A/B Testing

Online Controlled Experiments and A/B Test-
ing

Abduction

Antonis C. Kakas
University of Cyprus, Nicosia, Cyprus

Definition

Abduction is a form of reasoning, sometimes de-
scribed as “deduction in reverse,” whereby given
a rule that “A follows from B” and the ob-
served result of “A” we infer the condition “B”
of the rule. More generally, given a theory, T,
modeling a domain of interest and an obser-
vation, “A,” we infer a hypothesis “B” such
that the observation follows deductively from T
augmented with “B.” We think of “B” as a pos-
sible explanation for the observation according
to the given theory that contains our rule. This
new information and its consequences (or ram-
ifications) according to the given theory can be
considered as the result of a (or part of a) learning
process based on the given theory and driven by
the observations that are explained by abduction.
Abduction can be combined with » induction in
different ways to enhance this learning process.

© Springer Science+Business Media New York 2017

Motivation and Background

Abduction is, along with induction, a synthetic
form of reasoning whereby it generates, in its
explanations, new information not hitherto con-
tained in the current theory with which the rea-
soning is performed. As such, it has a natural re-
lation to learning, and in particular to knowledge
intensive learning, where the new information
generated aims to complete, at least partially, the
current knowledge (or model) of the problem
domain as described in the given theory.

Early uses of abduction in the context of
machine learning concentrated on how abduction
can be used as a theory revision operator for
identifying where the current theory could be
revised in order to accommodate the new learn-
ing data. This includes the work of Michalski
(1993), Ourston and Mooney (1994), and Ade
et al. (1994). Another early link of abduction to
learning was given by the » explanation based
learning method (DeJong and Mooney 1986),
where the abductive explanations of the learning
data (training examples) are generalized to all
cases. An extensive survey of the role of abduc-
tion in Machine Learning during this early period
can be found in Bergadano et al. (2000).

Following this, it was realized (Flach and
Kakas 2000) that the role of abduction in learn-
ing could be strengthened by linking it to in-
duction, culminating in a hybrid integrated ap-
proach to learning where abduction and induction
are tightly integrated to provide powerful learn-
ing frameworks such as the ones of Progol 5.0

C. Sammut, G.I. Webb (eds.), Encyclopedia of Machine Learning and Data Mining,

DOI 10.1007/978-1-4899-7687-1

http://dx.doi.org/10.1007/978-1-4899-7687-1_891
http://dx.doi.org/10.1007/978-1-4899-7687-1_388
http://dx.doi.org/10.1007/978-1-4899-7687-1_96

(Muggleton and Bryant 2000) and HAIL (Ray
et al. 2003). On the other hand, from the point
of view of abduction as “inference to the best
explanation” (Josephson and Josephson 1994) the
link with induction provides a way to distinguish
between different explanations and to select those
explanations that give a better inductive general-
ization result.

A recent application of abduction, on its own
or in combination with induction, is in Systems
Biology where we try to model biological
processes and pathways at different levels.
This challenging domain provides an important
development test-bed for these methods of
knowledge intensive learning (see e.g., King
et al. 2004; Papatheodorou et al. 2005; Ray et al.
2006; Tamaddoni-Nezhad et al. 2004; Zupan
et al. 2003).

Structure of the Learning Task

Abduction contributes to the learning task by first
explaining, and thus rationalizing, the training
data according to a given and current model
of the domain to be learned. These abductive
explanations either form on their own the result
of learning or they feed into a subsequent phase
to generate the final result of learning.

Abduction in Artificial Intelligence

Abduction as studied in the area of Artificial
Intelligence and the perspective of learning
is mainly defined in a logic-based approach.
Other approaches to abduction include set
covering (See, e.g., Reggia 1983) or case-based
explanation, (e.g., Leake 1995). The following
explanation uses a logic-based approach.

Given a set of sentences T (a theory or model),
and a sentence O (observation), the abductive
task is the problem of finding a set of sentences
H (abductive explanation for O) such that:

1. TUH E O,
2. T U H is consistent,

where = denotes the deductive entailment rela-
tion of the formal logic used in the representation

Abduction

of our theory and consistency refers also to the
corresponding notion in this logic. The particular
choice of this underlying formal framework of
logic is in general a matter that depends on the
problem or phenomena that we are trying to
model. In many cases, this is based on » first
order predicate calculus, as, for example, in the
approach of theory completion in Muggleton and
Bryant (2000). But other logics can be used, e.g.,
the nonmonotonic logics of default logic or logic
programming with negation as failure when the
modeling of our problem requires this level of
expressivity.

This basic formalization as it stands, does not
fully capture the explanatory nature of the abduc-
tive explanation H in the sense that it necessarily
conveys some reason why the observations hold.
It would, for example, allow an observation O
to be explained by itself or in terms of some
other observations rather than in terms of some
“deeper” reason for which the observation must
hold according to the theory 7. Also, as the
above specification stands, the observation can
be abductively explained by generating in H
some new (general) theory completely unrelated
to the given theory T'. In this case, H does not
account for the observations O according to the
given theory T and in this sense it may not be
considered as an explanation for O relative to T'.
For these reasons, in order to specify a “level”
at which the explanations are required and to un-
derstand these relative to the given general theory
about the domain of interest, the members of an
explanation are normally restricted to belong to
a special preassigned, domain-specific class of
sentences called abducible.

Hence abduction, is typically applied on a
model, 7', in which we can separate two disjoint
sets of predicates: the observable predicates and
the abducible (or open) predicates. The basic
assumption then is that our model 7" has reached
a sufficient level of comprehension of the domain
such that all the incompleteness of the model
can be isolated (under some working hypothe-
ses) in its abducible predicates. The observable
predicates are assumed to be completely defined
(in T') in terms of the abducible predicates and

http://dx.doi.org/10.1007/978-1-4899-7687-1_100174

Abduction

other background auxiliary predicates; any in-
completeness in their representation comes from
the incompleteness in the abducible predicates. In
practice, the empirical observations that drive the
learning task are described using the observable
predicates. Observations are represented by for-
mulae that refer only to the observable predicates
(and possibly some background auxiliary predi-
cates) typically by ground atomic facts on these
observable predicates. The abducible predicates
describe underlying (theoretical) relations in our
model that are not observable directly but can,
through the model 7, bring about observable
information.

The assumptions on the abducible predicates
used for building up the explanations may be
subject to restrictions that are expressed through
integrity constraints. These represent additional
knowledge that we have on our domain express-
ing general properties of the domain that remain
valid no matter how the theory is to be extended
in the process of abduction and associated learn-
ing. Therefore, in general, an abductive theory
is a triple, denoted by (7, A,IC), where T is
the background theory, A is a set of abducible
predicates, and IC is a set of integrity constraints.
Then, in the definition of an abductive expla-
nation given above, one more requirement is
added:

3. T U H satisfies IC.

The satisfaction of integrity constraints can be
formally understood in several ways (see Kakas
et al. 1992 and references therein). Note that the
integrity constraints reduce the number of expla-
nations for a set of observations filtering out those
explanations that do not satisfy them. Based on
this notion of abductive explanation a credulous
form of abductive entailment is defined. Given
an abductive theory, T = (T, A,IC), and an
observation O then, O is abductively entailed
by T, denoted by T =4 O, if there exists an
abductive explanation of O in T'.

This notion of abductive entailment can then
form the basis of a coverage relation for learning
in the face of incomplete information.

Abductive Concept Learning

Abduction allows us to reason in the face of
incomplete information. As such when we have
learning problems where the background data on
the training examples is incomplete the use of
abduction can enhance the learning capabilities.

Abductive concept learning (ACL) (Kakas and
Riguzzi 2000) is a learning framework that allows
us to learn from incomplete information and to
later be able to classify new cases that again
could be incompletely specified. Under ACL, we
learn abductive theories, (T, A, IC) with abduc-
tion playing a central role in the covering relation
of the learning problem. The abductive theories
learned in ACL contain both rules, in 7', for the
concept(s) to be learned as well as general clauses
acting as integrity constraints in IC.

Practical problems that can be addressed with
ACL: (1) concept learning from incomplete back-
ground data where some of the background pred-
icates are incompletely specified and (2) concept
learning from incomplete background data to-
gether with given integrity constraints that pro-
vide some information on the incompleteness
of the data. The treatment of incompleteness
through abduction is integrated within the learn-
ing process. This allows the possibility of learn-
ing more compact theories that can alleviate the
problem of over fitting due to the incompleteness
in the data. A specific subcase of these two prob-
lems and important third application problem of
ACL is that of (3) multiple predicate learning,
where each predicate is required to be learned
from the incomplete data for the other predicates.
Here the abductive reasoning can be used to
suitably connect and integrate the learning of the
different predicates. This can help to overcome
some of the nonlocality difficulties of multiple
predicate learning, such as order-dependence and
global consistency of the learned theory.

ACL is defined as an extension of » Inductive
Logic Programming (ILP) where both the back-
ground knowledge and the learned theory are
abductive theories. The central formal definition
of ACL is given as follows where examples are
atomic ground facts on the target predicate(s) to
be learned.

http://dx.doi.org/10.1007/978-1-4899-7687-1_135

Definition 1 (Abductive Concept Learning)
Given

A set of positive examples E*

* A set of negative examples E~

¢ An abductive theory T = (P, A, I) as back-
ground theory

* An hypothesis space 7 = (P,Z) consisting
of a space of possible programs P and a space
of possible constraints 7

Find

A set of rules P’ € P and a set of constraints
I’ € T such that the new abductive theory
T = (P UP' A, I U] satisfies the following
conditions

A T/'ZA E+
e Ve e E-, T ¥ e

where ET stands for the conjunction of all posi-
tive examples.

An individual example e is said to be covered
by a theory T’ if T/ |4 e. In effect, this
definition replaces the deductive entailment as the
example coverage relation in the ILP problem
with abductive entailment to define the ACL
learning problem.

The fact that the conjunction of positive ex-
amples must be covered means that, for every
positive example, there must exist an abduc-
tive explanation and the explanations for all the
positive examples must be consistent with each
other. For negative examples, it is required that
no abductive explanation exists for any of them.
ACL can be illustrated as follows.

Example 1 Suppose we want to learn the concept
father. Let the background theory be T =
(P, A, @) where:

P = {parent(john,mary),male(john),
parent(david, steve),
parent(kathy,ellen), female(kathy)},
A ={male, female}.

Let the training examples be:

Abduction

E* = {father(john,mary), father
(david, steve)},

E~ ={father(kathy,ellen), father
(john, steve)}.

In this case, a possible hypotheses 7' = (P U
P’, A, I’) learned by ACL would consist of

P’ = {father(X,Y)
male(X)},
I' = { <« male(X), female(X)}.

<« parent(X,Y),

This hypothesis satisfies the definition of ACL
because:

1. T'|Ea father(john,mary), father
(david, steve) with A = {male(david)}.

2. T" ¥4 father(kathy,ellen), as the only
possible explanation for this goal, namely
{male(kathy)} is made inconsistent by the
learned integrity constraint in /.

3. T ¥4 father(john,steve), as this has no
possible abductive explanations.

Hence, despite the fact that the background
theory is incomplete (in its abducible predicates),
ACL can find an appropriate solution to the
learning problem by suitably extending the
background theory with abducible assumptions.
Note that the learned theory without the
integrity constraint would not satisfy the
definition of ACL, because there would exist
an abductive explanation for the negative
example father(kathy,ellen), namely A~ =
{male(kathy)}. This explanation is prohibited
in the complete theory by the learned constraint
together with the fact female(kathy).

The algorithm and learning system for ACL
is based on a decomposition of this problem into
two subproblems: (1) learning the rules in P’
together with appropriate explanations for the
training examples and (2) learning integrity con-
straints driven by the explanations generated in
the first part. This decomposition allows ACL to
be developed by combining the two IPL settings
of explanatory (predictive) learning and confir-
matory (descriptive) learning. In fact, the first
subproblem can be seen as a problem of learning

Abduction

from entailment, while the second subproblem as
a problem of learning from interpretations.

Abduction and Induction

The utility of abduction in learning can be en-
hanced significantly when this is integrated with
induction. Several approaches for synthesizing
abduction and induction in learning have been
developed, e.g., Ade and Denecker (1995),
Muggleton and Bryant (2000), Yamamoto
(1997), and Flach and Kakas (2000). These
approaches aim to develop techniques for
knowledge intensive learning with complex
background theories. One problem to be faced by
purely inductive techniques, is that the training
data on which the inductive process operates,
often contain gaps and inconsistencies. The
general idea is that abductive reasoning can
feed information into the inductive process
by using the background theory for inserting
new hypotheses and removing inconsistent data.
Stated differently, abductive inference is used to
complete the training data with hypotheses about
missing or inconsistent data that explain the
example or training data, using the background
theory. This process gives alternative possibilities
for assimilating and generalizing this data.

Induction is a form of synthetic reasoning that
typically generates knowledge in the form of new
general rules that can provide, either directly,
or indirectly through the current theory 7 that
they extend, new interrelationships between the
predicates of our theory that can include, unlike
abduction, the observable predicates and even in
some cases new predicates. The inductive hy-
pothesis thus introduces new, hitherto unknown,
links between the relations that we are studying
thus allowing new predictions on the observable
predicates that would not have been possible be-
fore from the original theory under any abductive
explanation.

An inductive hypothesis, H, extends, like in
abduction, the existing theory 7 to a new theory
T'=T U H,but now H provides new links be-
tween observables and nonobservables that was
missing or incomplete in the original theory T.
This is particularly evident from the fact that
induction can be performed even with an empty

given theory 7', using just the set of observa-
tions. The observations specify incomplete (usu-
ally extensional) knowledge about the observable
predicates, which we try to generalize into new
knowledge. In contrast, the generalizing effect of
abduction, if at all present, is much more limited.
With the given current theory 7', that abduction
always needs to refer to, we implicitly restrict the
generalizing power of abduction as we require
that the basic model of our domain remains that
of T'. Induction has a stronger and genuinely new
generalizing effect on the observable predicates
than abduction. While the purpose of abduction
is to extend the theory with an explanation and
then reason with it, thus enabling the generalizing
potential of the given theory 7', in induction the
purpose is to extend the given theory to a new the-
ory, which can provide new possible observable
consequences.

This complementarity of abduction and in-
duction — abduction providing explanations from
the theory while induction generalizes to form
new parts of the theory — suggests a basis for
their integration within the context of theory
formation and theory development. A cycle of
integration of abduction and induction (Flach and
Kakas 2000) emerges that is suitable for the task
of incremental modeling (Fig. 1). Abduction is
used to transform (and in some sense normalize)
the observations to information on the abducible
predicates. Then, induction takes this as input
and tries to generalize this information to general

N

TUHE O Abduction

Induction

T~ 0O

Abduction, Fig. 1 The cycle of abductive and inductive
knowledge development. The cycle is governed by the
“equation” T'U H = O, where T is the current theory,
O the observations triggering theory development, and H
the new knowledge generated. On the left-hand side we
have induction, its output feeding into the theory T for
later use by abduction on the right; the abductive output in
turn feeds into the observational data O’ for later use by
induction, and so on

rules for the abducible predicates now treating
these as observable predicates for its own pur-
poses. The cycle can then be repeated by adding
the learned information on the abducibles back
in the model as new partial information on the
incomplete abducible predicates. This will affect
the abductive explanations of new observations
to be used again in a subsequent phase of in-
duction. Hence, through this cycle of integration
the abductive explanations of the observations
are added to the theory, not in the (simple) form
in which they have been generated, but in a
generalized form given by a process of induction
on these.

A simple example, adapted from Ray et al.
(2003), that illustrates this cycle of integration of
abduction and induction is as follows. Suppose
that our current model, 7', contains the following
rule and background facts:

sad(X) <« tired(X), poor(X),
tired(oli), tired(ale), tired(kr),
academic(oli), academic(ale), academic(kr),

student(oli), lecturer(ale), lecturer(kr),

where the only observable predicate is sad /1.
Given the observations O = {sad(ale),
sad(kr),not sad(oli)} can we improve our
model? The incompleteness of our model resides
in the predicate poor. This is the only abducible
predicate in our model. Using abduction we can
explain the observations O via the explanation:

E = {poor(ale), poor(kr), not poor(oli)}.

Subsequently, treating this explanation as training
data for inductive generalization we can general-
ize this to get the rule:

poor(X) <« lecturer(X)

thus (partially) defining the abducible predicate
poor when we extend our theory with this rule.
This combination of abduction and induction
has recently been studied and deployed in several
ways within the context of ILP. In particular,
inverse entailment (Muggleton and Bryant 2000)
can be seen as a particular case of integration of
abductive inference for constructing a “bottom”
clause and inductive inference to generalize it.

Abduction

This is realized in Progol 5.0 and applied to sev-
eral problems including the discovery of the func-
tion of genes in a network of metabolic pathways
(King et al. 2004), and more recently to the study
of inhibition in metabolic networks (Tamaddoni-
Nezhad et al. 2006, 2004). In Moyle (2000), an
ILP system called ALECTO, integrates a phase of
extraction-case abduction to transform each case
of a training example to an abductive hypothesis
with a phase of induction that generalizes these
abductive hypotheses. It has been used to learn
robot navigation control programs by completing
the specific domain knowledge required, within a
general theory of planning that the robot uses for
its navigation (Moyle 2002).

The development of these initial frameworks
that realize the cycle of integration of abduction
and induction prompted the study of the prob-
lem of completeness for finding any hypothe-
ses H that satisfies the basic task of finding a
consistent hypothesis H such that T U H |
O for a given theory 7', and observations O.
Progol was found to be incomplete (Yamamoto
1997) and several new frameworks of integration
of abduction and induction have been proposed
such as SOLDR (Ito and Yamamoto 1998), CF-
induction (Inoue 2001), and HAIL (Ray et al.
2003). In particular, HAIL has demonstrated that
one of the main reasons for the incompleteness
of Progol is that in its cycle of integration of
abduction and induction, it uses a very restricted
form of abduction. Lifting some of these re-
strictions, through the employment of methods
from abductive logic programming (Kakas et al.
1992), has allowed HAIL to solve a wider class of
problems. HAIL has been extended to a frame-
work, called XHAIL (Ray 2009), for learning
nonmonotonic ILP, allowing it to be applied to
learn Event Calculus theories for action descrip-
tion (Alrajeh et al. 2009) and complex scientific
theories for systems biology (Ray and Bryant
2008).

Applications of this integration of abduction
and induction and the cycle of knowledge devel-
opment can be found in the recent proceedings of
the Abduction and Induction in Artificial Intelli-
gence workshops in 2007 (Flach and Kakas 2009)
and 2009 (Ray et al. 2009).

Abduction

Abduction in Systems Biology

Abduction has found a rich field of application in
the domain of systems biology and the declarative
modeling of computational biology. In a project
called, Robot scientist (King et al. 2004), Progol
5.0 was used to generate abductive hypotheses
about the function of genes. Similarly, learn-
ing the function of genes using abduction has
been studied in GenePath (Zupan et al. 2003)
where experimental genetic data is explained in
order to facilitate the analysis of genetic net-
works. Also in Papatheodorou et al. (2005) ab-
duction is used to learn gene interactions and
genetic pathways from microarray experimental
data. Abduction and its integration with induction
has been used in the study of inhibitory effect
of toxins in metabolic networks (Tamaddoni-
Nezhad et al. 2004, 2006) taking into account
also the temporal variation that the inhibitory
effect can have. Another bioinformatics appli-
cation of abduction (Ray et al. 2006) concerns
the modeling of human immunodeficiency virus
(HIV) drug resistance and using this in order
to assist medical practitioners in the selection
of antiretroviral drugs for patients infected with
HIV. Also, the recently developed frameworks of
XHAIL and CF-induction have been applied to
several problems in systems biology, see e.g., Ray
(2009), Ray and Bryant (2008), and Doncescu
et al. (2007), respectively. Finally, the recent book
edited by Cerro and Inoue (2014) on the logical
modeling of biological systems contains several
articles on the application of abduction in systems
biology.

Cross-References

Explanation-Based Learning
Inductive Logic Programming

Recommended Reading

Ade H, Denecker M (1995) AILP: abductive inductive
logic programming. In: Mellish CS (ed) IJCAL
Morgan Kaufmann, San Francisco, pp 1201-1209

Ade H, Malfait B, Raedt LD (1994) Ruth: an ILP
theory revision system. In: ISMIS94. Springer,
Berlin

Alrajeh D, Ray O, Russo A, Uchitel S (2009) Using ab-
duction and induction for operational requirements
elaboration. J Appl Logic 7(3):275-288

Bergadano F, Cutello V, Gunetti D (2000) Abduc-
tion in machine learning. In: Gabbay D, Kruse R
(eds) Handbook of defeasible reasoning and un-
certainty management systems, vol 4. Kluver Aca-
demic Press, Dordrecht, pp 197-229

del Cerro LF, Inoue K (eds) (2014) Logical
modeling of biological systems. Wiley/ISTE, Hobo-
ken/London

DeJong G, Mooney R (1986) Explanation-based learn-
ing: an alternate view. Mach Learn 1:145-176

Doncescu A, Inoue K, Yamamoto Y (2007) Knowl-
edge based discovery in systems biology using cf-
induction. In: Okuno HG, Ali M (eds) IEA/AIE.
Springer, Heidelberg, pp 395404

Flach P, Kakas A (2000) Abductive and inductive
reasoning: background and issues. In: Flach PA,
Kakas AC (eds) Abductive and inductive reasoning.
Pure and applied logic. Kluwer, Dordrecht

Flach PA, Kakas AC (eds) (2009) Abduction and
induction in artificial intelligence [special issue]. J
Appl Logic 7(3):251

Inoue K (2001) Inverse entailment for full clausal theo-
ries. In: LICS-2001 workshop on logic and learning

Ito K, Yamamoto A (1998) Finding hypotheses from
examples by computing the least generlisation of
bottom clauses. In: Proceedings of discovery sci-
ence’98. Springer, Berlin, pp 303-314

Josephson J, Josephson S (eds) (1994) Abductive infer-
ence: computation, philosophy, technology. Cam-
bridge University Press, New York

Kakas A, Kowalski R, Toni F (1992) Abductive logic
programming. J Logic Comput 2(6):719-770

Kakas A, Riguzzi F (2000) Abductive concept learn-
ing. New Gener Comput 18:243-294

King R, Whelan K, Jones F, Reiser P, Bryant C, Mug-
gleton S et al (2004) Functional genomic hypothesis
generation and experimentation by a robot scientist.
Nature 427:247-252

Leake D (1995) Abduction, experience and goals: a
model for everyday abductive explanation. J Exp
Theor Artif Intell 7:407-428

Michalski RS (1993) Inferential theory of learning as
a conceptual basis for multistrategy learning. Mach
Learn 11:111-151

Moyle S (2002) Using theory completion to learn a
robot navigation control program. In: Proceedings
of the 12th international conference on inductive
logic programming. Springer, Berlin, pp 182-197

Moyle SA (2000) An investigation into theory com-
pletion techniques in inductive logic programming.
PhD thesis, Oxford University Computing Labora-
tory, University of Oxford

Muggleton S (1995) Inverse entailment and Progol.
New Gener Comput 13:245-286

http://dx.doi.org/10.1007/978-1-4899-7687-1_96
http://dx.doi.org/10.1007/978-1-4899-7687-1_135

Muggleton S, Bryant C (2000) Theory completion
using inverse entailment. In: Proceedings of the
tenth international workshop on inductive logic pro-
gramming (ILP-00). Springer, Berlin, pp 130-146

Ourston D, Mooney RJ (1994) Theory refinement
combining analytical and empirical methods. Artif
Intell 66:311-344

Papatheodorou I, Kakas A, Sergot M (2005) Inference
of gene relations from microarray data by abduction.
In: Proceedings of the eighth international con-
ference on logic programming and non-monotonic
reasoning (LPNMR’05), vol 3662. Springer, Berlin,
pp389-393

Ray O (2009) Nonmonotonic abductive inductive
learning. J Appl Logic 7(3):329-340

Ray O, Antoniades A, Kakas A, Demetriades I (2006)
Abductive logic programming in the clinical man-
agement of HIV/AIDS. In: Brewka G, Coradeschi
S, Perini A, Traverso P (eds) Proceedings of the
17th European conference on artificial intelligence.
Frontiers in artificial intelligence and applications,
vol 141. IOS Press, Amsterdam, pp 437441

Ray O, Broda K, Russo A (2003) Hybrid abductive
inductive learning: a generalisation of Progol. In:
Proceedings of the 13th international conference
on inductive logic programming. Lecture notes in
artificial intelligence, vol 2835. Springer, Berlin,
pp 311-328

Ray O, Bryant C (2008) Inferring the function of genes
from synthetic lethal mutations. In: Proceedings of
the second international conference on complex,
intelligent and software intensive systems. IEEE
Computer Society, Washington, DC, pp 667-671

Ray O, Flach PA, Kakas AC (eds) (2009) Abduction
and induction in artificial intelligence. In: Proceed-
ings of IJCAI 2009 workshop

Reggia J (1983) Diagnostic experts systems based
on a set-covering model. Int J Man-Mach Stud
19(5):437-460

Tamaddoni-Nezhad A, Chaleil R, Kakas A, Muggleton
S (2006) Application of abductive ILP to learning
metabolic network inhibition from temporal data.
Mach Learn 64(1-3):209-230

Tamaddoni-Nezhad A, Kakas A, Muggleton S, Pazos F
(2004) Modelling inhibition in metabolic pathways
through abduction and induction. In: Proceedings of
the 14th international conference on inductive logic
programming. Springer, Berlin, pp 305-322

Yamamoto A (1997) Which hypotheses can be found
with inverse entailment? In: Proceedings of the sev-
enth international workshop on inductive logic pro-
gramming. Lecture notes in artificial intelligence,
vol 1297. Springer, Berlin, pp 296-308

Zupan B, Bratko I, Demsar J, Juvan P, Halter J, Kuspa
A et al (2003) Genepath: a system for automated
construction of genetic networks from mutant data.
Bioinformatics 19(3):383-389

Absolute Error Loss

Absolute Error Loss

Mean Absolute Error

Accuracy

Definition

Accuracy refers to a measure of the degree to
which the predictions of a model matches the
reality being modeled. The term accuracy is often
applied in the context of » classification models.
In this context, accuracy = P(A(X) = Y), where
XY is a joint distribution and the classification
model A is a function X — Y. Sometimes, this
quantity is expressed as a percentage rather than
a value between 0.0 and 1.0.

The accuracy of a model is often assessed or

estimated by applying it to test data for which the

labels (Y values) are known. The accuracy of a
classifier on test data may be calculated as num-
ber of correctly classified objects/total number of
objects. Alternatively, a smoothing function may
be applied, such as a » Laplace estimate or an m-
estimate.

Accuracy is directly related to » error rate,
such that accuracy = 1.0 — error rate (or when
expressed as a percentage, accuracy = 100 —
error rate).

Cross-References
Confusion Matrix
Mean Absolute Error

Model Evaluation
Resubstitution Estimate

ACO

Ant Colony Optimization

http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_438
http://dx.doi.org/10.1007/978-1-4899-7687-1_100240
http://dx.doi.org/10.1007/978-1-4899-7687-1_85
http://dx.doi.org/10.1007/978-1-4899-7687-1_50
http://dx.doi.org/10.1007/978-1-4899-7687-1_953
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_728
http://dx.doi.org/10.1007/978-1-4899-7687-1_22

Active Learning

Actions

In a » Markov decision process, actions are the
available choices for the decision-maker at any
given decision epoch, in any given state.

Active Learning

David Cohn
Mountain View, CA, USA
Edinburgh, UK

Definition

The term Active Learning is generally used to
refer to a learning problem or system where the
learner has some role in determining on what
data it will be trained. This is in contrast to
Passive Learning, where the learner is simply
presented with a » training set over which it has
no control. Active learning is often used in set-
tings where obtaining » labeled data is expensive
or time-consuming; by sequentially identifying
which examples are most likely to be useful,
an active learner can sometimes achieve good
performance, using far less » training data than
would otherwise be required.

Structure of Learning System

In many machine learning problems, the train-
ing data are treated as a fixed and given part
of the problem definition. In practice, however,
the training data are often not fixed beforehand.
Rather, the learner has an opportunity to play a
role in deciding what data will be acquired for
training. This process is usually referred to as
“active learning,” recognizing that the learner is
an active participant in the training process.

The typical goal in active learning is to select
training examples that best enable the learner

to minimize its loss on future test cases. There
are many theoretical and practical results demon-
strating that, when applied properly, active learn-
ing can greatly reduce the number of training
examples, and even the computational effort re-
quired for a learner to achieve good generaliza-
tion.

A toy example that is often used to illustrate
the utility of active learning is that of learning
a threshold function over a one-dimensional
interval. Given +/— labels for N points drawn
uniformly over the interval, the expected error
between the true value of the threshold and any
learner’s best guess is bounded by O(1/N).
Given the opportunity to sequentially select
the position of points to be labeled, however,
a learner can pursue a binary search strategy,
obtaining a best guess that is within O(1/2") of
the true threshold value.

This toy example illustrates the sequential
nature of example selection that is a component
of most (but not all) active learning strategies: the
learner makes use of initial information to discard
parts of the solution space, and to focus future
data acquisition on distinguishing parts that are
still viable.

Related Problems

The term “active learning” is usually applied
in supervised learning settings, though there
are many related problems in other branches of
machine learning and beyond. The “exploration”
component of the “exploration/exploitation”
strategy in reinforcement learning is one such
example. The learner must take actions to gain
information, and must decide what actions
will give him/her the information that will
best minimize future loss. A number of fields
of Operations Research predate and parallel
machine learning work on active learning,
including Decision Theory (North 1968), Value
of Information Computation, Bandit problems
(Robbins 1952), and Optimal Experiment Design
(Fedorov 1972; Box and Draper 1987).

http://dx.doi.org/10.1007/978-1-4899-7687-1_512
http://dx.doi.org/10.1007/978-1-4899-7687-1_974
http://dx.doi.org/10.1007/978-1-4899-7687-1_439
http://dx.doi.org/10.1007/978-1-4899-7687-1_840

10

Active Learning Scenarios

When active learning is used for classification
or regression, there are three common settings:
constructive active learning, pool-based active
learning, and stream-based active learning (also
called selective sampling).

Constructive Active Learning

In constructive active learning, the learner is
allowed to propose arbitrary points in the input
space as examples to be labeled. While this in
theory gives the learner the most power to ex-
plore, it is often not practical. One obstacle is
the observation that most learning systems train
on only a reduced representation of the instances
they are presented with: text classifiers on bags
of words (rather than fully-structured text) and
speech recognizers on formants (rather than raw
audio). While a learning system may be able
to identify what pattern of formants would be
most informative to label, there is no reliable
way to generate audio that a human could rec-
ognize (and label) from the desired formants
alone.

Pool-Based Active Learning

Pool-based active learning (McCallum and
Nigam 1998) is popular in domains such as
text classification and speech recognition where
unlabeled data are plentiful and cheap, but labels
are expensive and slow to acquire. In pool-based
active learning, the learner may not propose
arbitrary points to label, but instead has access
to a set of unlabeled examples, and is allowed to
select which of them to request labels for.

A special case of pool-based learning is trans-
ductive active learning, where the test distribution
is exactly the set of unlabeled examples. The
goal then is to sequentially select and label a
small number of examples that will best allow
predicting the labels of those points that remain
unlabeled.

A theme that is common to both constructive
and pool-based active learning is the principle of
sequential experimentation. Information gained
from early queries allows the learner to focus
its search on portions of the domain that are

Active Learning

most likely to give it additional information on
subsequent queries.

Stream-Based Active Learning

Stream-based active learning resembles pool-
based learning in many ways, except that the
learner only has access to the unlabeled instances
as a stream; when an instance arrives, the learner
must decide whether to ask for its label or let
it go.

Other Forms of Active Learning

By virtue of the broad definition of active learn-
ing, there is no real limit on the possible set-
tings for framing it. Angluin’s early work on
learning regular sets (Angluin 1987) employed
a “counterexample” oracle: the learner would
propose a solution, and the oracle would either
declare it correct, or divulge a counterexample
— an instance on which the proposed and true
solutions disagreed. Jin and Si (2003) describe a
Bayesian method for selecting informative items
to recommend when learning a collaborative fil-
tering model, and Steck and Jaakkola (2002)
describe a method best described as unsupervised
active learning to build Bayesian networks in
large domains.

While most active learning work assumes that
the cost of obtaining a label is independent of the
instance to be labeled, there are many scenarios
where this is not the case. A mobile robot taking
surface measurements must first travel to the
point it wishes to sample, making distant points
more expensive than nearby ones. In some cases,
the cost of a query (e.g., the difficulty of traveling
to a remote point to sample it) may not even be
known until it is made, requiring the learner to
learn a model of that as well. In these situations,
the sequential nature of active learning is greatly
accentuated, and a learner faces the additional
challenges of planning under uncertainty (see
“Greedy vs. Batch Active Learning,” below).

Common Active Learning Strategies

1. Version space partitioning. The earliest prac-
tical active learning work (Ruff and Dietterich

Active Learning

1989; Mitchell
on version

1982) explicitly relied
space partitioning. These
approaches tried to select examples on which
there was maximal disagreement between
hypotheses in the current version space.
When such examples were labeled, they
would invalidate as large a portion of the
version space as possible. A limitation of
explicit version space approaches is that, in
underconstrained domains, a learner may
waste its effort differentiating portions of
the version space that have little effect on the
classifier’s predictions, and thus on its error.

2. Query by Committee (Seung et al. 1992). In
query by committee, the experimenter trains
an ensemble of models, either by selecting
randomized starting points (e.g., in the case
of a neural network) or by bootstrapping the
training set. Candidate examples are scored
based on disagreement among the ensemble
models — examples with high disagreement in-
dicate areas in the sample space that are under-
determined by the training data, and therefore
potentially valuable to label. Models in the
ensemble may be looked at as samples from
the version space; picking examples where
these models disagree is a way of splitting the
version space.

3. Uncertainty sampling (Lewis and Gail 1994).
Uncertainty sampling is a heuristic form of
statistical active learning. Rather than sam-
pling different points in the version space by
training multiple learners, the learner itself
maintains an explicit model of uncertainty
over its input space. It then selects for labeling
those examples on which it is least confident.
In classification and regression problems, un-
certainty contributes directly to expected loss
(as the variance component of the “error = bias
+ variance” decomposition), so that gathering
examples where the learner has greatest uncer-
tainty is often an effective loss-minimization
heuristic. This approach has also been found
effective for non-probabilistic models, by sim-
ply selecting examples that lie near the current
decision boundary. For some learners, such as
support vector machines, this heuristic can be
shown to be an approximate partitioning of

1

the learner’s version space (Tong and Koller
2001).

4. Loss minimization (Cohn 1996). Uncertainty
sampling can stumble when parts of the
learner’s domain are inherently noisy. It
may be that, regardless of the number of
samples labeled in some neighborhood, it
will remain impossible to accurately predict
these. In these cases, it would be desirable to
not only model the learner’s uncertainty over
arbitrary parts of its domain, but also to model
what effect labeling any future example is
expected to have on that uncertainty. For some
learning algorithms it is feasible to explicitly
compute such estimates (e.g., for locally-
weighted regression and mixture models,
these estimates may be computed in closed
form). It is, therefore, practical to select
examples that directly minimize the expected
loss to the learner, as discussed below under
“Statistical Active Learning.”

Statistical Active Learning

Uncertainty sampling and direct loss minimiza-
tion are two examples of statistical active learn-
ing. Both rely on the learner’s ability to statisti-
cally model its own uncertainty. When learning
with a statistical model, such as a linear regressor
or a mixture of Gaussians (Dasgupta 1999), the
objective is usually to find model parameters
that minimize some form of expected loss. When
active learning is applied to such models, it is
natural to also select training data so as to min-
imize that same objective. As statistical models
usually give us estimates on the probability of (as
yet) unknown values, it is often straightforward
to turn this machinery upon itself to assist in the
active learning process (Cohn 1996). The process
is usually as follows:

1. Begin by requesting labels for a small random
subsample of the examples x;, x», K, x,x and
fit our model to the labeled data.

2. For any x in our domain, a statistical model
lets us estimate both the conditional expec-

http://dx.doi.org/10.1007/978-1-4899-7687-1_877

tation y(x) and oé(x), the variance of that
expectation. We estimate our current loss by
drawing a new random sample of unlabeled
data, and computing the averaged O’A(x)

3. We now consider a candidate point X, and
ask what reduction in loss we would obtain
if we had labeled it y. If we knew its label
with certainty, we could simply add the point
to the training set, retrain, and compute the
new expected loss. While we do not know the
true y, we could, in theory, compute the new
expected loss for every possible y and average
those losses, weighting them by our model’s
estimate of p(y|y). In practice, this is nor-
mally unfeasible; however, for some statistical
models, such as locally-weighted regression
and mixtures of Gaussians, we can compute
the distribution of p(y|y) and its effect on
O’);) in closed form (Cohn 1996).

4. Given the ability to estimate the expected
effect of obtaining label y for candidate X,
we repeat this computation for a sample of
M candidates, and then request a label for the
candidate with the largest expected decrease
in loss. We add the newly-labeled example
to our training set, retrain, and begin look-
ing at candidate points to add on the next
iteration.

The Need for Reference Distributions

Step (2) above illustrates a complication that
is unique to active learning approaches. Tradi-
tional “passive” learning usually relies on the
assumption that the distribution over which the
learner will be tested is the same as the one
from which the training data were drawn. When
the learner is allowed to select its own training
data, it still needs some form of access to the
distribution of data on which it will be tested. A
pool-based or stream-based learner can use the
pool or stream as a proxy for that distribution, but
if the learner is allowed (or required) to construct
its own examples, it risks wasting all its effort on
resolving portions of the solution space that are
of no interest to the problem at hand.

Active Learning

A Detailed Example: Statistical Active
Learning with LOESS

LOESS (Cleveland et al. 1988) is a simple form
of locally-weighted regression using a kernel
function. When asked to predict the unknown
output y corresponding to a given input X,
LOESS computes a » linear regression over
known (x, y) pairs, in which it gives pair (x;,
y;) weight according to the proximity of x; to x.
We will write this weighting as a kernel function,
K(x;, x), or simplify it to k; when there is no
chance of confusion.

In the active learning setting, we will assume
that we have a large supply of unlabeled examples
drawn from the test distribution, along with labels
for a small number of them. We wish to label a
small number more so as to minimize the mean
squared error (MSE) of our model. MSE can be
decomposed into two terms: squared » bias and
variance. If we make the (inaccurate but simpli-
fying) assumption that LOESS is approximately
unbiased for the problem at hand, minimizing
MSE reduces to minimizing the variance of our
estimates.

Given n labeled pairs, and a prediction to
make for input x, LOESS computes the following
covariance statistics around x:

Xikix; s Ziki(xi — px)?
Mx =, Ox =
n n
Ziki(xi — px)(yi — py)
Oxy =
n

_ Zikiyi y Tiki(yi — py)?
py = S o= T

2 2 Oxy

We can combine these to express the conditional
expectation of y (our estimate) and its variance
as:

A Oxy 2 _
YV =1ly +?(X—Mx),0ﬁ =

/‘Lx) Z 2(xl Hx))

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_74

Active Learning

Our proxy for model error is the variance of our
prediction, integrated over the test distribution

<ay%>. As we have assumed a pool-based setting

in which we have a large number of unlabeled
examples from that distribution, we can simply
compute the above variance over a sample from
the pool, and use the resulting average as our
estimate.

