
Chapter 7
Data Mining Methods for Recommender
Systems

Xavier Amatriain and Josep M. Pujol

7.1 Introduction

Recommender Systems (RS) typically apply techniques and methodologies from
other neighboring areas such as Human Computer Interaction (HCI) or Information
Retrieval (IR). Most of these systems also bear in their core an algorithm that can
be understood as a particular instance of a Data Mining (DM) process [5].

The data mining process typically consists of 3 steps, carried out in succession:
Data Preprocessing [78], Model Learning, and Result Interpretation (see Fig. 7.1).
We will analyze some of the most important methods for data preprocessing
in Sect. 7.2. In particular, we will focus on sampling, dimensionality reduction,
and the use of distance functions because of their significance and their role in
RS. In Sects. 7.3 and 7.4, we provide an overview introduction to the machine
learning methods that are most commonly used in RS: classification, clustering and
association rule discovery (see Fig. 7.1 for a detailed view of the different topics
covered in the chapter).

This chapter does not intend to give a thorough review of Data Mining methods,
but rather to highlight the impact that DM algorithms have in the RS field, and
to provide an overview of the key DM techniques that have been successfully used.
We direct the interested reader to Data Mining and Machine Learning textbooks (see
[14, 19, 39, 70, 93], for example) or the more focused references that are provided
throughout the chapter.

X. Amatriain (�)
Netflix, 100 Winchester Cr., Los Gatos, CA 95032, USA

Quora, 150 Castro St., Mountain View, USA
e-mail: xavier@amatriain.net

J.M. Pujol
Cliqz, Rosenkavalierplatz 10, 81925 Munich, Germany
e-mail: josep@cliqz.com

© Springer Science+Business Media New York 2015
F. Ricci et al. (eds.), Recommender Systems Handbook,
DOI 10.1007/978-1-4899-7637-6_7

227

mailto:xavier@amatriain.net
mailto:josep@cliqz.com


228 X. Amatriain and J.M. Pujol

Association Rule Mining (4.2)

Data 
Preprocessing

Model 
Learning

Testing
and

Validation

Data

{Distance Metrics (2.1)

Dimensionality 
Reduction (2.3) SVD (2.3.2)

Sampling (2.2)

PCA (2.3.1)

Supervised

Unsupervised

Classification

Clustering

kNN (3.1.1)
Decision Trees (3.1.2)

Rules (3.1.3)

Bayesian Classifiers (3.1.4)

SVM (3.1.6)
ANN (3.1.7)

k-means (4.1.1)

Density-based (4.1.2)

Message-passing (4.1.2)

Hierarchical (4.1.2)

LSH (4.1.2)

Bayesian 
Non-parametric (4.1.2)

Evaluating Classifiers (3.3)
LDA (4.1.2)

Regression

Regression Logistic Regression (3.1.5)

Denoising (2.4)

Fig. 7.1 Main steps and methods in a Data Mining process, with their correspondence to chapter
sections

7.2 Data Preprocessing

We define data as a collection of objects and their attributes, where an attribute is
defined as a property or characteristic of an object. Other names for object include
record, item, point, sample, observation, or instance. An attribute might be also be
referred to as a variable, field, characteristic, or feature. In the context of a typical
collaborative filtering setting the objects in our dataset might be each of the ratings
we have captured from the users. For each of them we will have typical attributes
such as the user and item the rating refers to or the value of the rating itself. We can
also add many other features such as the time or the location the rating occurred, or
any other characteristic of the item or user such as item popularity, user age, or even
the location of the item in the page at the time we received the rating [75].



7 Data Mining Methods for Recommender Systems 229

Real-life data typically needs to be preprocessed (e.g. cleansed, filtered, trans-
formed) in order to be used by the machine learning techniques in the model learning
step. In this section, we focus on three issues that are of particular importance when
designing a RS. First, we review different similarity or distance measures. Next, we
discuss the issue of sampling as a way to reduce the number of items in very large
collections while preserving its main characteristics. Finally, we describe the most
common techniques to reduce dimensionality.

7.2.1 Similarity Measures

One of the preferred approaches to collaborative filtering (CF) recommenders is
to use the kNN classifier that will be described in Sect. 7.3.1.1. This classification
method—as most classifiers and clustering techniques—is highly dependent on
defining an appropriate similarity or distance measure.1

The simplest and most common example of a distance measure is the Euclidean
distance or the L2 Norm:

d.x; y/ D
v
u
u
t

n
X

kD1

.xk � yk/2 (7.1)

where n is the number of dimensions (attributes) and xk and yk are the kth attributes
(components) of data objects x and y, respectively.

The Minkowski Distance is a generalization of Euclidean Distance:

d.x; y/ D
 

n
X

kD1

jxk � ykjr
! 1

r

(7.2)

where r is the degree of the distance. Depending on the value of r, the generic
Minkowski distance is known with specific names: For r D 1, the city block,
(Manhattan, taxicab or L1 norm) distance; For r D 2, the Euclidean distance; For
r ! 1, the supremum (Lmax norm or L1 norm) distance, which corresponds to
computing the maximum difference between any dimension of the data objects.

The Mahalanobis distance is defined as:

d.x; y/ D
p

.x � y/��1.x � y/T (7.3)

where � is the covariance matrix of the data.

1Note that a similarity measure is not a preprocessing step in itself but rather a prerequisite for
being able to execute other data mining processes.



230 X. Amatriain and J.M. Pujol

Another very common approach is to consider items as document vectors of an
n-dimensional space and compute their similarity as the cosine of the angle that they
form:

cos.x; y/ D .x � y/

jjxjjjjyjj (7.4)

where � indicates vector dot product and jjxjj is the norm of vector x. This similarity
is known as the cosine similarity.

The similarity between items can also be given by their correlation which
measures the linear relationship between objects. While there are several correlation
coefficients that may be applied, the Pearson correlation is the most commonly
used. Given the covariance of data points x and y ˙ , and their standard deviation � ,
we compute the Pearson correlation using:

Pearson.x; y/ D ˙.x; y/

�x � �y
(7.5)

Several similarity measures have been proposed in the case of items that only
have binary attributes. First, the M01, M10, M11, and M00 quantities are computed,
where M01 = the number of attributes where x was 0 and y was 1, M10 =
the number of attributes where x was 1 and y was 0, and so on. From those
quantities we can compute: The Simple Matching coefficient SMC D numberofmatches

numberofattributes

D M11CM00
M01CM10CM00CM11

; the Jaccard coefficient JC D M11
M01CM10CM11

. The Extended
Jaccard (Tanimoto) coefficient is a variation of JC for continuous or count attributes
that is computed by d D x�y

kxk2Ckxk2�x�y
.

RS have traditionally used either the cosine similarity (Eq. (7.4)) or the Pearson
correlation (Eq. (7.5))—or one of their many variations through, for instance,
weighting schemes—Chap. 2 details the use of different distance functions for CF.
Most of the other distance measures previously reviewed are possible. Spertus et al.
[88] did a large-scale study to evaluate six different similarity measures in the
context of the Orkut social network. Although their results might be biased by the
particular setting of their experiment, it is interesting to note that the best response to
recommendations were to those generated using the cosine similarity. Lathia et al.
[64] also carried out a study of several similarity measures where they concluded
that, in the general case, the prediction accuracy of a RS was not affected by the
choice of the similarity measure. As a matter of fact and in the context of their work,
using a random similarity measure sometimes yielded better results than using any
of the well-known approaches.



7 Data Mining Methods for Recommender Systems 231

7.2.2 Sampling

Sampling is the main technique used in DM for selecting a subset of relevant
data from a large data set. It is used both in the preprocessing and final data
interpretation steps. Sampling may be used because processing the entire data set
is computationally too expensive. It can also be used to create training and testing
datasets. In this case, the training dataset is used to learn the parameters or configure
the algorithms used in the analysis step, while the testing dataset is used to evaluate
the model or configuration obtained in the training phase, making sure that it
performs well with previously unseen data. As a matter of fact, in most cases we
not only need training and testing, but we also need to think about creating a third
validation dataset. The training set is used for model fitting, the validation one for
learning hyperparameters, and the testing to see how the model generalizes.

The key issue to sampling is finding a subset of the original data set that is
representative—i.e. it has approximately the same property of interest—of the
entire set. The simplest sampling technique is random sampling, where there is an
equal probability of selecting any item. However, more sophisticated approaches are
possible. For instance, in stratified sampling the data is split into several partitions
based on a particular feature, followed by random sampling on each partition
independently.

The most common approach to sampling consists of using sampling without
replacement: When an item is selected, it is removed from the population. However,
it is also possible to perform sampling with replacement, where items are not
removed from the population once they have been selected, allowing for the same
sample to be selected more than once.

It is common practice to use standard random sampling without replacement with
an 80=20 proportion when separating the training and testing data sets. This means
that we use random sampling without replacement to select 20 % of the instances
for the testing set and leave the remaining 80 % for training. The 80=20 proportion
should be taken as a rule of thumb as, in general, any value over 2=3 for the training
set is appropriate.

Sampling can lead to an over-specialization to the particular division of the
training and testing data sets. For this reason, the training process may be repeated
several times. The training and test sets are created from the original data set, the
model is trained using the training data and tested with the examples in the test
set. Next, different training/test data sets are selected to start the training/testing
process again that is repeated K times. Finally, the average performance of the
K learned models is reported. This process is known as cross-validation. There
are several cross-validation techniques. In repeated random sampling, a standard
random sampling process is carried out K times. In n-Fold cross validation, the data
set is divided into n folds. One of the folds is used for testing the model and the
remaining n � 1 folds are used for training. The cross validation process is then
repeated n times with each of the n subsamples used exactly once as validation data.
Finally, the leave-one-out (LOO) approach can be seen as an extreme case of n-Fold



232 X. Amatriain and J.M. Pujol

cross validation where n is set to the number of items in the data set. Therefore,
the algorithms are run as many times as data points using only one of them as a
test each time. It should be noted, though, that as Isaksson et al. discuss in [57],
cross-validation may be unreliable unless the data set is sufficiently large.

A common approach in RS is to sample the available feedback from the users—
e.g. in the form of ratings—to separate it into training and testing. Cross-validation
is also common. Although a standard random sampling is acceptable in the general
case, in others we might need to bias our sampling for the test set in different ways.
We might, for instance, decide to sample only from most recent ratings—since those
are the ones we would be predicting in a real-world situation. We might also be
interested in ensuring that the proportion of ratings per user is preserved in the test
set and therefore impose that the random sampling is done on a per user basis.
However, all these issues relate are beyond the scope of this chapter.

7.2.3 Reducing Dimensionality

It is common in RS to have not only a data set with features that define a high-
dimensional space, but also very sparse information in that space—i.e. there are
values for a limited number of features per object. The notions of density and
distance between points, which are critical for clustering and outlier detection,
become less meaningful in highly dimensional spaces. This is known as the Curse of
Dimensionality. Dimensionality reduction techniques help overcome this problem
by transforming the original high-dimensional space into a lower-dimensionality.

