
Francesco Ricci · Lior Rokach
Bracha Shapira    Editors 

Recommender 
Systems 
Handbook
 Second Edition 



Recommender Systems Handbook





Francesco Ricci • Lior Rokach • Bracha Shapira
Editors

Recommender Systems
Handbook

Second Edition

123



Editors
Francesco Ricci
Faculty of Computer Science
Free University of Bozen-Bolzano
Bolzano, Italy

Bracha Shapira
Ben-Gurion University of the Negev
Beer-Sheva, Israel

Lior Rokach
Information Systems Engineering
Ben-Gurion University of the Negev
Beer-Sheva, Israel

ISBN 978-1-4899-7636-9 ISBN 978-1-4899-7637-6 (eBook)
DOI 10.1007/978-1-4899-7637-6

Library of Congress Control Number: 2015953226

Springer New York Heidelberg Dordrecht London
© Springer Science+Business Media New York 2011, 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer Science+Business Media LLC New York is part of Springer Science+Business Media (www.
springer.com)

www.springer.com
www.springer.com


Dedicated to

our families in appreciation of their patience and
support during the preparation of this handbook

and to

all our students in appreciation of their ideas,
patience and stimulus for better understanding
the topics covered in this handbook

F.R.
L.R.
B.S.





Preface

Recommender systems are software tools and techniques providing suggestions for
items to be of use to a user. The suggestions provided by a recommender system are
aimed at supporting their users in various decision-making processes, such as what
items to buy, what music to listen, or what news to read. Recommender systems
are valuable means for online users to cope with information overload and help
them making better choices. They are now one of the most powerful and popular
information discovery tools on the web. Several techniques for recommendation
generation have been proposed, and during the last decade, many of them have also
been successfully deployed in commercial environments.

Development of recommender systems is a multi-disciplinary effort which
involves experts from various fields such as artificial intelligence, human computer
interaction, data mining, statistics, decision support systems, marketing, and con-
sumer behavior.

The first edition of the handbook, which was published 4 years ago, was
extremely well received by the recommender systems community. The positive
reception, along with the fast pace of research in recommender systems, motivated
us to update the handbook. This second edition aims to refresh the previously
presented material and to present new findings in the field. The Recommender
Systems Handbook is now offered in a majorly revised edition; about half of the
chapters are totally new and the remaining chapters are updated versions of selected
chapters already published in the first edition.

Despite these revisions, the goal of this handbook remains unaltered. It still aims
to present both fundamental knowledge and more advanced topics by organizing
them in a coherent and unified repository of recommender systems’ major concepts,
theories, methods, trends, challenges, and applications. This is still the unique
comprehensive book, which is dedicated entirely to the field of recommender
systems. Its informative, factual pages will provide researchers, students, and
practitioners in industry with a comprehensive, yet concise and convenient reference
source to recommender systems.

This book describes in detail the classical methods, as well as extensions and
novel approaches that were more recently introduced. It consists of five parts:
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viii Preface

techniques, evaluation of recommender systems, applications, human computer
interaction, and advanced topics. The first part presents the most popular and
fundamental techniques used nowadays for building recommender systems, such
as collaborative filtering, semantic-based methods, data mining, and context-aware
methods. The second part focuses on methods and techniques for evaluating the
performance and effect of recommender systems by means of both off-line and live
user experiments. The third part contains several chapters on diverse applications
of recommendation techniques. After a first chapter dedicated to general issues
related to the industrial implementation and exploitation of recommender system,
the other sections focus on various application domains: music, learning, mobile,
social, and reciprocal. The fourth part includes papers addressing the presentation,
browsing, explanation, and visualization of the recommendations and important
issues related to human decision making and recommender systems. Finally, the
last section collects a few papers on some advanced topics such as the exploitation
of active learning principles to guide the acquisition of new knowledge, techniques
suitable for making a recommender system robust against attacks of malicious
users, and recommender systems that aggregate multiple types of user feedbacks
and preferences to build more reliable recommendations or recommendations for
groups.

We would like to thank all authors for their valuable contributions. We would
like to express gratitude for all reviewers who generously gave comments on
drafts or counsel otherwise. We would like to express our special thanks to
Susan Lagerstrom-Fife and staff members of Springer for their kind cooperation
throughout the production of this book. Finally, we wish this handbook will
contribute to the growth of this subject, we wish to the novices a fruitful learning
path, and to those more experts a compelling application of the ideas discussed in
this handbook and a fruitful development of this challenging research area.

Bolzano, Italy Francesco Ricci
Beer-Sheva, Israel Lior Rokach

Bracha Shapira
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Chapter 1
Recommender Systems: Introduction
and Challenges

Francesco Ricci, Lior Rokach, and Bracha Shapira

1.1 Introduction

Recommender Systems (RSs) are software tools and techniques that provide
suggestions for items that are most likely of interest to a particular user [17, 41, 42].
The suggestions relate to various decision-making processes, such as what items to
buy, what music to listen to, or what online news to read.

“Item” is the general term used to denote what the system recommends to
users. An RS normally focuses on a specific type of item (e.g., CDs or news) and,
accordingly its design, its graphical user interface, and the core recommendation
technique used to generate the recommendations are all customized to provide
useful and effective suggestions for that specific type of item.

RSs are primarily directed toward individuals who lack the sufficient personal
experience or competence in order to evaluate the potentially overwhelming number
of alternative items that a website, for example, may offer [42]. A prime example
is a book recommender system that assists users in selecting a book to read. On
the popular website, Amazon.com, the site employs an RS to personalize the online
store for each customer [32]. Since recommendations are usually personalized,
different users or user groups benefit from diverse, tailored suggestions. In addition,
there are also non-personalized recommendations. These are much simpler to
generate and are normally featured in magazines or newspapers. Typical examples

F. Ricci (�)
Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
e-mail: fricci@unibz.it

L. Rokach • B. Shapira
Department of Information Systems Engineering,
Ben-Gurion University of the Negev, Beer-Sheva, Israel
e-mail: liorrk@bgu.ac.il; bshapira@bgu.ac.il

© Springer Science+Business Media New York 2015
F. Ricci et al. (eds.), Recommender Systems Handbook,
DOI 10.1007/978-1-4899-7637-6_1

1

mailto:bshapira@bgu.ac.il
mailto:liorrk@bgu.ac.il
mailto:fricci@unibz.it


2 F. Ricci et al.

include the top ten selections of books, CDs etc. While they may be useful and
effective in certain situations, these types of non-personalized recommendations are
not typically addressed by RS research.

In their simplest form, personalized recommendations are offered as ranked lists
of items. In performing this ranking, RSs try to predict what the most suitable
products or services are, based on the user’s preferences and constraints. In order to
complete such a computational task, RSs collect information from users regarding
their preferences which are either explicitly expressed, e.g., as ratings for products
or are inferred by interpreting the actions of the user. For instance, an RS may
consider the navigation to a particular product page as an implicit sign of preference
for the items shown on that page.

The development of RSs initiated from a rather simple observation: individuals
often rely on recommendations provided by others in making routine, daily deci-
sions [41, 51]. For example, it is common to rely on what one’s peers recommend
when selecting a book to read; employers count on recommendation letters in their
recruiting decisions; and when selecting a movie to watch, individuals tend to read
and rely on the movie reviews that a film critic has written, which appear in the
newspaper they read.

In seeking to mimic this behavior, the first RSs applied algorithms in order to
leverage recommendations produced by a community of users and deliver these
recommendations to an “active” user, or a user looking for suggestions. The
recommendations were for items that similar users, or those with similar tastes, had
liked. This approach is termed collaborative-filtering and its rationale follows that if
the active user agreed in the past with certain users, then the other recommendations
coming from these similar users should be relevant as well as of interest to the active
user.

As e-commerce websites began to develop, a pressing need emerged for pro-
viding recommendations derived from filtering the whole range of available alter-
natives. Users found it difficult to arrive at the most appropriate choices from the
immense variety of items (products and services) that these websites offered.

The explosive growth and variety of information available on the Web and the
rapid introduction of new e-business services (selling products, product comparison,
auctions, etc.) frequently overwhelmed users, leading them to make poor decisions.
The availability of choices, instead of producing a benefit, started to decrease
users’ well-being. It was understood that while choice is good, more choice is not
always better. Indeed, choice, with its implications of freedom, autonomy, and self-
determination can become excessive, and ultimately create a sense that freedom may
come to be regarded as a kind of misery-inducing tyranny [49].

In recent years, RSs have proven to be a valuable means of coping with the
information overload problem. Ultimately an RS addresses this phenomenon by
pointing a user toward new, not-yet-experienced items that may be relevant to the
user’s current task. Upon a user’s request, which can be articulated depending
on the recommendation approach by the user’s context and need, RSs generate
recommendations using various types of knowledge and data about users, the
available items, and previous transactions stored in customized databases. The user
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can then browse the recommendations. One may accept them or not and may
provide, immediately or at a later stage, implicit or explicit feedback. This user
action and feedback can be stored in the recommender database and may be used
for generating new recommendations in the coming user-system interactions.

As previously noted, the study of recommender systems is relatively new com-
pared to research in other classical information system tools and techniques (e.g.,
databases or search engines). Recommender systems emerged as an independent
research area in the mid-1990s [7, 24, 41, 51]. In recent years, the interest in
recommender systems has dramatically increased, as the following facts indicate:

1. Recommender systems play an important role in highly-rated Internet sites such
as Amazon.com, YouTube, Netflix, Spotify, LinkedIn, Facebook, Tripadvisor,
Last.fm, and IMDb. Moreover many media companies are now developing and
deploying RSs as part of the services they provide to their subscribers. For
example, Netflix, the online provider of on-demand streaming media, awarded
a million dollar prize to the team that first succeeded in substantially improving
the performance of its recommender system [31].

2. There are conferences and workshops dedicated specifically to the field, namely
the Association of Computing Machinery’s (ACM) Conference Series on
Recommender Systems (RecSys), established in 2007. This conference stands as
the premier annual event in recommender technology research and applications.
In addition, sessions dedicated to RSs are frequently included in more traditional
conferences in the area of databases, information systems and adaptive systems.
Additional noteworthy conferences within this scope include: ACM’s Special
Interest Group on Information Retrieval (SIGIR); User Modeling, Adaptation
and Personalization (UMAP); Intelligent User Interfaces (IUI); World Wide
Web (WWW); and ACM’s Special Interest Group on Management Of Data
(SIGMOD).

3. At institutions of higher education around the world, undergraduate and graduate
courses are now dedicated entirely to RSs, tutorials on RSs are very popular
at computer science conferences, and a book introducing RSs techniques has
been published as well [27]. Springer is publishing several books on specific
topics in recommender systems in its series: Springer Briefs in Electrical
and Computer Engineering. A large, new collection of articles dedicated to
recommender systems applications to software engineering has also recently
been published [46].

4. There have been several special issues in academic journals which cover research
and developments in the RSs field. Among the journals that have dedicated
issues to RSs are: AI Communications (2008); IEEE Intelligent Systems (2007);
International Journal of Electronic Commerce (2006); International Journal of
Computer Science and Applications (2006); ACM Transactions on Computer
Human Interaction (2005); ACM Transactions on Information Systems (2004);
User Modeling and User-Adapted Interaction (2014, 2012); ACM Transactions
on Interactive Intelligent Systems (2013); and ACM Transactions on Intelligent
Systems and Technology (2015).
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In this introductory chapter, we briefly discuss basic RS ideas and concepts.
Our main goal is not to present a self-contained comprehensive survey on RSs
but rather to delineate, in a coherent and structured way, the chapters included in
this handbook and to help the reader navigate the rich and detailed content that the
handbook offers. The reader can also consult these recent introductions or surveys
on recommender systems [13, 30, 34, 40, 44]. At the end of this chapter, we have
identified some research challenges that we believe are particularly important for
the future of the area.

The handbook is divided into five sections: recommendation techniques; rec-
ommender systems evaluation; recommender systems applications; recommender
systems and human computer interaction; and advanced algorithms.

The first section presents the techniques most popularly used today for building
RSs, such as collaborative filtering; content-based, data mining methods; and
context-aware methods.

The second section surveys techniques and approaches that have been utilized to
evaluate the quality of the recommendations. The section also considers aspects that
may affect RS design (domain, device, interfaces, users, etc.). Finally, it discusses
methods, challenges and measures to be applied in evaluating the developed systems
with user experiments.

The third section includes papers dealing with a number of issues related to how
recommendations are presented, browsed, explained and visualized. Among them,
this section focuses on user’s privacy and the decision making process supported by
a recommender system.

The fourth section is fully dedicated to applications of recommender systems.
We offer here a broad spectrum of the usage of these techniques in music, mobile
computing, dating, social networks, education, and movies.

The last section presents papers on various advanced topics, such as: the
exploitation of active learning principles to guide the acquisition of new knowledge;
novelty and diversity in the recommendations; suitable techniques for protecting a
recommender system against attacks of malicious users; and RSs that aggregate
multiple types of user feedback and preferences to build more reliable recommen-
dations.

1.2 Recommender Systems’ Function

In the previous section, we defined RSs as software tools and techniques that provide
users with suggestions for items that a user may wish to utilize. Now we wish to
refine this definition to illustrate a range of possible roles that an RS can play.
Firstly, we must distinguish between the role played by the RS on behalf of the
service provider, from that of the user of the RS. For instance, a travel recommender
system is typically introduced by a travel intermediary such as Expedia.com, or a
destination management organization, such as Visitfinland.com, in order to increase
its turnover or sell more hotel rooms in the case of Expedia, and increase the number
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of tourists to the destination in the case of the destination management organization
[14, 43]. The user’s primary motivations for accessing the two systems would be to
find a suitable hotel and interesting events or attractions when visiting a destination.

In fact, there are various reasons as to why service providers may want to exploit
this technology:

• Increase the number of items sold. This is probably the most important function
for a commercial RS, i.e., to be able to sell an additional set of items compared
to those usually sold without any kind of recommendation. This goal is achieved
because the recommended items are likely to suit the user’s needs and wants.
Presumably the user will recognize this after having tried several recommenda-
tions.1 Non-commercial applications have similar goals, even if there is no cost
for the user that is associated with selecting an item. For instance, a content
network aims at increasing the number of news items read on its site. In general,
we can say that from the service provider’s point of view, the primary goal for
introducing an RS is to increase the conversion rate, i.e., the number of users that
accept the recommendation and consume an item, compared to the number of
simple visitors that just browse through the information.

• Sell more diverse items. Another major function of an RS is to enable the user
to select items that might be hard to find without a precise recommendation. For
instance, in a tourist RS the service provider is interested in promoting all the
places of interest in a tourist area, not just the most popular ones. This could
be difficult without an RS since the service provider cannot afford the risk of
advertising places that are not likely to suit a particular user’s taste. Therefore,
an RS suggests or advertises unpopular places to the right users.

• Increase the user satisfaction. A well designed RS can also improve the
experience of the user with the site or the application. The user will find the
recommendations interesting, relevant and, with a properly designed human-
computer interaction, he or she will also enjoy using the system. The combination
of effective, accurate recommendations and a usable interface will increase the
user’s subjective evaluation of the system. This, in turn, will increase system
usage and the likelihood that the recommendations will be accepted.

• Increase user fidelity. A user should be loyal to a website which, when visited,
recognizes the old customer and treats him as a valued visitor. This is a standard
feature of an RS since many RSs compute recommendations, thus leveraging
the information acquired from the user during previous interactions such as
the user’s ratings of items. Consequently, the longer the user interacts with the
site, the more refined the user’s model becomes: the system’s representation of
the user’s preferences develops and the effectiveness of the recommender output
to customize and match to the user’s preferences is increased.

1This issue, convincing the user to accept a recommendation, is discussed again when we explain
the difference between predicting the user interest in an item and the likelihood that the user will
select the recommended item.
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• Better understanding of what the user wants. Another important function of
an RS which can be leveraged to many other applications is the description
of the user’s preferences, which are collected either explicitly or predicted by
the system. The service provider may then decide to reuse this knowledge for
a number of other goals, such as improving the management of the item’s
stock or production. For instance, in the travel domain, destination management
organizations can decide to advertise a specific region to new customer sectors or
advertise a particular type of promotional message derived by analyzing the data
collected by the RS (transactions of the users).

We mentioned above some important motivations as to why e-service providers
introduce RSs. But users also may want an RS if it will effectively support their
tasks or goals. Consequently an RS must balance the needs of these two players and
offer a service that is valuable to both.

Herlocker et al. [26], in a paper that has become a classical reference in this
field, define eleven popular tasks that an RS can assist in implementing. Some may
be considered as the main or core tasks that are normally associated with an RS,
such as offering suggestions for items that may be useful to a user. Others might be
considered as more “opportunistic” ways to exploit an RS. As a matter of fact, this
task differentiation is very similar to what happens with a search engine. Its primary
function is to locate documents that are relevant to the user’s information need, but
it can also be used to check the importance of a webpage (looking at the position of
the page in the result list of a query) or to discover the various usages of a word in a
collection of documents.

• Find Some Good Items: Recommend to a user some items as a ranked list along
with predictions of how much the user would like them (e.g., on a scale of one-to-
five stars). This is the main recommendation task that many commercial systems
address (see, for instance, Chap. 11). Some systems do not show the predicted
rating.

• Find all good items: Recommend all the items that can satisfy some user needs.
In such cases it is insufficient to just find some good items. This is especially true
when the number of items is relatively small or when the RS is mission-critical,
such as in medical or financial applications. In these situations, in addition to the
benefit derived from carefully examining all the possibilities, the user may also
benefit from the RS ranking of these items or from additional explanations that
the RS generates.

• Annotation in context: Given an existing context, e.g., a list of items, emphasize
some of them depending on the user’s long-term preferences. For example,
a TV recommender system might annotate which TV shows displayed in
the electronic program guide (EPG) are worth watching (Chap. 15 provides
interesting examples of this task).

• Recommend a sequence: Instead of focusing on the generation of a single
recommendation, the idea is to recommend a sequence of items that is pleasing
as a whole. Typical examples include recommending a TV series, a book on RSs
after having recommended a book on data mining, or a compilation of musical
tracks [28].
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• Recommend a bundle: Suggest a group of items that fits well together. For
instance, a travel plan may be composed of various attractions, destinations, and
accommodation services that are located in a delimited area. From the point of
view of the user, these various alternatives can be considered and selected as a
single travel destination [45].

• Just browsing: In this task, the user browses the catalog without any imminent
intention of purchasing an item. The task of the recommender is to help the user
to browse the items that are more likely to fall within the scope of the user’s
interests for that specific browsing session. This is a task that has also been
supported by adaptive hypermedia techniques [16].

• Find credible recommender: Some users do not trust recommender systems, thus
they play with them to see how good they are at making recommendations.
Hence, a certain system may also offer specific functions to let the users test
its behavior in addition to those just required for obtaining recommendations.

• Improve the profile: This relates to the capability of the user to provide (input)
information to the recommender system about what he or she likes and dislikes.
This is a fundamental task that is strictly necessary to provide personalized
recommendations. If the system has no specific knowledge about the active user,
then it can only provide the same recommendations that would be delivered to an
“average” user.

• Express self: Some users may not care about the recommendations at all. Rather,
what is important to them is that they be allowed to contribute with their ratings
and express their opinions and beliefs. The user satisfaction for that activity can
still act as leverage, resulting in the user’s continued loyalty to the application
(as we mentioned prior, in discussing the service provider’s motivations).

• Help others: Some users are happy to contribute with information, e.g., their
evaluation of items (ratings), because they believe that the community benefits
from their contribution. This could be a major motivation for entering informa-
tion into a recommender system that is not used routinely. For instance, with an
automobile RS, a user who has already purchased a new car is aware that the
rating entered in the system is more likely to be useful to other users rather than
to oneself, the next time a new-car-purchase is contemplated.

• Influence others: In Web-based RSs, there are users whose main goal is to
explicitly influence other users into purchasing particular products. As a matter
of fact, there are also malicious users that may use the system simply to promote
or penalize certain items (see Chap. 28).

As these various points indicate, the role of an RS within an information system
can be quite diverse. This diversity calls for the exploitation of a range of different
knowledge sources and techniques. In the next two sections, we discuss the data that
an RS manages and the core technique used to identify the right recommendations.
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1.3 Data and Knowledge Sources

RSs are information processing systems that actively gather various kinds of data
in order to build their recommendations. Data is primarily about the items to
suggest and the users who will receive these recommendations. But, since the data
and knowledge sources available for recommender systems can be very diverse,
ultimately, whether it can be exploited or not depends on the recommendation
technique (see also Sect. 1.4). This will become clearer in the various chapters
included in this handbook.

In general, there are recommendation techniques that are knowledge-poor,
namely, that use very simple and basic data, such as user ratings or evaluations for
items (Chaps. 2 and 3). Other techniques are much more knowledge-dependent, in
that they use ontological descriptions of the users or the items (Chap. 4), constraints
(Chap. 5), or social relations and activities of the users (Chaps. 15 and 17). In any
case, as a general classification, data used by RSs refers to three kinds of objects:
items, users, and transactions, that is, relations between the users and the items.

Items Items are the objects that are recommended. Items may be characterized by
their complexity and their value or utility. The value of an item may be positive if
the item is useful to the user, or negative if the item is not appropriate and the user
made the wrong decision when selecting it. We note that when a user is acquiring an
item, one will always incur in a cost which includes the cognitive cost of searching
for the item and the real monetary cost eventually paid for the item.

For instance, the designer of a news RS must take into account the complexity
of a news item, i.e., its structure, the textual representation, and the time-dependent
importance of any news item. But at the same time, the RS designer must understand
that even if the user is not paying for reading news, there is always a cognitive cost
associated with searching and reading news items. If a selected item is relevant to
the user, this cost is dominated by the benefit of having acquired useful information.
Whereas if the item is not relevant, the net value of that item for the user, and its
recommendation, is negative. In other domains, e.g., cars, or financial investments,
the true monetary cost of the items becomes an important element to consider when
selecting the most appropriate recommendation approach.

Items with low complexity and value are: news, webpages, books, CDs, and
movies. Items with larger complexity and value are: digital cameras, mobile phones,
PCs, etc. The most complex items that have been considered are insurance policies,
financial investments, travel, and jobs [39].

RSs, according to their core technology, can use a range of properties and features
of the items. For example in a movie recommender system, the genre (comedy,
thriller, etc.), as well as the director and actors, can be used to describe a movie and
to learn how the utility of an item depends on its features. Items can be represented
using various information and representation approaches, e.g., in a minimalist way
as a single ID code, or in a richer form, as a set of attributes, and even as a concept
in an ontological representation of the domain (Chap. 4).
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Users Users of an RS, as mentioned above, may have very diverse goals and
characteristics. In order to personalize the recommendations and the human-
computer interaction, RSs exploit a range of information about the users. This
information can be structured in various ways, and again, the selection of what
information to model depends on the recommendation technique.

For instance, in collaborative filtering, users are modeled as a simple list
containing the ratings provided by the user for certain items. In a demographic
RS, sociodemographic attributes such as age, gender, profession, and education,
are used. User data is said to constitute the user model [12, 22]. The user model
profiles the user, i.e., encodes her preferences and needs. Various user modeling
approaches have been used and, in a certain sense, an RS can be viewed as a tool that
generates recommendations by building and exploiting user models [10, 11]. Since
no personalization is possible without a convenient user model the user model will
always play a central role. For instance, in reconsidering a collaborative filtering
approach, the user is either profiled directly by its ratings of items or, using these
ratings, the system derives a vector of factor values where users differ in how each
factor weights in their model (Chaps. 2 and 3).

Users can also be described by their behavior pattern data, for example, site
browsing patterns (in a Web-based recommender system) [54], or travel search
patterns (in a travel recommender system) [35]. Moreover, user data may include
relations between users such as the trust level of these relations between users
(Chap. 16). An RS might utilize this information to recommend items to users that
were preferred by similar or trusted users.

Transactions We generically refer to a transaction as a recorded interaction
between a user and the RS. Transactions are log-like data that store important
information generated during the human-computer interaction and which are useful
for the recommendation generation algorithm that the system is using. For instance,
a transaction log may contain a reference to the item selected by the user and a
description of the context (e.g., the user goal/query) for that particular recommen-
dation. If available, that transaction may also include explicit feedback that the user
has provided, such as the rating for the selected item.

In fact, ratings are the most popular form of transaction data that an RS collects.
These ratings may be collected explicitly or implicitly. In the explicit collection of
ratings, the user is asked to provide an opinion about an item on a rating scale.
According to [47], ratings can take on a variety of forms:

• Numerical ratings such as the 1–5 stars provided in the book recommender
associated with Amazon.com.

• Ordinal ratings, such as “strongly agree, agree, neutral, disagree, strongly
disagree” where the user is asked to select the term that best indicates his or
her opinion regarding an item (usually via questionnaire).

• Binary ratings that model choices in which the user is simply asked to decide if
a certain item is good or bad.
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• Unary ratings can indicate that a user has observed or purchased an item, or
otherwise rated the item positively. In such cases, the absence of a rating indicates
that we have no information relating the user to the item (perhaps the user
purchased the item elsewhere).

Another form of user evaluation consists of tags associated by the user with the
items that the system presents. For instance, on Movielens (http://movielens.umn.
edu), RS tags represent how MovieLens users feel about a movie, e.g.: “too long,”
or “acting.”

In transactions that collect implicit ratings, the system aims to infer the user’s
opinion based on the user’s actions. For example, if a user enters the keyword
“Yoga” at Amazon.com, a long list of books will be provided. In return, the user
may click on a certain book on the list in order to receive additional information.
At this point, the system may infer that the user is somewhat interested in that book.

In conversational systems, i.e., systems that support an interactive process,
the transaction model is more refined. In these systems, user requests alternate
with system actions (see Chaps. 10 and 18). That is, the user may request a
recommendation and the system may produce a suggestion list. But it can also
request additional user preferences to provide the user with better, more refined
results. Here, in the transaction model, the system collects the various requests-
responses, and may eventually learn to modify its interaction strategy by observing
the outcome of the recommendation process [35].

1.4 Recommendation Techniques

In order to implement its core function, identifying useful items for the user, a RS
must predict that an item is worth recommending. In order to do this, the system
must be able to predict the utility of some items, or at least compare the utility of
some items, and then decide which items to recommend based on this comparison.
The prediction step may not be explicit in the recommendation algorithm but we
can still apply this unifying model to describe the general role of an RS. Here, our
goal is to provide the reader with a unifying perspective rather than an account of all
the different recommendation approaches that will be illustrated in this handbook.

To illustrate the prediction step of an RS, consider for instance, a simple and non-
personalized recommendation algorithm that recommends only the most popular
songs. The rationale for using this approach is that in the absence of more precise
information about the user’s preferences, a popular song, i.e., one that is liked (high
utility) by many users, will also most-likely appeal to a generic user, or at least
with a higher likelihood than another randomly selected song. Hence, the utility of
such popular songs is predicted to be reasonably high for this generic user.

This view of the core recommendation computation as the prediction of the utility
of an item for a user has been suggested in [2] and recently updated in [44]. Both
papers model this degree of utility of the user u for the item i as a (real valued)

http://movielens.umn.edu
http://movielens.umn.edu
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function R.u; i/, as is normally done in collaborative filtering by considering the
ratings of users for items. Then, the fundamental task of a collaborative filtering
RS is to predict the value of R over pairs of users and items, or in other words, to
compute OR.u; i/, where we denote with OR the estimation, computed by the RS, of
the true function R. Consequently, having computed this prediction for the active
user u on a set of items, i.e., OR.u; i1/; : : : ; OR.u; iN/, the system will recommend the
items ij1 ; : : : ; ijK (K � N) with the largest predicted utility. K is typically a small
number, that is, much smaller than the cardinality of the item data set or the items
on which a user utility prediction can be computed, i.e., RSs “filter” the items that
are recommended to users.

As mentioned above, some recommender systems do not fully estimate the
utility before making a recommendation, but they may apply some heuristics to
hypothesize that an item may be of use to a user. This is typical, for instance,
in knowledge-based systems. These utility predictions are computed with specific
algorithms (see below) and use various kinds of knowledge about users, items, and
the utility function itself (see Sect. 1.3) [17]. For instance, the system may assume
that the utility function is Boolean and therefore it will just determine whether an
item is or is not useful for the user. Consequently, assuming that there is some
available knowledge, or possibly none, about the user who is requesting the rec-
ommendation, as well as knowledge about items, and other users who received
recommendations, the system will leverage this knowledge with an appropriate
algorithm to generate various utility predictions and hence recommendations [17].

It is also important to note that sometimes the user utility for an item is observed
to depend on other variables, which we generically call “contextual” [44]. For
instance, the utility of an item for a user can be influenced by the domain knowledge
of the user (e.g., expert versus beginning users of a digital camera), or can depend
on the time when the recommendation is requested. Equally, users may be more
interested in items (e.g., restaurant) closer to their current location. Consequently,
the recommendations must be adapted to these specific additional details and as
a result it becomes increasingly more difficult to correctly estimate what the right
recommendations are.

This handbook presents several different types of recommender systems that
vary in terms of the addressed domain and the knowledge used, but especially with
regard to the recommendation algorithm, i.e., how the prediction of the utility of a
recommendation is made, as was mentioned at the beginning of this section. Other
differences relate to how the recommendations are finally assembled and presented
to the user in response to user requests. These aspects are discussed as well, later in
this introduction.

To provide an initial overview of the different types of RSs, we want to quote a
taxonomy provided by Burke [17] that has become a classical way of distinguishing
between recommender systems and referring to them. Burke [17] distinguishes
between six different classes of recommendation approaches:

Content-Based The system learns to recommend items that are similar to the ones
that the user liked in the past. The similarity of items is calculated based on the
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features associated with the compared items. For example, if a user has positively
rated a movie that belongs to the comedy genre, then the system can learn to
recommend other movies from this genre [33].

Classic content-based recommendation techniques aim at matching the attributes
of the user profile against the attributes of the items. In most cases, the items’
attributes are simply keywords that are extracted from the items’ descriptions.
Semantic indexing techniques represent the item and user profiles using concepts
instead of keywords. Chapter 4 presents a comprehensive survey of semantic
indexing techniques to overcome the main problems of classical keyword-based
systems. The authors presents two main groups of semantic indexing techniques:
top-down and bottom-up. Techniques in the former group rely on the integration
of external knowledge sources, such as: ontologies, encyclopedic knowledge (such
as Wikipedia) and data from the Linked Data cloud, while techniques in the
latter group rely on a lightweight semantic representation based on the hypothesis
that the meaning of words depends on their usage in large corpora of textual
documents. Chapter 4 demonstrates how to utilize semantic approaches to realize
a new generation of semantic content-based recommender systems, by providing a
description of their main potentials and limitations.

Collaborative Filtering The original and most simple implementation of this
approach [24] makes recommendations to the active user based on items that other
users with similar tastes liked in the past. The similarity in taste of two users is
calculated based on the similarity in the rating history of the users. This is the
reason why [48] refers to collaborative filtering as “people-to-people correlation.”
Collaborative filtering is considered to be the most popular and widely implemented
technique in RS.

Chapter 2 presents a comprehensive survey of neighborhood-based methods
for collaborative filtering. Neighborhood-based methods focus on relationships
between items or, alternatively, between users. An item-item approach models the
preference of a user to an item based on ratings of similar items by the same
user. Neighborhood-based methods benefit from considerable popularity due to their
simplicity, efficiency, and ability to produce accurate and personalized recommen-
dations. Chapter 2 describes the main benefits of such methods, as well as their
principal characteristics.

Moreover, Chap. 2 addresses the essential decisions that are required while
implementing a neighborhood-based recommender system, and gives practical
information on how to make such decisions. Perhaps the decision that has the
greatest impact on the rating prediction and computational performance of the
recommender system is the choice between a user-based and an item-based method.
In typical commercial recommender systems where the number of users exceeds
the number of available items, item-based approaches should be preferred since
they provide more accurate recommendations, while being more computationally
efficient and requiring less frequent updates. On the other hand, user-based methods
usually provide more original recommendations, which may lead users to a more
satisfying experience [21].



1 Recommender Systems: Introduction and Challenges 13

Finally, the problems of sparsity and limited coverage, often observed in
large commercial recommender systems, are discussed by exploring two research
directions: dimensionality reduction and graph-based techniques. Dimensionality
reduction provides a compact representation of users and items that captures their
most significant features. An advantage of such an approach is that it allows for
obtaining meaningful relations between pairs of users or items, even though these
users have rated different items, or these items were rated by different users. On the
other hand, graph-based techniques exploit the transitive relations in the data. These
techniques also avoid the problems of sparsity and limited coverage by evaluating
the relationship between users or items that are not directly connected. However,
unlike dimensionality reduction, graph-based methods also preserve some of the
“local” relations in the data.

Chapter 3 presents several recent extensions available for building CF recom-
menders. Specifically, the authors discuss latent factor models, such as matrix
factorization (e.g., Singular Value Decomposition (SVD)). These methods transform
both items and users to the same latent factor space. The latent space is then
used to explain ratings by characterizing both products and users in term of
factors automatically inferred from user feedback. The authors elucidate how
SVD can handle additional features of the data, including implicit feedback and
temporal information. They also describe techniques to address shortcomings of
neighborhood techniques by suggesting more rigorous formulations using global
optimization techniques. Utilizing such techniques makes it possible to lift the limit
on neighborhood size and to address implicit feedback and temporal dynamics. The
resulting accuracy is close to that of matrix factorization models, while offering a
number of practical advantages.

Demographic This type of system recommends items based on the demographic
profile of the user [13]. The assumption is that different recommendations should
be generated for different demographic niches. Many websites adopt simple and
effective personalization solutions based on demographics. For example, users are
dispatched to particular websites based on their language or country. Or, suggestions
may be customized according to the age of the user. While these approaches have
been quite popular in the marketing literature, there has been relatively little proper
RS research on demographic systems.

Knowledge-Based Knowledge-based systems recommend items based on specific
domain knowledge about how certain item features meet users’ needs and prefer-
ences and, ultimately, how the item is useful for the user. Notable knowledge-based
recommender systems are case-based [15, 19, 45]. In these systems, a similarity
function estimates how much the user’s needs (problem description) match the
recommendations (solutions of the problem). Here, the similarity score can be
directly interpreted as the utility of the recommendation for the user. Knowledge-
based systems tend to work better than others at the beginning of their deployment
but if they are not equipped with learning components, they may be surpassed by
other shallow methods that can exploit the logs of the human/computer interaction
(as in CF).
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Constraint-based systems are another type of knowledge-based RS (Chap. 5). In
terms of used knowledge, both systems are similar: user requirements are collected,
repairs for inconsistent requirements are automatically proposed in situations where
no solutions could be found, and recommendation results are explained. The major
difference lies in the way solutions are calculated. Case-based recommenders deter-
mine recommendations on the basis of similarity metrics whereas constraint-based
recommenders predominantly exploit predefined knowledge bases that contain
explicit rules about how to relate customer requirements with item features.

Chapter 5 reviews constraint-based recommendation approaches and provide an
overview of technologies for the development of knowledge bases for constraint-
based recommenders since appropriate tool support can be crucial in practical
settings. The authors show that constraint-based methods are particularly well
suited for recommending complex products such as financial services or electronic
consumer goods.

Moreover, Chap. 5 presents possible forms of user interaction that are supported
by constraint-based recommender applications, report scenarios in which constraint-
based recommenders have been successfully applied, and review different technical
solution approaches.

Community-Based This type of system recommends items based on the prefer-
ences of the user’s friends. This technique follows the epigram, “Tell me who your
friends are, and I will tell you who you are” [4, 9]. Evidence suggests that people
tend to rely more on recommendations from their friends than on recommendations
from similar but anonymous individuals [52]. This observation, combined with
the growing popularity of open social networks, is generating a rising interest in
community-based systems or, as they are usually referred, social recommender
systems [23]. This type of RS models and acquires information about the social
relations of the users and the preferences of the user’s friends. The recommendation
is based on ratings that were provided by the user’s friends. In fact these RSs
are following the rise of social-networks and enable a simple and comprehensive
acquisition of data related to the social relations of the users.

Hybrid Recommender Systems These RSs are based on the combination of the
above mentioned techniques. A hybrid system combining techniques A and B tries
to use the advantages of A to fix the disadvantages of B. For instance, CF methods
suffer from new-item problems, or, that they cannot recommend items that have no
ratings. This does not limit content-based approaches since the prediction for new
items is based on their description (features) that are typically easily available. Given
two (or more) basic RSs techniques, several ways have been proposed for combining
them to create a new hybrid system (see [17] for the precise descriptions).

As we have already mentioned, the context of the user when he or she is seeking
a recommendation can be used to better personalize the output of the system. For
example, in a temporal context, vacation recommendations in winter should be very
different from those provided in summer [8]. Or a restaurant recommendation for
a Saturday evening with one’s friends should be different from that suggested for a
workday lunch with co-workers.



1 Recommender Systems: Introduction and Challenges 15

Chapter 6 reviews the topic of context-aware recommender systems (CARS).
It presents the general notion of context and how it can be modeled in RSs. As
it discusses the possibilities of combining several context-aware recommendation
techniques into a single unified approach, the authors also provide a case study of
one such combined approach.

Three popular different algorithmic paradigms for incorporating contextual
information into the recommendation process are discussed: reduction-based
(prefiltering), contextual post filtering, and context modeling. In reduction-
based (prefiltering) methods, only the information that matches the current usage
context, e.g., the ratings for items evaluated in the same context, are used to compute
the recommendations. In contextual post filtering, the recommendation algorithm
ignores the context information. The output of the algorithm is filtered/adjusted
to include only the recommendations that are relevant in the target context. In the
contextual modeling, the more sophisticated of the three approaches, context data
is explicitly used in the prediction model.

Recommendation tasks can be solved with the help of techniques that were devel-
oped in the field of Data Mining. Chapter 7, presents an overview of the main Data
Mining techniques used in the context of Recommender Systems and presents cases
where these techniques have been successfully applied. In particular, it discusses the
following techniques: preprocessing techniques such as sampling or dimensionality
reduction; classification techniques, such as Bayesian Networks, Decision Trees
and Support Vector Machines; clustering techniques such as k-means; and finally
association rules.

1.5 Recommender Systems Evaluation

Recommender systems research is being conducted with a strong emphasis on
practice and commercial applications. One very important issue related to the
practical side of RS deployment is the necessity of evaluating the quality and
value of the systems. Evaluation is required at different stages of the system’s life
cycle and for various purposes [1, 26]. At design time, evaluation is required to
verify the selection of the appropriate recommender approach. In the design phase,
evaluation should be implemented off-line and the recommendation algorithms, i.e.,
their computed recommendations, are compared with the stored user interactions.
An off-line evaluation consists of running several algorithms on the same datasets
of user interactions (e.g., ratings) and comparing their performances. This type of
evaluation is usually conducted on existing public benchmark data if appropriate
data is available, or, otherwise, on collected data. The design of the off-line
experiments should follow known experiment design practices [6] in order to
ensure reliable results. Off-line experiments can measure the quality of the chosen
algorithm in fulfilling its recommendation task. However, such evaluation cannot
provide any insight about the user satisfaction, acceptance or experience with the
system. The algorithms might be very accurate in solving the core recommendation
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problem, i.e., predicting user ratings, but for some other reason the system may not
be accepted by users, for example, because the performance of the system was not
as expected.

Therefore, a user-centric evaluation is also required. It can be performed online
after the system has been launched, or as a focused user study. During on-line
evaluation, real users interact with the system without being aware of the full
nature of the experiment running in the background. It is possible to run various
versions of the algorithms on different groups of users for comparison and analysis
of the system logs in order to enhance system performance. In addition, most of the
algorithms include parameters, such as weight thresholds, the number of neighbors,
etc., requiring constant adjustment and calibration.

Focused user studies are conducted when the on-line evaluation is not feasible
or too risky. In this type of evaluation, a controlled experiment is planned where a
small group of users are asked to perform different tasks with various versions of
the system. It is then possible to analyze the user’s performance and to distribute
questionnaires so that users may report on their experience. In such experiments, it
is possible to collect both quantitative and qualitative information about the systems.

In recent years there has been an increased interest in user-centric evaluation
procedures and metric for recommender systems. Researchers realized that recom-
mender systems’ goals extend beyond the accuracy of the algorithms [30] as tools to
provide a helpful and enjoyable, personalized experience that leads to user retention
and satisfaction. This approach broadened the range of evaluated aspects of an RS
to include aspects such as the form of preference elicitation, the presentation of the
recommended results (e.g., one top item, top N items, or predicted ratings), and
finally, the evaluation of the explanations provided to the users. Explanations may
serve a few goals: the most popular is the justification of results, i.e., explaining
to the user why the system decided to recommend a specific item. Other goals
may include increasing trust in the system, persuading the user to purchase the
recommended item, and helping a user with their decision making. When designing
the evaluation of the recommendation explanation, it is important to identify the
goal of the explanation and adjust a suitable metric for measuring it.

Chapter 8 details the three previously mentioned types of experiments that can be
conducted in order to evaluate recommender systems, namely, off-line, on-line and
user studies. It presents their advantages and disadvantages, and defines guidelines
for choosing the methods for evaluating them by considering the properties that
are to be evaluated. Unlike existing discussions of evaluation in the literature that
usually focuses mainly on the accuracy of an algorithm’s prediction [26] and related
measures, this chapter is unique in its approach to the evaluation discussion since
it focuses on property-directed evaluation. It provides a large set of properties
(other than accuracy) that are relevant to the system’s success. For each of the
properties, the appropriate type of experiment and relevant measures are suggested.
Among the list of properties are: coverage, cold start, confidence, trust, novelty,
risk, and serendipity. The chapter describes the difficulties and pitfalls of each of
the properties and guidelines for the selection of the suitable evaluation type and
properties for a given recommendation task ad system.
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Chapter 9 highlights the importance of user-centric evaluation. It provides
detailed and practical guidelines of how to conduct user-centric experiments in
order to evaluate the user’s experience with the system. The chapter first presents
a theoretical user-centric evaluation framework [29] that maps aspects of recom-
mender systems and their interaction with the users that should be evaluated. Then,
it provides practical guidelines for students and researchers for conducting user
experiments. It presents tips for stating hypotheses, recruiting participants, design of
the experiments and statistical analysis of the results. Finally, the chapter provides
many examples of actual systems’ evaluations from the relevant literature.

Chapter 10 tackles an additional aspect of the user-centric approach to evaluation
and highlights an important aspect of RS: explanations of the recommendation
results to the users. It examines the reasons that make an evaluation “good” and the
effects that explanations might have on RS acceptance. The chapter first explains
the interaction between the recommender system and the explanation in terms
of preference elicitation methods and the presentation of results, as well as the
recommendation algorithm. Then, explanation styles are described, along with
examples of explanation in existing systems. The goals of explanations are listed
from which metrics that measure the success of explanations in achieving these
goals are described. The chapter concludes with challenges related to explanations.
This includes the context in which explanations should be shown, and a major
challenge in evaluating the interaction between acceptance of recommendation and
explanations, as well as how to assure that explanations are indeed helpful and do
not lead users to make poor decisions.

1.6 Recommender Systems Applications

Recommender systems research, aside from its theoretical contribution, is generally
aimed at practically improving industrial RSs and involves research about various
practical aspects that apply to the implementation of the systems. Indeed, an RS is
an example of large scale usage of machine learning and data mining algorithms in
commercial practice [3]. The common interest in the field, both from the research
community and from the industry has leveraged the availability of data for research
on one hand, and the evolvement of enhanced algorithms on the other hand. Practical
related research in RSs examines aspects that are relevant to different stages in
the life cycle of an RS, namely, the design of the system, its implementation,
evaluation, maintenance and enhancement during system operation. The Netflix
Prize announced in 2006, described in Chap. 11, was an important event for
the recommender systems research community and industry, and their mutual
interaction. It highlighted the importance of the recommendation of items to
users and accelerated the development of many new data mining recommendation
techniques. Even though the Netflix Prize initiated a lot of research activities, the
prize was a simplification of the full recommendation problem. It consisted of
predicting user’s ratings while optimizing the Root Mean Square Error (RMSE)
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between the predicted and actual ratings. Chapter 11 describes lessons learned from
the prize awarded in 2009 and provides insights about industrial setting of RSs
using the Netflix system as a case study for real-world recommender systems. In
addition, the chapter provides the industry perspective about RSs implementation
issues that deserve attention while developing a real-world RS. It describes the
data centric approach used at Netflix for selecting the best model for a problem
in order to provide an optimized personalized experience to the user. In addition,
the chapter highlights the need for a suitable scalable system architecture that can
support the development and evaluation process of innovative algorithms and deliver
recommendations based on large volumes of available data.

The first factor to consider while designing an RS is the application’s domain as
it has a major effect on the algorithmic approach that should be taken. Montaner
et al. [39] provide a taxonomy of RSs and classify existing RS applications to
specific application domains. Based on these specific application domains, we
define more general classes of domains for the most common recommender systems
applications:

• Entertainment—recommendations for movies, music, games, and IPTV.
• Content—personalized newspapers, recommendation for documents, recommen-

dations of webpages, e-learning applications, and e-mail filters.
• E-commerce—recommendations of products to buy such as books, cameras, PCs

etc. for consumers.
• Services—recommendations of travel services, recommendation of experts for

consultation, recommendation of houses to rent, or matchmaking services.
• Social—recommendation of people in social networks, and recommendations of

content social media content such as tweets, Facebook feeds, LinkedIn updates,
and others.

As recommender systems become more popular, interest is roused in the potential
advantages of new and diverse applications, such as recommending insurance
riders, or recommending questions for question-answering systems. As the above
list cannot cover all the application domains that are now being addressed by RS
techniques: it gives only an initial description of the various types of application
domains.

The developer of an RS for a certain application domain should understand
the specific facets of the domain, its requirements, application challenges and
limitations. Only after analyzing these factors can one be able to select the optimal
recommender algorithm and to design an effective human-computer interaction. In
the current version of the handbook, some of the chapters in this section describe
applications of recommender systems in specific domains. Each of these chapters
describes the requirements of an RS for a specific domain, its precise challenges
and the suitable technologies and algorithms for addressing them.

One detailed example of an RS designed for a specific domain is described in
Chap. 12, which deals with recommender systems for technology-enhanced learning
(TEL). TEL, which generally covers technologies that support all forms of teaching
and learning activities, aims at designing, developing and testing new methods and
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technologies to enhance learning practices of both individuals and organizations.
As the digital way of education and learning is becoming more popular, the need to
integrate the personalization of content into the learning process and the available
data for assessing the quality of the algorithms has created opportunities for the
rise of the popularity of TEL RSs. Since TEL may benefit greatly from integrating
recommender systems technology to personalize the learning process and adjust it
to the user’s former knowledge, abilities and preferences [55], there is a significant
increase in RSs applied to TEL. The chapter presents an extensive survey of RSs for
TEL covering 82 systems from 35 countries categorizing them using a classification
framework consisting of three main categories, namely: Supported Tasks, Approach,
and Operation. An analysis of the 82 systems using the framework resulted in seven
clusters of TEL RSs, where each cluster represents a unique form of contribution to
the field. The chapter aims at providing an overview about the TEL RS field in order
to standardize evaluation settings and measures, as well as providing guidelines for
the application of RS technology to TEL.

Yet another popular domain for recommendation is the recommendation of
music, presented in Chap. 13. Unique features of music items that pose various
challenges for recommendations should be considered when designing and eval-
uating RSs for music. Such challenges include, for example, the short time that
it takes a user to gain an opinion about a recommended item, as compared to a
movie or a book, or the fact that the same item can be recommended many times.
In addition, music can be recommended as a single item, a playlist, and abstracted
by genre, performer, or band. Music RSs, as opposed to many other domains, rely
heavily on content-based recommendation which implies specific challenges to the
domain [37].

Some new application domains for recommendation evolved with the emergence
of new technologies that became very popular. One example, detailed in Chap. 14, is
the evolution of mobile technology that accelerated the development of specific RSs
for mobile devices utilizing the special capabilities of the devices (e.g., the GPS).
Chapter 14 reviews the main components of a location based mobile recommender
system. While there are various application domains of mobile context aware RSs
(as described in Chap. 6) that may benefit from mobile sensors in order to enrich
their users’ profiles, Chap. 14 highlights mobile location-based recommendations.
Such RS applications recommend places and venues based on the user’s location and
history of behaviors and preferences. The chapter describes the algorithms that have
been applied to recommending venues, and the evaluation procedures for assessing
the quality of the recommendations. Looking into the future, the authors suggest
additional location based applications such as recommendations for cab drivers on
pick-up locations, or recommending where to locate a retail store.

Another example of new RSs that emerged with new technologies are recom-
mender systems related to the social web, and specifically those that target the
social media domain. With the rise of social networks (e.g., Facebook, LinkedIn,
Tweeter, Flickr, and others), users are overloaded with information, activities and
interactions. Social recommender systems are RSs that aim at assisting the user
in identifying relevant content (e.g., tweets, feeds or images), and engage only in
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relevant activities and interactions (e.g., discussions, or comments). Apart from
the RSs that have been developed to be dedicated to social media, recommender
systems of other domains can benefit from the new types of data that social media
introduces about users to enhance the quality of standard RSs [23]. The term Social
RS covers many types of RSs that are relevant to the social media platform in which
Chap. 15 describes two main types: recommendations of social media content and
recommendations of people. For recommendations of social content, the chapter
reviews various social content media domains, and provides a detailed case study
and insights learned from a recommender system operated in the enterprise which
suggests mixed social media items. The chapter lists three different types of people
recommendations, namely, the recommendation of familiar people (e.g., classmates,
family members) that are not connected in the network; recommendations of
interesting people (to connect with, or follow), and recommendations of strangers
(to date, to hire, or for various other purposes). It explains the complexity of people-
recommendation and lists key topics that should be considered and should be further
investigated. The list includes: the need for explanation, privacy concerns, social
relationships, trust and reputation, as well as the need to define special evaluation
measures.

