
Chapter 8
Evaluating Recommender Systems

Asela Gunawardana and Guy Shani

8.1 Introduction

Recommender systems can now be found in many modern applications that expose
the user to a huge collections of items. Such systems typically provide the user with
a list of recommended items they might prefer, or predict how much they might
prefer each item. These systems help users to decide on appropriate items, and ease
the task of finding preferred items in the collection.

For example, the DVD rental provider Netflix1 displays predicted ratings for
every displayed movie in order to help the user decide which movie to rent. The
online book retailer Amazon2 provides average user ratings for displayed books,
and a list of other books that are bought by users who buy a specific book. Microsoft
provides many free downloads for users, such as bug fixes, products and so forth.
When a user downloads some software, the system presents a list of additional
items that are downloaded together. All these systems are typically categorized as
recommender systems, even though they provide diverse services.

In the past decade, there has been a vast amount of research in the field of
recommender systems, mostly focusing on designing new algorithms for recom-
mendations. An application designer who wishes to add a recommender system
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to her application has a large variety of algorithms at her disposal, and must
make a decision about the most appropriate algorithm for her goals. Typically,
such decisions are based on experiments, comparing the performance of a number
of candidate recommenders. The designer can then select the best performing
algorithm, given structural constraints such as the type, timeliness and reliability
of availability data, allowable memory and CPU footprints. Furthermore, most
researchers who suggest new recommendation algorithms also compare the perfor-
mance of their new algorithm to a set of existing approaches. Such evaluations are
typically performed by applying some evaluation metric that provides a ranking of
the candidate algorithms (usually using numeric scores).

Initially most recommenders have been evaluated and ranked on their prediction
power—their ability to accurately predict the user’s choices. However, it is now
widely agreed that accurate predictions are crucial but insufficient to deploy a good
recommendation engine. In many applications people use a recommender system
for more than an exact anticipation of their tastes. Users may also be interested
in discovering new items, in rapidly exploring diverse items, in preserving their
privacy, in the fast responses of the system, and many more properties of the
interaction with the recommendation engine. We must hence identify the set of
properties that may influence the success of a recommender system in the context
of a specific application. Then, we can evaluate how the system preforms on these
relevant properties.

In this chapter we review the process of evaluating a recommendation system.
We discuss three different types of experiments; offline, user studies and online
experiments.

Often it is easiest to perform offline experiments using existing data sets and a
protocol that models user behavior to estimate recommender performance measures
such as prediction accuracy. A more expensive option is a user study, where a
small set of users is asked to perform a set of tasks using the system, typically
answering questions afterwards about their experience. Finally, we can run large
scale experiments on a deployed system, which we call online experiments. Such
experiments evaluate the performance of the recommenders on real users which are
oblivious to the conducted experiment. We discuss what can and cannot be evaluated
for each of these types of experiments.

We can sometimes evaluate how well the recommender achieves its overall goals.
For example, we can check an e-commerce website revenue with and without the
recommender system and make an estimation of the value of the system to the
website. In other cases, it can also be useful to evaluate how recommenders perform
in terms of some specific properties, allowing us to focus on improving properties
where they fall short. First, one must show that a property is indeed relevant to
users and affect their experience. Then, we can design algorithms that improve upon
these properties. In improving one property we may reduce the quality of another
property, creating a trade-off between a set of properties. In many cases it is also
difficult to say how these trade-offs affect the overall performance of the system,
and we have to either run additional experiments to understand this aspect, or use
the opinions of domain experts.
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This chapter focuses on property-directed evaluation of recommender
algorithms. We provide an overview of a large set of properties that can be
relevant for system success, explaining how candidate recommenders can be
ranked with respect to these properties. For each property we discuss the relevant
experiment types—offline, user study, and online experiments—and explain how
an evaluation can be conducted in each case. We explain the difficulties and outline
the pitfalls in evaluating each property. For all these properties we focus on ranking
recommenders on that property, assuming that better handling the property will
improve user experience.

We also review a set of previous suggestions for evaluating recommender
systems, describing a large set of popular methods and placing them in the context
of the properties that they measure. We especially focus on the widely researched
accuracy and ranking measurements, describing a large set of evaluation metrics
for these properties. For other, less studied properties, we suggest guidelines from
which specific measures can be derived. We provide examples of such specific
implementations where appropriate.

The rest of the chapter is structured as follows. In Sect. 8.2 we discuss the
different experimental settings in which recommender systems can be evaluated,
discussing the appropriate use of offline experiments, user studies, and online trials.
We also outline considerations that go into making reliable decisions based on
these experiments, including generalization and statistical significance of results.
In Sect. 8.3 we describe a large variety of properties of recommender systems that
may impact their performance, as well as metrics for measuring these properties.
Finally, we conclude in Sect. 8.4.

8.2 Experimental Settings

In this section we describe three levels of experiments that can be used in order to
compare several recommenders. The discussion below is motivated by evaluation
protocols in related areas such as machine learning and information retrieval,
highlighting practices relevant to evaluating recommender systems. The reader is
referred to publications in these fields for more detailed discussions [17, 61, 75].

We begin with offline experiments, which are typically the easiest to conduct,
as they require no interaction with real users. We then describe user studies, where
we ask a small group of subjects to use the system in a controlled environment, and
then report on their experience. In such experiments we can collect both quantitative
and qualitative information about the systems, but care must be taken to consider
various biases in the experimental design. Finally, perhaps the most trustworthy
experiment is when the system is used by a pool of real users, typically unaware
of the experiment. While in such an experiment we are able to collect only certain
types of data, this experimental design is closest to reality.

In all experimental scenarios, it is important to follow a few basic guidelines in
general experimental studies:
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• Hypothesis: before running the experiment we must form an hypothesis. It is
important to be concise and restrictive about this hypothesis, and design an
experiment that tests the hypothesis. For example, an hypothesis can be that
algorithm A better predicts user ratings than algorithm B. In that case, the
experiment should test the prediction accuracy, and not other factors. Other
popular hypothesis in recommender system research can be that algorithm A
scales better to larger datasets than algorithm B, that system A gains more user
trust than system B, or that recommendation user interface A is preferred by users
to interface B.

• Controlling variables: when comparing a few candidate algorithms on a certain
hypothesis, it is important that all variables that are not tested will stay fixed.
For example, suppose that in a movie recommendation system, we switch from
using algorithm A to algorithm B, and notice that the number of movies that
users watch increases. In this situation, we cannot tell whether the change is due
to the change in algorithm, or whether something else changed at about the same
time. If instead, we randomly assign users to algorithms A and B, and notice that
users assigned to algorithm A watch more movies than those who are assigned to
algorithm B, we can be confident that this is due to algorithm A.

• Generalization power: when drawing conclusions from experiments, we may
desire that our conclusions generalize beyond the immediate context of the
experiments. When choosing an algorithm for a real application, we may want
our conclusions to hold on the deployed system, and generalize beyond our
experimental data set. Similarly, when developing new algorithms, we want
our conclusions to hold beyond the scope of the specific application or data
set that we experimented with. To increase the probability of generalization of
the results we must typically experiment with several data sets or applications.
It is important to understand the properties of the various data sets that are used.
Generally speaking, the more diverse the data used, the more we can generalize
the results.

8.2.1 Offline Experiments

An offline experiment is performed by using a pre-collected data set of users
choosing or rating items. Using this data set we can try to simulate the behavior
of users that interact with a recommendation system. In doing so, we assume that
the user behavior when the data was collected will be similar enough to the user
behavior when the recommender system is deployed, so that we can make reliable
decisions based on the simulation. Offline experiments are attractive because they
require no interaction with real users, and thus allow us to compare a wide range
of candidate algorithms at a low cost. The downside of offline experiments is
that they can answer a very narrow set of questions, typically questions about the
prediction power of an algorithm. In particular, we must assume that users’ behavior
when interacting with a system including the recommender system chosen will
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be modeled well by the users’ behavior prior to that system’s deployment. Thus
we cannot directly measure the recommender’s influence on user behavior in this
setting.

Therefore, the goal of the offline experiments is to filter out inappropriate
approaches, leaving a relatively small set of candidate algorithms to be tested by the
more costly user studies or online experiments. A typical example of this process is
when the parameters of the algorithms are tuned in an offline experiment, and then
the algorithm with the best tuned parameters continues to the next phase.

8.2.1.1 Data Sets for Offline Experiments

As the goal of the offline evaluation is to filter algorithms, the data used for the
offline evaluation should match as closely as possible the data the designer expects
the recommender system to face when deployed online. Care must be exercised to
ensure that there is no bias in the distributions of users, items and ratings selected.
For example, in cases where data from an existing system (perhaps a system without
a recommender) is available, the experimenter may be tempted to pre-filter the
data by excluding items or users with low counts, in order to reduce the costs of
experimentation. In doing so, the experimenter should be mindful that this involves
a trade-off, since this introduces a systematic bias in the data. If necessary, randomly
sampling users and items may be a preferable method for reducing data, although
this can also introduce other biases into the experiment (e.g. this could tend to favor
algorithms that work better with more sparse data). Sometimes, known biases in
the data can be corrected for by techniques such as reweighing data, but correcting
biases in the data is often difficult.

Another source of bias may be the data collection itself. For example, users may
be more likely to rate items that they have strong opinions on, and some users may
provide many more ratings than others. Furthermore, users tend to rate items that
they like, and avoid exploring, and hence rating, items that they will not like. For
example, a person who doesn’t like horror movies will tend not to watch them,
would not explore the list of available horror movies for rental, and would not rate
them. Thus, the set of items on which explicit ratings are available may be biased by
the ratings themselves. This is often known as the not missing at random assumption
[47]. Once again, techniques such as resampling or reweighting the test data [70, 71]
may be used to attempt to correct such biases.

8.2.1.2 Simulating User Behavior

In order to evaluate algorithms offline, it is necessary to simulate the online process
where the system makes predictions or recommendations, and the user corrects
the predictions or uses the recommendations. This is usually done by recording
historical user data, and then hiding some of these interactions in order to simulate
the knowledge of how a user will rate an item, or which recommendations a user
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will act upon. There are a number of ways to choose the ratings/selected items to
be hidden. Once again, it is preferable that this choice be done in a manner that
simulates the target application as closely as possible. In many cases, though, we
are restricted by the computational cost of an evaluation protocol, and must make
compromises in order to execute the experiment over large data sets.

Ideally, if we have access to time-stamps for user selections, we can simulate
what the systems predictions would have been, had it been running at the time the
data set was collected [11]. We can begin with no available prior data for computing
predictions, and step through user selections in temporal order, attempting to predict
each selection and then making that selection available for use in future predictions.
For large data sets, a simpler approach is to randomly sample test users, randomly
sample a time just prior to a user action, hide all selections (of all users) after that
instant, and then attempt to recommend items to that user. This protocol requires
changing the set of given information prior to each recommendation, which can still
be computationally quite expensive.