Sparsity and the curse of dimensionality are recurring problems in RS. Even
in the simplest setting, we are likely to have a sparse matrix with thousands of
rows and columns (i.e. users and items), most of which are zeros. Therefore,
dimensionality reduction comes in naturally. Applying dimensionality reduction
makes such a difference and its results are so directly applicable to the computation
of the predicted value, that these methods are in fact considered an approach to
building a RS, rather than a preprocessing technique. In this case we speak of these
techniques as Matrix Completion Methods.

In the following paragraphs, we summarize the two most relevant dimensionality
reduction algorithms in the context of RS: Principal Component Analysis (PCA)
and Singular Value Decomposition (SVD).

7.2.3.1 Principal Component Analysis

Principal Component Analysis [59] is a classical statistical method to find patterns
in high dimensionality data sets. PCA allows to obtain an ordered list of components
that account for the largest amount of the variance from the data in terms of least
square errors: The amount of variance captured by the first component is larger



7 Data Mining Methods for Recommender Systems 233

−4 −2 2 4

−2

−1

1

2

3

4

u2

u1

Fig. 7.2 PCA analysis of a two-dimensional point cloud from a combination of Gaussians. The
principal components derived using PCS are u1 and u2, whose length is relative to the energy
contained in the components

than the amount of variance on the second component and so on. We can reduce the
dimensionality of the data by neglecting those components with a small contribution
to the variance.

Figure 7.2 shows the PCA analysis to a two-dimensional point cloud generated
by a combination of Gaussians. After the data is centered, the principal components
are obtained and denoted by u1 and u2. Note that the length of the new coordinates
is relative to the energy contained in their eigenvectors. Therefore, for the particular
example depicted in Fig. 7.2, the first component u1 accounts for 83:5 % of
the energy, which means that removing the second component u2 would imply
losing only 16:5 % of the information. The rule of thumb is to choose the target
dimensionality m0 so that the cumulative energy is above a certain threshold,
typically 90 %. PCA allows us to retrieve the original data matrix by projecting the
data onto the new coordinate system X0

n�m0 D Xn�mW 0
m�m0 . The new data matrix X0

contains most of the information of the original X with a dimensionality reduction
of m � m0.

PCA is a powerful technique, but it does have important limitations. PCA relies
on the empirical data set to be a linear combination of a certain basis—although
generalizations of PCA for non-linear data have been proposed. Another important
assumption of PCA is that the original data set has been drawn from a Gaussian
distribution. When this assumption does not hold true, there is no warranty that the
principal components are meaningful.

Although current trends seem to indicate that other matrix factorizations tech-
niques such as SVD or Non-Negative Matrix Factorization are preferred for RS,
earlier works used PCA. Goldberg et al. proposed an approach to use PCA in the
context of an online joke recommendation system [50]. Their system, known as



234 X. Amatriain and J.M. Pujol

Eigentaste,2 starts from a standard matrix of user ratings to items. They then select
their gauge set by choosing the subset of items for which all users had a rating. This
new matrix is then used to compute the global correlation matrix where a standard
two-dimensional PCA is applied.

7.2.3.2 Matrix Factorization and Singular Value Decomposition

Singular Value Decomposition [51] is a powerful technique for dimensionality
reduction. It is a particular realization of the Matrix Factorization approach. The
key issue in an SVD decomposition is to find a lower dimensional feature space
where the new features represent “concepts” and the strength of each concept in
the context of the collection is computable. Because SVD allows to automatically
derive semantic “concepts” in a low dimensional space, it can be used as the basis
of latent-semantic analysis [34], a very popular technique for text classification in
Information Retrieval (IR).

The core of the SVD algorithm lies in the following theorem: It is always possible
to decompose a given matrix A into A D U�VT . Given the n � m matrix data
A (n items, m features), we can obtain an n � r matrix U (n items, r concepts),
an r � r diagonal matrix � (strength of each concept), and an m � r matrix V (m
features, r concepts). Figure 7.3 illustrates this idea. The � diagonal matrix contains
the singular values, which will always be positive and sorted in decreasing order.
The U matrix is interpreted as the “item-to-concept” similarity matrix, while the V
matrix is the “term-to-concept” similarity matrix.

In order to compute the SVD of a rectangular matrix A, we consider AAT and
ATA. The columns of U are the eigenvectors of AAT , and the columns of V are
the eigenvectors of ATA. The singular values on the diagonal of � are the positive
square roots of the nonzero eigenvalues of both AAT and ATA. Therefore, in order

An

m

= U

r

(items)

(features) (concepts)

X r

r

X V

m

n
(items)

(features)

r
(concepts)

λ

Fig. 7.3 Illustrating the basic Singular Value Decomposition Theorem: an item � features matrix
can be decomposed into three different ones: an item � concepts, a concept strength, and a concept
� features

2http://eigentaste.berkeley.edu.

http://eigentaste.berkeley.edu


7 Data Mining Methods for Recommender Systems 235

to compute the SVD of matrix A we first compute T as AAT and D as ATA and then
compute the eigenvectors and eigenvalues for T and D.

The r eigenvalues in � are ordered in decreasing magnitude. Therefore, the
original matrix A can be approximated by simply truncating the eigenvalues at a
given k. The truncated SVD creates a rank-k approximation to A so that Ak D
Uk�kVT

k . Ak is the closest rank-k matrix to A. The term “closest” means that Ak

minimizes the sum of the squares of the differences of the elements of A and Ak. The
truncated SVD is a representation of the underlying latent structure in a reduced k-
dimensional space, which generally means that the noise in the features is reduced.

The use of SVD as tool to improve collaborative filtering has been known for
some time. Sarwar et al. [85] describe two different ways to use SVD in this context.
First, SVD can be used to uncover latent relations between customers and products.
In order to accomplish this goal, they first fill the zeros in the user-item matrix
with the item average rating and then normalize by subtracting the user average.
This matrix is then factored using SVD and the resulting decomposition can be
used—after some trivial operations—directly to compute the predictions. The other
approach is to use the low-dimensional space resulting from the SVD to improve
neighborhood formation for later use in a kNN approach.

As described by Sarwar et al. [84], one of the big advantages of SVD is that
there are incremental algorithms to compute an approximated decomposition. This
allows to accept new users or ratings without having to recompute the model that
had been built from previously existing data. The same idea was later extended
and formalized by Brand [23] into an online SVD model. The use of incremental
SVD methods has recently become a commonly accepted approach after its success
in the Netflix Prize.3 The publication of Simon Funk’s simplified incremental
SVD method [47] marked an inflection point in the contest. Since its publication,
several improvements to SVD have been proposed in this same context (see
Paterek’s ensembles of SVD methods [74] or Kurucz et al. evaluation of SVD
parameters [63]).

In that sense, Matrix Factorization approaches should be considered as more
than a simple preprocessing or dimensionality reduction technique since the whole
recommendation problem can be formalized as one of Matrix Completion. We can
design a sparse matrix that represents users in rows and items in columns. Each
known preference of a user for an item will represent a value in the matrix. All other
positions will be unknown. It is in that setting, where coming up with a prediction
of how much a user will like an item can be simplified to the task of completing
missing values in the matrix (see Chap. 2 for more details on this usage).

It should be noted that different variants of Matrix Factorization (MF) methods
such as the Non-negative Matrix Factorization (NNMF) have also been used [94].
These algorithms are, in essence, similar to SVD. The basic idea is to decompose
the ratings matrix into two matrices, one of which contains features that describe
the users and the other contains features describing the items. Matrix Factorization

3http://www.netflixprize.com.

http://www.netflixprize.com


236 X. Amatriain and J.M. Pujol

methods can handle the missing values by introducing a bias term to the model. This
can also be handled in the SVD preprocessing step by replacing zeros with the item
average. MF is prone to overfitting. However, there exist MF variants, such as the
Regularized Kernel Matrix Factorization, that can avoid the issue efficiently.

7.2.4 Denoising

Data collected for data-mining purposes might be subject to different kinds of noise
such as missing values or outliers. Denoising is a very important preprocessing
step that aims at removing any unwanted effect in the data while maximizing its
information.

In a general sense we define noise as any unwanted artifact introduced in the data
collection phase that might affect the result of our data analysis and interpretation.
In the context of RS, we distinguish between natural and malicious noise [72]. The
former refers to noise that is involuntarily introduced by users when giving feedback
on their preferences. The latter refers to noise that is deliberately introduced in a
system in order to bias the results.

It is clear that malicious noise can affect the output of a RS. But, also, we
performed a study that concluded that the effects of natural noise on the performance
of RS is far from being negligible [7]. In order to address this issue, we designed
a denoising approach that is able to improve accuracy by asking some users to re-
rate some items [8]. We concluded that accuracy improvements by investing in this
pre-processing step could be larger than the ones obtained by complex algorithm
optimizations.

7.3 Supervised Learning

7.3.1 Classification

A classifier is a mapping between a feature space and a label space, where the
features represent characteristics of the elements to classify and the labels represent
the classes. A restaurant RS, for example, can be implemented by a classifier that
classifies restaurants into one of two categories (good, bad) based on a number of
features that describe it.

There are many types of classifiers, but in general we will talk about either
supervised or unsupervised classification. In supervised classification, a set of labels
or categories is known in advance and we have a set of labeled examples which
constitute a training set. In unsupervised classification, the labels or categories
are unknown in advance and the task is to suitably (according to some criteria)
organize the elements at hand. In this section we describe several algorithms to
learn supervised classifiers and will be covering unsupervised classification (i.e.
clustering) in Sect. 7.4.



7 Data Mining Methods for Recommender Systems 237

7.3.1.1 Nearest Neighbors

Instance-based classifiers work by storing training records and using them to predict
the class label of unseen cases. A trivial example is the so-called rote-learner. This
classifier memorizes the entire training set and classifies only if the attributes of
the new record match one of the training examples exactly. A more elaborate,
and far more popular, instance-based classifier is the Nearest neighbor classifier
(kNN) [32]. Given a point to be classified, the kNN classifier finds the k closest
points (nearest neighbors) from the training records. It then assigns the class label
according to the class labels of its nearest-neighbors. The underlying idea is that if
a record falls in a particular neighborhood where a class label is predominant it is
because the record is likely to belong to that very same class.

Given a query point q for which we want to know its class l, and a training set
X D ffx1; l1g : : : fxngg, where xj is the j-th element and lj is its class label, the k-
nearest neighbors will find a subset Y D ffy1; l1g : : : fykgg such that Y 2 X and
Pk

1 d.q; yk/ is minimal. Y contains the k points in X which are closest to the query
point q. Then, the class label of q is l D f .fl1 : : : lkg/.