Chapter 16 highlights a special form of social recommendations, the recip-
rocal people-to-people recommendations that require the two parties involved
in a recommendation to be satisfied. Some examples are: dating recommenda-
tions, Human Resource recommendations (recommendations of employees and
employers), and recommending groupings of students for learning groups. Besides
the unique reciprocal manner of satisfaction that is required from both parties, the
chapter highlights other differences between traditional and reciprocal recommen-
dations, including the users’ willingness to provide explicit feedback, the fact that
users are usually engaged with the system for a long term, and the requirement not
to overload users with recommendations.

Within the chapter, the authors provide an overview regarding existing reciprocal
recommender systems and demonstrate how the special requirements of reciprocity
are considered in system design. A detailed case study, specifically in online dating
recommendation, is presented and includes the recommendation hybrid content-
collaborative algorithm and its evaluation. One interesting insight shown is that
implicit feedback is more effective than explicit for these types of systems.

The social Web is also exploited by modern search engines that rely on
recommendation techniques to address Web search challenges and to implement
advanced search features. Specifically, various engines attempt to apply some form
of personalization and collaboration by generating results to a user query that are
not only relevant to the query terms but are also tailored to the user’s search history,
reputation, and preferences as inferred from the user’s own previous activities on
the social Web.

Chapter 17 discusses the research goals of Information Retrieval (IR) and
personalized Web search from the RS perspective. The authors illustrate how
techniques that originated in recent RS research may be applied to address search
engine challenges. This chapter focuses on two promising ideas for search engine
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improvement: personalization and collaboration. It describes a number of different
approaches to personalizing Web searches by exploiting user preferences and
context information to affect search results. In addition, the chapter discusses recent
work in the area of collaborative information retrieval, which attempts to take
advantage of the potential for cooperation between friends, colleagues or users with
similar needs in implementing a variety of information-seeking tasks. This new line
of research, termed social search, benefits from the social medium property of the
Web in providing search results that are affected by the experience and preferences
of similar users. The authors foresee a convergence of recommender systems and
search engines, where a search engine will provide a unique platform for modern
recommendation technologies. The authors believe that integrating these sources
in search engine algorithms, along with a proactive manner of search experience
that strives to understand the users’ needs, would result in highly satisfied users
that are able to receive the right information at the right time. Another trend that
is affecting search engines is the rise of search activities through mobile devices.
This introduces new constraints to search and discovery interfaces, but also brings
about opportunities for innovations using the mobile sensors that allow enhanced
personalization.

1.7 Recommender Systems and Human Computer
Interaction

As we have illustrated in the previous sections, researchers have been chiefly
concerned with designing a range of technical solutions and leveraging various
sources of knowledge to achieve better predictions about what is liked and how
much it is liked by the target user. The underlying assumption behind this research
activity is that simply presenting these correct recommendations, or the best options,
is not sufficient. In other words, the recommendations should speak for themselves,
and the user should definitely accept the recommendations if they are correct. This
is clearly an overly simplified account of the recommendation problem and the
delivery of recommendations is not so straightforward.

In practice, users need recommendations because they do not have enough
knowledge to make an autonomous decision. Consequently, it may not be easy for
them to evaluate the proposed recommendation. Hence, various researchers have
tried to understand the factors that lead to the acceptance of a recommendation by a
given user [5, 20, 25, 38, 50, 53].

Swearingen and Sinha [53] were among the first to point out that the effectiveness
of an RS is dependent on factors that go beyond the quality of the prediction
algorithm. In fact, the recommender must also convince users to try (or read, buy,
listen, watch, etc.) the recommended items. This, of course, depends on the indi-
vidual characteristics of the selected items, and therefore on the recommendation
algorithm. The process also depends, however, on the particular human/computer
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interaction supported by the system when the items are presented, compared, and
explained. Swearingen and Sinha [53] found that from a user’s perspective, an
effective recommender system must inspire trust in the system and it must have a
system logic that is at least somewhat transparent. Additionally, the authors note that
it should point users towards new, not-yet-experienced items, and should provide
details about recommended items, including pictures and community ratings, and
finally, it should present ways to refine recommendations.

Swearingen and Sinha [53] and other similarly oriented researchers do not dimin-
ish the importance of the recommendation algorithm, but claim that its effectiveness
should not be evaluated only in terms of the accuracy of the prediction, i.e., with
standard and popular IR metrics, such as Mean Absolute Error (MAE), precision, or
Normalized Discounted Cumulative Gain (NDCG) (see Chap. 8). Other dimensions
should be measured that relate to the acceptance of the recommender system
and its recommendations. These ideas have been remarkably well presented and
discussed also by McNee et al. [38]. In that work, the authors propose user-
centric directions for evaluating recommender systems, including: the similarity
of recommendation lists, recommendation serendipity, and the importance of user
needs and expectations in a recommender.

Recommender systems collect tremendous amounts of user data that are neces-
sary for the recommendation purposes. However, the availability of this data may
result in this data being used in a way that violates the end-user’s expectations
of privacy, especially if it is accessed by untrusted parties or misused by mali-
cious agents. Chapter 19 presents the latest in privacy enhanced recommendations.
The authors analyze the risks to user privacy imposed by recommender systems,
survey the existing solutions, and discuss the privacy implications for the users
of the recommenders. In particular, the authors describe several architectures that
preserve user privacy by using various decentralized solutions that eliminate a single
repository of user modeling data, which would otherwise be the target for malicious
attacks on the recommender. In addition, the authors present algorithmic solutions,
which either perturb the original user modeling data or apply formal encryption
methods. These assure that, even if accessed by an untrusted party, only modified or
encrypted user data would be exposed rather than the original data. Lastly, the policy
driven solutions are described. These solutions address directives and legislation
initiatives that limit the storage, transfer, and exploitation of personal user data.

An essential goal of recommender systems is to help users make better choices
[18]. Thus, it is important to understand how people make choices and how the
human decision making process can be supported. Chapter 18 begins with a compact
overview of the psychology of everyday choice and decision making that is based on
a large literature of psychological research and formulated so as to be relevant and
accessible to recommender systems research community. The authors explain how
recommender systems can be viewed as one of many available tools for facilitating
choice. Then, the authors provide a high-level overview of strategies for helping
people make better choices, indicating how recommender systems fit into the greater
picture of choice. In addition, the main functionalities of RSs are presented: eliciting
information to construct preference models, narrowing down a large set of options,
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helping users choose among a small set of recommended options, and helping
users to explore large spaces of options. The authors show how an understanding
of human decision making can illuminate research and practice concerning these
processes.

As discussed in previous sections, recommender systems often utilize sophis-
ticated algorithms to make recommendations. However, the RS cannot assume
the advice provided by a system will always be accepted by its users. Whether a
recommendation is seen as credible advice and actually taken into account not only
depends on users’ perceptions of the recommendation but also of the system as an
advice-giver.

In Chap. 20 the authors stress that a recommendation is seen as credible advice
and is actually taken into account not only because of the user’s perceptions of
the recommendation but also due to the fundamental role of the system which
is perceived as an advice-giver. Indeed, the literature about persuasion suggests
that people are likely to accept recommendations from credible sources and we
therefore conclude that the credibility of the RS is vital to increasing the likelihood
of recommendation acceptance. Hence, the authors discuss how the credibility of
RSs can be enhanced, providing a synopsis of credibility-related research.

Chapter 20 reviews the existing literature on source factors in the context of
human-human, human-technology, and human-recommender system interactions.
It also discusses system credibility evaluation in light of the increasing popularity
of social technology. Source characteristics which have been studied in the context
of human and technology interaction, and particularly, in the recommender systems
realm are discussed as well. Finally, Chap. 20 concludes that many social cues that
have been identified as influential in other contexts have yet to be implemented and
tested with respect to recommender systems.

Personality accounts for the most important way in which individuals differ in
their enduring emotional, interpersonal, experiential, attitudinal and motivational
styles. Studies have shown that personality was especially useful at tackling the
issues of the cold start problem and diverse recommendations.

Chapter 21 discusses how personality relates to user preferences and how to
use personality in recommender systems. The authors present the Five Factor
Model (FFM) of personality. This model appears suitable for usage in recommender
systems as it can be easily quantified in terms of features corresponding to the main
factors. The acquisition of the personality factors for an observed user can be made
explicitly through questionnaires or implicitly using machine learning approaches
on modalities like social media streams or mobile phone call logs.

1.8 Advanced Topics

It is clear from the previous pages that RS research is evolving in numerous
and diverse directions, and new topics are emerging or becoming more important
subjects of investigation. The reader is also encouraged to refer to the proceedings
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of the last editions of the ACM RecSys conferences and other excellent review
papers for additional material [13, 30, 34, 40, 44]. In this handbook, we cover
some of these topics. Indeed, some have already been presented, such as: context-
aware recommendations (Chap. 6), social-based recommendations (Chap. 15), and
reciprocal recommendations (Chap. 16). Other important topics are covered in the
last section of this handbook and will now briefly introduce these chapters.

Chapter 22 deals with situations in which the system should recommend
information or items that are relevant to a group of users rather than to an individual.
For instance, a RS may select television programs for a group to view or a sequence
of songs to listen to, based on models of all the group members. Recommending to
groups is clearly more complicated than recommending to individuals. Assuming
that we know precisely what is good for individual users, the issue is how to
combine individual user models. In this chapter, the authors discuss how group
recommendation works, what its problems are, and what advances have been made
so far.

Chapter 23 discusses the ubiquitous issue of aggregating preferences, criteria
or similarities. Normally such aggregation is done by using either the arithmetic
mean or maximum/minimum functions. But many other aggregation functions
which could deliver flexibility and adaptability, and ultimately more relevant
recommendations, are often overlooked. In this chapter the authors review the
basics of aggregation functions and their properties and present the most important
families, including generalized means, Choquet and Sugeno integrals, ordered
weighted averaging, triangular norms and conorms, as well as bipolar aggregation
functions. Such functions can model various interactions between the inputs,
including conjunctive, disjunctive and mixed behavior.

In Chap. 24, the authors focus on another fundamental problem of RSs: the need
to actively look for new data during the operational life of the recommender. This
issue is normally neglected on the assumption that there is not much space for
controlling the data (e.g., ratings) that the system can collect, since these decisions
are taken by the users when visiting the system. Actually, the RS provokes the
users with its recommendations and many systems actually explicitly ask for user
preferences during the recommendation process. Hence, by tuning the process, users
can be pushed to provide a range of different information. Specifically they can be
requested to rate particular items since the knowledge of the user’s opinions about
these items could be estimated as particularly beneficial to the system performance.
For instance, the system may be able to provide more diverse recommendations
with this additional information, or may improve its prediction accuracy. At this
point active learning comes in; it can augment RSs, helping users to become more
self-aware of their own likes/dislikes, and lead to more meaningful and useful
questions. At the same time, active learning can provide new information to the
system that can be analyzed for subsequent recommendations. Hence, applying
active learning to RSs enables personalization of the recommending process [36].
This is accomplished by allowing the system to actively influence the items that the
user is exposed to (e.g., the items displayed to the user during sign-up or during
regular use), as well as by enabling the user to explore his or her interests freely.
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Chapter 25 introduces another emerging topic: multi-criteria recommender
systems. In the majority of RSs, the utility associated with an item is usually
considered a single criterion value, or an overall evaluation or rating of an item
by a user. But recently, this assumption has been judged as limited because the
suitability of the recommended item for a particular user may depend on several
aspects that the user can take into consideration when making his or her choice.
The incorporation of multiple criteria that can affect the user’s opinions may lead to
more effective and accurate recommendations.

Chapter 25 provides an overview of multi-criteria RSs. First, it defines the
recommendation problem as a multi-criteria decision-making problem and reviews
methods and techniques that can support the implementation of multi-criteria rec-
ommenders. Then, it focuses on the category of multi-criteria rating recommender
techniques that provide recommendations by modeling the user’s utility for an
item as a vector of ratings along several criteria. A review of current algorithms
that use multi-criteria ratings for calculating the rating prediction and generating
recommendations is provided. The chapter concludes with a discussion on open
issues and future challenges for these recommenders.

Accurately predicting that the user surely likes a small number of items and
suggesting them repeatedly it is not likely to provide a quality service to the user.
Likewise, if the suggested items are all quite similar, the system’s suggestions will
seem repetitive and it may fail to identify peculiar items. Such peculiar items, though
they are at the boundary of the user’s spectrum of preference, may be unexpected
and therefore perceived as more informative or highly desirable to the user.

These topics are discussed in Chap. 26 that is dedicated to novelty and diversity
in recommender systems. After having motivated the need for novel and diverse rec-
ommendations, the chapter precisely defines these two naturally vague concepts and
their relationships. While novelty is a property of the individual recommendations,
diversity can only be measured by referring to sets of recommendations, either for
a single user or for the full set of users of a recommender system. The quantitative
measure of these two properties occupies a substantial amount of the chapter in
that this is an important preliminary step prior to focusing on techniques that will
improve the system’s performance in this respect. This issue is then discussed by
presenting a range of techniques aimed at enhancing a recommendation list by edit-
ing it with the ultimate goal of increasing the diversification of the recommendations
and their novelty. Finally the chapter presents a unifying model that can describe the
range of metrics presented thus far. A critical element in this unifying model is that
novelty is relative to a context of experience, showing the unexpected relationship
between this line of research and that on context-aware recommender systems (see
Chap. 6).

As we have referred to already in this introduction, recommender system appli-
cations are normally restricted to a particular type of items (movies, CDs, books,
etc.). Even though an ecommerce player sells several different types of products
(e.g., Amazon), its recommender system treats each product typology independently
from the others. This means that if a user has expressed his preferences for a
certain category of products (e.g., books), for instance in the form of ratings, this
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information is ignored when the system computes recommendations for items in
another category (e.g., movies). But, it is natural to expect that preferences in a
domain are somewhat correlated to preferences in another domain. So, for instance,
if two users have bought very similar sets of books, it is likely that some of the
movies bought by one of the users may be good recommendations for the other user.

The idea of relating recommendations in different domains by exploiting user
data collected in one domain to produce recommendations in another, is at the
base of the research on cross-domain recommender systems. These systems and
their underlying techniques are illustrated in Chap. 27. It is shown here how
leveraging all the user’s preferences, collected in several domain specific systems,
may be beneficial for generating more comprehensive user models and better
recommendations. Cross-domain recommender systems can in fact mitigate the
cold-start and sparsity problems in a target domain where not much user data has
been collected. Moreover, they can enable cross-selling recommendations, such as
building more complex recommendations where items from multiple domains are
suggested together (e.g, a movie and a book on a recommended singer). In this
chapter, the authors formally define the cross-domain recommendation problem,
and try to provide a unifying perspective by merging ideas and approaches which
arise in distinct disciplines. The chapter provides an analytical categorization of
prior work, and identifies open issues for future research.

The last chapter of this handbook (Chap. 28) surveys articles which deal with
security issues. This topic has become a major issue in the past few years. The
chapter analyzes algorithms designed to generate more robust recommendations,
i.e., recommendations that are harder for malicious users to influence. In fact,
collaborative recommender systems are dependent on the goodwill of their users, in
that there is an implicit assumption that users will interact with the system with the
aim of getting good recommendations for themselves while providing useful data for
their neighbors. However, users will have a range of purposes in interacting with RSs
and in some cases, these purposes may be counter those of the system owner or those
of the majority of the user population. Namely, these users may want to damage
the website which hosts the recommender, or to influence the recommendations
provided to visitors, e.g., to score some items better or worse rather than to arrive at
a fair evaluation.

In this chapter, the authors provide a model of efficient attacks, i.e, attacks
that can, at a relatively low cost, produce a large impact on system output. Since
these attacks may very well be launched against a site, it makes sense to detect
them so that countermeasures can be taken as soon as possible. At the same time,
researchers have studied a number of algorithms that are intended to robustly
withstand attacks and which have lower impact curves relative to efficient attacks.
These approaches are also surveyed in this chapter. With the combination of these
techniques, researchers have sought not to eliminate attacks, but rather to control
their impact to the point in which they are no longer cost-effective.
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1.9 Challenges

The list of newly emerging and challenging RS research topics is not limited to those
described in the chapters that we have summarized above. Moreover, covering all of
them is not within the scope of this introduction. The reader is referred to the final
discussion sections that are included in almost all of the chapters published in this
handbook for other crucial problems.

Below, we briefly introduce additional challenging topics that we consider
important for the development of the research on RSs.

1.9.1 Preference Acquisition and Profiling

A number of open issues are related to the critical stage of acquiring information
about the user preferences and generating usable profiles of the users.

It is clear that in many real-world situations, implicit feedback is much more
readily available and requires no extra effort on the user’s side. For instance, on
a web page it is easy to log the users visiting a URL, or clicking on an ad. The
system can treat these actions as a form of positive feedback to the displayed
items. It makes sense that information about such previous actions contains highly
relevant information for predicting future actions. For that reason many recent
approaches focus on the use of the more reliable and readily available implicit
feedback (see the final discussion in Chap. 11 that refers to this issue). In cases
where we have implicit feedback, the recommendation problem becomes the
prediction of the probability that a user will interact with a given item. But, standard
recommendation formulation in such a setting is not applicable: there is no negative
feedback, all the available data is either positive or missing. The missing data
includes both items that the user explicitly chose to ignore because they were not
appealing and items that would have been perfect recommendations but were never
presented to the user. This issue is discussed in Chap. 11 and effective solutions for
tackling it must be still developed further.

Notwithstanding the pros of implicit feedback, this data cannot completely
substitute the usage of explicitly user-made evaluations, at last for some of the items.
In order to make the acquisition of this information more effective, as is illustrated
in Chap. 24, a number of techniques for actively collecting preference data from
users, especially in the cold start phase, but also in the full life of a system, have
been illustrated. It is however still challenging to select, among the various active
learning techniques, the one that is more appropriate to a system when dealing
with a particular user in a given stage of the system evolution and for a particular
goal (e.g., accuracy vs. coverage). More adaptive solutions which can blend, run-
time with several elementary approaches, should be investigated. Moreover, their
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practical application depends also on their computational cost, which could become
prohibitive when multiple strategies must be estimated in real time to find out the
best one for that specific scenario.

Hence, in addition to better active learning techniques, simplifying the cognitive
cost of preference acquisition is of primary importance. For a recommender system
to achieve good recommendation performance, users typically need to provide the
system with a certain amount of feedback about their preferences (e.g., in the form
of item ratings). This can be an issue in single-rating recommender systems and
even more for multi-criteria rating systems that require a more significant level of
user involvement, as each user needs to rate an item based on multiple criteria.
Therefore, it is important to measure the costs and benefits of adopting alternative
rating approaches and scales, and find an optimal solution to meet the needs of both
the users and the system designers. For instance, preference disaggregation methods
could support the implicit formulation of a preference Multi-Criteria Recommender
Systems model (as indicated in Chap. 25).

Another direction of research for easing the preference acquisition process
consists of the exploitation of personality, mood and emotions. This is becoming
a popular topic, especially because it is clear that more and more techniques will
be developed in order to automatically acquire such information. In Chap. 21, the
authors stress the challenge of acquiring personality information in a nonintrusive
fashion. Nowadays, only the longest questionnaires, which consist of around one
hundred questions, can provide an accurate evaluation of the user’s personality.
Hence, non-intrusive approaches are necessary and the research in this area is just
starting. Mining user activity for extracting personality information is an option, but
also the fast penetration of portable devices that are life-logging the user’s activity
can offer a promising platform that is worth exploring.

Another line of research aimed at tackling the cold start problem and reducing
the user model elicitation effort is cross-domain recommender systems. These
techniques (See Chap. 27) could be used as an alternative path to user preferences’
elicitation tools as they are able to build detailed user profiles without the need
to collect explicit user assessment of the target domain items. Finally, we want
to mention the issue of integrating long-term and short-term user preferences
into the process of building a user profile and delivering a recommendation list.
Recommender systems may be divided into two classes: those that build a long-
term profile, generated by aggregating all the user transaction data collected by the
system (e.g., collaborative filtering) and those that are more focused on capturing
the ephemeral preferences of the user (e.g., knowledge-based approaches), such as
case-based. Obviously both aspects are important and either the precise user task
or the availability of items may come into consideration in resolving the preference
integration problem. In fact, new research is required to build hybrid models that
can correctly decide to what extent to drift toward the contingent user’s preferences
when there is enough evidence suggesting that the user’s short-term preferences are
departing from the long-term ones.
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1.9.2 Interaction

A major challenge that RS research is now facing is clearly discussed in Chap. 9,
in that we still need to broaden the scope of research to the system aspects of a
recommender system. This means that aside from the algorithms, which are used to
compute the recommendations, the mechanism through which users provide their
input and the means by which they receive the systems output, play a significant
role and can play an even larger role in determining the success or failure of
a recommender system. We still need to better understand the general qualities
of alternative solutions to preference elicitation, as we mentioned previously,
recommendation presentation and to develop personalized solutions for these phases
of the interaction with the system.

It must be observed that while interacting with a recommender system, users
make various types of decisions. The most important one is surely selecting an
item from the recommendation list. But, before making the final decision, users
often have to decide how to explore the information space and what information
they must provide to the system. For instance, they could have to select a specific
feature (e.g., a camera’s size or zoom factor) as search or critiquing criteria,
or to select a repair proposal for inconsistent user preferences when interacting
with a knowledge-based recommender. Moreover, users often do not know or do
not reflect on their preferences beforehand, and the system-supported interaction
and visualization contribute to the user construction of their preferences within a
specific recommendation scenario. As it has been illustrated in Chap. 18, there are
several challenges with the full support of user decision making in a recommender
system. Our understanding of the situational context generated by the system and
its effect on item selection processes is still incomplete and we need to better
connect RS research to psychology and decision making disciplines. While it is
clear that RS helps to make decisions, there is still the need for further research
that takes theories from decision psychology and cognitive psychology into account
when explaining users’ preference construction and decision making process in the
context of recommender systems.

Considering the user interaction with the recommender system, the topic of
explaining the system recommendations still poses a number of interesting and
open issues (see Chap. 10). For instance, it is still not completely clear whether
explanations bring more overall benefits than risks. In Chap. 10 it is shown that
explanations are part of a cyclical process: the explanations affect the acceptance
of particular recommendations, the users’ mental model of the system, and in turn,
this affects the ways users interact with the explanations. But, whether the users
are influenced in such a way that their choices are improved is not clear, and
explanations may even increase the information overload that the recommendations
are supposed to tame. Moreover, while some research has been conducted on
explaining recommendations to individual users, explaining recommendations for
a group is a much more novel subject. For instance, one might think that accurate
predictions of individual satisfaction can also be used to improve the recommender’s
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transparency: showing how satisfied other group members are could improve users’
understanding of the recommendation process and perhaps make it easier to accept
items they do not like. However, users need for privacy is likely to conflict with
their need for transparency and showing the preferences of other users may move
the group discussion on the preferences rather than on the recommended items. We
definitely need more research on these topics.

In a discussion about the interaction with recommender systems, we cannot
forget the issue of the assessment of the value of the recommendations, which
is not only related to what extent the recommended items are liked by the user.
For instance, the time value of recommendations, which is partially discussed in
the chapter on context-aware recommenders (Chap. 6), refers to the fact that a
given set of recommendations may not be applicable forever but there could be a
time interval when these items can be recommended. This is clear, for instance,
when it comes to news items: people want to be informed about the most recent
events and news cannot be meaningfully recommended even 1 day after the initial
announcement. The time value of a recommendation is clearly dependent on the
novelty and diversity of the recommended items. We still need more theoretical,
methodological and algorithmic developments around these aspects. For instance,
modeling feature-based novelty in probabilistic terms in order to unify discovery
and familiarity models would be an interesting line for future work. Aspects such as
the time dimension during which items may recover part of their novelty value, or
the variability among users regarding their degree of novelty-seeking are examples
of issues that require further research and are mentioned in Chap. 26.

Somewhat connected to the novelty and diversity topic is the issue of achieving
an effective tradeoff between exploration and exploitation, which is touched upon
in the active learning chapter (Chap. 24). This challenge refers to the fundamental
dilemma that a designer must properly tackle, or decide whether to keep recom-
mending items that the system can now identify as good recommendations, given
the data currently available to the system, or to further explore user preferences
(e.g., asking the user to rate additional, particular items) in order to build newer and
possibly better recommendations in the future.

1.9.3 New Recommendation Tasks

The application of recommender systems is still dominated by solutions for
recommending relatively simple and inexpensive products like movies, music,
news and books. While there are systems managing more complex item types,
such as financial investments or travel, these item categories are considered as
atypical cases. Inevitably, complex domains require more elaborated solutions such
as those based on knowledge and largely discussed in Chap. 5. Complex products
are typically configurable or offered in several variants. This feature still poses a
challenge to recommender systems, which are instead designed to consider differ-
ent configurations as different items. Identifying the more suitable configuration
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requires reasoning between the interactions of alternative configurations (classifying
and grouping items) and calls for addressing the specificity of the human decision
making task generated by the selection of a configuration. In general terms,
addressing new types of recommendation domains can call for the introduction
of many new and interesting research lines. For instance, Chap. 16 clearly shows
how different the recommendation technique must be in domains where reciprocal
recommendations are needed, as in dating applications.

As we already indicated in the first edition of this handbook, recommenders
that optimize a sequence of recommendations, e.g., a new book every week, are
not frequent and we believe that this is still an open issue. It is important to study
the sequential dimension of users’ decision making both within a recommendation
session and between recommendation sessions. Here, we want to further note
the importance of such a topic in group recommenders (see Chap. 22). In these
systems, sequential recommendations are a natural setting, since stable groups,
such as friends or families, repeatedly choose items of the same type, e.g., when
deciding where to go for vacation or what to eat at home. A lot more research
is needed on algorithms and user interfaces for producing coherent sequences of
recommendations. In particular, one should model the effect on users of several
contextual conditions such as the manner in which already-shown-items could
influence the user evaluation of the next recommendations, or the social role and
relationships of the group members.

As it is discussed in Chap. 14 most of the popular recommender systems
are now accessed through mobile systems that follow their owners throughout
their daily life, and are always within an arm’s reach of their owners. In this
scenario, as for instance in Google Now, recommender systems can proactively
send notifications to their users about items of potential interest that are relevant
because of the contextual situation of the user. The challenge is finding true relevant
items for the user situation and not overburdening them with a stream of irrelevant
interruptions. To address this goal, we must better exploit implicit feedback derived
from user usage of the recommendations, but also learn to better identify contextual
situations that require push recommendations. We believe that this depends on the
detection of contextual changes that are significant to the user and therefore justify
a recommendation. For instance, when it is the ideal time for a pause in writing
a paper, i.e., the context is changing from work to leisure, a recommendation of a
relevant, or personalized, article of sports news can be delivered. Understanding
when context changes or could be forced to change and when a user may be
receptive to a recommendation push is a challenging issue for further research.
As it is also suggested in Chap. 6, in order to develop these new and compelling
context aware systems, we need to explore novel engineering solutions to CARS,
including: novel data structures, storage systems, user interface components and
service oriented architectures.

Another task that we believe should be explored further is guided navigation.
This refers to combining classical recommendation lists with tools that let the
user navigate more autonomously in the space of possible options. User action
interpretation refers to the possibility that in addition to explicit ratings, there could
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be many more actions performed by the user operating the recommender that can
be detected, analyzed and used to build a better prediction model. The idea is that
every single user action should be exploited in the recommendation process. But
it is challenging to interpret the user’s actions, i.e., the intent behind an action,
and there are actions that should be discarded because they were not produced by
genuine users, such as actions performed by different users on the same browser, or
false and malicious registrations or data or log data caused by robots or crawlers.

Finally, we want to note again that in order to deliver a small set of relevant
recommendations to the user, correctly predicting the user rating is only one option.
An alternative consists of predicting how the user would compare or rank the
available options. This is nowadays an important line of research in recommender
systems. Chapter 11 discusses this issue in the context of the Netflix recommender.

Finally, we hope that this handbook, as a useful tool for practitioners and
researchers, will contribute to further developing knowledge in this exciting and
useful research area and provide a baseline for further exploring the above men-
tioned issues. Currently the research on RSs has greatly benefited from the
combined interest and efforts that industry and academia have invested in this field.
We therefore wish the best to both groups as they read this handbook and we hope
that it will attract even more researchers to work in this highly interesting and
challenging field.
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Recommendation Techniques



Chapter 2
A Comprehensive Survey
of Neighborhood-Based Recommendation
Methods

Xia Ning, Christian Desrosiers, and George Karypis

2.1 Introduction

The appearance and growth of online markets has had a considerable impact on
the habits of consumers, providing them access to a greater variety of products
and information on these goods. While this freedom of purchase has made online
commerce into a multi-billion dollar industry, it also made it more difficult for
consumers to select the products that best fit their needs. One of the main solutions
proposed for this information overload problem are recommender systems, which
provide automated and personalized suggestions of products to consumers.

The recommendation problem can be defined as estimating the response of a user
for new items, based on historical information stored in the system, and suggesting
to this user novel and original items for which the predicted response is high. User-
item responses can be numerical values known as ratings (e.g., 1–5 stars), ordinal
values (e.g., strongly agree, agree, neutral, disagree, strongly disagree) representing
the possible levels of user appreciation, or binary values (e.g., like/dislike or
interested/not interested). Moreover, user responses can be obtained explicitly, for
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instance, through ratings/reviews entered by users in the system, or implicitly, from
purchase history or access patterns [39, 70]. For the purpose of simplicity, from this
point on, we will call rating any type of user-item response.

Item recommendation approaches can be divided in two broad categories: per-
sonalized and non-personalized. Among the personalized approaches are content-
based and collaborative filtering methods, as well as hybrid techniques combining
these two types of methods. The general principle of content-based (or cognitive)
methods [4, 8, 42, 54] is to identify the common characteristics of items that
have received a favorable rating from a user, and then recommend to this user
new items that share these characteristics. Recommender systems based purely on
content generally suffer from the problems of limited content analysis and over-
specialization [63]. Limited content analysis occurs when the system has a limited
amount of information on its users or the content of its items. For instance, privacy
issues might refrain a user from providing personal information, or the precise
content of items may be difficult or costly to obtain for some types of items, such as
music or images. Another problem is that the content of an item is often insufficient
to determine its quality. Over-specialization, on the other hand, is a side effect of
the way in which content-based systems recommend new items, where the predicted
rating of a user for an item is high if this item is similar to the ones liked by this user.
For example, in a movie recommendation application, the system may recommend
to a user a movie of the same genre or having the same actors as movies already
seen by this user. Because of this, the system may fail to recommend items that are
different but still interesting to the user.

Instead of depending on content information, collaborative (or social) filtering
approaches use the rating information of other users and items in the system. The
key idea is that the rating of a target user for a new item is likely to be similar to
that of another user, if both users have rated other items in a similar way. Likewise,
the target user is likely to rate two items in a similar fashion, if other users have
given similar ratings to these two items. Collaborative approaches overcome some
of the limitations of content-based ones. For instance, items for which the content
is not available or difficult to obtain can still be recommended to users through the
feedback of other users. Furthermore, collaborative recommendations are based on
the quality of items as evaluated by peers, instead of relying on content that may
be a bad indicator of quality. Finally, unlike content-based systems, collaborative
filtering ones can recommend items with very different content, as long as other
users have already shown interest for these different items.

Collaborative filtering approaches can be grouped in the two general classes of
neighborhood and model-based methods. In neighborhood-based (memory-based
[10] or heuristic-based [2]) collaborative filtering [14, 15, 27, 39, 44, 48, 57, 59,
63], the user-item ratings stored in the system are directly used to predict ratings
for new items. This can be done in two ways known as user-based or item-based
recommendation. User-based systems, such as GroupLens [39], Bellcore video [27],
and Ringo [63], evaluate the interest of a target user for an item using the ratings
for this item by other users, called neighbors, that have similar rating patterns. The
neighbors of the target user are typically the users whose ratings are most correlated
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to the target user’s ratings. Item-based approaches [15, 44, 59], on the other hand,
predict the rating of a user for an item based on the ratings of the user for similar
items. In such approaches, two items are similar if several users of the system have
rated these items in a similar fashion.

In contrast to neighborhood-based systems, which use the stored ratings directly
in the prediction, model-based approaches use these ratings to learn a predictive
model. Salient characteristics of users and items are captured by a set of model
parameters, which are learned from training data and later used to predict new
ratings. Model-based approaches for the task of recommending items are numerous
and include Bayesian Clustering [10], Latent Semantic Analysis [28], Latent Dirich-
let Allocation [9], Maximum Entropy [72], Boltzmann Machines [58], Support
Vector Machines [23], and Singular Value Decomposition [6, 40, 53, 68, 69].
A survey of state-of-the-art model-based methods can be found in Chap. 3 of this
book.

Finally, to overcome certain limitations of content-based and collaborative
filtering methods, hybrid recommendation approaches combine characteristics of
both types of methods. Content-based and collaborative filtering methods can be
combined in various ways, for instance, by merging their individual predictions
into a single, more robust prediction [8, 55], or by adding content information
into a collaborative filtering model [1, 3, 51, 65, 71]. Several studies have shown
hybrid recommendation approaches to provide more accurate recommendations
than pure content-based or collaborative methods, especially when few ratings are
available [2].

2.1.1 Advantages of Neighborhood Approaches

While recent investigations show state-of-the-art model-based approaches superior
to neighborhood ones in the task of predicting ratings [40, 67], there is also an
emerging understanding that good prediction accuracy alone does not guarantee
users an effective and satisfying experience [26]. Another factor that has been iden-
tified as playing an important role in the appreciation of users for the recommender
system is serendipity [26, 59]. Serendipity extends the concept of novelty by helping
a user find an interesting item he or she might not have otherwise discovered.
For example, recommending to a user a movie directed by his favorite director
constitutes a novel recommendation if the user was not aware of that movie, but
is likely not serendipitous since the user would have discovered that movie on his
own.

Model-based approaches excel at characterizing the preferences of a user with
latent factors. For example, in a movie recommender system, such methods may
determine that a given user is a fan of movies that are both funny and romantic,
without having to actually define the notions “funny” and “romantic”. This system
would be able to recommend to the user a romantic comedy that may not have
been known to this user. However, it may be difficult for this system to recommend
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a movie that does not quite fit this high-level genre, for instance, a funny parody
of horror movies. Neighborhood approaches, on the other hand, capture local
associations in the data. Consequently, it is possible for a movie recommender
system based on this type of approach to recommend the user a movie very different
from his usual taste or a movie that is not well known (e.g. repertoire film), if one
of his closest neighbors has given it a strong rating. This recommendation may not
be a guaranteed success, as would be a romantic comedy, but it may help the user
discover a whole new genre or a new favorite actor/director.

The main advantages of neighborhood-based methods are:

• Simplicity: Neighborhood-based methods are intuitive and relatively simple to
implement. In their simplest form, only one parameter (the number of neighbors
used in the prediction) requires tuning.

• Justifiability: Such methods also provide a concise and intuitive justification for
the computed predictions. For example, in item-based recommendation, the list
of neighbor items, as well as the ratings given by the user to these items, can be
presented to the user as a justification for the recommendation. This can help the
user better understand the recommendation and its relevance, and could serve as
basis for an interactive system where users can select the neighbors for which a
greater importance should be given in the recommendation [6].

• Efficiency: One of the strong points of neighborhood-based systems are their
efficiency. Unlike most model-based systems, they require no costly training
phases, which need to be carried at frequent intervals in large commercial
applications. These systems may require pre-computing nearest neighbors in
an offline step, which is typically much cheaper than model training, providing
near instantaneous recommendations. Moreover, storing these nearest neighbors
requires very little memory, making such approaches scalable to applications
having millions of users and items.

• Stability: Another useful property of recommender systems based on this
approach is that they are little affected by the constant addition of users, items
and ratings, which are typically observed in large commercial applications. For
instance, once item similarities have been computed, an item-based system can
readily make recommendations to new users, without having to re-train the
system. Moreover, once a few ratings have been entered for a new item, only
the similarities between this item and the ones already in the system need to be
computed.

While neighborhood-based methods have gained popularity due to these advan-
tages, they are also known to suffer from the problem of limited coverage,
which causes some items to be never recommended. Also, traditional methods of
this category are known to be more sensitive to the sparseness of ratings and the
cold-start problem, where the system has only a few ratings, or no rating at all,
for new users and items. Section 2.5 presents more advanced neighborhood-based
techniques that can overcome these problems.
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2.1.2 Objectives and Outline

This chapter has two main objectives. It first serves as a general guide
on neighborhood-based recommender systems, and presents practical information
on how to implement such recommendation approaches. In particular, the main
components of neighborhood-based methods will be described, as well as the
benefits of the most common choices for each of these components. Secondly, it
presents more specialized techniques on the subject that address particular aspects
of recommending items, such as data sparsity. Although such techniques are not
required to implement a simple neighborhood-based system, having a broader view
of the various difficulties and solutions for neighborhood methods may help making
appropriate decisions during the implementation process.

The rest of this document is structured as follows. In Sect. 2.2, we first give
a formal definition of the item recommendation task and present the notation
used throughout the chapter. In Sect. 2.3, the principal neighborhood approaches,
predicting user ratings for new items based on regression or classification, are
then introduced, and the main advantages and flaws of these approaches are
described. This section also presents two complementary ways of implementing
such approaches, either based on user or item similarities, and analyzes the impact
of these two implementations on the accuracy, efficiency, stability, justifiability and
serendipity of the recommender system. Section 2.4, on the other hand, focuses
on the three main components of neighborhood-based recommendation methods:
rating normalization, similarity weight computation, and neighborhood selection.
For each of these components, the most common approaches are described, and their
respective benefits compared. In Sect. 2.5, the problems of limited coverage and data
sparsity are introduced, and several solutions proposed to overcome these problems
are described. In particular, several techniques based on dimensionality reduction
and graphs are presented. Finally, the last section of this document summarizes the
principal characteristics and methods of neighborhood-based recommendation, and
gives a few more pointers on implementing such methods.

2.2 Problem Definition and Notation

In order to give a formal definition of the item recommendation task, we introduce
the following notation. The set of users in the recommender system will be denoted
by U, and the set of items by I. Moreover, we denote by R the set of ratings recorded
in the system, and write S the set of possible values for a rating (e.g., S D Œ1; 5� or
S D flike; dislikeg). Also, we suppose that no more than one rating can be made
by any user u 2 U for a particular item i 2 I and write rui this rating. To identify
the subset of users that have rated an item i, we use the notation Ui. Likewise, Iu

represents the subset of items that have been rated by a user u. Finally, the items that
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have been rated by two users u and v, i.e. Iu \ Iv , is an important concept in our
presentation, and we use Iuv to denote this concept. In a similar fashion, Uij is used
to denote the set of users that have rated both items i and j.

Two of the most important problems associated with recommender systems are
the rating prediction and top-N recommendation problems. The first problem is to
predict the rating that a user u will give his or her unrated item i. When ratings are
available, this task is most often defined as a regression or (multi-class) classification
problem where the goal is to learn a function f W U � I! S that predicts the rating
f .u; i/ of a user u for a new item i. Accuracy is commonly used to evaluate the
performance of the recommendation method. Typically, the ratings R are divided
into a training set Rtrain used to learn f , and a test set Rtest used to evaluate the
prediction accuracy. Two popular measures of accuracy are the Mean Absolute Error
(MAE):

MAE.f / D 1

jRtestj
X

rui2Rtest

jf .u; i/ � ruij; (2.1)

and the Root Mean Squared Error (RMSE):

RMSE.f / D
vuut 1

jRtestj
X

rui2Rtest

.f .u; i/ � rui/
2: (2.2)

When ratings are not available, for instance, if only the list of items purchased by
each user is known, measuring the rating prediction accuracy is not possible. In such
cases, the problem of finding the best item is usually transformed into the task of
recommending to an active user ua a list L.ua/ containing N items likely to interest
him or her [15, 59]. The quality of such method can be evaluated by splitting the
items of I into a set Itrain, used to learn L, and a test set Itest. Let T.u/ � Iu \ Itest

be the subset of test items that a user u found relevant. If the user responses are
binary, these can be the items that u has rated positively. Otherwise, if only a list of
purchased or accessed items is given for each user u, then these items can be used
as T.u/. The performance of the method is then computed using the measures of
precision and recall:

Precision.L/ D 1

jUj
X
u2U
jL.u/ \ T.u/j = jL.u/j (2.3)

Recall.L/ D 1

jUj
X
u2U
jL.u/ \ T.u/j = jT.u/j: (2.4)

A drawback of this task is that all items of a recommendation list L.u/ are considered
equally interesting to user u. An alternative setting, described in [15], consists in
learning a function L that maps each user u to a list L.u/ where items are ordered
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by their “interestingness” to u. If the test set is built by randomly selecting, for each
user u, a single item iu of Iu, the performance of L can be evaluated with the Average
Reciprocal Hit-Rank (ARHR):

ARHR.L/ D 1

jUj
X
u2U

1

rank.iu; L.u//
; (2.5)

where rank.iu; L.u// is the rank of item iu in L.u/, equal to1 if iu 62 L.u/. A more
extensive description of evaluation measures for recommender systems can be found
in Chap. 8 of this book.

2.3 Neighborhood-Based Recommendation

Recommender systems based on neighborhood automate the common principle that
similar users prefer similar items, and similar items are preferred by similar users.
To illustrate this, consider the following example based on the ratings of Fig. 2.1.

Example 2.1. User Eric has to decide whether or not to rent the movie “Titanic”
that he has not yet seen. He knows that Lucy has very similar tastes when it comes
to movies, as both of them hated “The Matrix” and loved “Forrest Gump”, so he
asks her opinion on this movie. On the other hand, Eric finds out he and Diane have
different tastes, Diane likes action movies while he does not, and he discards her
opinion or considers the opposite in his decision.

2.3.1 User-Based Rating Prediction

User-based neighborhood recommendation methods predict the rating rui of a user
u for a new item i using the ratings given to i by users most similar to u, called
nearest-neighbors. Suppose we have for each user v ¤ u a value wuv representing
the preference similarity between u and v (how this similarity can be computed will

The
Titanic

Die Forrest
Wall-E

Matrix Hard Gump

John 5 1 2 2

Lucy 1 5 2 5 5

Eric 2 ? 3 5 4

Diane 4 3 5 3

Fig. 2.1 A “toy example” showing the ratings of four users for five movies
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be discussed in Sect. 2.4.2). The k-nearest-neighbors (k-NN) of u, denoted by N.u/,
are the k users v with the highest similarity wuv to u. However, only the users who
have rated item i can be used in the prediction of rui, and we instead consider the
k users most similar to u that have rated i. We write this set of neighbors as Ni.u/.
The rating rui can be estimated as the average rating given to i by these neighbors:

Orui D 1

jNi.u/j
X

v2Ni.u/

rvi: (2.6)

A problem with (2.6) is that is does not take into account the fact that the neighbors
can have different levels of similarity. Consider once more the example of Fig. 2.1.
If the two nearest-neighbors of Eric are Lucy and Diane, it would be foolish to
consider equally their ratings of the movie “Titanic”, since Lucy’s tastes are much
closer to Eric’s than Diane’s. A common solution to this problem is to weigh the
contribution of each neighbor by its similarity to u. However, if these weights do
not sum to 1, the predicted ratings can be well outside the range of allowed values.
Consequently, it is customary to normalize these weights, such that the predicted
rating becomes

Orui D

P
v2Ni.u/

wuv rviP
v2Ni.u/

jwuvj : (2.7)

In the denominator of (2.7), jwuvj is used instead of wuv because negative weights
can produce ratings outside the allowed range. Also, wuv can be replaced by w˛

uv ,
where ˛ > 0 is an amplification factor [10]. When ˛ > 1, as is it most often
employed, an even greater importance is given to the neighbors that are the closest
to u.

Example 2.2. Suppose we want to use (2.7) to predict Eric’s rating of the movie
“Titanic” using the ratings of Lucy and Diane for this movie. Moreover, suppose the
similarity weights between these neighbors and Eric are respectively 0:75 and 0:15.
The predicted rating would be

Or D 0:75�5 C 0:15�3

0:75 C 0:15
' 4:67;

which is closer to Lucy’s rating than to Diane’s.

Equation (2.7) also has an important flaw: it does not consider the fact that users
may use different rating values to quantify the same level of appreciation for an item.
For example, one user may give the highest rating value to only a few outstanding
items, while a less difficult one may give this value to most of the items he likes. This
problem is usually addressed by converting the neighbors’ ratings rvi to normalized
ones h.rvi/ [10, 57], giving the following prediction:
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Orui D h�1

0
B@

P
v2Ni.u/

wuv h.rvi/P
v2Ni.u/

jwuvj

1
CA : (2.8)

Note that the predicted rating must be converted back to the original scale, hence
the h�1 in the equation. The most common approaches to normalize ratings will be
presented in Sect. 2.4.1.

2.3.2 User-Based Classification

The prediction approach just described, where the predicted ratings are computed
as a weighted average of the neighbors’ ratings, essentially solves a regression
problem. Neighborhood-based classification, on the other hand, finds the most likely
rating given by a user u to an item i, by having the nearest-neighbors of u vote on
this value. The vote vir given by the k-NN of u for the rating r 2 S can be obtained
as the sum of the similarity weights of neighbors that have given this rating to i:

vir D
X

v2Ni.u/

ı.rvi D r/ wuv; (2.9)

where ı.rvi D r/ is 1 if rvi D r, and 0 otherwise. Once this has been computed for
every possible rating value, the predicted rating is simply the value r for which vir

is the greatest.

Example 2.3. Suppose once again that the two nearest-neighbors of Eric are Lucy
and Diane with respective similarity weights 0:75 and 0:15. In this case, ratings 5

and 3 each have one vote. However, since Lucy’s vote has a greater weight than
Diane’s, the predicted rating will be Or D 5.

A classification method that considers normalized ratings can also be defined.
Let S0 be the set of possible normalized values (that may require discretization), the
predicted rating is obtained as:

Orui D h�1

0
@arg max

r2S0

X
v2Ni.u/

ı.h.rvi/ D r/ wuv

1
A : (2.10)

2.3.3 Regression vs Classification

The choice between implementing a neighborhood-based regression or classifica-
tion method largely depends on the system’s rating scale. Thus, if the rating scale
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is continuous, e.g. ratings in the Jester joke recommender system [20] can take any
value between �10 and 10, then a regression method is more appropriate. On the
contrary, if the rating scale has only a few discrete values, e.g. “good” or “bad”, or
if the values cannot be ordered in an obvious fashion, then a classification method
might be preferable. Furthermore, since normalization tends to map ratings to a
continuous scale, it may be harder to handle in a classification approach.

Another way to compare these two approaches is by considering the situation
where all neighbors have the same similarity weight. As the number of neighbors
used in the prediction increases, the rating rui predicted by the regression approach
will tend toward the mean rating of item i. Suppose item i has only ratings at either
end of the rating range, i.e. it is either loved or hated, then the regression approach
will make the safe decision that the item’s worth is average. This is also justified
from a statistical point of view since the expected rating (estimated in this case) is
the one that minimizes the RMSE. On the other hand, the classification approach
will predict the rating as the most frequent one given to i. This is more risky as
the item will be labeled as either “good” or “bad”. However, as mentioned before,
taking risks may be desirable if it leads to serendipitous recommendations.

2.3.4 Item-Based Recommendation

While user-based methods rely on the opinion of like-minded users to predict a
rating, item-based approaches [15, 44, 59] look at ratings given to similar items. Let
us illustrate this approach with our toy example.

Example 2.4. Instead of consulting with his peers, Eric instead determines whether
the movie “Titanic” is right for him by considering the movies that he has already
seen. He notices that people that have rated this movie have given similar ratings
to the movies “Forrest Gump” and “Wall-E”. Since Eric liked these two movies he
concludes that he will also like the movie “Titanic”.

