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Abstract

Starting from the concept of regular Markov
models we introduce the concept of hidden

Markov model, and the issue of estimating the
output emission and transition probabilities
between hidden states, for which the Baum-
Welch algorithm is the standard choice. We
mention typical application in which hidden
Markov models play a central role, and men-
tion a number of popular implementations.

Definition

Hidden Markov models (HMMs) form a class
of statistical models in which the system being
modeled is assumed to be a Markov process with
hidden states. From observed output sequences
generated by the Markov process, both the output
emission probabilities from the hidden states and
the transition probabilities between the hidden
states can be estimated with dynamic program-
ming methods. The estimated model parameters
can then be used for various sequence analysis
purposes.

Motivation and Background

The states of a regular Markov model, named
after Russian mathematician Andrey Markov
(1865–1922), are directly observable; hence its
only parameters are the state transition proba-
bilities. In many real-world cases, however, the
states of the system that one wants to model are
not directly observable. For instance, in speech
recognition, the audio is the observable stream,
while the goal is to discover the phonemes (the
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Hidden Markov Models,
Fig. 1 Architecture of a
hidden Markov model

categorical elements of speech) that emitted the
audio. Hidden Markov models offer one type
of architecture to estimate hidden states through
indirect means. Dynamic programming methods
have been developed that can estimate both the
output emission probabilities and the transition
probabilities between the hidden states, either
from observations of output sequences only (an
unsupervised learning setting) or from pairs
of aligned output sequences and gold-standard
hidden sequences (a supervised learning setting).

Structure of the Learning System

Figure 1 displays the general architecture of a
hidden Markov model. Each circle represents a
variable xi or yi occurring at time i ; xt is the
discrete value of the hidden variable at time t .
The variable yt is the output variable observed
at the same time t , said to be emitted by xt .
Arrows denote conditional dependencies. Any
hidden variable is only dependent on its imme-
diate predecessor; thus, the value of xt is only
dependent on that of xt�1 occurring at time t � 1.
This deliberate simplicity is referred to as the
Markov assumption. Analogously, observed vari-
ables such as yt are conditionally dependent only
on the hidden variables occurring at the same
time t, i.e., xt in this case.

Typically, a start state x0 is used as the first
hidden state (not conditioned by any previous
state), as well as an end state xnC1 that closes the
hidden state sequence of length n. Start and end
states usually emit meta-symbols signifying the
“start” and “end” of the sequence.

An important constraint on the data that can in
principle be modeled in a hidden Markov model
is that the hidden and output sequences need to be
discrete, aligned (i.e., one yt for each xt /, and of
equal length. Sequence pairs that do not conform
to these constraints need to be discretized (e.g.,
in equal-length time slices) or aligned where
necessary.

Training and Using Hidden Markov Models
Hidden Markov models can be trained both in
an unsupervised and a supervised fashion. First,
when only observed output sequences are avail-
able for training, the model’s conditional prob-
abilities from this indirect evidence can be esti-
mated through the Baum-Welch algorithm (Baum
et al. 1970), a form of unsupervised learning, and
an instantiation of the expectation-maximization
(EM) algorithm (Dempster et al. 1977).

When instead aligned sequences of gold-
standard hidden variables and output variables
are given as supervised training data, both
the output emission probabilities and the state
transition probabilities can be straightforwardly
estimated from frequencies of co-occurrence in
the training data.

Once trained, it is possible to find the most
likely sequence of hidden states that could have
generated a particular (test) output sequence by
the Viterbi algorithm (Viterbi 1967).

Applications of Hidden Markov Models
Hidden Markov models are known for their suc-
cessful application in pattern recognition tasks
such as speech recognition (Rabiner 1989) and
DNA sequencing (Kulp et al. 1996) but also in
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sequential pattern analysis tasks such as in part-
of-speech tagging (Church 1988).

Their introduction in speech recognition in
the 1970s (Jelinek 1998) led the way toward the
introduction of stochastic methods in general in
the field of natural language processing in the
1980s and 1990s (Charniak 1993; Manning and
Schütze 1999) and into text mining and infor-
mation extraction in the late 1990s and onward
(Freitag and McCallum 1999). In a similar way,
hidden Markov models started to be used in
DNA pattern recognition in the mid-1980s and
have gained widespread usage throughout bioin-
formatics since (Durbin et al. 1998; Burge and
Karlin 1997).

Programs
Many implementations of hidden Markov mod-
els exist. Three noteworthy packages are the
following:

• UMDHMM by Tapas Kanungo. Implements
the forward-backward, Viterbi, and Baum-
Welch algorithms (Kanungo 1999)

• JAHMM by Jean-Marc François. A versatile
Java implementation of algorithms related to
hidden Markov models (François 2006)

• HMMER by Sean Eddy. An implementation
of profile HMM software for protein sequence
analysis (Eddy 2007)
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that higher-level parent-tasks invoke lower-level
child tasks as if they were primitive actions.
A decomposition may have multiple levels of
hierarchy. Some or all of the subproblems can
themselves be reinforcement learning problems.
When a parent-task is formulated as a reinforce-
ment learning problem it is commonly formalized
as a semi-Markov decision problem because its
actions are child-tasks that persist for an extended
period of time. The advantage of hierarchical de-
composition is a reduction in computational com-
plexity if the overall problem can be represented
more compactly and reusable subtasks learned
or provided independently. While the solution to
a HRL problem is optimal given the constraints
of the hierarchy there are no guarantees in gen-
eral that the decomposed solution is an optimal
solution to the original reinforcement learning
problem.

Motivation and Background

Bellman’s “curse of dimensionality” beleaguers
reinforcement learning because the problem rep-
resentation grows exponentially in the number
of state and action variables. The complexity we
encounter in natural environments has a property,
near decomposability, that may be exploited us-
ing hierarchical models to greatly simplify our
understanding and control of behavior. Human
societies have used hierarchical organizations to
solve complex tasks dating back to at least Egyp-
tian times. It seems natural, therefore, to in-
troduce hierarchical structure into reinforcement
learning to solve more complex problems.

When large problems can be decomposed hi-
erarchically there may be improvements in the
time and space complexity for both learning and
execution of the overall task. Hierarchical de-
composition is a divide-and-conquer strategy that
solves the smaller subtasks and puts them back
together for a more cost-effective solution to
the larger problem. The subtasks defined over
the larger problem are stochastic macro-operators
that execute their policy until termination. If there
are multiple ways to terminate a subtask the
optimal subtask policy will depend on the context

in which the subtask is invoked. Subtask policies
usually persist for multiple time-steps and are
hence referred to as temporally extended actions.
Temporally extended actions have the potential
to transition through a much smaller “higher-
level” state-space, reducing the size of the orig-
inal problem. For example, navigating through a
house may only require room states to represent
the abstract problem if room-leaving temporally
extended actions are available to move through
each room. A room state in this example is
referred to as an abstract state as the detail of
the exact position in the room is abstracted away.
Hierarchical reinforcement learning can also pro-
vide opportunities for subtask reuse. If the rooms
are similar, the policy to leave a room will only
need to be learnt once and can be transferred and
reused.