To perform statistical active learning, we want
to compute how our estimated variance will
change if we add an (as yet unknown) label

y for an arbitrary X. We will write this new
expected variance as <0A> While we do not know

what value y will take, our model gives us an
estimated mean 7 (X) and variance o2 + for the
value, as above. We can add this “distributed” y
value to LOESS just as though it were a discrete

one, and compute the resulting expectation <6y%>

in closed form. Defining k as K(x, x), we write:

l/Lx)

|x
(T
y (Zkiz(xi ;;zx) G —(}/;x))) 7

where the component expectations are computed
as follows:

(83) = (63) = 2.
52 = noy k(025 + $E) = my))
o4k (n + k)2
_ nux + kx
X n +]g ’
(5] = 00 TKE =)G =)
R (n + k)2
2 _ no’ nlg(fc — 1x)?
T 4k (n + k)2
2k20)2,|x(x — x)?

~ ~ 2
)=l +

Greedy Versus Batch Active Learning

It is also worth pointing out that virtually all
active learning work relies on greedy strategies
— the learner estimates what single example best
achieves its objective, requests that one, retrains,
and repeats. In theory, it is possible to plan some
number of queries ahead, asking what point is
best to label now, given that N-1 more label-
ing opportunities remain. While such strategies
have been explored in Operations Research for
very small problem domains, their computational
requirements make this approach unfeasible for
problems of the size typically encountered in
machine learning.

There are cases where retraining the learner
after every new label would be prohibitively ex-
pensive, or where access to labels is limited by
the number of iterations as well as by the total
number of labels (e.g., for a finite number of
clinical trials). In this case, the learner may select
a set of examples to be labeled on each iteration.
This batch approach, however, is only useful if
the learner is able to identify a set of examples
whose expected contributions are non-redundant,
which substantially complicates the process.

Cross-References

Active Learning Theory

Recommended Reading

Angluin D (1987) Learning regular sets from queries
and counterexamples. Inf Comput 75(2):87-106
Angluin D (1988) Queries and concept learning. Mach
Learn 2:319-342

Box GEP, Draper N (1987) Empirical model-building
and response surfaces. Wiley, New York

Cleveland W, Devlin S, Gross E (1988) Regression by
local fitting. J Econom 37:87-114

Cohn D, Atlas L, Ladner R (1990) Training connec-
tionist networks with queries and selective sam-
pling. In: Touretzky D (ed) Advances in neural in-
formation processing systems. Morgan Kaufmann,
San Mateo

Cohn D, Ghahramani Z, Jordan MI (1996) Active
learning with statistical models. J Artif Intell Res
4:129-145. http://citeseer.ist.psu.edu/321503.html

http://dx.doi.org/10.1007/978-1-4899-7687-1_7
http://citeseer.ist.psu.edu/321503.html

14

Dasgupta S (1999) Learning mixtures of Gaussians.
Found Comput Sci 634-644

Fedorov V (1972) Theory of optimal experiments.
Academic Press, New York

Kearns M, Li M, Pitt L, Valiant L (1987) On the
learnability of Boolean formulae. In: Proceedings
of the 19th annual ACM conference on theory of
computing. ACM Press, New York, pp 285-295

Lewis DD, Gail WA (1994) A sequential algorithm
for training text classifiers. In: Proceedings of the
17th annual international ACM SIGIR conference,
Dublin, pp 3-12

McCallum A, Nigam K (1998) Employing EM and
pool-based active learning for text classification. In:
Machine learning: proceedings of the fifteenth inter-
national conference (ICML’98), Madison, pp 359—
367

North DW (1968) A tutorial introduction to decision
theory. IEEE Trans Syst Sci Cybern 4(3)

Pitt L, Valiant LG (1988) Computational limitations on
learning from examples. J] ACM (JACM) 35(4):965-
984

Robbins H (1952) Some aspects of the sequential
design of experiments. Bull Am Math Soc 55:527—-
535

Ruff R, Dietterich T (1989) What good are experi-
ments? In: Proceedings of the sixth international
workshop on machine learning, Ithaca

Seung HS, Opper M, Sompolinsky H (1992) Query by
committee. In: Proceedings of the fifth workshop on
computational learning theory. Morgan Kaufmann,
San Mateo, pp 287-294

Steck H, Jaakkola T (2002) Unsupervised active learn-
ing in large domains. In: Proceeding of the confer-
ence on uncertainty in Al http://citeseer.ist.psu.edu/
steckO2unsupervised.html

Active Learning Theory

Sanjoy Dasgupta
University of California, San Diego, La Jolla,
CA, USA

Definition

The term active learning applies to a wide range
of situations in which a learner is able to exert
some control over its source of data. For instance,
when fitting a regression function, the learner
may itself supply a set of data points at which to
measure response values, in the hope of reducing
the variance of its estimate. Such problems have

Active Learning Theory

been studied for many decades under the rubric
of experimental design (Chernoff 1972; Fedorov
1972). More recently, there has been substantial
interest within the machine learning community
in the specific task of actively learning binary
classifiers. This task presents several fundamen-
tal statistical and algorithmic challenges, and an
understanding of its mathematical underpinnings
is only gradually emerging. This brief survey will
describe some of the progress that has been made
so far.

Learning from Labeled and
Unlabeled Data

In the machine learning literature, the task of
learning a classifier has traditionally been studied
in the framework of supervised learning. This
paradigm assumes that there is a training set
consisting of data points x (from some set X))
and their labels y (from some set))), and the
goal is to learn a function f : X —), that will
accurately predict the labels of data points arising
in the future. Over the past 50 years, tremendous
progress has been made in resolving many of the
basic questions surrounding this model, such as
“how many training points are needed to learn an
accurate classifier?”

Although this framework is now fairly well
understood, it is a poor fit for many modern
learning tasks because of its assumption that all
training points automatically come labeled. In
practice, it is frequently the case that the raw,
abundant, easily obtained form of data is unla-
beled, whereas labels must be explicitly procured
and are expensive. In such situations, the reality
is that the learner starts with a large pool of un-
labeled points and must then strategically decide
which ones it wants labeled: how best to spend its
limited budget.

Example: Speech recognition. When building
a speech recognizer, the unlabeled training data
consists of raw speech samples, which are very
easy to collect: just walk around with a micro-
phone. For all practical purposes, an unlimited
quantity of such samples can be obtained. On the

http://citeseer.ist.psu.edu/steck02unsupervised.html
http://citeseer.ist.psu.edu/steck02unsupervised.html

Active Learning Theory

other hand, the “label” for each speech sample
is a segmentation into its constituent phonemes,
and producing even one such label requires sub-
stantial human time and attention. Over the past
decades, research labs and the government have
expended an enormous amount of money, time,
and effort on creating labeled datasets of English
speech. This investment has paid off, but our
ambitions are inevitably moving past what these
datasets can provide: we would now like, for in-
stance, to create recognizers for other languages,
or for English in specific contexts. Is there some
way to avoid more painstaking years of data la-
beling, to somehow leverage the easy availability
of raw speech so as to significantly reduce the
number of labels needed? This is the hope of
active learning.

Some early results on active learning were in
the membership query model, where the data is
assumed to be separable (that is, some hypothesis
h perfectly classifies all points) and the learner
is allowed to query the label of any point in the
input space X (rather than being constrained to
a prespecified unlabeled set), with the goal of
eventually returning the perfect hypothesis /*.
There is a significant body of beautiful theoretical
work in this model (Angluin 2001), but early
experiments ran into some telling difficulties.
One study (Baum and Lang 1992) found that
when training a neural network for handwritten
digit recognition, the queries synthesized by the
learner were such bizarre and unnatural images
that they were impossible for a human to classify.
In such contexts, the membership query model is
of limited practical value; nonetheless, many of
the insights obtained from this model carry over
to other settings (Hanneke 2007a).

We will fix as our standard model one in which
the learner is given a source of unlabeled data,
rather than being able to generate these points
himself. Each point has an associated label, but
the label is initially hidden, and there is a cost
for revealing it. The hope is that an accurate
classifier can be found by querying just a few
labels, much fewer than would be required by
regular supervised learning.

How can the learner decide which labels to
probe? One option is to select the query points

15

at random, but it is not hard to show that this
yields the same label complexity as supervised
learning. A better idea is to choose the query
points adaptively: for instance, start by querying
some random data points to get a rough sense
of where the decision boundary lies, and then
gradually refine the estimate of the boundary
by specifically querying points in its immediate
vicinity. In other words, ask for the labels of
data points whose particular positioning makes
them especially informative. Such strategies cer-
tainly sound good, but can they be fleshed out
into practical algorithms? And if so, do these
algorithms work well in the sense of producing
good classifiers with fewer labels than would be
required by supervised learning?

On account of the enormous practical impor-
tance of active learning, there are a wide range
of algorithms and techniques already available,
most of which resemble the aggressive, adap-
tive sampling strategy just outlined, and many
of which show promise in experimental stud-
ies. However, a big problem with this kind of
sampling is that very quickly the set of labeled
points no longer reflects the underlying data dis-
tribution. This makes it hard to show that the
classifiers learned have good statistical proper-
ties (for instance, that they converge to an op-
timal classifier in the limit of infinitely many
labels). This survey will only discuss methods
that have proofs of statistical well-foundedness,
and whose label complexity can be explicitly
analyzed.

Motivating Examples

We will start by looking at a few examples that il-
lustrate the enormous potential of active learning
and that also make it clear why analyses of this
new model require concepts and intuitions that
are fundamentally different from those that have
already been developed for supervised learning.

Example: Thresholds on the Line

Suppose the data lie on the real line, and the avail-
able classifiers are simple thresholding functions,
H =1{h,:weR}k

To make things precise, let us denote the
(unknown) underlying distribution on the data
(X,Y) € Rx {+1,—1} by P, and let us suppose
that we want a hypothesis # € H whose error
with respect to P, namely errp = P(h(X) # Y),
is at most some €. How many labels do we need?

In supervised learning, such issues are well
understood. The standard machinery of sample
complexity (using VC theory) tells us that if
the data are separable — that is, if they can be
perfectly classified by some hypothesis in H —
then we need approximately 1/¢ random labeled
examples from PP, and it is enough to return any
classifier consistent with them.

Now suppose we instead draw 1/e unlabeled
samples from P. If we lay these points down
on the line, their hidden labels are a sequence
of —s followed by a sequence of +s, and the
goal is to discover the point w at which the
transition occurs. This can be accomplished with
a simple binary search which asks for just log
1/€ labels: first ask for the label of the median
point; if it is 4+, move to the 25th percentile point,
otherwise move to the 75th percentile point; and
so on. Thus, for this hypothesis class, active
learning gives an exponential improvement in
the number of labels needed, from 1/¢ to just
log 1 /€. For instance, if supervised learning re-
quires a million labels, active learning requires
just log 1,000,000 = 20, literally!

It is a tantalizing possibility that even for
more complicated hypothesis classes #, a sort of
generalized binary search is possible. A natural
next step is to consider linear separators in two
dimensions.

Example: Linear Separators in R?

Let H be the hypothesis class of linear separators
in R?, and suppose the data is distributed accord-
ing to some density supported on the perimeter of
the unit circle. It turns out that the positive results

Active Learning Theory

~/

/1; Bv

/ /73

~3

-

h,
hy f

Active Learning Theory, Fig. 1 P is supported on the
circumference of a circle. Each B; is an arc of probability
mass €

of the one-dimensional case do not generalize:
there are some target hypotheses in A for which
Q(1/€) labels are needed to find a classifier with
error rate less than €, no matter what active
learning scheme is used.

To see this, consider the following possible
target hypotheses (Fig. 1):

e hy: all points are positive.
e h;i(1 <i <1/e): all points are positive except
for a small slice B; of probability mass €.

The slices B; are explicitly chosen to be disjoint,
with the result that €2(1/¢) labels are needed
to distinguish between these hypotheses. For in-
stance, suppose nature chooses a target hypothe-
sis at random from among the 4;, 1 <i < 1/e.
Then, to identify this target with probability at
least 1/2, it is necessary to query points in at least
(about) half the B;s.

Thus for these particular target hypotheses,
active learning offers little improvement in sam-
ple complexity over regular supervised learning.
What about other target hypotheses in H, for
instance those in which the positive and negative
regions are more evenly balanced? It is quite
easy (Dasgupta 2005) to devise an active learning
scheme which asks for O(min{1/i(h),1/€}) +
O(log 1/¢) labels, where i(h) = min {positive

Active Learning Theory

Pool-based active learning

Get a set of unlabeled points UcX
Repeat until satisfied:

Pick some xeU to label
Return a hypothesis heH

Active Learning Theory, Fig. 2 Models of pool-and
stream-based active learning. The data are draws from
an underlying distribution Py, and hypotheses A are

mass of /1, negative mass of /1}. Thus even within
this simple hypothesis class, the label complexity
can run anywhere from O(log1/€) to Q(1/¢),
depending on the specific target hypothesis!

Example: An Overabundance of

Unlabeled Data

In our two previous examples, the amount of
unlabeled data needed was O(log1/¢), exactly
the usual sample complexity of supervised learn-
ing. But it is sometimes helpful to have signifi-
cantly more unlabeled data than this. In Dasgupta
(2005), a distribution P is described for which
if the amount of unlabeled data is small (below
any prespecified threshold), then the number of
labels needed to learn the target linear separator
is Q(1/¢€); whereas if the amount of unlabeled
data is much larger, then only O(log1/¢) labels
are needed. This is a situation where most of the
data distribution is fairly uninformative while a
miniscule fraction is highly informative. A lot of
unlabeled data is needed in order to get even a
few of the informative points.

The Sample Complexity of Active
Learning

We will think of the unlabeled points xy, ..., x,
as being drawn i.i.d. from an underlying distri-
bution Py on X (namely, the marginal of the
distribution P on X’ x))), either all at once (a
pool) or one at a time (a stream). The learner
is only allowed to query the labels of points
in the pool/stream; that is, it is restricted to
“naturally occurring” data points rather than syn-
thetic ones (Fig.2). It returns a hypothesis & €

Stream-based active learning

Repeat for t=0,L,2,...:
Choose a hypothesis h;eH
Receive an unlabeled point xeX
Decide whether to query its label

evaluated by errp(#). If we want to get this error below
€, how many labels are needed, as a function of €?

‘H whose quality is measured by its error rate,
errp(h)

In regular supervised learning, it is well known
that if the VC dimension of H is d, then the num-
ber of labels that will with high probability ensure
errp(h) < € is roughly O(d /¢) if the data is sep-
arable and O(d/€?) otherwise (Haussler 1992);
various logarithmic terms are omitted here. For
active learning, it is clear from the examples
above that the VC dimension alone does not
adequately characterize label complexity. Is there
a different combinatorial parameter that does?

Generic Results for Separable Data

For separable data, it is possible to give upper
and lower bounds on label complexity in terms
of a special parameter known as the splitting
index (Dasgupta et al. 2005). This is merely an
existence result: the algorithm needed to realize
the upper bound is intractable because it involves
explicitly maintaining an e-cover (a coarse ap-
proximation) of the hypothesis class, and the size
of this cover is in general exponential in the VC
dimension. Nevertheless, it does give us an idea
of the kinds of label complexity we can hope to
achieve.

Example Suppose the hypothesis class consists
of intervals on the real line: X = R and
H = {hgp : a,b € R}, where hgp(x) =
1(a < x < b). Using the splitting index, the
label complexity of active learning is seen to be
O(min{1/Px ([a,b]).1/€} + log1/€) when the
target hypothesis is s, (Dasgupta 2005). Here
the @ notation is used to suppress logarithmic
terms.

18

Example Suppose X = R? and # consists of
linear separators through the origin. If Py is the
uniform distribution on the unit sphere, the num-
ber of labels needed to learn a hypothesis of error
< € is just @(d log 1/€), exponentially smaller
than the O(d /¢) label complexity of supervised
learning. If Py is not the uniform distribution
but is everywhere within a multiplicative factor
A > 1 of it, then the label complexity becomes
O((d log1/€)log® X), provided the amount of
unlabeled data is increased by a factor of A2
(Dasgupta 2005).

These results are very encouraging, but the
question of an efficient active learning algorithm
remains open. We now consider two approaches.

Mildly Selective Sampling

The label complexity results mentioned above are
based on querying maximally informative points.
A less aggressive strategy is to be mildly selec-
tive, to query all points except those that are quite
clearly uninformative. This is the idea behind one
of the earliest generic active learning schemes
(Cohn et al. 1994). Data points x;, X, ... arrive
in a stream, and for each one the learner makes
a spot decision about whether or not to request
a label. When x; arrives, the learner behaves as
follows.

e Determine whether both possible labelings,
(x¢,+) and (x;,—), are consistent with the
labeled examples seen so far.

e If so, ask for the label y;. Otherwise set y; to
be the unique consistent label.

Fortunately, the check required for the first step
can be performed efficiently by making two calls
to a supervised learner. Thus this is a very simple
and elegant active learning scheme, although as
one might expect, it is suboptimal in its label
complexity (Balcan et al. 2007). Interestingly,
there is a parameter called the disagreement coef-
ficient that characterizes the label complexity of
this scheme and also of some other mildly selec-
tive learners (Friedman 2009; Hanneke 2007b).

Active Learning Theory

In practice, the biggest limitation of the algo-
rithm above is that it assumes the data are sepa-
rable. Recent results have shown how to remove
this assumption (Balcan et al. 2006; Dasgupta
et al. 2007) and to accommodate classification
loss functions other than 0 — 1 loss (Beygelzimer
et al. 2009). Variants of the disagreement coef-
ficient continue to characterize label complexity
in the agnostic setting (Beygelzimer et al. 2009;
Dasgupta et al. 2007).

A Bayesian Model

The query by committee algorithm (Seung et al.
1992) is based on a Bayesian view of active learn-
ing. The learner starts with a prior distribution
on the hypothesis space, and is then exposed to a
stream of unlabeled data. Upon receiving x;, the
learner performs the following steps.

e Draw two hypotheses /1, i’ at random from the
posterior over H.

o If h(x;) # h'(x;) then ask for the label of x;
and update the posterior accordingly.

This algorithm queries points that substantially
shrink the posterior, while at the same time taking
account of the data distribution. Various theoret-
ical guarantees have been shown for it (Freund
et al. 1997); in particular, in the case of linear
separators with a uniform data distribution, it
achieves a label complexity of O(d log 1/¢), the
best possible.

Sampling from the posterior over the hypoth-
esis class is, in general, computationally pro-
hibitive. However, for linear separators with a
uniform prior, it can be implemented efficiently
using random walks on convex bodies (Gilad-
Bachrach et al. 2005).

Other Work

In this survey, I have touched mostly on active
learning results of the greatest generality, those
that apply to arbitrary hypothesis classes. There
is also a significant body of more specialized
results.

» Efficient active learning algorithms for spe-
cific hypothesis classes.

Adaboost

This includes an online learning algorithm for
linear separators that only queries some of the
points and yet achieves similar regret bounds
to algorithms that query all the points (Cesa-
Bianchi et al. 2004). The label complexity of
this method is yet to be characterized.

* Algorithms and label bounds for linear sepa-
rators under the uniform data distribution.
This particular setting has been amenable to
mathematical analysis. For separable data,it
turns out that a variant of the perceptron al-
gorithm achieves the optimal O(d log1/e)
label complexity (Dasgupta 2005). A simple
algorithm is also available for the agnostic
setting (Balcan et al. 2007).

Conclusion

The theoretical frontier of active learning is
mostly an unexplored wilderness. Except for a
few specific cases, we do not have a clear sense
of how much active learning can reduce label
complexity: whether by just a constant factor, or
polynomially, or exponentially. The fundamental
statistical and algorithmic challenges involved,
together with the huge practical importance of
the field, make active learning a particularly
rewarding terrain for investigation.

Cross-References

Active Learning

Recommended Reading

Angluin D (2001) Queries revisited. In: Proceedings
of the 12th international conference on algorithmic
learning theory, Washington, DC, pp 12-31

Balcan M-F, Beygelzimer A, Langford J (2006) Ag-
nostic active learning. In: International conference
on machine learning. ACM Press, New York, pp 65—
72

Balcan M-F, Broder A, Zhang T (2007) Margin based
active learning. In: Conference on learning theory,
San Diego, pp 35-50

Baum EB, Lang K (1992) Query learning can work
poorly when a human oracle is used. In: Interna-
tional joint conference on neural networks, Balti-
more

19

Beygelzimer A, Dasgupta S, Langford J (2009) Im-
portance weighted active learning. In: International
conference on machine learning. ACM Press, New
York, pp 49-56

Cesa-Bianchi N, Gentile C, Zaniboni L (2004) Worst-
case analysis of selective sampling for linear-
threshold algorithms. In: Advances in neural infor-
mation processing systems

Chernoff H (1972) Sequential analysis and optimal
design. CBMS-NSF regional conference series in
applied mathematics, vol 8. SIAM, Philadelphia

Cohn D, Atlas L, Ladner R (1994) Improving
generalization with active learning. Mach Learn
15(2):201-221

Dasgupta S (2005) Coarse sample complexity bounds
for active learning. Advances in neural information
processing systems. Morgan Kaufmann, San Mateo

Dasgupta S, Kalai A, Monteleoni C (2005) Analy-
sis of perceptron-based active learning. In: 18th
annual conference on learning theory, Bertinoro,
pp 249-263

Dasgupta S, Hsu DJ, Monteleoni C (2007) A gen-
eral agnostic active learning algorithm. Advances in
neural information processing systems

Fedorov VV (1972) Theory of optimal experiments
(trans: Studden WJ, Klimko EM). Academic Press,
New York

Freund Y, Seung S, Shamir E, Tishby N (1997) Selec-
tive sampling using the query by committee algo-
rithm. Mach Learn J 28:133-168

Friedman E (2009) Active learning for smooth prob-
lems. In: Conference on learning theory, Montreal,
pp 343-352

Gilad-Bachrach R, Navot A, Tishby N (2005) Query
by committeee made real. Advances in neural infor-
mation processing systems

Hanneke S (2007a) Teaching dimension and the com-
plexity of active learning. In: Conference on learn-
ing theory, San Diego, pp 6681

Hanneke S (2007b) A bound on the label complexity
of agnostic active learning. In: International confer-
ence on machine learning, Corvallis, pp 353-360

Haussler D (1992) Decision-theoretic generalizations
of the PAC model for neural net and other learning
applications. Inf Comput 100(1):78-150

Seung HS, Opper M, Sompolinsky H (1992) Query
by committee. In: Conference on computational
learning theory, Victoria, pp 287-294

Adaboost

Adaboost is an » ensemble learning technique,
and the most well-known of the » Boosting fam-
ily of algorithms. The algorithm trains models
sequentially, with a new model trained at each

http://dx.doi.org/10.1007/978-1-4899-7687-1_916
http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_84

20

round. At the end of each round, mis-classified
examples are identified and have their emphasis
increased in a new training set which is then
fed back into the start of the next round, and a
new model is trained. The idea is that subsequent
models should be able to compensate for errors
made by earlier models. See » ensemble learning
for full details.

Adaptive Control Processes

Bayesian Reinforcement Learning

Adaptive Learning

Metalearning

Adaptive Real-Time Dynamic
Programming

Andrew G. Barto
University of Massachusetts, Amherst, MA,
USA

Synonyms

ARTDP

Definition

Adaptive Real-Time Dynamic Programming
(ARTDP) is an algorithm that allows an agent
to improve its behavior while interacting over
time with an incompletely known dynamic
environment. It can also be viewed as a heuristic
search algorithm for finding shortest paths in
incompletely known stochastic domains. ARTDP
is based on » Dynamic Programming (DP), but
unlike conventional DP, which consists of off-

Adaptive Control Processes

line algorithms, ARTDP is an on-line algorithm
because it uses agent behavior to guide its
computation. ARTDP is adaptive because it
does not need a complete and accurate model
of the environment but learns a model from data
collected during agent-environment interaction.
When a good model is available, » Real-Time
Dynamic Programming (RTDP) is applicable,
which is ARTDP without the model-learning
component.

Motivation and Background

RTDP combines strengths of heuristic search and
DP. Like heuristic search — and unlike conven-
tional DP — it does not have to evaluate the
entire state space in order to produce an optimal
solution. Like DP — and unlike most heuristic
search algorithms — it is applicable to nondeter-
ministic problems. Additionally, RTDP’s perfor-
mance as an » anytime algorithm is better than
conventional DP and heuristic search algorithms.
ARTDP extends these strengths to problems for
which a good model is not initially available.

In artificial intelligence, control engineering,
and operations research, many problems require
finding a policy (or control rule) that determines
how an agent (or controller) should generate ac-
tions in response to the states of its environment
(the controlled system). When a “cost” or a “re-
ward” is associated with each step of the agent’s
behavior, policies can be compared according to
how much cost or reward they are expected to
accumulate over time.

The usual formulation for problems like this in
the discrete-time case is the » Markov Decision
Process (MDP). The objective is to find a policy
that minimizes (maximizes) a measure of the
total cost (reward) over time, assuming that the
agent—environment interaction can begin in any
of the possible states. In other cases, there is
a designated set of “start states” that is much
smaller than the entire state set (e.g., the initial
board configuration in a board game). In these
cases, any given policy only has to be defined
for the set of states that can be reached from the
starting states when the agent is using that policy.

http://dx.doi.org/10.1007/978-1-4899-7687-1_252
http://dx.doi.org/10.1007/978-1-4899-7687-1_929
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_100021
http://dx.doi.org/10.1007/978-1-4899-7687-1_77
http://dx.doi.org/10.1007/978-1-4899-7687-1_701
http://dx.doi.org/10.1007/978-1-4899-7687-1_23
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Adaptive Real-Time Dynamic Programming

The rest of the states will never arise when that
policy is being followed, so the policy does not
need to specify what the agent should do in those
states.

ARTDP and RTDP exploit situations where
the set of states reachable from the start states is
a small subset of the entire state space. They can
dramatically reduce the amount of computation
needed to determine an optimal policy for the
relevant states as compared with the amount of
computation that a conventional DP algorithm
would require to determine an optimal policy for
all the states. These algorithms do this by fo-
cussing computation around simulated behavioral
experiences (if there is a model available capable
of simulating these experiences), or around real
behavioral experiences (if no model is available).

RTDP and ARTDP were introduced by Barto
et al. (1995). The starting point was the novel
observation by Bradtke that Korf’s Learning
Real-Time A* heuristic search algorithm (Korf
1990) is closely related to DP. RTDP generalizes
Learning Real-Time A* to stochastic problems.
ARTDP is also closely related to Sutton’s Dyna
system (Sutton 1990) and Jalali and Ferguson’s
(1989) Transient DP. Theoretical analysis relies
on the theory of Asnychronous DP as described
by Bertsekas and Tsitsiklis (1989).

ARTDP and RTDP are » model-based rein-
forcement learning algorithms, so called because
they take advantage of an environment model,
unlike » model-free reinforcement learning algo-
rithms such as » Q-Learning and Sarsa.

Structure of Learning System

Backup Operations

A basic step of many DP and RL algorithms is
a backup operation. This is an operation that up-
dates a current estimate of the cost of an MDP’s
state. (We use the cost formulation instead of
reward to be consistent with the original presenta-
tion of the algorithms. In the case of rewards, this
would be called the value of a state and we would
maximize instead of minimize.) Suppose X is the
set of MDP states. For each state x € X, f(x),
the cost of state x, gives a measure (which varies

21

with different MDP formulations) of the total cost
the agent is expected to incur over the future if it
starts in x. If fx(x) and fry;(x), respectively,
denote the estimate of f(x) before and after a
backup, a typical backup operation applied to x
looks like this:

Jer1(x) = minaeA[Cx(a)‘l‘Z pxy(a)fk(fv)]’

yeX

where A is the set of possible agent actions,
¢x(a) is the immediate cost the agent incurs for
performing action a in state x, and py,(a) prob-
ability that the environment makes a transition
from state x to state y as a result of the agent’s
action a. This backup operation is associated with
the DP algorithm known as » value iteration. It
is also the backup operation used by RTDP and
ARTDP.

Conventional DP algorithms consist of suc-
cessive “sweeps” of the state set. Each sweep
consists of applying a backup operation to each
state. Sweeps continue until the algorithm con-
verges to a solution. Asynchronous DP, which
underlies RTDP and ARTDP, does not use sys-
tematic sweeps. States can be chosen in any way
whatsoever, and as long as backups continue to
be applied to all states (and some other conditions
are satisfied), the algorithm will converge. RTDP
is an instance of asynchronous DP in which the
states chosen for backups are determined by the
agent’s behavior.

The backup operation above is model-based
because it uses known rewards and transition
probabilities, and the values of all the states
appear on the right-hand-side of the equation. In
contrast, a sample backup uses the value of just
one sample successor state. RTDP and ARTDP
are like RL algorithms in that they rely on real or
simulated behavioral experience, but unlike many
(but not all) RL algorithms, they use full backups
like DP.

Off-Line Versus On-Line

A conventional DP algorithm typically executes
off-line. When applied to finding an optimal pol-
icy for an MDP, this means that the DP algo-
rithm executes to completion before its result

http://dx.doi.org/10.1007/978-1-4899-7687-1_561
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_689
http://dx.doi.org/10.1007/978-1-4899-7687-1_100410

22

(an optimal policy) is used to control the agent’s
behavior. The sweeps of DP sequentially “visit”
the states of the MDP, performing a backup
operation on each state. But it is important not
to confuse these visits with the behaving agent’s
visits to states: the agent is not yet behaving
while the off-line DP computation is being done.
Hence, the agent’s behavior has no influence on
the DP computation. The same is true for off-line
asynchronous DP.

RTDP is an on-line, or “real-time,” algorithm.
It is an asynchronous DP computation that exe-

Adaptive Real-Time Dynamic Programming

cutes concurrently with the agent’s behavior so
that the agent’s behavior can influence the DP
computation. Further, the concurrently executing
DP computation can influence the agent’s behav-
ior. The agent’s visits to states directs the “visits”
to states made by the concurrent asynchronous
DP computation. At the same time, the action
performed by the agent is the action specified
by the policy corresponding to the latest results
of the DP computation: it is the “greedy” action
with respect to the current estimate of the cost
function.

Specify

Asynchronous
Dynamic Programming
Computation

/ actions \

Specify states

Behaving Agent

to backup

In the simplest version of RTDP, when a state
is visited by the agent, the DP computation per-
forms the model-based backup operation given
above on that same state. In general, for each
step of the agent’s behavior, RTDP can apply the
backup operation to each of an arbitrary set of
states, provided that the agent’s current state is
included. For example, at each step of behavior,
a limited-horizon look-ahead search can be con-
ducted from the agent’s current state, with the
backup operation applied to each of the states
generated in the search. Essentially, RTDP is an
asynchronous DP computation with the compu-
tational effort focused along simulated or actual
behavioral trajectories.

Learning A Model

ARTDP is the same as RTDP except that (1) an
environment model is updated using any on-line
model-learning, or system identification, method,
(2) the current environment model is used in
performing the RTDP backup operations, and
(3) the agent has to perform exploratory actions
occasionally instead of always greedy actions as
in RTDP. This last step is essential to ensure that

the environment model eventually converges to
the correct model. If the state and action sets are
finite, the simplest way to learn a model is to keep
counts of the number of times each transition
occurs for each action and convert these frequen-
cies to probabilities, thus forming the maximum-
likelihood model.

Summary of Theoretical Results

When RTDP and ARTDP are applied to stochas-
tic optimal path problems, one can prove that
under certain conditions they converge to optimal
policies without the need to apply backup opera-
tions to all the states. Indeed, is some problems,
only a small fraction of the states need to be
visited. A stochastic optimal path problem is an
MDP with a nonempty set of start states and
a nonempty set of goal states. Each transition
until a goal state is reached has a nonnegative
immediate cost, and once the agent reaches a
goal state, it stays there and thereafter incurs zero
cost. Each episode of agent experience begins
with a start state. An optimal policy is one that
minimizes the cost of every state, i.e., minimizes
f(x) for all states x. Under some relatively mild

Adaptive Real-Time Dynamic Programming

conditions, every optimal policy is guaranteed to
eventually reach a goal state.

A state x is relevant if a start state s and an
optimal policy exist such that x can be reached
from s when the agent uses that policy. If we
could somehow know which states are relevant,
we could restrict DP to just these states and
obtain an optimal policy. But this is not possi-
ble because knowing which states are relevant
requires knowledge of optimal policies, which
is what one is seeking. However, under certain
conditions, without requiring repeated visits to
all the irrelevant states, RTDP produces a policy
that is optimal for all the relevant states. The
conditions are that (1) the initial cost of every
goal state is zero, (2) there exists at least one
policy that guarantees that a goal state will be
reached with probability one from any start state,
(3) all immediate costs for transitions from non-
goal states are strictly positive, and (4) none of
the initial costs are larger than the actual costs.
This result is proved in Barto et al. (1995) by
combining aspects of Korf’s (1990) proof for
LRTA* with results for asynchronous DP.

Special Cases and Extensions

A number of special cases and extensions of
RTDP have been developed that improve per-
formance over the basic version. Some exam-
ples are as follows. Bonet and Geffner’s (2003a)
Labeled RTDP labels states that have already
been “solved,” allowing faster convergence than
RTDP. Feng et al. (2003) proposed Symbolic
RTDP, which selects a set of states to update at
each step using symbolic model-checking tech-
niques. The RTDP convergence theorem still ap-
plies because this is a special case of RTDP.
Smith and Simmons (2006) developed Focused
RTDP that maintains a priority value for each
state to better direct search and produce faster
convergence. Hansen and Zilberstein’s (2001)
LAO* uses some of the same ideas as RTDP
to produce a heuristic search algorithm that can
find solutions with loops to non-deterministic
heuristic search problems. Many other variants
are possible. Extending ARTDP instead of RTDP

23

in all of these ways would produce analogous
algorithms that could be used when a good model
is not available.

Cross-References

Anytime Algorithm
Approximate Dynamic Programming
Reinforcement Learning

Recommended Reading

Barto A, Bradtke S, Singh S (1995) Learning to act
using real-time dynamic programming. Artif Intell
72(1-2):81-138

Bertsekas D, Tsitsiklis J (1989) Parallel and distributed
computation: numerical methods. Prentice-Hall, En-
glewood Cliffs

Bonet B, Geffner H (2003a) Labeled RTDP: improv-
ing the convergence of real-time dynamic program-
ming. In: Proceedings of the 13th international
conference on automated planning and scheduling
(ICAPS-2003), Trento

Bonet B, Geffner H (2003b) Faster heuristic search
algorithms for planning with uncertainty and full
feedback. In: Proceedings of the international joint
conference on artificial intelligence (IJCAI-2003),
Acapulco

Feng Z, Hansen E, Zilberstein S (2003) Symbolic
generalization for on-line planning. In: Proceedings
of the 19th conference on uncertainty in artificial
intelligence, Acapulco

Hansen E, Zilberstein S (2001) LAO*: a heuristic
search algorithm that finds solutions with loops.
Artif Intell 129:35-62

Jalali A, Ferguson M (1989) Computationally efficient
control algorithms for Markov chains. In: Proceed-
ings of the 28th conference on decision and control,
Tampa, pp 1283-1288

Korf R (1990) Real-time heuristic search. Artif Intell
42(2-3):189-211

Smith T, Simmons R (2006) Focused real-time dy-
namic programming for MDPs: squeezing more
out of a heuristic. In: Proceedings of the national
conference on artificial intelligence (AAAI). AAAI
Press, Boston

Sutton R (1990) Integrated architectures for learning,
planning, and reacting based on approximating dy-
namic programming. In: Proceedings of the 7th in-
ternational conference on machine learning. Morgan
Kaufmann, San Mateo, pp 216224

http://dx.doi.org/10.1007/978-1-4899-7687-1_23
http://dx.doi.org/10.1007/978-1-4899-7687-1_100018
http://dx.doi.org/10.1007/978-1-4899-7687-1_720

24

Adaptive Resonance Theory

Gail A. Carpenter' and Stephen Grossberg?
'Department of Mathematics & Center for
Adaptive Systems, Boston University, Boston,
MA, USA

2Center for Adaptive Systems, Graduate
Program in Cognitive and Neural Systems,
Department of Mathematics, Boston University,
Boston, MA, USA

Abstract

Computational models based on cognitive and
neural systems are now deeply embedded in
the standard repertoire of machine learning
and data mining methods, with intelligent
learning systems enhancing performance in
nearly every existing application area. Beyond
data mining, this article shows how models
based on adaptive resonance theory (ART)
may provide entirely new questions and
practical solutions for technological appli-
cations. ART models carry out hypothesis
testing, search, and incremental fast or slow,
self-stabilizing learning, recognition, and
prediction in response to large nonstationary
databases (big data). Three computational
examples, each based on the distributed ART
neural network, frame questions and illustrate
how a learning system (each with no free
parameters) may enhance the analysis of
large-scale data. Performance of each task
is simulated on a common mapping platform,
a remote sensing dataset called the Boston
Testbed, available online along with open-
source system code. Key design elements
of ART models and links to software for
each system are included. The article further
points to future applications for integrative
ART-based systems that have already been
computationally specified and simulated. New
application directions include autonomous
robotics, general-purpose machine vision,
audition, speech recognition, language
acquisition, eye movement control, visual
search, figure-ground separation, invariant

Adaptive Resonance Theory

object recognition, social cognition, object
and spatial attention, scene understanding,
space-time integration, episodic memory,
navigation, object tracking, system-level
analysis of mental disorders, and machine
consciousness.

Adaptive Resonance Theory

Adaptive resonance theory (ART) neural net-
works model real-time hypothesis testing, search,
learning, recognition, and prediction. Since the
1980s, these models of human cognitive infor-
mation processing have served as computational
engines for a variety of neuromorphic technolo-
gies (http://techlab.bu.edu/resources/articles/C5).
This article points to a broader range of tech-
nology transfers that bring new methods to new
problem domains. It describes applications of
three specific systems, ART knowledge discov-
ery, self-supervised ART, and biased ART, and
summarizes future application areas for large-
scale, brain-based model systems.

ART Design Elements

In this article, ART refers generally to a theory
of cognitive information processing and to an
inclusive family of neural models. Design prin-
ciples derived from scientific analyses and design
constraints imposed by targeted applications have
jointly guided the development of variants of the
basic systems.

Stable Fast Learning with Distributed and
Winner-Take-All Coding

ART systems permit fast online learning,
whereby long-term memories reach their
asymptotes on each input trial. With slow
learning, memories change only slightly on each
trial. One characteristic that distinguishes classes
of ART systems from one another is the nature of
their patterns of persistent activation at the coding
field F, (Fig. 1). The coding field is functionally
analogous to the hidden layer of multilayer
perceptrons (Encyclopedia cross reference).
At the perceptron hidden layer, activation is
distributed across many nodes, learning needs

http://techlab.bu.edu/resources/articles/C5

Adaptive Resonance Theory

25

a

y
F2 L1

_>.

