Chapter 7 Mutual Fund Industry Performance: A Network Data Envelopment Analysis Approach

I.M. Premachandra, Joe Zhu, John Watson, and Don U.A. Galagedera

Abstract The objective of this chapter is twofold. First, we present a comprehensive review of the DEA literature that has evaluated mutual fund performance. Second, we present a two-stage DEA model that decomposes the overall efficiency of a decision-making unit into two components and demonstrate its applicability by assessing the relative performance of 66 large mutual fund families in the US over the period 1993–2008. By decomposing the overall efficiency into operational management efficiency and portfolio management efficiency components, we reveal the best performers, the families that deteriorated in performance, and those that improved in their performance over the sample period. We also make frontier projections for poorly performing mutual fund families and highlight how the portfolio managers have managed their funds relative to the others during financial crisis periods.

I.M. Premachandra Department of Accountancy and Finance, School of Business University of Otago, Dunedin, New Zealand e-mail: i.premachandra@otago.ac.nz

J. Zhu

International Center for Auditing and Evaluation, Nanjing Audit University, Nanjing, P.R., China

School of Business, Worcester Polytechnic Institute, Worcester, MA 01609-2247, USA e-mail: jzhu@wpi.edu

J. Watson Department of Banking and Finance, Monash Business School, Monash University, Melbourne, VIC, Australia e-mail: jr.watson@monash.edu

D.U.A. Galagedera (⊠) Department of Econometrics and Business Statistics, Monash Business School, Monash University, Melbourne, VIC, Australia e-mail: tissa.galagedera@monash.edu

© Springer Science+Business Media New York 2016

J. Zhu (ed.), *Data Envelopment Analysis*, International Series in Operations Research & Management Science 238, DOI 10.1007/978-1-4899-7684-0_7

Part of this chapter is based upon materials from Premachandra, I.M., Zhu, J., Watson, J., and Galagedera, D.U.A., 2012. Best-performing US mutual fund families from 1993 to 2008: Evidence from a novel two-stage DEA model for efficiency decomposition, *Journal of Banking and Finance*, 36, 3302–3317.

Keywords Operational management efficiency • Portfolio management efficiency • Data envelopment analysis • Input–output models • Mutual fund families • Performance

7.1 Introduction

The mutual fund industry in the US is by far the largest such industry in the world, managing US\$14.3 trillion in assets by the end of the calendar year 2012. Research on performance at the mutual fund family level is limited (Tower and Zheng 2008; Elton et al. 2007), possibly due to the complex nature of the analysis involved. Despite the limited existing research to date, an understanding of performance (absolute and relative) at the fund family level is important as investors tend to invest in funds within the same mutual fund family rather than across a number of families. The reasons for investing within one mutual fund family include convenience in searching for investment opportunities and recordkeeping (Kempf and Ruenzi 2008) and flexibility of switching funds without additional sales charges and restrictions imposed by the fund family (Elton et al. 2006, 2007).

Mutual fund performance receives substantial coverage in much of the US financial press due to the rapid growth of the mutual fund industry as well as the vital role it plays in the financial market. Investors and media commentators are keen to acquire an enhanced understanding of operational aspects at both the fund level and the fund family level given the recent turmoil experienced in the US financial market. This chapter gives an overview of the US mutual fund industry for open funds and respond to the line of criticism faced by the standard DEA-models by using a two-stage network DEA model that decomposes the overall efficiency of a fund family into two components; an operational management efficiency and portfolio management efficiency and thereby making a contribution to the mutual fund performance appraisal literature and mutual fund industry at large. We demonstrate the application of the proposed DEA model by examining the relative performance of 66 large mutual fund families in the US over the period 1993–2008.

We conceptualise the activities of mutual fund management as a two-stage process as follows. In the first stage, we focus on the operational management aspect and investigate how efficiently the managers at the fund family level make use of inputs such as marketing and distribution expenses and management fees in producing the output, which is the net asset value. In the second stage, the focus is on the portfolio management aspect where we determine how efficiently the fund managers make use of inputs such as fund size, standard deviation of the returns, turnover ratio, expense ratio and net asset value in producing the output, which is fund family average return. Brown et al. (2001) point out that even though relative performance appears to be the overriding concern of fund managers as well as their clients, considerably less attention is directed towards the equally important question of relative performance appraisal of portfolios.

We treat net asset value (NAV) which is considered as the output variable at the first stage as an input variable in the second stage; that is, net asset value is modeled as an intermediate variable that links stage 1 with stage 2. Holod and Lewis (2011) treat deposits in the same way in the two-stage network DEA model they use in assessing bank performance. Our modelling framework aligns with the network structure of Färe and Whittaker (1995). Although we consider only one output from the first stage and one output from the second stage in this particular application, the DEA model that we use here allows multiple inputs, outputs and intermediate measures (Premachandra et al. 2012).

Our model splits the overall process of a DMU into two stages and assesses the efficiencies of both stages simultaneously. Our two-stage network DEA model not only assesses the overall performance of the DMUs, but also decomposes the overall efficiency into two components associated with the performance in the two stages. Such a decomposition of overall efficiency is not possible in the previous network approach by Färe and Whittaker (1995). Furthermore, our modelling framework allows assessments under the variable returns to scale (VRS) as well as constant returns to scale (CRS) assumptions and as such it is not restrictive in terms of orientation as in Kao and Hwang's (2008) two-stage model, which is valid only under the CRS assumption. Usually, in the two-stage DEA models, the intermediate variables that link stage 1 with stage 2 become the inputs of stage 2. Our model allows new variables as inputs in the second stage in addition to the intermediate variables. Interested reader is referred to Cook and Zhu (2014) for recent developments in network DEA modeling techniques.

The chapter is structured as follows: Sect. 7.2 provides an overview of the US mutual fund industry, Sect. 7.3 examines the literature on mutual fund performance appraisal, Sect. 7.4 formulates the two-stage DEA model and in Sect. 7.5 the data used in the application are presented. Section 7.6 analyses the fund family performance and Sect. 7.7 presents concluding remarks.

7.2 Background to US Mutual Fund Industry

According to the Investment Company Institute (ICI 2013), the mutual fund industry (MFI) in the United States is by far the largest such industry in the world (see Fig. 7.1), managing \$13.1 trillion in assets as at the end of 2012 which accounts for 48.9 % of the \$26.8 trillion worldwide value of assets under management in the industry. There has been a significant growth in US mutual fund industry over the 10 years from 2003 having almost doubled the total market value of assets under management to \$7.4 trillion. The total value of funds under management in the US industry has rebounded since the onset of the global financial crisis; increasing by 25 % since 2006. Measuring the growth of the MFI is much more complex than simply looking at the growth in dollar value of assets under management. Other dynamic measures such as net flow of funds into mutual funds (MFs) also matter.

Fig. 7.1 Global significance of United States Mutual Fund Asset Pool (December 2012). Source of data: Investment Company Fact Book 2010, Worldwide Total Net Assets of Mutual Funds. This figure reports the size of investment fund industries around the world. All dollar values are represented in billions of US dollars at the end of the 2012 calendar year

At year-end 2012 (ICI 2013), the number of fund products constituting the US MFI was approximately 7596 sponsored by more than 700 fund families. Nevertheless, since the dawn of the new millennium the percentage of industry assets invested in larger fund complexes has increased. The share of the assets managed by the largest ten US fund families in 2012 was 53 %, up from the 44 % in 2000. Long run competitive dynamics have prevented any single fund or family of funds from dominating the market. For example, out of the largest 25 fund complexes in 1995, only 15 remained at the top level in 2012. The composition of the assets held in the top 25 fund complexes has changed significantly with a relative reduction in domestic equity holdings and an increase in money market funds. Nevertheless, this could be representative of the financial situation that prevail post 2008 meltdown. The Herfindahl Hirschman Index for the US MFI is 465 (ICI 2013, p. 25) which is well below the 1000 that is considered as the cutoff for a concentrated industry. To this end, it is deemed that the US MFI still offers to investors products that vary significantly in size, number of investment classes, investment horizon, and management style.

7.3 Prior Research on Performance Appraisal of Mutual Funds and Mutual Fund Families

One of the major motivations for mutual fund managers, whether at the fund family level or at the fund product level, is to maintain high standard of performance compared to their peers so that in the event of a temporary setback they are able to manage possible cash outflows and potential job losses better. This is a vital challenge for fund family managers in the US due to the increasing competition within the mutual fund industry. Maintaining high standard of performance is consistent with fund family managers minimizing controllable efforts (inputs) to achieve the highest possible level of return (outputs) defined by a production frontier (Charnes et al. 1978). This phenomenon which is consistent with the economic theory on optimization provides a strong motivation for adopting the production frontier concept in performance appraisal of mutual funds.

Fund family managers aim for their products to lie on the outer extremities of the production frontier so that their funds are more efficient than the other funds of comparable type. However, in reality, they may fall short due to reasons within and sometimes beyond their control. It is this notion of a shortfall of performance of some mutual funds relative to other funds in the sample that aligns with the concept of production inefficiency which is a measurable quantity.

In the past 25 years, innovative approaches have been introduced to measure mutual fund performance at both the individual fund product level (Murthi et al. 1997; McMullen and Strong 1998) and more recently at the fund family level (Premachandra et al. 2012). In general, the findings support the assertion that fund managers should be concerned about inefficiencies not only in managing funds but also in their operations. Table 7.1 presents a summary of the used DEA model, the input and output variables and the key findings of some of the significant studies conducted on mutual fund performance appraisal since the pioneering work in the investment funds area by Murthi et al. (1997).

DEA has the following unique features. First, DEA does not require a priori assumption on the relation between inputs and outputs. It can handle multiple performance measures classified as inputs and outputs in a single mathematical model without the need for trade-off between the inputs and outputs associated with performance. The literature has shown DEA to be a valuable instrument for performance evaluation and benchmarking (Zhu 2002; Cooper et al. 2004). Second, DEA examines each DMU independently by generating individual performance (efficiency) scores that are relative to the DMUs in the entire sample under investigation. Misspecification, a recurring problem in regression analysis, is not a concern with DEA models since DEA creates the best practice frontier based on comparison of the peers in the sample. Third, it has been documented that DEA can assist with the study of a frontier shift over a time horizon, using for example, the DEA-based Malmquist index of Fare et al. (1997). This allows exploration of the dynamic change of fund family failure or success over time. The fourth advantage is that DEA does not need a large sample size (usually required by statistical and econometric approaches) for the evaluation of mutual funds or mutual fund families. The need for large sample sizes is a significant drawback when investment decisions have to be made using smaller samples. DEA can bypass such practical difficulties (see Premachandra et al. 2009).

Selection of performance measures or input and output factors is an important issue in DEA application (see Cook et al. 2014). For risk-averse investors, the capital market theory dictates that the higher the risk that you take in the investment, the

					selection of portfolios, SDEA approach is more appropriate given the chance element in short term portfolio performance)
2000	Powers, J.	Journal of Busi- ness and Management	1998 (185) USA	P/E ratio (I), 5 year systematic risk (I), 5 year standard devia- tion (I)/ EPS (O), 1 year return (O),3 year return (O),5 year return (O), and 10-year return (O)	Use both the CCR-O model (assume CRS) and BCC-O model (assume VRS); Shows how DEA can be used to assist with the multi-criteria problem in stock selection. (Find that 7.5 % of large cap stocks are efficient and an additional 2 % are desirable)
2001	Basso, A., and Funari, S.	European Journal of Operational Research	1997–1999 (47) Italy	Subscription costs (I), redemp- tion fees (I), standard deviation (I), square root of half variance (I),beta (I), 1 year return (O) and 3 year return (O)	Generalised DEA portfolio efficiency index constructed using the CCR-O model (assume CRS); Present a model (that defines mutual fund per- formance as an index) which can be used to evaluate the performance of mutual funds. (For each mutual fund, the procedure identifies a compos- ite portfolio which may be considered as a benchmark)
2001	Choi, Y.K., and Murthi, B.P.S.	Journal of Busi- ness Finance and Accounting	1993 (731) USA	Expense ratio (I), Loads (I), 3 year standard deviation (I), turmover (I), Net asset value (I), and 3 year return (O)	BCC-O model (assume VRS) and CCR-O model (assume CRS); Present an alternative mutual fund performance eval- uation measure that does not require any functional form for
					(continued)

7 Mutual Fund Industry Performance: A Network Data Envelopment...

Table .	7.1 (continued)				
Year	Authors	Publication	Sample period (sample size) and country/region	Inputs (I) and outputs (O) used in the DEA analysis	DEA model used and findings
					the return/risk or return/cost relationship. (The index presented is a variant of the Sharpe index as it measures not only the performance per unit of risk but also the performance per unit of cost)
2002	Galagedera, D.U.A., and Silvapulle, P.	Managerial Finance	1995–1999 (257) Australia	Standard deviations of the 1-, 2-, 3- and 5-year gross performance (I); sales charges (I); Manage- ment Expense Ratio (I); mini- mum initial investment (I). Short-term performance in the last 12 months (O); medium- term performances include 2- and 3 year gross performances (O). The ex post 5-year gross performance reflects output in long term (O)	BCC-I model (assume VRS); Suggest that DEA techniques can overcome some of the problems of the capital asset pricing model. Finds a positive association between ratings and DEA efficiency scores
2003	Basso, A., and Funari, S.	The Journal of the Operational Research Society	Empirical application (50) funds randomly generated (30 non and 20 ethical funds)	Subscription costs (I); redemp- tion costs (I); standard deviation (I); beta (I); expected return (O); and ethical indicator (O)	DEA portfolio efficiency index constructed using the CCR-O model (assume CRS); Propose three models that tackle the problem of negative average rates of return Evaluates the performance of ethical mutual funds

Train (D), fund total assets (D), fund stather than growning ind Starpe Index (O) ind starpe Index (O) ind starpe Index (D), fund starpe rounous nigupta, J.K. Applied Financial 1988–1999 (60) USA Load (D); expense ratio (D); fund starpe rounous Economics nigupta, J.K. Applied Financial 1988–1999 (60) USA Load (D); expense ratio (D); fund starpe rounovaria Economics ever (D); and the return covaria endex that Bear variant ever (D); and skewness (D) sample, Also finds that are variant ever (D); and skewness (D) and skewness (D) and skewness (D) sample, Also finds that are variant ever (D); and skewness (D) and skewness (D) and skewness (D) sample, Also finds that are variant ever (D); and skewness (D) and skewness (D) and contracted to a finds that the return (D) and skewness (D) and contracted to a finds that the return (D) and resona, C.R., Journal of Dournal of CR-D model (asumme cover the gravition the skewness (D); breat Doublity of beating (asummics) consistent y start Dournal of Dournal of Dournal of CR-D model (asumme cover the gravition the sources of scanning (asumme cover the gravition the sources of scanning (asumme cover the gravition the sources of scanning (asumme cover cover the gravition the sources of scanning (asumme cover cover the gravitis a proces (D; J	Haslem, J.A., and Scheraga, C.A.	The Journal of Investing	1999 (80) USA	Cash [%] (I); Expense ratio (I); stocks [%] (I): P/E ratio (I): P/B	CCR-I model (assume CRS); Find that the investment style
pta. J.K. Applied Financial 1988–1999 (60) USA Load (I): expense ratio (I): turn- ever (I): standard deviation of return: (O) and skewness (O) BCC-I model (assume ever (I): and the return: covari- ance with the S&P 500 (I): mean arce with the S&P 500 (I): and and exhibits a po dominance or beamined of arce with the SWP 50 (I): 12b-1 fees (I): Other beamined (I): 12b-1 fees (I): 0ther beamined (I): 12b-1 fees (I): 12b-1 beamined (I): 12b-1 fees (I): 0ther beamined (I): 12b-1 fees (I): 12b-1 beamined (I): 12b-		0		ratio (I); fund total assets (I); and Sharpe Index (O)	of large cap DEA-efficient funds are predominantly value funds rather than growth funds
son, R.L., man, C.R., <i>International</i> 1997–2001 (348) USAFront Load (1); Deferred Load (1); 12b-1 fees (1); Other expenses (1); Standard deviation mean inefficiencies by examining (1); and annual return (0)CCR-O model (assume Determine the sources ficiencies by examining mean inefficiencies of i and output values. Rep the consistently signific inefficiencies were fou with the RMF's loads i 1 feessod, R.W. <i>Economics</i> <i>Business and</i> ood, R.W.[197–2001 (348) USAFront Load (1); Deferred Load (1); and annual return (0)CCR-O model (assume nean inefficiencies by examining nean inefficiencies of i and output values. Rep the consistently signific inefficiencies were fou with the RMF's loads i 1 feess, K.P. <i>Computers and</i> <i>Operations</i> 1992–1996 (701) USA1 and 5 years Beta (1); 1 and 5 years standard deviation (1); assets in millions (1); and 1 and 5 years return (0)set approximation assets in millions (1); and 1 and 5 years return (0)Non-standard DEA mc requirement set approximation that maximum conv that maximum set approximation	pta, J.K.	Applied Financial Economics	1988–1999 (60) USA	Load (I); expense ratio (I); turn- over (I); standard deviation of return (I); and the return covari- ance with the S&P 500 (I); mean return; (O) and skewness (O)	BCC-I model (assume VRS); Finds that mean variance effi- ciency hypothesis holds for approximately 75 % of the sample. Also finds that, among the efficient funds the technol- ogy and communication fund has second degree stochastic dominance over the growth fund and exhibits a positive probability of beating the mar- ket in terms of probability dominance
g, K.P. Computers and Operations 1992–1996 (701) USA 1 and 5 years Beta (1); 1 and Non-standard DE A mo Operations 5 years standard deviation (1); Adopts minimum conv Research 5 years return (O) Faquirement set approa 5 years return (O) Faquirement set approa	rson, R.I., man, C.R., nikos, C., and od, R.W.	International Journal of Business and Economics	1997–2001 (348) USA	Front Load (I); Deferred Load (I); 12b-1 fees (I); Other expenses (I); Standard deviation (I); and annual return (O)	CCR-O model (assume CRS); Determine the sources of inef- ficiencies by examining the mean inefficiencies of the input and output values. Report that the consistently significant inefficiencies were found only with the RMF's loads and 12b- 1 fees
	8, K.P.	Computers and Operations Research	1992–1996 (701) USA	1 and 5 years Beta (1); 1 and 5 years standard deviation (1); assets in millions (1); and 1 and 5 years return (O)	Non-standard DEA model. Adopts minimum convex input requirement set approach; Find that maximum capital gain and growth funds have performed

