
Chapter 17

Nonparametric Estimates of the Components
of Productivity and Profitability Change
in U.S. Agriculture

Christopher J. O’Donnell

Abstract Recent theoretical advances in total factor productivity (TFP) measure-

ment mean that TFP indexes can now be exhaustively decomposed into unambig-

uous measures of technical change and efficiency change. To date, all applications

of this new methodology have involved decomposing indexes that have poor

theoretical properties. This article shows how the methodology can be used to

decompose a new TFP index that satisfies all economically-relevant axioms from

index theory. The application is to state-level data from 1960 to 2004. In most

states, the main drivers of agricultural TFP change are found to have been technical

change and scale and mix efficiency change.

Keywords Data envelopment analysis • Environmental change • Lowe index •

Mix efficiency • Scale efficiency • Technical efficiency • Total factor productivity

It is difficult, if not impossible, to find coherent estimates of the technical change

and efficiency change components of U.S. agricultural productivity change. Several

estimates of technical change and efficiency change are available (e.g., Morri-

son Paul and Nehring 2005; Morrison Paul et al. 2004) but they are not coherent

in the sense that they do not combine to yield recognizable productivity indexes.

And while several researchers have decomposed well-known productivity indexes

into various components (e.g., Capalbo 1988), not all of these components have

unambiguous interpretations as measures of technical change or efficiency change.

This lack of coherent information on the components of productivity change can

lead to poor public policy—policy-makers cannot properly assess whether the

payoffs from improving the rate of technical progress (e.g., through increased
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R&D expenditure) are more or less likely to outweigh the payoffs from improving

levels of either technical efficiency (e.g., through education and training programs)

or scale and mix efficiency (e.g., by using taxes and subsidies to change relative

prices). This article fills this information gap by decomposing productivity indexes

for U.S. agriculture into an exhaustive set of recognizable measures of technical

change, technical efficiency change, and scale and mix efficiency change.

The analysis in this article is conducted within the aggregate quantity-price

framework first developed in O’Donnell (2008). In that working paper I show

how carefully-defined price and quantity aggregates can be used to decompose

profitability change (a measure of value change) into the product of a terms-of-trade

(TT) index (a measure of price change) and a multiplicatively-complete total factor
productivity (TFP) index (a measure of quantity change). I also show that, in theory,

any multiplicatively-complete TFP index can be exhaustively decomposed into the

product of a measure of technical change and several measures of efficiency

change. Important features of this methodology are that it does not depend on

restrictive assumptions concerning the production technology, and it does not

depend on any assumptions concerning firm behaviour or the level of competition

in input or output markets. To date, all empirical applications of the methodology

have involved the decomposition of multiplicatively-complete Hicks-Moorsteen

TFP indexes (e.g., O’Donnell 2010).
The class of multiplicatively-complete TFP indexes also includes the Laspeyres,

Paasche, Fisher and T€ornqvist indexes. A problem with these well-known indexes

(and the Hicks-Moorsteen index) is that they fail to satisfy a commonsense transi-

tivity axiom. Transitivity guarantees that a direct comparison of two observations

(i.e., firms or periods) will yield the same estimate of TFP change as an indirect

comparison through a third observation. The usual solution to the transitivity

problem involves a geometric averaging procedure due to Elteto and Koves (1964)

and Szulc (1964). Unfortunately, although they may be transitive, these so-called

EKS indexes fail an identity axiom. The identity axiom guarantees that if outputs

and inputs are unchanged then the TFP index will take the value one (i.e., indicate

that productivity is also unchanged). This article proposes a new TFP index that

satisfies both the transitivity axiom and the identity axiom. It then decomposes the

index into technical change and efficiency change components. This article refers to

the index as a Lowe TFP index because it can be written as the ratio of two indexes

that have been attributed to Lowe (1823).

In practice, decomposing TFP indexes into measures of technical change and

efficiency change involves estimating the production frontier. The two main

approaches to estimating production frontiers are stochastic frontier analysis

(SFA) and data envelopment analysis (DEA). The SFA approach is parametric in

the sense that it requires parameterisation of the production frontier and various

assumptions concerning the parameters of the distributions of random error terms.

One of the advantages of the SFA approach is that it makes an allowance for

measurement errors and other sources of statistical noise. Disadvantages of the

approach are that results may be sensitive to parametric assumptions, it is difficult

to identify the pure scale efficiency change and pure mix efficiency change
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components of TFP change (i.e., the productivity dividends associated with changes

in scale alone and changes in output mix or input mix alone), and results may be

unreliable if sample sizes are small. The alternative DEA approach is commonly

referred to as a nonparametric approach because it doesn’t require any explicit

assumptions about the functional form of the frontier (the frontier is implicitly

assumed to be locally linear1) or the distributions of random error terms (all noise

effects are implicitly assumed to be zero). The main advantages of the DEA

approach are that there are no statistical issues (e.g., endogeneity) associated with

estimating multiple-input multiple-output technologies, and it can be used to

estimate levels of, and therefore changes in, pure scale efficiency. This article

shows how DEA can also be used to estimate the pure mix efficiency change

components of Paasche, Laspeyres, Fisher and Lowe TFP indexes. Disadvantages

of the DEA approach are that it does not allow for statistical noise and so cannot

distinguish inefficiency from noise, and technical efficiency estimates are upwardly

biased in small samples.

The main contributions of this article are threefold. First, it defines a new TFP

index (referred to as a Lowe TFP index) that satisfies all economically-relevant

axioms from index number theory, including the identity and transitivity axioms.

Second, it develops new linear programming methodology for exhaustively

decomposing Paasche, Laspeyres, Fisher and Lowe TFP indexes into measures of

technical change and various measures of technical, scale and mix efficiency

change. Third, it fills an information gap by reporting a coherent set of estimates

of productivity change, technical change and efficiency change in US agriculture.

The structure of the article is as follows. The first few sections explain how

profitability change can be decomposed into the product of a TFP index and a TT

index. Attention is focused on the Lowe TFP index because this is one of only

handful of indexes that satisfy seven basic axioms from index number theory. Some

time is spent explaining how the methodology I develop in O’Donnell (2008) can be
used to decompose Lowe TFP indexes into measures of technical change and

efficiency change. This involves the specification of new DEA problems for esti-

mating levels of (and therefore changes in) pure technical, scale and mix efficiency.

Variants of these DEA problems can also be used to estimate the maximum level of

TFP possible using a production technology. The last few sections of the article

describe the empirical application. The dataset is a state-level panel dataset assem-

bled by the Economic Research Service (ERS) of the U.S. Department of Agricul-

ture (USDA). It comprises observations on the prices and quantities of agricultural

outputs and inputs in I¼ 48 states over the T¼ 45 years from 1960 to 2004. The

penultimate section reports estimates of TFP change and various measures of

efficiency change for selected states in selected periods. The final section of the

article summarises the findings and offers two suggestions for further research.

