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    Chapter 12   
 Implications of Oxygen Homeostasis 
for Tumor Biology and Treatment                     

     Boyan     K.     Garvalov     and     Till     Acker    

    Abstract     Tumors serve as a prototype system to study the role of the hypoxic microenviron-
ment and gain insight in the regulation oxygen homeostasis. A series of biochemical and cell 
biological studies have signifi cantly extended our knowledge of how tumor cells activate key 
regulatory mechanisms of oxygen homeostasis not only to adapt to the hostile tumor microenvi-
ronment but also to acquire a more aggressive tumor phenotype. Reduced oxygen levels and 
tumor-specifi c genetic alterations synergistically drive tumor progression by activating a key 
transcriptional system, the hypoxia inducible factors (HIFs). HIFs trigger a set of adaptive 
responses commonly associated with tumor malignancy including tumor angiogenesis, a shift in 
metabolism, proliferation, invasion, and metastasis. We and others could demonstrate that can-
cer stem cells are controlled by HIFs within a hypoxic niche, establishing an intriguing link 
between the well known function of hypoxia in tumor growth and stem cell biology. Additionally, 
HIF activation potentially conveys resistance to current tumor therapies including the evasive 
resistance phenotype observed after anti-angiogenic treatment. Together, these fi ndings provide 
strong evidence that activation of the HIF system is a decisive step in cancer progression that 
critically shapes therapy response and clinical outcome. Recent insight into the precise mecha-
nisms of oxygen sensing and signalling has offered new promising and potentially selective 
strategies to counteract this crucial pathway.  
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12.1       Introduction 

 Oxygen is an indispensable substrate for aerobic metabolism and is therefore essen-
tial for the normal development and functioning of higher organisms. The effi cient 
distribution of oxygen to tissues is a main function of the  respiratory and cardiovas-
cular systems  . However, oxygen availability can vary greatly among individual cells 
and organs or during specifi c stages of development. While the arterial oxygen par-
tial pressure is 90 mmHg (corresponding to ~12.5 %) under physiological condi-
tions, differences in vascularization, tissue diffusion properties, and cell-specifi c 
oxygen consumption create a heterogeneous O 2  distribution, so that most tissues are 
exposed to lower oxygen concentrations. In particular, the brain experiences low O 2  
levels down to 1 mmHg [ 24 ]. Reduced levels of oxygen (hypoxia) activate a set of 
adaptive responses which either enhance oxygen delivery or decrease oxygen con-
sumption to promote survival under low oxygen conditions. Importantly, hypoxia 
arises not only in physiological situations, but is also a characteristic feature of vari-
ous  pathological conditions   [ 1 ]. Particularly prominent among those is the process 
of neoplastic transformation and progression.  Tumor growth and progression   occurs 
as a result of the cumulative acquisition of genetic and epigenetic alterations in 
individual cells, followed by the selection of tumor cell clones with enhanced pro-
liferation and survival potential. Once a tumor is formed, it creates a specialized 
microenvironment, which critically controls tumor progression. Highly proliferat-
ing tumors frequently outstrip their vascular supply leading to a tumor microenvi-
ronment characterized by low oxygen tension, low glucose levels, and an acidic pH. 
 Tumor hypoxia   is associated with an increased frequency of tumor invasion and 
metastasis and a poor therapy outcome. Notably, tumor cells not only adapt to sur-
vive under low oxygen, but also exploit hypoxia- induced mechanisms in order to 
promote their own growth and dissemination. Indeed, tumor hypoxia has become 
one of the main settings to study the mechanisms and functions of hypoxic signaling. 
Here, we will briefl y summarize the mechanisms of cellular  oxygen homeostasis   
and will focus on the function of hypoxic signaling in various aspects of  cancer 
progression and resistance  , as well as on possible strategies to target the hypoxic 
response as an  anti-tumor therapy  .  