>P

a
| features

c top-down /
y bottom-up
reset mismatch

plAl-|x|>0

20
Al vigitance

Adaptive Resonance Theory, Fig. 1 Distributed ART
(dART) (Carpenter 1997). (a) At the field Fj, complement
coding transforms the feature pattern a to the system input
A, which represents both scaled feature values a; € [0, 1]
and their complements (1 —a;) (=1...M). (b) F, is
a competitive field that transforms its input pattern into
the working memory code y. The F, nodes that remain
active following competition send the pattern o of learned
top-down expectations to the match field F. The pattern
active at F; becomes x = A A o, where A denotes the
component-wise minimum, or fuzzy intersection. (c) A
parameter p € [0, 1], called vigilance, sets the matching
criterion. The system registers a mismatch if the size of x

to be slow, and activation does not persist once
inputs are removed. The ART coding field is a
competitive network where, typically, one or a
few nodes in the normalized F, pattern y sustain
persistent activation, even as their generating
inputs shift, habituate, or vanish. The pattern

b code

S e

[N

\ O expectation

N4
f_:_:a

\ 4

Y
k=]

a c

LS

.

new

| L)
LY

new
9 O expectation

ﬁj!i ..—®
LS

A\ J
k=l

is less than p times the size of A. A top-down/bottom-up
mismatch triggers a signal that resets the active F, code.
(d) Medium-term memories in the Fy-to-F, dynamic
weights allow the system to activate a new code y. When
only one F, node remains active following competition,
the code is maximally compressed, or winner-take-all.
When |x| > p|A], the activation pattern y persists until
the next reset, even if input A changes or Fy-to-F, signals
habituate. During learning, thresholds 7;; in paths from
Fy to F, increase according to the dInstar law; and
thresholds t; in paths from F, to F) increase according
to the dOutstar law

y persists until an active reset signal (Fig. 1c)
prepares the coding field to register a new
Fy-to-F, input. Early ART networks (Carpenter
and Grossberg 1987; Carpenter et al. 1991a,
1992) employed localist, or winner-take-all,
coding, whereby strongly competitive feedback

26

results in only one F, node staying active until
the next reset. With fast as well as slow learning,
memory stability in these early networks relied
on their winner-take-all architectures.

Achieving stable fast learning with distributed
code representations presents a computational
challenge to any learning network. In order to
meet this challenge, distributed ART (Carpenter
1997) introduced a new network configuration
(Fig. 1) in which system fields are identified with
cortical layers (Carpenter 2001). New learning
laws (dInstar and dOutstar) that realize stable
fast learning with distributed coding predict adap-
tive dynamics between cortical layers.

Distributed ART (dART) systems employ a
new unit of long-term memory, which replaces
the traditional multiplicative weight (Encyclo-
pedia cross reference) with a dynamic weight
(Carpenter 1994). In a path from the F, coding
node j to the F| matching node i, the dynamic
weight equals the amount by which coding node
activation y; exceeds an adaptive threshold ;.
The total signal o; from F; to the i"" F| node
is the sum of these dynamic weights, and F;
node activation x; equals the minimum of the top-
down expectation ¢; and the bottom-up input A4;.
During dOutstar learning, the top-down pattern o
converges toward the matched pattern x.

When coding node activation y;is below 7;;,
the dynamic weight is zero and no learning occurs
in that path, even if y; is positive. This property
is critical for stable fast learning with distributed
codes. Although the dInstar and dOutstar laws are
compatible with F, patterns y that are arbitrarily
distributed, in practice, following an initial learn-
ing phase, most changes in paths to and from a
coding node j occur only when its activation y ;
is large. This type of learning is therefore called
quasi-localist. In the special case where coding is
winner-take-all, the dynamic weight is equivalent
to a multiplicative weight that formally equals the
complement of the adaptive threshold.

Complement Coding: Learning Both Absent
Features and Present Features

ART networks employ a preprocessing step
called complement coding (Carpenter et al.
1991b), which models the nervous system’s

Adaptive Resonance Theory

ubiquitous computational design known as op-
ponent processing (Hurvich and Jameson 1957).
Balancing an entity against its opponent, as in
opponent colors such as red vs. green or agonist-
antagonist muscle pairs, allows a system to
act upon relative quantities, even as absolute
magnitudes fluctuate unpredictably. In ART
systems, complement coding is analogous to
retinal on-cells and off-cells (Schiller 1982).
When the learning system is presented with
a set of input features a = (a;...q;...apy),
complement coding doubles the number of input
components, presenting to the network an input
A that concatenates the original feature vector
and its complement (Fig. 1a).

Complement coding produces normalized in-
puts A that allow a model to encode features that
are consistently absent on an equal basis with
features that are consistently present. Features
that are sometimes absent and sometimes present
when a given F, node is highly active are re-
garded as uninformative with respect to that node,
and the corresponding present and absent top-
down feature expectations shrink to zero. When
a new input activates this node, these features
are suppressed at the match field F; (Fig. 1b).
If the active code then produces an error signal,
attentional biasing can enhance the salience of
input features that it had previously ignored, as
described below.

Matching, Attention, and Search

A neural computation central to both scientific
and technological analyses is the ART matching
rule (Carpenter and Grossberg 1987), which con-
trols how attention is focused on critical feature
patterns via dynamic matching of a bottom-up
sensory input with a top-down learned expecta-
tion. Bottom-up/top-down pattern matching and
attentional focusing are, perhaps, the primary
features common to all ART models across their
many variations. Active input features that are not
confirmed by top-down expectations are inhib-
ited (Fig. 1b). The remaining activation pattern
defines a focus of attention, which, in turn, deter-
mines what feature patterns are learned. Basing
memories on attended features rather than whole
patterns supports the design goal of encoding sta-

Adaptive Resonance Theory

ble memories with fast as well as slow learning.
Encoding attended feature subsets also enables
one-to-many learning, where the system may
attach many context-dependent labels (Spot, dog,
animal) to one input. This capability promotes
knowledge discovery (Spot = dog and dog =
animal) in a learning system that experiences
one input at a time, with no explicit connection
between inputs.

When the match is good enough, F, activa-
tion persists and learning proceeds. Where they
exceed the corresponding bottom-up input com-
ponents, top-down signals decay as expectations
converge toward the attended pattern at F;. The
coding field F, contains a reserve of uncommitted
coding nodes, which compete with the previously
active committed nodes. When a previously un-
committed node is first activated during super-
vised learning, it is associated with its desig-
nated output class. During testing, the selection
of an uncommitted node means I don’t know.
ART networks for supervised learning are called
ARTMAP (Carpenter et al. 1991a, 1992).

A mismatch between an active top-down
expectation and the bottom-up input leads
to a parallel memory search (Fig.lc). The
ART matching criterion is set by a vigilance
parameter p. Low vigilance permits the learning
of broad classes, across diverse exemplars, while
high vigilance limits learning to narrow classes.
When a new input arrives, vigilance equals a
baseline level. Baseline vigilance is set equal
to zero to maximize generalization. ARTMAP
vigilance increases following a predictive
error or negative reinforcement (Encyclopedia
cross reference). The internal computation that
determines how far p rises to correct the error is
called match tracking (Carpenter et al. 1991a).
As vigilance rises, the network pays more
attention to how well top-down expectations
match the bottom-up input. The match tracking
modification MT- (Carpenter and Markuzon
1998) also allows the system to learn inconsistent
cases. For example, three similar, even identical,
map regions may have been correctly labeled by
different observers as ocean or water or natural.
The ability to learn one-to-many maps, which can
label a single test input as ocean and water and

27

natural, is a key feature of the ART knowledge
discovery system described below.

Applications

Three computational examples illustrate how
cognitive and neural systems can introduce new
approaches to the analysis of large datasets.
Application 1 (self-supervised ART) addresses
the question: how can a neural system learning
from one example at a time absorb information
that is inconsistent but correct, as when a
family pet is called Spot and dog and animal,
while rejecting similar incorrect information, as
when the same pet is called wolf? How does
this system transform scattered information
into knowledge that dogs are animals, but not
conversely? Application 2 (ART knowledge
discovery) asks: how can a real-time system,
initially trained with a few labeled examples
and a limited feature set, continue to learn
from experience, without supervision, when
confronted with oceans of additional information,
without eroding reliable early memories? How
can such individual systems adapt to their unique
application contexts? Application 3 (biased ART)
asks: how can a neural system that has made an
error refocus attention on features that it initially
ignored?

The Boston Testbed

The Boston Testbed was developed to compare
performance of learning systems applied to chal-
lenging problems of spatial analysis. Each mul-
tispectral Boston image pixel produces 41 fea-
ture values: 6 Landsat 7 Thematic Mapper (TM)
bands at 30 m resolution, 2 thermal bands at 60 m
resolution, 1 panchromatic band at 15m reso-
lution, and 32 derived bands representing local
contrast, color, and texture. In the Boston dataset,
each of 28,735 ground truth pixels is labeled
as belonging to one of seven classes (beach,
ocean, ice, river, park, residential, industrial).
For knowledge discovery system training, some
ocean, ice, and river pixels are instead labeled
as belonging to broader classes such as water or
natural. No pixel has more than one label, and

28

the learning system is given no information about
relationships between target classes. The labeled
dataset is available from the CNS Technology
Lab Website [http://techlab.bu.edu/classer/data_
sets/].

A cross-validation procedure divides an image
into four vertical strips: two for training, one
for validation (if needed for parameter selec-
tion), and one for testing. Class mixtures differ
markedly across strips. For example, one strip
contains many ocean pixels, while another strip
contains neither ocean nor beach pixels. Geo-
graphically dissimilar training and testing areas
robustly assess regional generalization. In this
article, spatial analysis simulations on the Boston
Testbed follow this protocol to illustrate ART
systems for self-supervised learning, knowledge
discovery, and attentional control. Since each
system in Applications 1-3 requires no parameter
selection, training uses randomly chosen pixels
from three strips, with testing on the fourth strip.

Application 1: Learning from Experience

with Self-Supervised ART

Computational models of supervised pattern
recognition typically utilize two learning phases.
During an initial training phase, input patterns,
described as specified values of a set of features,
are presented along with output class labels or
patterns. During a subsequent testing phase, the
model generates output predictions for unlabeled
inputs, and no further learning takes place.

Although supervised learning has been suc-
cessfully applied in diverse settings, it does not
reflect many natural learning situations. Humans
do learn from explicit training, as from a textbook
or a teacher, and they do take tests. However,
students do not stop learning when they leave
the classroom. Rather, they continue to learn
from experience, incorporating not only more
information but new types of information, all the
while building on the foundation of their earlier
knowledge. Self-supervised ART models such
life-long learning.

An unsupervised learning system clusters un-
labeled input patterns. Semi-supervised learning
incorporates both labeled and unlabeled inputs in
its training set, but all inputs typically have the

Adaptive Resonance Theory

same number of specified feature values. Without
any novel features from which to learn, semi-
supervised learning systems use unlabeled data
to refine the model parameters defined using la-
beled data. Reviews of semi-supervised learning
(Chapelle et al. 2006) have found that many of
the successful models are carefully selected and
tuned, using a priori knowledge of the problem.
Chapelle et al. (2006) conclude that none of the
semi-supervised models they review is robust
enough to be general purpose. The main difficulty
seems to be that, whenever unlabeled instances
are different enough from labeled instances to
merit learning, these differences could contain
misinformation that may damage system perfor-
mance.

The self-supervised paradigm models two
learning stages. During Stage 1 learning, the
system receives all output labels, but only
a subset of possible feature values for each
input. During Stage 2 learning, the system may
receive more feature values for each input, but
no output labels. In Stage 1, when the system
can confidently incorporate externally specified
output labels, self-supervised ART (Amis and
Carpenter 2010) employs winner-take-all coding
and fast learning. In Stage 2, when the system
internally generates its own output labels, codes
are distributed so that incorrect hypotheses do not
abruptly override reliable “classroom learning”
of Stage 1. The distributed ART learning laws,
dInstar (Carpenter 1997) and dOutstar (Carpenter
1994), scale memory changes to internally
generated measures of prediction confidence
and prevent memory changes altogether for
most inputs. Memory stability derives from
the dynamic weight representation of long-term
memories, which permits learning only in paths
to and from highly active coding nodes. Dynamic
weights solve a problem inherent in learning laws
based on multiplicative weights, which are prone
to catastrophic forgetting when implemented
with distributed codes and huge datasets, even
when learning is very slow.

In addition to emulating the human learning
experience, self-supervised learning maps to
technological applications that need to cope
with huge, ever-changing datasets. A supervised

http://techlab.bu.edu/classer/data_sets/
http://techlab.bu.edu/classer/data{_}sets/

Adaptive Resonance Theory

learning system that completes all training before
making test predictions does not adapt to new
information and individual contexts. A semi-
supervised system risks degrading its supervised
knowledge. Self-supervised ART continues
to learn from new experiences, with built-in
safeguards that conserve useful memories. Self-
supervised ART code is available from the CNS
Technology Lab Website (http://techlab.bu.edu/
SSARTY).

A simulation study based on the Boston
Testbed (Amis and Carpenter 2010) illustrates
ways in which high-dimensional problems may
challenge any system learning without labels.
As in most ground truth datasets, labeled
pixels consist primarily of clear exemplars of
single classes. Because sensors have a 15-60 m
resolution, many unlabeled pixels cover multiple
classes, such as ice and industrial. Stage 2 inputs
thus mix and distort features from multiple
classes, placing many of the unlabeled feature
vectors far from the distinct class clusters of the
Stage 1 training set. Although the distributed
ART learning laws are open to unrestricted
adaptation on any pixel, the distributed codes of
Stage 2 minimize the influence of mixed pixels.
Most memory changes occur on unambiguous
cases, despite the fact that the unlabeled pixels
provide no external indices of class ambiguity.
Self-supervised Stage 2 learning dramatically
improves performance compared to learning
that ends after Stage 1. On every one of 500
individual simulations, Stage 2 learning improves
test accuracy, as unlabeled fully featured inputs
consistently expand knowledge from Stage 1
training.

Application 2: Transforming Information

into Knowledge Using ART Knowledge
Discovery

Classifying terrain or objects may require the res-
olution of conflicting information from sensors
working at different times, locations, and scales
and from users with different goals and situations.
Image fusion has been defined as “the acquisi-
tion, processing and synergistic combination of
information provided by various sensors or by
the same sensor in many measuring contexts”

29

(Simone et al. 2002, p. 3). When multiple sources
provide inconsistent data, fusion methods are
called upon to appraise information components
to decide among various options and to resolve
inconsistencies, as when evidence suggests that
an object is a car or a truck or a bus. Fusion meth-
ods weigh the confidence and reliability of each
source, merging complementary information or
gathering more data. In any case, at most one of
these answers is correct.

The method described here defines a com-
plementary approach to the information fusion
problem, considering the case where sensors and
sources are both nominally inconsistent and reli-
able, as when evidence suggests that an object is
a car and a vehicle and man-made or when a car
is alternatively labeled automobile. Underlying
relationships among classes are assumed to be
unknown to the automated system or the human
user, as if the labels were encrypted.

The ART knowledge discovery model acts as a
self-organizing expert system to derive consistent
knowledge structures from such nominally incon-
sistent data (Carpenter et al. 2005). Once derived,
a rule set can be used to assign classes to levels.
For each rule x = y, class x is located at a lower
level than classy. Classes connected by arrows
that codify a list of rules and confidence val-
ues form a graphical representation of a knowl-
edge hierarchy. For spatial data, the resulting
diagram of the relationships among classes can
guide the construction of orderly layered maps.
ART knowledge discovery code is available from
the CNS Technology Lab Website (http://techlab.
bu.edu/classer/classer_toolkit_overview). On the
Boston Testbed, the ART knowledge discovery
system places each class at its correct level and
finds all the correct rules for this example.

Application 3: Correcting Errors by Biasing
Attention Using Biased ART

Memories in ART networks are based on
matched patterns that focus attention on
critical features, where bottom-up inputs

match active top-down expectations. While this
learning strategy has proved successful for both
brain models and applications, computational
examples demonstrate that paying too much

http://techlab.bu.edu/SSART/
http://techlab.bu.edu/SSART/
http://techlab.bu.edu/classer/classer_toolkit_overview
http://techlab.bu.edu/classer/classer_toolkit_overview

30

attention to critical features that have been
selected to represent a given category early
on may distort memory representations during
subsequent learning. If training inputs are
repeatedly presented, an ART system will correct
these initial errors. However, real-time learning
may not afford such repeat opportunities. Biased
ART (bART) (Carpenter and Gaddam 2010)
solves the problem of overemphasis on early
critical features by directing attention away from
initially attended features after the system makes
a predictive error.

Activity x at the ART field F; computes the
match between the field’s bottom-up and top-
down input patterns (Fig. 1). A reset signal shuts
off the active F, code when x fails to meet the
matching criterion determined by vigilance p.
Reset alone does not, however, induce a different
code: unless the prior code has left an enduring
trace within the Fy—F, subsystem, the network
will simply reactivate the same pattern at F;.

Following reset, all ART systems shift atten-
tion away from previously active coding nodes at
the field F,. As modeled in ART 3 (Carpenter and
Grossberg 1990), biasing the bottom-up input to
the coding field to favor previously inactive F,
nodes implements search by enabling the network
to activate a new code in response to a reset
signal. The ART 3 search mechanism defines a
medium-term memory in the Fy-to-F, adaptive
filter so that the system does not perseverate
indefinitely on an output class that had just pro-
duced a reset. A presynaptic interpretation of
this bias mechanism is transmitter depletion or
habituation.

The biased ART network (Carpenter and
Gaddam 2010) introduces a second, top-down,
medium-term memory which, following reset,
shifts attention away from previously active
feature nodes at the match field F. In Fig. 1, the
first feature is strongly represented in the input A
and in the matched patterns x at F; both before
reset (Fig. 1b) and after reset (Fig. 1d). Following
the same sequence as in Fig. la—c, biased ART
would diminish the size of the first feature in the
matched pattern. The addition of featural biasing
helps the system to pay more attention to input
features that it had previously ignored.

Adaptive Resonance Theory

The biasing mechanism is a small modular
element that can be added to any ART net-
work. While computational examples and Boston
Testbed simulations demonstrate how featural
biasing in response to predictive errors improves
performance on supervised learning tasks, the
error signal that gates biasing could have orig-
inated from other sources, as in reinforcement
learning. Biased ART code is available from the
CNS Technology Lab Website (http://techlab.bu.
edu/bART).

Future Directions

Applications for tested software based on compu-
tational intelligence abound. This section outlines
areas where ART systems may open qualitatively
new frontiers for novel technologies. Future ap-
plications summarized here would adapt and spe-
cialize brain models that have already been math-
ematically specified and computationally simu-
lated to explain and predict large psychological
and neurobiological databases. By linking the
brain to mind, these models characterize both
mechanism (how the model works) and func-
tion (what the model is for). Both mechanism
and function are needed to design new applica-
tions. These systems embody new designs for
autonomous adaptive agents, including new com-
putational paradigms that are called Complemen-
tary Computing and Laminar Computing. These
paradigms enable the autonomous adaptation in
real time of individual persons or machines to
nonstationary situations filled with unexpected
events. See Grossberg (2013) for a review.

New Paradigms for Autonomous

Intelligent Systems: Complementary
Computing and Laminar Computing
Functional integration is essential to the design
of a complex autonomous system such as a robot
moving and learning freely in an unpredictable
environment. Linking independent modules for,
say, vision and motor control will not necessarily
produce a coordinated system that can adapt to
unexpected events in changeable contexts. How,
then, should such an autonomous adaptive system
be designed?

http://techlab.bu.edu/bART
http://techlab.bu.edu/bART

Adaptive Resonance Theory

A clue can be found in the nature of brain
specialization. How have brains evolved while
interacting with the physical world and embody-
ing its invariants? Many scientists have proposed
that our brains possess independent modules.
The brain’s organization into distinct anatom-
ical areas and processing streams shows that
brain regions are indeed specialized. Whereas
independent modules compute their particular
processes on their own, behavioral data argue
against this possibility. Complementary Comput-
ing (Grossberg 2000a,b, 2013) concerns the dis-
covery that pairs of parallel cortical process-
ing streams compute computationally comple-
mentary properties. Each stream has comple-
mentary strengths and weaknesses, much as in
physical principles like the Heisenberg uncer-
tainty principle. Each cortical stream can also
possess multiple processing stages. These stages
realize a hierarchical resolution of uncertainty.
“Uncertainty” here means that computing one
set of properties at a given stage prevents com-
putation of a complementary set of properties
at that stage. Complementary Computing pro-
poses that the computational unit of brain pro-
cessing that has behavioral significance consists
of parallel and hierarchical interactions between
complementary cortical processing streams with
multiple processing stages. These interactions
overcome complementary weaknesses to com-
pute necessary information about a particular
type of biological intelligence.

Five decades of neural modeling have shown
how Complementary Computing is embedded as
a fundamental design principle in neural systems
for vision, speech and language, cognition, emo-
tion, and sensory-motor control. Complementary
Computing hereby provides a blueprint for de-
signing large-scale autonomous adaptive systems
that are poised for technological implementation.

A unifying anatomical theme that enables
communication among cortical systems is
Laminar Computing. The cerebral cortex, the
seat of higher intelligence in all modalities,
is organized into layered circuits (often six
main layers) that undergo characteristic bottom-
up, top-down, and horizontal interactions. As
information travels up and down connected

31

regions, distributed decisions are made in real
time based on a preponderance of evidence.
Multiple levels suppress weaker groupings while
communicating locally coherent choices. The
distributed ART model (Fig.1), for example,
features three cortical layers, with its distributed
code (e.g., at a cortical layer 6) producing a
distributed output. Stacks of match fields (inflow)
and coding fields (outflow) lay the substrate for
cortical hierarchies.

How do specializations of this shared lami-
nar design embody different types of biological
intelligence, including vision, speech, language,
and cognition? How does this shared design en-
able seamless intercortical interactions? Models
of Laminar Computing clarify how these differ-
ent types of intelligence all use variations of the
same laminar circuitry (Grossberg 2013; Gross-
berg and Pearson 2008). This circuitry represents
a revolutionary synthesis of desirable computa-
tional properties of feedforward and feedback
processing, digital and analog processing, and
bottom-up data-driven processing and top-down
attentive hypothesis-driven processing. Realizing
such designs in hardware that embodies biolog-
ical intelligence promises to facilitate the devel-
opment of increasingly general-purpose adaptive
autonomous systems for multiple applications.

Complementary Computing in the Design

of Perceptual/Cognitive and Spatial/Motor
Systems

Many neural models that embody subsystems
of an autonomous adaptive agent have been
developed and computationally character-
ized. It remains to unify and adapt them
to particular machine learning applications.
Complementary Computing implies that not
all of these subsystems could be based on
variants of ART. In particular, accumulating
experimental and theoretical evidence shows that
perceptual/cognitive and spatial/motor processes
use different learning, matching, and predictive
laws for their complementary functions (Fig.2).
ART-like processing is ubiquitous in perceptual
and cognitive processes, including excitatory
matching and match-based learning that enables
self-stabilizing memories to form. Vector

32

WHAT

Spatially-invariant object
learning and recognition

Fast learning without
catastrophic forgetting

Adaptive Resonance Theory

WHERE

Spatially-variant reaching and
movement

Continually update sensory-
motor maps and gains

IT PPC
WHAT WHERE
MATCHING | EXCITATORY | INHIBITORY
LEARNING MATCH MISMATCH

Adaptive Resonance Theory, Fig. 2 Complementary
What and Where cortical processing streams for spatially
invariant object recognition and spatially variant spatial
representation and action, respectively. Perception and
recognition use top-down excitatory matching and match-

Associative Map (VAM) processing is often
found in spatial and motor processes, which
rely on inhibitory matching and mismatch-
based learning. In these modalities, spatial
maps and motor plants are adaptively updated
without needing to remember past maps and
parameters. Complementary mechanisms create
a self-stabilizing perceptual/cognitive front
end for intelligently manipulating the more
labile spatial/motor processes that enable our
changeable bodies to act effectively upon a
changing world.

Some of the existing large-scale ART systems
are briefly reviewed here, using visually based
systems for definiteness. Citations refer to articles
that specify system equations and simulations
and that can be downloaded from http://cns.bu.
edu/~steve.

Where's Waldo? Unifying Spatial and

Object Attention, Learning, Recognition,

and Search of Valued Objects and Scenes
ART models have been incorporated into
larger system architectures that clarify how
individuals autonomously carry out intelligent
behaviors as they explore novel environments.
One such development is the ARTSCAN family
of architectures, which model how individuals
rapidly learn to search a scene to detect,

based fast or slow learning without catastrophic forget-
ting. Spatial and motor tasks use inhibitory matching
and mismatch-based learning to achieve adaptation to
changing bodily parameters. /7 inferotemporal cortex,
PPC posterior parietal cortex

attend, invariantly recognize, and look at a
valued target object (Fig.3; Cao, Grossberg,
and Markowitz 2011; Chang, Grossberg, and
Cao 2014; Fazl, Grossberg, and Mingolla 2009;
Foley, Grossberg, and Mingolla 2012; Grossberg,
Srinivasan, and Yazdanbakhsh 2014). Such a
competence represents a proposed solution of the
Where’s Waldo problem.

The ventral What stream is associated with
object learning, recognition, and prediction,
whereas the dorsal Where stream carries out
processes such as object localization, spatial
attention, and eye movement control. To achieve
efficient object recognition, the What stream
learns object category representations that
become increasingly invariant under view, size,
and position changes at higher processing
stages. Such invariance enables objects to
be learned and recognized without causing a
combinatorial explosion. However, by stripping
away the positional coordinates of each object
exemplar, the What stream loses the ability
to command actions to the positions of valued
objects. The Where stream computes positional
representations of the world and controls actions
to acquire objects in it, but does not represent
detailed properties of the objects themselves.

ARTSCAN architectures model how an au-
tonomous agent can determine when the views

http://cns.bu.edu/~steve
http://cns.bu.edu/~steve

Adaptive Resonance Theory

that are foveated by successive scanning move-
ments belong to the same object and thus de-
termine which view-selective categories should
be associatively linked to an emerging view- ,
size-, and positionally-invariant object category.
This competence, which avoids the problem of
erroneously merging pieces of different objects,
works even under the unsupervised learning con-
ditions that are the norm during many object
learning experiences in vivo. The model identifies
a new role for spatial attention in the Where
stream, namely, control of invariant object cat-
egory learning by the What stream. Interactions
across the What and Where streams overcome the
deficiencies of computationally complementary
properties of these streams.

In the ARTSCAN Search model, both Where-
to-What and What-to-Where stream interactions
are needed to overcome complementary
weaknesses: Where stream processes of spatial
attention and predictive eye movement control
regulate What stream processes whereby multiple
view- and positionally-specific object categories
are learned and associatively linked to view-
and positionally-invariant object categories
through bottom-up and object-attentive top-down
interactions. What stream cognitive-emotional
learning processes enable the focusing of
motivated attention upon the invariant object cat-
egories of desired objects (Brown, Bullock, and
Grossberg 1999, 2004; Dranias, Grossberg, and
Bullock 2008; Grossberg and Seidman 2006).
What stream cognitive names or motivational
drives can, together with volitional signals,
drive a search for Waldo. Mediated by object
attention, search proceeds from What stream
positionally-invariant representations to Where
stream positionally-specific representations that
focus spatial attention on Waldo’s position.
ARTSCAN architectures hereby model how
the dynamics of multiple brain regions are
coordinated to achieve clear functional goals.

The focus of spatial attention on Waldo’s po-
sition in the Where stream can be used to control
eye and hand movements toward Waldo, after
navigational circuits (see below) bring the ob-
server close enough to contact him. VAM-type
learning circuits have been developed for the

33

control of goal-oriented eye and hand movements
that can be used for this purpose (e.g., Bul-
lock and Grossberg 1988, 1991; Bullock, Cisek,
and Grossberg 1998; Contreras-Vidal, Grossberg,
and Bullock 1997; Gancarz and Grossberg 1999;
Grossberg, Srihasam, and Bullock 2012; Pack,
Grossberg, and Mingolla 2001; Srihasam, Bul-
lock, and Grossberg 2009).

The ARTSCENE system (Grossberg and
Huang 2009) models how humans can incremen-
tally learn and rapidly predict scene identity by
gist and then accumulates learned evidence from
scenic textures to refine its initial hypothesis,
using the same kind of spatial attentional
shrouds that help to learn invariant object
categories in ARTSCAN. The ARTSCENE
Search system (Huang and Grossberg 2010)
models how humans use target-predictive
contextual information to guide search for desired
targets in familiar scenes. For example, humans
can learn that a certain combination of objects
may define a context for a kitchen and trigger a
more efficient search for a typical object, such as
a sink, in that context.

General-Purpose Vision and How It
Supports Object Learning, Recognition,
and Tracking
Visual preprocessing constrains the quality of
visually based learning and recognition. On an
assembly line, automated vision systems suc-
cessfully scan for target objects in this carefully
controlled environment. In contrast, a human or
robot navigating a natural scene faces overlaid
textures, edges, shading, and depth information,
with multiple scales and shifting perspectives.
In the human brain, evolution has produced a
huge preprocessor, involving multiple brain re-
gions, for object and scene representation and
for target tracking and navigation. One reason
for this is that visual boundaries and surfaces,
visual form and motion, and target tracking and
visually based navigation are computationally
complementary, thus requiring several distinct
but interacting cortical processing streams.

Prior to the development of systems such
as ARTSCAN and ARTSCENE, the FACADE
(Form-And-Color-And-DEpth) model provided

34

Adaptive Resonance Theory

WHAT STREAM

WHERE STREAM

ITp
View Category
Integrator

Position

vl 4

PPC
Spatial Attention

FEF.SC
LIP

Surface Contour iﬂ—l l
| R e 5 T T e =

———

2 [
p Whereto-What { Object Boundary p=p; Object Surface !
Excitatory == lee=ee- I ---------- x =1v2/v4
=@ Inhibitory E’Polarity Sensitive and Insensitive Contrast !
: ; V& ' Enhancement
--------- processes -

: 2

0

—_——

N and OFF Cell Contrast Normalization

-~
1

B
E Retinal Image !
b WHAT STREAM WHERE STREAM
PFC) PPC
Name Catego y ’
C;t:g:try Spatial Attention
Object-Value “1—
Catego ateqo T
55T Volition
Control [sc| 4
View Category
Camesn),
'lSurfaceContour !
----------- | e e
Bottom Up Object Boundary ! + Object Surface !
- Excitatory e it . ! Laadanins m‘
— What-to-Where g - - - \
Excitatory ' Polarity Sensitive and Insensitive Contrast !
: B fary & Surf.
b peccieins L Enhancement

7 o

E ON and OFF Cell Contrast Normalization 1:

s o)
Retinal Image H

Adaptive Resonance Theory, Fig. 3 (continued)

Adaptive Resonance Theory

a neural theory of form perception, including
3D vision and figure-ground separation (e.g.,
Cao and Grossberg 2005, 2012; Fang and
Grossberg 2009; Grossberg, Kuhlmann, and Min-
golla 2007; Grossberg and Swaminathan 2004;
Kelly and Grossberg 2000). The 3D FORMO-
TION model provides a neural theory of motion
processing and form-motion interactions (e.g.,
Baloch and Grossberg 1997; Baloch, Grossberg,
Mingolla, and Nogueira 1999; Berzhanskaya,
Grossberg, and Mingolla 2007; Grossberg,
Leveille, and Versace 2011; Grossberg, Min-
golla, and Viswanathan 2001; Grossberg and
Rudd 1992). The FACADE model has just the
properties that are needed for solving the Where’s
Waldo problem, and the 3D FORMOTION
model has just the properties that are needed
for tracking unpredictably moving targets.
Their complementary properties enabled these
extensions.

Visual and Spatial Navigation, Cognitive
Working Memory, and Planning

In addition to being able to see, learn, recognize,
and track valued goal objects, an animal or au-
tonomous robot must also be able to navigate
to or away from them and to interact with them
through goal-oriented hand and arm movements.
Navigation is controlled by two distinct and in-

Pl
<

35

teracting systems: a visually guided system and a
spatial path integration system.

Visually guided navigation through a cluttered
natural scene is modeled using the 3D FORMO-
TION model as a front end. The STARS and
ViSTARS neural systems (Browning, Grossberg,
and Mingolla 2009a,b; Elder, Grossberg, and
Mingolla 2009) model how primates use object
motion information to segment objects and
optic flow information to determine heading
(self-motion direction), for purposes of goal
approach and obstacle avoidance in response to
realistic environments. The models predict how
computationally complementary processes in
parallel streams within the visual cortex compute
object motion for tracking and self-motion
for navigation. The models’ steering decisions
compute goals as attractors and obstacles as
repellers, as do humans.

Spatial navigation based upon path integration
signals has been a topic of great interest recently.
Indeed, the 2014 Nobel Prize in Physiology or
Medicine was awarded to John O’Keefe for his
discovery of place cells in the hippocampal cortex
and to Edvard and May-Britt Moser for their
discovery of grid cells in the entorhinal cor-
tex. The GridPlaceMap neural system (Gross-
berg and Pilly 2012, 2014; Pilly and Grossberg
2012, 2014; Mhatre, Grossberg, and Gorchetch-

Adaptive Resonance Theory, Fig. 3 ARTSCAN
Search macrocircuit and corresponding brain regions.
Dashed boxes indicate boundary and surface pre-
processing. (a) Category learning system. Arrows
represent excitatory cortical processes. Spatial attention
in the Where stream regulates view-specific and view-
invariant category learning and recognition, and attendant
reinforcement learning, in the What stream. Connections
ending in circular disks indicate inhibitory connections.
(b) Where’s Waldo search system. Search begins when
a name category or value category is activated and
subliminally primes an object-value category via the
ART matching rule. A volition control signal enables
the primed object-value category to fire output signals.
Bolstered by volitional control signals, these output
signals can, in turn, propagate through a positionally-
invariant object category to all the positionally-variant

view category integrators whose various views and
positions are represented by the object category. The
view category integrators can subliminally prime,
but not fully activate, these view categories. All this
occurs in the What stream. When the bottom-up input
from an object’s boundary/surface representation also
activates one of these view categories, its activity
becomes suprathreshold, wins the competition across
view categories for persistent activation, and activates
a spatial attentional representation of Waldo’s position
in the Where stream. [7a anterior part of inferotemporal
cortex, ITp posterior part of inferotemporal cortex, PPC
posterior parietal cortex, LIP lateral intraparietal cortex,
LGN lateral geniculate nucleus, ORB orbitofrontal cortex,
Amyg amygdala, BG basal ganglia, PF'C prefrontal cortex,
SC superior colliculus, VI striate visual cortex, V2, V3,
and V4 prestriate visual cortices

36

nikov 2012; Pilly and Grossberg 2014) proposes
how entorhinal grid cells and hippocampal place
cells may be learned as spatial categories in a
hierarchy of self-organizing maps. The model
responds to realistic rat navigational trajectories
by learning both grid cells with hexagonal grid
firing fields of multiple spatial scales, and place
cells with one or more firing fields. Model dy-
namics match neurophysiological data about their
development in juvenile rats. The GridPlaceMap
model enjoys several parsimonious design fea-
tures that will facilitate their embodiment in tech-
nological applications, including hardware: (1)
similar ring attractor mechanisms process both
linear and angular path integration inputs that
drive map learning; (2) the same self-organizing
map mechanisms can learn grid cell and place cell
receptive fields in a hierarchy of maps, and both
grid and place cells can develop by detecting,
learning, and remembering the most frequent and
energetic co-occurrences of their inputs; and (3)
the learning of the dorsoventral organization of
grid cell modules with multiple spatial scales
that occur in the pathway from the medial en-
torhinal cortex to hippocampus seems to use
mechanisms that are homologous to those for
adaptively timed temporal learning that occur in
the pathway from the lateral entorhinal cortex to
hippocampus (Grossberg and Merrill 1989, 1992;
Grossberg and Schmajuk 1989). The homologous
mechanisms for representing space and time in
this entorhinal-hippocampal system has led to the
phrase “neural relativity” for this parsimonious
design.

Finally, the GridPlaceMap model is an ART
system. It proposes how top-down hippocampus-
to-entorhinal attentional mechanisms may sta-
bilize map learning and thereby simulates how
hippocampal inactivation may disrupt grid cell
properties and explains challenging data about
theta, beta, and gamma oscillations.

Visual and path integration information coop-
erate during navigation. Cognitive planning also
influences navigational decisions. More research
is needed to show how learning fuses visual, path
integration, and planning circuits into a unified
navigational system. The design of a general
planning system will be facilitated by the fact that

Adaptive Resonance Theory

similar circuits for short-term storage of event
sequences (working memory) and for learning
of sequential plans are used by the brain to
control linguistic, spatial, and motor behaviors
(Grossberg and Pearson 2008; Silver, Grossberg,
Bullock, Histed, and Miller 2011).

Social Cognition

How can multiple autonomous systems interact
intelligently? Individuals experience the world
from self-centered perspectives. What we learn
from each other is thus computed in different
coordinates within our minds. How do we bridge
these diverse coordinates? A model of social
cognition that explains how a teacher can in-
struct a learner who experiences the world from
a different perspective can be used to enable a
single human or robotic teacher to instruct a large
“class” of embodied robots that all experience the
teacher from different perspectives.

Piaget’s circular reaction notes the feedback
loop between the eye and hand in the learning
infant, laying the foundation for visually guided
reaching. Similarly, feedback between babbled
sounds and hearing forms the learned substrate
of language production. These intrapersonal cir-
cular reactions were extended to interpersonal
circular reactions within the Circular Reactions
for Imitative Behavior (CRIB) model (Grossberg
and Vladusich 2010). This model shows how
social cognition builds upon ARTSCAN mecha-
nisms. These mechanisms clarify how an infant
learns how to share joint attention with adult
teachers and to follow their gaze toward valued
goal objects. The infant also needs to be capable
of view-invariant object learning and recognition
whereby it can carry out goal-directed behaviors,
such as the use of tools, using different object
views than the ones that its teachers use. Such
capabilities are often attributed to mirror neu-
rons. This attribution does not, however, explain
the brain processes whereby these competences
arise. CRIB proposes how intrapersonal circular
reactions create a foundation for interpersonal
circular reactions when infants and other learners
interact with external teachers in space. Both
types of circular reactions involve learned co-
ordinate transformations between body-centered

Adaptive Resonance Theory

arm movement commands and retinotopic visual
feedback, and coordination of processes within
and between the What and Where cortical pro-
cessing streams. Specific breakdowns of model
processes generate formal symptoms similar to
clinical symptoms of autism.

Mental Disorders and Homeostatic

Plasticity

Optimally functioning autonomous intelligent
systems require properly balanced complemen-
tary systems. What happens when they become
imbalanced? In humans, they can experience
mental disorders.

Scientific literature on human mental disor-
ders such as autism and schizophrenia is, of
necessity, more anecdotal than parametric and is,
therefore, an insufficient foundation for model
construction. Real-time models of normal mental
behavior that are based on the huge databases
from decades of psychological and neurobiologi-
cal experiments have, however, provided insights
into the mechanisms of abnormal behaviors (e.g.,
Carpenter and Grossberg 1993; Grossberg 1984,
2000a,b; Grossberg and Seidman 2006).

Imbalanced processes across the complemen-
tary systems that control normal behaviors can
produce constellations of model symptoms that
strikingly resemble mental disorders. For exam-
ple, fixing the ART vigilance parameter p at
too high a level leads to symptoms familiar in
autistic individuals, notably learning of hyper-
concrete categories and difficulty paying atten-
tion to the meaning of a task. Underarousal of
the model amygdala can lead to insensitivity to
social meanings and also to intense emotional
outbursts and coping strategies to reduce event
complexity and unexpectedness. Damage to the
model cerebellum can lead to defects of adap-
tively timed learning and thus a host of problems
in socialization.

In both humans and robots, it remains an
open problem to model how biologically based
autonomous systems can discover and maintain
their own optimal operating parameters in
response to the challenges of an unpredictable
world. An initial step toward solving this

37

homeostatic plasticity problem was made in
Chandler and Grossberg (2012).

Machine Consciousness?

An early ART prediction is that all conscious
states are resonant states, though not all
resonant states are conscious. Since that time,
ART has predicted how specific resonances
support different kinds of consciousness. These
observations suggest the question: can machines
that embody ART resonant dynamics experience
a type of consciousness? For example, ART
models predict that surface-shroud resonances
subserve conscious percepts of visual qualia,
feature-category resonances subserve recogni-
tion of familiar objects and scenes, spectral-
shroud resonances subserve conscious percepts
of auditory streams, spectral-pitch-and-timbe
resonances subserve conscious recognition of
auditory streams, item-list resonances subserve
conscious percepts of speech and language,
and cognitive-emotional resonances subserve
conscious feelings and knowing the objects or
events that cause them. ART models also identify
the brain regions and interactions that would
support these resonances.

