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Preface

This book is based on the Association for the Advancement of Artificial Intelligence
(AAAI) Symposium on “The Intersection of Robust Intelligence (RI) and Trust in
Autonomous Systems”; the symposium was held at Stanford March 24–26, 2014.
The title of this book reflects the theme of the symposium. Our goal for this book
is to further address the current state of the art in autonomy at the intersection of RI
and trust and to more fully examine the existing research gaps that must be closed
to enable the effective integration of autonomous and human systems. This research
is particularly necessary for the next generation of systems, which must scale to
teams of autonomous platforms to better support their human operators and decision
makers.

The book explores the intersection of RI and trust across multiple contexts and
among arbitrary combinations of humans, machines, and robots. To help readers
better understand the relationships between artificial intelligence (AI) and RI in a
way that promotes trust among autonomous systems and human users, this edited
volume presents a selection of the underlying theories, computational models,
experimental methods, and possible field applications. While other books deal with
these topics individually, this book is unique in that it unifies the fields of RI and
trust and frames them in the broader context of effective integration for human-
autonomous systems.

The volume begins by describing the current state of the art for research in RI and
trust presented at Stanford University in the Spring of 2014 (copies of the technical
articles are available from AAAI at http://www.aaai.org/Library/Symposia/Spring/
ss14-04.php; a link to the presentation materials and photographs of participants is
at https://sites.google.com/site/aaairobustintelligence/).

After the introduction, chapter contributors elaborate on key research topics at
the heart of effective human-systems integration. These include machine learning,
Big Data, workload management, human-computer interfaces, team integration
and performance, advanced analytics, behavior modeling, training, and test and
evaluation, the latter known as V&V (i.e., verification and validation).

The contributions to this volume are written by world-class leaders from across
the field of autonomous systems research, ranging from industry to academia and to

v
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government. Given the diversity of the research in this book, we strove to thoroughly
examine the challenges and trends of systems that exhibit RI; the fundamental
implications of RI in developing trusted relationships among humans, machines,
and robots with present and future autonomous systems; and the effective human
systems integration that must result for trust to be sustained.

A brief summary is presented below of the AAAI Symposium in the Spring of
2014.

AAAI-2014 Spring Symposium Organizers

Jennifer Burke, Boeing: jennifer.l.burke2@boeing.com
Alan Wagner, Georgia Tech Research Institute: Alan.Wagner@gtri.gatech.edu
Donald Sofge, Naval Research Laboratory: don.sofge@nrl.navy.mil
William F. Lawless, Paine College: wlawless@paine.edu

AAAI-2014 Spring Symposium: Keynote Speakers

• Suzanne Barber, barber@mail.utexas.edu, AT&T Foundation Endowed Pro-
fessor in Engineering, Department of Electrical and Computer Engineering,
Cockrell School of Engineering, U Texas

• Julie L. Marble, julie.marble@navy.mil, Program Officer: Hybrid human com-
puter systems at Office of Naval Research, Washington, DC

• Ranjeev Mittu, ranjeev.mittu@nrl.navy.mil, Branch Head, Information Manage-
ment & Decision Architectures Branch, Information Technology Division, US
Naval Research Laboratory, Washington, DC

• Hadas Kress-Gazit, hadaskg@cornell.edu, Cornell University; High-Level Veri-
fiable Robotics

• Satyandra K. Gupta, skgupta@umd.edu, Director, Maryland Robotics Center,
University of Maryland

• Dave Ferguson, daveferguson@google.com, Google’s Self-Driving Car project,
San Francisco

• Mo Jamshidi, mo.jamshidi@usta.edu, University of Texas at San Antonio,
Lutcher Brown Endowed Chair and Professor, Computer and Electrical Engi-
neering

• Dirk Helbing, dirk.helbing@gess.ethz.ch, http://www.futurict.eu; ETH Zurich

http://www.futurict.eu
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Symposium Program Committee

• Julie L. Marble, julie.Marble@jhuapl.edu, cybersecurity, Johns Hopkins
Advanced Physics Lab, MD

• Ranjeev Mittu, ranjeev.mittu@nrl.navy.mil, Branch Head, Information Manage-
ment & Decision Architectures Branch, Information Technology Division, U.S.
Naval Research Laboratory, Washington, DC

• David Atkinson, datkinson@ihmc.us, Senior Research Scientist, Institute of
Human-Machine Cognition (IHMC)

• Jeffrey Bradshaw, jbradshaw@ihmc.us; Senior Research Scientist, Institute of
Human-Machine Cognition (IHMC)

• Lashon B. Booker, booker@mitre.org, The MITRE Corporation
• Paul Hyden, paul.hyden@nrl.navy.mil, Naval Research Laboratory
• Holly Yanco, holly@cs.uml.edu, University of Massachusetts Lowell
• Fei Gao, feigao@MIT.EDU.MIT
• Robert Hoffman, rhoffman@ihmc.us, Senior Research Scientist, Institute of

Human-Machine Cognition (IHMC)
• Florian Jentsch, florian.Jentsch@ucf.edu, Department of Psychology and Insti-

tute for Simulation & Training, Director, Team Performance Laboratory, Uni-
versity of Central Florida

• Howell, Chuck, howell@mitre.org, Chief Engineer, Intelligence Portfolio,
National Security Center, The MITRE Corporation

• Paul Robinette, probinette3@gatech.edu, Graduate Research Assistant, Georgia
Institute of Technology

• Munjal Desai, munjaldesai@google.com
• Geert-Jan Kruijff, gj@dfki.de, Senior Researcher/Project Leader, Language

Technology Lab, DFKI GmbH, Saarbruecken, Germany

This AAAI symposium sought to address these topics and questions:

• How can robust intelligence be instantiated?
• What is RI for an individual agent? A team? Firm? System?
• What is a robust team?
• What is the association between RI and autonomy?
• What metrics exist for robust intelligence, trust, or autonomy between individuals

or groups, and how well do these translate to interactions between humans and
autonomous machines?

• What are the connotations of “trust” in various settings and contexts?
• How do concepts of trust between humans collaborating on a task differ from

human-human, human-machine, machine-human, and machine-machine trust
relationships?

• What metrics for trust currently exist for evaluating machines (possibly including
such factors as reliability, repeatability, intent, and susceptibility to catastrophic
failure), and how may these metrics be used to moderate behavior in collaborative
teams including both humans and autonomous machines?
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• How do trust relationships affect the social dynamics of human teams, and are
these effects quantifiable?

• What validation procedures could be used to engender trust between a human
and an autonomous machine?

• What algorithms or techniques are available to allow machines to develop trust
in a human operator or another autonomous machine?

• How valid are the present conceptual models of human networks? Mathematical
models? Computational models?

• How valid are the present conceptual models of autonomy in networks? Mathe-
matical models? Computational models?

Papers at the symposium specified the relevance of their topic to AI or proposed a
method involving AI to help address their particular issue. Potential topics included
(but were not limited to) the following:

Robust Intelligence (RI) topics:

• Computational, mathematical, conceptual models of robust intelligence
• Metrics of robust intelligence
• Is a model of thermodynamics possible for RI (i.e., using physical thermody-

namic principles, can intelligent behavior be addressed in reaction to thermody-
namic pressure from the environment?)?

Trust topics:

• Computational, mathematical, conceptual models of trust in autonomous systems
• Human requirements for trust and trust in machines
• Machine requirements for trust and trust in humans
• Methods for engendering and measuring trust among humans and machines
• Metrics for deception among humans and machines
• Other computational and heuristic models of trust relationships, and related

behaviors, in teams of humans and machines

Autonomy topics:

• Models of individual, group, and firm autonomous system behaviors
• Mathematical models of multitasking in a team (e.g., entropy levels overall and

by individual agents, energy levels overall and by individual agents)

Network topics:

• Constructing, measuring, and assessing networks (e.g., the density of chat
networks among human operators controlling multi-unmanned aerial vehicles)

• For networks, specify whether the application is for humans, machines, robots,
or a combination, e.g., the density of inter-robot communications
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After the symposium was completed, the book and the symposium took on sepa-
rate lives. The following individuals were responsible for the proposal submitted to
Springer after the symposium, for the divergence between the topics of the two, and
for editing the book that has resulted.

Washington, DC, USA Ranjeev Mittu
Washington, DC, USA Donald Sofge
Atlanta, GA, USA Alan Wagner
Augusta, GA, USA W.F. Lawless
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Chapter 1
Introduction

RanjeevMittu, Donald Sofge, AlanWagner, and W. F. Lawless

1.1 The Intersection of Robust Intelligence (RI) and Trust
in Autonomous Systems

The Intersection of Robust Intelligence (RI) and Trust in Autonomous Systems
addresses the current state-of-the-art in autonomy at the intersection of Robust
Intelligence (RI) and trust, and the research gaps that must be overcome to enable
the effective integration of autonomous and human systems. This is particularly
true for the next generation of systems, which must scale to teams of autonomous
platforms to better support their human operators and decision makers. This edited
volume explores the intersection of RI and trust across multiple contexts among
autonomous hybrid systems (where hybrids are arbitrary combinations of humans,
machines and robots). To better understand the relationships between Artificial
Intelligence (AI) and RI in a way that promotes trust between autonomous systems
and human users, this edited volume explores the underlying theory, mathematics,
computational models, and field applications.

To better understand and manage RI with AI in a manner that promotes trust
in autonomous agents and teams, our interest is in the further development of
theory, network models, mathematics, computational models, associations, and field

R. Mittu • D. Sofge
Naval Research Laboratory, 4555 Overlook Ave SW, Washington, DC 20375, USA
e-mail: ranjeev.mittu@nrl.navy.mil; donald.sofge@nrl.navy.mil

A. Wagner
Georgia Tech Research Institute, 250 14th Street NW, Atlanta, GA 30318, USA
e-mail: Alan.Wagner@gtri.gatech.edu

W.F. Lawless (�)
Paine College, 1235 15th Street, Augusta, GA 30901, USA
e-mail: WLawless@paine.edu

© Springer Science+Business Media (outside the USA) 2016
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2 R. Mittu et al.

applications at the intersection of RI and trust. We are interested not only in
effectiveness with a team’s multitasking or in constructing RI networks and models,
but in the efficiency and trust engendered among interacting participants.

Part of our symposium in 2014 sought a better understanding of the intersection
of RI and trust for humans interacting with other humans and human groups (e.g.,
teams, firms, systems; also, the networks among these social objects). Our goal is
to use this information with AI to not only model RI and trust, but also to predict
outcomes from interactions between autonomous hybrid groups (e.g., hybrid teams
in multitasking operations).

Systems that learn, adapt, and apply their experience to the problems faced in
an environment may be better suited to respond to new and unexpected challenges.
One could argue that such systems are “robust” to the prospect of a dynamic and
occasionally unpredictable world. We expect the systems that exhibit this type of
robustness to afford to those who interact with the system a greater degree of
trust. For instance, an autonomous vehicle which, in addition to driving to different
locations by itself, can also warn a passenger of locations where it should not drive,
might likely be viewed as more robust than a similar system without such a warning
capability. But would it be viewed as more trustworthy? This workshop endeavored
to examine such questions that lay at the intersection of robust intelligence and
trust. Problems such as these are particularly difficult because they imply situational
variations that may be hard to define.

The focus of our workshop centered on how robust intelligence impacts trust in
the system and how trust in the system makes it more or less robust. We explored
approaches to RI and trust that included, among others, intelligent networks,
intelligent agents, and multitasking by hybrid groups (i.e., arbitrary combinations
of humans, machines and robots).

1.2 Background of the 2014 Symposium

Robust intelligence (RI) has not been easy to define. We proposed an approach to
RI with artificial intelligence (AI) that may include, among other approaches, the
science of intelligent networks, the generation of trust among intelligent agents, and
multitasking among hybrid groups (humans, machines and robots). RI is the goal
of several government projects to explore the intelligence as seen at the level of
humans, including those directed by NSF (2013); the US Army (Army 2014) and
the USAF (Gluck 2013). DARPA (2014) has a program on physical intelligence
that is attempting to produce the first example of ““intelligent” behavior under
thermodynamic pressure from their environment.” Carnegie Mellon University
(CMU 2014) has a program to build a robot that can execute “complex tasks in
dangerous : : : environments.” IEEE (2014) has the journal Intelligent Systems
to address various topics on intelligence in automation including trust; social
computing; health; and, among others, coalitions that make the “effective use
of limited resources to achieve complex and multiple objectives.” From another
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perspective, IBM has built a program that beat the reigning world champion
at chess in 1997; another program that won at the game of Jeopardy in 2011
(du Sautoy 2014); and an intelligent operations center for the management of cities,
transportation, and water (IBM 2014). Multiple other ways may exist to define or
approach RI, and to measure it.

In an attempt to advance AI with a better understanding and management of RI,
our interest is in the theory, network models, mathematics, computational models,
associations, and field applications of RI. This means that we are interested in not
only effectiveness with multitasking or in constructing RI networks and models, but
in the efficiency and trust engendered among the participants during interactions.

Part of the goal in this symposium was to find a better understanding of RI and
the autonomy it produces with humans interacting with other humans and human
groups (e.g., teams, firms, systems; also, networks among these social objects). Our
ultimate goal is to use this information with AI to not only model RI and autonomy,
but also in the predictions of the outcomes from interactions between hybrid groups
that interdependently generate networks and trust.

For multitasking with human teams and firms, interdependence is an important
element in their RI: e.g., the Army is attempting to develop a robot that can
produce “a set of intelligence-based capabilities sufficient to enable the teaming
of autonomous systems with Soldiers” (Army 2014); and ONR is studying robust
teamwork (ONR 2013). But a team’s interdependence also introduces uncertainty,
fundamentally impacting measurement (Lawless et al. 2013).

Unlike conventional computational models where agents act independently of
neighbors, where, for example, a predator mathematically consumes its prey or
not as a function of a random interaction process, interdependence means that
agents dynamically respond to the bi-directional signals of actual or potential
presence of other agents (e.g., in states poised to fight or flight), a significant
increase over conventional modeling complexity; as an example of interdependence
in Yellowstone’s National Park (Hannibal 2012):

aspen and other native vegetation, once decimated by overgrazing, are now growing up
along the banks : : : [in part] because elk and other browsing animals behave differently
when wolves are around. Instead of eating down to the soil, they take a bite or two, look up
to check for threats, and keep moving. [This means that the] greenery can grow tall enough
to reproduce.

That the problem of interdependence remains unsolved, mathematically and
conceptually, precludes hybrid teams based on artificial intelligence from processing
information like human teams operating under interdependent challenges and
perceived threats.

At this AAAI Symposium, we explored the various aspects and meanings of
robust intelligence, networks and trust between humans, machines and robots in
different contexts, and the social dynamics of networks and trust in teams or
organizations composed of autonomous machines and robots working together with
humans. We sought to identify and/or develop methods for structuring networks
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and engendering trust between agents, to consider the static and dynamic aspects
of behavior and relationships, and to propose metrics for measuring outcomes of
interactions.

1.3 Contributed Chapters

Chapter 2 is titled “Towards modeling the behavior of autonomous systems and
humans for trusted operations.” Its authors are Gavin Taylor, Ranjeev Mittu, Ciara
Sibley and Joseph Coyne. The first author is with the U.S. Naval Academy; and
authors Mittu, Sibley and Coyne are with the Naval Research Laboratory. In this
chapter, the authors have studied the promise offered to the Department of Defense
by autonomous robot and machine systems to improve its mission successes and
to protect its valuable human users; but this promise has been countered by the
increased complexity and workloads that have been placed on human supervisors
by these systems. In this new era, as autonomy increases, the trust humans place
in these systems becomes an important factor. Trust may depend on knowing
whether anomalies exist in these systems; whether the anomalies that do exist
can be managed; and whether these anomalies further affect the limitations of
the human supervisors (acknowledged but not studied in this chapter). Using a
mathematical manifold that captures a platform’s trajectories to represent the tasks
to be performed by an unassisted and unmanned autonomous system, the authors
propose an example that exploits the errors generated for alarms and system
analyses. The authors point out the existing research questions (e.g., user interaction
patterns) and challenges that must also be addressed, including the best way for
users to interact with autonomy; the optimized formal models of human decision-
making; the modeling of active decision contexts; and the adaptation of concept drift
techniques from the machine learning community.

Chapter 3 is titled “Learning trustworthy behaviors using an inverse trust
metric”; its authors are Michael W. Floyd and Michael Drinkwater with Knexus
Research Corporation, Springfield, Virginia; and David W. Aha, with the Navy
Center for Applied Research in Artificial Intelligence, Naval Research Laboratory,
Washington, DC. The authors present an algorithm by which a robot measures its
own trustworthiness—an inverse trust metric—and uses this information to adapt
its behavior, ideally becoming more trustworthy. They use case-based reasoning to
gauge whether or not some previously used behavior or set of behaviors is likely
to be trustworthy in the current environment. They present simulation experiments
demonstrating the use of this “inverse trust metric” in a patrol scenario. The authors
begin their chapter by assuming that those robots that can be trusted to perform
important tasks may become helpful to human teams, but only if the humans can
trust the robot as a member of a team to perform its assigned tasks as expected. But
how to determine trust on the fly is a difficult problem. Instead of asking users how
much they trust an autonomous agent, the authors use “inverse trust”. They estimate
the “inverse trust” for their concept as judged by the robot when determining its own

http://dx.doi.org/10.1007/978-1-4899-7668-0_2
http://dx.doi.org/10.1007/978-1-4899-7668-0_3
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performance while working for multiple human operators, or in front of multiple
human operators. Using simulation, the authors demonstrate the superiority of their
case-based reasoning approach to random learning for robot team members assisting
a human team. The authors conclude that more robotic uncertainty in performance
impedes trust.

Chapter 4 is titled “ ‘Trust V’—Building and measuring trust in autonomous
systems”; its authors are Gari Palmer, Anne Selwyn and Dan Zwillinger with the
Raytheon Corporation. The authors develop a framework based on the system
V framework to codify how trust is built into a new system and how a system should
respond in order to maintain trust. Their framework is a life-cycle model which
adds trust components. Testing and evaluation ensure that the trust components
are functional. During operational use these trust components allow the user to
query the system to better understand (and trust) its operation. This framework is
becoming more important as autonomous systems become more prominent; e.g.,
the Department of Defense has made autonomy one of its research priorities.
Autonomous systems, those in use today and anticipated in the future, will need
both system trust (i.e., when their specifications have been met) and operational trust
(when the user’s expectations have been met). Automated systems are more easily
trusted than autonomous systems. But trusting complex automated systems requires
rigorous Test & Evaluation (T&E) and Verification & Validation (V&V) processes.
While similar processes are likely to be used to establish trust for autonomous
systems, new methods set within these processes must address the unique attributes
of autonomy, like adaptation to situations, or self-organization within situations.
Using their framework, the authors identify specific methods for engendering trust
in automated and autonomous systems, where systems range from automated to
autonomous systems as endpoints. The authors give the example of a prototyped
method that has been shown to enable trust. This framework supports the insertion
of new methods to generate and measure operational trust in existing and future
autonomous systems.

Chapter 5 is titled “Big Data analytic paradigms—From principle component
analysis to deep learning”; its authors are Mo Jamshidi, Barney Tannahill and
Arezou Moussavi with the Autonomous Control Engineering (ACE) Laboratory
at The University of Texas, San Antonio (Tannahil is also from the Southwest
Research Institute, or SwRI). This chapter presents an overview of Artificial Neural
Networks (ANNs) ranging from multi-layer networks to recent advances related
to deep architectures including auto-encoders and restricted Boltzmann machines
(RBMs). Large sets of data (numerical, textural and image) have been accumulating
at a rapid pace from multiple sources in all aspects of society. Advances in sensor
technology, the Internet, social networks, wireless communication, and inexpensive
memory have all contributed to the explosion of “Big Data” as this phenomenon has
come to be known. Big Data is produced in many ways in today’s interdependent
global economy. Social networks, system of systems (SoS), and wireless systems are
only some of the contributors to Big Data. Instead of a hindrance, many researchers
have come to consider Big Data as a rich resource for future innovations in science,
engineering, business and other potential applications. But the flood of data has

http://dx.doi.org/10.1007/978-1-4899-7668-0_4
http://dx.doi.org/10.1007/978-1-4899-7668-0_5
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to be managed and controlled before useful information can be extracted. For the
extraction of information to be useful, recent efforts have developed a promising
approach known as “Data Analytics”. This approach uses statistical and computa-
tional intelligence tools like principal component analysis (PCA), clustering, fuzzy
logic, neuro-computing, evolutionary computation, Bayesian networks and other
tools to reduce the size of Big Data. One of these tools, Deep Learning, is described
by the development and use of neural networks in the machine learning community
that has allowed for the extraordinary results recently obtained for digital speech,
imagery, and natural language processing tasks. The authors present an example of
Neural Networks using the data collected from a wind farm to demonstrate Data
Analytics.

Chapter 6 is titled “Artificial brain systems based on neural network discrete
chaotic dynamics. Toward the development of conscious and creative robots”; its
author, Vladimir Gontar, prepared his chapter at the Biocircuits Institute, University
of California in San Diego, while on a sabbatical; he has since returned to his
affiliation at the Ben-Gurion University of the Negev in Israel. He is working on
new theory and mathematical models of the human brain based on first principles
for neural networks that model biochemical reactions to simulate consciousness.
Consciousness is a hard problem. From Marcus and his colleagues (2014), although
“no consensus” exists, current research tends to address how “systems might bridge
from neuronal networks to symbolic cognition”. Gontar’s approach is similar. In
contrast to regular information processes approximated linearly as a function of
the energy available, he models information exchanges between neurons and neural
networks based on the infinitesimally small energies needed to change chaotic
systems. He compares the example of a mandala drawn by an artist matched
step-by-step with one drawn by his chaos equations, concluding that this is how
consciousness may be addressed computationally.

Chapter 7, on the “Modeling and control of trust in human-robot collaborative
manufacturing”, is authored by Behzad Sadrfaridpour, Hamed Saeidi, Jenny Burke,
Kapil Madathil and Yue Wang with Clemson University and the Boeing Company.
The authors explore trust in the context of Human-Robot Collaboration (HRC) on
the factory floor. To measure and gauge the improvement in a system on the factory
floor, they use a time-series model of trust, a model of a robot’s performance to
tie its speed to flexibility, and a model of a person that includes fatigue. They
present a series of experiments which investigate how the robot and the human
adapt to each other’s changing performance and how these changes impact trust.
HRC already exists on factory floors today, opening a new realm of manufacturing
with robots in real-world settings. There, humans and robots work together by
collaborating as coworkers. HRC plays a critical role in safety, productivity, and
flexibility. Human-to-robot trust determines the human’s acceptance and allocation
of autonomy to a robot that in turn decides the efficiency of the task performed and
the human’s workload. Using Likert scales and time-series models of performance
to measure trust, the authors studied trust in a robot in the laboratory subjectively
and objectively under three control modes of the robot; viz., the robot placed under
manual, autonomous and collaborative control conditions. Human operator control

http://dx.doi.org/10.1007/978-1-4899-7668-0_6
http://dx.doi.org/10.1007/978-1-4899-7668-0_7
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was used in the manual condition; a neural network was used for intelligent control
in the autonomous condition; and a mixed control was used in the collaborative
condition. For this study, the authors did not find strong support for the autonomous
mode. They also showed that under the collaborative mode, human-to-robot trust
will be improved since the human has more control over the robot speed while the
robot is adapting to the human speed as well.

Chapter 8 is titled “Investigating human-robot trust in emergency scenarios:
Methodological lessons learned”; its authors Paul Robinette, Alan Wagner and
Ayanna Howard are with the Georgia Institute of Technology; they conclude that
trust has an elusive, subjective meaning depending on the context and the culture
of the perceiver and the bias introduced by a questioner, especially in emergency
scenarios. Being that few research protocols exist to study human-robot trust (HRT),
the authors devised their own protocol to include risk on the part of both the
human and the robot. Overall, they conclude that studies of HRT are inherently
problematic, even though HRT has been studied as computational cognition;
neurological change; and, among other studies, in the probability distributions of
an agent’s actions. They like Lee and See’s claim that trust is an attitude associated
with the goals sought under uncertainty and vulnerability. The authors performed
experiments using crowdsourcing techniques. They found that the word phrasing of
a narrative significantly affected decisions; that anchoring biases also had significant
effects; and that unsuccessful robot leaders did not always dissuade their human
followers. The latter finding presents a significant challenge to researchers to design
robots in a way so that the robots communicate clearly with humans, so that humans
do not overly-trust robots when they should not, and so that crowdsourcing for
testing hypotheses provide generality and empirical evaluations if coupled with
complementary methods (viz., narratives and simulated scenarios).

In Chap. 9, titled “Designing for robust and effective teamwork in human-
agent teams”, the authors Fei Gao, M.L. Cummings and Erin Solovey are with
the Massachusetts Institute of Technology. The authors examine the impact of
team structure, task uncertainty, and information-sharing tools on team coordination
and performance. They present several information sharing tools which allow
users to update others with regard to their status thus reducing work duplication
and infrequent communication. The authors investigated the impact on human-
agent teams of team structure, task uncertainty, and information-sharing, including
coordination and performance. From their perspective, in the future, search and
rescue, command and control, and air traffic control operators will be working
in teams with robot teammates. But teams involve tasks that individual humans
cannot do at all or are inefficient at doing. The authors contrasted organizational
structures based on divisional teams, where self-contained redundancy governs
under high uncertainty to make them more robust; and functional teams, where
uncertainty is low and predictability is high. They discussed team situational
awareness, where each member’s contributions to and impacts on team tasks must
be predictable and appreciated. The authors also discussed the costs of coordination
and communication; and that these costs and duplication could be reduced with

http://dx.doi.org/10.1007/978-1-4899-7668-0_8
http://dx.doi.org/10.1007/978-1-4899-7668-0_9
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information-sharing tools, while increasing robustness for divisional teams. The
authors found that information sharing tools allowed users to communicate more
effectively.

The author of Chap. 10, Kristin Schaefer, is with the U.S. Army Research
Laboratory. In her article on “Measuring Trust in Human Robot Interactions:
Development of the ‘Trust Perception Scale-HRI’ ”, she studied the importance of
trust in human-robot interaction and teaming as robotic technologies continue to
improve their functional capability, robust intelligence, and autonomy. The author
explores the development of a unifying survey scale to measure a human user’s trust
in a robotic system and in Human Robot Interaction (HRI) settings. She presents
a series of related experiments leading to the creation of a 40 item survey which
she argues measures trust across multiple conditions and robot domains. In this
chapter, the author has summarized her PhD research to produce a reliable and
valid subjective measure of the trust humans have of robots, the Trust Perception
Scale-HRI. She performed an extensive literature review of trust in the interpersonal,
automation and robot domains to determine if specific attributes accounted for
human-robot trust. Schaefer developed an initial pool of items, tested it with human
subjects, analyzed the results with a mental model of a robot, and reduced the
number of items based on statistical and Subject Matter Expert (SME) content-
validation procedures. This resulted in her 42 item scale plus a 14 item shorter scale
derived from the feedback by her SMEs. She then used computer simulated human-
robot interaction experimentation for a two-part task-based validation process to
determine if the scale could measure a change in survey scores and measure the
construct of trust. She first demonstrated that the scale measured a change pre-post
interaction and across two reliability conditions (100% reliable feedback versus
25% reliable feedback) during a supervisory human-robot target detection task.
This was followed by a second validation experiment using a Same-Trait approach
during a team Soldier-robot navigation task. Her finalized 40-item scale performed
well in both cases, and provided support for additional benefits when used in the
HRI domain, above and beyond results achieved when using a previously developed
automation-specific trust scale.

Chapter 11 is titled “Methods for developing trust models for intelligent systems”;
its authors are Holly A. Yanco, Munjal Desai, Jill L. Drury and Aaron Steinfeld with
the University of Massachusetts Lowell (Yanco and formerly Desai), The MITRE
Corporation (Drury and Yanco), and Carnegie Mellon University (Steinfeld). The
number of robots in use across the width of society, including in industry, with
the military, and on the highways, is increasing rapidly, along with an expansion
of their abilities to operate autonomously. Benefits from autonomy are increasing
rapidly along with concerns about how well these systems can be, should be, and
are being trusted. Human automation interaction (HAI) research is crucial to the
further expansion of intelligence, but also its disuses and abuses. The research by
the authors is designed to understand and model the factors that affect intelligent
systems. The chapter begins with a review of prior research in the development
of trust models, including surveys and experiments. Then the authors discuss two
methods for investigating trust and creating trust models: surveys and robot studies.

http://dx.doi.org/10.1007/978-1-4899-7668-0_10
http://dx.doi.org/10.1007/978-1-4899-7668-0_11
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They also produce 14 guidelines as well as an overall model of trust and the factors
that increase and decrease trust. Finally, the authors review their conclusions and
discuss the path forward.

In Chap. 12, titled, “The intersection of robust intelligence and trust: Hybrid
teams, firms & systems”, the authors are W.F. Lawless with Paine College and
Donald Sofge with the Naval Research Laboratory; they are developing the physics
of interdependent relations among social agents to reflect uncertainty arising from
these relationships but also the power of social groups to solve difficult problems.
Interdependence depends on the existence of alternative (bistable) interpretations of
social reality. Interdependence makes social situations non-linear and non-intuitive,
making interdependence a difficult problem to address. But if this problem can be
solved, unlike today when robots work as individual agents, it will allow humans,
machines and robots to work together in teams by multitasking to solve problems
that only human teams can now solve. On the other hand, as interdependence
increases across a group, its chances increase that it can make a mistake. Traditional
models of interdependence consist primarily of traditional game theory. But game
theory’s solution of this problem relies heavily on increasing cooperation, thereby
increasing static interdependence, further increasing the likelihood of a mistake.
To avoid mistakes, the authors argue for a competitive situation similar to a Nash
equilibrium, where the two sides engage in a nonlinear competition for neutrals
(independent agents) to determine the winning argument at one point in time;
mathematically, the result is a limit cycle as one side wins, but then that side falls
behind in the next argument when the limits to its “solution” become apparent. The
result is a method that increases social welfare. The authors describe how this may
work in human-machine-robot environments.
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Chapter 2
Towards Modeling the Behavior of Autonomous
Systems and Humans for Trusted Operations

Gavin Taylor, Ranjeev Mittu, Ciara Sibley, and Joseph Coyne

2.1 Introduction

Unmanned systems will perform an increasing number of missions in the future,
reducing the risk to humans, while increasing their capabilities. The direction for
these systems is clear, as a number of Department of Defense roadmaps call for
increasing levels of autonomy to invert the current ratio of multiple operators to a
single system (Winnefeld and Kendall 2011). This shift will require a substantial
increase in unmanned system autonomy and will transform the operator’s role from
actively controlling elements of a single platform to supervising multiple complex
autonomous systems. This future vision will also require the autonomous system
to monitor the human operator’s performance and intentions under different tasking
and operational contexts, in order to understand how she is influencing the overall
mission performance.

Successful collaboration with autonomy will necessitate that humans properly
calibrate their trust and reliance on systems. Correctly determining reliability of a
system will be critical in this future vision since automation bias, or overreliance on
a system, can lead to complacency which in turn can cause errors of omission and
commission (Cummings 2004). On the other hand, miscalibrated alert thresholds
and criterion response settings can cause frequent alerts and interruptions (high
false alarm rates), which can cause humans to lose trust and underutilize a system
(i.e., ignore system alerts) (Parasuraman and Riley 1997). Hence, it is imperative
that not only does the human have a model of normal system behavior in different
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contexts, but that the system has a model of the capabilities and limitations of the
human. The autonomy should not only fail transparently so that the human knows
when to assist, but autonomy should also predict when the human is likely to fail
and be able to provide assistance. The addition of more unmanned assets with
multi-mission capabilities will increase operator demands and may challenge the
operator’s workload just to maintain situation awareness. Autonomy that monitors
system (including human) behavior and alerts users to anomalies, however, should
decrease the task load on the human and support them in the role of supervisor.

Noninvasive techniques to monitor a supervisor’s state and workload (Fong et al.
2011; Sibley et al. 2011) would provide the autonomous systems with information
about the user’s capabilities and limitations in a given context, which could provide
better prescriptions for how to interact with the user. However, many approaches to
workload issues have been based on engineering new forms of autonomy assuming
that the role of the human will be minimized. For the foreseeable future, however,
the human will have at least a supervisory role within the system; rather than
minimizing the actions of the human and automating those actions the human
can already do well, it would be more efficient to develop a supervisory control
paradigm that embraces the human as an agent within the system and leverages on
her capabilities and minimizes the impact of her limitations.

In order to best develop techniques for identifying anomalous behaviors asso-
ciated with the complex human-autonomous system, models of normal behaviors
must be developed. For the purpose of this paper, an anomaly is not just a statistical
outlier, but rather a deviation that prevents mission goals from being met, dependent
on the context. Such system models may be based on, for example, mission outcome
measures such as objective measures of successful mission outcomes with the
corresponding behaviors of the system. Normalcy models can be used to detect
whether events or state variables are anomalous, i.e., probability of a mission
outcome measure that does not meet a key performance parameter or other metric.

The anomalous behavior of complex autonomous systems may be composed of
internal states and relationships that are defined by platform kinematics, health
and status, cyber phenomena and the effects caused by human interaction and
control. Once the occurrence and relationships between abnormal behaviors in a
given context can be established and predicted, our hypothesis is that the operational
bounds of the system can be better understood. This enhanced understanding will
provide transparency about the system performance to the user to enable trust to be
properly calibrated with the system, making the prescriptions for human interaction
that follow to become more relevant and effective during emergency procedures.

A key aspect of using normalcy models for detecting abnormal behaviors is the
notion of context; and behaviors should be understood in the context in which
they occur. In order to limit the false alarms, effectively integrating context is a
critical first step. Normalcy models must be developed for each context of a mission,
and used to identify potential deviations to determine whether such deviations are
anomalous (i.e., impact mission success). Proper trust calibration would be assisted
through the development of technology that provides the user with transparency
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about system behavior. This technology will provide the user with information about
how the system is likely to behave in different contexts and how the user should best
respond.

We present an approach for modeling anomalies in complex system behavior;
we do not address modeling human limitations and capabilities in this paper, but
recognize that this is equally important in the development of trust in collaborative
human-automation systems.

2.2 Understanding the Value of Context

The role of context is not only important when dealing with the behavior of
autonomous systems, but also quite important in other areas of command and
control. Today’s warfighters operate in a highly dynamic world with a high degree
of uncertainty, compounded by competing demands. Timely and effective decision
making in this environment is challenging. The phrase “too much data—not
enough information” is a common complaint in most Naval operational domains.
Finding and integrating decision-relevant information (vice simply data) is difficult.
Mission and task context is often absent (at least in computable and accessible
forms), or sparsely/poorly represented in most information systems. This limitation
requires decision makers to mentally reconstruct or infer contextually relevant
information through laborious and error-prone internal processes as they attempt to
comprehend and act on data. Furthermore, decision makers may need to multi-task
among competing and often conflicting mission objectives, further complicating the
management of information and decision making.

Clearly, there is a need for advanced mechanisms for the timely extraction and
presentation of data that has value and relevance to decisions for a given context.
To put the issue of context in perspective, consider that nearly all national defense
missions involve Decision Support Systems (DSS)—systems that aim to decrease
the cycle time from the gathering of data to operational decisions. However, the
proliferation of sensors and large data sets are overwhelming DSSs, as they lack
the tools to efficiently process, store, analyze, and retrieve vast amounts of data.
Additionally, these systems are relatively immature in helping users recognize and
understand important contextual data or cues.

2.3 Context and the Complexity of Anomaly Detection

Understanding anomalous behaviors within the complex human-autonomous sys-
tem requires an understanding of the context in which the behavior is occurring.
Ultimately, when considering complex, autonomous systems comprised of multiple
entities, the question is not what is wrong with a single element, but whether that
anomaly affects performance of the team and whether it is possible to achieve the
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mission goals in spite of that problem. For example, platform instability during high
winds may be normal, whereas the same degree of instability during calm winds
may be abnormal. Furthermore, what may appear as an explainable deviation may
actually be a critical problem if that event causes the system to enter future states
that prevent the satisfaction of a given objective function. The key distinction is that
in certain settings, it may be appropriate to consider anomalies as those situations
that effect outcomes, rather than just statistical outliers. In terms of the team, the
question becomes which element should have to address the problem (the human or
the autonomy).

The ability to identify and monitor anomalies in the complex human-autonomous
system is a challenge, particularly as increasing levels of autonomy increase system
complexity and, fundamentally, human interactions inject significant complexity
via unpredictability into the overall system. Furthermore, anomaly detection within
complex autonomous systems cannot ignore the dependencies between communi-
cation networks, kinematic behavior, and platform health and status.

Threats from adversaries, the environment, and even benign intent will need
to be detected within the communications infrastructure, in order to understand
its impact to the broader platform kinematics, health and status. Possible future
scenarios might include cyber threats that take control of a platform in order
to conduct malicious activity, which may cause unusual behavior in the other
dimensions and corresponding states. The dependency on cyber networks means
that a network provides unique and complete insight into mission operations.
The existence of passive, active, and adversarial activities creates an ecosystem
where “normal” or “abnormal” is dynamic, flexible, and evolving. The intrinsic
nature of these activities results in challenges to anomaly detection methods that
apply signatures or rules that have a high number of false positives. Furthermore,
anomaly detection is difficult in large, multi-dimensional datasets and is affected
by the “curse of dimensionality.” Compounding this problem is the fact that
human operators have limited time to deal with complex (cause and effect)
and/or subtle (“slow and low”) anomalies, while monitoring the information from
sensors, and concurrently conducting mission planning tasks. The reality is that in
future military environments, fewer operators due to reduced manning may make
matters worse, particularly if the system is reliant on the human to resolve all
anomalies!

Below we describe research efforts underway in the area of anomaly detection
via manifolds and reinforcement learning.

2.3.1 Manifolds for Anomaly Detection

A fundamental challenge in anomaly detection is the need for appropriate metrics
to distinguish between normal and abnormal behaviors. This is especially true
when one deals with nonlinear dynamic systems where the data generated contains
highly nonlinear relationships for which Euclidean metrics aren’t appropriate.
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One approach is to employ a nonlinear “space” called a manifold to capture the
data, and then use the natural nonlinear metric on the manifold, in particular the
Riemannian metric, to define distances among different behaviors.

We view the path of an unmanned system as a continuous trajectory on the
manifold and recognize any deviations due to human inputs, environmental impacts,
etc. Mathematically, we transform the different data types into a common manifold-
valued data so that comparisons can be made with regard to behaviors.

For example, a manifold for an unmanned system could be 12 dimensional,
composed of position, pitch, roll, yaw, velocities of the position coordinates, and
angular velocities of the pitch, roll and yaw. This 12-dimensional model captures
any platform (in fact any moving rigid object’s) trajectories under all possible
environment conditions or behaviors. This manifold is the tangent bundle, TM of
SO.3/ � <3. Here SO.3/ denotes the set of all possible rotations of the unmanned
system which is a Lie group, and <3 the set of all translations of the platform. Since
rotations and translations do not commute, this is not a direct product of SO.3/
with <3. The product between SO.3/ and <3 is a “Semi-Product” Ë. Non-linear
key geometric, dynamical and kinematic characteristics are represented using TM.
This manifold model is able to encapsulate the unique structure of the environment,
effects of human behaviors, etc. through continuous parameterizations and coherent
relationships.

Once we have this manifold model and its Riemannian metric, it is possible to
define concepts of geodesic neighborhood and other appropriate measurements and
map those to mission cost. Such a mapping is done by designing a weighted cost
function with dynamical neighborhoods around a trajectory of the platform. For
example, if the weather is good in the morning, the neighborhood is smaller than
it would be with bad weather. This innovative manifold method could be used to
dynamically identify normal or abnormal behaviors occurring during a mission,
taking into consideration whether a mission could be successfully achieved under
a given cost constraint. We also have the freedom to adjust normal neighborhoods
if a mission suddenly changes while en-route. Our model is robust and captures
complicated dynamics of unmanned systems and is able to encapsulate very high
dimensional data using only a 12 dimensional configuration space.

The algorithms use continuous parameterizations and coherent relationships and
are scalable. Our manifold-based methods provide new techniques to combine
qualitative (platform mechanics) and quantitative (measured data) methods and are
able to handle large, nonlinear dynamic data sets.

2.4 Reinforcement Learning for Anomaly Detection

The military and commercial communities increasingly rely on autonomous sys-
tems to augment their capabilities. For example, power plants feature automatic
monitoring and safety features, and the military increasingly employs unmanned
systems in denied or politically sensitive theaters. However, it is rare for these
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systems to be truly autonomous; generally, fine-grained decisions are made by
computer (such as an autopilot), while coarse-grained decisions (such as mission
tasking or flight plans) are made by human operator. Thus, autonomy is not a binary
on-off switch, but instead lies on a continuum. As technology progresses, it is
expected that daily operations will shift along this continuum such that more and
more decisions will be made by autonomous machine. This point in the continuum
is referred to as supervised autonomy, in which human supervisors are tasked
with maintaining awareness and identifying and responding to negative surprises,
potentially for multiple systems simultaneously. In this scenario, it is important that
accurate measures of mission progress be communicated quickly and succinctly, so
that supervisors can direct their attention properly, particularly when overtasked.

In this section we make several points. First, we believe the field of Rein-
forcement Learning can provide the tools necessary to communicate this type of
information. Second, we believe automated feature selection for Reinforcement
Learning provides an intuitive way to identify features of interest in autonomous
systems. Finally, we believe Reinforcement Learning may provide several additional
benefits for negative anomaly detection and human decision-making analysis.

2.4.1 Reinforcement Learning

The purpose of this section is to describe the field of Reinforcement Learning, so
that the new applications can be better understood. We begin by describing the prob-
lem intuitively, before introducing the mathematical background. Imagine, for some
new unknown system, a human is presented with telemetry data entirely describing
every aspect of the system (position, orientation, velocity, sensor readings, control
surface position, etc.) for every second of a large number of missions. Given this
data, it is possible to imagine the human learning what the system is capable of
doing (for example, when learning about an unmanned aircraft, the human may
learn that altitude gain can be achieved by setting particular control surfaces to
certain settings, but there is a maximum climb rate which cannot be exceeded).
Now imagine an expert assigns a “reward” to each observation; a state in which
the mission is completed would receive a high reward, while a state in which the
system is damaged would receive a negative reward. A logical question, then, is
given some new state, what rewards can we expect to receive in the future? Are
there certain actions we can take to maximize this expected future rewards? These
questions are very important in a supervised context; if we expect to receive many
high rewards, no intervention is required. However, if we are in a state with low
expected rewards, retasking may be necessary. Reinforcement Learning provides
algorithms for performing this predictive analysis.

Mathematically, the problem is described as a Markov Decision Process (MDP).
An MDP is a tuple M D .S ;A ;P;R; �/, where S is the set of possible states the
agent could inhabit, A is the set of actions the agent can take, P is a transition
kernel describing the probability of transitioning between two states given the
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performance of an action (mathematically, p.s0js; a/, where s; s0 2 S and a 2 A ),
R is the reward function, and � 2 .0; 1/ is the discount factor, which is used to
describe how much we prefer rewards in the short term to rewards in the long term.
The expected future rewards from a given state is defined as the optimal value of
that state, where the optimal value function is defined by the Bellman equation

V�.s/ D R.s/C � max
a

Z
S

p.s0js; a/V�.s0/ds0: (2.1)

This function defines the optimal value of a state as the expected, discounted sum
of rewards from this state forward. In large or complex domains, it is impossible to
calculate V� exactly, forcing instead the construction of an approximation. A huge
number of approaches to perform this approximation exist, each with their own
benefits and drawbacks.

Classically, an accurate value function is useful for creating autonomy; if
choosing between two states, the decision-making agent should choose the one
with higher value. This turns long-term planning into a series of greedy, short-term
decisions. Because value function approximation techniques are usually general,
and can often be applied to any MDP, advancements in Reinforcement Learning
lead to better autonomy in any domain.

This same generality is a drawback in practical application, however. While it is
theoretically pleasing to begin with no assumptions or prior knowledge about the
agent being observed, this is not usually the case. For example, in the case of a
new UAV, the known dynamics of the UAV can usually be used to generate a better
autopilot than would be generated by Reinforcement Learning, which ignores this
tremendously useful prior information.

Therefore, the remainder of this section focuses not on the traditional applica-
tions of a value function for autonomy generation, but instead on new applications
of this function in a supervised autonomy context.

2.4.2 Supervised Autonomy

In a supervised autonomy context, we assume the agent under most circumstances
is capable of performing its task unassisted; the problem then becomes one of
helping a possibly-overtasked human supervisor identify cases which do require
human intervention. For example, consider the case of a human tasking multiple
UAVs at a time to accomplish a variety of missions. Perhaps one of the systems
being watched is making slower-than-expected progress, and so another system will
have to be tasked to complete its mission before the opportunity expires. Or, more
dramatically, perhaps a malfunction occurs and human intervention is required to
land the UAV away from the runway with as little damage as possible, in a location
easy for recovery. In these cases, the identification of states from which we expect
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to receive low rewards is an appropriate way to identify moments which are unlikely
to result in mission success.

Intuitively, the value of a state can be thought of as a one-dimensional measure of
predicted success. In scenarios where supervisors must keep situational awareness
on several independent agents, the distillation of this information into something
quickly digestible and understandable is essential. Because the value function is
built based on what is expected to occur, given past behavior and an optimal
autopilot, a small or negative value function may be an extremely useful indicator
of possible mission failure.

We note that the level of accuracy necessary for providing this feedback to a
supervisor or performing this analysis is far less than the level of accuracy an agent
requires to actually choose actions based entirely on the value function.

2.4.3 Feature Identification and Selection

This viewpoint also may provide ancillary benefits. Mathematically, many approx-
imation schemes take the form of a linear approximation, where V.s/ � ˚.s/w,
for all s 2 S . In this approximation, ˚.s/ is a set of feature values for state
s, and w is a vector which linearly weights these features. The quality of the
approximation depends in large part on the usefulness of these features. Therefore,
techniques which can select the few features from a large dictionary which result
in the highest quality approximation can provide a great benefit, and are an active
area of study (Kolter and Ng 2009; Johns et al. 2010; Mahadevan and Liu 2012; Liu
et al. 2012). Interestingly for this domain, the identification of features which are
highly correlated with future success and failure may provide an intuitive means of
understanding the domain and in the construction of early-warning alarms.

One such technique for performing automated feature selection while calculating
an approximate value function is L1-Regularized Approximate Linear Programming
(RALP) (Petrik et al. 2010). RALP is unique among other feature-selection
approaches in that it has tightly bounded value function approximation error, even
when using off-policy samples, and when the domain features a great deal of
noise (Taylor and Parr 2012).

RALP works by solving the following convex optimization problem:

min
w
�T˚w

s.t. � r C �˚.� s0/w � ˚.� s/w 8� 2 ˙
kwk�1 �  :

(2.2)

˚ is the feature matrix, ˙ is the set of all samples, where � is one such sample, in
which the agent started at state � s, received reward � r, and transitioned to state � s0 .
� is a distribution, which we call the state-relevance weights, in keeping with the
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(unregularized) Approximate Linear Programming (ALP) terminology of de Farias
and Van Roy (2003). kwk�1 is the L1 norm of the vector consisting of all weights
excepting the one corresponding to the constant feature.

This final constraint, which contributes L1 regularization, provides several
benefits. First, regularization in general ensures the linear program is bounded,
and produces a smoother value function. Second, L1 regularization in particular
produces a sparse solution, producing automated feature selection from an over-
complete feature set. Finally, the sparsity results in few of the constraints being
active, speeding the search for a solution by a linear program solver, particularly if
constraint generation is used.

Most relevantly to this problem, the selected features are those most useful in
predicting the future receipt of rewards. Practically, these can be interpreted as the
few features, from a potentially large candidate set, which carry the strongest signal
predicting success or failure; while this definitely improves prediction accuracy,
it may also be useful in related tasks in which an intuitive prediction of future
autonomous performance will be useful, such as in scenarios of transfer learning.

2.4.4 Approximation Error for Alarming and Analysis

We also propose an exciting direction of research in using the error in approximation
as a useful signal in flight analysis and alarming. Consider again the Bellman
equation of Eq. (2.1), and a single observation, consisting of a state, a received
reward, and the next state (an observation can be denoted .s; r; s0/, where s; s0 2 S ,
and r D R.s/). Also assume the existence of some approximation OV , such that
OV.s/ � V�.s/ for all s 2 S . If the approximation is exactly correct, and everything
goes as expected, then OV.s/ D r C � OV.s0/ for all such observations. If this equality
does not hold, then we have non-zero empirical Bellman error

BE.s/ D rC � OV.s0/ � OV.s/: (2.3)

When the Bellman error is non-zero, there are several possible explanations.
The first explanation is that the approximation to the value function was incorrect.

This explanation has classically received the most attention, as researchers tried
to tune their predictions to be as accurate as possible. However, even if the value
function OV D V� were calculated exactly, in a non-deterministic environment there
would still be non-zero Bellman error.

A second explanation is that the prediction would have been accurate, but the
controller (autopilot or human) chose an action which was not optimal. We can
expect this to happen consistently to some degree. This is because optimality
is defined as choosing the action that maximizes the sum of rewards; however,
existing autopilot and human decision making is performed using an approach
independent of Reinforcement Learning, and ignorant of the designed reward
function. Realistically, all approaches are targeting some approximation of optimal
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performance, and it is unreasonable to expect them to precisely agree on optimal
decision making. However, we argue that decision making resulting from these
differing approaches should not differ too much, and that unexpected large drops
in the value function would be interesting in performing objective performance
assessment, such as in human training and flight analysis.

A third explanation is that the approximation was accurate, but something
unexpected happened during the state transition. A positive example would be if
a tailwind pushed the aircraft closer to a target location than would normally be
expected; in this case, the value of the next state would be larger than expected.
More interestingly for supervised autonomy, however, would be in identifying
unexpected drops in value, or negative anomalies. It is perhaps obvious this would
be useful in identifying sudden, dramatic drops, as might result from an event such
as mechanical failure. More promising, however, is the potential for identifying
prolonged periods of underperformance which might indicate a “low-and-slow”
anomaly which might otherwise be difficult to detect. These types of anomalies
occur when a small error impacts an output over a long period of time. These errors
are difficult to detect as they typically do not cross any predefined error boundaries.

To our knowledge, the Bellman error has never been used to perform this type of
analysis.

2.4.5 Illustration

To illustrate the insights of Sects. 2.4.2 and 2.4.4, we use data from two dif-
ferent domains. First, we use a simulated domain often used for benchmarking
value function approximation algorithms. This domain provides an easily-predicted
environment to demonstrate the application of reinforcement learning in an easily-
visualized way. Second, we use real world data collected by the in-flight computers
of landing TigerShark UAVs to demonstrate the technique’s efficacy even in less-
predictable, real-world scenarios.

2.4.5.1 Synthetic Domain

We use a common Reinforcement Learning benchmark domain, in which an
autonomous agent learns to ride a bicycle (Randløv and Alstrøm 1998; Lagoudakis
and Parr 2003). In this domain, the bicycle begins facing north, and must reach
a goal state 1 km to the east. To be precise, a state in the space consists of the
bicycle’s angle from perfectly upright, the angular velocity and angular acceleration
with respect to the bicycle and the ground, the handlebar angle and angular velocity
of the handlebar, and the angle of the goal state from the current direction of travel.
Actions include leaning left or right, turning the handlebars left or right, or doing
nothing at all. The reward function is a shaping function based on progress made
towards the goal.
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Fig. 2.1 Value as a function of time

Samples to learn from are drawn by beginning in an upright position, and taking
random actions until failure. Given a large enough set of such samples, the agent
can learn a value function, which it then uses to balance and successfully navigate
through the space on a high percentage of trials. To do this, the approximate value
function was constructed using RALP, using features composed of a large number
of monomials defined on dimensions of the state space.

As our illustration, we consider one run, in which the bicyclist fails to remain
upright despite access to a good previously-calculated value function. As the agent
moves through the state space, the value function of its current state changes as
a function of time. Figure 2.1 graphs this value until failure. Notice that as the
bicycle begins to oscillate and eventually collapse, the expectation begins to drop, as
it becomes less and less likely the agent will be able to recover. It is easy to imagine
an alarm system set off in the beginning stages of this process, alerting a supervisor
of the coming failure.

Given the same run, we also plot the absolute value of the empirical Bellman
error of Eq. (2.3) as a function of time in Fig. 2.2. Notice the predictions were
extremely accurate, and Bellman error very low, until shortly before the bicycle
began to fall. In analyzing the performance of the agent, this information provides
insight into when the initial mistakes were made which would, several time steps in
the future, result in a failed mission; in the analysis of the agent’s performance, this
is crucial information.

If, however, the interest is not in analyzing past performance, but is in identifying
anomalies which may require human intervention in real time, the Bellman error
illustrated in Fig. 2.2 would again be extremely useful. It is plainly visually obvious
when unexpected behavior began, and it is equally clear it correlates with the
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Fig. 2.2 Empirical Bellman error as a function of time

beginnings of the task failure. In particular, we would like to emphasize the
anomalies begin to appear well before the bicycle collapses, allowing it to serve
as an early warning system.

2.4.5.2 Real-World Domain

The TigerShark Unmanned Aerial Vehicle is a remotely-operated surveillance
aircraft with a 22-foot wingspan and weighing 260 pounds, currently in use in
theater operations. It can perform autonomous waypoint navigation, or be controlled
manually. For this domain, we focus on autonomous alarming for TigerShark
landings.

Telemetry data from 1267 landing attempts were collected, for a total of
approximately 6.2 million individual samples, which were collected every 1000 ms.
Landings were performed both by human pilots and the autopilot. The samples
themselves are made up of 192 different sensor readings from the UAV control
and sensor surfaces, as well as sensor data taken on the ground. Aside from flight
status information like altitude, latitude, longitude, ground speed, etc., the data
includes information about the controls coming from the pilot or autopilot, and the
connection between the ground station and the UAV.

During landing, pilots have instructions to not allow their roll to extend past a
certain angle, to follow a prescribed glide slope, and to keep their aircraft as close
to the extended center line of the runway as possible. Therefore, in addition to the
sensor readings, features also included the glide slope, the distance from the desired
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glide slope squared, the distance from the center line squared, the roll squared, and
the reward awarded to the state.

The reward function was a shaping function based around the error from the
desired glide slope, the distance from the center line of the runway, and the absolute
value of the roll. In addition, the reward function contained additional penalties if
the aircraft left the extended center third of the runway, or performed too large of
a roll. By rule, either of the latter two cases should result in a decision to abort the
landing.

This reward function differs from the one in the bicycle domain in a very
significant way. In the synthetic domain, the actions taken by the autonomous agent
were taken with the purpose of maximizing the rewards received. In the real-world
domain, the actions taken are simply those of a pilot attempting to land an aircraft.
As such, we can expect a much larger Bellman error in most states, as the value
function is making a prediction on the erroneous assumption the pilot is aware
of, and is trying to maximize, the reward function. Nevertheless, we will see the
Bellman error is nonetheless helpful.

From the set of all landing samples, 2000 were randomly selected, and a value
function computed using RALP. We then applied this value function to two separate
flights. In the first flight, though the pilot eventually succeeded in landing the plane,
the path was erratic and the landing should have been aborted due to an inability to
stay within the allowed center third of the runway, and inability to maintain the roll
within allowed parameters.

In Fig. 2.3 we see the value function of this landing. The shaded area is an area
of special interest, as it is quite low, and produces the lowest value of the landing.
We zoom on this area for both the value function (Fig. 2.4) and the Bellman error
(Fig. 2.5). First, we note that both the value function and the Bellman error are
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Fig. 2.3 Value as a function of time on unsuccessful flight
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Fig. 2.5 Zoomed empirical Bellman error as a function of time on unsuccessful flight

much less smooth than in the bicycle domain. As discussed in Sect. 2.4.4, this is
expected to some degree, as the pilot is not making decisions based on the reward
function. Nevertheless, there is still a great deal of information in these two graphs.
In particular, we note that the Bellman error spikes greatly in the timestep before the
value function begins to drop. This drop results from the aircraft swinging so wide
as to cross the boundary for allowed flight, outside the center third of the runway,
and trying to recover by banking steeply. At this point, the landing should have been
aborted. The spike in Bellman error preceding this drop illustrates the potential for
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Fig. 2.7 Empirical Bellman error as a function of time on successful flight

a Bellman error-based alarm. In contrast, Figs. 2.6 and 2.7 are the result of a flight
without any such negative occurrences (Fig. 2.7 is zoomed to provide the same
scale as Fig. 2.5). Note that the two value functions (Figs. 2.3 and 2.6) are scaled
identically on the y axis, though the bad value function is much, much lower, as you
would expect from a flight struggling to stay on course. Second, we note the value
function for the good flight is much less erratic. The Bellman error, meanwhile,
remains generally low, with no significant spikes to set off an alarm.
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In a scenario of human performance analysis, it is clear from the magnitude of the
value function that the pilot for this flight avoided the problems of the first flight;
the small magnitude implies the second pilot performed much closer to the way
an optimal pilot would be expected to. Additionally, the small oscillations imply a
steadier flight.