Perhaps the most challenging issue in kNN is how to choose the value of k. If k
is too small, the classifier will be sensitive to noise points. But if k is too large,
the neighborhood might include too many points from other classes. The right plot
in Fig. 7.4 shows how different k yields different class label for the query point, if
k D 1 the class label would be circle whereas k D 7 classifies it as square. Note that
the query point from the example is on the boundary of two clusters, and therefore,
it is difficult to classify.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
items of cluster 1
items of cluster 2
item to classify

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
items of cluster 1
items of cluster 2
item to classify

?

Fig. 7.4 Example of k-nearest neighbors. The left subfigure shows the training points with two
class labels (circles and squares) and the query point (as a triangle). The right sub-figure illustrates
closest neighborhood for k D 1 and k D 7. The query point would be classified as square for
k D 1, and as a circle for k D 5 according to the simple majority vote rule. Note that the query
points was just on the boundary between the two clusters



238 X. Amatriain and J.M. Pujol

kNN classifiers are amongst the simplest of all machine learning algorithms.
Since kNN does not build models explicitly it is considered a lazy learner. Unlike
eager learners such as decision trees or rule-based systems (see Sects. 7.3.1.2
and 7.3.1.3, respectively), kNN classifiers leave many decisions to the classification
step. Therefore, classifying unknown records is relatively expensive.

Nearest Neighbor is one of the most common approaches to CF—and therefore
to designing a RS. As a matter of fact, any overview on RS—such as the one by
Adomavicius and Tuzhilin [1]—will include an introduction to the use of nearest
neighbors in this context. One of the advantages of this classifier is that it is
conceptually very much related to the idea of CF: Finding like-minded users (or
similar items) is essentially equivalent to finding neighbors for a given user or an
item. The other advantage is that, being the kNN classifier a lazy learner, it does not
require to learn and maintain a given model. Therefore, in principle, the system can
adapt to rapid changes in the user ratings matrix. Unfortunately, this comes at the
cost of recomputing the neighborhoods and therefore the similarity matrix. This is
why we proposed a neighborhood model that uses a reduced set of experts as the
source for selecting neighbors [6].

The kNN approach, although simple and intuitive, has shown good accuracy
results and is very amenable to improvements. As a matter of fact, its supremacy as
the de facto standard for CF recommendation has only been challenged recently by
approaches based on Matrix Completion. That said, the traditional kNN approach to
CF has experienced improvements in several directions. For instance, in the context
of the Netflix Prize, Bell and Koren propose a method to remove global effects
such as the fact that some items may attract users that consistently rate lower. They
also propose an optimization method for computing interpolating weights once the
neighborhood is created.

See Chap. 2 for more details on enhanced CF techniques based on the use of
neighborhoods.

7.3.1.2 Decision Trees

Decision trees [80] are classifiers on a target attribute (or class) in the form of a
tree structure. The observations (or items) to classify are composed of attributes and
their target value. The nodes of the tree can be: (a) decision nodes, in these nodes a
single attribute-value is tested to determine to which branch of the subtree applies.
Or (b) leaf nodes which indicate the value of the target attribute.

There are many algorithms for decision tree induction: Hunt’s Algorithm, CART,
ID3, C4.5, SLIQ, SPRINT to mention the most common. The recursive Hunt
algorithm, which is one of the earliest and easiest to understand, relies on the test
condition applied to a given attribute that discriminates the observations by their
target values. Once the partition induced by the test condition has been found, the
algorithm is recursively repeated until a partition is empty or all the observations
have the same target value.



7 Data Mining Methods for Recommender Systems 239

Splits can be decided by maximizing the information gain, defined as follows,

�i D I.parent/ �
kiX

jD1

N.vj/I.vj/

N
(7.6)

where ki are values of the attribute i, N is the number of observations, vj is the
j-th partition of the observations according to the values of attribute i. Finally, I is a
function that measures node impurity. There are different measures of impurity: Gini
Index, Entropy and misclassification error are the most common in the literature.

Decision tree induction stops once all observations belong to the same class
(or the same range in the case of continuous attributes). This implies that the
impurity of the leaf nodes is zero. For practical reasons, however, most decision
trees implementations use pruning by which a node is no further split if its impurity
measure or the number of observations in the node are below a certain threshold.

The main advantages of building a classifier using a decision tree is that it is
inexpensive to construct and it is extremely fast at classifying unknown instances.
Another appreciated aspect of decision tree is that they can be used to produce a set
of rules that are easy to interpret (see Sect. 7.3.1.3) while maintaining an accuracy
comparable to other basic classification techniques.

Decision trees may be used in a model-based approach for a RS. One possibility
is to use content features to build a decision tree that models all the variables
involved in the user preferences. Bouza et al. [21] use this idea to construct a
Decision Tree using semantic information available for the items. The tree is built
after the user has rated only two items. The features for each of the items are used to
build a model that explains the user ratings. They use the information gain of every
feature as the splitting criteria. It should be noted that although this approach is
interesting from a theoretical perspective, the precision they report on their system
is worse than that of recommending the average rating.

As it could be expected, it is very difficult and unpractical to build a decision
tree that tries to explain all the variables involved in the decision making process.
Decision trees, however, may also be used in order to model a particular part of the
system. Cho et al. [28], for instance, present a RS for online purchases that combines
the use of Association Rules (see Sect. 7.4.2) and Decision Trees. The Decision Tree
is used as a filter to select which users should be targeted with recommendations.
In order to build the model they create a candidate user set by selecting those users
that have chosen products from a given category during a given time frame. In their
case, the dependent variable for building the decision tree is chosen as whether the
customer is likely to buy new products in that same category. Nikovski and Kulev
[71] follow a similar approach combining Decision Trees and Association Rules. In
their approach, frequent itemsets are detected in the purchase dataset and then they
apply standard tree-learning algorithms for simplifying the recommendations rules.

Another option to use Decision Trees in a RS is to use them as a tool for exploring
the space of possible items to present to a user during the coldstarting phase. The
basic idea of the approach is to maximize the amount of information obtained with



240 X. Amatriain and J.M. Pujol

each item presented by considering it a node in a decision tree. Golbandi et al. [49],
for instance, detail an efficient tree learning algorithm, specifically tailored to this
application.

The use of Decision Trees for ranking has been studied in several settings
and their use in a RS for this purpose is fairly straightforward [11, 27]. While
it is possible to use individual trees for ranking, it is much more efficient to use
ensembles of decision trees for this purpose. The two kinds of tree ensembles
that are commonly used both for classification and ranking are Random Forests
[25], and Gradient Boosted Decision Trees [45]. Both these techniques are used in
collaborative filtering or personalized ranking applications (see [4, 12]).

Finally, trees or trees ensembles can be used as a way to combine different
algorithms in an ensemble. The solution to the Netflix Prize, for example, used
Gradient Boosted Decision Trees to combine the more than 100 methods that had
been trained [61].

7.3.1.3 Ruled-Based Classifiers

Rule-based classifiers classify data by using a collection of “if : : : then : : :” rules.
The rule antecedent or condition is an expression made of attribute conjunctions.
The rule consequent is a positive or negative classification.

We say that a rule r covers a given instance x if the attributes of the instance
satisfy the rule condition. We define the coverage of a rule as the fraction of
records that satisfy its antecedent. On the other hand, we define its accuracy as
the fraction of records that satisfy both the antecedent and the consequent. We say
that a classifier contains mutually exclusive rules if the rules are independent of
each other—i.e. every record is covered by at most one rule. Finally we say that
the classifier has exhaustive rules if they account for every possible combination of
attribute values—i.e. each record is covered by at least one rule.

In order to build a rule-based classifier we can follow a direct method to extract
rules directly from data. Examples of such methods are RIPPER, or CN2. On the
other hand, it is common to follow an indirect method and extract rules from other
classification models such as decision trees or neural networks.

The advantages of rule-based classifiers are that they are extremely expressive
since they are symbolic and operate with the attributes of the data without any
transformation. Rule-based classifiers, and by extension decision trees, are easy to
interpret, easy to generate and they can classify new instances efficiently.

In a similar way to Decision Tress, however, it is very difficult to build a complete
recommender model based on rules. As a matter of fact, this method is not very
popular in the context of RS because deriving a rule-based system means that we
either have some explicit prior knowledge of the decision making process or that
we derive the rules from another model such a decision tree. However a rule-based
system can be used to improve the performance of a RS by injecting partial domain
knowledge or business rules. Anderson et al. [9], for instance, implemented a CF
music RS that improves its performance by applying a rule-based system to the



7 Data Mining Methods for Recommender Systems 241

results of the CF process. If a user rates an album by a given artist high, for instance,
predicted ratings for all other albums by this artist will be increased.

Gutta et al. [40] implemented a rule-based RS for TV content. In order to do,
so they first derived a C4.5 Decision Tree that is then decomposed into rules for
classifying the programs. Basu et al. [15] followed an inductive approach using the
Ripper [30] system to learn rules from data. They report slightly better results when
using hybrid content and collaborative data to learn rules than when following a
pure CF approach.

7.3.1.4 Bayesian Classifiers

A Bayesian classifier [46] is a probabilistic framework for solving classification
problems. It is based on the definition of conditional probability and the Bayes
theorem. The Bayesian school of statistics uses probability to represent uncertainty
about the relationships learned from the data. In addition, the concept of priors is
very important as they represent our expectations or prior knowledge about what the
true relationship might be. In particular, the probability of a model given the data
(posterior) is proportional to the product of the likelihood times the prior probability
(or prior). The likelihood component includes the effect of the data while the prior
specifies the belief in the model before the data was observed.

Bayesian classifiers consider each attribute and class label as (continuous or
discrete) random variables. Given a record with N attributes .A1; A2; : : : ; AN/, the
goal is to predict class Ck by finding the value of Ck that maximizes the posterior
probability of the class given the data P.CkjA1; A2; : : : ; AN/. Applying Bayes’
theorem, P.CkjA1; A2; : : : ; AN/ / P.A1; A2; : : : ; AN jCk/P.Ck/.

A particular but very common Bayesian classifier is the Naive Bayes Clas-
sifier. In order to estimate the conditional probability, P.A1; A2; : : : ; AN jCk/, a
Naive Bayes Classifier assumes the probabilistic independence of the attributes—
i.e. the presence or absence of a particular attribute is unrelated to the pres-
ence or absence of any other. This assumption leads to P.A1; A2; : : : ; AN jCk/ D
P.A1jCk/P.A2jCk/ : : : P.AN jCk/.

The main benefits of Naive Bayes classifiers are that they are robust to isolated
noise points and irrelevant attributes, and they handle missing values by ignoring
the instance during probability estimate calculations. However, the independence
assumption may not hold for some attributes as they might be correlated. In this
case, the usual approach is to use the so-called Bayesian Belief Networks (BBN)
(or Bayesian Networks, for short). BBN’s use an acyclic graph to encode the
dependence between attributes and a probability table that associates each node to
its immediate parents. BBN’s provide a way to capture prior knowledge in a domain
using a graphical model. In a similar way to Naive Bayes classifiers, BBN’s handle
incomplete data well and they are quite robust to model overfitting.