These results about model correlates of
consciousness emerge from ART analyses of
the mechanistic relationships among processes
of Consciousness, Learning, Expectation,
Attention, Resonance, and Synchrony (the
CLEARS processes). Recall, however, that not
all resonant states are conscious states. For
example, entorhinal-hippocampal resonances are
predicted to dynamically stabilize the learning
of entorhinal grid cells and hippocampal place
cells, and parietal-prefrontal resonances are
predicted to trigger the selective opening of
basal ganglia gates to enable the read-out of
context-appropriate actions. Grossberg (2013;
2016) reviews these and other aspects of ART as
a cognitive and neural theory.

Recommended Reading

Amis GP, Carpenter GA (2010) Self-supervised
ARTMAP. Neural Netw 23:265-282

38

Baloch AA, Grossberg S (1997) A neural model of
high-level motion processing: line motion and for-
motion dynamics. Vis Res 37:3037-3059

Baloch AA, Grossberg S, Mingolla E, Nogueira CAM
(1999) A neural model of first-order and second-
order motion perception and magnocellular dynam-
ics. J Opt Soc Am A 16:953-978

Berzhanskaya J, Grossberg S, Mingolla E (2007) Lam-
inar cortical dynamics of visual form and motion in-
teractions during coherent object motion perception.
Spat Vis 20:337-395

Brown J, Bullock D, Grossberg S (1999) How the basal
ganglia use parallel excitatory and inhibitory learn-
ing pathways to selectively respond to unexpected
rewarding cues. J Neurosci 19:10502-10511

Brown JW, Bullock D, Grossberg S (2004) How lami-
nar frontal cortex and basal ganglia circuits interact
to control planned and reactive saccades. Neural
Netw 17:471-510

Browning A, Grossberg S, Mingolla M (2009a) A
neural model of how the brain computes heading
from optic flow in realistic scenes. Cogn Psychol
59:320-356

Browning A, Grossberg S, Mingolla M (2009b) Corti-
cal dynamics of navigation and steering in natural
scenes: motion-based object segmentation, head-
ing, and obstacle avoidance. Neural Netw 22:1383—
1398

Bullock D, Grossberg S (1988) Neural dynamics of
planned arm movements: emergent invariants and
speed-accuracy properties during trajectory forma-
tion. Psychol Rev 95:49-90

Bullock D, Grossberg S (1991) Adaptive neural net-
works for control of movement trajectories invariant
under speed and force rescaling. Hum Mov Sci
10:3-53

Bullock D, Cisek P, Grossberg S (1998) Cortical net-
works for control of voluntary arm movements un-
der variable force conditions. Cereb Cortex 8:48—62

Cao Y, Grossberg S (2005) A laminar cortical model
of stereopsis and 3D surface perception: closure and
da Vinci stereopsis. Spat Vis 18:515-578

Cao Y, Grossberg S (2012) Stereopsis and 3D surface
perception by spiking neurons in laminar cortical
circuits: a method of converting neural rate models
into spiking models. Neural Netw 26:75-98

Cao Y, Grossberg S, Markowitz J (2011) How does
the brain rapidly learn and reorganize view- and
positionally-invariant object representations in infe-
rior temporal cortex? Neural Netw 24:1050-1061

Carpenter GA (1994) A distributed outstar network for
spatial pattern learning. Neural Netw 7:159-168

Carpenter GA (1997) Distributed learning, recogni-
tion, and prediction by ART and ARTMAP neural
networks. Neural Netw 10:1473-1494

Carpenter GA (2001) Neural network models of learn-
ing and memory: leading questions and an emerging
framework. Trends Cogn Sci 5:114-118

Carpenter GA, Gaddam SC (2010) Biased ART: a
neural architecture that shifts attention toward pre-

Adaptive Resonance Theory

viously disregarded features following an incorrect
prediction. Neural Netw 23:435-451

Carpenter GA, Grossberg S (1987) A massively par-
allel architecture for a self-organizing neural pattern
recognition machine. Comput Vis Graph Image Pro-
cess 37:54-115

Carpenter GA, Grossberg S (1990) ART 3: hierar-
chical search using chemical transmitters in self-
organizing pattern recognition architectures. Neural
Netw 4: 129-152

Carpenter G, Grossberg S (1993) Normal and am-
nesic learning, recognition, and memory by a neural
model of cortico-hippocampal interactions. Trends
Neurosci 16:131-137

Carpenter GA, Markuzon N (1998) ARTMAP-IC and
medical diagnosis: instance counting and inconsis-
tent cases. Neural Netw 11:323-336

Carpenter GA, Grossberg S, Reynolds JH (1991a)
ARTMAP: supervised real-time learning and clas-
sification of nonstationary data by a self-organizing
neural network. Neural Netw 4:565-588

Carpenter GA, Grossberg S, Rosen DB (1991b) Fuzzy
ART: fast stable learning and categorization of
analog patterns by an adaptive resonance system.
Neural Netw 4:759-771

Carpenter GA, Grossberg S, Markuzon N, Reynolds
JH, Rosen DB (1992) Fuzzy ARTMAP: a neu-
ral network architecture for incremental supervised
learning of analog multidimensional maps. IEEE
Trans Neural Netw 3:698-713

Carpenter GA, Martens S, Ogas OJ (2005) Self-
organizing information fusion and hierarchical
knowledge discovery: a new framework using
ARTMAP neural networks. Neural Netw 18:287—
295

Chandler B, Grossberg S (2012) Joining distributed
pattern processing and homeostatic plasticity
in recurrent on-center off-surround shunting
networks: noise, saturation, short-term memory,
synaptic scaling, and BDNF. Neural Netw 25:
21-29

Chang H-C, Grossberg S, Cao Y (2014) Where’s
Waldo? How perceptual cognitive, and emotional
brain processes cooperate during learning to cate-
gorize and find desired objects in a cluttered scene.
Front Integr Neurosci doi:10.3389/tnint.2014.0043

Chapelle O, Scholkopf B, Zien A (eds) (2006) Semi-
supervised learning. MIT, Cambridge

Contreras-Vidal JL, Grossberg S, Bullock D (1997)
A neural model of cerebellar learning for arm
movement control: cortico-spino-cerebellar dynam-
ics. Learn Mem 3:475-502

Dranias M, Grossberg S, Bullock D (2008) Dopamin-
ergic and non-dopaminergic value systems in condi-
tioning and outcome-specific revaluation. Brain Res
1238:239-287

Elder D, Grossberg S, Mingolla M (2009) A neural
model of visually guided steering, obstacle avoid-
ance, and route selection. J Exp Psychol Hum Per-
cept Perform 35:1501-1531

10.3389/fnint.2014.0043

Adaptive Resonance Theory

Fang L, Grossberg S (2009) From stereogram to sur-
face: how the brain sees the world in depth. Spat Vis
22:45-82

Fazl A, Grossberg S, Mingolla E (2009) View-invariant
object category learning, recognition, and search:
how spatial and object attention are coordinated us-
ing surface-based attentional shrouds. Cogn Psychol
58:1-48

Foley NC, Grossberg S, Mingolla E (2012) Neural
dynamics of object-based multifocal visual spatial
attention and priming: object cueing, useful-field-
of-view, and crowding. Cognitive Psychology 65:
77-117

Gancarz G, Grossberg G (1999) A neural model of
the saccadic eye movement control explains task-
specific adaptation. Vis Res 39:3123-3143

Grossberg S (1984) Some psychophysiological and
pharmacological correlates of a developmental, cog-
nitive, and motivational theory. In: Karrer R, Cohen
J, Tueting P (eds) Brain and information: event
related potential. New York Academy of Sciences,
New York, pp 58-142.

Grossberg S (2000a) The complementary brain: uni-
fying brain dynamics and modularity. Trends Cogn
Sci 4:233-246

Grossberg S (2000b) The imbalanced brain: from
normal behavior to schizophrenia. Biol Psychiatry
48:81-98

Grossberg S (2013) Adaptive resonance theory: how
a brain learns to consciously attend, learn, and
recognize a changing World. Neural Netw 37:1-47

Grossberg, S. (2016). Towards solving the hard prob-
lem of consciousness: the varieties of brain res-
onances and the conscious experiences that they
support. Submitted for publication

Grossberg S, Huang T-R (2009) ARTSCENE: a neu-
ral system for natural scene classification. J Vis
9(6):1-19

Grossberg S, Merrill JWL (1992) A neural network
model of adaptively timed reinforcement learning
and hippocampal dynamics. Cogn Brain Res 1:3-38

Grossberg S, Merrill JWL (1996) The hippocampus
and cerebellum in adaptively timed learning, recog-
nition, and movement. J Cogn Neurosci 8:257-277

Grossberg S, Pearson L (2008) Laminar cortical dy-
namics of cognitive and motor working memory, se-
quence learning and performance: toward a unified
theory of how the cerebral cortex works. Psychol
Rev 115:677-732

Grossberg S, Pilly PK (2012) How entorhinal grid
cells may learn multiple spatial scales from
a dorsoventral gradient of cell response rates
in a self-organizing map. PLoS Comput Biol
8(10):31002648. doi:10.1371/journal.pcbi.1002648

Grossberg S, Pilly PK (2014) Coordinated learning of
grid cell and place cell spatial and temporal prop-
erties: multiple scales, attention, and oscillations.
Philos Trans R Soc B 369:20120524

Grossberg S, Rudd ME (1992) Cortical dynamics of
visual motion perception: short-range and long-

39

range apparent motion (with Rudd ME). Psychol
Rev 99:78-121

Grossberg S, Schmajuk NA (1989) Neural dynamics of
adaptive timing and temporal discrimination during
associative learning. Neural Netw 2:79-102

Grossberg S, Seidman D (2006) Neural dynamics of
autistic behaviors: cognitive, emotional, and timing
substrates. Psychol Rev 113:483-525

Grossberg S, Swaminathan G (2004) A laminar corti-
cal model for 3D perception of slanted and curved
surfaces and of 2D images: development, attention
and bistability. Vis Res 44:1147-1187

Grossberg S, Vladusich T (2010) How do children
learn to follow gaze, share joint attention, imitate
their teachers, and use tools during social interac-
tions? Neural Netw 23:940-965

Grossberg S, Leveille J, Versace M (2011) How do
object reference frames and motion vector decom-
position emerge in laminar cortical circuits? Atten
Percept Psychophys 73:1147-1170

Grossberg S, Kuhlmann L, Mingolla E (2007) A neu-
ral model of 3D shape-from-texture: multiple-scale
filtering, boundary grouping, and surface filling-in.
Vis Res 47:634-672

Grossberg S, Mingolla E, Viswanathan L (2001) Neu-
ral dynamics of motion integration and segmenta-
tion within and across apertures. Vis Res 41:2521—
2553

Grossberg S, Srihasam K, Bullock D (2012) Neu-
ral dynamics of saccadic and smooth pursuit eye
movement coordination during visual tracking of
unpredictably moving targets. Neural Netw 27:1-20

Huang T-R, Grossberg S (2010) Cortical dynamics
of contextually cued attentive visual learning and
search: spatial and object evidence accumulation.
Psychol Rev 117:1080-1112

Hurvich LM, Jameson D (1957) An opponent-
process theory of color vision. Psychol Rev 64:
384-390

Kelly FJ, Grossberg S (2000) Neural dynamics of 3-
D surface perception: figure-ground separation and
lightness perception. Percept Psychophys 62:1596—
1619

Mhatre H, Gorchetchnikov A, Grossberg S (2012)
Grid cell hexagonal patterns formed by fast self-
organized learning within entorhinal cortex. Hip-
pocampus 22:320-334

Pack C, Grossberg S, Mingolla E (2001) A neural
model of smooth pursuit control and motion per-
ception by cortical area MST. J Cogn Neurosci
13:102-120

Pilly PK, Grossberg S (2012) How do spatial learning
and memory occur in the brain? Coordinated learn-
ing of entorhinal grid cells and hippocampal place
cells. J Cogn Neurosci 24:1031-1054

Pilly PK, Grossberg S (2014) How does the modular
organization of entorhinal grid cells develop? Front
Hum Neurosci. doi:10.3389/fnhum.2014.0037

Schiller PH (1982) Central connections of the retinal
ON and OFF pathways. Nature 297:580-583

10.1371/journal.pcbi.1002648
10.3389/fnhum.2014.0037

40

Simone G, Farina A, Morabito FC, Serpico SB, Bruz-
zone L (2002) Image fusion techniques for remote
sensing applications. Inf Fusion 3:3-15

Srihasam K, Bullock D, Grossberg S (2009) Target
selection by frontal cortex during coordinated sac-
cadic and smooth pursuit eye movements. J Cogn
Neurosci 21:1611-1627

Adaptive System

Complexity in Adaptive Systems

Agent

In computer science, the term “agent” usually
denotes a software abstraction of a real entity
which is capable of acting with a certain degree
of autonomy. For example, in artificial societies,
agents are software abstractions of real people,
interacting in an artificial, simulated environ-
ment. Various authors have proposed different
definitions of agents. Most of them would agree
on the following set of agent properties:

* Persistence: Code is not executed on
demand but runs continuously and decides
autonomously when it should perform some
activity.

* Social ability: Agents are able to interact with
other agents.

* Reactivity: Agents perceive the environment
and are able to react.

* Proactivity: Agents exhibit goal-directed be-
havior and can take the initiative.

Agent-Based Computational Models

Artificial Societies

Adaptive System

Agent-Based Modeling and
Simulation

Artificial Societies

Agent-Based Simulation Models

Artificial Societies

AlS

Artificial Immune Systems

Algorithm Evaluation

Geoffrey I. Webb
Faculty of Information Technology, Monash
University, Victoria, Australia

Definition

Algorithm evaluation is the process of assessing
a property or properties of an algorithm.

Motivation and Background

It is often valuable to assess the efficacy of
an algorithm. In many cases, such assessment
is relative, that is, evaluating which of several
alternative algorithms is best suited to a specific
application.

Processes and Techniques

Many machine learning and data mining algo-
rithms have been proposed. In order to under-
stand the relative merits of these alternatives, it

http://dx.doi.org/10.1007/978-1-4899-7687-1_45
http://dx.doi.org/10.1007/978-1-4899-7687-1_922
http://dx.doi.org/10.1007/978-1-4899-7687-1_922
http://dx.doi.org/10.1007/978-1-4899-7687-1_922
http://dx.doi.org/10.1007/978-1-4899-7687-1_919

Analytical Learning

is necessary to evaluate them. The primary ap-
proaches to evaluation can be characterized as ei-
ther theoretical or experimental. Theoretical eval-
uation uses formal methods to infer properties
of the algorithm, such as its computational com-
plexity (Papadimitriou 1994), and also employs
the tools of computational learning theory to
assess learning theoretic properties. Experimental
evaluation applies the algorithm to learning tasks
to study its performance in practice.

There are many different types of property
that may be relevant to assess depending upon
the intended application. These include algorith-
mic properties, such as time and space com-
plexity. These algorithmic properties are often
assessed separately with respect to performance
when learning a » model, that is, at » training
time, and performance when applying a learned
model, that is, at » test time.

Other types of property that are often studied
are the properties of the models that are learned
(see » Model Evaluation). Strictly speaking, such
properties should be assessed with respect to
a specific application or class of applications.
However, much machine learning research in-
cludes experimental studies in which algorithms
are compared using a set of data sets with little
or no consideration given to what class of appli-
cations those data sets might represent. It is dan-
gerous to draw general conclusions about relative
performance in general across any application
from relative performance on this sample of some
unknown class of applications. Such experimen-
tal evaluation has become known disparagingly
as a bake-off.

An approach to experimental evaluation that
may be less subject to the limitations of bake-offs
is the use of experimental evaluation to assess
a learning algorithm’s » bias and variance pro-
file. Bias and variance measure properties of
an algorithm’s propensities in learning models
rather than directly being properties of the models
that are learned. Hence, they may provide more
general insights into the relative characteristics of
alternative algorithms than do assessments of the

41

performance of learned models on a finite number
of applications. One example of such use of bias—
variance analysis is found in Webb (2000).
Techniques for experimental algorithm
evaluation include » bootstrap sampling, » cross-
validation, » holdout evaluation, » out-of-sample
evaluation and » prospective evaluation.

Cross-References

Evaluation of Learning Algorithms
Model Evaluation

References

Hastie T, Tibshirani R, Friedman JH (2001) The ele-
ments of statistical learning. Springer, New York
Mitchell TM (1997) Machine learning. McGraw-Hill,
New York

Papadimitriou CH (1994) Computational complexity.
Addison-Wesley, Reading

Webb GI (2000) MultiBoosting: a technique for
combining boosting and wagging. Mach Learn
40(2):159-196

Witten IH, Frank E (2005) Data mining: practical
machine learning tools and techniques, 2nd edn.
Morgan Kaufmann, San Francisco

Analogical Reasoning

Instance-Based Learning

Analysis of Text

Text Mining

Analytical Learning

Deductive Learning
Explanation-Based Learning

http://dx.doi.org/10.1007/978-1-4899-7687-1_100145
http://dx.doi.org/10.1007/978-1-4899-7687-1_975
http://dx.doi.org/10.1007/978-1-4899-7687-1_821
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_74
http://dx.doi.org/10.1007/978-1-4899-7687-1_977
http://dx.doi.org/10.1007/978-1-4899-7687-1_190
http://dx.doi.org/10.1007/978-1-4899-7687-1_369
http://dx.doi.org/10.1007/978-1-4899-7687-1_621
http://dx.doi.org/10.1007/978-1-4899-7687-1_978
http://dx.doi.org/10.1007/978-1-4899-7687-1_8
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
http://dx.doi.org/10.1007/978-1-4899-7687-1_831
http://dx.doi.org/10.1007/978-1-4899-7687-1_206
http://dx.doi.org/10.1007/978-1-4899-7687-1_96

42

Anomaly Detection

Varun Chandola', Arindam Banerjee?, and
Vipin Kumar?

I'State University of New York at Buffalo,
Buffalo, NY, USA

2University of Minnesota, Minneapolis, MN,
USA

Abstract

Anomalies correspond to the behavior of a
system which does not conform to its expected
or normal behavior. Identifying such anoma-
lies from observed data, or the task of anomaly
detection, is an important and often critical
analysis task. This includes finding abnormal-
ities in a medical image, fraudulent transac-
tions in a credit card history, or structural
defects in an aircraft’s engine. The importance
of this problem has resulted in a large body of
literature on this topic. However, given that the
definition of an anomaly is strongly tied to the
underlying application, the existing research
is often embedded in the application domains,
and it is unclear how methods developed for
one domain would perform in another. The
goal of this article is to provide a general intro-
duction of the anomaly detection problem. We
start with the basic formulation of the problem
and then discuss the various extensions. In par-
ticular, we discuss the challenges associated
with identifying anomalies in structured data
and provide an overview of existing research
in this area. We hope that this article will
provide a better understanding of the different
directions in which research has been done on
this topic, and how techniques developed in
one area can be applied in domains for which
they were not intended to begin with.

Introduction

Anomalies are the unusual, unexpected, surpris-
ing patterns in the observed world. Identifying,

Anomaly Detection

understanding, and predicting anomalies from
data form one of the key pillars of modern data
mining. Effective detection of anomalies allows
extracting critical information from data which
can then be used for a variety of applications,
such as to stop malicious intruders, detect and
repair faults in complex systems, and better un-
derstand the behavior of natural, social, and engi-
neered systems.

Anomaly detection refers to the problem of
finding anomalies in data. While “anomaly” is
a generally accepted term, other synonyms, such
as outliers, discordant observations, exceptions,
aberrations, surprises, peculiarities, or contam-
inants, are often used in different application
domains. In particular, anomalies and outliers
are often used interchangeably. Anomaly detec-
tion finds extensive use in a wide variety of
applications such as fraud detection for credit
cards, insurance or healthcare, intrusion detec-
tion for cybersecurity, fault detection in safety
critical systems, and military surveillance for
enemy activities. The importance of anomaly
detection stems from the fact that for a variety
of application domains, anomalies in data often
translate to significant (and often critical) action-
able insights. For example, an anomalous traffic
pattern in a computer network could mean that
a hacked computer is sending out sensitive data
to an unauthorized destination (Kumar 2005).
An anomalous remotely sensed weather variable
such as temperature could imply a heat wave or
cold snap or even faulty remote sensing equip-
ment. An anomalous MRI image may indicate
early signs of Alzheimer’s or the presence of ma-
lignant tumors (Spence et al. 2001). Anomalies in
credit card transaction data could indicate credit
card or identity theft (Aleskerov et al. 1997),
or anomalous readings from a spacecraft sensor
could signify a fault in some component of the
spacecraft (Fujimaki et al. 2005).

Anomaly detection is generally considered as
a core machine learning or data mining problem,
in the same vein as classification and cluster-
ing. Given the practical significance of anoma-
lies, there has been a tremendous interest in
studying this problem, starting from statistical
methods proposed as early as the nineteenth cen-

Anomaly Detection

tury (Edgeworth 1887). Over time, a variety of
anomaly detection techniques have been devel-
oped in several research communities. Many of
these techniques have been specifically devel-
oped for certain application domains, while oth-
ers are more generic. Several books and surveys
have been published in recent years that pro-
vide an overview of the vast literature on this
topic (Chandola et al. 2009; Aggarwal 2013;
Hodge and Austin 2004; Chandola et al. 2012;
Akoglu et al. 2015).

However, one key characteristic of anomaly
detection sets it apart from other machine learn-
ing problems. Anomaly detection is a highly
application-oriented problem which means that
there is a lack of a consistent definition of an
anomaly across tasks and application domains.
Researchers typically define an anomaly in a way
that best suits the target application. Thus, several
different formulations of the anomaly detection
problem exist. Existing solutions for these prob-
lem formulations have borrowed concepts from
a variety of disciplines in mathematics, statistics,
and computer science. This has resulted in a rich
and complex landscape for anomaly detection
research (See Fig. 1).

The goal of this article is to provide the readers
a general understanding of the complex prob-
lem space of anomaly detection. Starting with
the most basic problem setting, i.e., identifying
anomalous data instances from a data set, we

Research Disciplines

— Machine Learning
— Data Mining

— Statistics

— Information Theory

,,,,,,,,

43

then discuss other formulations and the corre-
sponding methods. To highlight the practical im-
portance of anomaly detection, we provide an
application-oriented overview of existing meth-
ods. Finally, we discuss open challenges and re-
search questions that exist in this area to motivate
future research.

Point Anomaly Detection

In the most widely accepted setting for anomaly
detection, also referred to as point anomaly de-
tection, the goal is to identify points (objects,
instances, etc.) in a data set that do not conform
to the accepted normal behavior. Typically, no
other knowledge about the normal or anomalous
behavior is available. The lack of any ground
truth for training makes this an unsupervised
anomaly detection problem. In the sequel, we
briefly talk about other formulations in which
partial knowledge of normal and/or anomalous
behavior is available.

Even in the basic setting of point anomaly
detection, a uniform definition of anomaly does
not exist. Figure 2 shows several hypothetical
examples of anomalies in a two-dimensional data
set. In each of the example, anomalies have a
different interpretation. For instance, the point 0|
in Fig.2a is anomalous because it is far away
from the rest of the data points which belong to
a dense region. In Fig. 2b, however, the point 0|

Application Domains

Cybersecurity

Fraud detection

— System health monitor-
ing

— Medicine and Health-

care

\

Problem Characteris-
tics

|

: Anomaly Detec-

: tion Methods

|

Problem For-
mulations

| _ Availability of labels

} ‘ — Nature of input data
| — Type of anomalies

— Expected output

Anomaly Detection, Fig. 1 Anatomy of an anomaly detection problem

44

Anomaly Detection

Anomaly Detection, Fig. 2 Examples of anomalies in
2-D data. (a) Anomaly with respect to rest of the data
points. (b) Anomaly with respect to local neighbor-
hood. (¢) Anomaly with respect to the data distribution.

is anomalous because it lies relatively far away
from a dense region, even though there are points
in the second sparse region which are equally
distant from their nearest points. In the third ex-
ample (see Fig. 2¢), the point 0; is anomalous be-
cause it lies away from the statistical distribution
(bivariate normal) of the data. On the other hand,
there are several points located at the ends of the
elliptical distribution that are farther away from
the points that 0;. The anomalies 0;, 03, and 04 in
Fig. 2d are points that are away from their closest
dense regions. The points in the anomalous set
o1 in Fig.2d, e, and f are all groups of points
whose density is anomalous with respect to the
rest of the data set. As shown in the above simple
2-D example, even for point anomaly detection,
one can define anomalies in multiple ways. Most
existing anomaly detection methods, on the other
hand, have been developed, by starting from a
different notion of anomaly often motivated by
a specific application domain. Thus, one method
might be successful in one scenario and not in the
other. We now discuss some prominent classes of
point anomaly detection methods and the defini-
tions of anomalies that they are best suited for.
The various classes of point anomaly detection
methods are briefly discussed below:

(d) Anomaly with respect to local dense regions. (e)
Anomalous tight cluster in a sparse region. (f) Anomalous
sparse cluster in a dense region

Nearest neighbor-based methods analyze the
nearest neighborhood of a test instance to assign
it an anomaly score (Ramaswamy et al. 2000;
Knorr and Ng 1999; Knorr et al. 2000; Otey
et al. 2006; Tang et al. 2002; Breunig et al.
2000, 1999). The key assumption underlying
nearest neighbor-based anomaly detection meth-
ods is that normal points lie in dense neighbor-
hoods and anomalous points lie in sparse neigh-
borhoods. Nearest neighbor methods consider
suitable measures of density, e.g., distance to the
k-th nearest neighbor (Ramaswamy et al. 2000),
radius needed to enclose a certain number of
points (Knorr and Ng 1999; Knorr et al. 2000),
etc. Such methods are capable of identifying
global anomalies (See Fig.2a) but are shown to
perform poorly when the data has regions with
varying densities (See Fig. 2b). For such scenar-
ios, methods such as local outlier factor (Bre-
unig et al. 1999) and commute distance-based
outlier factor (Khoa and Chawla 2010) have been
proposed. When data is high dimensional, such
methods typically suffer from the “curse of di-
mensionality.” Methods such as angle-based out-
lier detection (Kriegel et al. 2008) and subspace-
based approaches (Zhang and Wang 2006) have
been proposed to address this issue.

Anomaly Detection

Clustering-based methods learn clusters from
a given data set and assign an anomaly score to
a test instance based on its relationship with its
nearest cluster (Eskin et al. 2002; He et al. 2003;
Marchette 1999; Eskin et al. 2002; Portnoy et al.
2001; Mahoney et al. 2003). Clustering-based
methods assume that while normal points exhibit
cluster structure, anomalous points do not belong
to a cluster or are far away from the nearest
normal cluster representative. In certain settings,
if the anomalies themselves may form a cluster,
one assumes that normal points form large and
dense clusters, whereas anomalous points form
small clusters or clusters with low density (see
Fig.2d, e and f). While such methods identify
anomalies as a post-clustering phase, recently,
there have been methods that focus on identifying
anomalies simultaneously with the clusters (Ott
et al. 2014; Chawla and Gionis 2013).

Statistical methods estimate a parametric or
nonparametric model from the data and apply a
statistical test on the probability of the instance
to be generated by the estimated model to assign
an anomaly score to the test instance (Barnett
and Lewis 1994; Fox 1972; Abraham and Chuang
1989; Laurikkala et al. 2000; Chow and Yeung
2002). Such statistical models assume that nor-
mal points appear in the high probability regions
of the distribution, thereby having high likelihood
of occurring and hence low anomaly scores. On
the other hand, anomalous points appear in the
low probability regions of the distribution and
have high anomaly score. Such methods are ef-
fective if the normal instances can be modeled
by a statistical distribution. For instance, if the
data in Fig.2c is modeled as a bivariate nor-
mal distribution, the anomalous point o; can be
easily identified using a standard Mahalanobis
statistic, while rest of the points will appear
normal.

Classification-based methods learn a classifier
from a labeled (or unlabeled) training data
and assign an anomaly score or label to a
test data instance (Tax 2001; Tax and Duin
1999a,b; Barbara et al. 2001; Roth 2004,
Hawkins et al. 2002; Mahoney and Chan

45

2002, 2003). The key assumption underlying
classification-based anomaly detection methods
is that based on the available training data, one
can learn a classifier in the given feature space
to distinguish between normal and anomalous
points. Classification-based anomaly detection
methods can be categorized into one-class
methods, which have one model for the normal
class and any point which does not fit that model
is deemed anomalous, and multi-class methods,
which have multiple normal classes and points
which do not fit any of the normal classes are
deemed anomalous. A variety of models such
as support vector machines, neural networks,
Bayesian models, and rule-based systems have
been used for classification-based anomaly
detection. However, such methods are limited
by their dependence on availability of labels
for normal and/or anomalous behavior. There
are, however, methods that can operate in a
purely unsupervised setting, such as the one-
class support vector machines (Scholkopf et al.
2001; Tax 2001).

Spectral decomposition-based methods find
an approximation of the data using a combination
of attributes that capture the bulk of variability
in the data. Instances that are significantly differ-
ent from others in the lower approximation are
detected as anomalies (Agovic et al. 2007; Parra
et al. 1996; Shyu et al. 2003; Fujimaki et al.
2005). Such methods are particularly effective
in scenarios where the data is being generated
from a lower dimensional manifold, e.g., See
Fig. 2c.

Information theoretic methods are based on
the assumption that anomalies in data induce
irregularities in the information content of the
data set. Such methods analyze the information
content of a data set using different information
theoretic measures such as Kolmogorov com-
plexity, entropy, relative entropy, etc. and detect
instance that induces irregularities in the informa-
tion content of the data set as anomalies (Arning
et al. 1996; Keogh et al. 2004; Lee and Xiang
2001; He et al. 2005, 2006).

46

Extensions to Point Anomaly
Detection

In certain settings, the unsupervised point
anomaly detection problem discussed in
section ‘“Point Anomaly Detection” is not
rich enough to capture all requirements of an
application domain. Here we discuss some of the
different ways in which the basic problem setting
is typically extended.

Nature of Input Data

The modality of the data determines the
applicability of anomaly detection techniques.
For example, for statistical techniques, different
statistical models have to be used for continuous
and categorical data. Similarly, for nearest
neighbor-based techniques, the nature of
attributes would determine the distance measure
to be used. Often, instead of the actual data,
the pairwise distance between instances might
be provided in the form of a distance (or
similarity) matrix. In such cases, techniques
that require original data instances are not
applicable, e.g., many statistical methods and
certain classification-based techniques. However,

Anomaly Detection

many of the nearest neighbor-based or clustering-
based methods discussed in section “Point
Anomaly Detection” are still applicable.

Input data can also be categorized based on the
relationship present among data instances (Tan
et al. 2005). Most of the existing anomaly de-
tection techniques deal with data represented as
a vector of attributes (record or point data, if the
data can be mapped onto a coordinate space), as
discussed in section “Point Anomaly Detection.”
Typically, no relationship is assumed among the
data instances.

In general, data instances can be related
to each other. Some examples are sequence
data, spatial data, and graph data (See Fig.3
for an overview). In sequence data, the data
instances are linearly ordered, e.g., time-series
data, genome sequences, protein sequences. In
spatial data, each data instance is related to
its neighboring instances, e.g., vehicular traffic
data, ecological data. When the spatial data has
a temporal (sequential) component, it is referred
to as spatiotemporal data, e.g., climate data. In
graph data, data instances are represented as
vertices in a graph and are connected to other
vertices with edges. Later in this section, we will

Categorical (Mixed)
@ Fraud Detection

e Cyber Networks

Time Series

® Sensor Networks

® Healthcare

Discrete Sequences

Spatio-temporal

® Genomic @ Remote sensing

e System Calls e Climate
Spatial Graphs

e GIS @ Social networks

e Image analysis

e Epidemiology

GGTTCCGCCTTCA
CGCAGOOCCC
GAGAAGGGCCCG
CUCGCCGAGCGCCGGGC
CCAACCOAGTCCOGRA

CHOROCEH
CCGAGC
GGTOCC
OACCTOA
GGACAG
OCCAADT AR & AADCQE
TGOGCTOCCTOCTOGCOACCAGCE

Anomaly Detection, Fig. 3 Complex data types encountered by anomaly detection and some sample application

domains

Anomaly Detection

discuss situations where such relationship among
data instances becomes relevant for anomaly
detection.

Type of Anomaly

Anomaly detection techniques vary depending on
the nature of the desired anomaly. We have al-
ready discussed point anomalies in section “Point
Anomaly Detection,” which is the most common
form of anomaly. While point anomalies are iso-
lated by nature, several applications need to con-
sider anomalies in a context or small collection
of observations which appear anomalous. One
can define two additional types of anomalies to
capture such structures: contextual anomalies and
collective anomalies.

Contextual Anomalies

Data instances which are anomalous in a specific
context, but not otherwise, are called contextual
anomaly (also referred to as conditional anomaly
Song et al. 2007). For example, a temperature
of 70°F may be normal over summer, but is
anomalous in the context of winter; a heart rate
of 130 may be normal for an individual exercising
or running, but is anomalous when the individual
is resting. In the setting of contextual anomaly
detection, the context, such as summer/winter and
exercising/resting, has to be specified as a part of
the problem formulation. In particular, the data
instances are defined using following two sets
of attributes:

1. Contextual attributes. The contextual
attributes are used to determine the context (or
neighborhood) for that instance. For example,
in spatial data sets, the longitude and latitude
of a location are the contextual attributes. In
time-series data, time is a contextual attribute
which determines the position of an instance
on the entire sequence.

2. Behavioral attributes. The behavioral
attributes define the non-contextual charac-
teristics of an instance. For example, in a
spatial data set describing the average rainfall
of the entire world, the amount of rainfall at
any location is a behavioral attribute.

47

The context determines the normal behavioral
attributes, and the normal can be different in
different contexts. Anomalous behavior is deter-
mined using the values for the behavioral at-
tributes within a specific context, in particular
when such values deviate from what is normal in
that context. A data instance might be a contex-
tual anomaly in a given context, but an identical
data instance (in terms of behavioral attributes)
could be considered normal in a different context.
This property is key in identifying contextual and
behavioral attributes for a contextual anomaly
detection technique.

Contextual anomalies have been most
commonly explored in time-series data (Weigend
et al. 1995; Salvador and Chan 2003) and
spatial data (Kou et al. 2006; Shekhar et al.
2001). In spatial data domain, an observation
has a neighborhood specified by its location
component (refer to our earlier discussion on
spatial data). Consider an example in which each
data instance is a county location which is defined
over several attributes. If these attributes show
high pollution levels for a particular county, but
the neighborhood of this county is also highly
polluted, then this county is not an anomaly. But
if the neighborhood has very low pollution, then
this county becomes an anomaly.

A similar example can be found in the credit
card fraud detection domain. A contextual at-
tribute in credit card domain can be the time
of purchase. Suppose an individual usually has
a weekly shopping bill of $100 except during
the Christmas week, when it reaches $1000. A
new purchase of $1000 in a week in July will be
considered a contextual anomaly, since it does not
conform to the normal behavior of the individual
in the context of time (even though the same
amount spent during Christmas week will be
considered normal).

The choice of applying a contextual anomaly
detection technique is determined by the mean-
ingfulness of the contextual anomalies in the
target application domain. Another key factor is
the availability of contextual attributes. In several
cases, defining a context is straightforward, and
hence applying a contextual anomaly detection
technique makes sense. In other cases, defining

Anomaly Detection

48

Anomaly Detection, 9000
Fig.4 Example of a

collective 8000

anomaly—MODIS NDVI
Time Series for 2001-2009

for a Southern California 7000
location with a known
forest fire (Canyon fire) in _ 6000
2007 [src: http://cdfdata. E
fire.ca.gov/incidents/ Z 5000
incidents_archived?
archive_year=2007]
4000
3000
2000

a context is not easy, making it difficult to apply
such techniques.

Collective Anomalies

If a collection of related data instances is anoma-
lous with respect to the entire data set, it is
termed as a collective anomaly. The individual
data instances in a collective anomaly may not
be anomalies by themselves, but their occurrence
together as a collection is anomalous. Figure 4
illustrates an example which shows a greenness
measurement called normalized difference vege-
tation index (NDVI) for a geographic location ob-
tained from a satellite instrument (MODIS). The
highlighted region denotes an anomaly where
the greenness values are abnormally low for the
entire year of 2007 due to a wildfire during
that time. Note that the individual measurements
during the year are not anomalous by themselves.

As an another illustrative example, consider a
sequence of actions occurring in a computer as
shown below:

... http-web, buffer-overflow, http-web, http-web, smtp-
mail, ftp, http-web, ssh, smtp-mail, http-web, ssh, buffer-
overflow, ftp, http-web, ftp, smtp-mail,http-web . . .

The highlighted sequence of events (buffer-
overflow, ssh, ftp) corresponds to a typical web-
based attack by a remote machine followed by
copying of data from the host computer to remote
destination via fip. It should be noted that this col-
lection of events is an anomaly, but the individual

2001 2002 2003 2004 2005 2006 2007 2008 2009

Time

events are not anomalies when they occur in other
locations in the sequence.

Collective anomalies have been explored for
sequence (discrete and time series) data (Forrest
et al. 1999; Sun et al. 2006), graph data (Noble
and Cook 2003; Li et al. 2014; Akoglu et al.
2015), and spatial data (Shekhar et al. 2001). It
should be noted that while point anomalies can
occur in any data set, collective anomalies can
occur only in data sets in which data instances
are related. In contrast, occurrence of contextual
anomalies depends on the availability of context
attributes in the data. A point anomaly or a col-
lective anomaly can also be a contextual anomaly
if analyzed with respect to a context. Thus a
point anomaly detection problem or collective
anomaly detection problem can be transformed
to a contextual anomaly detection problem by
incorporating the context information.

Data Labels

In some scenarios, labels associated with data
instances denote if that instance is normal or
anomalous. (Also referred to as normal and
anomalous classes.) Obtaining labeled data
which is accurate as well as representative of
all types of normal and anomalous behaviors
is often prohibitively expensive. Labels are
often provided by human domain experts and
hence usually require substantial effort and time.
Even in settings where a human expert is able

http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007
http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007
http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007
http://cdfdata.fire.ca.gov/incidents/incidents_archived?archive_year=2007

Anomaly Detection

to provide labels, it is usually easier to give
examples of normal instances, since the number
of different ways an anomaly can occur is quite
large and finding examples of the different types
of anomalies is difficult. Further, anomalous
behavior is often dynamic in nature, e.g., new
types of anomalies might arise, for which there
is no labeled training data. In certain cases, such
as aviation safety, anomalous instances would
translate to catastrophic events, and hence will be
very rare.

Based on the extent to which the labels are
available, anomaly detection techniques can
operate in one of the following three modes:
supervised, semi-supervised, and unsupervised
anomaly detection. Several of the anomaly
detection methods discussed in section “Point
Anomaly Detection” are unsupervised methods.
Semi-supervised methods typically assume
availability of a training data that represents the
normal behavior. The general approach for such
methods is to construct a statistical or machine
learning model of normal behavior and then
apply a statistical or proximity test to detect new
instances which are not consistent with the learnt
model. Supervised methods assume availability
training data that represents both normal and
anomalous behavior. Typically, anomalous events
have a much smaller prior probability, and one
can leverage methods for rare-class classification,
cost-sensitive classification, and other ways
of handling class imbalance. However, such
methods find limited applicability since obtaining
representative training data for anomalous
behavior is typically infeasible.

