal stream of state—
action-reward triplets. Another stream of data is used to
update the policy based on the current estimate of the
value function. An MDP and a stationary policy control-
ling it jointly constitute an MRP. lag(1) denotes the 1-step
time-lag operator

uncertainty about the MDP by placing a prior
(and updating a posterior) directly on V. We
achieve this by modeling V' as a random process
or, more specifically, as a Gaussian process. This
mirrors the traditional classification of classical
RL algorithms to either model-based or model-
free (direct) methods; see Chapter 9 in Sutton and
Barto (1998). Figure 1 illustrates these different
approaches.

Gaussian Process Temporal Difference
Learning

GPTD should be viewed as a family of statistical
generative models (see » Generative Learning)
for value functions, rather than as a family of
algorithms. As such, GPTD models specify the
statistical relation between the unobserved value
function and the observable quantities, namely,
the observed trajectories and the rewards col-
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lected in them. The set of equations prescribing
the GPTD model for a path & = (z9,z,...,2;)
is (Here and in the sequel, to simplify notation,
we omit the superscript u, with the understanding
that quantities such as D, V, or & generally
depend on the policy u being evaluated.)

R(z;) = V(z;) — yV(zi+1) + N(zi, 2 +1)

fori =0,1,...,t—1.

N(z;,z;4+) is a zero-mean noise term that must
account for the statistics of R(z;) + yV(zi+1) —
V(z;). If V is a priori distributed according to
a GP prior and the noise term N(z;,z;j4+1) is
also normally distributed, then R(z;) is also nor-
mally distributed and so is the posterior distri-
bution of V' conditioned on the observed re-
wards. To fully specify the GPTD model, we
need to specify the GP prior over V' in terms
of prior mean and covariance as well as the
covariance of the noise process N. In Engel
et al. (2003), it was shown that modeling N
as a white noise process is a suitable choice
for MRPs with deterministic transition dynamics.
In Engel et al. (2005a), a different, correlated
noise model was shown to be useful for general
MRPs. Let us define R, = (R(zo), ..., R(z;)),
Vi= (V(z),...,V(z)), and Ny = (N(zo,21),
..., N(2z;,-1,2;)) and also define the ¢ x (t + 1)
matrix

-y 0 ... 0
Ht=01—y

SRR TN

0... 0 1 —y

In the white noise and correlated noise GPTD
models, the noise covariance matrices X; =
Cov[M;] are given, respectively, by

O'IZQ(ZQ) 0 0
0 ox(z)

: . 0
0 coe 0 0R(zi—1)
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o5 0...0
2 :
and H; 0 o ) H;r.
: L0
0...0 o0}

The final component of the GPTD model remain-
ing to be specified is the prior distribution of
the GP V. This distribution is specified by prior
mean and covariance functions vy(z) and k(z, z'),
respectively.

Let us define v, = (vo(zo), . - ., vo(z,))T. Em-
ploying » Bayes’ rule, the posterior distribution
of V(z) — the value function at some arbitrary
query point z — is now given by

(V@) |Ri—1 = 11-1) ~ N{V;(2), Py(z.72),

where

I}t(z) = vg(z) + kt(Z)T“u Pi(z.7))

= k(z,7') — k (z) " C/k, (7)),
o = H;F(HthH;r + Et)_l(rt—l - szt),

C,=H (HKH +%)'H,.

It is seen here that in order to compute the
posterior distribution of V for arbitrary sets of
query points, one only needs the vector «; and the
matrix C;. Consequently, &, and C; are sufficient
statistics for the posterior of V.

Algorithms 1 and 2 provide pseudocode for re-
cursive computations of these sufficient statistics,
in the deterministic transitions and general MDP
models, respectively.

It can be seen that after observing ¢ sample
transitions, both the algorithms require storage
quadratic in ¢t (due to the matrix C;). The up-
dates also require time quadratic in ¢ due to
matrix-vector products involving C;. These prop-
erties are unsatisfying from a practical point of
view, since realistic RL problems typically re-
quire large amounts of data to learn. There are
two general approaches for reducing the memory
and time footprints of GPTD. One approach is to
define parametric counterparts of the two GPTD
models described earlier and derive the corre-
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Algorithm 1 Recursive nonparametric GPTD for
deterministic MDPs
Initialize atg = 0, Co = 0, Dy = {zo}
fort =1,2,...

observe z; i, r;—, er

h, =(,...,1,—y)

Ak, =k, (1) — vki—1(z)

Ak = k(z—1,20—1) — 2vk(zi—1,2,) +

yzk(zl s Z[)

C;—1 4k
C[=ht—(l(l) [)

di=r—1 — Ak Ta,
Sy = 0'[2_1 + Ak[[ - Ak[TC[_lAk[

o = (0510—1) + %’rdt
Ci—1 0

C, = |: OZTI 0:| + ic,c;r

Dy = Dy—1 Uiz}

end for
return ot;, C;, D;

Algorithm 2 Recursive nonparametric GPTD for
general MDPs
Initialize oy = 0, C() = 0, D() = {Zo}, C) = 0, do = 0,
I/S() =0
fort =1,2,...

observe z;_|,r;—, 2

ht = (O,...,l,_y)

Ak, = k;— 1 (z—1) — vki—1(z)

Ak = k(zi—1,20—1) — 2vk(zi—1,2,) +

y2k(z;,2;)

2 c— C;_ 4k,
Ctzy;:':]'(tol)'i'ht—( t(l) t)

yoi T
di = di o — Ak oy

St—1

4
vioi |
St—1

Uzz_l + )/2(7,2 - + Ak” —

2
Ak;TCt_l Akt + 2);77:710:_] Akt

1

oy .
o = ( to ]) + %d[
Ci—1 0
C[ = |: OT 0] + %C[C;r
Dy = Dr—1 Uiz}
end for
returno;, C;, D;

St =

sponding recursive algorithms. If the number of
independent parameters (i.e., the dimensionality
of the hypothesis space Hg) used to represent
the value function is m, the memory and time
costs of the algorithms become quadratic in m,
rather than 7. Another approach, which is based
on an efficient sequential kernel sparsification
method, allows us to selectively exclude terms
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from Dy, while controlling the error incurred as
a result. Here again (bounds on m in this case
may be derived using arguments based on the
finiteness of packing numbers of the hypothesis
space; see Engel (2005) for details), if the size
of D; saturates at m, the memory and time costs
of the resulting algorithms are quadratic in m.
For the complete derivations, as well as detailed
pseudocode of the corresponding algorithms, we
refer the reader to Engel (2005).

Theory

In this section, we derive the two GPTD models
mentioned above, explicitly stating the assump-
tions underlying each model.

MRPs with Deterministic Transitions
In the deterministic case, the Bellman equa-
tion (4) degenerates into

R(z) = V(z) —yV(2), (5)

where 7’ is the state or state—action pair succeed-
ing z, under the deterministic policy w. We also
assume that the noise in the rewards is indepen-
dent and Gaussian, but not necessarily identically
distributed. We denote the reward variance by
ox(z) = Var[R(z)]. Formally, this means that
the reward R(z), at some z, satisfies R(z) =
R(z) + N(z) where R(z) is the mean reward for
that state. Assume we have a sequence of rewards
sampled along a sampled path &. Then, at the ith
time step, we have R(z;) = R(z;)+ N(z;). Using
the random vectors R;, V;, and N; defined earlier,
we have N (0, X';), where

Y, = diag(ox(20), ..., 0%(z—1)), (6)

and diag(-) denotes a diagonal matrix whose
diagonal elements are the components of the ar-
gument vector. Writing the Bellman equations (5)
for the points belonging to the sample path and
substituting R(z;) = R(z;) + N(z;), we obtain
the following set of ¢ equations

R(z;) = V(z;) — yV(zi+1) + N(@),
i=0,1,...,t—1.
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This set of linear equations may be concisely
written as

Ri—1 =HV; + N,. @)
General MRPs

Let us consider a decomposition of the
discounted return D into its mean V and a zero-
mean residual AV:

D(z) = E¢D(z) + (D(z)

def

—E¢D(2)) =V(z) + AV(z). (8)

This decomposition is useful, since it separates
the two sources of uncertainty inherent in the
discounted return process D: For a known MDP
model, V is a (deterministic) function, and the
randomness in D is fully attributed to the intrinsic
randomness in the trajectories generated by the
MDP and policy pair, modeled by AV. On the
other hand, in an MDP in which both transitions
and rewards are deterministic but otherwise un-
known, AV is deterministic (identically zero),
and the randomness in D is due solely to the
extrinsic Bayesian uncertainty, modeled by the
random process V.

Substituting (8) into (2) and Rearranging, we
get

R(z) = V(z) —yV(z) + N(z.7)),

where Z ~ p*(-|z) and

def

N(z,Z)=AV (z) — y AV (Z)). )

As before, we are provided with a sample path
&, and we may write the model Egs.(9) for
these samples, resulting in the following set of ¢
equations:

¥, = H,diag(o,)H,
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R(z;)=V(z;) — yV(zi+1) + N(z;, Zi+1)

fori =0,...,t — 1.

Using our standard definitions for R;, V;, Hy,
and with N; = (N(20.21),...,N(z—1.2:)) ",
we again have

Ri—y =H;V: + Ni. (10
In order to fully define a complete probabilistic
generative model, we also need to specify the
distribution of the noise process N;. We model
the residuals AV, = (AV(z)...., AV (z))"
as random Gaussian noise. (This may not be a
correct assumption in general; however, in the
absence of any prior information concerning the
distribution of the residuals, it is the simplest
assumption we can make, since the Gaussian
distribution possesses the highest entropy among
all distributions with the same covariance. It is
also possible to relax the Gaussianity requirement
on both the prior and the noise. The resulting
estimator may then be shown to be the linear
minimum mean-squared error estimator for
the value.) In particular, this means that the
distribution of the vector AV, is completely
specified by its mean and covariance. Another
assumption we make is that each of the residuals
AV (z;) is independently distributed. Denoting
0? = Var[D(z;)], the distribution of AV, is

1

given by
AV ~ N(0. diag(o+)),

T .
where o; = (03,012,...,0,2) . Since N; =

H; AV, we have N; ~ N(0, X';) with

[og +y*o}  —yoi 0 .0 0
—)/012 012 + )/20;,2 —)/022 0 e 0
0 —yo} o} +y*o}
= (11)
0 0
0 _V0t2—1
L 0 0 0 —)/0,2_1 O't2_1 + yzcrtz_
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Applications

Any RL algorithm that requires policy evaluation
as an algorithmic component can potentially use
a GPTD algorithm for this task. In particular, this
is true of algorithms based on Howard’s policy it-
eration. In Engel et al. (2005a) and Engel (2005),
it is shown how GPTD may be used to construct a
SARSA-type algorithm (Rummery and Niranjan
1994; Sutton and Barto 1998), called GPSARSA.
In Engel et al. (2005b), GPSARSA was used to
learn control policies for a simulated Octopus
arm. In Ghavamzadeh and Engel (2007), GPTD
was used within a Bayesian actor—critic learning
algorithm.

Future Directions

By virtue of the posterior covariance, GPTD
algorithms compute a confidence measure (or,
more precisely, Bayesian credible intervals) for
their value estimates. So far, little use has been
made of this additional information. Several po-
tential uses of the posterior covariance may be
envisaged:

1. It may be used to construct stopping rules for
value estimation.

2. It may be used to guide exploration.

3. In the context of Bayesian actor—critic algo-
rithms (Ghavamzadeh and Engel 2007), it may
be used to control the size and direction of
policy updates.

Further Reading

Yaakov Engel’s doctoral thesis (Engel 2005) is
currently the most complete reference to GPTD
methods. Two conference papers (Engel et al.
2003, 2005a) provide a more concise view. The
first of these introduces the GPTD model for
deterministic MRPs, while the second introduces
the general MDP model, as well as the GP-
SARSA algorithm. A forthcoming journal arti-
cle will subsume these two papers and include
some additional results, concerning the connec-
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tion between GPTD and the popular TD(L) and
LSTD(A) algorithms.
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A hypothesis, &, is a predicate that maps an
instance to true or false. That is, if h(x) is true,
then x is hypothesized to belong to the concept
being learned, the target. Hypothesis, &, is more
general than or equal to Ay, if i1 covers at least as
many examples as s, (Mitchell, 1997). That is,
hy > h, if and only if

(VX)[h1(x) = ha(x)]

A hypothesis, /1, is strictly more general than /5,
if hy > hy and h, f hy.

Note that the more general than ordering is
strongly related to subsumption.
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Generalization Bounds

Definition

In the theory of statistical machine learning, a
generalization bound — or, more precisely, a gen-
eralization error bound — is a statement about the
predictive performance of a learning algorithm or
class of algorithms. Here, a learning algorithm
is viewed as a procedure that takes some finite
training sample of labeled instances as input and
returns a hypothesis regarding the labels of all in-
stances, including those which may not have ap-
peared in the training sample. Assuming labeled
instances are drawn from some fixed distribution,
the quality of a hypothesis can be measured
in terms of its risk — its incompatibility with
the distribution. The performance of a learning
algorithm can then be expressed in terms of the
expected risk of its hypotheses given randomly
generated training samples.

Under these assumptions, a generalization
bound is a theorem, which holds for any
distribution and states that, with high probability,
applying the learning algorithm to a randomly
drawn sample will result in a hypothesis with
risk no greater than some value. This bounding
value typically depends on the size of the training
sample, an empirical assessment of the risk of the
hypothesis on the training sample as well as the
“richness” or “capacity” of the class of predictors
that can be output by the learning algorithm.

Motivation and Background

Suppose we have built an e-mail classifier and
then collected a random sample of e-mail labeled
as “spam” or “not spam” to test it on. We notice
that the classifier incorrectly labels 5 % of the
sample. What can be said about the accuracy of
this classifier when it is applied to new, previ-
ously unseen e-mail? If we make the reasonable
assumption that the mistakes made on future e-
mails are independent of mistakes made on the
sample, basic results from statistics tell us that the
classifier’s true error rate will also be around 5 %.

Now suppose that instead of building a classi-
fier by hand we use a learning algorithm to infer
one from the sample. What can be said about
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the future error rate of the inferred classifier if it
also misclassifies 5 % of the training sample? In
general, the answer is “nothing” since we can no
longer assume future mistakes are independent of
those made on the training sample. As an extreme
case, consider a learning algorithm that outputs
a classifier that just “memorizes” the training
sample — predicts labels for e-mail in the sample
according to what appears in the sample — and
predicts randomly otherwise. Such a classifier
will have a 0 % error rate on the sample, however,
if most future e-mail does not appear in the
training sample the classifier will have a true error
rate around 50 %.

To avoid the problem of memorizing or over-
fitting the training data it is necessary to restrict
the “flexibility” of the hypotheses a learning al-
gorithm can output. Doing so forces predictions
made off the training set to be related to those
made on the training set so that some form of
generalization takes place. However, doing this
can limit the ability of the learning algorithm to
output a hypothesis with small risk. Thus, there
is a classic and trade-off: the bias being the limits
placed on how flexible the hypotheses can be
versus the variance between the training and the
true error rates (see bias variance decomposition).

By quantifying the notion of hypothesis flex-
ibility in various ways, generalization bounds
provide inequalities that show how the flexibility
and empirical error rate can be traded off to con-
trol the true error rate. Importantly, these state-
ments are typically probabilistic but distribution-
independent — they hold for nearly all sets of
training data drawn from a fixed but unknown dis-
tribution. When such a bound holds for a learning
algorithm it means that, unless the choice of train-
ing sample was very unlucky, we can be confident
that some form of generalization will take place.
The first results of this kind were established by
Vapnik and Chervonenkis (1971) about 40 years
ago and the measure of hypothesis flexibility they
introduced — the » VC dimension (see below) —
now bears their initials. A similar style of results
were obtained independently by Valiant in 1984
in the Probably Approximately Correct, or » PAC
learning framework (Valiant 1984). These two
lines of work were drawn together by Blumer
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et al. (1989) and now form the basis of what is
known today as statistical learning theory.

Details

For simplicity, we restrict our attention to gener-
alization bounds for binary » classification prob-
lems such as the spam classification example
above. In this setting instances (e.g., e-mail) from
a set X are associated with labels from a set
Y = {-1,1} (e.g., indicating not spam/spam)
and an example 7 = (x, y) is a labeled instance
from Z := X x ). The association of instances
to labels is assumed to be governed by some
unknown distribution P over Z.

A hypothesis h is a function that assigns la-
bels h(x) € Y to instances. The quality of a
hypothesis is assessed via a loss function £ : ) x
Y — [0, oo, which assigns penalty £(y, y’) when
h predicts the label y’ = h(x) for the example
(x, y). For convenience, we will often combine
the loss and hypothesis evaluation on an example
z = (x,y) by defining £x(z) = £(y,h(x)).
When examples are sampled from P the expected
penalty, or risk

Lp(h) :=Ep[tn(2)]

can be interpreted as a measure of how well A
models the distribution P. A loss that is prevalent
in classification is the 0-1 loss £°7'(y,y") =
[y # '] where [p] is the indicator function
for the predicate p. This loss simply assigns a
penalty of 1 for an incorrect prediction and 0
otherwise. The associated 0-1 risk for % is the
probability the prediction /(x) disagrees with a
randomly drawn sample (x, y) from P. Unless
stated otherwise, the bounds discussed below are
for the 0-1 loss only but, with care, can usually
be made to hold with more general losses also.

Once a loss is specified, the goal of a learning
algorithm is to produce a low-risk hypothesis
based on a finite number of examples. Formally,
a learning algorithm A is a procedure that takes
a training sample 7z = (21,...,2,) € Z" as
input and returns a hypothesis 7 = A(z) with an
associated empirical risk

Generalization Bounds

n
Ly o= Yt
i=1

In order to relate the empirical and true risks,
a common assumption made in statistical learn-
ing theory is that the examples are drawn inde-
pendently from P. In this case, a sample z =
(z1,...,2n) is a random variable from the prod-
uct distribution P” over Z”. Since the sample can
be of arbitrary but finite size a learning algorithm
can be viewed as a function A : |~ 2" — H
where H is the algorithm’s » hypothesis space.

A generalization bound typically comprises
several quantities: an empirical estimate of a
hypothesis’s performance L,(h); the actual (and
unknown) risk of the hypothesis Lp(h); a con-
fidence term § € [0, 1]; and some measure of
the flexibility or complexity C of the hypotheses
that can be output by learning algorithm. The
majority of the bounds found in the literature fit
the following template.

A generic generalization bound: Let A be
a learning algorithm, P some unknown dis-
tribution over X x ), and § > 0. Then,
with probability at least 1 — § over randomly
drawn samples z from P”, the hypothesis
h = A(z) has risk Lp(h) no greater than
L,(h) + €(8.C).