An even cheaper alternative is to sample a set of test users, then sample a single
test time, and hide all items after the sampled test time for each test user. This
simulates a situation where the recommender system is built as of the test time, and
then makes recommendations without taking into account any new data that arrives
after the test time. Another alternative is to sample a test time for each test user,
and hide the test user’s items after that time, without maintaining time consistency
across users. This effectively assumes that the sequence in which items are selected
is important, not the absolute times when the selections are made. A final alternative
is to ignore time. We would first sample a set of test users, then sample the number
na of items to hide for each user a, and finally sample na items to hide. This assumes
that the temporal aspects of user selections are unimportant. We may be forced to
make this assumption if the timestamps of user actions are not known. All three of
the latter alternatives partition the data into a single training set and single test set.
It is important to select an alternative that is most appropriate for the domain and
task of interest, given the constraints, rather than the most convenient one.

A common protocol used in many research papers is to use a fixed number of
known items or a fixed number of hidden items per test user (so called “given n”
or “all but n” protocols). This protocol may be useful for diagnosing algorithms
and identifying in which cases they work best. However, when we wish to make
decisions on the algorithm that we will use in our application, we must ask ourselves
whether we are truly interested in presenting recommendations only for users who
have rated exactly n items, or are expected to rate exactly n items more. If that
is not the case, then results computed using these protocols have biases that make
them unreliable in predicting the performance of the algorithms online, and these
protocols should be avoided.
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8.2.1.3 More Complex User Modeling

All the protocols that we discuss above make some assumptions concerning the
behavior of users, which could be regarded as a user-model for the specific
application. While we discuss only very simple user models, it is possible to suggest
more complicated models for user behavior [46]. Using advanced user models
we can execute simulations of users interactions with the system, thus reducing
the need for expensive user studies and online testing. However, care must be made
when designing user-models; First, user-modeling is a difficult task, and there is a
vast amount of research on the subject (see, e.g. [19]). Second, when the user model
is inaccurate, we may optimize a system whose performance in simulation has little
correlation with its performance in practice. While it is reasonable to design an
algorithm that uses complex user models to provide recommendations, we should
be careful in trusting experiments where algorithms are verified using such complex,
difficult to verify, user models.

8.2.2 User Studies

Many recommendation approaches rely on the interaction of users with the system
(see, e.g., Chaps. 24, 5, 10, and 18). It is very difficult to create a reliable simulation
of users interactions with the system, and thus, offline testing are difficult to conduct.
In order to properly evaluate such systems, real user interactions with the system
must be collected. Even when offline testing is possible, interactions with real users
can still provide additional information about the system performance. In these cases
we typically conduct user studies.

We provide here a summarized discussion of the principles of user studies for
the evaluation of recommender systems. The interested reader can find an in depth
discussion in Chap. 9.

A user study is conducted by recruiting a set of test subjects, and asking them to
perform several tasks requiring an interaction with the recommender system. While
the subjects perform the tasks, we observe and record their behavior, collecting
any number of quantitative measurements, such as what portion of the task was
completed, the accuracy of the task results, or the time taken to perform the task.
In many cases we can ask qualitative questions, before, during, and after the task
is completed. Such questions can collect data that is not directly observable, such
as whether the subject enjoyed the user interface, or whether the user perceived the
task as easy to complete.

A typical example of such an experiment is to test the influence of a recom-
mendation algorithm on the browsing behavior of news stories. In this example,
the subjects are asked to read a set of stories that are interesting to them, in
some cases including related story recommendations and in some cases without
recommendations. We can then check whether the recommendations are used,
and whether people read different stories with and without recommendations.
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We can collect data such as how many times a recommendation was clicked, and
even, in certain cases, track eye movement to see whether a subject looked at a
recommendation. Finally, we can ask qualitative questions such as whether the
subject thought the recommendations were relevant [30, 32].

Of course, in many other research areas user studies are a central tool, and
thus there is much literature on the proper design of user studies. This section
only overviews the basic considerations that should be taken when evaluating a
recommender system through a user study, and the interested reader can find much
deeper discussions elsewhere (see. e.g. [7]).

8.2.2.1 Advantages and Disadvantages

User studies can perhaps answer the widest set of questions of all three experimental
settings that we survey here. Unlike offline experiments this setting allows us to
test the behavior of users when interacting with the recommender system, and the
influence of the recommendations on user behavior. In the offline case we typically
make assumptions such as “given a relevant recommendation the user is likely to use
it” which are tested in the user study. Second, this is the only setting that allows us to
collect qualitative data that is often crucial for interpreting the quantitative results.
Also, we can typically collect in this setting a large set of quantitative measurements
because the users can be closely monitored while performing the tasks.

User studies however have some disadvantages. Primarily, user studies are very
expensive to conduct[39]; collecting a large set of subjects and asking them to
perform a large enough set of tasks is costly in terms of either user time, if the
subjects are volunteers, or in terms of compensation if paid subjects are employed.
Therefore, we must typically restrict ourselves to a small set of subjects and a
relatively small set of tasks, and cannot test all possible scenarios. Furthermore,
each scenario has to be repeated several times in order to make reliable conclusions,
further limiting the range of distinct tasks that can be tested.

As these experiments are expensive to conduct we should collect as much data
about the user interactions, in the lowest possible granularity. This will allow us
later to study the results of the experiment in detail, analyzing considerations that
were not obvious prior to the trial. This guideline can help us to reduce the need for
successive trials to collect overlooked measurements.

Furthermore, in order to avoid failed experiments, such as applications that
malfunction under certain user actions, researchers often execute pilot user studies.
These are small scale experiments, designed not to collect statistical data, but to
test the systems for bugs and malfunctions. In some cases, the results of these
pilot studies are then used to improve the recommender. If this is the case, then
the results of the pilot become “tainted”, and should not be used when computing
measurements in the final user study.

Another important consideration is that the test subjects must represent as closely
as possible the population of users of the real system. For example, if the system is
designed to recommend movies, the results of a user study over avid movie fans
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may not carry to the entire population. This problem is most persistent when the
participants of the study are volunteers, as in this case people who are originally
more interested in the application may tend to volunteer more readily.

However, even when the subjects represent properly the true population of users,
the results can still be biased because they are aware that they are participating in
an experiment. For example, it is well known that paid subjects tend to try and
satisfy the person or company conducting the experiment [60]. If the subjects are
aware of the hypothesis that is tested they may unconsciously provide evidence that
supports it. To accommodate that, it is typically better not to disclose the goal of
the experiment prior to collecting data. Another, more subtle effect occurs when
the payment to subjects takes the form of a complete or partial subsidy of items
they select. This may bias the data in cases where final users of the system are not
similarly subsidized, as users’ choices and preferences may be different when they
pay full price. Unfortunately, avoiding this particular bias is difficult.

8.2.2.2 Between vs. Within Subjects

As typically a user study compares a few candidate approaches, each candidate
must be tested over the same tasks. To test all candidates we can either compare the
candidates between subjects, where each subject is assigned to a candidate method
and experiments with it, or within subjects, where each subject tests a set of
candidates on different tasks [24].

Typically, within subjects experiments are more informative, as the superiority
of one method cannot be explained by a biased split of users between candidate
methods. It is also possible in this setting to ask comparative questions about the
different candidates, such as which candidate the subject preferred. However, in
these types of tests users are more conscious of the experiment, and hiding the
distinctions between candidates is more difficult.

Between subjects experiments, also known as A-B testing (All Between), provide
a setting that is closer to the real system, as each user experiments with a single
treatment. Such experiments can also test long term effects of using the system,
because the user is not required to switch systems. Thus we can test how the user
becomes accustomed to the system, and estimate a learning curve of expertise.
On the downside, when running between subjects experiments, typically more data
is needed to achieve significant results. As such, between subjects experiments may
require more users, or more interaction time for each user, and are thus more costly
then within subjects experiments.

8.2.2.3 Variable Counter Balance

As we have noted above, it is important to control all variables that are not
specifically tested. However, when a subject is presented with the output of several
candidates, as in within subject experiments, we must counter balance several
variables.
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When presenting several results to the subject, the results can be displayed either
sequentially, or together. In both cases there are certain biases that we need to correct
for [1]. When presenting the results sequentially the previously observed results
influence the user opinion of the current results. For example, if the results that were
displayed first seem inappropriate, the results displayed afterward may seem better
than they actually are. When presenting two sets of results, there can be certain
biases due to location. For example, users from many cultures tend to observe results
left to right and top to bottom. Thus, the user may observe the results displayed on
top as superior.

A common approach to correct for such untested variables is by using the Latin
square [7] procedure. This procedure randomizes the order or location of the various
results each time, thus canceling out biases due to these untested variables.

8.2.2.4 Questionnaires

User studies allow us to use the powerful questionnaire tool (e.g. [58]). Before,
during, and after subjects perform their tasks we can ask them questions about
their experience. These questions can provide information about properties that
are difficult to measure, such as the subject’s state of mind, or whether the
subject enjoyed the system.

While these questions can provide valuable information, they can also provide
misleading information. It is important to ask neutral questions, that do not suggest
a “correct” answer. People may also answer untruthfully, for example when they
perceive the answer as private, or if they think the true answer may put them in an
unflattering position.

Indeed, vast amount of research was conducted in other areas about the art of
questionnaire writing, and we refer the readers to that literature (e.g. [56]) for more
details.

8.2.3 Online Evaluation

In many realistic recommendation applications the designer of the system wishes
to influence the behavior of users. We are therefore interested in measuring the
change in user behavior when interacting with different recommender systems. For
example, if users of one system follow the recommendations more often, or if some
utility gathered from users of one system exceeds utility gathered from users of
the other system, then we can conclude that one system is superior to the other, all
else being equal.

The real effect of the recommender system depends on a variety of factors such as
the user’s intent (e.g. how specific their information needs are), the user’s personality
(Chap. 21), such as how much novelty vs. how much risk they are seeking, the
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user’s context, e.g., what items they are already familiar with, how much they trust
the system (Chap. 6), and the interface through which the recommendations are
presented.

Thus, the experiment that provides the strongest evidence as to the true value
of the system is an online evaluation, where the system is used by real users that
perform real tasks. It is most trustworthy to compare a few systems online, obtaining
a ranking of alternatives, rather than absolute numbers that are more difficult to
interpret.

For this reason, many real world systems employ an online testing system [40],
where multiple algorithms can be compared. Typically, such systems redirect a small
percentage of the traffic to different alternative recommendation engine, and record
the users interactions with the different systems.

There are a few considerations that must be made when running such tests. For
example, it is important to sample (redirect) users randomly, so that the comparisons
between alternatives are fair. It is also important to single out the different aspects
of the recommenders. For example, if we care about algorithmic accuracy, it
is important to keep the user interface fixed. On the other hand, if we wish to focus
on a better user interface, it is best to keep the underlying algorithm fixed.