These illustrations also demonstrate the usefulness of the Bellman error in
alarming an autonomous mission; when things went wrong, the Bellman error
spiked, providing a concise channel of communication of the error to the operator.

2.5 Predictive and Prescriptive Analytics

It is clear the DoD and the U.S. Navy are increasingly reliant on autonomy,
machines and robotics whose behavior is increasing in complexity. Most research
indicates operational improvements with autonomy, but autonomy may introduce
errors (Manzey et al. 2012) that impact performance. These errors result from
many factors, including faulty design assumptions especially in data fusion aids,
stochasticity with sensor/observational data, and the quality of the information
sources fed into fusion algorithms. Furthermore, additional factors may include
greater sophistication and complexity and the subsequent inability of humans to
fully comprehend the reasons for decisions made by the automated system (i.e., a
lack of transparency). In spite of these known faults, some users rely on autonomy
more than is appropriate, known as autonomy “misuse” (Parasuraman and Riley
1997). Another bias associated with human-automation collaboration is disuse,
where users underutilize autonomy to the detriment of task performance.

We conjecture that in order to help overcome issues associated with mis-
use/disuse, the next generation of integrated human-autonomous systems must
build upon the descriptive and predictive analytics paradigm of understanding and
predicting, with a certain degree of confidence, what the complex autonomous
system has done and what it will do next based on what is considered normal for that
system in a given context. Once this is achievable, it will enable the development of
models that proactively recommend what the user should do in response in order to
achieve a prescriptive model for user interactions (Fig. 2.8).

By properly presenting current and future system functioning to the user, and
capturing user interactions in response to such states, we believe more effective
human-automation collaboration and trust calibration can be established. The key
question is “how are the best user interactions captured?”

2.6 Capturing User Interactions and Inference

Transparency in how a system behaves should enable the user to calibrate their level
of trust in the system. However, there are still significant challenges that remain
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Fig. 2.8 Different forms of analytics

with regard to capturing and understanding the human dimensions of supervisory
control in order to provide prescriptions for interaction. We envision several longer
term challenges related to the notion of prescriptive analytics, specifically how best
to understand and model the information interaction behaviors of the user. These
information seeking behaviors may be in reference to the potential anomalies in the
system, in relation to what is provided by the on-board sensors, etc. and may require
the development of the following capabilities:

• Adequately capturing users’ information interaction patterns (and subsequently
user information biases)

• Reasoning about information interaction patterns in order to infer decision
making context; for example, the work being done by researchers within the
Contextualized Attention Metadata community and the Universal Interaction
Context Ontology (Rath et al. 2009) might serve as a foundation

• Instantiating formal models of decision making based on information interaction
behaviors (potentially using cognitive architectures)

• Leveraging research from the AI community in plan recognition to infer which
decision context (model) is active, and which decision model should be active

• Recognizing decision shift based on work that has been done in the Machine
Learning community with “concept drift,” and assessing how well this approach
adapts to noisy data and learns over time

• Incorporating uncertainty and confidence metrics when fusing information and
estimating information value in relation to decision utility

• Using models of cognition and decision making (and task performance) to drive
behavior development and interface development
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Lastly, research is needed to address how the autonomous platform should adapt
to user behaviors in order to balance both mission requirements as well as servicing
the needs of the human supervisors.

2.7 Challenges and Opportunities

Elaborating on our ideas, longer-term research should be focused on the following:
decision models for goal-directed behavior, information extraction and valuation,
decision assessment and human systems integration.

With regard to decision models for goal-directed behavior, the key research
question may include how to instantiate prescriptive models for decision mak-
ing, which integrate information recommendation engines that are context-aware.
Furthermore, what are the best techniques that can broker across, generalize, or
aggregate individual decision models in order to enable application in broader
mission contexts? Supporting areas of research may include the development of
similarity metrics that enable the selection of the appropriate decision model for a
given situation, and intuitive decision model visualizations.

The notion of information extraction and valuation would involve locating,
assessing, and enabling, through utility-based exploitation, the integration of high-
value information within decision models, particularly in the big data realm. This
is a particular research challenge due to heterogeneous data environments when
dealing with unmanned systems. In addition, techniques that can effectively stage
relevant information along the decision trajectory (while representing, reducing
and/or conveying information uncertainty) would enable a wealth of organic data
to be maximally harvested.

In reference to decision assessment, research needs to address what are the
most effective techniques for modeling decision “normalcy,” in order to identify
decision trajectories that might be considered outliers and detrimental to achieving
successful outcomes in a given mission context. Furthermore, techniques that
proactively induce the correct decision trajectory to achieve mission success are
also necessary. Metrics for quantifying decision normalcy in a given context can
be used to propose alternate sequences of decisions or induce the exact sequence
of decisions. This would require pre-staging the appropriate information needed to
support the evaluation of decisions, potentially improving the speed and accuracy
of decision making.

Lastly, with regard to human systems integration, the key challenges are in
understanding, modeling and integrating the human state (workload, fatigue, expe-
rience) as well as the human decision making component as an integral part of
the aforementioned areas. Specific topics include: representing human decision-
making behavior computationally; accounting for individual differences in ability
and preferences; assessing human state and performance in real-time (during a
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mission) in order to facilitate adaptive automation; mathematically capturing the
human assessment of information value, risk, uncertainty, prioritization, projection
and insight; and computationally representing human foresight and intent.

2.8 Summary

The development of robust, resilient, and intelligent systems requires the calibration
of trust by humans when working with autonomous platforms. We contend that this
can be enabled through a capability which allows system operators to understand
anomalous states within the system of systems, which may lead to failures and hence
impact system reliability. Likewise, the autonomy should understand the decision
making capabilities and other limitations of the humans in order to proactively
provide the most relevant information given the user’s task or mission context.

This position paper has discussed the need for anomaly detection in complex
systems in order to promote a human supervisor’s understanding of system reli-
ability. This is a challenging problem due to the increasing sophistication and
growing number of sensor feeds in such systems which creates challenges for
conducting big data analytics. Technical approaches that enable dimensionality
reduction and feature selection should improve anomaly detection capabilities.
Furthermore, building models that account for the context of each situation should
improve the understanding of what is considered an anomaly. Additionally, we argue
that anomalies are more than just statistical outliers, but should also be based upon
whether they hinder the ability of the system to achieve some target end state.
Understanding anomalies, we believe, should inform, and make more effective, the
user’s interaction with system. The interaction may include learning more about
the anomaly through some form of query, command and control of the situation,
entering into some emergency control procedure, etc.

Numerous research questions remain about the most effective interactions
between human and autonomy. We believe the following research areas require
further exploration in order to build more robust and intelligent systems. First,
researchers should seek to capture users’ interaction patterns (and subsequently
user information biases) and reasoning about interaction patterns in order to infer
decision making context. The work being done by researchers within the Con-
textualized Attention Metadata community and the Universal Interaction Context
Ontology (Rath et al. 2009) might serve as a foundation for this approach. Second,
instantiating formal models of human decision making based on interaction behav-
iors would lead to autonomous recognition of human capabilities and habits. Third,
leveraging research from the AI community in plan recognition would allow for the
inference of active decision contexts (model), and decision model selection. Fourth,
adapting work that has been done in the Machine Learning community with concept
drift, to recognize decision shifts and assessing how well this approach adapts to
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noisy data. Finally, it is necessary to incorporate uncertainty and confidence metrics
when fusing information and estimating information value in relation to decision
utility.

In order to build trusted systems which include a human component performing
supervisory control functions, it is vital to understand the behaviors of the autonomy
as well as the human (and his/her interaction with the autonomy). This should
provide a holistic approach to building effective collaborative human-automation
systems, which can operate with some level of expectation and predictability.
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Chapter 3
Learning Trustworthy Behaviors Using an
Inverse Trust Metric

Michael W. Floyd, Michael Drinkwater, and David W. Aha

3.1 Introduction

The addition of a robot to a human team can be beneficial if the robot improves
the team’s sensory capabilities, performs new tasks, or allows for operation in
harsh environments (e.g., rough terrain or dangerous situations). This may allow
the team to better achieve their goals, improve team productivity, or reduce the
risk to humans. In some situations, it may not be possible to achieve team goals
or guarantee human safety without the robot. However, in order to adequately use
the robot the human teammates will need to trust it.

The need to trust a robot teammate is especially true when the robot operates in
an autonomous or semi-autonomous manner. In these situations, a human operator
would issue a command or delegate a task to the robot and the robot would act
on its own to complete its assignment. A lack of trust in the robot could result
in the operator underutilizing the robot (i.e., not assigning it tasks it is capable of
completing), excessively monitoring the robot’s actions, or not using the robot at all
(Oleson et al. 2011). Any of these issues could result in an increased workload for
human teammates or the possibility of the team being unable to achieve their goal.
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One possibility would be to design a robot that is guaranteed to operate in a
trustworthy manner. However, this may be impractical if the robot is expected to
handle changes in operators, environments, or mission contexts. These changes
would make it impractical to elicit a complete set of rules for trustworthy behavior.
Additionally, the way in which an operator measures its trust in the robot may be
user-dependent, task-dependent, or time-varying (Desai et al. 2013). For example,
if the robot received a command to navigate between two locations in an urban
environment, one operator might prefer the task be performed as quickly as possible
whereas another might prefer the task be performed as safely as possible (e.g.,
not driving down a road with heavy automobile traffic or potholes). Each of these
operators has distinct preferences for how the robot should perform the task,
which may conflict, and these preferences will influence how trustworthy they
find the robot’s behavior. Even if these preferences were known in advance, a
change in context could influence the operator’s preferences and what is considered
trustworthy behavior. The operator who preferred the task be performed quickly
would likely change their preference if the robot was transporting hazardous
material, whereas the operator who preferred safety would likely change their
preference in an emergency situation.

For a robot to behave in a trustworthy manner regardless of the operator,
environment, or context, it must be able to evaluate its trustworthiness and adapt
its behavior accordingly. The workload of the human teammates or time-critical
nature of the team’s mission may make in difficult to get explicit feedback from the
operator about the robot’s trustworthiness. Instead, the robot will use information
from the standard interactions it has with the operator (i.e., being assigned tasks
and performing those tasks). Such an estimate, which we refer to as an inverse trust
estimate, differs from traditional computation trust metrics in that it measures how
much trust another agent has in the robot rather than how much trust the robot has in
another agent. Additionally, the inverse trust metric does not directly measure trust,
since the information necessary to compute such a metric is internal to the operator,
but instead estimates trust based on observable factors that are known to influence
trust. In this chapter we examine how a robot can estimate the trust an operator
has in it, adapt its behavior to become more trustworthy, and learn from previous
adaptations so it can find trustworthy behaviors more quickly in the future.

In the remainder of this chapter we describe our inverse trust estimate and how
the robot uses it to adapt its behavior. In Sect. 3.2 we examine related work on
human-robot trust and adapting to user preferences. We define the robot’s behavior
and the aspects that it can modify in Sect. 3.3. Section 3.4 presents the inverse trust
metric and Sect. 3.5 describes how that metric is used by the robot to guide behavior
adaptation. An evaluation of trust-guided behavior adaption, in a simulated robotics
domain, is provided in Sect. 3.6 and reports evidence that it can efficiently adapt the
robot’s behavior to align with the operator’s preferences. Concluding remarks and
potential areas for future work are presented in Sect. 3.7.
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3.2 Related Work

Traditional computational trust metrics are used to measure the trust an agent should
have in other agents (Sabater and Sierra 2005). The agent determines another
agent’s trustworthiness based on prior interactions or using feedback from peers
(Esfandiari and Chandrasekharan 2001). However, these metrics are not applicable
when attempting to determine how trustworthy an agent is in the eyes of another
agent. The primary reason for this is because the agent will not have all of the
other agent’s internal reasoning information available to it (e.g., outcomes of past
interactions, peer feedback, past experiences, internal model of trust). Instead, the
agent will need to acquire a subset of this information and use that to infer trust. In
the remainder of this section we will examine factors influencing trust in human-
robot interaction and how agents can adapt their behavior to humans.

3.2.1 Human-Robot Trust

Factors that influence human-robot trust can be grouped into three main categories
(Oleson et al. 2011): robot-related factors (e.g., performance, physical attributes),
human-related factors (e.g., engagement, workload, self-confidence), and environ-
mental factors (e.g., group composition, culture, task type). While numerous factors
have been found to influence human-robot trust (e.g., Li et al. 2010; Kiesler et al.
2008; Biros et al. 2004), a meta-analysis of numerous studies found the strongest
indicator of trust is the robot’s performance (Hancock et al. 2011). Similarly, user’s
identified performance as being among the most important factors they considered
in relation to automated cars and medical diagnosis (Carlson et al. 2014).

Kaniarasu et al. (2012) have examined the topic of inverse trust and use an online,
performance-based measure to identify decreases in trust. Their measurement is
based on the number of times a human takes control of the robot or warns the robot it
is behaving poorly. They have extended this work to also identify increases in trust,
but it requires direct feedback from the operator at regular intervals (Kaniarasu et al.
2013). Saleh et al. (2012) have also proposed a measure of inverse trust using a set of
expert-authored rules. However, if the robot does not have access to direct feedback
or predefined rules, these metrics would not be appropriate to use.

3.2.2 Behavior Adaptation

Shapiro and Shachter (2002) discuss why an agent with a reward function that is
similar to the utility of the user is desirable; it ensures the agent acts in the interests
of the user. The agent may need to perform behavior that appears to be sub-optimal
if it better aligns with the preferences of the user. Their work involves identifying the
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underlying influences of the user’s utility and modifying the agent’s reward function
accordingly. This is similar to our own work in that the agent is willing to behave
sub-optimally in order to align with the user’s preferences, but our robot is not given
an explicit model of the user’s reasoning process.

Conversational recommender systems (McGinty and Smyth 2003) use interac-
tions with a user to tailor recommendations to the user’s preferences. These systems
make initial recommendations and then iteratively improve the recommendations
through a dialog with the user. As the system learns the user’s preferences through
feedback, a model of the user is continuously refined. In addition to learning a user
preference model, conversational recommender systems can also learn preferences
for how the dialog and interactions should occur (Mahmood and Ricci 2009).
Similarly, search systems have been developed that update their behavior based on
a user’s preferred search results (Chen et al. 2008). These systems use information
from the links a user clicks to infer their preferences and update search rankings
accordingly.

Learning interface agents assist users when performing a task (e.g., e-mail sorting
(Maes and Kozierok 1993), schedule management (Horvitz 1999), note taking
(Schlimmer and Hermens 1993)). These systems observe how users perform certain
tasks and learn their preferences. Since these agents are meant to be assistive, rather
than autonomous, they are able to interact with the user to get additional information
or verify if an action should be performed. Similar to conversational recommender
systems, learning interface agents are designed to be assistive with one specific
task. In contrast, our robot does not know in advance the specific task it will be
performing so it cannot bias itself toward learning preferences for that task.

Preference-based planning (Baier and McIlraith 2008) involves incorporating
user preferences into automated planning tasks. These preferences are usually
defined a priori but there has also been work to learn the planning preferences (Li
et al. 2009). This approach learns the probability of a user performing actions based
on the previous plans that user has generated. In our work, that would be equivalent
to the operator controlling the robot and providing numerous demonstrations of the
task. Such an approach would not be practical if there were time constraints or
the operator did not have a fully constructed plan for how to perform the task. For
example, the operator might have general preferences for how the robot should move
between two locations without knowing the exact route it should take.

Our work also has similarities to other areas of learning during human-robot
interaction. When a robot learns from a human, it is often beneficial for the robot to
understand the environment from the perspective of the human (Berlin et al. 2006).
Breazeal et al. (2009) have examined how a robot can learn from a cooperative
human teacher by mapping its sensory inputs to how it estimates the human is
viewing the environment. This allows the robot to learn from the viewpoint of the
teacher and possibly discover information it would not have noticed from its own
viewpoint. This is similar to our own work since it involves inferring information
about the reasoning of a human. However, like preference-based planning, it
involves observing a teacher demonstrate a specific task.
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3.3 Agent Behavior

We assume that the robot, in addition to being autonomous or semi-autonomous,
has the ability to control and modify some aspects of its behavior. This could
include selecting among comparable algorithms (e.g., switching the path planning
algorithm it uses), modifying parameter values, or changing the data it uses (e.g.,
using an environment map from an alternate source). We call these the modifiable
components of the robot’s behavior.

We define each modifiable component i to have a set of selectable values Ci. If
the robot has m modifiable components, its current behavior B is a tuple containing
the currently selected value ci for each modifiable component (ci 2 Ci):

B D hc1; c2; : : : ; cmi

By changing one or more of these components, the robot can immediately influence
its behavior by switching from its current behavior B to a new behavior Bnew.
These changes can occur multiple times over the course of operation, resulting in
a sequence of behaviors hB1, B2, : : : , Bni that have been used. Since the robot is
motivated to perform trustworthy behavior, behavior changes will occur because
the current behavior B was found to be untrustworthy (or it anticipates the behavior
will be untrustworthy given a change in the team’s goals or mission context), at
which time we want the robot to perform what it believes to be a more trustworthy
behavior.

3.4 Inverse Trust Estimate

Traditional trust metrics, which measure how much trust an agent has in other
agents, use information related to previous interactions with those agents or
feedback from others to compute trustworthiness (Sabater and Sierra 2005). This
information is likely internal to the agent and would not be accessible to other agents
(both the agent whose trustworthiness is being measured and external observers). In
a robotics context, the robot would not have access to the information the operator
uses to measure the robot’s trustworthiness. If the robot wanted to estimate its own
trustworthiness, it would need a method to access the operator’s beliefs.

One option would be to elicit explicit feedback from the operator about the
trustworthiness of the robot, either at run-time (Kaniarasu et al. 2013) or after the
task has been completed (Jian et al. 2000; Muir 1987). However, this might not be
practical if the operator does not have time to provide feedback (e.g., a time-critical
mission with a heavy operator workload) or there would be a significant delay in
providing feedback (e.g., at the end of a multi-day search and rescue mission).
Similarly, the operator might not provide accurate information when self-reporting
on the robot’s trustworthiness, either intentionally (e.g., not wanting to be overly
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critical of the robot) or unintentionally (e.g., denial). In these situations, even though
the operator cannot explicitly tell the robot how trustworthy it is, it would still be
beneficial for the robot to infer its trustworthiness.

Without full knowledge about how the operator measures trust or the necessary
internal information to actually compute the trust value, the robot needs to rely on
observable evidence of trust. As we discussed previously, there are numerous factors
that have been found to influence a human’s trust in a robot (Oleson et al. 2011). If
the robot can directly observe some of these factors, it can attempt to estimate its
own trustworthiness. However, some factors may not be easily observable or have
clear models of how they influence trust (e.g., the physical appearance of the robot).

One factor that is observable to the robot and has been found to be the strongest
indicator of human-robot trust is the robot’s performance (Hancock et al. 2011;
Carlson et al. 2014). The inverse trust estimate we present is based on the robot’s
performance and uses the number of times the robot completes an assigned task,
fails to complete a task, or is interrupted while performing a task. The robot
assumes that the operator will be satisfied with any completed tasks (i.e., the robot
is performing well) and unsatisfied when tasks are failed or must be interrupted
(i.e., the robot is performing poorly1). Task completion and interruptions have been
found to align with changes in operator trust (based on user feedback (Kaniarasu
et al. 2013) and post-run surveys (Kaniarasu et al. 2012)), so it serves as a viable
option for the robot to estimate its own trustworthiness.

Our inverse trust estimate monitors whether the user’s trust in the robot is
increasing, decreasing, or remaining constant while the current behavior B 0 is being
used. We estimate this value as follows:

TrustB0 D
nX

iD1
wi � cmdi;

where there were n commands issued to the robot while it was using the behavior
B0. If the ith command (1 � i � n) was interrupted or failed it will decrease the
trust estimate and if it was completed successfully it will increase the trust estimate
(cmdi 2 f�1; 1g). The ith command also receives a weight wi which denotes
the relative importance of that command (e.g., a command that resulted in poor
performance would likely be given less weight than a command that resulted in
the robot injuring a human). While our inverse trust estimate uses a simple step
function to represent the current estimate of trust, a more complex (or cognitively
plausible) function could be used that more closely aligns with the operator’s actual

1An interruption could also be a result of the operator identifying a more important task for the
robot to perform or failures could be the result of unachievable tasks. The robot works under the
assumption that those situations occur rarely and most failures/interruptions are a result of poor
performance.
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trust. However, the additional computational complexity of such a function might
not provide additional benefits if, like with our robot, we seek general trends in
trustworthiness rather than an exact trust value.

3.5 Trust-Guided Behavior Adaptation

The robot uses the inverse trust estimate to infer if its current behavior is trustworthy,
untrustworthy, or it does not yet know. Since the trust estimate is being updated over
time (after each success, failure, or interruption) the robot continuously monitors the
estimate and compares it to two threshold values: the trustworthy threshold (�T ) and
the untrustworthy threshold (�UT ).

If the trust estimate is between the two thresholds (�UT < TrustB0 < �T ), the
robot will not make any conclusions and will continue to monitor its trustworthiness.
However, if the trust estimate reaches the trustworthy threshold (TrustB0 � �T ),
the robot will conclude it has found a sufficiently trustworthy behavior. The robot
will continue to use its current behavior, since it is believed to be trustworthy, but
may continue to measure trustworthiness in case any changes occur (e.g., a new
operator or new mission goals). Finally, if the trust estimate falls to or below the
untrustworthy threshold (TrustB0 � �UT ), the robot will conclude that its current
behavior is untrustworthy and should be changed. In this situation, the robot will
perform behavior adaptation to switch to a new behavior.

Figure 3.1 shows an example of the robot’s estimate of the trustworthiness of its
current behavior. The robot initially starts from a baseline value, since it does not
know if the behavior is trustworthy or untrustworthy, and updates the estimate as
new evidence becomes available. In this example, the robot was issued five tasks
to perform. The robot completed the first two tasks successfully (as indicated by
the increases in the trust estimate), failed or was interrupted during the third task

Positive 
Trust

Negative 
Trust

Time

Trustworthy threshold

Untrustworthy threshold

Fig. 3.1 An example of the robot’s trust estimate after being issued five tasks
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(as indicated by the decrease in the trust estimate), and then successfully completed
the fourth and fifth tasks. The robot’s trust estimate is trending upwards, but since it
is still between the two thresholds it cannot conclude if its behavior is trustworthy
or untrustworthy.

3.5.1 Evaluated Behaviors

When a behavior B is found to be untrustworthy (i.e., the trust estimate reached the
untrustworthy threshold), it is stored as an evaluated pair E that also contains the
time t it took the behavior to be labeled as untrustworthy:

E D hB; ti

The motivation for storing the time it took to label a behavior as untrustworthy,
instead of only storing the behavior itself, is that it allows for a comparison between
untrustworthy behaviors. This permits a relative level of untrustworthiness so that
we can say one behavior is closer to being trustworthy than another. A behavior
B00 that reaches the untrustworthy threshold more quickly than another behavior
B00 (t0 < t00) is defined to be less trustworthy than the other. This is based on the
assumption that if a behavior took longer to reach the untrustworthy threshold then
it was either performing some trustworthy actions, was not failing as quickly, or was
appearing to behave trustworthy for longer periods of time.

The robot maintains a set Epast of previously evaluated behaviors. This set, which
is initially empty, is extended as the robot evaluates more behaviors. If the robot has
found n behaviors to be untrustworthy then Epast will contain n evaluated behaviors
(Epast D fE1;E2; : : : ; Eng). However, if the robot determines that a behavior Bfinal is
trustworthy (i.e., the trustworthy threshold was reached), that behavior will not be
added to the set and the robot will not change its behavior.

The set Epast can be thought of as the search path that was taken to find the
trustworthy behavior Bfinal. This can potentially be useful if the robot is performing
a new search for a trustworthy behavior (i.e., because of a new operator, mission, or
context) and is able to reuse information from the previous search. For example, if
two operators find similar behaviors untrustworthy in a similar amount of time, they
might also find similar behaviors to be trustworthy.

To make use of information from previous behavior adaptation, we employ
case-based reasoning (CBR) (Richter and Weber 2013). CBR embodies the idea
that similar problems tend to have similar solutions. Problem-solution pairs, called
cases, represent examples of concrete problem solving instances and are stored in a
case base. Each case C is a pair containing a problem and its solution. In our context,
the problem is the set of previously evaluated behaviors Epast and the solution is the
final trustworthy behavior Bfinal:

C D ˝
Epast; Bfinal

˛



3 Learning Trustworthy Behaviors Using an Inverse Trust Metric 41

The case base, which is initially empty, grows each time a new case is created. Since
each case represents a single problem-solving episode (i.e., finding a trustworthy
behavior for an operator in a given context), the case base represents all of the
problem solving experience that the robot has collected.

3.5.2 Behavior Adaptation

Behavior adaptation, which we have only described abstractly to this point, is per-
formed when the currently evaluated behavior reaches the untrustworthy threshold
and the robot needs to select a new behavior to perform. The new behavior Bnew

is selected as a function of the set of previously evaluated behaviors Epast and the
robot’s case base CB:

Bnew D selectBehavior
�
Epast; CB

�

The selectBehavior function (Algorithm 3.1) searches for a case Ci in CB with a
set of evaluated behaviors that is most similar to Epast. The motivation for this is that
if they have similar problems then they might have similar solutions, so the robot
can adapt its behavior by switching to the final behavior stored in Ci.

Algorithm 3.1: Selecting a new behavior
Function: selectBehavior

�
Epast;CB

�
returns Bnew

1 bestSim 0IBbest  ¿I
2 foreach Ci 2 CB do
3 if Ci:Bfinal … Epast then
4 simi  sim

�
Epast; Ci:Epast

� I
5 if simi > bestSim then
6 bestSim simiI
7 Bbest  Ci:BfinalI
8 if Bbest D ¿ then
9 Bbest  modifyBehavior

�
Epast

� I
10 return Bbest;

The algorithm iterates through each case in the case base (line 2) and checks
to see if the case’s final behavior has already been evaluated (line 3). This check
is done to ensure that behaviors that have already been found to be untrustworthy
are not evaluated again. The sets of evaluated behaviors of the remaining cases are
compared to the robot’s current set of evaluated behaviors using a similarity metric
(line 4). The most similar case’s final behavior is stored (lines 5–7) and returned to
the robot (line 10). This behavior is immediately used by the robot and the robot
begins measuring the trustworthiness of that behavior. If no similar cases were
found (i.e., the case base is empty or the final behaviors of all cases have already
been evaluated), the modifyBehavior function is used to select the next behavior to
perform (line 9).
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The modifyBehavior function selects an evaluated behavior Emax that took the
longest to reach the untrustworthy threshold (8Ei 2 Epast; Emax:t � Ei:t).
A random walk (without repetition) is performed to find a behavior Bnew that
requires the minimum number of changes to Emax. B and has not already been
evaluated (8Ei 2 Epast; Bnew ¤ Ei:B). This is based on the assumption that Emax

is the least untrustworthy of the evaluated behaviors and a slight change might lead
to a more trustworthy behavior. If all possible behaviors have been evaluated and
found to be untrustworthy, the robot will stop adapting its behavior and use Emax. B.

Algorithm 3.1 relies on calculating the similarity between two sets of evaluated
behaviors (line 4). This similarity (Algorithm 3.2) is complicated by the fact that the
sets may vary in size. This occurs because the number of evaluated behaviors in each
case is dependent on how long the search took in that instance. Similarly, there is no
guarantee that the same behaviors were evaluated in each set. To account for this, the
similarity function looks at the overlap between the two sets and ignores behaviors
that have only been evaluated in one set. The algorithm goes through each evaluated
behavior in the first set (line 2) and finds the most similar evaluated behavior Emax

in the second set (line 3). The similarity between two behaviors is a function of the
similarity of each behavior component:

sim .B1;B2/ D 1

m

mX
iD1

sim .B1:ci;B2:ci/ ;

where the similarity function for each behavior component will depend on its
specific type. For example, a behavior component that represents a binary parameter
value would require a different similarity function than a component that represents
which path planning algorithm to use.

If the two evaluated behaviors, Ei and Emax, are sufficiently similar, based on a
threshold � (line 4), then the similarity of their time components are included in
the similarity calculation (line 5). This ensures that the final similarity value only
includes information from behaviors that have a highly similar counterpart in the
other set. This function will return a high similarity (up to a maximum of 1.0) when
similar behaviors took nearly the same time to reach the untrustworthy threshold
and a low similarity (to a minimum of 0.0) when similar behaviors had a noticeable
difference in the time they took to reach the untrustworthy threshold.

3.6 Evaluation

In this section, we evaluate our behavior adaptation technique in a simulated robotics
environment. Two variations of trust-based behavior adaptation are used: case-based
behavior adaptation and random walk behavior adaptation. While we expect both
approaches to allow the robot to adapt to trustworthy behaviors, we will evaluate our
claim that the case-based approach can find trustworthy behaviors more efficiently.
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Algorithm 3.2: Similarity between sets of evaluated behaviors
Function: sim .E1; E2/ returns sim
1 totalSim 0I num 0I
2 foreach Ei 2 E1 do
3 Emax  argmax

Ej2 E2

�
sim

�
Ei:B;Ej:B

�� I
4 if sim .Ei:B; Emax:B/ > � then
5 totalSim totalSimC sim .Ei:t; Emax:t/ I
6 num numC 1I
7 if num D 0 then
8 return 0;
9 return totalSim

num I

3.6.1 eBotworks Simulator

Our evaluation uses the eBotworks simulation environment (Knexus Research
Corporation 2015), a multi-agent simulation engine and testbed for unmanned
systems. In eBotworks, autonomous agents control simulated robotic vehicles
and can receive multimodal commands from human operators. We chose to use
eBotworks based on its flexibility in autonomous behavior modeling, ability to
interact with agents using natural language commands, and built-in experimentation
and data collection capabilities.

In our experiments, we use a single robot that is a wheeled unmanned ground
vehicle (UGV). The robot uses eBotworks’ built-in natural language processing (for
interpreting user commands), sensing, and path-planning modules. The environment
is composed of landmarks (e.g., roads, various types of terrain) and objects (e.g.,
houses, humans, vehicles, road barriers). The actions performed by the robot are
non-deterministic and the robot also suffers from limited observability and potential
sensor errors.

3.6.2 Experimental Conditions

Our initial study uses simulated operators to facilitate a larger-scale evaluation
than if real human operators were used.2 The simulated operators were selected
to represent a subset of the control strategies used by human operators. Each
simulated operator has unique preferences for how the robot should behave and
these preferences will influence how the robot’s performance is evaluated (i.e., when
the operator allows the robot to complete a task and when it interrupts).

2We plan to validate these findings in a series of user studies.
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Each experiment is composed of 500 trials and in each trial the robot interacts
with a single simulated operator. At the start of a trial, the robot randomly selects
(with a uniform distribution) initial values for each of its modifiable components.
Throughout the trial, a series of experimental runs occur. Each run involves the
operator issuing a single command to the robot and monitoring the robot as it
performs the task. During a run the robot will complete the task, fail to complete the
task, or be interrupted by the operator; it will update its trust estimate accordingly. At
the end of each run the environment is reset and a new run begins. A trial concludes
when the robot has either found a trustworthy behavior or evaluated all possible
behaviors.

The case-based behavior adaptation approach starts each experiment with an
empty case base. A case is stored at the end of a trial if the robot found a trustworthy
behavior and performed at least one random walk adaptation (i.e., the robot could
not find a solution in its case base so it used the modifyBehavior function). This case
retention strategy is used to prevent adding redundant cases. An added case can be
used during any of the subsequent trials in the experiment.

The robot’s trustworthy threshold was set to �T D 5:0 and its untrustworthy
threshold set to �UT D �5:0. These thresholds were set to allow some fluctuation
between increasing and decreasing trust while still identifying trustworthy and
untrustworthy behaviors quickly. When calculating the similarity between sets of
evaluated behaviors, a similarity threshold of � D 0:95 was used (i.e., behaviors
must be at least 95 % similar to be matched).

3.6.3 Evaluation Scenarios

We selected two scenarios of increasing complexity: movement and patrolling for
threats. While the Movement scenario is a relatively simple task, the Patrol scenario
requires a more complex behavior with a larger set of modifiable components.

3.6.3.1 Movement Scenario

The initial task the robot is required to perform involves moving between two
locations in the environment (Fig. 3.2). The simulated operator issues natural
language commands to tell the robot where to move (e.g., “move to the flag”) and
the robot is responsible for navigating to that location. Three metrics are used by the
operators to assess the robot’s performance:

• Task Duration: The operator has an expectation about the amount of time the
task should take to complete (tcomplete). If the robot does not complete the task
within that time, the operator may, with probability p˛ , interrupt the robot.
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Fig. 3.2 The environment configuration for the Movement scenario

• Task Completion: If the operator determines that the robot has failed to complete
the task (e.g., the robot is stuck or moved to the wrong location), the robot will
be interrupted.

• Safety: The operator may interrupt the robot, with probability p� , if the robot
collides with any obstacles.

We use three simulated operators in this scenario:

• Speed-focused operator: This operator prefers the robot to move to the des-
tination quickly regardless of whether it hits any obstacles (tcomplete D 15 s,
p˛ D 95 %, p� D 5 %).

• Safety-focused operator: This operator prefers the robot to avoid obstacles
regardless of how long it takes to reach the destination (tcomplete D 15 s,
p˛ D 5 %, p� D 95 %).

• Balanced operator: This operator prefers a balanced mixture of speed and safety
(tcomplete D 15 s, p˛ D 95 %, p� D 95 %).

In this scenario, the robot has two modifiable behavior components: speed and
obstacle padding. Speed, measured in meters per second, relates to how fast the
robot can move. Padding, measured in meters, relates to the distance the robot will
attempt to maintain from obstacles during movement. The set of possible values for
each modifiable component (Cspeed and Cpadding) are based on the robot’s capabilities
(i.e., minimum and maximum accepted values with fixed increments):

Cspeed D f0:5; 1:0; : : : ; 10:0g
Cpadding D f0:1; 0:2; : : : ; 2:0g
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Fig. 3.3 The environment configuration for the Patrol scenario

3.6.3.2 Patrolling Scenario

In the second scenario, the robot patrols for threats as it moves between two
locations in the environment (Fig. 3.3). At the start of each run, six suspicious
objects are randomly placed in the environment. These suspicious objects represent
potential threats, and between 0 and 3 (inclusive) of them are designated as
hazardous explosive devices (selected randomly with a uniform distribution). The
remaining suspicious objects are not hazardous to the robot or the team.

As the robot moves between the start location and the goal location (given by
a natural language command from the operator), it scans for suspicious objects
nearby. When a suspicious object is detected, it pauses its patrolling behavior,
moves toward the object, scans it with its explosives detector, and labels the object
as an explosive or harmless. The robot then resumes its patrolling behavior. The
accuracy of the robot’s explosives detector is a function of how long the robot spends
scanning the object (long scan times result in improved accuracy) and its proximity
to the object (smaller scan distances result in improved accuracy). In addition to
the speed and padding, the scan time, measured in seconds, and scan distance,
measured in meters, are also modifiable components of the robot’s behavior. The
possible values for these are:

Cscantime D f0:5; 1:0; : : : ; 5:0g
Cscandistance D f0:25; 0:5; : : : ; 1:0g

In addition to the task duration, task completion, and safety factors described
in the Movement scenario, the simulated operators will also base their decision to
interrupt the robot on its ability to successfully identify and label suspicious objects.
An operator will interrupt the robot if it does not scan one or more suspicious objects
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(e.g., it drives by without noticing it) or incorrectly labels a harmless object as
an explosive. If the robot incorrectly labels an explosive device as harmless, the
object will eventually detonate and the robot will fail its task. The robot assigns
higher weight to failures due to missing explosive devices (3 times higher than
other failures or interruptions) because of the danger such failures cause to human
teammates and bystanders.

We use two simulated operators in this scenario:

• Speed-focused operator: The operator prefers that the robot performs the patrol
task within a fixed time limit (tcomplete D 120 s, p˛ D 95 %, p� D 5 %).

• Detection-focused operator: The operator prefers the task be performed cor-
rectly regardless of time (tcomplete D 120 s, p˛ D 5 %, p� D 5 %).

3.6.4 Trustworthy Behaviors

We found that both case-based behavior adaptation and random walk behavior
adaptation resulted in similar trustworthy behaviors for each operator. This includes
values falling within similar ranges of trustworthy values (e.g., for the safety-
focused operator in the Movement scenario the padding never went below 0.4 m
in any trial) or similar relations between values (e.g., in the Patrol scenario there
was a relation between scan time and scan distance). Furthermore, the trustworthy
behaviors aligned with what an outside observer would intuitively consider trust-
worthy for each operator (e.g., that the speed-focused operator will prefer higher
speeds).

The trustworthy behaviors for each of the operators in the Movement scenario
are shown in Figs. 3.4, 3.5 and 3.6. Each dot represents the trustworthy behavior
found during a single trial using random walk adaptation. Although 500 trials were
performed for each operator, fewer than 500 dots appear in each figure because
some trials converged to the same parameter values. This is more prevalent when
case-based behavior adaptation is performed since the final behaviors stored in cases
occur much more frequently than other behaviors (i.e., those solutions are repeatedly
reused). However, the trustworthy behaviors found by the case-based approach fall
within the same regions as the random walk behaviors.

The speed-focused operator (Fig. 3.4) causes the robot to converge to higher
speed values regardless of padding while the safety-focused operator (Fig. 3.5)
results in higher padding values regardless of speed. For the balanced operator
(Fig. 3.6), both speed and padding must be high.

In the Patrol scenario, there are similar differences in the range of values for
certain behavior components. The speed-focused Patrol operator causes the robot
to converge to higher speed values (speed � 2:0) whereas the detection-focused
operator has no such restriction. However, unlike in the Movement scenario there
are also interdependencies among behavior components. For example, none of the
trustworthy behaviors for the speed-focused Patrol operator have both a medium
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Fig. 3.4 Trustworthy behaviors for the speed-focused operator in the Movement scenario. The
robot converged to behaviors with higher speed values regardless of padding

Fig. 3.5 Trustworthy behaviors for the safety-focused operator in the Movement scenario. The
robot converged to behaviors with higher padding values regardless of speed

speed (2:0 � speed � 4:0) and high scan time. This is because the robot
needs to account for longer scan times by driving faster. Similarly, there is an
interdependence between scan time and scan distance. The robot only selects a poor
value for one of the modifiable components (low scan time or high scan distance) if
it selects a good value for the other (high scan time or low scan distance).
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Fig. 3.6 Trustworthy behaviors for the balanced operator in the Movement scenario. The robot
converged to behaviors with both high speed and padding

These results fit with the definitions of the simulated operators and our intuition
on the behaviors they would find trustworthy. However, one noticeable exception
occurred in the Movement scenario where behaviors that appear to be trustworthy
are actually not. For both the speed-focused and balanced operators (Figs. 3.4 and
3.6), no trustworthy behaviors were found when padding D 0:9. For both of these
operators, larger (padding D 1:0) and smaller (padding D 0:8) values were found
to be trustworthy. This occurred in the results for both the case-based and random
walk approaches, and in a follow up evaluation where the robot was forced to use
behaviors with padding D 0:9. The reason this padding value was found to be
untrustworthy was because of the environment. The padding value resulted in a
direct, but narrow, path to the destination. This required the robot to slow down when
navigating through the narrow path and caused it to exceed its time limit (this is why
that padding value was not an issue for the safety-focused operator). However, when
the padding was lowered the path became large enough that the robot could drive
through without slowing down. Similarly, when the padding was increased the path
was eliminated so the robot took a slightly longer but much easier path. These results
show that even if we had a general idea about what behaviors would be considered
trustworthy there is still the possibility of seemingly trustworthy behaviors being
untrustworthy. It is beneficial for the robot to be able to adapt and overcome any
issues that are not anticipated, especially if it operates in a dynamic or unknown
environment.
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Table 3.1 Mean number of behaviors evaluated before finding a trustworthy
behavior

Scenario Operator Random walk Case-based Cases acquired

Movement Speed-focused 20.3 (˙3.4) 1.6 (˙0.2) 24
Movement Safety-focused 2.8 (˙0.3) 1.3 (˙0.1) 18
Movement Balanced 27.0 (˙3.8) 1.8 (˙0.2) 33
Movement Random 14.6 (˙2.9) 1.6 (˙0.1) 33
Patrol Speed-focused 344.5 (˙31.5) 9.9 (˙3.9) 25
Patrol Detection-focused 199.9 (˙23.3) 5.5 (˙2.2) 22
Patrol Random 269.0 (˙27.1) 9.3 (˙3.2) 25

3.6.5 Efficiency

The primary difference between the case-based and random walk approaches was
related to how many behaviors needed to be evaluated before a trustworthy behavior
was found. Table 3.1 shows the mean number of evaluated behaviors (and 95 %
confidence interval) when interacting with each operator over 500 trials. In addition
to being controlled by a single operator during each experiment, we also examined
a condition where the operator was selected at random (with equal probability) at
the start of each trial. This represents a more realistic situation where the robot
interacts with a variety of operators but does not know which particular operator it
is currently interacting with. This variant is labeled as Random and was performed in
both scenarios. The table also shows the number of cases acquired during the case-
based behavior adaptation experiments (each experiment started with an empty case
base).

The case-based approach required significantly fewer behaviors to be evaluated
in all seven conditions (using a paired t-test with p < 0:01). This is because the
case-based approach learns from previous adaptations and uses that information to
quickly find trustworthy behaviors. At the beginning of an experiment, when the
robot’s case base is empty, the case-based approach relies on performing random
walk adaptation. As the case base grows, the number of random walk adaptations
decreases until the agent generally performs a single case-based adaptation before
finding a trustworthy behavior. Even in the random operator experiments when the
case base contains cases from several different operators (three in the Movement
scenario and two in Patrol), the case-based approach can quickly differentiate
between operators and select a trustworthy behavior. Operators with fewer restric-
tions on trustworthy behaviors (i.e., a higher percentage of the behavior space is
considered trustworthy), like the safety-focused and detection-focused operators,
had the lowest mean number of adaptations to find a trustworthy behavior.



3 Learning Trustworthy Behaviors Using an Inverse Trust Metric 51

3.6.6 Discussion

The primary limitation of the case-based approach is that it relies on random walk
search when it does not have any suitable cases to use. This is especially prevalent
early on when the robot has a small or empty case base. For example, if we consider
only the final 250 trials for each Patrol scenario operator, the mean number of
behaviors evaluated is lower than the overall mean (4.2 for the speed-focused, 2.8 for
the detection-focused, and 3.3 for the random). This is because the robot performs
the expensive random walk adaptation more often in the early trials, so it performs
more efficiently on the later trials. These expensive adaptations occur infrequently
(only in trials where a case is stored) but increase the mean number of behaviors
that are evaluated.

Two primary solutions exist to reduce the number of behaviors examined during
case-based behavior adaptation: improving search and seeding the case base.
Random walk search is used because it requires no explicit knowledge about the
domain, task, or operator. However, a more intelligent search that could identify
relations between interruptions and modifiable components would likely improve
adaptation time (e.g., an interruption when the robot is close to objects may require
a change to the padding value). This could reduce the cost of each search, whereas
seeding the case base would attempt to minimize the number of searches required.
A set of initial cases could be provided to the robot so that it would not need
to acquire as many on its own. However, these two solutions introduce their
own potential limitations. A more informed search requires introducing domain
knowledge, which may be difficult or expensive to obtain, and seeding the case base
requires an expert to manually author cases (or another method of automatic case
acquisition). The specific requirements of the application domain will ultimately
influence whether faster behavior adaptation or lower domain knowledge are more
important.

3.7 Conclusions

In this chapter we have described our approach for inverse trust estimation and how
a robot can use it to adapt its behavior. Rather than traditional trust metrics that
directly measure how much trust an agent has in another agent, our inverse trust
estimate attempts to infer how much trust another agent has in it. As such, it cannot
be thought of as an explicit measurement of trust but rather a best-guess estimate
based on observable indicators of trust (e.g., the operator’s response to the robot’s
performance). Our approach relies more on the general trends in its trustworthiness
(increasing, decreasing, or constant) rather than requiring a precise numerical value.

The primary benefit of this behavior adaptation approach is that it does not
require any background knowledge about the tasks, environment, context, or
operators. Each time the robot successfully finds a trustworthy behavior, it stores
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information about the adaptation process and uses that to improve the efficiency of
future adaptations. This allows it to constantly learn behavior adaptation knowledge
with each trial.

We evaluated our trust-guided behavior adaptation algorithm in a simulated
robotics environment by comparing it to a variation that does not learn. In the
two scenarios, Movement and Patrol, both approaches converged to trustworthy
behaviors but the case-based algorithm required significantly fewer behaviors to
be evaluated. This is advantageous because the operator is more likely to stop using
the robot the longer the robot behaves in an untrustworthy manner.

Although we have shown the benefits of trust-guided behavior adaptation, several
areas of future work exist. Although much of our work is based on studies in human-
robot interaction, our initial evaluation has been limited to simulation studies. An
ongoing area of our research is to validate our findings in a series of user studies.
Next, our robot is only concerned with undertrust. In longer scenarios, the robot
should also evaluate situations of overtrust where the operator trusts the robot too
much and allows the robot to behave autonomously even when its performance
is poor. We also plan to expand our inverse trust estimate by incorporating other
trust factors and adding mechanisms that promote transparency (Kim and Hinds
2006) between the robot and the operator. Transparency would allow information
exchange between the robot and the operator, and allow the robot to verify or
refine assumptions it has been using (e.g., which goals the team is currently
trying to achieve). Many of these areas for future work revolve around taking our
existing approach, which requires minimal domain knowledge, and allowing for
extra knowledge to be incorporated if it ever becomes available.

Acknowledgment Thanks to the United States Naval Research Laboratory and the Office of Naval
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Chapter 4
The “Trust V”: Building and Measuring Trust
in Autonomous Systems

Gari Palmer, Anne Selwyn, and Dan Zwillinger

4.1 Introduction

Autonomous systems are becoming ever more prevalent (Rosen 2012), attracting
increasing numbers of researchers, papers, and symposia (IHMC 2013). The
importance of autonomous capabilities has led the DoD (Department of Defense)
to make autonomy one of its seven Science and Technology priorities for FY 2013–
2017 (Gates 2011).

The need for machine autonomy arises from both mission priorities and system
complexity. While un-manned missions drive some autonomous designs, it is prin-
cipally in the area of managing complexity that issues of trust arise. Autonomous
systems considered in this work are intended to include human users. Complexity
can distance human users from the functional operation of a system, while autonomy
in that system can bridge the gap, making operation more intuitive, responsive, and
better integrated into the overall mission environment. The design and operation
of these systems needs to be addressed in terms of human-system collaboration.
Ideally, an autonomous system extends human capabilities and works as a team
member, integrating into the mission at hand. Successful pedigree and operational
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integration will engender trust in the system1,2 and lead to sustained operator
reliance on those autonomous capabilities. Development of trust in this context is
an entirely human activity, and the methodologies for building trust are necessarily
evolving with each new generation of autonomous capability.

While operator reliance is an end goal for an autonomous system, autonomy
itself can be a challenge for system definition, and verification and validation. The
design trade space contains new dimensions: optimality vs. resilience, efficiency
vs. thoroughness, centralized vs. distributed, and so on (DSB 2012). Tools for
verification and validation must be integrated into the system design providing high
fidelity insight into the architecture as it unfolds during development. Trust cannot
be established in an autonomous system unless trust has also been established for
the automation attributes that provide the underlying foundation for the autonomous
attributes (Stone 2011), or to put it more simply, a complex system that works is
invariably found to have evolved from a simple system that works (Gall 1977).

There are many development paradigms for implementing large complex sys-
tems. System engineering development models are generally characterized by a
dominant topology chosen to emphasize some overarching theme. These topologies
include the waterfall, spiral, and “V”. The System Engineering V is predominantly
the model of choice for systems that must meet a high standard of perfor-
mance assurance upon delivery, as it emphasizes verification and validation of
a requirements-driven design (Forsberg and Mooz 1991, FHWA SE Guidebook
2009).

Perhaps due to its acceptance as a basic INCOSE (International Council on
Systems Engineering) standard, or perhaps to its widespread use, there are many
variants of the Systems Engineering V. As an Internet search reveals. These variants
usually arise from domain specific concerns. In this chapter we introduce the
“Trust V” framework, which provides guidance on how to build qualities that
engender trust into systems with autonomous capabilities. This twist to the Systems
Engineering V is a novel application of autonomous development methods to the
Systems Engineering development model. While the context for our approach
is the architecture of large-scale Aerospace and Defense systems that follow a
rigorous Systems Engineering methodology. The general ideas may be applied to
any complex system design. The framework presented here consists of a “toolbox”
of reusable and adaptive trust building techniques. This toolbox is intended to
exploit the commonality across system architectures, whereby each technique will
be evaluated for applicability and evolve as the autonomous capabilities of the
overall system design are specified.

1Note that systems cannot, per se, “have trust”. Rather, a system may be trustable. This might
occur through system usage or via transference of trust from one operator to another. We adopt
the common convention of referring to systems as “having trust” when the system supports the
creation of trust, perhaps by having built-in assessment-enabling capabilities.
2And the converse is also true; as when evaluating humans, an accident or mishap could greatly
reduce the likelihood of obtaining trust.
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Many of the tools in the Trust V toolbox directly target the validation and
verification process, with the systems engineer as the target human operator. In
this way an evolving autonomy framework can support both the ultimate system
users and the design team. Investment in Trust V methods, which support Test,
Evaluation, Verification and Validation and system operations, will reduce life
cycle cost while increasing operator acceptance and system viability. This approach
to robust design is a novel means of leveraging autonomous capability. It both
contrasts with, and compliments other approaches to robust design such as AADL
(Architecture Analysis & Design Language) (Feiler et al. 2006) and LTL (Linear
Temporal Logic) (Fainekos and Pappas 2006).

4.2 Autonomy, Automation, and Trust

Complete automation and complete autonomy are often described as endpoints
along a spectrum of system behavior, as depicted in Fig. 4.1. The Trust V
methodology, described subsequently, can be used at any point along this spectrum.
As systems transition towards dynamic and adaptive behavior, humans become
increasingly uncertain of the system behavior and are less willing to trust. Hence,
the value of investments in trust engendering methods will increase.

It is useful to recognize that autonomy is built upon automation. The automobile
industry provides an excellent example of incremental transition from automation
towards autonomy for consumers, resulting in significant autonomous capabilities.
In the recent past, decreasing an automobile’s speed was a manual operation
performed by a human stepping on the car’s brake. Today many cars are able to
automatically and autonomously decrease speed based on distance between cars.
In the future, automobiles will autonomously adjust speed to ensure safe distance
between cars and other objects in all directions. Speed control is just one of the many
automated capabilities that were needed before cars could become autonomously
self-driving. In many fields, including the automotive field, the process of increasing
automation, possibly trending towards autonomy, takes the form of a layered
control. For speed control some of the improvements in this layering are: self-
adjusting calipers, followed by the Anti-lock Braking System (ABS), followed
by basic cruise control, followed by the current more sophisticated cruise control
mechanisms. Each improvement builds on the last.

We study trust because we wish to develop automated and autonomous system
that will be used. Perhaps unsurprisingly, an operator’s use of an autonomous system
is profoundly influenced by their trust in that system (Muir 1987; Dzindolet et al.
2003). From the US Department of Defense (DSB 2012)

“For commanders and operators in particular, these challenges can collectively be
characterized as a lack of trust that the autonomous functions of a given system will operate
as intended in all situations.”

While in general discussion the term “trust” is used to establish a particular
quality in human interaction, trust is just a component in a behavioral pattern of
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Fig. 4.A.1 The array representation of the Trust V

interaction. Trust alone is an attitude that an agent will help achieve an individual’s
goals in a situation characterized by uncertainty and vulnerability (Lee and See
2004). Given a context and a body of information, trust grants the user confidence
that the agent will successfully and correctly act on the user’s intention, leading the
user to rely on the agent. The outcome of the agent’s action feeds back into the
context and body of information, closing the loop (see Fig. 4.2). By definition, trust
is established in the context of the mission environment and the body of information
supplied to the user. Success in establishing trust is objectively observed in the user’s
patterns of reliance.
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broadly applicable methods
Uncertain

Analysis preceeding 
Requirements

For most of these, can use:
(*) Simulation

Prediction of Mission Threats

2 Requirements Analysis 
Process

For most of these, can use:
(*) Dynamic Fault Trees
For most of these must have
(*) Incorporation of MOEs

Measure of uncertainty & confidence;
Reasoning of Situational Awareness for 
dynamic threat prediction

3 Architectural Design 
Process

Sensor reliabiity analysis

6 Verification Process For most of these, can use:
(*) Semantic Q&A Capability;
(*) Future scenario prediction

8 Validation Process For most of these, can use:
(*) Semantic Q&A Capability;
(*) Future scenario prediction

"Turing" Test
Future Risk Prediction method

9 Operation Process For most of these, can use:
(*) Semantic Q&A Capability;
(*) Future scenario prediction
(*) Automated capture, analysis 
and feedback loop for 
Measures of trust

Fig. 4.A.2 Trust V information showing techniques for the “Uncertain” autonomy dimension.
(Note that the array has been rotated, relative to the representation in Fig. 4.A.1)

From a user’s point of view, trust is generally learned through experiencing the
system’s patterns of behavior/execution. System pedigree may accelerate develop-
ment of system trust. For example, if Operator B trusts Operator A, and Operator
A has communicated their trust of Autonomous System X to Operator B, then one
would expect that Operator B would be inclined to be more trusting of System X.
Depending on the relationship between A and B, this communication might reduce
B’s need to evaluate System X.

We note that trust is an abstraction that cannot be precisely measured. We know
of no absolute trust measurement. Since trust is a relative measurement, we are
restricted to measuring changes in trust. That being said, when a person trusts a
system it is not that a trust threshold has been met but because the person has
determined that the system can adequately perform a specific purpose.

In many systems, autonomous designs have access to low-level system resources.
During operational use of these systems, the software can analyze the totality of
system information, thereby presenting a multi-dimensional, holistic expert view-
point to the human operators. As discussed later, a broadly applicable trust-building
technique is for the system to present the end user with commentary and rationale
for system operations within the context of the mission. Sometimes, designers of
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type lacirotsihevitcaevissap

Adaptive / 
Learning

Determine if system response to similar inputs has 
changed over time

Adversarial
Evaluate results of system operation applied to 
operator/SME supplied what-if examples

Number of adversaries identified, and percentage of 
those addressed

Dynamic
If operator must accept tainted results 
before they can be used then number of 
tainted results  accepted by operator

(if has occurred)  Assessment of quality of graceful 
degradation

Human 
interaction

SUS score

Self-directed
Self-governed
Uncertain
Unstructured
SoS integration 
safe

Perceived 
competence

Percentage of time operator chooses to 
not override system (decrease);

Evaluate results of system operation applied to 
operator/SME supplied what-if examples

Number of "functions" executed per unit time by 
computer (vs humans) (desire increased);
Ratio for completion of "Mission-Critical Objectives" 
vs. "Secondary Objectives" (increase);
Time to respond to critical events (decrease);
Time to respond to non-critical events (decrease).