This idea can be formalized as follows. Denote by Nu.i/ the items rated by user
u most similar to item i. The predicted rating of u for i is obtained as a weighted
average of the ratings given by u to the items of Nu.i/:

Orui D

P
j2Nu.i/

wij rujP
j2Nu.i/
jwijj : (2.11)

Example 2.5. Suppose our prediction is again made using two nearest-neighbors,
and that the items most similar to “Titanic” are “Forrest Gump” and “Wall-E”, with
respective similarity weights 0:85 and 0:75. Since ratings of 5 and 4 were given by
Eric to these two movies, the predicted rating is computed as
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Or D 0:85�5 C 0:75�4

0:85 C 0:75
' 4:53:

Again, the differences in the users’ individual rating scales can be considered by
normalizing ratings with a function h:

Orui D h�1

0
B@

P
j2Nu.i/

wij h.ruj/P
j2Nu.i/
jwijj

1
CA : (2.12)

Moreover, we can also define an item-based classification approach. In this case,
the items j rated by user u vote for the rating to be given to a new item i, and these
votes are weighted by the similarity between i and j. The normalized version of this
approach can be expressed as follows:

Orui D h�1

0
@arg max

r2S0

X
j2Nu.i/

ı.h.ruj/ D r/ wij

1
A : (2.13)

2.3.5 User-Based vs Item-Based Recommendation

When choosing between the implementation of a user-based and an item-based
neighborhood recommender system, five criteria should be considered:

• Accuracy: The accuracy of neighborhood recommendation methods depends
mostly on the ratio between the number of users and items in the system.
As will be presented in Sect. 2.4.2, the similarity between two users in user-
based methods, which determines the neighbors of a user, is normally obtained
by comparing the ratings made by these users on the same items. Consider a
system that has 10;000 ratings made by 1000 users on 100 items, and suppose,
for the purpose of this analysis, that the ratings are distributed uniformly over the
items.1 Following Table 2.1, the average number of users available as potential
neighbors is roughly 650. However, the average number of common ratings used
to compute the similarities is only 1. On the other hand, an item-based method
usually computes the similarity between two items by comparing ratings made
by the same user on these items. Assuming once more a uniform distribution of
ratings, we find an average number of potential neighbors of 99 and an average
number of ratings used to compute the similarities of 10.

1The distribution of ratings in real-life data is normally skewed, i.e. most ratings are given to a
small proportion of items.
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Table 2.1 The average
number of neighbors and
average number of ratings
used in the computation of
similarities for user-based and
item-based neighborhood
methods

Average neighbors Average ratings

User-based .jUj � 1/
�
1 �

�
jIj�p

jIj

�p�
p2

jIj

Item-based .jIj � 1/
�
1 �

�
jUj�q

jUj

�q�
q2

jUj

A uniform distribution of ratings is assumed with average
number of ratings per user p D jRj=jUj, and average number
of ratings per item q D jRj=jIj

Table 2.2 The space and time complexity of user-based
and item-based neighborhood methods, as a function of
the maximum number of ratings per user p D maxu jIuj,
the maximum number of ratings per item q D maxi jUij,
and the maximum number of neighbors used in the rating
predictions k

Space
Time

Training Online

User-based O.jUj2/ O.jUj2p/ O.jIjk/

Item-based O.jIj2/ O.jIj2q/ O.jIjk/

In general, a small number of high-confidence neighbors is by far preferable
to a large number of neighbors for which the similarity weights are not trustable.
In cases where the number of users is much greater than the number of
items, such as large commercial systems like Amazon.com, item-based methods
can therefore produce more accurate recommendations [16, 59]. Likewise,
systems that have less users than items, e.g., a research paper recommender with
thousands of users but hundreds of thousands of articles to recommend, may
benefit more from user-based neighborhood methods [26].

• Efficiency: As shown in Table 2.2, the memory and computational efficiency of
recommender systems also depends on the ratio between the number of users
and items. Thus, when the number of users exceeds the number of items, as is it
most often the case, item-based recommendation approaches require much less
memory and time to compute the similarity weights (training phase) than user-
based ones, making them more scalable. However, the time complexity of the
online recommendation phase, which depends only on the number of available
items and the maximum number of neighbors, is the same for user-based and
item-based methods.

In practice, computing the similarity weights is much less expensive than the
worst-case complexity reported in Table 2.2, due to the fact that users rate only
a few of the available items. Accordingly, only the non-zero similarity weights
need to be stored, which is often much less than the number of user pairs. This
number can be further reduced by storing for each user only the top N weights,
where N is a parameter [59] that is sufficient for satisfactory coverage on user-
item pairs. In the same manner, the non-zero weights can be computed efficiently
without having to test each pair of users or items, which makes neighborhood
methods scalable to very large systems.
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• Stability: The choice between a user-based and an item-based approach also
depends on the frequency and amount of change in the users and items of the
system. If the list of available items is fairly static in comparison to the users
of the system, an item-based method may be preferable since the item similarity
weights could then be computed at infrequent time intervals while still being able
to recommend items to new users. On the contrary, in applications where the list
of available items is constantly changing, e.g., an online article recommender,
user-based methods could prove to be more stable.

• Justifiability: An advantage of item-based methods is that they can easily be
used to justify a recommendation. Hence, the list of neighbor items used in the
prediction, as well as their similarity weights, can be presented to the user as an
explanation of the recommendation. By modifying the list of neighbors and/or
their weights, it then becomes possible for the user to participate interactively
in the recommendation process. User-based methods, however, are less amenable
to this process because the active user does not know the other users serving as
neighbors in the recommendation.

• Serendipity: In item-based methods, the rating predicted for an item is based on
the ratings given to similar items. Consequently, recommender systems using this
approach will tend to recommend to a user items that are related to those usually
appreciated by this user. For instance, in a movie recommendation application,
movies having the same genre, actors or director as those highly rated by the user
are likely to be recommended. While this may lead to safe recommendations, it
does less to help the user discover different types of items that he might like as
much.

Because they work with user similarity, on the other hand, user-based
approaches are more likely to make serendipitous recommendations. This is
particularly true if the recommendation is made with a small number of nearest-
neighbors. For example, a user A that has watched only comedies may be very
similar to a user B only by the ratings made on such movies. However, if B is fond
of a movie in a different genre, this movie may be recommended to A through
his similarity with B.

2.4 Components of Neighborhood Methods

In the previous section, we have seen that deciding between a regression and a
classification rating prediction method, as well as choosing between a user-based
or item-based recommendation approach, can have a significant impact on the
accuracy, efficiency and overall quality of the recommender system. In addition to
these crucial attributes, three very important considerations in the implementation of
a neighborhood-based recommender system are (1) the normalization of ratings, (2)
the computation of the similarity weights, and (3) the selection of neighbors. This
section reviews some of the most common approaches for these three components,
describes the main advantages and disadvantages of using each one of them, and
gives indications on how to implement them.
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2.4.1 Rating Normalization

When it comes to assigning a rating to an item, each user has its own personal
scale. Even if an explicit definition of each of the possible ratings is supplied
(e.g., 1D“strongly disagree”, 2D“disagree”, 3D“neutral”, etc.), some users might
be reluctant to give high/low scores to items they liked/disliked. Two of the most
popular rating normalization schemes that have been proposed to convert individual
ratings to a more universal scale are mean-centering and Z-score.

2.4.1.1 Mean-Centering

The idea of mean-centering [10, 57] is to determine whether a rating is positive or
negative by comparing it to the mean rating. In user-based recommendation, a raw
rating rui is transformation to a mean-centered one h.rui/ by subtracting to rui the
average ru of the ratings given by user u to the items in Iu:

h.rui/ D rui � ru:

Using this approach the user-based prediction of a rating rui is obtained as

Orui D ru C

P
v2Ni.u/

wuv .rvi � rv/P
v2Ni.u/

jwuvj : (2.14)

In the same way, the item-mean-centered normalization of rui is given by

h.rui/ D rui � ri;

where ri corresponds to the mean rating given to item i by user in Ui. This
normalization technique is most often used in item-based recommendation, where a
rating rui is predicted as:

Orui D ri C

P
j2Nu.i/

wij .ruj � rj/P
j2Nu.i/
jwijj : (2.15)

An interesting property of mean-centering is that one can see right-away if the
appreciation of a user for an item is positive or negative by looking at the sign of
the normalized rating. Moreover, the module of this rating gives the level at which
the user likes or dislikes the item.

Example 2.6. As shown in Fig. 2.2, although Diane gave an average rating of 3 to
the movies “Titanic” and “Forrest Gump”, the user-mean-centered ratings show that
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User mean-centering:

The
Titanic

Die Forrest
Wall-E

Matrix Hard Gump

John 2.50 -1.50 -0.50 -0.50
Lucy -2.60 1.40 -1.60 1.40 1.40
Eric -1.50 -0.50 1.50 0.50

Diane 0.25 -0.75 1.25 -0.75

Item mean-centering:

The
Titanic

Die Forrest
Wall-E

Matrix Hard Gump

John 2.00 -2.00 -1.75 -1.67
Lucy -2.00 2.00 -1.33 1.25 1.33
Eric -1.00 -0.33 1.25 0.33

Diane 1.00 0.00 1.67 -0.75

Fig. 2.2 The user and item mean-centered ratings of Fig. 2.1

her appreciation of these movies is in fact negative. This is because her ratings
are high on average, and so, an average rating corresponds to a low degree of
appreciation. Differences are also visible while comparing the two types of mean-
centering. For instance, the item-mean-centered rating of the movie “Titanic” is
neutral, instead of negative, due to the fact that much lower ratings were given to
that movie. Likewise, Diane’s appreciation for “The Matrix” and John’s distaste for
“Forrest Gump” are more pronounced in the item-mean-centered ratings.

2.4.1.2 Z-Score Normalization

Consider, two users A and B that both have an average rating of 3. Moreover,
suppose that the ratings of A alternate between 1 and 5, while those of B are
always 3. A rating of 5 given to an item by B is more exceptional than the same
rating given by A, and, thus, reflects a greater appreciation for this item. While mean-
centering removes the offsets caused by the different perceptions of an average
rating, Z-score normalization [25] also considers the spread in the individual rating
scales. Once again, this is usually done differently in user-based than in item-based
recommendation. In user-based methods, the normalization of a rating rui divides
the user-mean-centered rating by the standard deviation �u of the ratings given by
user u:
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h.rui/ D rui � ru

�u
:

A user-based prediction of rating rui using this normalization approach would
therefore be obtained as

Orui D ru C �u

P
v2Ni.u/

wuv .rvi � rv/=�vP
v2Ni.u/

jwuvj : (2.16)

Likewise, the z-score normalization of rui in item-based methods divides the item-
mean-centered rating by the standard deviation of ratings given to item i:

h.rui/ D rui � ri

�i
:

The item-based prediction of rating rui would then be

Orui D ri C �i

P
j2Nu.i/

wij .ruj � rj/=�jP
j2Nu.i/
jwijj : (2.17)

2.4.1.3 Choosing a Normalization Scheme

In some cases, rating normalization can have undesirable effects. For instance,
imagine the case of a user that gave only the highest ratings to the items he has
purchased. Mean-centering would consider this user as “easy to please” and any
rating below this highest rating (whether it is a positive or negative rating) would
be considered as negative. However, it is possible that this user is in fact “hard
to please” and carefully selects only items that he will like for sure. Furthermore,
normalizing on a few ratings can produce unexpected results. For example, if a user
has entered a single rating or a few identical ratings, his rating standard deviation
will be 0, leading to undefined prediction values. Nevertheless, if the rating data is
not overly sparse, normalizing ratings has been found to consistently improve the
predictions [25, 29].

Comparing mean-centering with Z-score, as mentioned, the second one has the
additional benefit of considering the variance in the ratings of individual users or
items. This is particularly useful if the rating scale has a wide range of discrete
values or if it is continuous. On the other hand, because the ratings are divided
and multiplied by possibly very different standard deviation values, Z-score can
be more sensitive than mean-centering and, more often, predict ratings that are
outside the rating scale. Lastly, while an initial investigation found mean-centering
and Z-score to give comparable results [25], a more recent one showed Z-score to
have more significant benefits [29].



2 A Comprehensive Survey of Neighborhood-Based Recommendation Methods 53

Finally, if rating normalization is not possible or does not improve the results,
another possible approach to remove the problems caused by the rating scale
variance is preference-based filtering. The particularity of this approach is that it
focuses on predicting the relative preferences of users instead of absolute rating
values. Since an item preferred to another one remains so regardless of the rating
scale, predicting relative preferences removes the need to normalize the ratings.
More information on this approach can be found in [12, 18, 32, 33].

2.4.2 Similarity Weight Computation

The similarity weights play a double role in neighborhood-based recommendation
methods: (1) they allow to select trusted neighbors whose ratings are used in the
prediction, and (2) they provide the means to give more or less importance to these
neighbors in the prediction. The computation of the similarity weights is one of
the most critical aspects of building a neighborhood-based recommender system, as
it can have a significant impact on both its accuracy and its performance.

2.4.2.1 Correlation-Based Similarity

A measure of the similarity between two objects a and b, often used in information
retrieval, consists in representing these objects in the form of a vector xa and xb and
computing the Cosine Vector (CV) (or Vector Space) similarity [4, 8, 42] between
these vectors:

cos.xa; xb/ D x>
a xb

jjxajjjjxbjj :

In the context of item recommendation, this measure can be employed to compute
user similarities by considering a user u as a vector xu 2 R

jIj, where xui D rui if user
u has rated item i, and 0 otherwise. The similarity between two users u and v would
then be computed as

CV.u; v/ D cos.xu; xv/ D

P
i2Iuv

rui rvirP
i2Iu

r2
ui

P
j2Iv

r2
vj

; (2.18)

where Iuv once more denotes the items rated by both u and v. A problem with this
measure is that is does not consider the differences in the mean and variance of the
ratings made by users u and v.

A popular measure that compares ratings where the effects of mean and variance
have been removed is the Pearson Correlation (PC) similarity:
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PC.u; v/ D

P
i2Iuv

.rui � ru/.rvi � rv/r P
i2Iuv

.rui � ru/2
P

i2Iuv

.rvi � rv/2
: (2.19)

Note that this is different from computing the CV similarity on the Z-score
normalized ratings, since the standard deviation of the ratings in evaluated only on
the common items Iuv , not on the entire set of items rated by u and v, i.e. Iu and Iv .
The same idea can be used to obtain similarities between two items i and j [15, 59],
this time by comparing the ratings made by users that have rated both these items:

PC.i; j/ D

P
u2Uij

.rui � ri/.ruj � rj/r P
u2Uij

.rui � ri/2
P

u2Uij

.ruj � rj/2
: (2.20)

While the sign of a similarity weight indicates whether the correlation is direct
or inverse, its magnitude (ranging from 0 to 1) represents the strength of the
correlation.

Example 2.7. The similarities between the pairs of users and items of our toy
example, as computed using PC similarity, are shown in Fig. 2.3. We can see that
Lucy’s taste in movies is very close to Eric’s (similarity of 0:922) but very different
from John’s (similarity of �0:938). This means that Eric’s ratings can be trusted to
predict Lucy’s, and that Lucy should discard John’s opinion on movies or consider
the opposite. We also find that the people that like “The Matrix” also like “Die
Hard” but hate “Wall-E”. Note that these relations were discovered without having
any knowledge of the genre, director or actors of these movies.

The differences in the rating scales of individual users are often more pronounced
than the differences in ratings given to individual items. Therefore, while computing
the item similarities, it may be more appropriate to compare ratings that are
centered on their user mean, instead of their item mean. The Adjusted Cosine (AC)
similarity [59], is a modification of the PC item similarity which compares user-
mean-centered ratings:

AC.i; j/ D

P
u2Uij

.rui � ru/.ruj � ru/

r P
u2Uij

.rui � ru/2
P

u2Uij

.ruj � ru/2
:

In some cases, AC similarity has been found to outperform PC similarity on the
prediction of ratings using an item-based method [59].
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User-based Pearson correlation

John Lucy Eric Diane

John 1.000 -0.938 -0.839 0.659
Lucy -0.938 1.000 0.922 -0.787
Eric -0.839 0.922 1.000 -0.659

Diane 0.659 -0.787 -0.659 1.000

Item-based Pearson correlation

The
Titanic

Die Forrest
Wall-E

Matrix Hard Gump

Matrix 1.000 -0.943 0.882 -0.974 -0.977
Titanic -0.943 1.000 -0.625 0.931 0.994

Die Hard 0.882 -0.625 1.000 -0.804 -1.000
ForrestGump -0.974 0.931 -0.804 1.000 0.930

Wall-E -0.977 0.994 -1.000 0.930 1.000

Fig. 2.3 The user and item PC similarity for the ratings of Fig. 2.1

2.4.2.2 Other Similarity Measures

Several other measures have been proposed to compute similarities between users or
items. One of them is the Mean Squared Difference (MSD) [63], which evaluate the
similarity between two users u and v as the inverse of the average squared difference
between the ratings given by u and v on the same items:

MSD.u; v/ D jIuvjP
i2Iuv

.rui � rvi/2
: (2.21)

While it could be modified to compute the differences on normalized ratings, the
MSD similarity is limited compared to PC similarity because it does not allow
to capture negative correlations between user preferences or the appreciation of
different items. Having such negative correlations may improve the rating prediction
accuracy [24].

Another well-known similarity measure is the Spearman Rank Correlation
(SRC) [36]. While PC uses the rating values directly, SRC instead considers the
ranking of these ratings. Denote by kui the rating rank of item i in user u’s list of
rated items (tied ratings get the average rank of their spot). The SRC similarity
between two users u and v is evaluated as:



56 X. Ning et al.

Table 2.3 The rating
prediction accuracy (MAE)
obtained on the MovieLens
dataset using the mean
squared difference (MSD),
Spearman rank correlation
and Pearson correlation (PC)
similarity measures

k MSD SRC PC

5 0.7898 0.7855 0.7829

10 0.7718 0.7636 0.7618

20 0.7634 0.7558 0.7545

60 0.7602 0.7529 0.7518

80 0.7605 0.7531 0.7523

100 0.7610 0.7533 0.7528

Results are shown for predictions
using an increasing number of
neighbors k

SRC.u; v/ D

P
i2Iuv

.kui � ku/.kvi � kv/r P
i2Iuv

.kui � ku/2
P

i2Iuv

.kvi � kv/2
; (2.22)

where ku is the average rank of items rated by u.
The principal advantage of SRC is that it avoids the problem of rating normaliza-

tion, described in the last section, by using rankings. On the other hand, this measure
may not be the best one when the rating range has only a few possible values, since
that would create a large number of tied ratings. Moreover, this measure is typically
more expensive than PC as ratings need to be sorted in order to compute their rank.

Table 2.3 shows the user-based prediction accuracy (MAE) obtained with MSD,
SRC and PC similarity measures, on the MovieLens2 dataset [24]. Results are given
for different values of k, which represents the maximum number of neighbors used
in the predictions. For this data, we notice that MSD leads to the least accurate
predictions, possibly due to the fact that it does not take into account negative
correlations. Also, these results show PC to be slightly more accurate than SRC.
Finally, although PC has been generally recognized as the best similarity measure,
see e.g. [24], a more recent investigation has shown that the performance of such
measure depended greatly on the data [29].

2.4.2.3 Considering the Significance of Weights

Because the rating data is frequently sparse in comparison to the number of users
and items of a system, it is often the case that similarity weights are computed using
only a few ratings given to common items or made by the same users. For example,
if the system has 10;000 ratings made by 1000 users on 100 items (assuming a
uniform distribution of ratings), Table 2.1 shows us that the similarity between two
users is computed, on average, by comparing the ratings given by these users to a

2http://www.grouplens.org/.

http://www.grouplens.org/
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single item. If these few ratings are equal, then the users will be considered as “fully
similar” and will likely play an important role in each other’s recommendations.
However, if the users’ preferences are in fact different, this may lead to poor
recommendations.

Several strategies have been proposed to take into account the significance of a
similarity weight. The principle of these strategies is essentially the same: reduce
the magnitude of a similarity weight when this weight is computed using only a few
ratings. For instance, in Significance Weighting [25, 46], a user similarity weight
wuv is penalized by a factor proportional to the number of commonly rated item, if
this number is less than a given parameter � > 0:

w0
uv D

minfjIuvj; �g
�

� wuv: (2.23)

Likewise, an item similarity wij, obtained from a few ratings, can be adjusted as

w0
ij D

minfjUijj; �g
�

� wij: (2.24)

In [24, 25], it was found that using � � 25 could significantly improve the accuracy
of the predicted ratings, and that a value of 50 for � gave the best results. However,
the optimal value for this parameter is data dependent and should be determined
using a cross-validation approach.

A characteristic of significance weighting is its use of a threshold � determining
when a weight should be adjusted. A more continuous approach, described in [6],
is based on the concept of shrinkage where a weak or biased estimator can be
improved if it is “shrunk” toward a null-value. This approach can be justified using
a Bayesian perspective, where the best estimator of a parameter is the posterior
mean, corresponding to a linear combination of the prior mean of the parameter
(null-value) and an empirical estimator based fully on the data. In this case, the
parameters to estimate are the similarity weights and the null value is zero. Thus, a
user similarity wuv estimated on a few ratings is shrunk as

w0
uv D

jIuvj
jIuvj C ˇ

� wuv; (2.25)

where ˇ > 0 is a parameter whose value should also be selected using cross-
validation. In this approach, wuv is shrunk proportionally to ˇ=jIuvj, such that almost
no adjustment is made when jIuvj � ˇ. Item similarities can be shrunk in the same
way:

w0
ij D

jUijj
jUijj C ˇ

� wij; (2.26)

As reported in [6], a typical value for ˇ is 100.
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2.4.2.4 Considering the Variance of Ratings

Ratings made by two users on universally liked/disliked items may not be as
informative as those made for items with a greater rating variance. For instance,
most people like classic movies such as “The Godfather” so basing the weight
computation on such movies would produce artificially high values. Likewise, a user
that always rates items in the same way may provide less predictive information than
one whose preferences vary from one item to another.

A recommendation approach that addresses this problem is the Inverse User
Frequency [10]. Based on the information retrieval notion of Inverse Document
Frequency (IDF), a weight �i is given to each item i, in proportion to the log-ratio
of users that have rated i:

�i D log
jUj
jUij :

In the Frequency-Weighted Pearson Correlation (FWPC), the correlation between
the ratings given by two users u and v to an item i is weighted by �i:

FWPC.u; v/ D

P
i2Iuv

�i.rui � ru/.rvi � rv/r P
i2Iuv

�i.rui � ru/2
P

i2Iuv

�i.rvi � rv/2
: (2.27)

This approach, which was found to improve the prediction accuracy of a user-based
recommendation method [10], could also be adapted to the computation of item
similarities. More advanced strategies have also been proposed to consider rating
variance. One of these strategies, described in [31], computes the factors �i by
maximizing the average similarity between users.

2.4.2.5 Considering the Target Item

If the goal is to predict ratings with a user-based method, more reliable correlation
values can be obtained if the target item is considered in their computation.
In [5], the user-based PC similarity is extended by weighting the summation terms
corresponding to an item i by the similarity between i and the target item j:

WPCj.u; v/ D

P
i2Iuv

wij .rui � ru/.rvi � rv/r P
i2Iuv

wij .rui � ru/2
P

i2Iuv

wij .rvi � rv/2
: (2.28)

The item weights wij can be computed using PC similarity or obtained by consider-
ing the items’ content (e.g., the common genres for movies). Other variations of this
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similarity metric and their impact on the prediction accuracy are described in [5].
Note, however, that this model may require to recompute the similarity weights for
each predicted rating, making it less suitable for online recommender systems.

2.4.3 Neighborhood Selection

The number of nearest-neighbors to select and the criteria used for this selection can
also have a serious impact on the quality of the recommender system. The selection
of the neighbors used in the recommendation of items is normally done in two steps:
(1) a global filtering step where only the most likely candidates are kept, and (2) a
per prediction step which chooses the best candidates for this prediction.

2.4.3.1 Pre-filtering of Neighbors

In large recommender systems that can have millions of users and items, it is usually
not possible to store the (non-zero) similarities between each pair of users or items,
due to memory limitations. Moreover, doing so would be extremely wasteful as
only the most significant of these values are used in the predictions. The pre-
filtering of neighbors is an essential step that makes neighborhood-based approaches
practicable by reducing the amount of similarity weights to store, and limiting the
number of candidate neighbors to consider in the predictions. There are several ways
in which this can be accomplished:

• Top-N filtering: For each user or item, only a list of the N nearest-neighbors
and their respective similarity weight is kept. To avoid problems with efficiency
or accuracy, N should be chosen carefully. Thus, if N is too large, an excessive
amount of memory will be required to store the neighborhood lists and predicting
ratings will be slow. On the other hand, selecting a too small value for N may
reduce the coverage of the recommendation method, which causes some items to
be never recommended.

• Threshold filtering: Instead of keeping a fixed number of nearest-neighbors, this
approach keeps all the neighbors whose similarity weight’s magnitude is greater
than a given threshold wmin. While this is more flexible than the previous filtering
technique, as only the most significant neighbors are kept, the right value of wmin

may be difficult to determine.
• Negative filtering: In general, negative rating correlations are less reliable than

positive ones. Intuitively, this is because strong positive correlation between two
users is a good indicator of their belonging to a common group (e.g., teenagers,
science-fiction fans, etc.). However, although negative correlation may indicate
membership to different groups, it does not tell how different are these groups,
or whether these groups are compatible for some other categories of items.
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While experimental investigations [25, 26] have found negative correlations to
provide no significant improvement in the prediction accuracy, whether such
correlations can be discarded depends on the data.

Note that these three filtering approaches are not exclusive and can be combined
to fit the needs of the recommender system. For instance, one could discard all
negative similarities as well as those that are not in the top-N lists.

2.4.3.2 Neighbors in the Predictions

Once a list of candidate neighbors has been computed for each user or item, the
prediction of new ratings is normally made with the k-nearest-neighbors, that is, the
k neighbors whose similarity weight has the greatest magnitude. The choice of k can
also have a significant impact on the accuracy and performance of the system.

As shown in Table 2.3, the prediction accuracy observed for increasing values
of k typically follows a concave function. Thus, when the number of neighbors is
restricted by using a small k (e.g., k < 20), the prediction accuracy is normally
low. As k increases, more neighbors contribute to the prediction and the variance
introduced by individual neighbors is averaged out. As a result, the prediction
accuracy improves. Finally, the accuracy usually drops when too many neighbors
are used in the prediction (e.g., k > 50), due to the fact that the few strong local
relations are “diluted” by the many weak ones. Although a number of neighbors
between 20 to 50 is most often described in the literature, see e.g. [24, 26], the
optimal value of k should be determined by cross-validation.

On a final note, more serendipitous recommendations may be obtained at the cost
of a decrease in accuracy, by basing these recommendations on a few very similar
users. For example, the system could find the user most similar to the active one and
recommend the new item that has received the highest rated from this user.

2.5 Advanced Techniques

The neighborhood approaches based on rating correlation, such as the ones pre-
sented in the previous sections, have two important flaws:

• Limited coverage: Because rating correlation measures the similarity between
two users by comparing their ratings for the same items, users can be neighbors
only if they have rated common items. This assumption is very limiting, as users
having rated a few or no common items may still have similar preferences.
Moreover, since only items rated by neighbors can be recommended, the
coverage of such methods can also be limited. This limitation also applies to
item-based systems, when two items have only a few or no co-ratings.

• Sensitivity to sparse data: Another consequence of rating correlation, addressed
briefly in Sect. 2.3.5, is the fact that the accuracy of neighborhood-based
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recommendation methods suffers from the lack of available ratings. Sparsity
is a problem common to most recommender systems due to the fact that users
typically rate only a small proportion of the available items [7, 21, 60, 61]. This
is aggravated by the fact that users or items newly added to the system may have
no ratings at all, a problem known as cold-start [62]. When the rating data is
sparse, two users or items are unlikely to have common ratings and, consequently,
neighborhood-based approaches will predict ratings using a very limited number
of neighbors. Moreover, similarity weights may be computed using only a small
number of ratings, resulting in biased recommendations (see Sect. 2.4.2.3 for this
problem).

A common solution for these problems is to fill the missing ratings with default
values [10, 15], such as the middle value of the rating range, or the average user
or item rating. A more reliable approach is to use content information to fill out the
missing ratings [13, 21, 39, 47]. For instance, the missing ratings can be provided by
autonomous agents called filterbots [21, 39], that act as ordinary users of the system
and rate items based on some specific characteristics of their content. The missing
ratings can instead be predicted by a content-based approach [47]. Furthermore,
content similarity can also be used “instead of” or “in addition to” rating correlation
similarity to find the nearest-neighbors employed in the predictions [4, 43, 55, 66].
Finally, data sparsity can also be tackled by acquiring new ratings with active
learning techniques. In such techniques, the system interactively queries the user
to gain a better understanding of his or her preferences. A more detailed description
of active learning techniques can be found in Chap. 24 of this book.

These solutions, however, also have their own drawbacks. For instance, giving a
default value to missing ratings may induce bias in the recommendations. Also, item
content may not be available to compute ratings or similarities. This section presents
two approaches proposed for the problems of limited coverage and sparsity: graph-
based and learning-based and methods.

2.5.1 Graph-Based Methods

In graph-based approaches, the data is represented in the form of a graph where
nodes are users, items or both, and edges encode the interactions or similarities
between the users and items. For example, in Fig. 2.4, the data is modeled as a
bipartite graph where the two sets of nodes represent users and items, and an edge
connects user u to item i if there is a rating given to i by u in the system. A weight
can also be given to this edge, such as the value of its corresponding rating. In
another model, the nodes can represent either users or items, and an edge connects
two nodes if the ratings corresponding two these nodes are sufficiently correlated.
The weight of this edge can be the corresponding correlation value.

In these models, standard approaches based on correlation predict the rating of a
user u for an item i using only the nodes directly connected to u or i. Graph-based
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Fig. 2.4 A bipartite graph representation of the ratings of Fig. 2.1 (only ratings with value in
f2; 3; 4g are shown)

approaches, on the other hand, allow nodes that are not directly connected to
influence each other by propagating information along the edges of the graph. The
greater the weight of an edge, the more information is allowed to pass through it.
Also, the influence of a node on another should be less if the two nodes are further
away in the graph. These two properties, known as propagation and attenuation
[22, 30], are often observed in graph-based similarity measures.

The transitive associations captured by graph-based methods can be used to
recommend items in two different ways. In the first approach, the proximity of a
user u to an item i in the graph is used directly to evaluate the relevance of i to
u [16, 22, 30]. Following this idea, the items recommended to u by the system are
those that are the “closest” to u in the graph. On the other hand, the second approach
considers the proximity of two users or item nodes in the graph as a measure of
similarity, and uses this similarity as the weights wuv or wij of a neighborhood-based
recommendation method [16, 45].

2.5.1.1 Path-Based Similarity

In path-based similarity, the distance between two nodes of the graph is evaluated
as a function of the number of paths connecting the two nodes, as well as the length
of these paths.

Let R be once again the jUj�jIj rating matrix, where rui is the rating given by
user u to an item i. The adjacency matrix A of the user-item bipartite graph can be
defined from R as

A D
�

0 R>
R 0

�
:
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The association between a user u and an item i can be defined as the sum of the
weights of all distinctive paths connecting u to i (allowing nodes to appear more than
once in the path), whose length is no more than a given maximum length K. Note
that, since the graph is bipartite, K should be an odd number. In order to attenuate
the contribution of longer paths, the weight given to a path of length k is defined as
˛k, where ˛ 2 Œ0; 1�. Using the fact that the number of length k paths between pairs
of nodes is given by Ak, the user-item association matrix SK is

SK D
KX

kD1

˛kAk

D .I � ˛A/�1.˛A � ˛KAK/: (2.29)

This method of computing distances between nodes in a graph is known as the
Katz measure [35]. Note that this measure is closely related to the Von Neumann
Diffusion kernel [17, 38, 41]

KVND D
1X

kD0

˛kAk

D .I � ˛A/�1 (2.30)

and the Exponential Diffusion kernel

KED D
1X

kD0

1

kŠ
˛kAk

D exp.˛A/; (2.31)

where A0 D I.
In recommender systems that have a large number of users and items, computing

these association values may require extensive computational resources. In [30],
spreading activation techniques are used to overcome these limitations. Essentially,
such techniques work by first activating a selected subset of nodes as starting nodes,
and then iteratively activating the nodes that can be reached directly from the nodes
that are already active, until a convergence criterion is met.

Path-based methods, as well as the other graph-based approaches described in
this section, focus on finding relevant associations between users and items, not
predicting exact ratings. Therefore, such methods are better suited for item retrieval
tasks, where explicit ratings are often unavailable and the goal is to obtain a short
list of relevant items (i.e., the top-N recommendation problem).
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2.5.1.2 Random Walk Similarity

Transitive associations in graph-based methods can also be defined within a
probabilistic framework. In this framework, the similarity or affinity between users
or items is evaluated as a probability of reaching these nodes in a random walk.
Formally, this can be described with a first-order Markov process defined by a set
of n states and a n�n transition probability matrix P such that the probability of
jumping from state i to j at any time-step t is

pij D Pr
�
s.tC1/ D jjs.t/ D i

�
:

Denote �.t/ the vector containing the state probability distribution of step t, such
that �i.t/ D Pr .s.t/ D i/, the evolution of the Markov chain is characterized by

�.tC1/ D P>�.t/:

Moreover, under the condition that P is row-stochastic, i.e.
P

j pij D 1 for all i,
the process converges to a stable distribution vector �.1/ corresponding to the
positive eigenvector of P> with an eigenvalue of 1. This process is often described in
the form of a weighted graph having a node for each state, and where the probability
of jumping from a node to an adjacent node is given by the weight of the edge
connecting these nodes.

Itemrank

A recommendation approach, based on the PageRank algorithm for ranking Web
pages [11], is ItemRank [22]. This approach ranks the preferences of a user u for new
items i as the probability of u to visit i in a random walk of a graph in which nodes
correspond to the items of the system, and edges connects items that have been rated
by common users. The edge weights are given by the jIj�jIj transition probability
matrix P for which pij D jUijj=jUij is the estimated conditional probability of a user
to rate and item j if it has rated an item i.

As in PageRank, the random walk can, at any step t, either jump using P to an
adjacent node with fixed probability ˛, or “teleport” to any node with probability
.1 � ˛/. Let ru be the uth row of the rating matrix R, the probability distribution
of user u to teleport to other nodes is given by vector du D ru=jjrujj. Following
these definitions, the state probability distribution vector of user u at step tC1 can
be expressed recursively as

�u.tC1/ D ˛P>�u.t/ C .1�˛/du: (2.32)

For practical reasons, �u.1/ is usually obtained with a procedure that first
initializes the distribution as uniform, i.e. �u.0/ D 1

n 1n, and then iteratively updates
�u, using (2.32), until convergence. Once �u.1/ has been computed, the system
recommends to u the item i for which �ui is the highest.
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Average First-Passage/Commute Time

Other distance measures based on random walks have been proposed for the
recommendation problem. Among these are the average first-passage time and
the average commute time [16, 17]. The average first-passage time m.jji/ [52] is
the average number of steps needed by a random walker to reach a node j for the
first time, when starting from a node i ¤ j. Let P be the n�n transition probability
matrix, m.jji/ can be obtained expressed recursively as

m.jji/ D
8<
:

0 ; if i D j

1C
nP

kD1

pik m.jjk/ ; otherwise

A problem with the average first-passage time is that it is not symmetric. A related
measure that does not have this problem is the average commute time n.i; j/ D
m.jji/ C m.ijj/ [19], corresponding to the average number of steps required by a
random walker starting at node i ¤ j to reach node j for the first time and go back
to i. This measure has several interesting properties. Namely, it is a true distance
measure in some Euclidean space [19], and is closely related to the well-known
property of resistance in electrical networks and to the pseudo-inverse of the graph
Laplacian matrix [16].

In [16], the average commute time is used to compute the distance between
the nodes of a bipartite graph representing the interactions of users and items in
a recommender system. For each user u there is a directed edge from u to every item
i 2 Iu, and the weight of this edge is simply 1=jIuj. Likewise, there is a directed
edge from each item i to every user u 2 Ui, with weight 1=jUij. Average commute
times can be used in two different ways: (1) recommending to u the item i for which
n.u; i/ is the smallest, or (2) finding the users nearest to u, according to the commute
time distance, and then suggest to u the item most liked by these users.

2.5.2 Learning-Based Methods

In graph-based methods, the similarity or affinity between users and items in a
network is evaluated directly from the network. Learning-based methods, on the
other hand, obtain these values by defining a parameteric model that describes the
relation between users, items or both, and then computes the model parameters
through an optimization process.

Using a learning-based method has significant advantages. First, such methods
can capture high-level patterns and trends in the data, are generally more robust to
outliers, and are known to generalize better than approaches solely based on local
relations. In recommender systems, this translates into greater accuracy and stability
in the recommendations [40]. Also, because the relations between users and items
are encoded in a limited set of parameters, such methods normally require less
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memory than other types of approaches. Finally, since the parameters are usually
learned offline, the online recommendation process is generally faster.

Learning-based methods that use neighborhood or similarity information can
be divided in two categories: factorization methods and adaptive neighborhood
learning methods. These categories are presented in the following sections.

2.5.2.1 Factorization Methods

Factorization methods [6, 7, 20, 40, 60, 68, 69] address the problems of limited
coverage and sparsity by projecting users and items into a reduced latent space
that captures their most salient features. Because users and items are compared
in this dense subspace of high-level features, instead of the “rating space”, more
meaningful relations can be discovered. In particular, a relation between two users
can be found, even though these users have rated different items. As a result, such
methods are generally less sensitive to sparse data [6, 7, 60].

There are essentially two ways in which factorization can be used to improve
recommender systems: (1) factorization of a sparse similarity matrix, and (2)
factorization of a user-item rating matrix.

Factorizing the Similarity Matrix

Neighborhood similarity measures like the correlation similarity are usually very
sparse since the average number of ratings per user is much less than the total
number of items. A simple solution to densify a sparse similarity matrix is to
compute a low-rank approximation of this matrix with a factorization method.

Let W be a symmetric matrix of rank n representing either user or item
similarities. To simplify the presentation, we will suppose the latter case. We wish
to approximate W with a matrix OW D QQ> of lower rank k < n, by minimizing the
following objective:

E.Q/ D jjW � QQ>jj2F (2.33)

D
X

i;j

�
wij � qiq>

j

�2
;

where jjMjjF D
qP

i;j m2
ij is the matrix Frobenius norm. Matrix OW can be seen as a

“compressed” and less sparse version of W. Finding the factor matrix Q is equivalent
to computing the eigenvalue decomposition of W:

W D VDV>;
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where D is a diagonal matrix containing the jIj eigenvalues of W, and V is a jIj�jIj
orthogonal matrix containing the corresponding eigenvectors. Let Vk be a matrix
formed by the k principal (normalized) eigenvectors of W, which correspond to the
axes of the k-dimensional latent subspace. The coordinates qi 2 R

k of an item i in
this subspace is given by the ith row of matrix Q D VkD1=2

k . Furthermore, the item
similarities computed in this latent subspace are given by matrix

OW D QQ>

D VkDkV>
k : (2.34)

This approach was used to recommend jokes in the Eigentaste system [20].
In Eigentaste, a matrix W containing the PC similarities between pairs of items
is decomposed to obtain the latent subspace defined by the k principal eigenvectors
of W. A user u, represented by the uth row ru of the rating matrix R, is projected in
the plane defined by Vk:

r0
u D ruVk:

In an offline step, the users of the system are clustered in this subspace using a
recursive subdivision technique. Then, the rating of user u for an item i is evaluated
as the mean rating for i made by users in the same cluster as u. This strategy is
related to the well-known spectral clustering method [64].

Factorizing the Rating Matrix

The problems of cold-start and limited coverage can also be alleviated by factorizing
the user-item rating matrix. Once more, we want to approximate the jUj�jIj rating
matrix R of rank n by a matrix OR D PQ> of rank k < n, where P is a jUj�k matrix
of users factors and Q a jIj�k matrix of item factors. This task can be formulated as
finding matrices P and Q which minimize the following function:

E.P; Q/ D jjR � PQ>jj2F
D
X
u;i

�
rui � puq>

i

�2
: (2.35)

The optimal solution can be obtained by the Singular Value Decomposition
(SVD) of R: P D UkD1=2

k and Q D VkD1=2
k , where Dk is a diagonal matrix containing

the k largest singular values of R, and Uk; Vk respectively contain the left and right
singular vectors corresponding to these values.

However, there is significant problem with applying SVD directly to the rating
matrix R: most values rui of R are undefined, since there may not be a rating given
to i by u. Although it is possible to assign a default value to rui, as mentioned above,
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this would introduce a bias in the data. More importantly, this would make the large
matrix R dense and, consequently, render impractical the SVD decomposition of R.
A common solution to this problem is to learn the model parameters using only the
known ratings [6, 40, 67, 69]. For instance, suppose the rating of user u for item i is
estimated as

Orui D bu C bi C puq>
i ; (2.36)

where bu and bi are parameters representing the user and item rating biases. The
model parameters can be learned by minimizing the following objective function:

E.P; Q; b/ D
X

rui2R
.rui � Orui/

2 C �
�jjpujj2 C jjqijj2 C b2

u C b2
i

�
: (2.37)

The second term of the function is as a regularization term added to avoid overfitting.
Parameter � controls the level of regularization. A more comprehensive description
of this recommendation approach can be found in Chap. 3 of this book.

The SVD model of Eq. (2.36) can be transformed into a similarity-based method
by supposing that the profile of a user u is determined implicitly by the items he or
she has rated. Thus, the factor vector of u can be defined as a weighted combination
of the factor vectors sj corresponding to the items j rated by this user:

pu D jIuj�˛
X
j2Iu

cuj sj: (2.38)

In this formulation, ˛ is a normalization constant typically set to ˛ D 1=2, and cuj

is a weight representing the contribution of item j to the profile of u. For instance, in
the SVD++ model [40] this weight is defined as the bias corrected rating of u for
item j: cuj D rui� bu� bj. Other approaches, such as the FISM [34] and NSVD [53]
models, instead use constant weights: cuj D 1.

Using the formulation of Eq. (2.38), a rating rui is predicted as

Orui D bu C bi C jIuj�˛
X
j2Iu

cuj sjq>
i : (2.39)

Like the standard SVD model, the parameters of this model can be learned by
minimizing the objective function of Eq. (2.37), for instance, using gradient descent
optimization.

Note that, instead of having both user and item factors, we now have two different
sets of item factors, i.e., qi and sj. These vectors can be interpreted as the factors of
an asymmetric item-item similarity matrix W, where

wij D siq>
j : (2.40)
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As mentioned in [40], this similarity-based factorization approach has several
advantages over the traditional SVD model. First, since there are typically more
users than items in a recommender system, replacing the user factors by a
combination of item factors reduces the number of parameters in the model, which
makes the learning process faster and more robust. Also, by using item similarities
instead of user factors, the system can handle new users without having to re-train
the model. Finally, as in item-similarity neighborhood methods, this model makes
it possible to justify a rating to a user by showing this user the items that were most
involved in the prediction.

In FISM [34], the prediction of a rating rui is made without considering the
factors of i:

Orui D bu C bi C
�jIuj � 1

��˛
X

j2Iunfig
sjq>

i : (2.41)

This modification, which corresponds to ignoring the diagonal entries in the item
similarity matrix, avoids the problem of having an item recommending itself and
has been shown to give better performance when the number of factors is high.

2.5.2.2 Neighborhood-Learning Methods

Standard neighborhood-based recommendation algorithms determine the neighbor-
hood of users or items directly from the data, using some pre-defined similarity
measure like PC. However, recent developments in the field of item recommendation
have shown the advantage of learning the neighborhood automatically from the data,
instead of using a pre-defined similarity measure [37, 49, 56].

Sparse Linear Neighborhood Model

A representative neighborhood-learning recommendation method is the SLIM
algorithm, developed by Ning et al. [50]. In SLIM, a new rating is predicted as a
sparse aggregation of existing ratings in a user’s profile,

Orui D ruw>
i ; (2.42)

where ru is the uth row of the rating matrix R and wj is a sparse row vector containing
jIj aggregation coefficients. Essentially, the non-zero entries in wi correspond to the
neighbor items of an item i.

The neighborhood parameters are learned by minimizing the squared prediction
error. Standard regularization and sparsity are enforced by penalizing the `2-norm
and `1-norm of the parameters. The combination of these two types of regularizers
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in a regression problem is known as elastic net regularization [73]. This learning
process can be expressed as the following optimization problem:

minimize
W

1

2
kR � RWk2F C

ˇ

2
kWk2F C �kWk1

subject to W � 0

diag.W/ D 0:

(2.43)

Parameters ˇ and � control the amount of each type of regularization. Moreover,
the non-negativity constraint on W imposes the relations between neighbor items to
be positive. The constraint diag.W/ D 0 is also added to the model to avoid trivial
solutions (e.g., W corresponding to the identity matrix) and ensure that rui is not
used to compute Orui during the recommendation process.

Sparse Neighborhood with Side Information

Side information, such as user profile attributes (e.g., age, gender, location) or item
descriptions/tags, is becoming increasingly available in e-commerce applications.
Properly exploited, this rich source of information can significantly improve the
performance of conventional recommender systems [1, 3, 65, 71].

Item side information can be integrated in the SLIM model by supposing that
the co-rating profile of two items is correlated to the properties encoded in their
side information [51]. To enforce such correlations in the model, an additional
requirement is added, where both the user-item rating matrix R and the item side
information matrix F should be reproduced by the same sparse linear aggregation.
That is, in addition to satisfying R � RW, the coefficient matrix W should also
satisfy F � FW. This is achieved by solving the following optimization problem:

minimize
W

1

2
kR � RWk2F C

˛

2
kF � FWk2F C

ˇ

2
kWk2F C �kWk1

subject to W � 0;

diag.W/ D 0:

(2.44)

The parameter ˛ is used to control the relative importance of the user-item rating
information R and the item side information F when they are used to learn W.

In some cases, requiring that the aggregation coefficients be the same for both R
and F can be too strict. An alternate model relaxes this constraints by imposing these
two sets of aggregation coefficients to be similar. Specifically, it uses an aggregation
coefficient matrix Q such that F � FQ and W � Q. Matrices W and Q are learned
as the minimizers of the following optimization problem:
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minimize
W;Q

1

2
kR � RWk2F C

˛

2
kF � FQk2F C

ˇ1

2
kW � Qk2F

C ˇ2

2

�kWk2F C kQk2F� C �
�kWk1 C kQk1�

subject to W; Q � 0;

diag.W/ D 0; diag.Q/ D 0:

(2.45)

Parameter ˇ1 controls how much W and Q are allowed to be different from each
other.

In [51], item reviews in the form of short texts were used as side information
in the models described above. These models were shown to outperform the
SLIM method without side information, as well as other approaches that use side
information, in the top-N recommendation task.

2.6 Conclusion

One of the earliest approaches proposed for the task of item recommendation,
neighborhood-based recommendation still ranks among the most popular methods
for this problem. Although quite simple to describe and implement, this recommen-
dation approach has several important advantages, including its ability to explain
a recommendation with the list of the neighbors used, its computational and space
efficiency which allows it to scale to large recommender systems, and its marked
stability in an online setting where new users and items are constantly added.
Another of its strengths is its potential to make serendipitous recommendations that
can lead users to the discovery of unexpected, yet very interesting items.

In the implementation of a neighborhood-based approach, one has to make
several important decisions. Perhaps the one having the greatest impact on the accu-
racy and efficiency of the recommender system is choosing between a user-based
and an item-based neighborhood method. In typical commercial recommender
systems, where the number of users far exceeds the number of available items,
item-based approaches are typically preferred since they provide more accurate
recommendations, while being more computationally efficient and requiring less
frequent updates. On the other hand, user-based methods usually provide more
original recommendations, which may lead users to a more satisfying experience.
Moreover, the different components of a neighborhood-based method, which
include the normalization of ratings, the computation of the similarity weights and
the selection of the nearest-neighbors, can also have a significant influence on the
quality of the recommender system. For each of these components, several different
alternatives are available. Although the merit of each of these has been described
in this document and in the literature, it is important to remember that the “best”
approach may differ from one recommendation setting to the next. Thus, it is
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important to evaluate them on data collected from the actual system, and in light
of the particular needs of the application.

Finally, when the performance of a neighborhood-based approach suffers from
the problems of limited coverage and sparsity, one may explore techniques based on
dimensionality reduction or graphs. Dimensionality reduction provides a compact
representation of users and items that captures their most significant features. An
advantage of such approach is that it allows to obtain meaningful relations between
pairs of users or items, even though these users have rated different items, or these
items were rated by different users. On the other hand, graph-based techniques
exploit the transitive relations in the data. These techniques also avoid the problems
of sparsity and limited coverage by evaluating the relationship between users or
items that are not “directly connected”. However, unlike dimensionality reduction,
graph-based methods also preserve some of the “local” relations in the data, which
are useful in making serendipitous recommendations.

References

1. Adams, R.P., Dahl, G.E., Murray, I.: Incorporating side information into probabilistic matrix
factorization using Gaussian processes. In: P. Grünwald, P. Spirtes (eds.) Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence, pp. 1–9 (2010)

2. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A survey
of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data
Engineering 17(6), 734–749 (2005)

3. Agarwal, D., Chen, B.C., Long, B.: Localized factor models for multi-context recommen-
dation. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’11, pp. 609–617. ACM, New York, NY, USA (2011).
DOI http://doi.acm.org/10.1145/2020408.2020504. URL http://doi.acm.org/10.1145/2020408.
2020504
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Chapter 3
Advances in Collaborative Filtering

Yehuda Koren and Robert Bell

3.1 Introduction

Collaborative filtering recommender system (CF) methods produce user specific
recommendations of items based on patterns of ratings or usage (e.g., purchases)
without need for exogenous information about either items or users. While well
established methods work adequately for many purposes, we present several
recent extensions available to analysts who are looking for the best possible
recommendations.