Output of Algorithm

An important aspect for any anomaly detection
technique is the manner in which the anomalies
are reported. Typically, the outputs produced by
anomaly detection techniques are one of the fol-
lowing two types: scores or binary predictions.
Scores allow analysts to rank the anomalies in
terms of the severity. Typically a threshold is then
applied to the scores to identify the anomalies
on which to act upon. The threshold is often
set by either identifying a natural cutoff point
in the sorted scores or based on the number of

49

desired anomalies for further analysis. Methods
that assign a binary label to data objects (anomaly
or normal) are often easier to understand, though
they lack the capability of ranking the anomalies.
There are some research in calibrating the scores
as probabilities (Gao and Tan 2006) for better in-
terpretability (Kriegel et al. 2011; Schubert et al.
2012).

Anomaly Detection for Complex Data

In section “Point Anomaly Detection” we dis-
cussed anomaly detection in the context of data
without any explicit relationship defined among
them. However, in many applications, data ob-
jects are related, and often the anomalous behav-
ior can only be identified by analyzing the rela-
tionships between the objects. In this section, we
discuss the anomaly detection methods developed
to handle the different types of relationships.

Symbolic Sequences

In this section, we provide an overview of the
existing research on anomaly detection for sym-
bolic sequences. Methods in this area can be
grouped into following categories:

— Kernel-Based Techniques: These techniques
treat the entire test sequence as a unit ele-
ment in the analysis (Budalakoti et al. 2006,
2007; Yang and Wang 2003) and hence are
analogous to point-based anomaly detection
techniques. They typically apply a proximity-
based point anomaly detection technique by
defining an appropriate similarity kernel for
the sequences.

— Window-Based Techniques: These tech-
niques analyze a short window of symbols—a
short subsequence—within the test sequence
at a time (Forrest et al. 1996; Hofmeyr
et al. 1998; Endler 1998; Debar et al. 1998;
Ghosh et al. 1999a,b; Lane and Brodley
1997, 1999; Cabrera et al. 2001). Thus such
techniques treat a subsequence within the
test sequence as a unit element for analysis.
These techniques require an additional step

50

in which the anomalous nature of the entire
test sequence is determined, based on the
analysis on the subsequences within the entire
sequence.

— Markovian Techniques: These techniques
predict the probability of observing each
symbol of the test sequence, using a
probabilistic model, and use the per-symbol
probabilities to obtain an anomaly score for
the test sequence (Sun et al. 2006; Ye 2004;
Michael and Ghosh 2000; Eskin et al. 2001;
Lee et al. 1997). These techniques analyze
each symbol with respect to previous few

symbols.
— Hidden Markov Model-Based Techniques:
These techniques transform the input

sequences into sequences of hidden states
and then detect anomalies in the transformed
sequences (Forrest et al. 1999; Qiao et al.
2002; Zhang et al. 2003; Florez-Larrahondo
et al. 2005).

Though several techniques have been proposed
for symbolic sequences in various application
domains, there has not been any cross domain
evaluation and understanding of the existing tech-
niques. Forrest et al. (1999) compared four differ-
ent anomaly detection techniques, but evaluated
them in the context of system call intrusion de-
tection. Sun et al. (2006) proposed a technique
for protein sequences, but no evaluation with
techniques proposed for system call data was
done. Similarly, while Budalakoti et al. (2006)
proposed a clustering-based techniques to detect
anomalies in flight sequences, it has not been
shown how the same technique would perform
on system call intrusion detection data or protein
data.

Most of the above methods identify an anoma-
lous sequence from a set of sequences, assuming
that majority of the sequences are normal. Other
methods focus on a different problem formu-
lation, also referred to as discord detection, in
which the goal is to identify a subsequence within
a long sequence which is anomalous with respect
to the rest of the sequence. Most of the existing
techniques that handle this problem formulation
slide a fixed length window across the given

Anomaly Detection

long sequence and compare each window with
the remaining sequence to detect anomalous win-
dows (Keogh et al. 2005a, 2006; Lin et al. 2005;
Wei et al. 2005).

Time Series

Most methods that handle time-series data
deal primarily with univariate signals, i.e.,
a single measurement captured over time.
Several statistical techniques detect anomalous
observations (also referred to as outliers) within
a single time series using various time series
modeling techniques such as regression (Fox
1972; Abraham and Chuang 1989; Rousseeuw
and Leroy 1987), autoregression (AR) (Fujimaki
et al. 2005; Wu and Shao 2005), ARMA
(Pincombe 2005), ARIMA (Zare Moayedi
and Masnadi-Shirazi 2008), support vector
regression (SVR) (Ma and Perkins 2003),
Kalman filters Knorn and Leith (2008), etc. The
general approach behind such techniques is to
forecast the next observation in the time series,
using the statistical model and the time series
observed so far, and compare the forecasted
observation with the actual observation to
determine if an anomaly has occurred.

Two broad categories of techniques have been
proposed to identify anomalous time series in a
time-series database (Chandola et al. 2009), viz.,
segmentation-based and kernel-based anomaly
detection techniques. The general approach be-
hind segmentation-based techniques is to seg-
ment the normal time series and treat each seg-
ment as a state in a finite-state automaton (FSA)
and then use the FSA to determine if a test
time series is anomalous or not. Several vari-
ants of the segmentation-based technique have
been proposed (Chan and Mahoney 2005; Ma-
honey and Chan 2005; Salvador and Chan 2005).
Kernel-based anomaly detection techniques com-
pute similarity/distance between time series and
apply a nearest neighbor-based anomaly detec-
tion technique on the similarity “kernel” (Pro-
topapas et al. 2006; Wei et al. 2006; Yankov et al.
2007). Protopapas et al. (2006) use cross corre-
lation as the similarity measure and compute the
anomaly score of a test time series as the inverse
of its average similarity to all other time series in

Anomaly Detection

the given data set. Wei et al. (2006) use a rotation
invariant version of Euclidean distance to com-
pute distance between time series and then assign
an anomaly score to each time series as equal
to its distance to its nearest neighbor. Yankov
et al. (2007) proposed pruning-based heuristics
to improve the efficiency of the nearest neighbor
technique (Wei et al. 20006).

Several anomaly detection techniques for time
series data identify anomalous subsequences
within a long time series (also referred to as
discords) (Keogh et al. 2004, 2005a, 2006;
Lin et al. 2005; Fu et al. 2006; Bu et al. 2007;
Yankov et al. 2007). Such techniques analyze
fixed length windows obtained from the time
series by comparing each window with the rest of
the time series or against all other windows from
that time series. A window which is significantly
different from other windows is declared as a
discord.

Limited research has been done to identify
anomalies in multivariate time series data. Most
existing methods for multivariate time series fo-
cus on detecting a single anomalous multivari-
ate observation (Baragona and Battaglia 2007;
Galeano et al. 2004; Tsay et al. 2000). Baragona
and Battaglia (2007) propose an ICA-based tech-
nique to detect outliers in multivariate time series.
The underlying idea is to isolate the multivariate
time series into a set of independent univariate
components and an outlier signal and analyze the
univariate outlier signal to determine the outliers.
The ICA-based technique assumes that the ob-
served signals are linear combination of indepen-
dent components as well as independent noise
signal, and the added noise has a high kurtosis.

Cheng et al. (2009) proposed a distance-based
approach to detect anomalous subsequences
within a given multivariate sequence. For a given
multivariate sequence S, all w length windows
are extracted. The distance between each pair
of windows is computed to obtain a symmetric
(T —w+1)x (T —w+1) kernel matrix. A fully
connected graph is constructed using the kernel
matrix in which each node represents a w length
window and the weight on the edges between
the pair of windows is equal to the similarity
(inverse of distance) between the pair. The nodes

51

(or components) of the graph that have least
connectivity are declared as anomalies.

Graphs and Networks

There has been considerable work done in the
area of anomaly detection in graphs (Akoglu et al.
2015). Two broad categories of methods exist
for detecting anomalies in graphs. The first type
of methods looks for anomalous substructures or
patterns within a graph (collective anomalies),
while the second type of methods focuses on
identifying anomalous nodes (contextual anoma-
lies).

The first type of methods typically operates
on graphs in which the nodes and/or edges are
described using a set of attributes. Such graphs
are often referred to as attributed graphs. The
general approach here is to identify subgraphs
within a large graph that have similar distribu-
tion of attributes (Noble and Cook 2003; Eberle
and Holder 2007). In particular, the work by
Noble and Cook (2003) identifies the frequent
subgraphs in a graph with categorical attributes.
Any subgraph that does not match the frequent
subgraphs is considered to be anomaly. Subse-
quently, several variants of the original method
have been proposed (Gao et al. 2010; Li et al.
2014; Sanchez et al. 2014).

The second type of methods analyzes each
node in a graph with respect to its neighborhood.
For instance, the OddBall method (Akoglu et al.
2010), analyzes each node with respect to its ego-
net which is the subgraph induced by the node
and the other nodes connected to it in the graph.
Other similar methods identify nodes that do not
belong to densely connected communities (Sun
et al. 2005; Ding et al. 2012; Tong and Lin 2011).
Similar methods have been proposed to identify
anomalies in attributed graphs (Gao et al. 2010;
Miiller et al. 2013).

Conclusions and Future Directions

The notion of anomaly is important in most real
world settings. Data-driven methods for timely
and effective identification of anomalies are es-
sential, and this has triggered tremendous interest

52

in the research community. However, the key
difference between anomaly detection and other
machine learning problems such as classification
and clustering is the lack of a consistent defi-
nition of anomalies. Instead, several definitions
of anomalies exist, each tailored to the need
of an underlying application. In this article, we
have provided an overview of this rich area by
discussing the key aspects of this problem.

We have discussed different classifications of
anomaly detection methods and provided under-
standing of the strengths and weaknesses of these
classes of methods. One of the important subareas
in this context is the class of methods that han-
dle complex structured data. We have discussed
methods that have been specifically developed to
handle sequences, time series, and network data.

Given the unstructured nature of current
research, a theoretical understanding of the
anomaly detection is challenging to obtain.
A possible future work would be to unify
the assumptions made by different techniques
regarding the normal and anomalous behavior
into a statistical or machine learning framework.
A limited attempt in this direction is provided by
Knorr et al. (1997), where the authors show the
relation between distance based and statistical
anomalies for two-dimensional data sets.

There are several promising directions for fur-
ther research in anomaly detection. Contextual
and collective anomaly detection techniques are
beginning to find increasing applicability in sev-
eral domains, and there is much scope for devel-
opment of new techniques in this area. The pres-
ence of data across different distributed locations
has motivated the need for distributed anomaly
detection techniques (Zimmermann and Mohay
2006). While such techniques process informa-
tion available at multiple sites, they often have
to simultaneously protect the information present
in each site, thereby requiring privacy preserv-
ing anomaly detection techniques (Vaidya and
Clifton 2004). With the emergence of sensor net-
works, processing data as it arrives has become
a necessity. Many techniques discussed in this
article require the entire test data before detect-
ing anomalies. Recently, techniques have been
proposed that can operate in an online fashion

Anomaly Detection

(Pokrajac et al. 2007); such techniques not only
assign an anomaly score to a test instance as it
arrives, but also incrementally update the model.

References

Abraham B, Chuang A (1989) Outlier detection and
time series modeling. Technometrics 31(2):241

Aggarwal CC (2013) Outlier analysis, Springer, New
York

Agovic A, Banerjee A, Ganguly AR, Protopopescu V
(2007) Anomaly detection in transportation cor-
ridors using manifold embedding. In: First inter-
national workshop on knowledge discovery from
sensor data, ACM Press, New York

Akoglu L, McGlohon M, Faloutsos C (2010) Odd-
Ball: spotting anomalies in weighted graphs. In:
In Pacific-Asia conference on knowledge discovery
and data mining (PAKDD), Hyderabad

Akoglu L, Tong H, Koutra D (2015) Graph based
anomaly detection and description: a survey. Data
Min Knowl Discov 29(3):626

Aleskerov E, Freisleben B, Rao B (1997) Cardwatch:
a neural network based database mining system for
credit card fraud detection. In: Proceedings of IEEE
computational intelligence for financial engineer-
ing, New York, pp 220-226

Arning A, Agrawal R, Raghavan P (1996) A linear
method for deviation detection in large databases.
In: Proceedings of 2nd international conference of
knowledge discovery and data mining, pp 164-169.
citeseer.ist.psu.edu/arning96linear.html

Baragona R, Battaglia F (2007) Outliers detection in
multivariate time series by independent component
analysis. Neural Comput 19(7):1962. doi:http://dx.
doi.org/10.1162/neco0.2007.19.7.1962

Barbara D, Couto J, Jajodia S, Wu N (2001) Detecting
novel network intrusions using bayes estimators. In:
Proceedings of the first SIAM international confer-
ence on data mining, Chicago

Barnett V, Lewis T (1994) Outliers in statistical data,
Wiley, Chichester

Breunig MM, Kriegel HP, Ng RT, Sander J (1999)
Optics-of: identitying local outliers. In: Proceedings
of the third European conference on principles of
data mining and knowledge discovery, Springer,
Berlin/New York, pp 262-270

Breunig MM, Kriegel HP, Ng RT, Sander J (2000)
LOF: identifying density-based local outliers. In:
Proceedings of 2000 ACM SIGMOD international
conference on management of data. ACM Press,
pp 93-104. doi:http://doi.acm.org/10.1145/342009.
335388

Bu Y, Leung TW, Fu A, Keogh E, Pei J, Meshkin S
(2007) WAT: finding top-k discords in time series
database. In: Proceedings of 7th siam international
conference on data mining

citeseer.ist.psu.edu/arning96linear.html
http://dx.doi.org/10.1162/neco.2007.19.7.1962
http://dx.doi.org/10.1162/neco.2007.19.7.1962
http://doi.acm.org/10.1145/342009.335388
http://doi.acm.org/10.1145/342009.335388

Anomaly Detection

Budalakoti S, Srivastava A, Akella R, Turkov E (2006)
Anomaly detection in large sets of high-dimensional
symbol sequences. Technical report NASA TM-
2006-214553, NASA Ames Research Center

Budalakoti S, Srivastava A, Otey M (2007) Anomaly
detection and diagnosis algorithms for discrete sym-
bol sequences with applications to airline safety. In:
Proceedings of the IEEE international conference on
systems, man, and cybernetics, Montreal, vol. 37

Cabrera JBD, Lewis L, Mehra RK (2001) Detection
and classification of intrusions and faults using
sequences of system calls. SIGMOD Records
30(4):25. doi:http://doi.acm.org/10.1145/604264.
604269

Chan PK, Mahoney MV (2005) Modeling multiple
time series for anomaly detection. In: Proceedings
of the fifth IEEE international conference on data
mining. IEEE Computer Society, Washington, DC,
pp 90-97

Chandola V, Banerjee A, Kumar V (2009) Anomaly
detection a survey. ACM Comput Surv 41(3):15:1-
15:58

Chandola V, Banerjee A, Kumar V (2012) Anomaly
detection for discrete sequences: a survey. IEEE
Trans Knowl Data Eng 24:823. doi:http://doi.
ieeecomputersociety.org/10.1109/TKDE.2010.235

Chandola V, Cheboli D, Kumar V (2009) Detecting
anomalies in a timeseries database. Technical report
09-004, Computer Science Department, University
of Minnesota

Chawla S, Gionis A (2013) k-means-: a unified ap-
proach to clustering and outlier detection. In: Pro-
ceedings of the 13th SIAM international conference
on data mining, Austin, 2-4 May 2013, pp 189-197

Cheng H, Tan PN, Potter C, Klooster S (2009) Detec-
tion and characterization of anomalies in multivari-
ate time series. In: Proceedings of the ninth SIAM
international conference on data mining (SDM)

Chow C, Yeung DY (2002) Parzen-window network
intrusion detectors. In: Proceedings of the 16th
International conference on pattern recognition,
vol 4. IEEE Computer Society, Washington, DC,
p 40385

Debar H, Dacier M, Nassehi M, Wespi A (1998) Fixed
vs. variable-length patterns for detecting suspicious
process behavior. In: Proceedings of the 5th Euro-
pean symposium on research in computer security,
Springer, London, pp 1-15

Ding Q, Katenka N, Barford P, Kolaczyk E, Crovella M
(2012) Intrusion as (anti)social communication:
characterization and detection. In: Proceedings of
the 18th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD’12),
pp 886-894

Eberle W, Holder L (2007) Anomaly detection
in data represented as graphs. Intell Data Anal
11(6):663. http://dl.acm.org/citation.cfm?id=13680
18.1368024

Edgeworth FY (1887) On discordant observations.
Philos Mag 23(5):364

53

Endler D (1998) Intrusion detection: applying machine
learning to solaris audit data. In: Proceedings of the
14th annual computer security applications confer-
ence. [IEEE Computer Society, Los Alamitos, p 268

Eskin E, Arnold A, Prerau M, Portnoy L, Stolfo S
(2002) A geometric framework for unsupervised
anomaly detection. In: Proceedings of applications
of data mining in computer security. Kluwer Aca-
demics, Dordrecht, pp 78-100

Eskin E, Lee W, Stolfo S (2001) Modeling system
call for intrusion detection using dynamic window
sizes. In: Proceedings of DISCEX. citeseer.ist.psu.
edu/portnoyOlintrusion.html

Florez-Larrahondo G, Bridges SM, Vaughn R (2005)
Efficient modeling of discrete events for anomaly
detection using hidden Markov models. Inf Secur
3650:506

Forrest S, Hofmeyr SA, Somayaji A, Longstaff TA
(1996) A sense of self for unix processes. In: Pro-
ceedings of the ISRSP’96, pp 120-128. citeseer.ist.
psu.edu/forrest96sense.html

Forrest S, Warrender C, Pearlmutter B (1999) De-
tecting intrusions using system calls: alternate data
models. In: Proceedings of the 1999 IEEE ISRSP.
IEEE Computer Society, Washington, DC, pp 133-
145

Fox AJ (1972) Outliers in time series. J R Stat Soc Ser.
B(Methodolog) 34(3):350

Fu AWC, Leung OTW, Keogh EJ, Lin J (2006) Finding
time series discords based on haar transform. In:
Proceeding of the 2nd International conference on
advanced data mining and applications. Springer,
Berlin/New York, pp 31-41

Fujimaki R, Yairi T, Machida K (2005) An anomaly
detection method for spacecraft using relevance
vector learning. In: Proceeding of the eleventh
ACM SIGKDD international conference on knowl-
edge discovery in data mining. ACM Press, New
York, pp 401-410. doi:http://doi.acm.org/10.1145/
1081870.1081917

Fujimaki R, Yairi T, Machida K (2005) An approach
to spacecraft anomaly detection problem using ker-
nel feature space. Adv Knowl Discov Data Min
3518:785

Galeano P, Pena D, Tsay RS (2004) Outlier detec-
tion in multivariate time series via projection pur-
suit. Statistics and Econometrics Working Papers
ws044211, Universidad Carlos III, Departamento de
Estadistica y Econometrica

Gao J, Tan PN (2006) Converting output scores from
outlier detection algorithms into probability esti-
mates. In: Proceedings of the sixth international
conference on data mining (ICDM ’06), Hong
Kong, pp 212-221

Gao J, Liang F, Fan W, Wang C, Sun Y, Han J (2010)
On community outliers and their efficient detection
in information networks. In: Proceedings of the
16th ACM SIGKDD international conference on
knowledge discovery and data mining (KDD ’10),
Washington, DC, pp 813-822

http://doi.acm.org/10.1145/604264.604269
http://doi.acm.org/10.1145/604264.604269
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.235
http://doi.ieeecomputersociety.org/10.1109/TKDE.2010.235
http://dl.acm.org/citation.cfm?id=1368018.1368024
citeseer.ist.psu.edu/portnoy01intrusion.html
citeseer.ist.psu.edu/portnoy01intrusion.html
citeseer.ist.psu.edu/forrest96sense.html
citeseer.ist.psu.edu/forrest96sense.html
http://doi.acm.org/10.1145/1081870.1081917
http://doi.acm.org/10.1145/1081870.1081917

54

Ghosh AK, Schwartzbard A, Schatz M (1999) Learn-
ing program behavior profiles for intrusion detec-
tion. In: Proceedings of SANS third conference
and workshop on intrusion detection and response.
citeseer.ist.psu.edu/ghosh99learning.html

Ghosh AK, Schwartzbard A, Schatz M (1999) Using
program behavior profiles for intrusion detection.
In: Proceedings of 1st USENIX workshop on intru-
sion detection and network monitoring, Santa Clara,
pp 51-62

Hawkins S, He H, Williams GJ, Baxter RA (2002)
Outlier detection using replicator neural networks.
In: Proceedings of the 4th international confer-
ence on data warehousing and knowledge discovery.
Springer, Berlin, pp 170-180

He Z, Deng S, Xu X, Huang JZ (2006) A fast greedy
algorithm for outlier mining. In: Proceedings of
10th Pacific-Asia conference on knowledge and data
discovery, pp 567-576

He Z, Xu X, Deng S (2003) Discovering cluster-
based local outliers. Pattern Recognit Lett 24(9—
10):1641. doi:http://dx.doi.org/10.1016/S0167-
8655(03)00003-5

He Z, Xu X, Deng S (2005) An optimization model for
outlier detection in categorical data. In: Proceedings
of international conference on intelligent comput-
ing, vol 3644. Springer, Berlin/Heidelberg

Hodge V, Austin J (2004) A survey of outlier detection
methodologies. Artif Intell Rev 22(2):85. doi:http://
dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9

Hofmeyr SA, Forrest S, Somayaji A (1998) Intru-
sion detection using sequences of system calls.
J Comput Secur 6(3):151. citeseer.ist.psu.edu/
hofmeyr98intrusion.html

Keogh E, Lin J, Fu A (2005) Hot sax: Efficiently
finding the most unusual time series subsequence.
In: Proceedings of the fifth IEEE international con-
ference on data mining, IEEE Computer Society,
Washington, DC, pp 226-233. doi:http://dx.doi.org/
10.1109/ICDM.2005.79

Keogh E, Lin J, Lee SH, Herle HV (2006) Finding the
most unusual time series subsequence: algorithms
and applications. Knowl Inf Syst 11(1):1. doi:http://
dx.doi.org/10.1007/s10115-006-0034-6

Keogh E, Lonardi S, Ratanamahatana CA (2004) To-
wards parameter-free data mining. In: Proceedings
of the 10th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM
Press, New York, pp 206-215. doi:http://doi.acm.
org/10.1145/1014052.1014077

Khoa NLD, Chawla S (2010) Robust outlier detection
using commute time and eigenspace embedding. In:
Advances in knowledge discovery and data min-
ing, 14th Pacific-Asia conference, PAKDD 2010.
Proceedings, Part II. Hyderabad, 21-24 June 2010,
pp 422-434

Knorn F, Leith D (2008) Adaptive Kalman filtering
for anomaly detection in software appliances. In:
IEEE INFOCOM workshops 2008, Phoenix, AZ,

pp 1-6

Anomaly Detection

Knorr EM, Ng RT (1997) A unified approach for min-
ing outliers. In: Proceedings of the 1997 conference
of the centre for advanced studies on collaborative
research. IBM Press, Toronto, p 11

Knorr EM, Ng RT (1999) Finding intensional
knowledge of distance-based outliers. In: The
VLDB journal, pp 211-222. citeseer.ist.psu.edu/
knorr99finding.html

Knorr EM, Ng RT, Tucakov V (2000) Distance-
based outliers: algorithms and applications.
VLDB J 8(3-4):237. doi:http://dx.doi.org/10.1007/
5007780050006

Kou Y, Lu CT, Chen D (2006) Spatial weighted outlier
detection. In: Proceedings of SIAM conference on
data mining, Bethesda

Kriegel HP, Hubert MS, Zimek A (2008) Angle-based
outlier detection in highdimensional data. In: Pro-
ceedings of the 14th ACM SIGKDD international
conference on knowledge discovery and data mining
(KDD ’08), Las Legas, pp 444452

Kriegel HP, Krger P, Schubert E, Zimek A (2011)
Interpreting and unifying outlier scores. In: SDM.
SIAM/Omnipress, Mesa, AZ, USA, pp 13-24

Kumar V (2005) Parallel and distributed computing
for cybersecurity. Distributed systems online. IEEE
6(10). doi:10.1109/MDS0.2005.53

Lane T, Brodley CE (1997) Sequence matching and
learning in anomaly detection for computer security.
In: Fawcett T, Haimowitz I, Provost F, Stolfo S (eds)
Proceedings of Al approaches to fraud detection and
risk management. AAAI Press, Menlo Park, pp 43—
49

Lane T, Brodley CE (1999) Temporal sequence learn-
ing and data reduction for anomaly detection. ACM
Trans Inf Syst Secur 2(3):295. doi:http://doi.acm.
org/10.1145/322510.322526

Laurikkala J, Juholal M, Kentala E (2000) Infor-
mal identification of outliers in medical data. In:
Fifth international workshop on intelligent data
analysis in medicine and pharmacology, Berlin,
pp 20-24

Lee W, Xiang D (2001) Information-theoretic mea-
sures for anomaly detection. In: Proceedings of the
IEEE symposium on security and privacy. IEEE
Computer Society, Washington, DC, p 130

Lee W, Stolfo S, Chan P (1997) Learning patterns from
unix process execution traces for intrusion detec-
tion. In: Proceedings of the AAAI 97 workshop on
Al methods in fraud and risk management

Li N, Sun H, Chipman KC, George J, Yan
X (2014) A probabilistic approach to uncover-
ing attributed graph anomalies. In: Proceedings
of the 2014 SIAM international conference on
data mining, Philadelphia, pp 82-90, 24-26 Apr
2014. doi:10.1137/1.9781611973440.10, http://dx.
doi.org/10.1137/1.9781611973440.10

Lin J, Keogh E, Fu A, Herle HV (2005) Approxima-
tions to magic: finding unusual medical time series.
In: Proceedings of the 18th IEEE symposium on
computer-based medical systems. IEEE Computer

citeseer.ist.psu.edu/ghosh99learning.html
http://dx.doi.org/10.1016/S0167-8655(03)00003-5
http://dx.doi.org/10.1016/S0167-8655(03)00003-5
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
citeseer.ist.psu.edu/hofmeyr98intrusion.html
citeseer.ist.psu.edu/hofmeyr98intrusion.html
http://dx.doi.org/10.1109/ICDM.2005.79
http://dx.doi.org/10.1109/ICDM.2005.79
http://dx.doi.org/10.1007/s10115-006-0034-6
http://dx.doi.org/10.1007/s10115-006-0034-6
http://doi.acm.org/10.1145/1014052.1014077
http://doi.acm.org/10.1145/1014052.1014077
citeseer.ist.psu.edu/knorr99finding.html
citeseer.ist.psu.edu/knorr99finding.html
http://dx.doi.org/10.1007/s007780050006
http://dx.doi.org/10.1007/s007780050006
http://doi.acm.org/10.1145/322510.322526
http://doi.acm.org/10.1145/322510.322526
http://dx.doi.org/10.1137/1.9781611973440.10
http://dx.doi.org/10.1137/1.9781611973440.10

Anomaly Detection

Society, Washington, DC, pp 329-334. doi:http://
dx.doi.org/10.1109/CBMS.2005.34

Ma J, Perkins S (2003) Online novelty detection on
temporal sequences. In: Proceedings of the 9th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM Press, New
York, pp 613-618. doi:http://doi.acm.org/10.1145/
956750.956828

Mahoney MV, Chan PK (2002) Learning nonstation-
ary models of normal network tra c for detecting
novel attacks. In: Proceedings of the 8th ACM
SIGKDD international conference on Knowledge
discovery and data mining. ACM Press, pp 376—
385. doi:http://doi.acm.org/10.1145/775047.775102

Mahoney MV, Chan PK (2003) Learning rules for
anomaly detection of hostile network traffic. In:
Proceedings of the 3rd IEEE international confer-
ence on data mining. IEEE Computer Society, Los
Alamitos, p 601

Mahoney MV, Chan PK (2005) Trajectory boundary
modeling of time series for anomaly detection. In:
Proceedings of the KDD workshop on data mining
methods for anomaly detection, Las Vegas, NV,
USA

Mahoney MV, Chan PK, Arshad MH (2003) A ma-
chine learning approach to anomaly detection. Tech-
nical report CS-2003-06, Department of Computer
Science, Florida Institute of Technology Melbourne,
FL, 32901

Marchette D (1999) A statistical method for profiling
network traffic. In: Proceedings of 1st USENIX
workshop on intrusion detection and network moni-
toring, Santa Clara, pp 119-128

Michael CC, Ghosh A (2000) Two state-based ap-
proaches to program-based anomaly detection. In:
Proceedings of the 16th annual computer security
applications conference, IEEE Computer Society,
Los Alamitos, p 21

Miiller E, Sanchez PI, Miille Y, Bohm K (2013)
Ranking outlier nodes in subspaces of attributed
graphs. In: Workshops proceedings of the 29th IEEE
international conference on data engineering. ICDE,
pp 216-222

Noble CC, Cook DJ (2003) Graph-based anomaly
detection. In: Proceedings of the 9th ACM SIGKDD
international conference on Knowledge discov-
ery and data mining. ACM Press, pp 631-636.
doi:http://doi.acm.org/10.1145/956750.956831

Otey ME, Ghoting A, Parthasarathy S (2006) Fast
distributed outlier detection in mixed-attribute
data sets. Data Min Knowl Discov 12(2-3):203.
doi:http://dx.doi.org/10.1007/s10618-005-0014-6

Ott L, Pang LX, Ramos FT, Chawla S (2014) On inte-
grated clustering and outlier detection. In: Advances
in neural information processing systems, pp 1359—
1367

Parra L, Deco G, Miesbach S (1996) Statistical in-
dependence and novelty detection with informa-
tion preserving nonlinear maps. Neural Comput 8
(2):260

55

Pincombe B (2005) Anomaly detection in time se-
ries of graphs using ARMA processes. ASOR Bull
24(4):2

Pokrajac D, Lazarevic A, Latecki LJ (2007) Incre-
mental local outlier detection for data streams. In:
Proceedings of IEEE symposium on computational
intelligence and data mining

Portnoy L, Eskin E, Stolfo S (2001) Intrusion detection
with unlabeled data using clustering. In: Proceed-
ings of ACM workshop on data mining applied
to security. citeseer.ist.psu.edu/portnoy(lintrusion.
html

Protopapas P, Giammarco JM, Faccioli L, Struble MF,
Dave R, Alcock C (2006) Finding outlier light
curves in catalogues of periodic variable stars. Mon
Notices R Astron Soc 369(2):677

Qiao Y, Xin XW, Bin Y, Ge S (2002) Anomaly intru-
sion detection method based on HMM. Electron Lett
38(13):663

Ramaswamy S, Rastogi R, Shim K (2000) Efficient
algorithms for mining outliers from large data sets.
In: Proceedings of the 2000 ACM SIGMOD inter-
national conference on Management of data. ACM
Press, New York, pp 427-438. doi:http://doi.acm.
org/10.1145/342009.335437

Roth V (2004) In: NIPS

Rousseeuw PJ, Leroy AM (1987) Robust regression
and outlier detection. Wiley, New York

Salvador S, Chan P (2003) Learning states and rules for
time-series anomaly detection. Technical report CS—
2003-05, Department of Computer Science, Florida
Institute of Technology Melbourne FL 32901

Salvador S, Chan P (2005) Learning states and rules
for detecting anomalies in time series. Appl Intell
23(3):241. doi:http://dx.doi.org/10.1007/s10489-
005-4610-3

Sénchez PI, Miiller E, Irmler O, Bohm K (2014)
Local context selection for outlier ranking in
graphs with multiple numeric node attributes. In:
Proceedings of the 26th International conference
on scientific and statistical database management
(SSDBM ’14). ACM, New York, pp 16:1-16:12.
doi:10.1145/2618243.2618266. http://doi.acm.org/
10.1145/2618243.2618266

Scholkopf B, Platt JC, Shawe-Taylor JC, Smola AlJ,
Williamson RC (2001) Estimating the support of
a high-dimensional distribution. Neural Comput
13(7):1443

Schubert E, Wojdanowski R, Zimek A, Kriegel HP
(2012) In: SDM. SIAM/Omnipress, Anaheim, CA,
USA, pp 1047-1058

Shekhar S, Lu CT, Zhang P (2001) A novel anomaly
detection scheme based on principal component
classifier. In: Proceedings of the 7th ACM SIGKDD
international conference on knowledge discovery
and data mining. ACM Press, New York, pp 371-
376. doi:http://doi.acm.org/10.1145/502512.502567

Shyu ML, Chen SC, Sarinnapakorn K, Chang L (2003)
A novel anomaly detection scheme based on prin-
cipal component classifier. In: Proceedings of 3rd

http://dx.doi.org/10.1109/CBMS.2005.34
http://dx.doi.org/10.1109/CBMS.2005.34
http://doi.acm.org/10.1145/956750.956828
http://doi.acm.org/10.1145/956750.956828
http://doi.acm.org/10.1145/775047.775102
http://doi.acm.org/10.1145/956750.956831
http://dx.doi.org/10.1007/s10618-005-0014-6
citeseer.ist.psu.edu/portnoy01intrusion.html
citeseer.ist.psu.edu/portnoy01intrusion.html
http://doi.acm.org/10.1145/342009.335437
http://doi.acm.org/10.1145/342009.335437
http://dx.doi.org/10.1007/s10489-005-4610-3
http://dx.doi.org/10.1007/s10489-005-4610-3
http://doi.acm.org/10.1145/2618243.2618266
http://doi.acm.org/10.1145/2618243.2618266
http://doi.acm.org/10.1145/502512.502567

56

IEEE international conference on data mining, Mel-
bourne, pp 353-365

Song X, Wu M, Jermaine C, Ranka S (2007) Condi-
tional anomaly detection. IEEE Trans Knowl Data
Eng 19(5):631 doi:http://doi.ieeecomputersociety.
org/10.1109/TKDE.2007.1009

Spence C, Parra L, Sajda P (2001) Detection, synthesis
and compression in mammographic image analysis
with a hierarchical image probability model. In:
Proceedings of the IEEE workshop on mathematical
methods in biomedical image analysis. IEEE Com-
puter Society, Washington, DC, p 3

Sun J, Qu H, Chakrabarti D, Faloutsos C (2005)
Relevance search and anomaly detection in bipartite
graphs. SIGKDD Explor Newslett 7(2):48

Sun P, Chawla S, Arunasalam B (2006) Mining for out-
liers in sequential databases. In: SIAM international
conference on data mining, Philadelphia

Tan PN, Steinbach M, Kumar V (2005) Introduction to
data mining. Addison-Wesley, Boston

Tang J, Chen Z, chee Fu AW, Cheung DW (2002)
Enhancing effectiveness of outlier detections for
low density patterns. In: Proceedings of the Pacific-
Asia conference on knowledge discovery and data
mining, Taipei, pp 535-548

Tax DMIJ (2001) One-class classification; concept-
learning in the absence of counter-examples. PhD
thesis, Delft University of Technology

Tax D, Duin R (1999) Data domain description using
support vectors. In: Verleysen M (ed) Proceedings
of the European symposium on artificial neural
networks, Brussels, pp 251-256

Tax D, Duin R (1999) Support vector data description.
Pattern Recognit Lett 20(11-13):1191

Tong H, Lin C-Y (2011) Non-negative residual matrix
factorization with application to graph anomaly de-
tection. In: Proceedings of the 2011 SIAM interna-
tional conference on data mining, Philadelphia, pp
143-153

Tsay RS, Peja D, Pankratz AE (2000) Outliers in
multivariate time series. Biometrika 87(4):789

Vaidya J, Clifton C (2004) Privacy-preserving outlier
detection. In: Proceedings of the 4th IEEE interna-
tional conference on data mining, Brighton, pp 233—
240

Wei L, Keogh E, Xi X (2006) Saxually explicit im-
ages: Finding unusual shapes. In: Proceedings of the
sixth international conference on data mining, IEEE
Computer Society, Washington, DC, pp 711-720.
doi:http://dx.doi.org/10.1109/ICDM.2006.138

Wei L, Kumar N, Lolla V, Keogh EJ, Lonardi
S, Ratanamahatana C (2005) Assumption-free
anomaly detection in time series. In: Proceedings of
the 17th international conference on Scientific and
statistical database management, Lawrence Berke-
ley Laboratory, Berkeley, pp 237-240

Weigend AS, Mangeas M, Srivastava AN (1995) Non-
linear gated experts for timeseries — discovering
regimes and avoiding overfitting. Int J Neural Syst
6(4):373

Ant Colony Optimization

Wu Q, Shao Z (2005) Network anomaly detection
using time series analysis. In: Proceedings of the
joint international conference on autonomic and au-
tonomous systems and international conference on
networking and services. IEEE Computer Society,
Washington, DC, p 42

Yang J, Wang W (2003) CLUSEQ: Efficient and ef-
fective sequence clustering. In: Proceedings of inter-
national conference on data engineering, Bangalore,
pp 101-112

Yankov D, Keogh EJ, Rebbapragada U (2007) Disk
aware discord discovery: Finding unusual time se-
ries in terabyte sized datasets. In: Proceedings of
international conference on data mining, pp 381—
390

Ye N (2004) A Markov Chain model of temporal be-
havior for anomaly detection. In: Proceedings of the
5th annual IEEE information assurance workshop.
IEEE, Piscataway

Zare Moayedi H, Masnadi-Shirazi M (2008)
ARIMA model for network traffic prediction
and anomaly detection. Int Symp Inf Technol 4:1.
doi:10.1109/1TSIM.2008.4631947

Zhang J, Wang H (2006) Detecting outlying subspaces
for high-dimensional data: the new task, algo-
rithms, and performance. Knowl Inf Syst 10(3):333.
doi:http://dx.doi.org/10.1007/s10115-006-0020-z

Zhang X, Fan P, Zhu Z (2003) A new anomaly de-
tection method based on hierarchical HMM. In:
Proceedings of the 4th international conference on
parallel and distributed computing, applications and
technologies, Chengdu, pp 249-252

Zimmermann J, Mohay G (2006) Distributed intru-
sion detection in clusters based on non-interference.
In: ACSW Frontiers ’06: Proceedings of the
2006 Australasian workshops on grid computing
and e-research. Australian Computer Society, Dar-
linghurst, pp 89-95

Ant Colony Optimization

Marco Dorigo and Mauro Birattari

Université Libre de Bruxelles, Brussels, Belgium
Synonyms

ACO

Definition

Ant colony optimization (ACO) is a population-
based metaheuristic for the solution of difficult

http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.1009
http://doi.ieeecomputersociety.org/10.1109/TKDE.2007.1009
http://dx.doi.org/10.1109/ICDM.2006.138
http://dx.doi.org/10.1007/s10115-006-0020-z
http://dx.doi.org/10.1007/978-1-4899-7687-1_100003

Ant Colony Optimization

combinatorial optimization problems. In ACO,
each individual of the population is an artificial
agent that builds incrementally and stochastically
a solution to the considered problem. Agents
build solutions by moving on a graph-based
representation of the problem. At each step
their moves define which solution components
are added to the solution under construction. A
probabilistic model is associated with the graph
and is used to bias the agents’ choices. The
probabilistic model is updated on-line by the
agents so as to increase the probability that future
agents will build good solutions.

Motivation and Background

Ant colony optimization is so called because
of its original inspiration: the foraging behavior
of some ant species. In particular, in Beckers
et al. (1992) it was demonstrated experimen-
tally that ants are able to find the shortest path
between their nest and a food source by col-
lectively exploiting the pheromone they deposit
on the ground while walking. Similar to real
ants, ACO’s artificial agents, also called artificial
ants, deposit artificial pheromone on the graph
of the problem they are solving. The amount of
pheromone each artificial ant deposits is propor-
tional to the quality of the solution the artificial
ant has built. These artificial pheromones are
used to implement a probabilistic model that is
exploited by the artificial ants to make decisions
during their solution construction activity.

