Chapter 11
Measuring Environmental Efficiency:
An Application to U.S. Electric Utilities

Chien-Ming Chen and Sheng Ang

Abstract This chapter highlights limitations of some DEA (data envelopment
analysis) environmental efficiency models, including directional distance function
and radial efficiency models, under weak disposability assumption and various
return-to-scale technology. It is found that (1) these models are not monotonic in
undesirable outputs (i.e., a firm’s efficiency score may increase when polluting
more, and vice versa), (2) strongly dominated firms may appear efficient, and
(3) some firms’ projection points derived from the optimal environmental efficiency
scores are strongly dominated, thus they cannot be the right direction for the
improvement. To address these problems, we propose a weighted additive model,
i.e., the Median Adjusted Measure (MAM) model. An application to measuring the
environmental efficiency of 94 U.S. electric utilities is presented to illustrate the
problems and to compare the existing models with our MAM model. The empirical
results show that the directional distance function and radial efficiency models may
generate spurious efficiency estimates, and thus it must be with caution.

Keywords Data envelopment analysis « Environmental efficiency ¢ Undesirable
outputs » Various return-to-scale * Electric utilities

This chapter is prepared based on Chen (2013, 2014). The authors thank Springer and Elsevier
for granting the rights for reusing the contents of these two papers. The authors also thank Maria
Montes-Sancho for preparing the data used in this article.

C.-M. Chen (<)

Nanyang Business School, Nanyang Technological University, 50 Nanyang Avenue,
Singapore 639798, Singapore

e-mail: cmchen@ntu.edu.sg

S. Ang

School of Management, University of Science and Technology of China, 96 Jinzhai Road,
Hefei, Anhui 230026, PR China

e-mail: shengang@ustc.edu.cn

© Springer Science+Business Media New York 2016 345
J. Zhu (ed.), Data Envelopment Analysis, International Series in Operations
Research & Management Science 238, DOI 10.1007/978-1-4899-7684-0_11


mailto:cmchen@ntu.edu.sg
mailto:shengang@ustc.edu.cn

346 C.-M. Chen and S. Ang

11.1 Introduction

When measuring environmental efficiency, we seek to answer the following ques-
tion: Can a firm produce more desirable outputs while generating lower quantities
of undesirable outputs than its competitors? The answer to this question can help
managers and policymakers act pro-actively in strategy-making and resource allo-
cation to ensure both corporate and environmental sustainability. However, mea-
suring environmental efficiency can be challenging for several reasons. First,
calculating environmental efficiency scores requires an articulation of weights or
preferences for productive inputs and outputs, but both eliciting and combining
preferences are difficult in a multi-stakeholder environment (Baucells and Sarin
2003). Second, most undesirable outputs, such as greenhouse gas emissions and
toxic releases, do not have a well-established market from which we can obtain
reliable price signals. This makes prioritizing different environmental factors
difficult. For example, it can be difficult to assign specific weights to different
dimensions of corporate social performance, such as environmental consciousness
and community relationship (Chen and Delmas 2011).

The absence of reliable price information for environmental impacts makes data
envelopment analysis (DEA) a useful tool for assessing environmental efficiency.
DEA does not require explicit assumptions about weights, production functions,
and probability distributions for environmental inefficiency. Weights are optimized
based on which input(s) a specific firm excels at utilizing, or which output(s) a firm
excels at generating in comparison to the other firms in the sample. In this way, each
firm can endogenously determine the weights used to evaluate its eco-efficiency.
Applications of DEA to environmental efficiency have also been in a variety of
problem contexts where undesirable outputs are consequential, including banking
and finance, electricity generation, manufacturing, and transportation. The goal of
this chapter is to review the commonly used DEA models for measuring environ-
mental efficiency and talk about their potential limitations.