Of course, there are many variations, refine-
ments, and improvements of the bounds pre-
sented below and not all fit this template. The
bounds discussed below are only intended to
provide a survey of some of the key ideas and
main results.

Basic bounds: The penalties {j(z;) =
£(yi,h(x;)) made by a fixed hypothesis &
on a sample z = (zy,...,2,) drawn from
P" are independent random variables. The
law of large numbers guarantees (under some
mild conditions) that their mean ﬁz(h) =
%Z;’:lﬁh(zi) converges to the true risk
Lp(h)y = Ep[ly(z)] for h as the sample
size increases and several inequalities from
probability theory can be used to quantify this
convergence. A key result is » McDiarmid’s
inequality, which can be used to bound the
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deviation of a function of independent random
variables from its mean. Since the 0—1 loss takes
values in [0, 1], applying this result to the random
variables £;(Z;) gives

P™(Lp(h) > Ly(h) + &) < exp(=2n&?). (1)

We can invert this and obtain an upper bound for
the true risk that will hold on a given proportion
of samples. That is, if we want L p (h)>1:z(h) +e€
to hold on at least 1 — § of the time on randomly
drawn samples we can solve § = exp(—2ne?) for

. In}
¢ and obtain € = % so that

. Ini
P Let < L+ 52| = 1-6. @
n

This simple bound lays the foundation for many
of the subsequent bounds discussed below and

is the reason for the ubiquity of the %-like
terms.

A crucial observation to make about the above
bound is that while it holds for any hypothesis # it
does not hold for all h € H simultaneously. That
is, the samples for which the bounds hold for /4,
may be completely different to those which make
the bound hold for %,. Since a generalization
bound must hold for all possible hypotheses out-
put by a learning algorithm we need to extend the
above analysis by exploiting additional properties
of the hypothesis space H.

In the simple case when there are only finitely
many hypothesis, we use the union bound. This
states that for any distribution P and any finite or
countably infinite sequence of events Ay, A4, ...
we have P(|J; 4;)) < Y, P(4;). For H =
{hy,...,hy} we consider the events Z;, = {z €
Z" . Lp(h) > f,z(h) + €} when samples of size
n give empirical risks for / that are least & smaller
than its true risk. Using the union bound and (1)
on these events gives

p" (U Zh(n,s)) <Y PM(Zu(n.¢))

heH i=1

= m- exp(—2ne?).

559

This is a bound on the probability of draw-
ing a training sample from P” such that every
hypothesis has a true risk that is ¢ larger than its
empirical risk. Inverting this inequality by setting
8 = mexp(—2ne?) yields the following bound.

Finite class bound: Suppose A has finite hy-
pothesis class H = {hy,...,hy}. Then with
probability at least 1 — § over draws of z from
P" the hypothesis i = A(z) satisfies

. In|H| + In 4
Lp(h)st(h)ﬂ/%:“". 3)

It is instructive to compare this to the single
hypothesis bound in (2) and note the bound is
weakened by the additional term |H|.

Since the union bound also holds for countable
sets of events this style of bound can be extended
from finite hypothesis classes to countable ones.
To do this requires a slight modification of the
above argument and the introduction of a distri-
bution 7 over a countable hypothesis space H =
{h1, hy, ...}, which is chosen before any samples
are seen. This distribution can be interpreted as
a prior belief or preference over the hypotheses
in H. Letting §(h) = &-m(h) in the bound (2)
implies that for each H we have

~ ln.;
pr Lp(h)<L,(h)+\/% <§-7(h).
n

Thus, applying the countable union bound to the
union of these events over all of #, and noting
that )4, 8. w(h) = & since 7 is a distribution
over H, gives use the following bound:

Countable class bound: Suppose ( is a probabil-
ity distribution over a finite or countably infinite
hypothesis space H. Then with probability at least
1—36 over draws of z from P the following bound
holds for all h € H

A ln% +1Int
Lp(h) < Lo(h) + | 2. @

Although the finite and countable class bounds
are proved using very similar techniques (indeed,
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the former can be derived from the latter by
choosing 7(h) = ﬁ), they differ in the type
of penalty they introduce for simultaneously
bounding all the hypotheses in H. In (3), the
penalty In |H| is purely a function of the size of
the class whereas in (4) the penalty In ﬁ varies
with &. These two different styles of bound can
be seen as templates for the two main classes
of bounds discussed below: the hypothesis-
independent bounds of the next section and the
hypothesis-dependent bounds in the section on
PAC-Bayesian bounds. The main conceptual leap
from here is the extension of the arguments above
to non-countable hypothesis classes.

Class complexity bounds: A key result in extending
the notion of size or complexity in the above
bounds to more general classes of hypotheses is
the symmetrization lemma. Intuitively, it is based
on the observation that if the empirical risks for
different samples are frequently near the true risk
then they will also be near each other. Formally, it
states that for any & > 0 such that ne? > 2 we
have

P (sup |Lp(h)— L,(h)| > s)
heH

<2p¥ (sup IL,(h)—L,(h)| > ;) e
heH

Thus, to obtain a bound on the difference between
empirical and true risk it suffices to bound the
difference in empirical risks on two indepen-
dent samples z and z’, both drawn from P”.
This is useful since the maximum difference
SUPp ey |iz,(h) - Z,Z(h)| is much easier to handle
than the difference involving L p () as the former
term only evaluates losses on the points in z and
z/ while the latter takes into account the entire
space Z.

To study these restricted evaluations, we de-
fine the restriction of a function class F to the
sample z by F, = {(f(@), ... f(zn))

f € F}. Since the empirical risk L,(h) =
%E?zlzh (z;) only depends on the values of the
loss functions £; on samples from z we define
the loss class . = €y = {{; : h € H} and
consider its restriction L, as well as the restriction
‘H, of the hypothesis class it is built upon. As we
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will see, the measures of complexity of these two
classes are closely related.

One such complexity measure is arrived at by
examining the size of a restricted function class
F, as the size of the sample z increases. The
growth function or » shattering coefficient for
the function class F is defined as the maximum
number of distinct values the vectors in JF, can
take given a sample of size n Su(F) =
sup,czn |Fz|. In the case of binary classification
with a 0-1 loss, it is not hard to see that the
growth functions for both L. and F are equal,
that is, S,(L) = S,(#), and so they can be
used interchangeably. Applying a union bound
argument to (1) as in the previous bounds guar-
antees that P"(sup,cy |Lp(h) — L,(h)| > ¢) <
28, (H) exp(—ne?/8) and by inversion we obtain
the following generalization bound for arbitrary
hypothesis classes H:

Growth function bound: For all § > 0, a draw of
z from P" will, with probability at least 1 — §,
satisfy forall h € H

2InS,(H) +2In 3
p )

Lp(h) < Iiz(h)+2\/
(6)

One conclusion that can be immediately drawn
from this bound is that the shattering coefficient
must grow sub-exponentially for the bound to
provide any meaningful guarantee. If the class H
is so rich that hypotheses from it can fit all 2"
possible label combinations — if S, () = 2" for
all n — then the term /21nS,(H)/n > 1 and
so (6) just states Lp(h) < 1. Therefore, to get
nontrivial bounds from (6) there needs to exist
some value d for which S, (#) < 2" whenever
n>d.
VC dimension: This desired property of the
growth function is exactly what is captured by the
VC dimension VC () of a hypothesis class H.
Formally, it is defined as VC(H) = max{n € N :
Sp(H) = 2"} and is infinite if no finite maxi-
mum exists. Whether or not the VC dimension
is finite plays a central role in the consistency of
empirical risk minimization techniques. Indeed,
it is possible to show that using ERM on a
hypothesis class H is consistent if and only if
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VC(H) < oo. This is partly due to Sauer’s
lemma, which shows that when a hypothesis class
‘H has finite VC dimension VC(H) = dy < o0
its growth function is eventually polynomial in
the sample size. Specifically, for all n > d3; the

growth function satisfies S, (H) < (%)dﬂ. By
substituting this result into the Growth Function
Bound (6) we obtain the following bound, which
shows how the VC dimension plays a role that
is analogous to the size a hypothesis class in the
finite case.

VC dimension bound: Suppose A has hypothesis
class H with finite VC dimension d . Then with
probability at least 1 — § over draws of z from P”
the hypothesis & = A(z) satisfies

2dyIn (32) +21n 3

n

Lp(h) < L,(h) + 2J
(@)

There are many other bounds in the literature
that are based on the VC dimension. See the
Recommended Reading for pointers to these.

Rademacher averages: Rademacher averages
are a second kind of measure of complexity for
uncountable function classes and can be used to
derive more refined bounds than those above.
These averages arise naturally by treating as a
random variable the sample-dependent quantity
Mx(2) = sup e [Ep[f] — E,[f]. This is just
the largest difference taken over all f € F
between its true mean Ep[f] and its empirical
mean E,[ f] := |71‘ Zl‘il f(z;). For a loss class
L = £+ a bound on this maximum difference —
My, (z) < B - immediately gives a generaliza-
tion bound of the form Lp(h) < i,z(h) + B.
Since M (z) is a random variable, McDiarmid’s
inequality can be used to bound its value in terms

. In }
of its expected value plus the usual 1/ ;—rf term.
Applying symmetrization it can then be shown
that this expected value satisfies

Epn[Mr(2)] <E [ > o (f(Z;)_f(Zi)):|

1
sup —
fer D

< 2R,(F)
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where the right-hand expectation is taken over
two independent samples z, Z ~ P" and the
Rademacher variables p1, ..., p,. These are in-
dependent random variables, each with equal
probability of taking the values —1 or 1, that give
their name to the Rademacher average

Ra(F) = E [sup . szf(zi)} .

fer i
Intuitively, this quantity measures how well the
functions in F can be chosen to align with ran-
domly chosen labels p;. The Rademacher aver-
ages for the loss class IL and the hypothesis class
‘H are closely related. For 0-1 loss, it can be
shown they satisfy R, (L) = 1 R, (H).

Putting all the above steps together gives the
following bounds.

Rademacher bound: Suppose A has hypothesis
class . Then with probability at least 1 — § over
draws of z from P” the hypothesis & = A(Z)
satisfies

A Ini
Lp(h) < L,(h) + R, (M) + ,/%. ®)

This bound is qualitatively different to the
Growth Function and VC bounds above as
the Rademacher average term is distribution-
dependent whereas the other complexity terms
are purely a function of the hypothesis space.
Indeed, it is possible to bound the Rademacher
average in terms of the VC dimension and
obtain the VC bound (7) from (8). Furthermore,
the Rademacher average is closely related to
the minimum empirical risk via R,(H) =
1 — 2E[infpep Ly p(h)] where Ly ,(h) is the
empirical risk of /4 for the randomly labeled
sample z = ((x1,p01),...,(Xn, pn)). Thus, in
principle, R, () could be estimated for a given
learning problem using standard ERM methods.

The Rademacher bound can be further refined
so that the complexity term is data-dependent
rather than distribution-dependent. This is
done by noting that the Rademacher average
R, F = E[Iéz(}")] where R,(F) is the empirical
Rademacher average for F conditioned on the
sample z. Applying McDiarmid’s inequality to
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the difference between R, (F) and its mean gives
a sample-dependent bound:

Empirical Rademacher bound: Under the same
conditions as the Rademacher bound, the following
holds with probability 1 — §:

2
lng

Lp(h) < L,(h) + R,(}) +3 - O

PAC-Bayesian bounds: All the bounds in the
previous section provide bounds on determinis-
tic hypotheses, which include complexity terms
that are functions of the entire hypothesis space.
PAC-Bayesian bounds differ from these in two
ways: they provide bounds on nondeterministic
hypotheses — labels may be predicted for in-
stances stochastically; and their complexity terms
are hypothesis-dependent. The term “Bayesian”
given to these bounds refers to the use of a
distribution over hypotheses that is used to define
the complexity term. This distribution can be
interpreted as a prior belief over the efficacy
of each hypothesis before any observations are
made.

Nondeterministic hypotheses are modeled by
assuming that a distribution p over H is used to
randomly draw a deterministic hypothesis i €
‘H to predict h(x) each time a new instance
x is seen. Such a strategy is called a Gibbs
hypothesis for p. Since its behavior is defined
by the distribution u, we will abuse our notation
slightly and define its loss on the example z to
be £,(z) = Ep~y[ln(z)]. Similarly, the true
risk and empirical risk for a Gibbs hypothe-
sis are, respectivelyA, defined to be li p(pn) =
EpeulLp ()] and Ly(w) = EpylLo(h)]. As
with the earlier generalization bounds, the aim
is to provide guarantees about the difference
between L p(u) and ﬁz(u). In the case of 0-1
loss, p := Lp(w) € [0, 1] is just the probability
of the Gibbs hypothesis for p misclassifying
an example and ¢ := I:z(y,) € [0,1] can be
thought of as an estimate of p. However, unlike
the earlier bounds on the difference between the
true and estimated risk, PAC-Bayesian bounds
are expressed in terms the Kullback—Leibler (KL)
divergence. For the values p,q € [0, 1] this is
defined as kl(¢l|lp) :== gInZ + (1 —q) lnll_;jfu7
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and for distributions u and m over the hypothesis
space H we write KL(u || ) := [;,In Z—id,u.
Using these definitions, the most common PAC-
Bayesian bound states the following.

Theorem (PAC-Bayesian bound): For all choices
of the distribution 7 over H made prior to seeing
any examples, the Gibbs hypothesis defined by
satisfies

+
KL(u || 7) +In 2

KI(L p (i), L,(w) <
(10)

with probability at least 1 — § over draws of z from
P".

This says that the difference (as measured by
kl) between the true and empirical risk for the
Gibbs hypothesis based on p is controlled by two
terms: a complexity term w and a sampling

In 2L .
term —.2—, both of which converge to zero as n

increases. To make connections with the previous
bounds more apparent, we can weaken (10) using
the inequality kl(g || p) > 2(p — q)? to get
the following bound that holds under the same
assumptions:

+1
KL(u || ) 4 In %=
2n ’

Lp(p) < L,(u) + \/

The sampling term is similar to the ubiquitous es-
timation penalty in the earlier bounds but with an
additional In(n + 1) /n . The complexity term is a
measure of the complexity of the Gibbs hypothe-
sis for p relative to the distribution 7. Intuitively,
KL(-| ) can be thought of as a parametrized
family of complexity measures where hypotheses
from a region where 7 is large are “cheap” and
those where 7 is small are “expensive”. Infor-
mation theoretically, it is the expected number
of extra bits required to code hypotheses drawn
from p using a code based on 7 instead of a code
based on . It is for these reasons the PAC-Bayes
bound is said to demonstrate the importance of
choosing a good prior. If the Gibbs hypothesis p,
which minimizes Lz(u) is also “close” to & then
the bound will be tight.
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Unlike the other bounds discussed above,
PAC-Bayesian bounds are in terms of the
complexity of single meta-classifiers rather
than the complexity of classes. Furthermore, for
specific base hypothesis classes such as margin
classifiers used by SVMs it is possible to get
hypothesis-specific bounds via the PAC-Bayesian
bounds. These are typically much tighter than the
VC or Rademacher bounds.

Other bounds: While the above bounds are
landmarks in statistical learning theory there is
obviously much more territory that has not been
covered here. For starters, the VC bounds for
classification can be refined by using more so-
phisticated results from empirical process theory
such as the Bernstein and Variance-based bounds.
These are discussed in Sect. 5 of Boucheron et al.
(2005). There are also other distribution- and
sample-dependent complexity measures that are
motivated differently to Rademacher averages.
For example, the VC entropy (see Sect.4.5 of
Bousquet et al. 2004) is a distribution-dependent
measure obtained by averaging |F,| with re-
spect to the sample distribution rather than tak-
ing supremum in the definition of the shattering
coefficient.

Moving beyond classification, bounds for re-
gression problems have been studied in depth and
have similar properties to those for classification.
These bounds are obtained by essentially dis-
cretizing the function spaces. The growth func-
tion is replaced by what is known as a covering
number but the essence of the bounds remain
the same. The reader is referred to Herbrich and
Williamson (2002) for a brief discussion and
Anthony and Bartlett (1999) for more detail.

There are a variety of bounds that, unlike
those above, are algorithm-specific. For exam-
ple, the regularized empirical risk minimization
performed by SVMs has been analyzed within
an algorithmic stability framework. As discussed
in Boucheron et al. (2005) and Herbrich and
Williamson (2002), hypotheses are considered
stable if their predictions are not varied too much
when a single training example is perturbed. Two
other algorithm-dependent frameworks include
the luckiness and compression frameworks, both
summarized in Herbrich and Williamson (2002).
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The former gives bounds in terms of an a priori
measure of luckiness — how well a training sam-
ple aligns with biases encoded in an algorithm —
while the latter considers algorithms, like SVMs,
which base hypotheses on key examples within a
training sample.

Recently, there has been work on a type of
algorithm-dependent, relative bound called re-
ductions (see Beygelzimer et al. 2008 for an
overview). By transforming inputs and outputs
for one type of problem (e.g., probability estima-
tion) into a different type of problem (e.g., clas-
sification), bounds for the former can be given
in terms of bounds for the latter while making
very few assumptions. This opens up a variety
of avenues for applying existing results to new
learning tasks.

Cross-References
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Recommended Reading

As mentioned above, the uniform convergence
bounds by Vapnik and Chervonenkis (1971)
and the PAC framework of Valiant (1984) were
the first generalization bounds for statistical
learning. Ideas from both were synthesized and
extended by Blumer et al. (1989). The book
by Kearns and Vazirani (1994) provides a good
overview of the early PAC-style bounds while
Vapnik’s comprehensive book (Vapnik 1998),
and Anthony and Bartlett’s book (1999) cover
classification and regression bounds involving the
VC dimension. Rademacher averages were first
considered as an alternative to VC dimension in
the context of learning theory by Koltchinskii and
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Panchenko (2001) and were refined and extended
by Bartlett and Mendelson (2003) who provide
a readable overview. Early PAC-Bayesian
bounds were established by McAllester (1999)
based on an earlier PAC analysis of Bayesian
estimators by Shawe-Taylor and Williamson
(1997). Applications of the PAC-Bayesian bound
to SVMs are discussed in Langford’s tutorial
on prediction theory (Langford 2005) and
recent paper by Banerjee (2006) provides an
information theoretic motivation, a simple proof
of the bound in (11), as well as connections with
similar bounds in online learning.