Table	7.1 (continued)				
Year	Authors	Publication	Sample period (sample size) and country/region	Inputs (I) and outputs (O) used in the DEA analysis	DEA model used and findings
					worse than growth and income funds; actively managed funds underperform passive invest- ment strategy; low risk funds outperform high risk funds and no load funds outperform load funds. Also finds that funds with low beta and small assets under management have oper- ated more efficiently
2005	Basso, A., and Funari, S.	Central European Journal of Oper- ations Research	1997–2001 (50) İtaly	Standard deviation (J); beta coefficient (I); subscription costs (I); redemption costs(I); Sharpe measure (O); reward to half variance (O); Jensen alpha (O): and Treynor ratio (O)	A generalised DEA perfor- mance indicator; Propose a model that can be used to define relative performance of mutual funds which takes into account all different aspects considered in traditional performance metrics
2005	Gregoriou, G.N., Sedzro, K., and Zhu, J.	European Journal of Operational Research	1997–2001 (8) USA	lower mean monthly semi- skewness (1); lower mean monthly semi-variance;(1) mean monthly lower return (1); upper mean monthly semi-skewness (0); upper mean monthly semi- variance (O) and mean monthly upper return (O)	Super-efficiency model (Andersen and Petersen 1993); Suggest that DEA may be used as a complimentary technique in the selection of efficient hedge funds and funds of hedge funds. DEA can shed light and further validate hedge fund selection under other methodologies

(continued
7.1
Table

m, J.A., and	The Journal of Investing	2001 (58) USA	Cash % (I); expense ratio (I); stocks (D: P/F Ratio (I): P/B	CCR-I model (assume VRS); Find that mutual funds that are
	Surcau		and total assets (O)	managerially inefficient tend to managerially inefficient tend to have the largest values for the seven investment style vari- ables. Conclude that the growth style of portfolio management is more prone to being managed inefficiently.
	Operations Research Spectrum	1999–2002 (33) China	Standard deviation (I); Beta (I); square root of the lower semi- variance (I); value at risk (I); conditional value at risk (I); average transaction cost (I); areturn (O); and Jensen alpha (O)	Use both the CCR-1 model (assume CRS) and BCC_1 model (assume VRS); Find that VaR and CVaR, especially their combinations with tradi- tional risk measures, are helpful for describing return distribu- tion properties and identifying optimal fund characteristics such as the asset allocation structure. The authors infer that inclusion of VaR and CVaR allow for better evaluation of overall performance of mutual funds
	European Journal of Operational Research	2001–2002 (5851) USA	Standard deviation (1); Expense Ratio (1); Loads (1); Turnover Ratio (1); and Return (O)	A robust nonparametric approach compared with CCR- I (assuming VRS); Find that most US mutual funds did not exploit the economies of scale deriving from portfolio man- agement and shareholder ser- vices to a larger number of
				(continued)

Table 7	7.1 (continued)				
Year	Authors	Publication	Sample period (sample size) and country/region	Inputs (I) and outputs (O) used in the DEA analysis	DEA model used and findings
					securities/customers. Conclude that US funds learnt to deal with an increased number of securities/customers which off- set the operational economies of scale. Claim that DEA is a powerful tool that has the abil- ity to describe the effects of market risk such as the fallout from September 11 attacks
2006	Eling, M.	Financial Mar- kets and Portfolio Management	1996–2005 (30) USA	Std deviation (J); maximum drawdown (J), average draw- down (J), std dev of drawdown (J), value at risk (J), conditional value at risk (J) and higher par- tial moment 1-3, average return (O), skewness (O) and minimum return (O)	Use the CCR-O model (assume CRS) the BCC-O model (assume VRS) and the super efficiency model (Andersen and Petersen 1993); Provides criteria for selecting inputs and outputs
2007	Hsu, C.L., and Lin, J.R.	The Service Industries Journal	1999–2003 (192) Taiwan	Mean total net assets (I); Mean Management fee (I); Mean load fee (I); Mean turnover ratio (I); standard deviation (I); and Total Return (O)	CCR-O model (assume CRS); Identify a significant 'hot hands' effect in Taiwan's domestic equity fund market. Therefore suggest that inves- tors can benefit from chasing past winners and from avoiding past losers. Conclude that the difference in performance per- sistence between the above two measures is driven by the DEA

(continued)					
sales charges					
factors such as entry fees and					
approach can incorporate other					
effects. The proposed DEA					
does not neglect diversification					
assessment in a manner that					
safety) aspects of performance					
conflicting return and risk (or					
take into account the					
models proposed in this paper					
O (assume VRS); The DEA					
models constructed using BCC-	×.		Research		
models and return-safety DEA	Return (O)	•	of Operational	Gutierrez, E.	
Formulated return-risk DEA	Standard deviations (I); and	2002-2005 (108) Spain	European Journal	Lozano, S., and	2008
positive					
score and original score is					
between the pure efficiency					
Also report that the relationship					
number of funds managed.					
while it decreases with the					
manager's tenure and education					
significantly increases with			Letters		
Find that a fund's performance	ratio (I); and total return (O)		Economics	Chang, T.P.	
CCR-O model (assume CRS);	Standard deviation (I); expense	2005–2006 (156) USA	Applied Financial	Hu, J.L., and	2008
mutual funds					
mining the performance of					
play an important role in deter-					
Suggest that transaction costs					
and risk into consideration.					
taking both transaction costs					

Table	7.1 (continued)				
			Sample period (sample size)	Inputs (I) and outputs (O) used	
Year	Authors	Publication	and country/region	in the DEA analysis	DEA model used and findings
2011	Alexakis, P., and Tsolas, I.	Multinational Finance Journal	2001–2004 (55) Greece	Standard deviation (J); beta coefficient (J); assets and sales commissions or charges (J); and annualized daily arithmetic	Use both the CCR-I model (assume CRS) and BCC-I model (assume VRS); Finds that the mean-variance effi-
				returns (O)	ciency hypothesis holds for the inefficient funds implying that
					these mutual runds had the highest expected return at their given level of risk
2011	Chen, Y.C., Chiu, Y.H., and Li, M.C.	South Africa Journal of	2007 (278) Taiwan	Monthly purchasing turnover rate (I); Direct transaction cost	Use BCC-O model (assuming VRS); Findings show that (i)
		Economics		rate(I); Selling expense rate(I);	the BCC model and the system
				Monthly standard deviation (1); Treynor Index(O); Sharpe Index	BCC model estimate signiti- cantly different efficiency
				(O); Jensen Index(O); Monthly	scores (ii) under the system
				rate of return (O)	BCC model, balanced funds
					have larger average efficiency
					scores than stock funds (iii)
					there are more efficient funds
					under the system BCC model
					than under the BCC model and
					(iv) the number of funds with
					the same reference set is less
					than half of the total number of
					funds under both models
2011	Watson, J.,	Managerial	1990–2005 (22) Australia	Total risk (I); beta (I); informa-	Stochastic DEA model; Find
	Premachandra, I.M.,	Finance		tion ratio (I); cost (I); and	that Morningstar ratings in
	and			stochastic monthly rate of	Australia provide investors
	Wickramanayake, J.			return (O)	with useful information.

Table 7.1 (continued)

Advantages of the SDEA spread-sheet model include (i) easy replication as the model is created in Excel (ii) allows the user to make use of additional @RISK probability functions to model complicated relation- ships between input and output variables (iii) the output pro- duced by the proposed method contains valuable statistical information about the random properties of the efficiency score of the DMU and (iv) the efficiency score distribution information can be used to compare DMU in alternative ways that suit individual user preferences	<u>BCC-1 model (assume VRS);</u> Find that higher moments pro- vide a better measure of per- formance. Report that funds with high sensitivity to nega- tive market conditions such as high kurtosis and skewness are more likely to generate lower efficiency scores	A two stage DEA model (assume VRS); The 2-stage DEA model decomposes effi- ciency into operational and (continued)
	Standard deviation (I); fund size (I); skewness (I); kurtosis (I); and Cumulative return (O)	Management fees (I-1); Mar- keting and Distribution fees (I- 1); NAV(O-1 and I-2) fund size (I-2); Net expense ratio (I-2);
	2007–2010 (43) Greece	1990–2008 (66) USA
	Journal of Applied Finance and Banking	Journal of Bank- ing and Finance
	Pendaraki, K.	Premachandra, I.M., Zhu, J., Watson, J., and Galagedera, D.U.A.
	2012	2012

Table 7	7.1 (continued)				
Year	Authors	Publication	Sample period (sample size) and country/region	Inputs (I) and outputs (O) used in the DEA analysis	DEA model used and findings
				tumover (1-2); standard devia- tion (1-2) and Average return (O-2)	portfolio efficiencies. Find that mutual fund families with good portfolio management did bet- ter during financial crisis periods
2012	Zhao, X and Yue, W.	Procedia Com- puter Science	2004–2008 (32) China	Subsystem of investment and research, weighted VAR during term 1 (I), weighted VAR during term 2 (I), the reverse of fund managers average tenure (I). Number of funds (O), Number of types (O), Product innovation speed (O), weighted return dur- ing term 1 (O), weighted return during term 2 (O), scale growth (O), average initial subscription scale (O), information service quality (O), total shares (O)	Formulate a Multi-subsystem Fuzzy DEA model. CCR-O (assume CRS) and BCC-O (assume VRS). Identify how close are the mutual fund man- agement companies to the best practice frontier. Find that those companies that display relatively high managerial skills for the most part differ a lot in terms of marketing and service
2012	Rubio, J., Hassan, M., and Merdad, H.	Accounting Research Journal	2003–2010 (22,545); Islamic Funds (95), American funds (20,946), international funds (1504)	standard deviation (I), the lower partial momentums (I), and maximum drawdown period (I). Expected returns (O), the upper partial momentums (O), and the maximum period of consecutive gain (O)	BCC-I (assume VRS); There is strong evidence suggesting that Islamic funds are highly effi- cient and that they outperform their international counterparts

2014	Matallin, C., Soler, A.,	Omega	2001–2011 (1450) USA	Standard deviation (I) kurtosis	Non-convex counterpart of
	and Tortosa-Ausina, E.,	1		(I), expense ratio (I), beta (I).	DEA (FDH) and order-m and
				daily mean return (gross return,	order-α partial frontiers. BCC-
				y1) over the sample period as	O (assume VRS)
				(O), skewness (O)	Propose a method for testing
					the performance of DEA and
					FDH (Free Disposal Hull)
					methods in fund selection
This tal	ole gives information on s	studies of mutual func	d performance assessed under the D	EA framework. The table reports the	he names of the authors, place and

This table gives information on studies of mutual fund performance assessed under the DEA framework. The table reports use information, together with the sample period, sample size, the inputs and outputs used in the analysis, the type of model adopted and a summary of the main findings

greater is the return. This implies a functional relationship between risk and return. Hence, in principle, it follows that risk measures may be considered as inputs in the DEA model and return measures as outputs. McMullen and Strong (1998) document the relation between risk and return and highlight that investors are concerned about risk and return over various time horizons as that allows investors to obtain greater information about a fund than simply looking at performance over a single time period. In addition to the risk–return trade-off, Murthi et al. (1997) report that investors are equally concerned about transaction costs such as subscription and redemption fees. Basso and Funari (2001, 2005) document that some investors also consider ethical criteria in their decisions. Thus, there is no consensus among researchers as to what input and output variables should be included in a DEA model when investigating the relative performance of mutual fund products.

In mutual fund performance appraisal, some of the input output factors considered in the DEA model such as the annual average return of a fund may take negative values. This problem can easily be resolved by translating such variables into positive values by adding a constant and then using an appropriate translation invariant DEA model. For example, the input-oriented BCC model (BCC-I) is translation invariant with respect to outputs, but not inputs. Similarly, the output oriented BCC model (BCC-O) is invariant under the translation of inputs, but not outputs. The additive DEA model is translation invariant in both inputs and outputs (See for example Cooper et al. (2006) for details). Table 7.1 lists various DEA models that have been used for mutual fund performance appraisal in the past. The standard DEA models do not account for the activities involved in transforming inputs into outputs and instead consider the DMU operation as a black box. In our case, we look inside this black box and consider the process of overall management of mutual fund families (the DMUs of our empirical application) as a combination of two sub processes namely; operational management and portfolio management.

7.4 Development of the Two-Stage DEA Model

Cook et al. (2010) document that in many instances, the underlying process of generating outputs from inputs may have a two-stage network structure with intermediate measures where outputs from the first stage become the inputs to the second stage. Chilingerian and Sherman (2004) describe such a two-stage process used in measuring physician care. Their first stage is a manager-controlled process and the second stage is a physician-controlled process. In their model, the output of the first-stage is considered as input to the second stage. The factors that link the two stages are called intermediate measures. Kao and Hwang (2008) consider the process of Taiwanese non-life-insurance companies as a two-stage process of premium acquisition and profit generation. In our application, we assume that the activities of mutual fund families can be viewed as a two-stage process where stage 1 represents the operational management process and stage 2 represents the portfolio management process. In the output of a mutual fund

Fig. 7.2 The proposed two-stage DEA model for evaluating the efficiency of mutual fund families. At stage 1, the operational management efficiency will be estimated, and at stage 2 the portfolio management efficiency will be estimated. The overall efficiency of the fund family is decomposed into the operational management efficiency (stage 1) and the portfolio management efficiency (stage 2). Variables I_1 and I_2 are the input variables and O_1 is the output variable at stage 1 and I_3 , I_4 , I_5 , I_6 and I_7 are the input variables and O_2 is the output variable at stage 2. Net asset value is an intermediate variable and therefore I_7 is the expected value of O_1 estimated in stage 1

family is conceptualized as made up of two components; operational management efficiency (hereinafter referred to as operational efficiency) and portfolio management efficiency (hereinafter referred to as portfolio efficiency). A schematic diagram of the mutual fund family management process is given in Fig. 7.2. In stage 1, the fund family management makes an attempt to attract funds from the investors and therefore outgoings such as management fees (I_1) and marketing and distribution expenses (I_2) that contribute directly towards generating funds are considered as the input variables. In stage 1 of Fig. 7.2, we consider the net asset value labeled O_1 as the output variable. Hence, a mutual fund family that produces the highest net asset value with the least amount of management fees and marketing and distribution expenses is considered to be operationally more efficient than the other families in the sample. Stage 2 is the portfolio management stage. Here we treat net asset value (O_1) , fund size (I_3) , net expense ratio (I_4) , turnover ratio (I_5) and standard deviation of the returns of the family portfolio over the last 3 years (I_6) as the input variables and mean return of the family portfolio (O_2) as the output variable. Since net asset value (O_1) , which is an output variable of stage 1 is also an input variable of stage 2 (I_7) , it becomes an intermediate variable. I_7 is not observable; it is obtained by adjusting O_1 which is observed. In stage 2, a fund family that produces the highest average family portfolio return with the least amount of net asset value, fund size, net expense ratio, turnover ratio, and standard deviation is deemed more efficient compared to the other families in the sample.