In the DEA literature, the directional distance function (DDF) (Chung
et al. 1997) and radial efficiency models (e.g., Zhou et al. 2007; Fire et al. 1989)
are among the two most widely used. Compared with other DEA models (e.g.,
Seiford and Zhu 2002), the DDF and radial efficiency models usually adopt an
additional assumption on undesirable outputs, i.e., weak disposability assumption
(WDA) on undesirable outputs (Shephard 1970), which specifies the trade-off
(and boundary) relationship between a firm’s capability to produce good and bad
outputs in the production possibility set. This chapter reveals three problems
associated with these two models under the weak disposability assumption: (1) -
Non-monotonicity in undesirable outputs: a firm’s efficiency obtained from the two
models may increase when polluting more, and vice versa, (2) misclassification of
efficiency status: strongly dominated firms may be identified efficient, and
(3) strongly dominated projection targets: environmental efficiency scores may be
computed against strongly dominated points. Our findings suggest that the DDF and
radial efficiency models should be used with caution. We also examine modelling
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issues under variable returns-to-scale (VRS) production technology. As a solution,
we propose an alternative model based on the weighted additive model (Cooper
et al. 1999), and compare our model with the existing models by an illustrative
application of evaluating the environmental efficiency of 94 U.S. electric utilities in
year 2007.

In the next section, we introduce the production technology assumptions, the
DDF and radial efficiency models for environmental efficiency evaluation, and
identified issues and problems. In Sect. 11.3, we develop a model to avoid the
problems of the existing models. In Sect. 11.4 we include a case study for measur-
ing the environmental efficiency of 94 U.S. electric utilities. Section 11.5 gives
conclusions.

11.2 Production Models with Undesirable Outputs
for Environmental Efficiency

11.2.1 Production Technology Assumptions

We consider n decision-making units (DMU). Each DMU uses m inputs to produce
s desirable outputs and p undesirable outputs. The input vector of DMU g is denoted
by X, = (Xq1,- - ., Xgm) desirable output vector by Y, = (y,i,.--,Y,), and unde-
sirable output vector by B, = (bql, ceey bqp). The correspondence between the three
vectors can be described as:

F(Xy)2{(Yq.B,) : (Y4 B,) can be produced by using X, }. (11.1)

The function f captures the relationship between inputs and outputs and hence
represents the production technology. A common behavioural assumption is that
producer g should maximize Y, and minimize B, for a given X,. We define output
efficiency as:

Definition 1 (output efficiency) DMU q is output efficient if there does not exist a
non-zero vector (SY, SB) Ei)‘ii X E)‘iﬁ such that (Yq + SY,Bq — SB) Ef(Xq).

Definition 1 means that a DMU is output efficient if it is impossible to improve
any of its outputs given the current input level. Note that output efficiency defined
here is similar to but different from the Pareto-Koopmans efficiency (Cooper
et al. 2007, pp. 45—46), in that output efficiency does not consider input-side
inefficiency and slacks (i.e., reductions in some of the inputs).

The definition of output efficiency implies that firms can improve output effi-
ciency by either increasing Y, decreasing B, or both. This entails the question of
how to model the trade-off relationship between the desirable and undesirable
outputs. One possibility is to assume there is no such trade-off, ceteris paribus. In
this situation (i.e., free disposability), the technology set (X, f(X)) allows lowering
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undesirable outputs without losing desirable outputs; ie., (Y,,B,)€
F(X) = (Yo B,) €1 (X,) for ByZB, and (Yy,B,) £ (X,) = (¥).B,) €F(X,).
forallY ; =Y,andY : €M7, “=” being the component-wise inequality. Alternatively,
one may assume reducing undesirable outputs should not be “free” and impose a
weak disposability assumption on undesirable outputs. Denoting the technology set

under the weak disposability assumption as f,,(X,), the weak disposability assump-
tion satisfies the following three conditions (Shephard 1970): (i) (Y,,,Bq) ef. (Xq)

implies that (¥;,B, ) €/ (X,) for all Y, =Yy, (ii) (Y, By) €f,(X,) and 0 < 0 < 1
implies that (6Y,,0B,) €f,,(X,). and (iii) (Y,,B,) €f,,(X,) implies that (Y,,B,)

Ef(XD for all X;éXq.