Benevolence

"Lead it into temptation and see if it delivers 
evil" ==> Create "tempting" scenarios and assess 
if malevolence results

Percentage of time that system operates outside of 
"safeguarded" regions

Understandability
Number operator queries per unit time; 
Percentage of queries which are followed 
immediately by another query

Evaluate results of query usefulness by 
operator/SME;
SUS score

Time required for operator training (desire decrease)

Directability

Response time when operator overrides 
system;
Time from when operator takes control 
until time when operator releases control 
back to system

Reliability

Measured false positive rate (desire decrease);
MTBF (desire decrease);
MTTF (desire decrease);
MTTR (desire decrease);
number of HW faults per unit time (desire decrease);
number of SW exceptions per unit time (desire 
decrease);
Inventory (spares) (desire decrease);
Maintenance man-hours (desire decrease);
Time to Failure (TTF) (desire decrease);
Time to Support (TTS) (desire decrease);
Time to Maintain (TTM) (desire decrease);
(if so configured)   if system returns multiple results 
with confidence (think IBM's Watson) then analysis 
of  results with confidences

Validity 

;temeraSPONOCnisretemarapecnamrofrepyeKnoitelpmocnoissim/ksatfoycaruccA
Number of times per unit time operator assesses 
system supplied trust diagnostics (desire increase?)

Utility

Percentage of time that operator is not 
actively engaging the system in any way

Speed at which active goals are achieved;
Decrease in manpower and personnel requirements 
without impact to mission effectiveness

Robustness

Number of times that HW was radically & 
unexpectedly changed and system continued 
operation (perhaps in a limited capacity);
Increase in the time the system runs autonomously 
(assumes effective work is being performed)

False-alarm rate
% of alarms not dismissed by operator and 
acted upon.

Measured false alarm rate
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action" without operator intervention given an 

18 Trust Dimensions
MOE type: Passive, Active, Historical

MOE(s) supporting a 
specific trust dimension

Fig. 4.A.3 Measures of Effectiveness (MOEs) for Trust in three categories
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Operating Environments

Systems

Static, Predictable

Automation

Adaptive

Machine Learning

Machine Reasoning

General PurposeApplication Specific

Autonomy

Preprogrammed

Scripted

Hard-coded, if-then-else rules

Dynamic, Unpredictable

Fig. 4.1 Each operating environment is on the continuum between automated and autonomous

Fig. 4.2 The trust feedback
loop (adapted from Lee and
See 2004)

complex systems reduce human facing capability in order to manage complexity.
However, it is possible for an autonomous system to demonstrate trust by reaching
into a system to present a deep understanding to the human operator in a mission
appropriate fashion, distilling complex data into readily usable information and
knowledge.

In a utopian world, humans and systems (or machines) would seamlessly pass
control back and forth as the situation required. The degree to which human-
machine collaboration is successful is a measure of human trust in the system (DSB
2012). However, complete human-machine collaboration requires that the system
trusts the human partner, an inversion of the usual relationship. Of course, systems
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trusting humans is not too different from systems trusting other systems. While
this is a capability likely to be available in the near future (think of swarms of
drones coordinating their activities) the Trust V does not explicitly address systems
developing trust in others. Currently the Trust V is only for humans developing trust
in systems. Expanding the Trust V to include systems’ developing trust capabilities
of other systems and of humans is possible. It would include architecture and
design considerations. However, determining how a system develops trust of another
system would require prior understanding of how that trust would be used—which
the ConOps (Concept of Operations) would need to describe.

4.3 Dimensions of Trust

Autonomous and automated systems have attributes (or characteristics) that other
systems do not have. This section identifies these special attributes and refers to
them collectively as the “dimensions of trust.” Subsequently, we suggest specific
methods to address operational and system trust along each of these dimensions.

4.3.1 Trust Dimensions Arising from Automated
Systems Attributes

In the automation literature are many lists of attributes that are needed for the
creation of system trust.3 Different authors have different lists. We choose to use
the following nine attributes4 (Hoffman et al. 2013):

1. Benevolence—system is supporting the mission and operator (and not in
opposition)

2. Directability—system can be re-directed by the operator
3. False-alarm rate—certain error rates are known and acceptable
4. Perceived competence—the operator believes the system can perform a task
5. Reliability—the system has only a small chance of failing during a mission
6. Robustness—the system can appropriately handle perturbations
7. Understandability—the conclusions a system reaches can be understood
8. Utility—the system adds value
9. Validity—the system is solving the correct problems

3A synopsis of 14 previous studies in this area is in (Lee and See 2004)
4Definitions of the following terms, and others in this paper, are in a “Trust V” spreadsheet,
available from the authors. In this paper we give the gist of each term.
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4.3.2 Trust Dimensions Arising from Autonomous
Systems Attributes

The Department of Defense (DoD) established the Autonomy Research Pilot
Initiative (ARPI) in 2012, and defined autonomy as (ARPI 2012)

Systems which have a set of intelligence-based capabilities that allow it to respond within
a bounded domain to situations that were not pre-programmed or anticipated in the design
(i.e., decision-based responses) for operations in unstructured, dynamic, uncertain, and
adversarial environments. Autonomous systems have a degree of self-governance and self-
directed behavior and must be adaptive to and/or learn from an ever-changing environment
(with the human’s proxy for decisions).

From this definition, we extract eight autonomy attributes to be used in our
analysis of how to develop trust. These are attributes of a system (1,5,6), its
environment (2,3,7,8), or its mission (4):

1. Adaptive/Learning—system can acquire information and then beneficially lever-
age that information

2. Adversarial—system can complete its mission when subject to opposing efforts
3. Dynamic—system can complete its mission in a changing environment
4. Human interaction—system can interact with humans, and humans with the

system, for mutual benefit
5. Self-directed—system can direct itself (e.g., can determine what to do)
6. Self-governed—system can control itself (e.g., can do what needs to be done)
7. Uncertain—system can complete its mission in environments that are different

from expectations
8. Unstructured—system can complete its mission in environments that are difficult

to describe

Each of these presents their own challenges. A learning system may give different
responses to the same input which makes testing a challenge. Just detecting when a
clever adversarial agent is present can be a challenge, and this may be a necessary
precursor to appropriately responding. In dynamic environments the time scale of
the change is important, yet often unknown. When dealing with humans a system
may have to compensate for errors made by the humans. Self-directed and self-
governed systems will need to incorporate risk into their decision-making. Uncertain
environments require a system understand what it does know, and what it does
not know. In an unstructured environment the system must focus on good-enough
solutions, not (impossible to obtain) perfect solutions.

4.3.3 Another Trust Dimension: SoS

In addition to the above trust dimensions, we add the additional attribute of
“Systems of Systems (SoS) integration safe”. That is, when multiple systems
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(autonomous or not) are combined, undesirable emergent behaviors may occur. This
is of particular concern when autonomous systems are combined since operational
activities become more difficult to predict. A practical example of a large scale
complex system (Osmundson et al. 2008) is the North American power grid. The
collapse of the Canadian power grid in Quebec province in 1989 and the power
outages affecting about 50 million people in the eastern US in 1993 are examples of
negative emergent behavior. Clearly, the North American power grid is automated,
not autonomous. However, we are unaware of any large-scale autonomous systems,
or systems of systems, for which emergent behavior (negative or positive) can
be predicted. Current research indicates that for autonomous systems of systems,
emergent behavior is even more unpredictable and potentially disruptive than
automated systems, which tend to follow a known path.

Haskins (2011) defines Systems Engineering to be “an interdisciplinary approach
and means to enable the realization of successful systems.” We believe that good
system engineering requires that in addition to capturing the ConOps (what a system
will do) one should also capture what a system will not do (we can call this a
“Negative ConOps”). Having a Negative ConOps analysis is especially valuable for
an autonomous system since such systems are less predictable than non-autonomous
system. More importantly, the information in a “Negative ConOps” can contribute to
system trust. For example, if a driverless car had its speed limited to 5 miles per hour
(mph), then someone’s trust in going for a test ride could be increased. Fortunately,
Negative ConOps do not create an additional trust dimension since they can be
incorporated as a “positive statement of prevention of negative consequences”. For
the driverless car example, a requirement stating, “The car shall travel at speeds of
less than 5 mph” would meet the need.

4.4 Creating Trust

We combine the nine automation trust attributes, the eight autonomous attributes,
and SoS to obtain the “18 trust dimensions.” The paradigm introduced below shows
how trust may be created for (almost all) of these dimensions.

Note that autonomous systems only require trust to be demonstrated in relevant
dimensions. For example, a system that is not in an adversarial environment does
not need to demonstrate trust in handling adversaries. Note also that a system’s
relevant trust dimensions may change during system operations. For example, the
need for self-direction of a system could change as communications connectivity
and operator availability changes.
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4.4.1 Building Trust In

An old adage is that “you cannot test quality in, you must build quality in.” This
is also true for many (perhaps all) of the non-functional requirements (also known
as “qualities”) of concern to systems engineering. Non-functional requirements are
described as follows (Long 2012):

• “Functional requirements define what a system is supposed to do e.g. Perfor-
mance

• Non-functional requirements define how a system is supposed to be.”

That is, non-functional requirements are usually characterized by adjectives and
include either: overall product properties, the character of a product’s output, or the
experience of the user using the product (Willis and Dam 2011). One of our key
insights is that system trust can be understood as a non-functional requirement you
must build “trustability” into a system. We have not seen trustability on anyone’s
list of qualities.5

The underlying concept of our Trust V approach is that trust, like quality, must
be built into the system and not “bolted on” after the fact. Starting in the concept of
operations (ConOps) phase and continuing through the entire Systems Engineering
lifecycle, activities to engender trust should be built in. The Trust V approach
identifies a selection of trust methods across all phases of the systems lifecycle to
instill confidence that the system will perform correctly. Of course, the appropriate
trust method(s) used for any specific system must be negotiated between customers,
end users, and contractors.

Another primary driver for “building trust in” is that most of the techniques that
will engender operational and system trust require trust techniques to be deeply
embedded in the fabric of the system. An additional benefit of “building trust in”
is the ability to generate and collect objective evidence for system certification and
trust.

For example, if the operator is to be able to query the rationale and decision
making of an autonomous system (what we call “Semantic Question & Answer
(Q&A)”6) then the concept of operations must ensure that the system has the
appropriate knowledge to answer an operator’s query. It is likely to be cost
prohibitive to add this capability after a system has been developed—this capability
should be part of or an enhancement to the original requirements and design. An
additional advantage to having a built-in Semantic Q&A capability is that it could
substantially benefit the Test and Evaluation (T&E), and Verification and Validation
(V&V) activities for all system components, not just the autonomous components.

5Willis and Dam (2011) lists 56 non-functional requirements; Long (2012) lists 65.
6We use “Semantic Q&A” to indicate a system response capability in which queries on system
performance are answered in the language of the system operator and the ConOps.
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Fig. 4.3 The Systems Engineering V model (from FHA 2005)

4.5 The Systems Engineering V-Model

Large and complex systems are often managed via the Vee- or V-Model (Haskins
2011, Sect. 3.3):

Various life-cycle models, such as the waterfall, spiral, Vee, and Agile Development models,
are useful in defining the start, stop, and process activities appropriate to the life-cycle
stages. The Vee model ( : : : ) is used to visualize the system engineering focus, particularly
during the Concept and Development Stages. The Vee highlights the need to define
verification plans during requirements development, the need for continuous validation with
the stakeholders, and the importance of continuous risk and opportunity assessment.

The V-model is so-called due to the associated picture that shows the thinking
behind the model (FHA 2005), see Fig. 4.3. In this figure, time/activity is going
from left to right following the arrows.

The path going down the “left leg” of the V is a decomposition process, turning
specifications for assemblies into specifications for sub-assemblies, those for sub-
assemblies into those for components, etc. The path going up the “right leg” is a
progression of system verifications against the requirements and then a validation
showing that the delivered system operates correctly in the intended environment.
When the top of the V is reached:

• The system has been verified to show compliance with requirements
• The system objectives and ConOps have been validated
• There is system acceptance—the system meets its intended use

A key attribute of the Trust V representation is that artifacts/capabilities needed
for test on the way up (e.g., on the right leg) are put in place on the way down (e.g.,
on the left leg). For example, if it has been determined that the final system needs to
be simulated as part of system test, then a simulation capability needs to be specified
by the requirements (e.g., on the way down), built into the system, and then tested
(e.g., on the way up).
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4.6 The Trust V-Model

The paradigm proposed in this paper to ensure trustability of a system is the creation
of a Trust V, which is aligned with the Systems Engineering V. The Trust V ensures
that the activities on the way down create the necessary artifacts/capabilities for
trust that can be confirmed on the way up using Test and Evaluation (T&E) and
Verification and Validation (V&V). Hence, when the top of the right leg of the
Trust V is reached the system should be capable of being trusted after suitable user
experience.

As mentioned earlier, many of the trust dimensions/attributes can be demon-
strated by a “Semantic Q&A” capability. This may be thought of as the system
responding to a query of the form “Why did you do XYZ?” with an answer in
the language of the operator using the concepts from the ConOps. Queries of
systems/robots must be tested for reliability and validity, as with humans. Creating
a Semantic Q&A capability requires capturing the rationale for all the requirements,
from high level, customer-imposed requirements to lower level derived require-
ments. While these rationales will likely be important when having a system explain
its actions, few programs capture this information in a re-usable form. Having this
capability requires that the necessary meta information about the system be made
available on the left leg of the Trust V. This information will be used on the right leg
of the Trust V as the system is verified and validated to create system trust.

As an example, consider a self-driving car. While the car’s occupants may be
alarmed if the car suddenly changes lanes, they are likely to be relieved if the car
can explain that its actions were based on a collision occurring up ahead. While
the car’s motion control system would likely involve hundreds of inputs, extracting
the key single piece of information (collision up ahead) and explaining it in the
operator’s language (e.g., saying “An accident occurred up ahead” and not saying
“line 40 of subroutine XYZ said to change lanes”) would support trust generation
for some of the 18 dimensions. This type of information extraction would likely be
tightly coupled into the car’s control system.

In addition to system trust, autonomous systems will also need operational trust;
trust from the operator while the system is being used. Operational trust can be
obtained by leveraging the artifacts/capabilities that were introduced on the way
down the Trust V. For example, if a capability needed for operational trust is the
ability to understand the system’s rationale for future activities (e.g., via what-if
type queries such as “If you were to observe XYZ next, what action would you
take?”), then this capability must be built into the system as it is being developed—
even if it is not needed to create system trust.

This is a key point. While a system is fully specified in the requirements phase,
the requirements are usually derived only from the system ConOps. To ensure that
both system and operational trust are created and measured, additional requirements,
which may not be needed for the original mission ConOps, need to be added. This
has similarities with creating a superior human-machine interface. While a system
ConOps may specify an interface, ConOps rarely specify a superior interface since
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Fig. 4.4 The Trust V model

the needed specification language is not available. Yet the requirements derived
from the ConOps must be properly augmented by interface requirements, as the
interface can be the single most important aspect of the system to an operator.
As autonomous systems become more prevalent, and need for trust increases, trust
issues may become a fundamental component of a system’s ConOps.

Another key component for trust is the capture and communication of system
capability metrics (these are described in later sections). These capabilities are not
likely to be available in an autonomous system unless they have been implemented
on the way down the Systems Engineering V.

4.6.1 The Trust V Representation: Graphic

Graphically, we show the Trust V (thin part to the right in Fig. 4.4) as being aligned
with the Systems Engineering V (thicker part to the left). The dots embedded within
the Trust V are specific items that are needed to create system and operational
trust:

• On the “left leg” of the Trust V the dots represent specific artifacts/capabilities
that are added during system development for the purposes of trust.

• On the “right leg” the dots represent specific Test and Evaluation (T&E) and
Verification and Validation (V&V) tests performed using those capabilities to
create trust.

For example, consider the Reliability attribute of automation. Trust in a system’s
Reliability can be addressed (i.e., increased) in many ways. For example: introduc-
ing redundancy, use of fault tolerate computing, designing in failover capabilities,
reuse of trusted components, etc. While none of these concepts are novel they all
require that the system be designed to handle them. They change the specification
of what and how the system is developed going down the left leg of the V.
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Fig. 4.5 The extended Trust V model

Note that there are also dots within the “left leg” of the Systems Engineering V.
These represent artifacts/capabilities used by systems engineering to meet its non-
trust requirements that can be leveraged to create trust. Considering reliability again,
any of the methods mentioned may already be necessitated by the system ConOps.
If so, they can be reused for trust purposes at no cost.

Operational trust is created by the operator once they start using and interacting
with the system in such a way that their confidence in the system is boosted. This
trust is enabled by leveraging the artifacts/capabilities that were placed in the system
during the development process. To represent this we extend the Trust V on the right
as shown in Fig. 4.5. Extensions to the left could also be considered, they would
amount to creating trust paradigms in advance of starting system development.

The dots above the line represent trust-specific processes, such as a Run Time
Assurance (RTA) (Hinchman et al. 2012) or Future Scenario Prediction (useful for
the Uncertain environment attribute).

4.6.2 The Trust V Representation: Array

Earlier in this chapter the Trust V has only been an abstraction. We make it real
by conflating the two ideas presented above: the automated/autonomous system
attributes and the System Engineering V.

The information content of the Trust V can be represented by an array (e.g., a
spreadsheet) in which the rows represent the 18 trust dimensions and the columns
represent the Systems Engineering lifecycle steps. We use the 11 steps from
ISO/IEC 15288 (Roedler 2002), which is a Systems Engineering standard. These
steps correspond to a “flattened” Systems Engineering V. At the intersection of each
trust dimension and each Systems Engineering step should be methods that can
be used to build trust—of the specific type needed for the system attribute, at the
specific phase of system development. Each method would appear as a dot on the
Trust V (Figs. 4.4 and 4.5).
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Figure 4.A.1 (in the Appendix) is an annotated graphic of our (current) Trust V
array. Some information about the data in our Trust V array:

• System Engineering steps (e.g., columns in the array) which include data relevant
to trust are:

– Requirements
– Architecture Development
– Design Development
– Verification
– Validation
– Operations

Interestingly, we have not identified methods within the other system
engineering steps (e.g., Integration Process or Transition Process) which
would enable operational trust. Discovering these might be a side effect as
the industry gains experience with Autonomous Systems.

• Verification and Validation (V&V), which is sometimes considered a single
activity appears in two columns since: ISO/IEC 15288 requires it, and different
trust methods apply to each activity.

• An additional column has been added entitled “Analysis Preceding Require-
ments”. This represents an understanding of how trust and measurement of trust
fit within system operations.

The rows of the Trust V array enumerate the Trust Dimensions consisting of
automated, Systems of Systems and autonomous system, environment and mission
attributes.

4.6.3 Trust V “Toolbox”

We view the individual methods in the Trust V array as a continuously evolving
toolbox of trust methods. These trust methods encompass a wide range of activities
from system design and architecture approaches to the use of semantic question
and answer capabilities between the operator and the system. The trust methods
include well known and often utilized techniques such as the proper use of boundary
definitions in the requirements phase and system simulation. To accommodate the
unique trust requirements imposed by autonomous systems, additional techniques
have been created and added to the Trust V toolbox. These include “Chatter,”
“Future Scenario Prediction,” and many other methods.

As an illustration, Fig. 4.A.2 shows the current entries for the autonomous
attribute of “Uncertain”. Many of the techniques listed are well known in systems
engineering. Here are descriptions of some techniques that are not as well known:

• Semantic Q&A Capability—this capability was described earlier. It represents a
paradigm in which an operator can query the system with questions such as “Why
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did the system do XYZ?” A simplified capability, which has been prototyped by
the authors is called Chatter and applies to a layered control model. More details
are in the next section.

• Future scenario prediction—in this paradigm an operator can query the system
with questions such as “What will the system do next?” This is related to the
usual Systems Engineering capability referred to as “simulation over live”, where
a simulation is built on top of a current state which uses live operational data.

– One way this paradigm could be implemented to address trust concerns is to
have the system create and run a collection of relevant simulations on top of
the current state, summarize the results, and present probabilistic conclusions
to the operator in a language the operator can understand. For example, a
system may state, “If the external temperature decreases more than 5ı (30 %
likelihood in the next 10 min) then there is an 80 % chance the battery power
will be too low to complete the last mission phase”. Proposing appropriate
remedial actions could also increase trust, especially for users who engage a
system at a higher level of abstraction.

– Another way this paradigm could address trust concerns is to consider the
system’s layered control structure and determine when an active constraint
stops being active. It is the transition of these constraints that changes the
system state and influences an operator’s trust in the system. For example,
a system may state “If the temperature decreases more than 10ı then the
auxiliary heater will start up and the mission duration will be reduced by
30 min.” Once again, recommended actions could be incorporated.

• “Turing Test”—this represent a paradigm which validates a system by comparing
its performance to an expert user. We usually consider humans, especially subject
matter experts (SMEs), to be the gold standard in terms of performing the right
tasks (although not always at the speed of a computer). If an operator cannot
discern the difference between the actual system and a human SME performing
the same task as the system using the same inputs—then the system is validated.7

Another way in which to increase system trust is to introduce “calibrated trust”,
which is being used by Perceptronics (2013).8 In “calibrated trust” an operator’s
decision making is enhanced by having the system provide insight into the estimated
trustworthiness of the system. While the logic may appear circular it is as valid as
any system that reports errors. How do we know that a system reporting an error
is working well enough to report that error? The goal is for an operator to trust the
system neither too little (i.e., “distrust”), nor too much (i.e., “overtrust”), but just the
right amount (i.e., “calibrated trust”).

7“The purpose of the Validation Process is to provide objective evidence that the services provided
by a system when in use comply with stakeholders’ requirements, achieving its intended use in its
intended operational environment.” (INCOSE, 4.8.1.1).
8Raytheon is working with Perceptronics (Perceptronics), on their Phase II SBIR involving the
ATCI (“Adaptive Trustworthiness Calibration Interface”).
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4.7 Specific Trust Example: Chatter

Each Trust V cell, defined by one of 18 system attributes and a Systems Engineering
stage, contains methods contributing to trust. When populating these cells, we rec-
ognized that some methods are broadly applicable to many automated/autonomous
attributes (see Fig. 4.A.2). Chatter is one of these methods.

In Chatter a system with a layered control “chatters away” at the operator,9

informing the operator of

• Information they would like to know, if they knew to ask
• Information on state and mode transitions in the system

To prevent information overload the operator can control:

• The frequency of communication. (How often does the system communicate with
the operator: every event?, every 10th event?, a summary every 10 min?)

• The information content level. (That is, at what level in the layered control system
does the information come from.)

• The information details. (The information content of each message answers the
question “Why did this happen?” at a recursion level specified by the operator.
Hence, a Chatter message in the abstract might be “In Layer 3 state XYZ was
changed to state ABC due to a state change in Layer 4. In Layer 4 state UVW
was changed to state DEF due to a threshold value reached in Layer 5. In Layer
5 the input value of temperature reached the threshold of 20ı.”.)

Chatter provides unsolicited information to the operator as follows:

• Several data streams within system operations were monitored and the statistics
on each data stream were obtained.

• Whenever a data value on one of the data steams was statistically unlikely,
the operator was alerted. Unlikeliness was measured by how many standard
deviations away from the mean the data value was. An operator could set the
number of standard deviations required for the system to raise an alert.

Chatter amounts to transparency. The operator learns when and why the system
is doing what it does. The operator is also is alerted to unusual values. For
example, knowing an input value (for example) was unusual might indicate that
the concomitant output should be neglected (since the input was so unusual).

Chatter works best for systems represented by layered control models that make
decisions. It helps if each layer’s activities can be understood by a trained but
perhaps unsophisticated operator. Chatter can be used in different contexts: during
operator training to create Trust in a system, for on-going use in conjunction with a
tactical system to assure operators that a system is working, or to supply situational
awareness.

9It’s possible for one system to Chatter to another system (and not an operator). This could be used
in a “layered Trust” system or a system of interdependent autonomous components.
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Fig. 4.6 The chatter interface for a FAC/FIAC prototype

We prototyped Chatter on a Fast Attack Craft/Fast Inshore Attack Craft
(FAC/FIAC) system (FACFIAC 2014) using Matlab. The FAC/FIAC mission is
to detect swarming boat attacks. Our enhancement was to layer Chatter on top of
a prototype to engender Trust. The interface is shown in Fig. 4.6 and the settings
available to the operator are shown in Fig. 4.7.

We performed end user testing of the FAC/FIAC tactical code both with and
without the auxiliary use of “Chatter”. The survey conclusions were twofold:
Having Chatter added confidence in the tactical system and the Chatter capability
was desired by users.

4.8 Measures of Effectiveness

Knowing that we have “built trust in” a system is not sufficient by itself. We also
need ways by which to measure both system and operational trust. Since absolute
measures of trust do not exist, we need ways to measure changes in trust. Like trust
itself, a trust measurement and reporting capability cannot typically be bolted on to
an existing system. It is best implemented as part of the system design.

An efficient way to measure trust is to have the system monitor its’ use and
report trends. For example, a simple but very useful metric would be how often
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Fig. 4.7 Chatter settings available to operator on FAC/FIAC prototype

an operator overrides the system. If this measurement decreases over time, one
could conclude that relative trust in the system has increased with familiarity.
Another measure of effectiveness would simply be the accuracy and reliability of
the system’s actions/decisions.

Ideally, each of the 18 dimensions of trust would have associated measures of
effectiveness (MOEs) which can assess the relative level of trust created. We have
created a set of MOEs for many of the trust dimensions. They are represented
in an array in which the rows represent the 18 dimensions of trust (as before)
and the columns represent the “category” of MOE. We have identified three MOE
categories:

• Passive—This MOE will be collected without special system operator effort and
is available under normal system operations. This category of metric would be
automatically collected, aggregated, and reported by the system. For example:
an increasing value in the percentage of time that the operator chooses to not
override an autonomous controller indicates more trust in the system.

• Active—For this MOE a system operator must perform some extra action,
however minimal. For example: consider the frequency of “likes” that an operator
gives to responses to queries of an autonomous system. An increasing value
indicates more trust in the system.
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• Historical—For this MOE very specific analyses are performed on historical
operational data and may require the use of subject matter experts. For example:
the percentage of times that the system “took SME approved action” without
operator intervention given an appropriate opportunity. An increasing value
indicates more trust in the system. Additionally, the system’s historical record
could be used for forensic analysis similar to the use of “black box” recorders in
aircraft accidents.

Similar to methods in the Trust V, the MOEs are undergoing frequent updating.
Figure 4.A.3 has an annotated graphic of the current MOE array.

4.9 Conclusions and Next Steps

Trust capabilities should be built into the system, not created after the fact. The
Trust V framework adds value when used in the design and development of an
autonomous system. It increases system trust for the system acquisition team, may
streamline the Verification and Validation process, and will support the creation of
operational trust by a system operator. These goals are achieved by identifying the
specific methods required to engender trust based on system, environmental, and
mission attributes. The additional trust created by using the framework is beneficial
to any system, not just systems with autonomous or automated components.

The claims of usefulness of the Trust V process have been validated. As indicated
earlier the Chatter technique was successfully prototyped and well received by
potential operators.

To continue demonstrating the value of the Trust V framework the authors will:

• Mature the Trust V and associated MOEs

– Incorporate relevant industry and DoD trust elements

• Mature selected ubiquitous trust methods

– Determine the trust methods and MOEs that are most ubiquitous
– Perform “Make/Buy” trade studies for selected trust methods. That is, evaluate

existing Trust methods developed by academia and industry for incorporation
into the Trust V.

• Pilot the Trust V and associated MOEs on additional internal and customer
programs to measure and document specific benefits of the Trust V methodology
and associated trust methods

• Explore the relationship between system complexity, autonomous attributes and
thresholds for establishing trust. Since building trust into a system is time
consuming and expensive, we need to determine which strategies should be
adopted to ensure that we have sufficient but not excessive trust built into a
system.
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• Evaluate how well trust can be engendered in one part of a system while
not impacting the overall operational end user experience. If an autonomous
component is isolatable from the rest of the system, perhaps the autonomous
component is where the primary trust methods and execution can be focused.

• Understand if the Trust V approach can be utilized for machines trusting humans
or perhaps even for machines trusting machines.

• Evaluate instances of system mistrust and analyze where trust methods and
approaches might have been used to rectify the mistrust
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Chapter 5
Big Data Analytic Paradigms: From Principle
Component Analysis to Deep Learning

Mo Jamshidi, Barney Tannahill, and Arezou Moussavi

5.1 Introduction

System of Systems (SoS) are integrated, independently operating systems working
in a cooperative mode to achieve a higher performance. A detailed literature survey
on definitions to applications of SoS can be found in recent texts by Jamshidi (2008,
2009). Application areas of SoS are vast indeed. They are software systems like
the Internet, cloud computing, health care, and cyber-physical systems all the way
to such hardware dominated cases like military, energy, transportation, etc. SoS’s
are among main sources of big data, e.g. social networks, smart grid, healthcare
data, traffic, military, etc. Data analytics and its statistical and intelligent tools
including clustering, fuzzy logic, neuro-computing, data mining, pattern recognition
and post-processing such as evolutionary computations have their own applications
in forecasting, marketing, politics, and all domains of SoS.

A typical example of SoS is the future Smart Grid, destined to replace the
conventional electric grid. A small-scale version of this SoS is a micro-grid
designed to provide electric power to a local community. A micro-grid is an
aggregation of multiple distributed generators (DGs) such as renewable energy
sources, conventional generators, in association with energy storage units which
work together as a power supply networked in order to provide both electric power
and thermal energy for small communities; these may vary from one common
building to a smart house or even a set of complicated loads consisting of a mixture
of different structures such as buildings, factories, etc. (NREL 2014). Typically, a
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micro-grid operates synchronously in parallel with the main grid. However, there are
cases in which a Micro-Grid operates in islanded mode, or in a disconnected state
(Jamshidi 2009). Accurate predictions of received solar power can reduce operating
costs by influencing decisions regarding buying or selling power from the main grid
or utilizing non-renewable energy generation sources. The object of this chapter
is to use big data on energy to forecast wind energy availability and traffic jams
in an attempt to derive an unconventional model, paving the way towards robust
intelligence in big data analytics.

Section 5.2 first describes the wind energy data used for a micro-grid that will be
used as the SoS of interest for this chapter. Section 5.3 then discusses the application
and effectiveness of different data analytics tools in the generation of wind speed
models. Section 5.4 provides an introduction to deep architectures, leading to deep
learning. Section 5.5 presents conclusions.

5.2 Wind Data Description

Predicting wind power availability can be useful in energy trading or control
algorithms for power companies. In order to make accurate predictions, a significant
amount of environmental data was gathered (NREL 2014; IEM 2014) in order to be
used as a training data set for artificial neural networks (ANN), a key tool in data
analytics. It was decided that the output of the data analytics for this work should
be predicted values of wind speed at three different altitudes (19 ft, 22 ft, and 42 ft).
These values were shifted by 60 min so that they would serve as output datasets
for the training of the neural networks investigated. Figures 5.1, 5.2 and 5.3 show
the 19 ft, 22 ft, and 42 ft wind speed data throughout the October 2012 evaluation
period.

Two different input data sets were used for this investigation. The first was merely
reduced to a dimension of 21 using PCA (Smith 2002; Shlens 2009). The second was
first expanded to include derived, preprocessed values including slope and average
values from the past parameter values. Then, this second dataset was also reduced
to a dimension of 21 using PCA.

5.3 Wind Power Forecasting Via Nonparametric Models

This section describes application of big data analytic to forecast wind energy
availability. Section 5.3.1 discusses the high level results of the different ANN
architectures investigated, and Sect. 5.3.2 shows the detailed results of the best
performing architecture.
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Fig. 5.1 Actual wind speed data @ 19 ft

5.3.1 Advanced Neural Network Architectures Application

During this effort, the following network architectures included in the MATLAB
Neural Network Toolbox (Beale et al. 2014) were investigated:

• Standard Feed-Forward Neural Network
• Time Delay Network
• Nonlinear Autoregressive Network with Exogenous Inputs (NARXNET) Neural

Network
• Layer Recurrent Neural Network

The first architecture used was the standard feedforward neural network. This
is the default architecture used by MATLAB. When using this architecture, the
training tool uses the Levenberg-Marquardt backpropagation method by default to
train the network to minimize its mean squared error performance. This feed forward
ANN had 21 inputs variables and one hidden layer comprised of 10 neurons.

The different configurations tested for this exercise are listed in Table 5.1, where
results are in RMSE (Root Mean Square Error).

Note that when out-of-memory errors occurred during training using the default
trainlm training function (Levenberg-Marquardt backpropagation), the lower
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Fig. 5.2 Actual wind speed data @ 22 ft

memory requiring scaled conjugate gradient backpropagation (trainscg) training
function was utilized instead. From the results in Table 5.1 the number of neurons
can have an initial improvement in the error (RMSE) measure, but after it will not
improve the convergence of ANN any more.

The second architecture used was the time delay neural network. This time-series
sequential architecture allows for past values of the input parameters to be fed into
the neural network. Note that the major difference between the Feed Forward Neural
Network and this is the case of 0–10 delay block at the input to the network. This
block represents that the actual input to the neural network is [inputs(t) inputs(t-1)
inputs(t-2) : : : inputs(t-10)]. As opposed to the Feed Forward Neural Network, this
architecture allows for the network to have memory without including it during the
preprocessing stage as described in Sect. 5.2.

One configuration was tested for this architecture, as listed below:
Time Delay Neural Network Configuration 1

• Number of Neurons in Hidden LayerD 10
• Delay VectorD [0:10]
• Using raw PCA-reduced data set
• Trained using trainscg
• RMSE Error: 2.1430
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Fig. 5.3 Actual wind speed data @ 42 ft

Note that since this is a sequential neural network, the training vs. verification
data sets were separated manually. Seventy percent of the data was used for training,
and the entire data set was used for verification. Other architectures such as the
NARXNET ANN (open and closed-loop variety) and Layered Recurrent Neural
Network were similarly used, and more details are in (Tannahill 2014).

The NARXNET configurations tested for this simulation are listed in Table 5.2.
The layered recurrent neural network configurations tested for this study are

listed in Table 5.3.

5.3.2 Wind Speed Results

Considering all the configurations tested, surprisingly the best performing neural
networks were those using a pre-expanded (via NLE: nonlinear expansion) data set
fed into a conventional feed forward neural network with ten neurons in the hidden
layer. Figures 5.4, 5.5, 5.6, 5.7, 5.8 and 5.9 show the results and error generated
using this network to predict wind speed an hour in advance.

As discussed in Tannahill and Jamshidi (2014), predicted wind power availability
was then calculated assuming the wind speed across the entire wind turbine blade
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Table 5.1 Feed forward neural network architecture test results

Configuration Test Hidden layer configuration Data set type Error (RMSE)

1 1 Single layer, 10 neurons Raw 1:6187

2 2 Single layer, 10 neurons NLE (nonlinear
expansion)

1:3863

3 3 Single layer, 100 neurons Raw, PCA to size 21 2:1556

4 4 Two layers, 1000 neurons each Raw, PCA to size 21 4:2116

5 5 Single layer, 10 neurons Raw, PCA to size 21 9:823

6 6 Single layer, 10 neurons NLE, PCA to size 21 5:867

6 7 Single layer, 10 neurons NLE, PCA to size 21 2:8876

6 8 Single layer, 10 neurons NLE, PCA to size 21 2:7282

6 9 Single layer, 10 neurons NLE, PCA to size 21 2:7617

6 10 Single layer, 10 neurons NLE, PCA to size 21 1:9776

6 11 Single layer, 10 neurons NLE, PCA to size 21 2:6617

6 12 Single layer, 10 neurons NLE, PCA to size 21 4:0546

6 13 Single layer, 10 neurons NLE, PCA to size 21 5:4171

7 14 Single layer, 1000 neurons NLE, PCA to size 21 10:3084

7 15 Single layer, 1000 neurons NLE, PCA to size 21 9:4811

7 16 Single layer, 1000 neurons NLE, PCA to size 21 7:3511

7 17 Single layer, 1000 neurons NLE, PCA to size 21 6:8625

7 18 Single layer, 1000 neurons NLE, PCA to size 21 7:128

8 19 Two layers, 1000 neurons each NLE, PCA to size 21 7:3653

8 20 Two layers, 1000 neurons each NLE, PCA to size 21 8:4681

8 21 Two layers, 1000 neurons each NLE, PCA to size 21 9:0292

8 22 Two layers, 1000 neurons each NLE, PCA to size 21 8:9808

area was the same. It was also assumed that the air density was 1.23 kg/m3

throughout the year, and that the power coefficient Cp was 0.4. These assumptions
were used in conjunction with the wind turbine equation found to calculate power
density availability (Watts/m2). This quantity can be multiplied by the cumulative
sweep area of a wind turbine farm to calculate total available wind power; however,
this step was left out of this exercise to keep the results more generalized. The
statistics of the resulting data from the year-long wind power prediction are included
in Tannahill (2014).

5.4 Introduction to Deep Architectures

Neural networks are identified by their ability to capture the nonlinearity of data
without being exposed to the dynamics of a model or the bounding function of
input-output variables. Multi-layer perceptron (MLPs), also known as feedforward
neural networks (FFNNs), contribute to many achievements in classification and
regression problems in different science fields. In classification tasks, the focus
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Table 5.3 Layered recurrent neural network architecture test results

Configuration Hidden layer configuration Data set type Error (RMSE)

1 Single layer, 10 neurons Raw, PCA to size 21 2:5788

2 Two layers, 100 neurons each Raw, PCA to size 21 2:3513
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Fig. 5.4 19 ft Wind speed predicted results

is on classifying the inputs into one of the nominal outputs (i.e., predicting the
class or category of the input). On the other hand, regression problems deal with
forecasting real-valued output corresponding to the inputs. Despite their ability to
perform well in both classification and regression tasks, shallow FFNNs consisting
of less than two or three hidden layers are not capable of handling high-dimensional
input data. Alternatively, increasing the layers does not lead to a better performance.
The reasons are yet to be discovered, but there are a couple of theories that tried to
address this problem: vanishing the gradient effect in a backpropagation algorithm
through the layers and getting trapped in local minima, which is the result of random
initialization of the parameters. Figure 5.10 shows a multi-layer neural network,
where the number of layers equal to 3 (for notational simplicity), counting the
output as the last layer. As the depth (number of hidden layers) of the architecture
increases, the fewer computational elements, which are neurons in neural networks,
are needed, and thus fewer examples are required to tune the neurons. Indeed,
more computational elements are required to be employed in architectures with
fewer layers to capture the complex relationships of the data (Bengio 2009). Based
on different applications and training sets of deep architectures, the depth of the
architecture varies.
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Fig. 5.10 A typical
architecture of a multi-layer
perceptron with three layers
consisting hidden layer h1
with n1 nodes, hidden layer
h2 with n2 nodes, and the
output layer

In addition to dimensionality reduction, deep architectures are able to find
complex relationships in data through different training principles than MLPs. For
this study, deep neural networks built from Restricted Boltzmann Machines (RBMs)
and autoencoders are considered [Autoencoders are also capable of performing non-
linear PCA for feature extraction; therefore, applying autoencoders to data with
high non-linearity is superior to linear PCA]. Each of the above mentioned building
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blocks and training methods will be discussed in the following sections. Another
variation of deep architectures is convolutional neural networks, which is not the
interest of this research.

5.4.1 Training Deep Architectures

A supervised learning algorithm, mostly backpropagation that is a gradient-based
algorithm, is used to train MLPs. Deep architectures exploit unsupervised learning
for the first phase, called pre-training, and supervised learning for the second
phase, known as fine-tuning. Due to research experiences, the pre-training phase
is the reason good results derive from training deep structures (Bengio 2009). The
reason is that the unsupervised algorithm finds the parameters for each layer, and
then the supervised method adjusts them to reach better approximations. In other
words, the second phase exploits the parameters found in the first phase instead of
using random initialized parameters; therefore, the supervised algorithm has a better
chance not to get trapped in local minima.

In deep architectures consisting of layers of RBMs or autoencoders, each layer
is trained with an unsupervised algorithm. The method to train one layer at a time
is called greedy layer-wise training. Then, pre-trained layers are stacked up, and the
last layer is added to the entire stack to perform the regression or classification task.
At the end, the entire structure is fine-tuned with a supervised algorithm. The pre-
training algorithm differs based on the building block of a deep architecture, and the
following sections explain each briefly.

5.4.2 Training Restricted Boltzmann Machines

As shown in Fig. 5.11, an RBM is an acyclic undirected graph that comprises one
layer of hidden units and one layer of visible units, where there are no connections
between the nodes within a layer. They are energy-based generative models in
which the dependency between variables is measured by energy (Murphy 2012)
that were known as weight in shallow MLPs. Their special structure and conditional
independence relationship of a Bayesian network (or Markov property), where each
node is independent of its ancestors given its parents, make the training of RBMs
tractable. “Contrastive divergence” (CD) learning or other variations of the CD is
usually used to train each layer of an RBM. The stacked RBMs construct a Deep
Belief Network (DBN).

Energy functions, rooted in statistical physics, which have relations to bidirec-
tional models or RBMs, are used to show the probability distribution in RBMs (see
(5.1)). Low energies are corresponding to high probabilities (Hinton 2010).

In Fig. 5.11, the dashed circles show the visible variables (inputs), undashed cir-
cles relate to hidden variables, and the relations between two layers are bidirectional
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Fig. 5.11 An RBM is an acyclic undirected graph

(left). A deep neural network consisted of two RBMS as its hidden layers each with
3 units (right) as follows:

P .x; h/ D e�Energy.x;h/X
x
e�Energy.x;h/

(5.1)

where data, also called visible units, are denoted by x, and hidden layers are shown
by h. The likelihood is

p.x/ D
X

h

e�Energy.x;h/X
x
e�Energy.x;h/

(5.2)

Then the Energy of a joint configuration is:

Energy .x; h/ D � .bxC chC hwx/ (5.3)

Where b and c show the bias matrices for visible and hidden units, and w is a matrix
containing the weights between visible and hidden units.

For Bernoulli RBM, where units are binary, the conditional probability on each
unit is given by:

P
�

xi D 1
ˇ̌
ˇh

�
D sigmoid

0
@X

j

wijhj C bi

1
A (5.4)

P
�

hi D 1
ˇ̌
ˇx

�
D sigmoid

0
@X

j

wijxi C ci

1
A (5.5)
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The goal is to maximize the log-likelihood, which is done by iterative Gibbs
sampling from visible and hidden units given the other. Initializing the weights and

biases with zero, training is started from the visible unit and sample hi � P
�

h
ˇ̌
ˇxi

�
.

The next step is to get a sample xiC1 � P
�

x
ˇ̌
ˇhi

�
and continue the process. More

steps will yield better results; however, the more efficient way is to use CD, which
is an approximation to the gradient of log-likelihood. The training that is done in
a layer-wise method results in parameters from which the gradient based algorithm
benefit to escape the local minima, thus the lower layers can learn useful features
in data. It is believed that training one layer at a time, using the output of the
previous layer as the input to the next layer, helps each layer to capture the lower-
level features, as well as the statistical characteristics of data [9]. Therefore, the
pre-training phase is a key to successful implementation of deep architectures.
Explaining the detail of training RBMs and its requirements are beyond the scope
of this study. Hence, for more information on how to train RBMs refer to Bengio,
2009; Murphy 2012; Hinton 2010.

5.4.3 Training Autoencoders

Training RBMs were first carried out by Hinton et al. (2006, 2010), and shortly after
that stacked autoencoders were implemented by Bengio et al. (2006, 2009). Training
autoencoders, also known as autoassociators, or Diabolo networks, are similar to
training RBMs. However, training autoencoders is easier than training RBMs since
there is no need for Gibbs sampling. Figure 5.12 shows a single-layer and a stacked
autoencoder with 3 hidden units. Output is equal to the input, since each of the
autoencoders in a deep architecture aims to reconstruct its input.

Fig. 5.12 A single-layer autoencoder with 8 input units and 5 hidden units (left). A stacked
autoencoder with n–1 hidden units (right)
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The reconstruction cost is the squared differences between the actual inputs (x)
and the reconstructed inputs .Qx/, which is computing .x � Qx/2 over all of the training
set.

As the input and the output of the autoencoder are the same, the autoencoder
learns nothing more than the identity function f, where xD f(x). Therefore, some
constraints are applied to autoencoders to make them capable of learning the
useful features of the input data. One of the techniques is to make a bottleneck
in the autoencoder by limiting the number of hidden units to a number less than
the input units. This way, the hidden layer is forced to learn the meaningful
features of the data. There are also methods for working with larger hidden units;
i.e., when the number of hidden units is greater than the number of input units.
Autoencoders implemented by using the above mentioned techniques are called
sparse autoencoders and denoising autoencoders, which benefit from the sparse
distribution of the hidden units and the training set respectively.

Sparse autoencoders exploit deactivating some of the latent neurons to cause
sparsity in the hidden layer. In other words, restraining the hidden units to remain
deactivated most of the time is a desired effect (Ng 2011) which resembles the
way that the human brain works (Bengio 2009). Hence, the sparsity parameter is
defined as the average activations of each neuron over the training set. To panelize
the activations with far more or far less than a certain value of the sparsity parameter,
a penalty term is added to the cost function.

Denoising autoencoders are another variation of autoencoders, where the autoen-
coder tries to reconstruct the input from the randomly corrupted version of input.
The corruption is done by equating a percentage (usually 50 %) of the input
data to zero (Bengio 2009) that is also known as the dropout method. This way,
a denoising autoencoder will learn the statistical distribution of the training set;
therefore, denoising autoencoders resemble the functionality of RBMs although
training autoencoders is less complex than training RBMs.

Algorithm 5.1 shows how to train an autoencoder and includes comments to train
a sparse autoencoder using the guidelines given by (Ng 2011).

Algorithm 5.1: Training a (Sparse) Autoencoder
AE stands for autoencoder; parameters are weights and biases
For i D 1 to number of AEs

Initialize weights � U (-a, a), biases  0, y
 input data

// a is a real number where 0 < a < 1; y is the
output
// for the sparse AE, initialize the sparsity
//parameter, and the weight of sparsity penalty
While stopping criterion not met

train the AE using backpropagation
algorithm
//the cost function has an additional
sparsity term
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End while
Read parameters of input-hidden layer

(p1)
//ignore the parameters of the hidden-output layer
(p2)
Compute the activation of hidden layer unit using
(p1)
//activation  f (input data*p1); f is the
activation
//function
input data  activation

End for

As the algorithm shows, training autoencoders does not need to perform Gibbs
sampling, because the gradient of the log-likelihood has a closed solution in
autoencoders.

Training several autoencoders and stacking them up, then adding a classification
layer or a regression method, will construct a deep classifier or a deep regression
model. When the entire structure is built up, the last phase of training, also known
as fine-tuning, may be applied to adjust the parameters more.

For future work of this study we plan to apply the stacked sparse autoencoders
to the traffic and biological data. Since deep architectures have gained success
in applications dealing with big data, more accurate predictions are expected by
employing deep regression models. The last layer, which is responsible to perform
the regression analysis, exploits stochastic gradient descent to minimize the cost
function between the actual measurements and the predicted values. An application
of online stochastic gradient descent for traffic flow forecast is performed by
Moussavi-Khalkhali and Jamshidi (2014)

5.5 Conclusions

This chapter presents a high level look at some of the data analytic tools available
that enable the user to extract information from “Big Data” sources in order to
draw useful conclusions. As described in Sect. 5.3, one of the specific applications
discussed in this chapter is the prediction of the amount of wind power generated
by a micro-grid through estimation of wind speed. Section 5.3 then discusses
the data that was gathered to support this exercise. Section 5.4 discussed the
deep architecture leading to advanced artificial neural networks or deep learning.
Applying the same data to a deep architecture and the related comparison analysis
are left for future studies. Although deep architecture and deep learning have, thus
far, produced mixed results, much more work is needed. Initial experience with
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this research has shown that deep architectures may have a better chance for robust
intelligence with machine learning for image data which will be the subject of a
future publication.
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Chapter 6
Artificial Brain Systems Based on Neural
Network Discrete Chaotic Dynamics. Toward
the Development of Conscious and Rational
Robots

Vladimir Gontar

6.1 Introduction

It seems reasonable to suppose that the next step in developing artificial intelligent
systems, having human thinking abilities, should be based on a better understanding
of existing and new laws of nature responsible for the dynamics of thinking
systems. One should remember how the physical sciences succeeded in opening
and exploiting the physical principles and laws of nature for the creation of the
special theories and mathematical tools necessary for breaking into the micro-world
of atoms and molecules, constructing new processes and machines along the way.

We desire to combine the structural complexity of the brain’s neural networks
with the mathematical models derived from the laws of nature responsible for
complex heterogeneous biochemical reaction dynamics, accompanied with storage,
processing and exchanges of information. Biochemical reactions and processes,
which are taking place within and between the brain’s neurons, combining to
compose neural networks, are responsible for specific brain functions. We hardly
expect serious progress in the improvement of modern AI systems along the way
to the creation of “artificial brain” systems without a detailed understanding of
the internal mechanisms of biochemical processes in the brain, which should
include the physicochemical meaning and roles of “information” and “information
exchange” currently not presented elsewhere. We also need to accept a lack of
complete fundamental physical principles and mathematical models for living and
especially the thinking systems responsible for the origin and functioning of human
intelligence and its connection to consciousness, cognition, creativity, learning, and
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rational decision making. In order to address these questions, we need to define
the physicochemical meaning of “information” and “information exchange” in
relation to regular processes such as the mass, charge and energy exchanges taking
place during biochemical reaction dynamics within the brain’s neurons and neural
networks. The classical meaning of “information”, introduced by Shannon (1948)
and Brillouin (1962), was based on the physics of thermodynamics and probabilistic
principles related to measures of the quantity of “information” without considering
the quality of information which is important for thinking systems.

The meaning of “information exchange”, which we are introducing, reflects the
extreme sensitivity of chaotic states of the neurons to the infinitesimal portion of
energy (which we intend to relate to “information”) contained by the internal and
external stimuli delivered to a neuron(s) that causes unique patterns that can be
associated with the brain’s mental properties. From the point of view of delivered
energy, those infinitesimal stimuli drastically change the current chaotic state of an
individual neuron and the whole neural network. The ability of neurons to receive
and react to infinitesimal signals we associate with “information exchange” within
and between neurons. For “information exchange” to occur, dynamical process
within the physical or biological system of neurons and neural networks by necessity
should have chaotic regimes to be able to change under infinitesimal influences
(stimuli or signals) for specific patterns to emerge. “Information exchange” takes
place in parallel with the regular biochemical reactions between the neuron’s
biochemical constituents (atoms, molecules, ions, etc.). The fundamental difference
between the process of “information exchange”, where an infinitesimal amount of
energy produces large effects, and regular biochemical reactions is that for regular
exchanges, the more energy consumed, the bigger effect that could be expected
from the interaction. It is also the important that while all constituents participating
in a regular biochemical reaction could be in any physical state, the “information
exchange” requires that constituents are in a chaotic state, the only state that could
be changed by an infinitesimal (small) portion of energy and be considered as
“information”.

To construct a general theoretical approach and mathematical model of neural
network dynamics for “information exchange”, we introduce a new extremal
dynamical principle for multicomponent biochemical reaction dynamics. This new
principle leads to a system of non-linear difference equations for the numerous
embedded chaotic regimes in the mathematical modeling of “information exchange”
within and between neurons. This proposed principle results from the extension of
the maximum entropy principle, the  � theorem of the theory of dimensionality and
stoichiometry for the multicomponents of the chemical reactions occurring (Gontar
1993, 2004)

As will be shown, the equations derived from the dynamical principle enable the
simulation of specific natural neural network features, namely “self-organization”
and “self-synchronization”. These features lead to the emergence of a new “phe-
nomenological” state (s) within the “artificial brain” in the form of the specific
discrete time and space patterns which we intend to correlate with human conscious-
ness, cognition, creativity (which is the ability of the system, natural or artificial, to
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generate innovative results in the form of art, music, poetry, technical inventions,
etc.) and intelligence, which should correspond to general rational behavior and
decision making. We are presenting here results of numerical simulations, per-
formed by the proposed approach, to demonstrate the 2D patterns generated in the
form of ornaments and mandalas (Figs. 6.2 and 6.3) to support the idea that artificial
neural networks, when constructed from a first physical principle, necessarily lead
to the variety of dynamical artistic “patterns” traditionally considered to be the
prerogative of human creative abilities.

Formulated here, the first physicochemical dynamical principle could serve as
a possible explanation of the origin of the “driving force” for thinking system
dynamics, thereby opening a new perspective to simulate the brain’s cognitive
functions with the goal of eventually developing artificial brain systems.

6.2 Background

The idea of translating the properties of the interconnected neurons of the human
brain into mathematical models gave impetus to the development of an ANN
functioning as interconnected individual neurons simulated by step, linear and
sigmoid functions (Haykin 1998). Even this pure mathematical approach applied
to the complexity of neural networks has demonstrated the ability of ANNs
to perform numerous and “intelligent” operations, including image and signal
recognition, assisted decision making, and control and navigation among many
other applications associated with human intelligence. At the same time it should
be clear that an ANN based on pure mathematics includes a variety of solutions that
may not be relevant to real processes. Therefore, the use of mentioned above ANN
makes it problematic for autonomous and intelligent systems when the time or data
for training and learning is limited and when innovative and rational solutions are
required.

When we are talking about the scientific understanding of intelligence, we
should realize that its origin and explanation could be found only within the
understanding of living cells (neurons) and their biochemical processes. The way
to the creation of artificial intelligence lays in understanding the physicochemical
laws responsible for brain functioning. In spite of the fact that living cells are
composed of the same atoms and molecules as non-living matter, they do not
appear to obey the physical laws of quantum mechanics and statistical physics
formulated for non-living matter. It seems that on the scale of their operations,
living and thinking cells and systems, such as the brain, may not obey the laws
of thermodynamics and the second law of thermodynamics in particular. Numerous
attempts to depict the existing laws of physics for the dynamics of living cells have
not allowed biologists to understand any better what are thoughts, consciousness
and cognition, and the many other specific features of living and thinking matter.
The extreme complexity of the structural and behavioral properties of brain neurons
and networks does not manifest dynamics similar to that observed and simulated
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in inert matter physics. Living cells, such as neurons, present behavior comparable
to that of a well-organized factory under optimal control and synchronization, with
“information” and biochemical exchanges between constituents taking part in living
and thinking cycles and processes that “rationally” and “creatively” respond to
internal and external stimuli. Self-reproduction, “information exchange”, memory,
aging and emerged and self-organizing mechanisms make a living as thinking
systems. They form an extremely complex theoretical object of research that
requires new fundamental principles and laws which should reflect a specificity
for living and thinking matter in contrast to non-living systems. Classical physics,
initially focused on inert matter dynamical processes, traditionally exploits as a
mathematical tool continuous time and space with differential equations known also
as the calculus of the infinitesimal. We think that “living and thinking systems”
require the introduction of a new calculus, which we call the “calculus of iterations”
and leading to systems of difference equations. These equations should be directly
derived from first principles, reflecting a specificity of living systems, for further
use in the mathematical modeling of the dynamics of living and thinking systems
(Gontar 1995). Under some assumptions, these two calculi intersect when �t! 0,
but we intend to benefit from using difference equations independently from
differential equations for a source of mathematical models. Difference equations,
by their very nature, have numerous embedded chaotic regimes which could be
applied for mathematically modeling one of the basic concepts of thinking system
dynamics: the “information exchange” based on chaotic regimes (Gontar 1995,
2004). To emphasize our preference of difference equations for mathematical
modeling of living and thinking systems, we need to mention that differential
equations have a limited list of equations with chaotic regimes which exist within
a narrow range of parameters. Numerical integration of systems of differential
equations are always accompanied by the contradiction between the continuous
variables and discrete computer calculations that complicate the identification of the
computational artifacts and real chaotic regimes of the simulated physical system.
These are the reasons why difference equations, with their clear physicochemical
meanings for the variables and parameters derived from first physicochemical
principles and laws of nature, are preferable to differential equations for modeling
living and thinking systems (Gontar 2000a, b).