A common approach to solving two-stage network problems illustrated in Fig. 7.2 is to assume that the two stages operate independently and apply a standard DEA model separately in each stage. Various problems could arise due to this approach. For example, in stage 1, a fund may attempt to maximize its outputs in order to achieve its performance in the best possible light. As these outputs from stage 1 become inputs to the second stage, high output from stage 1 may lead to poor assessment of performance in the second stage if the optimization criterion at stage 2 is maximization type where more output with less input is preferred. Kao and Hwang (2008) and Liang et al. (2008) overcome this problem under the CRS assumption by assessing that the overall efficiency of the two-stage process as the product of the efficiencies of the two stages. Chen et al. (2009) extend Kao and Hwang (2008) approach by using additive efficiency decomposition under both the CRS and VRS. In the proposed model, we use the VRS assumption, as one of the output variables (average return) used in our empirical application can be negative. The standard VRS DEA model has the translation invariance property so that a constant may be added to all values of the negative valued output variable to make them positive without altering the efficient frontier and the position of the funds relative to the efficient frontier (see Ali and Seiford 1990).

The two stage process proposed in Fig. 7.2 is different from the two-stage process considered in Kao and Hwang (2008), Liang et al. (2008), and Chen et al. (2010) in the sense that we allow new inputs to the second stage in addition to the intermediate measures. The network DEA approach of Färe and Whittaker (1995) and Färe and Grosskopf (1996), the slack-based network DEA approach of Tone and Tsutsui (2009) and the dynamic effects in production networks of Chen (2009) are more general versions of the two-stage process described in Fig. 7.2. However, they do not yield efficiencies at individual stages. We have overcome this problem in the network DEA model used in this chapter. For a review of the relevant recent literature on modeling of network processes, see Cook et al. (2010) and Cook and Zhu (2014). An application of the network DEA approach is available in Lewis and Sexton (2004). The existing approaches cannot be readily adopted to model the situation depicted in Fig. 7.2 and therefore in this study we present a new network DEA approach.

In order to understand the basic concepts behind the proposed two-stage DEA model, consider the simplified version presented in Fig. 7.3. Suppose we have one input (*x*1) to stage 1, one intermediate measure (*z*), one additional input (*x*2) to stage 2 and one output (*y*) from stage 2. To measure the overall efficiency of the two-stage process, we first calculate the expected (efficient) output *y* from stage 2 using input *x*1 indirectly and input *x*2 directly with an intermediate measure *z*. Assume that the DMU should have produced an output *z** with input *x*1 had it operated efficiently in stage 1 and should have produced an output *y** with inputs *z** and *x*2 in stage 2. Then a measure of overall efficiency is y/y^* , a measure of stage 1 efficiency is z/z^* and a measure of stage 2 efficiency is $(z^* + x2)/(z + x2)$.

Fig. 7.3 A simplified two-stage framework of mutual fund family performance. This is a simplified version of the complete two-stage DEA model illustrated in Fig. 7.1. x1 and x2 are the input variables for stage 1 and 2, respectively, and z is the intermediate variable that links the two stages. y is the output variable in stage 2

When calculating the expected (efficient) output of stage 2, we require the intermediate measure to be the expected (efficient) output of stage 1. When this concept is generalized to the case with multiple intermediate measures, the "aggregate" value of intermediate measures must remain the same. According to Liang et al. (2008), such a modeling process treats the two stages as players in a cooperative game where both players "negotiate" on the expected value of intermediate measures. Such a modeling process does not fit into a standard DEA approach. Rather, it optimizes a joint efficiency of the two stages subject to the condition that the intermediate input to stage 2 is the expected output from stage 1. In that regard, the approach used in the two-stage DEA model proposed in this chapter is different from the iterative process used by Holod and Lewis (2011). Their two-stage process is based upon a non-oriented standard DEA model and does not provide separate efficiency estimates for each stage.

Next, we describe the DEA-based procedure used in this chapter to model the relationship between the overall efficiency and the efficiencies at stage 1 and stage 2 in a single mathematical model under the VRS assumption.

Consider a general two-stage DEA network structure for DMU-*j* with i_1 inputs to stage 1 denoted by $X_j^1 = \{x_{1j}^1, x_{2j}^1, \dots, x_{i_1j}^1\}, i_2$ inputs to stage 2 denoted by $X_j^2 = \{x_{1j}^2, x_{2j}^2, \dots, x_{i_2j}^2\}, D$ intermediate measures denoted by z_{dj} ($d = 1, \dots, D$), and *s* outputs from stage 2 denoted by y_{rj} ($r = 1, \dots, s$). With respect to our mutual fund family example in Fig. 7.1, X^1 has two input variables, X^2 has four input variables, *z* has one variable, and *y* has one variable. Following Banker et al. (1984), the VRS efficiency score of DMU_o at the first and second stages can be calculated using models (7.1) and (7.2), respectively.

$$Max \quad \frac{\sum_{d} \eta_{d}^{1} z_{do} + u^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1}}$$
s.t.
$$\frac{\sum_{d} \eta_{d}^{1} z_{dj} + u^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}j}^{1}} \leq 1, \quad j = 1, 2, ..., n$$

$$v_{i_{1}}^{1}, \eta_{d}^{1} \geq \varepsilon; \quad u^{1} \text{ free}$$
(7.1)

 $\left(v_{i_1}^1, \eta_d^1\right)$ are decision variables (weights) associated with the inputs to the first stage and the intermediate measures (outputs from the first stage). u^1 is a free variable associated with returns to scale (RTS) in DEA for stage 1.

$$Max \quad \frac{\sum_{r} u_{r} y_{ro} + u^{2}}{\sum_{d} \eta_{d}^{2} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}}$$

s.t.
$$\frac{\sum_{r} u_{r} y_{rj} + u^{2}}{\sum_{d} \eta_{d}^{2} z_{dj} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}j}^{2}} \leq 1, \quad j = 1, 2, ..., n$$

 $v_{i_{0}}^{2}, u_{r}, \eta_{d}^{2} \geq \varepsilon; \quad u^{2} \text{ free}}$ (7.2)

 $(v_{i_2}^2, u_r, \eta_d^2)$ are decision variables (weights) associated with the inputs to the second stage, the intermediate measures and outputs from the second stage. u^2 is a free variable associated with RTS in DEA for stage 2.

Note that if we assume $u^1 = u^2 = 0$, then the above models become the CRS models of Charnes et al. (1978) and therefore the following discussion is applicable to the CRS case as well. Similar to Kao and Hwang's (2008) assumption and the centralized model in Liang et al. (2008), we assume that $\eta_d^1 = \eta_d^2 = \eta_d (d = 1, ..., D)$ in models (7.1) and (7.2). This assumption ensures that in both stages the same multipliers (weights) are applied to the intermediate measures. Then, as far as the intermediate variables are concerned, the expected outputs from stage 1 will be equal to the expected inputs to the second stage.

As in Chen et al. (2009), we compute the overall efficiency as a weighted average of the efficiency scores from stages 1 and 2 as

$$w_{1} \cdot \frac{\sum_{d} \eta_{d} z_{do} + u^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1}} + w_{2} \cdot \frac{\sum_{r} u_{r} y_{ro} + u^{2}}{\sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}}$$
(7.3)

where w_1 and w_2 are user-specified weights such that $w_1 + w_2 = 1$. If the geometric average as in Kao and Hwang (2008) is used, the product of $\frac{\sum_{d} \eta_d z_{do} + u^1}{\sum_{i_1} v_{i_1}^1 x_{i_1o}^1}$ and

 $\sum_{r}^{r} u_r y_{ro} + u^2$ $\sum_{d}^{r} \eta_{d^{Z}do} + \sum_{i_2} v_{i_2}^2 x_{i_2o}^2$ will not yield a linear objective function due to the fact that $\sum_{d}^{r} \eta_{d^{Z}do} + \sum_{i_2} v_{i_2}^2 x_{i_2o}^2$ cannot be cancelled. If we assume that $X_j^2 = \{\}$ and $u^1 = 0$,
the model would reduce to the CRS version and then the approach of Kao and

the model would reduce to the CRS version and then the approach of Kao and Hwang (2008) can be applied.

In Sect. 7.4.1 we present further details on how the 2-stage model can be generalised by converting (7.3) along with models (7.1) and (7.2) when $\eta_d^1 = \eta_d^2 = \eta_d$ (d = 1, ..., D). We also show how to decompose the overall efficiency and develop a procedure to determine whether the decomposed efficiency scores are unique.

7.4.1 DEA Model for Two-Stage Network and Efficiency Decomposition

Since w_1 and w_2 in (7.3) are intended to reflect the relative importance or the contribution of the performance in the first and the second stage to the overall performance, a reasonable choice of weights is the proportion of total resources devoted to each stage. To be more specific, we define

$$w_{1} = \frac{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}} \quad \text{and}$$

$$w_{2} = \frac{\sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}} \quad (7.4)$$

where $\sum_{i_1} v_{i_1}^1 x_{i_1o}^1 + \sum_d \eta_d z_{do} + \sum_{i_2} v_{i_2}^2 x_{i_2o}^2$ represents the total amount of resources (inputs) consumed by the entire two-stage process and $\sum_{i_1} v_{i_1}^1 x_{i_1o}^1$ and $\sum_d \eta_d z_{do} + \sum_{i_2} v_{i_2}^2 x_{i_2o}^2$ represents the amount of resources consumed in the first and the second

stage, respectively. These weights are functions of the decision variables of models (7.1) and (7.2).

Hence, under VRS, the overall efficiency score of DMU_o in the two-stage process can be evaluated by solving the following fractional program (7.5). The constraints in (7.5) ensure that the efficiency scores of a DMU in both stages are non-negative and no greater than unity.

$$\theta_{o}^{*} = Max \frac{\sum_{d} \eta_{d} z_{do} + u^{1} + \sum_{r} u_{r} y_{ro} + u^{2}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{10}}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{20}}^{2}}$$
s.t.
$$\frac{\sum_{d} \eta_{d} z_{do} + u^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1j}}^{1}} \leq 1, \quad j = 1, 2, ..., n$$

$$\frac{\sum_{i_{1}} v_{i_{1}} x_{i_{1j}}^{1}}{\sum_{q} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2j}}^{2}} \leq 1, \quad j = 1, 2, ..., n$$

$$1 \geq w_{1} = \frac{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{10}}^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{10}}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2o}}^{2}} \geq w_{1}^{o}}$$

$$1 \geq w_{2} = \frac{\sum_{i_{1}} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2o}}^{2}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{10}}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2o}}^{2}} \geq w_{2}^{o}}$$

$$v_{i_{1}}^{1}, v_{i_{2}}^{2}, u_{r}, \eta_{d} \geq \varepsilon, \quad u^{1}, u^{2} \text{ free}}$$

$$(7.5)$$

Sensitivity analysis of the weights w_1 and w_2 can be performed by adding lower bounds w_1^o and w_2^o on w_1 and w_2 . In this study, we substitute 50 % for both w_1^o and w_2^o assuming that operational management and portfolio management are equally important functions.

By applying the Charnes–Cooper transformation, the above fractional programming model (7.5) can be transformed into the following linear programming model (7.6).

7 Mutual Fund Industry Performance: A Network Data Envelopment...

$$\theta_{o}^{*} = Max \sum_{d} \pi_{d} z_{do} + \sum_{r} \mu_{r} y_{ro} + u^{A} + u^{B}$$
s.t. $\sum_{d} \pi_{d} z_{dj} + u^{A} \leq \sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1j}}^{1}, \quad j = 1, 2, ..., n$
 $\sum_{r} \mu_{r} y_{rj} + u^{B} \leq \sum_{d} \pi_{d} z_{dj} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2j}}^{2}, \quad j = 1, 2, ..., n$
 $\sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1o}}^{1} + \sum_{d} \pi_{d} z_{do} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2o}}^{2} = 1$
 (7.6)
 $1 \geq \sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1o}}^{1} \geq w_{1}^{o}$
 $1 \geq \sum_{d} \pi_{d} z_{do} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2o}}^{2} \geq w_{2}^{o}$
 $\omega_{i_{1}}^{1}, \omega_{i_{2}}^{2}, \mu_{r}, \pi_{d} \geq \varepsilon, \quad u^{A}, u^{B} \text{ free}$

7.4.1.1 Efficiency Decomposition

Once we obtain an optimal solution to (7.6), the efficiency scores for the two $\sum_{n=1}^{\infty} \pi^* z_{n+1} + u^{A^*}$

 $\theta_{o}^{1^{*}}$

individual stages can be calculated as

$$= \frac{\sum_{i_1}^{n_1} u_d^{-2do} + u}{\sum_{i_1} \omega_{i_1}^{1*} x_{i_1o}^{1}} \quad \text{and} \quad$$

$$\theta_o^{2^*} = \frac{\sum_{r} \mu_r^* y_{ro} + u^{B^*}}{\sum_{d} \pi_d^* z_{do} + \sum_{i_2} \omega_{i_2}^{2^*} x_{i_2o}^2}.$$
 We can also obtain a set of weights as
$$w_1^* = \sum_{i_1} \omega_{i_1}^{1^*} x_{i_1o}^1, \ w_2^* = 1 - w_1^*.$$
 However, since model (7.6) can have multiple

optimal solutions, the θ_o^{1*} and θ_o^{2*} components of overall efficiency may not be unique. Therefore, we follow the procedure adopted by Kao and Hwang (2008) and Chen (2009) to obtain a set of multipliers that would produce the highest first- or second-stage efficiency score while maintaining the overall efficiency score of the entire process fixed. Denote the overall efficiency score of DMU_o obtained by model (7.6) as θ_o^* . We maximize the first-stage efficiency score first while maintaining the overall efficiency score at θ_o^* and the weighted first- and secondstage efficiency scores at no greater than unity as

$$\theta_{o}^{1*} = Max \qquad \frac{\sum_{i_{1}} \eta_{d} z_{do} + u^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1}}$$
s.t.
$$\frac{\sum_{i_{1}} \eta_{d} z_{dj} + u^{1}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}j}^{1}} \leq 1, \quad j = 1, 2, ..., n \quad (a)$$

$$\frac{\sum_{i_{1}} u_{r} y_{rj} + u^{2}}{\sum_{i_{2}} \eta_{d} z_{dj} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}j}^{2}} \leq 1, \quad j = 1, 2, ..., n \quad (b)$$

$$\frac{\sum_{d} \eta_{d} z_{dj} + u^{1} + \sum_{r} u_{r} y_{ro} + u^{2}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}} = \theta_{o}^{*} \quad (c)$$

$$1 \geq w_{1} = \frac{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}}{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}} \geq w_{1}^{o}$$

$$1 \geq w_{2} = \frac{\sum_{i_{1}} v_{i_{1}}^{1} x_{i_{1}o}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}}{\sum_{i_{2}} v_{i_{1}}^{2} x_{i_{1}o}^{1} + \sum_{d} \eta_{d} z_{do} + \sum_{i_{2}} v_{i_{2}}^{2} x_{i_{2}o}^{2}} \geq w_{2}^{o}}$$

$$v_{i_{1}}^{1}, v_{i_{2}}^{2}, u_{r}, \eta_{d} \geq \varepsilon, \quad u^{1}, u^{2} \text{ free}$$

In model (7.7), the constraints (a) and (b) ensure that the efficiency scores of all DMUs at both stages are no greater than unity and the constraint (c) maintains the overall efficiency score at θ_o^* . Model (7.7) can be converted into the following equivalent linear program (7.8).

$$\begin{aligned} \theta_{o}^{1*} &= Max \sum_{d} \pi_{d} z_{do} + u^{A} \\ s.t. \sum_{d} \pi_{d} z_{dj} + u^{A} \leq \sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1j}}^{1}, \quad j = 1, 2, ..., n \\ \sum_{r} \mu_{r} y_{rj} + u^{B} \leq \sum_{d} \pi_{d} z_{dj} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2j}}^{2}, j = 1, 2, ..., n \\ \sum_{d} \pi_{d} z_{do} + \sum_{r} \mu_{r} y_{rj} + u^{A} + u^{B} - \theta_{o}^{*} \left(1 + \sum_{d} \pi_{d} z_{do} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2}o}^{2} \right) = 0 \\ w_{1}^{o} \left(1 + \sum_{d} \pi_{d} z_{do} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2}o}^{2} \right) \leq 1 \\ \left(1 - w_{2}^{o} \right) \left(\sum_{d} \pi_{d} z_{do} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2}o}^{2} \right) \geq w_{2}^{o} \\ \sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1}o}^{1} = 1 \\ \omega_{i_{1}}^{1}, \omega_{i_{2}}^{2}, \mu_{r}, \pi_{d} \geq \varepsilon, \quad u^{A}, u^{B} \text{ free} \end{aligned}$$

$$(7.8)$$

Let $\omega_{i_1}^{1*}$, $\omega_{i_2}^{2*}$, μ_r^* , π_d^* , u^{A*} , u^{B*} represent the optimal values of $\omega_{i_1}^1$, $\omega_{i_2}^2$, μ_r , π_d , $\$\$ u^A$, u^B in model (7.8). Then the first-stage efficiency score is $\theta_o^{1*} = \sum_d \pi_d^* z_{do}$ + u^{A*} and the optimal weights for the two stages are $w_1^* = \frac{1}{1 + \sum_d \pi_d^* z_{do} + \sum_{i_2} \omega_{i_2}^{2*} x_{i_2o}^2}$ and $w_2^* = 1 - w_1^*$, respectively. The second-stage

efficiency score for DMU_o is calculated as $\theta_o^2 = \frac{\theta_o^2 - w_1^* \theta_o^{1*}}{w_2^*}$. Note that (*) is used in θ_o^{1*} to indicate that the first-stage efficiency score is optimized first. In this case, the resulting efficiency score for the second stage is denoted by θ_o^2 (without *).