There are several well-written surveys of
generalization bounds and learning theory
in general. Herbrich and Williamson (2002)
present a unified view of VC, compression,
luckiness, PAC-Bayesian, and stability bounds.
In a very readable introduction to statistical
learning theory, Bousquet et al. (2004) provide
good intuition and concise proofs for all but
the PAC-Bayesian bounds presented above.
That introduction is a good companion for
the excellent but more technical survey by
Boucheron et al. (2005) based on tools from the
theory of empirical processes. The latter paper
also provides a wealth of further references and
a concise history of the development of main
techniques in statistical learning theory.
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Generalization Performance

The generalization performance of a learning

algorithm refers to the performance on
out-of-sample data of the models learned by

the algorithm.

Cross-References

Algorithm Evaluation

Generalized Delta Rule

Backpropagation

General-to-Specific Search

When searching a hypothesis space, a general-
to-specific search starts from the most general
hypothesis and expands the search by specializa-
tion. See » Learning as Search.
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Generative and Discriminative Learning

Generative and Discriminative
Learning

Bin Liu' and Geoffrey 1. Webb?
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2Faculty of Information Technology, Monash
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Definition

Generative learning refers alternatively to any
classification learning process that classifies by
using an estimate of the joint probability P(y,x)
or to any classification learning process that clas-
sifies by using estimates of the » prior probabil-
ity P(y) and the conditional probability P(x|y)
(Jaakkola and Haussler 1999; Jaakkola et al.
1999; Ng and Jordan 2002; Lasserre et al. 2006;
Bishop 2007), where y is a class and x is a
description of an object to be classified. Given
such models or estimates, it is possible to gener-
ate synthetic objects from the joint distribution.
Generative learning contrasts to discriminative
learning in which a model or estimate of P(y|x)
is formed without reference to an explicit esti-
mate of any of P(y, x), P(x), or P(x|y).

It is also common to categorize as discrimina-
tive approaches based on a decision function that
directly map from input x onto the output y (such
as » support vector machines, » neural networks,
and » decision trees), where the decision risk is
minimized without estimation of P(y, x), P(x|y),
or P(y|x) (Jaakkola and Haussler 1999).

The standard exemplar of generative learn-
ing is » naive Bayes and that of discriminative
learning is » logistic regression Another impor-
tant contrasting pair is the generative » hidden
Markov model and discriminative » conditional
random field.

It is widely accepted that generative learning
works well when samples are rare, while dis-
criminative learning has better asymptotic error
performance (Ng and Jordan 2002).

Motivation and Background

Efron (1975) provides an early examination of
the generative/discriminative distinction. Efron
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performs an empirical comparison of the effi-
ciency of the generative » linear discriminant
analysis (LDA) and discriminative » logistic re-
gression. His results show that logistic regression
has 30 % less efficiency than LDA, which means
the discriminative approach is 30 % slower to
reach its asymptotic error than the generative
approach.

Ng and Jordan (2002) give a theoretical dis-
cussion of the efficiency of generative » naive
Bayes and discriminative » logistic regression.
This is an interesting pair because they both form
linear models of forms that are directly equivalent
to one another, the only substantive difference
being the manner in which they parameterize
those models. Their result shows that logistic
regression converges toward its asymptotic error
in order n samples, while naive Bayes converges
in order logn samples. While logistic regression
converges much slower than naive Bayes, it has
lower asymptotic error than naive Bayes. These
results suggest that it is desirable to use a gen-
erative approach when training data is scarce
and to use a discriminative approach when there
is enough training data. However, it is worth
noting that the generative/discriminative distinc-
tion is not the only difference in how these two
algorithms parameterize their models. Whereas
logistic regression seeks to directly fit its model to
the discriminative objective, P(y|x), naive Bayes
does not directly fit P(y,x). Instead it fits its
model to P(y) and each P(x;|y) (where x; is
an individual attribute), making the simplifying
attribute independence assumption.

Recent research into the generative/discrimi-
native learning distinction has concentrated on
the area of hybrids of generative and discrimina-
tive learning as well as generative learning and
discriminative learning in structured data learning
or semi-supervised learning context.

In hybrid approaches, researchers seek to
obtain the merits of both generative learning
and discriminative learning. Some examples
include the Fisher kernel for discriminative
learning (Jaakkola and Haussler 1999), max-
ent discriminative learning (Jaakkola et al.
1999), and principled hybrids of generative and
discriminative models (Lasserre et al. 2006; Zaidi
et al. 2014).
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In structured data learning, the output data
have dependent relationships As an example
of generative learning, hidden Markov models
are used in structured data problems which
need sequential decisions. The discriminative
analogue is conditional random field models.
Another example of discriminatively structured
learning is max-margin Markov networks (Taskar
et al. 2004).

In » semi-supervised learning, co-training and
multiview learning are usually applied to genera-
tive learning (Blum and Mitchell 1998). It is less
straightforward to apply semi-supervised learn-
ing in traditional discriminative learning, since
P(y|x) is estimated by ignoring P(x). Examples of
semi-supervised learning methods in discrimina-
tive learning include transductive SVM, Gaussian
processes, information regularization, and graph-
based methods (Chapelle et al. 2006).
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Generative Learning

Generative Learning
Definition

Generative learning refers alternatively to any
classification learning process that classifies by
using an estimate of the joint probability P(y, x)
or to any classification learning process that clas-
sifies by using estimates of the prior probabil-
ity P(y) and the conditional probability P(x|y),
where y is a class and x is a description of
an object to be classified. Given such models
or estimates it is possible to generate synthetic
objects from the joint distribution. Generative
learning contrasts to discriminative learning in
which a model or estimate of P(y|x) is formed
without reference to an explicit estimate of any
of P(x), P(y, x), or P(x|y).

Cross-References
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Genetic and Evolutionary
Algorithms
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Definitions

There are many variations of genetic algorithms
(GA). Here, wedescribe a simple scheme to in-
troduce some of the key terms in genetic and
evolutionary algorithms. See the main entry on

Evolutionary Algorithms for references to spe-
cific methods.

In genetic learning, we assume that there is
a population of individuals, each of which rep-
resents a candidate problem solver for a given
task. GAs can be thought of as a family of
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Genetic and Evolutionary Algorithms

general purpose search methods that are capable
of solving a broad range of problems from op-
timization and scheduling to robot control. Like
evolution, genetic algorithms test each individual
from the population and only the fittest survive
to reproduce for the next generation. The algo-
rithm creates new generations until at least one
individual is found that can solve the problem
adequately.

Each problem solver is a chromosome. A posi-
tion, or set of positions in a chromosome is called
a gene. The possible values (from a fixed set of
symbols) of a gene are known as alleles. For
example, a simple genetic algorithm may define
the set of symbols to be {0, 1}, and chromosome
lengths are fixed. The most critical problem in ap-
plying a genetic algorithm is in finding a suitable
encoding of the examples in the problem domain
to a chromosome. A good choice of representa-
tion will make the search easier by limiting the
size of the search space. A poor choice will result
in a large search space. Choosing the size of the
population can be problematic since a small pop-
ulation size provides an insufficient sample over
the space of solutions for a problem and large
population requires extensive evaluation and will
be slow.

Each iteration in a genetic algorithm is called
a generation. Each chromosome in a population
is used to solve a problem. Its performance is
evaluated and the chromosome is given a rating
of fitness. The population is also given an overall
fitness rating based on the performance of its
members. The fitness value indicates how close
a chromosome or population is to the required
solution.

New sets of chromosomes are produced from
one generation to the next. Reproduction takes
place when selected chromosomes from one gen-
eration are recombined with others to form chro-
mosomes for the next generation. The new ones
are called offspring. Selection of chromosomes
for reproduction is based on their fitness values.
The average fitness of the population may also
be calculated at the end of each generation. The
strategy must be modified if too few or too many
chromosomes survive. For example, at least 10 %
and at most 60 % must survive.
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Genetic Operators

Operators that recombine the selected chromo-
somes are called genetic operators. Two common
operators are crossover and mutation. Crossover
exchanges portions of a pair of chromosomes
at a randomly chosen point called the crossover
point. Some Implementations have more than one
crossover point. For example, if there are two
chromosomes, X and Y:

X =100101011,Y = 111010010

and the crossover point is after position 4, the
resulting offspring are:

01 = 100110010, O2 = 111001011

Offspring produced by crossover cannot contain
information that is not already in the population,
so an additional operator, mutation, is required.
Mutation generates an offspring by randomly
changing the values of genes at one or more
gene positions of a selected chromosome. For
example, if the following chromosome,

Z = 100101011

is mutated at positions 2, 4, and 9, then the
resulting offspring is:

O = 110001010

The number of offspring produced for each new
generation depends on how members are intro-
duced so as to maintain a fixed population size. In
a pure replacement strategy, the whole population
is replaced by a new one. In an elitist strategy, a
proportion of the population survives to the next
generation.

Cross-References

Evolutionary Algorithms
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Genetic Attribute Construction
Evolutionary Feature Selection and Construc-

tion

Genetic Clustering

Evolutionary Clustering

Genetic Feature Selection

Evolutionary Feature Selection and Construc-
tion

Genetic Grouping

Evolutionary Clustering

Genetic Neural Networks

Neuroevolution

Genetic Programming

Moshe Sipper
Ben-Gurion University, Beer-Sheva, Israel

Abstract

Genetic programming (GP) is an evolution-
ary algorithm-based methodology inspired by
biological evolution, used to solve complex
problems.

Genetic programming is a subclass of » evolutio-
nary algorithms, wherein a population of individ-
ual programs is evolved. The main mechanism

Genetic Attribute Construction

behind genetic programming is that of a » genetic
algorithm, namely, the repeated cycling through
four operations applied to the entire population:
evaluate—select—crossover—mutate. Starting with
an initial population of randomly generated pro-
grams, each individual is evaluated in the do-
main environment and assigned a fitness value
representing how well the individual solves the
problem at hand. Being randomly generated, the
first-generation individuals usually exhibit poor
performance. However, some individuals are bet-
ter than others, that is, as in nature, variabil-
ity exists, and through the mechanism of se-
lection, these have a higher probability of be-
ing selected to parent the next generation. The
size of the population is finite and usually con-
stant.

See » Evolutionary Games for a more detailed
explanation of genetic programming.

Genetics-Based Machine Learning

Classifier Systems

Gibbs Sampling

Gibbs Sampling is a heuristic inference algorithm
for » Bayesian networks. See » Graphical Mod-
els for details.

Gini Coefficient

The Gini coefficient is an empirical measure
of classification performance based on the area
under an ROC curve (AUC). Attributed to the
Italian statistician Corrado Gini (1884-1965), it
can be calculated as 2 - {AUC} — 1 and thus takes
values in the interval [—1, 1], where 1 indicates
perfect ranking performance and —1 indicates
that all negatives are ranked before all positives.
See » ROC Analysis.
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Synonyms
Grammar learning
Definition

Grammatical inference is concerned with infer-
ring grammars from positive (and possibly neg-
ative) examples (Angluin 1978; Korfiatis and
Paliouras 2008; Sakakibara 2005). A context-
free grammar (CFG) G (equivalent to a push-
down finite-state automaton) is described by a
four tuple (Q, £, 6, X):

e Y is the alphabet of terminal symbols, upon
which the grammar is defined.

e The pair (Q,€) defines a graph, where Q
is the set of nodes (states), and £ is the set
of edges (production rules). Q includes one
starting node go and a set Q¢ (Qy C Q) of
final or accepting nodes.

* Every edge in £ is labeled by one or several
letters in X', expressed through mapping § :
2%,

e Let £(G) denote the language associated to the
grammar. Each string s in £(G) is generated
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along a random walk in the graph, starting in
qo with an initially empty s. Upon traversing
edge e, one symbol from §(e) is concatenated
to s. The walk ends upon reaching a final node

(e € Qp).

A CFG is determinist if all pairs of edges
(¢.q") and (q.q") (¢’ # ¢q") bear different labels
8(q.94")(8(q.q") = 0).

One generalizes a given CFG by applying one
or several operators, among the following: (1) in-
troducing additional nodes and edges, (2) turning
a node into an accepting one, and (3) merging
two nodes ¢ and ¢’. In the latter case, some non-
determinism can be introduced (if some edges
(¢,r) and (¢’, r") have label(s) in common); en-
forcing a deterministic generalization is done us-
ing the recursive determinization operator (e.g.,
merging nodes r and r’).

In general, grammatical inference proceeds as
follows (Lang et al. 1998; Oncina and Garcia
1992). Let S be the set of positive examples,
strings on alphabet X'. The prefix tree acceptor
(PTA), a most specific generalization of S, is
constructed by associating to each character of
every string a distinct node and applying the de-
terminization operator. This PTA is thereafter it-
eratively generalized by merging a pair of nodes.
Well-known grammar learners are RPNI (Oncina
and Garcia 1992) and BLUE-FRINGE (Lang et al.
1998). RPNI uses a depth first search strategy
and merges the pair of nodes which are closest
to the start node, such that their deterministic
generalization does not cover any negative exam-
ple. BLUE-FRINGE uses a beam search from a
candidate list, selecting the pair of nodes to be
merged after the evidence-driven state merging
(EDSM) criterion, i.e., such that their generaliza-
tion involves a minimal number of final states.
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Graph Clustering
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Synonyms

Minimum cuts; Network clustering; Spectral
clustering; Structured data clustering

Definition

Graph clustering refers to » clustering of data
in the form of graphs. Two distinct forms of
clustering can be performed on graph data. Vertex
clustering seeks to cluster the nodes of the graph
into groups of densely connected regions based
on either edge weights or edge distances. The
second form of graph clustering treats the graphs
as the objects to be clustered and clusters these
objects on the basis of similarity. The second
approach is often encountered in the context of
structured or XML data.

Grammatical Tagging

Motivation and Background

Graph clustering is a form of » graph mining
that is useful in a number of practical applica-
tions including marketing, customer segmenta-
tion, congestion detection, facility location, and
XML data integration (Lee et al. 2002). The
graph clustering problems are typically defined
into two categories:

* Node clustering algorithms: Node clustering
algorithms are generalizations of multidimen-
sional clustering algorithms in which we use
functions of the multidimensional data points
in order to define the distances. In the case of
graph clustering algorithms, we associate nu-
merical values with the edges. These numeri-
cal values need not satisfy traditional proper-
ties of distance functions such as the triangle
inequality. We use these distance values in
order to create clusters of nodes. We note
that the numerical value associated with a
given node may either be a distance value or
a similarity value. Correspondingly, the ob-
jective function associated with the partition-
ing may either be minimized or maximized.
We note that the problem of minimizing the
intercluster similarity for a fixed number of
clusters essentially reduces to the problem
of graph partitioning or the minimum multi-
way cut problem. This is also referred to the
problem of mining dense graphs and pseudo-
cliques. Recently, the problem has also been
studied in the database literature as that of
quasi-clique determination. In this problem,
we determine groups of nodes which are “al-
most cliques.” In other words, an edge exists
between any pair of nodes in the set with a
high probability. A closely related problem
is that of determining shingles (Gibson et al.
2005). Shingles are defined as those subgraphs
which have a large number of common links.
This is particularly useful for massive graphs
which contain a large number of nodes. In
such cases, a min-hash approach (Gibson et al.
2005) can be used in order to summarize the
structural behavior of the underlying graph.
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Graph Clustering

* Graph clustering algorithms: In this case,
we have a (possibly large) number of graphs
which need to be clustered based on their
underlying structural behavior. This problem
is challenging because of the need to match
the structures of the underlying graphs and
use these structures for clustering purposes.
Such algorithms are discussed both in the
context of classical graph data sets as
well as semistructured data. In the case of
semistructured data, the problem arises in
the context of a large number of documents
which need to be clustered on the basis of the
underlying structure and attributes. It has been
shown by Aggarwal et al. (2007) that the use
of the underlying document structure leads to
significantly more effective algorithms.

This chapter will discuss the different kinds of
clustering algorithms and their applications. Each
section will discuss a particular class of clustering
algorithms and the different approaches which
are commonly used for this class.

Graph Clustering as Minimum Cut

The graph clustering problem can be related to
the minimum-cut and graph partitioning prob-
lems. In this case, it is assumed that the under-
lying graphs have weights on the edges. It is
desired to partition the graphs in such a way so as
to minimize the weights of the edges across the
partitions. In general, we would like to partition
the graphs into k groups of nodes. However, since
the special case k = 2 is efficiently solvable, we
would like to first provide a special discussion for
this case. This version is polynomially solvable,
since it is the mathematical dual of the maximum-
flow problem. This problem is also referred to as
the minimum-cut problem.

The minimum-cut problem is defined as fol-
lows. Consider a graph G = (N, A) with node set
N and edge set A. The node set N contains the
source s and sink z. Each edge (i, j) € A has a
weight associated with it which is denoted by u;;.
We note that the edges may be either undirected
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or directed, though the undirected case is often
much more relevant for connectivity applications.
We would like to partition the node set N into
two groups S and N — S. The set of edges
such that one end lies in S and the other lies in
N — § is denoted by C(S,N — §). We would
like to partition the node set N into two sets S
and N — S, such that the sum of the weights in
C(S,N — S) is minimized. In other words, we
would like to minimize } ; .y € C(s,N—s)Uij-
This is the unrestricted version of the minimum-
cut problem. We will examine two variations of
the minimum-cut problem:

* We wish to determine the global minimum
s —t cut with no restrictions on the member-
ship of nodes to different partitions.

¢ We wish to determine the minimum s — ¢
cut, in which one partition contains the source
node s and the other partition contains the sink
node ¢.

It is easy to see that the former problem can be
solved by using repeated applications of the latter
algorithm. By fixing s and choosing different val-
ues of the sink ¢, it can be shown that the global
minimum cut may be effectively determined.