Early developments of hierarchical learning
appeal to analogies of boss – subordinate models.
Ashby (1956) discusses the “amplification” of
regulation in very large systems through hier-
archical control – a doctor looks after a set of
mechanics who in turn maintain thousands of
air-conditioning systems. Watkins (1989) used a
navigator – helmsman hierarchical control ex-
ample to illustrate how reinforcement learning
limitations may be overcome. Early examples
of hierarchical reinforcement learning include
Singh’s Hierarchical-DYNA (Dyna, a class of
architectures for intelligent systems based on
approximating dynamic programming methods.
Dyna architectures integrate trial-and-error (rein-
forcement) learning and execution-time planning
into a single process operating alternately on
the world and on a learned model of the world
Sutton et al. 1999) (Singh 1992), Kaelbling’s
Hierarchical Distance to Goal (HDG) (Kaelbling
1993), and Dayan and Hinton’s Feudal reinforce-
ment learning (Dayan and Hinton 1992). The
latter explains hierarchical structure in terms of
a management hierarchy. The example has four
hierarchical levels and employs abstract states,
which they refer to as “information hiding”.

Close to the turn of the last century three
approaches to hierarchical reinforcement learn-
ing were developed relatively independently: Hi-
erarchies of Abstract Machines (HAMs) (Parr
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Hierarchical Reinforcement Learning, Fig. 1 Left: The agent view of reinforcement learning. Right: A four-room
environment with the agent in one of the rooms show as a solid black oval

and Russell 1997); the Options framework (Sut-
ton et al. 1999); and MAXQ value function de-
composition (Dietterich 2000). Each approach
has different emphases, but a common factor is
the use of temporally extended actions and the
formalization of HRL in terms of semi-Markov
decision process theory (Puterman 1994) to solve
the higher-level abstract reinforcement learning
problem.

Hierarchical reinforcement learning is still
an active research area. More recent extensions
include: continuous state-space; concurrent
actions and multi-agency; use of average
rewards (Ghavamzadeh and Mahadevan 2002);
continuing problems; policy-gradient methods;
partial-observability and hierarchical memory;
factored state-spaces and graphical models;
and basis functions. Hierarchical reinforcement
learning also includes hybrid approaches such
as Ryan’s reinforcement learning teleo-operators
(RL-TOPs) (Ryan and Reid 2000) that combines
planning at the top level and reinforcement
learning at the more stochastic lower levels.
Please see Barto and Mahadevan (2003) for
a survey of recent advances in hierarchical
reinforcement learning. More details can be
found in the section on recommended reading.

In most applications the structure of the hi-
erarchy is provided as background knowledge
by the designer. Some researchers have tried to
learn the hierarchical structure from the agent–
environment interaction. Most approaches look
for subgoals or subtasks that try to partition the
problem into near independent reusable subprob-
lems.

Structure of Learning System

Structure of HRL
The agent view of reinforcement learning illus-
trated on the left in Fig. 1 shows an agent inter-
acting with an environment. At regular time-steps
the agent takes actions in the environment and
receives sensor observations and rewards from
the environment. A hierarchical reinforcement
learning agent is given or discovers background
knowledge that explicitly or implicitly provides a
decomposition of the environment. The agent ex-
ploits this knowledge to solve the problem more
efficiently by finding an action policy to optimize
a measure of future reward, as for reinforcement
learning.

We will motivate the machinery of hierar-
chical reinforcement learning with the simple
example shown in Fig. 1 (right). This diagram
shows a four-room house with doorways between
adjoining rooms and a doorway in the top left
room leading outside. Each cell represents a pos-
sible position of the agent. We assume the agent
always starts in the bottom left room position as
shown by the black oval. It is able to sense its
position in the room and which room it occupies.
It can move one step in any of the four compass
directions each time-step. It also receives a
reward of �1 at each time-step. The objective
is to leave the house via the least-cost route. We
assume that the actions are stochastic with an
80 % chance of moving in the intended direction
and a 20 % chance of staying in place. Solving
this problem in a straightforward manner using
reinforcement learning requires storage for 400
Q values defined over 100 states and 4 actions.
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If the state space is decomposed into the
four identical rooms a hierarchical reinforcement
learner could solve this problem more efficiently.
For example, we could solve two subproblems.
One that finds an optimal solution to leave a room
to the North and another to leave a room to the
West. When learning these subtasks, leaving a
room in any other way is disallowed. Each of
these subproblems requires storage for 100 Q

values – 25 states and 4 actions.
We also formulate and solve a higher-level

problem that consists of only the four rooms as
states. These are abstract states because, as pre-
viously explained, the exact position in the room
has been abstracted away. In each abstract state
we allow a choice of only one or the other of the
learnt room-leaving actions. These are temporally
extended actions because, once invoked, they will
usually persist for multiple time-steps until the
agent exits the room. We proceed to solve this
higher-level problem in the usual way using rein-
forcement learning. The proviso is that the reward
on completing a temporally extended action is
the sum of rewards accumulated since invocation
of the subtask. The higher-level problem requires
storage for only 8 Q values – 4 states and 2
actions.

Once learnt, execution of the higher-level pol-
icy will determine the optimal room-leaving ac-
tion to invoke given the current room – in this
case to leave the room via the West doorway.
Control is passed to the room-leaving subtask
that leads the agent out of the room through
the chosen doorway. Upon leaving the room,
the subtask is terminated and control is passed
back to the higher level that chooses the next
optimal room-leaving action until the agent fi-
nally leaves the house. The total number of Q

values required for the hierarchical reinforce-
ment formulation is 200 for the two subtasks and
eight for the higher-level problem, a total of 208.
This almost halves the storage requirements com-
pared to the “flat” formulation with correspond-
ing savings in time complexity. In this exam-
ple, hierarchical reinforcement learning finds the
same optimal policy that a less efficient reinforce-
ment learner would find, but this is not always
the case.

The above example hides many issues that
hierarchical reinforcement learning needs to ad-
dress, including: safe state abstraction; appro-
priately accounting for accumulated subtask re-
ward when initial conditions change or rewards
are discounted; optimality of the solution; and
learning of the hierarchical structure itself. In the
next sections we will touch on these issues as
we discuss the semi-Markov decision problem
formalism and review several approaches to hi-
erarchical reinforcement learning.

Semi-Markov Decision Problem Formalism
The common underlying formalism in hierarchi-
cal reinforcement learning is the semi-Markov
decision process (SMDP). A SMDP generalizes
a �Markov decision process by allowing actions
to be temporally extended. We will state the dis-
crete time equations following Dietterich (2000),
recognizing that in general SMDPs are formu-
lated with real-time valued temporally extended
actions (Puterman 1994).

Denoting the random variable N to be the
number of time steps that a temporally extended
action a takes to complete when it is executed
starting in state s, the state transition probability
function for the result state s0 and the expected
reward function are given by (1) and (2) respec-
tively.

T
N;a
ss0 D P rfstCN D s0jst D s; at D ag (1)
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N;a
ss0 D E

(
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R
N;a
ss0 is the expected sum of N future discounted

rewards. The discount factor � 2 [0, 1]. When set
to less than 1, � insures that the value function
will converge for continuing or infinite-horizon
problems. The Bellman “backup” equations for
the value function V (s/ for an arbitrary policy �

and optimal policies (denoted by �) are similar to
those for MDPs with the sum taken with respect
to s0 and N .
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For problems that are guaranteed to terminate, the
discount factor � can be set to 1. In this case the
number of steps N can be marginalized out and
the sum taken with respect to s alone. The above
equations are then similar to the ones for MDPs
with the expected primitive reward replaced with
the expected sum of rewards to termination of
the temporally extended action. All the meth-
ods developed for reinforcement learning using
primitive actions work equally well for problems
using temporally extended actions.