As already mentioned, the brain consists of neurons interconnected to form
complex neural networks. Another empirical fact is that each neuron operates
as a “biochemical reactor” where numerous chemical, electrochemical reactions
and biochemical reactions occur. Before introducing our basic hypothesis about
thinking system mathematical models, let us remind the reader that chemical
reactions between the original “simple and non-living” elements (atoms, molecules,
etc.) can lead to the creation of more complex systems such as bacteria with
the manifest new properties in the emergence of “life”. By analogy, the brain’s
specific properties, such as consciousness, cognition and creativity could result
from the biochemical reactions and the information exchange within and between
the neurons composing a neural network. All kinds of brain activity, including
cognitive properties, are fully defined by the states of neurons and their dynamics
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Fig. 6.1 A neural network composed by interconnecting through “information exchange” neurons
(blue arrows). Each neuron is represented by the mechanism of biochemical reaction dynamics
with “information exchange” between the neuron’s constituents (green arrows) and between
constituents composing other neural networks representing different parts of the “artificial brain”
(red arrows)

that depend on a neuron’s internal ith chemical constituent concentrations, yi. To
simulate a brain’s cognitive functions, we construct a mathematical model that
describes the dynamics of the chemical constituents distributed among the brain’s
neural networks. We hypothesize that a neuron’s chemical constituent concentra-
tions distributed among the neural network associate with the “phenomenological
states” manifesting as consciousness, cognition and creativity among the brain’s
other properties. These phenomenological states are represented by the calculated
concentrations yi (tq, R) of the ith chemical constituents distributed on the brain’s
neural networks for any network state, tq, within the discrete space R. Structurally,
the human brain is composed of frontal, parietal, occipital and temporal lobes,
cerebellum, etc. Each brain’s part, for the purpose of mathematical modeling, could
be represented by a specific form of 2D or 3D neural network interconnected with
other parts of the brain to promote information exchanges. In Fig. 6.1, one can see
nine “mathematical neurons” with the discrete coordinates (rx, ry) interconnected
via information exchanges (designated by arrows) within the 2D artificial neural
network R

�
rx; ry

� I rx; ry D 1; 2 : : :N0. Each neuron is represented through the
mechanism of its biochemical reactions by the matrix of stoichiometric coefficients
jvlij (Gontar 1997):
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(6.1)

Here, Ai is the list of constituents composing a neuron (atoms, molecules, ions:
H, H2O, CaC; OH�, etc.). A green arrow designates “information exchange” within
the neuron, a blue arrow the “information exchange” between the different neurons
within a neural network, and a red arrow “information exchange” between different
neural networks representing specific parts of the brain, or information received
from the environment through the sensors and actuators of the brain.

Based on mathematical identity between the basic equations of the  � theorem
of the theory of dimensionality (Brandt 1957), and, from the principle of maximum
entropy, the thermodynamic mass � action law equations for complex chemical
equilibrium, we propose to extend the second law of thermodynamics on open
systems with a new extremal principle for neural networks representing biochemical
reaction dynamics (Gontar 2004). In the case of neural networks, represented by
the neurons with internal biochemical reactions and information exchange within
and between the neurons, as well as with neurons from other networks, the new
extremal principle can be formulated as follows: the evolution of neural networks
proceed in such a way that at any discrete time t at state q, tq; q D 1; 2 : : :Q, each
neuron within the network with discrete coordinates R (rx, ry) is fully defined by its
chemical constituent concentrations yi (tq, R), a minimizing function (6.2) for the
space of constituent concentrations 0 < yi

�
tq; R

�
< 1, and under the constraint of

the mass conservation law (6.3):
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Here R˝ are coordinates of the neighboring neurons participating in an informa-
tion exchange with the currently considered neuron R(rx, ry); 	d

l and wl are empiri-
cal parameters characterizing the rate of the lth biochemical reaction; �li and ˇ˝

li are
empirical parameters characterizing the intensity of information exchange within
and between the neurons; the ˛T

ij are the elements of transposed molecular matrix
j˛lij to indicate the number of system basic constituents of type j (jD 1,2 : : :M) in
the constituent of type i (iD 1,2 : : :N); the b0

j reflect the total concentration of the jth
constituent in a neural network; and s D 1; 2 : : : is the index characterizing “system
memory” and indicates the state prior to the currently considered state, tq, (in this
work we are considering only the previous state, tq or s D 1). Jl;g

�
yg

il0
�
tq�1;Rg��

is the function characterizing information exchange between the lth reaction within
neural network with coordinates R and the other gth(1, 2 : : : G) neural networks with
coordinates Rg (for example, frontal lob coordinates denoted as R, occipital lob R1,
sensors R2, actuators R3, etc.). As an initial approximation to the explicit form of the
unknown function Jl;g, we approximate it with a linear regression corresponding to
the neural network constituent concentrations yg

i (tq�1) and empirical parameters 
 i:

Jl;g
�
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il0
�
tq�1;Rg�� DXL0
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�
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(6.5)

N00 is the number of constituents within the gth neural network, l0 is 1; 2 : : : L0
�

for the number of reactions in the neurons representing the gth neural network.
In the case when an interaction between the neurons from different neural

networks is not limited by “information exchange”, the exchange of chemical
constituents could be introduced into (6.1) through the extension of the jvlij matrix
by adding the corresponding chemical reactions between the neurons.

The formulated dynamical extremal principle (6.2) and (6.3) equivalent to the
solution of the following system of N non-linear difference equations has a unique
solution for all yi

�
tq�s;R

�
> 0 (Gontar 1993, 2004):
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NX
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� D b0j I s D 1; 2 : : : (6.7)

Mathematical model (6.6) and (6.7) could simulate brain dynamics, since accord-
ing to our assumptions, it is fully defined by the evolution of a neuron’s constituent
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concentrations yi (tq , Rg) distributed on the neural network Rg. Specific cognitive
brain functions could be interrelated with a neuron’s constituent concentration
distributions yi (tq, Rg) which, as it will be shown, represent complex patterns that
could be related to specific cognitive functions of the brain such as the creation of a
work of art like a mandala.

The formal meaning of “information exchange” introduced here reflects a special
type of interaction between complex and living systems, unlike an energy exchange,
and has specific features. The energy can be delivered or transmitted from its source
to any receiver to change its state without any requirements for the receiver to be
under predefined conditions. However, “information exchange” in our view could
take place only if the receiver is “ready” for that type of interaction. For the receiver
“to be ready” means that it should react (“perceive”) to infinitely small transmitted
signals, since information conveyed usually contains small amounts of energy that
nevertheless could drastically change the state of the receiver. As we know from
deterministic chaos, any physical system (a network of neurons operating as a
receiver in our case) could accept infinitely small signals only when it is in a chaotic
state. This type of interaction, which we have named “information exchange” in
comparison to regular energy exchanges, complements the living and thinking
system dynamics which, as it is now well known, contained chaotic regimes. The
meaning of the “information exchange” presented here and being applied to the
interaction between humans could be illustrated by the fact that even “one word”
(bad or good) exchanged between humans could cause a strong emotional reaction.
This is supporting the idea about the use of mathematical models with embedded
chaotic regimes to simulate the basic thinking system properties by information
exchange. Information exchange could exist on the level of individual neurons,
neural networks and between the interconnected neural networks of a whole brain.

Equations (6.6) and (6.7) written for the initial hypothesis about a mechanism
of biochemical transformation and a scheme of information exchange within the
neuron for any given parameters 	d

l ; wl; �li; ˇ
˝
li and b0j enable us to compute the

unique distribution of each ith constituent’s concentration yi (tq, Rg) with a neural
network at state tq. The obtained distributions represent a visual dynamical pattern
(e.g., a mandala) where equal values of yi (tq, Rg) can be marked by the same color
taken from an arbitrary palette (Gontar and Grechko 2006, 2007).

As shown in Fig. 6.2, the extremal principle denoted by (6.2) and (6.3) followed
by (6.6) and (6.7) enable the generation of various dynamical patterns related
to those observed or produced by complex, living and thinking systems: spirals,
rings, waves and artistic patterns in a form of creative ornaments and mandalas.
These results support the idea that this proposed principle could be applied to the
mathematical modeling of any physicochemical system with chemical reactions like
the human brain because its functioning is defined by the biochemical reactions
occurring within neurons and neural networks. By this process, the different brain
functions such as consciousness, cognition, creativity, and decision making could
be directly related to the biochemical reaction mechanisms and dynamics within the
neural networks and then associated with the specific patterns that emerge in a form
that composes the neuron chemical constituent distributions and their dynamics.
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Fig. 6.2 Selected examples of the 2D patterns generated by the (6.9) sequences yA (tq , R)
corresponding to the arbitrarily chosen tq; q D 1:2 : : :Q for different sets of parameters

	d
1 ; 	

d
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The proposed extremal principle denoted by (6.2) and (6.3) can be considered
as a “driving force” for brain functioning by consuming and exchanging energy
and information and used as mathematical tool for the creation of autonomous
“artificial brain” systems. Mentioned above, the brain’s cognitive functions should
be interrelated with the specific complex patterns emerging from the “artificial
brain” and controlled by the internal and external stimuli and by special training
and learning of the ANN. This supervised and unsupervised training could provide
a rational interaction of the artificial brain systems with the environment, artificial
agents and humans. The proposed mathematical model has demonstrated its ability
to generate an almost unlimited variety of complex and creative 1, 2 and 3D
dynamical patterns (Gontar 1997, 2000a, b). The problem of the creation of
autonomous conscious artificial brain systems then becomes the technical problem
of how to provide training and learning for such a system by finding the concrete
mechanism of biochemical reactions and parameters of the mathematical model
(6.6) and (6.7) that correspond to the desired “intelligent” or rational behavior.

6.3 Numerical Simulations

As an example of using the proposed paradigm to simulate brain creativity in a
form of 2D images such as ornaments and mandalas, we developed a system for
the automatic finding of the model parameters that correspond to desired patterns.
The general mechanism of the biochemical reactions expressed by (6.1) and written
for the two reactions between three constituents with information exchange looks as
follows:
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(6.8)

A, B and C designate three constituents composing each neuron in the network
which are participating in two biochemical reactions: A ! B and B ! C. Here
green arrows designate “information exchange” within the neuron, and blue arrows
the “information exchange” between the different neurons within a neural network.

Equations (6.6) and (6.7) for this chemical reaction within the neuron and neural
network dynamics with “information exchange” could be presented in the explicit
form for every one of the three constituents and for y1(R, tq) (Gontar and Grechko
2006):
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with the initial and boundary conditions:
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6 Artificial Brain Systems Based on Neural Network Discrete Chaotic Dynamics... 107

We also put constraints on the empirical parameters in equation (6.9):

w1 D w2 D 0I

�li D �l0iI l ¤ l0I ; l; l0 D 1; 2 (6.11)
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we need to generate more complex patterns to better correspond to the experimental
data. In our examples, each neuron for the neural network considered has coordi-
nates (rx, ry) fully characterized by the concentrations of its N D 3 constituents
yi (tq, rx, ry) at any state tq.

The values of the parameters �li; ˇ
˝
li could be used as a quantitative characteristic

of the level of information exchange. Qualitative conclusions about information
exchange could be made from the obtained results: if the desired output (a specific
pattern) has not appeared for a given set of parameters, it means that the scheme
used and the level of information exchange should be changed.

For the purpose of a visualization, generated by the (6.9) array of data, we chose
one of the three constituents, for example y1 (tq, rx, ry). Selected results of the pat-
terns generated are presented in Fig. 6.2. As can be seen, even simple mechanisms
of biochemical reactions for (6.8) with its reduced number of parameters in (6.10)
reflect the simplified scheme of information exchange within and between neurons;
(6.9) possesses different solutions, which could be observed both in reality (sand,
spirals and ring waves) and in the form of mandalas produced by artists. By varying
the neuron’s biochemical reaction internal mechanism, as a scheme of information
exchange for the model parameters, we can use (6.6) and (6.7) to generate an
unlimited source of complex patterns including symmetrical images in the form of
mandalas. It also should be clear that for each chosen biochemical reaction, any
type of pattern exists in a limited domain of the model’s parameters, found by
inverse problem solutions. For that purpose, we need an automatic search of the
parameters to generate the desired pattern. Such an automatic system, based on a
specially constructed genetic algorithm, has been developed and has demonstrated
a high level of performance in finding desired symmetrical patterns such as specific
mandalas (Gontar and Grechko 2006). Each mechanism of the neural network
biochemical reaction should be considered as an initial hypothesis for finding the
desired solution as a specific pattern by performing a search in parameter space. If
the initial hypothesis does not result in the desired pattern, it should be changed and
repeated with a new search of parameter space until the pattern corresponding to the
formalized criteria, such as a desired shape, symmetry, etc., has been found.



108 V. Gontar

Obtained by (6.6) and (6.7), the symmetrical patterns are similar to the analogous
patterns produced by human artists in the form of mandalas, as shown on Figs. 6.2
and 6.3 and similar to those mandalas presented by Jung (1973). Thus, the proposed
ANN could be expanded to different areas of human mental and cognitive activity.
One can suppose that, in general, human brain cognitive functions could be
connected with the specific patterns emerging in the brain from a neural network’s
constituent concentrations, demonstrating real mental activity as in the case of an art
painting that results in a desired mandala. If so, by using search methods, such as a
genetic or simulated annealing algorithm for given fitness function (desired artistic
pattern, optimal robot’s trajectory, etc.), an ANN architecture (6.6) and (6.7) and its
parameters could be obtained for its further use as an artificial brain system with
cognitive properties.

The dynamical patterns shown in Fig. 6.3 are usually accompanied by a series
of discrete chaotic states yi (tq) , representing each neuron of a network with
coordinates R(rx, ry). Based on the results we have obtained, systems of intercon-
nected neurons could demonstrate well-organized collective behavior by an ANN
in a form of 2D symmetrical pattern at tq, q D 250, while each individual neuron
demonstrates a chaotic regime by its constituents yi

�
tq

�
; q D 1; 2; 3 : : : as it shown

on Fig. 6.4. These symmetrical patterns demonstrate self-organization and self-
synchronization within the ANN composed of interconnected “chaotic oscillators”
(chaotic regimes provided by (6.9)). This supports the statement that “chaos is
creative” in a sense that interconnected chaotic regimes are usually accompanied
by a high level of collective organization in a form of specific time-space distributed
patterns (Gontar 2007).

At this point we would like to discuss what is in common and what is the
difference between the approach presented here as a neural network for distributed
discrete biochemical reaction dynamics and 2D cellular automata (CA) (Wolfram
2002). Both approaches are operating in discrete space and time and both are using
neighboring cell states updated from the previous state of a neuron (each cell of
the CA lattice corresponds to the neuron in our network). The main difference
between these two approaches is that the CA is not including in its algorithm any
physicochemical meaning or constraints from the laws of nature as we presented
here, namely the conservation laws, the second law of thermodynamics and the
stoichiometry of chemical reactions. This difference makes the CA limited in
the control of the patterns it generates. Another difference is that the CA rules
are discrete and therefore any type of pattern, corresponding to a particular rule,
cannot be transformed into another pattern smoothly, as we know usually happens
with natural processes. Other well-known discrete time and space mathematical
models, such as fractals (Mandelbrot’s, Julia sets) and L-systems, should also be
considered as purely empirical computational models; but they do not have any
relation to fundamental physicochemical principles and laws of nature, and therefore
their solutions hardly can be used for extrapolation; they lack a clear definition
of “discrete time and space” related to continuous time and space; and they do
not establish relations between model parameters and experimentally obtained
data. These reasons limit these other approaches to exploit discrete mathematical
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Fig. 6.3 Evolution of the pattern for discrete states generated by (6.9), represented by selected
states tq; q D 1:2 : : :Q; q D 120; 130; : : : correspond to the concrete state of the ANN
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Fig. 6.4 Evolution of six neurons with coordinates
�
rx D 1; ry D 100I rx D 25; ry D 75I rx D 25;

ryD1I rxD50; ryD25I rxD50; ryD1I rxD50; ryD50� for the 2D ANNR .100� 100/ represented
by the concentration y1 (tq, rx, ry) sequences that contained 100 discrete states tq.q D
200; 201 : : :Q D 300/. The symmetrical pattern presented corresponds to q D 250. All six
neurons are demonstrating chaotic regimes, while for 100 states the 2D patterns are different, but
symmetrical

models for solving the real problems related to the mathematical modeling of the
environment where autonomous intelligent robots are likely to perform. In contrast,
(6.6) and (6.7) not only generate the patterns related to those observed in nature, but
also provide continuous control through the variation of a model’s parameters that
should enable future rational robot actions.

We intend to apply the proposed paradigm for mathematical modeling to specific
brain features such as consciousness, cognition and creative problem solutions
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Fig. 6.5 (a) A trajectory for an autonomous agent (marked by black curve), composed of neurons
on the edge of a pattern generated by (6.6) and (6.7) in the presence of an obstacle in the form of
a cross. (b) Trajectories composed by the neurons with equal states yA (tq, R) extracted from the
generated 2D pattern

in order to construct the “artificial brain” systems with the cognitive properties
for autonomous robot rational behavior that resemble human behavior. From our
point of view, conscious “artificial brain” systems are those systems that possess
the ability to generate the “phenomenological states” associated with the complex
dynamical patterns shown in Figs. 6.2 and 6.3. These “phenomenological states”
could be used to illustrate rational, innovative and cognitive actions by feeding the
data collected into ANN for learning and forecasting. By “artificial consciousness”,
we plan to determine the “phenomenological states” as a form of specific dynamical
patterns defined by the mathematical model parameters in the (6.6) and (6.7) that
correspond to the internal (learning) and external stimuli (environmental data) that
provide the desired rational actions of an intelligent agent or robot.

For example, the autonomous “conscious” robot navigation in an unknown
environment could be realized by the proposed approach if we extracted its
continuous trajectories from the generated patterns in a form of continuous curves
connected to the pattern’s internal edges. Environmental data, for example, about
obstacles could be introduced into the neural network as shown in Fig. 6.5a. Neurons
with coordinates occupied by the obstacle are not changing their state during the
network’s dynamics. Another option for extracting trajectories could be realized by
connecting neurons with equal states as shown in Fig. 6.5b. The obtained trajectories
could then be transferred to a robot’s navigation system for movement across a real
terrain.

The choice of the concrete trajectory for navigation satisfies the conditions
of rationality applied to a human as conscious behavior: the minimum distance
to a destination, or the avoidance of collision with an obstacle, etc. (Gontar
and Tkachenko 2012). This approach could be extended to an artificial agent’s
intelligent functions by extracting the desired information embedded within the
patterns generated by (6.6) and (6.7).

We underline the difference between the mathematical modeling of an “artificial
conscious brain” and its process of “learning”: the former is related to the generation
of desired patterns with the embedded rational information by the (6.6) and (6.7)
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with known parameters (“direct problem”), while “learning” is the mathematical
procedure of finding the model (6.6) and (6.7) parameters from the analysis of the
experimental data about the environment (Grechko and Gontar 2009).

6.4 Conclusion

Development of the living and thinking system dynamic basic equations should
be the basis for a new generation of artificial neural networks and artificial brain
systems. It will require the formulation of new fundamental principles and laws
of nature which would reflect the main features of living and thinking systems.
Formulated within classical physics and chemistry, the known principles and
physical laws of nature have been directed to explain non-living system dynamics
and hardly could be applied to living and thinking systems.

Instead, we have suggested new principles and basic equations in the form of
difference equations, reflecting specific living and thinking system characteristics,
such as “information” and “information exchange”. These equations have enabled
us to describe the biochemical reaction dynamics that accompany the information
exchanges that occur between neurons and neural networks. These difference
equations possess numerous chaotic regimes that can simulate the emergence of
collective states as complex dynamical patterns. Similar to living systems (those
that have emerged from non-living elements to reproduce in and to communicate
with the environment), thinking systems composed of “non-thinking” neurons
and its constituents when interconnected into networks demonstrate properties
similar to the emergence of life, such as emergence of “thoughts”, learning,
memorizing, consciousness, cognition, creativity, and communication with other
“thinking systems” and with the environment.

We associated a neural network’s creative dynamical patterns (an artificial
brain’s “phenomenological states”) with consciousness, cognition and creativity
involved in the artwork of a mandala. We believe that this application can be
extended for future research into robotics since these patterns suggest rational
solutions to the problems arising for autonomous intelligent robots during their
missions. Application of the extracted solutions from the simulated “phenomeno-
logical states” (patterns) for an autonomous robot’s actions will look like intelligent
behavior to an observer.

We presented one possible approach to formulate the new principle for thinking
system dynamics basic equations, and how to apply it to autonomous robot
navigation.

Our proposed paradigm for living and thinking system dynamics opens a discus-
sion about the physical meaning of discrete space and time versus continuous space
and time, “deterministic chaos” versus probabilistic approaches, and continuous
differential equations versus discrete difference equations. This discussion puts
more emphasis on developing new principles and laws of nature that might be
responsible for brain functioning, including consciousness, cognition and creativity
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among other brain functions. On that basis, we have suggested how we may be able
to create a conscious and cognitive artificial brain system.

Acknowledgment I would like to express my special thanks to Prof. William Lawless for fruitful
critiques and discussions about the topic and for help in editing this manuscript.
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Chapter 7
Modeling and Control of Trust in Human-Robot
Collaborative Manufacturing

Behzad Sadrfaridpour, Hamed Saeidi, Jenny Burke, Kapil Madathil,
and Yue Wang

7.1 Introduction

Traditional industrial robots have been designed for implementation inside safety
peripheral equipment (Shi et al. 2012). However, the advent of collaborative robots
is changing manufacturing plants by more flexible and efficient robotic automation.
Human and robot collaborative manufacturing opens up a new realm of industrial
mass production where humans and robots are co-workers (Charalambous 2013).
In this paper, we consider hybrid manufacturing systems (Krüger et al. 2009). In
such hybrid cells, the associate and a peer human-friendly robot (for example,
Rethink Robotics Baxter (Robotics), KUKA LBR iiwa (Bischoff et al. 2010),
and Universal Robots UR5 and UR10 (Ostergaard 2012)) collaborate with each
other to fabricate customized products (Goodrich and Schultz 2007; Shi et al.
2012) in the same workspace at the same time. For instance, a skilled associate
can collaborate with a lightweight, flexible, and human friendly robot to perform
an assembly operation. In such applications, human’s capability in performing
highly skilled tasks such as assembly are combined with the advantages of robots
such as precision, performance consistency in performing repetitive jobs, data
processing, sensor, and actuator based assistance (Krüger et al. 2009). The resulting
collaboration between human and robot in production cells (Tan et al. 2009) is
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expected to lead to high productivity, flexibility, and safety, as well as balanced
human working experience. However, improper HRC may cause counter effects
such as misuse of machine and/or safety issues and hence there arises a need
for investigating HRC in advanced manufacturing (Krüger et al. 2010). There are
potentially many issues worth addressing, but in this paper we focus on human-robot
trust as a critical element in HRC manufacturing because trust will directly affect the
degree of autonomy that a human delegates to the industrial robot, which determines
the efficiency as well as quality of the manufacturing processes. We adopt the
concept of trust among humans to study HRC in manufacturing automation (Lee and
See 2004). Thus we investigate empirical as well as theoretical studies to utilize trust
analysis (Lee and See 2004) in HRC manufacturing. There exist two types of trust
related to the automation use among different individuals, i.e. dispositional trust
and history-based trust (Merritt and Ilgen 2008). Dispositional trust reflects trust in
other persons (or machines) upon initially encountering them, even if no interaction
has yet taken place. In contrast, history-based trust is founded on interactions
between the person and another person or machine. We study the history-based
trust in this paper due to the dynamic nature of HRC. Several works have developed
mathematical models for trust (Moray et al. 2000; Lewandowsky et al. 2000; Itoh
and Tanaka 2000; Gao and Lee 2006). In our previous works, inspired by Lee and
Moray’s (1992) trust study for an automated juice plant (Lee and Moray 1992),
we used a model for human-robot trust in HRC manufacturing tasks and showed
examples of changing robot performance based on human’s trust (Sadrfaridpour
et al. 2014a,b). In this paper, we extend our work by proposing a time-series model
of human-robot trust for real-time control allocation in HRC manufacturing tasks,
a model of robot performance that ties speed to flexibility, a model of human
performance that includes muscle fatigue, and a series of experimental validations
to capture the impact of performance on trust within the HRC system. The proposed
dynamic trust model is a function of prior trust, change of robot performance, and
change of human performance, as well as fault occurrence.

The robot performance can be described in terms of reliability, flexibility, dex-
terity, etc. Because robot reliability is almost always guaranteed in manufacturing
applications, here we will focus on understanding and improving the robot flexibility
assuming the robot is reliable. Flexibility is required for factory environments with
frequent changes, varying positions of transport containers, and various uses of
machine tools. Flexibility is envisioned to increase productivity and humanization
of the work place (Stopp et al. 2001). In fact, it is one of the advancements brought
by the new generation of manufacturing robots and is achievable via instructable
or adaptable robots. To model the performance of a human associate of doing a
repetitive kinesthetic task, which is typical in manufacturing tasks, we adopt the
muscle fatigue and recovery model (Ma et al. 2009, 2010; Liu et al. 2002; Fayazi
et al. 2013). This model shows how the performance of the human associate changes
as his/her muscles gradually get tired or recovered.
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Artificial neural networks (ANNs) are powerful tools that can be used for
realizing artificial intelligence (White 1992). They have been widely applied in
aviation industry, business, financial forecasting, control systems, security systems,
etc. (Widrow et al. 1994). Neural networks are capable of function approximation,
pattern recognition and nonlinear mapping (Mehrotra et al. 1997). Their learning
ability and adaptability also introduce robustness to a tool (Cichocki and Unbehauen
1996). In this paper, we are interested in the applications of neural networks in
intelligent control such as black box model identification, adaptive inverse control
and model predictive control (Hagan and Demuth 1999). More specifically, we
will use neural networks to learn the desired pattern of robot speeds in order to
collaborate with a specific human associate and to use the result for autonomous
adjustments of the robot’s speed.

Next, we design control allocation schemes to switch between manual and
autonomous modes in order to increase the human-robot trust. To do so, three
approaches are designed. One way is to increase or decrease the robot performance
exclusively based on manual inputs. Another way is to predict the human requests
and autonomously adjust the robot performance using the neural network-based
intelligent control. The last way is to use a collaborative control scheme to adjust
the robot performance using both autonomous and manual inputs.

To study the trust evolution and human working pattern during HRC manufac-
turing, we present both a numerical example and a set of experimental validations.
The numerical example is simulated for a typical 9 h workday starting at 8 AM.
The exclusively manual, exclusively autonomous, and collaborative control modes
are compared. The experiments are designed as HRC assembly tasks where the
robot picks the parts and places them in front of the participant and the participant
assembles these parts. Such collaborations require the robot to keep pace with the
human and can be applied in many manufacturing processes to partially automate
the assembly tasks.

The major contributions of this paper are threefold: (1) We propose and exper-
imentally validate a new dynamic, quantitative trust model specifically for HRC
assembly manufacturing; (2) We develop a neural network based robust intelligent
scheme for autonomous robot speed control; (3) We integrate the quantitative trust
models with robust intelligence for improved performance in HRC manufacturing.

The rest of the paper is organized as follows. Section 7.2 introduces the time-
series trust model, robot and human performance models. Section 7.3 develops
the neural network based robust intelligence control algorithm for learning the
human working pattern in controlling the robot speed. Section 7.4 discusses three
control allocation schemes, i.e. exclusively manual, exclusively autonomous, and
collaborative control of the robot speed. We simulate the proposed trust model and
intelligent control scheme using a numerical example of a typical work day in a
manufacturing plant in Sect. 7.5. A set of experimental validations on assembly
tasks are performed and major results analyzed in Sect. 7.6. We conclude the paper
in Sect. 7.7.
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7.2 Trust Model

7.2.1 Time-Series Trust Model for Dynamic HRC
Manufacturing

Based on Lee and Moray’s (1992) time-series trust model and the more recent
meta-analysis (Hancock et al. 2011) and survey (Hoff and Bashir 2014), a human’s
trust in the robot depends on the robot performance, human performance, and fault
occurrences. In this section, we introduce a time-series dynamic model of human-
robot trust for HRC manufacturing based on these results from human factors
research. To clarify the manufacturing application, let us start with an example.
Consider the case when a skilled associate collaborates with a flexible robot on a
product, such as inserting screws into parts or welding, in a hybrid cell. The robot
picks up a part and then holds it still in specific positions and orientations near
the associate so that the associate can focus on the assembly operations. As the
working speed of the associate varies during the working hours, a constant speed
of the robot will cause trust degradation of the associate when he/she feels that
the robot is working faster or slower than what he/she expects, i.e. the robot lacks
flexibility to keep the same pace as the associate. This discrepancy indicates the
robot’s inflexibility. To recover trust, the robot speed should be adjustable so that
the associate feels more comfortable in the collaboration. Moreover, the associate’s
performance has influence on his/her trust in the robot. For example, due to physical
and/or mental fatigue resulting from continuous work during a day, the associate
may tend to rely more on the automation and thus his/her trust in the robot increases.
With this mindset, we propose the following time-series model for the dynamics of
human-robot trust

T.k/ D AT.k � 1/ C B1PR.k/C B2PR.k � 1/C C1PH.k/C C2PH.k � 1/
C D1F.k/C D2F.k � 1/; (7.1)

where PR, PH , and F are robot performance, human performance, and fault,
respectively. We use k to indicate the time step. The coefficients A, B1, B2, C1,
C2, D1, and D2 are constants to be determined through experiments. Note that we
seek to obtain a computational model of a human’s trust for HRC in assembly
lines in general. In practice, these parameters of the trust model can be tuned
for different individuals to fit their subjective trust to some extent. Moreover,
similar to Lee and Moray (1992) we assume that the trust dynamics follow a lag
model and there are some delays before changes of trust. As long as there is a
considerable difference between the human and robot working speeds, the robot
performance (PR, flexibility) will decrease regardless of which speed is greater
than the other. Therefore, the trust value decreases accordingly. In contrast, if there
is no considerable decrease in robot flexibility over time, the trust will increase.
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We design robust intelligent control schemes to increase human trust in a robot as
described in Sect. 7.3. To obtain the trust model (7.1), we need to develop robot and
human performance models as discussed in the subsequent sections.

7.2.2 Robot Performance Model

In manufacturing, machine reliability is almost always guaranteed in order to avoid
huge loss under even small malfunctions. Meanwhile, for the new type of flexible
manufacturing tasks, the robot needs to seamlessly collaborate with the human
coworker. Hence, robot performance in this case can be evaluated by its flexibility
in accommodating a human’s work behavior. In our study, we consider specially the
robot capability in adjusting its speed so as to keep the same pace as the associate.
Hence, the difference between human and robot speed will determine the robot
flexibility. We denote robot working speed, VR 2 Œ0; 1�, as the normalized speed
of the robot for doing a specific task where “0” represents the situation when the
robot stops working, and “1” represents the situation when the robot works at its
maximum speed. We denote the human working speed, VH , correspondingly. Note
that both VH and VR are defined as normalized non-dimensional numbers in Œ0; 1�.
Based on our definition of the robot flexibility, PR, we can write:

PR.k/ D PR;max � jVH.k/ � VR.k/j : (7.2)

Since we use the normalized values of VH and VR, we have PR;max D 1 and hence
PR is always bounded between Œ0; 1�. In the ideal case when the robot works at
its highest flexibility in adapting to the associate’s speed, the speed difference is
minimum and PR D 1. In the worst case when the robot is fully incapable of
adjusting to the associate’s speed, the speed difference is maximum and PR D 0.

7.2.3 Human Performance Model

A human’s performance in physical tasks such as assembly manufacturing depends
on his/her state of muscle fatigue or recovery. In such scenarios, an associate
usually performs repetitive kinesthetic tasks. We adopt the muscle fatigue and
recovery model proposed in Ma et al. (2010) and Fayazi et al. (2013) for our
human performance model. This model explains how a muscle or group of muscles
get fatigued or recovered during performing physical tasks and shows how the
performance of an associate changes as his/her muscles gradually get tired or
recovered. We assume that the higher the fatigue level is, the lower the performance
would be. The maximum human performance occurs at the situation when he/she is
not subjected to any fatigue, and the minimum value when he/she is experiencing the
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maximum level of fatigue. We first present the muscle fatigue and recovery model
and then develop the human performance model based on the muscle fatigue and
recovery model.

For the modeling of muscle fatigue and recovery, we introduce a model for
isometric force generation, i.e. when the muscles do not move but they apply
force. When a muscle applies some force for an amount of time, the maximum
isometric force that one can produce, Fmax;iso.k/, decreases. The dynamic model of
fatigue for Fmax;iso.k/ is a function of time, the initial maximum isometric force one
can generate at rest, called Maximum Voluntary Contraction (MVC), and real-time
applied force F.k/ (Ma et al. 2009). On the other hand, when the muscle does not
apply any force, it gets recovered. The recovery process is also a function of the
time and MVC (Ma et al. 2010). Based on Liu et al. (2002), when the muscle fibers
work, some of them become fatigued and some recover. That is to say, fatigue and
recovery occur simultaneously (Ma et al. 2010). We develop the discretized version
of the combined fatigue and recovery model in Fayazi et al. (2013) using the first-
order Euler approximation

Fmax;iso.k/ D Fmax;iso.k � 1/ � Cf Fmax;iso.k � 1/F.k � 1/
MVC

C Cr.MVC � Fmax;iso.k � 1//; (7.3)

where Cf is the fatigue constant and Cr is the recovery constant. Both Cf and Cr

are individual-specific. Equation (7.3) is for isometric muscle contraction and has
an equilibrium point at which the fatigue and recovery balance out. This point is the
lowest limit (threshold) of the Fmax;iso.k/. This threshold force, Fth, can be calculated
by assuming that Fmax;iso.k/ D Fmax;iso.k � 1/ at the threshold:

Fth D MVC
Cr

2Cf
.�1C

s
1C 4Cf

Cr
/: (7.4)

Theoretically, at the threshold force, the fatigue and recovery occur at the same
rate and one can generate this threshold force for a long time. Since the fatigue
and recovery model predicts the human muscle status related to workload, this
model can be used to measure the physical performance of an associate during
manufacturing tasks. Hence, we propose the following performance model for
human, PH

PH.k/ D Fmax;iso.k/ � Fth

MVC � Fth
: (7.5)

Note that in Eq. (7.5), Fmax;iso varies between the minimum value Fth and the
maximum value MVC, therefore it is a normalized value between 0 and 1.
The maximum value MVC, is assumed when the associate starts the task, i.e.
Fiso;max.k D 0/ D MVC.
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Remark 1. The threshold force, Fth, is the minimum value of Fmax;iso. Hence, the
forces below Fth are not theoretically achievable.

7.3 Neural Network Based Robust Intelligent Controller

The goal of using a neural network in this problem is to design a robust intelligent
controller for adjusting the robot speed autonomously during the work cycle which
is a black box model identification. This controller is designed so that it reduces
the associate’s workload for adjusting the speed of the robot manually. To do so,
a neural network with a proper method of training and also some training data
are required. One way of training the neural network is to mimic the behavior of
the associate in adjusting the robot speed manually, which can be regarded as the
desirable pattern for the robot flexibility when collaborating with the associate. We
performed human-in-the-loop experiments to collect the training data. In this data
set, the current robot speed, human speed, and current work-cycle time index is used
as the input to the neural network and the estimation of robot speed at the next cycle
is the output.

The structure of the neural network used in this paper is illustrated in Fig. 7.1.
This network consists of an input layer, a hidden layer, and an output layer of
neurons which form a Perceptron artificial neural network (Hagan and Demuth
1999). This type of neural network has the capability of approximating many
nonlinear functions. The additional input “1” (as seen in the first and second layers
of Fig. 7.1) represents the effect of bias in the neural network. Using bias increases
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Fig. 7.1 The structure of neural network used for learning the robot speed



122 B. Sadrfaridpour et al.

the learning capability of a neural network by providing an additional degree of
freedom through an adjustable offset. We utilize two different activation functions
for the hidden layer and the output layer, respectively. The activation functions
determine the output of the neurons in each layer as a function of the weighted
sum of the inputs to that layer. The activation function of the hidden layer y is a
tangent sigmoid function as follows

tansig.xpy/ D expy � e�xpy

expy C e�xpy
; (7.6)

where xpy is the input for the tangent sigmoid function. In the neural network shown
in Fig. 7.1, this variable is defined as xpy D Wpy � Œp 1� where Wpy represents
the weights of the neural network that connect the input layer p (i.e. the current
robot speed, human speed, and current work-cycle time index) to the hidden layer
y D tansig.xpy/. The output of this function is in .�1; 1/ region which produces the
inputs to the next (output) layer. The activation function for the output layer o is
chosen to be the linear function according to the following

purelin.xyo/ D xyo; (7.7)

where xyo D Wyo � Œy 1� for the output layer are the weights of the neural network
that connect the hidden layer to the output layer. This layer determines the robot
speed at the next work cycle. Once enough data are collected, the Levenberg-
Marquardt Backpropagation training algorithm (Hagan and Demuth 1999) is used
to train the neural network. This algorithm is a gradient decent based optimization
algorithm for minimizing the mean square estimation error of the neural network. It
can be used for training either single or multi-layer neural networks. A well-trained
neural network is able to do a nonlinear mapping from the input data set to the
output data set.

7.4 Control Approaches: Intersection of Trust and Robust
Intelligence

We design control allocation schemes to switch between manual and autonomous
modes in order to increase human-robot trust. Since the speed of a human
associate changes during the working shift, his/her expectation from the partner
robot changes over time accordingly. Therefore, the human-robot trust can be
increased by adjusting the robot speed according to what the operator desires.
To do so, three approaches are available: (1) Increasing or decreasing the robot
speed based on manual corrective requests that the human associate sends to
the robot controller; (2) Predicting the human requests at different moments and
autonomously adjusting the robot performance without sending any corrective
request; or (3) Using a collaborative control scheme to adjust the robot speed
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using the autonomous control and manual inputs interchangeably. The prediction
approach can be achieved by the robust intelligence algorithm which seeks to learn
the pattern of human requests as he/she collaborates with the robot over time. Here
we use the artificial neural networks as the robust intelligence algorithm as discussed
in Sect. 7.3. In the collaborative mode, the robust intelligence algorithm is used to
autonomously control the robot speed by default. However, the human associate can
adjust the robot speed at the times when the robust intelligence fails to mimic the
human pattern in adjusting the robot performance. We now explain the details of
implementation of the three different approaches for adjusting the robot speed.

7.4.1 Manual Mode

For the manual mode, a human-sensitivity based approach is adopted to predict how
the human coworker adjusts the robot speed. Most of the time, the robot speed does
not match the human working speed exactly. However, it is only when the difference
between these two speeds exceeds a certain threshold, then the associate would feel
the significance and send some corrective commands to change the robot speed. Let
this threshold be human sensitivity, HS. With this setting, the robot speed at the next
time step is adjusted by the associate as follows

VR.kC 1/ D VRH.k/; (7.8)

where VRH.k/ represents the manual control input whenever the associate changes
the robot speed. Other than these moments, we have VR.kC 1/ D VR.k/.

7.4.2 Autonomous Mode

Based on the explanations in Sect. 7.3, to train the artificial neural network, we
collect data on how an associate sends commands to the robot in the manual mode
for some period of time. There are different ways to construct the neural network
based on the inputs and the training algorithm. For example, we can predict the
pattern of the speed commands that the associate sends to the robot only based
on time parameters or we can include other parameters into the network as well.
Figure 7.1 shows the neural network with current time, human speed, and robot
speed as inputs. The output is the robot speed at the next time step. After training
the neural network, it will predict the desirable robot speed based on the inputs.
With this setting we have

VR.kC 1/ D VRI.k/; (7.9)
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where VRI.k/ represents the autonomous control input calculated by the neural
network for the next time step. The neural network is the only source of robot speed
adjustment in this mode, and thus it is used at each time step whether it generates a
new command or the similar command as the previous step.

7.4.3 Collaborative Mode

The autonomous mode reduces the human workload through the use of robust
intelligence algorithms. However, the manual mode offers more accurate control
over the robot speed. In the collaborative mode, we combine both advantages. The
robot speed is controlled autonomously by the neural network by default and the
associate can change the robot speed whenever he/she wants to. Therefore, we can
describe the process of controlling the robot speed by the following equation

VR.kC 1/ D �.k/VRH.k/C .1 � �.k//VRI.k/; (7.10)

where VRH.k/ and VRI.k/ are as in Eqs. (7.8)–(7.9) respectively, and �.k/ is the
activation mode

�.k/ D
�
1 manual control
0 autonomous control

In this setting, the robot speed at the next time step is determined either directly
by the human commands or the predictions of the robust intelligence algorithms.
Examples of utilizing this scheme will be presented in Sects. 7.5 and 7.6.

7.5 Simulation

In this section, we present a numerical example using MATLAB R2014a software
for three different control schemes described in previous sections. This example
shows (1) how the human trust evolves according to the human and the robot
performances; and (2) how the control workload of the human associate changes.
The human performance dynamics (7.5) described in Sect. 7.2.3 are simulated for a
typical 9 h workday starting at 8 AM. In the simulation we shift the time origin to
8, i.e. we use k0 D k � 8 instead of k in all of the equations. For a fixed repetitive
task we assume that the external force applied by the human associate is constant.
Moreover, the associates do not need to apply their full strength (MVC) to finish
the manufacturing tasks. Therefore, we use a constant value for the external force,
i.e., F.k/ D MVC

4
. The maximum value for both human and robot performance is 1,

i.e. PH;max D 1 and PR;max D 1. The associate is assumed to start with PH between
Œ0:95; 1�. The associate working speed, VH is set to be half of his/her performance
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value, i.e. VH D 1
2
PH in the simulation. The robot is set to start with half of the

maximum robot working speed, 1
2
VR;max. We also assume that initial trust of the

associate is the half of its maximum value. In all the simulation modes, we assume
that the associate works according to the following pattern. He/She starts to work at
8 AM and ends at 5 PM. There is an approximately 1 h lunch break around noon.
There are also two short breaks (15–20 min) in mid-morning and mid-afternoon
(around 10 AM and 3 PM, respectively). During such a workday, based on the
Eq. (7.5) the human performance decreases from the beginning of the day through
the end of the day, except for the break times and the lunch time when the human
performance recovers. We simulate the three control methods in Sect. 7.4.

Based on the explanations in Sect. 7.3, to train the neural network, we simulate
and collect the corresponding data for the human-robot interaction of a particular
associate for a period of 4 months. According to the data, as in Fig. 7.1, we have
3 inputs to the artificial neural network, namely month, day and time of the day,
and one output which is the performance of the robot. The number of hidden layer
neurons is chosen to be 10 and the Error Backpropagation training algorithm is
used to train the neural network. The results for each of the three control schemes
are presented in the next subsections.

7.5.1 Manual Mode

According to the explanations in Sect. 7.4.1, we set the human sensitivity as HS D
0:05. The results of this simulation are shown in Fig. 7.2a. As can be seen in this
figure, at the start of the day both human and robot start fresh with high working
speeds and consequently the robot performance is high. As time passes, the working
speed of the associate decreases but the robot working speed does not change,
so the difference between the human and the robot speed increases and thus the
robot performance decreases. The human performance also decreases during this
time. Although both robot and human performance decreases, since they have high
values the trust increases before 9 AM. The trust value decreases slightly when
the human performance declines after 9 AM. Therefore, when the human speed
decreases during the time interval 8 AM to 10 AM, the associate sends corrective
commands to decrease the robot speed. After that, the associate takes a break and
his/her speed increases when going back to work again. We use the same trend for
the rest of the day with breaks at 12 PM and 3 PM, respectively. The trust value does
not change during the breaks.
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Fig. 7.2 Evolutions of human speed VH , robot speed VRA, human performance PH , robot
performance PRA, and trust T in (a) manual mode, (b) autonomous mode, and (c) collaborative
mode



7 Modeling and Control of Trust in Human-Robot Collaborative Manufacturing 127

7.5.2 Autonomous Mode

According to the explanations in Sect. 7.4.2, we use the neural network for adjusting
the robot performance autonomously. The results of this simulation are shown in
Fig. 7.2b. As shown in this figure, the autonomous mode can adjust the robot speed
properly most of the times. For the autonomous mode, the trust level has a similar
trend as in the manual mode except for the end of the break times, where the neural
network cannot predict the desired robot speed accurately. This leads to a sudden
momentary drop of trust due to a temporary difference between the human and robot
speed.

7.5.3 Collaborative Mode

For simulation of this mode, we use the same configuration of the manual and
autonomous control modes described in this section. We then combine them as
described in Sect. 7.4.3 to simulate the collaborative mode. The results are shown in
Fig. 7.2c. The team starts to work in the autonomous mode at the beginning of the
workday. After some time, if the robot speed does not match the human speed, the
level of trust decreases. Moreover, if the robot performance is high and the human
performance declines, the level of trust increases. In contrast to the autonomous
mode, except autonomous adjustment, the associate can also switch to the manual
mode by sending corrective commands. Note that the associate sends commands
whenever he/she feels that the autonomous adjustments are not correct. If the
system switches back to the autonomous mode right after the manual correction, the
adjustments might not be correct and hence the associate needs to adjust the robot
speed again. This leads to frequent switches back and forth between the manual and
autonomous mode. To prevent such problems, once the manual mode is activated, it
will be kept for a fixed time period (5 min) before it is allowed to switch back to the
autonomous mode. After that, the system switches back to the autonomous mode
and remains in the autonomous mode if no corrective commands are sent.

7.5.4 Comparison of Control Schemes

We can measure the human control workload under the manual, autonomous, and
collaborative mode, respectively. The control workload for the manual mode is
100% since the human associate always changes the robot velocity by him/herself.
The control workload under the autonomous mode is 0% since the human associate
does not change the robot speed at all. The amount of control workload for the
collaborative mode depends on the amount of time when the manual mode is
activated. In our example, this value is 61:4%. We cam also compare the average
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value of trust under these three modes. In the autonomous mode, the average trust
value is 0:8803 which is lower than this value in manual mode, 0:8825. The average
trust value in collaborative mode is 0:8816. This shows that using the collaborative
mode, we can increase the trust compared to the autonomous mode while the control
workload is smaller than the manual mode.

7.6 Experimental Validation

In this section, we provide detailed description about our experiments to validate
the quantitative trust model (7.1) and the effectiveness of the proposed control
schemes. We will measure the overall task performance of the collaborative control
scheme versus exclusively manual and autonomous control as well as the difference
in human workload.

7.6.1 Experimental Test Bed

As shown in Fig. 7.3a, we employ a humanoid manufacturing research robot Baxter
made by Rethink Robotics (Guizzo and Ackerman 2012) to collaborate with the
participant. The robot has two arms. Each arm provides 7 degrees of freedom. The
arm joints are compliant as they are built with back-drivable motors and compliant
actuators. The robot has a rotary screen at its head where informative messages or
affective expressions can be displayed. It has a moveable base. The robot control
program is coded in Python language and is interfaced with the robot hardware
through ROS software. Baxter is very suitable for light-weight material handling and
intelligent assembly, testing and sorting, and especially for small batch productions.
We use the Impulse X2 motion tracking system from PhaseSpace to track the human
hand for speed measurement (as shown in Fig. 7.3b). The tracking system includes
8 cameras, a set of active markers and a workstation for tracking rigid bodies in a
3D environment. The workstation combines the data from the cameras, which track
the active markers mounted on an object (for example, a participant’s hand in this
study), to calculate its 3D position. The resulting position and timing information is
sent to a client machine to calculate the hand motion speed.

7.6.2 Experimental Design

The experiment resembles the task that an associate performs in the manufacturing
assembly lines. In such an environment, associates are required to perform a series
of assembly tasks within a fixed period of time. For making a final product, different
components need to be assembled together. Each of these components need to be
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Fig. 7.3 (a) Collaboration of a participant and Baxter, and (b) PhaseSpace tracking system for
tracking participants’s hand motion

assembled by different parts as well. This procedure of component assembly is
called subassembly, which is common in airplane and automobile assembly and
usually done by the associates manually. We will consider such a subassembly
task in our experiments. In such tasks, the parts need to be assembled are usually
stacked near the workbench of the associate. The associate picks these parts and
assembles them. If the component is customized, there will be a variation of choice
for some of the parts. These customized parts can be delivered to the associate by
means of automatic delivery systems such as belt feeders. Once the component is
assembled, it needs to be mounted on the final product. The experimental setup of
this study is very similar to these tasks in a real assembly line except that there is
a humanoid robot (Rethink Robotics Baxter) that collaborates with the participant.
Within this collaboration, the robot helps the participant by picking up and placing
the customized parts needed for the assembly task while the associate performs
tasks that robots are not capable of, e.g. assembling these parts together. The details
of experiment scenario are as follows.

7.6.2.1 Experiment Scenario

The participant is asked to perform a cooperative assembly task with Baxter within
a fixed period of time. For each experiment condition, the task is assembling 10
components within 17 min (102 s per task cycle). Figure 7.3a shows the collabora-
tion of a participant and Baxter. The task is to assemble a customized component
(e.g. component G in Fig. 7.4) made from different parts (Lego bricks, e.g. bricks
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Fig. 7.4 Different assembly parts and regions on the experiment table

A, B, C, D, E, F in Fig. 7.4) and mount it to another component (here is another
larger Lego brick, e.g. component I in Fig. 7.4). The example assembly task we
consider here can be found commonly in automobile and airplane assembly, e.g.
center console subassembly and airplane wing spar assembly. There are 10 trials in
total in each trial. The participant and Baxter share meme workspace on a table and
the assembly parts are placed at different regions on the table as shown in Fig. 7.4.
In this figure, the Lego bricks that need to be assembled together are A, B, C, and
D. At the beginning of each task cycle, Baxter picks up a required part (brick A)
and places it in front of the participant (region H) and displays a picture of the
assembled part via its head screen (Fig. 7.3a). The participant is required to look at
Baxter’s screen and assemble the part exactly as appeared on it. The participant is
also required to add fitting parts (bricks E and F in Fig. 7.4) on top of the assembled
Lego bricks similar to tightening screws or bolts in real manufacturing. When the
participant finishes assembling the last part, he/she is required to pick and mount
the whole component to another Lego brick located at the other side of the table
(component I in Fig. 7.4). Meanwhile, Baxter picks and places the next part in front
of the participant and displays the next picture of the assembled part. The similar
process is repeated until Baxter picks and places the last required part in front of
the participant. Figure 7.5 shows the instruction pictures that Baxter shows to the
participant in each cycle. Each of these pictures show the correct assembly of current
Lego bricks and corresponding fitting parts (needed to be mounted on the top of the
Lego bricks). F and E are the fitting parts for assembling and mounting, respectively.
Figure 7.6 provides a flow chart to summarize the required actions for both Baxter
and the participant and their collaboration in every task cycle.
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Fig. 7.5 Sequence of assembly parts that Baxter shows to the participant as instruction via its head
screen

7.6.2.2 Controlled Behavioral Study

To understand the impact of the robot and human performance on the trust
evolution, a 2 (robot performance—low flexibility, high flexibility) � 2 (human
performance—non-fatigue, fatigue) mixed experimental design is employed under
each control mode. In the high robot performance condition, the robot speed changes
in accordance with participant’s hand speed without any delay while in the low robot
performance condition, the robot speed changes with some random delay plus some
sudden stops of the robot. Note that the sudden stops of the robots are the faults
of the robot while the random delays are the inflexibility of the robot. Here human
fatigue refers to the psychically caused fatigue that commonly occurs in an assembly
associate as discussed in Sect. 7.2.3.

7.6.2.3 Imposing Fatigue

Assembly tasks usually require prolonged low-level repetitive work of the associates
which causes psychical fatigue. However, in the laboratory setting, it is difficult
for a participant to perform long 9-h experiment to study the fatigue condition. It
has been shown in Iridiastadi and Nussbaum (2006) that the greatest effort level of
shoulder muscle is required when the associate holds a typical hand tool weighting
around 15 � �20N in abducted shoulder posture (90° to vertical). A similar method
as in Iridiastadi and Nussbaum (2006) is used to impose fatigue in the experiments.
In the fatigue condition, the participant is asked to warm up and then perform 10 min
of exercises. Before doing the exercises, we need to measure the MVC as shown in
Eq. (7.3) in Sect. 7.2.3. The MVC level for 90° shoulder posture for the dominant
hand shoulder muscle of each participant is measured using a hand dynamometer.
In order to measure the MVC level, the participant is asked to sit down on a chair
and extend his arm fully and put his hand in the hand dynamometer (fixed under
the table in front of the participant) and push it up as much as possible. The hand
dynamometer value shows the maximal force which is the MVC value at the start of
the experiment. We collect the data three times and use the average value. We then
ask the participant to hold a weight around 30 % of their MVC during the exercises.
The exercises consist of five 2-min intermittent static arm abduction cycles. For each
cycle, the contraction duration is 90 s followed by 30 s rest. We used 166 s cycle time
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Fig. 7.6 Task flowchart of one cycle of the human-robot collaborative assembly task

similar to the high cycle condition in Iridiastadi and Nussbaum (2006) in our pilot
study but the participants complained that it was very hard and we reduced the cycle
time to 120 s in the final study. Note that the abduction cycle is different from the
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experiment cycle discussed in Sect. 7.6.2.1. The maximum isometric force of the
participant’s shoulder is also measured after every 10 trials.

7.6.2.4 Experiment Procedure

A participant is asked to read a written instruction on how to complete the assembly
task. Verbal instructions are also given and the participant is instructed that no
data will be collected during the training session. The training session consisted
of 10 trials of an assembly task different from the actual experiment task. During
the training session, the participant is able to change the speed of the robot using
the up or down arrow keys of the keyboard at anytime. In the experiment, the
robot speed can be adjusted manually as well as autonomously. The adjustment
of the robot speed in the manual mode during the experiment task is similar to the
training session. In the autonomous control mode, the robot adjusts its speed and
the participant cannot change it. In the collaborative control mode, the robot adjusts
its speed autonomously while the participant is also able to change the robot speed
whenever he/she wants.

The experiments were conducted in 3 days. In the first day, after the training,
the participant performed the experiments in manual mode. The non-fatigue high
robot flexible and non-fatigue low flexible conditions are the first and second
experiments, respectively. Next, in order to run the experiments in the fatigue
condition, the participant was asked to do the fatigue exercise as described in
Sect. 7.6.2.3. The participant is then asked to perform the experiments under the
fatigue high flexible and fatigue low flexible conditions as the third and fourth
experiment, respectively. The data obtained in the manual mode is used to train
the neural network based on the explanations in Sect. 7.3. We train the artificial
neural network for all of the conditions in manual mode. The trained networks are
used for the corresponding condition in the autonomous and collaborative modes.
The experiments conducted in the second and third days are for the autonomous and
collaborative modes, respectively.

7.6.2.5 Measurements and Scales

At the start of the first day of experiment, the participant was asked to fill out a
subjective demographic questionnaire. Moreover, at the beginning of each day, the
participant was asked to rate his/her trust to Baxter. A 7-point Likert scale is used for
measuring real-time subjective trust of the participant in the robot. The participant
is instructed that extreme values of the trust scale—‘1’ and ‘7’—mean that they do
not trust robot at all or they trust the robot completely. The real-time trust value is
measured during the experiment using a separate laptop screen other than Baxter
head screen. A message on Baxter head screen pops out and asks the participant to
evaluate his/her trust at the end of each trial. Moreover, the participant is informed
that he can increase or decrease the trust value anytime during the experiment
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using the right or left arrow keys of the keyboard on the laptop. Once a participant
finishes all 10 trials, we ask him to fill out a survey. The survey measures the overall
workload based on the NASA TLX (Hart and Staveland 1988) scale.

7.6.3 Experimental Results

7.6.3.1 Trust Model Identification Procedure

We use the Autoregressive Moving Average (ARMA) Model in the MATLAB
System Identification Toolbox (Ljung 2007) to identify the parameters of time-
series trust model based on the experiment data (i.e. A, B1, B2, C1, C2, D1, and
D2 in Eq. (7.1)). The tracking system shown in Fig. 7.3b is used to measure working
speed of the human associate, VH for calculating the robot flexibility in Eq. (7.2).
Robot speed is the command that is sent to the robot by the computer. The real-time
trust measurements are collected during the experiment.