In some cases, such experiments are risky. For example, a test system that
provides irrelevant recommendations, may discourage the test users from using
the real system ever again. Thus, the experiment can have a negative effect on the
system, which may be unacceptable in commercial applications.

For these reasons, it is best to run an online evaluation last, after an extensive
offline study provides evidence that the candidate approaches are reasonable, and
perhaps after a user study that measures the user’s attitude towards the system. This
gradual process reduces the risk in causing significant user dissatisfaction.

Online evaluations are unique in that they allow direct measurement of overall
system goals, such as long-term profit or user retention. As such, they can be used
to understand how these overall goals are affected by system properties such as
recommendation accuracy and diversity of recommendations, and to understand
the trade-offs between these properties. However, since varying such properties
independently is difficult, and comparing many algorithms through online trials is
expensive, it can be difficult to gain a complete understanding of these relationships.

8.2.4 Drawing Reliable Conclusions

In any type of experiment it is important that we can be confidant that the candidate
recommender that we choose will also be a good choice for the yet unseen data
the system will be faced with in the future. As we explain above, we should exercise
caution in choosing the data in an offline experiments, and the subjects in a user
study, to best resemble the online application. Still, there is a possibility that the
algorithm that performed best on this test set did so because the experiment was
fortuitously suitable for that algorithm. To reduce the possibility of such statistical
mishaps, we must perform significance testing on the results.
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8.2.4.1 Confidence and p-Values

The result of a significance test is a significance level or p-value—the probability
that the obtained results were due to chance. In practice, we choose a significance
test (see below) to match our situation in order to evaluate this probability.
Each significance test postulates an underlying random mechanism that may have
generated the result. This is termed the null hypothesis. The chosen test then gives
us a probability that a result that is at least as good as the one we are testing was
produced under the null hypothesis. This probability is the p-value. If the p-value
is below a threshold, we are confident that the null hypothesis is not true, and
we deem our results significant. Traditionally, people choose p D 0:05 as their
threshold, which indicates 95 % confidence. More stringent significance levels (e.g.
0:01 or even lower) can be used in cases where the cost of making the wrong
choice is higher. Notice, however, that the significance test only tells us that the
null hypothesis is unlikely to be true. It does not guarantee that the result was not
randomly produced by some other mechanism. Thus, to be confident that we are
making meaningful decisions, we need to be careful in choosing a test with a strong
null hypothesis that is appropriate for our situation. Below, we discuss how to make
this choice. For more details, see, e.g., [4].

8.2.4.2 Paired Results

In order to perform a significance test that algorithm A is indeed better than
algorithm B, we often use the results of several independent experiments comparing
A and B. Thus, rather than the aggregate results that we typically use to compare
systems, confidence testing requires the results of multiple independent sub-
experiments. Indeed, the protocol we have suggested for generating our test data
(Sect. 8.2.1.2) allows us to obtain such a set of results. Assuming that test users
are drawn independently from some population, the performance measures of
the algorithms for each test user give us the independent comparisons we need.
However, when recommendations or predictions of multiple items are made to
the same user, it is unlikely that the resulting per-item performance metrics are
independent. Therefore, it is better to compare algorithms on a per-user case.

Given such paired per-user performance measures for algorithms A and B a
simple test of significance is the sign test [17, 45]. To use the sign test, we compute a
score (e.g. RMSE for system accuracy) for each user under algorithms A and B. The
sign test makes no assumption on these scores other than that users are independent,
and considers the number of times A beats B. The null hypothesis is that whether
A beats B or vice-versa is determined by a coin-toss. Thus, it uses the number of
times nA that A beats B (e.g. the number of times that alternative A achieved a lower
RMSE than alternative B) If we are interested in a pure winner, i.e., that A would
achieve a strictly better RMSE than B, then draws should count against A, that is,
they should not be counted in nA. If we are interested in the case where A should do
no worse than B, then draws should be counted in nA.
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Let n be the number of users in J for which the predictions were made. The
null hypothesis is that whether A beats B or vice-versa is determined by a coin-toss.
We can now compute the probability that we will observe at least nA times that
system A got a better score than system B under the null hypothesis that the two
systems are equal using:

p D .0:5/n
nX

iDnA

nŠ

iŠ.n � i/Š
(8.1)

when this p-value is below some predefined value (typically, 0:05) we can say that
the null hypothesis that the two system have an equal performance is rejected.

The sign test is an attractive choice due to its simplicity, and lack of assumptions
over the distribution of cases. When nA CnB is large, we can take advantage of large
sample theory to approximate Eq. (8.1) by a normal distribution. However, this is
usually unnecessary with powerful modern computers. Some authors (e.g. [61]) use
the term McNemar’s test to refer to the use of a �2 approximation to the two-sided
sign test.

Note that sometimes, the sign test may indicate that system A outperforms system
B with high probability, even though the average performance of system B is higher
than that of system A. This happens in cases where system B occasionally outper-
forms system A overwhelmingly. Thus, the reason for this seemingly inconsistent
result is that the test only examines the probability of one system outperforming the
other, without regard to the magnitude of the difference.

The sign test can be extended to cases where we want to know the probability
that one system outperforms the other by some amount. For example, suppose
that system A is much more resource intensive than system B, and is only worth
deploying if it outperforms system B by some amount. We can define “success” in
the sign test as A outperforming B by this amount, and find the probability of A not
truly outperforming B by this amount as our p value in Eq. (8.1).

A commonly used test that takes the magnitude of the differences into account
is the paired Student’s t-test, which looks at the average difference between the
performance scores of algorithms A and B, normalized by the standard deviation
of the score difference. Using this test requires that the differences in scores for
different users is comparable, so that averaging these differences is reasonable. For
small numbers of users, the validity of the test also depends on the differences
being Normally distributed. [17] points out that this assumption is hard to verify
when the number of samples is small and that the t-test is susceptible to outliers.
He recommends the use of Wilcoxon signed rank test, which like the t-test, uses
the magnitude of the differences between algorithms A and B, but without making
distributional assumptions on the differences. However, using the Wilcoxon signed
rank test still requires that differences between the two systems are comparable
between users.

Another way to improve the significance of our conclusions is to use a larger
test set. In the offline case, this may require using a smaller training set, which may
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result in an experimental protocol that is not representative of the amount of training
data available after deployment. In the case of user studies, this implies an additional
expense. In the case of online testing, increasing the amount of data collected for
each algorithm requires either the added expense of a longer trial or the comparison
of fewer algorithms.

8.2.4.3 Unpaired Results

The tests described above are suitable for cases where observations are paired. That
is, each algorithm is run on each test case, as is often done in offline tests. In online
tests, however, it is often the case that users are assigned to one algorithm or the
other, so that the two algorithms are not evaluated on the same test cases. The Mann-
Whitney test is an extension of the Wilcoxon test to this scenario. Suppose we have
nA results from algorithm A and nB results from algorithm B.

The performance measures of the two algorithms are pooled and sorted so that
the best result is ranked first and the worst last. The ranks of ties are averaged. For
example if the second through fifth place tie, they are all assigned a rank of 3.5. The
Mann-Whitney test computes the probability of the null hypothesis that nA randomly
chosen results from the total nA C nB have at least as good an average rank as the nA

results that came from algorithm A.
This probability can be computed exactly be enumerating all .nACnB/Š

nAŠnBŠ
choices

and counting the choices that have at least the required average rank, or can be
approximated by repeatedly resampling nA of the results. When nA and nB are
both large enough (typically over 5), the distribution of the average rank of nA

results randomly selected from a pool of nA C nB under the null hypothesis is well
approximated by a Gaussian with mean 1

2
.nA C nB C 1/ and standard deviationq

1
12

nA
nB

.nA C nB C 1/. Thus, in this case we can compute the average rank of the nA

results from system A, subtract 1
2
.nA C nB C 1/, divide by

q
1
12

nA
nB

.nA C nB C 1/,

and evaluate the standard Gaussian CDF at this value to get the p value for the test.

8.2.4.4 Multiple Tests

Another important consideration, mostly in the offline scenario, is the effect of
evaluating multiple versions of algorithms. For example, an experimenter might
try out several variants of a novel recommender algorithm and compare them to
a baseline algorithm until they find one that passes a sign test at the p D 0:05

level and therefore infer that their algorithm improves upon the baseline with
95 % confidence. However, this is not a valid inference. Suppose the experimenter
evaluated ten different variants all of which are statistically the same as the baseline.
If the probability that any one of these trials passes the sign test mistakenly is
p D 0:05, the probability that at least one of the ten trials passes the sign test
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mistakenly is 1 � .1 � 0:05/10 D 0:40. This risk is colloquially known as “tuning to
the test set” and can be avoided by separating the test set users into two groups—a
development (or tuning) set, and an evaluation set. The choice of algorithm is done
based on the development test, and the validity of the choice is measured by running
a significance test on the evaluation set.

A similar concern exists when ranking a number of algorithms, but is more
difficult to circumvent. Suppose the best of N C 1 algorithms is chosen on the
development test set. To achieve a confidence 1 � p that the chosen algorithm
is indeed the best, it must outperform the N other algorithms on the evaluation
set with significance 1 � .1 � p/1=N . This is known as the Bonferroni correction,
and should be used when pair-wise significance tests are used multiple times.
Alternatively, approaches such as ANOVA or the Friedman test for ranking, which
are generalization of the Student’s t-test and Wilcoxon’s rank test. ANOVA makes
strong assumptions about the Normality of the different algorithms’ performance
measures, and about the relationships of their variances. We refer the reader to [17]
for further discussion of these and other tests for ranking multiple algorithms.

A more subtle version of this concern is when a pair of algorithms are compared
in a number of ways. For example, two algorithms may be compared using a
number of accuracy measures, a number of coverage measures, etc. Even if the
two algorithms are identical in all measures, the probability of finding a measure by
which one algorithm seems to outperform the other with some significance level
increases with the number of measures examined. If the different measures are
independent, the Bonferroni correction mentioned above can be used. However,
since the measures are often correlated, the Bonferroni correction may be too
stringent, and other approaches such as controlling for false discovery rate [3] may
be used.

8.2.4.5 Confidence Intervals

Even though we focus here on comparative studies, where one has to choose the
most appropriate algorithm out of a set of candidates, it is sometimes desirable
to measure the value of some property. For example, an administrator may want
to estimate the error in the system predictions, or the net profit that the system is
earning. When measuring such quantities it is important to understand the reliability
of your estimates. A popular approach for doing this is to compute confidence
intervals.

For example, one may estimate that the RMSE of a system is expected to be
1.2, and that it will be between 1.1 and 1.35 with probability 0.95. The simplest
method for computing confidence intervals is to assume that the quantity of interest
is Gaussian distributed, and then estimate its mean and standard deviations from
multiple independent observations. When we have many observations, we can
dispense with this assumption by computing the distribution of the quantity of
interest with a non-parametric method such as a histogram and finding upper and
lower bounds such that include the quantity of interest with the desired probability.
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8.3 Recommender System Properties

In this section we survey a range of properties that are commonly considered when
deciding which recommendation approach to select. As different applications have
different needs, the designer of the system must decide on the important properties
to measure for the concrete application at hand. Some of the properties can be
traded-off, the most obvious example perhaps is the decline in accuracy when other
properties (e.g. diversity) are improved. It is important to understand and evaluate
these trade-offs and their effect on the overall performance. However, the proper
way of gaining such understanding without intensive online testing or defering to
the opinions of domain experts is still an open question.