Approaches to Hierarchical Reinforcement
Learning

Hierarchies of Abstract Machines (HAMs)
In the HAM approach to hierarchical reinforce-
ment learning (Parr and Russell 1997), the de-
signer specifies subtasks by providing stochastic
finite state automata called abstract machines.
While in practice several abstract machines may
allow some to call others as subroutines (hence
hierarchies of abstract machines), in principle
this is equivalent to specifying one large abstract
machine with two types of states. Action states,
that specify the action to be taken given the state
of the MDP to be solved and choice states with
nondeterministic actions.

An abstract machine is a triple h�; I; ıi, where
� is a finite set of machine states, I is a stochastic
function from states of the MDP to be solved to
machine states that determines the initial machine
state, and ı is a stochastic next-state function
mapping machine states and MDP states to next
machine states. The parallel action of the MDP
and an abstract machine yields a discrete-time
higher-level SMDP with the abstract machine’s
action states generating a sequence of temporally
extended actions between choice states. Only a
subset of states of the original MDP are associ-
ated with choice-points, potentially reducing the
higher-level problem significantly.

Continuing with our four-room example, the
abstract machine in Fig. 2 provides choices for
leaving a room to the West or the North. In each
room it will take actions that move the agent to
a wall, and perform a random walk along the
wall until it finds the doorway. Only five states
of the original MDP are states of the higher-level
SMDP. These states are the initial state of the
agent and the states on the other side of doorways
where the abstract machine enters choice states.
Reinforcement learning methods update the value
function for these five states in the usual way
with rewards accumulated since the last choice
state. The optimal policy consists of the three
temporally extended actions sequentially leaving
a room to the West, North, and North again.

Solving the SMDP will yield an optimal policy
for the agent to leave the house subject to the
constraints of the abstract machine. In this case it
is not a globally optimal policy because a random
walk along walls to find a doorway is inefficient.
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The HAM approach is predicated on engineers
and control theorists being able to design good
controllers that will realize specific lower level
behaviors. HAMs are a way to partially specify
procedural knowledge to transform an MDP to a
reduced SMDP. In the most general case HAMs
can be Turing machines that execute any com-
putable mapping of the agent’s complete sensory-
action history.

Options
For an MDP with finite states S and actions
A, options generalize one-step primitive actions
to include temporally extended actions (Sutton
et al. 1999). Options consist of three components:
a policy � : S � A ! [0, 1], a termination
condition ˇ : S ! [0, 1], and an initiation
set I � S . An option hI; �; ˇi is available
in state s if and only if s 2 I . If an option
is invoked, actions are selected according to �

until the option terminates according to ˇ. These
options are called Markov options because intra-
option actions taken by policy � depend only on
the current state s. It is possible to generalize
options to semi-Markov options in which policies
and termination conditions make their choices
dependent on all prior events since the option was
initiated. In this way it is possible, for example,
to “time-out” options after some period of time
has expired. For their most general interpretation,
options and HAMs appear to have similar func-
tionality, but different emphases.

Options were intended to augment the primi-
tive actions available to an MDP. The temporally
extended actions executed by the options yield a
SMDP. As for HAMs, if options replace primitive
actions, the SMDP can be considerably reduced.
There is debate as to benefits when primitive
actions are retained. Reinforcement learning may
be accelerated because the value function can
be backed-up over greater distances in the state-
space and the inclusion of primitive actions guar-
antees convergence to the globally optimal pol-
icy, but the introduction of additional actions
increased the storage and exploration necessary.

In a similar four-room example to that of
Fig. 1, the authors (Sutton et al. 1999) show how
options can learn significantly faster proceeding

on a room-by-room basis, rather than position by
position. When the goal is not in a convenient
location, able to be reached by the given op-
tions, it is possible to include primitive actions as
special-case options and still accelerate learning
for some problems. For example, with room-
leaving options alone, it is not possible to reach a
goal in the middle of a room. Primitive actions are
required when the room containing the goal state
is entered. Although the inclusion of primitive
actions guarantees convergence to the globally
optimal policy, this may create extra work for the
learner.

MAXQ
The MAXQ (Dietterich 2000) approach to hier-
archical reinforcement learning restricts subtasks
to subsets of states, actions, and policy frag-
ments of the original MDP without introducing
extra state, as is possible with HAMs and semi-
Markov options. The contribution of MAXQ is
the decomposition of the value function over
the hierarchy and provision of opportunities for
state abstraction. An MDP is manually decom-
posed into a hierarchical directed acyclic graph
of subtasks called a task-hierarchy. Each subtask
is a smaller (semi-)MDP. In decomposing the
MDP the designer specifies the active states and
terminal states for each subtask. Terminal states
are typically classed either as goal terminal states
or non-goal terminal states. Using disincentives
for non-goal terminal states, policies are learned
for each subtask to encourage them to terminate
in goal terminal states. The actions available in
each subtask can be primitive actions or other
(child) subtasks. Each sub-task can invoke any of
its child subtasks as a temporally extended action.
When a task enters a terminal state, it, and all its
children, abort and return control to the calling
subtask.

Figure 3 shows a task-hierarchy for the pre-
vious four-room problem. The four lower-level
subtasks are sub-MDPs for a generic room, where
a separate policy is learnt to exit a room by
each of the four possible doorways. The arrow
indicates a transition to a goal terminal state and
the “�”s indicate non-goal terminal states. States,
actions, transitions, and rewards are inherited
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from the original MDP. The rewards on transition
to terminal states are engineered to encourage
the agent to avoid non-goal terminal states and
terminate in goal states. The higher-level problem
(SMDP) consists of just four states representing
the rooms. Any of the subtasks (room-leaving
actions) can be invoked in any of the rooms.

A key feature of MAXQ is that it represents
the value of a state as a decomposed sum of
subtask completion values plus the value of the
immediate primitive action. A completion value
is the expected (discounted) cumulative reward
to complete the subtask after taking the next
(temporally extended) action when following a
policy over subtasks. The sum includes all the
tasks invoked on the path from the root task in
the task hierarchy right down to the primitive
action. For a rigorous mathematical treatment the
reader is referred to Dietterich (2000). The Q
function is expressed recursively (5) as the value
for completing the subtask plus the completion
value for the overall problem after the subtask
has terminated. In this equation, i is the subtask
identifier, s is the current state, action a is the
child subtask (or primitive action), and � is a
policy for each subtask.

Q�.i; s; a/ D V �.a; s/C C �.i; s; a/ (5)

We describe the basic idea for the task-
hierarchy shown in Fig. 3 for the optimal
policy. The value of the agent’s state has three
components determined by the two levels in the
task-hierarchy plus a primitive action. For the
agent state, shown in Fig. 4 by a solid black oval,
the value function represents the expected reward
for taking the next primitive action to the North,
completing the lower-level subtask of leaving the

room to the West, and completing the higher-
level task of leaving the house. The benefit of
decomposing the value function is that it can be
represented much more compactly because only
the completion values for non-primitive subtasks
and primitive actions need be stored.