The Netflix Prize competition that began in October 2006 has fueled much
recent progress in the field of collaborative filtering. For the first time, the research
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community gained access to a large-scale, industrial strength data set of 100
million movie ratings—attracting thousands of scientists, students, engineers and
enthusiasts to the field. The nature of the competition has encouraged rapid
development, where innovators built on each generation of techniques to improve
prediction accuracy. Because all methods are judged by the same rigid yardstick on
common data, the evolution of more powerful models has been especially efficient.

Recommender systems rely on various types of input. Most convenient is high
quality explicit feedback, where users directly report on their interest in products.
For example, Netflix collects star ratings for movies and TiVo users indicate their
preferences for TV shows by hitting thumbs-up/down buttons.

Because explicit feedback is not always available, some recommenders infer user
preferences from the more abundant implicit feedback, which indirectly reflects
opinion through observing user behavior [20]. Types of implicit feedback include
purchase history, browsing history, search patterns, or even mouse movements.
For example, a user who purchased many books by the same author probably
likes that author. This chapter focuses on models suitable for explicit feedback.
Nonetheless, we recognize the importance of implicit feedback, an especially
valuable information source for users who do not provide much explicit feedback.
Hence, we show how to address implicit feedback within the models as a secondary
source of information.

In order to establish recommendations, CF systems need to relate two funda-
mentally different entities: items and users. There are two primary approaches to
facilitate such a comparison, which constitute the two main techniques of CF: the
neighborhood approach and latent factor models. Neighborhood methods focus on
relationships between items or, alternatively, between users. An item-item approach
models the preference of a user to an item based on ratings of similar items by the
same user. Latent factor models, such as matrix factorization (aka, SVD), comprise
an alternative approach by transforming both items and users to the same latent
factor space. The latent space tries to explain ratings by characterizing both products
and users on factors automatically inferred from user feedback.

Producing more accurate prediction methods requires deepening their founda-
tions and reducing reliance on arbitrary decisions. In this chapter, we describe a
variety of recent improvements to the primary CF modeling techniques. Yet, the
quest for more accurate models goes beyond this. At least as important is the
identification of all the signals, or features, available in the data. Conventional
techniques address the sparse data of user-item ratings. Accuracy significantly
improves by also utilising other sources of information. One prime example includes
all kinds of temporal effects reflecting the dynamic, time-drifting nature of user-item
interactions. No less important is listening to hidden feedback such as which items
users chose to rate (regardless of rating values). Rated items are not selected at
random, but rather reveal interesting aspects of user preferences, going beyond the
numerical values of the ratings.

Section 3.3 surveys matrix factorization techniques, which combine implementa-
tion convenience with a relatively high accuracy. This has made them the preferred
technique for addressing the largest publicly available dataset—the Netflix data.
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This section describes the theory and practical details behind those techniques.
In addition, much of the strength of matrix factorization models stems from their
natural ability to handle additional features of the data, including implicit feedback
and temporal information. This section describes in detail how to enhance matrix
factorization models to address such features.

Section 3.4 turns attention to neighborhood methods. The basic methods in
this family are well known, and to a large extent are based on heuristics. Some
recently proposed techniques address shortcomings of neighborhood techniques
by suggesting more rigorous formulations, thereby improving prediction accuracy.
We continue at Sect. 3.5 with a more advanced method, which uses the insights
of common neighborhood methods, with global optimization techniques typical of
factorization models. This method allows lifting the limit on neighborhood size, and
also addressing implicit feedback and temporal dynamics. The resulting accuracy
is close to that of matrix factorization models, while offering some practical
advantages.

Pushing the foundations of the models to their limits reveals surprising links
among seemingly unrelated techniques. We elaborate on this in Sect. 3.6 to show
that, at their limits, user-user and item-item neighborhood models may converge
to a single model. Furthermore, at that point, both become equivalent to a simple
matrix factorization model. The connections reduce the relevance of some previous
distinctions such as the traditional broad categorization of matrix factorization as
“model based” and neighborhood models as “memory based”.

3.2 Preliminaries

We are given ratings for m users (aka customers) and n items (aka products). We
reserve special indexing letters to distinguish users from items: for users u; v, and
for items i; j; l. A rating rui indicates the preference by user u of item i, where high
values mean stronger preference. For example, values can be integers ranging from
1 (star) indicating no interest to 5 (stars) indicating a strong interest. We distinguish
predicted ratings from known ones, by using the notation Orui for the predicted value
of rui.

The scalar tui denotes the time of rating rui. One can use different time units,
based on what is appropriate for the application at hand. For example, when time is
measured in days, then tui counts the number of days elapsed since some early time
point. Usually the vast majority of ratings are unknown. For example, in the Netflix
data 99 % of the possible ratings are missing because a user typically rates only a
small portion of the movies. The .u; i/ pairs for which rui is known are stored in the
set K D f.u; i/ j rui is knowng. Each user u is associated with a set of items denoted
by R.u/, which contains all the items for which ratings by u are available. Likewise,
R.i/ denotes the set of users who rated item i. Sometimes, we also use a set denoted
by N.u/, which contains all items for which u provided an implicit preference (items
that he rented/purchased/watched, etc.).
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Models for the rating data are learnt by fitting the previously observed ratings.
However, our goal is to generalize those in a way that allows us to predict future,
unknown ratings. Thus, caution should be exercised to avoid overfitting the observed
data. We achieve this by regularizing the learnt parameters, whose magnitudes
are penalized. Regularization is controlled by constants which are denoted as:
�1; �2; : : : Exact values of these constants are determined by cross validation.
As they grow, regularization becomes heavier.

3.2.1 Baseline Predictors

CF models try to capture the interactions between users and items that produce
the different rating values. However, much of the observed rating values are due
to effects associated with either users or items, independently of their interaction.
A principal example is that typical CF data exhibit large user and item biases—i.e.,
systematic tendencies for some users to give higher ratings than others, and for some
items to receive higher ratings than others.

We will encapsulate those effects, which do not involve user-item interaction,
within the baseline predictors (also known as biases). Because these predictors
tend to capture much of the observed signal, it is vital to model them accurately.
Such modeling enables isolating the part of the signal that truly represents user-item
interaction, and subjecting it to more appropriate user preference models.

Denote by � the overall average rating. A baseline prediction for an unknown
rating rui is denoted by bui and accounts for the user and item effects:

bui D �C bu C bi (3.1)

The parameters bu and bi indicate the observed deviations of user u and item
i, respectively, from the average. For example, suppose that we want a baseline
predictor for the rating of the movie Titanic by user Joe. Now, say that the
average rating over all movies, �, is 3.7 stars. Furthermore, Titanic is better than
an average movie, so it tends to be rated 0.5 stars above the average. On the other
hand, Joe is a critical user, who tends to rate 0.3 stars lower than the average. Thus,
the baseline predictor for Titanic’s rating by Joe would be 3.9 stars by calculating
3:7�0:3C0:5. In order to estimate bu and bi one can solve the least squares problem

min
b�

X
.u;i/2K

.rui � � � bu � bi/
2 C �1.

X
u

b2
u C

X
i

b2
i / :

Here, the first term
P

.u;i/2K.rui � �C bu C bi/
2 strives to find bu’s and bi’s that fit

the given ratings. The regularizing term—�1.
P

u b2
u C

P
i b2

i /—avoids overfitting
by penalizing the magnitudes of the parameters. This least square problem can be
solved fairly efficiently by the method of stochastic gradient descent (described in
Sect. 3.3.1).
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For the Netflix data the mean rating (�) is 3.6. As for the learned user biases (bu),
their average is 0.044 with standard deviation of 0.41. The average of their absolute
values (jbuj) is: 0.32. The learned item biases (bi) average to �0:26 with a standard
deviation of 0.48. The average of their absolute values (jbij) is 0.43.

An easier, yet somewhat less accurate way to estimate the parameters is by
decoupling the calculation of the bi’s from the calculation of the bu’s. First, for
each item i we set

bi D
P

u2R.i/.rui � �/

�2 C jR.i/j :

Then, for each user u we set

bu D
P

i2R.u/.rui � � � bi/

�3 C jR.u/j :

Averages are shrunk towards zero by using the regularization parameters, �2; �3,
which are determined by cross validation. Typical values on the Netflix dataset are:
�2 D 25; �3 D 10.

In Sect. 3.3.3.1, we show how the baseline predictors can be improved by also
considering temporal dynamics within the data.

3.2.2 The Netflix Data

In order to compare the relative accuracy of algorithms described in this chapter, we
evaluated all of them on the Netflix data of more than 100 million date-stamped
movie ratings performed by anonymous Netflix customers between November,
1999 and December 2005 [5]. Ratings are integers ranging between 1 and 5. The
data spans 17,770 movies rated by over 480,000 users. Thus, on average, a movie
receives 5600 ratings, while a user rates 208 movies, with substantial variation
around each of these averages. To maintain compatibility with results published by
others, we adopt some standards that were set by Netflix. First, quality of the results
is usually measured by the root mean squared error (RMSE):s X

.u;i/2TestSet

.rui � Orui/2=jTestSetj

a measure that puts more emphasis on large errors compared with the alternative of
mean absolute error. (Consider Chap. 8 for a comprehensive survey of alternative
evaluation metrics of recommender systems.)

We report results on a test set provided by Netflix (also known as the Quiz set),
which contains over 1.4 million recent ratings. Compared with the training data, the
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test set contains many more ratings by users that do not rate much and are therefore
harder to predict. In a way, this represents real requirements for a CF system, which
needs to predict new ratings from older ones, and to equally address all users, not
just the heavy raters.

The Netflix data is part of the Netflix Prize competition, where the benchmark
is Netflix’s proprietary system, Cinematch, which achieved a RMSE of 0.9514 on
the test set. The grand prize was awarded to a team that managed to drive this
RMSE below 0.8563 (10 % improvement) after almost 3 years of extensive efforts.
Achievable RMSE values on the test set lie in a quite compressed range, as evident
by the difficulty to win the grand prize. Nonetheless, there is evidence that small
improvements in RMSE terms can have a significant impact on the quality of the
top few presented recommendations [16, 17].

3.2.3 Implicit Feedback

This chapter is centered on explicit user feedback. Nonetheless, when additional
sources of implicit feedback are available, they can be exploited for better under-
standing user behavior. This helps to combat data sparseness and can be particularly
helpful for users with few explicit ratings. We describe extensions for some of the
models to address implicit feedback.

For a dataset such as the Netflix data, the most natural choice for implicit
feedback would probably be movie rental history, which tells us about user
preferences without requiring them to explicitly provide their ratings. For other
datasets, browsing or purchase history could be used as implicit feedback. However,
such data is not available to us for experimentation. Nonetheless, a less obvious kind
of implicit data does exist within the Netflix dataset. The dataset does not only tell us
the rating values, but also which movies users rate, regardless of how they rated these
movies. In other words, a user implicitly tells us about her preferences by choosing
to voice her opinion and vote a (high or low) rating. This creates a binary matrix,
where “1” stands for “rated”, and “0” for “not rated”. While this binary data may not
be as informative as other independent sources of implicit feedback, incorporating
this kind of implicit data does significantly improves prediction accuracy. The
benefit of using the binary data is closely related to the fact that ratings are not
missing at random; users deliberately choose which items to rate (see Marlin et al.
[19]).

3.3 Matrix Factorization Models

Latent factor models approach collaborative filtering with the holistic goal to
uncover latent features that explain observed ratings; examples include pLSA
[14], neural networks [22], Latent Dirichlet Allocation [7], and models that are
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induced by factorization of the user-item ratings matrix (also known as SVD-based
models). Recently, matrix factorization models have gained popularity, thanks to
their attractive accuracy and scalability.

In information retrieval, SVD is well established for identifying latent semantic
factors [9]. However, applying SVD to explicit ratings in the CF domain raises dif-
ficulties due to the high portion of missing values. Conventional SVD is undefined
when knowledge about the matrix is incomplete. Moreover, carelessly addressing
only the relatively few known entries is highly prone to overfitting. Earlier works
relied on imputation [15, 24], which fills in missing ratings and makes the rating
matrix dense. However, imputation can be very expensive as it significantly
increases the amount of data. In addition, the data may be considerably distorted
due to inaccurate imputation. Hence, more recent works [4, 6, 10, 16, 21, 22, 26]
suggested modeling directly only the observed ratings, while avoiding overfitting
through an adequate regularized model.

In this section we describe several matrix factorization techniques, with increas-
ing complexity and accuracy. We start with the basic model—“SVD”. Then, we
show how to integrate other sources of user feedback in order to increase prediction
accuracy, through the “SVD++ model”. Finally we deal with the fact that customer
preferences for products may drift over time. Product perception and popularity are
constantly changing as new selection emerges. Similarly, customer inclinations are
evolving, leading them to ever redefine their taste. This leads to a factor model that
addresses temporal dynamics for better tracking user behavior.

3.3.1 SVD

Matrix factorization models map both users and items to a joint latent factor
space of dimensionality f , such that user-item interactions are modeled as inner
products in that space. The latent space tries to explain ratings by characterizing
both products and users on factors automatically inferred from user feedback. For
example, when the products are movies, factors might measure obvious dimensions
such as comedy vs. drama, amount of action, or orientation to children; less well
defined dimensions such as depth of character development or “quirkiness”; or
completely uninterpretable dimensions.

Accordingly, each item i is associated with a vector qi 2 R
f , and each user u is

associated with a vector pu 2 R
f . For a given item i, the elements of qi measure the

extent to which the item possesses those factors, positive or negative. For a given
user u, the elements of pu measure the extent of interest the user has in items that
are high on the corresponding factors (again, these may be positive or negative).
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The resulting dot product,1 qT
i pu, captures the interaction between user u and item

i—i.e., the overall interest of the user in characteristics of the item. The final rating
is created by also adding in the aforementioned baseline predictors that depend only
on the user or item. Thus, a rating is predicted by the rule

Orui D �C bi C bu C qT
i pu : (3.2)

In order to learn the model parameters (bu; bi; pu and qi) we minimize the
regularized squared error

min
b�;q�;p�

X
.u;i/2K

.rui � � � bi � bu � qT
i pu/2 C �4.b2

i C b2
u C kqik2 C kpuk2/ :

The constant �4, which controls the extent of regularization, is usually determined
by cross validation. Minimization is typically performed by either stochastic
gradient descent or alternating least squares.

Alternating least squares techniques rotate between fixing the pu’s to solve for the
qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken as
a constant, the optimization problem is quadratic and can be optimally solved; see
[2, 4].

An easy stochastic gradient descent optimization was popularized by Funk [10]
and successfully practiced by many others [16, 21, 22, 26]. The algorithm loops
through all ratings in the training data. For each given rating rui, a prediction (Orui) is

made, and the associated prediction error eui
defD rui � Orui is computed. For a given

training case rui, we modify the parameters by moving in the opposite direction of
the gradient, yielding:

• bu  bu C � 	 .eui � �4 	 bu/

• bi  bi C � 	 .eui � �4 	 bi/

• qi  qi C � 	 .eui 	 pu � �4 	 qi/

• pu  pu C � 	 .eui 	 qi � �4 	 pu/

When evaluating the method on the Netflix data, we used the following values
for the meta parameters: � D 0:005; �4 D 0:02. Henceforth, we dub this method
“SVD”.

A general remark is in place. One can expect better accuracy by dedicating
separate learning rates (� ) and regularization (�) to each type of learned parameter.
Thus, for example, it is advised to employ distinct learning rates to user biases,
item biases and the factors themselves. A good, intensive use of such a strategy is
described in Takács et al. [27]. When producing exemplary results for this chapter,
we did not use such a strategy consistently, and in particular many of the given
constants are not fully tuned.

1Recall that the dot product between two vectors x; y 2 R
f is defined as: xT y D Pf

kD1 xk � yk.
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3.3.2 SVD++

Prediction accuracy is improved by considering also implicit feedback, which
provides an additional indication of user preferences. This is especially helpful
for those users that provided much more implicit feedback than explicit one. As
explained earlier, even in cases where independent implicit feedback is absent, one
can capture a significant signal by accounting for which items users rate, regardless
of their rating value. This led to several methods [16, 21, 23] that modeled a user
factor by the identity of the items he/she has rated. Here we focus on the SVD++
method [16], which was shown to offer accuracy superior to SVD.

To this end, a second set of item factors is added, relating each item i to a factor
vector yi 2 R

f . Those new item factors are used to characterize users based on the
set of items that they rated. The exact model is as follows:

Orui D �C bi C bu C qT
i

0
@pu C jR.u/j� 1

2

X
j2R.u/

yj

1
A (3.3)

The set R.u/ contains the items rated by user u.
Now, a user u is modeled as pu C jR.u/j� 1

2
P

j2R.u/ yj. We use a free user-
factors vector, pu, much like in (3.2), which is learnt from the given explicit ratings.
This vector is complemented by the sum jR.u/j� 1

2
P

j2R.u/ yj, which represents
the perspective of implicit feedback. Since the yj’s are centered around zero (by the

regularization), the sum is normalized by jR.u/j� 1
2 , in order to stabilize its variance

across the range of observed values of jR.u/j.
Model parameters are determined by minimizing the associated regularized

squared error function through stochastic gradient descent. We loop over all known
ratings in K, computing:

• bu  bu C � 	 .eui � �5 	 bu/

• bi  bi C � 	 .eui � �5 	 bi/

• qi  qi C � 	 .eui 	 .pu C jR.u/j� 1
2
P

j2R.u/ yj/ � �6 	 qi/

• pu  pu C � 	 .eui 	 qi � �6 	 pu/

• 8j 2 R.u/ W yj  yj C � 	 .eui 	 jR.u/j� 1
2 	 qi � �6 	 yj/

When evaluating the method on the Netflix data, we used the following values
for the meta parameters: � D 0:007; �5 D 0:005; �6 D 0:015. It is beneficial
to decrease step sizes (the � ’s) by a factor of 0.9 after each iteration. The iterative
process runs for around 30 iterations until convergence.

Several types of implicit feedback can be simultaneously introduced into the
model by using extra sets of item factors. For example, if a user u has a certain kind
of implicit preference to the items in N1.u/ (e.g., she rented them), and a different
type of implicit feedback to the items in N2.u/ (e.g., she browsed them), we could
use the model
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Orui D �C bi C bu C qT
i

0
@pu C jN1.u/j� 1

2

X
j2N1.u/

y.1/
j C jN2.u/j� 1

2

X
j2N2.u/

y.2/
j

1
A :

(3.4)

The relative importance of each source of implicit feedback will be automatically
learned by the algorithm by its setting of the respective values of model parameters.

3.3.3 Time-Aware Factor Model

The matrix-factorization approach lends itself well to modeling temporal effects,
which can significantly improve its accuracy. Decomposing ratings into distinct
terms allows us to treat different temporal aspects separately. Specifically, we
identify the following effects that each vary over time: (1) user biases bu.t/, (2)
item biases bi.t/, and (3) user preferences pu.t/. On the other hand, we specify static
item characteristics, qi, because we do not expect significant temporal variation for
items, which, unlike humans, are static in nature. We start with a detailed discussion
of the temporal effects that are contained within the baseline predictors.

3.3.3.1 Time Changing Baseline Predictors

Much of the temporal variability is included within the baseline predictors, through
two major temporal effects. The first addresses the fact that an item’s popularity
may change over time. For example, movies can go in and out of popularity as
triggered by external events such as the appearance of an actor in a new movie.
This is manifested in our models by treating the item bias bi as a function of time.
The second major temporal effect allows users to change their baseline ratings over
time. For example, a user who tended to rate an average movie “4 stars”, may now
rate such a movie “3 stars”. This may reflect several factors including a natural
drift in a user’s rating scale, the fact that ratings are given in relationship to other
ratings that were given recently and also the fact that the identity of the rater within
a household can change over time. Hence, in our models we take the parameter bu

as a function of time. This induces a template for a time sensitive baseline predictor
for u’s rating of i at day tui:

bui D �C bu.tui/C bi.tui/ (3.5)

Here, bu.	/ and bi.	/ are real valued functions that change over time. The exact
way to build these functions should reflect a reasonable way to parameterize the
involving temporal changes. Our choice in the context of the movie rating dataset
demonstrates some typical considerations.
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A major distinction is between temporal effects that span extended periods of
time and more transient effects. In the movie rating case, we do not expect movie
likability to fluctuate on a daily basis, but rather to change over more extended
periods. On the other hand, we observe that user effects can change on a daily
basis, reflecting inconsistencies natural to customer behavior. This requires finer
time resolution when modeling user-biases compared with a lower resolution that
suffices for capturing item-related time effects.

We start with our choice of time-changing item biases bi.t/. We found it adequate
to split the item biases into time-based bins, using a constant item bias for each
time period. The decision of how to split the timeline into bins should balance the
desire to achieve finer resolution (hence, smaller bins) with the need for enough
ratings per bin (hence, larger bins). For the movie rating data, there is a wide variety
of bin sizes that yield about the same accuracy. In our implementation, each bin
corresponds to roughly ten consecutive weeks of data, leading to 30 bins spanning
all days in the dataset. A day t is associated with an integer Bin.t/ (a number between
1 and 30 in our data), such that the movie bias is split into a stationary part and a
time changing part

bi.t/ D bi C bi;Bin.t/ : (3.6)

While binning the parameters works well on the items, it is more of a challenge
on the users side. On the one hand, we would like a finer resolution for users to
detect very short lived temporal effects. On the other hand, we do not expect enough
ratings per user to produce reliable estimates for isolated bins. Different functional
forms can be considered for parameterizing temporal user behavior, with varying
complexity and accuracy.

One simple modeling choice uses a linear function to capture a possible gradual
drift of user bias. For each user u, we denote the mean date of rating by tu. Now, if u
rated a movie on day t, then the associated time deviation of this rating is defined as

devu.t/ D sign.t � tu/ 	 jt � tujˇ :

Here jt � tuj measures the number of days between dates t and tu. We set the
value of ˇ by cross validation; in our implementation ˇ D 0:4. We introduce a
single new parameter for each user called ˛u so that we get our first definition of a
time-dependent user-bias

b.1/
u .t/ D bu C ˛u 	 devu.t/ : (3.7)

This simple linear model for approximating a drifting behavior requires learning
two parameters per user: bu and ˛u.

A more flexible parameterization is offered by splines. Let u be a user associated
with nu ratings. We designate ku time points—ftu

1; : : : ; tu
ku
g—spaced uniformly

across the dates of u’s ratings as kernels that control the following function:
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b.2/
u .t/ D bu C

Pku
lD1 e�� jt�tul jbu

tlPku
lD1 e�� jt�tul j (3.8)

The parameters bu
tl are associated with the control points (or, kernels), and are

automatically learned from the data. This way the user bias is formed as a time-
weighted combination of those parameters. The number of control points, ku,
balances flexibility and computational efficiency. In our application we set ku D
n0:25

u , letting it grow with the number of available ratings. The constant � determines
the smoothness of the spline; we set � D 0:3 by cross validation.

So far we have discussed smooth functions for modeling the user bias, which
mesh well with gradual concept drift. However, in many applications there are
sudden drifts emerging as “spikes” associated with a single day or session. For
example, in the movie rating dataset we have found that multiple ratings a user
gives in a single day, tend to concentrate around a single value. Such an effect need
not span more than a single day. The effect may reflect the mood of the user that day,
the impact of ratings given in a single day on each other, or changes in the actual
rater in multi-person accounts. To address such short lived effects, we assign a single
parameter per user and day, absorbing the day-specific variability. This parameter
is denoted by bu;t. Notice that in some applications the basic primitive time unit to
work with can be shorter or longer than a day.

In the Netflix movie rating data, a user rates on 40 different days on average.
Thus, working with bu;t requires, on average, 40 parameters to describe each user
bias. It is expected that bu;t is inadequate as a standalone for capturing the user bias,
since it misses all sorts of signals that span more than a single day. Thus, it serves
as an additive component within the previously described schemes. The time-linear
model (3.7) becomes

b.3/
u .t/ D bu C ˛u 	 devu.t/C bu;t : (3.9)

Similarly, the spline-based model becomes

b.4/
u .t/ D bu C

Pku
lD1 e�� jt�tul jbu

tlPku
lD1 e�� jt�tul j C bu;t : (3.10)

A baseline predictor on its own cannot yield personalized recommendations, as
it disregards all interactions between users and items. In a sense, it is capturing
the portion of the data that is less relevant for establishing recommendations.
Nonetheless, to better assess the relative merits of the various choices of time-
dependent user-bias, we compare their accuracy as standalone predictors. In order to
learn the involved parameters we minimize the associated regularized squared error
by using stochastic gradient descent. For example, in our actual implementation we
adopt rule (3.9) for modeling the drifting user bias, thus arriving at the baseline
predictor

bui D �C bu C ˛u 	 devu.tui/C bu;tui C bi C bi;Bin.tui/ : (3.11)
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Table 3.1 Comparing
baseline predictors capturing
main movie and user effects

Model Static Mov Linear Spline Linear+ Spline+

RMSE 0.9799 0.9771 0.9731 0.9714 0.9605 0.9603

As temporal modeling becomes more accurate, prediction accu-
racy improves (lowering RMSE)

To learn the involved parameters, bu; ˛u; bu;t; bi and bi;Bin.t/, one should solve

min
X

.u;i/2K
.rui � � � bu � ˛udevu.tui/ � bu;tui � bi � bi;Bin.tui//

2

C �7.b2
u C ˛2

u C b2
u;tui
C b2

i C b2
i;Bin.tui/

/ :

Here, the first term strives to construct parameters that fit the given ratings. The
regularization term, �7.b2

uC : : : /, avoids overfitting by penalizing the magnitudes of
the parameters, assuming a neutral 0 prior. Learning is done by a stochastic gradient
descent algorithm running 20–30 iterations, with �7 D 0:01.

Table 3.1 compares the ability of various suggested baseline predictors to explain
signal in the data. As usual, the amount of captured signal is measured by the root
mean squared error on the test set. As a reminder, test cases come later in time than
the training cases for the same user, so predictions often involve extrapolation in
terms of time. We code the predictors as follows:

• Static, no temporal effects: bui D �C bu C bi.
• Mov, accounting only for movie-related temporal effects: bui D � C bu C bi C

bi;Bin.tui/.
• Linear , linear modeling of user biases: bui D �CbuC˛u 	devu.tui/CbiCbi;Bin.tui/.

• Spline, spline modeling of user biases: bui D � C bu C
Pku

lD1 e��jtui�tul jbu
tlPku

lD1 e��jtui�tul j
C bi C

bi;Bin.tui/.
• Linear+, linear modeling of user biases and single day effect: bui D � C bu C

˛u 	 devu.tui/C bu;tui C bi C bi;Bin.tui/.
• Spline+, spline modeling of user biases and single day effect: bui D � C bu CPku

lD1 e��jtui�dljbu
tlPku

lD1 e��jtui�tul j
C bu;tui C bi C bi;Bin.tui/.

The table shows that while temporal movie effects reside in the data (lowering
RMSE from 0.9799 to 0.9771), the drift in user biases is much more influential.
The additional flexibility of splines at modeling user effects leads to better accuracy
compared to a linear model. However, sudden changes in user biases, which are
captured by the per-day parameters, are most significant. Indeed, when including
those changes, the difference between linear modeling (“linear+”) and spline
modeling (“spline+”) virtually vanishes.

Beyond the temporal effects described so far, one can use the same method-
ology to capture more effects. A primary example is capturing periodic effects.
For example, some products may be more popular in specific seasons or near
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certain holidays. Similarly, different types of television or radio shows are popular
throughout different segments of the day (known as “dayparting”). Periodic effects
can be found also on the user side. As an example, a user may have different attitudes
or buying patterns during the weekend compared to the working week. A way to
model such periodic effects is to dedicate a parameter for the combinations of time
periods with items or users. This way, the item bias of (3.6), becomes

bi.t/ D bi C bi;Bin.t/ C bi;period.t/ :

For example, if we try to capture the change of item bias with the season of the year,
then period.t/ 2 ffall; winter; spring; summerg. Similarly, recurring user effects may
be modeled by modifying (3.9) to be

bu.t/ D bu C ˛u 	 devu.t/C bu;t C bu;period.t/ :

However, we have not found periodic effects with a significant predictive power
within the movie-rating dataset, thus our reported results do not include those.

Another temporal effect within the scope of basic predictors is related to the
changing scale of user ratings. While bi.t/ is a user-independent measure for the
merit of item i at time t, users tend to respond to such a measure differently.
For example, different users employ different rating scales, and a single user can
change his rating scale over time. Accordingly, the raw value of the movie bias
is not completely user-independent. To address this, we add a time-dependent
scaling feature to the baseline predictors, denoted by cu.t/. Thus, the baseline
predictor (3.11) becomes

bui D �C bu C ˛u 	 devu.tui/C bu;tui C .bi C bi;Bin.tui// 	 cu.tui/ : (3.12)

All discussed ways to implement bu.t/ would be valid for implementing cu.t/ as
well. We chose to dedicate a separate parameter per day, resulting in: cu.t/ D
cu C cu;t. As usual, cu is the stable part of cu.t/, whereas cu;t represents day-
specific variability. Adding the multiplicative factor cu.t/ to the baseline predictor
lowers RMSE to 0.9555. Interestingly, this basic model, which captures just main
effects disregarding user-item interactions, can explain almost as much of the
data variability as the commercial Netflix Cinematch recommender system, whose
published RMSE on the same test set is 0.9514 [5].

3.3.3.2 Time Changing Factor Model

In the previous section we discussed the way time affects baseline predictors.
However, as hinted earlier, temporal dynamics go beyond this, they also affect user
preferences and thereby the interaction between users and items. Users change their
preferences over time. For example, a fan of the “psychological thrillers” genre
may become a fan of “crime dramas” a year later. Similarly, humans change their
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perception on certain actors and directors. This type of evolution is modeled by
taking the user factors (the vector pu) as a function of time. Once again, we need to
model those changes at the very fine level of a daily basis, while facing the built-
in scarcity of user ratings. In fact, these temporal effects are the hardest to capture,
because preferences are not as pronounced as main effects (user-biases), but are split
over many factors.

We modeled each component of the user preferences pu.t/T D .pu1.t/; : : : ; puf .t//
in the same way that we treated user biases. Within the movie-rating dataset, we
have found modeling after (3.9) effective, leading to

puk.t/ D puk C ˛uk 	 devu.t/C puk;t k D 1; : : : ; f : (3.13)

Here puk captures the stationary portion of the factor, ˛uk 	 devu.t/ approximates a
possible portion that changes linearly over time, and puk;t absorbs the very local,
day-specific variability.

At this point, we can tie all pieces together and extend the SVD++ factor model
by incorporating the time changing parameters. The resulting model will be denoted
as timeSVD++, where the prediction rule is as follows:

Orui D �C bi.tui/C bu.tui/C qT
i

0
@pu.tui/C jR.u/j� 1

2

X
j2R.u/

yj

1
A (3.14)

The exact definitions of the time drifting parameters bi.t/; bu.t/ and pu.t/ were
given in (3.6), (3.9) and (3.13). Learning is performed by minimizing the associated
squared error function on the training set using a regularized stochastic gradient
descent algorithm. The procedure is analogous to the one involving the original
SVD++ algorithm. Time complexity per iteration is still linear with the input size,
while wall clock running time is approximately doubled compared to SVD++, due
to the extra overhead required for updating the temporal parameters. Importantly,
convergence rate was not affected by the temporal parameterization, and the process
converges in around 30 iterations.

3.3.4 Comparison

In Table 3.2 we compare results of the three algorithms discussed in this section.
First is SVD, the plain matrix factorization algorithm. Second, is the SVD++
method, which improves upon SVD by incorporating a kind of implicit feedback.
Finally is timeSVD++, which accounts for temporal effects. The three methods are
compared over a range of factorization dimensions (f ). All benefit from a growing
number of factor dimensions that enables them to better express complex movie-
user interactions. Note that the number of parameters in SVD++ is comparable
to their number in SVD. This is because SVD++ adds only item factors, while
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Table 3.2 Comparison of
three factor models:
prediction accuracy is
measured by RMSE (lower is
better) for varying factor
dimensionality (f )

Model f D 10 f D 20 f D 50 f D 100 f D 200

SVD 0.9140 0.9074 0.9046 0.9025 0.9009

SVD++ 0.9131 0.9032 0.8952 0.8924 0.8911

Timesvd++ 0.8971 0.8891 0.8824 0.8805 0.8799

For all models, accuracy improves with growing number
of dimensions. SVD++ improves accuracy by incorporating
implicit feedback into the SVD model. Further accuracy gains
are achieved by also addressing the temporal dynamics in the
data through the timeSVD++ model

complexity of our dataset is dominated by the much larger set of users. On the other
hand, timeSVD++ requires a significant increase in the number of parameters,
because of its refined representation of each user factor. Addressing implicit
feedback by the SVD++ model leads to accuracy gains within the movie rating
dataset. Yet, the improvement delivered by timeSVD++ over SVD++ is consistently
more significant. We are not aware of any single algorithm in the literature that could
deliver such accuracy. Further evidence of the importance of capturing temporal
dynamics is the fact that a timeSVD++ model of dimension 10 is already more
accurate than an SVD model of dimension 200. Similarly, a timeSVD++ model of
dimension 20 is enough to outperform an SVD++ model of dimension 200.

3.3.4.1 Predicting Future Days

Our models include day-specific parameters. An apparent question would be how
these models can be used for predicting ratings in the future, on new dates for which
we cannot train the day-specific parameters? The simple answer is that for those
future (untrained) dates, the day-specific parameters should take their default value.
In particular for (3.12), cu.tui/ is set to cu, and bu;tui is set to zero. Yet, one wonders,
if we cannot use the day-specific parameters for predicting the future, why are they
good at all? After all, prediction is interesting only when it is about the future. To
further sharpen the question, we should mention the fact that the Netflix test sets
include many ratings on dates for which we have no other rating by the same user
and hence day-specific parameters cannot be exploited.

To answer this, notice that our temporal modeling makes no attempt to capture
future changes. All it is trying to do is to capture transient temporal effects,
which had a significant influence on past user feedback. When such effects are
identified they must be tuned down, so that we can model the more enduring signal.
This allows our model to better capture the long-term characteristics of the data,
while letting dedicated parameters absorb short term fluctuations. For example, if
a user gave many higher than usual ratings on a particular single day, our models
discount those by accounting for a possible day-specific good mood, which does not
reflects the longer term behavior of this user. This way, the day-specific parameters
accomplish a kind of data cleaning, which improves prediction of future dates.
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3.3.5 Summary

In its basic form, matrix factorization characterizes both items and users by vectors
of factors inferred from patterns of item ratings. High correspondence between item
and user factors leads to recommendation of an item to a user. These methods deliver
prediction accuracy superior to other published collaborative filtering techniques.
At the same time, they offer a memory efficient compact model, which can be
trained relatively easy. Those advantages, together with the implementation ease of
gradient based matrix factorization model (SVD), made this the method of choice
within the Netflix Prize competition.

What makes these techniques even more convenient is their ability to address
several crucial aspects of the data. First, is the ability to integrate multiple forms
of user feedback. One can better predict user ratings by also observing other
related actions by the same user, such as purchase and browsing history. The
proposed SVD++ model leverages multiple sorts of user feedback for improving
user profiling.

Another important aspect is the temporal dynamics that make users’ tastes evolve
over time. Each user and product potentially goes through a distinct series of
changes in their characteristics. A mere decay of older instances cannot adequately
identify communal patterns of behavior in time changing data. The solution we
adopted is to model the temporal dynamics along the whole time period, allowing
us to intelligently separate transient factors from lasting ones. The inclusion of
temporal dynamics proved very useful in improving quality of predictions, more
than various algorithmic enhancements.

3.4 Neighborhood Models

The most common approach to CF is based on neighborhood models. Chapter 2
provides an extensive survey on this approach. Its original form, which was shared
by virtually all earlier CF systems, is user-user based; see [13] for a good analysis.
User-user methods estimate unknown ratings based on recorded ratings of like-
minded users.

Later, an analogous item-item approach [18, 25] became popular. In those
methods, a rating is estimated using known ratings made by the same user on similar
items. Better scalability and improved accuracy make the item-item approach more
favorable in many cases [2, 25, 26]. In addition, item-item methods are more
amenable to explaining the reasoning behind predictions. This is because users
are familiar with items previously preferred by them, but do not know those
allegedly like-minded users. We focus mostly on item-item approaches, but the
same techniques can be directly applied within a user-user approach; see also
Sect. 3.5.2.2.
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In general, latent factor models offer high expressive ability to describe various
aspects of the data. Thus, they tend to provide more accurate results than neigh-
borhood models. However, most literature and commercial systems (e.g., those of
Amazon [18] and TiVo [1]) are based on the neighborhood models. The prevalence
of neighborhood models is partly due to their relative simplicity. However, there are
more important reasons for real life systems to stick with those models. First, they
naturally provide intuitive explanations of the reasoning behind recommendations,
which often enhance user experience beyond what improved accuracy may achieve.
Second, they can provide immediate recommendations based on newly entered user
feedback.

The structure of this section is as follows. First, we describe how to estimate the
similarity between two items, which is a basic building block of most neighborhood
techniques. Then, we move on to the widely used similarity-based neighborhood
method, which constitutes a straightforward application of the similarity weights.
We identify certain limitations of this similarity based approach. As a consequence,
in Sect. 3.4.3 we suggest a way to solve these issues, thereby improving prediction
accuracy at the cost of a slight increase in computation time.

3.4.1 Similarity Measures

Central to most item-item approaches is a similarity measure between items.
Frequently, it is based on the Pearson correlation coefficient, �ij, which measures the
tendency of users to rate items i and j similarly. Since many ratings are unknown,
some items may share only a handful of common observed raters. The empirical
correlation coefficient, O�ij, is based only on the common user support. It is advised
to work with residuals from the baseline predictors (the bui’s; see Sect. 3.2.1)
to compensate for user- and item-specific deviations. Thus the approximated
correlation coefficient is given by

O�ij D
P

u2U.i;j/.rui � bui/.ruj � buj/qP
u2U.i;j/.rui � bui/2 	Pu2U.i;j/.ruj � buj/2

: (3.15)

The set U.i; j/ contains the users who rated both items i and j.
Because estimated correlations based on a greater user support are more reliable,

an appropriate similarity measure, denoted by sij, is a shrunk correlation coefficient
of the form

sij
defD nij � 1

nij � 1C �8

�ij : (3.16)

The variable nij D jU.i; j/j denotes the number of users that rated both i and j.
A typical value for �8 is 100.
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Such shrinkage can be motivated from a Bayesian perspective; see Sect. 2.6 of
Gelman et al. [11]. Suppose that the true �ij are independent random variables drawn
from a normal distribution,

�ij � N.0; 	2/

for known 	2. The mean of 0 is justified if the bui account for both user and item
deviations from average. Meanwhile, suppose that

O�ijj�ij � N.�ij; �2
ij/

for known �2
ij . We estimate �ij by its posterior mean:

E.�ijj O�ij/ D 	2 O�ij

	2 C �2
ij

the empirical estimator O�ij shrunk a fraction, �2
ij=.	2C �2

ij/, of the way toward zero.
Formula (3.16) follows from approximating the variance of a correlation by �2

ij D
1=.nij � 1/, the value for �ij near 0.

Notice that the literature suggests additional alternatives for a similarity measure
[25, 26].

3.4.2 Similarity-Based Interpolation

Here we describe the most popular approach to neighborhood modeling, and
apparently also to CF in general. Our goal is to predict rui—the unobserved rating
by user u for item i. Using the similarity measure, we identify the k items rated
by u that are most similar to i. This set of k neighbors is denoted by Sk.iI u/. The
predicted value of rui is taken as a weighted average of the ratings of neighboring
items, while adjusting for user and item effects through the baseline predictors

Orui D bui C
P

j2Sk.iIu/ sij.ruj � buj/P
j2Sk.iIu/ sij

: (3.17)

Note the dual use of the similarities for both identification of nearest neighbors and
as the interpolation weights in Eq. (3.17).

Sometimes, instead of relying directly on the similarity weights as interpolation
coefficients, one can achieve better results by transforming these weights. For
example, we have found at several datasets that squaring the correlation-based

similarities is helpful. This leads to a rule like: Orui D buiC
P

j2Sk.iIu/ s2
ij.ruj�buj/P

j2Sk.iIu/ s2
ij

. Toscher

et al. [29] discuss more sophisticated transformations of these weights.
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Similarity-based methods became very popular because they are intuitive and rel-
atively simple to implement. They also offer the following two useful properties:

1. Explainability. The importance of explaining automated recommendations is
widely recognized [12, 28]. Users expect a system to give a reason for its pre-
dictions, rather than presenting “black box” recommendations. Explanations not
only enrich the user experience, but also encourage users to interact with the sys-
tem, fix wrong impressions and improve long-term accuracy. The neighborhood
framework allows identifying which of the past user actions are most influential
on the computed prediction.

2. New ratings. Item-item neighborhood models can provide updated recommen-
dations immediately after users enter new ratings. This includes handling new
users as soon as they provide feedback to the system, without needing to
re-train the model and estimate new parameters. This assumes that relationships
between items (the sij values) are stable and barely change on a daily basis.
Notice that for items new to the system we do have to learn new parameters.
Interestingly, this asymmetry between users and items meshes well with common
practices: systems need to provide immediate recommendations to new users
(or new ratings by old users) who expect quality service. On the other hand, it
is reasonable to require a waiting period before recommending items new to the
system.

However, standard neighborhood-based methods raise some concerns:

1. The similarity function (sij), which directly defines the interpolation weights,
is arbitrary. Various CF algorithms use somewhat different similarity measures,
trying to quantify the elusive notion of user- or item-similarity. Suppose that a
particular item is predicted perfectly by a subset of the neighbors. In that case, we
would want the predictive subset to receive all the weight, but that is impossible
for bounded similarity scores like the Pearson correlation coefficient.

2. Previous neighborhood-based methods do not account for interactions among
neighbors. Each similarity between an item i and a neighbor j 2 Sk.iI u/ is
computed independently of the content of Sk.iI u/ and the other similarities: sil

for l 2 Sk.iI u/ � fjg. For example, suppose that our items are movies, and the
neighbors set contains three movies that are highly correlated with each other
(e.g., sequels such as “Lord of the Rings 1–3”). An algorithm that ignores the
similarity of the three movies when determining their interpolation weights, may
end up essentially triple counting the information provided by the group.

3. By definition, the interpolation weights sum to one, which may cause overfitting.
Suppose that an item has no useful neighbors rated by a particular user. In that
case, it would be best to ignore the neighborhood information, staying with
the more robust baseline predictors. Nevertheless, the standard neighborhood
formula uses a weighted average of ratings for the uninformative neighbors.

4. Neighborhood methods may not work well if variability of ratings differs
substantially among neighbors.
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Some of these issues can be fixed to a certain degree, while others are more
difficult to solve within the basic framework. For example, the third item, dealing
with the sum-to-one constraint, can be alleviated by using the following prediction
rule:

Orui D bui C
P

j2Sk.iIu/ sij.ruj � buj/

�9 CPj2Sk.iIu/ sij
(3.18)

The constant �9 penalizes the neighborhood portion when there is not much
neighborhood information, e.g., when

P
j2Sk.iIu/ sij 
 �9. Indeed, we have found

that setting an appropriate value of �9 leads to accuracy improvements over (3.17).
Nonetheless, the whole framework here is not justified by a formal model. Thus,
we strive for better results with a more fundamental approach, as we describe in the
following.

3.4.3 Jointly Derived Interpolation Weights

In this section we describe a more accurate neighborhood model that overcomes
the difficulties discussed above, while retaining known merits of item-item models.
As above, we use the similarity measure to define neighbors for each prediction.
However, we search for optimum interpolation weights without regard to values of
the similarity measure.

Given a set of neighbors Sk.iI u/ we need to compute interpolation weights
f
u

ij jj 2 Sk.iI u/g that enable the best prediction rule of the form

Orui D bui C
X

j2Sk.iIu/


u
ij.ruj � buj/ : (3.19)

Typical values of k (number of neighbors) lie in the range of 20–50; see [2]. During
this subsection we assume that baseline predictors have already been removed.

Hence, we introduce a notation for the residual ratings: zui
defD rui�bui. For notational

convenience assume that the items in Sk.iI u/ are indexed by 1; : : : ; k.
We seek a formal computation of the interpolation weights that stems directly

from their usage within prediction rule (3.19). As explained earlier, it is important
to derive all interpolation weights simultaneously to account for interdependencies
among the neighbors. We achieve these goals by defining a suitable optimization
problem.
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3.4.3.1 Formal Model

To start, we consider a hypothetical dense case, where all users but u rated both i and
all its neighbors in Sk.iI u/. In that case, we could learn the interpolation weights by
modeling the relationships between item i and its neighbors through a least squares
problem

min

u

X
v¤u

0
@zvi �

X
j2Sk.iIu/


u
ij zvj

1
A2

: (3.20)

Notice that the only unknowns here are the 
u
ij ’s. The optimal solution to the least

squares problem (3.20) is found by differentiation as a solution of a linear system
of equations. From a statistics viewpoint, it is equivalent to the result of a linear
regression (without intercept) of zvi on the zvj for j 2 Sk.iI u/. Specifically, the
optimal weights are given by

Aw D b : (3.21)

Here, w 2 R
k is an unknown vector such that wj stands for the sought coefficient 
u

ij .
A is a k � k matrix defined as

Ajl D
X
v¤u

zvjzvl : (3.22)

Similarly the vector b 2 R
k is given by

bj D
X
v¤u

zvjzvi : (3.23)

For a sparse ratings matrix there are likely to be very few users who rated i and
all its neighbors Sk.iI u/. Accordingly, it would be unwise to base A and b as given
in (3.22)–(3.23) only on users with complete data. Even if there are enough users
with complete data for A to be nonsingular, that estimate would ignore a large
proportion of the information about pairwise relationships among ratings by the
same user. However, we can still estimate A and b, up to the same constant, by
averaging over the given pairwise support, leading to the following reformulation:

NAjl D
P

v2U.j;l/ zvjzvl

jU.j; l/j (3.24)

Nbj D
P

v2U.i;j/ zvjzvi

jU.i; j/j (3.25)

As a reminder, U.j; l/ is the set of users who rated both j and l.
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This is still not enough to overcome the sparseness issue. The elements of NAjl or
Nbj may differ by orders of magnitude in terms of the number of users included in the
average. As discussed previously, averages based on relatively low support (small
values of jU.j; l/j) can generally be improved by shrinkage towards a common value.
Specifically, we compute a baseline value that is defined by taking the average of all
possible NAjl values. Let us denote this baseline value by avg; its precise computation
is described in the next section. Accordingly, we define the corresponding k � k
matrix OA and the vector Ob 2 R

k:

OAjl D jU.j; l/j 	 NAjl C ˇ 	 avg

jU.j; l/j C ˇ
(3.26)

Obj D jU.i; j/j 	 Nbj C ˇ 	 avg

jU.i; j/j C ˇ
(3.27)

The parameter ˇ controls the extent of the shrinkage. A typical value would be
ˇ D 500.

Our best estimate for A and b are OA and Ob, respectively. Therefore, we mod-
ify (3.21) so that the interpolation weights are defined as the solution of the linear
system

OAw D Ob : (3.28)

The resulting interpolation weights are used within (3.19) in order to predict rui.
This method addresses all four concerns raised in Sect. 3.4.2. First, interpolation

weights are derived directly from the ratings, not based on any similarity measure.
Second, the interpolation weights formula explicitly accounts for relationships
among the neighbors. Third, the sum of the weights is not constrained to equal
one. If an item (or user) has only weak neighbors, the estimated weights may all be
very small. Fourth, the method automatically adjusts for variations among items in
their means or variances.

3.4.3.2 Computational Issues

Efficient computation of an item-item neighborhood method requires pre-computing
certain values associated with each item-item pair for rapid retrieval. First, we
need a quick access to all item-item similarities, by pre-computing all sij values,
as explained in Sect. 3.4.1.

Second, we pre-compute all possible entries of OA and Ob. To this end, for each two
items i and j, we compute

NAij D
P

v2U.i;j/ zvizvj

jU.i; j/j :
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Then, the aforementioned baseline value avg, which is used in (3.26)–(3.27), is
taken as the average entry of the pre-computed n�n matrix NA. In fact, we recommend
using two different baseline values, one by averaging the non-diagonal entries of NA
and another one by averaging the generally-larger diagonal entries, which have an
inherently higher average because they sum only non-negative values. Finally, we
derive a full n � n matrix OA from NA by (3.26), using the appropriate value of avg.
Here, the non-diagonal average is used when deriving the non-diagonal entries of OA,
whereas the diagonal average is used when deriving the diagonal entries of OA.

Because of symmetry, it is sufficient to store the values of sij and OAij only for i > j.
Our experience shows that it is enough to allocate one byte for each individual value,
so the overall space required for n items is exactly n.nC 1/ bytes.

Pre-computing all possible entries of matrix OA saves the otherwise lengthy time
needed to construct entries on the fly. After quickly retrieving the relevant entries of
OA, we can compute the interpolation weights by solving a k� k system of Eq. (3.28)
using a standard linear solver. However, a modest increase in prediction accuracy
was achieved when constraining w to be nonnegative through a quadratic program
[2]. Solving the system of equations is an overhead over the basic neighborhood
method described in Sect. 3.4.2. For typical values of k (between 20 and 50), the
extra time overhead is comparable to the time needed for computing the k nearest
neighbors, which is common to neighborhood-based approaches. Hence, while the
method relies on a much more detailed computation of the interpolation weights
compared to previous methods, it does not significantly increase running time;
see [2].