1 Local linearity means the frontier is formed by a number of intersecting hyperplanes. Thus, it

may be more appropriate to refer to DEA as a semiparametric rather than a nonparametric

approach.
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17.1 The Components of Profitability Change

Let xit2ℜM
þ , qit2ℜN

þ, wit2ℜM
þ and pit2ℜN

þ denote vectors of input and output

quantities and prices for firm i in period t. In O’Donnell (2008) I define the TFP

of the firm to be TFPit ¼ Qit=Xit where Qit � QðqitÞ is an aggregate output and

Xit � XðxitÞ is an aggregate input. The only requirements placed on the aggregator

functions Q(.) and X(.) are that they be nonnegative, nondecreasing and linearly

homogeneous. If TFP is defined in this way then the index that compares the TFP of

firm i in period t with the TFP of firm h in period s is

TFPIhsit ¼ TFPit

TFPhs
¼ Qit=Xit

Qhs=Xhs
¼ Qit=Qhs

Xit=Xhs
¼ QIhsit

XIhsit
ð17:1Þ

where QIhsit ¼ Qit=Qhs and XIhsit ¼ Xit=Xhs are output and input quantity indexes.

Thus, within this framework, TFP growth is a measure of output growth divided by

a measure of input growth, which is how productivity growth is usually defined

(e.g., Griliches 1961; Jorgenson and Griliches 1967). In O’Donnell (2008) I use the
term multiplicatively-complete to refer to TFP indexes that can be written in terms

of aggregate input and output quantities as in (17.1). The Laspeyres, Paasche,

T€ornqvist, Hicks-Moorsteen and Fisher TFP indexes are all multiplicatively com-

plete. Indexes that are not multiplicatively-complete include the widely-used out-

put- and input-oriented Malmquist TFP indexes of Caves et al. (1982) and the

lesser-known TFP index of Diewert and Morrison (1986)—except in restrictive

special cases, these indexes cannot be expressed as an output quantity index divided

by an input quantity index (i.e., they cannot be used to measure TFP change).

Associated with any non-zero aggregate quantities are implicit aggregate prices

Pit ¼ p
0
itqit=Qit and Wit ¼ w

0
itxit=Xit. The existence of these implicit prices

means that profit can be written πit ¼ PitQit �WitXit and profitability can be written

PROFit ¼ ðPitQitÞ=ðWitXit). Furthermore, the index that compares the profitability

of firm i in period t with the profitability of firm h in period s can be written

PROFIhsit ¼ PROFit

PROFhs
¼ PitQit

WitXit
�WhsXhs

PhsQhs

¼ PIhsit
WIhsit

� QIhsit
XIhsit

¼ TTIhsit � TFPIhsit

ð17:2Þ

where PIhsit ¼ Pit=Phs is an output price index, WIhsit ¼ Wit=Whs is an input price

index and TTIhsit ¼ PIhsit=WIhsit is a TT index measuring output price change

relative to input price change. It is apparent from (17.2) that (1) if the reference and

comparison firms receive the same prices for their outputs and pay the same prices

for their inputs then the TT index will equal unity and any changes in profitability

will be plausibly attributed entirely to changes in TFP, (2) if two firms use the same

inputs to produce the same outputs then any changes in profitability will be

attributed entirely to changes in prices, and (3) if profitability is constant then a

TFP index can be computed as the reciprocal of a TT index.
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This aggregate quantity-price framework can be used to provide important

insights into the behaviour of rational profit-maximising firms. To illustrate,

Fig. 17.1 depicts the aggregate output and input of firm i in period t in two

dimensional-aggregate quantity space (point A). In this figure, the curve passing

through points E, K and G is the boundary of the set of all aggregate-output

aggregate-input combinations that are technically feasible in period t. The defini-

tion (17.1) means that the TFP of a firm operating at any point in aggregate quantity

space is the slope of the ray from the origin to that point—for example, the TFP

of the firm operating at point A is TFPit ¼ Qit=Xit ¼ slope 0A, and the TFP of the

firm operating at point E is TFP∗
t ¼ Q∗

t =X
∗
t ¼ slope 0E. The solid line passing

through point K in Fig. 17.1 is an isoprofit line with slope �Wit=Pit and intercept

π∗it =Pit. The fact that this isoprofit line is tangent to the production frontier means

that point K maximizes profit at aggregate prices Pit and Wit. For the technology

represented in Fig. 17.1 (there are other technologies where this may not be true),

the point of maximum profit will coincide with the point of maximum TFP if and

only if the level of maximum TFP (the slope of the ray 0E) equals the reciprocal of

the TT (the slope of the isoprofit line). This equality between the level of maximum

TFP and the reciprocal of the TT is a characteristic of perfectly competitive markets

and, in such cases, profits are zero. It is clear that a rational efficient firm having a

benefit function that is increasing in net returns will be drawn away from the point

of maximum TFP in response to an improvement in its TT, to a point such as K or

G. The associated inequality between the TT and the level of maximum TFP is a

characteristic of non-competitive markets and, in such cases, maximum profits are

X∗
t XitXK XG

Qit

∗
it/Pit

QK

Q∗
t

QG

0

A

G

K
E

Aggregate
Output

Aggregate
Input

isoprofit line

Fig. 17.1 TFP, profitability and the TT
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strictly non-zero. Point G in Fig. 17.1 is the profit maximising solution in the

limiting case where all inputs are relatively costless. For rational efficient firms,

the economically feasible region of production is the region of locally-decreasing

returns to scale between points E and G. Productivity falls and profits rise as

rational efficient firms move optimally from point E to point G. Conversely,

productivity increases and profits fall as rational efficient firms move optimally

from point G to point E in response to deteriorations in their terms-of-trade.

This inverse relationship between TFP and the TT has two interesting implica-

tions. First, it provides a rationale for microeconomic reform programs designed to

increase levels of competition in agricultural output and input markets—deteriora-

tions in the TT that result from increased competition will tend to drive firms

towards points of maximum TFP. Second, it may provide an explanation for

convergence in rates of agricultural TFP growth in regions, states and countries

that are becoming increasingly integrated and/or globalized—firms that strictly

prefer more income to less and who face the same technology and prices will

optimally choose to operate at the same point on the production frontier, they will

make similar adjustments to their production choices in response to changes in the

common TT, and they will thus experience similar rates of TFP change.