The first condition means that if (X,, Y,, B,) is observed, the existence of this
observation implies that it is feasible to produce a lower amount of desirable
outputs with given X, and B,. The second condition stipulates that proportional
reduction of the joint output vector (Y,,B,) is feasible. The first two conditions
imply that a reduction in B, must be accompanied by a reduction in desirable
outputs Y,, while the converse is not true. The weak disposability assumption
condition is meant to reflect that generation and disposal of undesirable outputs
should not be free, in a sense that reducing undesirable outputs will come at the
expense of lowering desirable outputs. Clearly, the technology set f,,(X,) is a subset
of fIX,), because of these additional constraints associated with the weak dispos-
ability assumption.

The technology f,, can be formulated as a linear system under the following
axioms: f,,(X,) is convex, and f,,(X,) is the intersection of all sets satisfying the
convexity axiom and disposability assumptions; i.e., the production set

fo= rnw f;, (Xq), where fv/.,(Xq) is any convex set satisfying the disposability
J=1

assumption for DMU j (Banker et al. 1984). The model can be expressed as:

fu(X,) :{(Y,B) DY A SXgni=1mYy Ay > y.r =15,
i=1 j=1

J

Abj = by k=1, ...,p, 4 > 0,j =1, n}
=1

(11.2)

The boundary of (11.2) consists of non-negative linear combinations of all
DMUs’ input and output vectors. The 4; represents the production intensity of the
Jth DMU, which can take different values to populate different areas of (X, f,.(X,)).
The weak disposability assumption is enforced by the equality constraints associ-
ated with undesirable outputs. See p. 50 in Fére and Grosskopf (2006) for the proof
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that shows (11.2) satisfies the weak disposability assumption. If on contrary we
assume that undesirable outputs are freely disposable, the new technology set f:(X,)
can be recast by replacing the equality constraints with “<” inequality constraints,
meaning that the efficient level of undesirable outputs are bounded below by the
left-hand-side value and undesirable outputs can be improved independently from
desirable outputs.

Note that the convex set (X, f,,(X,)) satisfies the constant returns-to-scale (CRS)
assumption; i.e., (Y, B) €f,,(X) implies that (§Y, 6B) €f,,(6X),5 > 0. A number of
studies on environmental efficiencies assume a VRS technology (Chen 2013).
These studies follow Banker et al. (1984) and add a convexity constraint on the
intensity variables to represent the VRS assumption imposed (e.g., Mandal and
Madheswaran 2010; Oggioni et al. 2011; Riccardi et al. 2012). However, it is a
general misconception that simply adding a convexity constraint to the CRS model
with weak disposability means that the new model is one with a VRS technology
with weak disposability, as shown in Fiare and Grosskopf (2003). As such, many
studies used an incorrect VRS formulation in the literature (Chen 2013).

The correct VRS formulation with weak disposability assumption first appeared
in Shephard (1970). However, the Shephard’s VRS formulation with weak dispos-
ability is highly nonlinear and thus the model has difficulties in computation. Also
the production set under the Shephard’s VRS formulation is not convex, which
means that some of the feasible points in the production set under the convexity
axiom in nonparametric production models (see, e.g., Banker et al. 1984) may be
deemed infeasible in Shephard’s formulation. Kuosmanen (2005) and Kuosmanen
and Podinovski (2009) extend Shephard’s VRS formulation by developing a con-
vex and fully linearizable model (i.e., linearizable for all common types of effi-
ciency indexes):

n n
Fors (Xg) { )Y (A )X < i =1y Ay Z g =1
=

J=1

Z/Ijbjk =bgok=1,....p;> (A+w) =LAy >0j=1, n}

=1 =1
(11.3)

It is shown that the Shephard’s VRS formulation is a special case of the
Kuomanen’s VRS formulation (Kuosmanen 2005). More importantly, the effi-
ciency models constructed based on (11.3) become linear programming problems
and can be solved easily. However, to date few papers in the literature have
employed this general and correct VRS formulation in environmental efficiency
analysis (Chen 2013). Next, we introduce the DDF and radial efficiency models
based on Kuosmanen’s formulation.