3.4.4 Summary

Collaborative filtering through neighborhood-based interpolation is probably the
most popular way to create a recommender system. Three major components
characterize the neighborhood approach: (1) data normalization, (2) neighbor
selection, and (3) determination of interpolation weights.

Normalization is essential to collaborative filtering in general, and in particular to
the more local neighborhood methods. Otherwise, even more sophisticated methods
are bound to fail, as they mix incompatible ratings pertaining to different unnormal-
ized users or items. We described a suitable approach to data normalization, based
around baseline predictors.

Neighborhood selection is another important component. It is directly related to
the employed similarity measure. Here, we emphasized the importance of shrinking
unreliable similarities, in order to avoid detection of neighbors with a low rating
support.

Finally, the success of neighborhood methods depends on the choice of the
interpolation weights, which are used to estimate unknown ratings from neighboring
known ones. Nevertheless, most known methods lack a rigorous way to derive these
weights. We showed how the interpolation weights can be computed as a global
solution to an optimization problem that precisely reflects their role.
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3.5 Enriching Neighborhood Models

Most neighborhood methods are local in their nature—concentrating on only a
small subset of related ratings. This contrasts with matrix factorization, which
casts a very wide net to try to characterize items and users. It appears that
accuracy can be improved by employing this global viewpoint, which motivates
the methods of this section. We suggest a new neighborhood model drawing on
principles of both classical neighborhood methods and matrix factorization models.
Like other neighborhood models, the building stones here are item-item relations
(or, alternatively, user-user relations), which provide the system some practical
advantages discussed earlier. At the same time, much like matrix factorization,
the model is centered around a global optimization framework, which improves
accuracy by considering the many weak signals existing in the data.

The main method, which is described in Sect. 3.5.1, allows us to enrich the
model with implicit feedback data. In addition, it facilitates two new possibilities.
First is a factorized neighborhood model, as described in Sect. 3.5.2, bringing
great improvements in computational efficiency. Second is a treatment of temporal
dynamics, leading to better prediction accuracy, as described in Sect. 3.5.3.

3.5.1 A Global Neighborhood Model

In this subsection, we introduce a neighborhood model based on global opti-
mization. The model offers an improved prediction accuracy, by offering the
aforementioned merits of the model described in Sect. 3.4.3, with additional advan-
tages that are summarized as follows:

1. No reliance on arbitrary or heuristic item-item similarities. The new model is cast
as the solution to a global optimization problem.

2. Inherent overfitting prevention or “risk control”: the model reverts to robust
baseline predictors, unless a user entered sufficiently many relevant ratings.

3. The model can capture the totality of weak signals encompassed in all of a user’s
ratings, not needing to concentrate only on the few ratings for most similar items.

4. The model naturally allows integrating different forms of user input, such as
explicit and implicit feedback.

5. A highly scalable implementation (Sect. 3.5.2) allows linear time and space
complexity, thus facilitating both item-item and user-user implementations to
scale well to very large datasets.

6. Time drifting aspects of the data can be integrated into the model, thereby
improving its accuracy; see Sect. 3.5.3.
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3.5.1.1 Building the Model

We gradually construct the various components of the model, through an ongoing
refinement of our formulations. Previous models were centered around user-specific
interpolation weights—
u

ij in (3.19) or sij=
P

j2Sk.iIu/ sij in (3.17)—relating item i
to the items in a user-specific neighborhood Sk.iI u/. In order to facilitate global
optimization, we would like to abandon such user-specific weights in favor of global
item-item weights independent of a specific user. The weight from j to i is denoted
by wij and will be learned from the data through optimization. An initial sketch of
the model describes each rating rui by the equation

Orui D bui C
X

j2R.u/

.ruj � buj/wij : (3.29)

This rule starts with the crude, yet robust, baseline predictors (bui). Then, the
estimate is adjusted by summing over all ratings by u.

Let us consider the interpretation of the weights. Usually the weights in a
neighborhood model represent interpolation coefficients relating unknown ratings
to existing ones. Here, we adopt a different viewpoint, that enables a more flexible
usage of the weights. We no longer treat weights as interpolation coefficients.
Instead, we take weights as part of adjustments, or offsets, added to the baseline
predictors. This way, the weight wij is the extent by which we increase our baseline
prediction of rui based on the observed value of ruj. For two related items i and
j, we expect wij to be high. Thus, whenever a user u rated j higher than expected
(ruj�buj is high), we would like to increase our estimate for u’s rating of i by adding
.ruj�buj/wij to the baseline prediction. Likewise, our estimate will not deviate much
from the baseline by an item j that u rated just as expected (ruj � buj is around zero),
or by an item j that is not known to be predictive on i (wij is close to zero).

This viewpoint suggests several enhancements to (3.29). First, we can use the
form of binary user input, which was found beneficial for factorization models.
Namely, analyzing which items were rated regardless of rating value. To this end,
we add another set of weights, and rewrite (3.29) as

Orui D bui C
X

j2R.u/

Œ.ruj � buj/wij C cij� : (3.30)

Similarly, one could employ here another set of implicit feedback, N.u/—e.g.,
the set of items rented or purchased by the user—leading to the rule

Orui D bui C
X

j2R.u/

.ruj � buj/wij C
X

j2N.u/

cij : (3.31)
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Much like the wij’s, the cij’s are offsets added to the baseline predictor. For two items
i and j, an implicit preference by u for j leads us to adjust our estimate of rui by cij,
which is expected to be high if j is predictive on i.

Employing global weights, rather than user-specific interpolation coefficients,
emphasizes the influence of missing ratings. In other words, a user’s opinion is
formed not only by what he rated, but also by what he did not rate. For example,
suppose that a movie ratings dataset shows that users that rate “Shrek 3” high also
gave high ratings to “Shrek 1–2”. This will establish high weights from “Shrek 1–2”
to “Shrek 3”. Now, if a user did not rate “Shrek 1–2” at all, his predicted rating for
“Shrek 3” will be penalized, as some necessary weights cannot be added to the sum.

For prior models (3.17) and (3.19) that interpolated rui � bui from fruj � bujjj 2
Sk.iI u/g, it was necessary to maintain compatibility between the bui values and the
buj values. However, here we do not use interpolation, so we can decouple the
definitions of bui and buj. Accordingly, a more general prediction rule would be:
Orui D Qbui CPj2R.u/.ruj � buj/wij C cij. The constant Qbui can represent predictions of
rui by other methods such as a latent factor model. Here, we suggest the following
rule that was found to work well:

Orui D �C bu C bi C
X

j2R.u/

Œ.ruj � buj/wij C cij� (3.32)

Importantly, the buj’s remain constants, which are derived as explained in Sect. 3.2.1.
However, the bu’s and bi’s become parameters that are optimized much like the wij’s
and cij’s.

We have found that it is beneficial to normalize sums in the model leading to the
form

Orui D �C bu C bi C jR.u/j�˛
X

j2R.u/

Œ.ruj � buj/wij C cij� : (3.33)

The constant ˛ controls the extent of normalization. A non-normalized rule (˛ D
0), encourages greater deviations from baseline predictions for users that provided
many ratings (high jR.u/j). On the other hand, a fully normalized rule, eliminates the
effect of number of ratings on deviations from baseline predictions. In many cases it
would be a good practice for recommender systems to have greater deviation from
baselines for users that rate a lot. This way, we take more risk with well modeled
users that provided much input. For such users we are willing to predict quirkier
and less common recommendations. At the same time, we are less certain about the
modeling of users that provided only a little input, in which case we would like to
stay with safe estimates close to the baseline values. Our experience with the Netflix
dataset shows that best results are achieved with ˛ D 0:5, as in the prediction rule

Orui D �C bu C bi C jR.u/j� 1
2

X
j2R.u/

Œ.ruj � buj/wij C cij� : (3.34)
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As an optional refinement, complexity of the model can be reduced by pruning
parameters corresponding to unlikely item-item relations. Let us denote by Sk.i/ the
set of k items most similar to i, as determined by e.g., a similarity measure sij or

a natural hierarchy associated with the item set. Additionally, we use Rk.iI u/
defD

R.u/ \ Sk.i/.2 Now, when predicting rui according to (3.34), it is expected that
the most influential weights will be associated with items similar to i. Hence, we
replace (3.34) with

Orui D�C bu C bi C jRk.iI u/j� 1
2

X
j2Rk.iIu/

Œ.ruj � buj/wij C cij� : (3.35)

When k D 1, rule (3.35) coincides with (3.34). However, for other values of k it
offers the potential to significantly reduce the number of variables involved.

3.5.1.2 Parameter Estimation

Prediction rule (3.35) allows fast online prediction. More computational work is
needed at a pre-processing stage where parameters are estimated. A major design
goal of the new neighborhood model was facilitating an efficient global optimization
procedure, which prior neighborhood models lacked. Thus, model parameters are
learned by solving the regularized least squares problem associated with (3.35):

min
b�;w�;c�

X
.u;i/2K

 
rui � � � bu � bi � jRk.iI u/j� 1

2

X
j2Rk.iIu/

�
.ruj � buj/wij C cij

� !2

C �10

 
b2

u C b2
i C

X
j2Rk.iIu/

w2
ij C c2

ij

!
(3.36)

An optimal solution of this convex problem can be obtained by least square
solvers, which are part of standard linear algebra packages. However, we have found
that the following simple stochastic gradient descent solver works much faster. Let
us denote the prediction error, rui � Orui, by eui. We loop through all known ratings in
K. For a given training case rui, we modify the parameters by moving in the opposite
direction of the gradient, yielding:
• bu  bu C � 	 .eui � �10 	 bu/

• bi  bi C � 	 .eui � �10 	 bi/

• 8j 2 Rk.iI u/:

wij  wij C � 	
�
jRk.iI u/j� 1

2 	 eui 	 .ruj � buj/ � �10 	 wij

�
cij  cij C � 	

�
jRk.iI u/j� 1

2 	 eui � �10 	 cij

�

2Notational clarification: With other neighborhood models it was beneficial to use Sk.iI u/, which
denotes the k items most similar to i among those rated by u. Hence, if u rated at least k items, we
will always have jSk.iI u/j D k, regardless of how similar those items are to i. However, jRk.iI u/j
is typically smaller than k, as some of those items most similar to i were not rated by u.
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The meta-parameters � (step size) and �10 are determined by cross-validation.
We used � D 0:005 and �10 D 0:002 for the Netflix data. Another important
parameter is k, which controls the neighborhood size. Our experience shows that
increasing k always benefits the accuracy of the results on the test set. Hence, the
choice of k should reflect a tradeoff between prediction accuracy and computational
cost. In Sect. 3.5.2 we will describe a factored version of the model that eliminates
this tradeoff by allowing us to work with the most accurate k D 1 while lowering
running time.

A typical number of iterations throughout the training data is 15–20. As for time
complexity per iteration, let us analyze the most accurate case where k D1, which
is equivalent to using prediction rule (3.34). For each user u and item i 2 R.u/ we
need to modify fwij; cijjj 2 R.u/g. Thus the overall time complexity of the training
phase is O.

P
u jR.u/j2/.

3.5.1.3 Comparison of Accuracy

Experimental results on the Netflix data with the globally optimized neighborhood
model, henceforth dubbed GlobalNgbr, are presented in Fig. 3.1. We studied the
model under different values of parameter k. The solid black curve with square
symbols shows that accuracy monotonically improves with rising k values, as
root mean squared error (RMSE) falls from 0.9139 for k D 250 to 0.9002 for
k D 1. (Notice that since the Netflix data contains 17,770 movies, k D 1 is
equivalent to k D17,769, where all item-item relations are explored.) We repeated
the experiments without using the implicit feedback, that is, dropping the cij

parameters from our model. The results depicted by the solid black curve with X’s
show a significant decline in estimation accuracy, which widens as k grows. This
demonstrates the value of incorporating implicit feedback into the model.

For comparison we provide the results of the two previously described neighbor-
hood models. First is a similarity-based neighborhood model (in Sect. 3.4.2), which
is the most popular CF method in the literature. We denote this model as CorNgbr.
Second is the more accurate model described in Sect. 3.4.3, which will be denoted
as JointNgbr. For both these two models, we tried to pick optimal parameters
and neighborhood sizes, which were 20 for CorNgbr, and 50 for JointNgbr. The
results are depicted by the dotted and dashed lines, respectively. It is clear that the
popular CorNgbr method is noticeably less accurate than the other neighborhood
models. On the opposite side, GlobalNgbr delivers more accurate results even when
compared with JointNgbr, as long as the value of k is at least 500. Notice that the
k value (the x-axis) is irrelevant to the previous models, as their different notion of
neighborhood makes neighborhood sizes incompatible. Yet, we observed that while
the performance of GlobalNgbr keeps improving as more neighbors are added, this
was not true with the two other models. For CorNgbr and JointNgbr, performance
peaks with a relatively small number of neighbors and declines thereafter. This may
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Fig. 3.1 Comparison of neighborhood-based models. Accuracy is measured by RMSE on the
Netflix test set, so lower values indicate better performance. We measure the accuracy of the
globally optimized model (GlobalNgbr) with and without implicit feedback. RMSE is shown as a
function of varying values of k, which dictates the neighborhood size. The accuracy of two other
models is shown as two horizontal lines; for each we picked an optimal neighborhood size

be explained by the fact that in GlobalNgbr, parameters are directly learned from
the data through a formal optimization procedure that facilitates using many more
parameters effectively.

Finally, let us consider running time. Previous neighborhood models require
very light pre-processing, though, JointNgbr [2] requires solving a small system of
equations for each provided prediction. The new model does involve pre-processing
where parameters are estimated. However, online prediction is immediate by
following rule (3.35). Pre-processing time grows with the value of k. Figure 3.2
shows typical running times per iteration on the Netflix data, as measured on a
single processor 3.4 GHz Pentium 4 PC.

3.5.2 A Factorized Neighborhood Model

In the previous section we presented a more accurate neighborhood model, which
is based on prediction rule (3.34) with training time complexity O.

P
u jR.u/j2/ and

space complexity O.m C n2/. (Recall that m is the number of users, and n is the
number of items.) We could improve time and space complexity by sparsifying the
model through pruning unlikely item-item relations. Sparsification was controlled
by the parameter k 6 n, which reduced running time and allowed space complexity
of O.mC nk/. However, as k gets lower, the accuracy of the model declines as well.



3 Advances in Collaborative Filtering 107

 10

 20

 30

 40

 50

 60

250 500 1000 2000 4000 8000 ∞

tim
e 

pe
r 

ite
ra

tio
n 

(m
in

ut
es

)

k

Fig. 3.2 Running time per iteration of the globally optimized neighborhood model, as a function
of the parameter k

In addition, sparsification required relying on an external, less natural, similarity
measure, which we would have liked to avoid. Thus, we will now show how to retain
the accuracy of the full dense prediction rule (3.34), while significantly lowering
time and space complexity.

3.5.2.1 Factoring Item-Item Relationships

We factor item-item relationships by associating each item i with three vectors:
qi; xi; yi 2 R

f . This way, we confine wij to be qT
i xi. Similarly, we impose the structure

cij D qT
i yj. Essentially, these vectors strive to map items into an f -dimensional

latent factor space where they are measured against various aspects that are revealed
automatically by learning from the data. By substituting this into (3.34) we get the
following prediction rule:

Orui D�C bu C bi C jR.u/j� 1
2

X
j2R.u/

Œ.ruj � buj/q
T
i xj C qT

i yj� (3.37)

Computational gains become more obvious by using the equivalent rule

Orui D �C bu C bi C qT
i

0
@jR.u/j� 1

2

X
j2R.u/

.ruj � buj/xj C yj

1
A : (3.38)
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Notice that the bulk of the rule (jR.u/j� 1
2
P

j2R.u/.ruj � buj/xjC yj) depends only
on u while being independent of i. This leads to an efficient way to learn the model
parameters. As usual, we minimize the regularized squared error function associated
with (3.38)

min
q�;x�;y�;b�

X
.u;i/2K

 
rui � � � bu � bi � qT

i

�
jR.u/j� 1

2

X
j2R.u/

.ruj � buj/xj C yj

�!2

C �11

 
b2

u C b2
i C kqik2 C

X
j2R.u/

kxjk2 C kyjk2
!

: (3.39)

Optimization is done by a stochastic gradient descent scheme, which is described
in the following pseudo code:

LearnFactorizedNeighborhoodModel(Known ratings: rui, rank: f )
% For each item i compute qi; xi; yi 2 R

f

% which form a neighborhood model
Const #Iterations D 20; � D 0:002; � D 0:04

% Gradient descent sweeps:
for count D 1; : : : ; #Iterations do

for u D 1; : : : ; m do
% Compute the component independent of i:

pu  jR.u/j� 1
2
P

j2R.u/.ruj � buj/xj C yj

sum 0

for all i 2 R.u/ do
Orui  �C bu C bi C qT

i pu

eui  rui � Orui

% Accumulate information for gradient steps on xi; yi:
sum sumC eui 	 qi

% Perform gradient step on qi; bu; bi:
qi  qi C � 	 .eui 	 pu � � 	 qi/

bu  bu C � 	 .eui � � 	 bu/

bi  bi C � 	 .eui � � 	 bi/

for all i 2 R.u/ do
% Perform gradient step on xi:

xi  xi C � 	 .jR.u/j� 1
2 	 .rui � bui/ 	 sum � � 	 xi/

% Perform gradient step on yi:

yi  yi C � 	 .jR.u/j� 1
2 	 sum � � 	 yi/

return fqi; xi; yiji D 1; : : : ; ng

The time complexity of this model is linear with the input size, O.f 	Pu.jR.u/j//,
which is significantly better than the non-factorized model that required time
O.
P

u jR.u/j2/. We measured the performance of the model on the Netflix data;
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Table 3.3 Performance of
the factorized item-item
neighborhood model

#Factors 50 100 200 500

RMSE 0.9037 0.9013 0.9000 0.8998

Time/iteration (min) 4.5 8 14 34

The models with > 200 factors slightly outperform the non-
factorized model, while providing much shorter running time

see Table 3.3. Accuracy is improved as we use more factors (increasing f ). However,
going beyond 200 factors could barely improve performance, while slowing running
time. Interestingly, we have found that with f > 200 accuracy negligibly exceeds the
best non-factorized model (with k D1). In addition, the improved time complexity
translates into a big difference in wall-clock measured running time. For example,
the time-per-iteration for the non-factorized model (with k D 1) was close to
58 min. On the other hand, a factorized model with f D 200 could complete an
iteration in 14 min without degrading accuracy at all.

The most important benefit of the factorized model is the reduced space
complexity, which is O.m C nf /—linear in the input size. Previous neighborhood
models required storing all pairwise relations between items, leading to a quadratic
space complexity of O.m C n2/. For the Netflix dataset which contains 17,770
movies, such quadratic space can still fit within core memory. Some commercial
recommenders process a much higher number of items. For example, an online
movie rental service like Netflix is currently offering over 100,000 titles. Music
download shops offer even more titles. Such more comprehensive systems with data
on 100,000s items eventually need to resort to external storage in order to fit the
entire set of pairwise relations. However, as the number of items is growing towards
millions, as in the Amazon item-item recommender system, which accesses stored
similarity information for several million catalog items [18], designers must keep
a sparse version of the pairwise relations. To this end, only values relating an item
to its top-k most similar neighbors are stored thereby reducing space complexity to
O.m C nk/. However, a sparsification technique will inevitably degrade accuracy
by missing important relations, as demonstrated in the previous section. In addition,
identification of the top k most similar items in such a high dimensional space is a
non-trivial task that can require considerable computational efforts. All these issues
do not exist in our factorized neighborhood model, which offers a linear time and
space complexity without trading off accuracy.

The factorized neighborhood model resembles some latent factor models. The
important distinction is that here we factorize the item-item relationships, rather
than the ratings themselves. The results reported in Table 3.3 are comparable to
those of the widely used SVD model, but not as good as those of SVD++; see
Sect. 3.3. Nonetheless, the factorized neighborhood model retains the practical
advantages of traditional neighborhood models discussed earlier—the abilities to
explain recommendations and to immediately reflect new ratings.

As a side remark, we would like to mention that the decision to use three separate
sets of factors was intended to give us more flexibility. Indeed, on the Netflix data
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this allowed achieving most accurate results. However, another reasonable choice
could be using a smaller set of vectors, e.g., by requiring: qi D xi (implying
symmetric weights: wij D wji).

3.5.2.2 A User-User Model

A user-user neighborhood model predicts ratings by considering how like-minded
users rated the same items. Such models can be implemented by switching the
roles of users and items throughout our derivation of the item-item model. Here,
we would like to concentrate on a user-user model, which is dual to the item-item
model of (3.34). The major difference is replacing the wij weights relating item pairs,
with weights relating user pairs:

Orui D �C bu C bi C jR.i/j� 1
2

X
v2R.i/

.rvi � bvi/wuv (3.40)

The set R.i/ contains all the users who rated item i. Notice that here we decided
to not account for implicit feedback. This is because adding such feedback was not
very beneficial for the user-user model when working with the Netflix data.

User-user models can become useful in various situations. For example, some
recommenders may deal with items that are rapidly replaced, thus making item-item
relations very volatile. On the other hand, a stable user base enables establishment of
long term relationships between users. An example of such a case is a recommender
system for web articles or news items, which are rapidly changing by their nature;
see, e.g., [8]. In such cases, systems centered around user-user relations are more
appealing.

In addition, user-user approaches identify different kinds of relations that item-
item approaches may fail to recognize, and thus can be useful on certain occasions.
For example, suppose that we want to predict rui, but none of the items rated by
user u is really relevant to i. In this case, an item-item approach will face obvious
difficulties. However, when employing a user-user perspective, we may find a set
of users similar to u, who rated i. The ratings of i by these users would allow us to
improve prediction of rui.

The major disadvantage of user-user models is computational. Since typically
there are many more users than items, pre-computing and storing all user-user
relations, or even a reasonably sparsified version thereof, is overly expensive or
completely impractical. In addition to the high O.m2/ space complexity, the time
complexity for optimizing model (3.40) is also much higher than its item-item
counterpart, being O.

P
i jR.i/j2/ (notice that jR.i/j is expected to be much higher

than jR.u/j). These issues have rendered user-user models as a less practical choice.

A Factorized Model All those computational differences disappear by factorizing
the user-user model along the same lines as in the item-item model. Now, we
associate each user u with two vectors pu; zu 2 R

f . We assume the user-user relations
to be structured as: wuv D pT

u zv . Let us substitute this into (3.40) to get
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Table 3.4 Performance of
the factorized user-user
neighborhood model

#Factors 50 100 200 500

RMSE 0.9119 0.9110 0.9101 0.9093

Time/iteration (min) 3 5 8.5 18

Orui D �C bu C bi C jR.i/j� 1
2

X
v2R.i/

.rvi � bvi/p
T
u zv : (3.41)

Once again, an efficient computation is achieved by including the terms that depends
on i but are independent of u in a separate sum, so the prediction rule is presented
in the equivalent form

Orui D �C bu C bi C pT
u jR.i/j� 1

2

X
v2R.i/

.rvi � bvi/zv : (3.42)

In a parallel fashion to the item-item model, all parameters are learned in linear
time O.f 	 Pi jR.i/j/. The space complexity is also linear with the input size
being O.nC mf /. This significantly lowers the complexity of the user-user model
compared to previously known results. In fact, running time measured on the Netflix
data shows that now the user-user model is even faster than the item-item model; see
Table 3.4. We should remark that unlike the item-item model, our implementation
of the user-user model did not account for implicit feedback, which probably
led to its shorter running time. Accuracy of the user-user model is significantly
better than that of the widely-used correlation-based item-item model that achieves
RMSED 0.9406 as reported in Fig. 3.1. Furthermore, accuracy is slightly better than
the variant of the item-item model, which also did not account for implicit feedback
(yellow curve in Fig. 3.1). This is quite surprising given the common wisdom that
item-item methods are more accurate than user-user ones. It appears that a well
implemented user-user model can match speed and accuracy of an item-item model.
However, our item-item model could significantly benefit by accounting for implicit
feedback.

Fusing Item-Item and User-User Models Since item-item and user-user models
address different aspects of the data, overall accuracy is expected to improve by
combining predictions of both models. Such an approach was previously suggested
and was shown to improve accuracy; see, e.g. [4, 30]. However, past efforts were
based on blending the item-item and user-user predictions during a post-processing
stage, after each individual model was trained independently of the other model.
A more principled approach optimizes the two models simultaneously, letting them
know of each other while parameters are being learned. Thus, throughout the entire
training phase each model is aware of the capabilities of the other model and strives
to complement it. Our approach, which states the neighborhood models as formal
optimization problems, allows doing that naturally. We devise a model that sums the
item-item model (3.37) and the user-user model (3.41), leading to
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Orui D�C bu C bi C jR.u/j� 1
2

X
j2R.u/

Œ.ruj � buj/q
T
i xj C qT

i yj�

C jR.i/j� 1
2

X
v2R.i/

.rvi � bvi/p
T
u zv : (3.43)

Model parameters are learned by stochastic gradient descent optimization of the
associated squared error function. Our experiments with the Netflix data show that
prediction accuracy is indeed better than that of each individual model. For example,
with 100 factors the obtained RMSE is 0.8966, while with 200 factors the obtained
RMSE is 0.8953.

Here we would like to comment that our approach allows integrating the
neighborhood models also with completely different models in a similar way. For
example, in [16] we showed an integrated model that combines the item-item
model with a latent factor model (SVD++), thereby achieving improved prediction
accuracy with RMSE below 0.887. Therefore, other possibilities with potentially
better accuracy should be explored before considering the integration of item-item
and user-user models.

3.5.3 Temporal Dynamics at Neighborhood Models

One of the advantages of the item-item model based on global optimization
(Sect. 3.5.1), is that it enables us to capture temporal dynamics in a principled
manner. As we commented earlier, user preferences are drifting over time, and hence
it is important to introduce temporal aspects into CF models.

When adapting rule (3.34) to address temporal dynamics, two components
should be considered separately. First component, � C bi C bu, corresponds to
the baseline predictor portion. Typically, this component explains most variability
in the observed signal. Second component, jR.u/j� 1

2
P

j2R.u/.ruj � buj/wij C cij,
captures the more informative signal, which deals with user-item interaction. As for
the baseline part, nothing changes from the factor model, and we replace it with
� C bi.tui/ C bu.tui/, according to (3.6) and (3.9). However, capturing temporal
dynamics within the interaction part requires a different strategy.

Item-item weights (wij and cij) reflect inherent item characteristics and are not
expected to drift over time. The learning process should capture unbiased long term
values, without being too affected from drifting aspects. Indeed, the time changing
nature of the data can mask much of the longer term item-item relationships if
not treated adequately. For instance, a user rating both items i and j high within
a short time period, is a good indicator for relating them, thereby pushing higher the
value of wij. On the other hand, if those two ratings are given 4 years apart, while
the user’s taste (if not her identity) could considerably change, this provides less
evidence of any relation between the items. On top of this, we would argue that those
considerations are pretty much user-dependent; some users are more consistent than
others and allow relating their longer term actions.
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Our goal here is to distill accurate values for the item-item weights, despite the
interfering temporal effects. First we need to parameterize the decaying relations
between two items rated by user u. We adopt exponential decay formed by the
function e�ˇu��t, where ˇu > 0 controls the user specific decay rate and should
be learned from the data. We also experimented with other decay forms, like the
more computationally-friendly .1 C ˇu�t/�1, which resulted in about the same
accuracy, with an improved running time.

This leads to the prediction rule

Orui D �Cbi.tui/Cbu.tui/CjR.u/j� 1
2

X
j2R.u/

e�ˇu�jtui�tujj..ruj�buj/wijCcij/ : (3.44)

The involved parameters, bi.tui/ D bi C bi;Bin.tui/; bu.tui/ D bu C ˛u 	 devu.tui/C
bu;tui ; ˇu; wij and cij, are learned by minimizing the associated regularized squared
error

X
.u;i/2K

�
rui � � � bi � bi;Bin.tui/ � bu � ˛udevu.tui/ � bu;tui

� jR.u/j� 1
2

X
j2R.u/

e�ˇu�jtui�tujj..ruj � buj/wij C cij/

�2

C �12

�
b2

i C b2
i;Bin.tui/

C b2
u C ˛2

u C b2
u;t C w2

ij C c2
ij

�
: (3.45)

Minimization is performed by stochastic gradient descent. We run the process for
25 iterations, with �12 D 0:002, and step size (learning rate) of 0.005. An exception
is the update of the exponent ˇu, where we are using a much smaller step size of
10�7. Training time complexity is the same as the original algorithm, which is:
O.
P

u jR.u/j2/. One can tradeoff complexity with accuracy by sparsifying the set of
item-item relations as explained in Sect. 3.5.1.

As in the factor case, properly considering temporal dynamics improves the
accuracy of the neighborhood model within the movie ratings dataset. The RMSE
decreases from 0.9002 [16] to 0.8885. To our best knowledge, this is significantly
better than previously known results by neighborhood methods. To put this in
some perspective, this result is even better than those reported by using hybrid
approaches such as applying a neighborhood approach on residuals of other
algorithms [2, 21, 29]. A lesson is that addressing temporal dynamics in the data can
have a more significant impact on accuracy than designing more complex learning
algorithms.

We would like to highlight an interesting point. Let u be a user whose preferences
are quickly drifting (ˇu is large). Hence, old ratings by u should not be very
influential on his status at the current time t. One could be tempted to decay the
weight of u’s older ratings, leading to “instance weighting” through a cost function
like
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X
.u;i/2K

e�ˇu�jt�tuij
�

rui � � � bi � bi;Bin.tui/ � bu � ˛udevu.tui/

� bu;tui � jR.u/j� 1
2

X
j2R.u/

..ruj � buj/wij C cij/

�2

C �12.	 	 	 / :

Such a function is focused at the current state of the user (at time t), while de-
emphasizing past actions. We would argue against this choice, and opt for equally
weighting the prediction error at all past ratings as in (3.45), thereby modeling all
past user behavior. Therefore, equal-weighting allows us to exploit the signal at each
of the past ratings, a signal that is extracted as item-item weights. Learning those
weights would equally benefit from all ratings by a user. In other words, we can
deduce that two items are related if users rated them similarly within a short time
frame, even if this happened long ago.

3.5.4 Summary

This section follows a less traditional neighborhood based model, which unlike
previous neighborhood methods is based on formally optimizing a global cost
function. The resulting model is no longer localized, considering relationships
between a small set of strong neighbors, but rather considers all possible pairwise
relations. This leads to improved prediction accuracy, while maintaining some
merits of the neighborhood approach such as explainability of predictions and
ability to handle new ratings (or new users) without re-training the model.

The formal optimization framework offers several new possibilities. First, is a
factorized version of the neighborhood model, which improves its computational
complexity while retaining prediction accuracy. In particular, it is free from the
quadratic storage requirements that limited past neighborhood models.

Second addition is the incorporation of temporal dynamics into the model.
In order to reveal accurate relations among items, a proposed model learns how
influence between two items rated by a user decays over time. Much like in the
matrix factorization case, accounting for temporal effects results in a significant
improvement in predictive accuracy.

3.6 Between Neighborhood and Factorization

This chapter was structured around two different approaches to CF: factorization
and neighborhood. Each approach evolved from different basic principles, which
led to distinct prediction rules. We also argued that factorization can lead to
somewhat more accurate results, while neighborhood models may have some
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practical advantages. In this section we will show that despite those differences,
the two approaches share much in common. After all, they are both linear models.

Let us consider the SVD model of Sect. 3.3.1, based on

Orui D qT
i pu : (3.46)

For simplicity, we ignore here the baseline predictors, but one can easily reintroduce
them or just assume that they were subtracted from all ratings at an earlier stage.

We arrange all item-factors within the n� f matrix Q D Œq1q2 : : : qn�T . Similarly,
we arrange all user-factors within the m � f matrix P D Œp1p2 : : : pm�T . We use the
nu � f matrix QŒu� to denote the restriction of Q to the items rated by u, where
nu D jR.u/j. Let the vector ru 2 R

nu contain the ratings given by u ordered as in
QŒu�. Now, by activating (3.46) on all ratings given by u, we can reformulate it in a
matrix form

Oru D QŒu�pu (3.47)

For QŒu� fixed, kru � QŒu�puk2 is minimized by

pu D .QŒu�TQŒu�/�1QŒu�Tru

In practice, we will regularize with � > 0 to get

pu D .QŒu�TQŒu�C �I/�1QŒu�Tru :

By substituting pu in (3.47) we get

Oru D QŒu�.QŒu�TQŒu�C �I/�1QŒu�Tru : (3.48)

This expression can be simplified by introducing some new notation. Let us
denote the f � f matrix .QŒu�TQŒu� C �I/�1 as Wu, which should be considered
as a weighting matrix associated with user u. Accordingly, the weighted similarity
between items i and j from u’s viewpoint is denoted by su

ij D qT
i Wuqj. Using this new

notation and (3.48) the predicted preference of u for item i by SVD is rewritten as

Orui D
X

j2R.u/

su
ijruj : (3.49)

We reduced the SVD model into a linear model that predicts preferences as a linear
function of past actions, weighted by item-item similarity. Each past action receives
a separate term in forming the prediction Orui. This is equivalent to an item-item
neighborhood model. Quite surprisingly, we transformed the matrix factorization
model into an item-item model, which is characterized by:
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• Interpolation is made from all past user ratings, not only from those associated
with items most similar to the current one.

• The weight relating items i and j is factorized as a product of two vectors, one
related to i and the other to j.

• Item-item weights are subject to a user-specific normalization, through the
matrix Wu.

Those properties support our findings on how to best construct a neighborhood
model. First, we showed in Sect. 3.5.1 that best results for neighborhood models
are achieved when the neighborhood size (controlled by constant k) is maximal,
such that all past user ratings are considered. Second, in Sect. 3.5.2 we touted the
practice of factoring item-item weights. As for the user-specific normalization, we
used a simpler normalizer: n�0:5

u . It is likely that SVD suggests a more fundamental
normalization by the matrix Wu, which would work better. However, computing Wu

would be expensive in practice. Another difference between our suggested item-
item model and the one implied by SVD is that we chose to work with asymmetric
weights (wij ¤ wji), whereas in the SVD-induced rule: su

ij D su
ji.

In the derivation above we showed how SVD induces an equivalent item-item
technique. In a fully analogous way, it can induce an equivalent user-user technique,
by expressing qi as a function of the ratings and user factors. This brings us to
three equivalent models: SVD, item-item and user-user. Beyond linking SVD with
neighborhood models, this also shows that user-user and item-item approaches, once
well designed, are equivalent.

This last relation (between user-user and item-item approaches) can also be
approached intuitively. Neighborhood models try to relate users to new items by
following chains of user-item adjacencies. Such adjacencies represent preference-
or rating-relations between the respective users and items. Both user-user and item-
item models act by following exactly the same chains. They only differ in which
“shortcuts” are exploited to speed up calculations. For example, recommending
itemB to user1 would follow the chain user1–itemA–user2–itemB (user1 rated
itemA, which was also rated by user2, who rated itemB). A user-user model
follows such a chain with pre-computed user-user similarities. This way, it creates
a “shortcut” that bypasses the sub-chain user1–itemB–user2, replacing it with a
similarity value between user1 and user2. Analogously, an item-item approach
follows exactly the same chain, but creates an alternative “shortcut”, replacing the
sub-chain itemA–user2–itemB with an itemA–itemB similarity value.

Another lesson here is that the distinction that deems neighborhood models
as “memory based”, while taking matrix factorization and the likes as “model
based” is not always appropriate, at least not when using accurate neighborhood
models that are model-based as much as SVD. In fact, the other direction is also
true. The better matrix factorization models, such as SVD++, are also following
memory-based habits, as they sum over all memory stored ratings when doing
the online prediction; see rule (3.3). Hence, the traditional separation between
“memory based” and “model based” techniques is not appropriate for categorizing
the techniques surveyed in this chapter.
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So far, we concentrated on relations between neighborhood models and matrix
factorization models. However, in practice it may be beneficial to break these rela-
tions, and to augment factorization models with sufficiently different neighborhood
models that are able to complement them. Such a combination can lead to improved
prediction accuracy [3, 16]. A key to achieve this is by using the more localized
neighborhood models (those of Sect. 3.4, rather than those of Sect. 3.5), where the
number of considered neighbors is limited. The limited number of neighbors might
not be the best way to construct a standalone neighborhood model, but it makes the
neighborhood model different enough from the factorization model in order to add
a local perspective that the rather global factorization model misses.
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Chapter 4
Semantics-Aware Content-Based
Recommender Systems

Marco de Gemmis, Pasquale Lops, Cataldo Musto, Fedelucio Narducci,
and Giovanni Semeraro

4.1 Introduction

Content-based recommender systems (CBRSs) rely on item and user descriptions
(content) to build item representations and user profiles to suggest items similar
to those a target user already liked in the past. The basic process of producing
content-based recommendations consists in matching up the attributes of the target
user profile, in which preferences and interests are stored, with the attributes of the
items. The result is a relevance score that predicts the target user’s level of interest
in those items. Usually, attributes for describing an item are features extracted from
metadata associated to that item, or textual features extracted directly from the item
description. The content extracted from metadata is often too short and not sufficient
to correctly define the user interests, while the use of textual features involves
a number of complications when learning a user profile due to natural language
ambiguity. Polysemy, synonymy, multi-word expressions, named entity recognition
and disambiguation are inherent problems of traditional keyword-based profiles,
which are not able to go beyond the usage of lexical/syntactic structures to infer the
user interest in topics.

The ever increasing interest in semantic technologies and the availability of
several open knowledge sources, such as Wikipedia, DBpedia, Freebase, and
BabelNet have fueled recent progress in the field of CBRSs. Novel research works
have introduced semantic techniques that shift from a keyword-based to a concept-
based representation of items and user profiles. These observations make very
relevant the integration of proper techniques for deep content analytics borrowed
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from Natural Language Processing (NLP) and Semantic Technologies, which is one
of the most innovative lines of research in semantic recommender systems [61].

We roughly classify semantic techniques into top-down and bottom-up
approaches. Top-down approaches rely on the integration of external knowledge,
such as machine readable dictionaries, taxonomies (or IS-A hierarchies), thesauri or
ontologies (with or without value restrictions and logical constraints), for annotating
items and representing user profiles in order to capture the semantics of the target
user information needs. The main motivation behind top-down approaches is the
challenge of providing recommender systems with the linguistic knowledge and
common sense knowledge, as well as the cultural background which characterize
the human ability of interpreting documents expressed in natural language and
reasoning on their meaning.

On the other side, bottom-up approaches exploit the so-called geometric
metaphor of meaning to represent complex syntagmatic and paradigmatic relations
between words in high-dimensional vector spaces. According to this metaphor, each
word (and each document as well) can be represented as a point in a vector space.
The peculiarity of these models is that the representation is learned by analyzing
the context in which the word is used, in a way that terms (or documents) similar
to each other are close in the space. For this reason bottom-up approaches are also
called distributional models. One of the great virtues of these approaches is that they
are able to induce the semantics of terms by analyzing their use in large corpora
of textual documents using unsupervised mechanisms, as evidenced by the recent
advances of machine translation techniques [52, 83].

This chapter describes a variety of semantic approaches, both top-down and
bottom-up, and shows how to leverage them to build a new generation of semantic
CBRSs that we call semantics-aware content-based recommender systems.

4.2 Overview of Content-Based Recommender Systems

This section reports an overview of the basic principles for building CBRSs,
the main techniques for representing items, learning user profiles and providing
recommendations. The most important limitations of CBRSs are also discussed,
while the semantic techniques useful to tackle those limitations are introduced in
the next sections.

The high level architecture of a content-based recommender system is depicted
in Fig. 4.1. The recommendation process is performed in three steps, each of which
is handled by a separate component:

• CONTENT ANALYZER—When information has no structure (e.g. text), some
kind of pre-processing step is needed to extract structured relevant information.
The main responsibility of the component is to represent the content of items
(e.g. documents, Web pages, news, product descriptions, etc.) coming from
information sources in a form suitable for the next processing steps. Data items
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Fig. 4.1 High level architecture of a content-based recommender

are analyzed by feature extraction techniques in order to shift item representation
from the original information space to the target one (e.g. Web pages represented
as keyword vectors). This representation is the input to the PROFILE LEARNER

and FILTERING COMPONENT;
• PROFILE LEARNER—This module collects data representative of the user

preferences and tries to generalize this data, in order to construct the user
profile. Usually, the generalization strategy is realized through machine learning
techniques [86], which are able to infer a model of user interests starting from
items liked or disliked in the past. For instance, the PROFILE LEARNER of a Web
page recommender can implement a relevance feedback method [113] in which
the learning technique combines vectors of positive and negative examples into a
prototype vector representing the user profile. Training examples are Web pages
on which a positive or negative feedback has been provided by the user;

• FILTERING COMPONENT—This module exploits the user profile to suggest
relevant items by matching the profile representation against that of items to
be recommended. The result is a binary or continuous relevance judgment
(computed using some similarity metrics [57]), the latter case resulting in a
ranked list of potentially interesting items. In the above mentioned example, the
matching is realized by computing the cosine similarity between the prototype
vector and the item vectors.

The first step of the recommendation process is the one performed by the
CONTENT ANALYZER, that usually borrows techniques from Information Retrieval



122 M. de Gemmis et al.

systems [6, 118]. Item descriptions coming from Information Source are processed
by the CONTENT ANALYZER, that extracts features (keywords, n-grams, concepts,
. . . ) from unstructured text to produce a structured item representation, stored in the
repository Represented Items.

In order to construct and update the profile of the active user ua (user for
which recommendations must be provided) her reactions to items are collected in
some way and recorded in the repository Feedback. These reactions, called anno-
tations [51] or feedback, together with the related item descriptions, are exploited
during the process of learning a model useful to predict the actual relevance of
newly presented items. Users can also explicitly define their areas of interest as an
initial profile without providing any feedback. Typically, it is possible to distinguish
between two kinds of relevance feedback: positive information (inferring features
liked by the user) and negative information (i.e., inferring features the user is
not interested in [58]). Two different techniques can be adopted for recording
user’s feedback. When a system requires the user to explicitly evaluate items, this
technique is usually referred to as “explicit feedback”; the other technique, called
“implicit feedback”, does not require any active user involvement, in the sense
that feedback is derived from monitoring and analyzing user’s activities. Explicit
evaluations indicate how relevant or interesting an item is to the user [111]. Explicit
feedback has the advantage of simplicity, albeit the adoption of numeric/symbolic
scales increases the cognitive load on the user, and may not be adequate for catching
user’s feeling about items. Implicit feedback methods are based on assigning a
relevance score to specific user actions on an item, such as saving, discarding,
printing, bookmarking, etc. The main advantage is that they do not require a direct
user involvement, even though biasing is likely to occur, e.g. interruption of phone
calls while reading.

In order to build the profile of the active user ua, the training set TRa for ua must
be defined. TRa is a set of pairs hIk; rki, where rk is the rating provided by ua on the
item representation Ik. Given a set of item representation labeled with ratings, the
PROFILE LEARNER applies supervised learning algorithms to generate a predictive
model—the user profile—which is usually stored in a profile repository for later
use by the FILTERING COMPONENT. After the user profile has been learned, the
FILTERING COMPONENT predicts whether a new item is likely to be of interest
for the active user, by comparing features in the item representation to those in the
representation of user preferences (stored in the user profile).

User tastes usually change in time, therefore up-to-date information must be
maintained and provided to the PROFILE LEARNER in order to automatically
update the user profile. Further feedback is gathered on generated recommendations
by letting users state their satisfaction or dissatisfaction with items in La. After
gathering that feedback, the learning process is performed again on the new training
set, and the resulting profile is adapted to the updated user interests. The iteration
of the feedback-learning cycle over time enables the system to take into account the
dynamic nature of user preferences.
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4.2.1 Keyword-Based Vector Space Model

Most content-based recommender systems use relatively simple retrieval models,
such as keyword matching or the Vector Space Model (VSM). VSM is a spatial
representation of text documents. In that model, each document is represented by a
vector in a n-dimensional space, where each dimension corresponds to a term from
the overall vocabulary of a given document collection.

Formally, every document is represented as a vector of term weights, where
each weight indicates the degree of association between the document and the
term. Let D D fd1; d2; : : : ; dNg denote a set of documents or corpus, and T D
ft1; t2; : : : ; tng be the dictionary, that is to say the set of words in the corpus. T
is obtained by applying some standard natural language processing operations,
such as tokenization, stopwords removal, and stemming [6]. Each document dj is

represented as a vector in a n-dimensional vector space, so
�!
dj D hw1j; w2j; : : : ; wnji,

where wkj is the weight for term tk in document dj.
Document representation in the VSM raises two issues: weighting the terms and

measuring the feature vector similarity. The most commonly used term weighting
scheme, TF-IDF (Term Frequency-Inverse Document Frequency) weighting, is
based on empirical observations regarding text [117]:

• rare terms are not less relevant than frequent terms (IDF assumption);
• multiple occurrences of a term in a document are not less relevant than single

occurrences (TF assumption);
• long documents are not preferred to short documents (normalization

assumption).

In other words, terms that occur frequently in one document (TF=term-
frequency), but rarely in the rest of the corpus (IDF=inverse-document-frequency),
are more likely to be relevant to the topic of the document. In addition, normalizing
the resulting weight vectors prevent longer documents from having a better chance
of retrieval. These assumptions are well exemplified by the TF-IDF function:

TF-IDF.tk; dj/ D TF.tk; dj/„ ƒ‚ …
TF

	 log
N

nk„ƒ‚…
IDF

(4.1)

where N denotes the number of documents in the corpus, and nk denotes the number
of documents in the collection in which the term tk occurs at least once.

TF.tk; dj/ D fk;j

maxzfz;j
(4.2)

where the maximum is computed over the frequencies fz;j of all terms tz that
occur in document dj. In order for the weights to fall in the Œ0; 1� interval and for
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the documents to be represented by vectors of equal length, weights obtained by
Eq. (4.1) are usually normalized by cosine normalization:

wk;j D TF-IDF.tk; dj/qPjTj
sD1 TF-IDF.ts; dj/

2

(4.3)

which enforces the normalization assumption.
As stated earlier, a similarity measure is required to determine the closeness

between two documents. Many similarity measures have been derived to describe
the proximity of two vectors; among those measures, cosine similarity is the most
widely used:

sim.di; dj/ D
P

k wki 	 wkjpP
k wki

2 	pPk wkj
2

(4.4)

In content-based recommender systems relying on VSM, both user profiles and
items are represented as weighted term vectors. Predictions of a user’s interest in a
particular item can be derived by computing the cosine similarity.

4.2.2 Methods for Learning User Profiles

Machine learning techniques generally used in the task of inducing content-
based profiles, are well-suited for text categorization [119]. In a machine learning
approach to text categorization, an inductive process automatically builds a text
classifier from a set of training documents, i.e. documents labeled with the
categories they belong to.

The problem of learning user profiles can be cast as a binary text categorization
task: each document has to be classified as interesting or not with respect to the
user preferences. Therefore, the set of categories is C D fcC; c�g, where cC is
the positive class (user-likes) and c� the negative one (user-dislikes). Classifiers
can be also adopted with a set of categories which is not binary. Besides the use
of classifiers, other machine learning algorithms, such as linear regression, can be
adopted to predict numerical ratings. The most used learning algorithms in content-
based recommender systems are based on probabilistic methods, relevance feedback
and k-nearest neighbors [6].

4.2.2.1 Probabilistic Methods

Naïve Bayes is a probabilistic approach to inductive learning, and belongs to the
general class of Bayesian classifiers. These approaches generate a probabilistic
model based on previously observed data. The model estimates the a posteriori
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probability, P.cjd/, of document d belonging to class c. This estimation is based
on the a priori probability, P.c/, the probability of observing a document in class
c, P.djc/, the probability of observing the document d given c, and P.d/, the
probability of observing the instance d. Using these probabilities, the Bayes theorem
is applied to calculate P.cjd/:

P.cjd/ D P.c/P.djc/

P.d/
(4.5)

To classify the document d, the class with the highest probability is chosen:

c D argmaxcj

P.cj/P.djcj/

P.d/

P.d/ is generally removed as it is equal for all cj. As we do not know the value
for P.djc/ and P.c/, we estimate them by observing the training data. However,
estimating P.djc/ in this way is problematic, as it is very unlikely to see the
same document more than once: the observed data is generally not enough to
be able to generate good probabilities. The naïve Bayes classifier overcomes this
problem by simplifying the model through the independence assumption: all the
words or tokens in the observed document d are conditionally independent of each
other given the class. Individual probabilities for the words in a document are
estimated one by one rather than the complete document as a whole. The conditional
independence assumption is clearly violated in real-world data, however, despite
these violations, empirically the naïve Bayes classifier does a good job in classifying
text documents [12, 70].

