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    Chapter 19   
 Central Sleep Apnea at High Altitude                     

     Keith     R.     Burgess      and     Philip     N.     Ainslie   

    Abstract     The discovery of central sleep apnea (CSA) at high altitude is usually attributed to 
Angelo Mosso who published in 1898. It can occur in susceptible individuals at altitude above 
2000 m, but at very high altitude, say above 5000 m, it will occur in most subjects. Severity is cor-
related with ventilatory responsiveness, particularly to hypoxia. Theoretically, it should spontane-
ously improve with time and acclimatization. Although the time course of resolution is not well 
described, it appears to persist for more than a month at 5000 m. 

 It occurs due to the interaction of hypocapnia with stages 1 and 2 NREM sleep, in the presence 
of increased loop-gain. The hypocapnia is secondary to hypoxic ventilatory drive. With acclimati-
zation, one might expect that the increase in PaO 2  and cerebral blood fl ow (CBF) would mitigate 
the CSA. However, over time, both the hypoxic and hypercapnic ventilatory responses increase, 
causing an increase in loop gain which is a counteracting force. 

 The severity of the CSA can be reduced by descent, supplemental oxygen therapy, oral or 
intravenous acetazolamide. Recent studies suggest that acute further increases in cerebral blood 
fl ow will substantially, but temporarily, reduce central sleep apnea, without altering acid based 
balance. Very recently, bi-level noninvasive ventilation has also been shown to help (mechanism 
unknown). Sleep quality can be improved independent of the presence of CSA by the use of ben-
zodiazepine sedation.  
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19.1       Introduction 

  Central sleep apnea (CSA) at   high altitude typically consists of 2–4 breaths, sepa-
rated by an apnea from the next burst of 2–4 breaths, which in appearance closely 
resembles the periodic breathing of the premature infant [ 34 ]. It is different from the 
typical waxing and waning of tidal volume that one sees in the periodic breathing of 
heart failure [ 6 ], or the somewhat chaotic or irregular appearance of apneas associ-
ated with opiate use [ 29 ]. The description of CSA at high altitude is usually attrib-
uted to Angelo Mosso who published his description in 1898 and included an 
illustration of the  periodic breathing   recorded on his brother [ 21 ]. Typically it occurs 
at altitudes above 2000 m of varying severity, depending on characteristics of the 
individuals, but above 5000 m altitude it occurs in most people [ 4 ,  33 ]. The bursts 
of breathing (hyperpneas) are associated with arousal from sleep and sometimes full 
wakefulness, which causes tiredness during the day and cognitive impairment [ 1 ], 
similar to that seen from other causes of sleep disruption. The severity of CSA has 
been correlated with ventilatory responsiveness, particularly to hypoxia [ 17 ,  18 ,  32 ]. 
Intuitively, one might expect it to improve with acclimatization; however, the time 
course of resolution is not well described. Our experiments, of up to 2 weeks dura-
tion at 5000 m, have shown worsening of the CSA  with acclimatization   [ 3 ,  4 ]. 
Salvaggio et al. [ 24 ], over a period of 1 month at the same altitude, but in only fi ve 
subjects, showed no diminution in the severity of CSA over that period.  

19.2     Mechanisms 

 Although severity of CSA has been traditionally linked to  hypoxic ventilatory 
responsiveness,   there are other concepts that are also probably important to our 
understanding of the mechanisms of OSA at high altitude: The concept that CSA is 
caused by a disproportionate elevation of either hypoxic or hypercapnic ventilation 
response compared to the other is a relatively new and plausible theory [ 28 ]. The 
engineering concept of “loop gain”       has been around since the 1980s in the respira-
tory control literature as a key cause of CSA [ 16 ]. More recently, alterations of 
cerebral blood fl ow have been proposed as a potential key factor in CSA [ 35 ] (see 
Fig.  19.1 ).    Figure  19.1  shows a very tight correlation between the degree of fall in 
cerebral blood fl ow (CBF) at sleep onset and the subsequent degree of CSA during 
sleep. This suggests that a fall in CBF during sleep promotes CSA.