12.2     The Hypoxic Response and HIF 

 Since their discovery in 1995 [ 105 ], the hypoxia inducible transcription factors 
(HIFs) have emerged as the key transcriptional system initiating adaptive responses 
to hypoxia. HIFs act as heterodimers composed of a shared, stable HIFβ subunit and 
specifi c oxygen-regulated HIFα subunits. The stability of the  α subunits   is mainly 
controlled by  prolyl hydroxylase domain proteins (PHDs)  , which use O 2  as a sub-
strate to hydroxylate HIFα and target it for proteasomal degradation [ 15 ,  23 ,  62 ], 
following ubiquitination by the E3 ubiquitin ligase pVHL [ 48 ,  70 ]. An additional 
level of oxygen-dependent control is conferred by another hydroxylase,  factor 
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inhibiting HIF-1α (FIH1)  , which modifi es asparaginyl residues and inhibits the 
interaction between HIFα and its transcriptional coactivators p300/CBP [ 51 ]. More 
recently a number of additional mechanisms that modulate the HIF pathway have 
been identifi ed, including the heat shock proteins HSP90 and HSP70, the histone 
deacetylases Sirt1 and Sirt6, TCA cycle-related metabolites, nitric oxide, the PHD 
E3 ubiquitin ligases Siah1/2, the microRNAs miR-17-92, and miR-107, as well as a 
number of oncogenes or tumor suppressor genes, e.g. PI3K/Akt, mTOR, Ras, p53 
(reviewed in [ 69 ]). This high level of complexity of HIF regulation, which often 
involves an elaborate set of  negative and positive feedback mechanisms   [ 41 ], allows 
for precise, fi ne-tuned control of hypoxia-mediated responses and highlights the 
central importance of HIF signaling in cellular homeostasis [ 3 ]. In addition, hypoxia 
initiates adaptive responses independent of HIF through other  redox sensitive sys-
tems  , including activation of the NF-κB pathway, or global protein synthesis inhibi-
tion through the AMPK/mTOR or PERK/eIF2α pathways [ 11 ,  100 ], although the 
mechanisms mediating the O 2  dependence of these processes are less well 
understood. 

 There are two principal HIFα  subunits  , HIF-1α and HIF-2α, which mediate the 
hypoxic response through transcriptional regulation of an ever-growing number of 
genes. Although the functions of HIF-1α and HIF-2α partially overlap, it is now 
clear that the two isoforms are differently regulated by oxygen, are expressed in 
distinct normal and neoplastic cell types, possess different target specifi cities and 
generally appear to have complementary rather than redundant functions, as 
described in more detail in the following sections.  

12.3     The Hypoxic Response and the Hallmarks of Cancer 

  Hypoxic signaling   activates a large number of downstream biological responses, 
which together promote most of the defi ning properties of  tumors   (Fig.  12.1 .) [ 4 ,  11 ]. 
One of the primary effects of hypoxia is the induction of a shift in cellular metabolism 
from oxidative phosphorylation to anaerobic glycolysis via HIF- mediated upregula-
tion of glucose transporters and glycolytic enzymes [ 60 ]. This is accompanied by the 
upregulation of  carbonic anhydrase IX (CA IX)  , transporters for lactate, H + , HCO 3  –

 and other ions, as an adaptive mechanism of  pH homeostasis  , leading to a net acidifi -
cation of the extracellular tumor environment. A decreased pH is a characteristic 
feature of many tumor types and has been shown to promote tumor growth and meta-
static spread, at least in part through activation of extracellular matrix-degrading 
enzymes [ 18 ]. Another key response to tumor hypoxia is the stimulation of angiogen-
esis in order to improve the blood and oxygen supply of tumor cells. It is well estab-
lished that tumors induce the formation of new vasculature as a key event in multistage 
carcinogenesis, a phenomenon termed “ angiogenic switch”   [ 8 ]. This is mainly 
accomplished through the upregulation of multiple angiogenic genes as direct HIF 
targets, including components of the VEGF, angiopoietin, and SDF-1 pathways [ 85 ].
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    Hypoxia   also plays an important role in the regulation of tumor cell proliferation 
and cell cycle progression, via the control of growth factors (e.g. TGFs, IGFs), 
oncogenes (c-myc), the PI3K/Akt pathway, p21, cyclins, and telomerase [ 88 ,  92 ]. 
The regulation of  tumor cell death   is another major aspect of cancer cell biology 
modulated by the hypoxic response. HIFs can activate  proapoptotic genes   such as 