The example illustrates two types of state
abstraction. As all the rooms are similar we can
ignore the room identity when we learn intra-
room navigation policies. Secondly, when future
rewards are not discounted, the completion value
after leaving a room is independent of the starting
state in that room. These “funnel” actions allow
the intra-room states to be abstracted into a single
state for each room as far as the completion
value is concerned. The effect is that the original
problem can be decomposed into a small four-
state SMDP at the top level and four smaller
subtask MDPs.

Optimality
Hierarchical reinforcement learning can at best
yield solutions that are hierarchically optimal, as-
suming convergence conditions are met, meaning
that they are consistent with the task-hierarchy.
MAXQ introduces another form of optimality –
recursive optimality. MAXQ optimizes subtask
policies to reach goal states ignoring the needs
of their parent tasks. This has the advantage
that subtasks can be reused in various contexts,
but they may not therefore be optimal in each
situation. A recursively optimal solution cannot
be better than a hierarchical optimal solution.
Both recursive and hierarchical optimality can be
arbitrarily worse than the globally optimal solu-
tion if a designer chooses a poor HAM, option or
hierarchical decomposition.
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Hierarchical
Reinforcement Learning,
Fig. 4 The components of
the decomposed value
function for the agent
following an optimal policy
for the four-room problem
in Fig. 1. The agent is
shown as a solid black oval
at the starting state

The stochastic nature of MDPs means that
the condition under which a temporally abstract
action is appropriate may have changed after the
action’s invocation and that another action may
become a better choice because of “stochastic
drift.” A subtask policy proceeding to termination
in this situation may be suboptimal. By con-
stantly interrupting the subtask, as for example
in HDG (Kaelbling 1993), a better subtask may
be chosen. Dietterich calls this “polling” proce-
dure hierarchical greedy execution. While this is
guaranteed to be no worse than the hierarchically
optimal or recursively optimal solution and may
be considerably better, it still does not provide
any global optimality guarantees. Great care is
required while learning with hierarchical greedy
execution. Hauskrecht et al. (1998) discuss de-
composition and solution techniques that make
optimality guarantees, but unfortunately, unless
the MDP can be decomposed into very weakly
coupled smaller MDPs, the computational com-
plexity is not necessarily reduced. Benefits will
still accrue if the options or subtask policies can
be reused and amortized over multiple MDPs.

Automatic Decomposition
In the above approaches the programmer is ex-
pected to manually decompose the overall prob-
lem into a hierarchy of subtasks. Methods to auto-
matically decompose problems include ones that
look for subgoal bottleneck or landmark states,
and ones that find common behavior trajectories
or region policies. For example, in Fig.1 the agent
will exit one of the two starting room doorways

on the way to the goal. The states adjacent to
each doorway will be visited more frequently in
successful trials than other states.

Both NQL (nested Q learning) Digney (1998)
and McGovern (2002) use this idea to identify
subgoals. Moore et al. (1999) suggest that, for
some navigation tasks, performance is insensitive
to the position of landmarks and an (automatic)
randomly generated set of landmarks does
not show widely varying results from more
purposefully positioned ones. Hengst has
explored automatic learning of MAXQ-like
task-hierarchies from the agent’s interactive
experience with the environment, automatically
finding common regions and generating subgoals
when the agent’s prediction fails. Methods
include state abstraction with discounting for
infinite horizon problems and decompositions of
problems to form partial-order task-hierarchies
(Hengst 2008). When there are no cycles in the
causal graph the variable influence structure
analysis (VISA) algorithm (Jonsson and Barto
2006) performs hierarchical decomposition of
factored Markov decision processes using a given
dynamic Bayesian network model of actions.
Konidaris and Barto (2009) introduce a skill
discovery method for reinforcement learning in
continuous domains that constructs chains of
skills leading to an end-of-task reward.

Given space limitations we cannot adequately
cover all the research in hierarchical reinforce-
ment learning, but we trust that the material above
will provide a starting point.
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Definition

Higher-order logic is a logic that admits so-
called higher-order functions, which are func-
tions that can have functions as arguments or
return a function as a result. The expressive power
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that comes from higher-order functions makes the
logic highly suitable for representing individuals,
predicates, features, background theories, and hy-
potheses and performing the necessary reasoning,
in machine learning applications.

Motivation and Background

Machine learning tasks naturally require knowl-
edge representation and reasoning. The individu-
als that are the subject of learning, the training
examples, the features, the background theory,
and the hypothesis languages all have to be rep-
resented. Furthermore, reasoning, usually in the
form of computation, has to be performed.

Logic is a convenient formalism in which
knowledge representation and reasoning can be
carried out; indeed, it was developed exactly for
this purpose. For machine learning applications,
quantification over variables is generally needed,
so that, at a minimum, �first-order logic should
be used. Here, the use of higher-order logic for
this task is outlined. Higher-order logic admits
higher-order functions that can have functions
as arguments or return a function as a result.
This means that the expressive power of higher-
order logic is greater than first-order logic so
that some expressions of higher-order logic are
difficult or impossible to state directly in first-
order logic. For example, sets can be represented
by � predicates which are terms in higher-order
logic, and operations on sets can be implemented
by higher-order functions. Grammars that gener-
ate spaces of predicates can be easily expressed.
Also the programming idioms of functional pro-
gramming languages become available.

The use of higher-order logic in learning ap-
plications began around 1990 when researchers
argued for the advantages of lifting the concept
of � least general generalization in the first-order
setting to the higher-order setting (Dietzen and
Pfenning 1992; Feng and Muggleton 1992; Lu
et al. 1998). A few years later, Muggleton and
Page (1994) advocated the use of higher-order
concepts, especially sets, for learning applica-
tions. Then the advantages of a type system and
also higher-order facilities for concept learning

were presented in Flach et al. (1998). Higher-
order logic is also widely used in other parts
of computer science, for example, theoretical
computer science, functional programming, and
verification of software.

Most treatments of higher-order logic can be
traced back to Church’s simple theory of types
(Church 1940). Recent accounts can be found, for
example, in Andrews (2002), Fitting (2002), and
Wolfram (1993). For a highly readable account of
the advantages of working in higher-order rather
than first-order logic, Farmer (2008) is strongly
recommended. An account of higher-order logic
specifically intended for learning applications is
in Lloyd (2003), which contains much more de-
tail about the knowledge representation and rea-
soning issues that are discussed below.

Theory

Logic
To begin, here is one formulation of the syntax
of higher-order logic which gives prominence to
a type system that is useful for machine learning
applications, in particular.

An alphabet consists of four sets: a set T of
type constructors, a set P of parameters, a set C
of constants, and a set V of variables. Each type
constructor in T has an arity. The set T always
includes the type constructor � of arity 0. �

is the type of the booleans. Each constant in C

has a signature (i.e., type declaration). The set V
is denumerable. Variables are typically denoted
by x; y; ´; : : :. The parameters are type variables
that provide polymorphism in the logic; they are
ignored for the moment.

Here is the definition of a type (for the non-
polymorphic case).

Definition A type is defined inductively as fol-
lows:

1. If T is a type constructor of arity k and
˛1; : : : ; ˛k are types, then T ˛1 : : : ˛k is a
type. (Thus, a type constructor of arity 0 is a
type.)