Furthermore, the effect of many of these properties on the user experience is
unclear, and depends on the application. While we can certainly speculate that users
would like diverse recommendations or reported confidence bounds, it is essential to
show that this is indeed important in practice. Therefore, when suggesting a method
that improves one of this properties, one should also evaluate how changes in this
property affects the user experience, either through a user study or through online
experimentation.

Such an experiment typically uses a single recommendation method with a
tunable parameter that affects the property being considered. For example, we can
envision a parameter that controls the diversity of the list of recommendations. Then,
subjects should be presented with recommendations based on a variety of values
for this parameter, and we should measure the effect of the parameter on the user
experience. We should measure here not whether the user noticed the change in
the property, but whether the change in property has affected their interaction with
the system. As is always the case in user studies, it is preferable that the subjects
in a user study and users in an online experiment will not know the goal of the
experiment. It is difficult to envision how this procedure could be performed in an
offline setting because we need to understand the user response to this parameter.

Once the effects of the specific system properties in affecting the user experience
of the application at hand is understood, we can use differences in these properties
to select a recommender.

8.3.1 User Preference

As in this chapter we are interested in the selection problem, where we need to
choose on out of a set of candidate algorithms, an obvious option is to run a user
study (within subjects) and ask the participants to choose one of the systems [29].
This evaluation does not restrict the subjects to specific properties, and it is generally
easier for humans to make such judgments than to give scores for the experience.
Then, we can select the system that had the largest number of votes.
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However, aside from the biases in user studies discussed earlier, there are
additional concerns that we must be aware of. First, the above scheme assumes
that all users are equal, which may not always be true. For example, an e-commerce
website may prefer the opinion of users who buy many items to the opinion of users
who only buy a single item. We therefore need to further weight the vote by the
importance of the user, when applicable. Assigning the right importance weights in
a user study may not be easy.

It may also be the case that users who preferred system A, only slightly preferred
it, while users who preferred B, had a very low opinion on A. In this case, even if
slightly more users preferred A we may still wish to choose B. To measure this we
need non-binary answers for the preference question in the user study. Then, the
problem of calibrating scores across users arises.

Finally, when we wish to improve a system, it is important to know why people
favor one system over the other. Typically, it is easier to understand that when
comparing specific properties. Therefore, while user satisfaction is important to
measure, breaking satisfaction into smaller components is helpful to understand the
system and improve it.

8.3.2 Prediction Accuracy

Accuracy is by far the most discussed property in the recommendation system
literature. At the base of the vast majority of recommender systems lie a prediction
engine. This engine may predict user opinions over items (e.g. ratings of movies) or
the probability of usage (e.g. purchase).

A basic assumption in a recommender system is that a system that provides more
accurate predictions will be preferred by the user. Thus, many researchers set out to
find algorithms that provide better predictions.

Assuming accurate and consistent user ratings for items, prediction accuracy
is typically independent of the user interface, and can thus be measured in an
offline experiment. That being said, the interface used for providing user feedback
and preferences over items may influence the gathered ratings [54]. This weakens
the generality of the conclusions drawn from such offline experiments. Measuring
prediction accuracy in a user study, however, typically measures the accuracy given
a set of recommendations or item ratings displayed to the user. This is a different
concept from the prediction of user behavior without recommendations, and is
closer to the true accuracy in the real system.

We discuss here three broad classes of prediction accuracy measures; measuring
the accuracy of ratings predictions, measuring the accuracy of usage predictions,
and measuring the accuracy of rankings of items.
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8.3.2.1 Measuring Ratings Prediction Accuracy

In some applications, such as in the new releases page of the popular Netflix DVD
rental service, we wish to predict the rating a user would give to an item (e.g. 1-star
through 5-stars). In such cases, we wish to measure the accuracy of the system’s
predicted ratings.

Root Mean Squared Error (RMSE) is perhaps the most popular metric used
in evaluating accuracy of predicted ratings. The system generates predicted ratings
Orui for a test set T of user-item pairs .u; i/ for which the true ratings rui are known.
Typically, rui are known because they are hidden in an offline experiment, or because
they were obtained through a user study or online experiment. The RMSE between
the predicted and actual ratings is given by:

RMSE D
vuut 1

jTj
X

.u;i/2T
.Orui � rui/2 (8.2)

Mean Absolute Error (MAE) is a popular alternative, given by

MAE D 1

jTj
X

.u;i/2T
jOrui � ruij (8.3)

Compared to MAE, RMSE disproportionately penalizes large errors, so that,
given a test set with four hidden items RMSE would prefer a system that makes
an error of 2 on three ratings and 0 on the fourth to one that makes an error of 3 on
one rating and 0 on all three others, while MAE would prefer the second system.

Normalized RMSE (NMRSE) and Normalized MAE (NMAE) are versions
of RMSE and MAE that have been normalized by the range of the ratings
(i.e. rmax � rmin). Since they are simply scaled versions of RMSE and MAE, the
resulting ranking of algorithms is the same as the ranking given by the unnormalized
measures.

Average RMSE and Average MAE adjust for unbalanced test sets. For example,
if the test set has an unbalanced distribution of items, the RMSE or MAE obtained
from it might be heavily influenced by the error on a few very frequent items. If
we need a measure that is representative of the prediction error on any item, it is
preferable to compute MAE or RMSE separately for each item and then take the
average over all items. Similarly, one can compute a per-user average RMSE or
MAE if the test set has an unbalanced user distribution and we wish to understand
the prediction error a randomly drawn user might face.

RMSE and MAE depend only on the magnitude of the errors made. In some
applications [16, e.g.], the semantics of the ratings may be such that the impact of
a prediction error does not depend only on its magnitude. In such domains it may
be preferable to use a suitable distortion measure d.Or; r/ than squared difference
or absolute difference. For example in an application with a 3-star rating system
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where 1 means “disliked,” 2 means “neutral” and 3 means “liked,” and where
recommending an item the user dislikes is worse that not recommending an item
a user likes, a distortion measure with d.3; 1/ D 5, d.2; 1/ D 3, d.3; 2/ D 3,
d.1; 2/ D 1, d.2; 3/ D 1, and d.1; 3/ D 2 may be reasonable.

8.3.2.2 Measuring Usage Prediction

In many applications the recommender system does not predict the user’s prefer-
ences of items, such as movie ratings, but tries to recommend to users items that
they may use. For example, when movies are added to the queue, Netflix suggests a
set of movies that may also be interesting, given the added movie. In this case we are
interested not in whether the system properly predicts the ratings of these movies
but rather whether the system properly predicts that the user will add these movies
to the queue (use the items).

In an offline evaluation of usage prediction, we typically have a data set
consisting of items each user has used. We then select a test user, hide some of
her selections, and ask the recommender to predict a set of items that the user will
use. We then have four possible outcomes for the recommended and hidden items,
as shown in Table 8.1.

In the offline case, since the data isn’t typically collected using the recommender
system under evaluation, we are forced to assume that unused items would have not
be used even if they had they been recommended—i.e. that they are uninteresting
or useless to the user. This assumption may be false, such as when the set of unused
items contains some interesting items that the user did not select. For example, a
user may not have used an item because she was unaware of its existence, but after
the recommendation exposed that item the user can decide to select it. In this case
the number of false positives is over estimated.

We can count the number of examples that fall into each cell in the table and
compute the following quantities:

Precision D #tp

#tp C #fp
(8.4)

Recall (True Positive Rate) D #tp

#tp C #fn
(8.5)

False Positive Rate (1 - Specificity) D #fp

#fp C #tn
(8.6)

Table 8.1 Classification of
the possible result of a
recommendation of an item
to a user

Recommended Not recommended

Used True-positive (tp) False-negative (fn)

Not used False-positive (fp) True-negative (tn)
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Typically we can expect a trade off between these quantities—while allowing
longer recommendation lists typically improves recall, it is also likely to reduce
the precision. In applications where the number of recommendations that can be
presented to the user is preordained, the most useful measure of interest is precision
at N (often written Precision@N).

In other applications where the number of recommendations that are presented
to the user is not preordained, it is preferable to evaluate algorithms over a range of
recommendation list lengths, rather than using a fixed length. Thus, we can compute
curves comparing precision to recall, or true positive rate to false positive rate.
Curves of the former type are known simply as precision-recall curves, while those
of the latter type are known as a receiver operating characteristic curve3 or ROC
curve. While both curves measure the proportion of preferred items that are actually
recommended, precision-recall curves emphasize the proportion of recommended
items that are preferred while ROC curves emphasize the proportion of items that
are not preferred that end up being recommended.

We should select whether to use precision-recall or ROC based on the properties
of the domain and the goal of the application; suppose, for example, that an online
video rental service recommends DVDs to users. The precision measure describes
the proportion of their recommendations were actually suitable for the user. Whether
the unsuitable recommendations represent a small or large fraction of the unsuitable
DVDs that could have been recommended (i.e. the false positive rate) may not be
as relevant as what proportion of the relevant items the system recommended to
the user, so a precision-recall curve would be suitable for this application. On the
other hand, consider a recommender system that is used for selecting items to be
marketed to users, for example by mailing an item to the user who returns it at no
cost to themselves if they do not purchase it. In this case, where we are interested
in realizing as many potential sales as possible while minimizing marketing costs,
ROC curves would be more relevant than precision-recall curves.

Given two algorithms, we can compute a pair of such curves, one for each
algorithm. If one curve completely dominates the other curve, the decision about
the superior algorithm is easy. However, when the curves intersect, the decision
is less obvious, and will depend on the application in question. Knowledge of the
application will dictate which region of the curve the decision will be based on.

Measures that summarize the precision-recall or ROC curve such as F-measure
[73]—the harmonic mean of the equally weighted precision and recall

F D 2 � precision � recall

precision C recall
(8.7)

and the Area Under the ROC Curve (AUC) [2] are useful for comparing
algorithms independently of application, but when selecting an algorithm for use in
a particular task, it is preferable to make the choice based on a measure that reflects
the specific needs at hand, such as the actual list length dictated by the application.

3A reference to their origins in signal detection theory.
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Precision-Recall and ROC for Multiple Users

When evaluating precision-recall or ROC curves for multiple test users, a number of
strategies can be employed in aggregating the results, depending on the application
at hand.