Structure of the Optimization System

Let us consider a minimization problem (S, f),
where S is the set of feasible solutions, and f
is the objective function, which assigns to each
solution s € S a cost value f(s). The goal is
to find an optimal solution s*, that is, a feasible
solution of minimum cost. The set of all optimal
solutions is denoted by S*.

Ant colony optimization attempts to solve this
minimization problem by repeating the following
two steps:

57

* Candidate solutions are constructed using a
parameterized probabilistic model, that is, a
parameterized probability distribution over the
solution space.

¢ The candidate solutions are used to modify the
model in a way that is intended to bias future
sampling toward low cost solutions.

The Ant Colony Optimization Probabilistic
Model

We assume that the combinatorial optimization
problem (S, f) is mapped on a problem that can
be characterized by the following list of items:

e A finite set C = {c1,¢2,...,cn,} of com-
ponents, where N¢ is the number of compo-
nents.

* A finite set X’ of states of the problem, where
a state is a sequence X = (¢;,Cj,...,Ck,...)
over the elements of C. The length of a se-
quence x, that is, the number of components
in the sequence, is expressed by |x|. The
maximum length of a sequence is bounded by
a positive constant n < +00.

¢ A set of (candidate) solutions &, which is a
subset of X’ (i.e., S C X).

e A set of feasible states X , with X C
defined via a set of constraints 2.

¢ A nonempty set S* of optimal solutions, with
S*C XandS* C S.

X»

Given the above formulation (Note that, be-
cause this formulation is always possible, ACO
can in principle be applied to any combinato-
rial optimization problem.) artificial ants build
candidate solutions by performing randomized
walks on the completely connected, weighted
graph G = (C,L,7T), where the vertices are
the components C, the set £ fully connects the
components C, and T is a vector of so-called
pheromone trails t. Pheromone trails can be as-
sociated with components, connections, or both.
Here we assume that the pheromone trails are
associated with connections, so that 7(i, j) is the
pheromone associated with the connection be-
tween components i and j. It is straightforward
to extend the algorithm to the other cases. The
graph G is called the construction graph.

58

To construct candidate solutions, each artifi-
cial ant is first put on a randomly chosen vertex
of the graph. It then performs a randomized walk
by moving at each step from vertex to vertex on
the graph in such a way that the next vertex is
chosen stochastically according to the strength
of the pheromone currently on the arcs. While
moving from one node to another of the graph
G, constraints 2 may be used to prevent ants
from building infeasible solutions. Formally, the
solution construction behavior of a generic ant
can be described as follows:

Pr(ck41 = clxx)

F(ck ,c) (t(ck,c))

Ant Colony Optimization

ANT_SOLUTION_CONSTRUCTION

* For each ant:

— Select a start node c¢; according to some
problem dependent criterion.
— Setk = 1and x; = (c1).

e While x; = (c1,¢2,...,¢ck) € X, xx f£S,
and the set Jy, of components that can
be appended to x; is not empty, select
the next node (component) ci4; randomly
according to:

Z(ck,y)EJxk Fler.y)ier.»)

if (cx.,c) € Jx,,
(D

otherwise,

where a connection (cg,y) belongs to
Jx, if and only if the sequence xxy; =
(c1,¢2,...,¢Ck,y) satisfies the constraints €2
(that is, xg4+; € X) and F()(2) is some
monotonic function — a common choice being
z2%n(i, j)P, where o, B > 0, and 5(i, j)’s
are heuristic values measuring the desirability
of adding component j after i. If at some
stage xx A£S and Jy, = @, that is, the
construction process has reached a dead-end,
the current state x; is discarded. However,
this situation may be prevented by allowing
artificial ants to build infeasible solutions as
well. In such a case, an infeasibility penalty
term is usually added to the cost function.
Nevertheless, in most of the settings in which
ACO has been applied, the dead-end situation
does not occur.

For certain problems, one may find it useful to
use a more general scheme, where F depends
on the pheromone values of several “related”
connections rather than just a single one.
Moreover, instead of the random-proportional
rule above, different selection schemes, such as
the pseudo-random-proportional rule (Dorigo
and Gambardella 1997), may be used.

The Ant Colony Optimization Pheromone
Update

Many different schemes for pheromone update
have been proposed within the ACO framework.
For an extensive overview, see Dorigo and
Stiitzle (2004). Most pheromone updates can
be described using the following generic scheme:
GENERIC_ACO_UPDATE

e Vs e 8.V, j)es:
QF(Slsls-”’St)
* V@, j) i, j) < A —=p) @,)),

t(@,j) < (. j) +

where S; is the sample in the ith iteration,
p,0 < p < 1, is the evaporation rate, and
Qr(s|Si,...,S:) is some “quality function,”
which is typically required to be non-increasing
with respect to f and is defined over the
“reference set” §,.

Different ACO algorithms may use different
quality functions and reference sets. For example,
in the very first ACO algorithm — Ant System
(Dorigo et al. 1991, 1996) — the quality function
is simply 1/ (s) and the reference set S; = S;. In
a subsequently proposed scheme, called iteration
best update (Dorigo and Gambardella 1997), the

Anytime Algorithm

reference set is a singleton containing the best
solution within §; (if there are several iteration-
best solutions, one of them is chosen randomly).
For the global-best update (Dorigo et al. 1996;
Stiitzle and Hoos 1997), the reference set contains
the best among all the iteration-best solutions
(and if there are more than one global-best so-

Or(s|S1,....8) =1 (1

59

lution, the earliest one is chosen). In Dorigo
et al. (1996) an elitist strategy was introduced, in
which the update is a combination of the previous
two.

In case a good lower bound on the optimal so-
lution cost is available, one may use the following
quality function (Maniezzo 1999):

B f(s)—LB) __f=f®)
= = T =

@

f—LB LB’

where f is the average of the costs of the last k
solutions and LB is the lower bound on the opti-
mal solution cost. With this quality function, the
solutions are evaluated by comparing their cost
to the average cost of the other recent solutions,
rather than by using the absolute cost values.
In addition, the quality function is automatically
scaled based on the proximity of the average cost
to the lower bound.

A pheromone update that slightly differs from
the generic update described above was used
in ant colony system (ACS) (Dorigo and Gam-
bardella 1997). There the pheromone is evap-
orated by the ants online during the solution
construction, hence only the pheromone involved
in the construction evaporates.

Another modification of the generic update
was introduced in MAX — MIN Ant System
(Stiitzle and Hoos 1997, 2000), which uses max-
imum and minimum pheromone trail limits. With
this modification, the probability of generating
any particular solution is kept above some posi-
tive threshold. This helps to prevent search stag-
nation and premature convergence to suboptimal
solutions.

Cross-References
Swarm Intelligence

Recommended Reading

Beckers R, Deneubourg JL, Goss S (1992) Trails and
U-turns in the selection of the shortest path by the
ant Lasius Niger. J Theor Biol 159:397-415

Dorigo M, Gambardella LM (1997) Ant colony sys-
tem: a cooperative learning approach to the trav-
eling salesman problem. IEEE Trans Evol Comput
1(1):53-66

Dorigo M, Stiitzle T (2004) Ant colony optimization.
MIT Press, Cambridge

Dorigo M, Maniezzo V, Colorni A (1991) Positive
feedback as a search strategy. Technical report 91-
016, Dipartimento di Elettronica, Politecnico di Mi-
lano, Milan

Dorigo M, Maniezzo V, Colorni A (1996) Ant system:
optimization by a colony of cooperating agents.
IEEE Trans Syst Man Cybern — Part B 26(1):
29-41

Maniezzo V (1999) Exact and approximate nondeter-
ministic tree-search procedures for the quadratic as-
signment problem. INFORMS J Comput 11(4):358—
369

Stiitzle T, Hoos HH (1997) The MAX — MIN ant
system and local search for the traveling salesman
problem. In: Proceedings of the 1997 congress on
evolutionary computation — CEC’97. IEEE Press,
Piscataway, pp 309-314

Stiitzle T, Hoos HH (2000) M AX —M I N ant system.
Future Gener Comput Syst 16(8):889-914

Anytime Algorithm

An anytime algorithm is an algorithm whose out-
put increases in quality gradually with increased
running time. This is in contrast to algorithms that
produce no output at all until they produce full-
quality output after a sufficiently long execution
time. An example of an algorithm with good
anytime performance is » Adaptive Real-Time
Dynamic Programming (ARTDP).

http://dx.doi.org/10.1007/978-1-4899-7687-1_805
http://dx.doi.org/10.1007/978-1-4899-7687-1_10

60

AODE

Averaged One-Dependence Estimators

Apprenticeship Learning

Behavioral Cloning

Approximate Dynamic
Programming

Value Function Approximation

Apriori Algorithm

Hannu Toivonen
University of Helsinki, Helsinki, Finland

Definition

Apriori algorithm (Agrawal et al. 1996) is a
data mining method which outputs all » frequent
itemsets and » association rules from given data.
Input: set 7 of items, multiset D of subsets of
7, frequency threshold min_fr, and confidence
threshold min_conf.

Output: all frequent itemsets and all valid associ-
ation rules in D

Method:

1: level := 1; frequent_sets : = @;
2: candidate_sets : = {{i }|i € Z};
3: while candidate_sets # @

3.1: scan data D to compute frequencies of all
sets in candidate_sets;

3.2: frequent_sets : = frequent_sets U {C €
candidate _sets |frequency(C) > min_fr};

3.3: level :=level + 1;

AODE

3.4: candidatesets := {A C Z || A |=
level and B € frequent_sets forall B C A,
B |=level — 1};

4: output frequent_sets;
5: for each F € frequent_sets
5.1:foreach E C F,E #@, E # F
5.1.1: if frequency(F)/frequency(E)
> min_conf then output association rule £ —
(F\E)

The algorithm finds frequent itemsets (lines
1-4) by a breadth-first, general-to-specific search.
It generates and tests candidate itemsets in
batches, to reduce the overhead of database
access. The search starts with the most general
itemset patterns, the singletons, as candidate
patterns (line 2). The algorithm then iteratively
computes the frequencies of candidates (line
3.1) and saves those that are frequent (line 3.2).
The crux of the algorithm is in the candidate
generation (line 3.4): on the next level, those
itemsets are pruned that have an infrequent
subset. Obviously, such itemsets cannot be
frequent. This allows Apriori to find all frequent
itemset without spending too much time on
infrequent itemsets. See » frequent pattern and

constraint-based mining for more details and
extensions.

Finally, the algorithm tests all frequent as-
sociation rules and outputs those that are also
confident (lines 5-5.1.1).

Cross-References

Association Rule

Basket Analysis
Constraint-Based Mining
Frequent Itemset
Frequent Pattern

Recommended Reading

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo Al (1996) Fast discovery of association
rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge dis-
covery and data mining. AAAI Press, Menlo Park,
pp 307-328

http://dx.doi.org/10.1007/978-1-4899-7687-1_48
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_876
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_38
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_164
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_318

Artificial Immune Systems

AQ

Rule Learning

Architecture

Topology of a Neural Network

Area Under Curve
Synonyms

AUC

Definition

The area under curve (AUC) statistic is an
empirical measure of classification performance
based on the area under an ROC curve.
It evaluates the performance of a scoring
classifier on a test set, but ignores the
magnitude of the scores and only takes their
rank order into account. AUC is expressed
on a scale of 0 to 1, where 0 means that
all negatives are ranked before all positives,
and 1 means that all positives are ranked
before all negatives. See ROC Analy-
sis.

ARL

Average-Reward Reinforcement Learning

ART

Adaptive Resonance Theory

61

ARTDP

Adaptive Real-Time Dynamic Programming

Artificial Immune Systems

Jon Timmis
University of York, Heslington, North Yorkshire,
UK

Synonyms

AIS; Immune computing; Immune-inspired com-
puting; Immunocomputing; Immunological com-
putation

Definition

Artificial immune systems (AIS) have emerged
as a computational intelligence approach that
shows great promise. Inspired by the complex-
ity of the immune system, computer scientists
and engineers have created systems that in some
way mimic or capture certain computationally
appealing properties of the immune system, with
the aim of building more robust and adaptable
solutions. AIS have been defined by de Castro
and Timmis (2002) as:

» adaptive systems, inspired by theoretical im-
munology and observed immune functions,
principle and models, which are applied to
problem solving

AIS are not limited to machine learning sys-
tems, there are a wide variety of other areas in
which AIS are developed such as optimization,
scheduling, fault tolerance, and robotics (Hart
and Timmis 2008). Within the context of machine
learning, both supervised and unsupervised ap-
proaches have been developed. Immune-inspired
learning approaches typically develop a memory

http://dx.doi.org/10.1007/978-1-4899-7687-1_744
http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_100025
http://dx.doi.org/10.1007/978-1-4899-7687-1_739
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_10
http://dx.doi.org/10.1007/978-1-4899-7687-1_100010
http://dx.doi.org/10.1007/978-1-4899-7687-1_100205
http://dx.doi.org/10.1007/978-1-4899-7687-1_100206
http://dx.doi.org/10.1007/978-1-4899-7687-1_100207
http://dx.doi.org/10.1007/978-1-4899-7687-1_100208

62

set of detectors that are capable of classifying
unseen data items (in the case of supervised
learning) or a memory set of detectors that rep-
resent clusters within the data (in the case of
unsupervised learning). Both static and dynamic
learning systems have been developed.

Motivation and Background

The immune system is a complex system that
undertakes a myriad of tasks. The abilities of the
immune system have helped to inspire computer
scientists to build systems that mimic, in some
way, various properties of the immune system.
This field of research, AIS, has seen the appli-
cation of immune-inspired algorithms to a wide
variety of areas.

The origin of AIS has its roots in the early
theoretical immunology work of Farmer, Perel-
son, and Varela (Farmer et al. 1986; Varela et al.
1988). These works investigated a number of
theoretical » immune network models proposed
to describe the maintenance of immune memory
in the absence of antigen. While controversial
from an immunological perspective, these models
began to give rise to an interest from the com-
puting community. The most influential people
at crossing the divide between computing and
immunology in the early days were Bersini and
Forrest. It is fair to say that some of the early
work by Bersini (1991) was very well rooted in
immunology, and this is also true of the early
work by Forrest (1994). It was these works that
formed the basis of a solid foundation for the area
of AIS. In the case of Bersini, he concentrated
on the immune network theory, examining how
the immune system maintained its memory and
how one might build models and algorithms mim-
icking that property. With regard to Forrest, her
work was focused on computer security (in par-
ticular, network intrusion detection) and formed
the basis of a great deal of further research by
the community on the application of immune-
inspired techniques to computer security.

At about the same time as Forrest was un-
dertaking her work, other researchers began to
investigate the nature of learning in the immune

Artificial Immune Systems

system and how that might by used to create
machine learning algorithms (Cooke and Hunt
1995). They had the idea that it might be possible
to exploit the mechanisms of the immune system
(in particular, the immune network) in learning
systems, so they set about doing a proof of
concept (Cooke and Hunt 1995). Initial results
were very encouraging, and they built on their
success by applying the immune ideas to the clas-
sification of DNA sequences as either promoter or
nonpromoter classes: this work was generalized
in Timmis and Neal (2001).

Similar work was carried out by de Castro and
Von Zuben (2001), who developed algorithms for
use in function optimization and data clustering.
Work in dynamic unsupervised machine learning
algorithms was also undertaken, meeting with
success in works such as Neal (2002). In the
supervised learning domain, very little happened
until the work by Watkins (2005) (later expanded
in Watkins 2005) developed an immune-based
classifier known as AIRS, and in the dynamic
supervised domain, with the work in Secker et al.
(2003) being one of a number of successes.

Structure of the Learning System

In an attempt to create a common basis for
AIS, the work in de Castro and Timmis (2002)
proposed the idea of a framework for engineer-
ing AIS. They argued that the case for such a
framework as the existence of similar frameworks
in other biologically inspired approaches, such
as » artificial neural networks (ANNs) and evo-
lutionary algorithms (EAs), has helped consid-
erably with the understanding and construction
of such systems. For example, de Castro and
Timmis (2002) consider a set of artificial neu-
rons,which can be arranged together to form an
ANN. In order to acquire knowledge, these neural
networks undergo an adaptive process, known as
learning or training, which alters (some of) the
parameters within the network. Therefore, they
argued that in a simplified form, a framework to
design an ANN is composed of a set of artificial
neurons, a pattern of interconnection for these
neurons, and a learning algorithm. Similarly, they

http://dx.doi.org/10.1007/978-1-4899-7687-1_380
http://dx.doi.org/10.1007/978-1-4899-7687-1_921

Artificial Immune Systems

argued that in evolutionary algorithms, there is
a set of artificial chromosomes representing a
population of individuals that iteratively suffer
a process of reproduction, genetic variation, and
selection. As a result of this process, a popu-
lation of evolved artificial individuals arises. A
framework, in this case, would correspond to the
genetic representation of the individuals of the
population, plus the procedures for reproduction,
genetic variation, and selection. Therefore, they
proposed that a framework to design a biolog-
ically inspired algorithm requires, at least, the
following basic elements:

* A representation for the components of the
system

* A set of mechanisms to evaluate the inter-
action of individuals with the environment
and each other. The environment is usually
stimulated by a set of input stimuli, one or
more fitness function(s), or other means

e Procedures of adaptation that govern the dy-
namics of the system, i.e., how its behavior
varies over time

This framework can be thought of as a lay-
ered approach such as the specific framework
for engineering AIS of de Castro and Timmis
(2002) shown in Fig. 1. This framework follows
the three basic elements for designing a biologi-
cally inspired algorithm just described, where the
set of mechanisms for evaluation are the affin-
ity measures and the procedures of adaptation
are the immune algorithms. In order to build a

4 Solution

63

system such as an AIS, one typically requires
an application domain or target function. From
this basis, the way in which the components of
the system will be represented is considered. For
example, the representation of network traffic
may well be different from the representation of
a real-time embedded system. In AIS, the way
in which something is represented is known as
shape space. There are many kinds of shape
space, such as Hamming, real valued, and so on,
each of which carries it own bias and should be
selected with care (Freitas and Timmis 2003).
Once the representation has been chosen, one
or more affinity measures are used to quantify
the interactions of the elements of the system.
There are many possible affinity measures (which
are partially dependent upon the representation
adopted), such as Hamming and Euclidean dis-
tance metrics. Again, each of these has its own
bias, and the affinity function must be selected
with great care, as it can affect the overall perfor-
mance (and ultimately the result) of the system
(Freitas and Timmis 2003).

Supervised Immune-Inspired Learning

The artificial immune recognition system (AIRS)
algorithm was introduced as one of the first
immune-inspired supervised learning algorithms
and has subsequently gone through a period
of study and refinement (Watkins 2005). To
use classifications from de Castro and Timmis
(2002), for the procedures of adaptation, AIRS
is a, » clonal selection type of immune-inspired
algorithm. The representation and affinity layers

Immune networks

‘ Immune Algorithms %//

Clonal selection

AlIS ‘

Affinity Measures }—’//

r—continuous
Euclidean

Integer

F

‘ Representation

Real-Values

Application Domain

Artificial Immune Systems, Fig. 1 AIS layered framework (Adapted from de Castro and Timmis 2002)

http://dx.doi.org/10.1007/978-1-4899-7687-1_942

64

of the system are standard in that any number of
representations such as binary, real values, etc.,
can be used with the appropriate affinity function.
AIRS has its origin in two other immune-inspired
algorithms: CLONALG (CLONAL Selection
alGorithm) and Artificial Immune NEtwork
(AINE) (de Castro and Timmis 2002). AIRS
resembles CLONALG in the sense that both the
algorithms are concerned with developing a set
of memory cells that give a representation of the
learned environment.

AIRS is concerned with the development
of a set of memory cells that can encapsulate
the training data. This is done in a two-stage
process of first evolving a candidate memory
cell and then determining if this candidate cell
should be added to the overall pool of memory
cells. The learning process can be outlined as
follows:

1. For each pattern to be recognized, do

(a) Compare a training instance with all mem-
ory cells of the same class and find the
memory cell with the best affinity for the
training instance. This is referred to as a
memory cell mcpyatch-

(b) Clone and mutate mcpyech in proportion to
its affinity to create a pool of abstract B-
cells.

(c) Calculate the affinity of each B-cell with
the training instance.

(d) Allocate resources to each B-cell based on
its affinity.

(e) Remove the weakest B-cells until the
number of resources returns to a preset
limit.

(f) If the average affinity of the surviving B-
cells is above a certain level, continue to
step 1(g). Else, clone and mutate these
surviving B-cells based on their affinity
and return to step 1(c).

(g) Choose the best B-cell as a candidate
memory cell (mceynq).

(h) If the affinity of mc¢ang for the training in-
stance is better than the affinity of mcyach,
then add mcgyq to the memory cell pool.
If, in addition to this, the affinity between
MCeand aNd MCpaen 1S Within a certain

Artificial Immune Systems

threshold, then remove mccn from the
memory cell pool.
2. Repeat from step 1(a) until all training in-
stances have been presented.

Once this training routine is complete, AIRS
classifies the instances using k-nearest neighbor
with the developed set of memory cells.

Unsupervised Immune-Inspired Learning

The artificial immune network (aiNET) algo-
rithm was introduced as one of the first immune-
inspired unsupervised learning algorithms and
has subsequently gone through a period of study
and refinement (de Castro and Von Zuben 2001).
To use classifications from de Castro and Timmis
(2002), for the procedures of adaptation, aiNET
is an immune network type of immune-inspired
algorithm. The representation and affinity layers
of the system are standard (the same as in AIRS).
aiNET has its origin in another immune-inspired
algorithms: CLONALG (the same forerunner to
AIRS), and resembles CLONALG in the sense
that both algorithms (again) are concerned with
developing a set of memory cells that give a rep-
resentation of the learnt environment. However,
within aiNET there is no error feedback into the
learning process. The learning process can be
outlined as follows:

1. Randomly initialize a population P
2. For each pattern to be recognized, do
(a) Calculate the affinity of each B-cell () in
the network for an instance of the pattern
being learnt
(b) Select a number of elements from P into
a clonal pool C
(c) Mutate each element of C proportional
to affinity to the pattern being learnt (the
higher the affinity, the less mutation ap-
plied)
Select the highest affinity members of C
to remain in the set C and remove the
remaining elements
(e) Calculate the affinity between all members
of C and remove elements in C that have
an affinity below a certain threshold (user
defined)

(@

Artificial Neural Networks

(d) Combine the elements of C with the set P
(e) Introduce a random number of randomly
created elements into P to maintain diver-

sity
3. Repeat from 2(a) until stopping criteria is met

Once this training routine is complete, the
minimum-spanning tree algorithm is applied to
the network to extract the clusters from within the
network.

Recommended Reading

Bersini H (1991) Immune network and adaptive con-
trol. In: Proceedings of the 1st European conference
on artificial life (ECAL). MIT Press, Cambridge,
pp 217-226

Cooke D, Hunt J (1995) Recognising promoter se-
quences using an artificial immune system. In: Pro-
ceedings of intelligent systems in molecular biol-
ogy. AAAI Press, California, pp 89-97

de Castro LN, Timmis J (2002) Artificial immune sys-
tems: a new computational intelligence approach.
Springer, New York

de Castro LN, Von Zuben FJ (2001) aiNet: an artifi-
cial immune network for data analysis. Idea Group
Publishing, Hershey, pp 231-259

Farmer JD, Packard NH, Perelson AS (1986) The
immune system, adaptation, and machine learning.
Physica D 22:187-204

Forrest S, Perelson AS, Allen L, Cherukuri R (1994)
Self—nonself discrimination in a computer. In: Pro-
ceedings of the IEEE symposium on research secu-
rity and privacy, Los Alamitos, pp 202-212

Freitas A, Timmis J (2003) Revisiting the foundations
of artificial immune systems: a problem oriented
perspective. LNCS, vol 2787. Springer, New York,
pp 229-241

Hart E, Timmis J (2008) Application areas of AIS: the
past, present and the future. J Appl Soft Comput
8(1):191-201

Neal M (2002) An artificial immune system for con-
tinuous analysis of time-varying data. In: Timmis J,
Bentley P (eds) Proceedings of the 1st international
conference on artificial immune system (ICARIS).
University of Kent Printing Unit, Canterbury, pp 76—
85

Secker A, Freitas A, Timmis J (2003) AISEC: an
artificial immune system for email classification. In:
Proceedings of congress on evolutionary computa-
tion (CEC), Canberra, pp 131-139

Timmis J, Bentley (eds) (2002) Proceedings of the
Ist international conference on artificial immune
system (ICARIS). University of Kent Printing Unit,
Canterbury

65

Timmis J, Neal M (2001) A resource limited artificial
immune system for data analysis. Knowl Based Syst
14(3-4):121-130

Varela F, Coutinho A, Dupire B, Vaz N (1988) Cog-
nitive networks: immune, neural and otherwise. J
Theor Immunol 2:359-375

Watkins A (2001) AIRS: a resource limited artificial
immune classifier. Master’s thesis, Mississippi State
University

Watkins A (2005) Exploiting immunological
metaphors in the development of serial, parallel
and distributed learning algorithms. Ph.D. thesis,
University of Kent

Artificial Life

Artificial Life is an interdisciplinary research area
trying to reveal and understand the principles and
organization of living systems. Its main goal is
to artificially synthesize life-like behavior from
scratch in computers or other artificial media.
Important topics in artificial life include the ori-
gin of life, growth and development, evolutionary
and ecological dynamics, adaptive autonomous
robots, emergence and self-organization, social
organization, and cultural evolution.

Artificial Neural Networks

(ANN5s) is a computational model based on bio-
logical neural networks. It consists of an intercon-
nected group of artificial neurons and processes
information using a connectionist approach to
computation. In most cases an ANN is an adap-
tive system that changes its structure based on ex-
ternal or internal information that flows through
the network during the learning phase.

Cross-References

Adaptive Resonance Theory

Backpropagation

Biological Learning: Synaptic Plasticity, Hebb
Rule and Spike Timing Dependent Plasticity
Boltzmann Machines

http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_51
http://dx.doi.org/10.1007/978-1-4899-7687-1_80
http://dx.doi.org/10.1007/978-1-4899-7687-1_31

66

Cascade Correlation
Competitive Learning

Deep Belief Networks
Evolving Neural Networks
Hypothesis Language
Topology of a Neural Network
Neuroevolution

Radial Basis Function Networks
Reservoir Computing
Self-Organizing Maps

Simple Recurrent Network
Weight

Artificial Societies

Jiirgen Branke
University of Warwick, Coventry, UK

Synonyms

Agent-based computational models; Agent-based
modeling and simulation; Agent-based simula-
tion models

Definition

An artificial society is an agent-based, computer-
implemented simulation model of a society or
group of people, usually restricted to their inter-
action in a particular situation. Artificial societies
are used in economics and social sciences to
explain, understand, and analyze socioeconomic
phenomena. They provide scientists with a fully
controllable virtual laboratory to test hypotheses
and observe complex system behavior emerging
as result of the » agents’ interaction. They allow
formalizing and testing social theories by using
computer code, and make it possible to use ex-
perimental methods with social phenomena, or
at least with their computer representations, on
a large scale. Because the designer is free to
choose any desired » agent behavior as long as it
can be implemented, research based on artificial

Artificial Societies

societies is not restricted by assumptions typical
in classical economics, such as homogeneity and
full rationality of agents. Overall, artificial soci-
eties have added an all new dimension to research
in economics and social sciences and have re-
sulted in a new research field called “agent-based
computational economics.”

Artificial societies should be distinguished
from virtual worlds and » artificial life. The
term virtual world is usually used for virtual
environments to interact with, as, e.g., in
computer games. In artificial life, the goal is more
to learn about biological principles, understand
how life could emerge, and create life within a
computer.

Motivation and Background

Classical economics can be roughly divided into
analytical and empirical approaches. The former
uses deduction to derive theorems from assump-
tions. Thereby, analytical models usually include
a number of simplifying assumptions in order
to keep the model tractable, the most typical
being full rationality and homogeneity of agents.
Also, analytical economics is often limited to
equilibrium calculations. Classical empirical eco-
nomics collects data from the real world, and
derives patterns and regularities inductively. In
recent years, the tremendous increase in available
computational power gave rise to a new branch of
economics and sociology which uses simulation
of artificial societies as a tool to generate new
insights.

Artificial societies are agent-based, computer-
implemented simulation models of real societies
or a group of people in a specific situation. They
are built from the bottom up, by specifying the
behavior of the agents in different situations.
The simulation then reveals the emerging global
behavior of the system, and thus provides a link
between micro-level behavior of the agents and
macro-level characteristics of the system. Using
simulation, researchers can now carry out social
experiments under fully controlled and repro-
ducible laboratory conditions, trying out different
configurations and observing the consequences.

http://dx.doi.org/10.1007/978-1-4899-7687-1_33
http://dx.doi.org/10.1007/978-1-4899-7687-1_146
http://dx.doi.org/10.1007/978-1-4899-7687-1_100107
http://dx.doi.org/10.1007/978-1-4899-7687-1_100155
http://dx.doi.org/10.1007/978-1-4899-7687-1_372
http://dx.doi.org/10.1007/978-1-4899-7687-1_843
http://dx.doi.org/10.1007/978-1-4899-7687-1_594
http://dx.doi.org/10.1007/978-1-4899-7687-1_698
http://dx.doi.org/10.1007/978-1-4899-7687-1_731
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_768
http://dx.doi.org/10.1007/978-1-4899-7687-1_886
http://dx.doi.org/10.1007/978-1-4899-7687-1_100007
http://dx.doi.org/10.1007/978-1-4899-7687-1_100008
http://dx.doi.org/10.1007/978-1-4899-7687-1_100009
http://dx.doi.org/10.1007/978-1-4899-7687-1_13
http://dx.doi.org/10.1007/978-1-4899-7687-1_13
http://dx.doi.org/10.1007/978-1-4899-7687-1_920

Artificial Societies

Like deduction, simulation models are based
on a set of clearly specified assumptions as writ-
ten down in a computer program. This is then
used to generate data, from which regularities
and patterns are derived inductively. As such,
research based on artificial societies stands some-
where between the classical analytical and empir-
ical social sciences.

One of the main advantages of artificial so-
cieties is that they allow to consider very com-
plex scenarios where agents are heterogeneous,
boundedly rational, or have the ability to learn.
Also, they allow to observe evolution over time,
instead of just the equilibrium.

Artificial societies can be used for many pur-
poses, e.g.:

1. Verification: Test a hypothesis or theory by ex-
amining its validity in relevant, clearly defined
scenarios.

2. Explanation: Construct an artificial society
which shows the same behavior as the real
society. Then analyze the model to explain the
emergent behavior.

3. Prediction: Run a model of an existing society
into the future. Also, feed the model with
different input parameters and use the result as
a prediction on how the society would react.

4. Optimization: Test different strategies in the
simulation environment, trying to find a best
possible strategy.

5. Existence proof: Demonstrate that a specific
simulation model is able to generate a certain
global behavior.

6. Discovery: Play around with parameter set-
tings, discovering new interdependencies and
gaining new insights.

7. Training and education: Use simulation as
demonstrator.

Structure of the Learning System

Using artificial societies requires the usual steps
in model building and experimental science, in-
cluding

1. Developing a conceptual model
2. Building the simulation model

67

3. Verification (making sure the model is correct)

4. Validation (making sure the model is suitable
to answer the posed questions)

5. Simulation and analysis using an appropriate
experimental design.

Artificial society is an interdisciplinary re-
search area involving, among others, computer
science, psychology, economics, sociology, and
biology.

Important Aspects

The modeling, simulation, and analysis process
described in the previous section is rather com-
plex and only remotely connected to machine
learning. Thus, instead of a detailed description
of all steps, the following focuses on aspects
particularly interesting from a machine learning
point of view.

Modeling Learning

One of the main advantages of artificial societies
is that they can account for boundedly rational
and learning agents. For that, one has to specify
(in form of a program) exactly how agents decide
and learn.

In principle, all the learning algorithms
developed in machine learning could be
used, and many have been used successfully,
including » reinforcement learning, » artificial
neural networks, and » evolutionary algorithms.
However, note that the choice of a learning
algorithm is not determined by its learning speed
and efficiency (as usual in machine learning),
but by how well it reflects human learning in
the considered scenario, at least if the goal is
to construct an artificial society which allows
conclusions to be transferred to the real world.
As a consequence, many learning models used in
artificial societies are motivated by psychology.
The idea of the most suitable model depends
on the simulation context, e.g., on whether
the simulated learning process is conscious
or nonconscious, or on the time and effort
an individual may be expected to spend on a
particular decision.

Besides individual learning (i.e., learning from
own past experience), artificial societies usually

http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_921
http://dx.doi.org/10.1007/978-1-4899-7687-1_270

68

feature social learning (where one agent learns
by observing others), and cultural learning (e.g.,
the evolution of norms). While the latter simply
emerges from the interaction of the agents, the
former has to be modeled explicitly. Several dif-
ferent models for learning in artificial societies
are discussed in Brenner (20006).

One popular learning paradigm which can
be used as a model for individual as well as
social learning are » evolutionary algorithms
(EAs). Several studies suggest that EAs are
indeed an appropriate model for learning in
artificial societies, either based on comparisons
of simulations with human subject experiments
or based on comparisons with other learning
mechanisms such as reinforcement learning
(Duffy 2006). As EAs are successful search
strategies, they seem particularly suitable if
the space of possible actions or strategies is
very large.

If used to model individual learning, each
agent uses a separate EA to search for a
better personal solution. In this case, the EA
population represents the different alternative
actions or strategies that an agent considers.
The genetic operators crossover and mutation
are clearly related to two major ingredients of
human innovation: combination and variation.
Crossover can be seen as deriving a new
concept by combining two known concepts,
and mutation corresponds to a small variation
of an existing concept. So, the agent, in some
sense, creatively tries out new possibilities.
Selection, which favors the best solutions found
so far, models the learning part. A solution’s
quality is usually assessed by evaluating it in a
simulation assuming all other agents keep their
behavior.

For modeling social learning, EAs can be
used in two different ways. In both cases, the
population represents the actions or strategies of
the different agents in the population. From this
it follows that the population size corresponds to
the number of agents in the simulation. Fitness
values are calculated by running the simulation
and observing how the different agents perform.
Crossover is now seen as a model for information
exchange, or imitation, among agents. Mutation,

Artificial Societies

as in the individual learning case, is seen as a
small variation of an existing concept.

The first social learning model simply uses
a standard EA, i.e., selection chooses agents to
“reproduce,” and the resulting new agent strat-
egy replaces an old strategy in the population.
While allowing to use standard EA libraries, this
approach does not provide a direct link between
agents in the simulation and individuals in the EA
population. In the second social learning model,
each agent directly corresponds to an individual
in the EA. In every iteration, each agent creates
and tests a new strategy as follows. First, it selects
a “donor” individual, with preference to success-
ful individuals. Then it performs a crossover of
its own strategy and the donor’s strategy, and mu-
tates the result. This can be regarded as an agent
observing other agents, and partially adopting the
strategies of successful other agents. Then, the
resulting new strategy is tested in a “thought ex-
periment,” by testing whether the agent would be
better off with the new strategy compared with its
current strategy, assuming all other agents keep
their behavior. If the new strategy performs better,
it replaces the current strategy in the next itera-
tion. Otherwise, the new strategy is discarded and
the agent again uses its old strategy in the next
iteration. The testing of new strategies against
their parents has been termed election operator in
Arifovic (1994), and makes sure that some very
bad and obviously implausible agent strategies
never enter the artificial society.

Examples

One of the first forerunners of artificial societies
was Schelling’s segregation model, 1969. In this
study, Schelling placed some artificial agents of
two different colors on a simple grid. Each agent
follows a simple rule: if less than a given percent-
age of agents in the neighborhood had the same
color, the agent moves to a random free spot.
Otherwise, it stays. As the simulation shows,
in this model, segregation of agent colors could
be observed even if every individual agent was
satisfied to live in a neighborhood with only 50 %
of its neighbors being of the same color. Thus,
with this simple model, Schelling demonstrated
that segregation of races in suburbs can occur

http://dx.doi.org/10.1007/978-1-4899-7687-1_270

Artificial Societies

even if each individual would be happy to live in
a diverse neighborhood. Note that the simulations
were actually not implemented on a computer but
carried out by moving coins on a grid by hand.

Other milestones in artificial societies are cer-
tainly the work by Epstein and Axtell on their
“sugarscape” model (Epstein and Axtell 1996),
and the Santa Fe artificial stock market (Arthur
et al. 1997). In the former, agents populate a
simple grid world, with sugar growing as the only
resource. The agents need the sugar for survival,
and can move around to collect it. Axtell and Ep-
stein have shown that even with agents following
some very simple rules, the emerging behavior
of the overall system can be quite complex and
similar in many aspects to observations in the real
world, e.g., showing a similar wealth distribution
or population trajectories.

The latter is a simple model of a stock market
with only a single stock and a risk-free fixed-
interest alternative. This model has subsequently
been refined and studied by many researchers.
One remarkable result of the first model was to
demonstrate that technical trading can actually be
a viable strategy, something widely accepted in
practice, but which classical analytical economics
struggled to explain.

One of the most sophisticated artificial soci-
eties is perhaps the model of the Anasazi tribe,
who left their dwellings in the Long House Val-
ley in northeastern Arizona for so far unknown
reasons around 1300 BC (Axtell et al. 2002).
By building an artificial society of this tribe and
the natural surroundings (climate etc.), it was
possible to replicate macro behavior which is
known to have occurred and provide a possible
explanation for the sudden move.

The NewTies project (Gilbert et al. 2006) has a
different and quite ambitious focus: it constructs
artificial societies with the hope of an emerging
artificial language and culture, which then might
be studied to help explain how language and
culture formed in human societies.

Software Systems

Agent-based simulations can be facilitated by us-
ing specialized software libraries such as Ascape,
Netlogo, Repast, StarLogo, Mason, and Swarm.

69

A comparison of different libraries can be found
in Railsback (2006).

Applications

Artificial societies have many practical applica-
tions, from rather simple simulation models to
very complex economic decision problems, ex-
amples include traffic simulation, market design,
evaluation of vaccination programs, evacuation
plans, or supermarket layout optimization. See,
e.g., Bonabeau (2002) for a discussion of several
such applications.

Future Directions, Challenges

The science on artificial societies is still at its
infancy, but the field is burgeoning and has al-
ready produced some remarkable results. Major
challenges lie in the model building, calibration,
and validation of the artificial society simula-
tion model. Despite several agent-based model-
ing toolkits available, there is a lot to be gained
by making them more flexible, intuitive, and user-
friendly, allowing to construct complex mod-
els simply by selecting and combining provided
building blocks of agent behavior. » Behavioral
Cloning may be a suitable machine learning ap-
proach to generate representative agent models.