2. If ˛ and ˇ are types, then ˛ ! ˇ is a type.

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_653
http://dx.doi.org/10.1007/978-1-4899-7687-1_327
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3. If ˛1; : : : ; ˛n are types, then ˛1 � � � � � ˛n is a
type.

The set C always includes the following con-
stants:

1. > and ?, having signature �.
2. D˛ , having signature ˛ ! ˛ ! �, for each

type ˛.
3. :, having signature �! �.
4. ^, _, �!,  �, and  !, having signature

�! �! �.
5. †˛ and …˛ , having signature .˛ ! �/! �,

for each type ˛.

The intended meaning of D˛ is identity (i.e.,
D˛ x y is> if x and y are identical), the intended
meaning of > is true, the intended meaning of
? is false, and the intended meanings of the
connectives :, ^, _, �!,  �, and  ! are as
usual. The intended meanings of †˛ and …˛ are
that †˛ maps a predicate to > if the predicate
maps at least one element to > and …˛ maps a
predicate to > iff the predicate maps all elements
to >.

Here is the definition of a term (for the non-
polymorphic case).

Definition A term, together with its type, is de-
fined inductively as follows:

1. A variable in V of type ˛ is a term of type ˛.
2. A constant in C having signature ˛ is a term of

type ˛.
3. If t is a term of type ˇ and x a variable of type

˛, then �x:t is a term of type ˛ ! ˇ.
4. If s is a term of type ˛ ! ˇ and t a term of

type ˛, then .s t/ is a term of type ˇ.
5. If t1; : : : ; tn are terms of type ˛1; : : : ; ˛n, re-

spectively, then .t1; : : : ; tn/ is a term of type
˛1 � � � � � ˛n.

A formula is a term of type �. Terms of the
form .†˛ �x:t/ are written as 9˛ x:t , and terms
of the form .…˛ �x:t/ are written as 8˛x:t (in
accord with the intended meaning of †˛ and
…˛). Thus, in higher-order logic, each quantifier
is obtained as a combination of an abstraction
acted on by a suitable function (†˛ or …˛).

The polymorphic version of the logic extends
what is given above by also having available
parameters. The definition of a type as above
is then extended to polymorphic types that may
contain parameters, and the definition of a term
as above is extended to terms that may have
polymorphic types.

Reasoning in higher-order logic can consist of
theorem proving, via resolution or tableaus, for
example, or can consist of equational reasoning,
as is embodied in the computational mechanisms
of functional programming languages, for exam-
ple. Theorem proving and equational reasoning
can even be combined to produce more flexible
reasoning systems. Determining whether a for-
mula is a theorem is, of course, undecidable.

The semantics for higher-order logic is gener-
ally based on Henkin (1950) models. Compared
with first-order interpretations, the main extra
ingredient is that, for each (closed) type of the
form ˛ ! ˇ, there is a domain that consists
of some set of functions from the domain corre-
sponding to ˛ to the domain corresponding to ˇ.
There exist proof procedures that are sound and
complete with respect to this semantics (Andrews
2002; Fitting 2002).

The logic includes the �-calculus. Thus, the
rules of �-conversion are available:

1. (˛-Conversion) �x:t �˛ �y:.tfx=yg/, if y

is not free in t .
2. (ˇ-Reduction) .�x:s t/ �ˇ sfx=tg.
3. (�-Reduction) �x:.t x/ �� t , if x is not free

in t .

Here sfx=tg denotes the result of replacing free
occurrences of x in s by t , where free vari-
able capture is avoided by renaming the relevant
bound variables in s.

Higher-order generalization is introduced
through the concept of least general general-
ization as follows (Feng and Muggleton 1992). A
term s is more general than a term t if there is a
substitution � such that s� is �-convertible to t .
A term t is a common generalization of a set T of
terms if t is more general than each of the terms
in T . A term t is a least general generalization of
a set T of terms if t is a common generalization
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of T and, for all common generalizations s of T ,
t is not strictly more general than s.

Knowledge Representation
In machine learning applications, the individuals
that are the subject of learning need to be rep-
resented. Using logic, individuals are most nat-
urally represented by (closed) terms. In higher-
order logic, advantage can be taken of the fact
that sets can be identified with predicates (their
characteristic functions). Thus, the set f1; 2g is
the term

�x:if x D 1 then > else if x D 2 then > else ?:

This idea generalizes to multisets and similar
abstractions. For example,

�x:if x D A then 42 else if xDB then 21 else 0

is the multiset with 42 occurrences of A and
21 occurrences of B (and nothing else). Thus,
abstractions of the form

�x:if x D t1 then s1 else : : : if

x D tn then sn else s0

are adopted to represent (extensional) sets, multi-
sets, and so on.

These considerations motivate the introduc-
tion of the class of basic terms that are used to
represent individuals (Lloyd 2003). The defini-
tion of basic terms is an inductive one consisting
of three parts. The first part covers data types such
as lists and trees and uses the same constructs
for this as are used in functional programming
languages. The second part uses abstractions to
cover data types such as (finite) sets and mul-
tisets, for which the data can be represented by
a finite lookup table. The third part covers data
types that are product types and therefore allows
the representation of tuples. The definition is
inductive in the sense that basic terms include
lists of sets of tuples, tuples of sets, and so on.

It is common in learning applications to need
to generate spaces of predicates. This is be-
cause features are typically predicates and logical

hypothesis languages contain predicates. Thus,
there is a need to specify grammars that can
generate spaces of predicates. In addition to first-
order approaches based on refinement operators
or antecedent description grammars, higher-order
logic offers another approach to this task based on
the idea of generating predicates by composing
certain primitive functions.

Predicate rewrite systems are used to define
spaces of standard predicates, where standard
predicates are predicates in a particular syntactic
form that involves composing certain functions
(Lloyd 2003). A predicate rewrite is an expres-
sion of the form p � q, where p and q are
standard predicates. The predicate p is called the
head and q is the body of the rewrite. A predicate
rewrite system is a finite set of predicate rewrites.
One should think of a predicate rewrite system
as a kind of grammar for generating a particular
class of predicates. Roughly speaking, this works
as follows. Starting from the weakest predicate
top, all predicate rewrites that have top (of the
appropriate type) in the head are selected to make
up child predicates that consist of the bodies
of these predicate rewrites. Then, for each child
predicate and each redex (i.e., subterm selected
for expansion) in that predicate, all child predi-
cates are generated by replacing each redex by
the body of the predicate rewrite whose head is
identical to the redex. This generation of pred-
icates continues to produce the entire space of
predicates given by the predicate rewrite system.

Predicate rewrite systems are a convenient
mechanism to specify precise control over the
space of predicates that is to be generated. Note
that predicate rewrite systems depend essentially
on the higher-order nature of the logic since
standard predicates are obtained by composition
of functions and composition is a higher-order
function.

Other ingredients of learning problems, such
as background theories and training examples,
can also be conveniently represented in higher-
order logic.

Reasoning
Machine learning applications require that
reasoning tasks be carried out, for example,
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computing the value of some predicate on some
individual. Generally, reasoning in (higher-order)
logic can be either theorem proving or purely
equational reasoning or a combination of both.

A variety of proof systems have been
developed for higher-order logic; these include
Hilbert-style systems (Andrews 2002) and
tableau systems (Fitting 2002).