7.6.3.2 Manual Mode

The results of the experiments are shown in Fig. 7.7. Note that we have normalized
the trust level for the sake of comparison but the 7-point Likert scale can be used
for analysis without difficulty. As can be seen in this figure, for the first (non-
fatigue high robot flexibility) and second (non-fatigue low robot flexibility) sets of
experiments, the human is not fatigued so his performance is maximum, i.e. PH D 1.
However, after imposing fatigue during the third (fatigue high robot flexibility) and
fourth (fatigue low robot flexibility) sets of experiments, his performance decreases.
In the first experiment when there is no fault, the participant’s trust increases but it
drops after occurrence of faults in the second experiment. In the absence of the
faults within the third experiment the trust recovers. Note that the level of trust
increases with higher rate as compared to the first experiment with the same robot
flexibility condition. In the fourth experiment with low-flexible robot performance,
the trust decreases but it decreases with lower pace as compared to the case with
higher human performance (non-fatigue condition). The quantified trust model for
this mode is

T.k/ D 0:991T.k � 1/C 0:014PR.k/C 0:127PR.k � 1/C 0:046PH.k/

� 0:143PH.k � 1/ � 0:075F.k/C 0:003F.k � 1/; (7.11)

For this mode, the fit value for the ARMA model is 70.61 % which shows that the
model fits the data well. Equation (7.11) indicates that with low values of PR or high
values of PH trust declines and vice versa. We also observe that since A D 0:991,
almost seven times the weight of the second largest parameter, the current trust is
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Fig. 7.7 Evolution of human working speed VH , human performance PH , robot speed VR, robot
performance PR, fault, trust T , and trust estimation T 0 using Eq. (7.11) under the manual mode

mainly dependent on the previous trust if no dramatic performance change occurs.
This is consistent with the intuition that trust is highly related with prior trust and
only changes when there is a large performance variation.

7.6.3.3 Autonomous Mode

The results of the experiments are shown in Fig. 7.8. As can be seen in this figure, the
human and robot performance as well as the changes in the trust value are similar to
that of in manual mode. For this mode, the fit value for the ARMA model is 62.34 %.
The time-series trust model for this mode is

T.k/ D 0:959T.k � 1/C 0:021PR.k/C 0:015PR.k � 1/C 0:078PH.k/

� 0:064PH.k � 1/ � 0:045F.k/ � 0:013F.k � 1/; (7.12)
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Fig. 7.8 Evolution of human working speed VH , human performance PH , robot speed VR, robot
performance PR, fault, trust T , and trust estimation T 0 using Eq. (7.12) under autonomous mode

7.6.3.4 Collaborative Mode

The results of the experiments are shown in Fig. 7.9. The fit value for the ARMA
model is 45.65 %. As it can be seen in Fig. 7.9, the trust value increases slowly
at the start of the experiment from 0:5 to around 0:75. Fault occurrences cause a
rapid trust degradation to the level of less than 0:1. Next, the participant’s trust
to the robot increases sharply after eliminating the faults and it decreases again
after the faults occur toward the end of the experiment. Note that for the first and
second half phase of the experiment, although the increasing trend of trust without
faults and the decreasing trend of trust with faults are consistent, the intensity of
these variations within these two phases is very different. In the former phase, trust
increases very slowly but drops very fast; While in the latter phase, trust recovers
very sharply and declines gradually. This can justify why the fit value is smaller in
the collaborative mode compared to the other modes. Future work will seek models
with better fitness based on validated human factor research. The time-series trust
model for this mode is
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Fig. 7.9 Evolution of human working speed VH , human performance PH , robot speed VR, robot
performance PR, fault, trust T , and trust estimation T 0 using Eq. (7.13) under collaborative mode

T.k/ D 0:991T.k � 1/C 0:099PR.k/C 0:033PR.k � 1/ � 0:039PH.k/

� 0:033PH.k � 1/ � 0:062F.k/ � 0:022F.k � 1/; (7.13)

7.6.4 Comparison and Conclusion

We measure the participant workload with NASA TLX index after each experiment.
Moreover, we calculate the average values of robot speed, human speed, robot
performance, human performance and trust in all of these conditions. Table 7.1
shows the comparison of these values for different experiment conditions. As can be
seen in this table, for the fresh (non-fatigue) flexible condition, the overall workload
of the participant is similar in all of the three control modes and it is lower as
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compared to the fresh inflexible condition for every control mode. Moreover, this
value is lower for the fatigue flexible condition as compared to fatigue inflexible
in all modes. In this table, for each experiment with a certain condition under a
specific mode, �Trust shows the difference between the initial and final trust. The
general trend of changes of this value for all the control modes are similar: it goes
up in the flexible mode and goes down in the inflexible mode. However, it can be
seen that the influences of robot and human performances on trust vary for different
control modes. For the fresh flexible and inflexible conditions, although the robot
performances in the manual mode are higher than those in the autonomous and
collaborative modes, the trust increments are lower as compared to the corespondent
values in other modes.

7.7 Conclusion

In this paper, we proposed a time-series trust model for a human associate and
his/her robot coworker in a collaborative manufacturing task. We developed a
performance model for robot flexibility based on the difference between the human
and robot working speed. Since the tasks in manufacturing usually are repetitive
kinesthetic tasks, we used the muscle fatigue and recovery model to capture the
human performance. We used three methods to control the robot performance. These
methods are manually by the human, autonomously by a neural network based
robust intelligence controller, or collaboratively using both manual and autonomous
inputs. We provided both numerical simulations and experiment validations to
demonstrate the effectiveness of the proposed trust model and robust intelligent
control scheme. Based on the well-known human factors result we adopted a linear
trust model in this paper. Future works will investigate the applicability of the
linear model in general HRC manufacturing and modifying accordingly for specific
scenarios to increase the model fitness.
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Chapter 8
Investigating Human-Robot Trust in Emergency
Scenarios: Methodological Lessons Learned

Paul Robinette, Alan R. Wagner, and Ayanna M. Howard

8.1 Introduction

Today, robots are being actively deployed in scenarios that help humans achieve
tasks ranging from cleaning floors to bomb disposal; however such tasks either
present low risk to humans (e.g., cleaning a floor) or are tightly controlled by human
experts (e.g., bomb disposal). To increase the potential for autonomous robots to
aid humans in additional high-risk tasks, robots must recognize the factors that
affect human trust in their abilities. Understanding trust decisions can be difficult
for humans, so care must be taken to properly imbue this ability to robots and other
intelligent systems.

In our prior work, we have explored using robots to aid humans in emergency
evacuations (Robinette and Howard 2011; Robinette et al. 2012) as well as the trust
decisions a human would have to make in regard to these robots (Robinette and
Howard 2012; Robinette et al. 2013, 2014a, b, c). This application provides a high-
risk, time critical situation with real-world implications for human-robot trust.

Unfortunately, few research protocols exist for investigating human-robot trust.
The methods that do exist have largely focused on very narrow aspects of the trust
phenomenon and/or situations (Sabater and Sierra 2005). Further, by definition,
the presence of trust implies risk on the part of the person or the robot. Placing
study participants at risk is challenging from an ethical point of view and presents
logistic problems. For example, an experiment may ask participants to move around
a building while a fire is simulated using artificial smoke, visible flame, and fire
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alarms. One participant may view this experience as completely artificial and thus
feel no risk, while another participant may panic and injure himself or herself in
this exact same situation. Moreover, measuring trust is inherently subjective and
strongly influenced by factors outside of the experimenters’ control. These factors
make the investigation of human-robot trust extremely difficult.

Our approach for handling these challenges has been refined over numerous
different experiments involving 770 participants collectively. This article presents
the lessons that we have learned over the course of conducting these studies with
the aim of informing future human-robot trust research. A brief listing of our major
experimental milestones can be found in Table 8.1. We began with experiments that
used written narratives to explore trust situations (described in Sect. 8.4) and then
expanded into experiments that asked participants to make trust decisions in one and
two round simulations with guidance robots (described in Sect. 8.5). Throughout
these experiments, we tested a variety of metrics, motivations, and behaviors.

This chapter is organized as follows: the next section discusses our concep-
tualization of trust, followed by related work in the fields of human-robot trust,
human-robot interaction and human-subject experimentation. Next, we present
lessons that we have learned from studies that require people to read narratives
involving trust. The section that follows discusses simulation experiments involving
a guidance robot. We conclude with specific recommendations for human-robot
interaction researchers conducting experiments related to trust.

8.2 Conceptualizing Trust

Numerous researchers have proposed conceptions of trust that range from computa-
tional implementations of cognitive processes (Castelfranch and Falcone 2010), to
neurological changes in reciprocity games (King-Casas et al. 2005), to a probability
distribution over an agent’s actions (Gambetta 1990). Other researchers consider
trust to have multiple forms, depending on the actors and environment (Hoffman
et al. 2013). After a review of the available literature, Lee and See conclude that trust
is the attitude that an agent will help achieve an individual’s goals in a situation
characterized by uncertainty and vulnerability (Lee and See 2004). Building from
Lee and See’s definition of trust Wagner states that trust is “a belief, held by the
trustor, that the trustee will act in a manner that mitigates the trustor’s risk in a
situation in which the trustor has put its outcomes at risk” (Wagner 2009a). This
definition is meant to serve as an operationalized version of Lee and See’s definition
for trust.

Outcome matrices are a useful tool for formally conceptualizing social inter-
action. These matrices (or normal-form games in the game theory community)
explicitly represent the individuals interacting as well as the actions they are
deliberating over. The impact of each pair of actions chosen by the individuals
is represented as a scalar number or outcome. For interactions involving trust, it
is common to label one individual as a trustor and the other as a trustee. This
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Fig. 8.1 An example outcome matrix is depicted formally and as an investment game. The risk
associated with the trustee’s action can be approximated by subtracting the values on the right in
the invest $10 columns. See Fig. 8.2 for a more detailed explanation of the outcome matrices as
used in this work

representation affords a natural means for quantifying the risk associated with an
action choice as the difference in outcome across rows or columns. An example is
presented in Fig. 8.1.

Given a definition for trust, the outcome matrix representation can be used to
conceptualize this definition in terms of social interaction. For example, one can
create scenarios that are generally agreed to contain trust and attempt to formally
represent these scenarios as matrices. One can then search for similarities across
several trust scenarios in an attempt to deduce a definition for trust. Alternatively,
one can, as we have, formulate a particular definition of trust as an outcome
matrix. Much of our subsequent research has focused on testing whether or not
our definition accurately matches people’s intuitions of trust.

As we have demonstrated in related work, outcome matrices can be created
from the models a robot has learned about the people it interacts with (Wagner
2009b). These models inform the outcome matrix representation by suggesting
which actions are available to a person in a particular environmental context as
well as predicting which action an individual will select. With respect to trust, these
partner models act as reputation models of the trustee allowing the trustor to gauge
the risk associated with relying on this particular individual. Stereotypes can be
used to bootstrap the process of assessing the trustworthiness of newly encountered
individual by assigning them and comparing them to a category of partner model
types (Wagner 2012).

8.2.1 Conditions for Situational Trust

The outcome matrix representation can be used to formally represent the types of
situations that have long been used in trust research (Kelley and Thibaut 1978;
Axelrod 1984). The investment game, for example, presents an investor with some
amount of money. The investor must decide whether to invest the money with a
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Fig. 8.2 The conditions for trust derived from our operational definition for trust are shown above
with examples from the Investor-Trustee game

trustee or not. If the investor chooses to invest, the money invested appreciates to
some larger amount. The trustee must then decide what amount to return to the
investor. Figure 8.1 depicts an example game. Investment games such as this have
become the de facto method for investigating trust by the trust research community
(King-Casas et al. 2005).

In the matrix presented in Fig. 8.1, for example, the investor has a choice: she
can choose to invest or not to invest. Likewise, the trustee can choose to return some
amount of money or not to return any money. Although the matrix is a specific
example of a situation involving trust, we can easily abstract away the actions that
the actors are deliberating over to develop a series of conditions for trust. In prior
work we show that these conditions (see Fig. 8.2), which are derived from our
working definition for trust, can be used to segregate outcome matrices into those
that require trust on the part of a trustor and those that do not.

The use of these conditions results in a binary indication of whether or not
a situation demands trust. This is not to say that trust is a binary phenomenon.
Rather, the conditions simply indicate that the selection of a particular action by the
trustor demands trust. Further, many real and important situations present people
with a decision that has little middle ground. For instance, being a passenger in an
autonomous car is a binary decision in the sense that one chooses either to be a
passenger or not be a passenger. The situation affords little opportunity for a third,
middle risk option.
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8.3 Related Work on Trust and Robots

A great deal of related research has focused on the factors that affect trust in a robot
(Carlson et al. 2014). Carlson et al. finds that reliability and reputation impact trust
in surveys of how people view robots. Several measures of trust in a robot exist.
Desai et al. asked participants to self-report changes in trust (Desai et al. 2013).
Measurements of the frequency of operator intervention in an otherwise autonomous
system have also been used (Gao et al. 2013). A recent meta-study has found that
the existing literature on human-robot trust has focused primarily on the confidence
that a human operator has in a robot’s abilities to perform a task (Hancock et al.
2011). Others have identified trust as an important metric for effective human-robot
interaction (Steinfeld et al. 2006).

Work on search and rescue robots is a starting point for our research on using
robots as guides in emergencies. Bethel and Murphy defined several zones for
robot interaction: the intimate zone (0–0.46 m), the personal zone (0.46–1.22 m,
maximum distance for communication), the social zone (1.22–3.66 m) and the
public zone (further than 3.66 m) (Bethel and Murphy 2008; Murphy 2004). More
recent work has extended this to UAVs (Duncan and Murphy 2013).

8.4 Crowdsourced Narratives in Trust Research

Crowdsourcing has become a popular method to increase the number and diversity
of participants in human-computer interaction and even human-robot interaction
experiments (Kittur, Chi, and Suh 2008). We chose to crowdsource our experiment
in order to broaden the pool of people from which our data was generated. The
greater the variety in our participant pool, the greater the generality of our results.
Crowdsourcing uses the combined resources of a large group of people connected
over the internet, to accomplish a goal or perform a task. Studies have examined the
use of crowdsourcing as a means for garnering experimental subjects and found that
the validity of experiments utilizing crowdsourcing is not otherwise compromised
(Gosling et al. 2004). With respect to robotics, simulated robots and environments
designed within game engines allow subjects to interact with robots in a multitude
of ways. These interactions are mediated by the participant’s web browser.

Services such as Amazon’s Mechanical Turk can be used to recruit and finan-
cially compensate large numbers of participants. Studies have found that Mechan-
ical Turk provides a more diverse participant base than traditional human studies
performed with university students (Paolacci et al. 2010; Buhrmester et al. 2011;
Berinsky et al. 2012; Horton and Chilton 2010). These studies found that the
Mechanical Turk user base is generally younger in age but otherwise demograph-
ically similar to the general population of the United States (at the time of those
studies, Mechanical Turk was only available in the USA).
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In order to guarantee quality work, only workers with overall acceptance rates
95 % and above were used. To ensure diversity no participant was allowed to enroll
in the study more than once. Workers that attempted to enroll in the study more
that once were warned that their data would be rejected and pay refused. We also
rejected responses that included incomplete answers and comments. This research
was approved by the Georgia Institute of Technology Internal Review Board.

Our initial research goal was to evaluate our definition for trust and the conditions
derived from this definition. To accomplish this goal we needed a clear and
understandable way to present different matrices to participants. We decided to
use textual narratives (i.e., stories) as a way to present the matrices in a manner
that most people could understand. We felt that narratives allowed a great deal of
flexibility for creating situations that closely matched the original matrix. Moreover,
the use of narratives only required basic reading skills in order to participate in the
study. Finally, because outcome matrices are often described as short stories (e.g.,
prisoner’s dilemma, stag hunt game) the use of narratives was a natural fit (Axelrod
1984).

In order to empirically evaluate our conditions for trust, we needed to create
narratives that matched outcome matrices that met and did not meet the conditions.
We were able to further divide the matrices that violated the definition of trust into
sub-categories based on the way the definition was violated. For instance, a matrix
that contains equal outcome values did not put the trustor at risk and hence violates
our definition for situational trust. Table 8.2 depicts the different matrix types. The
first matrix in Table 8.2 represents a situation that requires trust and meets our
conditions for trust. The other four matrices violate at least one condition of trust.
The Equal Outcomes matrix violated all conditions by providing a situation where
the trustor risked nothing in the interaction. The Trustor-Dependent Trustee-
Independent matrix presented a situation where only the trustor’s actions affected
the outcome, thus the trustor was not placing any risk in the hands of the trustee.
This violates the second and fourth conditions. Likewise, the Trustor-Independent,
Trustee-Dependent matrix represents a situation where the trustor has no control
whatsoever. If the trustor is not able to make a decision then the situation does not
meet our definition of trust. This matrix violates conditions three and four. Finally,
the Inverted Trust matrix presents a scenario where the trustor receives the worst
reward when the trustee intends to fulfill trust and the best reward when the trustee
intends to break trust. Thus the trustor would wish that the trustee would act in a
manner that breaks trust, rather than maintains it. This matrix violates the fourth
condition.

Each participant was asked to read and evaluate twelve scenarios. Care was taken
to present each participant with as many different versions of the experimental
variables being tested as possible. Participants were paid $1.67 for the completion
of their survey.
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Table 8.2 The categories and descriptions of trust and no trust situations tested along with an
example outcome matrix for each

Category Example Description

Trust Matrix Trustor
�
�

�
�

Trustee �
−� $2000 $400
�
−� $0 $400

Fulfills trust according to 
the definition and its con- 
ditions.

Equal 
Outcomes

Trustor
�
�

�
�

Trustee
�
−� $2000 $2000
�
−� $2000 $2000

Violates all conditions of 
trust by removing all risk 
to the trustor.

Trustor-
Dependent, 
Trustee-
Independent

Trustor
�
�

�
�

Trustee
�
−� $2000 $0
�
−� $2000 $0

Only allows the trustor to 
affect the situation. The 
trustor does not risk any 
outcomes on the actions of 
the trustee.

Trustor-
Independent, 
Trustee-
Dependent

Trustor
�
�

�
�

Trustee
�
−� $2000 $2000
�
−� $0 $0

Only allows the trustee to 
affect the outcomes of the 
trustor. The trustor has no 
choice in the scenario.

Inverted 
Trust Matrix

Trustor
�
�

�
�

Trustee
�
−� $0 $400
�
−� $2000 $400

Presents a situation where 
the trustor wishes for the 
trustee to break trust in 
order to get the best out- 
come.

8.4.1 Iterative Development of Narrative Phrasing

The narratives that we created were based on several different scenarios that we felt
offered some flexibility in terms of storytelling. One was an investment scenario
meant to verbalize the investment game depicted in Fig. 8.1. A second scenario
described a navigation task based on our interest in emergency evacuation. The
final scenario was a hiring decision. The narratives were written to be as simple
as possible while still allowing the flexibility to test each of our outcome matrices.
The names Alice and Bob were consistently used to represent the characters in
the scenario. The narratives began with a sentence or two introducing the scenario.
Next, each of the four potential actions and outcomes are described. The narrative
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ends with a statement describing the decision and resulting action that was taken
by Alice or Bob and a question asking the subject whether or not they believed
that the chosen action indicated trust. In order to rule out potential confounding
factors, half of the narratives displayed a positively stated action and the other half
displayed a negative action (“Bob chooses to hire Alice” versus “Bob chooses NOT
to hire Alice”), the ordering of the narratives, and the outcome amounts were all
randomized. Participants were asked to explain each individual answer.

Best practices were used when developing the narrative surveys (Gehlbach and
Brinkworth 2011) including the creation of several pilot studies, examination of
within-subject reliability, use of randomization to eliminate biases, and measure-
ment and evaluation of potential confounding variables. Figures 8.3 and 8.4 depict
the evolution of these narratives.

Not surprisingly, early pilot studies indicated that the wording of the narratives
could influence participant decisions. This can be seen in Fig. 8.5, where 86 % of
responses agreed with our definition when presented with a Trust Matrix, but only
49 % agreed when an Equal Outcomes matrix was presented. For example, initially
subjects were asked if the selection of an action indicated that one individual did not
trust the other individual (Fig. 8.3). Examining participants’ explanations for their
answers indicated that they generally understood the narrative and the actions taken
by the trustor in the narratives, but some did not notice that a negative trust question
had been asked. For some participants the negative phrasing led to confusion. We
found that questions such as, “Does this decision indicate that Bob does NOT trust
Alice?” could be interpreted in several ways. One interpretation is that trust is
not involved or present during the situation. Another is that Bob distrusts Alice.
Participants offered explanations such as “There was nothing for Alice to gain.
So there was no need for her to trust. No distrust is indicated” and “It indicates
neither trust nor distrust.” After careful consideration, we eliminated the negatively
stated trust questions believing that our working definition for trust and associated
conditions could be adequately investigated with positive statements. This pilot
study demonstrated that most individuals do not have clear delineations between
notions such as “not trust”, “distrust”, “mistrust”, and “trust is not required”.
Although our research is only interested in how people define “trust” rather than
the various terms that indicate no trust, this may be a fruitful area of future
research.

In an additional pilot study, some participants seemed to latch on to key words,
such as “invest,” “follow,” and “hire.” This can be seen in Fig. 8.5 where 93 %
of participants agree with our definition when a Trust Matrix is presented, but
only 79 % agree when an Equal Outcomes matrix is presented. Explanations by
participants, such as, “In this case, even though the outcomes are the same regardless
of Alice’s decision, I would say that her choice to hire Bob is a sign of trust,” “There
is no situation where she ‘loses’ any money from either investing/not investing, she
must believe that he can do good with the money,” and “Since Bob decides to follow
Alice’s directions, this indicates that he trusts Alice. Though he will arrive at the
destination regardless if he trusts her or not. If he knows this, it potentially makes it
easier to trust Alice,” clearly indicate anchoring bias (Tversky and Kahneman 1974).
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Fig. 8.3 The first iteration of the narratives

Anchor bias describes the human tendency to focus heavily on early and/or specific
pieces of information and disregard later information. Because of this bias, we chose
to replace specific actions that people were focusing on with less specific terms.
For example, the statement “Bob is considering an investment of $1000 in Alice.”
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Fig. 8.4 The final version of the narratives

became “Bob is considering spending $1000 to perform an action with Alice.” The
final iteration of the narratives used in this experiment removed all keywords, such
as “invest” or “hire,” and replaced them with less specific phrases, such as “perform
the action.” This allowed us to reduce anchor bias. The exact wording for the three
narratives can be found in Fig. 8.4.
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Fig. 8.5 Results from the pilot and full experiments using textual narratives to describe potential
trust scenarios

In the full study, 128 participants’ provided 1920 responses to the questions
asked by the narrative. See Fig. 8.5 for a comparison between this study’s results
and the corresponding results from the pilot studies. The scenarios showed minor,
insignificant differences that appear attributable to random error. No significant
difference regarding gender or magnitude of the outcome matrix values was found.
The full results from this study are reported in (Wagner and Robinette 2015), but
some of our discoveries may also aid future experimenters who wish to perform
similar studies. Overall, we found a strong correlation ( D C0:592; p < 0:01)
between the predictions of our conditions and the evaluations made by participants.
Participants strongly agreed that the Trust Matrix narratives presented were indeed
situations that required trust (93 % agreement over 640 responses) but had some
disagreements about situations that did not require trust according to our definition
(66 % agreement over all 896 responses for designated no trust scenarios).

In some cases, participants invented reasons that the trustor would choose or not
choose to perform the action in order to make sense of a situation. Based on their
comments, this appears to have occurred when they were confronted with a narrative
that did not make sense. For example, when confronted with a situation where
Bob decides to lose $2000 by participating in an action with Alice, one participant
explains, “Bob trusts Alice because his decision has nothing to do with the money
just his friendship with Alice.” There is no mention in any of the narratives about a
friendship or past relationship between the agents, yet the participant believes that
there must be some reason Bob has chosen to lose this money and thus provides
additional details so that the situation makes sense. With respect to the data, these
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peculiar narratives appear to have influenced participant trust evaluations more when
the matrix did not meet our conditions for trust and may hint to a limitation of the
use of narratives.

Overall, the use of crowdsourced narratives to examine trust offered several
advantages and disadvantages. Advantages include the ability to reach a large and
diverse population of subjects, flexibility in terms of describing trust scenarios,
and an ability to develop narratives that closely matched the matrices from which
they were derived. For example, it is difficult to examine the trust involved in a
hiring decision without using some type of narrative. Because we believe that our
framework can be used to represent most situations involving trust, it was important
to capture results from several different scenarios. This approach is not without
its limitations: it was difficult to manage or eliminate all psychological biases, the
narrative approach was disconnected from our larger goal of exploring human-
robot trust, and translating these matrices into narratives resulted in some peculiar
descriptions of situations.

8.5 Crowdsourced Robot Evacuation

As mentioned above, a key disadvantage of the narrative approach to investigating
trust is its disconnection to robotics. In this section we describe experiments
designed to test trust using an environment designed for human-robot interaction.

Because a diverse set of participants was desired, crowdsourcing was once
again utilized as a means for recruiting and paying study subjects. We developed
a simulator that allowed participants to interact with a virtual robot using a web
browser. A task that we believed would be significantly influenced by trust—robot
guided emergency evacuation—was chosen. For this task participants were asked to
choose whether or not they would like to use a robot for guidance when evacuating
from a building. The building environment was modeled after a maze with corridors,
dead ends, and no visual landmarks. Each simulation used the Unity 3D game
engine to simulate the virtual maze and the virtual robot. Three-dimensional models
for the game engine were created in Blender and Unity 3D. Participants were paid
between $1 and $4, depending on the exact study.

Motivating participants can be a difficult challenge. We discuss our approaches
to this challenge in greater detail below, but throughout all experiments we either
used performance-based monetary bonuses to encourage participants to exit quickly
or we informed them that they would not “survive” the simulated emergency if they
did not evacuate within a short time frame.

8.5.1 Single Round Experimental Setup

Initially, we conducted additional experiments related to our working definition of
trust and conditions for trust. In this case, however, we wanted participants to make
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a decision for themselves rather than reason about the actions of others. Further,
by using either monetary or time incentives tied to the speed at which the maze
environment was navigated we believed that the subjects would feel at risk.

Our initial experiments required a single trip through the maze. Each experiment
began by thanking the person for participating in the experiment. Next the subject
was provided information about the evacuation task. In some experiments this
included presenting the environment and robot to the subjects in videos, images, or
text and providing information that allowed the participant to evaluate the risk asso-
ciated with choosing to follow the robot. Participants were shown examples (again
in the form of videos, pictures, and/or text) of good and bad robot performance (e.g.,
robots that are fast and efficient and robots that are not) and participants were given
an idea of the complexity of the maze. Also as part of this introduction, participants
were given the chance to experiment with the controls in a practice environment.
The practice environment was a simple room with three obstacles and no exit.

After this introduction, participants were given the choice to use the robot or not.
With the exception of two pilot studies, participants were told that their choice to
use the robot would not affect their compensation for this experiment. Participants
were then placed at the start of the virtual maze. If they chose to use the robot it
would start out directly in front of their field of view and immediately begin moving
towards its first waypoint. The robot would move to a new waypoint whenever the
participant approached. If the participant elected to not use the robot then no robot
would be present and the participant would have to find the exit on his or her own.

After the maze-solving round was complete, participants answered a short survey
about the round and about themselves. The exact questions asked in the survey
varied considerably over the course of developing the pilot studies and the final
experiment.

The results from this experiment are discussed in (Wagner and Robinette 2015).
After several experiments with varying motivations and simulation environments,
we found a strong correlation between participant responses as to whether a situation
required trust and our definition of trust ( D C0:406; p < 0:001). When
conditions for trust were met, 74.0 % of participants indicated that they trusted the
robot, compared with only 32.9 % when conditions were not met.

8.5.2 Multi-Round Experimental Setup

Our conceptualization of trust relates risk to a model of the trustee’s actions. Thus,
in order to explore aspects of trust repair we needed to create a multi-round robot
evacuation experiment. This was accomplished by modifying our simulation to
perform two rounds of evacuations. This experiment required the participant to
navigate two different mazes. They were offered the opportunity to use the robot
twice and asked to complete a survey after each maze evacuation. The experimental
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setup for the single round experiment had been developed and tested to the point
that we were confident in the procedure and survey questions. Both rounds were
identical in all other ways.

Experimentally, a multi-round paradigm allowed us to violate the participant’s
trust in the first round and to then evaluate the impact on the person’s decision to
use the robot and self-reported trust during the second round. Using this procedure
we were able to measure the change in trust across rounds as well as the correlation
between self-reported trust and the decision to follow.

The experimental setup was similar in most respects to the single round proce-
dure. Participants began each experiment clicking a link to a Unity 3D Web Player
executable. Next they viewed an introductory message that described the navigation
task they were to perform. This page included photos of an exit and the guidance
robot. The guidance robot varied depending on the experimental conditions. They
were then offered the opportunity to practice navigating in a maze. They had a first-
person view of the practice environment and used their keyboard arrow keys to
move. After the practice session, they were presented with illustrative examples
of prior human-robot performances in the maze. The nature of these examples
varied depending on the particular experiment. The participant was then asked to
decide whether or not they would like a robot to provide guidance during the first
round of the experiment. After making their choice, the person then navigated the
maze and completed a short survey. They were then offered another opportunity to
decide if they wanted to use the guidance robot in a second, different, maze. They
then navigated the maze in the second round and completed a short survey about
their second round decision. The robot’s guidance performance in the second round
always matched its performance in the first round. The experiment concluded with
a final survey that collected demographic information.

The results from this experiment are presented in (Robinette et al. 2014c).
Overall, we found that participants reported a significant decrease in self-reported
trust between a robot performing well and a robot performing poorly (53 %
decrease).

8.5.3 Asking About Trust

Our initial experiments found that participants would occasionally act as if they
trusted the robot while reporting that they did not. This led to us to closely examine
our method of asking about trust. Initially participants were asked: “When you
made your decision to follow or not follow the robot, did you trust the robot as
a guide in this scenario?” This produced good results when a Trust Matrix was
used to design the experiment, but mixed results in other cases. Pilot studies were
performed immediately afterwards, focusing on the Equal Outcomes matrix (see
Table 8.2) and the trust question. We analyzed what it means for the participant to
answer these questions. It was not initially clear if participants were stating whether
they trusted the robot, the robot’s ability to lead them to an exit, or something
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else. Additional pilot studies were performed with different wordings of the trust
question. For example, we asked, “Did you trust the robot?”, “Did your decision
to follow or not follow the robot indicate that you trusted the robot?” and also
varied responses available to the participants to include the option “Trust was not
involved in the decision”, in addition to “Yes,” and “No.” Overall, we found very
little difference in the data resulting from these changes in wording.

In later single-round experiments, the issue of trust question wording was
revisited. This time, participants who chose to use the robot were asked to agree
or disagree with the statement “My decision to use the robot shows that I trusted
the robot.” Participants who chose to not use the robot were asked, “My decision
to not use the robot shows that I trusted the robot.” Each group was also asked
if they trusted the robot itself. We again found very little difference in responses.
Ultimately, we concluded that the wording of the question itself did not matter when
compared with changes we made to the scenario.

8.5.4 Measuring Trust

Many methods for measuring trust have been proposed. In the field of human-
robot interaction, for example, trust has been measured by asking participants to
report their real-time change in trust in an autonomous vehicle (Desai et al. 2013)
and by measuring the number of times an operator corrects the movements of an
autonomous robot (Gao et al. 2013).

Our method for measuring trust varied with the type of experiment. In the nar-
rative experiments, trust was indirectly measured by asking participants to evaluate
the interactions of fictional people. For the simulation experiments, two measures
of trust were considered. The primary method of measuring trust was participant
self-reports in the form of survey questions. In various ways, these questions asked
participants whether or not they trusted the robot. In some experiments we asked two
trust-related questions. In our double round experiments, the participant’s decision
whether or not to follow the robot during the second round was a second method
for evaluating trust. Results from our emergency evacuation experiment indicate
a large positive correlation (.129/ D C0:661; p < 0:001 for round 1 and
.90/ D C0:745; p < 0:001 for round 2) between the participants’ decision to
follow the robot and their self-report of trust. In this experiment, interaction with a
robot that failed to provide guidance to an exit led to a 50 % drop in robot usage
during the second round as well as a drop in self-reported trust of 53 %.

8.5.5 Incentives to Participants

As described above, investigations of trust require that the subject perceive or
believe that they are at risk. Of course, there are ethical boundaries to the types and



8 Investigating Human-Robot Trust in Emergency Scenarios: Methodological. . . 159

ways that an experimenter can make participants feel at risk. The use of financial
incentives is a common way to put subjects at risk without the possibility of physical
or emotional harm (King-Casas et al. 2005).

Because participants were recruited via Amazon’s Mechanical Turk service, we
assumed that they were strongly motivated by money. Participants were typically
able to complete our experiments quickly, so our payments often gave a higher
than average hourly wage, even though the payments were between $1 and $4. For
comparison, subjects were paid a flat rate of $1.67 for completing the narrative
study. For the maze evacuation studies, subjects were paid a base payment of
approximately $2 for completing the study. They were then offered a $1 bonus
for completing the maze quickly. We assumed that a 50 % bonus would serve as
considerable motivation for completing the maze in a timely fashion. The amount
of time required to complete the maze was impacted by the quality of guidance
provided by the robot, if they elected to use it. Using written text and videos,
they were informed that they could expect to receive $1 if the robot guides them
efficiently, $0 if the robot is a bad guide, and some number in between otherwise.
This outcome matrix was modeled after the Trust Matrix defined in the Narrative
Experiment section (see Table 8.2).

Participants had very little control over their bonus; so all bonuses were paid out
in full after the experiment, regardless of performance. They had no knowledge of
this before the experiment. See Fig. 8.6 for a screenshot of the interactive portion of
the experiment showing the method for displaying the bonus remaining.

Fig. 8.6 A screenshot from the robot evacuation experiment is presented above. The amount of
time that has elapsed is pictured to the left and the amount of the participant’s bonus is pictured to
the right. The amount of the bonus decreased as the time taken to navigate the maze increased
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As mentioned above, we used both self-reports and the participant’s decision
to follow the robot as two different measures of trust. We hypothesized that the
use of financial incentives would result in a decrease in both measures when the
robot provided poor guidance and no decrease in trust when the robot provided good
guidance. This prediction was wrong. We found that although people tended to self-
report a loss of trust, they nevertheless continued to follow the robot in the second
round. As an example, 74 % of participants in the single round experiment with
a Trust Matrix outcome who chose to use the robot reported that they trusted the
robot. This result was promising by itself, however 50 % of participants who chose
to use the robot in an Equal Outcomes experiment also reported trust in the robot.
This result caused us to question our use of monetary bonuses as a motivational
technique.

We conducted additional studies that included an expanded set of survey
questions exploring each individual’s motivation for participating in the experiment.
We found that 53 % of participants reported that the bonus was the most important
motivation, 24 % noted that completing the study quickly was most important, and
23 % claimed enjoyment was their primary motivation. Based on the comments
from participants, we determined that those who did not trust the robot continued
to use it in the second round because they considered it better than no source of
guidance at all. As described below, various types of behavior were tested in order
to communicate that the robot had failed in its navigation task. Some of these
behaviors, however, still lead the participants to an exit, even if none of the bonus
was preserved. Even when the robot’s navigation behavior did not find an exit,
participants often still continued to use it in the hope that it would eventually find an
exit. In fact, a few participants erroneously believed that having a poor performing
robot in the first round increased the likelihood of having a fast robot in the second
round.

Based on the results from these motivation surveys, we began to explore other
ways to motivate participants. Because of our interest in search and rescue, we
modified our scenario to be an emergency evacuation. In this modified scenario,
participants were told that our goal was to discover how people leave a building in
an emergency. Instead of receiving a bonus for a fast completion, they were told that
they would only survive if they found the exit in time. As before, a countdown timer
appeared in the middle of their view to tell them the remaining time. Participants
were compensated $1.00 for their participation in single round experiments and
$2.00 for their participation in double round experiments (the same as the base pay
in the monetary bonus experiments). Figure 8.7 depicts the interactive portion of the
experiment with the emergency evacuation motivation.

Presenting the maze navigation task as an emergency resulted in self-reports of
trust that closely matched the participant’s decision to follow the robot during the
second round. Again using the single round experiment as an example, 74 % of
participants reported trust in the robot when the conditions for trust were met, but
only 33 % reported trust when the conditions for trust were not met. Participant’s
comments also indicated that the emergency motivation strongly influenced both the
self-report and the decision to follow.
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Fig. 8.7 A screenshot from the robot evacuation experiment using an emergency as the partici-
pant’s motivation is presented. The participants were told that their task was to act as if they were
in an emergency evacuation and had to find an exit within 30 s in order to survive

8.5.6 Communicating Failed Robot Behavior

While understanding a participant’s motivations is an important factor related to
the evaluation of human-robot trust, the robot’s ability to communicate must not
be neglected. The actions of the robot inform the human of the robot’s ability
to be trusted in future interactions. In pilot studies we evaluated several different
types of robot guidance failures. The failures were intended to mimic the types of
failures likely to occur during real evacuation procedures. All but two of these failure
behaviors were eliminated because participants were unable to determine that the
robot had failed and hence resulted in extremely long experiment completion times.

In each of the behaviors below, the robot followed a predefined set of waypoints
throughout the environment. Waypoints were set near corners or occlusion points
so that travel between points was linear. The robot moved faster than the participant
in order to lead the person. It then waited at each waypoint for the participant to
catch up before moving to the next waypoint. The robot was always in view of the
participant if the participant moved along the lines between waypoints. Hence, the
amount of time it took participants to reach the exit depended on the environment
and on the participant. We created the following evacuation behaviors for the robot:

• Fast navigation—The robot proceeded directly to the exit at a high rate of speed.
Robots that acted in this manner were capable of finding the exit in any maze
within 30 s. This was the only behavior that resulted in rapid evacuation.
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• Slow navigation—The robot explored many different routes before eventually
finding the exit. Robots that acted in this manner were capable of finding the exit
of any maze in 90 s. This type of robot behavior was used in most experiments
presented here.

• Failed navigation—The robot proceeded directly to a corner of the environment
that is not near the exit and stopped. This behavior was meant to emulate the
behavior of a robot that has incorrect information about the exit location. It
was believed that participants would view a robot governed by this behavior as
less trustworthy than a robot that navigated slowly. No significant difference,
however, was found in either the decision to use the robot or in self-reported
trust. This type of robot behavior was used in most experiments presented here.

• Small Loops—The robot proceeded to a nearby obstacle and then circled
that obstacle continuously. This behavior was only included in one pilot study
because participants tended to follow it around several loops before they realized
it was unsuccessful. The worst-case participant in this behavior followed the
robot for approximately 3.6 min even though the bonus expired in 1.5 min. This
participant then chose to use the robot in the second round and followed it for
more than 9 additional minutes.

• Large Loops—The robot proceeded to a large obstacle and circled the obstacle
continuously. As with the small loops behavior, several circumnavigations were
required before participants realized that the robot was not leading them to an
exit. At a minimum, participants followed the robot around one loop, which
required a considerable amount of time. The worst-case participant followed the
robot for more than 5 min. This participant also chose to use the robot again in the
second round, but quickly understood its behavior was the same and abandoned
it after just 36 s.

• Continuous Searching—The robot exhaustively searched every corner of the
map except the hallway leading to the location of the exit. Once this search was
completed it started again, following the exact same waypoints. Again, partici-
pants in the pilot study failed to realize that the robot was performing poorly with
one participant following the robot for almost 12 min. This corresponded to over
three complete searches of the entire environment. This behavior was only tested
in a single pilot study because it took too long for participants to realize that the
robot had failed.

• Wall Collision—The robot approached the correct hallway to the exit but then
collided with a wall. It continued to collide with the wall instead of providing
further guidance. This robot behavior was meant to emulate a working navigation
system and a broken obstacle avoidance system. This behavior was only tested in
one pilot study because participants did not recognize that the robot had failed,
instead interpreting its bizarre collision behavior as a signal that it had found the
exit. In reality, the exit was just out of sight.

In all, we tested six robot behaviors that were meant to convey failure and
one robot behavior that was meant to convey success. Of the behaviors tested in
full studies, we generally found significantly different results between successful
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(i.e., fast navigation) and the slow or failed navigation behaviors. Surprisingly, our
data shows that the type of unsuccessful navigation behavior used by the robot did
not have a significant effect on the decision to follow the robot in the second round
or on the participant’s self-reports of trust. The slow and failed behaviors produced
nearly identical results during experimentation. Based on these experiments, we
conclude that communicating unsuccessful robot behavior is a significant challenge.

Our pilot studies with various unsuccessful robot behaviors raise concerns about
typical humans over-trusting robots to perform their stated task. While many people
seem predisposed to not trust any new form of technology, others seem to instantly
trust a new technology to perform its task, regardless of evidence to the contrary.
Participants were willing to follow a robot in what we consider to be an obviously
unsuccessful search for an exit for almost 12 min for $2 in compensation (the bonus
had expired by this time). Even in our most successful test, 50 % of participants
who had experienced an unsuccessful robot chose to use the robot again in a second
round (for comparison to situations where human leaders are asked to be trusted,
see the meta-study in (Dirks and Ferrin 2002) where the authors found a small but
significant effect on trust by job performance metrics). This issue shows the need
for a robot to realize when it has failed and inform nearby human stakeholders to
find another means of accomplishing the given task.

8.6 Conclusion

We have performed multiple studies involving 770 participants in order to validate
our working definition and conditions for trust in human-human and human-robot
interactions. In these studies, participants have examined outcome matrices and
decided the extent to which the interactive situation described by these matrices
demands trust. In the first study, written narratives were used to sculpt these
situations. In the second, simulated evacuations through a maze were used to convey
risk and force the participant to make a decision.

Overall, 11 experiments involving a total of 770 participants have taught us the
following lessons related to the empirical evaluation of trust:

• Pick the method that aligns best with the scenario being tested. Some scenarios
may be better tested in a simulation environment, rather than as a narrative.

• In the same vein, pick a method of compensation or motivation that aligns well
with the scenario. Sometimes money is a sufficient incentive, but oftentimes
incentives besides money will motivate participants.

• Avoid the anchoring bias. If narratives are to be used, watch for words that will
overwhelm all other considerations a participant might have about the scenario.

• It is difficult for a non-expert human to understand when a robot has failed
at a task. For example, if the robot is built to be a navigation guidance robot,
participants will expect it to be a good guide.
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• Use complementary methods to achieve both generality and grounded, empirical
evaluations.

Our experiences demonstrate that it can be difficult to impress an exact outcome
matrix on a participant, even if the numbers are clearly stated in the form of a
narrative or in the form of examples. For example, words like “invest” and “follow”
can bias a participant to ignore the given numerical outcomes and assume that
the situation requires trust. Moreover, situations that are difficult to comprehend
may cause participants to augment scenarios with invented information. Finally,
communicating failure is not as straightforward as might be expected. In spite of
these challenges, the methods outlined in this chapter have successfully been used to
explore the topic of trust in a manner that is not tied to a single specific scenario and
has been verified with results based on data from a large and diverse population. As
methods for investigating trust take shape, it is important that results of studies apply
broadly. Crowdsourcing allows testing with such broad and diverse populations.

Using crowdsourcing as a means for testing hypotheses related to trust demands
methods for conveying interactive scenarios to the participants. Narratives offer a
general, yet less grounded way of doing so. Simulated scenarios immerse subjects in
a test environment, but make drawing general conclusions more daunting. Thus, our
most valuable lesson learned is that utilizing different yet complementary methods
can provide both generality and grounded empirical evaluations of human-robot
trust.
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Chapter 9
Designing for Robust and Effective Teamwork
in Human-Agent Teams

Fei Gao, M.L. Cummings, and Erin Solovey

9.1 Introduction

With the development of automation technology, operators’ tasks often shift from
manual control of a single task to supervising multiple tasks and agents, which
can require monitoring, coordination, and complex decision-making. However, the
required cognitive load for working with multiple agents could easily exceed the
capacity of a single operator, even with high levels of automation. There is an
increasing demand for teams of humans to perform tasks that are less efficiently
done or impossible to do by individual humans.

Teams have the potential of offering greater adaptability, productivity, and cre-
ativity than any one individual can offer and provide more complex, innovative, and
comprehensive solutions (Gladstein 1984). However, working as a team imposes
extra workload related to coordination and communication, and teams can fail
for many reasons (Salas and Fiore 2004). Factors such as a poor combination of
individual efforts, a breakdown in internal team processes (e.g., communication),
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and an improper use of available information have been identified as potential
sources of team failure (Salas et al. 2005).

Effective teamwork in highly dynamic environments requires a delicate balance
between giving agents the autonomy to act and react on their own and restricting
that autonomy so that the agents do not work at cross purposes (Work et al.
2008). To achieve robust and effective teamwork, we must understand the nature
of such teamwork, including team structure, team processes and dynamics, and
their impact on team performance. In this study, we investigated the teamwork
across multiple operators working together with multiple heterogonous autonomous
vehicles using two experiments. In Experiment 1, the impact of team structure on
team performance under different levels of uncertainty was investigated. Reasons
for inefficient coordination were identified. In order to improve the coordination,
in Experiment 2, four interface design conditions were compared using the same
testbed to see whether facilitating information-sharing within the team could
improve team coordination and team performance.

9.2 Related Work

Autonomous systems affect teamwork in two primary ways. First, autonomous
systems affect the way a task can be completed through task interdependence
and work assignment. Second, automation affects how information is presented
and shared among team members, which further influence the way team members
coordinate and communicate. Previous work has identified many important factors
that include team structure, shared mental model and team situation awareness, as
well as communication.

9.2.1 Team Structure

Team structure is an important factor hypothesized to affect team effectiveness
(Lewis et al. 2011). Team structure affects the manner in which the task components
are distributed among team members (Naylor and Dickinson 1969), as well as
team communication and coordination. The team structure that is suitable for a
specific scenario largely depends on the task characteristics and resources available
(Macmillan et al. 2004). For a team of operators working together with multiple
heterogeneous autonomous vehicles, there are several ways to organize the vehicles.
One common method is functional organization, in which individuals specialize
and perform certain roles. For example, one person is responsible for searching and
another person is responsible for responding to targets. By specialization on the
part of each member, groups are able to tackle problems more efficiently. The clear
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task responsibility also reduces the need for coordination. One major downside of
functional organization is the difficulty in shifting workload flexibly to break up
unexpected bottlenecks.

Another way to organize the team is divisional organization, in which each
working unit can be responsible for all type of tasks. In divisional organization, each
member is allocated with some resources of each type. By creating self-contained
tasks, it reduces the amount of information processed within an organization when
the level of uncertainty is high (Galbraith 1974). For example, a company can have
several divisions each responsible for one product. Each division has its own set
of functional units like research, design, marketing etc. Divisional structure was
designed in order to have a fast response to the market (Macmillan et al. 2004).
In one command and control scenario, it was found that the effectiveness of teams
using the divisional and functional structures depends on the nature of the tasks to
be accomplished and the uncertainty in the situation. Specifically, functional teams
perform better when the environment and tasks are predictable. Divisional teams
have a higher level of robustness and perform better when the environment and
tasks have more uncertainty (Macmillan et al. 2004).

9.2.2 Shared Mental Model and Team Situation Awareness

Whether working as an individual or a team, developing and maintaining a high
level of situation awareness (SA) is critical in autonomous vehicle control. SA
includes perception of the elements in the environment, comprehension of the
current situation, and projection of future status (Endsley 1995). Team coordination
poses extra SA requirements. Team members need to be aware of their teammates’
situation in addition to their own. If two or more team members need to know about
a piece of information, it is not sufficient if one knows the information perfectly
while others know nothing at all. The degree to which each team member possesses
the SA required for his or her responsibilities was defined as team SA (Endsley
1995). To develop team SA, each team member needs to understand the impact of
other team members’ task status on one’s own functions and the overall mission, as
well as how their own task status and actions impact on other team members. Based
on such comprehensions, team members should also be able to project what fellow
team members will do to plan their actions effectively (Endsley and Jones 1997).

The quality of team SA affects team communication, coordination and perfor-
mance directly or indirectly. Blickensderfer et al. (1997) found that teams that
shared expectations regarding member roles and task strategies before a radar
tracking task communicated more efficiently during the task and achieved higher
overall performance outcomes. Previous research identified several ineffective team
SA processes that should be avoided, including one member leading others off,
insufficient sharing of pertinent information, failure to prioritize the tasks and adhere
to the main goal, and relying on unreliable expectations (Bolstad and Cuevas 2010).
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There are several ways to improve team SA. From system design perspective, team
SA can be improved by tools to facilitate team communication, shared displays or
shared environments, etc.

Situation awareness has become a critical top of concern when designing a
human-machine interface. A system that improved situation awareness should
provide a proper amount of information accurately based on the user’s situation
awareness needs. For teams, one important aspect of the interface design is to
facilitate information-sharing among team members. Efforts had been made to
improve team situation awareness using team displays for command and control
teams, forest fire fighting teams, teams in operating rooms as well as in workspace
(Biehl et al. 2007; Bolstad and Endsley 1999, 2000; Parush et al. 2011; Parush
and Ma 2012). A team display used in forest fire fighting scenario improved
situation awareness and performance, particularly when there was a communication
breakdown (Parush and Ma 2012). However, it was also found that the use of an
abstracted shared display enhanced team performance, while the use of shared
displays that completely duplicated the other team members displays decreased
performance and increased workload (Bolstad and Endsley 2000). Despite the
potential benefits, a team display aiming to enhance team situation awareness should
be carefully designed to avoid an overly complex interface.

9.2.3 Communication

Communication, an important coordination mechanism, influences the share of
information among team members. Communication relates to building an accurate
understanding of team members’ needs, responsibilities, and expected actions
(Macmillan et al. 2004), which allows them to anticipate one another’s needs so that
team members can coordinate effectively (Stout et al. 1999). If the team members
don’t communicate sufficiently, they may not develop a clear understanding of the
situation, which may result in delayed actions, errors, and a suboptimal distribution
of team resources.

On the other hand, communication takes time and carries a coordination cost.
It can represent a type of process loss, which means team performance could be
lower than the combination of individual performance due to the extra work on
team coordination (Steiner 1972). Research has investigated the negative effects
of communication in terms of increased workload and decreased performance. In
a team of six persons performing a joint task force mission of air-based and sea-
based operations, it was found that a lower need for coordination and a lower
communication rate were associated with better performance (Macmillan et al.
2004). In another study, excessive word usage was found to have a negative
association with team performance (McKendrick et al. 2013).

The appropriate amount of communication is impacted by factors such as task
characteristics, team structure, level of workload, etc. (Bowers et al. 1996; Oser
et al. 1991). In general, an ideal balance is to communicate enough to exchange the
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required information without too much increase on coordination overhead. In order
to reduce coordination overhead, a strategy teams often use under high workload
is to switch from explicit communication to implicit coordination (Orasanu 1990;
Stout et al. 1996). Instead of communicating explicitly to control teammates, such
as proposing actions, prompting or requesting information (Entin and Serfaty 1999),
implicit coordination is adopted. Some effective implicit coordination strategies
include periodic situation assessment, offering information without explicit request,
and providing information to indirectly guide teammates’ actions are some effective
implicit communicate strategies (Entin and Serfaty 1999; Orasanu 1990; Shah and
Breazeal 2010; Stout et al. 1996).

9.3 Experiment 1: Team Structure and Robustness

As discussed previously, different team structures have advantages depending on
the nature of the task and environment. Human-agent teams often work under
uncertainty. One major source of uncertainty is task load. The arrival time and types
of tasks are often unpredictable that balancing the tasks and workload among team
members can significantly affect outcomes. In Experiment 1, we investigated the
communication and coordination process and performance of human-agent teams
with different team structures and under different levels of task load uncertainly.

9.3.1 Testbed

The software testbed for our study is Team Research Environment for Supervisory
Control of Heterogeneous Unmanned Vehicles (TRESCHU), a video game-like
simulation of unmanned vehicle control by a team of three operators. The simulation
included three ground control stations, with one operator assigned to each station
controlling three vehicles. The three operators were referred to as Alpha (A),
Bravo (B), and Charlie (C). The scenario was search and rescue operation in
which operators must identify contacts as either friendly or threats, and respond
to them appropriately—friendlies must be dropped aid packages, and threats must
be neutralized.

Each mission scenario required a team of operators and autonomous vehicles
to handle contacts that appeared intermittently over the map. There were three
ground control stations, with one operator assigned to each station controlling three
vehicles. New contacts appeared on the map as Unknowns. Operators were required
to send a scouting vehicle to identify the unknown as either Friendly or Threat,
after which they could assign a rescue vehicle or a tactical vehicle to respond. Once
assigned, the vehicle would autonomously travel to that particular contact location
on the map in a straight line and would continue until either the vehicle reached its
assigned destination or the operator re-assigned the vehicle elsewhere.
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Once a vehicle arrived at a contact, the operator performed one of three tasks
that depended on the vehicle and contact type: scout, rescue, or tactical. All three
tasks involved a birds-eye view of the terrain. In the scout task, there were two items
of interest presented in the upper left corner of the screen. The operator’s task was
to select the one item that appears somewhere in the overview map. The rescue
task involved controlling the position and movement of crosshairs and dropping aid
packages to friendly contacts on the ground. The crosshairs were relatively steady
but the projectiles were falling slowly and susceptible to the wind. The tactical task
required the operator to center the crosshairs over a stationary threat on the ground
and to neutralize it.

The scout task required visual search ability. The rescue and tactical tasks
required hand-eye coordination. These three tasks had different levels of difficulty.
Rescue tasks were the hardest and took the longest time. Scouting tasks were the
easiest and took the shortest time.

Because of the need to first identify the contact before completing one of the
other two tasks, two vehicles were required to complete each scenario, one for
scouting and one for the rescue or tactical task. The rescue or tactical vehicle could
be assigned before or after the scouting task. The timeline for processing a task is
shown in Fig. 9.1. The time between the appearance of an unknown contact and
the time it was neutralized or aided was called objective completion time. Team
performance was measured by averaging the objective completion time (referred to
as AOCT later) of all contacts during the mission.

The interface contained four parts: a Map, a Chat Panel, a System Panel and
a Monitor Other Vehicles Button (Fig. 9.2). The Map represents the geographical
area that the operators were responsible for, the three vehicles under their control,

Fig. 9.1 Task workflow
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Fig. 9.2 Team research environment for supervisory control of heterogeneous unmanned vehicles
(TRESCHU) interface

and all the contacts that need to be handled by the team. TRESCHU has three
kinds of contacts (Unknown, Friendly, Threat) and three corresponding vehicles
(Scout, Tactical, Rescue). Types of vehicles were differentiated by color, and types
of contacts were differentiated by both color and shape. The operators were able to
communicate with each other via instant messaging in a chat interface window.

Operators typed messages into the chat, which would then appear on all the other
operators’ chat panels instantly. Chat messages were labeled with the operators
unique IDs, which corresponded to the labels for each operator’s vehicle icons.
The System Panel would occasionally send messages to a particular operator, such
as a confirmation message that the operator had assigned a particular vehicle to
travel to a particular location. It also sent the operator an error message when he
or she attempted to claim or engage a vehicle already claimed or engaged by other
operators. Operators were unable to see the location of other operators’ vehicles
unless they explicitly commanded the interface to do so with the Monitor Other
Vehicles button.

9.3.2 Experiment Design

A 2� 2 mixed design experiment was conducted where the independent variables
were team structure (divisional, functional) and the inter-arrival time of unidentified
contacts (constant, erratic). The two conditions of inter-arrival time were designed
to simulate different uncertainty levels in task load for human-agent teams. The
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time between successive exogenous events (the inter-arrival time) was 30 s for the
constant treatment. For the erratic factor level, the inter-arrival times were generated
from a bimodal distribution where the means of the modes were set at 75 and 225 s
from the start of the trial, with a standard deviation of 15 s. We use this instead
of a more random arrival process (e.g. passion arrival process) to generate two
peak times. Ten teams of three participants each completed all four treatments.
The experimental trials had a total of 16 exogenous events (unidentified contacts
emerging).

The second independent variable was team structure. A functional team was one
where the operators have rigidly defined roles and responsibilities. For instance,
when all of the vehicles of one type were assigned to one and only one operator,
then that operator was given the full responsibility for performing the tasks that only
that vehicle can do. This formed sequential dependency in which team members
performing tasks in the later steps had to wait until the tasks in the earlier step were
completed. If one of each vehicle type was allocated to a single operator instead,
then that team structure would be considered divisional since any operator can
perform any task that arises, provided that he or she had an appropriate vehicle
available. This formed pooled dependency in which independent works of team
members were combined to represent team output (Thompson 1967).