Similarly, the following linear program can be formulated to maximize the second-stage efficiency score while maintaining the overall efficiency score at θ_o^* and the weighted first- and second-stage efficiency score at no greater than unity as

$$\begin{aligned} \theta_{o}^{2^{*}} &= Max \sum_{r} \mu_{r} y_{ro} + u^{B} \\ s.t. \sum_{d} \pi_{d} z_{dj} + u^{A} \leq \sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1}j}^{1}, \quad j = 1, 2, ..., n \\ \sum_{r} \mu_{r} y_{rj} + u^{B} \leq \sum_{d} \pi_{d} z_{dj} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2}j}^{2}, \quad j = 1, 2, ..., n \\ \sum_{d} \pi_{d} z_{do} + \sum_{r} \mu_{r} y_{ro} + u^{A} + u^{B} - \theta_{o}^{*} \left(\sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1}o}^{1} + 1 \right) = 0 \\ (1 - w_{1}^{o}) \sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1}o}^{1} \geq w_{1}^{o} \\ w_{2}^{o} \left(\sum_{i_{1}} \omega_{i_{1}}^{1} x_{i_{1}o}^{1} + 1 \right) \leq 1 \\ \sum_{d} \pi_{d} z_{do} + \sum_{i_{2}} \omega_{i_{2}}^{2} x_{i_{2}o}^{2} = 1 \\ \omega_{i_{1}}^{1}, \omega_{i_{2}}^{2}, \ \mu_{r}, \ \pi_{d} \geq \varepsilon, \quad u^{A}, u^{B} \text{ free} \end{aligned}$$

$$(7.9)$$

Let $\omega_{i_1}^{1*}, \omega_{i_2}^{2*}, \mu_r^*, \pi_d^*, u^{A*}, u^{B*}$ represent the optimal values of $\omega_{i_1}^1, \omega_{i_2}^2, \mu_r, \pi_d, u^A, u^B$ in model (7.9). Then the second-stage efficiency score is $\theta_o^{2*} = \sum_r \mu_r^* y_{r0} + u^{B*}$ and the optimal weights for the two stages are $w_2^* = \frac{1}{\sum_{i_1} \omega_{i_1}^{1*} x_{i_1o}^1 + 1}$ and

 $w_1^* = 1 - w_2^*$, respectively. The first-stage efficiency score is calculated as $\theta_o^1 = \frac{\theta_o^* - w_2^* \theta_o^{2^*}}{w_1^*}$. If the results satisfy $\theta_o^1 = \theta_o^{1^*}$ and $\theta_o^2 = \theta_o^{2^*}$, then we may conclude that the decomposed efficiency scores are unique.

As in the conventional DEA models, the efficiency scores obtained for stages 1 and 2 provide information on how an inefficient unit can improve its performance. However, because the optimal (frontier projection) intermediate measures need to be determined, as noted in Chen et al. (2010), one needs to rely on the envelopment form of the DEA model to derive the DEA frontier for the two-stage process. Note that our two-stage network structure is different from the one discussed in Chen et al. (2010) with added additional multiple inputs to the second stage. Therefore, in Sect. 7.4.1.2 we develop a new model for providing information on how to improve the DMUs' performance under our newly developed two-stage DEA network model.

7.4.1.2 Frontier Projection

Model (7.6) does not yield information on optimal intermediate measures. Therefore, following Chen et al. (2010), we develop a model for frontier projection of the DMUs as follows:

$$\min\left(w_{1}^{*}\alpha + w_{2}^{*}\beta\right) - \varepsilon\left(\sum_{i_{1}} s_{i_{1}}^{1-} + \sum_{i_{2}} s_{i_{2}}^{2-} + \sum_{r} s_{r}^{+}\right)$$

$$s.t. \quad \sum_{j=1}^{n} \lambda_{j} x_{i_{1}j}^{1} + s_{i_{1}}^{1-} = \alpha x_{i_{1}o}^{1}, \quad i_{1} = 1, 2, \dots,$$

$$\sum_{j=1}^{n} \lambda_{j} z_{dj} = \sum_{j=1}^{n} \mu_{j} z_{hj}, \quad d = 1, 2, \dots, D$$

$$\sum_{j=1}^{n} \lambda_{j} = 1$$

$$\sum_{j=1}^{n} \mu_{j} x_{i_{2}j}^{2} + s_{i_{2}}^{2-} = \beta x_{i_{2}o}^{2}, \quad i_{2} = 1, 2, \dots,$$

$$\sum_{j=1}^{n} \mu_{j} y_{rj} - s_{r}^{+} = y_{ro}, \quad r = 1, 2, \dots, s$$

$$\sum_{j=1}^{n} \mu_{j} = 1$$

$$\lambda_{j}, \mu_{j}, s_{i_{1}}^{1-}, s_{i_{2}}^{2-}, s_{r}^{+} \ge 0$$

$$(7.10)$$

where w_1^* , w_2^* are obtained from the two-stage network DEA model developed in Sect. 7.4.1.

The above model is based on the production possibility set with $\sum_{j=1}^{n} \lambda_j = 1$ and

 $\sum_{j=1}^{n} \mu_j = 1$ indicating that both stages exhibit VRS, as in the standard DEA model. $\sum_{j=1}^{n} \lambda_j z_{dj} = \sum_{j=1}^{n} \mu_j z_{hj}, \ d = 1, 2, ..., D$ ensures that both stages determine the opti-

mal (frontier projection) intermediate measures.

If we fix α and β in the above model as θ_o^{1*} and θ_o^{2*} obtained from our two-stage model, model (7.10) adopts the principle of the "second-stage" model for calculating DEA slacks (Cooper et al. 2004). In that case, the model becomes

$$\max \sum_{i_{1}} s_{i_{1}}^{1-} + \sum_{i_{2}} s_{i_{2}}^{2-} + \sum_{r} s_{r}^{+}$$
s.t.
$$\sum_{j=1}^{n} \lambda_{j} x_{i_{1}j}^{1} + s_{i_{1}}^{1-} = \theta_{o}^{1*} x_{i_{1}o}^{1}, \quad i_{1} = 1, 2, ..., D$$

$$\sum_{j=1}^{n} \lambda_{j} z_{dj} = \sum_{j=1}^{n} \mu_{j} z_{dj}, \quad d = 1, 2, ..., D$$

$$\sum_{j=1}^{n} \lambda_{j} = 1$$

$$\sum_{j=1}^{n} \mu_{j} x_{i_{2}j}^{2} + s_{i_{2}}^{2-} = \theta_{o}^{2*} x_{i_{2}o}^{2}, \quad i_{2} = 1, 2, ..., S$$

$$\sum_{j=1}^{n} \mu_{j} y_{rj} - s_{r}^{+} = y_{ro}, \quad r = 1, 2, ..., s$$

$$\sum_{j=1}^{n} \mu_{j} = 1$$

$$\lambda_{j}, \mu_{j}, s_{i_{1}}^{1-}, s_{i_{2}}^{2-}, s_{r}^{+} \ge 0$$

$$(7.11)$$

Both stages determine the best projection levels for the intermediate measures as $\sum_{j=1}^{n} \lambda_{j}^{*} z_{hj} = \sum_{j=1}^{n} \mu_{j}^{*} z_{hj}.$ The frontier projection point is given by $(\theta_{o}^{1*} x_{i_{1}o}^{1} - s_{i_{1}}^{1-*},$ $\sum_{j=1}^{n} \lambda_{j}^{*} z_{hj}, \theta_{o}^{2*} x_{i_{2}o}^{2} - s_{i_{2}}^{2-*}, y_{ro} + s_{r}^{+*}).$

7.5 Data and Sampling

The data on US mutual funds are obtained from the Morningstar Direct database. The sample consists of 66 large mutual fund families with total funds under management in each family exceeding \$1 billion USD. The sample period is January 1993 to December 2008 (a total of 1056 family years). The 66 families comprise 1269 individual mutual funds, adding up to 20,304 fund years. For each of these individual funds, we compute monthly return and monthly standard deviation over the 16-year sample period.

Some funds have multiple share classes depending on the fee structure and we consider them as separate mutual funds. Furthermore, we found that some families may offer the same fund to different investors under different names. We treated them as separate funds as well. We included all the funds in the family irrespective of their investment policy or classification, such as money market funds, bond funds, equity funds, and index funds.

During our survey period, some funds may have ceased operations and some funds mostly small funds, do not report all the data that we require. Therefore, we consider only large mutual fund families with total funds under management in each family of at least \$1 billion USD. Out of a total of 198 fund families reported in 2008, 101 families (51 %) have a total fund size of at least \$1 billion USD. Out of these 101 families, 35 families (34.7 %) are dropped from the study due to non-availability of data on all the input and output variables given in Fig. 7.2.

Our final sample contains 66 mutual fund families. Most of the families that we dropped from the study are small; that is, the fund size of 19 out of the 35 families dropped (54.3 %) is less than \$4 billion USD. The two largest families dropped from the study are PIMCO Funds (fund size of \$217 billion USD with three mutual funds in it) and Dodge and Cox (fund size of \$71 billion USD with three mutual funds in it). Total funds under management in each of the other 14 families dropped from the analysis are between \$4 billion USD and \$40 billion USD. In DEA, the efficiencies of mutual fund families are assessed relative to the other families in the sample and therefore dropping large families from the sample may affect efficiency scores. However, as only a very small percentage of the dropped funds are large, their impact on the overall assessment is minimal.

Even though the primary focus of this paper is to introduce a novel two-stage DEA model for efficiency decomposition, we make a significant effort to minimize the survivorship bias in the numerical example that we use here to demonstrate the applicability of the proposed model. In mutual fund research, survivorship bias is an important issue. According to Carhart (1997), data used in mutual fund research may often be incomplete due to the following reasons. During the sample period, some funds may have ceased operations or some funds may not report data in poorly performing years. The availability of all the individual fund-level data for the 66 families in our sample throughout the entire survey period implies that all the funds in those selected families are healthy funds and none of them have ceased operations during the survey period.

Summary statistics for the 66 mutual fund families selected in our sample and sorted by total funds under management as of 2008 are presented in Table 7.2. American Funds is by far the largest in terms of funds under management (\$1490 billion USD). Vanguard is the next largest with \$579 billion USD worth of funds under its control. In our sample, the fund family that offers the greatest number of individual mutual funds is Fidelity Investments, with 94 mutual funds worth \$418 billion USD under its management. We consider each mutual fund family in the sample as a separate DMU.

The list of input and output variables used in the DEA model is given in Table 7.3. As illustrated in Fig. 7.2, stage 1 has two inputs and one output and stage 2 has five inputs and one output. These variables are selected following previous studies of mutual fund performance such as Malhotra et al. (2007), Choi and Murthi (2001), Murthi et al. (1997), Nguyen-Thi-Thanh (2006) and Wilkens and Zhu (2005). For each family, the values of the input and output variables are calculated for each year from 1993 to 2008 using the data collected on the individual mutual funds in the family.

	Number		Average	Average
Mutual fund family	of funds	Total funds (US\$)	return	risk
American funds	42	1,490,594,275,158.00	9.77	2.25
Vanguard	37	579,750,294,615.00	9.16	2.07
Fidelity Investments	94	418,187,641,631.00	10.11	1.56
Franklin Templeton	89	394,375,602,920.00	7.62	0.98
Oppenheimer Funds	48	130,904,879,326,00	7.67	1.88
T. Rowe Price	27	110,222,489,930,00	9.00	3.02
Black Rock	41	108.241.956.534.00	8.02	1.92
Van Kampen	34	82.211.315.521.00	6.81	1.89
Davis Funds	4	63.251.839.275.00	11.09	10.03
Putnam	50	62,171,214,774,00	6.79	1.81
Legg Mason/Western	36	51.461.797.140.00	8.16	2.33
Eaton Vance	22	50.071.998.544.00	7.09	2.32
MFS	41	47.430.409.145.00	7.78	2.22
Lord Abbett	20	47,356,265,200.00	7.91	2.83
Columbia	37	43.501.260.026.00	8.10	1.74
First Eagle	3	38,981,626,920.00	14.04	6.95
Invesco Aim	31	35,566,463,709.00	9.39	3.54
DWS Investments	31	33,964,651,524.00	7.86	2.15
River Source	31	30,546,682,728.00	6.23	1.51
Waddell and Reed	26	27,410,184,204.00	9.79	3.13
Hartford Mutual Funds	12	27,011,372,486.00	10.85	7.13
AllianceBernstein	22	26,226,317,926.00	6.55	14.77
American Century Investments	18	25,473,621,032.00	9.80	5.36
Federated	32	23,816,215,202.00	7.22	2.40
Dreyfus	46	19,419,526,269.00	6.37	1.29
Pioneer Investments	10	18,121,381,148.00	7.30	5.09
Jennison Dryden	13	17,023,214,021.00	8.42	3.66
Nuveen	38	16,070,435,315.00	5.32	0.96
Morgan Stanley	21	16,040,451,102.00	7.57	2.57
Neuberger Berman	8	13,412,797,477.00	10.16	6.09
Calvert	10	12,796,101,648.00	7.12	2.88
Natixis Funds	12	12,672,030,850.00	9.21	4.24
Seligman	18	11,981,528,042.00	11.07	6.03
Principal Funds	12	11,744,149,708.00	7.37	2.26
Main Stay	9	10,363,339,170.00	6.97	3.72
Evergreen	19	10,316,579,030.00	7.77	3.92
Delaware Investments	26	9,854,852,484.00	7.24	2.67
Thrivent	10	9,509,202,204.00	6.94	3.14
Wells Fargo Advantage	16	9,303,483,468.00	8.78	3.72
Victory	7	8,838,386,982.00	9.62	4.95

 Table 7.2
 Summary statistics of mutual fund families

(continued)

	Number		Average	Average
Mutual fund family	of funds	Total funds (US\$)	return	risk
Security Funds	6	8,518,518,926.00	9.45	4.13
Selected Funds	2	8,518,518,926.00	9.45	7.48
First American	14	8,032,131,082.00	8.12	2.68
Thornburg	6	5,279,984,262.00	4.77	1.41
First Investors	24	4,859,922,276.00	5.77	1.67
Sentinel	8	4,158,134,728.00	7.73	5.32
Aquila	10	4,081,036,350.00	5.25	1.68
Gabelli	8	3,783,733,120.00	8.55	6.14
JPMorgan	6	3,593,451,011.00	9.51	7.12
Virtus	16	3,110,691,704.00	6.96	3.28
Ariel	2	2,830,081,390.00	8.97	14.88
Baron Capital Group	1	2,622,842,777.00	10.17	21.74
ING Funds	5	2,172,202,625.00	8.49	5.43
Alger	8	2,169,817,261.00	10.61	9.51
RS Funds	4	2,144,384,324.00	12.76	14.88
Merger	1	1,905,360,481.00	7.72	8.47
Pax World	1	1,865,442,450.00	8.06	12.73
Van Eck	2	1,605,535,830.00	9.75	33.45
Transamerica	4	1,581,097,914.00	5.90	4.26
Allianz Funds	4	1,576,090,818.00	11.61	13.61
U.S. Global Investors	5	1,509,204,804.00	9.07	19.79
Allegiant	5	1,228,769,092.00	6.84	3.01
Value Line	9	1,191,193,270.00	8.43	4.79
Eagle Funds	4	1,169,869,484.00	8.91	10.18
Heartland	1	1,131,448,125.00	14.05	30.53
Sun America	10	1,051,166,792.00	7.22	4.42

Table 7.2 (continued)

This table illustrates the summary statistics of the 66 mutual fund families considered in the sample. The sample period is from January 1993 to December 2008. Return on individual mutual funds is obtained from the Morningstar Direct database. Average return is the average monthly return of all individual mutual funds that belong to the family. Average risk is the average of the standard deviations of monthly returns of individual mutual funds that belong to the family. The funds are sorted by total funds under its management at 2008

Summary statistics of the input and output variables are given in Panel A of Table 7.4 and the maximum correlation (Pearson correlation coefficient) between each pair of the variables over the sample period 1993–2008 are given in Panel B. The minimum Pearson correlation coefficient is given in Panel C.