Purely equational reasoning includes the com-
putational models of functional programming
languages and therefore can be usefully thought
of as computation. Typical examples of this
approach include the declarative programming
languages of Curry (Hanus 2006) and Escher
(Lloyd 2003) which are extensions of the
functional programming language of Haskell
(Peyton Jones 2003). For both Curry and Escher,
the Haskell computational model is generalized
in such a way as to admit the logic programming
idioms.

Alternatively, by suitably restricting the frag-
ment of the logic considered and the proof sys-
tem, computation systems in the form of declara-
tive programming languages can be developed. A
prominent example of this approach is the logic
programming language �Prolog that was intro-
duced in the 1980s (Nadathur and Miller 1998).
In �Prolog, program statements are higher-order
hereditary Harrop formulas, a generalization of
the definite � clauses used by �Prolog. The lan-
guage provides an elegant use of �-terms as data
structures, metaprogramming facilities, universal
quantification, and implications in goals, among
other features.

Applications

Higher-order logic has been used in a variety of
machine learning settings including decision tree
learning, kernels, Bayesian networks, and evolu-
tionary computing. Decision tree learning based
on the use of higher-order logic as the knowledge
representation and reasoning language is pre-
sented in Bowers et al. (2000) and further devel-
oped in Ng (2005b). Kernels and distances over
individuals represented by basic terms are studied
in Gärtner et al. (2004). In Gyftodimos and Flach

(2005), Bayesian networks over basic terms are
defined, and it is shown there how to construct
probabilistic classifiers over such networks. In Ng
et al. (2008), higher-order logic is used as the
setting for studying probabilistic modeling, infer-
ence, and learning. An evolutionary approach to
learning higher-order concepts is demonstrated in
Kennedy and Giraud-Carrier (1999). In addi-
tion, the learnability of hypothesis languages ex-
pressed in higher-order logic is investigated in Ng
(2005a, 2006).
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Hold-One-Out Error

�Leave-One-Out Error

Holdout Data

�Holdout Set

Holdout Evaluation

Definition

Holdout evaluation is an approach to � out-of-sample
evaluation whereby the available data are
partitioned into a � training set and a � test
set. The test set is thus � out-of-sample data
and is sometimes called the holdout set or
holdout data. The purpose of holdout evaluation
is to test a model on different data to that
from which it is learned. This provides less
biased estimate of learning performance than
� in-sample evaluation.

In repeated holdout evaluation, repeated hold-
out evaluation experiments are performed, each
time with a different partition of the data, to
create a distribution of training and � test sets
with which an algorithm is assessed.

Cross-References

�Algorithm Evaluation

Holdout Set

Synonyms

Holdout data

Definition

A holdout set is a � data set containing data that
are not used for learning and that are used for
� evaluation by a learning system.
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Hopfield Network

Risto Miikkulainen
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Synonyms

Recurrent associative memory

Definition

The Hopfield network is a binary, fully recurrent
network that, when started on a random activa-
tion state, settles the activation over time into
a state that represents a solution (Hopfield and
Tank 1986). This architecture has been analyzed
thoroughly using tools from statistical physics.
In particular, with symmetric weights, no self-
connections, and asynchronous neuron activation
updates, a Lyapunov function exists for the net-
work, which means that the network activity will
eventually settle. The Hopfield network can be
used as an associate memory or as a general
optimizer. When used as an associative memory,
the weight values are computed from the set
of patterns to be stored. During retrieval, part
of the pattern to be retrieved is activated, and
the network settles into the complete pattern.
When used as an optimizer, the function to be
optimized is mapped into the Lyapunov func-
tion of the network, which is then solved for
the weight values. The network then settles to
a state that represents the solution. The basic
Hopfield architecture can be extended in many
ways, including continuous neuron activations.
However, it has limited practical value mostly
because it is not strong in either of the above
task: as an associative memory, its capacity is
approximately 0.15N in practice (where N is the
number of neurons), and as an optimizer, it often
settles into local optima instead of the global
one. The �Boltzmann machine extends the archi-
tecture with hidden neurons, allowing for better
performance in both tasks. However, the Hopfield

network has had a large impact in the field be-
cause the theoretical techniques developed for
it have inspired theoretical approaches for other
architectures as well, especially for those of self-
organizing systems (e.g., � self-organizing maps,
� adaptive resonance theory).

Recommended Reading

Hopfield JJ, Tank DW (1986) Computing with neural
circuits: a model. Science 233:624–633

Hyperparameter Optimization

�Metalearning

Hypothesis Language

Hendrik Blockeel
Katholieke Universiteit Leuven, Heverlee,
Leuven, Belgium
Leiden Institute of Advanced Computer Science,
Heverlee, Belgium

Synonyms

Representation language

Definition

The hypothesis language used by a machine
learning system is the language in which the
hypotheses (also referred to as patterns or
models) it outputs are described.

Motivation and Background

Most machine learning algorithms can be seen
as a procedure for deriving one or more hy-
potheses from a set of observations. Both the
input (the observations) and the output (the hy-
potheses) need to be described in some particular
language. This language is respectively called
the �Observation Language or the hypothesis

http://dx.doi.org/10.1007/978-1-4899-7687-1_100399
http://dx.doi.org/10.1007/978-1-4899-7687-1_31
http://dx.doi.org/10.1007/978-1-4899-7687-1_746
http://dx.doi.org/10.1007/978-1-4899-7687-1_6
http://dx.doi.org/10.1007/978-1-4899-7687-1_543
http://dx.doi.org/10.1007/978-1-4899-7687-1_100412
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
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IF Outlook=sunny AND Humidity=high THEN Play=no
IF Outlook=sunny AND Humidity=normal THEN Play=yes
IF Outlook=overcast THEN Play=yes
IF Outlook=rainy AND Wind=strong THEN Play=no
IF Outlook=rainy AND Wind=weak THEN Play=yes

Outlook

overcast

no

strong weak

yesyesno

high normal

WindyesHumidity

sunny rainy

Hypothesis Language, Fig. 1 A decision tree and an equivalent rule set

language. These terms are mostly used in the con-
text of symbolic learning, where these languages
are often more complex than in subsymbolic
or statistical learning. For instance, hypothesis
languages have received a lot of attention in the
field of � Inductive Logic Programming, where
systems typically take as one of their input pa-
rameters a declarative specification of the hypoth-
esis language they are supposed to use (which is
typically a strict subset of full clausal logic). Such
a specification is also called a �Language Bias.

Examples of Hypothesis Languages

The hypothesis language used obviously depends
on the learning task that is performed. For in-
stance, in predictive learning, the output is typi-
cally a function, and thus the hypothesis language
must be able to represent functions; whereas in
clustering the language must have constructs for
representing clusters (sets of points). Even for
one and the same goal, different languages may
be used; for instance, decision trees and rule
sets can typically represent the same type of
functions, so the difference between these two is
mostly syntactic.

In the following section, we discuss briefly
a few different formalisms for representing hy-
potheses. For most of these, there are separate
entries in this volume that offer more detail on
the specifics of that formalism.

Decision Trees and Rule Sets
A �Decision Tree represents a decision pro-
cess where consecutive tests are performed on
an instance to determine the value of its target

variable, and at each step in this process, the
test that is performed depends on the outcome of
previous tests. Each leaf of the tree contains the
set of all instances that fulfill the conjunctions of
all conditions on the path from the root to this
leaf, and as such a tree can easily be written as
a set of if-then rules where each rule contains
one such conjunction. If the target variable is
boolean, this format corresponds to disjunctive
normal form.