It turns out that the maximum-flow problem is
the mathematical dual of the minimum-cut prob-
lem. In the maximum-flow problem, we assume
that the weight u;; is a capacity of the edge (i, j).
Each edge is allowed to have a flowx;; which is at
most equal to the capacity u;;. Each node other
than the source s and sink 7 is assumed to satisfy
the flow conservation property. In other words,
for eachnode i € N we have

> oxij= ) X

Jii,j)eA J:(i)eA

We would like to maximize the total flow orig-
inating from the source and reaching the sink ¢,
subject to the above constraints. The maximum-
flow problem is solved with the use of a variety
of augmenting path and preflow push algorithms.
Details of different kinds of algorithms may be
found in the work by Ahuja et al. (1992).
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A closely related problem to the minimum
s — t cut problem is that of determining a global
minimum cut in an undirected graph. This par-
ticular case is more efficient than that of finding
the s — ¢ minimum cut. One way of determin-
ing a minimum cut is by using a contraction-
based edge-sampling approach. While the pre-
vious technique is applicable to both the di-
rected and undirected versions of the problem,
the contraction-based approach is applicable only
to the undirected version of the problem. Fur-
thermore, the contraction-based approach is ap-
plicable only for the case in which the weight
of each edge is u;; = 1. While the method
can easily be extended to the weighted version
by varying the edge-sampling probability, the
polynomial running time bounds discussed by
Tsay et al. (1999) do not apply to this case. The
contraction approach is a probabilistic technique
in which we successively sample the edges in
order to collapse nodes into larger sets of nodes.
By successively sampling different sequences of
edges and picking the optimum value (Tsay et al.
1999), it is possible to determine a global min-
imum cut. The broad idea of the contraction-
based approach is as follows. We pick an edge
randomly in the graph and contract its two end
points into a single node. We remove all the
self-loops which are created as a result of the
contraction. We may also create some parallel
edges, which are allowed to remain, since they
influence the sampling probability (Alternatively,
we may replace parallel edges by a single edge of
weight which is equal to the number of parallel
edges. We use this weight in order to bias the
sampling process.) of contractions. The process
of contraction is repeated until we are left with
two nodes. We note that each of this pair of
“super-nodes” corresponds to a set of nodes in the
original data. These two sets of nodes provide us
with the final minimum cut. We note that the min-
imum cut will survive in this approach, if none of
the edges in the minimum cut are sampled during
the contraction. It has been shown by Tsay et al.
that by using repeated contraction of the graph
to a size of /n nodes, it is possible to obtain a
correct solution with high probability in O(n?)
time.
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Graph Clustering as Multiway Graph
Partitioning

The multiway graph partitioning problem is
significantly more difficult, and is NP-hard
(Kernighan and Lin 1970). In this case, we wish
to partition a graph into k > 2 components,
so that the total weight of the edges whose
ends lie in different partitions is minimized. A
well-known technique for graph partitioning is
the Kerninghan-Lin algorithm (Kernighan and
Lin 1970). This classical algorithm is based on
hill climbing (or more generally neighborhood-
search technique) for determining the optimal
graph partitioning. Initially, we start off with a
random cut of the graph. In each iteration, we
exchange a pair of vertices in two partitions to
see if the overall cut value is reduced. In the
event that the cut value is reduced, then the
interchange is performed. Otherwise, we pick
another pair of vertices in order to perform the
interchange. This process is repeated until we
converge to a optimal solution. We note that this
optimum may not be a global optimum, but may
only be a local optimum of the underlying data.
The main variation in different versions of the
Kerninghan-Lin algorithm is the policy which
is used for performing the interchanges on the
vertices. Some examples of strategies which may
be used in order to perform the interchange are
as follows:

*  We randomly pick a pair of vertices and per-
form the interchange, if it improves the under-
lying solution quality.

* We test all possible vertex-pair interchanges
(or a sample of possible interchanges), and
pick the interchange which improves the so-
lution by the greatest amount.

* A k-interchange is one in which a sequence of
k interchanges are performed at one time. We
can test any k-interchange and perform it, if it
improves the underlying solution quality.

e We can pick the optimal k-interchange from a
sample of possibilities.

We note that the use of more sophisticated
strategies allows a better improvement in the
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objective function for each interchange, but
also requires more time for each interchange.
For example, the determination of an optimal
k-interchange requires much more time than a
straightforward interchange. This is a natural
trade-off which may work out differently
depending upon the nature of the application
at hand. Furthermore, the choice of the policy
also affects the likelihood of getting stuck at
a local optimum. For example, the use of k-
interchange techniques are far less likely to
result in local optimum for larger values of k.
In fact, by choosing the best interchange across
all possible values of k it is possible to ensure that
a global optimum is always reached. On the other
hand, it is increasingly difficult to implement
the algorithm efficiently with increasing value
of k. This is because the time complexity of
the interchange increases exponentially with the
value of k.

Graph Clustering with k-Means

Two well-known (and related) techniques for
clustering in the context of multidimensional data
(Jain and Dubes 1998) are the k-medoid and
k-means algorithms. In the k-medoid algorithm
(for multidimensional data), we sample a small
number of points from the original data as seeds
and assign every other data point from the clus-
ters to the closest of these seeds. The closeness
may be defined based on a user-defined objective
function. The objective function for the clustering
is defined as the sum of the corresponding dis-
tances of data points to the corresponding seeds.
In the next iteration, the algorithm interchanges
one of the seeds for another randomly selected
seed from the data, and checks if the quality of
the objective function improves upon performing
the interchange. If this is indeed the case, then
the interchange is accepted. Otherwise, we do
not accept the interchange and try another sam-
ple interchange. This process is repeated, until
the objective function does not improve over a
predefined number of interchanges. A closely
related method is the k-means method. The main
difference with the k-medoid method is that we
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do not use representative points from the original
data after the first iteration of picking the original
seeds. In subsequent iterations, we use the cen-
troid of each cluster as the seed set for the next
iteration. This process is repeated until the cluster
membership stabilizes.

A method has been proposed by Rattigan et al.
(2007), which uses the characteristics of both the
k-means and k-medoids algorithms. As in the
case of the conventional partitioning algorithms,
it picks k graph nodes as seeds. The main dif-
ferences from the conventional algorithms are in
terms of computation of distances (for assign-
ment purposes), and in determination of sub-
sequent seeds. A natural distance function for
graphs is the geodesic distance, or the smallest
number of hops between a pair of nodes. In order
to determine the seed set for the next iteration,
we compute the local closeness centrality for
each cluster, and use the corresponding node
as the sample seed. Thus, while this algorithm
continues to use seeds from the original data set
(as in the k-medoids algorithm), it uses intuitive
ideas from the k-means algorithms in order to
determine the identity of these seeds.

Graph Clustering with the Spectral
Method

Eigenvector techniques are often used in multidi-
mensional data in order to determine the underly-
ing correlation structure in the data. It is natural
to question as to whether such techniques can also
be used for the more general case of graph data. It
turns out that this is indeed possible with the use
of a method called spectral clustering.

In the spectral clustering method, we make
use of the node-node adjacency matrix of the
graph. For a graph containing n nodes, let us
assume that we have an n x n adjacency matrix,
in which the entry (7, j) correspond to the weight
of the edge between the nodes i and j. This
essentially corresponds to the similarity between
nodes i and ;. This entry is denoted by w;;, and
the corresponding matrix is denoted by W. This
matrix is assumed to be symmetric, since we are
working with undirected graphs. Therefore, we
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assume that w;; = w;; for any pair (i, j). All
diagonal entries of the matrix W are assumed to
be 0. As discussed earlier, the aim of any node
partitioning algorithm is to minimize (a function
of) the weights across the partitions. The spectral
clustering method constructs this minimization
function in terms of the matrix structure of the
adjacency matrix and another matrix which is
referred to as the degree matrix.

The degree matrix D is simply a diagonal
matrix in which all entries are zero except for the
diagonal values. The diagonal entry d;; is equal
to the sum of the weights of the incident edges. In
other words, the entry d;; is defined as follows:

n

dij =Y wij, i=],
j=1

0, i#J

We formally define the Laplacian matrix as
follows: (Laplacian matrix): The Laplacian ma-
trix L is defined by subtracting the weighted
adjacency matrix from the degree matrix. In other
words, we have

L=D-W.

This matrix encodes the structural behavior of
the graph effectively and its eigenvector behavior
can be used in order to determine the important
clusters in the underlying graph structure. It can
be shown that the Laplacian matrix L is positive
semidefinite i.e., for any n-dimensional row vec-
tor f =[fi... fn]wehave f-L-fT > 0. This
can be easily shown by expressing L in terms
of its constituent entries which are a function of
the corresponding weights w;;. Upon expansion,
it can be shown that

oL fT=1/2)- Y i (fi = f1)

i=1j=1

The Laplacian matrix L is positive semidef-
inite. Specifically, for any n-dimensional row
vector f = [fi... fu], we have
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SoL-fT =723 wiy - (fi = f1)

i=1j=1

At this point, let us examine some interpreta-
tions of the vector f in terms of the underlying
graph partitioning. Let us consider the case in
which each f; is drawn from the set {0, 1},
and this determines a two-way partition by la-
beling each node either O or 1. The particular
partition to which the node i belongs is defined
by the corresponding label. Note that the ex-
pansion of the expression f-L- fT from the
above relationship simply represents the sum of
the weights of the edges across the partition
defined by f. Thus, the determination of an
appropriate value of f for which the function
f-L-fT is minimized also provides us with a
good node partitioning. Unfortunately, it is not
easy to determine the discrete values of f which
determine this optimum partitioning. Neverthe-
less, we will see later in this section that even
when we restrict f to real values, this provides us
with the intuition necessary to create an effective
partitioning.

An immediate observation is that the indicator
vector f = [l...1] is an eigenvector with
a corresponding eigenvalue of 0. We note that
f = [1...1] must be an eigenvector, since L
is positive semidefinite and f-L- fT can be 0
only for eigenvectors with O eigenvalues. This
observation can be generalized further in order to
determine the number of connected components
in the graph. We make the following observation.

The number of (linearly independent) eigen-
vectors with zero eigenvalues for the Laplacian
matrix L is equal to the number of connected
components in the underlying graph.

We observe that connected components are the
most obvious examples of clusters in the graph.
Therefore, the determination of eigenvectors cor-
responding to zero eigenvalues provides us the
information about (relatively rudimentary set of)
clusters. Broadly speaking, it may not be possible
to glean such clean membership behavior from
the other eigenvectors. One of the problems is
that other than this particular rudimentary set of
eigenvectors (which correspond to the connected
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components), the vector components of the other
eigenvectors are drawn from the real domain
rather than the discrete {0, 1} domain. Neverthe-
less, because of the nature of the natural interpre-
tation of f-L- fT in terms of the weights of the
edges across nodes with very differing values of
fi, it is natural to cluster together the nodes for
which the values of f; are as similar as possible
across any particular eigenvector on an average.
This provides us with the intuition necessary to
define an effective spectral clustering algorithm,
which partitions the data set into k clusters for
any arbitrary value of k. The algorithm is as
follows:

¢ Determine the k eigenvectors with the small-
est eigenvalues. Note that each eigenvector has
as many components as the number of nodes.
Let the component of the jth eigenvector for
the ith node be denoted by p;;.

e Create a new data set with as many records
as the number of nodes. The ith record in
this data set corresponds to the ith node and
has k components. The record for this node
is simply the eigenvector components for that
node, which are denoted by pi; ... pik.

* Since we would like to cluster nodes with sim-
ilar eigenvector components, we use any con-
ventional clustering algorithm (e.g., k-means)
in order to create k clusters from this data
set. Note that the main focus of the approach
was to create a transformation of a struc-
tural clustering algorithm into a more con-
ventional multidimensional clustering algo-
rithm, which is easy to solve. The particu-
lar choice of the multidimensional clustering
algorithm is orthogonal to the broad spectral
approach.

The above algorithm provides a broad frame-
work for the spectral clustering algorithm. The
input parameter for the above algorithm is the
number of clusters k. In practice, a number of
variations are possible in order to tune the quality
of the clusters which are found. More details
on the different methods which can be used for
effective spectral graph clustering may be found
in Chung (1997).
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Graph Clustering as Quasi-clique
Detection

A different way of determining massive graphs in
the underlying data is that of determining quasi-
cliques. This technique is different from many
other partitioning algorithms, in that it focuses
on definitions which maximize the edge densities
within a partition, rather than minimizing the
edge densities across partitions. A clique is a
graph in which every pair of nodes are connected
by an edge. A quasi-clique is a relaxation on
this concept, and is defined by imposing a lower
bound on the degree of each vertex in the given
set of nodes. Specifically, we define a y-quasi-
clique is as follows:

A k-graph (k > 1) G is a y-quasi-clique
if the degree of each node in the corresponding
subgraph of vertices is at least y - k.

The value of y always lies in the range (0, 1].
We note that by choosing y = 1, this defini-
tion reverts to that of standard cliques. Choosing
lower values of y allows for the relaxations which
are more true in the case of real applications.
This is because we rarely encounter complete
cliques in real applications, and at least some
edges within a dense subgraph would always be
missing. A vertex is said to be critical if its degree
in the corresponding subgraph is the smallest
integer which is at least equal to y - k.

The earliest piece of work on this problem is
from Abello et al. (2002). The work of Abello
et al. (2002) uses a greedy randomized adap-
tive search algorithm, GRASP, to find a quasi-
clique with the maximum size. A closely related
problem is that of finding frequently occurring
cliques in multiple data sets. In other words,
when multiple graphs are obtained from different
data sets, some dense subgraphs occur frequently
together in the different data sets. Such graphs
help in determining important dense patterns of
behavior in different data sources. Such tech-
niques find applicability in mining important pat-
terns in graphical representations of customers.
The techniques are also helpful in mining cross-
graph quasi-cliques in gene expression data. An
efficient algorithm for determining cross graph
quasi-cliques was proposed by Pei et al. (2005).
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The main restriction of the work proposed by
Pei et al. (2005) is that the support threshold
for the algorithms is assumed to be 100 %. This
restriction has been relaxed in subsequent work
(Zeng et al. 2007). The work by Zeng et al.
(2007) examines the problem of mining frequent,
closed quasi-cliques from a graph database with
arbitrary support thresholds.

Graph Clustering as Dense Subgraph
Determination

A closely related problem is that of dense
subgraph determination in massive graphs. This
problem is frequently encountered in large
graph data sets. For example, the problem of
determining large subgraphs of web graphs was
studied by Gibson et al. (2005). The broad idea in
the min-hash approach is to represent the outlinks
of a particular node as sets. Two nodes are
considered similar if they share many outlinks.
Thus, consider a node A with an outlink set
S 4, and a node B with outlink set Sg. Then the
similarity between the two nodes is defined by the
Jaccard coefficient, which is defined as g:‘l ng .
We note that explicit enumeration of all the edges
in order to compute this can be computationally
inefficient. Rather, a min-hash approach is used
in order to perform the estimation. This min-hash
approach is as follows. We sort the universe
of nodes in a random order. For any set of
nodes in random sorted order, we determine
the first node First(A) for which an outlink
exists from A to First(A). We also determine
the first node First(B) for which an outlink exists
from B to First(B). It can be shown that the
Jaccard coefficient is an unbiased estimate of
the probability that First(A) and First(B) are
the same nodes. By repeating this process over
different permutations over the universe of nodes,
it is possible to accurately estimate the Jaccard
coefficient. This is done by using a constant
number of permutations ¢ of the node order.
The actual permutations are implemented by
associated ¢ different randomized hash values
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with each node. This creates ¢ sets of hash
values of size n. The sort-order for any particular
set of hash-values defines the corresponding
permutation order. For each such permutation,
we store the minimum node index of the outlink
set. Thus, for each node, there are c¢ such
minimum indices. This means that, for each
node, a fingerprint of size ¢ can be constructed.
By comparing the fingerprints of two nodes,
the Jaccard coefficient can be estimated. This
approach can be further generalized with the use
of every s element set contained entirely with
S4 and Sp. Thus, the above description is the
special case when s is set to 1. By using different
values of s and c, it is possible to design an
algorithm which distinguishes between two sets
that are above or below a certain threshold of
similarity.

The overall technique by Gibson et al. (2005)
first generates a set of ¢ shingles of size s for each
node. The process of generating the ¢ shingles
is extremely straightforward. Each node is pro-
cessed independently. We use the min-wise hash
function approach in order to generate subsets
of size s from the outlinks at each node. This
results in ¢ subsets for each node. Thus, for
each node, we have a set of ¢ shingles. Thus, if
the graph contains a total of n nodes, the total
size of this shingle fingerprint is n X ¢ X sp,
where sp is the space required for each shingle.
Typically, sp will be O(s), since each shingle
contains s nodes. For each distinct shingle thus
created, we can create a list of nodes which
contain it. In general, we would like to determine
groups of shingles which contain a large number
of common nodes. In order to do so, the method
by Gibson et al. performs a second-order shin-
gling in which the meta-shingles are created from
the shingles. Thus, this further compresses the
graph in a data structure of size ¢ x c. This is
essentially a constant-size data structure. We note
that this group of meta-shingles have the property
that they contain a large number of common
nodes. The dense subgraphs can then be extracted
from these meta-shingles. More details on this
approach may be found in the work by Gibson
et al.
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Clustering Graphs as Objects

In this section, we will discuss the problem
of clustering entire graphs in a multigraph
database, rather than examining the node
clustering problem within a single graph. Such
situations are often encountered in the context
of XML data, since each XML document can
be regarded as a structural record, and it may
be necessary to create clusters from a large
number of such objects. We note that XML data
is quite similar to graph data in terms of how
the data is organized structurally. The attribute
values can be treated as graph labels and the
corresponding semistructural relationships as
the edges. In has been shown by Aggarwal et al.
(2007), Dalamagas et al. (2005), Lee et al. (2002),
and Lian et al. (2004) that this structural behavior
can be leveraged in order to create effective
clusters.

Since we are examining entire graphs in this
version of the clustering problem, the problem
simply boils down to that of clustering arbitrary
objects, where the objects in this case have struc-
tural characteristics. Many of the conventional
algorithms discussed by Jain and Dubes (1998)
(such as k-means type partitional algorithms and
hierarchical algorithms) can be extended to the
case of graph data. The main changes required in
order to extend these algorithms are as follows:

* Most of the underlying classical algorithms
typically use some form of distance function
in order to measure similarity. Therefore, we
need appropriate measures in order to define
similarity (or distances) between structural
objects.

e Many of the classical algorithms (such as k-
means) use representative objects such as cen-
troids in critical intermediate steps. While this
is straightforward in the case of multidimen-
sional objects, it is much more challenging in
the case of graph objects. Therefore, appro-
priate methods need to be designed in order
to create representative objects. Furthermore,
in some cases it may be difficult to create
representatives in terms of single objects. We
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will see that it is often more robust to use
representative summaries of the underlying
objects.

There are two main classes of conventional
techniques, which have been extended to the case
of structural objects. These techniques are as
follows:

e Structural distance-based approach: This
approach computes structural distances
between documents and uses them in order
to compute clusters of documents. One of
the earliest work on clustering tree structured
data is the XClust algorithm (Lee et al. 2002),
which was designed to cluster XML schemas
in order for efficient integration of large
numbers of document type definitions (DTDs)
of XML sources. It adopts the agglomerative
hierarchical clustering method which starts
with clusters of single DTDs and gradually
merges the two most similar clusters into one
larger cluster. The similarity between two
DTDs is based on their element similarity,
which can be computed according to the
semantics, structure, and context information
of the elements in the corresponding DTDs.
One of the shortcomings of the XClust
algorithm is that it does not make full use of
the structure information of the DTDs, which
is quite important in the context of clustering
tree-like structures. The method by Chawathe
(1999) computes similarity measures based
on the structural edit-distance between
documents. This edit-distance is used in order
to compute the distances between clusters of
documents.