In applications where a fixed number of recommendations are made to each user
(e.g. when a fixed number of headlines are shown to a user visiting a news portal),
we can compute the precision and recall (or true positive rate and false positive rate)
at each recommendation list length N for each user, and then compute the average
precision and recall (or true positive rate and false positive rate) at each N [63]. The
resulting curves are particularly valuable because they prescribe a value of N for
each achievable precision and recall (or true positive rate and false positive rate),
and conversely, can be used to estimate performance at a given N. An ROC curve
obtained in this manner is termed a customer ROC (CROC) curve [64].

When different numbers of recommendations can be shown to each user (e.g.
when presenting the set of all recommended movies to each user), we can compute
ROC or precision-recall curves by aggregating the hidden ratings from the test set
into a set of reference user-item pairs, using the recommender system to generate a
single ranked list of user-item pairs, picking the top recommendations from the list,
and scoring them against the reference set. An ROC curve calculated in this way
is termed a Global ROC (GROC) curve [64]. Picking an operating point on the
resulting curve can result in a different number of recommendations being made to
each user.

A final class of applications is where the recommendation process is more
interactive, and the user is able to obtain more and more recommendations. This
is typical of information retrieval tasks, where the user can keep asking the system
for more recommended documents. In such applications, we compute a precision-
recall curve (or ROC curve) for each user and then average the resulting curves
over users. This is the usual manner in which precision-recall curves are computed
in the information retrieval community, and in particular in the influential TREC
competitions [74]. Such a curve can be used to understand the trade-off between
precision and recall (or false positives and false negatives) a typical user would face.

8.3.2.3 Ranking Measures

In many cases the application presents to the user a list of recommendations,
typically as vertical or horizontal list, imposing a certain natural browsing order.
For example, in Netflix, the “movies you’ll love” tab, shows a set of categories, and
in each category, a list of movies that the system predicts the user to like. These
lists may be long and the user may need to continue to additional “pages” until the
entire list is browsed. In these applications, we are not interested in predicting an
explicit rating, or selecting a set of recommended items, as in the previous sections,
but rather in ordering items according to the user’s preferences. This task is typically
known as the ranking of items. There are two approaches for measuring the accuracy
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of such a ranking. We can try to determine the correct order of a set of items for
each user and measure how close a system comes to this correct order, or we can
attempt to measure the utility of the system’s raking to a user. We first describe these
approaches for offline tests, and then describe their applicability to user studies and
online tests.

Using a Reference Ranking

In order to evaluate a ranking algorithm with respect to a reference ranking (a correct
order), it is first necessary to obtain such a reference.

In cases where explicit user ratings of items are available, we can rank the rated
items in decreasing order of ratings. However, there are two problems with this
approach. First, most users typically have not rated some (usually most) of the
items. Second, in many applications, the user ratings are quantized. For example,
in the case of Netflix, each user only rates some of the movies, and the ratings
are quantized to a 5-star scale. Thus, while we know that a movie rated 4 stars is
preferred over a movie rated 3 stars, we do not know which (if either) of two 4-star
movies is actually preferred by the user. We also know nothing about the user’s
preferences over most of the movies, which they have not rated.

Constructing reference rankings from usage data also runs into this problem. We
can assume that items that the user actually used are preferred to those that the user
was aware of but did not use. However, we do not know how to rank unused items
that the user is not known to have been aware of (e.g. items that were never presented
to the user, or items that were presented in a manner that the user may have easily
missed them). We also do not know how to rank used items against other used items,
and unused items the user was aware of against other such items.

Such cases where a ranking over items is incompletely specified is described
technically as a partial order.

Let
�I

2

�
denote the set of all unordered pairs of items in I. Let � be a partial order

over a set of items I. In a partial order, for any two items i1, i2, exactly one of the
following three conditions holds:

1. One item is a successor of the other, e.g. i1 is a successor of i2, denoted i1 � i2,
typically meaning that i1 is preferred to i2. For example, if the user prefers “Star
Wars IV” to “The Matrix”, and the list is ranked by preference, then we can write
“Star Wars IV” � “The Matrix”.

2. If the user prefers the items equally, denoted i1 D i2. For example, a user may
be indifferent as to whether he would get a brand A or brand B laptop, as long
as they both have the same amount of memory, or may bid the same amount for
two items on an auction at eBay.

3. The items may be incomparable. For example, one may not be able to say
whether she prefers the latest Coen brothers movie, or the latest U2 disk.
Alternatively, as discussed above, we may not have information about the user’s
preferences on the pair.
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A total order over a set of items is an order where for each pair of items i1; i2,
either i1 � i2 or i2 � i1. In many cases, the reference ranking is given by a partial
order, but the system outputs its recommendations as a total order, although perhaps
not on all items. Therefore, we now describe ranking accuracy metrics that allow
measurement agreement/disagreement between partial and total orders. To do so,
we formally define the concepts of agreement, disagreement, and compatibility.

Let �1 and �2 be two partial orders over a set of items I, where �1 is the
reference order and �2 is the system proposed order. We define an agreement
relation between the orders �1 and �2 with respect to a pair of items as follows:

• The orders �1 and �2 agree on items i1 and i2 if i1 �1 i2 and i1 �2 i2.
• The orders �1 and �2 disagree on items i1 and i2 if i1 �1 i2 and i2 �2 i1.
• The orders �1 and �2 are compatible on items i1 and i2 if i1 �1 i2 and neither

i1 �2 i2 nor i2 �2 i1. In other words the items are either tied or incomparable
under at least one of the orders.

The Normalized Distance based Performance Measure (NDPM) [76] is
commonly used in information retrieval. It differentiates between correct orders of
pairs, incorrect orders and ties. Formally, let ı�1;�2 .i1; i2/ be a distance function
between a reference ranking �1 and a proposed ranking �2 defined as follows:

ı�1;�2 .i1; i2/ D

8
ˆ̂<

ˆ̂:

0 if �1 and �2 agree on i1 and i2;

1 if �1 and �2 are compatible on i1 and i2;

2 if �1 and �2 disagree on i1 and i2:

(8.8)

The total distance over all item pairs in I is:

ˇ�1;�2 .I/ D
X

.i1;i2/2.I
2/

ı�1;�2 .i1; i2/ (8.9)

where the summation is over all possible item pairs in I (efficient implementations
can sum only over item pairs for which the reference ranking asserts an order).

Let m.�1/ D argmax�ˇ�1;�.I/ be a normalization factor which is the maximal
distance that any ranking � can have from a reference ranking �1. In fact, m.�1/ is
the number of pairs in I for which the reference ranking asserts an ordering, because
the worst possible outcome would be to be wrong on all possible pairs. The NDPM
score NDPM.I; �1; �2/ comparing a proposed ranking of items �2 to a reference
ranking �1 is

NDPM.I; �1; �2/ D ˇ�1;�2 .I/

m.�1/
(8.10)

Intuitively, the NDPM measure will give a perfect score of 0 to rankings over the
set I that completely agree with the reference ranking, and the worst score of 1 is
assigned to a ranking that completely disagrees with the reference ranking. If the
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proposed ranking does not contain a preference between a pair of items that are
ranked in the reference ranking, it is penalized by half as much as providing a
contradicting preference.

The proposed ranking is not penalized for containing preferences that are not
ordered in the reference ranking. This means that for any pair of items that was not
ordered in the reference ranking any ordering predicted by the ranking algorithm is
acceptable. This is because we typically display a list within the application. As such
the ranking algorithm is expected to output a total, not a partial order, and should
not be penalized for being forced to order all pairs.

A potential downside of NDPM in some applications is that it does not consider
the location of disagreements in the reference ranking. In some cases it is more
important to appropriately order items that should appear closer to the head of
the ranked list, than items that are positioned near the bottom. For example, when
ranking movies by decreasing preference, it may be more important to properly
order the movies that the user would enjoy, than to properly order the movies that
the user would not enjoy. It is sometimes important to give different weights to
errors depending on their position in the list.

To this end, we can use the average precision (AP) correlation metric [77],
which gives more weight to errors over items that appear at earlier positions in the
reference ranking. Formally, let �1 be the reference ranking and �2 be a proposed
ranking over a set of items. The AP measure compares the ordering of each item
in the proposed ranking �2 with respect to its preceding items (successors) in the
reference ranking �1.

For each i1 2 I, let the set Zi1 .I; �/ denote all item pairs .i1; i2/ in I such that
i2 � i1. These are all the items that are preferred over i1 (i.e., preceding tems).

Zi.I; �/ D f.i1; i2/ j 8i1; i2 2 I s.t. i2 � i1g (8.11)

We define the indicator function ı.i1; i2; �1; �2/ to equal 1 when �1 and �2 agree
on items i1 and i2, and zero otherwise.

Let Ai1 .I; �1; �2/ be the normalized agreement score between �2 and the
reference ranking �1 for all items i2 such that i2 �1 i1.

Ai1 .I; �1; �2/ D 1

jZi1 .I; �2/j � 1

X

.i1;i2/2Zi1 .I;�2/

ı.i1; i2; �1; �2/ (8.12)

The AP score of a partial order �2 over I given partial order �1 is defined as

AP.I; �1; �2/ D 1

jIj � 1

X

i2I

Ai.I; �1; �2/ (8.13)

The AP score gives a perfect score of 1 where there is total agreement between
the system proposed ranking and the reference ranking for every item pair above
location i for all i 2 f1 : : : jIjg. The worst score of 0 is given to systems were there
is no agreement between the two ranked lists.
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In some cases, we may completely know the user’s true preferences for some set
of items. For example, we may elicit the user’s true ordering by presenting the user
with binary choices. In this case, when a pair of items are tied in the reference
ranking it means that the user is actually indifferent between the items. Thus, a
perfect system should not rank one item higher than the other. In such cases, rank
correlation measures such as Spearman’s � or Kendall’s � [37, 38] can be used.
These measures tend to be highly correlated in practice [22]. Kendall’s � is given by

� D CC � C�
p

Cu
p

Cs
(8.14)

where CC and C� are the number of pairs that were correctly, and incorrectly
ordered by the system, respectively, Cu is the number of item pairs for which the
reference ranking asserts any ordering, and Cs is the number of item pairs for which
the evaluated system asserts any ordering.

Utility-Based Ranking

While reference ranking scores a ranking on its correlation with some “true”
ranking, there are other criteria for deciding on ordering a list of items. One popular
alternative is to order items by decreasing utility. In such cases, we not only care
about whether items i1 and i2 were ordered incorrectly, but also about the difference
in utility between i1 and i2. It is not as bad to incorrectly order a pair of items with
similar utilities, as to incorrectly order items with very different utilities.

It is also common to assume that the utility of a list of recommendations is
additive, given by the sum of the utilities of the individual recommendations. The
utility of each recommendation is the utility of the recommended item discounted
by a factor that depends on its position in the list of recommendations. One example
of such a utility is the likelihood that a user will observe a recommendation at
position i in the list. It is usually assumed that users scan recommendation lists
from the beginning to the end, with the utility of recommendations being discounted
more heavily towards the end of the list. The discount can also be interpreted
as the probability that a user would observe a recommendation in a particular
position in the list, with the utility of the recommendation given that it was observed
depending only on the item recommend. Under this interpretation, the probability
that a particular position in the recommendation list is observed is assumed to
depend only on the position and not on the items that are recommended.