350 C.-M. Chen and S. Ang
11.2.2 Directional Distance Function

The formulation of the directional distance function (DDF) is shown in (11.4).
Specifically, the DDF model calculates the environmental efficiency score of a firm
according to the maximum improvement in outputs that this firm can make in the
direction (g%, ¢%), such that the firm remains in fvrs(X,) after this improvement.
Therefore environmentally efficient firms in the DDF model are those obtaining a
zero optimal value (i.e., 0 = 0), in a sense that these firms cannot improve their
outputs following the pre-determined direction.

Max0
S.t. (/lj—Fﬂj)ij qui,i: 1, NN
=1
Z/l,y,»,. >V t+ 9gf,r =1,...,s
=1
> Aibj =bg — 0gf k=1, ....p
J=1
n
> (h+m) =1

=1
D >0, =1,...,n (11.4)

We can calculate the projection point for each DMU according to the efficiency
score obtained from (11.4). For example, (Xq, Y, + 0 gy,Bq -0 gB ) is the projec-
tion point of DMU ¢ under DDF, where 6% is the optimal solutions to the
corresponding efficiency model (11.4). Clearly, the projection point is at the
boundary of the production set. As noted, the projection point is the linear combi-
nation of different observed DMUs. We define the reference set for an evaluated
DMU as the collection of DMUs that forms the projection point. The A’s associated
with these active DMUs are positive in the optimal solution (Cooper et al. 2007).
Thus this also means that an efficient DMU is its own reference set and projection
point.

11.2.3 Radial Efficiency Models

Studies with a radial efficiency index (Charnes et al. 1978; Farrell 1957) under the
weak disposability assumption are found in the literature. The number of papers
using radial efficiency models increases rapidly over past years (Chen 2013). These
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models with a radial efficiency index can be classified into the follow three types':
the index associated with desirable outputs and undesirable outputs, desirable
outputs only, and undesirable outputs only, which can be modelled by (11.5).

Max 6 (or Min 6”)
n

S.t. (Aj+”j)xji qu[,i =1,...,m

=

n
Z/ljyj,. > qur,r =1,...,s

J=1

> b = by k=1,....p
j=1

D (i) =1
=1
Aistj = 0,j=1,....n (11.5)
Before illustrate the limitations associated with the DDF and radial efficiency
models in the next section, we list the four types of environmental efficiency models
introduced thus for (M1 to M4 in Table 11.1). It should be noted that DMUs’
efficiency scores obtained from models M1 to M4 have different ranges and
different values for efficient observations. To be specific, a DMU having lower
score in M1, M2 and M4 is considered more efficient, but M1 is equal or greater
than zero while M2 and M4 have a lower bound of one. DMUs obtaining higher
scores in M3 are considered more efficient and the range of M3 is from zero to one.

Table 11.1 Efficiency models classification for measuring environmental efficiency (Chen 2013)

Models, or efficiency Objective Range of Score of
indexes associated function in Modification | efficiency efficient
with (11.5) in (11.5) score observations
M1 |Model (11.4); direc- - - [0, 0] 0
tional distance
function
M2 | Desirable outputs only | Maxé =1 [1 o0) 1
M3 | Undesirable outputs Mins? =1 0, 1] 1
only
M4 | Desirable outputs and | Maxé &=1/6 [1 o) 1
undesirable outputs

" There exists the fourth type: radial efficiency index attached with inputs only. But it is not
presented here as we focus on output-oriented models in this chapter.
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The projection point for DMU ¢ according to the efficiency score and optimal
solutions obtained from radial efficiency models is (X,, 8*Y,, 5 *Bq), which is at the
boundary of the production set.