S-GRACE is hierarchical clustering algo-
rithm (Lian et al. 2004). In the work by Lian
et al., an XML document is converted to
a structure graph (or s-graph), and the dis-
tance between two XML documents is de-
fined according to the number of the common
element-subelement relationships, which can
capture better structural similarity relation-
ships than the tree edit-distance in some cases
(Lian et al.).
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Structural summary-based approach: In many
cases, it is possible to create summaries from
the underlying documents. These summaries
are used for creating groups of documents
which are similar to these summaries. The
first summary-based approach for clustering
XML documents was presented by Dalama-
gas et al. (2005). In the work by Dalamagas
et al., the XML documents are modeled as
rooted, ordered labeled trees. A framework
for clustering XML documents by using struc-
tural summaries of trees is presented. The aim
is to improve algorithmic efficiency without
compromising cluster quality.

A second approach for clustering XML
documents is presented by Aggarwal et al.
(2007). This technique is a partition-based
algorithm. The primary idea in this approach
is to use frequent-pattern mining algorithms in
order to determine the summaries of frequent
structures in the data. The technique uses a
k-means type approach in which each cluster
center comprises a set of frequent patterns
which are local to the partition for that cluster.
The frequent patterns are mined using the
documents assigned to a cluster center in the
last iteration. The documents are then further
reassigned to a cluster center based on the
average similarity between the document and
the newly created cluster centers from the
local frequent patterns. In each iteration the
document assignment and the mined frequent
patterns are iteratively reassigned until the
cluster centers and document partitions con-
verge to a final state. It has been shown by Ag-
garwal et al. that such a structural summary-
based approach is significantly superior to
a similarity function-based approach, as pre-
sented by Chawathe (1999). The method is
also superior to the structural approach by
Dalamagas et al. (2005) because of its use of
more robust representations of the underlying
structural summaries.

Conclusions and Future Research

In this chapter, we presented a review of the
commonly known algorithms for clustering graph
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data. The problem of clustering graphs has been
widely studied in the literature, because of its
application to a variety of data mining and data
management problems. Graph clustering algo-
rithms are of two types:

Node clustering algorithms: In this case, we
attempt to partition the graph into groups of
clusters so that each cluster contains groups
of nodes which are densely connected. These
densely connected groups of nodes may often
provide significant information about how the
entities in the underlying graph are intercon-
nected with one another.

Graph clustering algorithms: In this case,
we have complete graphs available, and we
wish to determine the clusters with the use of
the structural information in the underlying
graphs. Such cases are often encountered in
the case of XML data, which are commonly
encountered in many real domains.

We provided an overview of the different clus-

tering algorithms available and the trade-offs with
the use of different methods. The major chal-
lenges that remain in the area of graph clustering
are as follows:

L]

Clustering massive data sets: In some cases,
the data sets containing the graphs may be so
large that they may be held only on disk. For
example, if we have a dense graph containing
107 nodes, then the number of edges may be
as high as 103, In such cases, it may not even
be possible to store the graph effectively on
disk. In the cases in which the graph can be
stored on disk, it is critical that the algorithm
should be designed in order to take the disk-
resident behavior of the underlying data into
account. This is especially challenging in the
case of graph data sets, because the structural
behavior of the graph interferes with our abil-
ity to process the edges sequentially for many
applications. In the cases in which the graph is
too large to store on disk, it is essential to de-
sign summary structures which can effectively
store the underlying structural behavior of the
graph. This stored summary can then be used
effectively for graph clustering algorithms.
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* Clustering graph streams: In this case, we
have large graphs which are received as edge
streams. Such graphs are more challenging,
since a given edge cannot be processed more
than once during the computation process.
In such cases, summary structures need to
be designed in order to facilitate an effective
clustering process. These summary structures
may be utilized in order to determine effective
clusters in the underlying data. This approach
is similar to the case discussed above in which
the size of the graph is too large to store on
disk.

In addition, techniques need to be designed for
interfacing clustering algorithms with traditional
database management techniques. In order to
achieve this goal, effective representations and
query languages need to be designed for graph
data. This is a new and emerging area of research,
and can be leveraged upon in order to further
improve the effectiveness of graph algorithms.
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Definition

The term graph kernel is used in two related
but distinct contexts: On the one hand, graph
kernels can be defined between graphs, that is,
as a kernel function k : G x G — R where G
denotes the set of all graphs un-der consideration.
In the most common setting G is the set of all
labeled undirected graphs. On the other hand,
graph kernels can be defined between the vertices
of a single graph, that is, as a kernel function
k:V xV — R where V is the vertex set
of the graph G under consideration. In the most
common setting G is an undirected graph.
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Motivation and Background

Kernel methods are a class of machine learning
algorithms that can be applied to any data set
on which a valid, that is, positive definite, kernel
function has been defined. Many kernel methods
are theoretically well founded in statistical learn-
ing theory and have shown good predictive per-
formance on many real-world learning problems.

Approaches for Kernels Between
Graphs

One desireable property of kernels between
graphs is that for non-isomorphic graphs
G,G'eG the functions k(G, -) and k(G -)
are not equivalent. If this property does not hold,
the distance is only a pseudometric rather than
a metric, that is, non-isomorphic graphs can be
mapped to the same point in feature space and
no kernel method can ever distinguish between
the two graphs. However, it can be seen that
computing graph kernels for which the property
does hold is at least as hard as solving graph
isomorphism (Girtner et al. 2003).

For various classes of graphs, special pur-
pose kernels have been defined such as for paths
(» string kernels) and trees (Collins and Duffy
2002). These kernels are typically defined as
the number of patterns that two objects have in
common or as the inner product in a feature space
counting the number of times a particular pattern
occurs. The problem of computing a graph kernel
where the patterns are all connected graphs, all
cycles, or all paths and occurrence is determined
by subgraph-isomorphism is, however, NP-hard
(Girtner et al. 2003).

Techniques that have been used to cope with
the computational intractability of such graph
kernels are (1) to restrict the considered pat-
terns, for example, to bound the pattern size by
a constant; (2) to restrict the class of graphs
considered, for example, to trees or small graphs;
(3) to define occurrence of a pattern differently,
that is, not by subgraph-isomorphism; and (4)
to approximate the graph kernel. Note that these
four techniques can be combined.

Graph Kernels

While for technique (1) it is not immediately
clear if the resulting graph kernel is feasible,
technique (2) allows for fixed parameter tractable
graph kernels. (Notice that even counting paths or
cycles of length k in a graph is #W[1]-complete
while the corresponding decision problem is fixed
parameter tractable.) Though these will often
still have prohibitive runtime requirements, it has
been observed that enumerating cycles in real-
world databases of small molecules is feasible
(Horvath et al. 2004).

With respect to technique (3) it has been pro-
posed to use graph kernels where the patterns
are paths but the occurrences are determined by
homomorphism (Gértner et al. 2003; Kashima
et al. 2003). Despite the explosion in the number
of pattern occurrences (even very simple graphs
can contain an infinite number of walks, that
is, images of paths under homomorphism), if
one downweights the influence of larger patterns
appropriately, the kernel takes a finite value and
closed form polynomial time computations exist.
To increase the practical applicability of these
graph kernels, it has been proposed to increase
the number of labels by taking neighborhoods
into account (Gértner 2005) or to avoid “totter-
ing” walks (Mahé et al. 2004).

Various approaches to approximate compu-
tation of graph kernels (4) exist. On the one
hand, work on computing graph kernels based
on restricting the patterns to frequent subgraphs
(Deshpande et al. 2002) can be seen as approx-
imations to the intractable all-subgraphs kernel.
Computing such graph kernels is still NP-hard
and no approximation guarantees are known. On
the other hand, a recent graph kernel (Borgwardt
et al. 2007) based on sampling small subgraphs of
a graph at random is known to have a polynomial
time algorithm with approximation guarantees.

The most common application scenario for
such graph kernels is the prediction pharmaceu-
tical activity of small molecules.

Approaches for Kernels on a Graph

Learning on the vertices of a graph is inher-
ently transductive. Work on kernels between the
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vertices of a graph began with the “diffusion
kernel” (Kondor and Lafferty 2002) and was later
generalized in Smola and Kondor (2003) to a
framework that contains the diffusion kernel as
a special case. Intuitively, these kernels can be
understood as comparing the neighborhoods of
two vertices in the sense that the more neighbors
two vertices have in common, the more similar
they are. For classification, this definition is re-
lated to making the “cluster assumption”, that
is, assuming that the decision boundary between
classes does not cross “high density” regions of
the input space. To compute such graph kernels
for increasing sizes of the neighborhood, one
needs to compute the limit of a matrix poser
series of the (normalized) graph Laplacian or its
adjacency matrix. Different graph kernels arise
from choosing different coefficients. In general,
the limit of such matrix power series can be
computed on the eigenvalues. For geometrically
decaying parameters, the kernel matrix can also
be computed by inverting a sparse matrix ob-
tained by adding a small value to the diagonal
of the Laplacian (in which case the kernel is
called the “regularized Laplacian kernel”) or the
adjacency matrix.

In the case of the regularized Laplacian kernel,
rather than first computing the kernel matrix and
then applying an off-the-shelf implementation of
a kernel method, it is often more effective to re-
formulate the optimization problem of the kernel
method. Several possibilities for such reformula-
tion have been proposed, including changing the
variables as in Gartner et al. (2006).

The most common application scenario for
such graph kernels is the classification of entities
in a social network.
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Definition

Graph Mining is the set of tools and techniques
used to (a) analyze the properties of real-world
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graphs, (b) predict how the structure and prop-
erties of a given graph might affect some appli-
cation, and (c) develop models that can generate
realistic graphs that match the patterns found in
real-world graphs of interest.

Motivation and Background

A graph G = (V, E) consists of a set of edges,
E connec-ting pairs of nodes from the set V;
extensions allow for weights and labels on both
nodes and edges. Graphs edges can be used to
point from one node fo another, in which case the
graph is called directed; in an undirected graph,
edges must point both ways: i — j & j — i.
A variant is the bipartite graph G = (V1, V2, E)
where only edges linking nodes in V; to nodes in
V5 are allowed.

A graph provides a representation of the bi-
nary relationships between individual entities,
and thus is an extremely common data structure.
Examples include the graph of hyperlinks linking
HTML documents on the Web, the social network
graph of friendships between people, the bipartite
graphs connecting users to the movies they like,
and so on. As such, mining the graph can yield
useful patterns (e.g., the communities in a social
network) or help in applications (e.g., recom-
mend new movies to a user based on movies
liked by other “similar” users). Graph mining
can also yield patterns that are common in many
real-world graphs, which can then be used to
design graph “generators” (e.g., a generator that
simulates the Internet topology, for use in testing
next-generation Internet protocols).

Structure of Learning System

We split up this discussion into three parts: the
analysis of real-world graphs, realistic graph
generators, and applications on graphs. Detailed
surveys can be found in Newman (2003) and
Chakrabarti and Faloutsos (2006).

Analysis of Real-World Graphs
Four basic types of large-scale patterns have
been detected in real-world graphs. The first is
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the existence of power-laws, for instance in the
degree distribution and eigenvalue distribution.
Most nodes have very low degree while a few
have huge degree. This has implications for al-
gorithms whose running times are bounded by
the highest degree. The second set of patterns
is called the “small-world phenomenon,” which
state that the diameter (or effective diameter) of
such graphs are very small with respect to their
size. Recall that the diameter of a connected
graph is the maximum number of hops needed
to travel between any pair of nodes; the effective
diameter is a more robust version that specifies
the number of hops within which a large fraction
(say, 90 %) of all pairs can reach each other. Ex-
amples include a diameter of around 4 for the In-
ternet Autonomous System graph, around 19 for
the entire US power grid, around 4 for the graph
of actors who worked together in movies, and so
on. Third, many large graphs exhibit “community
effects,” where each community consists of a
set of nodes that are more tightly connected to
other nodes in the community compared to nodes
outside. One local manifestation of this effect is
the relatively high clustering coefficient which
counts, given all pairs of edges (i, j) and (J, k),
the probability of the existence of the “transi-
tive” edge (i, k). High clustering coefficients
imply tight connections in neighborhoods, which
is the basis of strong community structure. Fi-
nally, many large graphs were shown to increase
in density as they evolve over time, that is, the
number of edges grows according to a power-
law on the number of nodes. In addition, even
while more nodes and edges are being added, the
diameter of the graph tends to decrease.

Graph Generators

Imagine designing an application that works on
the Internet graph. Collecting the entire Internet
graph in one place is hard, making the testing
process for such an application infeasible. In such
cases, a realistic graph generator can be used to
simulate a large “Internet-like” graph, which can
be used in place of the real graph. This synthetic
graph must match the patterns typically found in
the Internet, including the patterns discussed in
the previous paragraph. Apart from generating
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such graphs, the generators can provide insights
into the process by which large graphs came to
attain their structure.

One example of this is the preferential attach-
ment model. Starting with a small initial graph,
this model adds one new node every step. The
new node is connected to m previous nodes, with
the probability of connecting to node i being
proportional to its degree. This idea, popularly
known as “the rich get richer,” can be shown
to lead to a power-law degree distribution after
a large number of nodes and edges have been
added.

Many other models have also been proposed,
which demonstrate graph generation as a random
process, an optimization process, as a process on
nodes embedded in some geographic space, and
SO on.

Applications

Some graph mining algorithms are meant to solve
some application on any graph(s) provided as
input to the algorithm. Several basic tools are
commonly used in such applications, such as
the » Greedy Search Approach to Graph Mining
the » Inductive Database Search Approach to
Graph Mining spectral methods, graph partition-
ing methods, and models based on random walks
on graphs. Tree Mining is a special case of graph
mining where the graphs are constrained to be
trees. We will discuss a few such applications
here.

Frequent subgraph mining: The aim is to
find subgraphs that occur very frequently in
the particular graph(s) in question (Kuramochi
and Karypis 2001). This is quite useful in
chemical datasets consisting of the graph
structures of many different molecules (say, all
protein molecules that have a certain chemical
property); the frequent subgraphs in such
molecules might represent basic structural units
responsible for giving the molecules their special
property. Unfortunately, the frequent subgraph
problem subsumes the problem of subgraph
isomorphism, and hence is NP-Hard. However,
clever techniques have been devised to represent
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subgraphs so that checking for isomorphism can
be done quickly in many cases.

Community detection: The problem is to de-
tect tightly knit groups of nodes, where all nodes
in the group have “similar” linkage structure.
There are many algorithms, each optimizing for
a different notion of similarity. Examples in-
clude graph partitioning methods such as spectral
partitioning (Ng et al. 2002) and METIS that
try to minimize the number of edges linking
nodes across partitions, and co-clustering meth-
ods that aim for homogeneity in links across
partitions.

Information diffusion and virus propagation:
The spread of a contagious disease or a computer
virus can be modeled (somewhat crudely) as a
contact process on a graph, where the nodes
are individuals who can get infected, and the
links allow transmission of the contagion from an
infected individual to an uninfected one. Similar
models have been proposed to model the diffu-
sion of information in social networks. The topol-
ogy of the graph can be used to infer the most “in-
fluential” nodes in the graph, who are most capa-
ble of spreading the information quickly through-
out the graph (Kempe et al. 2003).

Graph kernels: While subgraph isomorphism
is a hard problem, we still need to be able to
compare graphs on the basis of some similarity
measure that can be computed in polynomial
time. In the Kernel-Based Approach to Graph
Mining graph kernels perform this task by com-
puting similarities based on numbers of walks,
paths, cyclic patterns, trees, etc.

Ranking on graphs: Given a graph (say, the
Web hyperlink graph), we often need a ranking
of the nodes in the graph. The ranking could be
static (as in Page-Rank Brin and Page 1998) or
it could depend on a user-specified query node.
Such algorithms typically use some version of
random walks on graphs (Lovédsz 1993), with
the probability of the walk hitting a node being
correlated with the importance of the node; such
importances in turn yield a ranking of the nodes.
Both static and query-dependent rankings can be
useful in information retrieval settings, where a
user desires information pertinent (i.e., “similar’)
to her query.
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Definition

Graphical models are a means of compactly rep-
resenting multivariate distributions, allowing for
efficient algorithms to be developed when deal-
ing with high-dimensional data. At their core,

Graphical Models

graphical models make use of the fact that high-
dimensional distributions tend to factorize around
local interactions, meaning that they can be ex-
pressed as a product of low-dimensional terms.

The notation we shall use is defined in Table 1,
and some core definitions are presented in Ta-
ble 2.

A few examples of the types of data that can be
efficiently represented using graphical models are
shown in Fig. 1. Here we have high-dimensional
distributions (e.g., the probability of observing
the pixels of a particular image), which we model
in terms of low-dimensional interactions. In each
of the examples presented in Fig. 1, we are simply
asserting that

= p(xalxc)p(xplxc), (1)

functions of two variables

p(x4,xBlxc)

function of three variables

which arises by a straightforward application of
the product rule (Definition 1), along with the fact
that X4 and Xp are conditionally independent,
given X¢ (Definition 3). The key observation we
make is that while the left-hand side of (Eq. 1)
is a function of three variables, its conditional
independence properties allow it to be factored
into functions of two variables (note that the
name “graphical models” arises due to the fact
that such interdependencies can be represented
as a graph encoding the relationships between
variables).

In general, we shall have a series of condi-
tional independence statements about X :

(X4, LXB, | Xc,;} - )

It is precisely these statements that define the
“structure” of our multivariate distribution, which
we shall express in the form of a graphical model.

Motivation and Background

Graphical models are ubiquitous as a means
to model multivariate data, since they allow
us to represent high-dimensional distributions
compactly; they do so by exploiting the
interdependencies that typically exist in such
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Graphical Models, Table 1 Notation

Notation Description
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X = (X;...Xn) Arandom variable (we shall also use X = (A4, B, C ...) in figures to improve readability)

x=(x1...xn)

A realization of the random variable X

X The sample space (domain) of X

X4 X can be indexed by a set, where we assume A € {1... N}

p(x) The probability that X = x

A The negation of A,i.e.,{l1...N}\ A

X4l Xp X 4 and X p are independent

X4l Xp | Xc X4 and X g are conditionally independent, given X ¢

Graphical

Models, Table 2 Definition 1 (product rule) p(x4,xp) = p(x4|xp)p(xp)
Definitions

Definition 2 (marginalization) p(x4) =Y xiEX; p(X4,%3)

Definition 3 (conditional independence) X 4 and X p are said to be condition-
ally independent (given X¢) iff p(x4|xp, xc) = p(x4lxc), for all x4, Xp, and
X.; the conventional definition of “independence” is obtained by setting X¢ = &

(yesterday’s weathcfb
( today’s weather
tomorrow’s weather

sprinkler raining

=

grass wet

the quick brown fox jumps over the lazy dog

L]

Xy Xp  Xc

Graphical Models, Fig. 1 Some examples of condi-
tional independence; we say that X 4 and X p are con-

ditionally independent, given Xc, or more compactly
XalXsp | Xc

data. Put simply, we can take advantage of the
fact that high-dimensional distributions can often

be decomposed into low-dimensional factors to
develop efficient algorithms by making use of the
distributive law: ab + ac = a(b + c¢).