In many applications, the user can use only a single, or a very small set of
items, or the recommendation engine is not used as the main browsing tool. In
such cases, we can expect the users to observe only a few items of the top of the
recommendations list. We can model such applications using a very rapid decay
of the positional discount down the list. The R-Score metric [10] assumes that the
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value of recommendations decline exponentially down the ranked list to yield the
following score for each user u:

Ru D
X

j

max.ru;ij � d; 0/

2
j�1
˛�1

(8.15)

where ij is the item in the jth position, ru;i is user u’s rating of item i, d is a
task dependent neutral (“don’t care”) rating, and ˛ is a half-life parameter, which
controls the exponential decline of the value of positions in the ranked list. In the
case of ratings prediction tasks, rui is the rating given by the user to each item (e.g.
4 stars), and d is the don’t care vote (e.g. 3 stars), and the algorithm only gets credit
for ranking items with rating above the “don’t care” vote higher than d (e.g. 4 or
5 stars). In usage prediction tasks, ru;i is typically 1 if u selects i and 0 otherwise,
while d is 0. Using

ru;i D � log.relative-frequency.i// (8.16)

if i is used and 0 otherwise can capture the amount of information in the
recommendation [66]. The resulting per-user scores are aggregated using:

R D 100

P
u RuP
u R�

u

(8.17)

where R�
u is the score of the best possible ranking for user u.

In other applications the user is expected to read a relatively large portion of
the list. In certain types of search, such as the search for legal documents [28],
users may look for all relevant items, and would be willing to read large portions
of the recommendations list. In such cases, we need a much slower decay of the
positional discount. Normalized Discounted Cumulative Gain (NDCG) [33] is a
measure from information retrieval, where positions are discounted logarithmically.
Assuming each user u has a “gain” gu;i from being recommended item i, the average
Discounted Cumulative Gain (DCG) for a list of J items is defined as

DCG D 1

N

NX

uD1

JX

jD1

gu;ij

logb. j C 1/
(8.18)

where ij is the item at position j in the list. The logarithm base is a free parameter,
typically between 2 and 10. A logarithm with base 2 is commonly used to ensure all
positions are discounted. NDCG is the normalized version of DCG given by

NDCG D DCG

DCG� (8.19)

where DCG� is the ideal DCG.
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We show the two methods here as they were originally presented, but note that
the numerator in the two cases contains a utility function that assigns a value for
each item. One can replace the original utility functions with a function that is more
appropriate to the designed application. A measure closely related to R-score and
NDCG is average reciprocal hit rank (ARHR) [18] which is an un-normalized
measure that assigns a utility 1=k to a successful recommendation at position k.
Thus, ARHR decays more slowly than R score but faster than NDCG.

Online Evaluation of Ranking

In an online experiment designed to evaluate the ranking of the recommendation list,
we can look at the interactions of users with the system. When a recommendation
list is presented to a user, the user may select a number of items from the list. We can
now assume that the user has scanned the list at least as deep as the last selection.
That is, if the user has selected items 1, 3, and 10, we can assume that the user has
observed items 1 through 10. We can now make another assumption, that the user
has found items 1, 3, and 10 to be interesting, and items 2, 4, 5, 6, 7, 8, and 9 to
be uninteresting (see, e.g. [35]). In some cases we can have additional information
whether the user has observed more items. For example, if the list is spread across
several pages, and only 20 results are presented per page, then, in the example above,
if the user moved to the second page we can also assume that she has observed
results 11 through 20 and had found them to be irrelevant.

In the scenario above, the results of this interaction is a division of the list into
three parts—the interesting items (1, 3, 10 in the example above), the uninteresting
items (the rest of the items from 1 through 20), and the unknown items (21 till
the end of the list). We can now use an appropriate reference ranking metric to
score the original list. This can be done in two different ways. First, the reference
list can contain the interesting items at the top, then the unknown items, and the
uninteresting items at the bottom. This reference list captures the case where the user
may only select a small subset of the interesting items, and therefore the unknown
items may contain more interesting items. Second, the reference list can contain the
interesting items at the top, followed by the uninteresting items, with the unknown
items completely ignored. This is useful when making unreasonable preference
assumptions, such as that some unknown items are preferred to the uninteresting
items, may have negative consequences. In either case, it should be borne in mind
that the semantics of the reference ranking are different from the case of offline
evaluations. In offline evaluations, we have a single reference ranking which is
assumed to be correct, and we measure how much each recommender deviates from
this “correct” ranking. In the online case, the reference ranking is assumed to be
the ranking that the user would have preferred given that were presented with the
recommender’s ranking. In the offline case, we assume that there is one correct
ranking, while in the online case we allow for the possibility of multiple correct
rankings.
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In the case of utility ranking, we can evaluate a list based on the sum of the
utilities of the selected items. Lists that place interesting items with high utility
close to the beginning of the list, will hence be preferred to lists that place these
interesting items down the list, because we expect that in the latter case, the user
will often not observe these interesting items at all, generating no utility for the
recommender.

8.3.3 Coverage

As the prediction accuracy of a recommender system, especially in collaborative
filtering systems, in many cases grows with the amount of data, some algorithms
may provide recommendations with high quality, but only for a small portion of the
items where they have huge amounts of data. This is often referred to as the long tail
or heavy tail problem, where the vast majority of the items where selected or rated
only by a handful of users, yet the total amount of evidence over these unpopular
items is much more than the evidence over the few popular items.

The term coverage can refer to several distinct properties of the system that we
discuss below.

8.3.3.1 Item Space Coverage

Most commonly, the term coverage refers to the proportion of items that the
recommender system can recommend. This is often referred to as catalog coverage.
The simplest measure of catalog coverage is the percentage of all items that can ever
be recommended. This measure can be computed in many cases directly given the
algorithm and the input data set.

A more useful measure is the percentage of all items that are recommended to
users during an experiment, either offline, online, or a user study. In some cases
it may be desirable to weight the items, for example, by their popularity or utility.
Then, we may agree not to be able to recommend some items which are very rarely
used anyhow, but ignoring high profile items may be less tolerable.

Another measure of catalog coverage is the sales diversity [20], which measures
how unequally different items are chosen by users when a particular recommender
system is used. If each item i accounts for a proportion p.i/ of user choices, the
Gini index is given by:

G D 1

n � 1

nX

jD1

.2j � n � 1/p.ij/ (8.20)

where i1; � � � in is the list of items ordered according to increasing p.i/. The index is 0
when all items are chosen equally often, and 1 when a single item is always chosen.
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The Gini index of the number of times each item is recommended could also be
used. Another measure of distributional inequality is the Shannon Entropy:

H D �
nX

iD1

p.i/ log p.i/ (8.21)

The entropy is 0 when a single item is always chosen or recommended, and log n
when n items are chosen or recommended equally often.

Steck [70] further discusses how accuracy methods can be modified to better
model the accuracy in the long tail. He suggests a correction for the bias of users
towards the more popular items.

8.3.3.2 User Space Coverage

Coverage can also be the proportion of users or user interactions for which the
system can recommend items. In many applications the recommender may not
provide recommendations for some users due to, e.g. low confidence in the accuracy
of predictions for that user. In such cases we may prefer recommenders that can
provide recommendations for a wider range of users. Clearly, such recommenders
should be evaluated on the trade-off between coverage and accuracy.

Coverage here can be measured by the richness of the user profile required to
make a recommendation. For example, in the collaborative filtering case this could
be measured as the number of items that a user must rate before receiving recom-
mendations. This measurement can be typically evaluated in offline experiments.

8.3.3.3 Cold-Start Problem

Another related set of issues are the well known cold start problems—the coverage
and performance of the system on new items and on new users. Cold start can
be considered as a sub problem of coverage because it measures the system coverage
over a specific set of items and users. In addition to measuring how large the pool of
cold start items or users are, it may also be important to measure system accuracy
for these users and items.

Focusing on cold start items, we can use a threshold to decide on the set of cold
items. For example, we can decide that cold items are only items with no ratings or
usage evidence [64], or items that exist in the system for less than a certain amount
of time (e.g., a day), or items that have less than a predefined evidence amount (e.g.,
less than ten ratings). Perhaps a more generic way is to consider the “coldness” of
an item using either the amount of time it exists in the system or the amount of data
gathered for it. Then, we can credit the system more for properly predicting colder
items, and less for the hot items that are predicted.

It may be possible that a system better recommends cold items at the price of a
reduced accuracy for hotter items. This may be desirable due to other considerations
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such as novelty and serendipity that are discussed later. Still, when computing the
system accuracy on cold items it may be wise to evaluate whether there is a trade-off
with the entire system accuracy.

8.3.4 Confidence

Confidence in the recommendation can be defined as the system’s trust in its
recommendations or predictions [26, 72]. As we have noted above, collaborative
filtering recommenders tend to improve their accuracy as the amount of data over
items grows. Similarly, the confidence in the predicted property typically also grows
with the amount of data.

In many cases the user can benefit from observing these confidence scores [26].
When the system reports a low confidence in a recommended item, the user may
tend to further research the item before making a decision. For example, if a system
recommends a movie with very high confidence, and another movie with the same
rating but a lower confidence, the user may add the first movie immediately to the
watching queue, but may further read the plot synopsis for the second movie, and
perhaps a few movie reviews before deciding to watch it.

Perhaps the most common measurement of confidence is the probability that the
predicted value is indeed true, or the interval around the predicted value where a
predefined portion, e.g. 95 % of the true values lie. For example, a recommender
may accurately rate a movie as a 4 star movie with probability 0:85, or have 95 %
of the actual ratings lie within �1 and C 1

2
of the predicted 4 stars. The most

general method of confidence is to provide a complete distribution over possible
outcomes [49].

Given two recommenders that perform similarly on other relevant properties,
such as prediction accuracy, is can be desirable to choose the one that can provide
valid confidence estimates. In this case, given two recommenders with, say, identical
accuracy, that report confidence bounds in the same way, we will prefer the
recommender that better estimates its confidence bounds.

Standard confidence bounds, such as the ones above, can be directly evaluated
in regular offline trials, much the same way as we estimate prediction accuracy. We
can design for each specific confidence type a score that measures how close the
method confidence estimate is to the true error in prediction. This procedure cannot
be applied when the algorithms do not agree on the confidence method, because
some confidence methods are weaker and therefore easier to estimate. In such a
case a more accurate estimate of a weaker confidence metric does not imply a better
recommender.