Cross-References

Artificial Life
Behavioral Cloning
Coevolutionary Learning
Multi-agent Learning

Recommended Reading

Agent-based computational economics, website main-
tained by Tesfatsion (2009)

Arifovic J (1994) Genetic algorithm learning and the
cobweb-model. J Econ Dyn Control 18:3-28

Arthur B, Holland J, LeBaron B, Palmer R, Taylor P
(1997) Asset pricing under endogenous expecta-

http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_920
http://dx.doi.org/10.1007/978-1-4899-7687-1_69
http://dx.doi.org/10.1007/978-1-4899-7687-1_944
http://dx.doi.org/10.1007/978-1-4899-7687-1_568

70

tions in an artificial stock market. In: Arthur B et al.
(eds) The economy as an evolving complex system
II. Addison-Wesley, Boston, pp 5—44

Axelrod: The Complexity of Cooperation: Agent-
Based Models of Competition and Collaboration
(Axelrod 1997)

Axelrod R (1997) The complexity of cooperation:
agent-based models of competition and collabora-
tion. Princeton University Press, Princeton

Axtell RL, Epstein JM, Dean JS, Gumerman GJ, Swed-
lund AC, Harburger J et al (2002) Population growth
and collapse in a multiagent model of the kayenta
anasazi in long house valley. Proc Natl Acad Sci
99:7275-7279

Bonabeau: Agent-based modeling (Bonabeau 2002)

Brenner: Agent learning representation: Advice on
modeling economic learning (Brenner 2006)

Bonabeau E (2002) Agent-based modeling: methods
and techniques for simulating human systems. Proc
Natl Acad Sci 99:7280-7287

Brenner T (2006) Agent learning representation: ad-
vice on modelling economic learning. In: Tesfatsion
L, Judd KL (eds) Handbook of computational eco-
nomics, vol 2. North-Holland, Amsterdam, pp 895—
947

Duffy J (2006) Agent-based models and human subject
experiments. In: Tesfatsion L, Judd KL (eds) Hand-
book of computational economics, vol 2. North-
Holland, Amsterdam, pp 949-1011

Epstein: Generative social science (Epstein 2006)

Epstein JM (2006) Generative social science: studies
in agent-based computational modeling. Princeton
University Press, Princeton

Epstein JM, Axtell R (1996) Growing artificial soci-
eties. Brookings Institution Press, Washington, DC

Gilbert N, den Besten M, Bontovics A, Craecnen BGW,
Divina F, Eiben AE et al (2006) Emerging artificial
societies through learning. J Artif Soc Soc Simul
9(2). http://jasss.soc.surrey.ac.uk/9/2/9.html

Journal of Artificial Societies and Social Simulation
(2009)

Railsback SF, Lytinen SL, Jackson SK (2006) Agent-
based simulation platforms: review and develop-
ment recommendations. Simulation, 82(9):609-623

Schelling TC (1969) Dynamic models of segregation.
J Math Soc 2:143-186

Tesfatsion and Judd (eds.): Handbook of computational
economics (Tesfatsion and Judd 2006)

Tesfatsion L (2009) Website on agent-based com-
putational economics. http://www.econ.iastate.edu/
tesfatsi/ace.htm

Tesfatsion L, Judd KL (eds) (2006a) Handbook
of computational economics. Elsevier, Amster-
dam/Oxford

Tesfatsion L, Judd KL (eds) (2006b) Handbook of
computational economics — vol 2: agent-based com-
putational economics. Elsevier, Amsterdam

The Journal of Artificial Societies and Social Simula-
tion. http://jasss.soc.surrey.ac.uk/JASSS.html

Assertion

Assertion

In » Minimum Message Length, the code or lan-
guage shared between sender and receiver that is
used to describe the model.

Assessment of Model Performance

Model Evaluation

Association Rule

Hannu Toivonen
University of Helsinki, Helsinki, Finland

Definition

Association rules (Agrawal et al. 1993) can be
extracted from data sets where each example
consists of a set of items. An association rule has
the form X — Y, where X and Y are » itemsets,
and the interpretation is that if set X occurs in an
example, then set Y is also likely to occur in the
example.

Each association rule is usually associated
with two statistics measured from the given data
set. The frequency or support of arule X — Y,
denoted fr(X — YY), is the number (or alter-
natively the relative frequency) of examples in
which X U Y occurs. Its confidence, in turn, is
the observed conditional probability P(Y |X) =
fr(X UY)/fr(X).

The » Apriori algorithm (Agrawal et al. 1996)
finds all association rules, between any sets X
and Y, which exceed user-specified support and
confidence thresholds. In association rule mining,
unlike in most other learning tasks, the result thus
is a set of rules concerning different subsets of the
feature space.

Association rules were originally motivated by
supermarket » basket analysis, but as a domain
independent technique they have found applica-

http://jasss.soc.surrey.ac.uk/9/2/9.html
http://www.econ.iastate.edu/tesfatsi/ace.htm
http://www.econ.iastate.edu/tesfatsi/ace.htm
http://jasss.soc.surrey.ac.uk/JASSS.html
http://dx.doi.org/10.1007/978-1-4899-7687-1_547
http://dx.doi.org/10.1007/978-1-4899-7687-1_555
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_926

Associative Reinforcement Learning

tions in numerous fields. Association rule mining
is part of the larger field of » frequent itemset or
frequent pattern mining.

Cross-References

Apriori Algorithm
Basket Analysis
Frequent Itemset
Frequent Pattern

Recommended Reading

Agrawal R, Imielifiski T, Swami A (1993) Mining
association rules between sets of items in large
databases. In: Proceedings of the 1993 ACM SIG-
MOD international conference on management of
data, Washington, DC. ACM, New York, pp 207-
216

Agrawal R, Mannila H, Srikant R, Toivonen H,
Verkamo Al (1996) Fast discovery of association
rules. In: Fayyad UM, Piatetsky-Shapiro G, Smyth
P, Uthurusamy R (eds) Advances in knowledge dis-
covery and data mining. AAAI Press, Menlo Park,
pp 307-328

Associative Bandit Problem

Associative Reinforcement Learning

Associative Reinforcement Learning

Alexander L. Strehl
Riitgers University, New Brunswick, NJ, USA

Synonyms
Associative bandit problem; Bandit problem with

side information; Bandit problem with side ob-
servations; One-step reinforcement learning

71

Definition

The associative reinforcement-learning problem
is a specific instance of the » reinforcement
learning problem whose solution requires
generalization and exploration but not temporal
credit assignment. In associative reinforcement
learning, an action (also called an arm) must
be chosen from a fixed set of actions during
successive timesteps and from this choice
a real-valued reward or payoff results. On
each timestep, an input vector is provided
that along with the action determines, often
probabilistically, the reward. The goal is to
maximize the expected long-term reward over
a finite or infinite horizon. It is typically assumed
that the action choices do not affect the sequence
of input vectors. However, even if this assumption
is not asserted, learning algorithms are not
required to infer or model the relationship
between input vectors from one timestep to the
next. Requiring a learning algorithm to discover
and reason about this underlying process results
in the full reinforcement learning problem.

Motivation and Background

The problem of associative reinforcement learn-
ing may be viewed as connecting the problems of

supervised learning or » classification, which is
more specific, and reinforcement learning, which
is more general. Its study is motivated by real-
world applications such as choosing which in-
ternet advertisements to display based on infor-
mation about the user or choosing which stock
to buy based on current information related to
the market. Both problems are distinguished from
supervised learning by the absence of labeled
training examples to learn from. For instance, in
the advertisement problem, the learner is never
told which ads would have resulted in the great-
est expected reward (in this problem, reward is
determined by whether an ad is clicked on or
not). In the stock problem, the best choice is never
revealed since the choice itself affects the future
price of the stocks and therefore the payoff.

http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_27
http://dx.doi.org/10.1007/978-1-4899-7687-1_926
http://dx.doi.org/10.1007/978-1-4899-7687-1_317
http://dx.doi.org/10.1007/978-1-4899-7687-1_318
http://dx.doi.org/10.1007/978-1-4899-7687-1_40
http://dx.doi.org/10.1007/978-1-4899-7687-1_100023
http://dx.doi.org/10.1007/978-1-4899-7687-1_100031
http://dx.doi.org/10.1007/978-1-4899-7687-1_100032
http://dx.doi.org/10.1007/978-1-4899-7687-1_100350
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_803
http://dx.doi.org/10.1007/978-1-4899-7687-1_111

72

The Learning Setting

The learning problem consists of the following
core objects:

* An input space X, which is a set of objects
(often a subset of the n-dimension Euclidean
space R™).

e A set of actions or arms A, which is often a
finite set of size k.

e A distribution D over X. In some cases, D
is allowed to be time-dependent and may be
denoted D; on timestep ¢ fort = 1,2,

A learning sequence proceeds as follows. Dur-
ing each timestep ¢t = 1,2,..., an input vector
X; € X is drawn according to the distribution D
and is provided to the algorithm. The algorithm
selects an aarm at ¢, € A. This choice may be
stochastic and depend on all previous inputs and
rewards observed by the algorithm as well as all
previous action choices made by the algorithm
for timesteps t = 1,2,.... Then, the learner
receives a payoff r; generated according to some
unknown stochastic process that depends only on
the x; and a,;. The informal goal is to maximize
the expected long-term payoff. Let 7 : X — A
be any policy that maps input vectors to actions.
Let

T

VH(T) = E|:ZV,'|LZ,'

i=1

=n(x,-)fori=1,2,...,T:| €))]

denotes the expected total reward over T steps
obtained by choosing arms according to policy
7. The expectation is taken over any randomness
in the generation of input vectors x; and rewards
ri. The expected regret of a learning algorithm
with respect to policy 7 is defined as V7™ (T) —
E [Z,.T:1 ri] the expected difference between the
return from following policy 7 and the actual
obtained return.

Associative Reinforcement Learning

Power of Side Information

Wang et al. (2005) studied the associative re-
inforcement learning problem from a statisti-
cal viewpoint. They considered the setting with
two action and analyzed the expected inferior
sampling time, which is the number of times
that the lesser action, in terms of expected re-
ward, is selected. The function mapping input
vectors to conditional reward distributions be-
longs to a known parameterized class of func-
tions, with the true parameters being unknown.
They show that, under some mild conditions,
an algorithm can achieve finite expected infe-
rior sampling time. This demonstrates the power
provided by the input vectors (also called side
observations or side information), because such a
result is not possible in the standard multi-armed
bandit problem, which corresponds to the asso-
ciative reinforcement-learning problem without
input vectors X;. Intuitively, this type of result is
possible when the side information can be used to
infer the payoff function of the optimal action.

Linear Payoff Functions

In its most general setting, the associative rein-
forcement learning problem is intractable. One
way to rectify this problem is to assume that the
payoff function is described by a linear system.
For instance, Abe (1999) and Auer (2002) con-
sider a model where during each timestep 7, there
is a vector z;; associated with each arm i. The
expected payoff of pulling arm i on this timestep
is given by 67 z; ; where 6 is an unknown param-
eter vector and 67 denotes the transpose of f.
This framework maps to the framework described
above by taking x; = (2¢,1,2¢,2.--.,2¢,k). They
assume a time-dependent distribution D and fo-
cus on obtaining bounds on the regret against the
optimal policy. Assuming that all rewards lie in
the interval [0, 1], the worst possible regret of any
learning algorithm is linear. When considering
only the number of timesteps 7', Auer (2002)
shows that a regret (with respect to the optimal
policy) of O(+/TIn(T')) can be obtained.

PAC Associative Reinforcement Learning
The previously mentioned works analyze the
growth rate of the regret of a learning algorithm

Attribute

with respect to the optimal policy. Another way
to approach the problem is to allow the learner
some number of timesteps of exploration. After
the exploration trials, the algorithm is required to
output a policy. More specifically, given inputs
0 < e <land 0 < § < 1, the algorithm
is required to output an e-optimal policy with
probability at least 1 — §. This type of analysis is
based on the work by Valiant (1984), and learning
algorithms satisfying the above condition are
termed probably approximately correct (PAC).

Motivated by the work of Kaelbling (1994)
and Fiechter (PAC associative reinforcement
learning, unpublished manuscript, 1995),
developed a PAC algorithm when the true payoff
function can be described by a decision list over
the action and input vector. Building on both
works, Strehl et al. (2006) showed that a class
of associative reinforcement learning problems
can be solved efficiently, in a PAC sense, when
given a learning algorithm for efficiently solving
classification problems.

Recommended Reading

Section 6.1 of the survey by Kaelbling, Littman, and
Moore (1996) presents a nice overview of sev-
eral techniques for the associative reinforcement-
learning problem, such as CRBP (Ackley, 1990),
ARC (Sutton, 1984), and REINFORCE (Williams,
1992)

Abe N, Long PM (1999) Associative reinforcement
learning using linear probabilistic concepts. In: Pro-
ceedings of the 16th international conference on
machine learning, Bled, pp 3-11

Ackley DH, Littman ML (1990) Generalization and
scaling in reinforcement learning. In: Advances in
neural information processing systems 2. Morgan
Kaufmann, San Mateo, pp 550-557

Auver P (2002) Using confidence bounds for
exploitation—exploration trade-offs. J Mach Learn
Res 3:397-422

Kaelbling LP (1994) Associative reinforcement learn-
ing: functions in k-DNF. Mach Learn 15:279-298

Kaelbling LP, Littman ML, Moore AW (1996) Re-
inforcement learning: a survey. J Artif Intell Res
4:237-285

Strehl AL, Mesterharm C, Littman ML, Hirsh H (2006)
Experience-efficient learning in associative bandit
problems. In: Proceedings of the 23rd international
conference on machine learning (ICML-06), Pitts-
burgh, pp 889-896

73

Sutton RS (1984) Temporal credit assignment in re-
inforcement learning. Doctoral dissertation, Univer-
sity of Massachusetts, Amherst

Valiant LG (1984) A theory of the learnable. Commun
ACM 27:1134-1142

Wang C-C, Kulkarni SR, Poor HV (2005) Bandit prob-
lems with side observations. IEEE Trans Autom
Control 50:3988-3993

Williams RJ (1992) Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Mach Learn 8:229-256

Attribute

Chris Drummond
National Research Council of Canada, Ottawa,
ON, Canada

Synonyms

Characteristic; Feature; Property; Trait

Definition

Attributes are properties of things, ways that we,
as humans, might describe them. If we were
talking about the appearance of our friends, we
might describe one of them as “sex female,” “hair
brown,” “height 5 ft 7 in.” Linguistically, this
is rather terse, but this very terseness has the
advantage of limiting ambiguity. The attributes
are sex, hair color, and height. For each friend,
we could give the appropriate values to go along
with each attribute, some examples are shown in
Table 1. Attribute-value pairs are a standard way
of describing things within the machine learning
community. Traditionally, values have come in
one of three types: binary, sex has two values;
nominal, hair color has many values; real, height
has an ordered set of values. Ideally, the attribute-
value pairs are sufficient to describe some things
accurately and to tell them apart from others.
What might be described is very varied, so the
attributes themselves will vary widely.

http://dx.doi.org/10.1007/978-1-4899-7687-1_100052
http://dx.doi.org/10.1007/978-1-4899-7687-1_100164
http://dx.doi.org/10.1007/978-1-4899-7687-1_100383
http://dx.doi.org/10.1007/978-1-4899-7687-1_100483

74

Motivation and Background

For machine learning to be successful, we need
a language to describe everyday things that is
sufficiently powerful to capture the similarities
and differences between them and yet is compu-
tationally easy to manage. The idea that a suffi-
cient number of attribute-value pairs would meet
this requirement is an intuitive one. It has also
been studied extensively in philosophy and psy-
chology, as a way that humans represent things
mentally. In the early days of artificial intelli-
gence research, the frame (Minsky 1974) became
a common way of representing knowledge. We
have, in many ways, inherited this representation,
attribute-value pairs sharing much in common
with the labeled slots for values used in frames.
In addition, the data for many practical prob-
lems comes in this form. Popular methods of
storing and manipulating data such as relational
databases, and less formal structures such as
spread sheets, have columns as attributes and
cells as values. So, attribute-value pairs are a
ubiquitous way of representing data.

Future Directions

The notion of an attribute-value pair is so well
entrenched in machine learning that it is diffi-
cult to perceive what might replace it. As, in
many practical applications, the data comes in
this form, this representation will undoubtedly
be around for some time. One change that is
occurring is the growing complexity of attribute-
values. Traditionally, we have used the simple
value types, binary, nominal, and real, discussed
earlier. But to effectively describe many things,
we need to extend this simple language and use

Attribute, Table 1 Some friends

Sex Hair color Height
Male Black 6ft 2in.
Female Brown 5ft7in.
Female Blond 5ft9in.
Male Brown 5ft 101in.

Attribute

more complex values. For example, in » data
mining applied to multimedia, more new com-
plex representations abound. Sound and video
streams, images, and various properties of them,
are just a few examples (Cord et al. 2005; Simoff
and Djeraba 2000).

Perhaps, the most significant change is away
from attributes, albeit with complex values, to
structural forms where the relationship between
things is included. As Quinlan (1996) states
“Data may concern objects or observations
with arbitrarily complex structure that cannot
be captured by the values of a predetermined
set of attributes.” There is a large and growing
community of researchers in relational
learning. This is evidenced by the number, and
growing frequency, of recent workshops at the
International Conference for Machine Learning
(Cord et al. 2005; De Raedt and Kramer 2000;
Dietterich et al. 2004; Fern et al. 2006).

Limitations

In philosophy there is the idea of essence, the
properties an object must have to be what it is. In
machine learning, particularly in practical appli-
cations, we get what we are given and have little
control in the choice of attributes and their range
of values. If domain experts have chosen the
attributes, we might hope that they are properties
that can be readily ascertained and are relevant to
the task at the hand. For example, when describ-
ing one of our friends, we would not say Fred is
the one with the spleen. It is not only difficult to
observe, it is also poor at discriminating between
people. Data are collected for many reasons.
In medical applications, all sorts of attribute-
values would be collected on patients. Most are
unlikely to be important to the current task. An
important part of learning is » feature extraction,
determining which attributes are necessary for
learning.

Whether or not attribute-value pairs are an
essential representation for the type of learning
required in the development, and functioning, of

http://dx.doi.org/10.1007/978-1-4899-7687-1_100099
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_90

Autonomous Helicopter Flight Using Reinforcement Learning 75

intelligent agents, remains to be seen. Attribute-
values readily capture symbolic information,
typically at the level of words that humans
naturally use. But if our agents need to move
around in their environment, recognizing what
they encounter, we might need a different
nonlinguistic representation. Certainly, other
representations based on a much finer granularity
of features, and more holistic in nature, have been
central to areas such as » neural networks for
some time. In research into » dynamic systems,
attractors in a sensor space might be more
realistic that attribute-values (See chapter on
Classification).

Recommended Reading

Cord M, Dahyot R, Cunningham P, Sziranyi T (eds)
(2005) Workshop on machine learning techniques
for processing multimedia content. In: Proceedings
of the twenty-second international conference on
machine learning, Bonn

De Raedt L, Kramer S (eds) (2000) Workshop on
attribute-value and relational learning: crossing the
boundaries. In: Proceedings of the seventeenth inter-
national conference on machine learning, Stanford
University, Palo Alto

Dietterich T, Getoor L, Murphy K (eds) (2004) Work-
shop on statistical relational learning and its connec-
tions to other fields. In: Proceedings of the twenty-
first international conference on machine learning,
Banff

Fern A, Getoor L, Milch B (eds) (2006) Work-
shop on open problems in statistical relational
learning. In: Proceedings of the twenty-fourth
international conference on machine learning,
Corvalis

Minsky M (1974) A framework for representing
knowledge. Technical report, Massachusetts Insti-
tute of Technology, Cambridge

Quinlan JR (1996) Learning first-order definitions of
functions. J Artif Intell Res 5:139-161

Simoft SJ, Djeraba C (eds) (2000) Workshop on mul-
timedia data mining. In: Proceedings of the sixth
international conference on knowledge discovery
and data mining, Boston

Attribute Selection

Feature Selection

Attribute-Value Learning

Attribute-value learning refers to any learning
task in which the each » Instance is described
by the values of some finite set of attributes
(see » Attribute). Each of these instances is often
represented as a vector of attribute values, each
position in the vector corresponding to a unique
attribute.

AUC

Area Under Curve

Authority Control

Record Linkage

Autonomous Helicopter Flight Using
Reinforcement Learning

Adam Coates', Pieter Abbeel?, and

Andrew Y. Ng'-3

IStanford University, Stanford, CA, USA
2EECS Department, UC Berkeley, Stanford, CA,
USA

3Computer Science Department, Stanford
University, Stanford, CA, USA

Definition

Helicopter flight is a highly challenging control
problem. While it is possible to obtain controllers
for simple maneuvers (like hovering) by tradi-
tional manual design procedures, this approach
is tedious and typically requires many hours of
adjustments and flight testing, even for an ex-
perienced control engineer. For complex maneu-
vers, such as aerobatic routines, this approach

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_239
http://dx.doi.org/10.1007/978-1-4899-7687-1_111
http://dx.doi.org/10.1007/978-1-4899-7687-1_101
http://dx.doi.org/10.1007/978-1-4899-7687-1_406
http://dx.doi.org/10.1007/978-1-4899-7687-1_923
http://dx.doi.org/10.1007/978-1-4899-7687-1_918
http://dx.doi.org/10.1007/978-1-4899-7687-1_712

76 Autonomous Helicopter Flight Using Reinforcement Learning

is likely infeasible. In contrast, » reinforcement
learning (RL) algorithms enable faster and more
automated design of controllers. Model-based RL
algorithms have been used successfully for au-
tonomous helicopter flight for hovering, forward
flight, and using apprenticeship learning methods
for expert-level aerobatics. In model-based RL,
the first one builds a model of the helicopter
dynamics and specifies the task using a reward
function. Then, given the model and the reward
function, the RL algorithm finds a controller that
maximizes the expected sum of rewards accumu-
lated over time.

Motivation and Background

Autonomous helicopter flight represents a chal-
lenging control problem and is widely regarded
as being significantly harder than control of fixed-
wing aircraft (see, e.g., Leishman 2000; Seddon
1990). At the same time, helicopters provide
unique capabilities such as in-place hover, verti-
cal takeoff and landing, and low-speed maneuver-
ing. These capabilities make helicopter control
an important research problem for many practical
applications.

Building autonomous flight controllers for he-
licopters, however, is far from trivial. When done
by hand, it can require many hours of tuning
by experts with extensive prior knowledge about
helicopter dynamics. Meanwhile, the automated
development of helicopter controllers has been
a major success story for RL methods. Con-
trollers built using RL algorithms have estab-
lished state-of-the-art performance for both basic
flight maneuvers, such as hovering and forward
flight (Bagnell and Schneider 2001; Ng et al.
2004b), as well as being among the only suc-
cessful methods for advanced aerobatic stunts.
Autonomous helicopter aerobatics has been suc-
cessfully tackled using the innovation of “appren-
ticeship learning,” where the algorithm learns by
watching a human demonstrator (Abbeel and Ng
2004). These methods have enabled autonomous
helicopters to fly aerobatics as well as an expert
human pilot and often even better (Coates et al.
2008).

Developing autonomous flight controllers for
helicopters is challenging for a number of rea-
sons:

1. Helicopters have unstable, high-dimensional,
asymmetric, noisy, nonlinear, non-minimum
phase dynamics. As a consequence, all suc-
cessful helicopter flight controllers (to date)
have many parameters. Controllers with 10—
100 gains are not atypical. Hand engineering
the right setting for each of the parameters is
difficult and time consuming, especially since
their effects on performance are often highly
coupled through the helicopter’s complicated
dynamics. Moreover, the unstable dynamics,
especially in the low-speed flight regime, com-
plicates flight testing.

2. Helicopters are underactuated: their position
and orientation are representable using six
parameters, but they have only four control
inputs. Thus helicopter control requires signif-
icant planning and making trade-offs between
errors in orientation and errors in desired po-
sition.

3. Helicopters have highly complex dynamics:
even though we describe the helicopter as
having a 12-dimensional state (position, ve-
locity, orientation, and angular velocity), the
true dynamics are significantly more compli-
cated. To determine the precise effects of the
inputs, one would have to consider the airflow
in a large volume around the helicopter, as
well as the parasitic coupling between the
different inputs, the engine performance, and
the non-rigidity of the rotor blades. Highly
accurate simulators are thus difficult to create,
and controllers developed in simulation must
be sufficiently robust that they generalize to
the real helicopter in spite of the simulator’s
imperfections.

4. Sensing capabilities are often poor: for small
remotely controlled (RC) helicopters, sens-
ing is limited because the onboard sensors
must deal with a large amount of vibration
caused by the helicopter blades rotating at
about 30 Hz, as well as higher frequency noise
from the engine. Although noise at these fre-
quencies (which are well above the roughly

http://dx.doi.org/10.1007/978-1-4899-7687-1_720

Autonomous Helicopter Flight Using Reinforcement Learning 77

10 Hz at which the helicopter dynamics can be
modeled reasonably) might be easily removed
by low pass filtering, this introduces latency
and damping effects that are detrimental to
control performance. As a consequence, heli-
copter flight controllers have to be robust to
noise and/or latency in the state estimates to
work well in practice.

Typical Hardware Setup

A typical autonomous helicopter has several ba-
sic sensors on board. An inertial measurement
unit (IMU) measures angular rates and linear ac-
celerations for each of the helicopter’s three axes.
A 3-axis magnetometer senses the direction of
the Earth’s magnetic field, similar to a magnetic
compass (Fig. 1).

Attitude-only sensing, as provided by the in-
ertial and magnetic sensors, is insufficient for
precise, stable hovering, and slow-speed maneu-
vers. These maneuvers require that the helicopter
maintains relatively tight control over its position
error, and hence high-quality position sensing is
needed. GPS is often used to determine helicopter
position (with carrier-phase GPS units achieving
sub-decimeter accuracy), but vision-based solu-
tions have also been employed (Abbeel et al.
2007; Coates et al. 2008; Saripalliz et al. 2003).

Vibration adds errors to the sensor measure-
ments and may damage the sensors themselves;
hence, significant effort may be required to mount

the sensors on the airframe (Dunbabin et al.
2004). Provided there is no aliasing, sensor errors
added by vibration can be removed by using a
digital filter on the measurements (though, again,
one must be careful to avoid adding too much
latency).

Sensor data from the aircraft sensors is used
to estimate the state of the helicopter for use by
the control algorithm. This is usually done with
an extended Kalman filter (EKF). A unimodal
distribution (as computed by the EKF) suffices to
represent the uncertainty in the state estimates,
and it is common practice to use the mode of
the distribution as the state estimate for feedback
control. In general the accuracy obtained with this
method is sufficiently high that one can treat the
state as fully observed.

Most autonomous helicopters have an onboard
computer that runs the EKF and the control al-
gorithm (Gavrilets et al. 2002a; La Civita et al.
2006; Ng et al. 2004a). However, it is also pos-
sible to use ground-based computers by sending
sensor data by wireless to the ground and then
transmitting control signals back to the helicopter
through the pilot’s RC transmitter (Abbeel et al.
2007; Coates et al. 2008).

Helicopter State and Controls

The helicopter state s is defined by its posi-
tion (px, Py, pz), orientation (which could be

Autonomous Helicopter Flight Using Reinforcement
Learning, Fig. 1 (a) Stanford University’s instrumented
XCell Tempest autonomous helicopter. (b) A Bergen

Industrial Twin autonomous helicopter with sensors and
onboard computer

78 Autonomous Helicopter Flight Using Reinforcement Learning

expressed using a unit quaternion ¢), velocity
(vx, Vy, vz), and angular velocity (wy, @y, 7).

The helicopter is controlled via a 4-
dimensional action space:

1. u; and u,: The lateral (left-right) and longi-
tudinal (front-back) cyclic pitch controls (to-
gether referred to as the “cyclic” controls)
cause the helicopter to roll left or right and
pitch forward or backward, respectively.

2. u3: The tail rotor pitch control affects tail
rotor thrust and can be used to yaw (turn) the
helicopter about its vertical axis. In analogy
to airplane control, the tail rotor control is
commonly referred to as “rudder.”

3. uy: The collective pitch control (often referred
to simply as “collective”) increases and de-
creases the pitch of the main rotor blades, thus
increasing or decreasing the vertical thrust
produced as the blades sweep through the air.

By using the cyclic and rudder controls, the pilot
can rotate the helicopter into any orientation.
This allows the pilot to direct the thrust of the
main rotor in any particular direction, and thus
fly in any direction, by rotating the helicopter
appropriately.

Helicopter Flight as an RL Problem

Formulation
An RL problem can be described by a tuple
(S, A, T, H,s5(0), R), which is referred to as a
Markov decision process (MDP). Here S is the
set of states; A is the set of actions or inputs; T is
the dynamics model, which is a set of probability
distributions; { P!} (P],(s|s, u) is the probability
of being in state s” at time ¢ + 1, given the state
and action at time ¢ are s and u); H is the horizon
or number of time steps of interest; s(0) € S is
the initial state; R : S x A — R is the reward
function.

A policy # = (uo, 1,..., HHg) is a tuple
of mappings from states S to actions A,
one mapping for each time ¢t = 0,...,H.
The expected sum of rewards when acting
according to a policy 7 is given by U(x) =

E[ZtH:0 R(s(t), u(t))|m]. The optimal policy 7 *
for an MDP (S, A, T, H,s(0), R) is the policy
that maximizes the expected sum of rewards.
In particular, the optimal policy is given by:
7% = argmax, U(r).

The common approach to finding a good pol-
icy for autonomous helicopter flight proceeds in
two steps: First one collects data from manual
helicopter flights to build a model. (One could
also build a helicopter model by directly mea-
suring physical parameters such as mass, rotor
span, etc. However, even when this approach
is pursued, one often resorts to collecting flight
data to complete the model.) Then one solves
the MDP comprised of the model and some
chosen reward function. Although the controller
obtained, in principle, is only optimal for the
learned simulator model, it has been shown in
various settings that optimal controllers perform
well even when the model has some inaccuracies
(see, e.g., Anderson and Moore 1989).

Modeling
One way to create a helicopter model is to use
direct knowledge of aerodynamics to derive an
explicit mathematical model. This model will
depends on a number of parameters that are
particular to the helicopter being flown. Many of
the parameters may be measured directly (e.g.,
mass, rotational inertia), while others must be
estimated from flight experiments. This approach
has been used successfully on several systems
(see, e.g., Gavrilets et al. 2001, 2002b; La Civita
2003). However, substantial expert aerodynam-
ics knowledge is required for this modeling ap-
proach. Moreover, these models tend to cover
only a limited fraction of the flight envelope.
Alternatively, one can learn a model of the
dynamics directly from flight data, with only
limited a priori knowledge of the helicopter’s dy-
namics. Data is usually collected from a series of
manually controlled flights. These flights involve
the human sweeping the control sticks back and
forth at varying frequencies to cover as much of
the flight envelope as possible, while recording
the helicopter’s state and the pilot inputs at each
instant.

http://dx.doi.org/10.1007/978-1-4899-7687-1_512

Autonomous Helicopter Flight Using Reinforcement Learning 79

Given a corpus of flight data, various different
learning algorithms can be used to learn the
underlying model of the helicopter dynamics.

If one is only interested in a single flight
regime, one could learn a linear model that maps
from the current state and action to the next
state. Such a model can be easily estimated us-
ing » linear regression. (While the methods pre-
sented here emphasize time domain estimation,
frequency domain estimation is also possible for
the special case of estimating linear models Tis-
chler and Cauffman 1992.) Linear models are
restricted to small flight regimes (e.g., hover or
inverted hover) and do not immediately gener-
alize to full-envelope flight. To cover a broader
flight regime, nonparametric algorithms such as
locally weighted linear regression have been used
(Bagnell and Schneider 2001; Ng et al. 2004b).
Nonparametric models that map from current
state and action to next state can, in principle,
cover the entire flight regime. Unfortunately, one
must collect large amounts of data to obtain an
accurate model, and the models are often quite
slow to evaluate.

An alternative way to increase the expressive-
ness of the model, without resorting to nonpara-
metric methods, is to consider a time-varying
model where the dynamics are explicitly allowed
to depend on time. One can then proceed to com-
pute simpler (say, linear) parametric models for
each choice of the time parameter. This method
is effective when learning a model specific to
a trajectory whose dynamics are repeatable but
vary as the aircraft travels along the trajectory.
Since this method can also require a great deal
of data (similar to nonparametric methods) in
practice, it is helpful to begin with a non-time-
varying parametric model fit from a large amount
of data and then augment it with a time-varying
component that has fewer parameters (Abbeel
et al. 2006; Coates et al. 2008).

One can also take advantage of symmetry in
the helicopter dynamics to reduce the amount of
data needed to fit a parametric model. Abbeel
et al. (2006) observe that — in a coordinate frame
attached to the helicopter — the helicopter dy-
namics are essentially the same for any orien-
tation (or position) once the effect of gravity

is removed. They learn a model that predicts
(angular and linear) accelerations — except for
the effects of gravity — in the helicopter frame
as a function of the inputs and the (angular
and linear) velocity in the helicopter frame. This
leads to a lower-dimensional learning problem,
which requires significantly less data. To simulate
the helicopter dynamics over time, the predicted
accelerations augmented with the effects of grav-
ity are integrated over time to obtain velocity,
angular rates, position, and orientation.

Abbeel et al. (2007) used this approach to
learn a helicopter model that was later used for
autonomous aerobatic helicopter flight maneu-
vers covering a large part of the flight envelope.
Significantly less data is required to learn a model
using the gravity-free parameterization compared
to a parameterization that directly predicts the
next state as a function of current state and
actions (as was used in Bagnell and Schneider
(2001) and Ng et al. (2004b)). Abbeel et al.
evaluate their model by checking its simulation
accuracy over longer time scales than just a one-
step acceleration prediction. Such an evaluation
criterion maps more directly to the reinforcement
learning objective of maximizing the expected
sum of rewards accumulated over time (see also
Abbeel and Ng 2005b).

The models considered above are determinis-
tic. This normally would allow us to drop the ex-
pectation when evaluating a policy according to
E [Z;H=o R(s(1), u(t))|7r]. However, it is com-
mon to add stochasticity to account for unmod-
eled effects. Abbeel et al. (2007) and Ng et al.
(2004a) include additive process noise in their
models. Bagnell and Schneider (2001) go further,
learning a distribution over models. Their policy
must then perform well, on expectation, for a
(deterministic) model selected randomly from the
distribution.

Control Problem Solution Methods

Given a model of the helicopter, we now seek

a policy m that maximizes the expected sum
H

E[T/L, R6@.u)lx

achieved when acting according to the policy 7.

of rewards U(mw) =

http://dx.doi.org/10.1007/978-1-4899-7687-1_481

80 Autonomous Helicopter Flight Using Reinforcement Learning

Policy Search

General policy search algorithms can be em-
ployed to search for optimal policies for the MDP
based on the learned model. Given a policy 7, we
can directly try to optimize the objective U(r).
Unfortunately, U(;r) is an expectation over a
complicated distribution making it impractical to
evaluate the expectation exactly in general.

One solution is to approximate the expectation
U(r) by Monte Carlo sampling: under certain
boundedness assumptions, the empirical average
of the sum of rewards accumulated over time will
give a good estimate U () of the expectation
U(r). Naively applying Monte Carlo sampling to
accurately compute, e.g., the local gradient from
the difference in function value at nearby points
requires very large amounts of samples due to the
stochasticity in the function evaluation.

To get around this hurdle, the PEGASUS al-
gorithm (Ng and Jordan 2000) can be used to
convert the stochastic optimization problem into
a deterministic one. When evaluating by averag-
ing over n simulations, PEGASUS initially fixes
n random seeds. For each policy evaluation, the
same n random seeds are used so that the simu-
lator is now deterministic. In particular, multiple
evaluations of the same policy will result in the
same computed reward. A search algorithm can
then be applied to the deterministic problem to
find an optimum.

The PEGASUS algorithm coupled with a
simple local policy search was used by Ng
et al. (2004a) to develop a policy for their
autonomous helicopter that successfully sustains
inverted hover. Bagnell and Schneider (2001)
proceed similarly, but use the “amoeba” search
algorithm (Nelder and Mead 1964) for policy
search.

Because of the searching involved, the pol-
icy class must generally have low dimension.
Nonetheless, it is often possible to find good poli-
cies within these policy classes. The policy class
of Ng et al. (2004a), for instance, is a decoupled,
linear PD controller with a sparse dependence
on the state variables. (For instance, the linear
controller for the pitch axis is parametrized as
up = co(px — p¥) + c1(vx — V) + c20, which
has just three parameters, while the entire state

is nine dimensional. Here, p., v., and p*, v¥,
respectively, are the actual and desired position
and velocity. 6 denotes the pitch angle.) The
sparsity reduces the policy class to just nine pa-
rameters. In Bagnell and Schneider (2001), two-
layer neural network structures are used with a
similar sparse dependence on the state variables.
Two neural networks with five parameters each
are learned for the cyclic controls.

Differential Dynamic Programming

Abbeel et al. (2007) use differential dynamic pro-
gramming (DDP) for the task of aerobatic trajec-
tory following. DDP (Jacobson and Mayne 1970)
works by iteratively approximating the MDP as
linear quadratic regulator (LQR) problems. The
LQR control problem is a special class of MDPs,
for which the optimal policy can be computed
efficiently. In LQR the set of states is given by
S = R”, the set of actions/inputs is given by
A = R?, and the dynamics model is given by

st + 1) = A@D)s(t) + B@)u(t) + w(t),

where for all t = 0,..., H we have that A(t) €
R™" B(t) € R"™?, and w(¢) is a mean zero ran-
dom variable (with finite variance). The reward
for being in state s(¢) and taking action u(t) is
given by

—s() " Q@)s(t) —u(t) T R()u(t).

Here Q(t), R(t) are positive semi-definite matri-
ces which parameterize the reward function. It is
well known that the optimal policy for the LQR
control problem is a linear feedback controller
which can be efficiently computed using dynamic
programming (see, e.g., Anderson and Moore
(1989), for details on linear quadratic methods).

DDP approximately solves general continuous
state-space MDPs by iterating the following two
steps until convergence:

1. Compute a linear approximation to the nonlin-
ear dynamics and a quadratic approximation
to the reward function around the trajectory
obtained when executing the current policy in
simulation.

Autonomous Helicopter Flight Using Reinforcement Learning 81

2. Compute the optimal policy for the LQR prob-
lem obtained in Step 1, and set the current
policy equal to the optimal policy for the LQR
problem.

During the first iteration, the linearizations are
performed around the target trajectory for the
maneuver, since an initial policy is not available.

This method is used to perform autonomous
flips, rolls, and “funnels” (high-speed sideways
flight in a circle) in Abbeel et al. (2007) and au-
tonomous autorotation (autorotation is an emer-
gency maneuver that allows a skilled pilot to glide
a helicopter to a safe landing in the event of an
engine failure or tail-rotor failure) in Abbeel et al.
(2008), Fig. 2.

While DDP computes a solution to the non-
linear optimization problem, it relies on the accu-
racy of the nonlinear model to correctly predict
the trajectory that will be flown by the helicopter.
This prediction is used in Step 1 above to lin-
earize the dynamics. In practice, the helicopter
will often not follow the predicted trajectory
closely (due to stochasticity and modeling er-
rors), and thus the linearization will become a
highly inaccurate approximation of the nonlinear
model. A common solution to this, applied by
Coates et al. (2008), is to compute the DDP
solution online, linearizing around a trajectory
that begins at the current helicopter state. This en-
sures that the model is always linearized around a
trajectory near the helicopter’s actual flight path.

Apprenticeship Learning and Inverse RL

In computing a policy for an MDP, simply finding
a solution (using any method) that performs well
in simulation may not be enough. One may need
to adjust both the model and reward function
based on the results of flight testing. Modeling
error may result in controllers that fly perfectly in
simulation but perform poorly or fail entirely in
reality. Because helicopter dynamics are difficult
to model exactly, this problem is fairly common.
Meanwhile, a poor reward function can result in
a controller that is not robust to modeling errors
or unpredicted perturbations (e.g., it may use
large control inputs that are unsafe in practice).
If a human “expert” is available to demonstrate
the maneuver, this demonstration flight can be
leveraged to obtain a better model and reward
function.