Notations	
h_{ij} is the weight defined as investm	ents in fund i as a proportion of total investments in the family j
N_j is the total number of funds in	family <i>j</i>
Stage 1	
Input variables	
Management fees (I ₁):	Is computed as $\sum_{i=1}^{N_j} X_{ij}h_{ij}$, where X_{ij} is the management fee of fund <i>i</i> of family <i>j</i> . This fee includes the fees that are paid out of fund assets to the investment advisors, any other fees payable to the advisors or its affiliates and administrative fees payable to the advisors that are not included in the "other expenses" category
Marketing and distribution fees (I_2) ("12b-1" fees):	Is computed as $\sum_{i=1}^{N_j} Y_{ij}h_{ij}$, where Y_{ij} is the marketing and distribution fees of fund <i>i</i> of family <i>j</i> . This covers the costs of marketing and selling fund shares and sometimes it covers the cost of providing shareholder services
Output variable	
Net asset value (O_1) :	Is computed as $\sum_{i=1}^{N_j} P_{ij}h_{ij}$, where P_{ij} is the net asset value of fund <i>i</i> of family <i>j</i>
Stage 2	·
Input variables	
Fund size (I_3) :	Is computed as $\sum_{i=1}^{N_j} F_{ij}$, where F_{ij} is the total funds in fund <i>i</i> of family <i>j</i> .
Net expense ratio (I_4) :	Is computed as $\sum_{i=1}^{N_j} \Psi_{ij} h_{ij}$, where, Ψ_{ij} is the net expense ratio of fund <i>i</i> of family <i>j</i>
Turnover (I_5) :	Is computed as $\sum_{i=1}^{N_j} \delta_{ij} h_{ij}$, where δ_{ij} is the turnover ratio of fund <i>i</i> of family <i>j</i>
Standard deviation (I_6) :	Is computed as $(A^T A)/N$ where A^T is the transpose of matrix A of excess return over the previous three years and N is the number of observations in the three-year period. For more on this see, Benninga (2008)
Adjusted net asset value (I_7) :	Is estimated in the stage 1 DEA model. See Sect. 7.3 for details
Output variable	
Total return (O_2) :	Is computed as $\sum_{i=1}^{N_j} h_{ij}r_{ij}$, where, r_{ij} is the annual return of fund <i>i</i> of family <i>j</i>

Table 7.3 Input-output variables used in DEA models

7.6 Analysis of the Results

In this section we demonstrate application of the two stage DEA model proposed in Sect. 7.4 by examining the relative performance of the US fund families listed in Table 7.2. In Sect. 7.6.1 we analyze the overall performance of the mutual fund

Panel A: Sur	mmar	y statistics	s of DEA input-output v	ariables							
	Tota in fu	l funds nd									
	fami US b	ly (in villion)	Marketing and distribution fee (%)	Management fees (%)	NAV (in US billion)	Net expens ratio (%)	<u>۔</u> و	Turnover ratio	Standard	l n (%)	Return (%)
Maximum	\$	490.59	1.99	1.00	42.29	2.75		1526.94	75.49		113.41
Minimum	\$	1.05	0.00	0.16	0.01	0.12		3.00	0.09		-51.21
Mean	\$	64.21	0.67	0.51	7.65	0.91		236.66	14.66		12.39
Stddev	÷	203.62	0.70	0.33	10.77	0.76		336.01	20.35		29.24
Panel B: Ma	umix	m Pearson	a correlation coefficient b	etween input and outp	out variables (1993-	-2008)					
		Total	l funds in fund family	Marketing and distribution fee	Management fees	NAV	Net exp ratio	pense T	urnover ttio	Standard deviation	Return
Total funds family	.E	1.0	00								
Marketing aldistribution	pu	-0.1	3	1.00							
Managemen	t fees	-0.3	36	0.18	1.00						
NAV		0.8	33	-0.11	-0.17	1.00					
Net expense	ratio	-0.2	11	0.74	0.63	-0.02	1.00				
Turnover rat	tio	-0.0	8(0.22	0.35	-0.04	0.32		00		
Standard dev	viatio	n -0.1	1	0.15	0.49	-0.07	0.48	0	.15	1.00	
Return		0.1	1	0.12	0.47	0.22	0.58	0	.40	0.68	1.00
										(co	ntinued)

 Table 7.4
 Summary measures of variables used in the two-stage DEA

			un ouipui vaitaoites (1	0007-000				
	Total funds in	Marketing and			Net expense	Turnover	Standard	
	fund family	distribution fee	Management fees	NAV	ratio	ratio	deviation	Return
Total funds in	1.00							
family								
Marketing and	-0.14	1.00						
distribution								
Management fees	-0.39	0.04	1.00					
NAV	0.54	-0.29	-0.34	1.00				
Net expense ratio	-0.41	0.53	0.52	-0.55	1.00			
Turnover ratio	-0.16	-0.05	0.00	-0.21	-0.01	1.00		
Standard deviation	-0.22	-0.02	0.31	-0.25	0.19	-0.15	1.00	
Return	-0.06	-0.12	-0.38	-0.18	-0.17	-0.29	-0.57	1.00
Panel A presents the c minimum Pearson co	lescriptive statistics o rrelation coefficient b	of the input and output var between input and output	iables used at stage 1 a variables are presented	nd stage 2 1 in Panel	of the two stag B and C respec	ce DEA mode ctively	l. The maximum	and the

(tinued)
7.4 (con
Table

families using the overall efficiency scores estimated in model (7.5). Thereafter, to gain insights on the source of efficiency/inefficiency of the fund families, we analyze the operational efficiency scores in Sect. 7.6.2 and the portfolio efficiency scores in Sect. 7.6.3.

7.6.1 Overall Efficiency Estimated in the Two-Stage DEA Model

Table 7.5 lists the 16 families that have performed consistently well overall over the most recent 3-year period from 2006 to 2008 based on the overall efficiency estimated in the two-stage DEA model. We judge the consistency of performance of a mutual fund family by the number of times a family has been ranked in the top 2, top 3, and so on up to top 10 during the 3-year period. Since the investigation period is 3 years, the maximum frequency possible under each category is 3.

Vanguard is clearly the best performing fund family over the investigation period (ranked top 2 in all 3 years), followed by Fidelity Investments (ranked top 3 twice), Hartford Mutual Funds (ranked top 4 twice and top 5 three times), Allegiant (ranked top 4 twice and top 6 three times), and American Funds (ranked top 6 twice). It is not surprising that the Vanguard family of funds is the top performer over the most recent 3-year sample period, given its dominance with respect to the market share in terms of funds under passive management (Smith 2010) and adherence to the fund family gospel that low-cost investments deliver the best returns (Dunstan 2012). The Vanguard Group provides the necessary services to run the funds on an at-cost basis (Bogle 2004). As a result, Vanguard has the reputation within the fund management industry as having the lowest operating expenses. In 2008, the Vanguard funds cost, on average, 0.27 % of assets or about 25 % of the industry average (Morningstar 2012). Vanguard is well known among investors for offering mutual funds with the lowest or close to the lowest annual operating expenses and hence the high overall efficiency is not surprising. All the five fund families identified above (Vanguard, Fidelity, Hartford, Allegiant, and American) have substantial market share and a long history averaging over 80 years. Further, they received rankings in the top quartile in the 2007 fund family rankings released by Barron's based on the performance in 2006.

On the other hand, American Century Investments and Neuberger Berman are ranked in the top 2 in one of the 3 years and in the other 2 years both are ranked below 10 showing inconsistency in their performance from 2006 to 2008. The poor performance of Neuberger Berman after 2006 can be linked to the fallout of the global financial crisis.

Now we discuss consistency in the performance over a longer period- the 5 years from 2004 to 2008. Table 7.6 shows the 17 best performing mutual fund families based on overall performance over the 5-year period. As seen in Table 7.6, during this period Vanguard is always ranked in the top 2 and is clearly the best performer.

procedure									
Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
Vanguard	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Fidelity Investments	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	3 (100 %)	3 (100 %)
American Funds	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
American Century Inv.	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Neuberger Berman	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Allegiant		1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Hartford Mutual Funds		1 (33.3 %)	2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Dreyfus			1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Nuveen				1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)
T. Rowe Price				1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)
Aquila					1 (33.3 %)	2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)
Davis Funds						1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)
First American							1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Thrivent								1 (33.3 %)	1 (33.3 %)
Franklin Templeton Inv.									1 (33.3 %)
Thornburg									1 (33.3 %)
The table gives the number parentheses gives the percen	of times the of times	family has be the family has	en ranked in tl been ranked ur	he top 2, top 3 nder the corres	3, etc., over th ponding catego	e most recent ory of rankings	3 years from 2. . For example,	2006 to 2008. Hartford Mutu	The entry in al Funds has

Table 7.5 Top-performing mutual fund families in the 3-year period from 2006 to 2008 based on their overall efficiency estimated in the two-stage DEA

been ranked 1, 2, or 3 in only one of the 3 years (33.3 %) from 2006 to 2008

procedure			•)
Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
Vanguard	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Neuberger Berman	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
Fidelity Investments	1 (20 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)	4 (80 %)	5 (100 %)	5 (100 %)
American Funds	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)
T. Rowe Price	1 (20 %)	1 (20 %)	1 (20 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)	4 (80 %)
American Century Inv.	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)
Allegiant		1 (20 %)	2 (40 %)	2 (40 %)	3 (60 %)	3 (60 %)	4 (80 %)	5 (100 %)	5 (100 %)
Hartford Mutual Funds		2 (40 %)	4 (80 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Nuveen			1 (20 %)	2 (40 %)	2 (40 %)	4 (80 %)	5 (100 %)	5 (100 %)	5 (100 %)
Dreyfus			1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)
Columbia				1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)
Aquila					2 (40 %)	3 (60 %)	4 (80 %)	5 (100 %)	5 (100 %)
Davis Funds						1 (20 %)	1 (20 %)	1 (20 %)	2 (40 %)
Franklin Templeton Inv.							1 (20 %)	1 (20 %)	3 (60 %)
First American							1 (20 %)	1 (20 %)	1 (20 %)
Thrivent								1 (20 %)	1 (20 %)
Thornburg									1 (20 %)
The table gives the number c	of times the far	nily has been 1	ranked top 2, to	pp 3, etc., over	the most recer	it five years fro	m 2004 to 200	8. The entry in	parentheses

Table 7.6 Top-performing mutual fund families in the 5-year period from 2004 to 2008 based on their overall efficiency estimated in the two-stage DEA

 $\frac{1}{100}$ $\frac{1}$

Neuberger Berman is the next best, followed by Fidelity investments, Hartford Mutual Funds and T. Rowe Price. Two out of these five families, Neuberger Berman and T. Rowe Price, do not feature in the list of the five best performers over the most recent 3-year period. The same 16 families reported in Table 7.5 also performed better than the other sampled families over the 5-year period from 2004 to 2008.

Similarly, we investigated the overall performance of the mutual fund families over the 10-year period from 1999 to 2008. The results obtained for the 35 best performing fund families over the ten-year period are presented in Table 7.7. When the window is extended to a longer time horizon, no fund family ranks consistently in the top-10 100 % of the time. The results reveal that Vanguard continues its dominance over the other fund families listed in Tables 7.5 and 7.6 with its performance ranked consistently in the top ten 80 % of the time. The most consistent fund family over the longer term horizon is TransAmerica with 1.5 billion funds under management. TransAmerica which is ranked among the top ten 90 % of the time is considerably smaller in size than Vanguard and as a result is not able to offer a low fee structure in terms of Marketing and Management fees as Vanguard does. However, through effective asset allocation and close attention to its investment mandate, TransAmerica consistently performs well relative to the other fund families in the sample over the 10-year period. Other fund families that demonstrate persistence in overall relative performance in the long term are; Aquila, Sun America, and Barron Capital Group.

One of the main contributions of the proposed two-stage DEA model compared with the conventional DEA models is the decomposition of overall efficiency into two components, namely, operational efficiency and portfolio efficiency. In the next section, we discuss how the fund families have performed over the sample period with respect to operational and portfolio efficiency.

7.6.2 Operational Management Efficiency

Table 7.8 lists the 13 fund families that perform relatively better from 2006 to 2008 based on the operational efficiency scores estimated in the proposed two-stage DEA model. The operational efficiency score reflects how well a fund family has managed its resources in securing or generating funds for that family. Here, we observe that three families have been ranked top 2 in all 3 years of assessment; Vanguard, T. Rowe Price, and American Century Investments. According to the overall efficiency score rankings reported in Table 7.5, only Vanguard performs at this level. The next-best performer under operational efficiency is Neuberger Berman, with rankings of 3 or better in all 3 years, followed by American Funds and Fidelity Investments.