9.3.3 Results

Thirty participants participated in the experiment and were tested in groups of three.
They went through the four combinations of independent variables in randomized
sequence with each session lasted about 15 min. The initial experiment results
showed that functional teams performed significantly better than divisional teams
(F (1, 24)D 1.484, p < 0.01), as shown in Fig. 9.3. The interaction effect was
also significant with functional teams performed better with constant arrival, while
divisional teams performing better with erratic arrival (F (1, 24)D 10.47, pD 0.04)
(Mekdeci and Cummings 2009). Although divisional teams showed their robustness
against the uncertainty of task arrival, their performance was not as good as desired,
especially under the constant arrival process. In this effort, we further investigated
the teamwork process to identify several reasons for the poor performance: dupli-
cated work, underutilization of vehicles, and infrequent communication.

9.3.3.1 Duplicated Work

Further analysis on teamwork process shows that teams that had worse performance
also tended to have poor team coordination. One example of such poor coordination
occurred in divisional teams, where we observed duplicated vehicle assignments.
We analyzed who assigned vehicles to each contact after it appeared and later after
it was identified. In Fig. 9.4, each column represents each contact. Each square
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Fig. 9.4 Vehicles assigned to each task by operators

in a column represents a vehicle assigned to this contact. Green, blue and red
corresponding to operator 1, 2 and 3. We can see that often multiple operators
assigned identification vehicles to the same contact before the contact was identified.
Similarly, there were several times that multiple operators assigned vehicles to the
same contact after it was identified. This resulted in a waste of resources.

This required conflict resolution within the team by explicit communication,
which cost time. In the communication transcript, we observed messages such as
these:

Bravo: B 1 (Meaning Bravo is taking contact 1).
Alpha: A 1 (Meaning Alpha is taking contact 1).
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Charlie: Let B take it—he’s closer, A you take 2.
Alpha: Redirecting to 2.

We can see that both Bravo and Alpha wanted to work on contact 1. This conflict
was resolved via communication as Charlie asked Bravo to work on contact 1 and
Alpha on contact 2. Note that there was no explicit assignment for a team leader.
Leadership emerged organically within the team. Communication was necessary
in this case but cost extra time. If the conflict was not resolved, it may have
happened that some tasks would have multiple operators working on them while
others were ignored. This kind of duplication was quantitatively analyzed based
on vehicle assignment conflicts and task engaging conflicts. Vehicle assignment
conflicts happened when two vehicles were assigned to the same contact. A Mann-
Whitney test shows that team structure had a significant effect on the number of
vehicle assignment conflicts (Chi-sqD 4.89, dfD 1, pD 0.027) with more conflicts
in Divisional teams (MeanD 16.65, SDD 6.38) and less conflicts in Functional
teams (MeanD 9.75, SDD 11.36). Task engagement conflicts happened when two
operators tried to engage the same contact to perform payload tasks. Similarly,
team structure had a significant effect (Chi-sqD 23.92, dfD 1, p < 0.001) with more
conflicts in Divisional teams (MeanD 3.40, SDD 2.80) and zero conflicts in all
Functional teams.

9.3.3.2 Under Utilization of Vehicles

A second reason for the poor performance of divisional teams was the under-
utilization of the vehicles. Figure 9.5 shows the working process of a divisional team
with constant task arrival. Each column is the timeline of one emergent contact from
its appearance until it was neutralized or provided aid packets. Green is for vehicle
travel time, yellow is for identification time, red is for time to neutralize the contact,
and blue is for the time to complete rescue task. Dark grey is for assignment waiting
time, during which the contact was waiting to be assigned a vehicle.

The dark grey periods in Fig. 9.5 are nonproductive time, which happened a lot
for this team. Contacts are numbered, with a letter T added after the identification
for threats or F for friendly. For example, 1 is an unidentified contact. It is updated
as 1 T if identified as a threat or 1 F if friendly. The longest idle time was highlighted
by the black box in Fig. 9.5. We looked at the log of communication and the
actions of operators during this time, which are summarized in Table 9.1. Operator
Alpha assigned a vehicle to an unknown contact 4, and later to a threat contact
0T and a friendly contact 3F. All three vehicles operated by Alpha were busy. He
also reported his actions to his teammates via chat messages. Operator Bravo was
working on threat contact 2T. After that, he worked on another threat contact 4T,
and later assigned a vehicle to an unknown contact 7. Only one vehicle controlled by
Bravo was busy at one time. Operator Charlie assigned vehicles to several contacts
(4, 3F, 4T, and 0T) after he finished identifying unknown contact 3. However, all of
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Fig. 9.5 Timeline of task completion in a divisional team

Table 9.1 Coordination and vehicle utilization

Time flow Alpha Bravo Charlie

Start Assigned to 4 Arriving at 2T Identifying 3
Process “ok, I will get 4 too.” “and 3F” “alpha, you take 0T” Assigned to 4, 3F, 4T, 0T

Assigned to 0T Destroy 2T “who got 0F”
Assigned to 3F “i got 4T” Assigned to 1F

Assigned to 7
Result: #Idle 0 2 3

these contacts had already been claimed by the other two team members. Operator
Charlie then asked about task allocation and assigned a vehicle to contact 1F. During
this time, none of the vehicles operated by him were busy and none of them were
assigned to contact 5. From these we can see the vehicles were not used to their full
capacity. While there were enough idle vehicles, some tasks had no vehicle assigned
to them.

9.3.3.3 Infrequent Communication

We found that chat density had an influence on the task assignment waiting time,
which is the nonproductive time between the appearance of a contact and the time it
was assigned a vehicle. We conducted a partial correlation analysis for Average
Objective Completion Time (AOCT), average assignment waiting time, and the
number of chat messages. Team structure, arrival process, and trial sequence were
controlled in order to separate the influence of communication. Although chat
density did not have a significant correlation with the overall objective completion
time, it negatively correlated with average assignment waiting time with rD�0.427,
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pD 0.009. Average assignment waiting time correlated with AOCT with rD 0.392,
pD 0.016. In other words, communication indirectly influenced team performance
by reducing the nonproductive time. Thus teams that communicated infrequently
likely led to poorer performance.

In this study, divisional teams were designed to create working units with a
higher level of autonomy. They showed robustness against uncertainly but poorer
performance overall. Three reasons related to team coordination were identified for
the poor performance, namely duplicated work, underutilization of resources and
infrequent communication.

9.4 Experiment 2: Information-Sharing

Working as a team on time-constrained tasks in an uncertain environment brings
many challenges. To achieve high performance, team situation awareness, commu-
nication and coordination are critical. It is important that team members understand
what their teammates are doing and get the required information in a timely
manner. While explicit communication can be time consuming, supporting implicit
information-sharing via the user interface could be more effective and efficient.

These considerations motivated a second experiment. Based on the three reasons
identified for the poor performance in divisional teams in Experiment 1, we
conducted Experiment 2 to study how teams can be structured and supported
by technology to be both flexible and efficient. Specifically, we investigated the
effect of enhanced information-sharing tools under different uncertainty levels in
divisional teams.

9.4.1 Independent Variables

A 2� 4 repeated measures experiment was conducted. The first independent
variable was the uncertainty level, which was defined by inter-arrival time of
unidentified contacts (constant, erratic), as in Experiment 1.

The second independent variable was information-sharing condition. It was
designed to see whether team performance could be improved by enhancing team
situation awareness, implicit coordination and communication through information-
sharing. In Experiment 1, it was found that divisional teams were more robust to
uncertainty but had overall performance degradation when compared to functional
teams, due to duplication of task assignment, under-utilization of resources, and
infrequent communication. Information sharing (or lack thereof) was the source of
this discrepancy.

There are different ways to share information in teams. The most common way is
explicit communication, which is supported by chat panel in the testbed. However,
explicit communication is time consuming and poses extra workload on human
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Fig. 9.6 Icon differentiation

memory. In Experiment 1, teams with worse performance also communicated less.
Without the aid of an information-sharing feature, team members had to rely
on explicit communication, which was inhibited when the task load was high,
ultimately resulting in degraded performance. To this end, four conditions were
compared in the experiment: baseline, icon differentiation, status list, and both:

• In the baseline condition, no additional information-sharing mechanism was
provided.

• In the icon differentiation condition, contacts that had been assigned a vehicle
would change color to white and reduce in size, as shown in Fig. 9.6. We wanted
to separate the contacts that had already been claimed from others. We used
the color white because it is neutral and has enough contrast with the darker
background. We also wanted to minimize them so that team members could
devote their resources to contacts that had not yet been claimed.

• In status list condition, the IDs of contacts that had not been assigned any vehicle
were listed in a table by three categories, as shown in Fig. 9.7. The list could
be hidden by clicking the checkbox on top of the list. The status list conveyed
the same information as in icon differentiation. However, there were two major
differences in terms of visualization. Unlike using white to differentiate the
contact, people could still tell the type of contact from the icon color. However,
looking at the status list required longer eye movement and extra time in visual
search to match an ID in the list to an icon on the map.

• In the last condition, both the icon differentiation and the status list were
presented.
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Fig. 9.7 Status list

9.4.2 Dependent Variables

Dependent variables include team performance, measures of team coordination
processes, subjective workload and user preference. Team performance was mea-
sured using the Average Objective Completion Time (AOCT), as in Experiment 1.
Segments of the objective completion time, including identification time, neu-
tralizing task time, rescue task time, vehicle travel time, and assignment waiting
time, were also calculated. Measures of team coordination processes included time
spent in monitor mode, communication time, vehicle assignment conflicts, and task
engagement conflicts. Subjective workload was measured using the NASA-TLX
rating (Hart 2006). User preference was user’s ranking of the four information-
sharing conditions based on their preference.

9.4.3 Participants

A total of 81 participants, participated in the experiment. Participants were tested
in groups of three. Data from three groups were removed because the test was not
completed due to system errors. The remaining 72 participants were aged 18–28
years old, with an average of 22.3 years old and a standard deviation (SD) of
1.64. Among them, 27 were female and 45 were male. All of the participants
were undergraduate or graduate students. Participants were asked for the number
of hours they played electronic games per month on average. They also rated
their experience on visual searching games, first person shooting games, real time
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strategy games, and team games respectively on a five-point Likert scale, with high
values indicating more game experience. Self-report team game experience was
found to have a significant correlation with AOCT (rD�0.417, pD 0.042), and
average workload in the team (rD �0.494, pD 0.014). In other words, teams that
had more team game experience tended to finish the tasks faster and with lower
workload. Game experience on other categories was not significantly correlated with
either performance or the workload.

9.4.4 Procedure

Participants were tested in groups of three under a single uncertainty level: either
constant or erratic arrival process. The participants were in the same room, but
could not see other team members’ displays. The experiment began with a training
session introducing the testbed interface, tasks, and the mission goal. Participants
then practiced for a complete session under the baseline condition. After that, they
were instructed to discuss their team strategy for 5 min before beginning the four
test sessions with different information-sharing conditions. Their sequences were
randomized and counter-balanced. Before each test session, the information-sharing
feature used in this session was explained. Each trial was completed when all 16
contacts were processed. Subjective workload was measured using NASA-TLX
rating at the end of each session. Participants ranked the four conditions based on
their preference and provided comments after all the sessions were completed.

9.4.5 Results

Data logged during the experiment were post processed to obtain performance and
process data. The results were analyzed based on the four experiment sessions from
four aspects: task performance, team coordination measures, subjective workload
and user preference. Data in the training session was not included in the analysis.

9.4.5.1 Team Performance

MANOVA was used for the analysis of team performance. No multivariable outlier
was found. The assumption of homogeneity covariance matrices was satisfied across
the four information-sharing conditions (Box’s MD 72.82, dfD 63, pD 0.43), but
not across the two uncertainty levels (Box’s MD 61.8910, dfD 21, p < 0.001).
However, since all the cells had equal sample size, MANOVA was still used
because of the correlation among dependent variables. Significant differences
were found among the two uncertainty levels on the dependent variables (Pillai’s
criterionD 0.703, F (6, 22)D 6.72, p < 0.001). The combined dependent variables
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Fig. 9.8 Boxplot of average objective completion time (AOCT)

were also significantly affected by the information-sharing condition (Pillai’s
criterionD 0.66, F (18, 66)D 2.99, p < 0.001). The interaction effect between
information-sharing condition and uncertainty level was not significant.

Univariate analyses of variance (ANOVA) for each dependent variable were
conducted as follow-up tests to the MANOVA. Using the Bonferroni method
for controlling Type I error rates for multiple comparisons, an alpha level of
0.008 was used. All the time related variables were measured in seconds. For
AOCT (Fig. 9.8), information-sharing condition was found to have a signif-
icant effect (F (3, 66)D 4.35, pD 0.007). The condition in which both icon
differentiation and status list were presented resulted in the fastest objective
completion time (MeanD 242.03, SDD 56.97), followed by status list condition
(MeanD 262.20, SDD 62.80), icon differentiation (MeanD 277.38, SDD 48.03)
and baseline (MeanD 292.01, SDD 59.02). The main effect of uncertainty level
and the interaction effect on AOCT were not significant.

Uncertainty level and the information-sharing condition did not have signif-
icant impacts on the time to complete payload tasks (identification, rescuing
or neutralization), and the assignment waiting time. Total vehicle travel time
(Fig. 9.9), which was sum of the time between when a vehicle was assigned
to a contact to the time this vehicle arrived, was not significantly affected by
uncertainly level. The information-sharing condition had a significant effect on
travel time (F (3, 66)D 6.10, p < 0.001). The condition with both the status list
and icon differentiation had the shortest travel time (MeanD 39.83, SDD 6.63),
followed by status list condition (MeanD 42.29, SDD 9.74), icon differentiation
(MeanD 47.30, SDD 9.97) and baseline (MeanD 47.75, SDD 7.22). Since the
speed of the vehicles were preset by the system, a decrease on travel time means less
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Fig. 9.9 Boxplot of vehicle travel time

distance travelled. The reason was the better coordination enabled by information-
sharing tools, which either reduced chances that two vehicles travelled to the same
contact or matched the contacts with vehicles better based on the distances between
them.

9.4.5.2 Team Coordination

Team coordination was measured from four aspects: time spent in monitor mode,
communication time, vehicle assignment conflicts, and task engagement conflicts.
A significance level of 0.05 was used.

For total time spent in monitor mode (Fig. 9.10), uncertainty level (F (1, 22)D
4.57, pD 0.044) and information-sharing condition (F (3, 66)D 3.25, pD 0.027)
both had significant effects. Teams with erratic arrival process spent longer time
(MeanD 260.71, SDD 97.71) in monitor mode than those with constant arrival
process (MeanD 201.17, SDD 74.01). Information-sharing tools reduced the time
participants spent in monitor mode. The condition in which both icon differ-
entiation and status list were presented resulted in the shortest time spent in
monitor mode (MeanD 206.04, SDD 89.44), followed by status list condition
(MeanD 225.25, SDD 102.11), icon differentiation (MeanD 231.58, SDD 89.42)
and baseline (MeanD 260.88, SDD 79.79). This was because the information-
sharing tools facilitated task assignment and team coordination. Because of the
decision-aiding tools, participants could observe the status of contacts more directly
from the interface instead of using the monitor mode to figure it out.
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Fig. 9.10 Time spent in monitor mode

Similarly, the information-sharing condition had a significant effect on the
amount of communication, as measured by the number of chat messages (Friedman
chi-squaredD 23.005, dfD 3, p < 0.001). When there was no information-sharing
tool, team members had to communicate more for task assignment and coordination
(MeanD 13.75, SDD 12.42). When information-sharing tools were presented, the
need for explicit communication was reduced. The average number of chat messages
was 5.79 (SDD 6.83) with icon differentiation, 5.21 (SDD 5.44) with status list,
and 5.00 (SDD 5.18) when both were presented. Arrival process did not impact the
amount of communication significantly.

Content of the communication was coded and categorized into five categories:
leadership, information prompt, information request, strategy, and other. Leadership
contains requests for another team member to work on a certain contact or area, as
well as the confirmation and denial of these requests. Information prompt includes
reporting the area or contact one is working on, reporting the places one is going to,
and negotiation in case of conflicts. Information request includes asking if there
is a team member working on a certain contact and who the team member is.
Strategy contains discussion on general strategies, such as which area each team
member should be responsible for. All the other communications were included
in the last category. These are usually not related to the working process, such
as open comments and summary about the mission at the end of trials. For each
category, number of chat messages was summed across different teams within each
information-sharing condition. As shown in Fig. 9.11, while the baseline condition
had the most communication for all categories, its difference with other conditions
was the largest for information prompt. In other words, information-sharing tools
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reduced communication amount mostly by reducing need to report ones’ intentions
and actions. The presentation of the information-sharing tools was counterbalanced
so the impact from any learning effect was limited.

Vehicle assignment conflicts (Fig. 9.12) and task engagement conflicts (Fig. 9.13)
reflected the result of team coordination more directly. As shown in Study 1, dupli-
cated work was identified as one reason that contributed to the poor performance of
divisional teams. In this study, we found that information-sharing tools significantly
affected both vehicle assignment conflicts (Friedman chi-squaredD 51.859, dfD 3,
p < 0.001) and task engagement conflicts (Friedman chi-squaredD 13.268, dfD 3,
pD 0.004). In other words, information-sharing tools reduced duplicated work in
teams, making the teamwork more efficient. Among the four information-sharing
conditions, icon differentiation and the one with both icon differentiation and
status list presented had the least number of conflicts. Status list did not result in
much improvement comparing to baseline condition. Uncertainty level also had a
significant impact on vehicle assignment conflicts (WD 734.5, pD 0.002) and task
engagement conflicts (WD 862, pD 0.032). Erratic arrival process resulted in more
conflicts compared to constant arrival process.

Participants could choose to hide the status list by clicking the check box on its
top. We calculated the time that the status lists were hidden for the two conditions
when status list was presented. On average, teams chose to hide the status list for
20 % of the total mission time (SDD 20.05). The list-hidden time and the total time
in monitor mode were positively correlated (rD 0.38, pD 0.007). In other words,
participants that chose to hide the status list spent more time in monitor mode as
compensation.
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9.4.5.3 Workload

Subjective workload was rated on a scale from zero to one hundred using the
NASA-TLX rating. Information-sharing condition was found to have a significant
effect on average subjective workload in teams (F (3, 210)D 3.57, pD 0.015). The
condition in which both icon differentiation and status list were presented resulted in
the lowest workload (MeanD 45.87, SDD 12.74), followed by status list condition
(MeanD 47.45, SDD 12.08), icon differentiation (MeanD 47.78, SDD 12.42) and
baseline (MeanD 49.76, SDD 12.36). The main effects of uncertainty level and the
interaction effect were not significant (Fig. 9.14).



9 Designing for Robust and Effective Teamwork in Human-Agent Teams 187

42

45

48

51

None Icon List Both
Information-sharing Condition

W
or

kl
oa

d Uncertainty Level

Constant

Erratic

Fig. 9.14 Subjective workload

9.4.5.4 User Preference and Comments

Participants’ ranking of the four information-sharing conditions were analyzed
using Kruskal-Wallis test. There was a significant difference among the four
conditions (Chi-sqD 62.05, dfD 3, p < 0.001). Icon differentiation and the one with
both icon differentiation and status list ranked equally as the top choices, followed
by status list, and the baseline condition, which required the participants to use the
monitor mode button.

Participants commented that the baseline condition was not convenient, difficult
for coordination, easy to have task assignment conflicts, and required extra com-
munication. On the positive aspect, some participants thought this condition was
the most interesting because it was challenging. The interface was clearer with no
distractions. For icon differentiation, they commented that it was easy to observe
which contact has been claimed and assign tasks accordingly. However, it was
difficult to determine the type of contacts with the change of color. For the status
list, the information was also useful for team coordination, but was less easy to
interpret than the icon differentiation. It was most useful for detecting new contacts
or checking whether some contacts had been forgotten. The negative side was that it
blocked part of the map, although it could be closed. When both icon differentiation
and status list were presented, besides the advantages and disadvantages of each
tool, some participants felt the information provided in these two could compensate
for each other. On the other hand, the interface was more complex and had more
distractions. These comments could be used to further improve the design of
information-sharing tools.
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9.5 Discussion

In Experiments 1 and 2, the ranges of AOCT were different. Overall, participants
spent longer time to finish the tasks in Experiment 2 as compared to Experiment 1.
This is likely attributed to the difference on screen resolutions used in the two exper-
iments and participants’ operating skills. In Experiment 2, the screen resolution was
1024� 768 compared to 1270� 960 in Experiment 1. As a result, part of the map
could not be shown on the display. Participants had to move the map in the main
interface and images for payload tasks to view different parts of them. In Experiment
1, identification time was 12.55 s (SDD 4.29 s) comparing to 16.91 s (SDD 4.88 s)
in Experiment 2. In Experiment 1, neutralization time was 13.90 s (SDD 6.11 s)
comparing to 23.48 s (SDD 7.62 s) in Experiment 2. Rescuing time was 34.74 s
(SDD 14.60 s) in Experiment 1 comparing to 52.88 s (SDD 17.43 s) in Experiment
2. Although a direct comparison between the two experiments was not possible in
terms of the visual task, the increase of the overall objective completion time should
not affect the assessment on the effectiveness of information-sharing tools.

In Experiment 1, we found that teams communicating infrequently had worse
performance. In Experiment 2, teams that performed better with information-
sharing tools also had less communication. This is because the information-sharing
tools served as an implicit communication channel. With these tools, information
on contact status and task assignment could be retrieved directly from the inter-
face, reducing the need for time-consuming explicit communication. When such
tools were not available, infrequent communication could not provide sufficient
information for team coordination, resulting in duplication on task assignment and
suboptimal use of team resources.

9.6 Conclusion

In this study, we conducted two experiments to investigate the impact of team struc-
ture, uncertainty on task load, and information-sharing tools on team coordination
and team performance. In Experiment 1, it was found that divisional teams were
more robust against the uncertainty for task arrival processes in terms of team perfor-
mance. However, this robustness was achieved with an overall worse performance
as compared to functional teams. Three reasons for the poor performance were
identified, namely duplication on task assignment, under utilization of vehicles, and
infrequent communication. In an effort to achieve robust and effective teamwork, the
usage of information-sharing tools was explored in Experiment 2. It was found that
information-sharing tools reduced the duplication on task assignments, improved
overall task performance, and reduced workload in divisional teams.

The conclusions of this study could be useful for the design of human-agent
team structure and the development of tools to support teamwork. Consistent with
previous research, divisional teams were better able to cope with uncertainty. This
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reflects on their robustness against different task arrival process. However, divisional
teams could have worse performance if the responsibilities of team members are
not clear and the communication is not efficient. By providing information-sharing
tools for divisional teams, their performance could be improved by reducing the
chances of duplicated work and improving coordination, achieving effective and
robust teamwork.

The four information-sharing methods resulted in performance improvement at
different levels. All reduced the average time required to complete a task and the
workload of operators. The best result was achieved when both a status list and icon
differentiation were presented. Although we intended to design the two mechanisms
to convey the same information, experimental results showed that they actually
compensated for each other. People use these two mechanisms in different ways.
Icon differentiation was more effective when people wanted to decide whether to
work on a specific task. The status list was more effective when people wanted
to get an idea of overall progress and strategically allocate tasks among team
members. The specific interface design used in this study was not optimized, which
could be improved using further usability studies. The key message is that by
facilitating information-sharing among team members, the advantage on flexibility
and robustness of divisional teams can be maintained while the disadvantages in
terms of coordination cost can be limited.
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Chapter 10
Measuring Trust in Human Robot Interactions:
Development of the “Trust Perception
Scale-HRI”

Kristin E. Schaefer

10.1 Introduction

Robotics technology has vastly advanced in recent years leading to improved
functional capability, robust intelligence, and autonomy of the system. However,
along with the added benefits of these technical advancements also come changes
in the way in which humans will use or interact with the system. The most prevalent
change can be seen in the vision for robot design and development for future human-
robot interaction (HRI). This vision is now directed toward a greater prevalence of
robotic technologies in context-driven tasks that require social-based interaction.
More specifically, robots are beginning to shed their more passive tool-based roles
and move more towards being an active integrated team member (Chen and Terrence
2009). The intricacies of HRI are bound to change in order to accommodate the
integration of a robot as it becomes more of a companion, friend, or teammate,
rather than strictly a machine. Thus, this change in direction has a direct translation
of the human role as less of an operator and more of a team member or even a
bystander. Thereby, the individual’s trust in that robot takes a prominent role in the
success of any interaction, including the future use of said robot.

This chapter works in conjunction with the rest of the book such that the prevalent
focus is on the intersection of robust intelligence (RI) and trust in robotic systems.
Therefore, to reduce redundancy, we will limit the background to point to the
difficulties relating to trust development and the potential issues that occur when
trust is not developed appropriately. First, it is important to note that there are a
number of factors that influence trust development. Large scale literature reviews
of both HRI and human-automation interaction point to the importance of trust
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antecedents relating to the human, the robot, and the environment (Hancock et al.
2011; Schaefer et al. 2014). The key findings from the associated meta-analyses
point to the fact there is still much to learn about how trust develops. However,
what is prevalent in the literature is the finding that until trust between a human
and a robot is solidly established, robotic partners will continue to be underutilized
or unused, therefore providing little to no opportunity for trust to develop in the
first place (Lussier et al. 2007). This is in part due to the fact that one of the
most significant challenges for successful collaboration between humans and robots
is the development of appropriate levels of mutual trust in robots (Desai et al.
2009; Groom and Nass 2007). So, regardless of the domain of application, the
environment, or the task, a human’s trust in their non-human collaborator is an
essential element required to ensure that any functional relationship will ultimately
be effective.

Research has continued to address the creation and validation of successful
evaluation methods for a wide spectrum of HRI issues, including this issue of
human-robot trust (Steinfeld et al. 2006). Yet, a limitation in the field has been
related to accurate measurement of trust specific to the unique nature of HRI.
Human-robot trust is currently measured through subjective assessment. However,
these previous studies have been limited by using measurement tools that are
a single self-report item (e.g., How much do you trust this robot?) or are an
adapted human-interpersonal or human-automation trust scale. The concern with
this methodology is that neither of those options truly assesses the full scope
of human-robot trust, and brings to question the accuracy of the trust scores.
There has been one notable exception: Yagoda and Gillan (2012) developed a
subjective human-robot trust scale that is specific to military application. However,
the changing vision of HRI continues to press the inclusion of robotic technologies
into multiple contextual domains that incorporate varying levels of autonomy,
intelligence, and interaction. This calls forth the need for the development of
additional trust measurement tools specific to the changing HRI environment.

This chapter summarizes research that was conducted to produce a reliable and
validated subjective measure: the Trust Perception Scale-HRI (see also Schaefer
2013). The goal of this research was to design a subjective tool specific to the
measurement of human-robot trust that could be expressed as an overall percentage
of trust. In addition, this scale was designed to effectively measure trust perceptions
over time, across robotic domains, by individuals in all the major roles of HRI
(operator, supervisor, mechanic, peer, or bystander, as defined by Scholtz 2003),
and across various levels of system autonomy and intelligence (see also Beer et al.
2014). To ensure that this new scale was valid, each part of scale development was
constructed using the widely-accepted procedures discussed in DeVellis (2003) and
Fink (2009). These procedures followed the protocol of large item pool creation,
statistical item pool reduction, content validity assessment, and task-based validity
testing.



10 Measuring Trust in Human Robot Interactions. . . 193

10.2 Creation of an Item Pool

The first step in creating the Trust Perception Scale-HRI was to create an Item
Pool. An Item Pool is a collection of relevant phrases or items that are associated
with trust development. To meet this end, over 700 articles in the areas of human-
robot trust, human-automation trust, and human-interpersonal trust were reviewed
and analyzed. Theoretical, qualitative, and quantitative relationships were recorded.
Potential items were then organized in relation to the Three Factor Model of Human-
Robot Trust (Hancock et al. 2011). This model was then updated to incorporate
potential antecedents of trust (see Fig. 10.1). Specific items to be included in the
initial Item Pool were first drawn from these large scale literature reviews.

One major trust-specific finding from these reviews was the importance of
design as it related to the robot’s physical form and functional capability. While
some research had focused on the functional capabilities, limited experimental
study had been conducted specifically related to the impact of robot form on trust
development. Therefore, two initial experiments were conducted to assess this gap
in the literature and further develop the initial Item Pool.

The purpose of the first study was to determine the relationship between physical
form and trustworthiness, devoid of any direct information regarding the functional
capabilities of the system. One hundred sixty-one participants rated 63 images of
real-world industry, military, medical, service, social, entertainment, and therapy
robots. These ratings included the degree to which the robot was perceived to be a
machine, a robot, and an object, as well as its perceived intelligence (PI), level of

Fig. 10.1 Updated Three Factor Model of Human-Robot Trust following an extend literature
review of trust in the interpersonal, automation, and robot domains
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automation (LOA), trustworthiness, and the degree to which the participant would
be likely to use or interact with the robot.

A multiple regression correlation analysis with stepwise entry of variables
was conducted to determine the factors that predicted trustworthiness from per-
ceived robot form alone. This was achieved by regressing trustworthiness onto
human-related factors (gender, race, age, year in school), personality traits (agree-
ableness, extroversion, conscientiousness, intellect, neuroticism), negative attitudes
toward robots (negative attitudes toward emotions in interactions, negative social
influence, and negative situational influence), as well as self-report items of
robot form (perceived intelligence, perceived level of automation (LOA), robot
classification). The final model included perceived intelligence (PI), robot classi-
fication (RC), and negative social influence (SI) as predictors of trustworthiness,
ŶD 0.825C 0.651(PI)C 0.256(RC)� 0.164(SI). It accounted for a significant R2

of 45.1 % of the variance, F(3156)D 42.70, p < 0.001.
These results suggested that preconceived ideas regarding the level of intelli-

gence of a robot are form-dependent and assessed prior to interaction, in much the
same way as one individual will assess another individual as a potential teammate.
Further, negative social influence (e.g., capabilities, functions, etc.) plays a key
role in expectation-setting similar to stereotypes of human teammates. Overall,
the results of the above-mentioned study provided support that physical form is
important to the trust that develops prior to HRI (for additional findings see also
Schaefer et al. 2012).

The follow-up study was designed to identify which perceived robot attributes
could impact the trustworthiness ratings. Robot attributes were assessed through
a subset of the Godspeed questionnaire (Bartneck et al. 2009), a standardized
measurement tool for HRI for interactive robots, specifically looking at items related
to anthropomorphism (Powers et al. 2007), animacy (Lee et al. 2005), likeability
(Monahan 1998), and perceived intelligence (Warner and Sugarman 1996). Over
200 participants rated a subset of the previous study’s stimuli (two that were
previously rated low on the robot classification scale, two that were rated high on the
robot classification scale, and 14 that had diverse ratings on the robot classification
scale). As anticipated, there was a significant relationship between how individuals
rated the robot image on the robot classification scale and their perceived level of
trustworthiness in the robot, r(2910)D 0.307, p < 0.001. The higher the rating of
a robot to actually be classified as a robot, the more likely it was to be rated as
trustworthy. The main purpose of this study was to determine if specific attributes
could be identified to account for this relationship. Overall, results showed that each
robot had different attributes that were important to classification. Therefore, it was
decided to include all attribute items in the initial Item Pool.

Following the literature review and the two studies mentioned above, a full
review of previously developed and referenced trust scales in the robot, automation,
and interpersonal domains were reviewed to refine the items. This resulted in a
review of 51 new scales (with a total of 487 trust items), 22 adapted versions
of previously developed scales, and 13 previously developed scales (see also
Table 10.1).
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Table 10.1 Number of trust scales and trust items reviewed

Number of trust scales assessed Robot Automation Interpersonal

Created new scales 9 30 12
Minimum number of items 1 1 1
Maximum number of items 45 31 29
Adapted previous scales 5 14 3
Previously developed scales 2 9 2
Scale were not discussed 2 11 4

Strongly 
Disagree Disagree Slightly 

Disagree Neutral Slightly 
Agree Agree Strongly 

Agree

Most robots make 
poor teammates. O O O O O O O

Most robots possess 
adequate decision-
making capability.

O O O O O O O

Most robots are 
pleasant towards 
people.

O O O O O O O

Most robots are 
not precise in 
their actions.

O O O O O O O

Fig. 10.2 Example items included in the initial Item Pool

The final Item Pool resulted in the creation of 156 initial items. Between two and
four items were created for each antecedent, representing equal number of positively
and negatively worded (or opposite related) items. Initial scale items were written
out as full sentences and referred to a general statement regarding “most robots” on
a 7-point Likert-type scale (see Fig. 10.2).

10.3 Initial Item Pool Reduction

The second step in the scale development procedure was to reduce the size of
the initial Item Pool using statistical procedures. These procedures began with a
Principal Component Analysis (PCA) to identify potential groupings of items, as
well as items that were not included in the groupings. Secondary analysis was
conducted using paired samples t-tests to determine if the positively and negatively
worded items were equal and thus could be reduced from the initial Item Pool.
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10.3.1 Experimental Method

One hundred fifty-nine undergraduate students (65 males, 94 females) from the
University of Central Florida took part in this study via online participation
(SurveyMonkey.com). Following informed consent, participants completed the 156
randomized initial trust items. Participants then completed the demographics ques-
tionnaire that included gender, age, a mental model question, and prior experience
questions. The study took approximately 30 min to complete. Participants’ prior
experience with robots was assessed to understand previous exposure to robotic
technologies. Prior experience has been shown to be related to how an individual
forms a mental model of the robot and anticipates future HRI. As expected,
the sample population had prior exposure to media representations (ND 156);
some minor interaction with real-world robots (ND 36); and some opportunity to
control (ND 34) or build (ND 11) a real-world robot during school or club related
requirements. Table 10.2 presents results of these questions.

To assess the participants’ mental model of a robot, they were asked to describe
what a robot looks like with an open-ended question. Mental models refer to
structured, organized knowledge that humans possess which describe, explain, and
predict a system’s purpose, form, function, or state (Rouse and Morris 1986).
The responses were coded into categories (see Table 10.3). Seventeen participants
directly referenced specific robots from movies or television (e.g., R2D2, C-3P0,
iRobot, AI, and Terminator; ND 14); the video game Mass Effect 3 (ND 1); real-
world military robots (e.g., Predator, ND 2); and a robotic arm (ND 2).

Table 10.2 Participants prior experience with robots

Prior experience questions Yes (%) No (%)

Have you ever watched a movie or television show that includes robots? 98 2
• 1–5 shows (N D 87)
• 6–10 shows (N D 31)
• Over 10 shows (N D 18)

Have you ever interacted with a robot? 23 77
• Museum or theme park animatronics (N D 5)
• Toys such as Furby (N D 8)
• Robot vacuum (N D 2)
• Classroom robots or Battlebots (N D 8)
• Everyday items such as cell phone, computer, ATM, or Xbox (N D 12)
• Unclassified (N D 1)

Have you ever built a robot? 7 93
• Classroom or robotics club robots

Have you ever controlled a robot? 21 79
• Teleoperation or remote control (N D 21)
• Speech, Gesture, Commands (N D 3)
• Computer programmed (N D 6)
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Table 10.3 Coding categories of mental model of a robot

Coding description N %

Machine-like (machine, metallic, silver) 121 76:1

Human-like (human-like or specific human features) 49 30:8

Varied (multiple descriptions or ranges of robots) 28 17:6

Tool 4 2:5

Task, Function, or Interaction 30 18:9

Internal Form: Computer, electronics, wires, buttons 25 15:7

External Form: shape, size, rigid, durable 34 21:4

Capabilities: movement 33 20:8

Communication: language 7 4:4

Other (helpful, intelligent, cameras, robot, alien) 7 4:4

10.3.2 Experimental Results

All data were analyzed using IBM SPSS v.19 (SPSS 2010), with an alpha level set
to 0.05, unless otherwise indicated. These findings were important as they provided
potential cause as to whether to retain or reject specific items from the initial Item
Pool.

PCA was performed on the 156 initial trust items. Extraction was used
to identify 43 components (using the Kaiser Criterion of Eigenvalue >1 for
truncation), accounting for 79.63 % of the variance. Following review of the
scree plot, four components were retained. The un-rotated solution was subject
to orthogonal varimax rotation suppressed below j0.30j. In the rotated model, the
four components accounted for 30.64 % of the variance. In looking at the loadings
in the Rotated Component Matrix, 22 items with high loadings (>0.60) were
located in Component 1. Based on the loadings of trust items on each of the four
components, interpretations can be made about the factors themselves. Component
1 seemed to represent performance-based functional capabilities of the robot.
Component 2 seemed to represent robot behaviors and communication. Component
3 may represent task or mission specific items. Finally, Component 4 seemed to
represent feature-based descriptors of robots. These components supported the
theory addressed by the descriptive Three Factor Model of Human-Robot Trust
(first described by Hancock et al. 2011). Following PCA, 26 items were considered
for immediate removal from the Item Pool.

Means, standard deviations, normality (skewness and kurtosis), correlations,
z-scores, and paired samples t-tests were conducted to further assess items for
retention or removal. To be retained in the scale, items should retain normality.
Therefore, 62 items with significant skew and 20 items with significant kurtosis
were considered for removal from the Item Pool. In addition, paired samples t-tests
were conducted on all of the paired items (positive and negatively worded items) to
determine if they were interchangeable, thus reducing the item pool. The results of
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this assessment resulted in 39 paired items that were found to be not significantly
different from each other. These results provided a rationale for reducing the scale
by an additional 39 items.

Even though some elements might have been considered for removal, the
following items were retained for subject matter expert (SME) review due to their
importance to trust theory: move quickly, move slowly, require frequent mainte-
nance, autonomous, led astray by unexpected changes in the environment, work
in close proximity with people, possess adequate decision-making capability, make
sensible decisions, openly communicate, and communicate only partial information.
Following the various statistical assessments (PCA, normality assessment, and
paired samples t-tests), the Item Pool was reduced from 156 items to 73 items.

10.3.3 Key Findings and Changes

Two major changes were made to the scale following this study. First, there were
some potential issues that arose with the wording of the items. Two main types of
item formation were included in the above version of the scale. Items either began
with “Most robots” or “I.” This may have impacted the factor creation. Therefore,
all items were reduced to a single word or short phrase prior to subject matter expert
(SME) review. Secondly, the scale was modified from a 7-point Likert-type scale
to a percentage scale with 10 % increments. The decision to make this change
in the scale was related to larger purpose to develop a scale that provided a trust
rating from no trust (0 %) to complete trust (100 %). This change was supported by
research, especially in the interpersonal and e-commerce domains that suggest trust
and distrust are viewed as related but separate constructs with differing effects on
behavior, consequences, and outcomes (Lewicki et al. 1998; McKnight et al. 2004;
Wildman 2011; Wildman et al. 2011).

10.4 Content Validation

The third step in the process to create a reliable and valid subjective scale was
content validation. In this step, the goal was to survey SMEs in the area of trust
and robotics in order to determine if each item should be retained or removed from
the Item Pool. This two-phase semantic analysis included item relevance (content
validation) using the protocols described by Lawshe (1975), and the identification of
the hypothetical range of differences (e.g., no trust and complete trust differences)
for each item.



10 Measuring Trust in Human Robot Interactions. . . 199

Table 10.4 Years of experience for the subject matter experts

SME
Robot
design

Robot
operator

Robot
research HRI

Automation
design

Automation
research

Trust
research

SME 1 0 0 8 8 0 8 0

SME 2 5 4 3 0 0 0 0

SME 3 4 0 4 0 2 2 0

SME 4 7 0 7 0 0 0 0

SME 5 4 8 8 8 0 0 0

SME 6 0 0 0 0 0 7 7

SME 7 11 0 11 11 0 0 3

SME 8 0 0 0 8 0 8 6

SME 9 0 0 4 0 0 4 0

SME 10 7 0 7 0 0 0 0

SME 11 0 0 10 10 20 30 15

All results are reported in years of experience

10.4.1 Experimental Method

Eleven SMEs were included from the United States Army Research Laboratory,
United States Air Force Research Laboratory, and faculty members from university
research laboratories. All SMEs were considered experts in the fields of trust
research, robotics research, or HRI. Table 10.4 provides the SME’s years of
experience across a variety of robot, automation, and research topics.

SMEs were contacted via email. Upon agreement to participate, they were pro-
vided a link to complete an online survey. All data for this experiment were collected
through an online tool (SurveyMonkey.com). SMEs were provided background
information, purpose, and a brief review of trust theory prior to beginning the multi-
part study. In Part 1, SMEs were provided background information, purpose, and a
brief review of trust theory prior to beginning the multi-part study. In Part 1, SMEs
completed an expertise questionnaire. In Part 2, SMEs were given instructions to
complete the 73 item Trust Scale with the instructions “Please rate the following
items on how a person with little or no trust in a robot would rate them.” In
Part 3, SMEs were given instructions to complete the 73 item Trust Scale with
the instructions “Please rate the following items on how a person with complete
trust in a robot would rate them.” All items in Part 2 and Part 3 were randomized.
Part 4 was the Content Validation questionnaire based on Lawhe (1975) content
analysis protocols. SMEs rated each item on a 3-point Likert-type scale as either
“extremely important to include in scale,” “important to include in scale,” or “should
not be included in scale.” SMEs could also mark if they felt an item was domain
specific (e.g., military robotics, social robotics, etc.). A comment box was available
to provide any clarification about why they rated the item a specific way, to provide
additional recommendations to the scale design, or to suggest items that may be
missing from the scale. The total survey took approximately 30 min to complete.
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10.4.2 Experimental Results

Items were analyzed using the Content Validity Ratio developed by Lawshe (1975).
The Content Validity Ratio (CVR), depicted in Eq. 10.1, is a commonly used method
of analyzing scale items (see also Yagoda and Gillan 2012). The CVR equation was
derived from a 3-point Likert scale (1DShould not be included in scale, 2DMight
be important to include in scale, and 3DExtremely important to include in scale).

CVR D .ne– N=2/ = .N=2/ (10.1)

CVRDContent Validity Ratio
neDNumber of SMEs indicating that an item is Extremely Important
NDTotal number of SMEs

Lawshe’s protocol suggested that 11 SMEs with a criterion set to 0.59 are needed
to ensure that the SME agreement is unlikely to be due to chance. The formula
yielded values ranging fromC1 to �1. Positive values indicated that at least half of
the SMEs rated the item as Extremely Important. Table 10.5 reports the CVR values
for the 14 items recommended by the SMEs.

CVR values were also calculated for the items that were rated as “important to
include in the scale.” This resulted in 37 additional items to consider for inclusion
in the finalized scale. The scores from the hypothetical range of differences were
used to further evaluate these 37 items. The hypothetical range of differences was
assessed from the SMEs completion of the Trust Scale in Part 2 and Part 3 of the
study. Paired samples t-tests were conducted to identify the hypothetical range of
differences (see Table 10.6).

Table 10.5 The 14 items
recommended by SMEs as
“Extremely Important”

Item CVR values

1. Function successfully 1.00
2. Act consistently 1.00
3. Reliable 1.00
4. Predictable 1.00
5. Dependable 1.00
6. Follow directions 0.82
7. Meet the needs of the mission 0.82
8. Perform exactly as instructed 0.82
9. Have errorsa 0.82
10. Provide appropriate information 0.82
11. Malfunctiona 0.64
12. Communicate with people 0.64
13. Provide feedback 0.64
14. Unresponsivea 0.64

CVR � 0.59
aRepresents reverse coded items
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Table 10.6 The 37 “Important Items” separated by retained and removed items

Complete trust No trust Range
CVR Mean SD Mean SD t p

Items retained

1. Operate in an integrated team
environment

1.00 75.00 21:73 28.00 25.73 3:62 0.006

2. Autonomous 1.00 69.09 20:23 38.89 23.15 3:18 0.013
3. Good teammate 0.82 87.27 11:04 11.82 11.68 16:60 <0.001
4. Performs a task better than a novice
human user

0.82 69.09 20:71 24.55 24.23 6:69 <0.001

5. Led astray by unexpected changes
in the environment

0.82 71.00 19:12 26.00 15.78 5:78 <0.001

6. Know the difference between friend
and foe

0.82 71.00 27:67 14.55 16.95 5:89 <0.001

7. Make sensible decisions 0.82 84.00 11:74 21.00 20.79 8:62 <0.001
8. Clearly communicate 0.82 83.00 11:60 19.00 15.24 12:30 <0.001
9. Warn people of potential risks in
the environment

0.82 83.00 11:60 23.00 18.29 7:75 <0.001

10. Incompetent 0.82 85.45 14:40 39.00 33.15 5:24 0.001
11.Possess adequate decision-making
capability

0.82 71.11 16:91 20.00 21.60 5:57 0.001

12. Are considered part of the team 0.82 79.00 12:87 35.00 31.36 3:36 0.010
13. Will act as part of the team 0.82 74.00 19:55 30.00 29.06 3:28 0.010
14. Perform many functions at one
time

0.82 68.00 23:48 36.00 25.47 4:40 0.002

15. Protect people 0.82 77.00 24:52 23.00 22.14 3:92 0.003
16. Openly communicate 0.82 80.00 15:81 34.00 28.36 3:79 0.005
17. Responsible 0.82 66.36 30:42 27.27 34.67 2:76 0.020
18. Built to last 0.82
19. Work in close proximity with
people

0.82 65.00 19:58 35.56 26.03 2:34 0.047

20. Supportive 0.64 66.00 16:47 18.00 11.35 8:67 <0.001
21. Work best with a team 0.64 71.00 18:53 34.00 28.36 3:41 0.008
22. Tell the truth 0.64 86.36 21:57 46.00 31.69 2:90 0.018
23. Keep classified information secure 0.64 84.00 15:06 55.45 36.43 2:69 0.025
24. Require frequent maintenance 0.64 74.00 20:66 44.00 28.75 2:37 0.042
Items removed from scale

25. Responsive 1.00 84.00 9:66 32.22 21.67 7:50 <0.001
26. Poor teammate 0.82 84.55 9:66 45.45 36.43 3:64 0.005
27. Are assigned tasks that are critical
to mission success

0.82 58.00 32:25 25.00 35.67 1:84 0.098

(continued)
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Table 10.6 (continued)

Complete trust No trust Range
CVR Mean SD Mean SD t p

28. Communicated only partial
information

0.82 53.00 28.30 35.00 28.77 1.03 0.331

29. Instill fear in people 0.73 83.64 18.59 50.91 34.48 3.13 0.011
30. Likeable 0.64 60.00 33.54 14.00 10.75 4.61 0.001
31. Easy to maintain 0.64 60.00 33.54 35.00 31.71 2.89 0.018
32. Responsible for its own actions 0.64 64.00 32.04 32.73 36.63 2.22 0.054
33. Given complete responsibility for
the completion of a mission

0.64 59.00 37.55 19.00 37.84 2.16 0.059

34. Monitored during a mission 0.64 49.00 29.61 20.00 28.67 2.08 0.067
35. Are considered separate from the
team

0.64 68.00 24.40 36.00 32.39 1.92 0.091

36. Difficult to maintain 0.64 70.00 15.63 50.00 34.64 1.60 0.143
37. Work best alone 0.64 48.00 23.94 41.00 33.48 0.69 0.506

Twenty-four items were retained for further scale validation. The remaining
13 items were removed from the scale for the following reasons: non-significant
findings on the paired samples t-tests for eight items, and SMEs comments assisted
in the removal of the remaining five items. The first comment was a general
comment stating that some items (e.g., easy/difficult to maintain) were repetitive
in nature. To address this comment, only one of the repetitive items was included in
the revised scale. Responsive, easy to maintain, and poor teammate were removed.
In addition instill fear in people was removed due to its nature of distrust more than
trust. Finally, the item likeable was considered to be too general an item for the scale.
An additional comment suggested that two items are given complete responsibility
for the completion of the mission, and are assigned tasks that are critical to mission
success represented situational factors that may be a separate issue from trust. Even
though CVR analysis revealed that SMEs felt that they might be important items
to include in the scale, their responses to the theoretical range of scores did not
show a significant change in trust. This added support for the SMEs’ comments
recommending removal of these two items.

Twenty-two items did not meet the CVR criterion and were reviewed for removal
from the scale. Of these 22 items, the four items regarding movement (move quickly,
move slowly, mobile, move rigidly) were removed. To further support this decision,
there was a comment from a SME suggesting that trust and speed were orthogonal.
SMEs further recommended that three items representing robot personality (kind,
caring, have a relationship with their human users or operators) were recommended
for removal. An additional nine of these items (human-like, fake, alive, dead,
offensive, organic, ignorant, apathetic, and make decisions that affect me personally)
were removed from the scale due to the lack of change in scores on the theoretical
range of responses. However, out of those 22 items that did not meet the CVR
criterion, a number of SMEs felt that some items may have particular importance
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to trust development as robots advance further into socially relevant relationships.
Therefore, the following four items were retained in the scale: friendly, pleasant,
conscious, and lifelike.

Semantic analysis of the trust scale items reduced the scale from 73 items to 42
items. It further identified 14 items that were extremely important to trust measure-
ment, with an additional 24 items that could be important to trust measurement. Four
domain specific items (friendly, pleasant, conscious, and lifelike) were also retained
on the scale based on SME recommendations. No additional items or item revisions
were recommended by the SMEs. In addition, no changes to the scale design were
recommended.

10.5 Task-Based Validity Testing: Does the Score Change
Over Time with an Intervention?

Trust has typically been measured following an interaction. However, trust is
dynamic in nature, as ongoing interactions and relational history continuously
influence trust levels at any given point in time. Consequently, trust before, during,
and after an interaction may not be identical. Further, trust in the same partner will
likely change over time as the relationship progresses (Bloomqvist 1997). Research
in the areas of automation (see Merritt and Ilgen 2008), as well as interpersonal
trust (see McAllister 1995), recommended that trust should be measured at multiple
times, specifically before and after the task or interaction. Within the Three Factor
Model of Human-Robot Trust, pre-interaction measurement has been used to
identify initial trust perceptions that are influenced by human traits, robot features,
and the individual’s perception of the environment and perceived robot capabilities.
Post-interaction measurement was used to identify changes in trust related to human
states and trust perceptions following interactions. Obtaining the most reliable and
accurate reflection of the dynamic nature of trust in an interaction may necessitate
measuring trust multiple times.

In order to examine this concept of dynamic trust, an experiment was designed
to assess the 42 Item Trust Scale’s capability to measure changes in perceived trust.
Computer-based simulation was used to develop a monitoring task specific to a
“screen the back” scenario for a Soldier-robot team (Army Research Laboratory
2012). Trust, as measured using the 42 Item Trust Scale, was assessed both pre-
interaction, and post-interaction in the high trust condition (the robot provided
100 % reliable feedback on target detection), as well as post-interaction in the low
trust condition (the robot provided 25 % reliable feedback). It was hypothesized that
there are mean differences in trust that occur over time, with respect to changes in
robot reliability. More specifically, trust will increase from pre-interaction to after
experiencing a 100 % reliable interaction; trust will decrease after first experiencing
a 100 % reliable interaction and then experiencing a 25 % reliable interaction.
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10.5.1 Experimental Method

Participants included 81 undergraduate students (25 males, 56 females;
MD 22.57 years, SDD 3.95) from an undergraduate psychology course in Science
and Pseudoscience at the University of Central Florida. Participants had varied
backgrounds with respect to robot familiarity. All participants previously watched
movies or television shows that incorporated robots: 1–5 shows (ND 30), 6–10
shows (ND 9), and over 10 shows (ND 42). Forty-four participants previously
interacted with robots, ranging from the Roomba™ vacuum cleaner to a bomb
disposal robot. Participants also reported previously controlling robots through a
variety of modalities: voice (ND 11), game controller (ND 24), gestures or pictures
(ND 3), or a radio control (RC) system (ND 35). In addition, five participants
previously built robots for class-based projects.

All materials were administered through paper and pencil versions. The Negative
Attitudes toward Robots Scale (NARS; Nomura et al. 2004), and demographics
questionnaire were included to identify potential individual difference ratings. The
NARS has three subscales: NARS_S1 represents negative attitudes toward situations
of interaction with robots; NARS_S2 represents negative attitudes toward social
influence of robots; and NARS_S3 represents negative emotions in interactions
with robots. Trait-based trust was measured through the Interpersonal Trust Scale
(ITS; Rotter 1967). State-based trust was measured through the 42 item Trust Scale,
administered pre- and post-interaction. Participants’ states were not assessed in this
experiment due to the nature of the task (monitoring only).

All HRI scenarios were developed using the Robotic Interactive Visualization &
Experimental Technology (RIVET) computer-based simulation system developed
by General Dynamics Robotic Systems (GDRS; Gonzalez et al. 2009), in collab-
oration with the US Army Research Laboratory. RIVET uses an adapted Torque
Software Development Kit (SDK) development and runtime environment through
a Client/Server networking model. Development of the virtual environment (VE)
was accomplished through a TorqueScript language, similar to CCC. The VEs
used a base environment developed previously for Army research activities. This
included the layout of the physical environment (e.g., ground, roadways, buildings,
and lighting), as well as inclusion of the Soldier and terrorist non-player characters.
Task-specific customization of the environment was accomplished through scripting
syntax. Examples of specific customization included entering objects, obstacles, and
creation of paths.

An experimental scenario was created using the RIVET computer-based sim-
ulation system of a Soldier-Talon™ robot team completing a “screen the back”
mission (Army Research Laboratory 2012). Participants monitored the Talon robot
as it navigated to the back of the building, repositioned behind a barrel, monitored
the back of the building for human targets, and provided a speech-based response
when a target was detected. A single video was created from the camera-view on
the Talon™ robot. The video of the simulation was created using FRAPS

®
real-

time video capture and benchmarking program with a 30 frame rate/s .avi file.
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The .avi file was converted into the .mp4 file format to add auditory feedback. The
robot stated “target detected” in a male computer synthetic voice. There were eight
possible targets included in each scenario. No false alarms were included.

The study was conducted in a single session. Participants were provided a copy
of the informed consent while the experimenter read it aloud. Participants then
viewed an image of the Talon robot and completed the 42 Item Trust Scale (Time
1; pre-interaction). Next, participants were instructed about the human-robot task
they were about to monitor. Following Video 1, participants completed the 42 Item
Trust Scale (Time 2; post-interaction, 100 % reliable feedback). Participants then
received the second task instructions, monitored Video 2, and completed the 42
Item Trust Scale (Time 3; post-interaction, 25 % reliable feedback). Following
these monitoring tasks, participants completed the ITS, NARS, and demographics
questionnaire. The study took approximately 90 min in its entirety.

10.5.2 Experimental Results

All data were analyzed using IBM SPSS Statistics v.19 (SPSS 2010), with an alpha
level set to 0.05, unless otherwise indicated.

10.5.2.1 Individual Item Analysis

The first step of analysis was to determine if each item changed over time. A one-
way within-subjects repeated measures analysis of variance was conducted for each
of the 42 items of the Trust Scale. The factor was “time” and the dependent variable
was the individual score. Thirty-four items showed a significant mean difference
for the condition of “time.” Using Post-hoc analysis, six items were found to only
have significant differences between Time 1 (Pre-Interaction) and Time 2 (post-
interaction). These items included: lifelike, perform many functions at one time,
friendly, know the difference between friend and foe, keep classified information
secure, and work in close proximity to people. These results may have occurred due
to a significant change in the mental model from pre- to post-interaction; therefore,
the items were retained in the scale. Confidence interval analysis was conducted
on the remaining two items (operate in an integrated team environment, built to
last) and showed no significant change between Time 1, Time 2, or Time 3. These
items were removed from the scale. Additional analyses were conducted using the
40 retained items.

10.5.2.2 Trust Score Validation

First, a general score of trust was created for each of the three time periods.
Following reverse coding of specific items, the 40 items were summed and divided
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by 40 to formulate a score between 0 and 100. To assess the impact of time on
trust development, a one-way within-subject repeated measures analysis of variance
was conducted. The results indicated a significant effect of time, F(2, 79)D 119.10,
p < 0.001, ˜¡2D 0.75. Post-hoc analysis using the Fisher LSD revealed significant
mean difference ratings for all three times the trust scale was administered. It
revealed that trust was significantly greater in Time 2 (post-interaction, 100 %
reliable condition) than Time 1 (pre-interaction) and Time 3 (post-interaction, 25 %
reliable condition), thus supporting the hypothesis. In addition, mean trust scores at
Time 1 were significantly greater than at Time 3 (see Fig. 10.3).
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Fig. 10.3 Bar graph representing significant mean differences of trust over time, with 95 %
confidence interval error bars
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Fig. 10.4 Trust scores for the 40 item and the 14 item scale across time

10.5.2.3 40 Items Versus 14 Items

Additional analyses were also conducted to identify the differences between the 40
Item Trust Scale and the 14 Item SME recommended scale. A 2 Scale (40 items, 14
items)� 3 Time (Time 1, Time 2, Time 3) repeated measures analysis of variance
was conducted (see Fig. 10.4).