Some motivating examples are presented in
Fig. 1; similar examples are ubiquitous in fields
ranging from computer vision and pattern recog-
nition to economics and the social sciences. Al-
though we are dealing with high-dimensional
data, we can make certain statements about the
structure of the variables involved, allowing us
to express important properties about the dis-
tribution compactly. Some of the properties we
would like to compute include the probabilities
of particular outcomes and the outcomes with the
highest probability.

Theory

Directed Graphical Models
Due to the product rule (Definition 1), it is clear
that any probability distribution can be written as

N
p(x) =[] pn;|1x<x;) 3)

i=1

for an arbitrary permutation 7w of the labels,
where we define <i:={1...i — 1}. For example
any four-dimensional distribution can be written
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Graphical Models, Fig. 2
A directed model (left) and
an undirected model
(right). The joint
distributions they represent
are shown

Graphical Models

QZ‘\Z@ QZ“ZG

p(a)p(bla)p(c|a)p(d|b)p(elb, c)p(f|b, e) %w(a, b)y(a, c)y(b,d)y(c,e)y(b,e,f)

® B

p(ab,c)= p(c)p(alc)p(blc)

Al B|C

p(a)p(cla)p(blc)
Al BlC

p(a)p(b)p(cla,b)
ALB

Graphical Models, Fig. 3 Some simple Bayesian Networks and their implied independence statements. Note in
particular that in the rightmost example, we do not have A L B | C

as

P(Xa, Xp, Xe Xa) = p(xe) p(xp|xe) p(XalXe, Xp)

p(x(l|xC5-xb»xd)' (4)
With this idea in mind, consider a model p(x)
for which we have the conditional independence
statements:

{pCrmren) = pCrm ¥par )| )
where pan; C<m;. We now have
N
p(x) = l_[p(xni|xpan,-)- (6)

i=1

We can interpret pa; as referring to the “parents”
of the node i. Essentially, we are saying that
a variable is conditionally independent on its
nondescendants, given its parents.

We can represent (Eq.6) using a directed
acyclic graph (DAG) by representing each
variable X; as a node; an arrow is formed from
X; to X; if j € pa;. An example of such a
representation is given in Fig. 2. It can easily be
shown that the resulting graph is always acyclic.

A Bayesian Network (a type of directed graph-
ical model) is simply a set of probability distri-
butions of the form p(x) = ]_[1N=1 P(xXi|Xpa;)-
Every Bayesian Network can be represented as

a DAG, though we often simply say that the
Bayesian Network “is” the DAG. Some trivial ex-
amples and the type of independence statements
they imply are shown in Fig. 3.

We finish this section with a simple lemma:

Lemma 1 (Topological Sort) Every DAG has at
least one permutation w that “sorts” the nodes
such that each node has a larger index than its
parents; in other words, the factorization associ-
ated to any DAG can be written in the form of
(Eq. 6) for at least one w such that w; > j for all
i, where j € pag,;.

Undirected Graphical Models

Although we have shown how conditional inde-
pendence statements in the form of (Eq.5) can
be modeled using a DAG, there exist certain
conditional independence statements that are not
satisfied by any Bayesian Network, such as those
in Fig. 4.

Markov random fields (or MRFs) allow for the
specification of a different class of conditional in-
dependence statements, which are naturally rep-
resented by undirected graphs (UGs for short).
The results associated with MRFs require a few
additional definitions:

Definition 4 (Clique) A set of nodes X in a
graph G = (V,E) is said to form a clique if
(X;,X;) € E forevery X;,X; € X (ie., the
subgraph X is fully connected).
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A ILB| {c, D}, Al B
ClL D |{A, B}

Graphical Models, Fig. 4 There is no Bayesian Net-
work that captures precisely the conditional independence
properties of the Markov random field at left; there is no
Markov random field that captures precisely the condi-
tional independence properties of the Bayesian Network
at right

Definition 5 (Maximal Clique) A clique X is
said to be maximal if there is no clique ¥ such
that X C Y.

A Markov random field is a probability distribu-
tion of the form p(x) = % [T.ec Ye (xc), where
C is the set of maximal cliques of G, ¥, is an
arbitrary nonnegative real-valued function, and Z
is simply a normalization constant ensuring that

Y.r(x)=1

Conversion from Directed to Undirected
Graphical Models

It is possible to convert a directed graphical
model to an undirected graphical model via the
following simple procedure:

* For every node X; with parents pay;, add
undirected edges between every X;, Xy €
pax;.

* Replace all directed edges with undirected
edges.

In other words, we are replacing statements of
the form p(x4|xp) with ¥ (x4, xp), so that the
nodes {X; } U pay, now form a clique in the undi-
rected model. This procedure of “marrying the
parents” is referred to as moralization. Naturally,
the undirected model formed by this procedure
does not precisely capture the conditional inde-
pendence relationships in the directed version.
For example, if it is applied to the graph in Fig. 4
(right), then the nodes A, B, and C form a clique
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Graphical Models, Fig. 5 The Markov blanket of the
node A consists of its parents, its children, and the parents
of its children (leff). The corresponding structure for
undirected models simply consists of the neighbors of A.
Note that if we convert the directed model to an undirected
one (using the procedure described in section “Conversion
from Directed to Undirected Graphical Models”), then the
Markov blankets of the two graphs are identical

in the resulting model, which does not capture
the fact that A 1 B. However, we note that
every term of the form p(x;|xpq;) appears in
some clique of the undirected model, meaning
that it can include all of the factors implied by
the Bayesian Network.

Characterization of Directed and

Undirected Graphical Models

We can now present some theorems that char-
acterize both Bayesian Networks and Markov
random fields:

Lemma 2 (Local Markov Property) A node in
a DAG is conditionally independent of its non-
descendants, given its parents (this is referred to
as the “directed” local Markov property); a node
in a UG is conditionally independent of its non-
neighbors, given its neighbors.

Definition 6 (Markov Blanket) Given a node
A, its “Markov blanket” is the minimal set of
nodes C suchthat A 1. B | C for all other nodes
B in the model (in other words, the minimal
set of nodes that we must know to “predict” the
behavior of A).

Lemma 3 (Markov Blankets of Directed and
Undirected Graphs) In a directed network, the
Markov blanket of a node A (denoted MB(A))
consists of its parents, its children, and its chil-
dren’s (other) parents. In an undirected network,
it simply consists of the node’s neighbors (see
Fig. 5).
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Definition 7 (d-separation) The notion of a
Markov blanket can be generalized to the notion
of “d-separation.” A set of nodes A is said to
be d-separated from a set B by a set C if
every (undirected) path between A and B is
“blocked” when C is in the conditioning set
(i.e., when C is observed). A path is said to
be blocked if either it contains (pi, p2, p3)
with p;y — p» < p3 (where arrows indicate
edge directions) and neither p, nor any of
its descendants are observed, or it contains
(p1, p2, p3) with p1 — p> — p3 and p;
is observed, or it contains (pi, ps, p3) with
P1 < p2» — p3 and p; is observed.

Applying (Definition 7) to the directed graphs
in Fig. 1, we would say that the aqua regions (X¢)
d-separate the red regions (X4) from the white
regions (X p); all conditional independence state-
ments can simply be interpreted as d-separation
in a DAG.

The analogous notion of graph separation for
Markov random fields is simpler than that of
d-separation for Bayesian Networks. Given an
undirected graph G and disjoint subsets of nodes
A, B,C, if A is only reachable from B via C,
this means that A is separated from B by C and
these semantics encode the probabilistic fact that
A L B | C. This is illustrated in Fig. 6.

In both the directed and undirected case, a
Markov blanket of a node is simply the minimal
set of nodes that d-separates/graph separates that
node from all others.

A complete characterization of the class of
probability distributions represented by Bayesian
Networks can be obtained naturally once con-
ditional independence statements are mapped to

Graphical Models, Fig. 6 The nodes {B, E} form a
clique; the nodes {B, E , F'} form a maximal clique. The
nodes { B, E } separate the nodes {4, C} from {D, F}
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d-separation statements in a DAG. The following
theorem settles this characterization.

Theorem 1 Let p be a probability distribution
that satisfies the conditional independence state-
ments implied by d-separation in a DAG. Then
p factors according to (Eq. 6). The converse also
holds.

For Markov random fields, an analogous char-
acterization exists:

Theorem 2 (Hammersley-Clifford) If a
strictly positive probability  distribution p
satisfies the conditional independence statements
implied by graph separation in an undirected
graph G, then

p) = o [T velxo). ™

ceC

The converse also holds, albeit in a more gen-
eral sense in that p need not be strictly positive.

It can be shown that

directed local local Markov

Markov property property
E2 ¢
d-separation in a and (for positive graph separation
DAG p) that ina UG
¢ ¢
factorization of factorization of
p by (Eq.6) p by (Eq.7)

Knowing that directed models can be con-
verted to undirected models, we shall consider
inference algorithms in undirected models only.

Applications

Inference Algorithms in Graphical Models
The key observation that we shall rely on in order
to do inference efficiently is the distributive law:

alb +c).
———
two operations

ab 4+ac = ()
————

three operations
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By exploiting the factorization in a graphical
model, we can use this law to perform cer-
tain queries efficiently (such as computing the
marginal with respect to a certain variable).

As an example, suppose we wish to compute
the marginal p(x;) in an MRF with the following
factorization:

1 N—-1
p() = [] v xis). ©)

i=1

Note that the graph representing this model is
simply a chain. Computing the sum in the naive
way requires computing

| N—1
plr) =~ > [Tv&ixien, 0

X, Ny i=1

whose complexity is @(H,N=1 |X;|). However,
due to the distributive law, the same result is
simply

p(x)) = % Z [1//(x1,x2) Z [w(xz,)@)...

X2

> [W(XN—z, XN-1)

XN—1

ZI/f(XN—l,xN)]]],

whose complexity is @)(Zf-v:_1 | X | X +1])- As
a more involved example, consider computing
the marginal with respect to A in the undirected

model in Fig. 2; here we wish to compute

Y

1
pl@y=- Y v@byacyb.d)

b,c.d.e,f

yic.nb.e f)
= Y v@n) Y a0 Y vb.d)
b c d

D wlc.e)d vb.e. f)
e f

12)

13)

Exploiting the distributive law in this way is often
referred to as the Elimination Algorithm. It is
useful for computing the marginal with respect
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to a single variable. However, should we wish to
compute the marginal with respect to each vari-
able, for example, it is not an efficient algorithm
as several operations shall be repeated.

Belief Propagation

In tree-structured models, the elimination algo-
rithm can be adapted to avoid repeated compu-
tations, using a message-passing scheme known
as belief propagation, or the sum-product algo-
rithm. This is presented in Algorithm 3. Here the
“cliques” in the model are simply edges. This
algorithm was invented independently by many
authors and is the most efficient among many
variations.

It can be easily demonstrated that the condi-
tion in Algorithm 3, Line 3, is always satisfied
by some pair of edges until all messages have
been passed: initially, it is satisfied by all of
the “leaves” of the model; messages are then
propagated inward until they reach the “root” of
the tree; they are then propagated outward.

Maximum a Posteriori (MIAP) Estimation

Algorithm 3 allows us to compute the marginals
of the variables in a graphical model. There are
other related properties that we may also wish to
compute, such as finding which states have the

Algorithm 3 The sum-product algorithm

Input: an undirected, tree-structured graphical model X’
with cliques C {the cliques are simply edges in this
case}

1: define m 4— p(x4np) to be the “message” from
an edge A to an adjacent edge B {for example
if A = (a,b) and B = (b,c) then we have
Ma.by—b.c) (Xp)}

2: while there exist adjacent edges A, B € C for which
m 4— p has not been computed do

3: find some A € C such that m¢c—_. 4 has been

computed for every neighbor C € T'(A), except B
{T'(A) returns the edges neighboring A; initially
the condition is satisfied by all leaf-edges}

4 map(Xanp)i=
Yvag Wax) [eerans mc—a(xanc)}

: end while

: for A € C' do

marginal 4(x 4):=

Yaxa)[lcerymc—alxanc)

8: end for

S o w
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Graphical Models, Fig. 7 The graph at left is not
chordal, since the cycle (A4, B, E, C) does not contain a
chord; adding the edge (B, C) results in a chordal (or tri-
angulated) graph (center). The graph at right is a junction
tree for the graph at center; the cliques of the triangulated

highest probability (the maximum a posteriori, or
simply “MAP” states). To do so, we note that
the operations (+, X) used in Algorithm 3 can
be replaced by (max, x). This variant is usually
referred to as the max-product (as opposed to
sum-product) algorithm. Indeed, different quanti-
ties can be computed by replacing (4, x) by any
pair of operations that form a semiring (Aji and
McEliece 2000).

The Junction Tree Algorithm

Algorithm 3 applies only for tree-structured
graphs. We can generalize this algorithm to
general graphs. We do so by working with a
different type of tree-structured graph, whose
nodes contain the cliques in our original graph.
We begin with some definitions:

Definition 8 (Chordal Graph) A graph G is
said to be chordal if every cycle (¢;...c,) in G
contains a chord (i.e., an edge (c;, ¢;) such that
Jj > +1)).

Definition 9 (Clique Graph, Clique Tree) A
clique graph H of a graph G is a graph whose
nodes consist of (maximal) cliques in G and
whose edges correspond to intersecting cliques in
G. A clique tree is a clique graph without cycles.

Definition 10 (Junction Tree) A clique tree H
of G is said to form a junction tree if for every
pair of nodes A, B (i.e., maximal cliques in G),
the path between them (P ... Py,) satisfies (4 N
B) C P;foralli € {1...m}.

The algorithms we shall define apply only if
the graph in question is chordal, or “triangulated”
(Definition 8); this can always be achieved by

Graphical Models

graph form the nodes (circles); their intersection sets are
shown as squares. Note that this is not the only junction
tree that we could form — the node {B, D} could connect
to any of the other three nodes

adding additional edges to the graph, as demon-
strated in Fig.7; adding additional edges means
increasing the size of the maximal cliques in the
graph.

Finding the “optimal” triangulation (i.e., the
one that minimizes the size of the maximal
cliques) is an NP-complete problem. In practice,
triangulation algorithms vary from simple greedy
heuristics (e.g., select a node that has as few
neighbors as possible) to complex approximation
algorithms working within a factor of the optimal
solution (Amir 2001).

The problem of actually generating a junction
tree from the triangulated graph is easily solved
by a maximum spanning tree algorithm (where
we prefer edges corresponding to pairs of cliques
with large intersections).

Theorem 3 Let G be a triangulated graph and
H a corresponding clique tree. If the sum of
the cardinalities of the intersection sets of H is
maximum, then H is a junction tree. The converse
also holds.

If the nodes and edges in Algorithm 3 are
replaced by the nodes (maximal cliques in G) and
edges (intersecting cliques in G) of H, then we
recover the junction tree algorithm.

Approximate Inference

The act of triangulating the graph in the junction
tree algorithm may have the effect of increasing
the size of its maximal cliques, as in Fig.8.
This may be a problem, as its running time is
exponential in the size of the maximal cliques
in the triangulated graph (this size minus one is
referred to as the tree-width of the graph, e.g., a
chain has a tree-width of 1).
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Graphical Models, Fig. 8 The graph above at left has
maximal cliques of size two; in order to triangulate it, we
must introduce maximal cliques of size four (right)

There are a variety of approximate algorithms
that allow us to perform inference more effi-
ciently:

Variational approximation. If doing inference in
a graphical model X is intractable, we might
search for a model ) for which inference is
tractable and which is “similar” to X in terms
of the KL-divergence between p(x) and p(y)
(Wainwright and Jordan 2008).

Loopy belief propagation. We can build a clique
graph from a graph that has not been trian-
gulated, simply by connecting all cliques that
intersect (in which case, the clique graph will
contain loops). If we then propagate messages
in some random order, we can obtain good
approximations under certain conditions (Ihler
et al. 2005).

Gibbs sampling. Given an estimate x 4\ p of a set
of variables X 4\ g, we can obtain an estimate
of xp by sampling from the conditional distri-
bution p(xp|x4\p). If we choose B = {X;},
and repeat the procedure for random choices
of i € {1...N}, we obtain the procedure
known as Gibbs sampling (Geman and Geman
1984).

There are several excellent books and tutorial
papers on graphical models. A selection of tu-
torial papers includes Aji and McEliece (2000),
Kschischang et al. (2001), Murphy (1998), and
Wainwright and Jordan (2008); review articles in-
clude Roweis and Ghahramani (1997) and Smyth
(1998), to name but a few.

Other signicant works include Koller and
Friedman (2009), Jensen (2001) (introductory
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books), Edwards (2000) (undirected models),
Pearl (1988, 2000) (directed models), Cowell
et al. (2003) (exact inference), Jordan (1998)
(learning and approximate inference), and
Lauritzen (1996, Lauritzen and Spiegelhalter
1988) (a comprehensive mathematical theory).

There is also a variety of closely related mod-
els and extensions:

Gaussian graphical models. We have assumed
throughout that our probability distributions
are discrete; however, the only condition we
require is that they are closed under multipli-
cation and marginalization. This property is
also satisfied for Gaussian random variables.

Hidden Markov models. In many applications,
the variables in our model may be hidden.
The above algorithms can be adapted to infer
properties about our hidden states, given a
sequence of observations.

Kalman filters. Kalman filters employ both of
the above ideas, in that they include hidden
state variables taking values from a continuous
space using a Gaussian noise model. They are
used to estimate the states of linear dynamic
systems under noise.

Factor graphs. Factor graphs employ an
alternate message-passing scheme, which
may be preferable for computational reasons.
Inference remains approximate in graphs with
loops, though approximate solutions may be
obtained more efficiently than by loopy belief
propagation (Kschischang et al. 2001).

Relational models. Relational models allow us to
explore the relationships between objects in
order to predict the behavior and properties
of each. Graphical models are used to predict
the properties of an object based on others that
relate to it (Getoor and Taskar 2007).