The top-performing families in terms of operational efficiency over the 5-year period 2004–2008 reported in Table 7.9 reveal that the same 13 families reported in Table 7.8 also performed better than the other sampled families over this 5-year

Table 7.7 Overall consiste	ant performan	ice of mutual	fund familie	s in the 10-ye	ear period fro	om 1993 to 20	308			
Fund family	Top-1	Top-2	Top-3	Top-4	Top-5	Top-6	Top-7	Top-8	Top-9	Top-10
Van Eck	4 (40 %)	4 (40 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)
U.S. Global Investors	4 (40 %)	4 (40 %)	4 (40 %)	4 (40 %)	4 (40 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)
First Eagle	2 (20 %)	2 (20 %)	2 (20 %)	2 (20 %)	3 (30 %)	3 (30 %)	4 (40 %)	4 (40 %)	4 (40 %)	4 (40 %)
Eaton Vance	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)
Invesco Aim	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)
Waddell and Reed	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)
Nuveen	1 (10 %)	2 (20 %)	2 (20 %)	2 (20 %)	3 (30 %)	4 (40 %)	4 (40 %)	4 (40 %)	5 (50 %)	5 (50 %)
Thornburg	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	2 (20 %)	2 (20 %)
Ariel	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)
Baron Capital Group	1 (10 %)	2 (20 %)	3 (30 %)	3 (30 %)	3 (30 %)	3 (30 %)	4 (40 %)	5 (50 %)	6 (60 %)	6 (60 %)
RS Funds	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10%)	1 (10 %)
Heartland	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	2 (20 %)	2 (20 %)	3 (30 %)	3 (30 %)	3 (30 %)
Sun America	1 (10 %)	2 (20 %)	2 (20 %)	2 (20 %)	3 (30 %)	3 (30 %)	4 (40 %)	5 (50 %)	6 (60 %)	6 (60 %)
Transamerica		2 (20 %)	5 (50 %)	6 (60 %)	(% 06) 6	(% 06) 6	(% 06) 6	(% 06) 6	(% 06) 6	9 (90 %)
Vanguard		1 (10 %)	2 (20 %)	9 (60 %)	6 (60 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	8 (80 %)
Davis Funds		1 (10 %)	2 (20 %)	2 (20 %)	2 (20 %)	2 (20 %)	2 (20 %)	2 (20 %)	2 (20 %)	3 (30 %)
JennisonDryden		1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)
Principal Funds		1 (10 %)	2 (20 %)	2 (20 %)	2 (20 %)	3 (30 %)	3 (30 %)	3 (30 %)	3 (30 %)	5 (50 %)
Alger		1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)
Thrivent			1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)
Aquila			1 (10 %)	1 (10 %)	2 (20 %)	4 (40 %)	5 (50 %)	7 (70 %)	8 (80 %)	8 (80 %)
Eagle Funds				3 (30 %)	4 (40 %)	4 (40 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)
Fidelity Invest				1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10%)	1 (10 %)
Security Funds				1 (10 %)	1 (10 %)	2 (20 %)	3 (30 %)	3 (30 %)	4 (40 %)	4 (40 %)
ING Funds					2 (20 %)	2 (20 %)	3 (30 %)	3 (30 %)	4 (40 %)	5 (50 %)
									-	(continued)

0
2
\mathcal{C}
2
~
8
9
÷
ц
Ξ
Ξ.
4
p
. <u>ല</u>
5
ď,
-
g
×
Ĺ.
1
e
÷
c
·=
ŝ
<u>е</u> .
Ξ.
Ξ
, G
ч <u>г</u>
p
Ħ
Ę
па
₽
2
ц
F
0
e
2
aı
Я
=
9
E
<u>ଞ</u> .
I
ē
S
S
E
5
_
F
Ë
ve Ve
5
\cup
5
5
d)

Fund family	Top-1	Top-2	Top-3	Top-4	Top-5	Top-6	Top-7	Top-8	Top-9	Top-10
Franklin Templeton Inv						1 (10 %)	2 (20 %)	3 (30 %)	3 (30 %)	3 (30 %)
Allegiant						1 (10 %)	1 (10 %)	1 (10 %)	2 (20 %)	3 (30 %)
Merger							1 (10 %)	1 (10 %)	2 (20 %)	2 (20 %)
Value Line							1 (10 %)	3 (30 %)	3 (30 %)	3 (30 %)
American Century Invst								1 (10 %)	1 (10 %)	1 (10 %)
MainStay								1 (10 %)	1 (10 %)	1 (10 %)
Columbia									1 (10 %)	1 (10 %)
Hartford Mutual Funds										1 (10 %)
AllianceBernstein										1 (10 %)
Dreyfus and Virtus										1 (10 %)

Table 7.7 (continued)

This table illustrates the number of times a particular family has been ranked as top-1, top-2, top -3, ..., top-10, over the most recent 10 years (1999–2008). The percentage of times over 10 years is given in the parenthesis. These figures illustrate whether a fund family has been performing well consistently over the most recent 10 years

stage DEA procedure									
Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
Vanguard	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
T. Rowe Price	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
American Century Inv.	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Neuberger Berman	2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
American Funds	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	3 (100 %)	3 (100 %)
Fidelity Investments		2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Wells Fargo Advantage			2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Allegiant				2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	3 (100 %)	3 (100 %)
Dreyfus					2 (66.7 %)	2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)
Hartford Mutual Funds						3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Victory							2 (66.7 %)	2 (66.7 %)	3 (100 %)
Columbia								1 (33.3 %)	2 (66.7 %)
Nuveen									1 (33.3 %)
The table gives the number	of times the f	amily has been	ranked in the t	op 2, top 3, etc	\dots over the 3 ye	ars from 20061	o 2008. The er	itry in parenthe	ses gives the

Table 7.8 Top-performing mutual fund families in the 3-year period from 2006 to 2008 based on their operational efficiency estimated in the proposed twoo dine stage DFA h percentage of times the family has been ranked in the top 2, top 3, etc., over the 3 years from 2006 to 2008. The entry in parentheses gives the percentage of times the family has been ranked under the corresponding category of rankings. For example, Fidelity Investments has been ranked 1, 2, or 3 in only two of the three years (66.7 %) from 2006 to 2008

Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
American Century Inv.	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
T. Rowe Price	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Vanguard	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Neuberger Berman	3 (60 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
American Funds	1 (20 %)	1 (20%)	1 (20 %)	1 (20 %)	2 (40 %)	2 (40 %)	3 (60 %)	4 (80 %)	5 (100 %)
Wells Fargo Advantage	1 (20 %)	1 (20%)	4 (80 %)	5 (100 %)	5 (100 %)	5 (100%)	5 (100%)	5 (100 %)	5 (100 %)
Fidelity Investments		3	4 (80 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Hartford Mutual Funds			1 (20 %)	1 (20 %)	2 (40 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Allegiant				3 (60 %)	3 (60 %)	4 (80 %)	4 (80 %)	5 (100 %)	5 (100 %)
Dreyfus					3 (60 %)	3 (60 %)	5 (100%)	5 (100 %)	5 (100 %)
Victory						1 (20 %)	3 (60 %)	4 (80 %)	5 (100 %)
Columbia								1 (20 %)	3 (60 %)
Nuveen								1 (20 %)	2 (40 %)

-OM	
ed 1	
sode	
prc	
the	
d in	
late	
stim	
s e	
ienc	
ffic	
ale	
tion	
bera	
r oț	
thei	
on	
sed	
8 ba	
200	
t0	
004	
ш 2	
fro	
iod	
per	
/ear	
5-5	
the	
s in	
nilie	
fan	
pun	
al f	
ntu	
n gr	
mi	
ulto	ure
p-pé	ced
Tol	pro
6.7	ΕA
le 7	еD

period. The top 5 performers from 2006 to 2008 are also the top 5 performers over the 5-year period. Once again, when the window is extended to reflect the long term nature of investing (1999–2008) as shown in Table 7.10, the same mutual fund families continue to demonstrate their comparative advantage with low fee structures. Not surprisingly, the two fund families that are ranked 1 or 2 in any calendar year on the basis of operational efficiency throughout the 10-year window; Vanguard (100 %) and T. Rowe Price (100 %) are both among the top 6 in terms of funds under management having portfolios exceeding 100 billion USD. The fee structure of these two fund families reveal that they are able to keep the costs significantly below industry average. This is evident especially in the case of marketing fees where Vanguard and T. Rowe Price both have fees less than 2.3 % compared to the industry average of 44.4 %.

Seven additional fund families join Vanguard and T. Rowe Price by consistently outperforming the other families in terms of operational efficiency. The continually dominating top 10 families are; American Century Investments, Wells Fargo Advantage, American funds, Neuberger Berman, Fidelity investments, Allegiant and Dreyfus. All these fund families have realized high levels of net asset values given their levels of management and marketing fees. We were not able to obtain data on variables such as salaries and rent that may be relevant for operational performance assessment. If it were possible, one could easily include them in the model to further improve the discriminatory power of mutual fund families based on their operational performance.

7.6.3 Portfolio Management Efficiency

Portfolio management efficiency measures how well a mutual fund family manages its investment portfolio to realize high returns subject to a chosen set of factors that may influence returns. Portfolio efficiency is important information not only for investors in making their investment decisions but also for fund family administrators in assessing the performance of their portfolio managers. The fund family administrators may be able to judge how well their fund managers have performed relative to their competitors using the proposed portfolio management efficiency score (measure). The benefits of the proposed efficiency measure do not stop there. Relative performance at the portfolio management level is vital information for recruiting agencies to identify the best-performing fund managers and those who are underperforming.

As in the previous cases, Tables 7.11 and 7.12 lists the fund families that have been ranked at or above different levels of ranking in the last three- and 5-year periods respectively based on portfolio efficiency. According to Table 7.11, Hart-ford Mutual Funds, Vanguard, Nuveen, Aquila, Davis Funds and Sun America have managed their portfolios relatively better securing a rank of at least 2 during the 3-year period beginning 2006. High performance in stage 2 implies that the mutual fund family has gained relatively high returns with their existing level of fund size,

two-stage DEA procedu	re									
Fund family	Top-1	Top-2	Top-3	Top-4	Top-5	Top-6	Top-7	Top-8	Top-9	Top-10
T. Rowe Price	10	10	10	10	10	10	10	10	10	10
	(100%)	(100 %)	(100%)	(100 %)	(100 %)	(100%)	(100 %)	(100%)	(100 %)	(100%)
Vanguard	10	10	10	10	10	10	10	10	10	10
1	(100%)	(100 %)	(100 %)	(100 %)	(100 %)	(100%)	(100 %)	(100%)	(100 %)	(100 %)
American Century	5 (50 %)	9 (90 %)	10	10	10	10	10	10	10	10
Inv			(100%)	(100 %)	(100 %)	(100%)	(100 %)	(100%)	(100 %)	(100%)
Wells Fargo	5 (50 %)	6 (60 %)	6 (60 %)	(% 06) 6	10	10	10	10	10	10
Advantage					(100 %)	(100%)	(100 %)	(100%)	(100 %)	(100%)
American Funds	3 (30 %)	3 (30 %)	3 (30 %)	4 (40 %)	4 (40 %)	5 (50 %)	5 (50 %)	7 (70 %)	(% 06) 6	10
										(100%)
Neuberger Berman		5 (50 %)	10	10	10	10	10	10	10	10
•			(100 %)	(100 %)	(100 %)	(100%)	(100 %)	(100%)	(100 %)	(100 %)
Fidelity Investments			3 (30 %)	5 (50 %)	(% 06) 6	(% 06) 6	10	10	10	10
							(100%)	(100 %)	(100 %)	(100 %)
Hartford Mutual Funds			1 (10 %)	4 (40 %)	4 (40 %)	5 (50 %)	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)
Allegiant				1 (10 %)	6 (60 %)	8 (80 %)	9 (90 %)	10	10	10
								(100%)	(100 %)	(100%)
Dreyfus						6 (60 %)	8 (80 %)	10	10	10
								(100%)	(100 %)	(100 %)
Nuveen							2 (20 %)	5 (50 %)	6 (60 %)	7 (70 %)
Victory							1 (10 %)	3 (30 %)	4 (40 %)	5 (50 %)
Columbia									2 (20 %)	8 (80 %)
JP Morgan									1 (10 %)	2 (20 %)
The table gives the num	ber of times th	he family has	been ranked	in the top 1, t	op 2, top 3, e	tc., over the 1	0 years from	1999 to 2008	. The entry in	parentheses
gives the percentage of t	imes the fami	ly has been ra	nked under tl	ne correspond	ling category	of rankings.]	For example,	Vanguard and	I T. Rowe Pri-	ce have been

Table 7.10 Top-performing mutual fund families in the 10-year period from 1999 to 2008 based on their operational efficiency estimated in the proposed

I.M. Premachandra et al.

ranked first equal in terms of operational efficiency in all years between 1999 and 2008 (100 %)

-0M	
ed tv	
pose	
pro	
the	
d in	
late	
stin	
cy e	
cien	
effi	
olio	
ortf	
eir p	
n th	
o pa	
base	
008	
to 2	
90C	
m 2(
l fro	
riod	
ur pe	
-ye	
he 3	
'n.	
ilies	
fam	
pun	
ıal fi	
nutu	
ng r	
ormi	
perfe	lure
-do	peoc
1 T	A pro
7.1	DE∕
able	age
E	st

sings that proceeds									
Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
Hartford Mutual Funds	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Vanguard	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Nuveen	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Aquila	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Davis Funds	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Sun America	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Principal Funds	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)	3 (100 %)
Van Eck	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Fidelity Investments	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
American Funds	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Thornburg	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Baron Capital Group	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Evergreen	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Jennison Dryden	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Security Funds	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Selected Funds	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Transamerica	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
U.S. Global Investors	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Gabelli	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Allegiant	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
ING Funds	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Natixis Funds	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
Franklin Templeton Inv.	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
First Eagle	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
									(continued)

Table 7.11 (continued)									
Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
Eagle Funds	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)	2 (66.7 %)
American Century Inv.	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Dreyfus	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Neuberger Berman	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
First American	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Thrivent	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
Alger	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)	1 (33.3 %)
The table gives the number	of times the far	mily has been r	anked in the to	op 2, top 3, etc.	, over the 3 yea	ars from 2006 t	o 2008. The er	itry in parenthe	

percentage of times the family has been ranked under the corresponding category of rankings

Table 7.12Top-performingstage DEA procedure	g mutual fund	families in the	5-year period	from 2004 to 2	008 based on	their portfolio	efficiency estir	nated in the pr	oposed two-
Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
Hartford Mutual Funds	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Vanguard	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Nuveen	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Aquila	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Davis Funds	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Principal Funds	4 (80 %)	4 (80 %)	4 (80 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)	5 (100 %)
Sun America	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	5 (100%)	5 (100 %)
Baron Capital Group	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)
Jennison Dryden	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)
Security Funds	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)
Selected Funds	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)
American Funds	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)	4 (80 %)
Franklin Templeton Inv.	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)
First Eagle	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)
Transamerica	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)	4 (80 %)
Van Eck	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	4 (80 %)
Fidelity Investments	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
Neuberger Berman	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
U.S. Global Investors	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
First American	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
ING Funds	2 (40 %)	2 (40 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
Thornburg	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)
Thrivent	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)
Evergreen	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)

(continued)

Fund family	Top 2	Top 3	Top 4	Top 5	Top 6	Top 7	Top 8	Top 9	Top 10
Gabelli	1 (20 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
Van Kampen	1 (20 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	3 (60 %)	3 (60 %)	3 (60 %)
T. Rowe Price	1 (20 %)	1 (20 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	4 (80 %)	4 (80 %)
Allegiant	1 (20 %)	1 (20 %)	2 (40 %)	2 (40 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)	3 (60 %)
Columbia	1 (20 %)	1 (20 %)	1 (20 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)
Black Rock	1 (20 %)	1 (20 %)	1 (20 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)
Eagle Funds	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	1 (20 %)	2 (40 %)	2 (40 %)	2 (40 %)	2 (40 %)

Table 7.12 (continued)

The table gives the number of times the family has been ranked in the top 2, top 3, etc., over the 5 years from 2004 to 2008. The entry in parentheses gives the percentage of times the family has been ranked under the corresponding category of rankings transaction costs (net expense ratio), turnover ratio, risk exposure (standard deviation) and net asset value. The next-best set of mutual fund families in Table 7.11 includes Principal Funds, Van Eck, Fidelity Investments, American Funds, Thornburg, Baron Capital Group, Evergreen, Jennison Dryden, Security Funds, Selected Funds, Transamerica and US Global Investors. Under the portfolio efficiency measure, the top 5 performers from 2006 to 2008 (see Table 7.11) are also the top 5 performers over the 5-year period from 2004 to 2008 (see Table 7.12).

Fiduciary Insight, using Morningstar Direct data, produces quarterly research reports on the major managed fund families in the US. These reports rank fund families by the percentage of individual funds within the family that have either "passed" the fiduciary score or the "appropriate" classification. The ranking of fund families based on our stage 2 portfolio efficiency scores and the ranking by Fiduciary Insight (Fiduciary Insight 360 2009) for the period ending December 2008 are remarkably similar. Fiduciary Insight reports that Aquila, American Funds, American Century Investments, Baron Capital Group, Eagle Funds, Franklin Templeton Investments and Vanguard belong to the top quartile of the funds as of December 31, 2008. In this, we observe that the traditional approaches used by the fund family ranking organizations may rely only on portfolio efficiency rather than on an overall efficiency measure that covers both the operational management and portfolio management aspects of performance. In recognition of performance over the 3-year period from 2008 to 2010, Transamerica received four 2008 Lipper Fund awards. Transamerica also received for the eighth consecutive year dating back to 2001, the DALBAR Mutual Fund Service Award for excellence in customer service. However, according to Table 7.12, Transamerica is not one of the top performers. A plausible reason for the differences in the rankings of some families, such as Transamerica, based on the overall efficiency scores estimated in the twostage DEA model and those offered by family ranking organizations may be that these organizations consider a small sample of fund families that satisfy specific investment criteria. Their selection criteria may also vary from time to time.