Results showed a significant effect of Time, F(2240)D 186.59, p < 0.001,
˜p2D 0.609; Scale F(1240)D 273.61, p < 0.001, ˜p2D 0.533; and an interaction
between Time and Scale, F(2240)D 108.84, p < 0.001, ˜p2D 0.476. Review of the
confidence intervals showed a significant difference between the scales at Time 1
and Time 2, but not Time 3. While findings revealed significant differences between
the two scales, graphical representations showed similar patterns in the results.
Taking into account both the individual analyses of each item measured over Time,
as well as the comparative results of the two scales, it appeared that the total trust
score of the 40 Item Trust Scale provided a finer level of granularity and thus a more
accurate trust rating.
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10.6 Task-Based Validity Testing: Does the Scale
Measure Trust?

This study marked the final validation experiment for the 40 Item Trust Scale.
It used a Same-Trait approach (Campbell and Fiske 1959) to validate that this
scale measured trust and not an alternative construct. The same-trait was evaluated
through a comparison of the developed 40 Item Trust Scale, and the well-established
Checklist for Trust between People and Automation (Jian et al. 1998) trust in
automation scale. Human-robot interaction was accomplished through computer-
based simulation of a joint navigation task.

It was first hypothesized that there would be a strong positive correlation
between the 40 Item Scale, the 14 Item SME selected subscale, and Checklist
for Trust between People and Automation (Jian et al. 1998) trust scales. The
second hypothesis was that the three change scores in the post-interaction conditions
(20 % robot navigation errors—80 % robot navigation errors) for the types of trust
scales (i.e., 40 item scale, 14 item scale, and Checklist for Trust) would not show
significant mean differences. However, it was anticipated that the 40 Item and 14
Item scales would change from pre-interaction measurement to post-interaction
measurement, as shown in the prior experiment.

10.6.1 Experimental Method

Twenty-one undergraduate students from the University of Central Florida (12
males, 9 females) participated in two Soldier-robot team-based computer simu-
lations to provide the next level of task-based validity testing. Multiple scales
were included to measure subjective trust, personality traits, demographics, and
human states. Subjective trust was measured through the developed 40 Item Trust
Scale. A partial measure represented by the 14 Items recommended by SME’s
was also assessed. The well-established Checklist for Trust between People and
Automation (Jian et al. 1998) was included for Same-Trait analysis. Items including
the word ‘automation’ were adapted to ‘robot.’ The Interpersonal Trust Scale (Rotter
1967) was also included. The 7-point Mini-IPIP personality assessment (Donnellan
et al. 2006) was used to measure the Big 5 personality traits: agreeableness,
extraversion, intellect, conscientiousness, and neuroticism. The Dundee Stress State
Questionnaire (DSSQ; Matthews et al. 1999) was included to measure human states
(i.e., mood state, motivation, workload, and thinking style) before and after a task.

The virtual environment (VE) for the present procedure was developed in
RIVET and used a base environment of a Middle Eastern town developed by
GDRS in collaboration with the US Army Research Laboratory. Independent task-
specific customization of the physical environment was accomplished through
scripting syntax. Specific customization included entering objects, obstacles, and
creation of paths, etc. Scripting files were created for both the training session
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and the task conditions. The task was to assist an autonomous robot from a set
location to a rendezvous point. Participants controlled a Soldier avatar throughout
the Middle Eastern town using a keyboard and mouse interface. It was possible
that the robot could become stuck on an obstacle and required the participant’s
assistance. Participants could move certain obstacles out of the way of the robot
by simply walking into the obstacle. The mission ended when both the Soldier and
robot reached the rendezvous location. In Simulation A, the robot autonomously
navigated around four out of the five obstacles. In Simulation B, the robot only
navigated around one of the obstacles. Each simulation was approximately 1 min in
length. The order of simulation presentation was counterbalanced and determined
prior to participation.

Following completion of informed consent, participants completed three ques-
tionnaires: the demographics questionnaire, the Mini-IPIP personality inventory,
and the ITS. Participants were then shown a picture of the Talon robot and completed
the 40 Item Trust Scale, the Checklist for Trust between People and Automation,
and the DSSQ to acquire baseline information. Participants then completed the two
simulated tasks, followed by completion of the two trust scales and the post-task
DSSQ following each task. The simulated tasks were recorded using FRAPS

®
real-

time video capture and benchmarking program with a 30 frame rate/s .avi file.
Video was recorded from the Soldier character’s perspective. It was saved with
a unique identifier to maintain participant confidentiality. The entire study took
approximately 1 h to complete.

10.6.2 Experimental Results

All data were analyzed using IBM SPSS Statistics v.19 (SPSS 2010), with an
alpha level set to 0.05, unless otherwise indicated. Initial analyses were conducted
to assess changes in human states over time. Results demonstrated no significant
difference in mood state or motivation subscales. The thinking style subscales of
self-focused attention and concentration showed a significant difference between
pre-interaction and post-interaction, but no difference between the two post-
interaction conditions. A similar result was found for the thinking content subscale,
task interference. Due to these findings, no additional analyses were conducted
assessing human states. The Same-Trait methodology compared the developed 40
Item Trust Scale, the SME’s recommended 14 Item Trust Scale, and the Checklist
for Trust between People and Automation.

10.6.2.1 Correlation Analysis of the Three Scales

The first step in this validation was to identify the relationships between the three
trust scales. In support of Hypothesis 1, significant positive Pearson correlations
were found between all three scales (see Table 10.7).
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Table 10.7 Same-trait trust scale correlations over time

M SD 1 2 3

Pre-interaction trust

1. 40 Item Scale 60.60 13.58 1
2. 14 Item Scale 72.45 12.70 0.829** 1
3. Checklist for Trust between People
and Automation

71.71 16.27 0.620** 0.745** 1

Post-interaction (20 % errors)

1. 40 Item Scale 49.92 19.59 1
2. 14 Item Scale 60.61 20.19 0.918** 1
3. Checklist for Trust between People
and Automation

71.54 16.22 0.857** 0.854** 1

Post-interaction (80 % errors)

1. 40 Item Scale 46.70 22.43 1
2. 14 Item Scale 57.42 24.93 0.934** 1
3. Checklist for Trust between People
and Automation

72.27 17.16 0.855** 0.852** 1

** represent significance at the .01 level

The second step in this validation process was to determine if there was a
significant mean difference between the post-interaction change scores (20 % robot
navigation errors—80 % robot navigation errors) for the three scales. A within-
subjects repeated measures analysis of variance was conducted. In support of
Hypothesis 2, there was not a significant mean difference between the post-
interaction change scores for the three trust scales, F(2,19)D 2.64, pD 0.097. This
result provided additional support that the developed scale measures the construct
of trust.

10.6.2.2 Pre-post Interaction Analysis

Additional analyses were conducted to determine the differences between the
pre-post interaction scores between the three scales. Paired samples t-tests were
conducted to assess the change in trust pre-post interaction. A significant change
in trust was found between the pre-post interaction trust measurement for the 40
Item Trust Scale, t(40)D 3.87, p < 0.001, and the 14 Item Trust Scale, t(40)D 3.86,
p < 0.001. However, the Checklist for Trust between People and Automation trust
scale did not change (pD 0.932). This finding suggested that the developed trust
scale does indeed measure something additional to the previously developed
trust scale.
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10.6.2.3 Differences Across Scales and Conditions

To further explore these scale differences, a 3 Trust Scales (40 item, 14 item, and
Checklist for Trust)� 3 Conditions (pre-interaction, 20 % robot error, and 80 %
robot error) repeated measures analysis of variance was conducted. There was a
main effect of scale, F(2,59)D 105.16, p < 0.001 ˜p2D 0.781, but not condition
(pD 0.191). Results are depicted in Fig. 10.5. Confidence interval analysis of the
mean trust scores demonstrated that there was no significant difference between the
three scales that were recorded pre-interaction. This finding suggested that all three
scales provide similar trust scores prior to HRI. Further there were no significant
differences between the 14 Item Trust Scale and the well-established Checklist
for Trust between People and Automation (Jian et al. 1998). This finding is not
surprising as the items from both the 14 Item Trust Scale and the Jian et al. scale
referenced the capability of the system. The important finding was the significant
differences between the 40 item Trust Scale and the Jian et al. scale during the two
post-interaction conditions.
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Automation (Jian et al. 1998) trust scales
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10.6.3 Experimental Discussion

This study demonstrated that the developed trust scale assessed the construct of
trust. In addition, it provided support for additional benefits of the developed 40
Item Trust Scale above and beyond previously used scales (i.e., Checklist for Trust
between People and Automation; Jian et al. 1998). First, there were strong positive
correlations between the three scales. Second, mean analysis showed significant
differences between the 40 item and Jian et al. scale in the post-interaction
conditions. Both the 40 Item and the 14 Item scales showed a significant change
in trust from pre-interaction to post-interaction; however the Checklist for Trust
did not change. This change in trust was mirrored in the previous study, and is
supported by the trust theory. Therefore, it can be postulated that the developed
Trust Scale accounted for the relationship between the change in mental models
and trust development that occurs after HRI. In addition, findings from this study,
together with the findings from the previous study provide support that the 40 Item
Trust Scale had more accurate trust scores than both the 14 Item SME recommended
scale and the Checklist for Trust scale.

10.7 Conclusion

The goal was to develop a trust perception scale that focused on the antecedents
and measurable factors of trust specific to the human, robot, and environmental
elements. This resulted in the creation of the 40 item Trust Perception Scale-HRI
and the 14 item sub-scale. The finalized scale was designed as a pre-post interaction
measure used to assess changes in trust perception specific to HRI. The scale was
also designed to be used as post-interaction measure to compare changes in trust
across multiple conditions. It was further designed to be applicable across all robot
domains. Therefore, this scale can benefit future robotic development specific to the
interaction between humans and robots.

10.7.1 The Trust Perception Scale-HRI

The scale provided an overall percentage score across all items. Items were preceded
by the question “What percentage of the time will this robot : : : ” followed by a list
of the items. The finalized 40 item scale is provided in Table 10.8, and took between
5 and 10 min to complete.
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Table 10.8 Finalized Trust Perception Scale-HRI

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

What % of the time will this robot be : : :

1. Considered part of the
team

O O O O O O O O O O O

2. Responsible O O O O O O O O O O O
3. Supportive O O O O O O O O O O O
4. Incompetenta O O O O O O O O O O O
5. Dependableb O O O O O O O O O O O
6. Friendly O O O O O O O O O O O
7. Reliableb O O O O O O O O O O O
8. Pleasant O O O O O O O O O O O
9. Unresponsivea,b O O O O O O O O O O O
10. Autonomous O O O O O O O O O O O
11. Predictableb O O O O O O O O O O O
12. Conscious O O O O O O O O O O O
13. Lifelike O O O O O O O O O O O
14. A good teammate O O O O O O O O O O O
15. Led astray by
unexpected changes in the
environment

O O O O O O O O O O O

What % of the time will this robot : : :

16. Act consistentlyb O O O O O O O O O O O
17. Protect people O O O O O O O O O O O
18. Act as part of the team O O O O O O O O O O O
19. Function successfully O O O O O O O O O O O
20. Malfunctiona O O O O O O O O O O O
21. Clearly communicate O O O O O O O O O O O
22. Require frequent
maintenancea

O O O O O O O O O O O

23. Openly communicate O O O O O O O O O O O
24. Have errorsa O O O O O O O O O O O
25. Performa a task better
than a novice human user

O O O O O O O O O O O

26. Know the difference
between friend and foe

O O O O O O O O O O O

27. Provide feedbackb O O O O O O O O O O O
28. Possess adequate
decision-making capability

O O O O O O O O O O O

29. Warn people of potential
risks in the environment

O O O O O O O O O O O

30. Meet the needs of the
mission/taskb

O O O O O O O O O O O

(continued)
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Table 10.8 (continued)

0 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

31. Provide appropriate
informationb

O O O O O O O O O O O

32. Communicate with
peopleb

O O O O O O O O O O O

33. Work best with a team O O O O O O O O O O O
34. Keep classified
information secure

O O O O O O O O O O O

35. Perform exactly as
instructedb

O O O O O O O O O O O

36. Make sensible decisions O O O O O O O O O O O
37. Work in close proximity
with people

O O O O O O O O O O O

38. Tell the truth O O O O O O O O O O O
39. Perform many functions
at one time

O O O O O O O O O O O

40. Follow directionsb O O O O O O O O O O O
aRepresents the reverse coded items for scoring
bRepresents the 14 item sub-scale items

10.7.2 Instruction for Use

When the scale is used as a pre-post interaction measure, the participants should
first be shown a picture of the robot they will be interacting with or provided a
description of the task prior to completing the pre-interaction scale. This accounts
for any mental model effects of robots and allows for comparison specific to the
robot at hand. For post-interaction measurement, the scale should be administered
directly following the interaction. To create the overall trust score, 5 items must first
be reverse coded. The reverse coded items are denoted in the above table. All items
are then summed and divided by the total number of items (40). This provides an
overall percentage of trust score.

While use of the 40 Item scale is recommended, a 14 Item subscale can be used to
provide rapid trust measurement specific to measuring changes in trust over time, or
during assessment with multiple trials or time restrictions. This subscale is specific
to functional capabilities of the robot, and therefore may not account for changes in
trust due to the feature-based antecedents of the robot. Trust score is calculated by
first reverse coding the ‘have errors,’ ‘unresponsive,’ and ‘malfunction’ items, and
then summing the 14 item scores and dividing by 14. The 14 items are marked in
Table 10.8.
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10.7.3 Current and Future Applications

This scale was developed to provide a means to subjectively measure trust per-
ceptions over time and across robotic domains. In addition, it can be used by
individuals in all the major roles of HRI: operator, supervisor, mechanic, peer, or
bystander. Therefore, there are many potential avenues for future research using
Trust Perception Scale-HRI. Current and near-term research studies highlight the
expansion of human-robot trust antecedents, which were first described in the
Three Factor Model of Human-Robot Trust (Hancock et al. 2011; Schaefer et al.
2014). These include the exploration of human-robot trust as it relates to: Soldier,
bystander, and robot proximity in high-risk military tasking; transparent system
communication and feedback for Soldier-robot teaming in high-risk environments;
the development of natural language processing in human-robot teams; and dual-
task engagement with an autonomous vehicle designed for on-base personnel
transport. While a number of these studies are currently under review or in press, a
few preliminary results are discussed below.

First, Sanders et al. (2014) used the Trust Perception Scale-HRI to assess
the impact of the amount of communication feedback from the robot (constant,
contextual only, minimal) and modality of information (visual, text, audio) on
trust development. Their initial results found a greater increase in the change in
trust (post-interaction minus pre-interaction) for a constant stream of information
compared to contextual information only and minimal information across three
different communication modalities (text, auditory, and visual) during a Soldier-
robot team surveillance task clearing an area of weapons and locating civilians to
be safely evacuated from a hostile zone. These researchers are continuing to use
the Trust Perception Scale-HRI for future studies in transparent communication,
human roles (team member, bystanders), and social dynamics including proxemics,
as part of the US Army Research Laboratory’s Robotics Collaborative Technology
Alliance tasking related to determinants of shared cognition and social dynamics in
future Soldier-robot teams.

Second, a recent study using the Trust Perception Scale-HRI was conducted
where participants monitored a simulated and a live robot surveying an environment,
locating an object, and touching the object (Schafer et al. 2015). Results supported
previous findings that individuals trust a reliable robot significantly more than the
unreliable robot. Also, the results showed that the scale is effective for measuring
trust in both simulated and live HRI experimentation.

A third area of on-going and near-term work using the Trust Perception Scale-
HRI is exploring trust development with respect to the development of robotic
passenger vehicles and transparent passenger user interfaces (Schaefer 2015). The
design of this set of computer-based simulation studies is in line with the goals of
the US Army Tank Automotive Research, Development and Engineering Center’s
ARIBO (Applied Robotics for Installation and Base Operations) project for alter-
native transportation options for on-base wounded Soldier transit (Marshall 2014).
The ultimate goal is to provide a means for Soldiers to schedule an on-demand
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autonomous robotic passenger vehicle to arrive and drive door-to-door to and from
the Medical Barracks to the on-base medical facilities. The benefit of this work
is to understand the levels of trust that will enhance usage and effective human-
robot interaction. Results of this set of studies will provide additional insight into
the impact of trust antecedents (e.g., transparency, cueing, human characteristics)
on trust development, as well as explore how the trust relationship changes as the
human role transitions from a driver, to a safety rider, to a supervisor external to the
vehicle, as well as to a passenger. Initial findings advance current trust theory by
demonstrating significant relationships with working memory capacity and coping
style related to driving, distress, workload, and task performance (Schaefer &
Scribner 2015). Future work on this project is two part: (1) understanding the effects
of the availability of driver control interfaces (i.e., steering and speed control versus
automation engage/disengage buttons) on usability, performance, and trust; and (2)
exploring the effects of transparent user interfaces design on trust development and
calibration for passengers.
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Chapter 11
Methods for Developing Trust Models
for Intelligent Systems

Holly A. Yanco, Munjal Desai, Jill L. Drury, and Aaron Steinfeld

11.1 Introduction

In just one area of the intelligent systems domain, the number of robot systems
has greatly increased over the past two decades. According to a survey, 2.2 million
domestic service robots were sold in 2010, and that number was expected to rise to
14.4 million by 2014 (IFR 2011). Not only is the number of robots in use increasing,
but the number of application domains that utilize robots is also increasing. For
example, self-driving cars have been successfully tested on US roads and have
driven over 300,000 miles autonomously (e.g., Thrun 2010; Dellaert and Thorpe
1998). Telepresence robots in the medical industry constitute another example of a
new application domain for robots (e.g., Michaud et al. 2007; Tsui et al. 2011).

As the use of such systems increases, there is a push to introduce or add
additional autonomous capabilities for these robot systems. For example, the Foster-
Miller (now QinetiQ) TALON robots used in the military are now capable of
navigating to a specified destination using GPS. The unmanned aerial vehicles
(UAVs) deployed by the military are also becoming more autonomous (Lin 2008);
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the Global Hawk UAV, for example, completes military missions with little human
supervision (Ostwald and Hershey 2007).

Robots are not the only examples of automated systems. IBM’s intelligent agent
Watson is now being used as an aid for medical diagnosis (Strickland 2013).
Additionally, many of the trading decisions in the stock and commodities markets
are being made by automated systems. Automation has been in use for decades
as autopilot systems in airplanes and as assistants for running factories and power
plants.

Utilizing autonomous capabilities can provide benefits such as reduced time to
complete a task, reduced workload for people using the system, and a reduction in
the cost of operation. However, existing research in the domains of plant, industrial,
and aviation automation highlights the need to exercise caution while designing
autonomous systems, including robots. Research in human-automation interaction
(HAI) shows that an operator’s trust of the autonomous system is crucial to its use,
disuse, or abuse (Parasuraman and Riley 1997).

There can be different motivations to add autonomous capabilities; however, the
overall goal is to achieve improved efficiency by reducing time, reducing financial
costs, lowering risk, etc. For example, one of the goals of an autonomous car is
to reduce the potential of an accident (Guizzo 2011). A similar set of reasons
was a motivating factor to add autonomous capabilities to plants, planes, industrial
manufacturing, etc. However, the end results of adding autonomous capabilities
were not always as expected. There have been several incidents in HAI that have
resulted from an inappropriate use of automation (Sarter et al. 1997). Apart from
such incidents, research in HAI also shows that adding autonomous capabilities does
not always provide an increase in efficiency. The problem stems from the fact that,
when systems or subsystems become autonomous, the operators that were formerly
responsible for manually controlling those systems are relegated to the position of
supervisors. Hence, such systems are often called supervisory control systems.

In supervisory control systems, the operators perform the duty of monitoring and
typically only take over control when the autonomous system fails or encounters
a situation that it is not designed to handle. A supervisory role leads to two key
problems: loss of skill over time (Boehm-Davis et al. 1983) and the loss of vigilance
over time in a monitoring capacity (Endsley and Kiris 1995; Parasuraman 1986).
Due to these two reasons, when operators are forced to take over manual control,
they might not be able to successfully control the system.

As such systems are developed, it is important to understand how people’s
attitudes about the technology will influence its adoption and correct usage. A key
factor shaping people’s attitudes towards autonomous systems is their trust of the
system; hence, we are striving to learn the factors that influence trust, whether for
all autonomous systems or for particular domains. Without an appropriate level of
trust or distrust, depending upon the circumstances, people may refuse to use the
technology or may misuse it (Parasuraman and Riley 1997). When people have
too little trust, they are less likely to take full advantage of the capabilities of the
system. If people trust systems too much, such as when challenging environmental
conditions cause the systems to operate at the edge of their capabilities, users are
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unlikely to monitor them to the degree necessary and therefore may miss occasions
when they need to take corrective actions.

Thus it is important to understand how develop appropriate levels of trust prior to
designing these increasingly capable autonomous systems. Without understanding
the factors that influence trust, it is difficult to provide guidance to developers of
autonomous systems or to the organizations commissioning their development. In
contrast, a knowledge of the way particular factors influence trust can allow a
system to be designed to provide additional information when needed to increase
or maintain the trust of the system’s user in order to ensure the correct usage of the
system.

We have seen that trust of intelligent systems is based on a large number of
factors (Desai et al. 2012). In our prior work (Desai et al. 2012, 2013), we have
found that the mobile robotics domain introduces some different trust-related factors
than have been found in the industrial automation domain. There is some overlap,
however: a common subset of trust factors appears in both domains. Given our prior
results, we believe that there is a core set of factors across all types of intelligent
system domains that has yet to be codified. Further, it may be necessary to identify
factors specific to each application domain.

Our ultimate goal is to understand the factors that affect trust in automation
across a variety of application domains. Once we have identified the factors, our
objective is to develop a core model of trust. In this chapter, we present two methods
for identifying factors influencing trust and for building a trust model.

In the first method, we used online surveys of potential system users to identify
the factors that most influence people’s trust in two domains: automated cars and
medical diagnosis systems. Our goal was to determine the factors influencing trust
for these domains and compare them to determine the degrees of overlap and
dissimilarity. Based upon these findings, we present a method for developing a core
trust model.

In the second method, we used a series of human subjects experiments on a real
robot to explore the influence of a number of variables upon people’s trust of a robot
system. Based upon the findings from these experiments, we built a model of trust.

This chapter describes our research methodology and findings for both methods
of modeling trust, concluding with a discussion of the pros and cons of each method.

11.2 Prior Work in the Development of Trust Models

Sheridan and Verplank (1978) were among the first researchers to mention trust
as an important factor for control allocation. According to their research, one of
the duties of the operator was to maintain an appropriate trust of the automated
system. However, the first researcher to investigate the importance of trust on
control allocation was Muir (1989). According to Muir, control allocation was
directly proportional to trust: i.e., the more trust the operator had in a system, the
more likely he/she was to rely on it and vice versa. If the operator’s trust of the
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automated system is not well calibrated, then it can lead to abuse (over-reliance) or
disuse (under-reliance) on automation. Since this model of trust was first proposed,
significant research has been done that indicates the presence of other factors that
influence control allocation either directly or indirectly via the operator’s trust of
the automated system. Some of the factors that are known to influence trust or have
been hypothesized to influence trust are explained in brief below.

• Reliability: Automation reliability is one of the most widely researched and one
of the most influential trust factors. It has been empirically shown to influence
an operator’s trust of an automated system (Dzindolet et al. 2003; Riley 1996;
deVries et al. 2003). Typically, lower reliability results in decreased operator
trust and vice versa. However, some work with varying reliability indicates that
the timing of the change in reliability can be critical (Prinzel III 2002).

• Risk and reward: Risk and reward are known to be motivating factors for
achieving better performance. Since lack of risk or reward reduces the motivation
for the operator to expend any effort and over-reliance on automation reduces
operator workload (Dzindolet et al. 2003), the end result for situations with low
or no motivation is abuse of automation.

• Self-confidence: Lee and Moray (1991) found that control allocation would not
always follow the change in trust. Upon further investigation, they found that
control allocation is dependent on the difference between the operator’s trust of
the system and their own self-confidence to control the system under manual
control.

• Positivity bias: The concept of positivity bias in HAI research was first proposed
by Dzindolet et al. (2003). They borrowed from the social psychology literature,
which points to a tendency of people to initially trust other people in the absence
of information. Dzindolet et al. showed the existence of positivity bias in HAI
through their experiments. The theory of positivity bias in the context of control
allocation implies that novice operators would initially tend to trust automation.

• Inertia: Researchers observed that when trust or self-confidence change, it is not
immediately followed by a corresponding change in control allocation (Moray
and Inagaki 1999). This delay in changing can be referred to as inertia. Such
inertia in autonomous systems can be potentially dangerous, even when the
operator’s trust is well calibrated. Hence, this is an important factor that warrants
investigation to help design systems with as little inertia as possible.

• Experience: In an experiment conducted with commercial pilots and undergrad-
uate students, Riley (1996) found that the control allocation strategy of both
populations was almost similar with one exception: pilots relied on automation
more than the students did. He hypothesized that the pilots’ experience with
autopilot systems might have resulted in a higher degree of automation usage.
Similar results were found in our work (Desai 2012) when participants familiar
with robots relied more on automation than those participants not familiar with
robots.

• Lag: Riley (1996) hypothesized that lag would be a potential factor that could
influence control allocation. If there is a significant amount of lag between the
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operator providing an input to the system and the system providing feedback
to that effect, the cognitive work required to control the system increases.
This increased cognitive load can potentially cause the operator to rely on the
automated system more.

11.2.1 Trust Models

In the process of investigating factors that might influence operator’s trust and
control allocation strategy, researchers have modeled operator trust on automated
systems (e.g., Muir 1987; Lee and Moray 1992; Riley 1996; Cohen et al. 1998;
Farrell and Lewandowsky 2000; Moray et al. 2000). Over a period of two decades,
different types of trust models have been created. Moray and Inagaki (1999)
classified trust models into five categories for which they explain the pros and cons
of each type in brief: regression models, time series models, qualitative models,
argument based probabilistic models, and neural net models.

Regression models help identify independent variables that influence the depen-
dent variable (in most cases trust). These models not only identify the independent
variables but also provide information about the relationship (directly proportional
or inversely proportional) between each of the independent variables and the
dependent variable and the relative impact of that independent variable with respect
to that of other variables. The model presented in Sect. 11.4.3 is an example of a
regression model. These models, however, cannot model the dynamic variances in
the development of trust and hence must be used only when appropriate (e.g., simply
identifying factors that impact operator trust). Regression models can be used to
identify factors that impact trust but do not significantly vary during interaction
with an automated system, and, based on this information, appropriate steps can be
taken to optimize overall performance. This information can potentially be provided
to the automated system to allow it to better adapt to each operator. Regression
models have been utilized by other researchers (Muir 1989; Lee 1992; Lee and
Moray 1992).

Time series models can be used to model the dynamic relationship between trust
and the independent variables. However, doing so requires prior knowledge of the
factors that impact operator trust. Lee and Moray (1992) used a regression model to
initially identify factors and then used a time series model (AutoRegressive Moving
AVerage model: ARMAV) to investigate the development of operator trust. Through
that model, Lee and Moray found that the control allocation depends on prior use
of the automated system and individual biases, along with trust and self-confidence.
Using a time series model requires a large enough data set that can be discretized
into individual events. For example, in an experiment conducted by Lee and Moray,
each participant operated the system for a total of 4 hours, which included twenty-
eight individual trials (each 6 minutes long). Qualitative data was collected at the
end of each run that might have had a faulty system throughout the run. Unlike most
other types of models, time series models can be used online to predict future trust
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and control allocation and perhaps initiate corrective action if needed. However, to
our knowledge, no such models exist.

In qualitative models, the researchers establish relationships between different
factors based on quantitative data, qualitative data, and their own observations. As
Moray and Inagaki (1999) point out, such models can provide valuable insight into
how trust, control allocation, and other factors interact. A model of trust partly
based on the human-human model of trust developed by Muir (1989) and the
model of human-automation interaction by Riley (1994) takes advantage of two
well-established qualitative models. Given the heuristic nature of these models,
they cannot be used to make precise predictions about trust and control allocation;
however, they can and often have been used to create a set of guidelines or
recommendations for automation designers and operators (e.g., Muir 1987; Chen
2009).

Farrell and Lewandowsky (2000) trained a neural net to model the operator’s
control allocation strategy and be able to predict future actions by the operator.
The model, based on connectionist principles, was called CONAUT (Connectionist
Model of Complacency and Adaptive Recovery). Their model received digitized
information as sets of ten bits for each task. Using that model, the authors predicted
that cycling between automatic and manual control could eliminate operator
complacency. While such models can accurately model trust and control allocation
strategies, they require large data sets. Due to the nature of neural networks, it is not
feasible to extract any meaningful explanation about how the model works.

11.2.2 Trust in Human-Robot Interaction (HRI)

Human-Robot Interaction (HRI) is a diverse field that spans from medical robots
to military robots to social robots to automated cars. While it would be ideal to
create a model of trust that generalizes to all of HRI, it is important to narrow
the scope of investigation because we hypothesize that the application domain is
a significant factor in the trust model. Various taxonomies have been defined for
HRI (e.g., Dudek et al. 1993; Yanco and Drury 2004). One such taxonomy for
robots defines the system type by their task (Yanco and Drury 2004). Another
possible classification for robots is their operating environment: ground, aerial,
and marine robots. The scope of the research described in this paper is limited to
remotely controlled unmanned ground robots that are designed for non-social tasks.
Unmanned ground robots represent a significant number of robots being developed
and hence the contributions of this chapter should impact a significant number of
application domains within HRI.

Several application domains within the realm of unmanned ground robots are
classified as mobile robots, such as factory robots (e.g., Kiva Systems 2011;
CasePick Systems 2011), consumer robots (e.g., iRobot 2011; Neato Robotics
2011), and autonomous cars (e.g., Thrun 2010; Dellaert and Thorpe 1998). How-
ever, one of the more difficult domains is urban search and rescue (USAR). USAR
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robots typically operate in highly unstructured environments (Burke et al. 2004),
involve a significant amount of risk (to the robot, operating environment, and the
victims), and are remotely operated. These factors that make operating USAR robots
difficult also make USAR the ideal candidate for examining different factors that
influence trust in HRI.

Along with the models of operator reliance on automation (Riley 1996), the
models of trust, the list of known factors, and the impact of these factors on operator
trust have been well researched in HAI (e.g., Muir 1989; Moray and Inagaki 1999;
Dzindolet et al. 2001). However, the automated systems used for research in HAI
and in real world applications differ from the typical autonomous robot systems
in HRI and therefore necessitate investigating trust models in HRI. Some of the key
differences between typical HAI systems and HRI, along with unique characteristics
of HRI relevant to operator trust, are explained in brief below.

• Operating environment: The operating environment of most systems in HAI is
very structured and well defined (e.g., automated plant operation or automated
anomaly detection). On the other hand, the operating environment for USAR can
be highly unstructured (Burke et al. 2004) and unfamiliar to the operator. The lack
of structure and a priori knowledge of the environment can limit the autonomous
capabilities and can also impact the reliability of the autonomous robots.

• Operator location: When operators are co-located with the autonomous system,
it is easy for the operator to assess the situation (e.g., auto-pilots). However,
with teleoperated robots, the operator can be up to a few hundred feet or
more away from the robot. This physical separation between the robot and the
operator makes it difficult to assess the operating environment and can impact
the development of trust. While sensors and actuators are not unique to robots,
remotely controlling actuators is more difficult with noisy sensors. In most of the
experimental methodologies used in HAI, noisy sensors are not used and hence
their impact on automation or the operator are not investigated.

• Risk: The level of risk involved in HAI domains varies widely, ranging from
negligible (e.g., automated decision aids; Madhani et al. 2002; Dzindolet et al.
2001) to extremely high (e.g., autopilots, nuclear plants). However, the research
that does exist mostly involves low risk scenarios (Muir 1989; Riley 1996;
Sanchez 2006). In contrast, domains like USAR carry a significant amount of
risk that the operator needs to understand and manage accordingly.

• Lag: Unlike HAI, where the input to the system and the feedback from the
system is immediate, the delay in sending information to the robot and receiving
information from the robot can vary based on the distance to the robot and the
communication channel. This delay, ranging from a few hundred milliseconds to
several minutes (e.g., in the case of the Mars rovers) can make teleoperating a
robot incredibly difficult, forcing the operator to rely more on the autonomous
behaviors of the robot.

• Levels of autonomy: Automated systems typically studied in HAI operate at one
of two levels of autonomy on the far ends of the spectrum (i.e., completely
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manual control or fully automated). In HRI, robots can often be operated at
varying levels of autonomy (e.g., Bruemmer et al. 2002; Desai and Yanco 2005).

• Reliability: Due to the nature of noisy and often failure prone sensors used in
robotics, the reliability of automated behaviors that rely on those sensors is often
lower than typically high reliability levels used for HAI research (Bliss and Acton
2003; Dixon and Wickens 2006).

• Cognitive overload: Teleoperating a remote robot can be a cognitively demanding
task. Such demands can impact other tasks that need to be carried out simulta-
neously. Cognitive load can also result in operators ceasing to switch autonomy
modes (Baker and Yanco 2004).

Along with these differences, the experimental methodology used for most of
HAI research has either been based on abstract systems, micro-worlds, or low
fidelity simulations (Moray and Inagaki 1999). These setups cannot be used to
investigate the subtle effects of different characteristics listed above. Hence, a
real-world experimental scenario will be used to examine trust in HRI in one of
the methods presented in this chapter. Section 11.4.1 explains the details of the
experimental methodology along with the different factors that will be examined
and a motivation for examining them.

11.3 The Use of Surveys as a Method for Developing
Trust Models

While experiments that allow people to use real systems can produce valuable
insights into the factors that influence trust, the nature of the experimental proce-
dures do not allow for very large sets of people to be included. To allow for a larger
set of people to be queried, we decided to explore the use of surveys for developing
trust models. We selected two domains to begin: automotive and medical. Specif-
ically, we focused on driverless cars (e.g., Google Cars) and automated medical
diagnoses (e.g., IBM’s Watson). There were two dimensions for each survey: the
safety criticality of the situation in which the system was being used and name-brand
recognition. We designed the surveys and administered them electronically, using
Survey Monkey and Amazon’s Mechanical Turk. We then performed statistical
analyses of the survey results to discover common factors across the domains,
domain-specific factors, and implications of safety criticality and brand recognition
on trust factors. We found commonalities as well as dissimilarities in factors
between the two domains, suggesting the possibility of creating a core model of
trust that could be modified for individual domains.
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11.3.1 Methodology

We chose the automotive and medical domains for several reasons. The successful
completion of over 300,000 miles by Google’s driverless car, as well as the rulings
in three states and the District of Columbia legalizing the use of driverless cars
(Clark 2013), holds much promise for these cars becoming commonplace in the near
future. Watson, a question-answering agent capable of referencing and considering
millions of stored medical journal articles, is also promising. Little research has
been conducted about the public’s opinion on IBM’s Watson, so the relationship
between humans and medical diagnosis agents is uncharted territory.

We felt that the general public could be expected in the future to interact with
both automated cars and Watson (in conjunction with their physicians). Thus, we
developed computer-based survey instruments that could be administered over the
Internet to a wide audience. The surveys resided in Survey Monkey and were
accessed via Amazon’s Mechanical Turk so that respondents could be paid for
their time. The surveys were administered in two rounds, with the first round being
exploratory. After making improvements to the surveys, including the addition of
factors identified by the initial participants in the “other” category, we released the
second round, the results of which are reported in this paper.

Each round of surveys consisted of eight different variations: four for each of
the two domains. All of the surveys began with the same demographic questions,
including gender, age, computer usage, video game playing, and tendencies to
take risks. Then each survey variant had a unique scenario designed to capture
differences in public opinions depending on the seriousness of the situation (“safety
critical” versus “non-safety critical”) and the brand of the automated machine (well-
known brand from a large organization versus a brand from an unknown startup).
Thus there are four variations for each domain: safety critical and well-known brand
(branded); safety critical and unknown brand (non-branded); non-safety critical and
branded; and non-safety critical and unbranded.

In the automotive safety critical scenario, the environment was described as high-
speed, with lots of traffic. In the non-safety critical scenario, the environment was
described as low-speed with little traffic. While one might argue that all driving is
safety critical, clearly it is more difficult to ensure safe travel at higher speeds and
with more traffic. It is also more difficult to imagine oneself taking over control from
such an autonomous system at high speeds in difficult driving conditions.

In the medical safety critical scenario, the task described was to determine
diagnoses and treatments of three possible types of cancer. In the non-safety critical
scenario, the respondent was given ample information to be certain that the affliction
was not life threatening. The three possible afflictions in the non-safety critical
scenario include mononucleosis, influenza, or the common cold. Cancer denotes
a greater level of importance and urgency whereas the latter situation seems less
dire.

In addition to the severity of the situation, we wanted to see whether the brand
of the automated machine affected people’s trust level as well. For the automotive
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domain, we explicitly described the automated system as being a Google Car for
the two branded surveys. For the medical domain, we specified that Watson was a
product of IBM in two survey variants. In the remaining survey variants, we did not
label the automated machine as either the Google Car or IBM’s Watson; instead,
we said that a small, startup company developed the systems. In this way, we hoped
to identify the extent to which the reputation of the company influences trust in an
intelligent system in these domains.

Each survey in the automotive domain presented a list of 29 factors that could
influence a person’s trust of an automated system; surveys in the medical domain
presented 30 factors. This list of factors was determined initially from a literature
search, including the factors from Desai (2012) discussed below in the results
section. We started with a shorter list in the initial design of our surveys; we released
each of these initial surveys to small sample sizes (25 per survey; 100 in each
domain, for a total of 200). Based upon these preliminary results, we added some
additional factors, which were identified by respondents in a free-text “other” field.
This process resulted in the full list factors for each domain used in the second
version of the surveys, some of which were specific to the particular automation
domain and others that were common to the two. The results presented in this paper
are from the second version of the surveys, with 100 respondents for each of the
eight survey variants.

The surveys also included three test questions used to ensure that respondents
were actually reading the survey and answering to the best of their ability: “this
sentence has seven words in it,” “most dogs have four legs,” and “the influence of
the color of one’s shirt” on their trust of an autonomous system. If a respondent
answered one or more of these test questions incorrectly, their data was removed
from the dataset.

We created each survey on Survey Monkey and utilized Amazon Mechanical
Turk to disseminate them to the public. We narrowed our pool to residents of
the United States with a minimum age of 18. We paid each respondent $0.90 to
complete the survey. This human subjects research was approved by MITRE’s IRB.

11.3.2 Results and Discussion

We released 100 HITs (Human Intelligence Tasks) on Mechanical Turk for each
of the versions of our surveys. Each survey had 83 questions, similar except for
the wording that pertained to branding/not and safety critical/not. After discarding
responses that had one or more of the test questions described in Sect. 11.3.1
answered incorrectly, we had 382 responses in the medical diagnosis domain (231
male, 151 female; mean age 31.1 (9.0)) and 355 in the car domain (191 male, 164
female; mean age 35.6 (12.6)).

For the medical domain, we had 91 valid responses for the branded and safety
critical version, 101 for branded and not safety critical, 97 for non-branded and
safety critical, and 93 for non-branded and not safety critical. For the automotive
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domain, we had 90 valid responses for the branded and safety critical version, 92
for branded and not safety critical, 82 for non-branded and safety critical, and 91
for non-branded and not safety critical. The gender and age demographics were not
significantly different between the survey versions for each domain.

For each of the trust factors, respondents were asked to rank how the factor would
influence their trust in the system on a 7 point Likert scale, with 1 meaning “strongly
disagree” and 7 meaning “strongly agree.” The results for the trust factors were
aggregated for the automotive domain and for the medical domain. In Tables 11.1
and 11.2, we present the list of factors sorted on the mean score from the Likert
scale; while a Likert scale is not a continuous scale and averaging the responses is
not strictly correct, it does allow us to see which factors have greater influence on
trust across the respondents. Due to this limitation of a Likert scale, we discuss our
results in terms of the top, middle and bottom thirds, rather than a strict ordering
based upon the mean.

In both domains, the ability of a system to stay up-to-date, statistics about its past
performance, and the extent of the research on the system’s reliability are important
factors for influencing trust in the system, appearing in the top third in both domains.
In the middle third, both domains included the person’s own past experience with
the system, the reputation of the system, the effectiveness of the system’s training
and prior learning, and observing a system’s failure. These common factors could
form the basis of a model of trust for automated systems; of course, we need to
expand our work to many other domains in order to discover the true core.

In the bottom third, both domains include the system’s possibility of being
hacked, the system’s user-friendliness, its ability to communicate effectively, the
popularity of the system, and the aesthetics of the system. These factors are being
judged as unimportant to trust by respondents in both domains. However, there may
be some domains where issues related more to user interface and the usability of
the system could come into play. For example, in a social robot domain such as
companion robots for the elderly, the way the system looks could have a greater
influence on the user’s trust of the system: a pet-like robot covered in fur might
be more trusted than a more machine-like system showing metal and wires, for
example.

We found that there are domain specific factors present in the top third of the
list. For the medical domain, respondents ranked the accuracy of the diagnosis,
verification of the diagnosis, and the doctor’s ability to use the machine in the
top third. In the automotive domain, reliability also ranked in the top third through
several of the factors. In our survey design, we elected to have a number of questions
about reliability to determine if there were different aspects of reliability. While we
did see some differences, the list of factors could be reduced by using reliability in
place of this group of factors; we will do this when we move to the next phase where
we ask respondents to rank trust factors in order of importance.

Of note is where the responsibility of system verification and understanding
lies between the two domains. In the top third of the factors in the medical
domain, we see that people are looking to the doctor to mediate the results of
the automated system. However, respondents are relying more on themselves in
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Table 11.1 Rankings of the factors that can influence trust of an automated system in the
automotive domain

Automotive domain
Rank Ref Influence factor Mean Std. dev

Top third 1 A Statistics of the car’s past performance 5.98 1.32
2 B Extent of research on the car’s reliability 5.87 1.39
3 My own research on the car 5.82 1.33
4 Existence of error/problem indicators 5.79 1.49
5 Possibility that the hardware or software may

fail
5.69 1.70

6 Credibility of engineers who designed the car 5.69 1.53
7 C The car’s ability to stay up-to-date 5.64 1.53
8 Technical capabilities of the car 5.55 1.55
9 Your understanding of the way the car works 5.54 1.48

10 Your past experience with the car 5.53 1.66
Middle third 11 D Reputation of the car 5.49 1.57

12 Level of accuracy of the car’s routes 5.49 1.48
13 Amount of current roadway information

available to the car (e.g., weather, traffic,
construction, etc.)

5.43 1.65

14 E Effectiveness of the car’s training and prior
learning

5.41 1.63

15 Amount of information that the car can access 5.41 1.64
16 F Observing a system failure (e.g., making a

wrong turn, running a stop light)
5.37 2.00

17 Accuracy of the route chosen 5.36 1.60
18 User’s familiarity with the car 5.29 1.58
19 The reputation of the car manufacturer 5.27 1.66

Bottom third 20 Agreement of routes between car and my
knowledge

5.26 1.55

21 The car’s methods of information collection 5.24 1.52
22 G Possibility of the car being hacked 5.09 1.94
23 H The user-friendliness of the car 5.04 1.69
24 Amount of verification by your friend of the

car’s proposed route and driving ability
4.73 1.71

25 Your friend’s training to use the car effectively 4.68 1.99
26 I The car’s ability to communicate effectively

(e.g., accurate grammar, breadth of vocabulary)
4.60 1.88

27 J Popularity of the car 3.38 1.74
28 K Aesthetics of the car 3.01 1.72

Factors ranked in the same thirds for both the automotive (this table) and medical (Table 11.2)
domains are cross-referenced with letters in the “Ref” column. These common factors appearing
in the same third of the rankings give evidence that a core model of trust factors could be developed.
The other factors, which are common to both domains but ranked in different thirds or which are
domain specific, would be the domain specific factors used to customize the core trust model for a
particular domain
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Table 11.2 Rankings of the factors that can influence trust of an automated system in the medical
domain

Medical domain
Rank Ref Influence factor Mean Std. dev

Top third 1 Accuracy of the diagnosis 6.33 1.04
2 Level of accuracy of the machine’s diagnosis 6.07 1.16
3 A Statistics of machine’s past performance 6.04 1.20
4 C The machine’s ability to stay up-to-date 5.97 1.17
5 Amount of your information available to the

machine (e.g., x-rays, physicals, cat scans, etc.)
5.85 1.26

6 Amount of verification by your doctor of the
machine’s suggestions

5.84 1.19

7 Agreement of diagnoses between doctor and
machine

5.83 1.32

8 Doctor’s training to use the machine effectively 5.80 1.24
9 Amount of information that the machine can

access
5.79 1.25

10 B Extent of research on the machine’s reliability 5.79 1.3
Middle third 11 E Effectiveness of the machine’s training and

prior learning
5.63 1.35

12 Technical capabilities of the machine 5.62 1.31
13 Existence of error/problem indicators 5.52 1.49
14 D Reputation of the machine 5.50 1.41
15 The machine’s methods of information

collection
5.46 1.29

16 Possibility that the hardware or software may
fail

5.34 1.64

17 Credibility of engineers who designed the
machine

5.31 1.52

18 Your past experience with the machine 5.25 1.44
19 F Observing a system failure (e.g., making an

incorrect diagnosis)
5.15 1.88

Bottom third 20 User’s familiarity with the machine 5.07 1.52
21 G Possibility of the machine being hacked 5.06 1.88
22 My own research on the machine 5.04 1.52
23 Your understanding of the way the machine

works
5.03 1.59

24 The reputation of the machine’s manufacturer 4.87 1.65
25 Amount of time the doctor consults other

doctors
4.74 1.72

26 I The machine’s ability to communicate
effectively (accurate grammar, breadth of
vocabulary)

4.61 1.68

27 H The user-friendliness of the machine 4.07 1.66
28 J Popularity of the machine 3.77 1.72
29 K Aesthetics of the machine 2.64 1.74

Factors ranked in the same thirds for both the automotive (Table 11.1) and medical (this table)
domains are cross-referenced with letters in the in the “Ref” column
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the automotive domain. This responsibility can be demonstrated by the fact that
“your understanding of the way the [system] works” ranks in the top third for the
automotive domain, but in the bottom third for the medical domain. Models of trust
for automated systems will need to take into account whether the system is used
directly by an end-user or whether it is utilized by a mediator for the end-user.
Other such domains might include automated stock trading systems.

In some of our earlier work (Desai 2012), we also utilized Amazon’s Mechanical
Turk to determine factors that would influence human-robot interaction for novice
robot users. To obtain these results, Desai created a series of videos showing robots
moving in a hallway environment, which were watched by the survey respondents.
Test questions included the color of the robot shown in the video to ensure that the
video had been watched. There were 386 valid responses received.

Desai (2012) reports the top six factors that influence trust of a robot system
are reliability, predictability, trust in engineers that designed the robot, technical
capabilities of the robot, system failure (e.g., failing sensors, lights, etc.), and risk
involved in the operation. The factors in the middle third were error by automation,
reward involved in the operation, interface used to control the robot, lag (delay
between sending commands and the robot responding to them), and stress. The
factors in the bottom third were training, situation awareness (knowing what is
happening around the robot), past experience with the robot, size of the robot, and
speed of the robot.

While our surveys presented 30 possible factors to respondents and Desai’s had
a total of 17, we see some similarities between the factors in the top third, most
notably reliability (although, as discussed above, our surveys presented several
questions about aspects of reliability). We also found that trust in the engineers who
designed the system was important to our respondents, largely through the different
surveys presented for branded vs. non-branded automated systems.

For both application domains, we found a significant difference in people’s trust
of the system based upon whether the system was made by a well-known company
(Google for the automotive domain; IBM’s Watson for the medical domain) vs.
a “small, startup company.” Our surveys had two questions about branding, to
which participants answered on a 7 point Likert scale, with 1 meaning “strongly
disagree” and 7 meaning “strongly agree.” In the first, participants were asked
to rate the statement “I trust the machine’s capabilities because it was created by
[‘IBM’, ‘Google’, or ‘a small, startup company’].” The second statement asked if
the participant’s “trust in a fully-autonomous system similar to this machine would
decrease if it was created by [‘a lesser-known company’ for the IBM and Google
versions or ‘a more established company’ such as Google or IBM].” Results are
shown in Tables 11.3 and 11.4.

Clearly, given these findings, it will require additional work for designers of
automated systems to convince users to trust the systems made by small companies.
However, one could note that Google was a small, startup company not long ago.
Other factors such as past performance of the system can also be used to assist with
the trust of a non-branded automated system.
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11.3.3 Modeling Trust

A core model of trust can be formulated by looking at the common factors in the
top third of the survey results. In the case of this work, the core factors would be
statistics about the system’s past performance, the extent of research on the system’s
reliability, and the system’s ability to stay up to date. While this last factor will
have different meanings in each domain, either referring to the medical information
necessary to perform a diagnosis or to road information needed to drive safely and
accurately, it is still a core factor that influences people’s trust in an automated
system.

Factors that rank highly in one domain, but low in the other, could be used as
factors to customize the core model of trust for the particular application domain.
For example, in the medical domain, we see top ranked factors addressing the
accuracy of the system and the doctor’s interpretation of the system. In contrast,
in the automotive domain, we see more reliance on self-knowledge and the car’s
ability to convey information.

It is important to note that, given the fact that the users of Amazon’s Mechanical
Turk skew towards having more education than the average population (Ross et
al. 2010), the responses reported in this paper might not be applicable to the
general population but instead might only be applicable to the population with an
undergraduate degree or greater. We need to conduct an analysis of the data with
respect to education level to determine if there are differences between responses for
different levels of education. However, despite this potential limitation of our survey
population, we believe surveys like ours can identify factors that will influence trust.

While our surveys allowed people to specify the relative importance of the
factors, they did not provide people with the means to indicate whether that factor
would result in an increase or decrease in trust. Our next step will be to conduct
surveys asking people to choose the top factors which influence their trust, ranking
them from most to least important. We will also explore the influence that these
factors have upon each other; for example, a system’s ability to explain its action
influences the system’s understandability.

We are also expanding this research to other automated system domains. Our
methodology will need to change for some of these domains, as we have been
relying on people from the population of Mechanical Turk workers. While such
people are well qualified to answer questions about cars and doctor’s visits, they
will be less qualified to answer questions about the use of automated systems in
very specialized domains such as the military or power plants. However, we believe
that the use of surveys, whether completed by “average” people or people working
in specialized domains, will allow us to identify the top factors influencing trust in
automated systems in each domain. As we explore more domains, we will be able
to identify those factors that are common to many domains; these factors will form
the common core of a trust model.
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11.4 Robot Studies as a Method for Developing Trust Models

The primary goal of the research described in this section was to create a better
understanding of different factors that impact operator trust and control allocation
when interacting with an autonomous remote robot. We also wanted to investi-
gate how certain attributes central to remote robot teleoperation (e.g., situation
awareness, workload, task difficulty) impact operator behavior. By observing the
variations in the different factors and how they affect operator trust and control
allocation strategy, a model of operator interaction specifically for teleoperation of
an autonomous remote robot was constructed and has been used to create a set of
guidelines that can improve the overall system performance.

11.4.1 Methodology

The robot used is an iRobot ATRV-JR platform, shown in Fig. 11.1. The ARTV-
JR has differential drive and a wide array of sensors. These sensors include a front
facing SICK LMS-200 laser range finder that can scan 180ı, a rear facing Hokuyo
URG-04LX laser range finder with a field of view of 240ı, a Directed Perception
PTU-D46-17 pan-tilt unit with a Sony XC-999 camera mounted on it, and a rear
facing Canon VC-C4 camera mounted on the back of the robot. The robot also has
a 3.0 GHz Intel Core2Duo processor with 4 GB of memory and runs Ubuntu 8.04.

Fig. 11.1 The ATRV-JR used
in the robot experiments to
explore trust factors in
human-robot interaction
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It has an 802.11 n radio capable of operating on both the 2.4 and 5.0 GHz range.
The client code to control the robot is written in CCC using Player (Gerkey et al.
2003) and compiled using GCC.

Almost all of the prior research in HAI has focused on using two autonomy
modes on the far ends of the spectrum. In accordance with this existing research,
we decided to provide the participants with two autonomy modes. One of those
autonomy modes was at the high end of the autonomy spectrum. Rather than
selecting the second autonomy mode to be manual teleoperation mode we decided to
opt for a similar autonomy mode where the robot would assist the participants. The
key reason was to always keep the participant informed about the robot’s behavior,
something that would not be possible with a pure manual teleoperation mode. The
participants could operate the robot in one of two autonomy modes: robot-assisted
mode or fully autonomous mode. The participants were free to select either mode
and could switch between them as many times as they wanted. They were also
told that there were no benefits or penalties for selecting either mode. When each
run was started, no autonomy mode was selected by default, thereby requiring the
participants to make an explicit selection. The maximum speed at which the robot
moved was the same in both modes and was restricted to approximately 0.12 meters
per second. These configurations ensured that the performance of both autonomy
modes was similar.

In the fully autonomous mode, the robot ignored the participant’s input and
followed the hard coded path. The obstacle avoidance algorithm ensured that the
robot never hit any object in the course. In the robot-assisted mode, the participant
had a significant portion of the control and could easily override the robot’s
movements, which were based on the path it was supposed to follow. The robot’s
vectors were calculated the same way in both autonomy modes and were displayed
on the user interface (UI) on the laser display to show the participant the robot’s
planned direction.

Figure 11.2 shows the test course designed for these experiments. The course was
approximately 18.3 meters long and had 5 obstacles (boxes) placed about 2.7 meters
from each other. The width of the course was 2.4 meters. The clearance on either
side of the boxes was 0.9 meters, versus a robot width of approximately 0.7 meters.
Therefore the small clearance on either side of the boxes made it difficult to drive.

Fig. 11.2 The test course used in the experiments
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The course had moderate foot traffic, as it was placed in a hallway in a public
building; however, we found that people walking through the area were able to do so
in a way that did not interrupt the experiment. Additionally, during each experiment,
one of our researchers was with the robot at all times, so could ask people to avoid
the robot, if necessary.

The robot started and ended each run at the same location. For each run, the
participants had to follow a preset path. Since we planned five runs, we designed
five different paths (also referred to as maps) based on the following criteria:

• The length of each map must be the same (�61 meters).
• The number of U-turns in a map must be the same (3 U-turns).
• The number of transitions from the left side of the course to the right and vice

versa must be the same (three transitions).

Since the maps were similar in difficulty and length, they were not counter-
balanced. Instead, the maps were selected based on a randomly generated sequence.
A sample map is shown in green in Fig. 11.2.

Each box on the course had text labels to provide navigational information to the
participants. Text labels were placed on top of the boxes to indicate the path ahead.
Since the boxes were wide, similar labels were placed on both edges of the face as
shown in Fig. 11.2, to make it easy for the participants to read the labels as the robot
moved past the boxes. The labels indicated one of three directions ‘left’, ‘right’,
or ‘uturn’. These directions were padded with additional characters to prevent the
participants from recognizing the label without reading them.

Two sets of labels were necessary to prevent the participants from driving in an
infinite loop. Figure 11.2 shows the two types of labels that were used. The labels
with a white background (referred to as white labels) were followed for the first half
of the entire length and then the labels with a black background (referred to as black
labels) for the second half. The transition from following the white labels to black
labels was indicated to the participants via the user interface (UI).

The boxes also had barcodes made from retro-reflective tapes that the robot could
read using its laser rangefinder (Fig. 11.2). While the robot did not actually use
these barcodes in the experiments (the localized pose of the robot was used instead
to encode the paths), the participants were told that the robot reads the barcodes
to determine the path ahead, just like they read the labels. The robot displayed
the contents of the bar code on the UI. The path for each run was predefined via
a set of navigation waypoints because the robot could not consistently read the
barcodes, making it difficult to have a controlled experiment. Based on a constant
video compression rate, sampling resolution, and the font size, the labels could be
read from about 0.9 meters away by a participant. The robot simulated reading the
labels from approximately the same distance, thereby reducing the potential for a
bias to rely on the robot or vice versa. The participants were informed that the robot
at times might make a mistake in reading the barcodes and that they should ensure
that the direction read by the robot was correct. Participants were also told that if
the robot did make a mistake in reading the barcode, it would then proceed to pass



11 Methods for Developing Trust Models for Intelligent Systems 239

Fig. 11.3 The user interface for the robot

the next box on the incorrect side, resulting in the participant being charged with an
error on their score (described below).