  Fig. 12.1    Major aspects of tumor biology regulated by  hypoxia  . HIFs regulate multiple cellular 
processes relevant to tumor progression in response to hypoxia through trancscriptional upregula-
tion of HIF-1α and/or HIF-2α target genes. In some cases, however, alternative mechanisms are 
involved, such as HIF-mediated protein stabilization (p53) or modulation of transcriptional activ-
ity (c-myc, Notch).  Ang-1/2  angiopoietin 1/2,  BNIP3  BCL2/adenovirus E1B 19 kDa interacting 
protein 3,  CA IX/XII  carbonic anhydrase IX/XII,  CXCR4  C-X-C chemokine receptor type 4,  DLL4  
delta-like protein 4,  GAPDH  glyceraldehyde-3-phosphate-dehydrogenase,  GLUT1  glucose trans-
porter 1,  HK  hexokinase,  IAP-2  inhibitor of apoptosis protein 2,  ID-1/2  inhibitor of DNA binding 
1/2,  IGF2  insulin-like growth factor 2,  IL-1/12  interleukin 1/12,  LDH  lactate dehydrogenase,  LOX  
lysyl oxidase,  MCT4  monocarboxylate transporter 4,  MMP1/2  matrix metalloproteinase 1/2, 
 NHE1  Na+/H+ exchanger 1,  NIX  NIP3-like protein X,  NF-κB  nuclear factor kappa-light-chain- 
enhancer of activated B cells,  PDGF  platelet-derived growth factor,  PFK  phosphofructokinase, 
 PGM  phosphoglycerate mutase,  PKM  pyruvate kinase M,  PI3K  phosphatidylinositol 3-kinase, 
 REDD1  protein regulated in development and DNA damage response 1,  TERT  telomerase reverse 
transcriptase,  TGF  transforming growth factor,  Tie-2  tunica interna endothelial cell kinase 2, 
 TLR2/6  Toll-like receptor 2/6,  TNF  tumor necrosis factor,  SDF-1  stromal cell-derived factor 1, 
 uPAR  urokinase plasminogen activator receptor,  VEGF-A  vascular endothelial growth factor A, 
 VEGFR1/2  vascular endothelial growth factor receptor 1/2,  ZEB1/2  zinc fi nger E-box-binding 
homeobox 1/2       
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BNIP3, NIX, and REDD1 [ 92 ] and can stabilize p53 [ 6 ]. However, tumor cells 
develop various mechanisms to evade hypoxia-induced cell death, e.g. by HIF- 
dependent upregulation of  anti-apoptotic molecules   such as IAP-2 and survivin or 
by exerting a selective pressure to acquire p53 mutations under hypoxia [ 34 ,  36 ,  78 ]. 
Moreover, we have shown that HIF-1/2α induce the expression of PHD2 and 
PHD3, which act in a negative feedback loop even under low O 2  concentrations to 
protect tumor cells against hypoxia-induced cell death by dampening the HIF 
response [ 42 ]. 