Table 7.13 presents a summary of the results for long term performance over the window 1999–2008. Table 7.13 only presents fund families that rate in the top 10 at least 60 % of the time. Sixty out of the 66 fund families are ranked within the top 10 at some stage of the 10-year period beginning 1999. The families that are not ranked at least once in the top 10 in any given calendar year are; Seligman (top ranking 13th in 1999), Calvert (top ranking 14th in 2002), Victory (top ranking 16th in 2003), Morgan Stanley (top ranking 19th in 2006), Wells Fargo Advantage (top ranking 22nd in 2000) and Allianz Funds (top ranking 35th in 1999). In terms of portfolio performance over the long run, Vanguard, Nuveen and Aquila are the best.

Table 7.14 provides the rankings of individual fund families each year from 1993 to 2008 based on the overall, operational, and portfolio efficiencies estimated in the two-stage DEA model. We report only the top 10 mutual fund families listed in Table 7.14 to conserve space. It is clear in Table 7.14 that the overall efficiency of mutual fund families may be affected by their portfolio and operational efficiencies being at varying degrees. For example, Vanguard is both operationally and portfolio efficient with a rank of 1 and hence is overall efficient throughout the period

DEA procedure	0									0
Mutual fund family	Top-1	Top-2	Top-3	Top-4	Top-5	Top-6	Top-7	Top-8	Top-9	Top-10
Vanguard	$10\ (100\ \%)$	$10\ (100\ \%)$	$10\ (100\ \%)$	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	$10\ (100\ \%)$
Nuveen	$10\ (100\ \%)$	$10\ (100\ \%)$	$10\ (100\ \%)$	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	$10\ (100\ \%)$
Aquila	$10\ (100\ \%)$	$10\ (100\ \%)$	$10\ (100\ \%)$	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	$10\ (100\ \%)$
Principal Funds	7 (70 %)	(% 06) 6	(% 06) 6	(% 06) 6	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)	10 (100 %)
Davis Funds	6 (60 %)	7 (70 %)	8 (80 %)	8 (80 %)	8 (80 %)	(% 06) 6	10 (100 %)	10 (100 %)	10 (100 %)	$10\ (100\ \%)$
Franklin Templeton Inv	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)	(% 06) 6	(% 06) 6	(% 06) 6	(% 06) 6	(% 06) 6
Transamerica	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)	(% 06) 6	(% 06) 6	(% 06) 6	(% 06) 6	0% 06) 6
Baron Capital Group	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)	8 (80 %)
Selected Funds	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)
U.S. Global Investors	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)
Security Funds	6 (60 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)
Hartford MFs	6 (60 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)	7 (70 %)
American Funds	5 (50 %)	5 (50 %)	5 (50 %)	6(60%)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	7 (70 %)	7 (70 %)
Sun America	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	6 (60 %)	7 (70 %)	7 (70 %)
Thornburg	5 (50 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	7 (70 %)
First American	3 (30 %)	4 (40 %)	4 (40 %)	4 (40 %)	4 (40 %)	4 (40 %)	6 (60 %)	6 (60 %)	6 (60 %)	7 (70 %)
Van Eck	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	6 (60 %)	6 (60 %)	7 (70 %)
ING Funds	5 (50 %)	5 (50 %)	5 (50 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)
First Eagle	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	5 (50 %)	$(90\ 60\ 7)$	6 (60 %)	6 (60 %)	6 (60 %)	6 (60 %)
Eagle funds	3 (30 %)	3 (30 %)	3 (30 %)	3 (30 %)	3 (30 %)	4 (40 %)	5 (50 %)	6 (60 %)	6 (60 %)	6 (60 %)
T. Rowe Price	3 (30 %)	3 (30 %)	3 (30 %)	4 (40 %)	4 (40 %)	4 (40 %)	4 (40 %)	4 (40 %)	6 (60 %)	6 (60 %)
The table gives the numb percentage of times the fa	er of times the mily has been	e family has b ranked under	een ranked in the correspon	the top 2, to ding category	p 3, etc., over of rankings	the 5 years f	rom 1999 to 2	2008. The enti	ry in parenthe	ses gives the

Table 7.13 Top-performing mutual fund families in the 10-year period from 1999 to 2008 based on their portfolio efficiency estimated in the proposed two-stage

Table 7.14 Rankings of a procedure Procedure	a sample	e of mutt	ual fund	families	in each	year fror	n 1993 t	o 2008 b	ased on	the effic	iency es	timated	in the p	roposed	wo-stag	
Mutual fund family	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Ranking based on overal	l efficien	ıcy														
Allegiant	24	S	33	12	6	21	42	33	32	×	7	6	8	9	4	б
American Century Inv.	52	45	48	52	4	1	8	43	44	27	6	20	24	19	1	32
American Funds	17	e	5	-	-		2	1	5	22	12	10	9	5	9	19
Dreyfus	19	32	9	2	e	4	4	ю	25	5	5	11	12	4	14	14
Fidelity Investments	48	20	n	4	2	2	23	2	33	24	4	7	e	6	б	5
Hartford Mutual Funds	59	54	38	35	51	32	20	59	29	14	e	e	4	e	5	4
Neuberger Berman	30	27	19	6	38	49	48	41	36	25	2	2	2	12	2	17
Nuveen	-	4	5	9	5	e	e	4	2	2	9	4	٢	×	7	5
T. Rowe Price	6	30	30	e	34	10	-	37	39	20	-	1	S	5	6	12
Vanguard	43	-	-	-	-	-	-	1	-		-	1	-	-		-
Ranking based on operat	ional eff	ficiency														
Allegiant	1	9	7	5	5	4	5	4	9	9	5	5	7	6	5	5
American Century Inv.	41	2	2	2	4	1	1	3	2	2	1	1	2	2	1	1
American Funds	4	×	S	1	1	1	4	1	6	1	8	8	10	9	6	1
Dreyfus	19	S	9	9	9	5	9	9	7	7	9	9	8	×	9	9
Fidelity Investments	15	7	8	7	7	9	7	5	5	5	4	ю	5	4	3	ю
Hartford Mutual Funds	56	52	50	48	49	48	39	38	4	4	б	4	9	7	7	7
Neuberger Berman	35	m	4	4	ю	ε	e	2	т	б	2	2	e	ю	2	5
Nuveen	-	10	10	6	6	7	8	7	×	×	7	6	11	13	11	10
T. Rowe Price	22	1	-	-1		1	1	1	1	1	1	1	1	-	1	
Vanguard	-		-				-	1	1	-	1	1	1		-	-
Ranking based on Portfo	lio effici	ency														
Allegiant	41	9	24	20	18	25	38	30	29	6	17	14	9	12	1	4
															(cont	inued)

Mutual fund family	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
American Century Inv.	36	45	30	39	40		22	40	46	43	28	37	36	41	-	46
American Funds	18	2	-	-	1	1	1	-	4	29	13	6	-	1	1	35
Dreyfus	7	31	12	S	7	11	7	-	21	9	4	15	11	1	20	26
Fidelity Investments	43	14	-	-	1	1	23	-	32	30	1	17	-	27	1	-
Hartford Mutual Funds	45	32	-	-	32	1	1	42	27	15	-	1	-	1	-	2
Neuberger Berman	14	22	23	23	39	36	43	39	38	40	б	1	1	28	1	33
Nuveen	-			1	1	1	1	-	-	1	1	1	1	1	1	-
T. Rowe Price	-	34	28	6	37	22	1	35	40	28	1	1	4	6	6	25
Vanguard	49	1	-	1	1	1	1	1	-	1	1	1	1	1	1	1
The fund families listed l	tere are	the top	10 best-	perform	ing fami	ilies und	er the o	verall et	fficiency	estimat	ed in the	e propos	ed two-	stage DI	EA mode	el. See

Table 7.14 (continued)

Stage The fund families listed here are the top 10 best-performing families under the overall efficiency estimated in the proposed two-Table 7.5 for a summary of their performance in different subsample periods. To conserve space, we list only the top 10 families

Fig. 7.4 Impact of operational efficiency and portfolio efficiency on the overall efficiency for Allianz, Morgan Stanley, Vanguard and Aquila fund families. This figure illustrates how the rankings of Allianz Funds, Morgan Stanley, Vanguard, and Aquila fund families based on their overall, operational and portfolio efficiency change over the period 1993–2008. (a) Allianz Funds. (b) Morgan Stanley. (c) Vanguard. (d) Aquila

1994–2008. T. Rowe Price, on the other hand, is operationally efficient during the period 1994–2008 maintaining a rank of 1. However, T. Rowe Price is not portfolio efficient (except in 2003 and 2004) and therefore is not overall efficient in most of the years. More on the effect of portfolio and operational efficiencies on overall efficiency for a set of fund families is discussed and illustrated graphically in the next section.

Fig. 7.5 Impact of operational efficiency and portfolio efficiency on the overall efficiency for Hartford, Allegiant, Putnam and Franklin Templeton fund families. This figure illustrates how the rankings of Hartford Mutual Fund, Allegiant, Putnam, and Franklin Templeton Investments on their overall, operational and portfolio efficiency change over the period 1993–2008. (a) Hartford Mutual Fund. (b) Allegiant. (c) Putnam. (d) Franklin Templeton Investments

7.6.4 Variation in Efficiency Across Time and Fund Families

Selecting a few families as examples, we now illustrate graphically how operational efficiency and portfolio efficiency may affect the overall efficiency of fund families over time. Panels (a) and (b) of Fig. 7.4 give the graphs for Allianz Funds and Morgan Stanley, respectively. Both these funds perform consistently poorly overall, due to consistent poor operational and portfolio performance. Panel (c) shows that Vanguard's continual overall performance is due to the excellent performance in both the operational and portfolio fronts. The graph in panel (d) of Fig. 7.4 for

Aquila indicates that the reason for its continued good overall performance is mainly due to the consistency in its portfolio management efficiency. Panels (a) and (b) of Fig. 7.5 show the corresponding graphs for Hartford Mutual Funds and Allegiant. These are examples of fund families that have improved their performance after 2003. The improvement of Hartford Mutual Funds family after 2003 is mainly due to the improvement in operational and portfolio efficiencies, and in the case of Allegiant more or less due to the improvement in portfolio efficiency. On the other hand, Putnam and Franklin Templeton Investments, whose graphs are shown in Panels (c) and (d), respectively, in Fig. 7.5, reveal that the poor portfolio efficiency appears to be the main contributor to their declining overall performance towards the end of the sample period.

Four families (Allianz Funds, Morgan Stanley, Hartford Mutual Fund, and Putnam), illustrated in Figs. 7.4 and 7.5, show relatively poor portfolio performance in 1993. We notice similar performance in several other mutual fund families in the sample as well. This is clear evidence of the effect of the 1991 currency crisis on the portfolios managed by some mutual fund families. The improvement shown in the relative rankings after 1994 suggests quick recovery from the crisis in 1991. Vanguard and Aquila have managed their mutual funds relatively efficiently during all financial crisis periods from 1993 to 2008.

During the last two quarters of 1990 and the first quarter of 1991, the US economy experienced a sustained period of negative growth. Other significant shocks to the market during the sample period include the collapse of Long-Term Capital Management in 1998, the dotcom bubble and the subsequent market crash in March 2000, the market meltdown following the September 11 attacks in New York and the Enron debacle, and the recent global financial crisis (GFC) that impacted the markets post July 2007. The effects of the GFC continued well into the years that followed. In Figs. 7.4 and 7.5, we observe that the portfolio efficiency of Allianz Funds, Morgan Stanley, and Putnam families have been seriously affected (low portfolio efficiency ranking) by the recessions of 1990-1991 and 2000–2002 and the fallout from the GFC over the period 2007–2009. These three fund families have high exposure investment across domestic and international equity markets: Allianz Funds (94 %), Morgan Stanley (79 %), and Putnam (68 %). In contrast, even though Hartford Mutual Fund has been affected by the downturn in market activity in 1991 and 2000 to an extent similar to that of the three aforementioned fund families, it has not been affected as much by the problems resulting from the GFC in 2007. The better showing of Hartford Mutual Fund in the later period may be attributed to improved operational and portfolio efficiencies in part driven by an appropriate fee structure. The performance of Allegiant has been affected by the 1998 Long-Term Capital Management collapse and the 2000 recession and has survived the impact of the 2007 crisis. The standout fund family within our sample, Vanguard, as far as operational, portfolio, and overall efficiencies are concerned, has been exceptional throughout the full sample period.

Aquila performs extremely well in terms of portfolio efficiency, but due to its poor operational efficiency its overall efficiency is also low. The Franklin Templeton Investments family has done extremely well in its portfolio management until 2006. As far as operational efficiency is concerned, it has not done well, with a rank of around 10. The operational and portfolio management performance of the Hartford Mutual Fund family is not relatively satisfactory up to 2003, but has shown tremendous improvement in these areas thereafter. The Allegiant family's operational efficiency is relatively satisfactory over the sample period, but its portfolio efficiency is relatively weak. However, Allegiant's overall performance shows an improvement after 2005. Allianz Funds and Morgan Stanley show inferior overall performance due to their poor performance in both operational and portfolio management areas and show no sign of improvement over the sample period. The Putnam family's operational management performance is relatively poor throughout the sample period. Its portfolio management performance has been relatively satisfactory until 2000 and has deteriorated thereafter. Overall, the above analysis clearly shows that the proposed DEA model is able to capture the dynamics of the operational and portfolio management efficiencies and overall efficiency of mutual fund families.

7.6.5 Frontier Projection of DMUs

Another important feature of DEA is its ability to provide information to make inefficient DMUs efficient. In this subsection, we demonstrate this feature in a selected set of mutual fund families. Such information is very important for a fund family's management decision making.

In Sect. 7.4.1.2, following Chen et al. (2010) we develop a model for frontier projection of mutual fund families deemed inefficient according to the proposed two-stage DEA model. We apply the frontier projection model with the values of the input, output and intermediate variables corresponding to the year 2008. The input, output and intermediate variable changes required for making the inefficient mutual fund families efficient are illustrated in Table 7.15 for a selected set of families. Under the column "NAV" (the intermediate measure), a positive percentage indicates that NAV should be increased, and a negative percentage indicates that NAV should be decreased in order to make the fund family efficient. Positive values with respect to the other input variables in Table 7.15 indicate that they should be decreased by the corresponding percentages.