Figure 1 shows a decision tree and the corre-
sponding rule set. (Inspired by Mitchell 1997).

Graphical Models
The term “graphical models” usually refers to
probabilistic models where the joint distribution
over a set of variables is defined as the product
of a number of joint distributions over subsets
of these variables (i.e., a factorization), and this
factorization is defined by a graph structure. The
graph may be directed, in which case we speak
of a �Bayesian Network, undirected, in which
case we speak of a �Markov Network, or even
a mix of the two (so-called chain graphs). In a
Bayesian network, the constituent distributions
of the factorization are conditional probability
functions associated with each node. In a Markov
network, the constituent distributions are poten-
tial functions associated with each clique in the
graph.

Two learning settings can be distinguished:
learning the parameters of a graphical model
given the model structure (the graph), and learn-
ing both structure and parameters of the model. In
the first case, the graph is in fact a language bias
specification: the user forces the learner to return
a hypothesis that lies within the set of hypotheses

http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_440
http://dx.doi.org/10.1007/978-1-4899-7687-1_66
http://dx.doi.org/10.1007/978-1-4899-7687-1_927
http://dx.doi.org/10.1007/978-1-4899-7687-1_515
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Hypothesis Language, Fig. 2 A Bayesian network, a Markov network, and a neural network

representable by this particular structure. In the
second case, the structure of the graph makes
explicit certain independencies that are hypothe-
sized to exist between the variables (thus it is part
of the hypothesis itself).

Figure 2 shows examples of possible graphical
models that might be learned from data. For
details about the interpretation of such graphical
models, we refer to the respective entries in this
encyclopedia.

Neural Networks
�Neural Networks are typically used to represent
complex nonlinear functions. A neural network
can be seen as a directed graph where the nodes
are variables and edges indicate which variables
depend on which other variables. Some nodes
represent the observed input variables xi and out-
put variables y, and some represent new variables
introduced by the network. Typically, a variable
depends, in a nonlinear way, on a linear com-
bination of those variables that directly precede
it in the directed graph. The parameters of the
network are numerical edge labels that represent
the weight of a parent variable in that linear
combination.

As with graphical models, one can learn the
parameters of a neural network with a given
structure, in which case the structure serves as a
language bias; or one can learn both the structure
and the parameters of the network.

Figure 2 shows an example of a neural net-
work. We refer to the respective entry for more
information on neural networks.

Instance-Based Learning
In the most basic version of � instance-based
learning, the training data set itself represents the

hypothesis. As such, the hypothesis language is
simply the powerset of the observation language.
Because many instance-based learners rescale the
dimensions of the input space, the vector contain-
ing the rescaling factors can be seen as part of
the hypothesis. Similarly, some methods derived
from instance-based learning build a model in
which the training set instances are replaced by
prototypes (one prototype being representative
for a set of instances) or continuous functions
approximating the instances.

Clustering
In clustering tasks, there is an underlying as-
sumption that there is a certain structure in the
data set; that is, the data set is really a mixture of
elements from different groups or clusters, with
each cluster corresponding to a different popu-
lation. The goal is to describe these clusters or
populations and to indicate which data elements
belong to which cluster.

Some clustering methods define the clusters
extensionally, that is, they describe the different
clusters in the dataset by just enumerating the
elements in the dataset that belong to them. Other
methods add an intensional description to the
clusters, defining the properties that an instance
should have in order to belong to the cluster;
as such, these intensional methods attempt to
describe the population that the cluster is a sam-
ple from. Some methods recursively group the
clusters into larger clusters, building a cluster
hierarchy. Figure 3 shows an example of such a
cluster hierarchy.

The term “mixture models” typically refers to
methods that return a probabilistic model (e.g., a
Gaussian distribution with specified parameters)
for each separate population identified. Being

http://dx.doi.org/10.1007/978-1-4899-7687-1_586
http://dx.doi.org/10.1007/978-1-4899-7687-1_409
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black white
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Hypothesis Language, Fig. 3 A hierarchical cluster-
ing: left, the data set; middle: an extensional clustering
shown on the data set; right, above: the corresponding

extensional clustering tree; right, below: a corresponding
intensional clustering tree, where the clusters are de-
scribed based on color and shape of their elements

probabilistic in nature, these methods typically
also assign data elements to the populations
in a probabilistic, as opposed to deterministic,
manner.

First-Order Logic Versus Propositional
Languages
In symbolic machine learning, a distinction is
often made between the so-called attribute-value
(or propositional) and relational (or first-order)
languages. The terminology “propositional”
versus “first-order” originates in logic. In
� Propositional Logic, only the existence of
propositions, which can be true or false,
is assumed, and these propositions can be
combined with the usual logical connectives
into logical formulae. In � First-Order Predicate
Logic, the existence of a universe of objects is
assumed as well as the existence of predicates
that can express certain properties of and
relationships between these objects. By adding
variables and quantifiers, one can describe
deductive reasoning processes in first-order
logic that cannot be described in propositional
logic. For instance, in propositional logic, one
could state propositions Socrates is human and
all humans are mortal (both are statements that
may be true or false), but there is no inherent
relationship between them. In first order logic, the
formulae human(Socrates) and8x: human.x/!

mortal.x/ allow one to deduce mortal(Socrates).

A more extensive explanation of the differences
between propositional and first-order logic can
be found in the entry on �First-Order Logic.

Many machine learning approaches use an
essentially propositional language for describing
observations and hypotheses. In the fields of
Inductive Logic Programming and �Relational
Learning, more powerful languages are used,
with an expressiveness closer to that of first-order
logic. Many of the representation languages men-
tioned above, which are essentially propositional,
have been extended towards the first-order logic
context.

The simplest example is that of rule sets. If-
then rules have a straightforward counterpart in
first-order logic in the form of �Clauses, which
are usually written as logical implications where
all variables are interpreted as universally quan-
tified. For instance, the rule “IF Human = true
THEN Mortal = true” can be written in clausal
form as

mortal.x/ human.x/: (1)

Propositional rules correspond to clauses that
refer to only one object (and the object reference
is implicit). A rule such as

grandparent.x; y/ parent.x; ´/; parent.´; y/

(2)

(expressing that, for any x; y; ´, whenever x is
a parent of ´ and ´ is a parent of y, x is a

http://dx.doi.org/10.1007/978-1-4899-7687-1_963
http://dx.doi.org/10.1007/978-1-4899-7687-1_100175
http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_719
http://dx.doi.org/10.1007/978-1-4899-7687-1_116
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grandparent of y/ has no translation into proposi-
tional logic that retains the inference capacity of
the first-order logic clause.

Clauses are a natural first-order logic equiva-
lent to the if-then rules typically returned by rule
learners, and many of the other representation
languages have also been upgraded to the
relational or first-order-logic context. For
instance, several researchers (e.g., Blockeel and
De Raedt 1998) have upgraded the formalism of
decision trees toward “structural” or “first-order
logic” decision trees. Probabilistic relational
models (Getoor et al. 2001) and Bayesian
logic programs (Kersting and De Raedt 2001)
are examples of how Bayesian networks have
been upgraded, while Markov networks have
been lifted to “Markov logic” (Richardson and
Domingos 2006).