Learning. Often, we would like to learn either
the parameters or the structure of the model
from (possibly incomplete) data. There is an
extensive variety of approaches; a collection
of papers appears in Jordan (1998).

Deep learning. Deep belief networks can also
be viewed as instances of graphical models,
which impose a particular structure on the
relationships between input variables, output
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variables, and hidden units. In particular, deep
belief nets assume that complex relationships
can be broken down into (a massive number
of) purely pairwise interactions.
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Definition

Graph Theory is (dyadic) relations on collections
specified objects. In its most common, a graph is
apair G = (V, E) of a (finite) set of vertices V
and a set of edges E (or links). Each edge e is a
2-element subset {u, v} of V, usually abbreviated
as e = uv; u and v are called the endvertices of
e, they are mutually adjacent and each is incident
to e in G. This explains the typical model of a
simple graph.

A directed graph or » digraph is a more gen-
eral structure, in which the edges are replaced by
ordered pairs of distinct elements of the vertex
set V', each such pair being referred to as an arc.
Another generalization of a graph is a hypergraph
or “set-system” on V, in which the hyperedges
may have any size. Various concepts in graph
theory extend naturally to multigraphs, in which
each pair of (possibly identical) vertices may be
adjacent via several edges (respectively loops).
Also studied are infinite graphs, for which the
vertex and edge sets are not restricted to be finite.

A graph is conveniently depicted graphically
by representing each vertex as a small circle, and
representing each edge by a curve that joins its
two endvertices. A digraph is similarly depicted
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by adding an arrow on the curve representing
an arc showing the direction from its fail to its
(possibly identical) head.

Motivation and Background

One of the very first results in graph theory
appeared in Leonhard Euler’s paper on Seven
Bridges of Konigsberg, published in 1736. The
paper contained the complete solution to the
problem whether, when given a graph, it is pos-
sible to locate an Euler tour, that is, a sequence
of adjacent edges (each edge imagined to be
traversed from one end to the other) that uses
every edge exactly once. Figure 1 illustrates the
four main parts of the city of Konigsberg with the
seven bridges connecting them; since this graph
contains four vertices of odd degree, it does not
allow an Euler tour.

Applications of graphs are numerous and
widespread. Much of the success of graph theory
is due to the ease at which ideas and proofs
may be communicated pictorially in place of,
or in conjunction with, the use of purely formal
symbolism.

Theory

Isomorphism

A graph drawing should not be confused with
the graph itself (the underlying abstract structure)
as there are several ways to structure the graph
drawing. It only matters which vertices are con-
nected to which others by how many edges, the
exact layout may be suited for the particular pur-
pose at hand. It is often a problem of independent

Graphs, Fig. 1 A graph of
the city of Konigsberg
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interest to optimize a drawing of a given graph in
terms of aesthetic features.

In practice it is often difficult to decide if
two drawings represent the same graph (as in
Fig.2). This decision problem has gained in-
creasing status in complexity theory, with grow-
ing suspicion that this problem may fall in a
new class of problems, which lies between the
familar classes of polynomially solvable and NP-
complete » (NP-completeness) problems (sup-
posing that these classes are indeed distinct; for
issues related to the complexities of decision and
optimization problems see Garey and Johnson
1979). Nonetheless it is customary in the treat-
ment of abstract graphs to consider two graphs
identical if they are isomorphic. A closely related
problem, the subgraph isomorphism problem, an
NP-complete problem, consists in finding a given
graph as a subgraph of another given graph.

Whereas there seems common agreement in
the graph theoretic community on what consti-
tutes a drawing of a graph, it may be considered
a weakness, and sometimes a source of confu-
sion, that even the most central general sources
on the fundamentals of graph theory, such as
the monographs (Berge 1976; Bondy and Murty
2007; Diestel 2005), do not agree on a common
formalization of the theory.

Classes of Graphs

Important special classes of graphs are bipartite
graphs, for which the vertex set is partitionable
into two classes A, B with every edge having one
end in A and one in B; in particular the complete
bipartite graph Ky, has |A| = m,|B| = n,
and every vertex in A is joined to every vertex in
B. The complete graph K, consists of n vertices
that are all pairwise adjacent. A path of length
n consists of vertices v, vy, ..., v, with edges
vi—1v; fori = 1,2,...,n; such a path joins its
two endvertices vy and v,. A circuit of length n
consists of a path of length n — 1 together with
an additional edge between the two endvertices
of the path. A graph is connected if each pair of
its vertices is joined by at least one path within
the graph. Of central importance to the study of
efficient search procedures in computer science
is the class of trees, those connected graphs that
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Graphs, Fig.2 Two
drawings of the same graph

contain no circuits. Most definitions have various
natural counterparts for directed graphs, in par-
ticular a rournament is a directed graph in which
each pair of vertices is joined by exactly one arc.

Properties of Graphs

Finding a complete subgraph of a given order in
an input graph is called the clique problem. The
complementary problem of finding an indepen-
dent set is called the independent set problem.
The longest path problem and the longest cir-
cuit problem have as special cases the Hamilton
path problem and the Hamilton circuit problem,
the latter two problems asking to find a path,
respectively a circuit, that uses all vertices of
the given graph. Each of these problems (or a
suitable modification of it) belongs to the com-
plexity class of NP-complete problems, hence is
generally believed to be very difficult to solve
efficiently. The weighted version of the Hamilton
circuit problem, the so-called travelling salesman
problem is of central importance in combinatorial
optimization.

A graph is called planar if it may be drawn in
the Euclidian plane without any two of its edges
crossing except where they meet at a common
endvertex. This is often a convenient way of rep-
resenting a graph, whenever it is doable. A the-
orem of Kuratowski states that a graph is planar
if and only if it contains homeomorphic copies
of neither the complete bipartite graph K33 (the
three-houses-three-utilities-graph) nor the com-
plete graph Ks. A main branch of graph theory
is concerned with investigating relationships be-
tween the topological and combinatorial proper-
ties of graphs (Mohar and Thomassen 2001).

Graphs

In 1852, Francis Guthrie posed the four color
problem, asking if it is possible to color the
countries of any map, using only four colors, in
such a way that all pairs of bordering countries
receive different colors. Equivalently, by repre-
senting dually every country as a vertex of a
graph, with two vertices joined by an edge if
their countries share a stretch of common border,
the question is whether it is possible to color
the vertices of a planar graph using four colors,
so that any two adjacent vertices receive distinct
colors. This problem, was solved a century later
in 1976 by Kenneth Appel, Wolfgang Haken,
and John Koch, who invested massive amounts
of computing time to complete a graph theoretic
approach developed by various mathematicians
over a period of most of the preceding part of the
twentieth century.

The problem of coloring a possibly nonplanar
graph with a minimal number of colors, that is,
to partition its vertex set into as few independent
sets as possible, is a well-studied problem (e.g.,
see Jensen and Toft 1995), though NP-hard in
general. In fact it is already an NP-complete
problem to ask whether a given planar graph
allows a coloring using at most three colors (see
Garey et al. 1976). The recent strong perfect
graph theorem provides one of quite few known
examples of a fairly rich class of graphs, the
Berge graphs, for which the coloring problem
has a satisfactory solution (see Chudnovsky et al.
2006).

Other well-solved problems include finding
a largest matching in a given graph; a largest
set of edges no two of which share a common
endvertex (see Lovasz and Plummer (1986) for
a thorough treatment of matching theory). The
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most interesting special case asks to find a perfect
matching, having the property that every vertex
is paired up with a unique vertex of the graph
adjacent to it. For the special case of bipartite
graphs (the marriage problem), the problem was
solved by Dénes Konig in 1931. Even when
given for every pair of vertices a measure of the
desirability of pairing up these particular vertices
(the weighted matching problem), there exists
an efficient solution to the problem of finding
an optimum matching of maximal total weight,
discovered by Jack Edmonds in 1959.

Applications

As an example of a visualization application,
Fig. 3 shows a digraph to symbolize for a collec-
tion of seven stochastic variables xi, ..., x7 that
their joint distribution is given by the product

p(x1) p(x2) p(x3) p(xa4]x1, X2, X3) p(x5]X1, X3)
X p(xe|x4) p(x7|x4, X5) (D

In addition to visualization of a network, a
process, a search procedure, or any hierarchical
structure, there are many applications using
implementations of known graph algorithms on
computers, so that the graph in question will
only exist as an abstract datastructure within a
program and thus remains invisible to the user.

T
Hop) €3
Ty X5
Ze £rr

Graphs, Fig. 3 Reproduced from Bishop (2006, p. 362)
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There are different ways to store graphs in
a computer. Often a combination of list and
matrix structures will be preferred for storage
and dynamic manipulation of a graph by an
algorithm. List structures are often preferred for
sparse graphs as they have smaller memory re-
quirements. Matrix structures on the other hand
provide faster access but can consume a large
amount of memory if a graph contains many ver-
tices. In most cases it is convenient to represent
a graph or digraph by an array containing, for
each edge or arc, the pair of vertices that it joins,
together with additional information, such as the
weight of the edge, as appropriate. It may be an
advantage in addition to store for each vertex a
list of the vertices adjacent to it, or alternatively,
a list of the edges incident to it, depending on the
application.

The adjacency matrix of a graph, multigraph,
or digraph on n vertices is an n X n matrix in
which the ij-entry is the number of edges or arcs
that join vertex i to vertex j (or more generally,
the weight of a single such edge or arc). As a
storage device this is inferior for sparse graphs,
those with relatively few edges, but gains in
importance when an application naturally deals
with very dense graphs or multigraphs.

Future Directions

In recent years the theory of graph minors has
been an important focus of graph theoretic re-
search. A graph H is said to be a minor of a
graph G if there exists a subgraph of G from
which H can be obtained through a sequence of
edge contractions, each consisting of the identi-
fication of the two ends of an edge e followed
by the removal of e. A monumental effort by
Neil Robertson and Paul Seymour has resulted
in a proof of the Robertson—Seymour theorem
(Robertson and Seymour 2004; see also Diestel
2005), with the important consequence that for
any set G of graphs that is closed under taking
minors, there exists a finite set of obstruction
graphs, such that G is an element of G precisely
if G does not contain any minor that belongs
to the obstruction set. This theorem has several
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important algorithmic consequences, many still
waiting to be fully explored.

A particularly challenging unsolved problem
is the Hadwiger conjecture (see Jensen and Toft
1995), stating that any graph G that does not
allow a vertex coloring with as few as k colors
will have to contain the complete graph Ky as
a minor. The special cases of k < 5 colors have
been shown to be consequences of the four color
theorem. But the problem remains open for all
larger values of k.

Other central areas of research relate to the
notoriously hard problems of vertex- and edge-
coloring, and of Hamilton paths and circuits.
These have important applications, but it is not
expected that any satisfactory necessary and suffi-
cient conditions will be found for their existence.
Hence the study of sufficient conditions of prac-
tical value is lively pursued.

A list of open problems in graph theory can be
found in Bondy and Murty (2007).
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At each step in its search, a greedy algorithm
makes the best decision it can at the time and
continues without backtracking. For example, an
algorithm may perform a » general-to-specific
search and at each step, commits itself to the
specialization that best fits that training data, so
far. It continues without backtracking to change
any of its decisions. Greedy algorithms are used
in many machine-learning algorithms, including
decision tree learning (Breiman et al. 1984;
Quinlan 1993) and » rule learning algorithms,
such as sequential covering.
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Definition

Greedy search is an efficient and effective strat-
egy for searching an intractably large space when
sufficiently informed heuristics are available to
guide the search. The space of all subgraphs of
a graph is such a space. Therefore, the greedy
search approach of » graph mining uses heuris-
tics to focus the search toward subgraphs of
interest while avoiding search in less interesting
portions of the space. One such heuristic is based
on the compression afforded by a subgraph; that
is, how much is the graph compressed if each
instance of the subgraph is replaced by a single
vertex. Not only does compression focus the
search, but it has also been found to prefer sub-
graphs of interest in a variety of domains.

Motivation and Background

Many data mining and machine learning methods
focus on the attributes of entities in the domain,
but the relationships between these entities also
represents a significant source of information,
and ultimately, knowledge. Mining this relational
information is an important challenge both in
terms of representing the information and facing
the additional computational obstacles of ana-
lyzing both entity attributes and relations. One
efficient way to represent relational information
is as a graph, where vertices in the graph rep-
resent entities in the domain, and edges in the
graph represent attributes and relations among the
entities. Thus, mining graphs is an important ap-
proach to extracting relational information. The
main alternative to a graph-based representation
is first-order logic, and the methods for mining
this representation fall under the area of inductive
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logic programming. Here, the focus is on the
graph representation.

Several methods have been developed for min-
ing graphs (Washio and Motoda 2003), but most
of these methods focus on finding the most fre-
quent subgraphs in a set of graph transactions
(e.g., FSG (Kuramochi and Karypis 2001), gSpan
(Yan and Han 2002), Gaston (Nijssen and Kok
2004)) and use efficient exhaustive, rather than
heuristic search. However, there are other proper-
ties besides frequency of a subgraph pattern that
are relevant to many domains. One such property
is the amount of compression afforded by the sub-
graph pattern, when each instance of the pattern
is replaced by a single vertex. Searching for the
most frequent subgraphs can be made efficient
mainly through the exploitation of the downward
closure property, which essentially says one can
prune any extension of a subgraph that does not
meet the minimum support frequency threshold.
Unfortunately, the compression of a subgraph
does not satisfy the downward closure property;
namely, while a small extension of a subgraph
may have less compression, a larger extension
may have greater compression. Therefore, one
cannot easily prune extensions and must search
a larger portion of the space of subgraphs. Thus,
one must resort to a greedy search method to
search this space efficiently.

As with any greedy search approach, the re-
sulting solution may sometimes be suboptimal,
that is, the resulting subgraph pattern is not the
pattern with maximum compression. The extent
to which optimal solutions are missed depends
on the type of greedy search and the strength
of the heuristics used to guide the search. One
approach is embodied in the graph-based induc-
tion (GBI) method (Matsuda et al. 2002; Yoshida
et al. 1994). GBI continually compresses the
input graph by identifying frequent triples of
vertices, some of which may represent previously
compressed portions of the input graph. Candi-
date triples are evaluated using a measure similar
to information gain.

A similar approach recommended here is the
use of a beam search strategy coupled with a
compression heuristic based on the » minimum
description length (MDL) principle (Rissanen
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1989). The goal is to perform unsupervised
discovery of a subgraph pattern that maximizes
compression, which is essentially a tradeoff
between frequency and size. Once the capability
to find such a pattern exists, it can be used in
an iterative discovery-and-compress fashion to
perform hierarchical conceptual clustering, and it
can be used to perform supervised learning, that
is, find patterns that compress the positive graphs,
but not the negative graphs. This approach has
been well studied (Cook and Holder 2000, 2007,
Gonzalez et al. 2002; Holder and Cook 2003;
Jonyer et al. 2001; Kukluk et al. 2007) and has
proven successful in several domains (Cook et al.
2001; Eberle and Holder 2006; Holder et al.
2005; You et al. 20006).

Structure of Learning System

Figure 1 depicts the structure of the greedy search
approach of graph mining. The input data is a
labeled, directed graph G. The search begins by
identifying the set of small common patterns in
G, that is, all vertices with unique labels having a
frequency greater than one. The algorithm then
iterates by evaluating the patterns according to
the search heuristic, retaining the best patterns,
and extending the best patterns by one edge until
the stopping condition is met.

The search is guided by the minimum de-
scription length (MDL) principle, which seeks
to minimize the description length of the entire
data set. The evaluation heuristic based on the
MDL principle assumes that the best pattern is

Best patterns

the one that minimizes the description length of
the input graph when compressed by the pattern.
The description length of the pattern S given
the input graph G is calculated as DL(G, S) =
DL(S) + DL(G|S), where DL(S) is the descrip-
tion length of the pattern, and DL(G|S) is the
description length of the input graph compressed
by the pattern. The search seeks a pattern S that
minimizes DL(G,S).

While several greedy search strategies apply
here (e.g., hill climbing, stochastic), the strategy
that has been found to work best is the » beam
search. Of the patterns currently under consid-
eration, the system retains only the best Beam
patterns, where Beam is a user-defined parameter.
These patterns are then extended by one edge in
all possible ways according to the input graph,
the extended patterns are evaluated, and then
again, all but the best Beam patterns are dis-
carded. This process continues until the stopping
condition is met. Several stopping conditions are
applicable here, including a user-defined limit on
the number of patterns considered, the exhaus-
tion of the search space, or the case in which
all extensions of a pattern evaluate to a lesser
value than their parent pattern. Once meeting the
stopping condition, the system returns the best
patterns. Note that while the naive approach to
implementing this algorithm would require an
NP-complete subgraph isomorphism procedure
to collect the instances of each pattern, a more
efficient approach takes advantage of the fact that
new patterns are always one-edge extensions of
existing patterns, and, therefore, the instances of
the extended patterns can be identified by search-
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Example of the greedy
search approach of graph
mining

ing the extensions of the parent’s instances. This
process does require several isomorphism tests,
which is the computational bottleneck of the
approach, but avoids the subgraph isomorphism
problem.

Once the search terminates, the input graph
can be compressed using the best pattern. The
compression procedure replaces all instances of
the pattern in the input graph by single vertices,
which represent the pattern’s instances. Incoming
and outgoing edges to and from the replaced
instances will point to, or originate from the new
vertex that represents the instance. The algorithm
can then be invoked again on this compressed
graph.

Figure 2 illustrates the process on a simple
example. The system discovers pattern S, which
is used to compress the data. A second iteration
on the compressed graph discovers pattern S;.
Because instances of a pattern can appear in
slightly different forms throughout the data, an
inexact graph match, based on graph edit dis-
tance, can be used to address noise by identifying
similar pattern instances.

Graph-Based Hierarchical Conceptual
Clustering

Given the ability to find a prevalent subgraph
pattern in a larger graph and then compress the
graph with this pattern, iterating over this process
until the graph can no longer be compressed will
produce a hierarchical, conceptual clustering of
the input data (Jonyer et al. 2001). On the ith
iteration, the best subgraph S; is used to com-
press the input graph, introducing new vertices
labeled S; in the graph input to the next iteration.
Therefore, any subsequently discovered subgraph

599
9 S, @
— ®
@ O O
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where i < j. The result is a lattice, where each
cluster can be defined in terms of more than one

parent subgraph. For example, Fig. 3 shows such
a clustering done on a DNA molecule.