 Solid tumors trigger an intrinsic smoldering infl ammatory response modulated 
so as to create a  protumorigenic environment  , which plays a critical role at different 
stages of tumor progression [ 37 ]. Hypoxia/HIFs are central mediators of this pro-
cess by modulating key aspects of immune cell function and infl ammation to pro-
mote an immunosuppressive environment. This is mediated for example through 
the control of immune cell adhesion (via induction of β2 integrin), expression of 
toll-like receptors, production of NO, proinfl ammatory cytokines (e.g. TNF, IL-1, 
IL-12), and activation of NF-κB signaling [ 47 ,  76 ]. An additional central aspect of 
cancer progression that is under the control of hypoxia is tumor cell invasion and 
metastasis. Hypoxia can induce the process of  epithelial-mesenchymal transition 
(EMT)     , which is thought to be an essential early determinant of metastatic dissemi-
nation [ 109 ]. Hypoxic signaling suppresses the expression of the epithelial cell 
adhesion molecule  E-cadherin  , an essential step of EMT [ 26 ], through HIF-1α or 
HIF-2α-dependent upregulation of EMT transcriptional repressors of the SNAI, 
ZEB, or TWIST families [ 27 ,  46 ,  59 ,  61 ,  110 ]. Furthermore, hypoxia can promote 
metastasis via upregulation of pro-invasive and metastatic HIF target genes includ-
ing  extracellular matrix-remodelling proteins   such as  lysyl oxidase (LOX)   and  uro-
kinase plasminogen activator receptor (uPAR)   [ 25 ,  58 ], matrix metalloproteinases 
[ 94 ] and the prometastatic chemokine receptor CXCR4 [ 79 ,  98 ,  111 ]. 

 Additionally, hypoxia plays an essential role in the regulation of the self-renewal 
and differentiation of physiological stem cells in a variety of tissues, at least in part 
through the transcriptional activation of central stem cell regulators such as Oct4, 
Notch, and c-myc [ 53 ]. Importantly, work by us and others has demonstrated that 
hypoxia also has a critical function in the maintenance of  cancer stem cells (CSCs)     , 
a population of tumor cells with properties of stem cells, that drives tumor initiation 
and progression [ 30 ]. Hypoxia promotes the self-renewal of CSCs, particularly in 
 glioblastoma   [ 40 ,  72 ,  91 ], while HIF knockdown blocks this effect and reduces 
CSC-mediated tumor growth [ 65 ,  73 ,  91 ,  95 ]. Current evidence indicates that 
 HIF-2α   is the main isoform to promote CSC maintenance as HIF-2α, but not 
HIF-1α, is highly expressed and strongly upregulated by hypoxia in glioma CSCs 
[ 65 ], enhances the CSC phenotype [ 91 ] and promotes tumor growth [ 40 ]. Moreover, 
HIF-2α regulates crucial signaling pathways that are involved in stem cell 
 maintenance. HIF-2α interacts with and stabilizes the Notch ICD (intracellular 
domain), enhancing Notch signalling to control cellular differentiation [ 38 ]. 
Additionally, HIF-2α transcriptionally regulates Oct4 [ 21 ], a transcription factor 
that is important for the maintenance of the self renewal of embryonic stem cells 
and one of four factors necessary to induce pluripotency [ 99 ].  
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12.4     The Hypoxic Response and Tumor Progression 

 The brief overview provided above highlights the central role of hypoxic signaling 
in promoting the  “hallmarks of cancer”   [ 39 ,  88 ]. It is therefore not surprising 
that hypoxia and HIFs have been associated with tumor initiation and progres-
sion and a worse clinical outcome. It has been shown for a number of different 
cancer types that hypoxia correlates with a more aggressive tumor  phenotype, 
including enhanced angiogenesis, metastasis, recurrence, therapy resistance, 
and decreased patient survival [ 49 ]. In comparison to adjacent tissue widespread 
HIF activation can be seen in various tumors types, correlating with tumor 
growth and progression. HIF overexpression in tumors is a result of  hypoxia-
dependent and hypoxia-independent mechanism   such as oncogenic mutations or 
enhanced growth factor signalling. Various  oncogenic mutations   can directly 
lead to HIFα stabilization. For example, genetic alterations of pVHL are a char-
acteristic feature of clear cell renal cell carcinomas and are linked to accumula-
tion predominantly of HIF-2α [ 50 ]. In addition, activating mutations of PI3K, 
Akt, and Ras, as well as inactivating mutations of PTEN and TSC2 result in 
enhanced HIF-1α transcription, translation, or stabilization [ 14 ,  31 ]. An ele-
vated expression of HIFs has been associated with multiple cancers, based on 
immunohistochemical analysis. HIF-1α has been found to be upregulated com-
pared to the nonmalignant tissue in a broad variety of tumor  types  , including 
oligodendroglioma, breast, cervical, colon, ovarian, endometrial, lung, prostate, 
bladder, pancreatic, and oropharyngeal cancer [ 49 ,  92 ]. In most of these cancers 
higher HIF-1α levels have been associated with poor patient survival [ 11 ]. 
Elevated HIF-2α, on the other hand has been linked to worse  prognosis in a 
distinct set of tumor entities, including clear cell renal carcinoma, non-small-
cell lung carcinoma, head and neck squamous cell carcinoma,  neuroblastoma, 
and glioma [ 65 ,  82 ]. 