Bayesian classifiers are particularly popular for model-based RS. They are often
used to derive a model for content-based RS. Ghani and Fano [48], for instance, use
a Naive Bayes classifier to implement a content-based RS. The use of this model



242 X. Amatriain and J.M. Pujol

allows for recommending products from unrelated categories in the context of a
department store.

Bayesian classifiers can also be used in a CF setting. Miyahara and Pazzani [68],
for instance, implement a RS based on a Naive Bayes classifier. In order to do so,
they define two classes: like and don’t like. In this context they propose two ways
of using the Naive Bayesian Classifier: The Transformed Data Model assumes that
all features are completely independent, and feature selection is implemented as a
preprocessing step. On the other hand, the Sparse Data Model assumes that only
known features are informative for classification. Furthermore, it only makes use of
data which both users rated in common when estimating probabilities. Experiments
show both models to perform better than a correlation-based CF.

Pronk et al. [77] use a Bayesian Naive Classifier as the base for incorporating
user control and improving performance, especially in cold-start situations. In order
to do so they propose to maintain two profiles for each user: one learned from the
rating history, and the other explicitly created by the user. The blending of both
classifiers can be controlled in such a way that the user-defined profile is favored
at early stages, when there is not too much rating history, and the learned classifier
takes over at later stages.

In the previous section we mentioned that Gutta et al. [40] implemented a
rule-based approach in a TV content RS. Another of the approaches they tested
was a Bayesian classifier. They define a two-class classifier, where the classes are
watched/not watched. The user profile is then a collection of attributes together
with the number of times they occur in positive and negative examples. This is
used to compute prior probabilities that a show belongs to a particular class and
the conditional probability that a given feature will be present if a show is either
positive or negative. It must be noted that features are, in this case, related to both
content—i.e. genre—and contexts—i.e. time of the day. The posteriori probabilities
for a new show are then computed from these.

Breese et al. [24] implement a Bayesian Network where each node corresponds
to each item. The states correspond to each possible vote value. In the network,
each item will have a set of parent items that are its best predictors. The conditional
probability tables are represented by decision trees. The authors report better results
for this model than for several nearest-neighbors implementations over several
datasets.

Hierarchical Bayesian Networks have also been used in several settings as a way
to add domain-knowledge for information filtering [98]. One of the issues with
hierarchical Bayesian networks, however, is that it is very expensive to learn and
update the model when there are many users in it. Zhang and Koren [99] propose a
variation over the standard Expectation-Maximization (EM) model in order to speed
up this process in the scenario of a content-based RS.



7 Data Mining Methods for Recommender Systems 243

7.3.1.5 Logistic Regression

Logistic Regression (LR) is perhaps one the most basic probabilistic classification
models. Although it is not widely spread in the Recommender Systems literature it
is used in the industry, arguably because its simplicity and efficiency.

It is important to note that even though Logistic Regression has the term
regression in its name it is not a regression model but a classifier [19]. The term
regression is due to legacy since LR is a based on the basic Linear Regression.

In regression models the output is always a continuous value, e.g. the predicted
audience of a movie based on a set of features such as production costs, marketing
budget, cast, feedback of the preview, etc. On the other hand in a classifier the output
is a class label. Following the same example, the output would be whether the movie
will be a block-buster or not.

The Linear Regression model is defined by the following linear equation,

h� .x/ D �>x (7.7)

once we have learned the parameters theta using the training set the hypothesis can
take any continuous value. The Logistic Regression is similar, but there is an extra
function g.z/ known as the logistic function,

h� .x/ D g.�>x/ (7.8)

g.z/ D 1

1 C e�z
(7.9)

The logistic function yields 1
2

when z is zero. For positive values of z it quickly
goes to 1 and symmetrically it goes quickly to zero for negative values of z. Since it
guarantees that 0 � h� .x/ � 1 we can treat the output as a probability of belonging
to a particular class. We can predict the class label 1 when h� .x/ � 1

2
and class label

0 when h� .x/ < 1
2
.

Logistic Regression creates then a decision boundary defined by �>x � 0. This
hyperplane (a line in the case of a single feature) separates data into two classes.

The concept of decision boundary is also present in other classification methods,
notably in Support Vector Machines (see Sect. 7.3.1.6). Unlike in SVM’s the
decision boundary yield by Logistic Regression is not aware of margins between
data, as a consequence, the decision boundary might less resilient to the presence
of outliers. On the positive side Logistic Regression is easy to implement, and it is
very efficient specially when there is a large number of features.

Zhang et al. [81] evaluated Logistic Regression, together with other probabilistic
methodologies, for the case of online reviews with a very small set of users assessing
the quality of these reviews. Logistic Regression has also been successfully tested in
the context of tag recommendation by Montañés et al. [36]. A final use of both linear
and (ordinal) logistic regression can be found in Parra et al.’s work [73]. In this case,
regression is used as a way to convert implicit feedback into explicit ratings.



244 X. Amatriain and J.M. Pujol

Large MarginSmall Margin

Support Vectors

w•x+b=0

w•x+b=1

w•x+b=−1

Fig. 7.5 Different boundary decisions are possible to separate two classes in two dimensions.
Each boundary has an associated margin

7.3.1.6 Support Vector Machines

The goal of a Support Vector Machine (SVM) classifier [33] is to find a linear
hyperplane (decision boundary) that separates the data in such a way that the margin
is maximized. For instance, if we look at a two class separation problem in two
dimensions like the one illustrated in Fig. 7.5, we can easily observe that there are
many possible boundary lines to separate the two classes. Each boundary has an
associated margin. The rationale behind SVM’s is that if we choose the one that
maximizes the margin we are less likely to misclassify unknown items in the future.

A linear separation between two classes is accomplished through the function
w�xCb D 0. We define a function that can classify items of being of class C1 or �1

as long as they are separated by some minimum distance from the class separation
function. The function is given by Eq. (7.10)

f .x/ D
(

1; if w � x C b � 1

�1; if w � x C b � �1
(7.10)

Margin D 2

kwk2
(7.11)

Following the main rationale for SVM’s, we would like to maximize the margin
between the two classes, given by Eq. (7.11). This is in fact equivalent to minimizing

the inverse value L.w/ D kwk2

2
but subjected to the constraints given by f .x/. This is

a constrained optimization problem and there are numerical approaches to solve it
(e.g., quadratic programming).

If the items are not linearly separable we can decide to turn the svm into a
soft margin classifier by introducing a slack variable. In this case the formula to



7 Data Mining Methods for Recommender Systems 245

minimize is given by Eq. (7.12) subject to the new definition of f .x/ in Eq. (7.13).
On the other hand, if the decision boundary is not linear we need to transform data
into a higher dimensional space . This is accomplished thanks to a mathematical
transformation known as the kernel trick. The basic idea is to replace the dot
products in Eq. (7.10) by a kernel function. There are many different possible
choices for the kernel function such as Polynomial or Sigmoid. But the most
common kernel functions are the family of Radial Basis Function (RBF).

L.w/ D kwk2

2
C C

N
X

iD1

� (7.12)

f .x/ D
(

1; if w � x C b � 1 � �

�1; if w � x C b � �1 C �
(7.13)

Support Vector Machines have recently gained popularity for their performance
and efficiency in many settings. SVM’s have also shown promising recent results
in RS. Kang and Yoo [60], for instance, report on an experimental study that aims
at selecting the best preprocessing technique for predicting missing values for an
SVM-based RS. In particular, they use SVD and Support Vector Regression. The
Support Vector Machine RS is built by first binarizing the 80 levels of available user
preference data. They experiment with several settings and report best results for a
threshold of 32—i.e. a value of 32 and less is classified as prefer and a higher value
as do not prefer. The user id is used as the class label and the positive and negative
values are expressed as preference values 1 and 2.

Xu and Araki [96] used SVM to build a TV program RS. They used information
from the Electronic Program Guide (EPG) as features. But in order to reduce
features they removed words with lowest frequencies. Furthermore, and in order to
evaluate different approaches, they used both the Boolean and the Term frequency—
inverse document frequency (TFIDF) weighting schemes for features. In the former,
0 and 1 are used to represent absence or presence of a term on the content. In the
latter, this is turned into the TFIDF numerical value.

Xia et al. [95] present different approaches to using SVM’s for RS in a CF
setting. They explore the use of Smoothing Support Vector Machines (SSVM). They
also introduce a SSVM-based heuristic (SSVMBH) to iteratively estimate missing
elements in the user-item matrix. They compute predictions by creating a classifier
for each user. Their experimental results report best results for the SSVMBH as
compared to both SSVM’s and traditional user-based and item-based CF. Finally,
Oku et al. [38] propose the use of Context-Aware Vector Machines (C-SVM)
for context-aware RS. They compare the use of standard SVM, C-SVM and an
extension that uses CF as well as C-SVM. Their results show the effectiveness of
the context-aware methods for restaurant recommendations.



246 X. Amatriain and J.M. Pujol

Input Signals

Synaptic Weights

Summing Junction

Activation
Function

Output

Threshold

wk0

wk1

wk2

wkp

x0

x1

x2

xp

∑ φ (•)

θk

vk

Fig. 7.6 Perceptron model

7.3.1.7 Artificial Neural Networks

An Artificial Neural Network (ANN) [101] is an assembly of inter-connected nodes
and weighted links that is inspired in the architecture of the biological brain.
Nodes in an ANN are called neurons as an analogy with biological neurons. These
simple functional units are composed into networks that have the ability to learn a
classification problem after they are trained with sufficient data.

The simplest case of an ANN is the perceptron model, illustrated in Fig. 7.6. If
we particularize the activation function � to be the simple Threshold Function, the
output is obtained by summing up each of its input value according to the weights
of its links and comparing its output against some threshold �k. The output function
can be expressed using Eq. (7.14). The perceptron model is a linear classifier that
has a simple and efficient learning algorithm. But, besides the simple Threshold
Function used in the Perceptron model, there are several other common choices for
the activation function such as sigmoid, tanh, or step functions.

yk D
(

1; if
P

xiwki � �k

0; if
P

xiwki < �k

(7.14)

An ANN can have any number of layers. Layers in an ANN are classified into
three types: input, hidden, and output. Units in the input layer respond to data that



7 Data Mining Methods for Recommender Systems 247

is fed into the network. Hidden units receive the weighted output from the input
units. And the output units respond to the weighted output from the hidden units
and generate the final output of the network. Using neurons as atomic functional
units, there are many possible architectures to put them together in a network. But,
the most common approach is to use the feed-forward ANN. In this case, signals are
strictly propagated in one way: from input to output.