11.2.4 Problems Illustration by a Numerical Example

We present a simple numerical example to show problems of the DDF and
radial efficiency models with the WDA and Kuosmanen’s VRS assumptions.
In this numerical sample, there are four observed DMUs (DMU A to D) with one
input, one desirable, and one undesirable output, shown in Table 11.2. For the ease
graphical presentation, all four DMUs are assumed to consume the same amount of
inputs. The output set fz5(X) for this sample based on the production technology
model (11.3) is represented by the region ‘0OABCEOQ’ in Fig. 11.1. When WDA is not
imposed, the output set expands and becomes the area under the line segment ‘0A’

40

Desirable output y
] w
o S}

=
o

0 1 1 1
0 10 20 30 E 40

Undesirable outputb

Fig. 11.1 Output set fygs under the WDA and Kuosmanen’s VRS technology

Table 11.2 A numerical DMU |Inputx | Undesirable output b | Desirable output y
example for problems A 10 10 35
illustration
B 10 25 30
C 10 35 15
D 10 25 15
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and the horizontal line extended from A to its right. More specifically, for the
desirable output y, which is freely disposable, the area below the line segments ‘0A’
are considered feasible (c.f. the inequality constraint for y in (11.3)). Observe that
the frontier under the WDA (i.e., the boundary of fy (X)) may include points
dominated in both y and b, which correspond to the problem of misclassification of
efficiency status. For example, DMUs B and C produce a lower amount of y but
more b than DMU A. However, DMUs B and C are in the boundary set of fizs(X).
DMU D may be projected to the dominated portion of the boundary set (i.e., the line
segment between A and B) with certain choices of directional vectors. The same
thing may occur in the radial efficiency models (e.g., M2 projects D to B, and M4
may project D to the line segment between A and B by a hyperbolical locus). This
potential problem for DMU D is called the problem of strongly dominated projec-
tion targets. If we increase the undesirable output of D from 25 to 35, the inefficient
DMU D would become efficient DMU C. That is to say, an increase in a DMU’s
undesirable outputs may improve the DMU’s efficiency score, which correspond to
the problem of non-monotonicity in undesirable outputs.

Chen (2014) proves the above three problems associated with the DDF and HEM
(M4) models under CRS technology. In the next section, we introduce a weighted
additive model for environmental efficiency evaluation as a solution.

11.3 A Median Adjusted Measure (MAM) Model
for Environmental Efficiency

As noted earlier, weighted additive models have been shown to be able to project all
DMUs onto the efficient facet (Charnes et al. 1985), which resolves the dilemma of
choosing between free and weak disposability for undesirable outputs. Weighted
additive models are a general class of models that include many variants (Charnes
et al. 1985; Seiford and Zhu 2005; Fire and Grosskopf 2010). One important issue
for implementing the weighted additive model is that we must specify weights. This
is particular a problem as DEA models are known as a weight-free approach and do
not require subjective weight assignments. Chen and Delmas (2012) use the DMU’s
own outputs to normalize the output improvements and then calculate environmen-
tal efficiency as the average normalized score. This approach has a potential
limitation in that different DMUs would be based its own production but miss
information about distributions of different outputs across the entire sample, which
may carry significant practical implications. Some studies assign weights based on
the sample statistics, such as the range adjusted measure (RAM) model proposed by
Cooper et al. (1999):
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n
S.t. (Aj—&—ﬂj)xﬁgxq,-,i: 1,...,m
=1