   CSA occurs in light sleep, typically Stages 1 and 2 of non-rapid eye movement 
( NREM        ) sleep, when the patient has crossed the “apnea threshold” [ 7 ], which often 
means in practice that their arterial PCO 2 , [and hence brain PCO 2 , (PbCO 2 )] has 
fallen a few millimeters lower than the resting PbCO 2  when they go into light sleep. 
The acute event is often triggered by a sigh or arousal from sleep, which causes a 
sudden drop in PaCO 2 . The baseline hypocapnia at altitude is secondary to hypoxic 
ventilatory drive [ 17 ]. 
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 For the initial apnea to develop into sustained periodic breathing or CSA, there 
must be an increase in the “loop gain” of the feedback control system above 1 [ 15 ]. 
The calculation of absolute loop gain is problematic, although Edwards et al. [ 11 ] 
believe they have discovered a mathematical formula that is applicable to the 
 periodic breathing of newborns and premature animals, and possibly to the clinical 
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  Fig. 19.1    ( a ) The  relationship   between change in CBF at sleep onset and subsequent CSA during 
sleep. ( b ) Summary of known effects of acclimatization at 5050 m relevant to central sleep apnea. 
( c ) A summary of our speculation as to the mechanisms of worsening CSA during 2 weeks 
acclimatization       
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context of high altitude CSA. Commonly one uses a surrogate for absolute loop 
gain, which can be derived from the polysomnogram and compared from subject to 
subject and from time period to time period. It is the relationship between the 
lengths of the hyperpneas and apneas. Put simply, “loop gain” is the response of a 
feedback control system divided by the stimulus [ 30 ]. Different groups have 
regarded the hyperpneic phase of CSA as either the stimulus [ 11 ] or the response 
[ 30 ], and vice versa for the apnea. In practice, it does not matter: Let us assume that 
hyperpnea is the stimulus, in which case, if a subject has a long apnea after a short 
 hyperpnea  , then by defi nition the response, (the length of the apnea), over the stimu-
lus, (the length of the hyperpnea), is large, whereas if the hyperpnea was long and 
the apnea short, then loop gain must be much smaller in that situation. We have 
previously shown an increase in loop gain with acclimatization at 5000 m [ 3 ]. 

 It is generally accepted that the severity of CSA at high altitude is strongly corre-
lated with the ventilatory response to hypoxia. Kellogg [ 17 ] was one of the fi rst to 
show a correlation between the slope of the ventilatory response to hypoxia and the 
severity of CSA. Supporting that view, Hackett and Roach have shown that almitrine, 
(a stimulus to  hypoxic ventilatory response  ), will increase CSA in normal volunteers, 
whereas acetazolamide, (which among other actions acutely inactivates carotid che-
moreceptors), would suppress CSA [ 12 ]. But that may be only part of the explanation. 
Studies of over 2 weeks duration in 2005 at 3840 m and in 2008 at 5050 m, have found 
an approximate doubling of both the hypoxic and hypercapnic ventilatory responses 
in normal volunteers in the transition between low altitude and high altitude [ 2 ]. They 
confi rm a similar observation by White et al. [ 31 ]. Topor and Remmers have shown, 
in a computer model, that unstable breathing, due to high loop gain, is more likely to 
occur at high altitude if there is a disproportion between the hypoxic and hypercapnic 
ventilatory responses [ 28 ]. So a high hypercapnic response coupled with a low 
hypoxic ventilatory response, could also cause CSA. 

 It is somewhat surprising that CSA would increase in severity over 2 weeks of 
acclimatization at 5000 m, and yet not begin to improve by 4 weeks at the same 
altitude, because by then arterial blood gas values have started to return towards sea 
level values. 

 Upon arrival at high altitude, normal subjects will already have established 
hypocapnia, secondary to increased minute ventilation, due to the hypoxic stimulus 
to breathe. However, their PaCO 2  will not have reached its optimal and lowest level 
initially because of “ hypocapnic braking”   [ 20 ], which is an effect of the acute respi-
ratory alkalosis affecting the central chemoreceptors inhibiting ventilation. Over 
time, renal excretion of bicarbonate starts to restore the arterial (and presumably 
brain) pH from alkaline towards neutral values [ 8 ]. This reduces the braking effects 
of the alkalosis and allows minute ventilation to increase further, with a further fall 
in PaCO 2  and (through the alveolar gas equation) a rise in PaO 2 . 

 Initially, the sympathetic system is activated, so that cardiac output and mean 
arterial pressures (and CBF) are higher than at sea level [ 13 ]. Over a period of 
2 weeks at 5000 m, cerebral blood fl ow returns to, or close to, sea level values [ 19 ], 
although sympathetic activation remains high [ 13 ]. Ventilatory responses to hypoxia 
and hypercapnia will approximately double for a group of subjects over that 2 week 
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period [ 2 ]. Many of these changes generate counteracting forces; the fall in PaCO 2  
and presumably PbCO 2 , could be expected to increase the propensity to CSA, how-
ever the increase in PaO 2  could tend to counteract that. The initial high cerebral 
blood fl ow could be expected to wash out CO 2  from around the  brain stem central 
chemoreceptors   and so initially reduce the ventilatory response to CO 2  and hence 
perhaps reduce periodic breathing. Over time, as cerebral blood fl ow returns to sea 
level values [ 19 ], PbCO 2  may rise despite a lower arterial PaCO 2 , although that is a 
speculation. 