The main advantages of ANN are that—depending on the activation function—
they can perform non-linear classification tasks, and that, due to their parallel
nature, they can be efficient and even operate if part of the network fails. The main
disadvantage is that it is hard to come up with the ideal network topology for a
given problem and once the topology is decided this will act as a lower bound for
the classification error. ANN’s belong to the class of sub-symbolic classifiers, which
means that they provide no semantics for inferring knowledge—i.e. they promote a
kind of black-box approach.

ANN’s can be used in a similar way as Bayesian Networks to construct model-
based RS’s. However, there is no conclusive study to whether ANN introduce any
performance gain. As a matter of fact, Pazzani and Billsus [76] did a comprehensive
experimental study on the use of several machine learning algorithms for web
site recommendation. Their main goal was to compare the simple naive Bayesian
Classifier with computationally more expensive alternatives such as Decision Trees
and Neural Networks. Their experimental results show that Decision Trees perform
significantly worse. On the other hand ANN and the Bayesian classifier performed
similarly. They conclude that there does not seem to be a need for nonlinear
classifiers such as the ANN. Berka et al. [42] used ANN to build an URL RS for
web navigation. They implemented a content-independent system based exclusively
on trails—i.e. associating pairs of domain names with the number of people who
traversed them. In order to do so they used feed-forward Multilayer Perceptrons
trained with the Backpropagation algorithm.

ANN can be used to combine (or hybridize) the input from several recommenda-
tion modules or data sources. Hsu et al. [41], for instance, build a TV recommender
by importing data from four different sources: user profiles and stereotypes;
viewing communities; program metadata; and viewing context. They use the back-
propagation algorithm to train a three-layered neural network. Christakou and
Stafylopatis [29] also built a hybrid content-based CF RS. The content-based
recommender is implemented using three neural networks per user, each of them
corresponding to one of the following features: “kinds”, “stars”, and “synopsis”.
They trained the ANN using the Resilient Backpropagation method.

More recently, variations of NN have been used in different collaborative filtering
settings. Salakhutdinov et al. used Restricted Boltzmann Machines in the context of
the Netflix Prize [83] to predict ratings. This solution is actually part of the current
Netflix production system (see Chap. 11).



248 X. Amatriain and J.M. Pujol

7.3.2 Ensembles of Classifiers

The basic idea behind the use of ensembles of classifiers is to construct a set
of classifiers from the training data and predict class labels by aggregating their
predictions. Ensembles of classifiers work whenever we can assume that the
classifiers are independent. In this case we can ensure that the ensemble will produce
results that are in the worst case as bad as the worst classifier in the ensemble.
Therefore, combining independent classifiers of a similar classification error will
only improve results.

Several approaches are possible to generate ensembles. The two most common
techniques are Bagging and Boosting. In Bagging, we perform sampling with
replacement, building the classifier on each bootstrap sample. Each sample has
probability .1� 1

N /N of being selected—note that if N is large enough, this converges
to 1 � 1

e � 0:623. In Boosting we use an iterative procedure to adaptively change
distribution of training data by focusing more on previously misclassified records.
Initially, all records are assigned equal weights. But, unlike bagging, weights may
change at the end of each boosting round: Records that are wrongly classified will
have their weights increased while records that are classified correctly will have
their weights decreased. An example of boosting is the AdaBoost algorithm.

The use of ensembles of classifiers is common practice in the RS field. As a
matter of fact, any hybridation technique [26] can be considered an ensemble as
it combines in one way or another several classifiers. An explicit example of this
is Tiemann and Pauws’ music recommender, in which they use ensemble learning
methods to combine a social and a content-base RS [90].

Experimental results show that ensembles can produce better results than any
classifier in isolation. Bell et al. [17], for instance, used a combination of 107
different methods in their progress prize winning solution to the Netflix challenge.
They state that their findings show that it pays off more to find substantially different
approaches rather than focusing on refining a particular technique. In order to blend
the results from the ensembles they use a linear regression approach and to derive
weights for each classifier, they partition the test dataset into 15 different bins
and derive unique coefficients for each of the bins. Different uses of ensembles
in the context of the Netflix prize can be tracked in other approaches such as in
Schclar et al.’s [86] or Toescher et al.’s [91].

The boosting approach has also been used in RS. Freund et al., for instance,
present an algorithm called RankBoost to combine preferences [43]. They apply
the algorithm to produce movie recommendations in a CF setting. The winning
solution to the Netflix Prize [61] used Gradient Boosted Decision Trees, a tree-based
ensemble technique that uses boosting, for the final combination of the individual
predictors.



7 Data Mining Methods for Recommender Systems 249

7.3.3 Evaluating Classifiers

The most commonly accepted evaluation measures for RS are the Mean Average
Error (MAE) or Root Mean Squared Error (RMSE) between the predicted interest
(or rating) and the measured one. These measures compute accuracy without any
assumption on the purpose of the RS. However, as McNee et al. point out [67], there
is much more than accuracy to deciding whether an item should be recommended.
Herlocker et al. [55] provide a comprehensive review of algorithmic evaluation
approaches to RS. They suggest that some measures could potentially be more
appropriate for some tasks. However, they are not able to validate the measures
when evaluating the different approaches empirically on a class of recommendation
algorithms and a single set of data.

A step forward is to consider that the purpose of a “real” RS is to produce a top-N
list of recommendations and evaluate RS depending on how well they can classify
items as being recommendable. If we look at our recommendation as a classification
problem, we can make use of well-known measures for classifier evaluation such
as precision and recall. In the following paragraphs, we will review some of
these measures and their application to RS evaluation. Note however that learning
algorithms and classifiers can be evaluated by multiple criteria. This includes how
accurately they perform the classification, their computational complexity during
training , complexity during classification, their sensitivity to noisy data, their
scalability, and so on. But in this section we will focus only on classification
performance.

In order to evaluate a model we usually take into account the following measures:
True Positives (TP): number of instances classified as belonging to class A that
truly belong to class A; True Negatives (TN): number of instances classified as not
belonging to class A and that in fact do not belong to class A; False Positives (FP):
number of instances classified as class A but that do not belong to class A; False
Negatives (FN): instances not classified as belonging to class v but that in fact do
belong to class A.

The most commonly used measure for model performance is its Accuracy defined
as the ratio between the instances that have been correctly classified (as belong-
ing or not to the given class) and the total number of instances: Accuracy D
.TP C TN/=.TP C TN C FP C FN/. However, accuracy might be misleading in
many cases. Imagine a 2-class problem in which there are 99,900 samples of class
A and 100 of class B. If a classifier simply predicts everything to be of class A, the
computed accuracy would be of 99.9 % but the model performance is questionable
because it will never detect any class B examples. One way to improve this
evaluation is to define the cost matrix where we declare the “cost” of misclassifying
class B examples as being of class A. In real world applications different types of
errors may indeed have very different costs. For example, if the 100 samples above
correspond to defective airplane parts in an assembly line, incorrectly rejecting a
non-defective part (one of the 99,900 samples) has a negligible cost compared to
the cost of mistakenly classifying a defective part as a good part.



250 X. Amatriain and J.M. Pujol

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ru

e 
P

os
iti

ve
 R

at
e

False Positive Rate

Model 1

Model 2

Fig. 7.7 Example of ROC curve. Model 1 performs better for low False Positive Rates while
Model 2 is fairly consistent throughout and outperforms Model 1 for False Positive Rates higher
than 0.25

Other common measures of model performance, particularly in Information
Retrieval, are Precision and Recall. Precision, defined as P D TP=.TP C FP/, is
a measure of how many errors we make in classifying samples as being of class
A. On the other hand, recall, R D TP=.TP C FN/, measures how good we are in
not leaving out samples that should have been classified as belonging to the class.
Note that these two measures are misleading when used in isolation in most cases.
We could build a classifier of perfect precision by not classifying any sample as
being of class A (therefore obtaining 0 TP but also 0 FP). Conversely, we could
build a classifier of perfect recall by classifying all samples as belonging to class A.
As a matter of fact, there is a measure, called the F1-measure that combines both
Precision and Recall into a single measure as: F1 D 2RP

RCP D 2TP
2TPCFNCFP

Sometimes we would like to compare several competing models rather than
estimate their performance independently. In order to do so we use a technique
developed in the 1950s for analysis of noisy signals: the Receiver Operating
Characteristic (ROC) Curve. An ROC curve characterizes the relation between
positive hits and false alarms. The performance of each classifier is represented as a
point on the curve (see Fig. 7.7).

Ziegler et al. show [100] that evaluating recommender algorithms through top-
N lists measures still does not map directly to the user’s utility function. However,
it does address some of the limitations of the more commonly accepted accuracy
measures, such as MAE. Basu et al. [16], for instance, use this approach by
analyzing which of the items predicted in the top quartile of the rating scale were
actually evaluated in the top quartile by the user. McLaughlin and Herlocker [66]



7 Data Mining Methods for Recommender Systems 251

propose a modified precision measure in which non-rated items are counted as not
recommendable. This precision measure in fact represents a lower-bound of the
“real” precision. Although the F-measure can be directly derived from the precision-
recall values, it is not common to find it in RS evaluations. Huang et al. [56] and
Bozzon et al. [22], and Miyahara and Pazzani [68] are some of the few examples of
the use of this measure.

ROC curves have also been used in evaluating RS. Zhang et al. [82] use the value
of the area under the ROC curve as their evaluation measure when comparing the
performance of different algorithms under attack. Banerjee and Ramanathan [13]
also use the ROC curves to compare the performance of different models.

It must be noted, though, that the choice of a good evaluation measure, even in
the case of a top-N RS, is still a matter of discussion. Many authors have proposed
measures that are only indirectly related to these traditional evaluation schemes.
Deshpande and Karypis [35], for instance, propose the use of the hit rate and the
average reciprocal hit-rank. On the other hand, Breese et al. [24] define a measure
of the utility of the recommendation in a ranked list as a function of the neutral vote.
It is also becoming increasingly common to treat a top-N RS as a learning-to-rank
problem. In that context, it is common to use ranking metrics such as Mean Average
Precision (MAP), Normalized Discounted Cumulative Gain (NDCG), Fraction of
Concordant Pairs (FCP), or Mean Reciprocal Rank (MRR).

Chapter 8 focuses on the use of some of these evaluation measures in the context
of RS and is therefore a good place to continue if you are interested on this topic.

7.4 Unsupervised Learning

7.4.1 Clustering

The main problem for scaling a CF classifier is the amount of operations involved
in computing distances—for finding the best k-nearest neighbors, for instance.
A possible solution is, as we saw in Sect. 7.2.3, to reduce dimensionality. But,
even if we reduce dimensionality of features, we might still have many objects to
compute the distance to. This is where clustering algorithms can come into play.
The same is true for content-based RS, where distances among objects are needed
to retrieve similar ones. Clustering is sure to improve efficiency because the number
of operations is reduced. However, the improve in accuracy is not guaranteed.