An empirical illustration of the inverse relationship between agricultural TFP

and the agricultural TT is provided in Fig. 17.2. The solid lines (with or without

markers) in this figure depict changes in profitability ( ΔPROF ), total factor

productivity (ΔTFP) and the terms of trade (ΔTT ) in Alabama over the period

1960–2004 (Alabama 1960¼ 1). The TFP index (a Lowe index) indicates that TFP
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has more than doubled over this period. However, profitability has increased by

only 4.6% due to the offsetting effects of an estimated 49.6% deterioration in

the TT (i.e., ΔPROF ¼ ΔTFP� ΔTT ¼ 2:076� 0:504 ¼ 1:046). The dashed and

dotted lines without markers depict the output change (ΔQ) and input change (ΔX)
components of TFP change—these series reveal that virtually all TFP growth

in Alabama over the sample period has been due to output growth (i.e., ΔTFP ¼
ΔQ=ΔX ¼ 2:066=0:995 ¼ 2:076). The dashed and dotted lines with markers depict

the associated output and input price indexes (ΔP and ΔW )—these series reveal

that input prices have increased seven-fold over the sample period but output prices

have increased by only half that amount (i.e., ΔTT ¼ ΔP=ΔW ¼ 3:493=6:936 ¼
0:504). The output and input price and quantity indexes presented in Fig. 17.2 can

be further decomposed into indexes that measure changes in the prices and quan-

tities of a disaggregated set of outputs and inputs. For example, the measured

increase in output prices over the sample period can be attributed to a 294%

increase in livestock prices, a 151% increase in crop prices, and a 381% increase

in the prices of other agricultural outputs. These price increases have been associ-

ated with a 158% increase in livestock outputs, a 30% increase in crop outputs and

a 141% increase in other agricultural outputs. Further analysis of relationships

between output and input prices and quantities at this level of disaggregation is

straightforward (e.g., O’Donnell et al. 1999) but beyond the scope of this article.

17.2 Lowe TFP Indexes

In O’Donnell (2008) I explicitly identify the aggregator functions that underpin

Laspeyres, Paasche, Fisher, T€ornqvist and Hicks-Moorsteen price, quantity and

TFP indexes. Unfortunately, these indexes are not generally suitable for making

multitemporal (i.e., many period) or multilateral (i.e., many firm) comparisons of

TFP because they violate at least one important axiom from index number theory.

This article uses a very simple linear aggregator function to derive TFP indexes that

satisfy all basic index number axioms. Specifically, the article aggregates outputs

and inputs using the functions QðqitÞ / p
0
0qit and XðxitÞ / w

0
0xit where p0 and w0

are pre-determined firm- and time-invariant reference prices. The associated output

quantity, input quantity and TFP indexes that compare firm i in period t with
firm h in period s are

QIhsit ¼ QðqitÞ
QðqhsÞ

¼ p
0
0qit

p
0
0qhs

, ð17:3Þ

XIhsit ¼ XðxitÞ
XðxhsÞ ¼

w
0
0xit

w
0
0xhs

and ð17:4Þ

TFPIhsit ¼ QIhsit
XIhsit

¼ p
0
0qit

p
0
0qhs

w
0
0xhs

w
0
0xit

: ð17:5Þ
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These indices are ratios of the values of different baskets of goods evaluated at the

same set of reference prices. This article refers to the TFP index (17.5) as a Lowe

index because the component output and input quantity indexes given by (17.3)

and (17.4) are commonly attributed to Lowe (1823) (e.g., Hill 2008).

Any number of price vectors can be used as reference price vectors p0 and w0 in

the indexes (17.3)–(17.5). This article recommends using price vectors that are

representative of the price vectors faced by all firms that are to be compared

(usually all firms in the dataset).2 In practice, statistical tests can be used to assess

whether a chosen vector of reference prices is representative of the prices faced

by any given set of firms. For example, the reference prices used for the empirical

work in this article are the sample means of prices in all states in all periods (i.e.,

p0 ¼ �p ¼ ðITÞ�1
X
i

X
t

pit and w0 ¼ �w ¼ ðITÞ�1
X
i

X
t

wit ). If observations for

several more years were to become available then a simple Wald test3 could be used

to determine whether this same vector of reference prices was representative of

prices in the larger sample.

Lowe indices satisfy a number of important axioms. To avoid repetition, this

article only presents the axioms satisfied by the Lowe output quantity index (17.3).

Analogous axioms are satisfied by the input quantity index (17.4) and the TFP

index (17.5).

The Lowe output quantity index (17.3) is a function QIðqhs, qit, p0Þ that satisfies
the following commonsense axioms:

A1 Monotonicity4: QIðqhs, qjr, p0Þ > QIðqhs, qit, p0Þ if qjr � qit and QIðqjr, qit, p0Þ
< QIðqhs, qit, p0Þ if qjr � qhs;

A2 Linear homogeneity: QIðqhs, λqit, p0Þ ¼ λQIðqhs, qit, p0Þ for λ > 0;

A3 Identity: QIðqit, qit, p0Þ ¼ 1;

A4 Homogeneity of degree zero: QIðλqhs, λqit, p0Þ ¼ QIðqhs, qit, p0Þ for λ > 0;

A5 Commensurability: QIðqhsΛ, qitΛ, p0Λ�1Þ ¼ QIðqhs, qit, p0Þ where Λ is a

diagonal matrix with diagonal elements strictly greater than zero;

A6 Proportionality: QIðqhs, λqhs, p0Þ ¼ λ for λ > 0; and

A7 Transitivity: QIhsit ¼ QIhsjrQIjrit.

Axiom A1 (monotonicity) means that the index increases with increases in any

element of the comparison vector qit and/or with decreases in any element of the

reference vector qhs. Axiom A2 (linear homogeneity) means that a proportionate

2More precisely, reference prices should be representative of the relative importance (i.e., relative

value) that decision-makers place on different outputs and inputs. Observed prices are not always

the best measures of relative importance.
3 For example, the prices in the larger sample could be used to test the joint null hypothesis that the

population mean prices are equal to the reference prices. Such a test can be conducted in a

regression framework using test commands available in standard econometrics software packages.
4 Let qnit denote the nth element of qit. The notation qhs � qit means that qnhs � qnit for n¼ 1, . . .,N
and there exists at least one value n2f1, . . . ,Ng where qnhs > qnit.
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increase in the comparison vector will cause the same proportionate increase in the

index. Axiom A3 (identity) means that if the comparison and reference vectors are

identical then the index number takes the value one. Axiom A4 (homogeneity of

degree zero) means that multiplication of the comparison and reference vectors by

the same constant will leave the index number unchanged. Axiom A5 (commen-

surability) means that a change in the units of measurement of an output (e.g., from

kilograms to tonnes) does not change the value of the index. Axiom A6 (propor-

tionality) means that if the comparison vector is proportionate to the reference

vector then the index number is equal to the factor of proportionality. Finally, A7

says the index number that directly compares the outputs of a comparison firm/

period with the outputs of a reference firm/period is identical to the index number

computed when the comparison is made through an intermediate firm/period.