 In support of a distinct,  nonredundant function   of the two main HIFα isoforms, 
HIF-1α overexpression correlated with decreased patient mortality in head and neck 
cancer and non-small-cell lung cancer, in both of which HIF-2α showed the oppo-
site association [ 92 ]. Furthermore, silencing of HIF-2α, but not HIF-1α, in a number 
of cancer cell lines reduced cell proliferation and tumor growth [ 29 ]. Such func-
tional differences between HIF-1α and HIF-2α could be due to differential expres-
sion in the different tumor entities, as well as to the distinct sets of target genes 
controlled by the two  isoforms   [ 41 ]. In addition, the two HIFα subunits can modu-
late the activity of key oncogenes or tumor  suppressors   in opposing fashion. For 
example, HIF-1α antagonizes myc transcriptional activity, while HIF-2α promotes 
it [ 32 ].  Renal cell carcinomas   that express HIF-2α but not HIF-1α upregulate myc 
target genes, have increased proliferation and enhanced resistance to replication 
stress [ 33 ]. HIF-1α and HIF-2α also have contrasting effects of the function of  p53  : 
while HIF-1α binds to p53 and stabilizes it [ 6 ,  75 ], HIF-2α indirectly suppresses 
p53, promoting radio- and chemoresistance [ 10 ,  86 ]. Compared to HIF-1α, HIF- 2α   
accumulates at higher oxygen concentrations [ 43 ,  108 ], which more closely resem-
ble the in vivo conditions under which tumors arise and grow. At the same time, 
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while HIF-1α gets only transiently upregulated under chronic hypoxia, HIF-2α lev-
els remain elevated in these conditions [ 44 ]. In addition, HIF-2α appears to be the 
primary isoform regulating the self-renewal capacity of the CSC pool [ 65 ,  91 ], 
which may have different contributions to the progression of distinct tumor entities 
[ 54 ,  83 ]. 

 Although HIFs are typically perceived as  protumorigenic molecules  , in some 
settings they can also act as tumor suppressors. For example, HIF-1α-defi cient 
teratomas grow faster due to the refractoriness of the mutant tumor cells to 
stress- induced apoptosis [ 16 ]. Similarly, HIF-1α and HIF-2α were stabilized in 
Vhl−/− ES cells, but the resulting teratomas were smaller than in controls [ 68 ]. 
Furthermore, HIF-2α overexpression in glioma cells enhanced apoptosis and 
decreased tumor growth, whereas HIF-2α inhibition or genetic deletion had the 
reverse effect [ 2 ]. The complexity of HIF function in  tumorigenesis   was further 
highlighted by studies using a  Kras mutant lung tumor model  . Expression of 
nondegradable HIF-2α in this system increased tumor burden, angiogenesis, 
EMT, and decreased survival [ 55 ]. Paradoxically, deletion of HIF-2α in the same 
model also promoted tumorigenesis, whereas HIF-1α deletion had no apparent 
effect [ 71 ]. Such contrasting results indicate that the effect of HIFs on tumor 
progression is likely to depend on the cellular context as well as the precise 
extent of functional inhibition or activation of specifi c isoforms and the balance 
of competing signaling pathways that can be activated by their stimulation or 
suppression [ 69 ]. 