Clustering [54] consists of assigning items to groups so that the items in the
same groups are more similar than items in different groups: the goal is to discover
natural (or meaningful) groups that exist in the data. Similarity is determined
using a distance measure, such as the ones reviewed in Sect. 7.2.1. The goal of a
clustering algorithm is to minimize intra-cluster distances while maximizing inter-
cluster distances.



252 X. Amatriain and J.M. Pujol

There are two main categories of clustering algorithms: hierarchical and
partitional. Partitional clustering algorithms divide data items into non-overlapping
clusters such that each data item is in exactly one cluster. Hierarchical clustering
algorithms successively cluster items within found clusters, producing a set of
nested cluster organized as a hierarchical tree.

Many clustering algorithms try to minimize a function that measures the quality
of the clustering. Such a quality function is often referred to as the objective
function, so clustering can be viewed as an optimization problem: the ideal
clustering algorithm would consider all possible partitions of the data and output the
partitioning that minimizes the quality function. But the corresponding optimization
problem is NP hard, so many algorithms resort to heuristics. The main point is
that clustering is a difficult problem for which finding optimal solutions is often
not possible. For that same reason, selection of the particular clustering algorithm
and its parameters (e.g., similarity measure) depend on many factors, including the
characteristics of the data. In the following paragraphs we describe the k-means
clustering algorithm and some of its alternatives.

7.4.1.1 k-Means

k-Means clustering is a partitioning method. The function partitions the data set of
N items into k disjoint subsets Sj that contain Nj items so that they are as close
to each other as possible according a given distance measure. Each cluster in the
partition is defined by its Nj members and by its centroid �j. The centroid for each
cluster is the point to which the sum of distances from all items in that cluster is
minimized. Thus, we can define the k-means algorithm as an iterative process to
minimize E D Pk

1

P

n2Sj
d.xn; �j/, where xn is a vector representing the n-th item,

�j is the centroid of the item in Sj and d is the distance measure. The k-means
algorithm moves items between clusters until E cannot be decreased further.

The algorithm works by randomly selecting k centroids. Then all items are
assigned to the cluster whose centroid is the closest to them. The new cluster
centroid needs to be updated to account for the items who have been added
or removed from the cluster and the membership of the items to the cluster
updated. This operation continues until there are no further items that change their
cluster membership. Most of the convergence to the final partition takes place
during the first iterations of the algorithm, and therefore, the stopping condition
is often changed to “until relatively few points change clusters” in order to improve
efficiency.

The basic k-means is an extremely simple and efficient algorithm. However, it
does have several shortcomings: (1) it assumes prior knowledge of the data in order
to choose the appropriate k ; (2) the final clusters are very sensitive to the selection of
the initial centroids; and (3), it can produce empty cluster. k-means also has several
limitations with regard to the data: it has problems when clusters are of differing
sizes, densities, and non-globular shapes; and it also has problems when the data
contains outliers.



7 Data Mining Methods for Recommender Systems 253

Xue et al. [97] present a typical use of clustering in the context of a RS by
employing the k-means algorithm as a pre-processing step to help in neighborhood
formation. They do not restrict the neighborhood to the cluster the user belongs
to but rather use the distance from the user to different cluster centroids as a pre-
selection step for the neighbors. They also implement a cluster-based smoothing
technique in which missing values for users in a cluster are replaced by cluster
representatives. Their method is reported to perform slightly better than standard
kNN-based CF. In a similar way, Sarwar et al. [37] describe an approach to
implement a scalable kNN classifier. They partition the user space by applying
the bisecting k-means algorithm and then use those clusters as the base for
neighborhood formation. They report a decrease in accuracy of around 5 % as
compared to standard kNN CF. However, their approach allows for a significant
improvement in efficiency.

Connor and Herlocker [31] present a different approach in which, instead of
users, they cluster items. Using the Pearson Correlation similarity measure they try
out four different algorithms: average link hierarchical agglomerative [52], robust
clustering algorithm for categorical attributes (ROCK) [53], kMetis, and hMetis.4

Although clustering did improve efficiency, all of their clustering techniques yielded
worse accuracy and coverage than the non-partitioned baseline. Finally, Li et al.
[79] and Ungar and Foster [92] present a very similar approach for using k-means
clustering for solving a probabilistic model interpretation of the recommender
problem.

7.4.1.2 Alternatives to k-Means

Density-based clustering algorithms such as DBSCAN work by building up on the
definition of density as the number of points within a specified radius. DBSCAN,
for instance, defines three kinds of points: core points are those that have more than
a specified number of neighbors within a given distance; border points have fewer
than the specified number but belong to a core point neighborhood; and noise points
are those that are neither core or border. The algorithm iteratively removes noise
points and performs clustering on the remaining points.

Message-passing clustering algorithms are a very recent family of graph-based
clustering methods. Instead of considering an initial subset of the points as centers
and then iteratively adapt those, message-passing algorithms initially consider all
points as centers—usually known as exemplars in this context. During the algorithm
execution points, which are now considered nodes in a network, exchange messages
until clusters gradually emerge. Affinity Propagation is an important representative
of this family of algorithms [44] that works by defining two kinds of messages
between nodes: “responsibility”, which reflects how well-suited receiving point is
to serve as exemplar of the point sending the message, taking into account other

4http://www.cs.umn.edu/~karypis/metis.

http://www.cs.umn.edu/~karypis/metis


254 X. Amatriain and J.M. Pujol

potential exemplars; and “availability”, which is sent from candidate exemplar to the
point and reflects how appropriate it would be for the point to choose the candidate
as its exemplar, taking into account support from other points that are choosing that
same exemplar. Affinity propagation has been applied, with very good results, to
problems as different as DNA sequence clustering, face clustering in images, or text
summarization.

Hierarchical Clustering, produces a set of nested clusters organized as a
hierarchical tree (dendogram). Hierarchical Clustering does not have to assume a
particular number of clusters in advanced. Also, any desired number of clusters
can be obtained by selecting the tree at the proper level. Hierarchical clusters
can also sometimes correspond to meaningful taxonomies. Traditional hierarchical
algorithms use a similarity or distance matrix and merge or split one cluster at a
time. There are two main approaches to hierarchical clustering. In agglomerative
hierarchical clustering we start with the points as individual clusters and at each
step, merge the closest pair of clusters until only one cluster (or k clusters) are left.
In divisive hierarchical clustering we start with one, all-inclusive cluster, and at each
step, split a cluster until each cluster contains a point (or there are k clusters).

To the best of our knowledge, the previous alternatives to k-means have not
been applied to RS. On the other hand, other approaches such as Locality-Sensitive
Hashing or Bayesian non-parametric models have already proved useful in practical
applications.

Locality-sensitive hashing (LSH) [10] is a technique for solving a nearest-
neighbor search in high dimensionality spaces. The algorithm relies on the use
of hashing functions that preserve “locality” or, in other words, bucket together
items that are similar. LSH is an unsupervised method that can be considered as an
approach to clustering. However, since it is an approximate solution to the nearest-
neighbor problem, it can also be used for supervised classification as explained in
Sect. 7.3.1.1. Due to its performance and scalability, LSH is used as a preprocessing
step to group similar users in some industrial RS approaches. LinkedIn, for example,
has publicly described its application for people recommendation [18].

Latent Dirichlet Allocation (LDA) [20] is a generative unsupervised model that
can also be considered a form of clustering. As opposed to the previous methods
though, LDA is a mixed membership model in which we consider that each data
point may belong to more than a single clusters. A typical application of LDA is to
identify topics in collections of documents. In that sense, LDA is also very related to
Latent Semantic Analysis, and therefore techniques such as SVD (see Sect. 7.2.3).
LDA has been used in different ways for content-based recommendations. For
example, Jin et. al use LDA to identify topics in webpages in order to implement a
hybrid content/CF recommender system [58]. LDA is also a common approach to
tag recommendation (see [62], for example).

Finally, Bayesian non-parametric models is a family of methods that combines
the power of mixed-membership models such as LDA, and the flexibility of dynamic
methods that adapt the number of clusters to the underlying data distribution.
Hierarchical Dirichlet Processes (HDP) [89] and Recurrent Chinese Restaurant



7 Data Mining Methods for Recommender Systems 255

Processes (RCRP) have been used to cluster documents and users to later perform
recommendations [3]. These initial results are promising, and highlight the applica-
bility of these flexible approaches for RS.

7.4.2 Association Rule Mining

Association Rule Mining focuses on finding rules that will predict the occurrence
of an item based on the occurrences of other items in a transaction. The fact that
two items are found to be related means co-occurrence but not causality. Note
that this technique should not be confused with rule-based classifiers presented in
Sect. 7.3.1.3.

We define an itemset as a collection of one or more items (e.g. (Milk, Beer,
Diaper)). A k-itemset is an itemset that contains k items. The frequency of a given
itemset is known as support count (e.g. (Milk, Beer, Diaper) = 131). And the support
of the itemset is the fraction of transactions that contain it (e.g. (Milk, Beer, Diaper)
D 0:12). A frequent itemset is an itemset with a support that is greater or equal to a
minsup threshold. An association rule is an expression of the form X ) Y , where
X and Y are itemsets. (e.g. Milk; Diaper ) Beer). In this case the support of the
association rule is the fraction of transactions that have both X and Y . On the other
hand, the confidence of the rule is how often items in Y appear in transactions that
contain X.

Given a set of transactions T , the goal of association rule mining is to find
all rules having support � minsupthreshold and confidence � minconfthreshold.
The brute-force approach would be to list all possible association rules, compute
the support and confidence for each rule and then prune rules that do not satisfy
both conditions. This is, however, computationally very expensive. For this reason,
we take a two-step approach: (1) Generate all itemsets whose support � minsup
(Frequent Itemset Generation); (2) Generate high confidence rules from each
frequent itemset (Rule Generation).

Several techniques exist to optimize the generation of frequent itemsets. On a
broad sense they can be classified into those that try to minimize the number of
candidates (M), those that reduce the number of transactions (N), and those that
reduce the number of comparisons (NM). The most common approach though,
is to reduce the number of candidates using the Apriori principle. This principle
states that if an itemset is frequent, then all of its subsets must also be frequent.
This is verified using the support measure because the support of an itemset never
exceeds that of its subsets. The Apriori Algorithm is a practical implementation of
the principle.

Given a frequent itemset L, the goal when generating rules is to find all non-
empty subsets that satisfy the minimum confidence requirement. If jLj D k, then
there are 2k�2 candidate association rules. So, as in the frequent itemset generation,
we need to find ways to generate rules efficiently. For the Apriori Algorithm we can
generate candidate rules by merging two rules that share the same prefix in the rule
consequent.



256 X. Amatriain and J.M. Pujol

The effectiveness of association rule mining for uncovering patterns and driving
personalized marketing decisions has been known for a some time [2]. However, and
although there is a clear relation between this method and the goal of a RS, they have
not become mainstream. The main reason is that this approach is similar to item-
based CF but is less flexible since it requires of an explicit notion of transaction—
e.g. co-occurrence of events in a given session. In the next paragraphs we present
some promising examples, some of which indicate that association rules still have
not had their last word.