The Laspeyres, Paasche, Fisher, T€ornqvist, Hicks-Moorsteen and Lowe indexes

all satisfy axioms A1–A6, but, of these indexes, only the Lowe index also satisfies

the transitivity axiom A7. In practice, it is common to compute intransitive Fisher

and T€ornqvist indices and then address the transitivity problem by applying a

geometric averaging procedure proposed by Elteto and Koves (1964) and

Szulc (1964). Unfortunately, index numbers constructed using this method fail

the identity axiom A3. This means that EKS indexes will almost certainly indicate

increases or decreases in TFP even when input-output combinations (i.e., levels of

TFP) haven’t changed.
The focus of this article is first and foremost on the measurement of quantity

change and TFP change. Lowe indexes are ideal for this purpose because they

satisfy axioms A1–A7. However, is worth noting that Lowe implicit indexes are

less than ideal for the purpose of measuring changes in prices and the TT. For

example, the implicit Lowe output price index PIðqhs, qit, phs, pit, p0Þ � ðp0
itqitÞ=p

0
hs

qhsÞ=ðp0
0qitÞ=p

0
0qhsÞ does not generally5 satisfy price analogues of the identity and

proportionality axioms A3 and A6. Implicit Laspeyres, Paasche, Fisher, T€ornqvist,
Hicks-Moorsteen and EKS-type price and TT indexes are also less than ideal

because they also fail to satisfy at least one axiom.

To illustrate the importance of selecting a theoretically-plausible TFP index

formula, Fig. 17.3 presents (implausible) EKS and (plausible) Lowe indexes of

agricultural TFP change in Alabama, Florida and Wyoming over the period

1960–2004 (Alabama 1960 ¼ 1). The grey (solid, dashed and dotted) lines in this

figure are indexes computed by applying the EKS procedure to binary Fisher

indexes, and the black lines are Lowe indexes defined by (17.5) (the Lowe index

for Alabama was depicted earlier in Fig. 17.2). Observe that there are important

differences between the two sets of estimates for particular states in particular

years. For example, the EKS index indicates that in 1967 Alabama and Wyoming

5 For this index, the identity axiom requires PIðqhs, qit, pit, pit, p0Þ ¼ 1 while the proportionality

axiom requires PIðqhs, qit, phs, λphs, p0Þ ¼ λ for λ > 0. Both axioms will be satisfied if p0 / phs
/ pit (e.g., if there is no price change in the dataset and p0 ¼ �p; or if phs / pit for all h ¼ 1, . . . , I
and s ¼ 1, . . . ,T and p0 ¼ �p).

17 Agricultural Productivity and Profitability Change 523



were equally productive, but the Lowe index indicates that Alabama was 39%more

productive than Wyoming.

Explaining changes in TFP over time and space involves estimating measures of

technical change and efficiency change. The following section describes how

multiplicatively-complete TFP indexes such as the Lowe index can be exhaustively

decomposed into such measures. The EKS index cannot generally be decomposed

this way because it is not multiplicatively-complete.

17.3 The Components of TFP Change

In O’Donnell (2008) I show that any multiplicatively-complete TFP index can be

decomposed into measures of technical change and efficiency change. Among the

efficiency change components are input- and output-oriented measures of technical,

scale and mix efficiency change. The decomposition methodology involves identi-

fying points of economic interest in aggregate quantity space. For illustrative

purposes, consider a two-output technology and let qit ¼ ðq1it,q2itÞ
0
denote the

vector of outputs produced by firm i in period t. Let pit ¼ ðp1it,p2itÞ
0
be the

associated vector of output prices and, for a simple exposition that is consistent

with the Lowe indexes presented in Fig. 17.3, let outputs be aggregated using the
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Lowe output aggregator functionQðqitÞ ¼ p
0
0qit where p0 ¼ ðp10, p20Þ

0
. Figure 17.4

depicts measures of technical, mix and revenue-allocative efficiency for this firm in

output space: the curve passing through points V, R and C is the familiar production

possibilities frontier; the solid line that is tangent to the frontier at point R is an

isorevenue line with slope�p1it=p2it; and the dashed line passing through point A is

an iso-aggregate-output line with slope�p10=p20 and interceptQit=p20. For the firm
producing qit, maximising output while holding the output mix fixed involves a

move from point A to point C and an increase in the aggregate output from Qit to
�Qit, maximising revenue without any restrictions on the output mix involves a move

to point R and an increase in the aggregate output to Qit
#, and maximising aggregate

output without any restrictions on the output mix involves a move to point V and an

increase in the aggregate output to Q̂it. Associated measures of efficiency are: the

Farrell (1957) output-oriented measure of technical efficiency,OTEit ¼ Qit=�Qit; the

conventional measure of revenue-allocative efficiency, RAEit ¼ �Qit=Qit
#; and a

measure of output-oriented mix efficiency first defined in O’Donnell (2008),

OMEit ¼ �Qit=Q̂ it.
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Fig. 17.4 Output-oriented measures of efficiency (N¼ 2)
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Figure 17.5 maps the points A, C, R and V from Fig. 17.4 into aggregate quantity

space. In this figure, the curve passing through points C and D is a mix-restricted
frontier—this frontier envelops all technically-feasible aggregate input-output

combinations that have the same input mix and output mix as the firm operating

at point A. The curve passing through points V and E is the unrestricted production
frontier depicted earlier in Fig. 17.1—this frontier envelops all aggregate input-

output combinations that are feasible when all mix restrictions are relaxed. Recall

that the maximum TFP that is possible using this technology is the TFP at point E:

TFP∗
t ¼ Q∗

t =X
∗
t ¼ slope OE. In O’Donnell (2008) I define TFP efficiency to be the

difference between observed TFP and this maximum level of TFP:

TFPEit ¼ TFPit

TFP∗
t

¼ slope OA

slope OE
: ð17:6Þ

It is clear from Fig. 17.5 that TFP efficiency can be decomposed as:

TFPEit ¼ slope OA

slope OE
¼ slope OA

slope OC
� slope OC

slope OR
� slope OR

slope OE

¼ OTEit � RAEit � RSMEit ð17:7Þ

X ∗
t Xit
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Fig. 17.5 Output-oriented measures of efficiency (N� 1)
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where RSMEit¼ slope OR/slope OE denotes revenue-scale-mix efficiency

(a measure of the difference between TFP at a revenue-allocatively efficient point

and TFP at the point of maximum TFP). Other economically-meaningful decom-

positions of TFP efficiency include O’Donnell (2008):

TFPEit ¼ OTEit � OSEit � RMEit and ð17:8Þ

TFPEit ¼ OTEit � OMEit � ROSEit ð17:9Þ

where OSEit¼ slope OC/slope OD is the conventional measure of output-oriented

scale efficiency (a measure of the difference between TFP at a technically efficient

point and the maximum TFP that is possible when holding the output and input

mixes fixed), ROSEit¼ slope OV/slope OE is residual output-oriented scale effi-

ciency (a measure of the difference between TFP at an output-mix-efficient point

and the maximum possible TFP), and RMEit¼ slope OD/slope OE is residual mix

efficiency (a measure of the difference between TFP at a scale-efficient point and

the maximum possible TFP).