 In glioma, hypoxia plays a prominent role in several aspects. First, the character-
istic necrotic regions which represent one of the key criteria for the histological 
diagnosis of  glioblastoma (GBM)   are associated with hypoxia [ 49 ]. Hypoxia and 
the activation of HIF also contribute to the second characteristic feature of  GBM  , 
the high degree of vascularization [ 2 ]; the GBM microcirculation, however, is leaky 
and functionally ineffi cient, failing to restore normal oxygenation [ 103 ]. Glioma 
cells overexpress HIF-1α and HIF-2α both in culture and in situ, especially in the 
perinecrotic pseudopalisading areas [ 49 ,  91 ]. Interestingly, the cells found in those 
regions have been implicated in hypoxia-induced migration away from the necrotic 
areas [ 12 ,  84 ]. Furthermore, the expression of classical HIF target genes like CA IX 
and glucose transporter 1 (Glut-1) correlates with higher brain tumor grade and 
poor response to treatment [ 28 ,  45 ,  52 ,  67 ,  89 ,  96 ,  102 ,  112 ]. Finally, as discussed 
above, hypoxia and HIF-2α play a particularly prominent role in the maintenance of 
glioma CSCs within a hypoxic niche, which is thought to be responsible for deter-
mining key aspects of GBM malignancy [ 30 ].  

12.5      Hypoxia and Therapy Resistance   

 The capacity of hypoxia to protect tumor cells from radiation damage was fi rst 
noted in the 1950s and has been extensively corroborated since then (reviewed in 
[ 11 ]). In GBM, for example, elevated hypoxia before radiotherapy is strongly 
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associated with decreased time to progression and patient survival [ 97 ]. In addition, 
hypoxic cells have an increased resistance to a variety of standard chemotherapeu-
tic agents [ 101 ]. Hypoxic signaling converges on multiple pathways that contribute 
to therapy resistance. For example, hypoxia selects for cancer cell clones with 
mutant p53, a key mediator of therapy-induced apoptosis [ 34 ]. Additionally, in 
GBM cells hypoxia induces the activation of the antiapoptotic protein Bad and 
subsequent inhibition of programmed cell death [ 74 ]. Moreover, the multidrug 
resistance gene MDR1 is a direct HIF-1α target, which can mediate the effl ux of 
chemotherapeutic drugs [ 20 ,  106 ]. The ability of hypoxia to increase the CSC pool, 
as discussed above, may provide an additional explanation for the decreased sensi-
tivity of hypoxic tumors to treatment. Indeed, a series of studies have demonstrated 
that CSC have enhanced resistance to chemo- and radiotherapy [ 30 ]. This is due to 
a combination of properties characteristic of CSCs, including the high expression 
of ABC drug pumps, relative quiescence, resistance to oxidative DNA damage and 
enhanced DNA repair capacity [ 7 ,  90 ]. The increased resistance of CSCs, com-
bined with the ability of only a very small number of CSCs to reinitiate tumor 
growth is thought to be a major reason for cancer persistence and relapse after 
treatment. 

  Anti-angiogenic therapies   have become an established tool in the treatment of 
several cancers, including colorectal, lung, breast cancer, and GBM [ 66 ]. However, 
following the initial wave of enthusiasm, it has become clear that the inhibition of 
angiogenesis has complex consequences and smaller than expected benefi ts for 
cancer patients. Typically tumor shrinkage is initially observed, but this is fol-
lowed by adaptation and renewed growth of the tumor, often resulting only in 
extension of progression-free survival, but not overall  survival  . The major problem 
underlying the relative ineffi cacy of angiogenic therapies is that tumors quickly 
adapt and manage to circumvent them. The mechanisms of this “evasive resis-
tance”    are poorly understood, but preclinical studies have started to suggest several 
possible explanations. By defi nition, anti-angiogenic agents are designed to curtail 
the blood supply of the tumor, thus inducing tumor hypoxia. This may provide one 
key explanation of the limited therapeutic effi ciency of current anti-angiogenic 
drugs, since hypoxia activates a number of mechanisms that contribute to the eva-
sive resistance following anti-angiogenic therapy. As discussed above, several 
alternative proangiogenic signals are HIF target genes. In addition, hypoxia 
enhances the recruitment of bone marrow derived cells to the tumor, which can 
promote the formation of blood vessels either through secretion of cytokines and 
growth factors or through direct differentiation into blood vessel cells, such as 
endothelial cells or pericytes [ 8 ]. Interestingly, inhibition of angiogenesis also elic-
its enhanced local invasion and distant metastasis in different tumor types, includ-
ing breast tumors, pancreatic neuroendocrine tumors,  melanoma, and glioma [ 22 , 
 77 ]. The elevated hypoxia observed under these conditions [ 77 ] suggests several 
possible mechanisms for  anti-angiogenesis   driven metastasis, as outlined in the 
previous  sections  , however, the precise pathways involved in the evasive resistance 
phenotype remain to be elucidated.  
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12.6     Strategies for Therapeutic Targeting of Tumor Hypoxia 