There are two commonly used working models of the naïve Bayes classifier,
the multivariate Bernoulli event model and the multinomial event model [77]. Both
models treat a document as a vector of values over the corpus vocabulary, V , where
each entry in the vector represents whether a word occurred in the document, hence
both models lose information about word order. The multivariate Bernoulli event
model encodes each word as a binary attribute, i.e., whether a word appeared or not,
while the multinomial event model counts how many times the word appeared in
the document. Empirically, the multinomial naïve Bayes formulation was shown to
outperform the multivariate Bernoulli model. This effect is particularly noticeable
for large vocabularies [77]. The way the multinomial event model uses its document
vector to calculate P.cjjdi/ is as follows:

P.cjjdi/ D P.cj/
Y

tk2Vdi

P.tkjcj/
N.di ;tk/ (4.6)

where N.di;tk/ is defined as the number of times word or token tk appeared in
document di. Notice that, rather than getting the product of all the words in the
corpus vocabulary V , only the subset of the vocabulary, Vdi , containing the words
that appear in the document di, is used. A key step in implementing naïve Bayes
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is estimating the word probabilities P.tkjcj/. To make the probability estimates
more robust with respect to infrequently encountered words, a smoothing method
is used to modify the probabilities that would have been obtained by simple event
counting. One important effect of smoothing is that it avoids assigning probability
values equal to zero to words not occurring in the training data for a particular
class. A rather simple smoothing method relies on the common Laplace estimates
(i.e., adding one to all the word counts for a class). A more interesting method is
Witten-Bell [129].

Although naïve Bayes performances are not as good as some other statistical
learning methods such as nearest-neighbor classifiers or support vector machines,
it has been shown that it can perform surprisingly well in the classification tasks
where the computed probability is not important [40]. Another advantage of the
naïve Bayes approach is that it is very efficient and easy to implement compared to
other learning methods.

4.2.2.2 Relevance Feedback

Relevance feedback is a technique adopted in Information Retrieval that helps users
to incrementally refine queries based on previous search results. It consists of the
users feeding back into the system decisions on the relevance of retrieved documents
with respect to their information needs.

Relevance feedback and its adaptation to text categorization, the well-known
Rocchio’s formula [113], are commonly adopted by content-based recommender
systems. The general principle is to let users to rate documents suggested by the
recommender system with respect to their information need. This form of feedback
can subsequently be used to incrementally refine the user profile or to train the
learning algorithm that infers the user profile as a classifier. Some linear classifiers
consist of an explicit profile (or prototypical document) of the category [119]. The
Rocchio’s method is used for inducing linear, profile-style classifiers. This algorithm
represents documents as vectors, so that documents with similar content have similar
vectors. Each component of such a vector corresponds to a term in the document,
typically a word. The weight of each component is computed using the TF-IDF
term weighting scheme. Learning is achieved by combining document vectors (of
positive and negative examples) into a prototype vector for each class in the set
of classes C. To classify a new document d, the similarity between the prototype
vectors and the corresponding document vector representing d are calculated for
each class (for example by using the cosine similarity measure), then d is assigned
to the class whose document vector has the highest similarity value.

More formally, Rocchio’s method computes a classifier �!ci D h!1i; : : : ; !jTjii for
the category ci (T is the vocabulary, that is the set of distinct terms in the training
set) by means of the formula:

!ki D ˇ 	
X

fdj2POSig

wkj

jPOSij � � 	
X

fdj2NEGig

wkj

jNEGij (4.7)
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where wkj is the TF-IDF weight of the term tk in document dj, POSi and NEGi are
the set of positive and negative examples in the training set for the specific class ci, ˇ

and � are control parameters that allow to set the relative importance of all positive
and negative examples. To assign a class Qc to a document dj, the similarity between

each prototype vector �!ci and the document vector
�!
dj is computed and Qc will be the

ci with the highest value of similarity. The Rocchio-based classification approach
does not have any theoretic underpinning and there are guarantees on performance
or convergence [108].

4.2.2.3 Nearest Neighbors

Nearest neighbor algorithms, also called lazy learners, simply store training data in
memory, and classify a new unseen item by comparing it to all stored items by using
a similarity function. The “nearest neighbor” or the “k-nearest neighbors” items are
determined, and the class label for the unclassified item is derived from the class
labels of the nearest neighbors. A similarity function is needed, for example the
cosine similarity measure is adopted when items are represented using the VSM.
Nearest neighbor algorithms are quite effective, albeit the most important drawback
is their inefficiency at classification time, since they do not have a true training phase
and thus defer all the computation to classification time.

4.2.3 Advantages and Drawbacks of Content-Based Filtering

The adoption of the content-based recommendation paradigm has several advan-
tages when compared to the collaborative one:

• USER INDEPENDENCE—Content-based recommenders exploit solely ratings
provided by the active user to build her own profile. Instead, collaborative
filtering methods need ratings from other users in order to find the “nearest
neighbors” of the active user, i.e., users that have similar tastes since they
rated the same items similarly. Then, only the items that are most liked by the
neighbors of the active user will be recommended;

• TRANSPARENCY—Explanations on how the recommender system works can be
provided by explicitly listing content features or descriptions that caused an item
to occur in the list of recommendations. Those features are indicators to consult
in order to decide whether to trust a recommendation. Conversely, collaborative
systems are black boxes since the only explanation for an item recommendation
is that unknown users with similar tastes liked that item;

• NEW ITEM—Content-based recommenders are capable of recommending items
not yet rated by any user. As a consequence, they do not suffer from the first-rater
problem, which affects collaborative recommenders which rely solely on users’
preferences to make recommendations. Therefore, until the new item is rated by
a substantial number of users, the system would not be able to recommend it.
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Nonetheless, content-based systems have several shortcomings:

• LIMITED CONTENT ANALYSIS—Content-based techniques have a natural limit
in the number and type of features that are associated, whether automatically
or manually, with the objects they recommend. Domain knowledge is often
needed, e.g., for movie recommendations the system needs to know the actors
and directors, and sometimes, domain ontologies are also needed. No content-
based recommendation system can provide suitable suggestions if the analyzed
content does not contain enough information to discriminate items the user
likes from items the user does not like. Some representations capture only
certain aspects of the content, but there are many others that would influence
a user’s experience. For instance, often there is not enough information in the
word frequency to model the user interests in jokes or poems, while techniques
for affective computing would be most appropriate. Again, for Web pages,
feature extraction techniques from text completely ignore aesthetic qualities
and additional multimedia information. Furthermore, CBRSs based on a string
matching approach suffer from problems of:

– POLYSEMY, the presence of multiple meanings for one word;
– SYNONYMY, multiple words with the same meaning;
– MULTI-WORD EXPRESSIONS, the difficulty to assign the correct properties to

a sequence of two or more words whose properties are not predictable from
the properties of the individual words;

– ENTITY IDENTIFICATION or NAMED ENTITY RECOGNITION, the difficulty
to locate and classify elements in text into pre-defined categories such as the
names of persons, organizations, locations, expressions of times, quantities,
monetary values, etc.

– ENTITY LINKING or NAMED ENTITY DISAMBIGUATION, the difficulty of
determining the identity (often called the reference) of entities mentioned in
text.

• OVER-SPECIALIZATION—Content-based recommenders have no inherent
method for finding something unexpected. The system suggests items whose
scores are high when matched against the user profile, hence the user is going
to be recommended items similar to those already rated. This drawback is also
called lack of serendipity problem to highlight the tendency of the content-based
systems to produce recommendations with a limited degree of novelty. To give
an example, when a user has only rated movies directed by Stanley Kubrick,
she will be recommended just that kind of movies. A “perfect” content-based
technique would rarely find anything novel, limiting the range of applications for
which it would be useful.

• NEW USER—Enough ratings have to be collected before a content-based rec-
ommender system can really understand user preferences and provide accurate
recommendations. Therefore, when few ratings are available, as for a new user,
the system will not be able to provide reliable recommendations.
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4.3 Top-Down Semantic Approaches

There is an ever increasing interest in using a deep domain knowledge as part of
the recommendation process, in order to deal with the main problems of CBRSs
(i.e., limited content analysis, overspecialization) and generate more accurate
recommendations. To this purpose, several CBRSs:

• incorporate ontological knowledge, ranging from simple linguistic ontologies, to
more complex domain-specific ones [81];

• leverage unstructured or semi-structured encyclopedic knowledge sources, such
as Wikipedia [120];

• try to exploit the wealth of the so-called Linked Open Data cloud [39].

The following sections provide an overview of CBRSs, with the aim of imposing
a degree of order on the diversity of the knowledge sources and techniques exploited
for the representation of items and user profiles. Section 4.3.1 describes the role of
ontologies for defining advanced CBRSs, by highlighting the main advantages and
drawbacks, while recommendation approaches leveraging encyclopedic knowledge
are described in Sect. 4.3.2, with the proposal of new ontological resources which
can be effectively used for improving CBRSs. Finally, more recent approaches based
on the Linked Open Data cloud are discussed in Sect. 4.3.3.

4.3.1 Approaches Based on Ontological Resources

The leading role of linguistic knowledge is highlighted by the wide use of WordNet
[84], which is mostly adopted for the semantic interpretation of content by using
Word Sense Disambiguation (WSD) algorithms. In [36, 37], WordNet and WSD
algorithms are used to integrate linguistic knowledge in the process of learning
user profiles. The basic building block for WordNet is the SYNSET (SYNonym
SET), which represents a specific meaning of a word. Hence, items are represented
according to a synset-based vector space model, and the user profile includes those
synsets that turn out to be most indicative of the user preferences. In addition
to the better performance of synset-based profiles, the advantage is that synset-
based representations are inherently multilingual. Indeed, concepts (word meanings)
remain the same across different languages, while terms used for describing them
change in each specific language. Using lexical resources such as MultiWordNet
[9], which associates a unique identifier to each possible sense (meaning) of a word,
regardless the original language, it is possible to define a bridge between different
languages. In [71], a WSD algorithm exploiting MultiWordNet as sense repository
is integrated in the design of MARS (MultilAnguage Recommender System),
a cross-language recommender system whose effectiveness is comparable to a
classical monolingual content-based recommender. Similarly, in [75] the authors
present a personal agent for a multilingual news Web site, which adopts a synset-
based document representation obtained through a Word Domain Disambiguation
algorithm [74] which exploits MultiWordNet.
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More recent works still rely on WordNet to define semantic recommender
systems. In [25], a semantic approach to news recommendation making use of
WordNet is investigated. WordNet synsets are used to compute similarities between
unread news articles and articles stored in user profiles by adopting the Wu and
Palmer semantic similarity measure [130]. However, in order to cope with the lack of
support for named entities, the authors extend the WordNet-based recommendation
approach with a similarity based on page counts for named entities stemming from
a Web search engine. WordNet and WSD are also adopted in [27] to compute the
semantic similarity between short microblog posts in order to recommend tweets
related to what a user has issued or trending topics.

In spite of the advantages provided by WordNet, there are several limitations
related to its limited coverage for named entities, events, contemporary terms, and
in general specific knowledge. With the advent of the Semantic Web [10], ontologies
emerged as powerful means for representing domain knowledge in many areas, and
for this reason several approaches have been proposed to incorporate ontological
knowledge in recommender systems. Ontologies are used to describe domain-
specific knowledge and they are commonly handled as hierarchies of concepts
with attributes and relations, which establish a terminology to define semantic
networks of interrelated concepts and instances. In general, when a domain model
is represented as an ontology, items and user models consist of a subset of concepts
from the domain ontology, possibly with associated values characterizing their
importance. In [82], the recommendation of on-line academic research papers is
performed by leveraging a research topic ontology, based on the computer science
classifications, for representing both items and user profiles. The match is based
on the correlation between the topics in the user profile and those associated to
the papers. The same process is adopted in [22, 23] to recommend news. Item
descriptions are vectors of TF-IDF scores in the space of ontology concepts,
user profiles are represented in the same space, and the item-profile matching
is performed as a cosine-based vector similarity, differently from the strategy in
[21, 24], in which item and user spaces are clustered in order to build implicit
communities of interest which enable recommendation based on the similarities
among them. In [121], the similarity between an item and a user profile is based on
the existence of the same concepts or related concepts, according to their position in
a three-level ontology, while a more advanced recommendation method is described
in [16], where a spreading activation algorithm is adopted on ontology-profiles to
suggest interesting and novel items to the user. Spreading activation is used in [26]
as well, where the propagation from a small number of initial concepts (those which
received the user feedback) to other related domain concepts allows to provide finer
recommendations and to tackle the cold start problem. The novelty of the approach
relies on the definition of a set of contextualized propagation strategies, ranging
from the horizontal propagation among siblings, to the anisotropic vertical one
among ancestors and descendants, which permits user interests to be propagated
differently upward and downward.

The use of ontologies for adding a semantic dimension to items and user profiles
may be beneficial for limiting some of the problems of CBRSs and providing
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better recommendations. Ontology-based user profiles are less ambiguous, and the
structure of the ontology may be adopted to define measures able to estimate how
semantically related two concepts are. Different types of measures are provided
in the literature, ranging from link-based (e.g. Wu and Palmer, Leacock and
Chodorow) to node-based ones (e.g. Resnik, Jiang and Conrath, Lin). More details
about those measures can be found in [19].

On the other hand, there are difficulties which hinder the use of ontologies in
recommender systems. The development of rich and expressive domain-specific
ontologies is a time consuming task which has to be performed by human experts,
and there are also the onerous tasks of ontology population and maintenance
to perform [63]. Hence, there is an increasing attention of many researchers
towards the integration of world knowledge which may be extracted from online
collaborative resources, in order to exploit the richness of such resources to come
up with semantics-aware recommender systems.

4.3.2 Approaches Based on Unstructured or Semi-Structured
Encyclopedic Knowledge

Studies in Artificial Intelligence (AI) have already recognized the importance of
knowledge for problem solving. Back in the early years of AI research, Buchanan
and Feigenbaum [18] formulated the knowledge-as-power hypothesis, which pos-
tulated that “The power of an intelligent program to perform its task well depends
primarily on the quantity and quality of knowledge it has about that task”.

Many knowledge sources have become available in the last years, both struc-
tured and unstructured [Open Directory Project (ODP), Yahoo!Web Directory,
and Wikipedia]. The use of external knowledge sources can be useful to better
understand the information items (documents, news, product descriptions) and
to extract more meaningful features, in order to design advanced content-based
filtering methods able to provide better recommendations. Among unstructured
knowledge sources, Wikipedia emerges as the most used source of information for
several tasks [8, 42, 59, 96]. The main advantages of using Wikipedia, rather than
conventional document archives, as a knowledge source are:

• it is freely available on the Web;
• it is a wide-coverage resource which is under constant development by the

community;
• it is available in several languages, hence can be seen as a multilingual corpus;
• it is very accurate [50].

On the other hand, Wikipedia knowledge is available in textual form written by
humans for humans, and enough common-sense knowledge is needed to correctly
understand the meaning of articles. For this reason, natural language understanding
capabilities are required for the interpretation of Wikipedia pages and for making
them machine processable.
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The problem of extracting and using knowledge contained in Wikipedia was
studied by several researchers [33, 46, 49]. Different techniques have been defined,
which exploit the encyclopedic knowledge contained in Wikipedia for selecting
the most accurate semantic features to represent the items, or for generating new
semantic features to enrich the item representation.

The most prominent approaches which perform feature selection are Wikify!
[33] and Tagme [46]. Wikify! allows to identify important concepts in a text
representation by using keyword extraction, and then to link these concepts to
the corresponding Wikipedia pages by exploiting WSD techniques. More specif-
ically, Wikify! is a system for automatically cross-referencing documents with
Wikipedia [85]. The system is trained on Wikipedia articles, and thus learns to
disambiguate and detect links in the same way as Wikipedia editors [45].

Tagme [46] augments a text representation with pertinent hyperlinks to
Wikipedia pages, by implementing an anchor disambiguation algorithm which
exploits inter-relations between Wikipedia pages, as well as other heuristics.
The main advantage of Tagme is its ability to annotate texts which are short and
poorly composed, such as snippets coming from search engine result pages, tweets,
news, etc.

An approach which leverages Wikipedia knowledge to generate new features for
enriching items representation is Explicit Semantic Analysis (ESA) [49]. ESA pro-
vides a fine-grained semantic representation of text documents as a weighted vector
of concepts derived from Wikipedia. Specifically, concepts correspond to Wikipedia
articles, e.g. such as WOODY ALLEN, APPLE INC., or MACHINE LEARNING.
Explicit Semantic Analysis resembles the well known Latent Semantic Analysis
technique [35], whose representation is based on latent (and not comprehensible)
features, rather than explicit (and comprehensible) concepts derived from Wikipedia
(concepts explicitly defined and manipulated by humans).

In [48, 49], ESA was adopted for computing semantic relatedness of natural
language texts, with better performance with respect to a keyword-based approach.
In [43], ESA is adopted to enrich documents and queries to enhance traditional
bag-of-words-based retrieval models, while in [8], ESA is used for enriching bag-
of-words representing news or blog feeds before their clustering. ESA was also
effectively used to augment the bag-of-words representation with Wikipedia-based
features in the text categorization task [49].

Finally, the availability of Wikipedia knowledge in several languages and
the multilingual alignment of Wikipedia articles allow to have cross-lingual and
multilingual services. Potthast et al. [109] proposed a Wikipedia-based multilingual
retrieval model for the analysis of cross-language similarity. They demonstrated
that, given a query in a specific language, the most similar documents from a corpus
in another language were properly ranked. They used Cross-Language Explicit
Semantic Analysis (CL-ESA), an extension of ESA for cross-language retrieval.
Recently, ESA was also used to develop the Cross-language Service Retriever tool
(CroSeR), to support the cross-language linking of e-Government services to the
Linked Open Data cloud [98].
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4.3.2.1 Explicit Semantic Analysis

The idea behind ESA is to view an encyclopedia as a collection of concepts, each
of which accompanied with a large body of text (the article content). The power of
ESA is the capability of representing the Wikipedia knowledge base in a way that is
directly used by machines, without the need for manually encoded common-sense
knowledge. The gist of the technique is to use the high-dimensional space defined
by these concepts in order to represent the meaning of natural language texts. ESA
allows to leverage Wikipedia knowledge by defining relationships between terms
and Wikipedia articles.

More formally, given a set of basic concepts C D fc1; c2; : : : ; cng, a term t is
represented by a vector of weights < w1; w2; : : : ; wn >, where wi represents the
strength of association between t and ci. The set of concepts C are one to one
associated to documents D D fd1; d2; : : : ; dng (the Wikipedia articles). Hence, a
sparse matrix T is built, called ESA-matrix, where each column corresponds to a
concept (title of Wikipedia article), and each row corresponds to a term (word)
that occurs in

S
iD1:::n di. The entry TŒi; j� of the matrix represents the TF-IDF of

term ti in document dj. Finally, length normalization is applied to each column to
disregard differences in document length. This allows to define the semantics of a
term ti as a point in the n-dimensional semantic space of Wikipedia concepts. The
weighed vector corresponding to a term ti is called semantic interpretation vector.
The semantics of a text fragment < t1; t2; : : : ; tk > (i.e. a sentence, a paragraph,
an entire document) is obtained by computing the centroid (average vector) of the
semantic interpretation vectors of the individual terms occurring in the fragment.
This definition allows to partially perform WSD [49].

As an example consider the text fragment of a news title “Apple patents a Tablet
Mac”. Without deep knowledge of hi-tech industry and gadgets, one finds it hard
to predict the content of the news item. Using Wikipedia it is possible to identify
the following related concepts: APPLE COMPUTER (with the correct identification
of the concept representing the computer company rather than the fruit), MAC OS,
LAPTOP, AQUA (the GUI of Mac OS X), IPOD, and APPLE NEWTON (the name of
Apple’s early personal digital assistant).

4.3.2.2 CBRSs Leveraging Encyclopedic Knowledge

Even though the above mentioned indexing methods have been adopted for several
tasks, they are not yet widely used in the context of learning user profiles and
providing recommendations. However, CBRSs may benefit of the Wikipedia-based
representation. Indeed, the feature generation process, adopted for example by ESA,
can lead to richer item representations, able to improve the overlap between items
and profiles. Indeed the new features allow to match items that did not share any
keyword with the profile before the feature generation process. ESA is also able to
introduce new related concepts for generating less obvious and more serendipitous
(unexpected) recommendations.
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In [91], an enhanced semantic TV-show representation for Personalized
Electronic Program Guides is proposed. ESA is used to enrich the textual
descriptions associated to TV shows with additional features extracted from
Wikipedia, in order to improve the ranking of the most relevant items for each
program genre. ESA is exploited to enrich a classic bag-of-words representation
with 20, 40, or 60 new features, and it was adopted to enrich German TV-show
descriptions. To this purpose, the German Wikipedia dump (released on October
13th, 2010 with a size of approximately 7.5 GB) was processed in order to obtain
the corresponding German ESA-matrix. Results showed that the enhanced bag-
of-words representation outperforms the classical bag-of-words one in terms of
precision.

Besides the improvement of accuracy, the work carried out in [97] shows
that, leveraging encyclopedic knowledge for representing user interests allows to
introduce serendipitous topics and to obtain more understandable and transparent
user profiles. Transparency is defined as the extent to which keywords in the user
profile reflect the actual user interests. In that work user interests have been gathered
from Facebook profiles by extracting both interests explicitly declared by users
and those implicitly inferred from posts and other published content. The feature
generation process implemented by ESA helps to introduce new serendipitous topics
of interests, while the feature selection process implemented by Tagme helps to
obtain more comprehensible user profiles, more representative of user interests.

These results are confirmed in the user study presented in [96], in which
both ESA and Tagme are effectively used to improve the performance of a news
recommender. News titles are extracted from a set of RSS feeds, and the profile
of interests is built by extracting information from the Facebook and Twitter
accounts of the user. The information extracted (news, posts, tweets) are represented
using keywords, ESA concepts or Tagme concepts, respectively. The representation
obtained by Tagme outperforms the others in terms of transparency and accuracy.
This is probably due to the ability of Tagme to effectively annotate very short texts,
such as news titles.

The ability of the ESA technique to cope with the cold-start problem is shown in
[105], in which a CBRS in the context of non-fiction multimedia recommendation
of TED lectures is presented. Using ESA as indexing method for titles and
descriptions of talks allows to obtain the best performance with respect to other
semantic representations, and this shows that a representation of items based
on external knowledge is significantly more useful than the domain knowledge
captured intrinsically by the other semantic methods.

4.3.2.3 BabelNet: An Encyclopedic Dictionary

Resources like Wikipedia lack full coverage for the lexicographic senses of lemmas,
which is instead provided by a computational lexicon, such as WordNet . In this
section we briefly describe a new resource, called BabelNet [100], which integrates
the largest multilingual Web encyclopedia, i.e., Wikipedia, and the most popular
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computational lexicon, i.e., WordNet, to obtain a very large multilingual semantic
network. BabelNet integrates the linguistic knowledge contained in WordNet and
the encyclopedic knowledge contained in Wikipedia for providing an encyclopedic
dictionary. It encodes knowledge as a labeled directed graph. Nodes are concepts
extracted from WordNet and Wikipedia, i.e. word senses (synsets) available in
WordNet, and encyclopedic entries (Wikipages) extracted from Wikipedia, while
edges connecting the nodes are labeled with semantic relations coming from
WordNet, as well as semantically unspecified relations from hyperlinked text
coming from Wikipedia. Each node also contains a set of lexicalizations of the
concept for different languages, e.g., APPLE for English, MANZANA for Spanish,
MELA for Italian, POMME for French, . . . . These multilingually lexicalized concepts
are called Babel synsets. The current version (2.0) of BabelNet covers 50 languages,
and contains more than nine millions Babel synsets and 262 millions of lexico-
semantic relations.

Figure 4.2 presents an excerpt of two results obtained by issuing the query
“apple” to BabelNet.1 The system returns 11 different senses of “apple”, such
as fruit, the British rock band, the multinational corporation, etc. Clicking on
the sense allows to link to the corresponding WordNet synset or Wikipedia page
in that specific language. The system also reports the set of glosses extracted
from the different resources and the categories extracted from the corresponding
Wikipedia pages. For each sense, its semantically related concepts may also be
explored. For example, some of the concepts related to apple in the sense of the
multinational corporation—Apple Inc—are computer architecture, Power Mac G4,
Apple ProDOS, etc. More information about BabelNet can be found in [100].

BabelNet sense inventory can be effectively used for a variety of tasks, ranging
from multilingual semantic relatedness [101], to (multilingual) WSD [99, 102]. The
use of BabelNet can also fuel the progress on the research on CBRSs, which could
rely on knowledge-richer approaches to represent items and user profiles.

4.3.3 Approaches Based on Linked Open Data

Novel and more accessible forms of information coming from different open
knowledge sources represent a new and rapidly growing piece of the big data puzzle.
These new sources of open data represent an expanding trove of largely unexploited
value, which paves the way to a new generation of recommender systems. Using
open or pooled data from many sources, often combined and linked with proprietary
big data, can help develop insights difficult to uncover with internal data alone [28].
The Linked Data community has advocated the following set of best principles for
collaboratively publishing and interlinking structured data over the Web2:

1http://babelnet.org/.
2http://www.w3.org/DesignIssues/LinkedData.html.

http://www.w3.org/DesignIssues/LinkedData.html
http://babelnet.org/
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Fig. 4.2 The result obtained by issuing the query “apple” to BabelNet

• the use of URIs (Uniform Resource Identifier) as names for things (arbitrary real-
world entities);

• the use of HTTP URIs so those names can be looked up by people (dereferenc-
ing);

• the delivery of useful information upon lookup of those URIs using standards
such as RDF and SPARQL;

• the inclusion of links to other URIs to discover more things.

This allows the dissemination of structured data on the Web in an interoperable
manner using the Semantic Web standards [14].

Over the last years, more and more semantic data are published following
the Linked Data principles, by connecting information referring to geographical
locations, people, companies, book, scientific publications, films, music, TV and
radio programs, genes, proteins, drugs, online communities, statistical data, and
reviews in a single global data space, the Web of Data [13]. These datasets
interlinked with each other form a global graph, called Linked Open Data cloud.
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Fig. 4.3 Fragment of the Linked Open Data cloud (as of September 2011)

At the time of writing more than 2100 datasets are available with almost 62 billions
of RDF triples.3 Figure 4.3 shows a fragment of the Linked Open Data cloud, whose
nucleus is represented by DBpedia.

The standard mechanism for specifying the existence and meaning of connec-
tions between items described in this data is provided by the Resource Description
Framework (RDF), which allows to link things by explicitly stating the nature
of the connection (typed links). For example, a hyperlink of the type friend_of
may be set between two people. RDF statements are in the form of subject-
predicate-object expressions, called triples. The subject denotes the resource, and
the predicate denotes an aspect of the resource and expresses a relationship between
the subject and the object. Relations are also called properties. SPARQL4 is a SQL-
like language for RDF graphs to retrieve and manipulate data stored in RDF format.

In the context of recommender systems, this is useful to interlink diverse
information about users, items, and their relations, and to implement reasoning
mechanisms that can support and improve the recommendation process [34]. The
challenge is to investigate whether and how this large amount of wide-coverage and
linked semantic knowledge can significantly improve complex filtering tasks.

3http://stats.lod2.eu/.
4http://www.w3.org/TR/rdf-sparql-query/ accessed on September 12, 2014.

http://www.w3.org/TR/rdf-sparql-query/
http://stats.lod2.eu/
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4.3.3.1 CBRSs Leveraging Linked Open Data

The use of Linked Open Data for recommender systems is very recent. On one hand,
the richness and the ontological nature of this data allows to enrich item descriptions
and user profiles for different domains. Hence, the use of Linked Open Data helps to
fill in the gaps in the background data, and to cope with the new user, new item and
sparsity problems. On the other hand, the use of such a huge amount of interlinked
data poses new challenges for well established recommendation algorithms.

One of the first attempts to leverage Linked Open Data to build recommender
systems is dbrec [106], a music recommender system using DBpedia to provide
recommendations for bands and solo artists. The system is based on the Linked Data
Semantic Distance (LDSD) algorithm [107], which allows to provide recommen-
dations by computing the semantic distance for all artists referenced in DBpedia.
LDSD is a link-based measure; it does not take into account the semantics of the
relations, the links hierarchy or other DBpedia properties. It allows explanations
when computing the recommendations as a positive side effect of using Linked
Open Data. Linked Open Data are also used to mitigate the data acquisition
problem of both collaborative and content-based recommender systems. In [56], the
architecture of a collaborative recommender system is extended by leveraging user-
item connections coming from DBTune [110]; the resulting RDF graph of user-item
relations is transformed into a user-item matrix exploited by the recommendation
algorithm. In [95], DBpedia is used to enrich the playlists extracted from a Facebook
profile with new related artists. Each artist in the original playlist is mapped to a
DBpedia node, and other similar artists are selected by taking into account shared
properties, such as the genre and the musical category of the artist.

An approach which exploits Linked Open Data for computing cross-domain
recommendations is described in [44, 64]. The source and target domains involved
in the recommendation scenario are mapped to DBpedia by identifying the classes
that belong to the domains of interest, and the relations existing between instances
of such classes. Then, a semantic network is defined by querying DBpedia in order
to link a specific instance in the source domain with the related instances in the
target domain. The recommendation mechanism relies on a graph-based ranking
algorithm on the semantic network. The authors focused on a scenario in which
recommendations for music artists and tracks are adapted to places of interests, by
obtaining very positive results. Similarly to dbrec, the approach is able to provide
explanations based on the discovered semantic paths between a place of interest and
the music artists in the associated semantic network.

A simpler approach to define a CBRS exploiting exclusively Linked Open Data to
represent both items and user profiles is proposed in [38]. The ontological informa-
tion, encoded via specific properties extracted from DBpedia and LinkedMDB [54],
is adopted to perform a semantic expansion of the item descriptions, in order to catch
implicit relations and hidden information, which are not detectable just looking at
the nodes directly linked to the item. The evaluation of different combinations of
properties revealed that more properties lead to more accurate recommendations,
since this seems to mitigate the limited content analysis issue of CBRSs.
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Similarly to the previous work, a CBRS fed exclusively by Linked Open Data
is presented in [39]. Data coming from DBpedia [15], LinkedMDB [54] and
Freebase [17] are exploited to recommend movies using an adaptation of the Vector
Space Model. The RDF graph connecting movies according to some properties is
represented as a three-dimensional matrix where each slice refers to an ontology
property (e.g. starring, director, genre, . . . ) and represents its adjacency matrix. A a
cell in the matrix is not null if there is a property that relates a subject (on the
rows) to an object (on the columns). The weighing scheme is based on TF-IDF and
the cosine similarity allows to measure the correlation between two movies. The
recommendation step is performed by computing the similarity between the user
profile (movies liked and disliked by the user) and movies unknown to the user. The
similarity values for each property are combined in a linear fashion, and the best
configuration of weights for each property is learned via a genetic algorithm. As
in [38], using more ontological information leads to the best performance, and also
helps to explain the recommendations by listing, for each property, the values which
are common between the movies in the user profile and those suggested.

The same approach devised in [39] is effectively adopted to develop Cinemappy
[104] and a recommender system for events [67]. The former is a context-aware
CBRS for movies and movie theaters suggestions fed by data coming from localized
DBpedia graphs, whose results are enhanced by exploiting contextual information
about the user. The latter recommends events, even though some improvements were
necessary to deal with the complexity of the domain, such as the social aspect, i.e.
the collaborative participation about which friend will attend an event.

All the previous approaches rely on Linked Open Data to catch implicit relations
which allow to increase the number of common features between items, or to
implement more sophisticated reasoning mechanisms over the graphs. Ultimately,
well known reasoning mechanisms for learning content-based user profiles can
be adopted on the richer representations provided by leveraging Linked Open
Data [89]. An interesting work which goes one step further is presented in [103];
it leverages DBpedia to extract semantic path-based features to eventually compute
recommendations using a learning to rank algorithm. Starting from the common
graph-based representation of the content and collaborative data models, all the
paths connecting the user to an item are considered in order to have a relevance
score for that item. The more paths between a user and an item, the more that item
is relevant to that user.

4.3.3.2 (Other) Entity Linking Algorithms

In [1, 2], a semantically-enriched user model based on the analysis of Twitter posts
is proposed. Entity linking algorithms are used to enrich and extend user models
by identifying the most relevant entities mentioned in the tweets. Similarly, entity
linking algorithms are adopted in [94] to enhance item representation in a context-
aware content-based recommendation framework. The experimental evaluation
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showed that entity-based algorithms are able to improve the predictive accuracy
of the recommendation framework, in both context-aware and non-contextual
recommendation settings.

This section introduces some other known entity linking systems, which can be
effectively used to implement semantic CBRSs.

Babelfy5 [88] is a novel integrated approach to entity linking and word sense
disambiguation. Given a lexicalized semantic network, e.g. BabelNet, the approach
is based on three steps: (1) the automatic creation of semantic signatures, i.e. related
concepts and named entities for each vertex of the semantic network, (2) extraction
of all the linkable fragments from a given text, listing all the possible meanings
according to the semantic network, and (3) linking based on a high-coherence
densest subgraph algorithm.

DBpedia Spotlight [80] has been designed to connect unstructured text to the
Linked Open Data cloud by using DBpedia as hub. The output is a set of Wikipedia
articles related to a text retrieved by following the URI of the DBpedia instances.
The annotation process works in four-stages. First, the text is analyzed in order
to select the phrases that may indicate a mention to a DBpedia resource. In this
step, spots that are only composed of verbs, adjectives, adverbs and prepositions are
disregarded. Subsequently, a set of candidate DBpedia resources is built by mapping
the spotted phrase to resources that are candidate disambiguations for that phrase.
The disambiguation process uses the context around the spotted phrase to decide for
the best choice amongst the candidates.

Other tools allow for the semantic annotation of natural language text, but the
techniques used to perform the analysis are not described with sufficient details.

Alchemy6 offers a NLP processing service able to analyze web pages, docu-
ments, and tweets for identifying entities, keywords, concepts, etc. If available, a
link to the Linked Open Data cloud is also provided (DBpedia, Yago, Crunchbase,
etc.). It also performs sentiment analysis on the input text by assigning a sentiment
polarity to the entities identified into the text.

Open Calais7 exploits NLP and machine learning to find entities within doc-
uments. The main difference with respect to other entity recognizers is that Open
Calais returns facts and events hidden within the text. Open Calais consists of
three main components: (1) a named entity recognizer that identifies people,
companies, organizations; (2) a fact recognizer that links the text with position
tags, alliance, person-political; (3) an event recognizer whose role is to identify
sport, management, change events, labor actions, etc. Open Calais supports English,
French and Spanish, and its assets are currently linked to DBpedia, Wikipedia,
Freebase, GeoNames.

5http://babelfy.org.
6http://www.alchemyapi.com/.
7http://www.opencalais.com/.

http://www.opencalais.com/
http://www.alchemyapi.com/
http://babelfy.org
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NERD (Named Entity Recognition and Disambiguation)8 [112] is a framework
to unify different named entity extractors, such as Alchemy, DBpedia Spotlight,
Open Calais, etc., using the NERD ontology, providing a rich set of axioms aligning
the taxonomies of those tools. In the NERD ontology a manual mapping between
taxonomies coming from different schemas is established, and a concept is included
in the NERD ontology as soon as there are at least three extractors that use it.

4.4 Bottom-Up Semantic Approaches

This section focuses on approaches able to produce implicit semantic representation
of both items and user profiles that could be defined lightweight in contrast to
the approaches presented in Sect. 4.3. These techniques are mainly based on the
distributional hypothesis, according to which the meaning of words depends on the
contexts in which they occur. The most distinguishing aspect of these approaches
lies in the fact that the semantic representation is directly learned according to the
way terms are used in large corpora of data. Thus, they do not need any human
intervention, differently from the development of an external resource for semantic
content representation or the maintenance of an ontology. Bottom-up semantic
approaches just need as much data as possible to learn and represent the meaning of
the terms.

The following sections provide the background about Discriminative Models
(Sect. 4.4.1), and the basics for the definition of a novel content-based recommen-
dation framework that exploits the strengths of VSM, by tackling its drawbacks at
the same time. A novel dimensionality reduction technique, which avoids the need
for factorization, is discussed in Sect. 4.4.1.1, and a more sophisticated negation
operator to model negative preferences is presented in Sect. 4.4.1.2. A survey
of CBRSs built on the ground of the previous methods is finally provided in
Sect. 4.4.1.3.

4.4.1 Approaches Based on Discriminative Models

Discriminative Models (DMs) rely on a simple insight: as humans infer the meaning
of a word by understanding the contexts in which that word is typically used,
discriminative algorithms extract information about the meaning of a word by
analyzing its usage in large corpora of textual documents. This means that it
is possible to infer the meaning of a term (e.g., leash) by analyzing the other
terms it co-occurs with (dog, animal, etc.) [114]. In the same way, the correlation
between different terms (e.g., leash and muzzle) can be inferred by analyzing the

8http://www.wikimeta.com/portfolio_nerd.html.

http://www.wikimeta.com/portfolio_nerd.html
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Fig. 4.4 A term-context matrix. The analysis of the usage patterns of the terms allows to state that
beer and wine or beer and glass are similar, since they are often used together

similarity between the contexts in which they are used. These approaches rely on the
distributional hypothesis [53], according to which “Words that occur in the same
contexts tend to have similar meanings”. This means that words are semantically
similar to the extent that they share contexts.

DMs represent information about terms usage in a term-context matrix (Fig. 4.4),
instead of a term-document matrix adopted in the classic VSM. The advantage is
that the context is a very flexible concept which can be adapted to the specific
granularity level of the representation required by the application: for example,
given a word, its context could be either a single word it co-occurs with, or a
sliding window of terms that surrounds it, or a sentence, or yet the whole document.
In [125], it is presented an interesting survey about the three broad classes of
VSM to represent semantics, related to the different types of matrix adopted:
(1) term-document matrix—usually used to measure similarity of documents, (2)
word-context matrix—usually used to measure similarity of terms, and (3) pair-
pattern matrix—usually used to measure similarity of relations (the textual patterns
in which the pair X,Y co-occurs, e.g. X cuts Y or X works with Y).

The classical VSM is the simplest DM proposed in literature, in which co-
occurrences are computed by considering the whole document as context. This
approach uses syntagmatic relations between words to assess their semantic similar-
ity. Indeed, words with a similar meaning will tend to occur in the same document,
because they are appropriate to define the particular topic of that document. Instead,
the approach based on the co-occurrences computed in a context different from the
document uses paradigmatic relations, because in a small context window we do
not expect that similar words (e.g., synonyms) can co-occur, but we could expect
that their surrounding words will be more or less the same.

DMs are referred to as geometrical models as well, since each term represented
by a row of the term-context matrix can be modeled as a vector. In order to compute
relatedness between terms, it is possible to exploit distributional measures that rely
on the distributional hypothesis, such as spatial measures (e.g., cosine similarity,
Manhattan and Euclidean distances), mutual information-based measures (e.g.,
Lin), or relative entropy-based measures (e.g., Kullback-Leibler divergence) [87].
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On one hand, this representation has the advantage of building a language model,
typically referred to as WordSpace [72], able to learn similarities and connections
in a totally unsupervised way, but on the other hand the dimensionality of vectors
when adopting finer-grained representations of contexts is a clear issue (curse of
dimensionality). For example, the adoption of sentences as granularity level for
contexts causes an explosion of the number of dimensions of the vector space: by
assuming 10–20 sentences per document on average, the dimension of the vector
space would be 10–20 times the one using a classical term-document matrix. For this
reason, feature selection or dimensionality reduction techniques must be adopted.

4.4.1.1 Dimensionality Reduction Techniques

Dimensionality reduction techniques help to transform a high-dimensional space
into a lower-dimensionality one.

Latent Semantic Indexing (LSI) [35] is a technique for building a semantic vector
space representation based on the application of Singular Value Decomposition
(SVD) [68] on the term-document matrix. The approach, largely investigated for
representing the meaning of terms through statistical computations applied to a large
corpus of text, works in two steps: first, the corpus is represented into a matrix in
which each row is a word and each column is a text passage (document). Next, SVD
is applied in order to decompose the original matrix into two matrices of reduced
dimensionality (obtained by selecting the largest eigenvalues) that represent the
original rows (terms) and the original columns in terms of latent orthogonal factors.

As pointed out in [11], the reduced orthogonal dimensions resulting from SVD
are less noisy than the original data and capture the latent associations between
terms and documents.

The use of LSI in the area of CBRSs has been already investigated in several
research work [47, 78], and it has been demonstrated that it is able to outperform
other techniques, regardless the application domain. In [122], a feature profile
of a user is built using both collaborative and content features, and LSI is
exploited to detect the dominant features of a user. Recommendations are provided
according to this dimensionally-reduced feature profile, with a better performance
with respect to both collaborative and content-based as well as hybrid algorithms.
Recently, LSI has been effectively adopted as the content-based component of
a hybrid algorithm for recommending TV-shows [7, 32], as well as in the task
of recommending source code examples according to user requirements [79].
However, Terzi et al. [124] showed that LSI can underperform compared to other
approaches when the set of available data is small and the textual content is too
short. This outcome confirms the insight that DMs, regardless the dimensionality
technique they adopt, are effective when a lot of data about terms usage is available.

Regardless of its effectiveness, LSI suffers from scalability issues inherited from
the use of SVD for dimensionality reduction. Consequently, research has been
oriented towards the investigation of more scalable and incremental techniques, such
as those based on Random Projections (RP) [126], which has its theoretical basis
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Fig. 4.5 A visual explanation of the Johnson-Lindenstrauss lemma. Z is the nearest point to X in
the reduced vector space, as in the original space, even though the numerical value of their pairwise
similarity is different

in the Hecht-Nielsen’s studies about near-orthogonality [55]. These approaches,
originally proposed for clustering text documents [69], do not need factorization,
and are based on the insight that a high-dimensional vector space can be randomly
projected into a space of lower dimensionality without compromising distance
metrics. By following this approach, a high-dimensional matrix M of size n � m
is transformed into a reduced k-dimensional matrix M� as follows:

Mn;m � Rm;k D M�
n;k (4.8)

where the row vectors of R are built in a pseudo-random way (more details follow).
According to the Johnson and Lindenstrauss’ lemma [62], when the random matrix
R is built by following specific constraints, distances between points in the reduced
vector space are nearly preserved, i.e. remains proportional with respect to those
in the original space (see Fig. 4.5), thus it is still possible to perform similarity
computations between points in the reduced vector space with a minimum loss of
significance, balanced by the gain in efficiency.

This important outcome has been experimentally confirmed in several works
[66, 73]. Despite its advantages, the use of RP is still not widespread compared
to SVD. In [29, 123], RP is applied to collaborative filtering, while in [105], RP is
used to build an item to item similarity matrix leveraging the reduced vector space
representation.
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RP was used as dimensionality reduction technique for a discriminative model
called Random Indexing (RI) [115, 116]. This strategy, based on Kanerva’s work
on sparse distributed representations [65], is an incremental technique for creating
small-scale WordSpaces that merges the advantages of discriminative models
with the efficiency of dimensionality reduction based on RP. Similarly to LSI, RI
represents terms and documents as points in a semantic vector space that is built
according to the distributional hypothesis. However, differently from it, RI uses RP
instead of SVD as technique for dimensionality reduction. Thus, the heavyweight
decomposition performed by SVD is here replaced by an incremental (but effective)
algorithm as RP, which performs the same process with less computational cost.
Thanks to RI it is possible to represent terms (and documents) through a n � k
term-context matrix, which is more compact than the original n�m term-document
matrix, since k is typically set lower than m. One of the strongest points of RI is
its flexibility, since the dimension k is a simple parameter thus it can be adapted to
the available computational resources, as well as to the requirements of the specific
application domain. Basically, the larger the vector space, the higher the precision in
representing word similarities, and the higher the computational resources required
to represent and update the model.

The k-dimensional representation is obtained by using the following incremental
strategy:

1. A k-dimensional randomly generated context vector is assigned to each context.
This vector is sparse, high-dimensional and ternary, which means that its
elements have values in f�1; 0; 1g. Values are distributed in a random way, but
the number of non-zero elements has to be much smaller. Specifically, a very
common choice is to use a Gaussian distribution for the elements of the context
vectors. However, much simpler distributions (zero mean distributions with unit
variance) can also be used [3];

2. The vector space representation of a term is obtained by summing the context
vectors of all the contexts which contain the term;

3. The vector space representation of a document is obtained by summing the
vector space representation of all the terms (created in step 2) which occur in
the document.

Step 2 allows to build a WordSpace, while step 3 allows to build a DocSpace.
Both the spaces have the same dimension. In a WordSpace it is possible to
compute similarities between different terms, while in a DocSpace this is possible
for documents. The approach is totally incremental: when a new document comes
into play, the algorithm randomly generates a new context vector for it (step 1) and
updates the WordSpace. The technique is scalable because the calculation of the
vector space representation of this new document does not need to generate again
the whole vector space, but it is simply obtained by summing the context vectors of
the terms that occurs in it.
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4.4.1.2 Modeling Negation

The above mentioned novel representation inherits a classical issue of VSM, since
the information coming from negative evidence (i.e., items user dislikes) is not
taken into account. This is an important aspect for recommender systems, since user
profiles are built by modeling positive, as well as negative user preferences. Several
works rely on an adaptation of the Rocchio algorithm [113] to incrementally refine
the user profiles by exploiting positive and negative feedback provided by users. The
problems with the Rocchio algorithm is related to the extensive tuning of parameters
needed for being effective and to the lack of solid theoretical foundations of the
method. Negative relevance feedback is also discussed in [41], in which the idea
of representing negation by subtracting an unwanted vector from a query emerged,
even if nothing about how much to subtract is stated. This is a problem which we
try to clarify using the following example, inspired by Widdows [127].

Let us suppose to have a WordSpace built on a corpus of documents related to
music (in order to leave disambiguation problems out of this discussion). Consider
the term vectors of the two words rock and pop. The query (or profile) (rock NOT
pop) should allow to represent rock only by the aspects of its meaning which are
different from, and preferably unrelated to, those of pop. If we subtract the whole
vector pop from rock, we might remove features of rock which we wanted to
keep. Instead, we should subtract exactly the right amount to make the unwanted
vector pop irrelevant to the desired result. This removal operation is called vector
negation, which is related to the concept of orthogonality, and it is proposed in
[127], according to the principles of Quantum Logic. Meanings are unrelated to
one another if they have no features in common at all, precisely when their vectors
are orthogonal. Hence, we need to make our final query vector (rock NOT pop)
orthogonal to pop. Geometrically, this corresponds to the orthogonal projection of
the vector rock onto the vector pop, that is the vector �pop (� 2 <):

� D rock 	 pop

pop 	 pop
(4.9)

From this definition, (rock NOT pop) is represented as the vector (rock �� pop),
which is orthogonal to the vector pop. For simplicity, we do not discuss here about
ambiguity problems (e.g. rock could refer also to geology). More details can be
found in [127].

4.4.1.3 CBRSs Leveraging Discriminative Models

One of the first attempt to define a CBRS using discriminative models is presented
in [120], in which the process of learning user profiles benefits from the infusion
of exogenous knowledge coming from Wikipedia. The knowledge contained in
Wikipedia is processed using the Semantic Vectors package [128], in order to build
a WordSpace model in which related words are close to each other in that space.
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A more complete approach using discriminative models based on RI and the
above mentioned negation operator is described in [92], which presents a novel
content-based recommendation framework called enhanced Vector Space Model
(eVSM). In eVSM, RI is used to build a user profile in an incremental way, i.e. by
summing all the document vectors representing documents liked by that user. More
complex models were defined by introducing the negation operator to represent in
the user profile both positive and negative preferences. To this purpose, instead of a
single vector representing a user profile, two vectors were defined, one for positive
preferences (pCu) and one for negative ones (p�u).

The same approach was also used to build language-independent user profiles
[90], by assuming that in every language each term often co-occurs with the
same other terms (expressed in different languages, of course). Hence, representing
a content-based user profile in terms of the co-occurrences of its terms, user
preferences become inherently independent from the language and this is sufficient
to provide the user with cross-language recommendations. Thus, profiles learnt on
English movies were used to recommend Italian movies, and vice versa. Results
were accurate and comparable to a classical monolingual recommendation setting.
This highlights the power of the approach, which is able to tackle a complex
multilingual recommendation task without using any complex operations, such as
translation or semantic indexing based on WSD [71].

Recently, the eVSM framework has been further evolved to manage contextual
information. In [93], contextual eVSM extends eVSM with a context-aware post-
filtering algorithm [5]. More specifically, a semantic representation of the context is
built and used to influence non-contextual recommendations. The intuition behind
the context representation is that there exists a set of terms that are likely more
descriptive than others to model items relevant in a certain context. For example,
it is likely that restaurant descriptions containing terms such as candlelight or sea
view are more relevant if the user is looking for a restaurant suitable for a romantic
dinner. Experiments demonstrated that contextual eVSM is able to outperform non-
contextual baselines in most experimental settings, as well as the state of the art
algorithm for context-aware collaborative recommendation proposed in [4].

DMs were also adapted to face the sparsity problem of context-aware recom-
mender systems, which need large datasets of contextually tagged ratings, i.e.
ratings for items provided in the different contextual situations. In [30], it is
described an approach based on the intuition that, when making recommendations
in a particular situation, it can be considered as relevant not only the ratings
provided by the users in that situation but also to reuse ratings provided in similar
situations. The similarity among contextual conditions is estimated by identifying
the “meaning” of a condition by means of its implicit semantics, that is captured
by the usage of the concept. Experiments demonstrated good performance of the
proposed approach, which was further improved in [31].