J

n
Z/ljyj/ = yqr +S;‘r9r = 1, cee, S
J=1

Zﬂjbjk :bqk —Sk_,k: 1, P
j=1

D itw) =LA >0j=1,....n

=1
;=2 0,j=1,....n
shsy >0r=1,...,55k=1,...,p (11.6)

where R is the range of the rth desirable output and R, is the range of the
pth undesirable output. Note that the RAM model can also incorporate slacks
variables for inputs. When the inputs slacks are taken into consideration,

we need to replace the objective function in (11.6) by Max———
m+s+p

S o " 5k where R: is the range of the ith input, and

<;R7+;R?+“R;> | * P
n
change the input inequality constraints in (11.6) to Z (A + ;) xji =
=1

X4i —S;,i=1,...,m. For the purpose of the current paper, we focus on the
output-oriented RAM model. For the economic intuition behind the RAM
model, see Cooper et al. (1999) for an excellent exposition of the rationale
behind the additive efficiency model and its use to measure allocative, techni-
cal, and overall inefficiencies.

We propose a model based on the concept from the RAM model, as Cooper
et al. (1999) point out that the RAM-type of efficiency models come with a
number of desirable properties, including (i) the efficiency score is bounded in
[0,1], (ii) the model is unit invariant, (iii) the model is strongly monotonic in
slacks, and (iv) the model is translation invariant under the variable returns-to-
scale technological assumption (Banker et al. 1984). However, we find using
ranges as the normalizing factors problematic, and choose to use other normaliz-
ing variables instead of ranges in the original model. For example, it is stated in
Cooper et al. (1999) that0 < I" < 1, where a zero value indicates efficiency and a
value of one indicates full efficiency. As the slacks are usually much lower in
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magnitude than their corresponding ranges, the efficiency scores obtained from
the original RAM model tends to be low in both magnitude and variation (Cooper
et al. 1999; Steinmann and Zweifel 2001). Therefore the RAM scores cannot
effectively differentiate the performance of different DMUs. Furthermore, if we
observe extremely inefficient firms that makes certain R and/or R; larger. These
extremely inefficient firms may be those that produce lower than minimal
observed desirable outputs but higher than maximum observed undesirable out-
puts at a fixed input level. The efficiency scores of all the other firms may decrease
markedly, and most firms would appear more efficient although the efficient
frontier remains unaltered. As it is not uncommon to observe “heavy polluters”
in applications, using ranges or other dispersion measures of outputs do not seem
appropriate. Also note that if a weighted additive model is used, the disposability
assumption on undesirable outputs will not have any impact on the resultant
efficiency scores.

Another problem of using ranges is that ranges cannot reveal the relative
magnitude of the output. For example, suppose we obtain for a particular DMU
that its slack for an output is 5 and the corresponding range for that output is 50.
The managerial implication of this output slack for this DMU may be quite
different if the maximum and minimum of the output are respectively 10 and
60 rather than 500 and 550, for example. As the main purpose of the normalizing
factors are to obtain unit invariance, we opt for using the median of outputs to
replace the range used in the objective function of model (11.6), which is more
robust than ranges or averages as the basic statistical properties of these measures.
We call our efficiency measure based on median the “Median Adjusted Measure”
(MAM). The MAM score then has an intuitive interpretation as the average of
slacks compared to the sample median of the corresponding output variables.
Note that one may designate the normalizing parameters in the original range
adjusted model in other ways; see, e.g., Cooper et al. (2011) for a comprehensive
discussion.

11.4 An Application to Measuring Environmental
Efficiency of U.S. Electric Utilities

The electricity sector has been under stringent scrutiny for its environmental
performance (Majumdar and Marcus 2001; Fabrizio et al. 2007; Delmas
et al. 2007). Following previous studies (e.g., Majumdar and Marcus 2001; Delmas
et al. 2007), we consider plant value, total operation & maintenance expenditure,
labor cost, and electricity purchased from other firms as four input variables. The
desirable output considered is total sales in MWH, and three undesirable outputs are
sulfur dioxide (SO,), nitrogen oxide (NO,), and carbon dioxide (CO,), of which
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SO, and NO, are regulated by the U.S. Environmental Protection Agency (EPA)
under the Acid Rain Program.