Graph-Based Supervised Learning
Extending a graph-based data mining approach to
perform » supervised learning involves the need
to handle negative examples (focusing on the
two-class scenario). In the case of a graph the
negative information can come in three forms.
First, the data may be in the form of numer-
ous smaller graphs, or graph transactions, each
labeled either positive or negative. Second, data
may be composed of two large graphs: one posi-
tive and one negative. Third, the data may be one
large graph in which the positive and negative
labeling occurs throughout. The first scenario
is closest to the standard supervised learning
problem in that one has a set of clearly defined
examples (Gonzalez et al. 2002). Let G repre-
sent the set of positive graphs, and G~ represent
the set of negative graphs. Then, one approach
to supervised learning is to find a subgraph that
appears often in the positive graphs, but not in
the negative graphs. This amounts to replacing
the information-theoretic measure with simply
an error-based measure. This approach will lead
the search toward a small subgraph that dis-
criminates well. However, such a subgraph does
not necessarily compress well, nor represent a
characteristic description of the target concept.
One can bias the search toward a more char-
acteristic description by using the information-
theoretic measure to look for a subgraph that
compresses the positive examples, but not the
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Greedy Search Approach of Graph Mining, Fig. 3
Iterative application of the greedy search approach of
graph mining yields the hierarchical, conceptual cluster-

negative examples. If I(G) represents the de-
scription length (in bits) of the graph G, and
1(G|S) represents the description length of graph
G compressed by subgraph S, then one can look
for an S that minimizes I(GT|S) + I(S) +
I(G™) — I(G™|S), where the last two terms
represent the portion of the negative graph in-
correctly compressed by the subgraph. This ap-
proach will lead the search toward a larger sub-
graph that characterizes the positive examples,
but not the negative examples.

Finally, this process can be iterated in a set-
covering approach to learn a disjunctive hypoth-
esis. If using the error measure, then any positive
example containing the learned subgraph would
be removed from subsequent iterations. If using
the information-theoretic measure, then instances
of the learned subgraph in both the positive and
negative examples (even multiple instances per
example) are compressed to a single vertex. Note
that the compression is a lossy one, that is,
one does not keep enough information in the
compressed graph to know how the instance was
connected to the rest of the graph. This approach
is consistent with the goal of learning general
patterns, rather than mere compression.

Graph Grammar Inference
In the above algorithms the patterns are limited
to non-recursive structures. In order to learn

ing on the right given an input graph representing the
portion of DNA structure depicted on the left

subgraph motifs, or patterns that can be used as
the building blocks to generate arbitrarily large
graphs, one needs the ability to learn graph gram-
mars. The key to the inference of a graph gram-
mar is the identification of overlapping structure.
One can detect the possibility of a recursive
graph-grammar production by checking if the
instances of a pattern overlap. If a set of instances
overlap by a single vertex, then one can propose
a recursive node-replacement graph grammar
production. Figure 4 shows an example of a node-
replacement graph grammar (right) learned from
a simple, repetitive input graph (left). The input
graph in Fig. 4 is composed of three overlapping
substructures. Based on how the instances over-
lap, one can also infer connection instructions
that describe how the pattern can connect to itself.
For example, the connection instructions in Fig. 4
indicate that the graph can grow by connecting
vertex 1 of one pattern instance to either vertex 3
or vertex 4 of another pattern instance.

If a set of pattern instances overlap by an
edge, then one can propose a recursive edge-
replacement graph grammar production. Figure 5
shows an example of an edge-replacement graph
grammar (right) learned from the input graph
(left). Connection instructions describe how the
motifs can connect via the edge labeled “a” or the
edge labeled “b.”

Apart from the inclusion of recursive patterns,
the greedy search approach of graph mining is
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Greedy Search Approach
of Graph Mining, Fig. 4
The node-replacement
graph grammar (right)
inferred from the input
graph (left). The
connection instructions
indicate how the pattern
can connect to itself

Greedy Search Approach
of Graph Mining, Fig. 5
The edge-replacement
graph grammar (right)
inferred from the input
graph (left). The
connection instructions
indicate how the pattern
can connect to itself

unchanged. Both recursive and non-recursive pat-
terns are evaluated according to their ability to
compress the input graph using the MDL heuris-
tic. After several iterations of the approach, the
result is a graph grammar consisting of recursive
and non-recursive productions that both describe
the input graph and provide a mechanism for
generating graphs with similar properties.

Programs and Data

Most of the aforementioned functionality has
been implemented in the SUBDUE graph-based
pattern learning system. The SUBDUE source
code and numerous sample graph data files are
available at http://www.subdue.org.

Applications

Many relational domains, from chemical
molecules to social networks, are naturally repre-
sented as a graph, and a graph mining approach
is a natural choice for extracting knowledge from
such data. Three such applications are described
below.

A huge amount of biological data that has been
generated by long-term research encourages one
to move one’s focus to a systems-level under-
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standing of bio-systems. A biological network,
containing various biomolecules and their rela-
tionships, is a fundamental way to describe bio-
systems. Multi-relational data mining finds the
relational patterns in both the entity attributes and
relations in the data. A graph consisting of ver-
tices and edges between these vertices is a natural
data structure to represent biological networks.
The greedy search approach of graph mining
has been applied to find patterns in metabolic
pathways (You et al. 2006). Graph-based super-
vised learning finds the unique substructures in a
specific type of pathway, which help one under-
stand better how pathways differ. Unsupervised
learning shows hierarchical clusters that describe
the common substructures in a specific type of
pathway, which allow one to better understand
the common features in pathways.

Social network analysis is the mapping and
measuring of relationships and flows between
people, organizations, computers, or other in-
formation processing entities. Such analysis is
naturally done using a graphical representation
of the domain. The greedy approach of graph
mining has been applied to distinguish between
criminal and legitimate groups based on their
mode of communication (Holder et al. 2005). For
example, terrorist groups tend to exhibit com-
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munications chains; whereas, legitimate groups
(e.g., families) tend to exhibit more hub-and-
spoke communications.

Anomaly detection is an important problem
for detecting fraud or unlawful intrusions. How-
ever, anomalies are typically rare and, therefore,
present a challenge to most mining algorithms
that rely on regularity and frequency to detect pat-
terns. With the graph mining approach’s ability to
iteratively compress away regularity in the graph,
what is left can be construed as anomalous. To
distinguish this residual structure from noise, one
can compare its regularity with the probability
that such structure would appear randomly. The
presence of rare structure that is unlikely to ap-
pear by chance suggests an anomaly of interest.
Furthermore, most fraudulent activity attempts
to disguise itself by mimicking legitimate activ-
ity. Therefore, another method for finding such
anomalies in graphs is to first find the normative
pattern using the greedy search approach of graph
mining and then find unexpected deviations to
this normative pattern. This approach has been
applied to detect anomalies in cargo data (Eberle
and Holder 2006).

Future Directions

One of the main challenges in approaches to
graph mining is scalability. Since most relevant
graph operations (e.g., graph and subgraph iso-
morphism) are computationally expensive, they
can be applied to only modest-sized graphs that
can fit in the main memory. Clearly, there will
always be graphs larger than can fit in main
memory, so efficient techniques for mining in
such graphs are needed. One approach is to keep
the graph in a database and translate graph mining
operations into database queries. Another ap-
proach is to create abstraction hierarchies of large
graphs so that mining can occur at higher-level,
smaller graphs to identify interesting regions of
the graph before descending down into more spe-
cific graphs. Traditional high-performance com-
puting techniques of partitioning a problem into
subproblems, solving the subproblems, and then
recomposing a solution do not always work for
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graph mining problems, because partitioning the
problem means breaking links which may later
turn out to be important. New techniques and ar-
chitectures are needed to improve the scalability
of graph mining operations.

Another challenge for graph mining tech-
niques is dynamic graphs. Most graphs represent
data that can change over time. For example,
a social network can change as people enter
and leave the network, new links are established
and old links are discarded. First, one would
like to be able to mine for static patterns in
the presence of the changing data, which will
require incremental approaches to graph mining.
Second, one would like to mine patterns that
describe the evolution of the graph over time,
which requires mining of time slice graphs or
the stream of graph transaction events. Third, the
dynamics can reside in the attributes of entities
(e.g., changing concentrations of an enzyme in
a metabolic pathway), in the relation structure
between entities (e.g., new relationships in a
social network), or both. Research is needed
on efficient and effective techniques for mining
dynamic graphs.
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Synonyms

Community detection; Graph clustering; Modu-
larity detection
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Definition

Group detection can defined as the clustering of
nodes in a graph into groups or communities.
This may be a hard partitioning of the nodes, or
may allow for overlapping group memberships.
A community can be defined as a group of nodes
that share dense connections among each other,
while being less tightly connected to nodes in
different communities in the network. The im-
portance of communities lies in the fact that they
can often be closely related to modular units in
the system that have a common function, e.g.,
groups of individuals interacting with each other
in a society (Girvan and Newman 2002), WWW
pages related to similar topics (Flake et al. 2002),
or proteins having the same biological function
within the cell (Chen and Yuan 2006).

Motivation and Background

The work done in group detection goes back
as early as the 1920s when Stuart Rice clus-
tered data by hand to investigate political blocks
(Rice 1927). Another early example is the work
of George Homans (1950) who illustrated how
simple rearrangement of the rows and columns
of data matrices helped to reveal their under-
lying structure. Since then, group detection has
attracted researchers from different areas such
as sociology, mathematics, physics, marketing,
statistics, and computer science.

Group detection techniques vary from simple
similarity-based » clustering algorithms that fol-
low the classical assumption that the data points
are independent and identically distributed, to
more advanced techniques that take into consid-
eration the existing relationships between nodes
in addition to their attributes, and try to character-
ize the different distributions present in the data.

Theory Solution
A network is defined as a graph G = (V, E)

consisting of a set of nodes v € V, and a set of
edges e € E. In the case of weighted networks,
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w(v;, v;) denotes the weight of the edge connec-
tion nodes v; and v;. A community, or a group,
C is a subgraph C(V’, E’) of the original graph
G(V, E) whose nodes and edges are subsets of
the original graph’s nodes and edges; i.e., V' C V
and E' C E.

Following the definition of the community, we
can expect that all the vertices in any community
must be connected by a path within the same
community. This property is referred to in liter-
ature as connectedness, which implies that in the
case of disconnected graphs, we can analyze each
connected component separately, as communities
cannot span different components.

Another important property that follows from
the definition of a community is that the group of
vertices within a community should share denser
connections among each other, and fewer connec-
tions with the other vertices in the network. To
quantify this measure, the link density of a group
8(C) is defined as the ratio between the number
of internal edges in that group and the maximum
number of possible internal edges:

|E']

O = =2
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Thus, for any community C, we require that
8(C) > 6(G); where §(G) is the average link
density of the whole network. Similarly, the aver-
age link density between different communities,
calculated using the ratio between the number of
edges emanating from a group and terminating
in another, and the maximum number possible of
such edges, should generally be low.

Approaches

Beyond the intuitive discussion above, the pre-
cise definition of what constitutes a community
involves multiple aspects. One important aspect
is whether communities form hard partitions of
the graph or nodes can belong to several commu-
nities. Overlapping communities do commonly
occur in natural settings, especially in social
networks. Currently, only a few methods are able
to handle overlapping communities (Palla et al.
2005).

Group Detection

Other aspects should also be taken into
consideration =~ when defining community
structure, such as whether link weights and/or
directionalities are utilized, and whether the
definition allows for hierarchical community
structure, which means that communities may be
parts of larger ones. However, one of the most
important aspect that comes into consideration
in community detection is whether the definition
depends on global or local network properties.
The main difference between the two approaches
is whether the communities are defined in the
scope of the whole network structure, such as
methods based on centrality measures (Girvan
and Newman 2002), global optimization methods
(Newman and Girvan 2004), spectral methods
(Arenas et al. 2006), or information-theoretic
methods (Rosvall and Bergstrom 2008). Local
methods, on the other hand, define communities
based on purely local network structure, such
as detecting cliques of different sizes, clique
percolation method (Palla et al. 2005), and
subgraph fitness method (Lancichinetti et al.
2009).

Local Techniques

Local methods for community detection basically
rely on defining a set of properties that should
exist in a community, then finding maximal sub-
graphs for which these set of properties hold.
This formulation corresponds to finding maxi-
mal cliques in the network, where a clique is
a subgraph in which all its vertices are directly
connected.

However, there are some issues that rises from
the previous formulation. First, finding cliques
in a graph is an NP-Complete problem, thus
most solutions will be approximate based on
heuristic methods. Another more semantic issue
is the interpretation of communities, especially
in the context of social networks, where differ-
ent individuals have different centralities within
their corresponding groups, contradicting with
the degree symmetry of the nodes in cliques.
To overcome these drawbacks, the notion of a
clique is relaxed to n-clique, which is a maximal
subgraph where each pair of vertices are at most
n-steps apart from each other.
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Clustering Techniques

Data clustering is considered one of the earliest
techniques for revealing group structure, where
data points are grouped based on the similarity
between their corresponding features according
to a given similarity measure. The main objective
of traditional clustering methods is to obtain
clusters or groups of data points possessing high
intra-cluster similarity and low inter-cluster sim-
ilarity. Classical data clustering techniques can
be divided into partition-based methods such as
k-means clustering (MacQueen 1967), spectral
clustering algorithms (Alpert et al. 1999), and
hierarchical clustering methods (Hartigan 1975),
which are the most popular and the most com-
monly used in many fields.

One of the main advantages of the hierarchical
clustering techniques is their ability to provide
multiple resolutions at which the data can be
grouped. In general, hierarchical clustering can
be divided into agglomerative and divisive algo-
rithms. The agglomerative algorithm is a greedy
bottom-up one that starts with clusters including
single data points then successively merge the
pairs of clusters with the highest similarity. Di-
visive algorithms work in an opposite direction,
where initially all the data points are regarded
as one cluster, which is successively divided into
smaller ones by splitting groups of nodes having
the lowest similarity. In both algorithms, clusters
are represented as a dendrogram, whose depths
indicate the steps at which two clusters are joined.
This representation clarifies which communities
are built up from smaller modules, and how these
smaller communities are organized, which can
be particularly useful in the case of the presence
of a normal hierarchy of community structure in
the data. Hierarchical clustering techniques can
easily be used in network domains, where data
points are replaced by individual nodes in the
network, and the similarity is based on edges
between them.

Centrality-Based Techniques

One of the methods for community detection that
is based on the global network structure is the
one proposed by Girvan and Newman (2002),
where they proposed an algorithm based on the
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betweenness centrality of edges to be able to
recover the group structure within the network.
Betweenness centrality is a measure of centrality
of nodes in networks, defined for each node as the
number of shortest paths between pairs of nodes
in the network that run through it. The Girvan—
Newman algorithm extended this definition for
edges in the network as well, where the between-
ness centrality of an edge is defined as the number
of shortest paths between pairs of nodes that run
along it.

The basic idea behind the algorithm is
exploiting the fact that the number of edges
connecting nodes from different communities is
sparse. Following from that, all shortest paths
between nodes from different communities
should pass along one of these edges, increasing
their edge betweenness centrality measure.
Therefore, by following a greedy approach
and removing edges with highest betweenness
centrality from the network successively, the
underlying community structure will be revealed.
One of the major drawbacks of the algorithm
is the time complexity, which is O(|E|*|V])
generally, and O(|V|*) for sparse networks. The
fact that the edge betweenness needs only to be
recalculated only for the edges affected by the
edge removal can be factored in, which makes
the algorithm efficient in sparse networks with
strong community structure, but not very efficient
on dense networks.

Modularity-Based Techniques

The concept of modularity was introduced by
Newman and Girvan (2004) as a measure to eval-
uate the quality of a set of extracted communities
in a network, and has become one of the most
popular quality functions used for community
detection. The basic idea is utilizing a null model:
a network having the same set of nodes as the
original one, but with random edges placed be-
tween them taking into account preserving the
original node degrees. The basic idea is that the
created random network is expected to contain
no community structure, thus by comparing the
number of edges within the extracted communi-
ties against the expected number of edges in the
same communities from the random network, we
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can judge the quality of the extracted community
structure. More specifically, the modularity Q is
defined as follows

1
0= 5 2|

. deell) x deg(/) )2|XE(|1€g(j ) i|8k (ci.cj) (2)
where A4;; is the element of the adjacency matrix
of the network denoting the number of edges
between nodes i and j, deg(i) and deg(j) are
the degrees of nodes i and j respectively, c;
and c; are the communities to which nodes i
and j belong respectively, and 8 refers to the
kronecker delta. The summation runs over all
pairs of nodes within the same community.

Clearly, a higher modularity value indicates
that the average link density within the extracted
community is larger than that of the random net-
work where no community structure is present.
Thus, modularity maximization can be used as
the objective for producing high-quality commu-
nity structure. However, modularity maximiza-
tion is an NP-hard problem. Nevertheless, there
have been several algorithms for finding fairly
good approximations of the modularity maxi-
mum in reasonable amount of time.

One of the first modularity maximization al-
gorithms was introduced by Newman in 2004. It
is a greedy hierarchical agglomerative clustering
algorithm, which starts with individual nodes
and merges them in the order of increasing the
overall modularity of the resulting configuration.
The time complexity of this greedy algorithm is
O(IV|(|E| + |V])) or O(|V|*) for sparse net-
works, which enables the user to run commu-
nity detection on large networks in a reasonable
amount of time.

Issues

One of the main issues with the methods of group
detection in network setting is the focus on the
network structure, without taking into consider-
ation other properties of nodes and edges in the
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network. This issue often results in a lack of cor-
respondence between the extracted communities
and the functional groups in the network (Shalizi
et al. 2007). This also leads to another common
problem which is how to validate the resulting
communities produced by any of the proposed
techniques.

Although in network settings there are often
different types of interactions between entities of
different natures, most group detection methods
work on single-mode networks, which have just
a single node and edge type. Fewer works focus
on finding groups in more complex, multimodal
settings, where nodes from different types have
multiple types of interactions with each other.
One of the most common approaches to deal with
these types of networks is projecting them into
a series of individual graphs for each node type.
However, this approach results in losing some
of the information that could have been retained
by operating collectively on the original multi-
relational network.

Another issue also gaining interest is devel-
oping methods for group detection in dynamic
network settings (Tantipathananandh and Berger-
Wolf 2009), where the underlying network struc-
ture changes over time. Most of the previous
work on group detection focused on static net-
works, and handles the dynamic case by either
analyzing a snapshot of the network at a single
point in time, or aggregating all interactions over
the whole time period. Both approaches do not
capture the dynamics of change in the network
structure, which can be an important factor in
revealing the underlying communities.
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A growing set is a subset of a » training set
containing data that are used by a learning system

to develop models that are then evaluated against
a » pruning set.
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