Example 8.1. Recommenders A and B both report confidence intervals over possi-
ble movie ratings. We train A and B over a confidence threshold, ranging of 95 %.
For each trained model, we run A and B on offline data, hiding a part of the user
ratings and requesting each algorithm to predict the missing ratings. Each algorithm
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produces, along with the predicted rating, a confidence interval. We compute AC
and A�, the number of times that the predicted rating of algorithm A was within
and outside the confidence interval (respectively), and do the same for B. Then
we compute the true confidence of each algorithm using A

C

A
�

CA
C

D 0:97 and
B

C

A
�

CA
C

D 0:94. The result indicates that A is over conservative, and computes
intervals that are too large, while B is liberal and computes intervals that are too
small. As we do not require the intervals to be conservative, we prefer B because its
estimated intervals are closer to the requested 95 % confidence.

Another application of confidence bounds is in filtering recommended items
where the confidence in the predicted value is below some threshold. In this scenario
we assume that the recommender is allowed not to predict a score for all values. In
a top n recommendation scenario, we may allow a system to sometimes suggest less
than n items, because it cannot produce a set of n items with sufficient confidence. In
this case the precision of the system is not punished when less results are returned,
and the shorter list is expected to result only in lower recall. As such, measuring
only precision@N in such problems is insufficient, because algorithms have an
incentive to provide less recommendations, or even no recommendations, obtaining
a meaningless precision of 1.

We can hence design an experiment around this filtering procedure by comparing
the accuracy of two recommenders after their results were filtered by removing
low confidence items. In such experiments we can compute a curve, estimating the
prediction accuracy (typically precision-recall curves) for each portion of filtered
items, or for different filtering thresholds. This evaluation procedure does not require
both algorithms to agree on the confidence method.

While user studies and online experiments can study the effect of reporting
confidence on the user experience [67], it is difficult to see how these types of tests
can be used to provide further evidence as to the accuracy of the confidence estimate.

8.3.5 Trust

While confidence is the system trust in its ratings (Chap. 20), in trust we refer
here to the user’s trust in the system recommendation.4 For example, it may be
beneficial for the system to recommend a few items that the user already knows and
likes. This way, even though the user gains no value from this recommendation, she
observes that the system provides reasonable recommendations, which may increase
her trust in the system recommendations for unknown items. Another common way

4Not to be confused with trust in the social network research, used to measure how much a user
believes another user. Some literature on recommender systems uses such trust measurements to
filter similar users [48].
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of enhancing trust in the system is to explain the recommendations that the system
provides (Chap. 10). Trust in the system is also called the credibility of the system.

If we do not restrict ourselves to a single method of gaining trust, such as the
one suggested above, the obvious method for evaluating user trust is by asking users
whether the system recommendations are reasonable in a user study [5, 14, 26, 57].
In an online test one could associate the number of recommendations that were
followed with the trust in the recommender, assuming that higher trust in the
recommender would lead to more recommendations being used. Alternatively, we
could also assume that trust in the system is correlated with repeated users, as users
who trust the system will return to it when performing future tasks. However, such
measurements may not separate well other factors of user satisfaction, and may not
be accurate. It is unclear how to measure trust in an offline experiment, because trust
is built through an interaction between the system and a user.

8.3.6 Novelty

Novel recommendations (Chap. 26) are recommendations for items that the user did
not know about [41]. In applications that require novel recommendation, an obvious
and easy to implement approach is to filter out items that the user already rated or
used. However, in many cases users will not report all the items they have used in
the past. Thus, this simple method is insufficient to filter out all items that the user
already knows.

While we can obviously measure novelty in a user study, by asking users whether
they were already familiar with a recommended item [12, 34], we can also gain
some understanding of a system’s novelty through offline experiments. For such an
experiment we could split the data set on time, i.e. hide all the user purchases that
occurred after a specific point in time. In addition, we can hide some purchases
that occurred prior to that time, simulating the items that the user has purchased
and is hence familiar with, but did not report their purchase to the system. When
recommending, the system is rewarded for each item that was recommended and
purchased after the split time, but would be punished for each item that was
recommended but purchased prior to the split time.

To implement the above procedure we must carefully model the hiding process
such that it would resemble the true preference discovery process that occurs in the
real system. In some cases the set of purchased items is not a uniform sample of
the set of all items the user is familiar with, and such bias should be acknowledged
and handled if possible. For example, if we believe that the user will report more
purchases of unique items, and less purchases of popular or common items, then the
hiding process should tend to hide more popular items.

In using this measure of novelty, it is important to control for accuracy, as
irrelevant recommendations may be new to the user, but still worthless. One
approach would be to consider novelty only among the relevant items [79].
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Example 8.2. We wish to evaluate the novelty of a set of movie recommenders in
an offline test. As we believe that users of our system rate movies after they watch
them, we split the user ratings in a sequential manner. For each test user profile we
choose a cutoff point randomly along the time-based sequence of movie ratings,
hiding all movies after a certain point in the sequence.

Let us assume that user studies on this imaginary system showed that people tend
not to report ratings of movies that they did not feel strongly about, but occasionally
also do not report a rating of a movie that they liked or disliked strongly. Therefore,
we hide a rating of a movie prior to the cutoff point with probability 1 � jr�3j

2
where

r 2 f1; 2; 3; 4; 5g is the rating of the movie, and 3 is the neutral rating. We would
like to avoid predicting these movies with hidden ratings because the user already
knows about them.

Then, for each user, each recommender produces a list of 5 recommendations,
and we compute precision only over items after the cutoff point. That is, the
recommenders get no credit for recommending movies with hidden ratings that
occurred prior to the cutoff point. In this experiment the algorithm with the highest
precision score is preferred.

Another method for evaluating novel recommendations uses the above assump-
tion that popular items are less likely to be novel. Thus, novelty can be taken into
account by using an accuracy metric where the system does not get the same credit
for correctly predicting popular items as it does when it correctly predicts non-
popular items [65]. Ziegler et al. [80] and Celma and Herrera [12] also give accuracy
measures that take popularity into account.

Finally, we can evaluate the amount of new information in a recommendation
together with the relevance of the recommended item. For example, when item
ratings are available, we can multiply the hidden rating by some information
measurement of the recommended item (such as the conditional entropy given the
user profile) to produce a novelty score.

8.3.7 Serendipity

Serendipity is a measure of how surprising the successful recommendations are
(Chap. 26). For example, if the user has rated positively many movies where
a certain star actor appears, recommending the new movie of that actor may
be novel, because the user may not know of it, but is hardly surprising. Of course,
random recommendations may be very surprising, and we therefore need to balance
serendipity with accuracy.

One can think of serendipity as the amount of relevant information that is new
to the user in a recommendation. For example, if following a successful movie
recommendation the user learns of a new actor that she likes, this can be considered
as serendipitous. In information retrieval, where novelty typically refers to the
new information contained in the document (and is thus close to our definition
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of serendipity), [79] suggested to manually label pairs of documents as redundant.
Then, they compared algorithms on avoiding recommending redundant documents.
Such methods are applicable to recommender systems when some meta-data over
items, such as content information, is available (Chap. 4).

To avoid human labeling, we could design a distance measurement between items
based on content. Then, we can score a successful recommendation by its distance
from a set of previously rated items in a collaborative filtering system, or from
the user profile in a content-based recommender [78]. Thus, we are rewarding the
system for successful recommendations that are far from the user profile.

Example 8.3. In a book recommendation application, we would like to recommend
books from authors that the reader is less familiar with. We therefore design
a distance metric between a book b and a set of books B (the books that the
user has previously read); Let cB;w be the number of books by writer w in B.
Let cB D maxw cB;w the maximal number of books from a single writer in B.
Let d.b; B/ D 1CcB�cB;w.b/

1CcB
, where w.b/ is the writer of book b.

We now run an offline experiment to evaluate which of the candidate algorithms
generates more serendipitous recommendations. We split each test user profile—
set of books that the user has read—into sets of observed books Bo

i and hidden
books Bh

i . We use Bo
i as the input for each recommender, and request a list

of five recommendations. For each hidden book b 2 Bh
i that appeared in the

recommendation list for user i, the recommender receives a score of d.b; Bo
i /. Thus

the recommender is getting more credit for recommending books from writers that
the reader has read less often. In this experiment the recommender that received a
higher score is selected for the application.

One can also think of serendipity as deviation from the “natural” prediction [53].
That is, given a prediction engine that has a high accuracy, the recommendations
that it issues are “obvious”. Therefore, we will give higher serendipity scores to
successful recommendations that the prediction engine would deem unlikely.

We can evaluate the serendipity of a recommender in a user study by asking the
users to mark the recommendations that they find unexpected. Then, we can also
see whether the user followed these recommendations, which would make them
unexpected and successful and therefore serendipitous. In an online study, we can
assume that our distance metric is correct and evaluate only how distance from the
user profile affected the probability that a user will follow the recommendation. It is
important to check the effect of serendipity over time, because users might at first be
intrigued by the unexpected recommendations and try them out. If after following
the suggestion they discover that the recommendations are inappropriate, they may
stop following them in the future, or stop using the recommendation engine at all.
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8.3.8 Diversity

Diversity is generally defined as the opposite of similarity (Chap. 26). In some cases
suggesting a set of similar items may not be as useful for the user, because it may
take longer to explore the range of items. Consider for example a recommendation
for a vacation [68], where the system should recommend vacation packages.
Presenting a list with five recommendations, all for the same location, varying
only on the choice of hotel, or the selection of attraction, may not be as useful
as suggesting five different locations. The user can view the various recommended
locations and request more details on a subset of the locations that are appropriate
to her.

The most explored method for measuring diversity uses item-item similarity,
typically based on item content, as in Sect. 8.3.7. Then, we could measure the
diversity of a list based on the sum, average, min, or max distance between
item pairs, or measure the value of adding each item to the recommendation
list as the new item’s diversity from the items already in the list [8, 80]. The
item-item similarity measurement used in evaluation can be different from the
similarity measurement used by the algorithm that computes the recommendation
lists. For example, we can use for evaluation a costly metric that produces more
accurate results than fast approximate methods that are more suitable for online
computations.

As diversity may come at the expanse of other properties, such as accuracy [78],
we can compute curves to evaluate the decrease in accuracy vs. the increase in
diversity.

Example 8.4. In a book recommendation application, we are interested in pre-
senting the user with a diverse set of recommendations, with minimal impact to
accuracy. We use d.b; B/ from Example 8.3 as the distance metric. Given candidate
recommenders, each with a tunable parameter that controls the diversity of the
recommendations, we train each algorithm over a range of values for the diversity
parameters. For each trained model, we now compute a precision score, and a
diversity score as follows; we take each recommendation list that an algorithm
produces, and compute the distance of each item from the rest of the list, averaging
the result to obtain a diversity score. We now plot the precision-diversity curves of
the recommenders in a graph, and select the algorithm with the dominating curve.