148 M. de Gemmis et al.

4.5 Summary and Comparison of Approaches

In the previous sections we analyzed top-down and bottom-up semantic approaches
for facing well-known problems of CBRSs (i.e., limited content analysis, overspe-
cialization).

In Table 4.1, pros a cons of each approach are summarized with respect to
several criteria: transparency of the models, coverage of topics, complexity of
NLP techniques required, ease of applying reasoning mechanisms for discovering
relationships between items and profiles, support for multilinguality.

In order to capture the semantics of the user information needs, recommender
systems based on top-down approaches can exploit different types of exogenous
knowledge that allow advanced concept-based content representation: ontological
resources, encyclopedic knowledge, and the Linked Open Data cloud. Conversely,
recommender systems based on bottom-up semantic approaches rely on methods
able to induce the semantics of terms by analyzing their use in large corpora of
documents, i.e. they rely on the so-called distributional hypothesis: words that occur
in the same contexts tend to have similar meanings.

An important difference between the two approaches is related to transparency:
the explicit concept-based representation of both items and profiles allows the
definition of less ambiguous user profiles and is particularly useful for estimating
the semantic similarity between user preferences and item features. Furthermore, the
advanced content representation has an impact on the accuracy of recommendations,
allows to mitigate the limited content analysis problem, and also helps to provide
well-structured explanations of recommendations in terms of matched concepts.

Bottom-up approaches do not allow an explicit representation of concepts, but the
meaning of a word is inferred by analyzing its co-occurrence with context features
(other words, larger textual units, or documents). Hence, the semantics is implicitly
encoded as high-dimensional vectors learned from large corpora of documents.
This is the main limitation of these approaches, that do not allow an intelligible
explanation of the recommendations.

Another problem is that high-dimensional vectors require novel dimensionality
reduction techniques, in order to improve scalability. In [92], we described Ran-
dom Indexing, a dimensionality reduction technique which avoids the need for
factorization, and we showed how effective user profiles can be built in an incre-
mental way by distinguishing between positive and negative user preferences. The
novel content-based recommendation framework based on Random Indexing was
able to outperform state-of-the-art techniques, and to easily implement language-
independent context-aware recommender systems [90]. This is a relevant advantage
of bottom-up approaches, which do not require to perform complex NLP tasks such
as translation or WSD in order to provide cross-language recommendations.

Furthermore, an important distinction between the two approaches must be
considered with respect to the capability of discovering novel relationships among
items and profiles, beyond the simple similarity. Indeed, both the approaches
give the possibility of inferring new information (e.g. new words or concepts not
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explicitly included in the item descriptions), which could be exploited to discover
those associations, but the reasoning process could be performed in a different
way, depending on the type of knowledge it is based on. For example, ontologies
represent the domain knowledge in a more formal way, due to their structured
representation, and easily allow reasoning, even at an abstract level, by navigating
the concept hierarchy. Obviously, reasoning is influenced by the usually limited
coverage of topics, because of the cost of the human-based tasks of building,
maintaining and populating ontologies. Hence, the research is moving towards the
exploitation of freely available knowledge sources, such as Wikipedia. Encyclopedic
knowledge covers a wider range of topics compared to ontologies, is generally
multilingual, but requires more NLP effort to analyze unstructured information in
order to select or even generate semantic features to effectively represent items and
user profiles. This capability of generating new semantic features, besides those that
can be found in item descriptions, can be exploited to discover unexpected and non-
trivial relationships between items and between items and user profiles. However,
the NLP effort for performing this task is higher compared to using ontologies,
due to the absence of an explicit organization of concepts. Similarly, the lack of a
structured representation of concepts in bottom-up approaches does not make the
implementation of reasoning capabilities as easy as for ontology-based approaches.
Anyway, the fact that discriminative models are able to catch latent associations
between terms can help to find not-trivial correlations among items [120]. On the
other side, the graph-based organization of the Linked Open Data cloud facilitates
the adoption of even sophisticated reasoning mechanisms, as the one described in
[103], that allow deeper reasoning connecting data in different domains and promote
cross-domain recommendations. A significant effort here is due to need of linking
data to the Linked Open Data cloud.

4.6 Conclusions and Future Challenges

This chapter was structured around two different approaches for introducing
semantics in CBRSs: top-down and bottom-up. Both approaches have advantages
and drawbacks, and pose new challenges in the development of CBRSs. Many
other recommendation scenarios may benefit from semantic-based approaches. In
the context of sentiment analysis, concept-based approaches proved to be superior
to purely syntactical techniques [20], hence recommender systems which rely on the
analysis of opinions written in natural language for extracting user preferences and
affective states, might effectively adopt all the techniques presented in this chapter
to provide better suggestions.

In conclusion, research on content-based recommender systems produced a
variety of solid methods, some of which having their roots in NLP foundations,
but still poses some interesting challenges:
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• Definition of recommendation methods able to reason on the graph structure of
the Linked Open Data cloud to discover latent connections among items and
user profiles, as suggested in [39]. Those emerging relations could be exploited
for cross-domain recommendations or diversification of suggestions. As an
example, the Linked Open Data-enabled Recommender Systems Challenge of
the 11th European Semantic Web Conference has shown how Linked Open
Data and semantic technologies can boost the creation of a new breed of
knowledge-enabled and content-based recommender systems. In particular, one
of the tasks of the challenge was devoted to the design of Linked Open Data-
enabled recommender systems whose effectiveness was evaluated by considering
a combination of both accuracy of the recommendation list and the diversity
of items belonging to it. Diversity is a very popular topic in content-based
recommender systems, which usually suffer from overspecialization;

• Definition of content-based methods for mining microblogging data and deep
analysis of text reviews. In particular, aspect-based opinion mining and sentiment
analysis techniques can support the design of recommendation methods that take
into account the evaluation of aspects of items expressed in text reviews. As an
example, “Aspect Based Sentiment Analysis” was one of the tasks of SemEval
2014, and was devoted to evaluate methods for automated detection of both
aspects and the sentiment expressed towards each aspect in text reviews of lap-
tops and restaurants. These methods could be exploited for implicit rating
of aspects and can support the development of multi-criteria recommendation
techniques;

• Definition of personality-based recommendation methods based on automated
recognition of personality. Content-based methods can be exploited to detect
personality markers in language through the extraction of linguistic features
associated with personality traits [76]. Automated modeling of personality from
text can ease the development of systems that incorporate personality aspects
into recommendation methods to enhance both recommendation quality and
user experience [60]. The design of personality-based and emotion-aware per-
sonalized services is an emerging research topic, as shown also by the recent
EMPIRE workshops hold in conjunction with the Conference on User Modelling,
Adaptation and Personalization.

We hope that this chapter may stimulate the research community to adopt and
effectively integrate the discussed techniques in several recommendation scenarios
in order to foster future innovations in the area of CBRSs.
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Chapter 5
Constraint-Based Recommender Systems

Alexander Felfernig, Gerhard Friedrich, Dietmar Jannach,
and Markus Zanker

5.1 Introduction

Traditional recommendation approaches including content-based filtering [59] (see
Chap. 4) and collaborative filtering [47] (see Chap. 2) are well-suited for the recom-
mendation of quality and taste products such as books, movies, or news. However,
especially in the context of complex products such as cars, computers, real-estate,
or financial services those approaches are not the best choice. For example, financial
services are typically not contracted very frequently which makes it impossible
to collect ratings for one specific item which would be required by collaborative
filtering algorithms. Furthermore, users of recommender applications would not be
satisfied with recommendations based on years-old item preferences, which would
probably be exploited in this context by content-based filtering algorithms.

Knowledge-based recommender technologies help to tackle these challenges by
exploiting explicit user requirements and deep knowledge about the underlying
product domain [16] for the computation of recommendations. These systems
include knowledge sources that are not exploited by collaborative filtering and
content-based filtering approaches (e.g., recommendation knowledge in terms
of constraints). Compared to collaborative filtering and content-based filtering,
knowledge-based recommenders do not face cold-start problems since requirements
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are directly elicited within a recommendation session. However, knowledge-based
recommenders suffer from the so-called knowledge acquisition bottleneck meaning
that the work of knowledge engineers is required to explicitly encode the knowledge
of domain experts into a formal and executable representation.

We can differentiate between two basic types of knowledge-based recom-
menders: case-based reasoning (CBR) approaches [4, 5, 49] and constraint-based
recommenders [16, 81].1 In terms of the used knowledge and their functionality
these systems are often quite similar: user requirements are collected, recommen-
dations are made based on knowledge about the items and how well they match to
the requirements, repairs for inconsistent requirements can be proposed in situations
where no solutions could be found [18, 19, 55, 81], and explanations for the recom-
mendation results can be provided. The major difference lies in the way solutions are
calculated [16]. Case-based recommenders determine recommendations on the basis
of similarity metrics [53] whereas constraint-based recommenders predominantly
exploit predefined recommender knowledge bases that contain explicit rules about
how to relate customer requirements with item properties. In this chapter we will
focus on constraint-based recommendation technologies. For a detailed review of
case-based recommender technologies—see [4, 5, 49].

Technically, a recommender knowledge base of a constraint-based recommender
system (see [22]) can be defined through two sets of variables (VC, VPROD) and
three different sets of constraints (CR, CF, CPROD/. These variables and constraints
are the major ingredients of a constraint satisfaction problem [72]. A solution for
a constraint satisfaction problem consists of concrete instantiations of the variables
such that all the specified constraints are fulfilled (see Sect. 5.4).

Customer Properties VC describe possible requirements of customers, i.e.,
requirements are instantiations of customer properties. In the domain of financial
services willingness to take risks is an example of a customer property and
willingness to take risks D low represents a concrete customer requirement.

Product Properties VPROD describe the properties of a given product assortment.
Examples of product properties are recommended investment period, product type,
product name, or expected return on investment.

Constraints CR are systematically restricting the possible instantiations of cus-
tomer properties, for example, short investment periods are incompatible with high
risk investments.

Filter Conditions CF define the relationship between potential customer require-
ments and the given product assortment. An example of a filter condition is the
following: customers without experiences in the financial services domain should
not receive recommendations which include high-risk products.

1Utility-based recommenders are often categorized as being knowledge-based, too [5]. For a
detailed discussion of utility-based approaches, see [5, 19].



5 Constraint-Based Recommender Systems 163

Products Finally, the allowed instantiations of product properties are represented
by CPROD. CPROD represents one constraint in disjunctive normal form that defines
elementary restrictions on the possible instantiations of variables in VPROD.

A simplified recommender knowledge base for the domain of financial services
is the following (see Example 5.1).

Example 5.1. Recommender knowledge base (VC, VPROD, CR, CF, CPROD)

VC = {klc: [expert, average, beginner] . . . . . . . . . . . . . . . . . . . /* level of expertise */
wrc: [low, medium, high] . . . . . . . . . . . . . . . . . . /* willingness to take risks */
idc: [shortterm, mediumterm, longterm] . . . . . . . /* duration of investment */
awc: [yes, no] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* advisory wanted ? */
dsc: [savings, bonds, stockfunds, singleshares] . . /* direct product search */
slc: [savings, bonds] . . . . . . . . . . . . . . . . . . . . /* type of low-risk investment */
avc: [yes, no] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* availability of funds */
shc: [stockfunds, singleshares] . . . . . . . . /* type of high-risk investment */ }

VPROD = {namep: [text] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* name of the product */
erp: [1..40] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* expected return rate */
rip: [low, medium, high] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* risk level */
mnivp: [1..14] . . . . . . . /* minimum investment period of product in years */
instp: [text] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /* financial institute */ }

CR = {CR1: wrc D high! idc ¤ shortterm,
CR2: klc D beginner! wrc ¤ high}

CF = {CF1: idc D shortterm! mnivp < 3,
CF2: idc D mediumterm! mnivp � 3 ^ mnivp < 6,
CF3: idc D longterm! mnivp � 6,
CF4: wrc D low! rip D low,
CF5: wrc D medium! rip D low _ rip D medium,
CF6: wrc D high! rip D low _ rip D medium _ rip D high,
CF7: klc D beginner! rip ¤ high,
CF8: slc D savings! namep D savings,
CF9: slc D bonds! namep D bonds}

CPROD = {CPROD1: namep D savings^erpD3^ripD low^mnivpD1^instp D A;
CPROD2: namep D bonds^erp D 5^rip D medium^mnivp D 5^instp D B;
CPROD3: namep D equity^ erp D 9^ rip D high^mnivp D 10^ instp D B}

On the basis of such a recommender knowledge base and a given set of customer
requirements we are able to calculate recommendations. The task of identifying a
set of products fitting a customer’s wishes and needs is denoted as recommendation
task (see Definition 5.1).

Definition 5.1. A recommendation task can be defined as a constraint satisfaction
problem (VC, VPROD, CC [ CF [ CR [ CPROD) where VC is a set of variables rep-
resenting possible customer requirements and VPROD is a set of variables describing
product properties. CPROD is a constraint in disjunctive normal form that describes
product instances, CR is a set of constraints describing possible combinations of
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customer requirements, and CF (filter conditions) is a set of constraints describing
the relationship between customer requirements and product properties. Finally, CC

is a set of unary constraints representing concrete customer requirements.

Example 5.2. Based on the recommender knowledge base of Example 5.1, the
definition of a concrete recommendation task can be completed with the following
set of requirements CC={wrc D low; klc D beginner; idc D shortterm; slc D
savings}.

Based on the definition of a recommendation task, we can introduce the notion
of a solution (consistent recommendation) for a recommendation task.

Definition 5.2. An assignment of the variables in VC and VPROD is denoted as
consistent recommendation for a recommendation task (VC, VPROD, CC[CF[CR[
CPROP) iff it does not violate any of the constraints in CC [ CF [ CR [ CPROD.

Example 5.3. A consistent recommendation with respect to the recommender
knowledge base of Example 5.1 and the customer requirements defined in Exam-
ple 5.2 is wrc D low; klc D beginner; idc D shortterm; slc D savings; namep D
savings; erp D 3; rip D low; mnivp D 1; instp D A.

Once the recommendation rules are defined, the question arises in which form
the requirements should be elicited from the user. Simple form-based one-style-fits
all approaches can have their limitations for different reasons [42]. Users can have
different expertise in the domain and questions about preferences have to be asked
in different forms, meaning that the system has to support an adaptive dialog (see
Sect. 5.3). In addition, in some applications, the specification of some requirements
is only required if some other options were chosen. In the literature, different
approaches have been made to explicitly model how the user interface should behave
and react on user actions. The dialog can for example be modeled in the form of
finite state models [17] or can be structured even more flexibly in a form where
users themselves are enabled to select properties they would like to specify [50].

In this chapter we will discuss the first alternative in more detail where
recommendation dialogs are modeled explicitly in the form of finite state models
[17]. Transitions between the states are represented as acceptance criteria on the
user input. For example, an expert (klc D expert) who is not interested in a
recommendation session regarding financial services (awc D no) is automatically
forwarded to q4 (search interface that supports the specification of technical product
features). Figure 5.1 depicts a finite state model of the intended behavior of a
financial services recommender application.

The remainder of this chapter is organized as follows. In Sect. 5.2 we give
an overview of knowledge acquisition approaches for the development of rec-
ommender knowledge bases and recommender process definitions. In Sect. 5.3
we introduce major techniques for guiding and actively supporting the user in a
recommendation dialog. A short overview of approaches to solve recommendation
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Fig. 5.1 Recommender user interface description: a simple example recommendation process for
financial services. The process starts in state q0, and, depending on the user’s knowledge level,
is forwarded to either state q2 or state q3. In the final state (one of the states q4, q6, q7) the
recommended items are presented. Each state qi has an assigned customer property var (qi) that
represents a question to be asked in this state

tasks is given in Sect. 5.4. In Sect. 5.5 we discuss a number of fielded constraint-
based recommender applications. In the final sections, we discuss opportunities for
future research in constraint-based recommendation.

5.2 Development of Recommender Knowledge Bases

The major precondition for successfully applying constraint-based technologies in
commercial settings are technologies that actively support knowledge engineers and
domain experts in the development and maintenance of recommender applications
and thus help to limit knowledge acquisition bottlenecks as much as possible. Due to
the often very limited programming skills of domain experts, there typically exists
a gap between knowledge engineers and domain experts in terms of their know-
how regarding knowledge base development [19]. Domain experts are thus in most
cases only responsible for knowledge provision but not for the formalization into a
machine-interpretable representation (recommender knowledge base).

The following discussions are based on the CWAdvisor recommendation envi-
ronment. A major goal of CWAdvisor that was first presented in [36] is to reduce the
above mentioned knowledge acquisition bottleneck and its goal is to support the sub-
ject matter expert in a way that (s)he can autonomously define and maintain the
recommendation logic as far as possible. In the following sections we will review
the main functionality and design principles [9] of the CWAdvisor environment [19].
For further information on constraint-based recommendation technologies and
corresponding environments we refer to [16, 19, 23, 36, 44, 57, 58, 63, 81].
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• First, the principle of concreteness is supported through rapid prototyping
where the user can immediately inspect the effects of the introduced changes
to recommender process definitions, recommendation rules, explanation texts,
properties of products, or images. This functionality is implemented in the
form of templates that enable a direct translation of graphically defined model
properties into a corresponding executable recommender application [42].

• Second, changes to all these information units can be performed with the help
of a visual tool, which is crucial to make knowledge acquisition environments
more accessible to domain experts. Domain experts are thus never concerned
with programming details—an approach that follows the principle of a strict
separation of application logic and implementation details.

• Third, an integrated testing and debugging environment supports the principle of
immediate feedback in the sense that erroneous definitions in the recommender
knowledge base and the recommendation process are automatically detected and
reported (end-user debugging support). Thus, knowledge bases are maintained
in a structured way and not deployed in a productive environment until all test
cases specified for the knowledge base are fulfilled. As a direct consequence,
domain experts can develop higher levels of trust in the resulting application
since erroneous recommendations are avoided.

The Modeling Environment Figure 5.2 shows examples of some of the modeling
components in the CWAdvisor recommender development environment [19].

This environment can be used for the design of a recommender knowledge
base (see Example 5.2), i.e., customer properties (VC), product properties (VPROD),
constraints (CR), filter conditions (CF), and the product catalog (CProd) can be
entered with visual tools. The upper part of Fig. 5.2 shows an interface for the
design of filter conditions (CF). In the lower part, an interface for the context-
oriented specification of compatibility constraints can be seen. Figure 5.3 shows the
CWAdvisor Process Designer user interface. This component supports the graphical
design of recommendation processes and the interactive dialog. Given such a
process definition, the recommender application consisting of a recommendation
server and client-side HTML pages is then automatically generated (Fig. 5.4).

Debugging Support In some cases, domain experts make mistakes when defining
the recommendation process. For example, the transition conditions between the
states could be defined in a wrong way such that not all paths are reachable. Consider
again Fig. 5.1. Let us assume that the designer made a mistake and entered the
transition condition c0

1 W klc D expert instead of c1 W klc D beginner. In that case,
users classified as beginners would get stuck as no related transition is defined.
For more complex process definitions, the manual identification and repair of such
faults is tedious and error-prone. In [17] an approach is presented which helps to
automatically detect and repair such faulty statements. It is based on model-based
diagnosis [62] that helps to locate minimal sets of faulty transition conditions.

In addition to a graphical process definition, CWAdvisor Designer supports
the automated generation of test cases (input sequences including recommended
products) [22]. Such test cases can be interpreted as additional constraints that
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Fig. 5.2 CWAdvisor designer environment. Filter conditions as well as compatibility constraints
can be defined in a context-sensitive editing environment

specify combinations of customer properties and product properties to be accepted
by the knowledge base. On the one hand, test cases can be exploited for the purpose
of regression testing, for example, before the recommender application is deployed
in the production environment. On the other hand, test cases can be used to debug
faulty recommender knowledge bases and faulty process definitions.

In the following, we will summarize the principles of recommender knowledge
base debugging with the help of an example (Example 5.4) [15, 18, 19, 22].
In general, these techniques can be applied to various types of knowledge repre-
sentations and are not limited to constraint-based techniques that are implemented
in CWAdvisor.2

2For simplicity, we omit the specification of VPROD, CF , and CPROD.
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Fig. 5.3 CWAdvisor designer environment. Recommendation processes are specified on a graph-
ical level and are automatically translated into an executable representation. Faulty transition
conditions can be identified automatically on the basis of model-based diagnosis

Example 5.4. Faulty recommender knowledge base (VC, VPROD, CR, CF, CPROD)

VC = {rrc: [1–3%, 4–6%, 7–9%, 9%] . . . . . . . . . . . /* return rate */
wrc: [low, medium, high] . . . . /* willingness to take risks */
idc: [shortterm, mediumterm, longterm] . . . . . /* duration of

investment */ }

CR = {CR1: wrc D medium! idc ¤ shortterm
CR2: wrc D high! idc D long
CR3: idc D long! rrc D 4 � 6% _ rrc D 7 � 9%
CR4: rrc � 9%! wrc D high
CR5: rrc D 7 � 9%! wrc ¤ low}

VPROD = {} CF = {} CPROD = {}
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Fig. 5.4 Interactive and personalized preference elicitation example. Customers specify their
preferences by answering posed questions

A typical approach to identify faults in a recommender knowledge base is to test
the knowledge base with a set of examples (test cases) ei 2 E. For simplicity, let
us assume that e1 W wrc D high ^ rrc � 9% is the only example provided by the
domain expert. Testing e1 [ CR—see the definitions in Example 5.4—results in the
empty solution set due to the fact that e1 is inconsistent with CR. A more detailed
look at the example shows that the constraints CR2, CR3 are inconsistent with e1.
CR2; CR3 is denoted as conflict [45, 62] that can be resolved by simply deleting
one of its elements (under the minimality assumption that each individual constraint
part of the conflict set also “contributes” to the conflict). For example, if we delete
CR3 from CR, the consistency of e1 [ CR is restored (the same holds for CR2).

The calculation of conflict sets can be realized using the conflict detection
algorithm proposed by Junker [45]. Based on these conflicts, model-based diagnosis
techniques [62] can be applied. The automatically calculated diagnoses then point
the domain expert or knowledge engineer to those parts of the knowledge base
which, if assumed to be faulty, explain the unexpected inconsistency or failure of
the test case.

Experience from commercial projects underline the importance of the above
mentioned principles regarding the design of knowledge acquisition and mainte-
nance environments. Within the scope of user studies [15] significant time savings in
development and maintenance processes have been detected due to the availability
of a graphical development, test, and automated debugging environment. A report
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about fielded applications in the financial services domain [24] proposes that
initially knowledge bases have to be cooperatively developed by domain experts
and technical experts (knowledge engineers). Thereafter, many development and
maintenance requests can be directly fulfilled by the domain experts (e.g., updates
in product tables, adaptations of constraints, or recommender process definitions).

5.3 User Guidance in Recommendation Processes

As constraint-based recommender systems operate on the basis of explicit state-
ments about the current customer’s needs and wishes, the knowledge about these
user requirements has to be made available to the system before recommendations
can be made. The general options for such a requirements elicitation process in
increasing order of implementation complexity include the following.

1. Session-independent customer profiles: users enter their preferences and interests
in their user profile by, for example, specifying their general areas of interest.
This is a common approach in web portals or social networking platforms.

2. Static fill-out forms per session: customers fill out a static web-based form every
time they use the recommender system. Such interfaces are easy to implement
and web users are well-acquainted with such interfaces which are often used on
web shops’ search for items.

3. Conversational recommendation dialogs: the recommender system incrementally
acquires the user’s preferences in an interactive dialog, based on, for example,
“critiquing” [8], “wizard-like” and form-based preference elicitation dialogs
[42], natural-language interaction [34, 71] or a combination of these techniques.

In the context of constraint-based recommendation, in particular the last type of
preference elicitation plays an important role. Consider for example the recommen-
dation of complex products such as financial services [24] or electronic consumer
goods [36]. Acquiring the preferences in detail can induce a significant cognitive
load on the end user interacting with the system. Thus, adequate and adaptive user
interfaces are required to make sure that the system is usable for a broad community
of online users.

Obviously, the static information available in user-specified customer profiles
can also be a valuable input source for a constraint-based recommender. The
integration of such general profile information including in particular customer
demographics into the recommendation process is straightforward. In many cases,
however, this information is comparably unspecific and broad such that the utility
of these information pieces can be of limited value in the context of an in-detail
knowledge-based recommendation process.

Static fill-out forms for some applications work well for the above-mentioned
reasons. However, in knowledge-intensive domains, for which constraint-based
recommenders are often built, this approach might be too simplistic, in particular
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because the online user community can be heterogeneous with respect to their
technical background. Thus it appears inappropriate to ask all users the same set
of questions or at the same level of technical detail [42].

Finally, we will also not focus on natural language interaction in this chapter
as only few examples such as [34, 71] exist, that use a (complementing) natural
language recommender system user interface. Despite the advances in the field
of Natural-Language-Processing and although human-like virtual advisors can be
found as an add-on to different web sites, they are barely used for recommending
items to users today, for which there are different reasons. First, such dialogs
are often user-driven, i.e., the user is expected to actively ask questions. In
complex domains, however, in particular novice users are not capable of formulating
such questions about, for example, the right medium-term investment strategy. In
addition, the knowledge-acquisition effort for such systems is relatively high, as the
system should also be capable of conducting casual conversations. Finally, end users
often attribute more intelligence to such human-like avatars than is warranted which
carries the risk of leaving them disappointed after interacting with the system [42].

Critiquing Critiquing is an interaction style for knowledge-based recommender
systems, which was first proposed in [7] in the context of Case-Based Reasoning
(CBR) approaches to conversational recommendation. The idea is to present
individual items (instances), for example, digital cameras or financial products,
to the user who can then interactively give feedback in terms of critiques on
individual features. A user might, for instance, ask for a financial product with
a “shorter investment period” or a “lower risk”. This recommend-review-revise
cycle is repeated until the desired item is found. Note that although this method
was developed for CBR recommendation approaches,3 it can also be applied to
constraint-based recommendation, as the critiques can be directly translated into
additional constraints that reflect the user’s directional preferences on some feature.

When compared with detailed search forms that can be found on many online
shops, the critiquing interaction style has the advantage that it supports the user in
interactively exploring the item space. Moreover, the approach, which is often also
called tweaking, is relatively easy to understand also for novice users. Developing
a critiquing application, however, requires some domain knowledge, for example,
about the set of features the user can give feedback on, suitable increment values
for number-valued attributes or logical orderings of attributes with enumerated
domains. In addition, when mappings from customer needs to product features are
required, additional engineering effort is necessary.

The basic critiquing scheme was later on extended to also support compound
critiques [61, 69], where users can give feedback on several features in a single
interaction cycle. In the domain of financial services, a user could therefore ask
for a product that has lower risk and a longer investment horizon in one step,

3The general idea of exploring a database by criticizing successive examples is in fact much older
and was already proposed in the early 1980s in an information-retrieval context [73].
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thus decreasing the number of required interaction cycles. While some sort of pre-
designed compound critiques were already possible in the initial proposal from
[7], it is argued in [61] that the set of possible critiques should be dynamically
determined depending on the remaining items in the current user’s item space and in
particular on the level of diversity among these remaining items. If already selected
critiques become inconsistent with new ones, some of the critiques are deleted
following criteria such as number of remaining consistent critiques (the more the
better). The results of experimental evaluations show that such compound critiques
can help to significantly reduce the number of required interaction cycles, thus
making the whole interaction process more efficient. In addition, the experiments
indicate that compound critiques—if limited to a size that is still understandable to
the user—can also help the user understand the logic of generated recommendations.

Additional proposals in the area of critiquing include the use of elaborate visual
interfaces [82], the application of the approach in mobile recommender systems
[66], the evaluation of critiquing styles regarding decision accuracy and cognitive
effort [11], speech recognition based approaches to critiquing [34], and approaches
that additionally exploit information in user interaction logs to reduce the number
of critiquing cycles [51, 52, 75].

Personalized Preference Elicitation Dialogs Another form of acquiring the user’s
wishes and needs for a constraint-based recommender system is to rely on explicitly
modeled and adaptive preference elicitation dialogs. Such dialog models can for
instance be expressed using a dialog grammar [3] or by using a finite-state
automaton as done in the CWAdvisor system [17, 19].

In the CWAdvisor system, the end user is guided by a “virtual advisor”
through a series of questions about the particular needs and requirements before
a recommendation is displayed—see Fig. 5.4 for an example dialog. In contrast
to static fill-out forms, the set of questions is personalized, i.e., depending on the
current situation and previous user answers, a different set of questions (probably
also using a different technical or non-technical language [41]) will be asked by the
system.

In the CWAdvisor system, the required user interface adaptation is based on
manually-engineered personalization rules and on an explicit dialog model in the
form of a finite-state automaton as shown in Fig. 5.1. Thus, a method is chosen
that represents a compromise between fill-out forms to which web users are well-
acquainted and fully free natural language conversations.

Technically, the vertices of the finite-state automaton in Fig. 5.1 are annotated
with logical expressions over the constraint variables that are used to capture the
user requirements. The process of developing the dialog and personalization model
is supported in the CWAdvisor system by an end-user oriented graphical process
modeling editor (Fig. 5.3). At run time, the interaction-handling component of the
framework collects the user inputs and evaluates the transition conditions in order
to decide how to continue the dialog—see [19] for more details.

Beside the personalization of the dialog, different other forms of adaptation on
the level of content, interaction, and presentation are implemented in the system in
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order to support the design of preference elicitation and explanation dialogs that
help the end user in the best possible way [42].

While highly-dynamic and adaptive web applications can be valuable in terms
of ease-of-use and user experience, the technical realization and in particular the
maintenance of such flexible user interfaces for a constraint-based recommender can
be challenging. The main problem in this context are the strong interrelationships
between the “model”, the “view” and the control logic of such applications:
consider, for instance, the situation, where the dialog model should be extended
with a new question (variable), a new answer option (new variable domain), or a
complete dialog page (new dialog automaton state). In each case, the web pages
that represent the “view” of the recommender application, have to be adapted
accordingly. Therefore, toolkits for developing personalized preference elicitation
processes, have to provide mechanisms to at least partially automate the process of
updating the user interface, see [42] for details of the template-based approach in
CWAdvisor.

Dealing with Unfulfillable or Too Loose User Requirements The issue of
user interface development is not the only challenging problem of personalized
preference elicitation in constraint-based recommenders. In the following, we
will sketch further aspects that have to be dealt with in practical applications of
constraint-based recommendation technologies (see also Chap. 10).

In constraint-based recommenders, the situation can easily arise that no item in
the catalog fulfills all the constraints of the user. During an interactive recommen-
dation session, a message such as “no matching product found” is however highly
undesirable. The question therefore arises, how to deal with such a situation that
can also occur in CBR-based recommenders that in many cases at least initially
rely on some query mechanism to retrieve an initial set of cases from the product
catalog (case base). One possible approach proposed in the context of CBR-based
recommenders is based on query relaxation [33, 54, 55, 64]. In the context of CBR
recommenders, the set of recommendable items is stored in a database table; the case
retrieval process consists of sending a conjunctive query Q (of user requirements)
to this case base. Query relaxation then refers to finding a (maximal) subquery Q0
of the original query Q that returns at least one item.

The general idea of query relaxation techniques can also be applied to constraint-
based recommendation. Consider Example 5.5 (adapted from [39]), where the
catalog consisting of four items CPROD is shown in tabular form (Fig. 5.5).

Example 5.5. Query Relaxation
For sake of clarity and simplicity of the example, let us assume that the

customer can directly specify the desired properties of the investment product on
an “expert screen” of the advisory application. The set of corresponding customer
properties Vc thus contains slc (investment type), ric (risk class), minimum_returnc

(minimum value for expected return) and investment_durationc (desired investment
duration). The filter constraints (conditions) in this example simply map customer
requirements from Cc to item features, i.e., CF = {CF1 W slc D slp, CF2 W ric D rip,
CF3 W investment_durationc >D mnivp, CF4 W erp >D minimum_returnc}.
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name p sl p
(type of low
risk inv.)

ri p
(associated
risk)

mniv p
(min. invest-
ment period)

er p
(expected
return)

inst p
(financial
institute)

p1 stockfunds medium 4 5 % ABank
p2 singleshares high 3 5 % ABank
p3 stockfunds medium 2 4 % BInvest
p4 singleshares high 4 5 % CMutual

Fig. 5.5 Example item catalog (financial services)

Let the concrete customer requirements CC be the following: {slc D
singleshares, ric D medium, investment_durationc D 3, minimum_returnc D 5}.

As can be easily seen, no item in the catalog (see Fig. 5.5) fulfills all relevant
constraints in the given task, i.e., no consistent recommendation can be found for the
recommendation task. When following a “constraint relaxation“ approach, the goal
is to find a maximal subset of the constraints of CF, for which a recommendation
exists. The maximization criterion is typically selected because the constraints
directly relate to customer requirements, i.e., the more constraints can be retained,
the better the retrieved items will match these requirements.

While this problem of finding consistency-establishing subsets of CF does not
seem to be too complex at a first glance, in practical settings, computational
effectiveness becomes an issue. Given a constraint base consisting of n constraints,
the number of possible subsets is 2n. Since real-world recommender systems have
to serve many users in parallel and typically the acceptable response time is about
one second, naive subset probing is not appropriate.

Different techniques have therefore been proposed to solve this problem more
efficiently. In [54], for instance, an incremental mixed-initiative approach to recover
from failing queries in a CBR recommender was suggested. In [64], a relaxation
method based on manually-defined feature hierarchies was proposed, which despite
its incomplete nature has shown to be an effective help in a travel recommender
system. Finally, in [38, 39] a set of complete algorithms for the query relaxation
problem in constraint-based recommenders was developed. The algorithms not
only support the computation of minimal relaxations in linear time (at the cost
of a preprocessing step and slightly increased memory requirements) but also the
computation of relaxations that lead to “at least n” remaining items. In addition,
also a conflict-directed algorithm for interactive and incremental query relaxation
was proposed which makes use of recent conflict-detection technology [45].

The main idea of the linear-time constraint relaxation technique can be sketched
as follows. Instead of testing combinations of constraints, the relevant constraints are
evaluated individually, resulting in a data structure that assigns to every constraint
the list of catalog items that fulfill the constraint—see Fig. 5.6.

The table should be interpreted as follows. Constraint CF1 on the type of
investment (single shares) in line 1 of the table would filter out products p1 and p3.
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ID Product p1 Product p2 Product p3 Product p4

CF1 0 1 0 1

CF2 1 0 1 0

CF3 0 1 1 0

CF4 1 1 0 1

Fig. 5.6 Evaluating the subqueries individually. For example, product p1 is filtered out by the
filter condition CF1 under the assumption that slc D singleshares

Given this table, it can be easily determined which constraints of a given set CF

have to be relaxed in order to have a specific product in the result set, i.e., a product
that is consistent with the constraints and the user requirements. For example, in
order to have p1 in the result set, the constraints CF1 and CF3 of CF have to be
relaxed. Let us call this a “product-specific relaxation” for p1. The main idea of
the method from [39] is that the overall “best” relaxation for given products CPROD,
filter conditions CF and a given set of concrete requirements CC has to be among the
product-specific relaxations. Thus, it is sufficient to scan the set of product-specific
relaxations, i.e., no further constraint solving step is required in this phase.

In the example, the relaxation of constraint CF2 is optimal, when the number of
relaxed constraints determines the best choice as only one customer requirement has
to be given up. All other relaxations require at least two constraints to be ignored,
which can be simply determined by counting the number of zeros in each column.
Note that the number of involved constraints is only one possible optimization
criterion. Other optimization criteria that take additional “costs of compromise” per
constraint into account can also be implemented based on this technique as long as
the cost function’s value is monotonically increasing with the size of the relaxation.

Technically, the computation of product-specific relaxations can be done very
efficiently based on bit-set operations [39]. In addition, the computation can also be
precomputed in the initialization phase of the recommender.

Suggesting Alternatives for Unfulfillable Requirements In some application
domains, the automated or interactive relaxation of individual constraints alone may
not suffice to help the user, whose requirements cannot be fulfilled. Consider, for
instance, a situation where the recommender in an interactive relaxation scenario
proposes a set of alternatives of constraints to be relaxed. Let us assume that the
user accepts one of the proposals, i.e., agrees to relax the constraints related to
two variables of VC, for example, A and B. If, however, the values of A and B
are particularly important to him (or mandatory), he will later on put different
constraints on these variables. These new values can, however, again cause an
inconsistency with the other requirements of the user. This might finally lead to
an undesirable situation, in which the user ends up in trying out different values
but gets no clear advise, which values to select in order to receive a consistent
recommendation.
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Overall, it would be thus desirable, if the system could immediately come up
with suggestions for new values for A and B, for which it is guaranteed that some
items remain in the result set when user’s other requirements are taken into account.

Let us first consider the basic CBR-style case retrieval problem setting as used
in [54, 55, 64], in which constraints are directly placed on item features. The
constraints in this example shall be fslp D singleshares, rip D medium, minvp < 3,
erp >D 5 g. Again, no item fulfills these requirements.

In such a setting, the detailed information about the catalog items can be used
to compute a set of suggestions for alternative constraints (“repairs”) on individual
features. Based on this information, the system could—instead of only proposing the
user to relax the constraints on the investment type and on the investment duration—
inform the user that “if the single shares requirement is abandoned and the minimum
investment duration is set to 4” one or more items will be found. Thus, the user will
be prevented from (unsuccessfully) trying a minimum investment duration of 3.

In this example, the calculation of such alternative values can be accomplished
by the system by selecting one relaxation alternative (investment duration and
investment type) and searching the catalog for items that fulfill the remaining
constraints. The values for the investment duration and the investment type (e.g.,
of product 1 in Fig. 5.5) can be directly taken as suggestions for the end user
[20, 25, 28, 37].

While this approach seems intuitive and simple, in practical applications the
following problems have to be dealt with.

• The number of possible repairs. In realistic scenarios, the number of possible
repair alternatives is typically very large as for every possible relaxation various
solutions exist. In practice, however, end users cannot be confronted with more
than a few overall alternatives. Thus, the problem is to select and prioritize the
repair alternatives.

• The size/length of the repair proposals. Repair suggestions that contain alterna-
tive values for more than three features are not easy to understand for end users.

• Computational complexity due to non-trivial constraints. When only simple
constraints on product features are allowed, the information from the item
catalog can help to determine repairs as described above. In constraint-based
systems, however, constraints often relate qualitative user needs to (technical)
product features. Consequently, also the repair suggestions must relate to user
requirements, which means that the search space of possible repair alternatives is
determined by the domains of the user-related variables. In addition, determining
whether or not a specific combination of user requirements (i.e., a repair
alternative) leads to a non-empty result set, requires a probably costly catalog
query.

In order to address these issues at least to some extent, the CWAdvisor system
uses a combination of query relaxation and different search heuristics and additional
domain-specific knowledge for the calculation of repair suggestions in a financial
services application [23].
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The method implemented in the system was originally proposed in [37] and
interleaves the search for relaxations with a bounded search for repair alternatives.
The possible relaxations are determined in increasing order of their cardinality. For
each relaxation, repair alternatives are determined by varying the values of the
variables that are involved in the relaxed constraints. The selection of alternative
values can, for instance, be guided by a proximity heuristic that has to be based
on an order of domain values. Thus, when varying for instance a user requirement
of “at least 5 % expected return rate”, the neighboring value of “4 %” is evaluated,
assuming that such an alternative will be more acceptable for the end user than
an even stronger relaxation. In order to avoid too many similar repair suggestions,
the algorithm can be parameterized with several threshold values that, for example,
determine the number of repairs for a relaxation, the maximum size of a relaxation
and so forth. Overall, anecdotal evidence in the financial service domain indicates
that such a repair feature, even if it is based on heuristics, is well-appreciated by end
users as a means for shortening the required dialog length. For further discussions
on diagnosis and repair approaches in constraint-based recommendation we refer to
[20, 29].

Query Tightening Beside having no item in the result set, having too many items
in the result set is also not desirable in an interactive recommender. In many real-
world applications the user is informed that “too many items have been found” and
that more precise search constraints have to be specified. Often, only the first few
results are displayed (as to, e.g., avoid long page loading times). Such a selection
may however not be optimal for the current user, since the selection is often simply
based on the alphabetic order of the catalog entries.

In order to better support the user also in this situation, in [65] an Interactive
Query Management approach for CBR recommenders is proposed, that also
includes techniques for “query tightening”. The proposed tightening algorithms
takes as an input a query Q and its large result set and selects—on the basis of
information-theoretic considerations and the entropy measure—three features that
are presented to the user as proposals to refine the query.

Overall, an evaluation of Interactive Query Management within a travel recom-
mender system that implemented both query relaxation and query tightening [67],
revealed that the relaxation feature was well-appreciated by end users. With respect
to the tightening functionality, the evaluation indicated that query tightening was
not that important to end users who were well capable of refining their queries by
themselves. Thus, in [56] a different feature selection method was proposed, that
also takes a probabilistic model of feature popularity into account. An evaluation
showed that in certain situations the method of [56] is preferable since it is better
accepted by end users as a means to further refine their queries.
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5.4 Calculating Recommendations

In the introductory section, we have characterized the recommendation task (see
Definition 5.1) as a CSP. We will now discuss two problem solving approaches,
one based on constraint satisfaction algorithms [72] and one based on conjunctive
database queries [12].

Constraint Satisfaction Solutions for constraint satisfaction problems are cal-
culated on the basis of search algorithms that use different combinations of
backtracking and constraint propagation. The basic principle of both concepts will
be explained in the following.

Backtracking. In each step, backtracking chooses a variable and assigns all
possible values to this variable. It checks the consistency of the assignment with
the already existing assignments and the defined set of constraints. If all the
possible values of the current variable are inconsistent with the existing assignments
and constraints, the constraint solver backtracks which means that the previously
instantiated variable is selected again. In the case that a consistent assignment has
been identified, a recursive activation of the backtracking algorithm is performed
and the next variable is selected [72].

Constraint Propagation. The major disadvantage of pure backtracking-based
search is “trashing” where parts of the search space are revisited although the solver
has already detected that no solution exists in these parts. In order to make constraint
solving more efficient, constraint propagation techniques have been introduced.
These techniques try to modify an existing constraint satisfaction problem such
that the search space can be significantly reduced. The methods try to create a
state of local consistency that guarantees consistent instantiations among groups of
variables. The mentioned modification steps turn an existing constraint satisfaction
problem into an equivalent one. A well known type of local consistency is arc
consistency [72] which states that for two variables X and Y there must not exist a
value in the domain of Y which does not have a corresponding consistent value in X.
Thus, arc consistency is a directed concept which means that if X is arc consistent
with Y, the reverse must not necessarily be the case.

When using a constraint solver, constraints are typically represented in the form
of expressions of the corresponding programming language. Many of the existing
constraint solvers are implemented on the basis of Java.

Conjunctive Database Queries Solutions to conjunctive queries are calculated on
the basis of database queries that try to retrieve items which fulfill all of the defined
customer requirements. For details on database technologies and the execution of
queries on database tables see, for example, [12].

Ranking Items Given a recommendation task, both constraint solvers and database
engines try to identify a set of items that fulfill the given customer requirements.
Typically, we have to deal with situations where more than one item is part of a
recommendation result. In such situations the items (products) in the result set have
to be ranked. In both cases (constraint solvers and database engines), we can apply
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the concepts of multi-attribute utility theory (MAUT) [74] that helps to determine
a ranking for each of the items in the result set. Examples for the application of
MAUT can be found in [19, 27].

An alternative to the application of MAUT in combination with conjunctive
queries are probabilistic databases [48] which allow a direct specification of
ranking criteria within a query. Example 5.6 shows such a query which selects
all products that fulfill the criteria in the WHERE clause and orders the result
conform to a built-in similarity metric (defined in the ORDER BY clause).4 Finally,
instead of combining the mentioned standard constraint solvers with MAUT, we
can represent a recommendation task in the form of soft constraints where the
importance (preference) for each combination of variable values is determined on
the basis of a corresponding utility operation (for details see, for example, [2]).

Example 5.6. Queries in probabilistic databases

Result = SELECT * /* calculate a solution */
FROM Products /* select items from “Products” */
WHERE x1=a1 and x2=a2 /* “must” criteria */
ORDER BY score(abs(x3-a3), : : :, abs(xm-am)) /* similarity-based utility func-
tion */
STOP AFTER N; /* at most N items in the solution (result set) */

5.5 Practical Experience from Fielded Applications

The CWAdvisor system has been commercialized in 2002 and since then several
dozens of different applications have been instantiated and fielded. They have been
applied in commercial domains ranging from financial services [23] to electronic
consumer goods or tourism applications [44] as well as to application domains
that are considered rather untypical for recommender systems such as providing
counseling services on business plans [40] or supporting software engineers in
selecting appropriate effort estimation methods [60].

Based on this installation base empirical research tried to assess the impact and
business value of knowledge based recommender systems and identify opportunities
for advancing their state-of-the-art. In the following we will differentiate them based
on their study design into user studies, evaluations on historical data and case
studies of fielded applications.

Experimental User Studies Felfernig and Gula [21] conducted a study to evaluate
the impact of specific functionalities of conversational knowledge-based recom-
menders such as explanations, proposed repair actions or product comparisons.
The study assigned users randomly to different versions of the recommender
system with varying functionality and applied pre- and post-interaction surveys

4For an overview of related similarity metrics we refer to [53].
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to identify the users’ level of knowledge in the domain, their trust in the system
or the perceived competence of the recommender. Quite interestingly, the study
showed that the participants appreciated these specific functionalities as they
increased their perception of own domain knowledge and their trust in the system’s
recommendations got strengthened.

The COHAVE project initiated a line of research that investigated how psycho-
logical theories might be applied to explain the users’ behavior in online choice
situations. For instance, asymmetric dominance effects arise if the proposed itemsets
contain decoy products that are dominated by other products due to their relative
similarity but a lower overall utility [13, 30, 70]. Several user studies in domains
such as electronic consumer goods, tourism and financial services showed that
knowing about these effects a recommender can increase the conversion rate of some
specific items as well as a users’ confidence in the buying decision.

Algorithm Evaluations on Historical Datasets are off-line experimentations
[35]. A dataset that contains past user transactions is split into a training and a
testing set. Consequently, the training set is exploited to learn a model or tune an
algorithm’s parameters (e.g., importance values for MAUT-based interest dimen-
sions [74]) in order to enable the recommender to predict the historic outcomes
of the user sessions contained in the testing set. Such an evaluation scenario
enables comparative research on algorithm performance. While the collaborative
and the content-based recommendation paradigm have been extensively evaluated in
the literature, comparing knowledge-based recommendation algorithms with other
recommendation paradigms received only limited attention in the past. One reason
is that they are hard to compare, because they require different types of algorithm
input: collaborative filtering typically exploits user ratings while constraint-based
recommender systems require explicit user requirements, catalog data, and domain
knowledge. Consequently, datasets that contain all these types of input data—like
the Entree dataset provided by Burke [6]—would allow such comparisons, they are
however very rare. One of the few is described in [80]. The dataset stems from
a retailer offering premium cigars and it includes implicit ratings that signify the
users’ purchase actions, the user’s requirements input to a conversational recom-
mender and a product catalog with detailed item descriptions. Therefore, offline
experiments could be made in which knowledge-based algorithm variants that
exploited user requirements were compared with content-based and collaborative
algorithms working on ratings. One of the interesting results were that knowledge-
based recommenders did not perform worse in terms of serendipity measured by
the catalog coverage metric than collaborative filtering. This is especially true if a
constraint-based recommender is cascaded with a utility-based item ranking scheme
like the CWAdvisor system. However, collaborative filtering does better in terms
of accuracy, if there are 10 and more ratings known from users. Nevertheless, an
evaluation of a knowledge-based recommender always measures the quality of the
encoded knowledge base and the inferencing mechanism itself.

Another study was instrumented in [79] that focuses on explicit user require-
ments as the sole input for personalization mechanisms. It compares different
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hybridization variants of knowledge-based and collaborative algorithms, where
collaborative filtering interprets explicit requirements as a form of rating. The
retrieval results of knowledge-based recommenders turn out to be very precise, if
users formulated some specific requirements. However, when only few constraints
apply and the result sets are large, the ranking function is not always able to identify
the best matching items. In contrast, collaborative filtering learns the relationships
between requirements and actually purchased items. Therefore, the study showed
that a cascading strategy in which the knowledge-based recommender removes
candidates based on hard criteria and a collaborative algorithm does the ranking
works best.

Finally, in [76] a meta-level hybridization approach between knowledge-based
and collaborative filtering was proposed and validated. There collaborative filtering
learns constraints that map users’ requirements onto catalog properties of purchased
items and feeds them as input into a knowledge-based recommender that acts as
the principal component. Offline experiments on historical data provided initial
evidence that such an approach is able to outperform the knowledge base elicited
from the domain experts with respect to algorithm’s accuracy. Based on these
first promising results further research on automatically extracting constraints from
historic transaction data will take place.