The course also had four simulated victims. These victims were represented
using text labels like the one shown in Fig. 11.2. The victim tags were placed only
on the walls of the course between 0.8 and 1.8 meters from the floor. The victim
locations were paired with the paths and were never placed in the same location
for any of the participant’s five runs. While there was a number associated with
each victim, the participants were told to ignore the number while reporting the
victims. Whenever participants found a new victim, they were told to inform the
experimenter that they have found a victim. They were explicitly instructed to only
report victims not reported previously. The experimenter noted information about
victims reported by the participants and also kept track of unique victims identified.

Figure 11.3 shows the UI utilized for controlling the robot. The video from the
front camera was displayed in the center and the video from the back camera was
displayed on the top right (mirrored to simulate a rear view mirror in a car). The
map of the course with the pose of the robot was displayed on the left. The distance
information from both lasers was displayed on the bottom around a graphic of the
robot just under the video. There were vectors that originate from the center of the
robot and extend out. These vectors indicated the current magnitude and orientation
of the participant’s input via the gamepad and the robot’s target velocity. The
participant’s vector was displayed in light gray and the robot’s vector was displayed
in blue.

The participants provided input using the gamepad shown in Fig. 11.3. Partici-
pants could drive the robot, control the pan tilt unit for the front camera, select the
autonomy modes, turn the brakes on or off, re-center the camera, and acknowledge
the secondary tasks.

The participants were asked to drive the robot as quickly as they could along
a specified path, while searching for victims, not hitting objects in the course,
and responding to the secondary tasks. To create additional workload, simulated
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sensors for CO2 and temperature were used. The participants were not told that the
sensors were not real. They were also told that the robot’s performance was not
influenced in any way by changes in temperature and CO2. The values from the
sensors were displayed on the UI (Fig. 11.3), which the participants were asked to
monitor. Participants were asked to acknowledge high CO2 and temperature values
by pressing the corresponding buttons on the gamepad. The values were considered
high when their values are above the threshold lines on the secondary task indicators
(Fig. 11.3); values over the threshold were indicated by changing the color of the
bars from light blue to red, to assist the participants in recognizing the change.
The level of workload was varied by changing the frequency with which the values
crossed the threshold during multiple robot runs; all participants experienced the
same patterns across their runs. The simulated sampling rate for the sensors was
kept steady.

In the feedback (Sect. 11.4.2.2), reduced task difficulty (Sect. 11.4.2.3) and long-
term (Sect. 11.4.2.4) experiments, the simulated sensor readings were removed from
the interface. In their place, participants were asked at regular intervals (every 25 s)
whether their trust in the robot had increased, stayed the same, or decreased. The
answers given were plotted over time during the run. We then defined the area under
the trust curve (AUTC) as a metric that could be used to measure on-line trust, as
opposed to end of run measures such as were used by Muir and Jian.

Using higher levels of automation can reduce workload and hence is desirable,
especially under heavy workload from other tasks. To prevent participants from
using high levels of autonomy all the time, regardless of the autonomous system’s
performance, it is typical to introduce some amount of risk. Hence, in line with
similar studies (e.g., Riley 1996; Lee and Moray 1992; Dzindolet et al. 2002),
the compensation was based in part on the overall performance. The participants
could select a gift card to a local restaurant or Amazon.com. The maximum amount
that the participants could earn was $30. Base compensation was $10. Another $10
was based on the average performance of five runs. The last $10 was based on the
average time needed to compete the five runs, provided that the performance on
those runs was high enough.

The performance for each run was based on multiple factors, with different
weights for each of these factors predetermined. The participants are told there
was a significant penalty for passing a box on the incorrect side, regardless of
the autonomy mode. If the participants passed a box on the wrong side, they were
heavily penalized (20 points per box). In addition to the loss of score, participants
were told that time would be added based on the number of wrong turns they took,
but the specific penalties were not revealed. For the first box passed on the wrong
side, no additional time was added, to allow participants to realize that the reliability
of the system had dropped. For the second incorrect pass, 60 s were added, with an
additional 120 s for the third and an additional 240 for the fourth, continuing with
a cumulative increase. Finding the victims was also an important task, so 10 points
were deducted for each victim missed.

The scoring formula was not revealed to participants, although they were told
about the factors that influence their score. The score for each run was bounded
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between 0 and 100. If the score was 50 or more, the participants were eligible for
a time bonus; if they completed all of the runs in an average of under 11:45 min,
they received an additional $10. If they had a score of 50 or more and averaged
between 11:45 and 15 min, they received a $5 bonus. Participants were told
about this interdependence between score and time, which was designed to prevent
participants from quickly running through the course, ignoring the tasks, while also
providing a significant motivation to perform the task quickly.

At the end of each run, the score was calculated and the participants were
informed about the amount of compensation that could be received based only on
that run. At the end of five runs, the average compensation was calculated and given
to the participant.

There were three sets of questionnaires. The pre-experiment questionnaire
was administered after the participants signed the consent form; it focused on
demographic information (i.e., age, familiarity with technology similar to robot
user interfaces, tendency towards risky behavior, etc.). The post-run questionnaire
was administered immediately after each run; participants were asked to rate their
performance, the robot’s performance, and the likelihood of not receiving their
milestone payment. Participants were also asked to fill out previously validated
trust surveys (Muir 1989; Jian et al. 2000) and a NASA Task-Load Index (TLX)
questionnaire (Hart and Staveland 1988) after each run. After the last post-run
questionnaire, the post-experiment questionnaire was administered, which included
questions about wanting to use the robot again and its performance. These human
subjects studies were approved by the University of Massachusetts Lowell’s IRB.

After participants signed the informed consent form, they were given an overview
of the robot system and the task to be performed. Then participants were asked to
drive the robot through the trial course in fully autonomous mode. The experimenter
guided the participants during this process by explaining the controls and helping
with tasks if necessary. The trial course was half the length of the test course. Once
participants finished the first trial run, they were asked to drive the robot again
through the same course in the robot-assisted mode. Since there were multiple
tasks that participants needed to perform, we decided to first show them the fully
autonomous mode, as that would be a less overwhelming experience. Once the
participants finished the second trial run, they were asked to fill out the post-run
questionnaire. While the data from this questionnaire was not used, it allowed
participants to familiarize themselves with it and also helped to reinforce some of
the aspects of the run that they needed to remember.

After the two trial runs, the participants were asked to drive the robot for five
more runs. In each run, a different map was used. During these runs the reliability of
robot autonomy was either held high throughout the run or was changed, according
to four pre-planned reliability configuration, shown in Fig. 11.4. The changes in
reliability were triggered when the robot passed specific points in the course. These
locations were equal in length and there were no overlaps. For all four patterns,
the robot always started with high reliability. The length of each low reliability
span was about one third the length of the entire course. Using different dynamic
patterns for reliability allowed us to investigate how participants responded to a drop
in reliability at different stages and how the changes influenced control allocation.
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Fig. 11.4 Reliability configurations for the robot’s runs

Every participant started with a baseline run under full reliability (Reliability A
in Fig. 11.4). Then, the four reliability profiles were counter-balanced for the
remaining four runs.

The methodology explained in this section was utilized for all of the experiments.
Since multiple factors (e.g., reliability, situation awareness, long-term use) needed
to be investigated, it was not feasible to design a within-subjects experiment. Hence,
a between-subjects experiment was designed. The overall concept was to conduct
multiple experiments, each with two independent variables (e.g., reliability and
situation awareness). The dependent variables were the operator’s trust and the
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control allocation strategy. To discern the influence of reliability and other factors
being investigated, a baseline experiment with dynamic reliability (DR) as the only
independent variable was conducted first. Data from that experiment was used as a
baseline for comparison with data from other experiments.

11.4.2 Results and Discussion

Using the methodology described in the prior section, we conducted experiments to
determine how a number of factors would influence an operator’s trust and control
allocation strategy: lowering situation awareness (SA), providing feedback about the
robot’s confidence in its current operations, reducing task difficulty, and long-term
interaction on operator trust and control allocation. This section presents qualitative
models based on the impact of those factors as determined by the experiments (for
the full results of the experiments, see Desai 2012) as well as a set of guidelines,
proposed to help better design autonomous robot systems for remote teleoperation
and to improve system performance during operation. These models are presented
in the context of the Human interaction with Autonomous Remote Robots for
Teleoperation (HARRT) model described in the next section.

11.4.2.1 Reducing Situation Awareness (SA)

Figure 11.5 shows the impact of comparing our baseline dynamic reliability (DR)
experiment with our low SA experiment (LSA) where the user interface was
modified to impact the participant’s SA.

As the participants’ SA was reduced, it increased their workload. We suspect
the increase in workload was due to the additional effort (cognitive and otherwise)
required to maintain the minimum required level of SA. Additionally, lowering SA
makes the task of remote teleoperation more difficult, which could also increase
workload. The combination of increased workload and poor SA increased the time
needed to finish the task.

We suspect that lowering SA forced participants into relying more on the
fully autonomous (FA) mode. Higher reliance on the FA mode improved the
control allocation strategy, since the ideal control allocation strategy required
the participants to rely more on FA than the robot-assisted (RA) mode. While the
increase in trust was unexpected, it can be explained by the higher reliance on FA
for a task that was difficult to perform manually.

Lowering SA also reduced the participants’ rating of the robot’s performance,
even though there was not a significant difference in performance. We suspect
this was due to two reasons: poor SA made it difficult to correctly judge the
robot’s performance and the participants could have blamed the robot for providing
inadequate information needed for teleoperation.

Guidelines based on the SA model, shown in Fig. 11.5, are as follows.
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Lowering SA

Increased time

Increased trust

More preferred FA mode

Improved control allocation strategy

Increased Workload

Reduced robot's performance rating

Increased mode switches

Fig. 11.5 The impact of reducing situation awareness (SA) on different factors. All of the effects
shown are based on significant differences between the Low Situation Awareness (LSA) and
Dynamic Reliability (DR) experiments

Guideline 1: Reduced SA leads to higher reliance on autonomous behaviors.
Intentionally reducing SA to force operators to rely on autonomous behaviors is
not recommended as a design strategy due to the other undesirable side effects.
However, such influence does remain a possibility, but should only be exercised
when absolutely necessary, since doing so can potentially impact safety and
performance.

Guideline 2: Suspend or defer non-critical tasks when SA is reduced. Even with
higher reliance on automation, the workload is expected to increase, so tasks that
are not critical should be suspended or deferred to offset the increased workload
and to prevent an overall detrimental impact on performance.

Guideline 3: Switch functions unaffected by reduced SA to automation. Functions
not impacted by reduced SA can be switched over to automation in an attempt to
reduce workload.

Guideline 4: Educate operators about SA. Operators associate robot performance
with SA and therefore operators must be informed (during training or during the
interaction) that low SA does not necessarily impact the robot’s performance.

11.4.2.2 Providing Feedback

Figure 11.6 shows the results of comparing results of the baseline Real-Time Trust
(RT) experiment with that of the Feedback (F) experiment where the participants
were provided with feedback concerning the robot’s confidence in its own sensors.
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Providing robot confidence feedback

Improved control allocation strategy

Decreased hits

Decreased time

Increased Workload

Increased self performance rating

Increased mode switches

Fewer wrong turns

Fig. 11.6 The impact of providing feedback on different factors. All of the effects shown are based
on significant differences between the Feedback (F) and Real-Time Trust (RT) experiments

Providing information about the robot’s confidence in its own sensors and
decision making to the participants increased their workload, as they were given
additional information that needed to be processed. Also, participants reacted to
the change in robot’s confidence by aggressively changing autonomy modes and
therefore increased the number of autonomy mode switches. We suspect these
autonomy mode changes were another reason that resulted in an increase in
workload.

However, increased autonomy mode switches and better robot supervision due
to the variations in the robot’s confidence resulted in a better control allocation
strategy, which in turn led to better performance. Despite the better performance,
the participant’s trust of the robot did not increase; we suspect this lack of increase
in trust was due to the type of feedback provided to the participants.

It is often conjectured that providing feedback should improve an operator’s trust
in the system by helping operators better align their mental model with that of the
system’s architecture and operation. However, in this case, the information provided
to the participants could not have helped achieve more synchronized mental models.
We suspect this discrepancy occurred because no information was provided that
could sufficiently explain why the robot made a mistake in reading the labels.
Providing such information requires feedback that provides details about the robot’s
internal processes. For example, informing the user that the robot cannot read labels
accurately at certain angles would explain the decrease in the robot’s confidence and
help the operators better understand the robot’s internal operation. The feedback
also provided negative information to the participants. It informed the participants
that the robot’s confidence was medium, low, or at best functioning as intended.

Providing feedback seems to directly impact workload and the operator’s control
allocation strategy and the impact of feedback on other attributes aligned with
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the HARRT model. (Figure 11.9 incorporates all of the models described in this
section.) Guidelines based on the feedback model are described below.

Guideline 5: Provide feedback only when necessary. There is a cost associated with
providing information to operators during their interaction with a remote robot.
Therefore, information that is not only important, but also essential for immediate
operation should be provided.

Guideline 6: Select the type of feedback based on the desired effect. The type of
feedback being provided to the operators must be considered carefully, since it
can impact an operator’s behavior. The corollary is, that based on the desired
effect on operator behavior, different types of feedback can be provided. For
example, a temporal impact on control allocation can be expected if the robot’s
confidence is being presented to the operators. However, if a long-term effect is
desired, other means of providing information must be selected. For example,
explaining the typical causes for reduction in the robot’s confidence could
provide the operators with better understanding of the robot and result in a
permanent effect. Guideline 5 must be considered while doing so.

11.4.2.3 Reducing Task Difficulty

Figure 11.7 shows the results of comparing data from the baseline Real-Time Trust
(RT) experiment with that of the Reduced Difficulty (RD) experiment where the
complexity of the teleoperation task was reduced.

With the teleoperation task easier to perform, we expected the participants to
not rely on the fully autonomous mode as much, and, consequently, a poor control
allocation strategy was expected. However, the control allocation strategy improved
along with an increase in autonomy mode switches. We suspect the reduced
difficulty of the teleoperation task reduced the participants’ workload and allowed

Reducing task difficulty

Improved control allocation strategy

Decreased time

Decreased hits

Fewer wrong turns

Increased self performance rating

Decreased perceived risk

Fig. 11.7 The impact of reducing task difficulty on different factors. All of the effects shown are
based on significant differences between the Reduced Difficulty (RD) and RT experiments
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them to better observe the robot’s performance in the fully autonomous mode. This
better robot supervision allowed them to switch autonomy modes appropriately and
improve the control allocation strategy. We suspect that improvement in supervision
and the resulting increase in autonomy mode switches increased the workload
enough to offset the initial reduction in workload due to the easier task.

The easier teleoperation task and the better robot supervision improved perfor-
mance and safety by reducing the number of hits, reducing the time needed to finish,
and reducing the number of wrong turns. Reducing the difficulty of the task seems
to primarily impact an operator’s control allocation strategy. The impact on other
attributes aligns with the HARRT model. Guidelines based on the reduced difficulty
model are described below:

Guideline 7: Tasks with reduced difficulty result in better robot supervision and no
reduction in workload. If the difficulty of the task reduces during an interaction
or for interactions that involve a relatively easy remote robot teleoperation
task, operators should be expected to allocate the additional available cognitive
resources towards better supervision of the robot’s behavior or secondary tasks.

Guideline 8: Do not expect operators to assume manual control for easier tasks.
Operators will not necessarily opt for lower autonomy modes, at least in scenar-
ios involving multiple tasks or a relatively high workload. While a reduction in
the difficulty of the task will improve performance and safety, the operator’s trust
of the system will not be affected.

11.4.2.4 Long-Term Interaction

The long-term interaction experiment (LT) was conducted to investigate if an
operator’s trust and control allocation strategy change over a longer period of
time. We looked for trends to incorporate into the model and a set of guidelines.
Another goal of the LT experiment was to investigate if there is a difference between
operators who are familiar with robots and those who are not.

Interestingly, no significant differences were found between sessions two through
six for any attribute. This lack of a difference between sessions and the significant
similarities found between sessions indicates that an operator’s behavior during
initial interaction can predict his or her behavior over the short term.

With respect to the impact of familiarity with robots, several significant differ-
ences were found. Figure 11.8 shows the impact familiarity with robots has on
operator behavior. It shows that while there was not a difference in performance,
participants who were familiar with robots trusted them less and had an increased
workload, perhaps due to feeling the need to execute better robot supervision, in
accordance with the HARRT model. The better robot supervision in turn positively
affected their control allocation strategy and also is consistent with the HARRT
model. Figure 11.9 shows the familiarity model incorporated into the HARRT model
and guidelines based on the reduced long-term and familiarity model are described
below:
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Familiarity with robots

Lowered trust (Muir/AUTC)

Decreased mode switches

Improved control allocation strategy

Increased workload

Increased perceived risk

Fig. 11.8 The impact of familiarity with robots on different factors. All of the effects shown
are based on significant differences between the two participant groups in the Long-term (LT)
experiment

Hits

Time

Manual errors TLX

Wrong turns

RQ2

RQ3

Perceived riskSelf performance rating

Use of RAMuir

Control allocation strategy

Situation awareness

Confidence feedback

Task difficulty

Age

Fig. 11.9 The original human and autonomous remote robot teleoperation (HARRT) model
augmented with all of models described in Sect. 11.4.2. The dashed and solid arrow lines indicate
an inverse relationship or a proportional relationship, respectively. RQ2 is the second question
about risk from Grasmick et al. (1993): “Sometimes I will take a risk just for the fun of it.” RQ4 is
the fourth question from Grasmick et al. (1993): “Excitement and adventure are more important to
me than security.” Participants were asked to answer these questions using a 6-point Likert scale
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Guideline 9: Initial operator behavior does not change over the short term. It is
possible to quickly assess and predict an operator’s behavior over a longer period
of time, based on their initial interactions with the robot.

Guideline 10: Familiarity with robots does not impact performance. Familiarity with
robots should not be interpreted as or confused with expertise in remote robot
teleoperation. While familiarity with robots impacts trust, it does not impact
performance.

11.4.2.5 Impact of Timing of Periods of Low Reliability

Periods of low reliability early in the interaction not only have a more immediate
detrimental impact on trust, but that effect lasts throughout the interaction as it
also impedes the recovery of trust. Since the experimental setup was designed
to require participants to rely more on the fully autonomous mode, the impact
of decreased trust on other parameters was not as noticeable. However, for most
balanced operations, the impact on trust would also be accompanied by a similar
impact on control allocation, performance, and workload. Guidelines based on the
impact of periods of low reliability early in the interaction are described below:

Guideline 11: Operator’s initial interactions must always be stable. The implica-
tions of the timing data are that initial segments of every interaction must be
stable and reliable. If needed, this experience should be facilitated by conducting
a short, controlled interaction.

Guideline 12: In the event of a reliability drop early in the interaction, corrective
measures must be taken. These steps (e.g., providing information explaining
the cause for the reduction in reliability) must essentially minimize or prevent
erratic operator behavior due to confusion or other factors. There are costs
associated with these preventive steps, along with other implications associated
with different measures, so caution must be exercised while selecting corrective
measures.

11.4.2.6 Impact of Age

As people grow older, their attitude towards risk changes: they are willing to take
fewer risks (e.g., Mather et al. 2009). We also found a significant correlation
with age to answers to several questions about risk asked of participants. This
unwillingness to take on more risk is shown in robot use through the fact that they
prefer some autonomy modes and do not switch out of their comfort zone as often.
Attitudes towards risk change with age, but so does the view or the definition of
risk. It was often mentioned by the older participants that the compensation did not
matter to them as much. However, it must also be said that they were still motivated
to perform well. The inertia in control allocation exhibited by the older participants
could potentially also have increased their workload and ultimately performance.
Guidelines based on the impact of age are described below:
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Guideline 13: Know your target audience. It is important to take into account the
different population groups that will be interacting with a robot. Understanding
the motivations of the operators can help explain their view on potential risks and
better predict their behavior.

Guideline 14: Accommodate operators of all ages. Due to a higher probability of
poor control allocation and poor performance for older operators, more time
should be spent training them. To counteract the inertia observed, additional
steps can also be taken. However, caution must be exercised to ensure that these
steps do not increase their workload. For the other end of the age spectrum,
given their tendency to take more risk, the risks involved in the scenario must
be explained carefully. Since the younger population has the ability to better
manage workload and better robot management, it should be easier to influence
their control allocation strategy if needed.

11.4.3 Modeling Trust

Using the experimental methodology, multiple experiments were conducted to
examine the impact of different factors on operator trust and control allocation.
These factors were selected based on different criteria. Some factors were selected
based on the results of the initial surveys (i.e., reliability and risk). In fact, to
better model real world scenarios, we ensured that dynamic reliability and risk were
inherent in all of the experiments. Other factors like situation awareness (SA) and
reduced task difficulty (RD) were selected based on their significance to the remote
robot teleoperation task and also on our observations of other experiments involving
remote robot teleoperation. Factors like feedback and long-term interaction were
selected based on conjectures and commonly held beliefs. For example, it is often
assumed that providing feedback to the operator should increase their trust of the
robot and improve performance.

The results from these experiments showed interesting, sometimes unexpected,
but overall insightful data. Using that data we were able to find different attributes
that are relevant to human interaction with remote autonomous robot and the
mediating relationships between them.

These results were used to create the Human interaction with Autonomous
Remote Robots for Teleoperation (HARRT) model a regression based model, shown
in Fig. 11.9. Based on the HARRT model and the specific experiments, guidelines
were proposed that should help improve overall performance by better managing
the different tradeoffs (e.g., workloads, situation awareness, feedback) to influence
operators’ control allocation strategy. These results also highlight some of the
differences between HAI and HRI. For example, a primary difference between HAI
and HRI was the lack of direct correlation between trust and control allocation, a
result always observed in HAI research.
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11.5 Conclusions and Future Work

Our ultimate goal is to build models of the factors that influence people’s trust
in automated systems, across many domains, building a common core model of
trust for automated systems and identifying factors specific to particular domains.
Such models will serve to inform the designers of automated systems, allowing the
development of systems that address the key factors for developing and maintaining
a person’s trust of an automated system. This chapter presents some of our initial
work towards this goal, identifying the factors that most influence people’s trust of
automated cars, medical diagnosis systems, and remotely operated robot systems.

We have presented two methods for developing different types of models of
trust in automation. The HARRT model is a regression model that used data from
extensive experimentation. However, given the limitations of regression modeling,
the HARRT model is not able to be used dynamically to predict current levels
of user trust during the use of the robot. It is best used as a predictive model of
how trust will evolve. However, it could be modified into a trust model that could
be run dynamically, which would provide the robot with the means to determine
the moment-by-moment modifications in its behavior that are necessary to elicit
appropriate trust levels from the user. In contrast, the survey-based method results
in a list of factors that are important to generating trust. Because the survey-based
model is not designed for real-time execution, it is best used prior to system design
to generate requirements that are trust-related.

The choice of the modeling approach for any given situation can thus be based on
the time and resources available, and whether real-time adjustments in the robot’s
behavior are desired so as to elicit the optimal level of trust at any given point.
The survey-based modeling method is more appropriately used when a large number
of potential respondents are available; for example, the user pool consists of a
large segment of the general population. If the system is to be used by specialized
populations (e.g., doctors, first responders), it is best to conduct studies within
those user groups. The characteristics of each modeling approach are summarized
in Table 11.5.

We are planning to create an example of an executable HARRT model as part
of our future work. This work will involve developing alternative behaviors when
pre-identified conditions occur. For example, if the robot determines that a sensor

Table 11.5 Characteristics of HARRT and survey-based modeling approaches

Characteristic HARRT Survey-based model

Time and cost to create High Low
Method to create Experimentation with system Surveys
Format Directed graph List of factors
Real-time execution possible? Yes, with modifications No
Potential use Modify robot’s behavior in real

time to elicit appropriate trust
Requirements generation
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is becoming unreliable, this condition may trigger the robot to provide an error
message and modify the user interface layout to make an alternative sensor’s
readouts more salient. This will be a successful strategy if the user trusts the
unreliable sensor less and the alternative sensor more, as compared to earlier trust
levels.

Additional future work will use a survey-based approach to examine the effects
of mediated versus unmediated autonomy on the relative importance of the trust
factors. By mediated, we mean that there is a human expert user who interprets the
robot’s results or who actually operates the robot on behalf of the end user (that is,
the user who is benefiting from the robot’s work). The use of IBM’s Watson by an
oncologist represents a mediated use from the standpoint of the cancer patient. We
hypothesize that the trust factors will be rated differently from users in mediated
versus unmediated situations.
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Chapter 12
The Intersection of Robust Intelligence
and Trust: Hybrid Teams, Firms and Systems

W.F. Lawless and Donald Sofge

12.1 Introduction

Our goal with autonomy is to control hybrid teams (arbitrary combinations of
humans, machines and robots). Traditional approaches to social models treat inter-
dependence as a problem to be removed to improve the replication of experiments
(Kenny et al. 1998), or one to be resolved before teams can be controlled (e.g.,
Jamshidi 2009). In contrast, we consider interdependence to be a resource that teams
can use to solve ill-defined problems (IDP). But predictability and replicability
are lost as a consequence. Unlike swarms, machine learning and game theory
approaches to interdependence, we conclude that hybrid teams, like human teams,
cannot be controlled directly to solve IDPs; instead, they can be indirectly controlled
with self-governance (Lawless et al. 2013). How to improve control is the goal of
our chapter.

The difference in approaches is foundational. Traditional approaches assume a
complete, “God’s-eye view” of reality, implying that whatever information can be
sensed can be collected to model social reality (Rand and Nowak 2013, p. 415). In
contrast, the physics of interdependence (which we model with Signal Detection
Theory) precludes completeness, limiting the information that can be sensed or
collected either by machines or humans, physically constraining meaning and
situational awareness. Our approach generates better models of social reality with
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concrete conclusions; e.g., incomplete social information causes uncertainty; social
autonomy cannot occur without social interaction; and autonomy is a resource when
benefits exceed interaction costs (Coase 1960).

In addition, we plan to continue to perform research on the autonomy of hybrid
teams. Our research is centered around modeling tradeoffs with Fourier pairs
from signal detection theory (SDT); social interdependence or bistability (i.e.,
multiple states); multitasking; and Nash equilibria. Individuals multitask poorly
(Wickens 1992); teams and firms exist to multitask (Ambrose 2001; e.g., a baseball
team multitasks as its members play different positions). Unlike traditional game-
theoretic models which promote cooperation but not social governance (e.g., Rand
and Nowak 2013), Nash equilibria are one of the primary tools of self-governance
where a society multitasks by exploiting the competition naturally existing between
the orthogonal (bistable) beliefs of groups in processing the signals or information
they emit or receive to solve the IDPs that improve social welfare (Lawless et al.
2013).

Game theory models of social reality do not attempt to be “a good representation
of that world” (Rand and Nowak 2013, p. 416). They assume that only one
view of reality is possible. In contrast, bistability assumes that two orthogonal
interpretations spontaneously arise simultaneously in every social situation (e.g.,
Republicans and Democrats often come to differing or orthogonal interpretations
of reality). Thus, our bistable models better capture existing social reality (e.g.,
Lawless et al. 2013). This result has important implications, as when attempting
to reduce tragic decisions; e.g., during the time that Department of Energy (DOE)
contaminated the environment with widespread radioactive wastes, now costing up
to $200 Billion to remediate, DOE was self-regulated (Lawless et al. 2008), whereas
today, its decisions are competitively challenged by numerous State and Federal
agencies, and the public, yet the quality of its decisions has improved dramatically
(Lawless et al. 2014).

12.1.1 Background

Biologists approach the studies of nesting agents with an open mind about a nest’s
welfare, an approach made difficult in the study of human teams, groups and systems
by the cognitive biases that have impeded the development of a new mathematics
of interdependence to replace game theory (e.g., Barabási 2009). For example, from
Helbing (2013):

: : : we need to ‘think out of the box’ and require a paradigm shift towards a new
economic thinking characterized by a systemic, interaction-oriented perspective inspired
by knowledge about complex, ecological, and social systems.

Interdependence theory is needed for the efficient and effective control of
autonomous hybrid teams (Lawless et al. 2013), an arbitrary combination of
humans, machines and robots, in preparation for a rapidly approaching future
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with computational teams. (e.g., “Smart Drones”, from Keller (2013)). But since
the introduction of interdependence into game theory almost 70 years ago, it has
floundered (Schweitzer et al. 2009) likely because its assumptions have never been
validated; e.g., in games, cooperation is valued over competition, but in real life,
cooperation between two competitors, like Apple and Google, is known as collusion
(Lawless et al. 2011); interdependence is treated as a static or repeated static
phenomenon, e.g., like in the movies; and, more relevant, with its folk theorem, the
choices made by a team are determined by a simple sum of the individual choices
of its members.

These biases extend to the social science of teams, where interdependence is a
nuisance to be removed to produce the statistically necessary independence among
subjects (i.i.d.) to be able to replicate an experiment (e.g., Kenny et al. 1998).
The study of interdependence is encumbered further by the cost in collecting an
increasingly large number of teams as team size increases in order to reach statistical
significance. To reduce costs, most studies of teams focus on small three-member
groups, usually concluding that cooperation among members produces superior
results compared to competition (e.g., Bell et al. 2012); while we agree, groups with
three to six members are hampered in generating competition (Kerr and MacCoun
1985), a problem not only for say juries weighing alternative decisions, but also
for the theory of groups. In field studies, for example, Hackman (2011) concluded
that conflict (competition) in teams made them more creative; supporting Hackman,
in our study of citizen groups advising the Department of Energy (DOE) on the
cleanup of its wide-spread radionuclide contamination across its complex, we found
that observing conflict is sufficiently entertaining to hold an audience’s attention
as a group generates the information needed to decide on a course of action,
that competition among viewpoints produced more concrete recommendations that
advanced DOE’s cleanup compared to consensus decisions (Lawless et al. 2008);
and in the lab, that the larger the group size, the more conflict and interdependence
it generates, along with better decisions (Lawless et al. 2014).

In sum, the poor state of team theory impedes generalizations from teams
to higher orders of organization; compared to systems that enforce cooperation,
competitive checks and balances significantly improve social well-being; and a
new method must be found to replace the costs of running experiments with
larger group sizes, which in addition raises questions about the applicability of
laboratory experiments to real problems (Kerr and MacCoun 1985). Also, when the
institutions (cooperative social structures) that allow the existence of competition
to improve social well-being themselves arbitrarily change the interpretations of
their own rules, transactional uncertainty increases (e.g., the dueling editorials about
the U.S. Administration’s treatment of JP Morgan by Freeman (2013) and Eavis
(2013) illustrate the value of competition in generating information; in addition,
their content implies that the Administration’s change in its rules made the business
transactions by JP Morgan more uncertain).
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12.2 Theory

Interdependence is the bidirectional effect of a group on the individual, ranging
from a minimum for independence (e.g., the individuation process of converting a
team into a collection of individuals), to a maximum with the disappearance of the
individual into a group (e.g., the deindividuation process of converting individuals
into a mob or swarm). Interdependence causes teams to form into organizations
(independent person A does x; person A sells item x to anyone, say independent
person B who combines x and y; person B sells combined xy item to anyone, say
independent person C who adds z; etc.; these actors are performing independent
tasks until two or more actors interdependently depend on each other, forming
multi-tasking communication channels between a team’s members with the flow
of information, objects and material; they can form an organization when the
money–energy—generated is greater than their losses—entropy; in Coase (1937));
but interdependence causes uncertainty (on the assembly line, normally person
A is paid to do x and person B is paid to expect x to combine it with y; with
success, a team becomes trusted; but when person A does something unexpected,
person B is left confused about what to do, illustrating both interdependence and
uncertainty). Measurements of uncertainty cause incompleteness; e.g., religion,
politics or sororities all require specific actions and beliefs for membership—to get
to the upper echelon of a group requires that an agent master its rituals and beliefs,
implying that for trust to increase among fellow members, the leader must become
a “true” believer; but when the agent fully adopts these beliefs, an incomplete view
of reality is formed; i.e., it becomes less able to predict its competitor’s actions
reducing trust in the competitor (as may happen during a hostile merger; e.g., the
hostile bid for Cadbury by Kraft; in Cimilluca et al. 2009).

Subsequently a meeting between counterparts from opposing groups illuminates
incompleteness. Namely, political party A meets opposing political party B for a
discussion which highlights their mutual uncertainty. Take for example the strong
views of the need for austerity held in Germany that creates a state of incompleteness
in social reality over the future of Greece and the European Union; e.g., Fichtner and
Smoltczyk (2013) wrote:

“But then I get a call from (former US Treasury Secretary) Timothy Geithner,” says
Schäuble, “and he says, ‘You do know that we wouldn’t have made the decision to allow
Lehman Brothers to go bankrupt if we had been asked 24 hours later, don’t you?’’ Schäuble
shrugs his shoulders and falls silent. He cradles his head in his hands and narrows his eyes,
using body language to ask: “Well, what do you do in that situation? What’s the right thing
to do? What isn’t? What’s going to blow up in your face tomorrow?”

Or consider what happens when computer firm member A of Apple disagrees
with a colleague at Apple (Vogelstein 2013):

The pressure to meet Jobs’s deadlines was so intense that normal discussions quickly
devolved into shouting matches. Exhausted engineers quit their jobs—then came back to
work a few days later once they had slept a little. Forstall’s chief of staff, Kim Vorrath, once
slammed her office door so hard it got stuck and locked her in, and co-workers took more



12 The Intersection of Robust Intelligence and Trust: Hybrid Teams, Firms. . . 259

than an hour to get her out. “We were all standing there watching it,” Grignon says. “Part
of it was funny. But it was also one of those moments where you step back and realize how
[expletive] it all is.”

Or suppose a member A of computer firm Google meets member B of computer
firm Apple, pleading for Apple to support its product, inadvertently illustrating the
disagreement existing between the two firms; Dilger (2013) wrote:

It also explains why Google’s chairman Eric Schmidt continued to suggest the potential for
Apple to give up on its own maps and simply adopt Google’s as late as April, far after there
was any hope in such a scenario actually occurring.

The result of conflict is information (from information theory; Conant 1976);
afterwards, with mutually acceptable structures, illustrating socially appropriate
cooperation among competing groups, information can be converted into actions
that improve social welfare (increasing free energy), characterized as knowledge
(generating low entropy). Consequently, we assert that an institutionalized conflict
center, which we call a Nash equilibrium (NE), is a social asset that helps those
societies evolve that can manage an NE, compared to those that cannot or would not
(compare night satellite photos of the USA with Cuba; or South Korea with North
Korea; or Germany with Russia; see Fig. 12.1). We also assert that the knowledge
from social transactions cannot be generated other than by social interaction (from
Coase (1960)).

Fig. 12.1 A night photo of North Korea and surrounding nations. From http://earthobservatory.
nasa.gov/IOTD/view.php?id=83182

http://earthobservatory.nasa.gov/IOTD/view.php?id=83182
http://earthobservatory.nasa.gov/IOTD/view.php?id=83182
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12.3 Outline of the Mathematics

12.3.1 Field Model

Putting uncertainty aside until later, the effects of a community matrix A can be
measured in the field. Assume that competition for resources occurs within and
between groups; that, unlike the inability of individuals to multitask (Wickens
1992), multitasking is the purpose of a group (Ambrose 2001). The optimal group
multitasks seamlessly, generating a baseline entropy for stable organizations that we
initially, but incorrectly, set to zero, noting that, similarly, stable knowledge implies
zero entropy (Conant 1976). We justify this assumption at this time by observing
that, compared to functional groups, an individual is less able to survive. That is, a
collective of individuals is in a higher state of average uncertainty or agitation than
the same individuals independently performing the identical actions but as part of a
group using coordination to multitask.

Competition between groups increases cooperation within groups (Bowles
2012). Given A as an operator that serves as a community matrix of, for example,
possible cooperators from a tribe’s ingroup working together to multi-task, or
competitors in an outgroup, let aij represent the effects of agent-i on agent-j, the
opposite for aji (May 1973; for a review of ingroup-outgroup effects, see Tajfel
1970; for a review of tribal effects, see Chagnon 2012). The strength of cooperation
to multi-task can be measured by the state of interdependence in community matrix
A, where interdependence is the effect that a group has on the choices and behaviors
of its members; we designate interdependence as ¡:

� D �
MSG=T �MSS=G=T

�
=

�
MSG=T C .n � 1/MSS=G=T

�
; (12.1)

MSG/T is the sum of the mean squares from the group on a measurement of an
arbitrary factor, T, such as a culture, an issue, or a problem that is a group’s focus
as it assigns roles that produce multitasking; MSS/G/T is the aggregated contribution
from the individuals on a measurement of factor T; and n represents the number
of members in a group being measured (from Kenny et al. (1998, p. 235)). At its
extremes, ¡ ranges from �1 as multitasking goes to zero when the group is replaced
by a collection of independent individuals, or to C1 as multitasking replaces
the individual with slavish subservience to a group’s efforts, like groupthink or
authoritarianism.

With (12.1), we build A and convert it into an orthogonal matrix. Let A be a
symmetric matrix with potential eigenvalues �1, : : : �n. If Q is an orthogonal matrix
with real values, and if Q�1DQt (i.e., if the inverse of Q equals its transpose),
then the row vectors (or column vectors) are orthogonal, and QtAQ diagonalizes
symmetric matrix A into its eigenvalues.

Let A be an operator on a social object,  , within its internal zone of influence;
 could be an agent or a team, etc.; and let  be a column vector that represents
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the state of the social object as operator A transforms state vector  into a matrix.
When  is represented on two sides of an equation as:

A j >D xj > (12.2)

then x is a scalar that is the eigenvalue, �, or characteristic of A, and  becomes an
eigenvector or eigenfunction. The usual way to solve for the eigenvalue, �, is with
an iterative process: A � �I D .A � �I/  D 0; where I is the identity matrix

(i.e.,

�
1 0

0 1

�
).

The outer product of two state vectors is an operator; and the outer product of
two eigenvectors is a special operator or projector, P, that projects an unknown
state vector,  , into an eigenfunction and eigenvalue. Eigenfunctions form a basis
that is orthonormal; i.e., given eigenfunctions  and  and <  

ˇ̌
 > as the inner

product of the two eigenfunctions, then <  
ˇ̌
 >D  11 C  22 C � � � D ıij,

where ıij as the Kronecker delta equals to 1 when iD j, otherwise 0. Thus, in our
model, all state vectors are normalized, their inner product summing to 1 because
their eigenvectors are equal (i.e., cos 0ıD 1); it also means that the dot product of
the two elements of a bistable or orthogonal vector is 0, and that the probabilities
of measuring interdependent (or bistable) factors always sums to 1. This causes
classical measurement uncertainty; i.e., when the probability of one bistable factor
goes to one, the other goes to zero (e.g., the argument by Freeman (2013) and Eavis
(2013) over the increased transactional uncertainty for JP Morgan caused by the
Administration).

If  was a simple column vector representing the state of its independent
elements, putting aside manipulations to find the eigenvalues, there would be
little ambiguity in constructing conceptual models or in understanding them based
on what amounts to a convergent, rational process. Assuming that intuition is a
stable interpretation of reality, conceptual difficulties arise and intuition fails when
interdependence (groupiness) is introduced. Beginning with simple bistability,  
becomes a superposition of two orthogonal but non-factorable states, such as an
observation and an action; a republican and a democrat; or a single tribal ingroup
and outgroup (e.g., Lawless et al. 2011). Putting time evolution aside, we gain
insight into a static situation by letting

ˇ̌
0 > be the name of a column vector that

represents one of the orthogonal factors that forms a basis, and
ˇ̌
1 > the other factor

(e.g., we arbitrarily set observation to
ˇ̌
0 >D

h
1
0

i
, and action to

ˇ̌
1 >D

h
0
1

i
);

similarly, we could let a single person oscillate between being a conservative,
represented by

ˇ̌
0 >, and a liberal, represented by

ˇ̌
1 > (and vice versa); or ingroup

A versus outgroup B (Tajfel 1970). Two orthogonal vectors
ˇ̌
0 > and

ˇ̌
1 > form a

basis in 2-D (i.e., cos 90ıD 0).
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12.3.2 Interdependence

To model a group in a state of interdependence, we introduce the tensor product
of independent elements, for example, j0 > ˝j 0 >, represented as j00>; and
j1 > ˝j 1 >, represented as j11>. The basis for a 2-agent system becomes
fj00 >; j 01 >; j10 >; j 11 >g. Factorability means independent objects, implying
that any separable vector space V by tensor decomposition into basis elements
is not interdependent. i.e., given state vector

ˇ̌
 > in a system, where V D

V1 ˝ V2 ˝ � � � ˝ Vn, the state
ˇ̌
 > is separable iff

ˇ̌
 >D V1 ˝ V2 ˝ � � � ˝ Vn.

Otherwise,
ˇ̌
 > is in an interdependent state. An example of a non-factorable

state is:

ˇ̌
 >D 1p

2
.j00 > Cj 11 >/ ; (12.3)

To prove, let .a1 j0 > Cb1j 1 >/ .a2 j0 > Cb2j 1 >/ D 1p
2
.j00 > Cj 11 >/. How-

ever, for this equation, no combination of a’s and b’s exists such that a1b2 and a2b1

are both zero. Moreover, trying to break (12.3) into separable elements not only
loses information from this state of interdependence, but also the inability to factor
(12.3) means that the measurement of interdependence produces two incomplete
states that cannot be recombined to reproduce the original state of interdependence.

12.3.3 Incompleteness and Uncertainty

An individual’s beliefs might be altered by new information but confirmation bias
makes it unlikely that contradictory new information will be judged objectively
by a committed believer (Darley and Gross 2000), or even appreciated by a
neutral believer (for reasons discussed below). Avoidance of entering into states
of cognitive dissonance keeps most important attitudes and beliefs of humans stable
indicating that internal conflict is necessary to change strongly held beliefs (Lawless
et al. 2013). Together, these two biases make it unlikely that a follower of one
political view (e.g., conservative or liberal) would entertain an opposing viewpoint,
especially when entertaining such a view threatened power, status or access to
resources under control. An example would be the US government shutdown that
happened in October 2013, decried by both political parties for entirely different
reasons. First from the New York Times (Weisman and Peters 2013):

“You don’t get to extract a ransom for doing your job,” Mr. Obama said in the White House
briefing room as the clock ticked to midnight. : : : [oppositely] “I talked to the president
tonight,” the speaker said on the House floor. He summed up Mr. Obama’s remarks as:
“I’m not going to negotiate. I’m not going to negotiate.”

And from the Wall Street Journal (Hook and Peterson 2013):
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Senate Majority Leader Harry Reid (D., Nev.) rejected the move, saying he wouldn’t enter
negotiations until the House agreed to reopen the government by extending its funding for
several weeks. “We like to resolve issues, but we will not go to conference with a gun
to our head,” Mr. Reid said on the Senate floor. : : : [oppositely] Republicans denounced
Senate Democrats for refusing to negotiate. “Our hope this evening is we will be able to put
reasonable people in a room,” said House Rules Committee Chairman Pete Sessions (R.,
Texas).

To simplify what constitutes a complexity of its own, assume there are teams of
ideologues on either side of an issue, and that all others are swing voters ensconced
in the neutral camp. For those in a political swing camp, we postulate that both views
are held simultaneously in an indeterminate state of interdependence. For a single
social agent in a superposition of orthogonal factors (opposed beliefs; or beliefs and
actions), we propose:

j >D aj 0 > Cb
ˇ̌
1 >; (12.4)

with the basis for a single agent written as fj0>, j1>g, where ja 	 a0j D a 	 a D a2

(here a0 is the complex conjugate that we use to represent the oscillations caused by
an illusion) gives the probability of a social object being found in state j0>, with b2

giving the probability of being in state j1>. But, for an individual, this state vector is
factorable, suggesting that the oscillating (conflicting) perspectives for independent
neutral individuals may be simply aggregated separately to reconstruct elements of
the oscillation.

While (12.4) is easily factored; breaking apart a bistable state of superposition
leads to a loss of information, producing incompleteness about the interdependent
state. The effect of measuring a in (12.3) produces incomplete information about
the measurement of b, thus constituting the measurement problem. An excellent
example is illustrated by the recent difficulty with predicting elections during 2014–
2015 (Morrissey 2015):

In attempting to explain his failure to predict the Conservative landslide in the UK election,
calling it a crises [i.e., the existence of interdependence in data], Silver also missed
forecasting the “Scottish independence referendum”, with the “no” side projected to win
by just 2 to 3 percentage points. In fact, “no” won by almost 11 percentage points : : :
[and] that Republicans were favored to win the Senate in the 2014 U.S. midterms, they
nevertheless significantly underestimated the GOP’s : : : margins over Democrats were
about 4 points better than the polls in the average Senate race : : : [and] Pre-election polls
badly underestimated Likud’s performance in the Israeli legislative elections earlier this
year, projecting the party to about 22 seats in the Knesset when it in fact won 30. : : :

12.4 Evidence of Incompleteness for Groups

The function of a group is to multitask. Multitasking with agent-1 and agent-
2 forces them to focus on their individual tasks to manage the work-flows and
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communications between them to constitute the elements of a multitask, reducing
the information available to them about their own performances.

12.4.1 The Evidence from Studies of Organizations

First, Bloom et al. (2007) found that the estimation by managers of their firm’s
performance was unrelated to their firm’s actual performance. Second, a significant
association between training and performance was found by Lawless et al. (2010)
that no association existed between the book knowledge of air combat skills and
combat outcomes. Third, uncertainty in the observations of better-run organizations
was found to become noise (Lawless et al. 2013). Fourth, despite that most mergers
fail (Andrade and Stafford 1999), they are often pursued to offset a vulnerability,
to gain a new technology, to remove a competitor, but also to transform a business
model for an organization that is failing.

In sum, as Galton discovered when a crowd of independent individuals was able
to accurately estimate the weight of an ox, groups that process all of the available
information are more likely than any one individual to be correct. But when a group
acts as one under maximum groupiness, it loses its ability to process all of the
external information; the tradeoff is that the group becomes better at cooperating
to multitask to derive the solution of a well-defined problem.

12.4.2 Modeling Competing Groups with Limit Cycles

We postulate that at the level of individuals and groups, there is a constant
competition to focus on the orthogonal functions for observation and action,
orthogonal views like conservatism and liberalism, or orthogonal membership in
tribe A or tribe B. The competition between these orthogonal functions results in
limit cycles (May 1973; see Fig. 12.2).

Limit cycles depend on the free flow of neutrals to different (ideological,
commercial, scientific, etc.) belief positions (the central tenet of capitalism). Limit
cycles can be suppressed under authoritarian rule. In a dictatorship, social stability
is maintained by censoring information (May 1973); i.e., by forcibly setting a or
b to zero. But while social control is gained by an autocrat, in that incomplete
information governs, the opportunity for mistakes increases dramatically (e.g., from
Lawless et al. (2013, 2014)): DOE’s mismanagement of nuclear wastes prior to
1985; China’s air and water contamination today; the USS Vincennes shoot-down
of an Iranian airbus in 1988, killing all aboard; and the USS Greeneville’s collision
with a Japanese fishing boat, killing nine of its tourists and crewmembers.

Compared to a collection of independent individuals, we had initially assumed
that the entropy (S) is set to zero for a perfect team, the driving motivation to form
a tribe. We now justify this assumption in the limit as follows (and contradict it
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Fig. 12.2 Instead of a limit cycle (i.e., portraying N1 versus N2; in May (1973)), we display the
data with N over time, t. In the forthcoming campaign for Representatives and Senators for the
Democratic (blue) and Republican (green) Party, the data represents the “Generic Congressional
Vote” obtained by averaging poll numbers collected and published by Real Clear Politics (collected
from October 31, 2013 to January 6, 2014; this, past and current data can be found at http://www.
realclearpolitics.com/epolls/other/generic_congressional_vote-2170.html). Three limit cycles are
shown of decreasing magnitude: From 11/25–12/17; from 12/17–12/25; and from 12/25–12/30

later). Transaction costs are lower for individuals inside of a firm performing the
same functions as for those same individuals multitasking in a firm (Coase 1960;
Bowles 2012). This cost differential motivates the six-sigma processes designed
to reduce waste in a firm, but if it becomes an overriding management goal, it
impedes the tradeoffs a firm must make to find the new sources of free energy
needed to adapt or to innovate (Christensen 2011), unexpectedly generating more
entropy in a changing environment (May 1973), possibly setting a firm up to fail as
its competition increases.

Equation 12.2 does not allow us to capture tradeoffs. To do this for two operators,
A and B, we write:

ŒA;B� D AB � BA: (12.5)

When two operators representing two different tribes have the same eigenvalue,
then the operators commute: ŒA;B� D AB � BA D 0. With agreement between two
erstwhile competitors, the combined social system is stable, no oscillations occur,
nor do limit cycles exist (the goal of an autocracy). But when disagreement arises
between two competitors, their two operators do not commute, giving:

ŒA;B� D iC; (12.6)

where C is a measure of the gap or distance in reality between A and B. However,
as multitasking improves, the tradeoffs between each group’s focus on their tasks
interfere with their meta-perspectives on how best to change or optimize tasks to
improve performance (Smith and Tushman 2005), motivating tradeoffs that may or
may not be efficacious:

http://www.realclearpolitics.com/epolls/other/generic_congressional_vote-2170.html
http://www.realclearpolitics.com/epolls/other/generic_congressional_vote-2170.html
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�A�B � 1

2
(12.7)

where �A is the standard deviation of variable A over time, �B is the standard
deviation of its Fourier transform, introducing frequency, and the two together
forming a Fourier pair that reflects tradeoffs. Interdependent uncertainty generates
tradeoffs. For example, as uncertainty in a team’s or firm’s skills decreases (i.e., as
a team’s skills increases), uncertainty in its observations increases (accounting for
the value of a coach or consultant, namely, an independent observer).

12.5 Gaps

The number 1/2 in (12.7) we liken to a “gap” in reality; gaps can exist over time
or distance. Equations 12.2 and 12.5 reflect the existence of this “gap” in social
reality, C, that permits social dynamics to operate. Social dynamics derive from the
challenges to claims, social illusions (Adelson 2000) and irrationality (Kahneman
2011), feeding limit cycles (May 1973). For time gaps, the evidence indicates that
the conscious awareness of signals takes about 500 ms, but under decision-making,
it can extend to several seconds (up to 7 s) before a human’s consciousness becomes
aware of its “desire” to switch to a new choice (Bode et al. 2011) that can then be
articulated by the human brain’s running narrator (Gazzaniga 2011), the latter often
construed as “free will”. For distance gaps, at a minimum, say between two beliefs,
cosine 0ı is one; at a maximum, cosine 90ı is zero.

Gaps are needed to create a state of superposition over a claim, to process
the challenges that establish the oscillations between claims, giving observers
time and space to process sequentially the information derived from opposing
perspectives. But the human motivation is to believe that knowledge processing
is too cumbersome, leading to the various illusions such as that a merger reduces
overcrowding in a collapsing market, when the market itself may be ending; that
six-sigma processes safely improve profits (but see Christensen 2011); or that
market returns improve by chasing market leaders. The motivation in these and
other illusions is to ignore, reduce or replace the “gaps” in reality with a rational
approach (one without gaps) instead of an emphasis (focus) on problem solutions.

Despite the accumulating evidence against the traditional model, it remains ratio-
nal (e.g., Bayesian). Silver (2012) concluded that the brain forms and continually
updates a set of Bayesian “priors” learned over a lifetime used retrospectively to
interpret new data that corresponds to its environment. But Silver’s technique of
aggregating polling data copies Galton’s insight. The more important question is
why Democrats and Republicans look at the same data but interpret it differently
at the same time, thereby generating bistable illusions, conflict and oscillations.
Numerous examples exist; e.g., R.A. Fisher, the esteemed statistician and evolu-
tionary biologist, argued against the new evidence that smoking cigarettes would



12 The Intersection of Robust Intelligence and Trust: Hybrid Teams, Firms. . . 267

cause cancer; but Fisher was a smoker (Stolley 1991), likely the cause of his bias
against accepting the new evidence.

12.6 Conclusions

We have argued that interdependence combines with cognitive dissonance to
make those of us who adopt strong beliefs act to suppress both our internal
cognitive narrator, known as confirmation bias (Darley and Gross 2000) but also the
alternative views of our ingroup, forming the ingroup-outgroup bias (Tajfel 1970).
When these beliefs are unchallenged, they give the illusion of stable reality; but
when challenged, they drive the oscillations of social behavior between competing
individuals, teams, tribes, or firms across a system. Thus, the presence of alternative
views in the decision process is not only the end of certainty that motivates tradeoffs
((12.4) and (12.7), respectively), but these Nash equilibria are also the source
of information that competition generates for observers to process that preclude,
reduce or mitigate tragedies (e.g., unlike Communist China during its great famine
in the 1950s, no modern democracy has ever suffered from famine; in Sen (2000);
and unlike Nazi Germany during the 1930s–1940s, no modern democracy has
ever started a war against another democracy; in Wendt (1999)). To defend an
individual, Chagnon (2012) concluded that people find safety in numbers of their
own. However, although not very popular to any single tribe of Republicans or
Democrats, competing religions or different races, nonetheless, it is the competition
for the strongest idea that has become the pillar of free speech that forms the
foundation of modern societies (Holmes 1919).

Without competition, incomplete information impedes social evolution. But with
conflict and its management, indirect control of hybrid teams may be feasible.
Social uncertainty spontaneously generates interdependence, just as interdepen-
dence generates social uncertainty. Both require a space-time “gap” in reality that
promotes competition as neutrals (e.g., citizens, courts and administration) sort
through the interpretations when they are free to make the best choice, switching
back when a choice does not pan out, forming limit cycles that provide indirect
social control. Social information must remain incomplete, forcibly true under
the dictatorships that attempt to maintain direct control (May 1973/2001), but
inescapably true in democracies with working checks and balances. However, unlike
dictatorships which thrive on the failure of social change, the never ending search
for completeness in democracies leads to social evolution. All things considered,
social (political) predictions made in democracies are more likely to be wrong than
those made in dictatorships.

Finally, we began by setting the baseline entropy for well-functioning teams
to zero. We need to revise it to underscore the cognitive difficulty implied by
(12.3) for two or more agents multitasking together in a state of superposition.
Equation 12.3 suggests on the one hand how a team or an organization can perform
at a high level, but also why on the other hand they are incomplete witnesses of their
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performance. How can agents generate the data in Fig. 12.2 for (12.3) or (12.5)?
We suspect that a conflict center creates additive or destructive interference among
superposed neutrals; that winning a debate or selling more computer products on
1 day somewhat suppresses a conflict center’s complementary element, producing
stable results; that a tie causes no movement in the results; and that a more
competitive counterattack from a previously failing candidate or firm creates the
return arm in the results that builds a limit cycle to exploit the gaps in reality.

In sum, we have reached new conclusions about robust intelligence and trust.
With the bistable agent model, we conclude that the robust intelligence necessary
to succeed appears unlikely to occur for a collection of agents acting independently,
reducing autonomy and thermodynamic effectiveness (e.g., lower productivity).
By multitasking (MT) together, a team of agents is more effective than the same
agents independently performing the same tasks. However, for a team of bistable
agents, bias reduces its robust intelligence and autonomy. Instead, robustness
requires a MT team observing Reality to contradict an opposing team (two teams
of MTs best capture situational awareness), implicating the value of competition in
determining Reality, but these two teams are also insufficient for robustness. Robust
intelligence requires three teams: two opposing MT teams to construct Reality plus
a neutral team of freely moving bistable independent agents attracted or repelled
to one or another team to optimize the thermodynamic forces that determine team
effectiveness and efficiency. Thus, given two competitive teams, adding a third team
to constitute a spectrum of neutral bistable agents able to invest freely (properties,
ideas, works), act freely (joining and rejecting either team), and observe freely
makes the greatest contribution to robust intelligence, to mitigating mistakes, and
to maximizing effective and efficient autonomy. However, a reliable, valid metric is
still needed. Moving from subjective measures (e.g., surveys, questionnaires) to a
countable metric of individuals joining or leaving teams establishes a Hilbert space,
our end result with three teams.
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