The data are collected from the U.S. Federal Energy Regulatory Commission
(FERC) Form Number 1 (U.S. DOE, FERC Form 1), from the U.S. Energy
Information Administration (Forms EIA-860, EIA-861, and EIA-906), and from
the U.S. Environmental Protection Agency Clean Air Market Program’s website.
Our sample consists of 94 major investor-owned electric utilities in 2007.
Table 11.3 reports the statistics summary of the electric utilities’ input, desirable
and undesirable outputs, which show that the 94 utilities vary significantly in their
production scales, thus a VRS technology assumption is employed to reflect the
industry production technology. In the application of the 94 U.S. electric utilities,
we apply the DDF and radial efficiency models to show the limitations under the
WDA and VRS technologies, and also apply our proposed median adjusted mea-
sures model as an illustration.

We applied the models M1-M4. For DDF (M1), an all-one vector is employed as
the directional vector which is fixed. Another commonly used directional vectors
includes 8, = (Yq,Bq), (0,B,), or (¥,,0), or sample average values of outputs.
Although not shown here, the three problems mentioned in the previous sections
will still persist under these alternative directional vectors.

Table 11.4 shows the environmental efficiency results and optimal slacks values
from the MAM models. There are 17 firms identified as strongly efficient by the
MAM model, because they have zero optimal slacks in both desirable and unde-
sirable outputs and are efficient across all of M1 to M4 models at the same time.
However, some of the firms appear efficient in models M1 to M4 are strongly
dominated in their outputs such as firms #2, #5, and #17. The rate of misclassi-
fication is rather high for the DDF and radial efficiency models (average higher than
30 %).

We have obtained the optimal efficiency scores of all the firms by models M1
to M4 and the efficiency classification. These optimal efficiency scores can also
be used to compute the projection points for those inefficient firms. To examine
the problem of strongly dominated projection targets, we add the obtained
projection points into the original data set, and use the MAM model to evaluate
the efficiency of the projection points. Table 11.5 shows the efficiency results of
those firms’ projection points under models M1 to M4. Besides those output
efficient firms under MAM, the efficiency scores of the other firms’ projection
targets under M1, M2, M3 and M4 are larger than zero (except DMU #57 under
M1, DMU #27 and #87 under M3, and DMU #14 under M3). Thus, those
projection targets are not strongly efficient and some are not even efficient in a
weak sense.
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Table 11.5 Efficiency results of projection points

C.-M. Chen and S. Ang

DMU # M1 (DDF) M2 M3 M4 (HEM)
1 3.68 3.13 1.68 441
2 1.17 1.07 2.92 1.68
3 0.75 0.63 0.10 0.20
4 0.54 0.12 0.28 0.23
5 0.09 0.09 0.22 0.13
6 0 0 0 0
7 0.66 0.55 0.00% 0.00%
8 0.76 0.11 0.01 0.05
9 0 0 0 0