Multiplicatively-complete TFP indexes can be conveniently decomposed by

rearranging Eq. (17.6) as TFPit ¼ TFP∗
t � TFPEit. A similar equation holds for

firm h in period s. Thus, the TFP index defined by (17.1) can be written

TFPIhsit ¼ TFPit

TFPhs
¼ TFP∗

t

TFP∗
s

� �
TFPEit

TFPEhs

� �
: ð17:10Þ

The first term in parentheses is a measure of the difference in the maximum

TFP possible in the two periods—this is a natural measure of technical change.

Equation (17.10) reveals that TFP change can be exhaustively decomposed into a

measure of technical change and a measure of efficiency change. Equations such

as (17.7)–(17.9) can be used to further decompose the efficiency change component

into any number of meaningful measures. For example, any multiplicatively-

complete TFP index can be decomposed into measures of technical change, tech-

nical efficiency change, and a combined measure of scale and mix efficiency

change:

TFPIhsit ¼ TFPit

TFPhs
¼ TFP∗

t

TFP∗
s

� �
OTEit

OTEhs

� �
OSMEit

OSMEhs

� �
ð17:11Þ

where OSMEit ¼ OSEit � RMEit denotes output-oriented scale-mix efficiency

(a move from point C to point E in Fig. 17.5).

An empirical illustration of these decompositions is presented in Fig. 17.6. This

figure decomposes the Lowe TFP index for Alabama (depicted earlier in Figs. 17.2

and 17.3) into an estimate of technical change (ΔTFP∗ ) and an estimate of

efficiency change (ΔTFPE) (the DEA methodology used to obtain these estimates

is discussed in the next section). Observe that TFP in Alabama increased by

107.6% over the sample period due to the combined effects of an 81.4% increase
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in the maximum TFP possible (i.e., technical change) and a 14.5% increase in

overall efficiency (i.e., ΔTFP ¼ ΔTFP∗ � ΔTFPE ¼ 1:814� 1:145 ¼ 2:076). A
further breakdown of the efficiency change component is presented in Fig. 17.7.

Observe that the level of TFP efficiency in Alabama increased from 0.549 in 1960

to 0.629 in 2004 (implying ΔTFPE ¼ 0:629=0:549 ¼ 1:145). Also observe that

Alabama was technically efficient but scale-mix inefficient throughout much of the

sample period: in 1960 Alabama was 96.9% technically efficient but only 56.7%

scale-mix efficient (i.e., TFPE¼OTE � OSME¼ 0. 969 � 0. 567¼ 0. 549); in

2004 the state was fully technically efficient but still only 62.9% scale-mix efficient

(i.e., TFPE¼OTE � OSME¼ 1 � 0. 629¼ 0. 629). Note that the levels of
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efficiency depicted in Fig. 17.7 can also be viewed as indexes that compare effi-

ciency levels in Alabama with efficiency levels in any state that was fully efficient

in 1960 (e.g., Kansas).

17.4 Estimating Technical, Scale and Mix Efficiency
Using DEA

The usual menu of DEA and SFA models and estimators is available for estimating

the production frontiers depicted in Figs. 17.4 and 17.5. In O’Donnell (2010) I show
how DEA can be used to estimate measures of technical, scale and mix efficiency

associated with a Hicks-Moorsteen TFP index. This article extends that DEA

methodology to the estimation of measures of efficiency associated with Paasche,

Laspeyres, Fisher and Lowe TFP indexes.

A useful starting point is the well-known DEA problem for estimating the

output-oriented technical efficiency of firm i in period t. If the technology exhibits

variable returns to scale then an estimate of OTEit ¼ Qit=�Qit can be obtained by

solving

Qit=�Qit ¼ min
λ, θ

fλ�1 : λqit � Qθ;Xθ � xit; θ
0
ι ¼ 1; λ, θ � 0g ð17:12Þ

whereQ is an N � Jt matrix of observed outputs,X is anM � Jt matrix of observed

inputs, θ is a Jt � 1 vector, ι is a Jt � 1 unit vector, and Jt is the number of

observations used to estimate the frontier in period t. If the constraint θ
0
ι ¼ 1 is

deleted from the problem then the estimated technology will exhibit constant

returns to scale. Estimates of output-oriented scale efficiency are computed by

taking the ratio of the technical efficiency scores estimated under these alternative

returns to scale assumptions.

To compute a measure of output-oriented mix efficiency it is convenient to first

write the linear program (17.12) in the following equivalent form:

Qit=�Qit ¼ min
λ, θ, z

fQðqitÞ=QðzÞ : z � Qθ;Xθ � xit; θ
0
ι ¼ 1; z ¼ λqit; λ, θ, z � 0g

ð17:13Þ

where Q(.) is any valid output aggregator function. The equivalence of prob-

lems (17.12) and (17.13) can be established by substituting the constraint z ¼ λqit
into to the objective function in (17.13) and noting that, since all valid aggregator

functions are linearly homogeneous, QðqitÞ=QðλqitÞ ¼ λ�1. Writing (17.12) in the

form of (17.13) is useful because the constraint z ¼ λqit makes it explicit that

estimating output-oriented technical efficiency involves estimating the maximum

increase in TFP (or aggregate output) that is possible while holding the input level

(and therefore the aggregate input) and the output mix fixed. Moreover, it suggests
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that an estimate of the output-oriented mix efficiency of firm i in period t can be

obtained by simply relaxing the mix constraint z ¼ λqit. Specifically, an estimate of