In recommenders that assist in information search, we can assume that more
diverse recommendations will result in shorter search interactions [68]. We could
use this in an online experiment measuring interaction sequence length as a proxy
for diversification. As is always the case in online testing, shorter sessions may
be due to other factors of the system, and to validate this claim it is useful to
experiment with different diversity thresholds using the same prediction engine
before comparing different recommenders.
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8.3.9 Utility

Many e-commerce websites employ a recommender system in order to improve
their revenue by, e.g., enhancing cross-sell. In such cases the recommendation
engine can be judged by the revenue that it generates for the website [66]. In
general, we can define various types of utility functions that the recommender tries
to optimize. For such recommenders, measuring the utility, or the expected utility
of the recommendations may be more significant than measuring the accuracy of
recommendations. It is also possible to view many of the other properties, such
as diversity or serendipity, as different types of utility functions, over single items
or over lists. In this chapter, however, we define utility as the value that either the
system or the user gains from a recommendation.

Utility can be measured cleanly from the perspective of the recommendation
engine or the recommender system owner. Care must be taken, though, when
measuring the utility that the user receives from the recommendations. First,
user utilities or preferences are difficult to capture and model, and considerable
research has focused on this problem [9, 25, 59]. Second, it is unclear how to
aggregate user utilities across users for computing a score for a recommender. For
example, it is tempting to use money as a utility thus selecting a recommender that
minimizes user cost. However, under the diminishing returns assumption [69], the
same amount of money does not have the same utility for people with different
income levels. Therefore, the average cost per purchase, for example, is not a
reasonable aggregation across users.

In an application where users rate items, it is also possible to use the ratings as
a utility measurement [10]. For example, in movie ratings, where a five star movie
is considered an excellent movie, we can assume that a recommending a five star
movie has a higher utility for the user than recommending a movie that the user will
rate with four stars. As users may interpret ratings differently, user ratings should be
normalized before aggregating across users.

While we typically only assign positive utilities to successful recommendations,
we can also assign negative utilities to unsuccessful recommendations. For example,
if some recommended item offends the user, then we should punish the system for
recommending it by assigning a negative utility. We can also add a cost to each
recommendation, perhaps based on the position of the recommended item in the
list, and subtract it from the utility of the item.

For any utility function, the standard evaluation of the recommender is to com-
pute the expected utility of a recommendation. In the case where the recommender
is trying to predict only a single item, such as when we evaluate the system on time-
based splits and try to predict only the next item in the sequence, the value of a
correct recommendation should simply be the utility of the item. In the task where
the recommender predicts n items we can use the sum of the utilities of the correct
recommendations in the list. When negative utilities for failed recommendations are
used, then the sum is over all recommendations, successful or failed. We can also
integrate utilities into ranking measurements, as discussed in Sect. 8.3.2.3. Finally,
we can normalize the resulting score using the maximal possible utility given the
optimal recommendation list.
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Evaluating utility in user studies and online is easy in the case of recommender
utility. If the utility we optimize for is the revenue of the website, measuring the
change in revenue between users of various recommenders is simple. When we
try to optimize user utilities the online evaluation becomes harder, because users
typically find it challenging to assign utilities to outcomes. In many cases, however,
users can say whether they prefer one outcome to another. Therefore, we can try to
elicit the user preferences [31] in order to rank the candidate methods.

8.3.10 Risk

In some cases a recommendation may be associated with a potential risk. For
example, when recommending stocks for purchase, users may wish to be risk-
averse, preferring stocks that have a lower expected growth, but also a lower risk
of collapsing. On the other hand, users may be risk-seeking, preferring stocks that
have a potentially high, even if less likely, profit. In such cases we may wish to
evaluate not only the (expected) value generated from a recommendation, but also
to minimize the risk.

The standard way to evaluate risk sensitive systems is by considering not just the
expected utility, but also the utility variance. For example, we may use a parameter
q and compare two systems on EŒX� C q � Var.X/. When q is positive, this approach
prefers risk-seeking (also called bold [50]) recommenders, and when q is negative,
the system prefers risk-averse recommenders.

8.3.11 Robustness

Robustness (Chap. 24) is the stability of the recommendation in the presence of
fake information [55], typically inserted on purpose in order to influence the
recommendations. As more people rely on recommender systems to guide them
through the item space, influencing the system to change the rating of an item may
be profitable to an interested party. For example, an owner of an hotel may wish
to boost the rating for their hotel. This can be done by injecting fake user profiles
that rate the hotel positively, or by injecting fake users that rate the competitors
negatively.

Such attempts to influence the recommendation are typically called attacks
[43, 52]. Coordinated attacks occur when a malicious user intentionally queries
the data set or injects fake information in order to learn some private information
of some users. In evaluating such systems, it is important to provide a complete
description of the attack protocol, as the sensitivity of the system typically varies
from one protocol to another.

In general, creating a system that is immune to any type of attack is unrealistic.
An attacker with an ability to inject an infinite amount of information can, in most
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cases, manipulate a recommendation in an arbitrary way. It is therefore more useful
to estimate the cost of influencing a recommendation, which is typically measured
by the amount of injected information. While it is desirable to theoretically analyze
the cost of modifying a rating, it is not always possible. In these cases, we can
simulate a set of attacks by introducing fake information into the system data set,
empirically measuring average cost of a successful attack [13, 44].

As opposed to other evaluation criteria discussed here, it is hard to envision
executing an attack on a real system as an online experiment. It may be fruitful,
however, to analyze the real data collected in the online system to identify actual
attacks that are executed against the system.

Another type of robustness is the stability of the system under extreme condi-
tions, such as a large number of requests. While less discussed, such robustness
is very important to system administrators, who must avoid system malfunction.
In many cases system robustness is related to the infrastructure, such as the
database software, or to the hardware specifications, and is related to scalability
(Sect. 8.3.14).

8.3.12 Privacy

In a collaborative filtering system, a user willingly discloses his preferences over
items to the system in the hope of getting useful recommendations (Chap. 19).
However, it is important for most users that their preferences stay private, that is,
that no third party can use the recommender system to learn something about the
preferences of a specific user.

For example, consider the case where a user who is interested in the wonderful,
yet rare art of growing Bahamian orchids has bought a book titled “The Divorce
Organizer and Planner”. The spouse of that user, looking for a present, upon
browsing the book “The Bahamian and Caribbean Species (Cattleyas and Their
Relatives)” may get a recommendation of the type “people who bought this book
also bought” for the divorce organizer, thus revealing sensitive private information.

It is generally considered inappropriate for a recommender system to disclose
private information even for a single user. For this reason analysis of privacy tends
to focus on a worst case scenario, illustrating theoretical cases under which users
private information may be revealed. Other researchers [21] compare algorithms by
evaluating the portion of users whose private information was compromised. The
assumption in such studies is that complete privacy is not realistic and that therefore
we must compromise on minimizing the privacy breaches.

Another alternative is to define different levels of privacy, such as k-identity
[21], and compare algorithms sensitivity to privacy breaches under varying levels
of privacy.

Privacy may also come at the expense of the accuracy of the recommendations.
Therefore, it is important to analyze this trade-off carefully. Perhaps the most
informative experiment is when a privacy modification has been added to an
algorithm, and the accuracy (or any other trade-off property) can be evaluated with
or without the modification [51].
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8.3.13 Adaptivity

Real recommender systems may operate in a setting where the item collection
changes rapidly, or where trends in interest over items may shift. Perhaps the most
obvious example of such systems is the recommendation of news items or related
stories in online newspapers [23]. In this scenario stories may be interesting only
over a short period of time, afterwards becoming outdated. When an unexpected
news event occurs, such as the tsunami disaster, people become interested in
articles that may not have been interesting otherwise, such as a relatively old article
explaining the tsunami phenomenon. While this problem is similar to the cold-start
problem, it is different because it may be that old items that were not regarded as
interesting in the past suddenly become interesting.

This type of adaptation can be evaluated offline by analyzing the amount of
information needed before an item is recommended. If we model the recommen-
dation process in a sequential manner, we can record, even in an offline test, the
amount of evidence that is needed before the algorithm recommends a story. It is
likely that an algorithm can be adjusted to recommend items faster once they
become interesting, by sacrificing some prediction accuracy. We can compare two
algorithms by evaluating a possible trade-off between accuracy and the speed of the
shift in trends.

Another type of adaptivity is the rate by which the system adapts to a user’s
personal preferences [46], or to changes in user profile [42]. For example, when
users rate an item, they expect the set of recommendations to change. If the
recommendations stay fixed, users may assume that their rating effort is wasted, and
may not agree to provide more ratings. As with the shift in trends evaluation, we can
again evaluate in an offline experiment the changes in the recommendation list after
adding more information to the user profile such as new ratings. We can evaluate an
algorithm by measuring the difference between the recommendation lists before and
after the new information was added. The Gini index and Shannon entropy measures
discussed in Sect. 8.3.3 can be used to measure the variability of recommendations
made to a user as the user profile changes.

8.3.14 Scalability

As recommender systems are designed to help users navigate in large collections
of items, one of the goals of the designers of such systems is to scale up to real
data sets. As such, it is often the case that algorithms trade other properties, such as
accuracy or coverage, for providing rapid results even for huge data sets consisting
of millions of items (e.g. [15]).

With the growth of the data set, many algorithms are either slowed down or
require additional resources such as computation power or memory. One standard
approach in computer science research is to evaluate the computational complexity
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of an algorithm in terms of time or space requirements (as done, e.g., in [6, 36]). In
many cases, however, the complexity of two algorithms is either identical, or could
be reduced by changing some parameters, such as the complexity of the model,
or the sample size. Therefore, to understand the scalability of the system it is also
useful to report the consumption of system resources over large data sets.

Scalability is typically measured by experimenting with growing data sets,
showing how the speed and resource consumption behave as the task scales up
(see, e.g. [23]). It is important to measure the compromises that scalability dictates.
For example, if the accuracy of the algorithm is lower than other candidates that
only operate on relatively small data sets, one must show over small data sets the
difference in accuracy. Such measurements can provide valuable information both
on the potential performance of recommender systems in general for the specific
task, and on future directions to explore.

As recommender systems are expected in many cases to provide rapid recom-
mendations online, it is also important to measure how fast does the system provides
recommendations [27, 62]. One such measurement is the throughput of the system,
i.e., the number of recommendations that the system can provide per second. We
could also measure the latency (also called response time)—the required time for
making a recommendation online.

8.4 Conclusion

In this chapter we discussed how recommendation algorithms could be evaluated in
order to select the best algorithm from a set of candidates. This is an important step
in the research attempt to find better algorithms, as well as in application design
where a designer chooses an existing algorithm for their application. As such, many
evaluation metrics have been used for algorithm selection in the past.

We describe the concerns that need to be addressed when designing offline and
online experiments and user studies. We outline a few important measurements that
one must take in addition to the score that the metric provides, as well as other
considerations that should be taken into account when designing experiments for
recommendation algorithms.

We specify a set of properties that are sometimes discussed as important for
the recommender system. For each such property we suggest an experiment that
can be used to rank recommenders with regards to that property. For less explored
properties, we restrict ourselves to generic descriptions that could be applied to
various manifestations of that property. Specific procedures that can be practically
implemented can then be developed for the specific property manifestation based on
our generic guidelines.
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