The reward function encodes both the trajec-
tory that the helicopter should follow and the
trade-offs between different types of errors. If
the desired trajectory is infeasible (either in the
nonlinear simulation or in reality), this results
in a significantly more difficult control problem.
Also, if the trade-offs are not specified correctly,
the helicopter may be unable to compensate for
significant deviations from the desired trajec-
tory. For instance, a typical reward function for
hovering implicitly specifies a trade-off between
position error and orientation error (it is possible
to reduce one error, but usually at the cost of in-
creasing the other). If this trade-off is incorrectly

Autonomous Helicopter Flight Using Reinforcement Learning, Fig. 2 Snapshots of an autonomous helicopter

performing in-place flips and rolls

82 Autonomous Helicopter Flight Using Reinforcement Learning

chosen, the controller may be pushed off course
by wind (if it tries too hard to keep the helicopter
level) or, conversely, may tilt the helicopter to an
unsafe attitude while trying to correct for a large
position error.

We can use demonstrations from an expert
pilot to recover both a good choice for the desired
trajectory and good choices of reward weights
for errors relative to this trajectory. In apprentice-
ship learning, we are given a set of N recorded
state and control sequences, {sy (¢), ux (t)},H= o for
k = 1,...,N, from demonstration flights by
an expert pilot. Coates et al. (2008) note that
these demonstrations may be suboptimal but are
often suboptimal in different ways. They suggest
that a large number of expert demonstrations
may implicitly encode the optimal trajectory and
propose a generative model that explains the
expert demonstrations as stochastic instantiations
of an “ideal” trajectory. This is the desired tra-
jectory that the expert has in mind but is unable
to demonstrate exactly. Using an Expectation-
Maximization (Dempster et al. 1977) algorithm,
they infer the desired trajectory and use this as
the target trajectory in their reward function.

A good choice of reward weights (for errors
relative to the desired trajectory) can be recov-
ered using inverse reinforcement learning (Ng
and Russell 2000; Abbeel and Ng 2004). Sup-
pose the reward function is written as a linear
combination of features as follows: R(s,u) =
copo(s, u)+ci¢i1(s, u)+--- . For a single recorded
demonstration, {s(l),u(t)}{io, the pilot’s accu-
mulated reward corresponding to each feature can
be computed as ¢;¢ = ¢; ZtH=o @i (s(2), u(t)).
If the pilot outperforms the autonomous flight
controller with respect to a particular feature
@i, this indicates that the pilot’s own “reward
function” places a higher value on that feature,
and hence its weight ¢; should be increased.
Using this procedure, a good choice of reward
function that makes trade-offs similar to that of
a human pilot can be recovered. This method has
been used to guide the choice of reward for many
maneuvers during flight testing (Abbeel et al.
2007, 2008; Coates et al. 2008).

In addition to learning a better reward function
from pilot demonstration, one can also use the

pilot demonstration to improve the model directly
and attempt to reduce modeling error. Coates
et al. (2008), for instance, use errors observed
in expert demonstrations to jointly infer an im-
proved dynamics model along with the desired
trajectory. Abbeel et al. (2007), however, have
proposed the following alternating procedure that
is broadly applicable (see also Abbeel and Ng
(2005a) for details):

1. Collect data from a human pilot flying the
desired maneuvers with the helicopter. Learn
a model from the data.

2. Find a controller that works in simulation
based on the current model.

3. Test the controller on the helicopter. If it
works, we are done. Otherwise, use the data
from the test flight to learn a new (improved)
model and go back to Step 2.

This procedure has similarities with model-based
RL and with the common approach in control to
first perform system identification and then find
a controller using the resulting model. However,
the key insight from Abbeel and Ng (2005a) is
that this procedure is guaranteed to converge to
expert performance in a polynomial number of
iterations. The authors report needing at most
three iterations in practice. Importantly, unlike
the E3 family of algorithms (Kearns and Singh
2002), this procedure does not require explicit
exploration policies. One only needs to test con-
trollers that try to fly as much as possible (ac-
cording to the current choice of dynamics model).
(Indeed, the E3-family of algorithms (Kearns
and Singh 2002) and its extensions (Kearns and
Koller 1999; Brafman and Tennenholtz 2002;
Kakade et al. 2003) proceed by generating “ex-
ploration” policies, which try to visit inaccurately
modeled parts of the state space. Unfortunately,
such exploration policies do not even try to fly the
helicopter well and thus would almost invariably
lead to crashes.)

The apprenticeship learning algorithms de-
scribed above have been used to fly the most
advanced autonomous maneuvers to date. The
apprenticeship learning algorithm of Coates et al.
(2008), for example, has been used to attain ex-

Autonomous Helicopter Flight Using Reinforcement Learning 83

Autonomous Helicopter Flight Using Reinforcement
Learning, Fig. 3 Snapshot sequence of an autonomous
helicopter flying a “chaos” maneuver using apprenticeship
learning methods. Beginning from the top to left and
proceeding left to right and top to bottom, the helicopter

pert level performance on challenging aerobatic
maneuvers as well as entire air shows composed
of many maneuvers in rapid sequence. These
maneuvers include in-place flips and rolls, tic-
tocs (“tic-toc” is a maneuver where the heli-
copter pitches forward and backward with its
nose pointed toward the sky (resembling an in-
verted clock pendulum)), and chaos. (“Chaos” is
a maneuver where the helicopter flips in place
but does so while continuously pirouetting at a
high rate. Visually, the helicopter body appears
to tumble chaotically while nevertheless remain-
ing in roughly the same position.) (See Fig.3.)
These maneuvers are considered among the most
challenging possible and can only be performed
by advanced human pilots. In fact, Coates et al.
(2008) show that their learned controller perfor-
mance can even exceed the performance of the
expert pilot providing the demonstrations, putting
many of the maneuvers on par with professional
pilots (Fig. 4).

A similar approach has been used in Abbeel
et al. (2008) to perform the first successful au-
tonomous autorotations. Their aircraft has per-
formed more than 30 autonomous landings suc-
cessfully without engine power.

Not only do apprenticeship methods achieve
state-of-the-art performance, but they are among
the fastest learning methods available, as they
obviate the need for arduous hand tuning by en-
gineers. Coates et al. (2008), for instance, report
that entire air shows can be created from scratch
with just 1h of work. This is in stark contrast
to previous approaches that may have required

performs a flip while pirouetting counterclockwise about
its vertical axis (this maneuver has been demonstrated
continuously for as long as 15 cycles like the one shown
here)

hours or even days of tuning for relatively simple
maneuvers.

Conclusion

Helicopter control is a challenging control prob-
lem and has recently seen major successes with
the application of learning algorithms. This entry
has shown how each step of the control de-
sign process can be automated using machine
learning algorithms for system identification and
reinforcement learning algorithms for control. It
has also shown how apprenticeship learning algo-
rithms can be employed to achieve expert-level
performance on challenging aerobatic maneu-
vers when an expert pilot can provide demon-
strations. Autonomous helicopters with control
systems developed using these methods are now
capable of flying advanced aerobatic maneuvers
(including flips, rolls, tic-tocs, chaos, and autoro-
tation) at the level of expert human pilots.

Cross-References

» Apprenticeship Learning
» Reinforcement Learning
» Reward Shaping

Recommended Reading

Abbeel P, Coates A, Hunter T, Ng AY (2008) Au-
tonomous autorotation of an rc helicopter. In: ISER
11, Athens

http://dx.doi.org/10.1007/978-1-4899-7687-1_100017
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_966

84 Autonomous Helicopter Flight Using Reinforcement Learning

Autonomous Helicopter Flight Using Reinforcement Learning, Fig. 4 Superimposed sequence of images of auto-

nomous autorotation landings (from Abbeel et al. 2008)

Abbeel P, Coates A, Quigley M, Ng AY (2007) An
application of reinforcement learning to aerobatic
helicopter flight. In: NIPS 19, Vancouver, pp 1-8

Abbeel P, Ganapathi V, Ng AY (2006) Learning ve-
hicular dynamics with application to modeling heli-
copters. In: NIPS 18, Vancouver

Abbeel P, Ng AY (2004) Apprenticeship learning via
inverse reinforcement learning. In: Proceedings of
the international conference on machine learning,
Banff. ACM, New York

Abbeel P, Ng AY (2005a) Exploration and appren-
ticeship learning in reinforcement learning. In: Pro-
ceedings of the international conference on machine
learning, Bonn. ACM, New York

Abbeel P, Ng AY (2005b) Learning first order Markov
models for control. In: NIPS 18, Vancouver

Abbeel P, Quigley M, Ng AY (2006) Using inaccurate
models in reinforcement learning. In: ICML ’06:
proceedings of the 23rd international conference
on machine learning, Pittsburgh. ACM, New York,
pp 1-8

Anderson B, Moore J (1989) Optimal control: linear
quadratic methods. Prentice-Hall, Princeton

Bagnell J, Schneider J (2001) Autonomous helicopter
control using reinforcement learning policy search
methods. In: International conference on robotics
and automation, Seoul. IEEE, Canada

Brafman RI, Tennenholtz M (2002) R-max, a gen-
eral polynomial time algorithm for near-optimal

reinforcement learning. J Mach Learn Res 3:
213-231

Coates A, Abbeel P, Ng AY (2008) Learning for con-
trol from multiple demonstrations. In: Proceedings
of the 25th international conference on machine
learning (ICML ’08), Helsinki

Dempster AP, Laird NM, Rubin DB (1977) Maximum
likelihood from incomplete data via the EM algo-
rithm. J R Stat Soc 39(1):1-38

Dunbabin M, Brosnan S, Roberts J, Corke P (2004)
Vibration isolation for autonomous helicopter flight.
In: Proceedings of the IEEE international confer-
ence on robotics and automation, New Orleans,
vol 4, pp 3609-3615

Gavrilets V, Martinos 1, Mettler B, Feron E (2002a)
Control logic for automated aerobatic flight of
miniature helicopter. In: AIAA guidance, navigation
and control conference, Monterey. Massachusetts
Institute of Technology, Cambridge

Gavrilets V, Martinos I, Mettler B, Feron E (2002b)
Flight test and simulation results for an autonomous
aerobatic helicopter. In: AIAA/IEEE digital avion-
ics systems conference, Irvine

Gavrilets V, Mettler B, Feron E (2001) Nonlinear
model for a small-size acrobatic helicopter. In:
AIAA guidance, navigation and control conference,
Montreal, pp 1593-1600

Jacobson DH, Mayne DQ (1970) Differential dynamic
programming. Elsevier, New York

Averaged One-Dependence Estimators

Kakade S, Kearns M, Langford J (2003) Exploration in
metric state spaces. In: Proceedings of the interna-
tional conference on machine learning, Washington,
DC

Kearns M, Koller D (1999) Efficient reinforcement
learning in factored MDPs. In: Proceedings of the
16th international joint conference on artificial intel-
ligence, Stockholm. Morgan Kaufmann, San Fran-
cisco

Kearns M, Singh S (2002) Near-optimal reinforcement
learning in polynomial time. Mach Learn J 49(2—
3):209-232

La Civita M (2003) Integrated modeling and robust
control for full-envelope flight of robotic heli-
copters. PhD thesis, Carnegie Mellon University,
Pittsburgh

La Civita M, Papageorgiou G, Messner WC, Kanade T
(2006) Design and flight testing of a high-bandwidth
Hoo loop shaping controller for a robotic helicopter.
J Guid Control Dyn 29(2):485-494

Leishman J (2000) Principles of helicopter aerodynam-
ics. Cambridge University Press, Cambridge

Nelder JA, Mead R (1964) A simplex method for
function minimization. Comput J 7:308-313

Ng AY, Coates A, Diel M, Ganapathi V, Schulte J,
Tse B et al (2004) Autonomous inverted helicopter
flight via reinforcement learning. In: International
symposium on experimental robotics, Singapore.
Springer, Berlin

Ng AY, Jordan M (2000) PEGASUS: a policy search
method for large MDPs and POMDPs. In: Pro-
ceedings of the uncertainty in artificial intelligence
16th conference, Stanford. Morgan Kaufmann, San
Francisco

Ng AY, Kim HJ, Jordan M, Sastry S (2004) Au-
tonomous helicopter flight via reinforcement learn-
ing. In: NIPS 16, Vancouver

Ng AY, Russell S (2000) Algorithms for inverse
reinforcement learning. In: Proceedings of the
17th international conference on machine learning,
San Francisco. Morgan Kaufmann, San Francisco,
pp 663-670

Saripalli S, Montgomery JF, Sukhatme GS (2003)
Visually-guided landing of an unmanned aerial ve-
hicle. IEEE Trans Robot Auton Syst 19(3):371-380

Seddon J (1990) Basic helicopter aerodynamics. AIAA
education series. America Institute of Aeronautics
and Astronautics, El Segundo

Tischler MB, Cauffman MG (1992) Frequency re-
sponse method for rotorcraft system identification:
flight application to BO-105 couple rotor/fuselage
dynamics.] Am Helicopter Soc 37:3-17

Average-Cost Neuro-Dynamic
Programming

Average-Reward Reinforcement Learning

85

Average-Cost Optimization

Average-Reward Reinforcement Learning

Averaged One-Dependence
Estimators

Fei Zheng'>? and Geoffrey 1. Webb?

"Monash University, Syndey, NSW, Australia
2Monash University, Victoria, Australia
3Faculty of Information Technology, Monash
University, Victoria, Australia

Synonyms

AODE

Definition

Averaged one-dependence estimators is a

semi-naive Bayesian Learning method. It
performs classification by aggregating the pre-
dictions of multiple one-dependence classifiers
in which all attributes depend on the same single
parent attribute as well as the class.

Classification with AODE

An effective approach to accommodating
violations of naive Bayes’ attribute independence
assumption is to allow an attribute to depend on
other non-class attributes. To maintain efficiency
it can be desirable to utilize one-dependence
classifiers, such as » Tree Augmented Naive
Bayes (TAN), in which each attribute depends
upon the class and at most one other attribute.
However, most approaches to learning with one-
dependence classifiers perform model selection,
a process that usually imposes substantial
computational overheads and substantially
increases variance relative to naive Bayes.

http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_100016
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_850

86

Averaged One-Dependence Estimators

oﬁg)o o«a’f;)c o(cifg‘o

Averaged One-Dependence Estimators, Fig. 1 A Markov network representation of the SPODEs that comprise an

example AODE

AODE avoids model selection by averaging
the predictions of multiple one-dependence clas-
sifiers. In each one-dependence classifier, an at-
tribute is selected as the parent of all the other
attributes. This attribute is called the SuperPar-
ent and this type of one-dependence classifier is
called a SuperParent one-dependence estimator
(SPODE). Only those SPODEs with SuperParent
x; where the value of x; occurs at least m times
are used for predicting a class label y for the test
instance X = (x, ..., X,). For any attribute value
Xi,

P(y.x) = P(y,xi)) P(x]y, xi).
This equality holds for every x;. Therefore,

leiSn/\F(xi)Em P(y,x;)P(x]y, x;)

NI <i<nAF(x)=mj| (])’
where F(x;) is the frequency of attribute value
x; in the training sample. Utilizing (1) and the
assumption that attributes are independent given
the class and the SuperParent x;, AODE predicts
the class for x by selecting

P(y,x) =

argmax Z ﬁ(y,x,-)
Y 1<i<nAF(x;)>m
[T 2ejly.x). @)

1<j<n,j#i

It averages over estimates of the terms in (1),
rather than the true values, which has the effect
of reducing the variance of these estimates.

Figure 1 shows a Markov network representa-
tion of an example AODE.

As AODE makes a weaker attribute condi-
tional independence assumption than naive Bayes
while still avoiding model selection, it has sub-
stantially lower » bias with a very small increase

in variance. A number of studies (Webb et al.
2005; Zheng and Webb 2005) have demonstrated
that it often has considerably lower zero-one
loss than naive Bayes with moderate time com-
plexity. For comparisons with other semi-naive
techniques, see » semi-naive Bayesian learning.
One study (Webb et al. 2005) found AODE to
provide classification accuracy competitive to a
state-of-the-art discriminative algorithm, boosted
decision trees.

When a new instance is available, like naive
Bayes, AODE only needs to update the prob-
ability estimates. Therefore, it is also suited to
incremental learning.

In more recent work (Webb et al. 2012),
AODE has been generalized to Averaged N-
Dependence Estimators (ANDE) and it has been
demonstrated that bias can be further decreased
by introducing multiple SuperParents to each
submodel.

Cross-References

Bayesian Network

Naive Bayes

Semi-Naive Bayesian Learning
Tree Augmented Naive Bayes

Recommended Reading

Webb GI, Boughton J, Wang Z (2005) Not so
naive Bayes: aggregating one-dependence estima-
tors. Mach Learn 58(1):5-24

Webb GI, Boughton J, Zheng F, Ting KM, & Salem H
(2012) Learning by extrapolation from marginal to
full-multivariate probability distributions: Decreas-
ingly naive Bayesian classification. Mach Learn
86(2): 233-272.

http://dx.doi.org/10.1007/978-1-4899-7687-1_72
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_581
http://dx.doi.org/10.1007/978-1-4899-7687-1_748
http://dx.doi.org/10.1007/978-1-4899-7687-1_850

Average-Reward Reinforcement Learning

Zheng F, Webb GI (2005) A comparative study of
semi-naive Bayes methods in classification learning.
In: Proceedings of the fourth Australasian data min-
ing conference, Sydney, pp 141-156

Average-Payoff Reinforcement
Learning

Average-Reward Reinforcement Learning

Average-Reward Reinforcement
Learning

Prasad Tadepalli

School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR,
USA

Synonyms

ARL; Average-cost neuro-dynamic program-
ming; Average-cost optimization; Average-pay-
off reinforcement learning

Definition

Average-reward reinforcement learning (ARL)
refers to learning policies that optimize the av-
erage reward per time step by continually taking
actions and observing the outcomes including the
next state and the immediate reward.

Motivation and Background

Reinforcement learning (RL) is the study of
programs that improve their performance at some
task by receiving rewards and punishments from
the environment (Sutton and Barto 1998). RL
has been quite successful in the automatic learn-
ing of good procedures for complex tasks such
as playing Backgammon and scheduling eleva-

87

tors (Tesauro 1992; Crites and Barto 1998). In
episodic domains in which there is a natural
termination condition such as the end of the
game in Backgammon, the obvious performance
measure to optimize is the expected total reward
per episode. But some domains such as elevator
scheduling are recurrent, i.e., do not have a nat-
ural termination condition. In such cases, total
expected reward can be infinite, and we need a
different optimization criterion.

In the discounted optimization framework, in
each time step, the value of the reward is mul-
tiplied by a discount factor y < 1, so that the
total discounted reward is always finite. However,
in many domains, there is no natural interpre-
tation for the discount factor y. A natural per-
formance measure to optimize in such domains
is the average reward received per time step.
Although one could use a discount factor which
is close to 1 to approximate average-reward op-
timization, an approach that directly optimizes
the average reward avoids this additional param-
eter and often leads to faster convergence in
practice.

There is a significant theory behind average-
reward optimization based on » Markov decision
processes (MDPs) (Puterman 1994). An MDP is
described by a 4-tuple (S, A, P,r), where S is
a discrete set of states and A is a discrete set of
actions. P is a conditional probability distribu-
tion over the next states, given the current state
and action, and r gives the immediate reward
for a given state and action. A policy m is a
mapping from states to actions. Each policy &
induces a Markov process over some set of states.
In ergodic MDPs, every policy & forms a single
closed set of states, and the average reward per
time step of m in the limit of infinite horizon is
independent of the starting state. We call it the
“gain” of the policy m, denoted by p(x), and
consider the problem of finding a “gain-optimal
policy,” 7*, that maximizes p(7).

Even though the gain p(w) of a policy w
is independent of the starting state s, the total
expected reward in time ¢ is not. It can be denoted
by p(mr)t + h(s), where h(s) is a state-dependent
bias term. It is the bias values of states that deter-
mine which states and actions are preferred and

http://dx.doi.org/10.1007/978-1-4899-7687-1_17
http://dx.doi.org/10.1007/978-1-4899-7687-1_100020
http://dx.doi.org/10.1007/978-1-4899-7687-1_100027
http://dx.doi.org/10.1007/978-1-4899-7687-1_100028
http://dx.doi.org/10.1007/978-1-4899-7687-1_100029
http://dx.doi.org/10.1007/978-1-4899-7687-1_720
http://dx.doi.org/10.1007/978-1-4899-7687-1_512

88

Average-Reward
Reinforcement Learning,
Fig. 1 A simple Markov
decision process (MDP)
that illustrates the Bellman
equation

need to be learned for optimal performance. The
following theorem gives the Bellman equation for
the bias values of states.

Theorem 1 For ergodic MDPs, there exist a
scalar p and a real-valued bias function h over
S that satisfy the recurrence relation

Vs €S, h(s)

= r;]ea,/)l({r(s,a) + Z P(s’|s,a)h(s’)} —p.

s’eS
(H

Further, the gain-optimal policy u* attains the
above maximum for each state s, and p is its gain.

Note that any one solution to (1) yields an
infinite number of solutions by adding the same
constant to all h-values. However, all these sets
of h-values will result in the same set of optimal
policies p*, since the optimal action in a state
is determined only by the relative differences
between the values of &.

For example, in Fig. 1, the agent has to select
between the actions good-move and bad-move
in state 0. If it stays in state 1, it gets an average
reward of 1. If it stays in state 2, it gets an
average reward of —1. For this domain, p = 1
for the optimal policy of choosing good-move
in state 0. If we arbitrarily set 2(0) to 0, then
h(l) = 0,h(2) = 1, and h(3) = 2 satisfy the

Average-Reward Reinforcement Learning

good-move

recurrence relations in (1). For example, the dif-
ference between /(3) and /(1) is 2, which equals
the difference between the immediate reward for
the optimal action in state 3 and the optimal
average reward 1.

Given the probability model P and the im-
mediate rewards r, the above equations can be
solved by White’s relative value iteration method
by setting the h-value of an arbitrarily chosen
reference state to 0 and using synchronous suc-
cessive approximation (Bertsekas 1995). There
is also a policy iteration approach to determine
the optimal policy starting with some arbitrary
policy, solving for its values using the value itera-
tion, and updating the policy using one step look-
ahead search. The above iteration is repeated until
the policy converges (Puterman 1994).

Model-Based Learning

If the probabilities and the immediate rewards
are not known, the system needs to learn them
before applying the above methods. A model-
based approach called H-learning interleaves
model learning with Bellman backups of the
value function (Tadepalli and Ok 1998). This
is an average-reward version of » Adaptive
real-time dynamic programming (Barto et al.
1995). The models are learned by collecting
samples of state-action-next-state triples (s, a, s’)

http://dx.doi.org/10.1007/978-1-4899-7687-1_10

Average-Reward Reinforcement Learning

and computing P(s’|s,a) using the maximum
likelihood estimation. It then employs the
“certainty equivalence principle” by using the
current estimates as the true value while updating
the A-value of the current state s according to
the following update equation derived from the
Bellman equation.

h(s) < max %r(s,a)—}- Z P(s’|3,a)h(s’)} —p-

s’eS

@)
One complication in ARL is the estimation of
the average reward p in the update equations
during learning. One could use the current
estimate of the long-term average reward, but
it is distorted by the exploratory actions that the
agent needs to take to learn about the unexplored
parts of the state space. Without the exploratory
actions, ARL methods converge to a suboptimal
policy. To take this into account, we have
from (1), in any state s and a non-exploratory
action a that maximizes the right-hand side,
p = r(s,a) — h(s) + Y ges P(5|S,a)h(s').
Hence, p is estimated by cumulatively averaging
r — h(s) + h(s’), whenever a greedy action a
is executed in state s resulting in state s’ and
immediate reward r. p is updated using the

following equation where « is the learning rate.

p < p+a(r—h(s)+ h(s)). 3)

One issue with model-based learning is that
the models require too much space and time to
learn as tables. In many cases, actions can be
represented much more compactly. For example,
Tadepalli and Ok (1998) uses dynamic Bayesian
networks to represent and learn action models,
resulting in significant savings in space and time
for learning the models.

Model-Free Learning

One of the disadvantages of the model-based
methods is the need to explicitly represent and
learn action models. This is completely avoided
in model-free methods such as » Q-learning by

89

learning value functions over state—action pairs.
Schwartz’s R-learning is an adaptation of Q-
learning, which is a discounted reinforcement
learning method, to optimize average reward
(Schwartz 1993).

The state—action value R(s,a) can be defined
as the expected long-term advantage of executing
action a in state s and from then on following the
optimal average-reward policy. It can be defined
using the bias values & and the optimal average
reward p as follows.

R(s,a) = r(s,a)+ Z P(s'|s,a)h(s")—p. (4)

s’eS

The main difference with Q-values is that
instead of discounting the expected total reward
from the next state, we subtract the average re-
ward p in each time step, which is the constant
penalty for using up a time step. The A value
of any state s can now be defined using the
following equation:

h(s") = max R(s', u). 5)
u
Initially all the R-values are set to 0. When

action a is executed in state s, the value of R(s, a)
is updated using the update equation

R(s.a) < (1=P)R(s.a)+B(r+h(s")—p). (6)

where f is the learning rate, r is the immediate
reward received, s’ is the next state, and p is
the estimate of the average reward of the current
greedy policy. In any state s, the greedy action a
maximizes the value R(s,a), so R-learning does
not need to explicitly learn the immediate reward
function 7 (s, a) or the action models P(s’|s,a),
since it does not use them either for the action
selection or for updating the R-values.

Both model-free and model-based ARL meth-
ods have been evaluated in several experimental
domains (Mahadevan 1996; Tadepalli and Ok
1998). When there is a compact representation for
models and can be learned quickly, the model-
based method seems to perform better. It also
has the advantage of fewer number of tunable
parameters. However, model-free methods are

http://dx.doi.org/10.1007/978-1-4899-7687-1_689

90

more convenient to implement especially if the
models are hard to learn or represent.

Scaling Average-Reward
Reinforcement Learning

Just as for discounted reinforcement learning,
scaling issues are paramount for ARL. Since the
number of states is exponential to the number of
relevant state variables, a table-based approach
does not scale well. The problem is compounded
in multi-agent domains where the number of joint
actions is exponential in the number of agents.
Several function approximation approaches,
such as linear functions, multi-layer perceptrons
(Marbach et al. 2000), local » linear regression
(Tadepalli and Ok 1998), and tile coding (Proper
and Tadepalli 2006) were tried with varying
degrees of success.

Hierarchical reinforcement learning based
on the MAXQ framework was also explored in
the average-reward setting and was shown to
lead to significantly faster convergence. In the
MAXQ framework, we have a directed acyclic
graph, where each node represents a task and
stores the value function for that task. Usually,
the value function for subtasks depends on fewer
state variables than the overall value function and
hence can be more compactly represented. The
relevant variables for each subtask are fixed by
the designer of the hierarchy, which makes it
much easier to learn the value functions. One
potential problem with the hierarchical approach
is the loss due to the hierarchical constraint on the
policy. Despite this limitation, both model-based
(Seri and Tadepalli 2002) and model-free ap-
proaches (Ghavamzadeh and Mahadevan 2006)
were shown to yield optimal policies in some
domains that satisfy the assumptions of these
methods.

Applications
A temporal difference method for average reward

based on TD(0) was used to solve a call ad-
mission control and routing problem (Marbach

Average-Reward Reinforcement Learning

et al. 2000). On a modestly sized network of
16 nodes, it was shown that the average-reward
TD(0) outperforms the discounted version be-
cause it required more careful tuning of its pa-
rameters. Similar results were obtained in other
domains such as automatic guided vehicle rout-
ing (Ghavamzadeh and Mahadevan 2006) and
transfer line optimization (Wang and Mahadevan
1999).

Convergence Analysis

Unlike their discounted counterparts, both R-
learning and H-learning lack convergence guar-
antees. This is because due to the lack of dis-
counting, the updates can no longer be thought of
as contraction mappings, and hence the standard
theory of stochastic approximation does not ap-
ply. Simultaneous update of the average reward
p and the value functions makes the analysis of
these algorithms much more complicated. How-
ever, some ARL algorithms have been proved
convergent in the limit using analysis based on
ordinary differential equations (ODE) (Abounadi
et al. 2002). The main idea is to turn to ordinary
differential equations that are closely tracked by
the update equations and use two-time-scale anal-
ysis to show convergence. In addition to the
standard assumptions of stochastic approxima-
tion theory, the two-time-scale analysis requires
that p is updated at a much slower time scale than
the value function.

The previous convergence results are based on
the limit of infinite exploration. One of the many
challenges in reinforcement learning is that of
efficient exploration of the MDP to learn the dy-
namics and the rewards. There are model-based
algorithms that guarantee learning an approx-
imately optimal average-reward policy in time
polynomial in the numbers of states and actions
of the MDP and its mixing time. These algo-
rithms work by alternating between learning the
action models of the MDP by taking actions in the
environment and solving the learned MDP using
offline value iteration.

In the “Explicit Explore and Exploit” or E3
algorithm, the agent explicitly decides between

http://dx.doi.org/10.1007/978-1-4899-7687-1_481
http://dx.doi.org/10.1007/978-1-4899-7687-1_363

Average-Reward Reinforcement Learning

exploiting the known part of the MDP and op-
timally trying to reach the unknown part of the
MDP (exploration) (Kearns and Singh 2002).
During exploration, it uses the idea of “balanced
wandering,” where the least executed action in the
current state is preferred until all actions are ex-
ecuted a certain number of times. In contrast, the
R-MAX algorithm implicitly chooses between
exploration and exploitation by using the prin-
ciple of “optimism under uncertainty” (Brafman
and Tennenholtz 2002). The idea here is to ini-
tialize the model parameters optimistically so that
all unexplored actions in all states are assumed
to reach a fictitious state that yields maximum
possible reward from then on regardless of which
action is taken. The optimistic initialization of the
model parameters automatically encourages the
agent to execute unexplored actions, until the true
models and values of more states and actions are
gradually revealed to the agent. It has been shown
that with a probability at least 1 — §, both E?
and R-MAX learn approximately correct models
whose optimal policies have an average reward e-
close to the true optimal in time polynomial in the
numbers of states and actions, the mixing time of
the MDP, é, and 51.

Unfortunately the convergence results do not
apply when there is function approximation in-
volved. In the presence of linear function approx-
imation, the average-reward version of temporal
difference learning, which learns a state-based
value function for a fixed policy, is shown to con-
verge in the limit (Tsitsiklis and Van Roy 1999).
The transient behavior of this algorithm is simi-
lar to that of the corresponding discounted TD-
learning with an appropriately scaled constant
basis function (Van Roy and Tsitsiklis 2002).
As in the discounted case, development of prov-
ably convergent optimal policy learning algo-
rithms with function approximation is a challeng-
ing open problem.

Cross-References

Efficient Exploration in Reinforcement Learn-
ing

Hierarchical Reinforcement Learning
Model-Based Reinforcement Learning

Recommended Reading

Abounadi J, Bertsekas DP, Borkar V (2002) Stochastic
approximation for non-expansive maps: application
to Q-learning algorithms. SIAM J Control Optim
41(1):1-22

Barto AG, Bradtke SJ, Singh SP (1995) Learning to act
using real-time dynamic programming. Artif Intell
72(1):81-138

Bertsekas DP (1995) Dynamic programming and opti-
mal control. Athena Scientific, Belmont

Brafman RI, Tennenholtz M (2002) R-MAX — a gen-
eral polynomial time algorithm for near-optimal
reinforcement learning. J Mach Learn Res 2:213—
231

Crites RH, Barto AG (1998) Elevator group control
using multiple reinforcement agents. Mach Learn
33(2/3):235-262

Ghavamzadeh M, Mahadevan S (2006) Hierarchical
average reward reinforcement learning. J Mach
Learn Res 13(2):197-229

Kearns M, Singh S (2002) Near-optimal reinforce-
ment learning in polynomial time. Mach Learn
49(2/3):209-232

Mahadevan S (1996) Average reward reinforcement
learning: foundations, algorithms, and empirical re-
sults. Mach Learn 22(1/2/3):159-195

Marbach P, Mihatsch O, Tsitsiklis JN (2000) Call
admission control and routing in integrated service
networks using neuro-dynamic programming. IEEE
J Sel Areas Commun 18(2): 197-208

Proper S, Tadepalli P (2006) Scaling model-based
average-reward reinforcement learning for product
delivery. In: European conference on machine learn-
ing, Berlin. Springer, pp 725-742

Puterman ML (1994) Markov decision processes: dis-
crete dynamic stochastic programming. Wiley, New
York

Schwartz A (1993) A reinforcement learning method
for maximizing undiscounted rewards. In: Proceed-
ings of the tenth international conference on ma-
chine learning, Amherst. Morgan Kaufmann, San
Mateo, pp 298-305

Seri S, Tadepalli P (2002) Model-based hierarchi-
cal average-reward reinforcement learning. In: Pro-
ceedings of international machine learning confer-
ence, Sydney. Morgan Kaufmann, pp 562-569

Sutton R, Barto A (1998) Reinforcement learning: an
introduction. MIT, Cambridge

Tadepalli P, Ok D (1998) Model-based average-reward
reinforcement learning. Artif Intell 100:177-224

Tesauro G (1992) Practical issues in temporal differ-
ence learning. Mach Learn 8(3—4):257-277

http://dx.doi.org/10.1007/978-1-4899-7687-1_244
http://dx.doi.org/10.1007/978-1-4899-7687-1_363
http://dx.doi.org/10.1007/978-1-4899-7687-1_561

92 Average-Reward Reinforcement Learning

Tsitsiklis J, Van Roy B (1999) Average cost temporal- Wang G, Mahadevan S (1999) Hierarchical op-

difference learning. Automatica 35(11):1799-1808 timization of policy-coupled semi-Markov deci-
Van Roy B, Tsitsiklis J (2002) On average versus dis- sion processes. In: Proceedings of the 16th in-
counted temporal-difference learning. Mach Learn ternational conference on machine learning, Bled,

49(2/3):179-191 pp 464-473

	A
	A/B Testing
	Abduction
	Definition
	Motivation and Background
	Structure of the Learning Task
	Abduction in Artificial Intelligence
	Abductive Concept Learning
	Abduction and Induction
	Abduction in Systems Biology

	Cross-References
	Recommended Reading

	Absolute Error Loss
	Accuracy
	Definition
	Cross-References

	ACO
	Actions
	Active Learning
	Definition
	Structure of Learning System
	Related Problems
	Active Learning Scenarios
	Constructive Active Learning
	Pool-Based Active Learning
	Stream-Based Active Learning
	Other Forms of Active Learning

	Common Active Learning Strategies
	Statistical Active Learning
	The Need for Reference Distributions
	A Detailed Example: Statistical Active Learning with LOESS
	Greedy Versus Batch Active Learning
	Cross-References
	Recommended Reading

	Active Learning Theory
	Definition
	Learning from Labeled and Unlabeled Data
	Motivating Examples
	Example: Thresholds on the Line
	Example: Linear Separators in R2
	Example: An Overabundance of Unlabeled Data

	The Sample Complexity of Active Learning
	Generic Results for Separable Data

	Mildly Selective Sampling
	A Bayesian Model
	Other Work

	Conclusion
	Cross-References
	Recommended Reading

	Adaboost
	Adaptive Control Processes
	Adaptive Learning
	Adaptive Real-Time Dynamic Programming
	Synonyms
	Definition
	Motivation and Background
	Structure of Learning System
	Backup Operations
	Off-Line Versus On-Line
	Learning A Model
	Summary of Theoretical Results
	Special Cases and Extensions

	Cross-References
	Recommended Reading

	Adaptive Resonance Theory
	Adaptive Resonance Theory
	ART Design Elements
	Stable Fast Learning with Distributed and Winner-Take-All Coding
	Complement Coding: Learning Both Absent Features and Present Features
	Matching, Attention, and Search

	Applications
	The Boston Testbed
	Application 1: Learning from Experience with Self-Supervised ART
	Application 2: Transforming Information into Knowledge Using ART Knowledge Discovery
	Application 3: Correcting Errors by Biasing Attention Using Biased ART
	Future Directions
	New Paradigms for Autonomous Intelligent Systems: Complementary Computing and Laminar Computing
	Complementary Computing in the Design of Perceptual/Cognitive and Spatial/Motor Systems
	Where's Waldo? Unifying Spatial and Object Attention, Learning, Recognition, and Search of Valued Objects and Scenes
	General-Purpose Vision and How It Supports Object Learning, Recognition, and Tracking
	Visual and Spatial Navigation, Cognitive Working Memory, and Planning
	Social Cognition
	Mental Disorders and Homeostatic Plasticity
	Machine Consciousness?

	Recommended Reading

	Adaptive System
	Agent
	Agent-Based Computational Models
	Agent-Based Modeling and Simulation
	Agent-Based Simulation Models
	AIS
	Algorithm Evaluation
	Definition
	Motivation and Background
	Processes and Techniques
	Cross-References
	References

	Analogical Reasoning
	Analysis of Text
	Analytical Learning
	Anomaly Detection
	Introduction
	Point Anomaly Detection
	Extensions to Point Anomaly Detection
	Nature of Input Data
	Type of Anomaly
	Contextual Anomalies
	Collective Anomalies

	Data Labels
	Output of Algorithm

	Anomaly Detection for Complex Data
	Symbolic Sequences
	Time Series
	Graphs and Networks

	Conclusions and Future Directions
	References

	Ant Colony Optimization
	Synonyms
	Definition
	Motivation and Background
	Structure of the Optimization System
	The Ant Colony Optimization Probabilistic Model
	The Ant Colony Optimization Pheromone Update

	Cross-References
	Recommended Reading

	Anytime Algorithm
	AODE
	Apprenticeship Learning
	Approximate DynamicProgramming
	Apriori Algorithm
	Definition
	Cross-References
	Recommended Reading

	AQ
	Architecture
	Area Under Curve
	Synonyms
	Definition

	ARL
	ART
	ARTDP
	Artificial Immune Systems
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Supervised Immune-Inspired Learning
	Unsupervised Immune-Inspired Learning

	Recommended Reading

	Artificial Life
	Artificial Neural Networks
	Cross-References

	Artificial Societies
	Synonyms
	Definition
	Motivation and Background
	Structure of the Learning System
	Important Aspects
	Modeling Learning
	Examples
	Software Systems

	Applications
	Future Directions, Challenges
	Cross-References
	Recommended Reading

	Assertion
	Assessment of Model Performance
	Association Rule
	Definition
	Cross-References
	Recommended Reading

	Associative Bandit Problem
	Associative Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	The Learning Setting
	Power of Side Information
	Linear Payoff Functions
	PAC Associative Reinforcement Learning

	Recommended Reading

	Attribute
	Synonyms
	Definition
	Motivation and Background
	Future Directions
	Limitations
	Recommended Reading

	Attribute Selection
	Attribute-Value Learning
	AUC
	Authority Control
	Autonomous Helicopter Flight Using Reinforcement Learning
	Definition
	Motivation and Background
	Typical Hardware Setup
	Helicopter State and Controls
	Helicopter Flight as an RL Problem
	Formulation
	Modeling
	Control Problem Solution Methods
	Policy Search
	Differential Dynamic Programming
	Apprenticeship Learning and Inverse RL

	Conclusion
	Cross-References
	Recommended Reading

	Average-Cost Neuro-Dynamic Programming
	Average-Cost Optimization
	Averaged One-Dependence Estimators
	Synonyms
	Definition
	Classification with AODE
	Cross-References
	Recommended Reading

	Average-Payoff Reinforcement Learning
	Average-Reward Reinforcement Learning
	Synonyms
	Definition
	Motivation and Background
	Model-Based Learning
	Model-Free Learning
	Scaling Average-Reward Reinforcement Learning
	Applications
	Convergence Analysis
	Cross-References
	Recommended Reading