 Experiments designed to tease out the relative importance of changes in PaCO 2 , 
ventilatory responses and cerebral blood fl ow, have not so far clarifi ed this complex 
issue. Intravenous acetazolamide has been shown to increase cerebral blood fl ow by 
approximately 30 % at high altitude and this has been associated with a signifi cant 
fall in central  apnea-hypopnea index (AHI)      [ 3 ].  Oral indomethacin   has been shown 
to reduce cerebral blood fl ow by approximately 30 %, but this has been associated 
with an insignifi cant increase in central AHI [ 3 ]. There was no signifi cant difference 
in ventilatory responses to hypercapnia between the two post drug conditions and 
yet there was a strong negative correlation between change in CBF and change in 
CSA severity. The issue, however, is clouded by the effect of the acetazolamide on 
arterial PCO 2 , which caused an acute rise of 3 mmHg. An acute rise of that size 
could be expected to inhibit CSA by itself.  

19.3      Treatments   

 Since there is a strong correlation between absolute altitude and severity of CSA [ 4 ,  33 ] 
the obvious treatment would be to reverse that process and descend. If that were not 
feasible, or desirable, then Lahiri has shown elegantly the curative effects of supple-
mental oxygen therapy on a subject with sustained CSA at 5300 m [ 18 ] (see 
Fig.  19.2 ). We have shown similar transient benefi ts in the artifi cial situation of 
normobaric hypoxia, created using a nitrogen tent, in which a patient with estab-
lished obstructive sleep apnea (OSA) could be converted, after several hours’ expo-
sure, to a simulated altitude of 2750 m, (approximately 15 % oxygen environment), 
to sustained CSA [ 5 ]. Introduction of supplemental oxygen into the subject’s face 
mask quickly terminated the CSA and allowed the underlying OSA to reemerge.

   Oral acetazolamide has been shown by a number of authors to effectively sup-
press CSA at high altitude [ 12 ,  25 ,  27 ]. This has been attributed to the development 
of a metabolic acidosis, rather than the effect that one sees with rapid intravenous 
infusion of acetazolamide. In the acute intravenous administration situation, acid 
based balance does not change, nor ventilatory responses, but cerebral blood fl ow 
increases [ 35 ] due to paralysis of vasoconstriction in the cerebral arteries and there 
is a step up of PaCO 2  [ 3 ], presumably due to paralysis of carbonic anhydrase in the 
subject’s red cells [ 26 ]. Regular oral administration, on the other hand, causes meta-
bolic acidosis, which moves the subjects away from their apnea threshold and has a 
similar effect to adding CO 2  to the subject’s breathing mix. 
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 A very different treatment (bi- level   ventilation) has recently been shown in a 
pilot study to halve the severity of CSA in seven volunteers at 3800 m at White 
Mountain. The author [ 14 ] unfortunately did not collect arterial blood gases, nor 
measure ventilatory responses or cerebral blood fl ow, so the mechanism of that 
effect is uncertain. One could speculate that the ventilation further reduced PaCO 2  
and raised PaO 2 , however, one would expect the further fall in CO 2 , would favor 
CSA. Noninvasive positive pressure ventilation (NIPPV), like continuous positive 
airway pressure (CPAP), raises functional residual capacity (FRC), which would 
increase oxygen stores and hence lower loop gain. That may be the main mecha-
nism with NIPPV because Edwards et al. have shown a reduction in loop gain in 
premature lambs by the application of CPAP, with resolution of CSA [ 10 ]. In the 
context of chronic severe heart failure with CSA, CPAP has been shown to have a 
sympatholytic effect [ 22 ], which may also have been a factor. 

 Separate from treatments that affect the severity of CSA, other treatments for the 
sleep disturbances associated with the CSA, have been used with varying results 
(see Table  19.1 ). Dubowitz [ 9 ] and Nickol et al. [ 23 ] have used temazepam at 
5400 m. Both have shown a subjective improvement in sleep quality, but with vary-
ing effects on saturation and CSA severity. Dubowitz, in a group of 11 subjects, 
showed no change in mean arterial saturation, but appeared to show a reduction in 
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  Fig. 19.2    The effect of oxygen breathing upon periodic breathing ( above ) and arterial oxygen 
saturation ( below ) during sleep at 17,700 ft (5400 m). Periodic breathing is replaced by shallow, 
continuous breathing as arterial oxygen saturation is increased. From Lahiri et al. [ 18 ]       
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“desaturation events”, probably indicating a reduction in CSA severity linked to 
arousal from sleep, although no measurements of sleep state were recorded [ 9 ].

   Nickol et al. [ 23 ], on the other hand, showed a modest but signifi cant reduction 
in CSA index, from 16/h to 9/h, in a group of 33 healthy volunteers. There was a 
small reduction in mean saturation from 78 to 76 %. They claim to have found a 
reduction in acute mountain  sickness   scores. 

 New non-benzodiazepine sedative hypnotics have also been studied at high 
altitude [ 1 ]. Sleep quality was improved, but no direct data were provided about 
effects on CSA, although there was no change in oxygen  desaturatio     n index 
(see Table  19.1 ).     
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