According to Table 7.15, no changes are required for any of the input $(I_1, I_2, I_3, I_4, I_5, \text{ and } I_6)$, output (O_2) and intermediate (NAV) variables of Vanguard and Fidelity Investments, as they are operational, portfolio and overall efficient in year 2008. This observation tallies with the 2008 ranking of these two families in Table 7.14, where they are ranked within the top three as far as overall, operational, and portfolio efficiencies are concerned. The percentage changes of the variables in the second stage for Davis Funds are all zero, indicating that it is portfolio efficient in 2008. This is evident in Tables 7.11 and 7.12, where this family has been ranked within the top 2 during the period 2004–2008. However, Davis Funds is operationally inefficient and

Table 7.15 Frontier projections of	f mutual fund families							
Mutual fund family	Marketing and distribution fees (I_2)	Management fees (1,1)	NAV	Fund size (I_3)	Standard deviation (<i>I₆</i>)	Net expense ratio (I_A)	Turnover (1 ₅)	Average return (O_2)
American Funds	72 %	8 %	37 %	74 %	24 %	24 %	24 %	18
Vanguard	0 %	0 %	% 0	0 %	0 %	% 0	0 %	0
Fidelity Investments	0 %	0 %	% 0	0 %	0 %	0 %	0 %	0
Franklin Templeton	29 %	29 %	24 %	72 %	19 %	19 %	19 %	14
Investments								
Davis Funds	51 %	40 %	0%	0 %	0 %	0 %	0%	0
Hartford Mutual Funds	24 %	24 %	% 0	% 0	0 %	0 %	0 %	0
American Century Investments	0 %	0 %	% 0	34 %	34 %	34 %	52 %	4
Oppenheimer Funds	42 %	42 %	-80 %	35 %	35 %	35 %	35 %	23
Morgan Stanley	62 %	43 %	16 %	40 %	40 %	40 %	50 %	19
Neuberger Berman	0 %	0 %	% 0	30 %	40 %	30 %	30 %	30
Principal Funds	35 %	35 %	% 0	0 %	0 %	0 %	0 %	0
Security Funds	53 %	42 %	86 %	19 %	18 %	28 %	18 %	36
Baron Capital Group	66 %	66 %	0%	0 %	$0 \ \%$	0 %	0%	0
ING Funds	31 %	31 %	% 0	% 0	0 %	0 %	0 %	0
RS Funds	46 %	46 %	% 0	0 %	0 %	0 %	0 %	0
Merger	65 %	65 %	% 0	% 0	0 %	0 %	0 %	0
Pax World	53 %	38 %	88 %	15 %	15 %	24 %	15 %	6
Van Eck	51 %	51 %	0%	0 %	0%	0 %	0%	0
U.S. Global Investors	58 %	58 %	50 %	21 %	21 %	34 %	21 %	14
Eagle Funds	36 %	35 %	0%	0 %	0%	0 %	0%	0
Heartland	55 %	55 %	0. %	0 %	0 %	0 %	$0 \ \% \ 0$	0
This table gives the percentage cha	inges required in the inf	outs, outputs, and	l intermedia	te measure	(NAV) of the tw	vo stages illustra	ated in Fig. 7	.1 in order to
make the inefficient mutual fund fai	milies efficient. For inpu	t variables, the pe	ercentages r	epresent a d	ecrease and for c	output variables	they represen	t an increase.
In order to improve the efficiency c	of stage 1 and stage 2, th	e input variables	$(I_1 \text{ to } I_6) \text{ sh}$	ould be dec	reased by the per	rcentages given.	, the intermed	liate measure

(NAV) should be changed by the percentage given under the column labeled NAV, and the output should be increased by the percentage given under (02)

therefore it has to decrease the marketing and distribution fee and the management fee by 51 and 40 % in the first stage, respectively, to become operationally efficient. These changes will make Davis Funds overall efficient as well. Evidence presented in Tables 7.5 and 7.6 supports this finding, as Davis Funds appears at the bottom of these tables as far as overall efficiency is concerned. On the other hand, American Century Investments is operationally efficient but not efficient in managing the portfolio. This family needs to increase its return by 4 % and decrease its inputs at stage 2— I_3 I_4 , I_5 and I_6 by the following percentages: 34 %, 34 %, 52 %, and 34 %, respectively-in order to become portfolio efficient and thereby become overall efficient. According to the entries in Table 7.15, Morgan Stanley is a poor performer in 2008 with inefficient operational and portfolio management. This is evident in Fig. 7.4b with the overall, operational and portfolio rankings of this family lying in the range 20–60. For Morgan Stanley to be overall efficient, it needs to reduce all its inputs at stage 1 and stage 2 by the percentages given in Table 7.15 and increase its stage 1 output or the intermediate measure (NAV) by 16 % and increase the return (output) by 19 %. On the other hand, Oppenheimer Funds may decrease all its inputs at stages 1 and 2 (and NAV) by the percentages given in Table 7.15 and increase its return by 23 % in order to become efficient. These two examples (Morgan Stanley with a positive change in NAV and Oppenheimer Funds with a negative change in NAV) demonstrate an interesting feature of the proposed DEA model; that is, the model treats the intermediate variable, NAV, as both an input as well as an output. In the proposed DEA model, the optimal NAV is determined by both stages through coordination in such a way that the performances of both stages are maximized. Technique such as a stochastic frontier approach cannot treat a variable as an input and as an output within the same model.

7.7 Concluding Remarks

The main objective of this chapter is to present a two-stage network DEA model and demonstrate its application by assessing the relative performance of large mutual fund families in the US. It is well documented that the mutual fund industry in the US is the largest such industry in the world and its well being is important to a strong global economy. Hence a heightened understanding at both the operational level and portfolio performance level of fund families is of importance as we move forward to a time of increased numbers in retirement relying upon their investment income for day-to-day living costs. Unlike traditional performance measures such as the Sharpe, Treynor and Sortino measures, the DEA model proposed in this chapter allows a combination of several factors of performance such as; returns, fees and charges, risk of investment, stock selection style, portfolio management skills and operational measure in evaluating the overall performance of a mutual fund family relative to the other families included in the sample.

The presented two-stage DEA model provides greater insight into the performance of mutual fund families by decomposing the overall efficiency into two components: operational efficiency and portfolio efficiency. In addition to mutual fund families, the proposed DEA model can also be applied to other financial institutions such as banks, insurance companies, credit unions, etc.

The performance of the mutual fund families assessed over the period 1993–2008 using the proposed DEA model reveals that the two-stage model is able to highlight those mutual fund families that may have managed their portfolios well during financial crisis periods as well as which of the two components; operational management and portfolio management may have been the contributory factor for their superior/inferior performance. This is useful information as it can aid individual and institutional investors when making investment decisions and also enables administrators of fund families to judge how well their portfolio managers have performed relative to their competitors.

References

- Alexakis P, Tsolas I (2011) Appraisal of mutual equity fund performance using data envelopment analysis. Multinat Finance J 15:273–296
- Ali AI, Seiford LM (1990) Translation invariance in data envelopment analysis. Oper Res Lett 9:403–405
- Anderson R, Brockman C, Giannikos C, McLeod R (2004) A nonparametric examination of realestate mutual fund efficiency. Int J Bus Econ 3:225–238
- Andersen P, Petersen, N (1993) A procedure for ranking efficient units in data envelopment analysis. Manag Sci 39:1261–1264
- Banker RD, Charnes A, Cooper WW (1984) Some models for the estimation of technical and scale inefficiencies in data envelopment analysis. Manag Sci 30:1078–1092
- Banker R, Cooper W, Seiford L, Thrall R, Zhu J (2004) Returns to scale in different DEA models. Eur J Oper Res 154:345–362
- Basso A, Funari S (2001) A data envelopment analysis approach to measure the mutual fund performance. CEJOR 135(3):477–492
- Basso A, Funari S (2003) Measuring the performance of ethical mutual funds: a DEA approach. J Oper Res Soc 54(5):521–531
- Basso A, Funari S (2005) A generalized performance attribution technique for mutual funds. CEJOR 13(1):65–84
- Benninga S (2008) Financial modeling, 3rd edn. The MIT Press, Cambridge, MA
- Bogle J (2004) Re-mutualizing the mutual fund industry—the alpha and the omega. Boston College Law Rev 45:391–422
- Brown S, Goetzmann W, Park J (2001) Careers and survival: competition and risk in the hedge fund and CTA industry. J Financ 56:1869–1886
- Carhart M (1997) Persistence in mutual fund performance. J Financ 52:57-82
- Chang K (2004) Evaluating mutual fund performance: an application of minimum convex input requirements set approach. Comput Oper Res 31:929–940
- Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision-making units. Eur J Oper Res 2:429–444
- Charnes A, Cooper W, Seiford L, Stutz J (1982) A multiplicative model for efficiency analysis. Socioecon Plann Sci 16:223–224
- Chen CM (2009) A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks. Eur J Oper Res 194:687–699

- Chen Z, Lin R (2006) Mutual fund performance evaluation using data envelopment analysis with new risk measures. OR Spectr 28:375–398
- Chen Y, Cook WD, Li N, Zhu J (2009) Additive efficiency decomposition in two-stage DEA. Eur J Oper Res 196:1170–1176
- Chen Y, Cook WD, Zhu J (2010) Deriving the DEA frontier for two-stage processes. Eur J Oper Res 202:138–142
- Chen Y, Chis Y, Li M (2011) Mutual fund performance evaluation—application of system BCC model. S Afr J Econ 79:1–16
- Chilingerian J, Sherman HD (2004) Health care applications: from hospitals to physician, from productive efficiency to quality frontiers. In: Cooper WW, Seiford LM, Zhu J (eds) Handbook on data envelopment analysis. Springer, Boston
- Choi YK, Murthi BPS (2001) Relative performance evaluation of mutual funds: a non-parametric approach. J Bus Finance Acc 28:853–876
- Cook WD, Zhu J (2014) Data envelopment analysis—a handbook of modeling internal structures and networks. Springer, New York
- Cook WD, Liang L, Zhu J (2010) Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38:423–430
- Cook WD, Tone K, Zhu J (2014) Data envelopment analysis: prior to choosing a model. Omega 44:1–4
- Cooper WW, Seiford LM, Zhu J (2004) Handbook on data envelopment analysis. Kluwer Academic, Boston
- Cooper WW, Seiford LM, Tone K (2006) Introduction to data envelopment analysis and its uses. Springer, New York
- Daraio C, Simar L (2006) A robust nonparametric approach to evaluate and explain the performance of mutual funds. Eur J Oper Res 175:516–542
- Drake L, Weyman-Jones T (1996) Productive and allocative inefficiencies in UK Building societies: a comparison of non-parametric and stochastic frontier techniques. Manch Sch 64 (1):22–37
- Dunstan B (2012, February 15) Price customers into the market. The Australian Financial Review, p 32
- Eling M (2006) Performance measurement of hedge funds using data envelopment analysis. Fin Mkts Portfolio Mgmt 20(4):442–471
- Elton E, Gruber M, Blake C (2006) The adequacy of investment choices offered by 401 K plans. J Public Econ 90:303–318
- Elton E, Gruber MJ, Green TC (2007) The impact of mutual fund family membership on investor risk. J Financ Quant Anal 42:257–278
- Färe R, Grosskopf S (1996) Productivity and intermediate products: a frontier approach. Econ Lett 50:65–70
- Färe R, Whittaker G (1995) An intermediate input model of dairy production using complex survey data. J Agric Econ 46:201–213
- Fare R, Grosskopf S, Grifell-Tatje E, Knox-Lovell C (1997) Biased technical change and the Malmquist productivity index. Scand J Econ 99(1):119–127
- Farrell MJ (1957) The management of productive efficiency. J R Stat Soc Ser A 120:253-290
- Favero C, Papi L (1995) Technical efficiency and scale efficiency in the Italian banking sector: a non-parametric approach. Appl Econ 27(4):385–395
- Ferris S, Chance D (1987) The effects of 12b-1 plans on mutual fund expense ratios: a note. J Financ 42:1077–1082
- Fiduciary Insight 360 (2009) Fund family fiduciary rankings. Data as of December 31, 2008. Document retrieved July 12, 2010. http://www.fi360.com/press/pdfs/rankings.pdf
- Galagedera D, Silvapulle P (2002) Australian mutual fund performance appraisal using data envelopment analysis. Manag Financ 28(9):60–73
- Gregoriou G (2003) Performance appraisal of funds of hedge funds using data envelopment analysis. J Wealth Manag 5:88–95

- Gregoriou G, Sedzro K, Zhu J (2005) Hedge fund performance appraisal using data envelopment analysis. Eur J Oper Res 164:555–571
- Haslem J, Scheraga C (2003) Data envelopment analysis of Morningstar's large-cap mutual funds. J Invest 12(4):41–48
- Haslem J, Scheraga CA (2006) Data envelopment analysis of Morningstar's small-cap mutual funds. J Invest 12:87–92
- Holod D, Lewis HF (2011) Resolving the deposit dilemma: a new DEA bank efficiency model. J Bank Financ 35:2801–2810
- Hsu C, Lin J (2007) Mutual fund performance and persistence ion Taiwan: a non parametric approach. Serv Ind J 27:509–523
- Hu J, Chang T (2008) Decomposition of mutual fund performance. Appl Financ Econ Lett 4:363– 367
- Investment Company Institute (ICI) (2010) Investment company fact book, 50th edn. Washington, DC
- Investment Company Institute (ICI) (2013) Investment company fact book. 53rd edn. Washington, DC
- Kao C, Hwang SN (2008) Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur J Oper Res 185:418–429
- Kempf A, Ruenzi S (2008) Family matters: rankings within fund families and fund inflows. J Bus Finance Acc 35:177–199
- Koopmans T (1951) An analysis of production as an efficient combination of activities. In: Koopmans TC (ed) Activity analysis of production and allocation. Wiley, New York, pp 33–97 Latels D (1990) Economics of eacle is mutual fund administration. Linears Res 22:221-240
- Latzko D (1999) Economies of scale in mutual fund administration. J Financ Res 22:331-340
- Lewis H, Sexton T (2004) Network DEA: efficiency analysis of organizations with complex internal structure. Comput Oper Res 31:1365–1410
- Liang L, Cook WD, Zhu J (2008) DEA models for two-stage processes: game approach and efficiency decomposition. Nav Res Logist 55:643–653
- Lozano S, Guiterrez E (2008) Data envelopment analysis of mutual funds based on second-order stochastic dominance. Eur J Oper Res 189:230–244
- Malhotra D, McLeod R (1997) An empirical analysis of mutual fund expenses. J Financ Res 20:175–190
- Malhotra DK, Martin R, Russel P (2007) Determinants of cost efficiencies in the mutual fund industry. Rev Financ Econ 16:323–334
- Matallin C, Soler A, Tortosa-Ausina E (2014) On the informativeness of persistence for evaluating mutual fund performance using partial frontiers. Omega 42(1):47–64
- McLeod R, Malhotra D (1994) A re-examination of the effects of 12b-1 plans on mutual fund expense ratios. J Financ Res 17:231–240
- McMullen P, Strong R (1998) Selection of mutual funds using data envelopment analysis. J Bus Econ Stud 4:1–12
- Morningstar Research Pty Ltd (2012) Vanguard data pages. Document retrieved April 3, 2012. http://www.morningstar.com/FundFamily/vanguard.html
- Murthi BP, Choi Y, Desai P (1997) Efficiency of mutual funds and portfolio performance measurement: a non-parametric approach. Eur J Oper Res 98:408–418
- Nguyen-Thi-Thanh H (2006) On the use of data envelopment analysis in hedge fund selection. Working paper, Université d'Orléans
- Powers J, McMullen P (2000) Using data envelopment analysis to select efficient large market cap securities. J Bus Manag 7:31–42
- Premachandra I, Powel J, Shi J (1998) Measuring the relative efficiency of fund management strategies in New Zealand using a spreadsheet-based stochastic data envelopment analysis model. Omega 26:319–331
- Premachandra I, Bhabra G, Sueyoshi T (2009) DEA as a tool for bankruptcy assessment: a comparative study with logistic regression technique. Eur J Oper Res 193:412–424

- Premachandra IM, Zhu J, Watson J, Galagedera DUA (2012) Best-performing US mutual fund families from 1993 to 2008: evidence from a novel two-stage DEA model for efficiency decomposition. J Bank Finance 36:3302–3317
- Rubio J, Hassan M, Merdad H (2012) Non-parametric performance measurement of international and Islamic mutual funds. Account Res J 25(3):208–226
- Sedzro K, Sardano D (2000) Mutual fund performance evaluation using data envelopment analysis. In: Dahiya SB (ed) The current state of business disciplines. Spellbound, Rohtak, pp 1125–1144
- Sengupta J (2003) Efficiency tests for mutual fund portfolios. Appl Financ Econ 13:869-876
- Siems TF, Barr RS (1998) Benchmarking the productive efficiency of U.S. banks. Financial industry studies. Federal Reserve Bank of Dallas, pp 11–24
- Smith DM (2010) The economics of mutual funds. In: Haslem JA (ed) Mutual funds: portfolio structures, analysis, management, and stewardship. Wiley, Hoboken
- Tone L, Tsutsui M (2009) Network DEA: a slacks-based measure approach. Eur J Oper Res 197:243–252
- Tower E, Zheng W (2008) Ranking of mutual fund families: minimum expenses and maximum loads as markers for moral turpitude. Int Rev Econ 55:315–350
- Wilkens K, Zhu J (2005) Classifying hedge funds using data envelopment analysis. In: Gregoriou GN, Rouah F, Karavas VN (eds) Hedge funds: strategies, risk assessment, and returns. Beard Books, Washington, DC
- Zhao X, Yue W (2012) A multi-subsystem fuzzy DEA model with its application in mutual funds management companies' competence evaluation. Procedia Comput Sci 1(1):2469–2478
- Zhu J (2002) Quantitative models for performance evaluation and benchmarking: data envelopment analysis with spreadsheets. Kluwer, Boston