OMEit ¼ �Qit=Q̂ it ¼ ðQit=Q̂ itÞ=ðQit=�QitÞ can be obtained by solving

Qit=Q̂ it ¼ min
θ, z

fQðqitÞ=QðzÞ : z � Qθ;Xθ � xit; θ
0
ι ¼ 1; θ, z � 0g: ð17:14Þ

Unlike the solution to the technical efficiency problem (17.12), the solution to the mix

efficiency problem (17.14) depends on the choice of aggregator function. If interest

lies in identifying the output-oriented mix efficiency change component of a partic-

ular multiplicatively-complete TFP index, then the aggregator function should be

the function that underpins that index. For example, if the TFP index is a Paasche

index then the aggregator function is QðqitÞ / p
0
itqit and problem (17.14) becomes

Qit=Q̂ it ¼ min
θ, z

fp0
itqit=p

0
itz : z � Qθ;Xθ � xit; θ

0
ι ¼ 1; θ, z � 0g: ð17:15Þ

The solution to this problem will be the ratio of observed revenue to the maximum

revenue possible holding the input vector fixed (i.e., the common measure of

revenue efficiency, REit). Thus, in the special case of the Paasche TFP index, the

measure of output-oriented mix efficiency is the well-known measure of revenue-

allocative efficiency: OMEit ¼ RAEit ¼ REit=OTEit.

The TFP index proposed in this article is the Lowe index given by (17.5),

underpinned by the output aggregator functionQðqitÞ / p
0
0qit. Estimating the output

mix-efficiency change component of this TFP index involves solving

Qit=Q̂ it ¼ min
θ, z

fp0
0qit=p

0
0z : z � Qθ;Xθ � xit; θ

0
ι ¼ 1; θ, z � 0g: ð17:16Þ

Similar problems are available for identifying the output-oriented mix efficiency

levels associated with Laspeyres indexes, and for computing DEA estimates of input-

oriented technical efficiency (ITE), input-oriented mix efficiency (IME), cost effi-
ciency (CE) and cost-allocative efficiency (CAE¼CE/ITE) associated with Paasche,
Laspeyres and Lowe indexes. The efficiency components of the Fisher TFP index can

be computed as the geometric average of the Laspeyres and Paasche measures.

17.5 Estimating Maximum TFP and the Rate
of Technical Change

The maximum TFP possible using the production technology is the TFP at point E

in Fig. 17.1: TFP∗
t ¼ Q∗

t =X
∗
t ¼ slope OE. Points of maximum TFP can be

estimated using a DEA problem that is closely related to problem (17.14).
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Problem (17.14) allows outputs to vary freely but holds the input vector fixed. The

point of maximum TFP can be estimated by solving a less restrictive problem that

allows both inputs and outputs to vary freely:

TFP∗
t ¼ max

θ, z, v
fQðzÞ : z � Qθ;Xθ � v;XðvÞ ¼ 1; θ

0
ι ¼ 1; θ, z, v � 0g ð17:17Þ

where the constraintXðvÞ ¼ 1 is a normalizing constraint that plays the same role as

a normalizing constraint in the primal form of (17.12). Again, the solution to

problem (17.17) depends on the choices of input and output aggregator functions.

Again, if interest centres on identifying the technical change component of a

multiplicatively-complete TFP index then the aggregator functions should be

those that underpin that index. For example, if the TFP index is the Paasche

index then the problem (17.17) becomes

TFP∗
t ¼ max

θ, z, v
fp0

itz : z � Qθ;Xθ � v;w
0
itv ¼ 1; θ

0
ι ¼ 1; θ, z, v � 0g: ð17:18Þ

In this case, the optimized value of the objective function is the maximum profit-

ability that can be achieved by firm i in period t. This level of maximum profitability

is usually of considerable economic interest, but not for purposes of measuring

technical change—as a measure of technical change it is implausible because it

varies with observed prices, even when the production possibilities set (represented

by the constraints z � Qθ andXθ � v) remains unchanged (i.e., even when there is

no technical change). In contrast, the technical change component of the Lowe TFP

index is robust to differences in the prices faced by different firms. If the TFP index

is a Lowe index then problem (17.17) becomes

TFP∗
t ¼ max

θ, z, v
fp0

0z : z � Qθ;Xθ � v;w
0
0v ¼ 1; θ

0
ι ¼ 1; θ, z, v � 0g: ð17:19Þ

Variations in levels of maximum TFP are due to inward and outward movements

in the production frontier in the region of local constant returns to scale (point E in

Figs. 17.1 and 17.5). A common view is that these movements are due to variations

in technical know-how. However, Solow (1957, p. 312) takes a broader view of

technical change and attributes movements in the production frontier to variations

in any factors that are not accounted for by the input and output variables that have

been included in the analysis. Aside from stocks of scientific and technical knowl-

edge, these “environmental” factors may include anything from measures of labor

quality to seasonal conditions. If such environmental factors are favourable for

agricultural production then the maximum output possible using any given level of

included inputs is higher than the maximum output possible when environmental

conditions are poor (i.e., favourable environmental conditions are a form of “tech-

nical progress”).

17 Agricultural Productivity and Profitability Change 531



To account for spatial variations in environmental factors, this article estimates

separate variable returns to scale production technologies for the ten farm produc-

tion regions identified by the USDA-ERS. A list of the states in each region is

provided in Table 17.1. To account for temporal variations in environmental

factors, these technologies have been estimated using DEA models that allow for

a small amount of technical regress. This involves using a moving window of

observations to estimate the technology in each region. For example, the Pacific

region production technology has been estimated using a moving five-year window

of observations, while the Mountain region technology has been estimated using a

two-year window. The size of the window was governed by the number of states in

each region and reflects a desire to estimate each regional frontier using at least

twice as many observations as there are input and output variables in the dataset.

The final column in Table 17.1 is the size of the window used to estimate the

technology in each region.

Indexes that compare estimated levels of maximum TFP in selected regions are

depicted in Fig. 17.8 (Southeast 1960¼ 1). The Southeast region had the highest

estimated maximum TFP of any region in both 1960 and 2004 (i.e., TFP¼ TFP∗

¼ 1. 045 in Alabama in 1960 and TFP¼ TFP∗¼ 1. 896 in Alabama in 2004).

Observe from Fig. 17.8 that the maximum possible TFP in the Southeast region is

estimated to have increased by 81.4% over the sample period (i.e., ΔTFP∗ ¼ 1:
896=1:045 ¼ 1:814) whereas the maximum TFP in the Southern Plains region is

estimated to have increased by only 40% [i.e., ΔTFP∗ ¼ ð0:946=1:045Þ=ð0:676=
1:045Þ ¼ 0:905=0:646 ¼ 1:40 ]. The estimated rate of technical change in the

Southern Plains is lower than in the Southeast partly because large windows have

the effect of dampening estimated rates of technical change. Indeed, as the size of

the window approaches the time-series dimension of the dataset the estimated rate

of technical change will approach zero and any TFP change will be attributed

entirely to efficiency change.