Further Reading

Most of the literature on hypothesis and obser-
vation languages is found in the area of induc-
tive logic programming. Excellent starting points,
containing extensive examples of bias specifica-
tions, are Relational Data Mining by Džeroski
and Lavra (2001), Logic for Learning by Lloyd
(2003), and Logical and Relational Learning by
De Raedt (2008).

De Raedt (1998) compares a number of dif-
ferent observation and hypothesis languages with
respect to their expressiveness, and indicates re-
lationships between them.

Cross-References

� First-Order Logic
�Hypothesis Space
� Inductive Logic Programming
�Observation Language
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Leuven, Belgium
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Synonyms

Model space

Definition

The hypothesis space used by a machine learning
system is the set of all hypotheses that might pos-
sibly be returned by it. It is typically defined by a
�Hypothesis Language, possibly in conjunction
with a �Language Bias.

Motivation and Background

Many machine learning algorithms rely on some
kind of search procedure: given a set of observa-
tions and a space of all possible hypotheses that

http://dx.doi.org/10.1007/978-1-4899-7687-1_103
http://dx.doi.org/10.1007/978-1-4899-7687-1_373
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_100309
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Hypothesis Space, Fig. 1
Structure of learning
systems that derive one or
more hypotheses from a set
of observations
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learner’s implicit
hypothesis language

hypothesis space

might be considered (the “hypothesis space”),
they look in this space for those hypotheses that
best fit the data (or are optimal with respect to
some other quality criterion).

To describe the context of a learning system in
more detail, we introduce the following terminol-
ogy. The key terms have separate entries in this
encyclopedia, and we refer to those entries for
more detailed definitions.

A learner takes observations as inputs. The
�Observation Language is the language used to
describe these observations.

The hypotheses that a learner may produce,
will be formulated in a language that is called the
Hypothesis Language. The hypothesis space is
the set of hypotheses that can be described using
this hypothesis language.

Often, a learner has an implicit, built-in, hy-
pothesis language, but in addition the set of hy-
potheses that can be produced can be restricted
further by the user by specifying a language bias.
This language bias defines a subset of the hypoth-
esis language, and correspondingly a subset of the
hypothesis space. A separate language, called the
�Bias Specification Language, is used to define
this language bias. Note that while elements of
a hypothesis language refer to a single hypoth-
esis, elements of a bias specification language
refer to sets of hypotheses, so these languages
are typically quite different. Bias specification
languages have been studied in detail in the field
of � Inductive Logic Programming.

The terms “hypothesis language” and “hy-
pothesis space” are sometimes used in the broad
sense (the language that the learner is inherently
restricted to, e.g., Horn clauses), and sometimes

in a more narrow sense, referring to the smaller
language or space defined by the language bias.

The structure of a learner, in terms of the
above terminology, is summarized in Fig. 1.

Theory

For a given learning problem, let us denote with
O the set of all possible observations (sometimes
also called the instance space), and with H the
hypothesis space, i.e., the set of all possible hy-
potheses that might be learned. Let 2X denote the
power set of a set X . Most learners can then be
described abstractly as a function T W 2O ! H,
which takes as input a set of observations (also
called the training set) S � O, and produces as
output a hypothesis h	H.

In practice, the observations and hypotheses
are represented by elements of the observation
language LO and the hypothesis language LH ,
respectively. The connection between language
elements and what they represent is defined by
functions IO W LO ! O (for observations)
and IH W LH ! H (for hypotheses). This
mapping is often, but not always, bijective. When
it is not bijective, different representations for the
same hypothesis may exist, possibly leading to
redundancy in the learning process.

We will use the symbol I as a shorthand for
IO or IH . We also define the application of I to
any set S as IS D fI.x/jx 2 Sg, and to any
function f as I.f / D g , 8x W g.I.x// D

I.f .x//.
Thus, a machine learning system really im-

plements a function T 0 W 2LO ! LH , rather
than a function T W 2O ! H. The connection

http://dx.doi.org/10.1007/978-1-4899-7687-1_608
http://dx.doi.org/10.1007/978-1-4899-7687-1_73
http://dx.doi.org/10.1007/978-1-4899-7687-1_135
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Hypothesis Space, Fig. 2 Illustration of the interpreta-
tion function I mapping LO ;LH , and T 0 onto O;H,
and T

between T 0 and T is straightforward: for any
S � LO and h 2 LH ; T 0.S/ D h if and only
if T .I.S// D I.h/; in other words: T D I.T 0/.

Figure 2 summarizes these languages and
spaces and the connections between them. We
further illustrate them with a few examples.

Example 1 In supervised learning, the observa-
tions are usually pairs (x, y/ with x 2 X an
instance and y 2 Y its label, and the hypotheses
are functions mapping X onto Y . Thus O D X �

Y and H � Y X , with Y X the set of all functions
from X to Y . LO is typically chosen such that
I.LO/ D O, i.e., each possible observation can
be represented in LO . In contrast to this, in many
cases I.LH / will be a strict subset of Y X , i.e.,
I.LH / � Y X . For instance, LH may contain
representations of all polynomial functions from
X to Y if X D Rn and Y D R (with R the set
of real numbers), or may be able to represent all
conjunctive concepts over X when X D Bn and
Y D B (with B the set of booleans).

When I.LH � Y X , the learner cannot learn
every imaginable function. Thus, LH reflects
an inductive bias that the learner has, called its
language bias. We can distinguish an implicit
language bias, inherent to the learning system,
and corresponding to the hypothesis language
(space) in the broad sense, and an explicit lan-
guage bias formulated by the user, corresponding
to the hypothesis language (space) in the narrow
sense.

Example 2 Decision tree learners and rule set
learners use a different language for representing
the functions they learn (call these languages

LDT and LRS , respectively), but their language
bias is essentially the same: for instance, if X D

Bn and Y D B; I.LDT / D I.LRS / D Y X :
both trees and rule sets can represent any boolean
function from Bn to B.

In practice a decision tree learner may employ
constraints on the trees that it learns, for instance,
it might be restricted to learning trees where each
leaf contains at least two training set instances. In
this case, the actual hypothesis language used by
the tree learner is a subset of the language of all
decision trees.

Generally, if the hypothesis language in the
broad sense is LH and the hypothesis language in
the narrow sense is L0

H , then we have L0
H � LH

and the corresponding spaces fulfill (in the case
of supervised learning)

I.L0
H / � I.LH / � Y X : (1)

Clearly, the choice of LO and LH determines
the kind of patterns or hypotheses that can be
expressed. See the entries on Observation Lan-
guage and Hypothesis Language for more details
on this.

Further Reading

The term “hypothesis space” is ubiquitous in
the machine learning literature, but few articles
discuss the concept itself. In Inductive Logic
Programming, a significant body of work exists
on how to define a language bias (and thus a
hypothesis space), and on how to automatically
weaken the bias (enlarge the hypothesis space)
when a given bias turns out to be too strong.
The expressiveness of particular types of learners
(e.g., classes of �Neural Networks) has been
studied, and this relates directly to the hypothesis
space they use. We refer to the respective entries
in this volume for more information on these
topics.

Cross-References

�Bias Specification Language
�Hypothesis Language
� Inductive Logic Programming
�Observation Language
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