10 0 0 0 0

11 2.17 1.08 1.23 0.68

12 221 1.73 0.04 0.62

13 1.57 1.22 2.25 1.65

14 0.30 0.06 0.00% 0

15 2.86 1.63 0.00% 0.45

16 1.78 0.21 0.93 1.14

17 0.43 0.36 0.60 0.36

18 6.17 5.65 0.39 0.43

19 2.61 2.46 7.91 4.11

20 241 2.16 0.01 0.17

21 0.22 0.18 0.32 0.21

22 0.77 0.94 2.65 1.40

23 0 0 0 0

24 2.16 0.43 0.39 0.90

25 4.46 4.05 0.00% 1.56

26 7.51 6.98 22.83 11.57

27 0.00 0.00%* 0 0.00%

28 0 0 0 0

29 0.90 0.33 0.12 0.38

30 0.73 0.31 0.04 0.14

31 0 0 0 0

32 1.14 1.05 0.26 0.93

33 0.91 0.84 0.23 1.33

34 0.85 0.76 0.05 0.32

35 1.69 1.54 0.12 0.84

36 2.80 2.54 0.01 0.67

37 0.97 0.80 1.20 0.79

38 1.84 1.70 0.39 2.73

39 0.24 0.13 0.01 0.04

40 0.06 0.09 0.22 0.12

41 0.88 1.06 0.17 0.84

42 0.80 0.97 113 0.94

(continued)
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Table 11.5 (continued)
DMU # M1 (DDF) M2 M3 M4 (HEM)
43 0.95 0.92 0.11 0.35
44 2.13 1.91 0.23 0.77
45 0.96 0.79 0.00 0.05
46 0.21 0.17 0.24 0.16
47 1.36 0.96 0.06 0.32
48 0 0 0 0
49 3.48 3.14 0.02 0.21
50 1.92 1.72 4.72 2.63
51 0.50 0.47 0.06 0.20
52 5.01 4.55 0.03 0.90
53 0 0 0 0
54 0 0 0 0
55 0 0 0 0
56 1.08 0.56 0.02 0.16
57 0 0.01 0.00%* 0.00%*
58 0.33 0.48 1.22 0.69
59 0.03 0.02 0.05 0.03
60 4.39 4.01 0.33 6.23
61 1.26 1.09 0.16 1.06
62 1.07 0.96 0.00%* 0.01
63 0.35 0.26 0.28 0.32
64 2.44 2.27 7.70 3.79
65 1.70 1.40 0.30 1.62
66 0.87 0.75 0.06 0.53
67 0.47 0.49 0.98 0.59
68 1.18 0.73 0.05 0.22
69 1.25 1.08 0.07 0.11
70 0.38 0.33 0.77 0.41
71 0 0 0 0
72 0.76 0.23 0.02 0.10
73 1.29 0.76 0.11 0.54
74 0.65 0.55 1.04 0.64
75 1.05 0.97 3.14 1.60
76 1.11 1.01 2.63 1.53
77 1.00 0.91 0.31 1.35
78 1.73 1.52 0.04 0.20
79 0.52 0.05 0.03 0.05
80 0.37 0.32 0.23 0.28
81 0 0 0 0
82 0.33 0.07 0.00%* 0
83 3.16 2.34 0.02 0.38
84 0.46 0.02 0.03 0.04

(continued)
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Table 11.5 (continued)

DMU # M1 (DDF) M2 M3 M4 (HEM)
85 0 0 0 0
86 0 0 0 0
87 1.65 1.29 0 0.57
88 1.63 0.98 0.03 0.75
89 0.86 0.14 0.06 0.22
90 1.03 0.93 0.76 1.42
91 0 0 0 0
92 0 0 0 0

93 1.32 0.64 0.11 0.38
94 0 0 0 0

The number with mark ‘*’ is very small but still strictly larger than zero

11.5 Conclusions

In this chapter, we examine three critical implementation issues of the DDF and
radial efficiency models which are widely used for the environmental efficiency
evaluation in the literature: non-monotonicity, misclassification of efficiency status,
and strongly dominated projection targets. Our analysis shows that the classical
weak disposability assumption on undesirable outputs can create a portion of the
output-dominated frontier, which can be considered the root cause for the three
issues. Our findings provide important implications for both empirical and theoretic
researchers of environmental efficiency. We suggest that researchers should be
cautious when imposing the classical weakly disposability assumption on undesir-
able outputs under both CRS and VRS production technologies, which has been the
standard assumption in a large stream of studies.

As the importance of environmental efficiency is growing, findings from this
study have an important theoretical implication. Further, the application areas of the
environmental efficiency model can be applied to many other dimensions of
corporate operations when both positive and negative consequences of an activity
or policy (e.g., debts in banking, labor accidents and litigations in transportation and
manufacturing). Researchers are encouraged to explore more application areas in
other emerging contexts.
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