Table 17.1 USDA ERS farm production regions

Region Statesa Window

1. Pacific CA, OR, WA 5

2. Mountain AZ, CO, ID, MT, NM, NV, UT, WY 2

3. Northern Plains KS, ND, NE, SD 4

4. Southern Plains OK, TX 8

5. Corn Belt IA, IL, IN, MO, OH 3

6. Southeast AL, FL, GA, SC 4

7. Northeast CT, DE, MA, MD, ME, NH, NJ, NY, PA, RI, VT 2

8. Lake States MI, MN, WI 5

9. Appalacian KY, NC, TN, VA, WV 3

10. Delta States AR, LA, MS 5

a Official US Postal Service abbreviations
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17.6 Data

This article uses a state-level panel dataset compiled by the ERS and recently

analysed by, for example, Ball et al. (2004) and Fousekis (2007). Parts of the

dataset have also been used recently by LaFrance et al. (2011). The version of the

dataset used in this article extends from 1960 to 2004 and comprises observations

on the prices and quantities of three outputs (livestock, crops and other outputs) and

four inputs (capital, land, labor and materials) in each state in each year. Output

quantities are measures of quantities sold plus on-farm consumption and net

changes in inventories. Input quantities are measures of purchased inputs as well

as farm production used on the farm. Output and input prices are adjusted for

subsidies, taxes and direct payments under government commodity programs.

Thus, they reflect the net values of outputs and inputs to farmers. The main features

of the dataset are described in Ball et al. (1997).

The dataset has its shortcomings. Most importantly, the prices are multilateral

price indexes constructed using binary Fisher price indexes and the EKS geometric

averaging procedure (Ball et al., 2004). Thus, the price indexes are transitive but

fail the identity axiom—the output and input price variables will almost certainly

indicate price differences across states and/or time periods even if prices are

identical. The quantities are implicit quantity indexes constructed by dividing

revenues and costs by the EKS price indexes. This means they satisfy a product

test. However, if the price variables do not accurately reflect temporal and spatial

variations in prices (because they are intransitive) then it is unlikely that the implicit

quantity variables will accurately reflect variations in quantities. Similar problems

are found in other U.S. agricultural datasets. For example, the variables in the
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InSTePP datasets used by Acquaye et al. (2003) and Alston et al. (2010) are

constructed using binary Fisher indexes that violate the transitivity axiom.6

17.7 The Components of Profitability and TFP Change
in US Agriculture

This section reports selected7 estimates of changes in agricultural profitability, TFP

and efficiency in U.S. agriculture over the 45 years from 1960 to 2004. It has

already been reported that in Alabama during this period (1) estimated profitability

increased by 4.6% due to the combined effects of a 1 � 0. 504¼ 49. 6% fall in the

TT and a 107.6% increase in TFP, (2) in turn, estimated TFP increased due to an

81.4% increase in the maximum possible TFP (i.e., “technical change”) and a

14.48% increase in overall efficiency (from 0.549 to 0.629), and (3) in turn,

estimated overall efficiency increased due to a 3.2% increase in output-oriented

technical efficiency (from 0.969 to 1) and a 10.9% increase in output-oriented

scale-mix efficiency (from 0.567 to 0.629). These estimates and others (all rounded

to two decimal places) are reported in the first rows of Tables 17.2 and 17.3. The

remaining rows in these tables report estimates for selected other states. The values

that are marked with an “a” are the highest among the 48 states, while those marked

with a “b” are the lowest among the 48 states.

The estimates reported in Tables 17.2 and 17.3 are transitive and can therefore

be used to make meaningful comparisons of performance across both space and

time. For example, the estimates reported in the first column of Table 17.2 reveal

that in 1960 Florida was the most profitable state, New Hampshire was the least

profitable, and the level of profitability in Alabama was 58% higher than in New

Hampshire (ΔPROF ¼ 1:18=0:75 ¼ 1:58). The second column reveals that by 2004

California had become the most profitable state (PROF¼ 1. 49) and West Virginia

had become the least profitable (PROF¼ 0. 55). The remaining columns reveal that

Georgia experienced the largest increase in profitability over the sample period

(26%) on the back of a 157% increase in TFP, while Tennessee experienced the

largest fall in profitability ( � 32%) largely as a consequence of a 60% deteriora-

tion in the TT. Observe that California was the most productive state in 2004

(TFP¼ 1. 88) and Wyoming was the least productive (TFP¼ 0. 52). The last few

columns reveal that Kansas was fully efficient in 1960 and California and Texas

were fully efficient in 2004.

6Version 4 of the InSTePP dataset covers the period 1949–2002 and can be downloaded from

http://www.instepp.umn.edu/data/instepp-USAgProdAcct.html. All variables in this dataset take

the value 100 in 1949, so it cannot be used to generate TFP indexes that are comparable with the

indexes depicted in Fig. 17.3.
7 Estimates of profitability change, TFP change, technical change, output-oriented technical

efficiency change and output-oriented scale-mix efficiency change in each state in each period

are available in a supplementary appendix online.
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The output-oriented efficiency estimates reported in Table 17.3 indicate that

most states were highly technically efficient throughout the sample period (excep-

tions include New Hampshire in 1960 and Wyoming in 2004). Output-oriented

measures of pure scale efficiency and pure mix efficiency were generally high

(exceptions include Rhode Island and Alabama in 1960, and Tennessee in 2004) but

output-oriented measures of scale-mix efficiency were generally low (especially

Oregon in 1960, and West Virginia and Wyoming in 2004). Of course, low levels of

scale and/or mix efficiency are not necessarily associated with low levels of

profitability (see Fig. 17.1). For example, in 2004 Alabama was one of the most

profitable states (PROF¼ 1. 24, rank 7 out of 48) and also one of the least scale-mix

efficient (OSME¼ 0. 63, rank 43).

A slightly different picture of TFP and efficiency change in U.S. agriculture is

presented in Table 17.4. This table reports estimated rates of growth in TFP,

maximum TFP and measures of efficiency in selected states for the sub-periods

1960–1970, 1970–1980, 1980–1990 and 1990–2002. These particular sub-periods

have been chosen to facilitate comparison with estimates reported by Alston

et al. (2010) and Ball et al. (1997). The average annual rate of growth in a variable

Z between periods s and t can be calculated as Δ lnZ � lnðZt=ZsÞ=ðt� sÞ.
For example, the average annual rate of TFP growth in Alabama in the 1960s

is estimated to be Δ lnTFP ¼ lnðTFP1970=TFP1960Þ=ð1970� 1960Þ ¼ lnð0:713=
0:574Þ=10 ¼ 0:0218 or 2.18%, and the average annual rate of technical change

is estimated to be Δ lnTFP∗ ¼ lnðTFP∗
1970=TFP

∗
1960Þ=10¼ lnð1:12=1:045Þ=10¼ 0:

0069 or 0.69%. An important property of the estimated growth rates reported in

Table 17.4 is that they are additive. This means, for example, that the estimated

average annual rate of TFP growth in Alabama in the 1960s is equal to the sum

of the technical change and efficiency change components:Δ lnTFP¼Δ lnTFP∗þ
Δ lnOTEþΔ lnOSME¼ 0:0069þ0:0031þ0:0117¼ 0:0218. It also means that

estimated average annual rates of TFP and efficiency growth in US agriculture

can be computed as arithmetic averages of the estimated growth rates of the

48 states—these US averages are reported in the row labeled US48 in Table 17.4.