 Based on the realization that hypoxia plays a key role at various steps of  tumor pro-
gression and resistance  , substantial effort has been invested in targeting or exploit-
ing  tumor hypoxia   as an  anti-cancer therapeutic strategy   (Fig.  12.2 ). Early attempts 
were aimed at preventing hypoxia by increasing tumor oxygenation during irradia-
tion, but the clinical effi cacy of such interventions was unsatisfactory [ 11 ]. Given 
the relevance of the hypoxic tumor fraction in shaping the tumor phenotype, a dif-
ferent strategy is to take advantage of the hypoxic state of tumor cells in order to 
selectively eliminate them. Several chemical classes of agents have been proposed 
which can be specifi cally converted from a nontoxic to a toxic form by reduction 
under low oxygen conditions [ 13 ]. An example of such a hypoxia activated prodrug 
is  tirapazamine  . In hypoxic cells, it gives rise to free radical species which block the 
function of topoisomerase II and lead to double-stranded DNA breaks. Phase III 
clinical trials of tirapazamine in combination with chemotherapy have demonstrated 
benefi ts in lung cancer patients [ 104 ]. Another bioreductive prodrug, the potent 
DNA intercalator and topoisomerase poison AQ4N, has shown selective activation 
in hypoxic regions in phase I trials [ 5 ]. Other classes of drugs (e.g. CB 1954 or SN 
23862) are designed to release more stable cytotoxins upon reduction, which can 
diffuse away from hypoxic cells and kill additional cells in the tumor, in a “ bystander 
effect  ” [ 13 ].

  Fig. 12.2    Strategies for therapeutic targeting of  tumor hypoxia   ( a ) The hypoxic state of tumor 
cells can be exploited for the chemical conversion of prodrugs into a toxic form under the reducing 
conditions created by the shortage of O 2 . ( b ) The stabilization of HIFs under hypoxia can also be 
used for driving the expression of cytotoxic gene products in hypoxic cells. ( c ) A third strategy is 
to interfere with the tumor promoting functions of hypoxic signalling, e.g. by specifi c targeting of 
components of the HIF pathway. Shown below the schemes are specifi c compounds or types of 
genes that are being explored in preclinical studies or clinical trials. FG-2216 and FG-4592 are 
PHD inhibitors currently in clinical trials for renal anemia [ 9 ,  17 ,  69 ]       
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   An alternative set of approaches in preclinical development aims to exploit tumor 
hypoxia for the selective activation of gene expression. Such  hypoxia- targeted gene 
therapy   approaches involve constructs containing HIF-binding sequences ( hypoxia 
response elements (HREs))  , which are virally transduced into tumor cells and drive 
transcription of therapeutic genes in cells that experience hypoxia. Examples of 
such strategies include the hypoxia-dependent expression of proapoptotic genes 
[ 87 ] or of prodrug-activating enzymes [ 93 ]. Others have designed conditionally rep-
licative oncolytic viruses that are specifi cally activated in hypoxic cells, causing 
their lysis [ 81 ]. A somewhat different approach consists in the coupling of diphthe-
ria toxin to the  oxygen-dependent degradation domain (ODD)      of HIF-1α [ 57 ]. 
Under normoxic conditions such a fusion protein would be targeted for proteasomal 
degradation following ubiquitination of the ODD, however, under hypoxia it would 
be stabilized allowing the toxin to kill the hypoxic cell. 