Mobasher et al. [69] present a system for web personalization based on asso-
ciation rules mining. Their system identifies association rules from pageviews
co-occurrences based on users navigational patterns. Their approach outperforms a
kNN-based recommendation system both in terms of precision and coverage. Smyth
et al. [87] present two different case studies of using association rules for RS. In the
first case they use the a priori algorithm to extract item association rules from user
profiles in order to derive a better item-item similarity measure. In the second case,
they apply association rule mining to a conversational recommender. The goal here
is to find co-occurrent critiques—i.e. user indicating a preference over a particular
feature of the recommended item. Lin et al. [65] present a new association mining
algorithm that adjusts the minimum support of the rules during mining in order
to obtain an appropriate number of significant rule therefore addressing some of the
shortcomings of previous algorithms such as the a priori. They mine both association
rules between users and items. The measured accuracy outperforms previously
reported values for correlation-based recommendation and is similar to the more
elaborate approaches such as the combination of SVD and ANN.

Finally, as already mentioned in Sect. 7.3.1.2, Cho et al. [28] combine Decision
Trees and Association Rule Mining in a web shop RS. In their system, association
rules are derived in order to link related items. The recommendation is then
computed by intersecting association rules with user preferences. They look for
association rules in different transaction sets such as purchases, basket placement,
and click-through. They also use a heuristic for weighting rules coming from each
of the transaction sets. Purchase association rules, for instance, are weighted higher
than click-through association rules.

7.5 Conclusions

This chapter has introduced the main data mining methods and techniques that can
be applied in the design of a RS. We have also surveyed their use in the literature
and provided some rough guidelines on how and where they can be applied.

We started by reviewing techniques that can be applied in the pre-processing
step. First, there is the choice of an appropriate distance measure, which is reviewed
in Sect. 7.2.1. This is required by most of the methods in the following steps. The
cosine similarity and Pearson correlation are commonly accepted as the best choice.
Then, in Sect. 7.2.2, we reviewed the basic sampling techniques that need to be



7 Data Mining Methods for Recommender Systems 257

applied in order to select a subset of an originally large data set, or to separating
a training and a testing set. Finally, we discussed the use of dimensionality
reduction techniques such as Principal Component Analysis and Singular Value
Decomposition in Sect. 7.2.3 as a way to address the curse of dimensionality
problem.

In Sect. 7.3, we reviewed the main classification methods: namely, nearest-
neighbors, decision trees, rule-based classifiers, Bayesian networks, logistic regres-
sion, support vector machines, and artificial neural networks. We saw that, although
kNN (see Sect. 7.3.1.1) CF is the preferred approach, all those classifiers can
be applied in different settings. Decision trees (see Sect. 7.3.1.2) can be used to
derive a model based on the content of the items or to model a particular part of
the system. Decision rules (see Sect. 7.3.1.3) can be derived from a pre-existing
decision trees, or can also be used to introduce business or domain knowledge.
Bayesian networks (see Sect. 7.3.1.4) are a popular approach to content-based
recommendation, but can also be used to derive a model-based CF system. In
a similar way, Artificial Neural Networks can be used to derive a model-based
recommender but also to combine/hybridize several algorithms. Finally, support
vector machines (see Sect. 7.3.1.6) are gaining popularity also as a way to infer
content-based classifications or derive a CF model.

Choosing the right classifier for a RS is not easy and is in many senses task and
data-dependent. In the case of CF, some results seem to indicate that model-based
approaches using classifiers such as the SVM or Bayesian Networks can slightly
improve performance of the standard kNN classifier. However, those results are non-
conclusive and hard to generalize. In the case of a content-based RS there is some
evidence that in some cases Bayesian Networks will perform better than simpler
methods such as decision trees. However, it is not clear that more complex non-
linear classifiers such as the ANN or SVMs can perform better.

The choice of the right classifier for a specific recommending task still has
nowadays much of exploratory. A practical rule-of-thumb is to start with the
simplest approach and only introduce complexity if the performance gain obtained
justifies it. The performance gain should of course balance different dimensions. In
Sect. 7.3.3 we reviewed different ways to evaluate the performance of a classifier.
Another option is to combine different classifiers in an ensemble. We described
different techniques to build ensembles in Sect. 7.3.2.

We reviewed clustering algorithms in Sect. 7.4.1. Clustering is usually used in RS
to improve performance. A previous clustering step, either in the user of item space,
reduces the number of distance computations we need to perform. The simplicity
and relative efficiency of the k-means algorithm (see Sect. 7.4.1.1) make it hard
to find a practical alternative. We reviewed some of them such as Hierarchical
Clustering or Message-passing algorithms in Sect. 7.4.1.2.

Finally, in Sect. 7.4.2, we described association rules and surveyed their use
in RS. Association rules offer an intuitive framework for recommending items
whenever there is an explicit or implicit notion of transaction. Although there exist
efficient algorithms for computing association rules, and they have proved more
accurate than standard kNN CF, they are still not a favored approach.



258 X. Amatriain and J.M. Pujol

The choice of the right DM technique in designing a RS is a complex task that
is bound by many problem-specific constraints. However, we hope that the short
review of techniques and experiences included in this chapter can help the reader
make a much more informed decision. Besides, we have also touched upon areas
that are open to many further improvements, and where there is still much exciting
and relevant research to be done in the coming years.

References

1. G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: A
survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering, 17(6):734–749, 2005.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases.
In Proceedings of the 20th International Conference on Very Large Data Bases, 1994.

3. A. Ahmed and E. Xing. Scalable dynamic nonparametric bayesian models of content and
users. In Proceedings of the Twenty-Third International Joint Conference on Artificial
Intelligence, IJCAI’13, pages 3111–3115. AAAI Press, 2013.

4. X. Amatriain. Big & personal: data and models behind netflix recommendations. In
Proceedings of the 2nd International Workshop on Big Data, Streams and Heterogeneous
Source Mining: Algorithms, Systems, Programming Models and Applications, pages 1–6.
ACM, 2013.

5. X. Amatriain. Mining large streams of user data for personalized recommendations. ACM
SIGKDD Explorations Newsletter, 14(2):37–48, 2013.

6. X. Amatriain, N. Lathia, J. M. Pujol, H. Kwak, and N. Oliver. The wisdom of the few: A
collaborative filtering approach based on expert opinions from the web. In Proc. of SIGIR
’09, 2009.

7. X. Amatriain, J. M. Pujol, and N. Oliver. I like it: : : i like it not: Evaluating user ratings noise
in recommender systems. In UMAP ’09, 2009.

8. X. Amatriain, J. M. Pujol, N. Tintarev, and N. Oliver. Rate it again: Increasing recommenda-
tion accuracy by user re-rating. In Recys ’09, 2009.

9. M. Anderson, M. Ball, H. Boley, S. Greene, N. Howse, D. Lemire, and S. McGrath. Racofi:
A rule-applying collaborative filtering system. In Proc. IEEE/WIC COLA’03, 2003.

10. A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Commun. ACM, 51(1):117–122, Jan. 2008.

11. B. D. Baets. Growing decision trees in an ordinal setting. International Journal of Intelligent
Systems, 2003.

12. S. Balakrishnan and S. Chopra. Collaborative ranking. In Proceedings of the fifth ACM
international conference on Web search and data mining, pages 143–152. ACM, 2012.

13. S. Banerjee and K. Ramanathan. Collaborative filtering on skewed datasets. In Proc. of WWW
’08, 2008.

14. D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press. 2012.
15. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and

content-based information in recommendation. In In Proceedings of the Fifteenth National
Conference on Artificial Intelligence, pages 714–720. AAAI Press, 1998.

16. C. Basu, H. Hirsh, and W. Cohen. Recommendation as classification: Using social and
content-based information in recommendation. In AAAI Workshop on Recommender Systems,
1998.

17. R. M. Bell, Y. Koren, and C. Volinsky. The bellkor solution to the netflix prize. Technical
report, AT&T Labs – Research, 2007.



7 Data Mining Methods for Recommender Systems 259

18. A. Bhasin. Beyond ratings and followers. In Proceedings of the 6th ACM Conference on
Recommender Systems, RecSys ’12, 2012.

19. C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and
Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

20. D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn. Res.,
3:993–1022, Mar. 2003.

21. A. Bouza, G. Reif, A. Bernstein, and H. Gall. Semtree: ontology-based decision tree algorithm
for recommender systems. In International Semantic Web Conference, 2008.

22. A. Bozzon, G. Prandi, G. Valenzise, and M. Tagliasacchi. A music recommendation system
based on semantic audio segments similarity. In Proceeding of Internet and Multimedia
Systems and Applications - 2008, 2008.

23. M. Brand. Fast online svd revisions for lightweight recommender systems. In SIAM
International Conference on Data Mining (SDM), 2003.

24. J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for
collaborative filtering. In Proceedings of the Fourteenth Annual Conference on Uncertainty
in Artificial Intelligence, page 43–52, 1998.

25. L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
26. R. Burke. Hybrid web recommender systems. pages 377–408. 2007.
27. W. Cheng, J. Hühn, and E. Hüllermeier. Decision tree and instance-based learning for label

ranking. In ICML ’09: Proceedings of the 26th Annual International Conference on Machine
Learning, pages 161–168, New York, NY, USA, 2009. ACM.

28. Y. Cho, J. Kim, and S. Kim. A personalized recommender system based on web usage mining
and decision tree induction. Expert Systems with Applications, 2002.

29. C. Christakou and A. Stafylopatis. A hybrid movie recommender system based on neural
networks. In ISDA ’05: Proceedings of the 5th International Conference on Intelligent
Systems Design and Applications, pages 500–505, 2005.

30. W. Cohen. Fast effective rule induction. In Machine Learning: Proceedings of the 12th
International Conference, 1995.

31. M. Connor and J. Herlocker. Clustering items for collaborative filtering. In SIGIR Workshop
on Recommender Systems, 2001.

32. T. Cover and P. Hart. Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 13(1):21–27, 1967.

33. N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, March 2000.

34. S. Deerwester, S. T. Dumais, G. W. Furnas, L. T. K., and R. Harshman. Indexing by latent
semantic analysis. Journal of the American Society for Information Science, 41, 1990.

35. M. Deshpande and G. Karypis. Item-based top-n recommendation algorithms. ACM Trans.
Inf. Syst., 22(1):143–177, 2004.

36. I. D. E. Montanés, J.-R. Quevedo and J. Ranilla. Collaborative tag recommendation system
based on logistic regression. In ECML PKDD Discovery Challenge 09, 2009.

37. B. S. et al. Recommender systems for large-scale e-commerce: Scalable neighborhood
formation using clustering. In Proceedings of the Fifth International Conference on Computer
and Information Technology, 2002.