At least three features of Table 17.4 are noteworthy. First, the average annual

rate of TFP growth in US agriculture is estimated to have been 2.23% in the 1960s,

0.56% in the 1970s, 3.06% in the 1980s, and 1.01% from 1990 to 2002. These

estimated rates of growth are generally quite different from the Alston et al. (2010)

and Ball et al. (1997) estimates reported in the last two rows of Table 17.4. Second,

the estimated average annual rate of technical change (i.e., change in maximum

possible TFP) in US agriculture was 1.84% in the 1960s, 1.27% in the 1970s, 2.3%

in the 1980s, and 1.38% from 1990 to 2002. These nonparametric estimates are

similar to parametric estimates reported elsewhere in the literature [e.g., 1.8%

reported by Ray (1982)]. Associated estimated rates of growth in output-oriented

technical efficiency (0.06%, � 0. 18%, 0.22% and � 0. 02%) and output-oriented

scale-mix efficiency (0.33%,� 0. 53%, 0.54% and� 0. 35%) are relatively small,

indicating that technical change has been the major driver of TFP change in each

sub-period.
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Finally, this article has used the term “technical change” to refer to both spatial

and temporal variations in the production environment. To accommodate this broad

concept of technical change, ten different production frontiers (one for each ERS

farm production region) were estimated in each time period. A common alternative

estimation approach involves estimating a single frontier in each period—such a

model allows for temporal variations in the production environment, but does not

allow for spatial variations. Estimates of TFP and efficiency change obtained using

this more restrictive “Model A” are summarized in row A in Table 17.4. Unlike

some other TFP indexes (e.g., the Malmquist, Hicks-Moorsteen and Diewert-

Morrison indexes), the Lowe TFP index can be computed without knowing

(or assuming) anything about the production technology. Thus, different restric-

tions on the nature of technical change will only affect the estimated technical

change and efficiency change components of TFP change (i.e., the TFP index itself

will remain unaffected). The results from Model A reported in Table 17.4 indicate

that prior to 1990 technical progress was the most important driver of TFP growth

in U.S. agriculture. However, after 1990 output-oriented scale-efficiency change

became the most important driver. An even more restrictive model is a “no

technical change” model that involves using all the observations in the dataset to

estimate a single frontier. Results obtained using this “Model B” are summarized in

row B in Table 17.4. By design, Model B attributes all TFP growth to improvements

in various types of efficiency—this models suggests that prior to 1980 the main

driver of TFP change was scale-mix efficiency change; after 1980 it was technical

efficiency change. A discussion of statistical methods for choosing between differ-

ent types of models is beyond the scope of this article.

17.8 Conclusion

This article uses an aggregate quantity-price framework to decompose agricultural

profitability change into a measure of TFP change and a measure of change in the

agricultural TT. It argues that deteriorations in the (expected) TT will generally be

associated with improvements in agricultural TFP. To illustrate, the article esti-

mates that, over the period 1960–2004, a 50% decline in the agricultural TT in

Alabama has been associated with a two-fold increase in TFP.

Well-known measures of TFP change include Laspeyres, Paasche, Fisher and

T€ornqvist TFP indexes. A problem with these indexes is that they fail a common-

sense transitivity axiom. The usual way around the problem is to apply a geometric

averaging procedure known as the EKS method. Unfortunately, so-called EKS

indexes fail an identity axiom. This article proposes a new Lowe TFP index that

satisfies both the transitivity and identity axioms. It also demonstrates that the

choice of index formula matters—in one instance the EKS index indicates that

two states were equally productive but the Lowe index indicates that one state was

39% more productive than the other.
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The Lowe index is a member of the class of multiplicatively-complete TFP

indexes. In O’Donnell (2008) I demonstrate that, in theory, all such indexes can be

exhaustively decomposed into a measure of technical change and various measures

of technical, scale and mix efficiency change. Technical change is a measure of

movements in the production frontier, technical efficiency change is a measure of

movements towards the frontier, and scale and mix efficiency change are measures

of movements around the frontier surface to capture economies of scale and scope.

This article shows how the methodology can be used to decompose the Lowe TFP

index. It finds that the main driver of TFP change in U.S. agriculture over the

sample period has been technical progress (e.g., at an annual average rate of 1.84%

in the 1960s and 2.30% in the 1990s), that levels of technical efficiency have been

stable and high (e.g., the geometric mean of all it¼ 2160 OTE estimates is 0.989),

and that levels of scale-mix efficiency have been highly variable and relatively low

(e.g., the geometric mean of the OSME estimates is 0.791). These findings support

the view that research and development expenditure has led to expansions in the

production possibilities set, that U.S. farmers adopt new technologies quickly and

make relatively few mistakes in the production process, and that they rationally

adjust the scale and scope of their operations in response to changes in prices and

other production incentives.

Further research in at least two areas is needed to substantiate these general

findings. First, there is a need to re-evaluate the index number methods that are used

to construct price and quantity variables at disaggregated levels. The (binary) Fisher

and T€ornqvist indexes that are currently used to construct agricultural datasets

(including the dataset used in this article) are no better suited to constructing

(multilateral) indexes of livestock and crop outputs, for example, than they are to

constructing (multilateral) indexes of aggregate output or TFP. Second,

non-parametric and/or parametric statistical procedures (e.g., bootstrapping,

hypothesis tests) should be used to assess the plausibility of different assumptions

concerning the production technology and the nature of technical change. These

assumptions play a key role in identifying the components of TFP change that

policy-makers need. For example, a constant returns to scale assumption is enough

to rule out any estimated TFP gains associated with improvements in scale effi-

ciency, estimation of an average production function rather than a frontier function

is enough to rule out any estimated TFP gains associated with improvements in

technical efficiency, and this article has shown how different assumptions

concerning changes in the production environment can be used to partially or

totally eliminate the estimated TFP gains associated with technical change.
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