 The largest group of hypoxia-targeting agents in current development are cen-
tered around HIF and the molecules that regulate its stability and function. Being a 
transcription factor, HIF represents a challenging target, but several different 
approaches have provided interesting hits. Interestingly, a surprisingly broad array 
of established drugs has been shown to suppress HIFα stability or activity. Examples 
include the HSP90 antagonists geldanamycin and 17-AAG, the histone deacetylase 
inhibitors trichostatin A and FK228, the DNA intercalating agents doxorubicin, 
daunorubicin, and acrifl avine, the topoisomerase inhibitor topotecan, cardiac glyco-
sides, as well as inhibitors of central signal transduction pathways like Ras/MAPK, 
PI3K/Akt, and mTOR [ 63 ,  64 ,  80 ]. While there is evidence that some of the anti- 
cancer effects of these drugs may be mediated by HIF inhibition [ 63 ,  64 ], the diver-
sity of “nonselective”  compounds   that block HIF may rather be seen as an indication 
of the central role of this protein in the control of cellular homeostasis, than as an 
optimal strategy for the design of HIF-targeted therapies. More specifi c strategies to 
suppress HIF activity include the blockade of HIF-1α/HIF-1β dimerization or HIF 
binding to p300/CBP, which has been achieved with small molecule inhibitors such 
as rolitetracycline, chetomin, or YC-1 [ 80 ]. A specifi c inhibitor of HIF-1α transla-
tion, PX-478, exhibited antitumor activity against human xenografts and is cur-
rently in phase I clinical  trials   [ 56 ,  107 ]. The RNA antagonist of HIF-1α, EZN-2968, 
inhibits tumor cell growth and is also being tested in phase I clinical trials [ 35 ,  69 ]. 
A further possibility for suppressing HIF function is to promote activation of PHDs. 
For instance, a potent small molecule activator of PHD2, KRH102053, has been 
shown to decrease HIF-1α levels in tumor cells [ 19 ]. In principle, a variety of RNAi 
or gene therapy  approaches  , e.g. aimed at the silencing of HIFs, expression of domi-
nant negative HIF mutants or overexpression of PHDs are potentially powerful 
alternative treatment strategies, provided that safe and effi cient methods for clinical 
delivery become available. 

 It has to be noted that nearly all therapeutic agents so far have been targeted 
against the more ubiquitous family member HIF-1α. However, as discussed in the 
previous sections,  HIF-2α   plays a dominant role in some tumor types or subpopula-
tions of tumor cells, such as CSCs. Small molecule inhibitors have been identifi ed, 
which suppress HIF-2α translation in renal cell carcinoma cells through a mecha-
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nism dependent on an iron response element in the 5′ UTR of the HIF-2α mRNA; 
however, the same compounds also decreased the levels of HIF-1α, albeit via unre-
lated mechanisms [ 113 ]. Therefore concentrating greater efforts on specifi cally tar-
geting the HIF-2α isoform remains an important objective for future  drug discovery 
screens  . In addition, given that under some circumstances HIFs can also elicit tumor 
suppressive functions (see above), exploring HIF activating strategies, e.g. by using 
 PHD inhibitors  , may in some cases also prove valuable. Our own work, for exam-
ple, has shown that PHD inhibition in GBM cells facilitates cell death induction by 
staurosporine or TRAIL [ 42 ]. 

 Our growing understanding of the mechanisms mediating the hypoxic response 
and the signaling pathways involved in its regulation have allowed us to more fully 
comprehend central aspects of  tumor cell biology and malignant progression  . Our 
deepened knowledge of O 2  homeostasis in tumors has formed the basis for the 
design of novel therapeutic strategies targeted at  hypoxic signaling  , which carry the 
potential to become a powerful weapon in our battle against cancer.     
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