38. K. O. et al. Context-aware svm for context-dependent information recommendation. In
International Conference On Mobile Data Management, 2006.

39. P. T. et al. Introduction to Data Mining. Addison Wesley, 2005.
40. S. G. et al. Tv content recommender system. In AAAI/IAAI 2000, 2000.
41. S. H. et al. Aimed- a personalized tv recommendation system. In Interactive TV: a Shared

Experience, 2007.
42. T. B. et al. A trail based internet-domain recommender system using artificial neural networks.

In Proceedings of the Int. Conf. on Adaptive Hypermedia and Adaptive Web Based Systems,
2002.

43. Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for
combining preferences. J. Mach. Learn. Res., 4:933–969, 2003.



260 X. Amatriain and J.M. Pujol

44. B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 307,
2007.

45. J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of
Statistics, pages 1189–1232, 2001.

46. N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Mach. Learn.,
29(2–3):131–163, 1997.

47. S. Funk. Netflix update: Try this at home, 2006.
48. R. Ghani and A. Fano. Building recommender systems using a knowledge base of product

semantics. In In 2nd International Conference on Adaptive Hypermedia and Adaptive Web
Based Systems, 2002.

49. N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender systems
using decision trees. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 595–604. ACM, 2011.

50. K. Goldberg, T. Roeder, D. Gupta, and C. Perkins. Eigentaste: A constant time collaborative
filtering algorithm. Journal Information Retrieval, 4(2):133–151, July 2001.

51. G. Golub and C. Reinsch. Singular value decomposition and least squares solutions.
Numerische Mathematik, 14(5):403–420, April 1970.

52. E. Gose, R. Johnsonbaugh, and S. Jost. Pattern Recognition and Image Analysis. Prentice
Hall, 1996.

53. S. Guha, R. Rastogi, and K. Shim. Rock: a robust clustering algorithm for categorical
attributes. In Proc. of the 15th Int’l Conf. On Data Eng., 1999.

54. J. A. Hartigan. Clustering Algorithms (Probability & Mathematical Statistics). John Wiley
& Sons Inc, 1975.

55. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst., 22(1):5–53, 2004.

56. Z. Huang, D. Zeng, and H. Chen. A link analysis approach to recommendation under sparse
data. In Proceedings of AMCIS 2004, 2004.

57. A. Isaksson, M. Wallman, H. Göransson, and M. G. Gustafsson. Cross-validation and
bootstrapping are unreliable in small sample classification. Pattern Recognition Letters,
29:1960–1965, 2008.

58. X. Jin, Y. Zhou, and B. Mobasher. A maximum entropy web recommendation system:
Combining collaborative and content features. In Proceedings of the Eleventh ACM
SIGKDD International Conference on Knowledge Discovery in Data Mining, KDD ’05,
pages 612–617, New York, NY, USA, 2005. ACM.

59. I. T. Jolliffe. Principal Component Analysis. Springer, 2002.
60. H. Kang and S. Yoo. Svm and collaborative filtering-based prediction of user preference for

digital fashion recommendation systems. IEICE Transactions on Inf & Syst, 2007.
61. Y. Koren. The bellkor solution to the netflix grand prize. Netflix prize documentation, 2009.
62. R. Krestel, P. Fankhauser, and W. Nejdl. Latent dirichlet allocation for tag recommendation.

In Proceedings of the third ACM conference on Recommender systems, pages 61–68. ACM,
2009.

63. M. Kurucz, A. A. Benczur, and K. Csalogany. Methods for large scale svd with missing
values. In Proceedings of KDD Cup and Workshop 2007, 2007.

64. N. Lathia, S. Hailes, and L. Capra. The effect of correlation coefficients on communities of
recommenders. In SAC ’08: Proceedings of the 2008 ACM symposium on Applied computing,
pages 2000–2005, New York, NY, USA, 2008. ACM.

65. W. Lin and S. Alvarez. Efficient adaptive-support association rule mining for recommender
systems. Data Mining and Knowledge Discovery Journal, 6(1), 2004.

66. M. R. McLaughlin and J. L. Herlocker. A collaborative filtering algorithm and evaluation
metric that accurately model the user experience. In Proc. of SIGIR ’04, 2004.

67. S. M. McNee, J. Riedl, and J. A. Konstan. Being accurate is not enough: how accuracy metrics
have hurt recommender systems. In CHI ’06: CHI ’06 extended abstracts on Human factors
in computing systems, pages 1097–1101, New York, NY, USA, 2006. ACM Press.



7 Data Mining Methods for Recommender Systems 261

68. K. Miyahara and M. J. Pazzani. Collaborative filtering with the simple bayesian classifier. In
Pacific Rim International Conference on Artificial Intelligence, 2000.

69. B. Mobasher, H. Dai, T. Luo, and M. Nakagawa. Effective personalization based on
association rule discovery from web usage data. In Workshop On Web Information And Data
Management, WIDM ’01, 2001.

70. K. P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.
71. D. Nikovski and V. Kulev. Induction of compact decision trees for personalized recom-

mendation. In SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing,
pages 575–581, New York, NY, USA, 2006. ACM.

72. M. P. O’mahony. Detecting noise in recommender system databases. In In Proceedings of the
International Conference on Intelligent User Interfaces (IUI’06), 29th–1st, pages 109–115.
ACM Press, 2006.

73. D. Parra, A. Karatzoglou, X. Amatriain, and I. Yavuz. Implicit feedback recommendation via
implicit-to-explicit ordinal logistic regression mapping. 2011.

74. A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In
Proceedings of KDD Cup and Workshop 2007, 2007.

75. M. J. Pazzani. A framework for collaborative, content-based and demographic filtering.
Artificial Intelligence Review, 13:393–408, 1999.

76. M. J. Pazzani and D. Billsus. Learning and revising user profiles: The identification of
interesting web sites. Machine Learning, 27(3):313–331, 1997.

77. V. Pronk, W. Verhaegh, A. Proidl, and M. Tiemann. Incorporating user control into
recommender systems based on naive bayesian classification. In RecSys ’07: Proceedings
of the 2007 ACM conference on Recommender systems, pages 73–80, 2007.

78. D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann, second edition, 1999.
79. B. K. Q. Li. Clustering approach for hybrid recommender system. In Web Intelligence 03,

2003.
80. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, March 1986.
81. T. T. R. Zhang and Y. Mao. Recommender systems from words of few mouths. In Proceedings

of IJCAJ 11, 2011.
82. J. F. S. Zhang, Y. Ouyang and F. Makedon. Analysis of a low-dimensional linear model under

recommendation attacks. In Proc. of SIGIR ’06, 2006.
83. R. Salakhutdinov, A. Mnih, and G. E. Hinton. Restricted Boltzmann machines for collabora-

tive filtering. In Proc of ICML ’07, New York, NY, USA, 2007. ACM.
84. B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Incremental svd-based algorithms for

highly scalable recommender systems. In 5th International Conference on Computer and
Information Technology (ICCIT), 2002.

85. B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T. Riedl. Application of dimensionality
reduction in recommender systems—a case study. In ACM WebKDD Workshop, 2000.

86. A. Schclar, A. Tsikinovsky, L. Rokach, A. Meisels, and L. Antwarg. Ensemble methods for
improving the performance of neighborhood-based collaborative filtering. In RecSys ’09:
Proceedings of the third ACM conference on Recommender systems, pages 261–264, New
York, NY, USA, 2009. ACM.

87. B. Smyth, K. McCarthy, J. Reilly, D. O‘Sullivan, L. McGinty, and D. Wilson. Case studies in
association rule mining for recommender systems. In Proc. of International Conference on
Artificial Intelligence (ICAI ’05), 2005.

88. E. Spertus, M. Sahami, and O. Buyukkokten. Evaluating similarity measures: A large-scale
study in the orkut social network. In Proceedings of the 2005 International Conference on
Knowledge Discovery and Data Mining (KDD-05), 2005.

89. Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical dirichlet processes. Journal
of the American Statistical Association, 101, 2004.

90. M. Tiemann and S. Pauws. Towards ensemble learning for hybrid music recommendation.
In RecSys ’07: Proceedings of the 2007 ACM conference on Recommender systems, pages
177–178, New York, NY, USA, 2007. ACM.



262 X. Amatriain and J.M. Pujol

91. A. Toescher, M. Jahrer, and R. Legenstein. Improved neighborhood-based algorithms for
large-scale recommender systems. In In KDD-Cup and Workshop 08, 2008.

92. L. H. Ungar and D. P. Foster. Clustering methods for collaborative filtering. In Proceedings
of the Workshop on Recommendation Systems, 2000.

93. I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, second edition, 2005.

94. M. Wu. Collaborative filtering via ensembles of matrix factorizations. In Proceedings of
KDD Cup and Workshop 2007, 2007.

95. Z. Xia, Y. Dong, and G. Xing. Support vector machines for collaborative filtering. In ACM-
SE 44: Proceedings of the 44th annual Southeast regional conference, pages 169–174, New
York, NY, USA, 2006. ACM.

96. J. Xu and K. Araki. A svm-based personal recommendation system for tv programs. In
Multi-Media Modelling Conference Proceedings, 2006.

97. G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng, Y. Yu, and Z. Chen. Scalable collaborative
filtering using cluster-based smoothing. In Proceedings of the 2005 SIGIR, 2005.

98. K. Yu, V. Tresp, and S. Yu. A nonparametric hierarchical bayesian framework for information
filtering. In SIGIR ’04, 2004.

99. Y. Zhang and J. Koren. Efficient bayesian hierarchical user modeling for recommendation
system. In SIGIR 07, 2007.

100. C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen. Improving recommendation lists
through topic diversification. In Proc. of WWW ’05, 2005.

101. J. Zurada. Introduction to artificial neural systems. West Publishing Co., St. Paul, MN, USA,
1992.


	7 Data Mining Methods for Recommender Systems
	7.1 Introduction
	7.2 Data Preprocessing
	7.2.1 Similarity Measures
	7.2.2 Sampling
	7.2.3 Reducing Dimensionality
	7.2.3.1 Principal Component Analysis
	7.2.3.2 Matrix Factorization and Singular Value Decomposition

	7.2.4 Denoising

	7.3 Supervised Learning
	7.3.1 Classification
	7.3.1.1 Nearest Neighbors
	7.3.1.2 Decision Trees
	7.3.1.3 Ruled-Based Classifiers
	7.3.1.4 Bayesian Classifiers
	7.3.1.5 Logistic Regression
	7.3.1.6 Support Vector Machines
	7.3.1.7 Artificial Neural Networks

	7.3.2 Ensembles of Classifiers
	7.3.3 Evaluating Classifiers

	7.4 Unsupervised Learning
	7.4.1 Clustering
	7.4.1.1 k-Means
	7.4.1.2 Alternatives to k-Means

	7.4.2 Association Rule Mining

	7.5 Conclusions
	References