Case Studies on Productive Systems are the most realistic form of evaluation
because users act under real-world conditions and possess an intrinsic motivation to
use the system. In [19] experiences from two commercial projects in the domains
of financial services and electronic consumer goods are reported. In the latter
domain, a conversational recommender for digital cameras has been fielded that was
utilized by more than 200,000 online shoppers at a large Austrian price comparison
platform. Replies to an online questionnaire supported the hypothesis that advisor
applications help users to better orientate themselves when being confronted with
large sets of choices. A significantly higher share of users successfully completed
their product search when using the conversational recommender compared to those
that did not use it. Installations of knowledge-based recommenders in the financial
services domain follow a different business model as they support sales agents
while interacting with their prospective clients. Empirical surveys among sales
representatives showed that the time savings when interacting with clients were
considered to be a big advantage which in turn allows sales staff to focus on sales
opportunities [19, 23].

In [77] a case study researches how the application of a knowledge-based
conversational sales recommender on a Webshop for Cuban cigars affects online
shoppers behavior and the sales records in the period before and after introducing
the recommender were analyzed. One interesting finding of this study is that the
list of top ranked items in the two periods differs considerably. In fact items that
were infrequently sold in the period before but very often recommended by the
system experienced a very high demand. Thus, the relative sales increase for certain
items was positively correlated with how often the recommender proposed these
items. The advice given by recommendation applications is thus followed by users
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and leads to online conversions. Finally, another evaluation of a knowledge-based
recommender in the tourism domain was conducted to compare conversion rates,
i.e., the share of users that turned into bookers, between users and non-users of
the interactive sales guide [78]. This study strongly empirically confirms that the
probability of users issuing a booking request is more than twice as high for
those having interacted with the interactive travel advisor than for the other non-
interacting users.

5.6 Future Research Issues

Constraint-based recommender systems have proven their utility in many fielded
applications. Still, we can identify several challenges for improvements. Such
improvements will lead to enhancing the quality for users, the broadness of the
application fields, and the development of recommender software.

Automated Product Data Extraction A constraint-based recommender is only as
good as its knowledge base. Consequently, the knowledge base has to be correct,
complete, and up-to-date in order to guarantee high quality recommendations. This
implies significant maintenance tasks, especially in those domains where data and
recommendation knowledge changes frequently, for example, electronic consumer
products. Currently, maintenance is done by human experts who collect product
data or update rule-bases. However, in many domains at least the product data is
accessible for machines on the web. By exploiting the internet as a resource for
data and knowledge almost all necessary pieces for many recommender applications
could be collected. The major research focuses in this context are the automated
extraction of product data from different information sources and the automated
detection and adaptation of outdated product data. This includes the identification
of relevant information sources (for instance, Web pages), the extraction of the
product data, and the resolution of contradictions in those data. The fundamental
problem for machines in that context is the presentation of data in the web. Data
in the Web is usually presented with the goal that humans can easily access and
comprehend information. Unfortunately, the opposite is true for computers which
are currently not particulary capable in interpreting visual information. Therefore,
a fundamental research question is how we can enable machines such that they
can “read” the web similarly as humans do. In fact, this task goes far beyond
recommender systems and is a central endeavor of the Semantic Web and on a more
general level of Artificial Intelligence. Although it seems that currently this task is
far too ambitious to be solved in the near future, we can exploit the particularities of
recommendation domains. For example, when dealing with the extraction of product
data from the web, we can search for product descriptions in tabular form, extract
the data of these product descriptions, and instantiate a product database [43].
Of course the success of such methods depends on the domain. For example in
the domain of electronic consumer products like digital cameras the description
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of cameras follows a common structure (e.g., data-sheets of different brands are
very similar) whereas in other domains like holiday resorts product descriptions
are mostly expressed by natural language text. It has to be mentioned that instead
of an automated translation of human readable content into machine processable
data there is the alternative to provide such machine processable data in addition
or instead of human readable content. Indeed, strong market forces like internet
search engine vendors might offer improved search services if machine processable
information is provided. For example, product vendors supply their data in specific
formats and benefit by an improved ranking in search results. However, in this
scenario search machine vendors dictate which descriptions of which products are
available for recommendation purposes which leads to a strong dependency on
single authorities. Therefore, the aim to enable computers to read the web as humans
do remain an important point on the research agenda.

Community-Based Knowledge Acquisition The cornerstone of constraint-based
recommendation is efficient knowledge acquisition and maintenance [26]. This
problem has been addressed in the past in different dimensions, the main focus
lying on knowledge representation and conceptualization issues as well as on
process models for capturing and formalizing a domain expert’s knowledge.
Historically, one main assumption of these approaches was that there shall exist one
single point of knowledge formalization and in consequence one (user-oriented)
conceptualization and a central knowledge acquisition tool. In most cases in real
world, however, the domain knowledge is in the heads of different stakeholders,
typical examples being cross-department or cross-organization business rules or
new types of applications, in which large user communities are sharing knowledge
in an open-innovation, web-based environment. Only recently, with the emergence
and spread of Web 2.0 and Semantic Web technologies, the opportunities and also
the problems of collaborative knowledge acquisition have again become a topic of
interest [63]. With regard to the types of knowledge to be acquired, the main focus
of these recent developments, however, is on acquiring “structural” knowledge,
i.e., on terms, concepts, and relationships among them. New developments aim at
going a step further and target at the collaborative acquisition and refinement of
domain-constraints and business rules as they represent the most crucial, frequently
updated, and thus very costly part in many knowledge-based applications. The
main questions to be answered comprise the following: How can we automatically
detect and resolve conflicts if knowledge acquisition is distributed between different
knowledge contributors? How can we assist the knowledge contributors to acquire
knowledge by asking them the “right” questions, i.e., minimizing the interaction
needed? How can we generate “good” proposals for changing the knowledge base
from different, possibly only partially-defined knowledge chunks, i.e., find plausible
(in the eyes of the contributors) changes of the knowledge base? Usually the term
knowledge acquisition refers to methods supporting the user to formulate rules,
constraints, or other logical descriptions depending on the employed language. This
task is complicated in recommender systems since in most cases the output includes
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a preference relation over the recommended items. Consequently, knowledge
acquisition has to support also the formulation, debugging, and testing of preference
descriptions [31].

A further factor which complicates the search for a satisfying knowledge base
is the demand for high quality explanations. Explanations in constraint-based
recommender systems are generated by exploiting the content of the knowledge
base. In fact, different knowledge bases can provide the equivalent input/output
behavior with respect to recommendations but show significant differences in
their explanatory quality. Consequently, a further important goal of knowledge
acquisition is supporting the formulation of comprehensible knowledge bases which
serve the user to gain confidence in the recommendations.

Knowledge bases for recommender systems have to be considered as dynamic.
Unfortunately this dynamics are not only caused by changing product catalogs but
also by shifts of customer preferences. For example, the pixel resolution of digital
photos considered to be sufficient for printing an A4 picture changes over time
because of higher quality demands. Consequently, automated detection of such
shifts and supporting a subsequent adaptation of the knowledge base are of great
interest.

Validation Successfully developing and maintaining recommender knowledge
bases requires intelligent testing environments that can guarantee the correctness
of the recommendations. In particular in application areas where a certain recom-
mendation quality must be assured (e.g., financial products) a company employing
a recommender system has to ensure the quality of the recommendation process and
its outcome. Future research should therefore focus on developing mechanisms to
automatically configure test suites that both maximize the probability of identifying
faulty elements in the recommender knowledge base and minimize the number of
test cases needed to achieve this goal. Minimizing the number of test cases is impor-
tant because domain experts must validate them manually. This validation output
fits nicely with supporting knowledge acquisition tasks since any feedback from
a knowledge engineer can be exploited for learning recommendation knowledge
bases. In particular an interesting research question is to which extend arguments of
a user in favor or against a recommendation can be exploited to improve knowledge
bases. In [68], for example an algorithm is described which learns constraints based
on arguments why an example (e.g., a product) should be recommended or not.

Recommendation of Configurable Products and Services With the produc-
tion of the Model T, Henry Ford revolutionized manufacturing by employing
mass production (the efficient production of many identical products). Nowadays,
mass production is in many domains no longer a viable business model, and
companies must provide goods and services that fit the customers’ individual needs.
In this context, mass customization—the production of highly variant products and
services under mass production pricing conditions—has become the new paradigm.
A phenomenon accompanying mass customization is mass confusion, which occurs
when items are too numerous and complex for users to overlook. Developing
recommender technologies that apply to configurable products and services can
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help tackle mass confusion [14]. For example, recommender technology could
be adapted to help the uninformed customer to discover her wishes, needs, and
product requirements in a domain of almost unlimited product variants. However,
recommendation of configurable products pushes the limits of current recommender
technologies. Current techniques assume that items to be recommended can be
extensionally represented. But configuration domains frequently offer such a high
product variance that the set of all possible configurations can only be intensionally
characterized by configuration descriptions. Complex configurable systems may
comprise thousands of components and connections. In these domains searching
for the most preferred configurations satisfying the customer requirements is a
challenging task.

Intelligibility and Explanation To be convincing, recommendations must be
explained to customers (see also Chap. 10). When they can challenge a recommen-
dation and see why a system recommended a specific product, customers will start to
trust that system. In general, explanations are provided for outputs of recommender
systems and serve a wide spectrum of tasks, for example, increase transparency
and trust, persuade a customer, or improve customer satisfaction just to name some.
These explanations depend on the state of the recommendation process and the user
profile, for example, the aims, desires, and prior knowledge of the user. The vision
of future recommender systems is that information is pro-actively provided to the
user such that explanation goals are optimized, i.e., if the recommender recognizes
that a customer does not understand the differences between alternative products
then explanations of these differences are offered. Conversely, customers with a
rich background of a product domain and a clear understanding what they want can
be offered a direct link to a recommendation with a detailed technical justification.
Consequently, the research challenge is to create an artificial recommender agent
that acts flexibly to the needs of customers. Explanations are a cornerstone in such
a general endeavor.

Theories of Consumer Buying Behavior A truly intelligent recommender agent
adapts to the user. This implies that the recommender has a model of the user which
allows predictions about the user’s reaction depending on the information provided.
In particular, if we have a model about the influencing factors of consumer buying
behavior then it is possible to reason about the best next actions a recommender
agent can take. Therefore, research in recommender technology can greatly benefit
from insights of cognitive and decision psychology [10]. One can argue that such
“intelligent” behavior of recommender agents is questionable from an ethical point
of view. However, every information provided to a customer influences the user’s
buying behavior. Therefore, it is important to understand the consequences of
communication with the customer thus allowing a more planned recommender
design.

Context Awareness and Ambient Intelligence Recommender systems may not
only be regarded as simple software tools accessible via a PC or portable device
but rather as intelligent agents recommending actions in various situations [1, 46].
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For example, in future cars artificial assistants will provide advice for various
driving tasks, for example, overtaking, turning, or parking. In order to give
recommendations in such environments the recommender has to be aware of the
situation and the user’s goals. Other typical scenarios are recommendations for
tourists during their journeys. In such situations, the recommendations depend
not only on customer preferences but also on the context, which can include
attributes such as time of the day, season, weather conditions, and ticket availability.
Such scenarios are often considered under the term “ambient intelligence”, where
networked ubiquitous and embedded computer devices can, in addition to traditional
input devices, communicate with users based on, for instance, speech and gestures.

Semantic Web The W3C states “The Semantic Web provides a common frame-
work that allows data to be shared and reused across application, enterprise, and
community boundaries.” In particular Semantic Web technologies offer methods
to relate and combine data in the web enabling several improvements to existing
techniques. We already mentioned that the extraction of product data and knowledge
acquisition can benefit from machine-readable content descriptions. However,
we can go a step further and use the information in the Semantic Web to improve
the quality of recommendations [32, 83]. In particular, an agent can consider only
ratings of trustworthy agents in order to avoid intentional misguidance. Furthermore,
the Semantic Web allows us to integrate data of various sources into the reasoning
process. On the one hand, this can help to enhance knowledge-based recommenda-
tion approaches since knowledge bases can in principle be created and maintained
by community effort. However, on the other hand, many research questions for
such scenarios arise: How can we assess the quality of these community-engineered
knowledge bases? How can we assess the trustworthiness and quality of different
knowledge sources? How can we make sure that there is a common agreement
on the description of products and services? How can we identify and cope with
different semantic interpretations of concepts and values? How can we assess the
correctness of recommendations as well as their completeness?

5.7 Summary

In this chapter we have reviewed various aspects of constraint-based recom-
mendation approaches. These technologies are especially applicable when there
are large and potentially complex product assortments and/or cold-starting users
where collaborative and content-based filtering techniques show serious limitations.
The utility of constraint-based recommendation technologies has been demonstrated
by several fielded applications that are analyzed in this chapter. Still, a number of
perspectives for future research remain including particular aspects of knowledge
acquisition and more elaborated forms of user interaction.
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Chapter 6
Context-Aware Recommender Systems

Gediminas Adomavicius and Alexander Tuzhilin

6.1 Introduction and Motivation

Many existing approaches to recommender systems focus on recommending the
most relevant items to individual users and do not take into consideration any
contextual information, such as time, place, and the company of other people
(e.g., for watching movies or dining out). In other words, traditionally recommender
systems deal with applications having only two types of entities, users and items,
and do not put them into a context when providing recommendations.

However, in many applications, such as recommending a vacation package,
personalized content on a Web site, or a movie, it may not be sufficient to consider
only users and items—it is also important to incorporate the contextual information
into the recommendation process in order to recommend items to users under certain
circumstances. For example, using the temporal context, a travel recommender
system would provide a vacation recommendation in the winter that can be very
different from the one in the summer. Similarly, in the case of personalized content
delivery on a Web site, it is important to determine what content needs to be
delivered (recommended) to a customer and when. More specifically, on weekdays
a user might prefer to read world news when she logs on in the morning and the
stock market report in the evening, and on weekends to read movie reviews and do
shopping.
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These observations are consistent with the findings in behavioral research on
consumer decision making in marketing that have established that decision making,
rather than being invariant, is contingent on the context of decision making. There-
fore, accurate prediction of consumer preferences undoubtedly depends upon the
degree to which the recommender system has incorporated the relevant contextual
information into a recommendation method.

Over the past 10–15 years, context-aware recommendation capabilities have been
developed by academic researchers and applied in a variety of different applica-
tion settings, including: movie recommenders [6], restaurant recommenders [68],
travel recommenders and tourist guides [19, 35, 65, 73, 78, 90], general music
recommenders [51, 72, 76], specialized music recommenders (e.g., for places of
interest [27], in-car music [18], or music while reading [32]), mobile information
search [39], news recommenders [60], shopping assistants [80], mobile advertis-
ing [29], mobile portals [85], mobile app recommenders [53], and many others.
In particular, mobile recommender systems constitute an important special case
of context-aware recommenders, where context is often defined by location and
time, and there exists a large body of literature dedicated specifically to mobile
recommender systems (e.g., see [19, 49, 88] for a few representative examples).
In this chapter we focus on the issues related to the general area of context-aware
recommender systems and, therefore, we do not provide a separate in-depth review
of mobile recommender systems. Readers interested in a systematic coverage of
mobile recommender systems are referred to Chap. 14 as well as two recent reviews
of the field [54, 77].

Similarly, companies have also started incorporating some contextual
information into their recommendation engines for recommending music (e.g.,
www.last.fm,musicovery.com, and www.sourcetone.com) and movies (e.g., www.
moviepilot.de and www.filmtipset.se). For example, when choosing which songs to
play for a given user, some interactive radio stations ask the users to specify their
current mood by selecting it from a list of well-established types of moods, such as
“positive”, “energetic”, “calm”, “dark”, etc. The chosen mood is then used by the
system as contextual information to recommend only the type of music that best fits
the selected mood. As another example, the movie streaming and rental company
Netflix knows the location of its customers and uses the locational contextual
variables, such as city or zip code as well as time, to provide context-specific
recommendations of movies. Similarly, mobile recommender systems (e.g., those
deployed on smartphones) provide more relevant recommendations to its customers
when they take into account such important contextual information as the GPS-
based location and time. As Reed Hastings, the CEO of Netflix, pointed out in the
following Youtube video [1] (see the video at 44:40 min), Netflix reportedly can
improve the performance of its recommendation algorithms up to 3 % when taking
into account such contextual information as the time of the day or user’s location.
This observation by Hastings was echoed by the participants at the industrial
panel held during the CARS workshop at the RecSys’12 conference (http://
cars-workshop.org/cars-12/program), where managers from LinkedIn, Netflix,

http://cars-workshop.org/cars-12/program
http://cars-workshop.org/cars-12/program
www.filmtipset.se
www.moviepilot.de
www.moviepilot.de
www.sourcetone.com
http://www.last.fm
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EchoNest, and Telefonica reiterated the importance of contextual information and
described how their recommendation engines utilize contextual information in their
businesses.

In this chapter we review the topic of context-aware recommender systems
(CARS). In particular, we discuss the notion of context and how it can be modeled in
recommender systems. We also review the major approaches to modeling contextual
information in recommender systems and discuss three main algorithmic paradigms
for incorporating contextual information into rating-based recommender systems—
contextual pre-filtering, post-filtering, and modeling. We also survey recent work
on context-aware recommender systems and discuss important and promising
directions for future research.

The rest of the chapter is organized as follows. Section 6.2 discusses the general
notion of context as well as the general approaches to how it can be modeled in
recommender systems. Section 6.3 presents three main algorithmic paradigms for
incorporating contextual information into the rating-based recommender systems
within the representational framework of modeling contextual information. Finally,
some additional discussion and opportunities for future work are presented in
Sect. 6.4.

6.2 Context in Recommender Systems

Before discussing the role and opportunities of contextual information in recom-
mender systems, in Sect. 6.2.1 we start by presenting the general notion of context.
Then, starting with Sect. 6.2.2, we focus on recommender systems and explain how
context is specified and modeled there.

6.2.1 What is Context?

Context is a multifaceted concept that has been studied across different research
disciplines, including computer science (primarily in artificial intelligence and
ubiquitous computing), cognitive science, linguistics, philosophy, psychology,
and organizational sciences. In fact, an entire conference—CONTEXT1—is
dedicated exclusively to studying this topic and incorporating it into various other
branches of science, including medicine, law, and business. Since context is a
multidisciplinary concept, each discipline tends to take its own idiosyncratic view
that is somewhat different from other disciplines and is more specific than the
standard generic dictionary definition of context as “conditions or circumstances

1See, for example, http://www.polytech.univ-savoie.fr/index.php?id=context-13-home, http://
context-11.teco.edu, or http://context-07.ruc.dk, for recent instances.

http://context-07.ruc.dk
http://context-11.teco.edu
http://context-11.teco.edu
http://www.polytech.univ-savoie.fr/index.php?id=context-13-home
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which affect some thing” [87]. Therefore, there exist many definitions of context
across various disciplines and even within specific subfields of these disciplines.
Bazire and Brézillon [25] present and examine 150 different definitions of
context from different fields. This is not surprising, given the complexity and
the multifaceted nature of the concept. As Bazire and Brézillon [25] observe:

: : : it is difficult to find a relevant definition satisfying in any discipline. Is context a frame
for a given object? Is it the set of elements that have any influence on the object? Is it
possible to define context a priori or just state the effects a posteriori? Is it something static
or dynamic? Some approaches emerge now in Artificial Intelligence [: : :]. In Psychology,
we generally study a person doing a task in a given situation. Which context is relevant
for our study? The context of the person? The context of the task? The context of the
interaction? The context of the situation? When does a context begin and where does it
stop? What are the real relationships between context and cognition?

To bring some “order” to this diversity of views on what context is, Dourish
[42] introduces taxonomy of contexts, according to which contexts can be classified
into the representational and the interactional views. In the representational view,
context is defined with a predefined set of observable attributes, the structure
(or schema, using database terminology) of which does not change significantly
over time. In other words, the representational view assumes that the contextual
attributes are identifiable and known a priori and, hence, can be captured and used
within the context-aware applications. In contrast, the interactional view assumes
that the user behavior is induced by an underlying context, but that the context
itself is not necessarily observable. Furthermore, Dourish [42] assumes that different
types of actions may give rise to and call for different types of relevant contexts, thus
assuming a bidirectional relationship between activities and underlying contexts:
contexts influence activities and also different activities giving rise to different
contexts.

In this chapter we focus on what context is in recommender systems and try to
adapt this multifaceted concept to the specific and idiosyncratic domain of RSes.
Furthermore, we will also revisit and enhance the prior definitions of context used
in recommender systems, including those provided in [5, 10]. We start with the
standard and popular representational approach to modeling contextual information
in Sect. 6.2.2, and explore and describe alternative approaches in Sect. 6.2.3.

6.2.2 Representational Approach to Modeling Contextual
Information in Recommender Systems

Recommender systems emerged as an independent research area in the mid-1990s,
when researchers and practitioners started focusing on recommendation problems
that explicitly rely on the notion of ratings as a way to capture user preferences
for different items. For example, in case of a movie recommender system, John
Doe may assign a rating of 7 (out of 10) for the movie “Gladiator,” i.e., set
Rmovie(John_Doe, Gladiator/ D 7. The rating-based recommender systems typically
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start with the specification of the initial set of ratings that is either explicitly provided
by the users or is implicitly inferred by the system. Once these initial ratings are
specified, a recommender system tries to estimate the rating function R

R W User � Item! Rating

for the (user, item) pairs that have not been rated yet by the users. Here Rating is
a totally ordered set (e.g., non-negative integers or real numbers within a certain
range), and User and Item are the domains of users and items respectively. Once the
function R is estimated for the whole User � Item space, a recommender system can
recommend the highest-rated items for each user, possibly also taking into account
item novelty, diversity, or other considerations of recommendation quality [84]. We
call such systems traditional or two-dimensional (2D) since they consider only the
User and Item dimensions in the recommendation process.

In other words, in its most common formulation, the traditional rating-based
recommendation problem is reduced to the problem of estimating ratings for the
items that have not been seen by a user. This estimation is usually based on the
ratings given by the users to other items, and possibly on some other information,
such as user demographics and item characteristics. Note that this traditional
approach to RSes does not take into the consideration the contextual information,
such as time, location and the company of other people.

The rating-based representational approach to context-aware recommender
systems assumes that the contextual information is known and defined by a set
of contextual attributes and that these contextual attributes affect ratings. In other
words, the ratings are modeled in the rating-based representational approach to
CARS as the function of not only items and users, but also of the contextual
attributes, i.e., as

R W User � Item � Context! Rating;

where User and Item are the domains of users and items respectively, Rating is
the domain of ratings, and Context specifies the known contextual information
associated with the application. To illustrate these concepts, consider the following
example.

Example 6.1. Consider the application for recommending movies to users, where
users and movies are described as relations having the following attributes:

• Movie: the set of all the movies that can be recommended; it is defined as
Movie(MovieID, Title, Length, ReleaseYear, Director, Genre).

• User: the people to whom movies are recommended; it is defined as User(UserID,
Name, Address, Age, Gender, Profession).

Further, the contextual information consists of the following three types that are also
defined as relations having the following attributes:
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• Theater: the movie theaters showing the movies; it is defined as Theater
(TheaterID, Name, Address, Capacity, City, State, Country).

• Time: the time when the movie can be or has been seen; it is defined as
Time(Date, DayOfWeek, TimeOfWeek, Month, Quarter, Year). Here, attribute
DayOfWeek has values Mon, Tue, Wed, Thu, Fri, Sat, Sun, and attribute
TimeOfWeek has values “Weekday” and “Weekend”.

• Companion: represents a person or a group of persons with whom one can
see a movie. It is defined as Companion(companionType), where attribute
companionType has values “alone”, “friends”, “girlfriend/boyfriend”, “family”,
“co-workers”, and “others”.

Then the rating assigned to a movie by a person also depends on where and how
the movie has been seen, with whom, and at what time. For example, the type of
movie to recommend to college student Jane Doe can differ significantly depending
on whether she is planning to see it on a Saturday night with her boyfriend vs. on a
weekday with her parents.

As we can see from this example and other cases, the contextual information
Context can be of different types, each type defining a certain aspect of context,
such as time, location (e.g., Theater), companion (e.g., for seeing a movie), purpose
of a purchase, etc. Further, each contextual type can have a complicated structure
reflecting complex nature of the contextual information. Although this complexity
of contextual information can take many different forms, one popular defining
characteristic is the hierarchical structure of contextual information that can be rep-
resented as trees, as is done in most of the context-aware recommender and profiling
systems, including [6, 69]. For instance, the three contexts from Example 6.1 can
have the following hierarchies associated with them: Theater: TheaterID! City!
State! Country; Time: Date! DayOfWeek! TimeOfWeek, Date! Month!
Quarter! Year.2

This representational view to CARS assumes that the context is defined with
a predefined set of observable attributes, the structure of which does not change
significantly over time, and constitutes the most popular approach to incorporat-
ing context in RSes. More specifically, many context-aware approaches follow
Palmisano et al. [69], and also Adomavicius et al. [6] to some extent, and define
the contextual information with a set of contextual dimensions K, each contextual
dimension K in K being defined by a set of q attributes K D .K1; : : : ; Kq/

having a hierarchical structure and capturing a particular type of context, such
as Time or CommunicatingDevice. The values taken by attribute Kq define finer
(more granular) levels, while K1 values define coarser (less granular) levels of

2For the sake of completeness, we would like to point out that not only the contextual dimensions,
but also the traditional User and Item dimensions can have their attributes form hierarchical
relationships. For example, the main two dimensions from Example 6.1 can have the following
hierarchies associated with them: Movie: MovieID ! Genre; User: UserID ! Age, UserID !
Gender, UserID ! Profession.



6 Context-Aware Recommender Systems 197

Fig. 6.1 Contextual information hierarchical structure: (a) e-retailer dataset, (b) food dataset [69]

contextual knowledge. For example, Fig. 6.1a presents a four-level hierarchy for
the contextual attribute K specifying the intent of a purchasing transaction in an
e-retailer application. While the root (coarsest level) of the hierarchy for K defines
purchases in all possible contexts, the next level is defined by attribute K1 D
fPersonal, Gift}, which labels each customer purchase either as a personal purchase
or as a gift. At the next, finer level of the hierarchy, “Personal” value of attribute
K1 is further split into a more detailed personal context: personal purchase made for
the work-related or other purposes. Similarly, the Gift value for K1 can be split into
a gift for a partner or a friend and a gift for parents or others. Thus, the K2 level
is K2 D fPersonalWork, PersonalOther, GiftPartner/Friend, GiftParent/Other}.
Finally, attribute K2 can be split into further levels of hierarchy, as shown in
Fig. 6.1a.3

Contextual information was also defined in [6] as follows. In addition to the
classical User and Item dimensions, additional contextual dimensions, such as Time,
Location, etc., were also introduced using the OLAP-based4 multidimensional data
(MD) model widely used in the data warehousing applications in databases [37, 55].
Mathematically, this model can be defined with an n-dimensional tensor. Formally,
let D1; D2; : : : ; Dn be dimensions, two of these dimensions being User and Item,
and the rest being contextual. Each dimension Di is a subset of a Cartesian product
of some attributes (or fields) Aij; .j D 1; : : : ; ki/, i.e., Di � Ai1 � Ai2 � : : : � Aiki ,
where each attribute defines a domain (or a set) of values. Moreover, one or several
attributes form a key, i.e., they uniquely define the rest of the attributes [75]. In some
cases, a dimension can be defined by a single attribute, and ki D 1 in such cases. For
example, consider the three-dimensional recommendation space User�Item�Time,
where the User dimension is defined as User � UName� Address� Income� Age
and consists of a set of users having certain names, addresses, incomes, and being
of a certain age. Similarly, the Item dimension is defined as Item � IName� Type�
Price and consists of a set of items defined by their names, types and the price.
Finally, the Time dimension can be defined as Time � Year � Month � Day and

3For simplicity and illustration purposes, this figure uses only two-way splits. Obviously, three-
way, four-way and, more generally, multi-way splits are also allowed.
4OLAP stands for OnLine Analytical Processing, which represents a popular approach to
manipulation and analysis of data stored in multi-dimensional cube structures and which is widely
used for decision support.
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consists of a list of days from the starting to the ending date (e.g. from January 1,
2003 to December 31, 2003).

Given dimensions D1; D2; : : : ; Dn, we define the recommendation space for these
dimensions as a Cartesian product S D D1 �D2 � : : : Dn. Moreover, let Rating be a
rating domain representing the ordered set of all possible rating values. Then the
rating function is defined over the space D1 � : : : � Dn as

R W D1 � : : : � Dn ! Rating:

For instance, continuing the User � Item � Time example considered above, we
can define a rating function R on the recommendation space User � Item � Time
specifying how much user u 2 User liked item i 2 Item at time t 2 Time, R.u; i; t/.

Visually, ratings R.d1; : : : ; dn/ on the recommendation space S D D1�D2� : : :�
Dn can be stored in a multidimensional cube, such as the one shown in Fig. 6.2. For
example, the cube in Fig. 6.2 stores ratings R.u; i; t/ for the recommendation space
User � Item � Time, where the three tables define the sets of users, items, and times
associated with User, Item, and Time dimensions respectively. For example, rating
R.101; 7; 1/ D 6 in Fig. 6.2 means that for the user with User ID 101 and the item
with Item ID 7, rating 6 was specified during the weekday.

The rating function R introduced above is usually defined as a partial function,
where the initial set of ratings is known. Then, as usual in the ratings-based

Fig. 6.2 Multidimensional model for the User � Item � Time recommendation space
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recommender systems, the goal is to estimate the unknown ratings, i.e., make the
rating function R total.

The main difference between the multidimensional (MD) contextual model
described above and the previously described contextual model lies in that con-
textual information in the MD model is defined using classical OLAP hierarchies,
whereas the contextual information in the previous case is defined with more general
hierarchical taxonomies, which can be represented as trees (both balanced and
unbalanced), directed acyclic graphs (DAGs), or various other types of taxonomies.
Further, the ratings in the MD model are stored in the multidimensional cubes,
whereas the ratings in the other contextual model are stored in more general
hierarchical structures.

In this section we have provided an overview of the representational approach
to modeling contextual information in CARS. The vast majority of CARS research
employ this approach, and we will dedicate Sect. 6.3 of this chapter to the discussion
of various recommendation techniques that utilize the contextual information using
this representational approach in order to provide better recommendations. How-
ever, we first discuss several other approaches to modeling contextual information
in recommender systems (i.e., besides the representational approach) in Sect. 6.2.3.

6.2.3 Major Approaches to Modeling Contextual Information
in Recommender Systems

As mentioned earlier, many existing CARS approaches assume the existence of
certain contextual factors (sometimes called contextual dimensions, variables or
attributes), such as time, location, and the purchasing purpose, that identify the
context in which recommendations are provided. As discussed in Sect. 6.2.2, each
contextual factor can be defined by (a) its structure (e.g., defined using trees
or OLAP hierarchies) and (b) the values that the contextual variables take. For
example, the structure of the Time factor can be defined in terms of Years, Months,
Days and Hours. Furthermore, each variable in this structure, Years, Months, Days
and Hours, takes the standard set of values, such as the standard 12 months in a year,
the standard number of days in a month, hours in a day, etc.

A broader classification of major approaches to modeling contextual information,
i.e., classification that goes beyond the standard assumption of the explicit availabil-
ity of predefined contextual factors with stable (unchanging) structure, is based on
the following two aspects of contextual factors [5]: (1) what a recommender system
may know about these contextual factors, and (2) how contextual factors change
over time.

The first aspect presumes that a recommender system can have different types
of knowledge about the contextual factors. This may include knowledge of the
list of relevant factors, their structure, and their values. Depending on what is
exactly known about the factors (that is, what is observed and what is not), we
can classify this knowledge of a recommender system about the contextual factors
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into the following three categories: fully observable, partially observable, and
unobservable [5].

• Fully observable: The contextual factors relevant to the application, as well as
their structure and their values at the time when recommendations are made, are
known explicitly. For example, in case of recommending a purchase of a certain
product, such as a shirt, the recommender system may know that only the Time,
PurchasingPurpose, and ShoppingCompanion factors matter in this application.
Further, the recommender system may know the relevant structure of all these
three contextual factors, such as having categories of weekday, weekend, and
holiday for Time. Further, the recommender system may also know the values
of the contextual factors at the recommendation time (for example, when this
purchase is made, with whom, and for whom).

• Partially observable: Only some of the information about the contextual factors,
as described above, is known explicitly. For example, the recommender system
may know all the contextual factors, such as Time, PurchasingPurpose, and
ShoppingCompanion, but not their structure. Note that there can possibly be
different levels of “partial observability.” In this chapter, we do not differentiate
between them and group various cases of partially observable knowledge into this
general category. As another example, mobile recommender systems may know
the temporal and geo-spatial contextual factors (e.g., from the system clock and
the GPS sensor of the mobile phone), but all other contextual factors may remain
unknown.

• Unobservable: No information about contextual factors is explicitly available
to the recommender system, and it makes recommendations by utilizing only
the latent knowledge of context in an implicit manner. For example, the recom-
mender system may build a latent predictive model, such as a hierarchical linear
or hidden Markov model, to estimate unknown ratings, where unobservable
context is modeled using latent variables.

The second aspect of contextual factors is whether and how their structure and
their importance changes over time. The settings where the contextual factors are
stable over time are classified as static, whereas the factors changing over time are
classified as dynamic [5].

• Static: The relevant contextual factors and their structure remains the same
(stable) over time. For example, in case of recommending a purchase of a
certain product, such as a shirt, we can include the contextual factors of
Time, PurchasingPurpose, ShoppingCompanion and only these factors during
the entire lifespan of the purchasing recommendation application. Furthermore,
we assume that the structure of the PurchasingPurpose factor does not change
over time: the set of purposes will remain the same throughout the lifespan of
the application. The same is applicable to the ShoppingCompanion factor when
the same class of shopping companions remains throughout the application.

• Dynamic: This is the case when the contextual factors change in some way. For
example, the recommender system (or the system designer) may realize over
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Fig. 6.3 Major approaches to modeling contextual information in recommender systems

time that the ShoppingCompanion factor is no longer relevant for purchasing
recommendations and may decide to drop it. Furthermore, the structure of some
of the contextual factors can change over time (for example, new categories can
be added to the PurchasingPurpose contextual factor over time).

Directly combining the two aspects (i.e., the extent of the recommender system’s
knowledge about contextual factors and their change over time) could provide 6
(i.e., 3 � 2) possible approaches to modeling contextual information. However,
modeling of dynamic contexts represents an already complex task, for which the
differentiation between observable and unobservable factors may not be easily
formalizable. Therefore, we treat all the approaches to settings with dynamic
contextual information as one unified category. In contrast, the modeling approaches
for the static context settings are indeed classified further based on the three major
cases according to what is known about the contextual factors. This results in
four major, distinct approaches to modeling contextual information in recommender
systems, as indicated in Fig. 6.3, and we describe them in the remainder of this
section.

Representational Approach (Context: Static, Fully Observable) As discussed
earlier, this approach corresponds to the representational view of context [42],
which assumes that all the contextual information in a given application can
be modeled with a predefined finite set of observable attributes, where each attribute
has a well-defined structure and the structure does not change significantly over time
(i.e., is static). The vast majority of the prior work in context-aware recommender
systems has focused on this approach and, therefore, we will focus largely on this
method in the remainder of this chapter.

Incomplete-Information Approach (Context: Static, Partially Observable)
This approach explicitly assumes that only some partial information is known about
the contextual factors, which are assumed to have static structure. As mentioned
above, an example of the latter case can occur in mobile applications, when the
temporal and geo-spatial contextual information is known to the mobile device, but
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other important contextual factors (e.g., user’s trip purpose, companions, mood)
may remain unknown. Another example of such approach is presented in Palmisano
et al. [69], where the contextual information is defined using a Bayesian Network
(BN). In this BN, the observed context corresponds to the external layers of the
network and the unobserved latent one to the middle layers of the BN. Further,
some of the unobserved parameters of the BN were learned from the data using
standard machine-learning methods.

Latent Approach (Context: Static, Unobservable) This approach represents rec-
ommendation settings with stable (i.e., static), yet directly unobservable contextual
factors. For example, such contextual factors may include the mood of the user
(happy, sad, etc.) or the intent of purchase (for yourself, for work, gift, etc.), mod-
eling which could provide recommendation performance improvements. Because
the contextual factor structure is stable, it can be modeled with latent variables,
and the unobserved contextual information can be learned using machine-learning
methods, such as matrix factorization [58], probabilistic latent semantic analysis
(PLSA), or hierarchical linear models (HLMs). However, precisely because latent
information is not directly observable, it may be difficult to differentiate contextual
latent modeling from general-purpose latent modeling approaches in recommender
systems (e.g., a variety of general-purpose matrix factorization approaches that
are currently popular in recommender systems literature). One possible point of
differentiation is that all the latent variables could potentially be associated with
the item, user, and/or contextual characteristics. Therefore, the contextual latent
variables are those latent characteristics that do not pertain to the user or the item.
Although this is an intuitive distinction conceptually, it is hard to operationalize
it in practice, and the development of such differentiation methods constitutes an
interesting topic of future research and could lead to more nuanced recommendation
models and, as a result, potential performance benefits.

Dynamic Approach (Context: Dynamic, Various Observability) This approach
represents recommendation settings where the structure (as well as the pertinence)
of the contextual information can change over time, e.g., based on passive obser-
vations or explicit user feedback. This approach is related to the interactional
view of context [42], and there are some studies that take the direct interactional
approach to modeling contextual recommendations, such as [14] which models
context through a short-term memory (STM) interactional approach borrowed from
psychology. As another example, Mahmood et al. [65] present a recommender
system that adapts the dialogue to the interaction context. This is modeled by a set
of dynamic contextual factors representing, for instance, whether the user provided
certain information or acted on the recommendations (for example, put an item into
the shopping cart). In a dynamic way, step by step, the system adapts the interaction
considering a selection of these factors depending on the state of the interaction.
In addition, Moling et al. [66] propose a recommendation approach based on
a sequential decision making perspective, which allows to blend changing (i.e.,
less stable) implicit short-term/contextual preferences with more stable long-term
user preferences when producing radio channel recommendation. As yet another
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example, Hariri et al. [45] use a topic-modeling approach to map user’s interaction
sequence to a sequence of latent topics (representing different contexts) which
capture trends in user’s current interests. This allows the recommender system to
monitor changes in users’ interests and dynamically adapt to these changes. As
yet another example, consider conversational recommender systems. In standard
conversational systems, user feedback is used to iteratively refine the user profile (or
the initial user query) resulting in more appropriate recommendations. In a context-
aware conversational system, the user feedback may also be used to iteratively
modify contextual factors and not just user profiles. For example, in the course of
conversation with a user, a restaurant recommender may determine that the user is on
a romantic date. This observation, in turn, may result in filtering out restaurants that
tend to be noisy or without an adequate wine selection. The iterative refinement of
context in conversational recommender systems will introduce a new set of research
questions that will require further investigation.

6.2.4 Obtaining Contextual Information

As mentioned earlier, context-aware recommender systems research has been
focusing on the representational approach, which assumes that the context is defined
with a predefined set of contextual attributes, the structure of which does not change
over time. The implication of this assumption is that contextual information needs to
be identified and acquired before actual recommendations are made. The contextual
information can be obtained in a number of ways, including:

• Explicitly, i.e., by directly approaching relevant people and other sources of
contextual information and explicitly gathering this information either by asking
direct questions or eliciting this information through other means. For example,
a website may obtain contextual information by asking a person to fill out a web
form or to answer some specific questions before providing access to certain web
pages. Similarly, a smartphone app may obtain time, location, and motion data
from the phone’s clock, GPS sensor, and accelerometer, respectively.

• Implicitly from the data or the environment, such as a change in location of the
user detected by a mobile telephone company. Alternatively, temporal contextual
information can be implicitly obtained from the timestamp of a transaction.
Nothing needs to be done in these cases in terms of interacting with the user
or other sources of contextual information—the source of the implicit contextual
information is accessed directly and the data is extracted from it.

• Inferring the context using statistical or data mining methods. In other words,
contextual information can be “hidden” in the data in some latent form but can
still be implicitly used to better estimate the unknown ratings. For example, the
household identity of a person flipping the TV channels (husband, wife, son,
daughter, etc.) may not be explicitly known to a cable TV company; but it
can be modeled as a latent variable using various machine learning methods by
observing the TV programs watched and the channels visited. This information
can then be used to estimate how much this household would like a particular



204 G. Adomavicius and A. Tuzhilin

TV program. It was shown in [69] that this deployment of latent variables, such
as intent of purchasing a product (e.g., for yourself vs. as a gift, work-related
vs. pleasure, etc.), whose true values were unknown but that were explicitly
modeled as a part of a Bayesian Network (BN), indeed improved the predictive
performance of the BN classifier. A similar approach of using latent variables
is presented in [14]. As another example of inferring contextual information,
consider online reviews, such as provided on Yelp, Amazon, and other popular
websites. These reviews contain plenty of contextual information describing
specific purchasing or consumption experiences, such a restaurant visits. For
example, the user may indicate in a review that she went to the restaurant for
dinner with her boyfriend to celebrate his birthday. Bauman and Tuzhilin [24]
present a method of analyzing such online reviews and extracting contextual
information from them. This method is also evaluated on a sample of Yelp
reviews, and it is shown that most of the contextual information relevant to that
application is extracted using this method. Still another approach toward inferring
contextual information, albeit for non-RS related problems, was proposed in [56]
where temporal contexts were discovered in web-sessions by decomposing these
sessions into non-overlapping segments, each segment relating to one specific
context. These contexts were subsequently identified using certain optimization
and clustering methods.

It is important to note that, if the acquisition process of the contextual information
is done explicitly or even implicitly, it should be conducted as a part of the
overall data collection process. This further implies that the decisions of which
contextual information should be relevant and collected for an application should
be done at the application design stage and well in advance of the time when actual
recommendations are provided.

Naturally, not all available contextual factors might be relevant or useful for
recommendation purposes. Consider, for example, a book recommender system.
Many types of contextual data could potentially be obtained by such a system from
book buyers, including: (a) purpose of buying the book (possible options: for work,
for leisure, etc.); (b) planned reading time (weekday, weekend, etc.); (c) planned
reading place (at home, at school, on a plane, etc.); (d) the value of the stock market
index at the time of the purchase. Clearly some types of contextual information can
be more relevant in a given application than some other types. For example, in this
example, the value of a stock market is likely to be much less relevant as contextual
information than the purpose of buying a book.

Because the relevance of contextual factors can vary dramatically from appli-
cation to application (e.g., location as a recommendation context may matter
significantly in one recommendation application, but have absolutely no impact in
another), domain expertise typically plays a big role in identifying a candidate set of
contextual factors for a given application. For example, for mobile recommendation
applications, the following four general types of contextual information are often
considered [5, 43]: physical context (e.g., time, position, activity of the user,
weather, light conditions, temperature), social context (e.g., is the user alone or
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in the group, presence and role of other people around the user), interaction
media context (e.g., device characteristics—phone/tablet/laptop/etc., media content
type—text/audio/video/etc.), modal context (e.g., user’s state of mind—cognitive
capabilities, mood, experience, current goals).

In addition to using the manual approach, e.g., leveraging domain knowledge
of the recommender system’s designer or a market expert in a given application
domain, there are also several computational approaches to determining the rele-
vance of a given type of contextual information. In particular, numerous existing
feature selection procedures from machine learning [57], data mining [63], and
statistics [36] can be used during the data preprocessing phase, based on existing
ratings data. One methodology of deciding which contextual attributes should be
used in a recommendation application (and which should not) is presented in [6]. In
particular, Adomavicius et al. [6] propose that a wide range of contextual attributes
should be initially selected by the domain experts as possible candidates for the
contextual attributes for the application. For example, in a movie recommendation
application described in Example 6.1, we can initially consider such contextual
attributes as Time, Theater, Companion, Weather, as well as a broad set of other
contextual attributes that can possibly affect the movie-watching experiences, as
initially identified by the domain experts for the application. Then, after collecting
the data, including the rating data and the contextual information, we may apply
various types of statistical tests identifying which of the chosen contextual attributes
are truly significant in the sense that they indeed affect movie-watching experiences,
as manifested by significant deviations in ratings across different values of a
contextual attribute. For example, we may apply pairwise t-tests to see if good
weather vs. bad weather or seeing a movie alone vs. with a companion significantly
affect the movie-watching experiences (as indicated by statistically significant
changes in rating distributions). This procedure provides an example of screening all
the initially considered contextual attributes and filtering out those that do not matter
for a particular recommendation application. For example, we may conclude that the
Time, Theater and Companion contexts matter, while the Weather context does not
in the considered movie recommendation application. The use of statistical tests for
determining the relevance of contextual information has been further explored in
subsequent research [67].

Another approach for assessing the relevance of contextual information has
been proposed by Baltrunas et al. [20], who developed a survey-based instrument
that asks the users to judge what their preferences would be in a wide variety
of hypothetical (i.e., imagined) contextual situations. This allows to collect richer
contextual preference information in a short timeframe, evaluate the impact of
each contextual factor on user preferences based on the collected data, and include
into the resulting context-aware system only those factors that were shown to be
important. Even though the collected data includes only hypothetical contextual
preferences (i.e., preferences for items that users imagined consuming under certain
contextual circumstances), the authors demonstrate that the resulting context-aware
recommender system was perceived to be more effective by users as compared to
the non-context-aware recommender.
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The detailed discussion of the specific contextual feature selection procedures is
beyond the scope of this chapter; in the remainder of this chapter we will assume
that only the relevant contextual information is stored in the data.

In this section we reviewed major approaches to modeling contextual information
and also put extra focus on the most popular—representational—approach. Since it
has been studied most extensively in the past, we will focus on the major paradigms
for incorporating contextual information into the representational approach in the
next section.

6.3 Paradigms for Incorporating Representational Context
in Recommender Systems

Once the relevant context information has been identified and obtained using
the representational approach to CARS, the next step is to use context intelli-
gently in order to produce better recommendations. Different approaches to using
contextual information in recommender systems can be broadly categorized into
two groups: (1) recommendation via context-driven querying and search, and (2)
recommendation via contextual preference elicitation and estimation. The context-
driven querying and search approach has been used by a wide variety of mobile
and travel/tourist recommender systems [3, 35, 86]. Systems using this approach
typically use contextual information (obtained either directly from the user, e.g.,
by specifying current mood or interest, or from the environment, e.g., obtaining
local time, weather, or current location) to query or search a certain repository
of resources (e.g., restaurants) and present the resources that best match a given
query (e.g., nearby restaurants that are currently open) to the user. One of the early
examples of this approach is the Cyberguide project [3], which developed several
tour guide prototypes for different hand-held platforms. Abowd et al. [3] discuss
different architectures and features necessary to provide realistic tour guide services
to mobile users and, more specifically, the role that the contextual knowledge of
the user’s current and past locations can play in the recommendation and guiding
process. Among the many other examples of context-aware tourist guide systems
proposed in research literature we can mention GUIDE [38], INTRIGUE [16],
COMPASS [86], and MyMap [41] systems.

The other general approach to using contextual information in the recommenda-
tion process, i.e., via contextual preference elicitation and estimation, represents a
more recent trend in context-aware recommender systems literature [6, 7, 68, 71, 89].
In contrast to the previously discussed context-driven querying and search approach
(where the recommender systems typically use the current context information
and specified current user’s interest as queries to search for the most appropriate
content), techniques that follow this second approach attempt to model and learn
contextual user preferences, e.g., by observing the interactions of this and other
users with the systems or by obtaining preference feedback from the user on various
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previously recommended items. To model users’ context-sensitive preferences and
generate recommendations, these techniques typically either adopt existing collabo-
rative filtering, content-based, or hybrid recommendation methods to context-aware
recommendation settings or apply various intelligent data analysis techniques from
data mining or machine learning (such as Bayesian classifiers or support vector
machines).

While both general approaches offer a number of research challenges, in the
remainder of this chapter we will focus on the second, more recent trend of
the contextual preference elicitation and estimation in recommender systems. We
do want to mention that it is possible to design applications that combine the
techniques from both general approaches (i.e., both context-driven querying and
search as well as contextual preference elicitation and estimation) into a single
system. For example, the UbiquiTO system [35], which implements a mobile
tourist guide, provides intelligent adaptation not only based on the specific context
information, but also uses various rule-based and fuzzy set techniques to adapt
the application content based on the user preferences and interests. Similarly, the
News@hand system [34] uses semantic technologies to provide personalized news
recommendations that are retrieved using user’s concept-based queries or calculated
according to a specific user’s (or a user group’s) profile.

To start the discussion of the contextual preference elicitation and estimation
techniques for the representational approach to CARS, note that, in its general
form, a traditional two-dimensional (2D) (User � Item) recommender system can
be described as a function, which takes partial user preference data as its input
and produces a list of recommendations for each user as an output. Accordingly,
Fig. 6.4 presents a general overview of the traditional 2D recommendation process,
which includes three components: data (input), 2D recommender system (function),
and recommendation list (output). Note that, as indicated in Fig. 6.4, after the
recommendation function is defined (or constructed) based on the available data,
recommendation list for any given user u is typically generated by using the
recommendation function on user u and all candidate items to obtain a predicted
rating for each of the items and then by ranking all items according to their predicted
rating value. Later in this section, we will discuss how the use of contextual
information in each of those three components gives rise to three different paradigms
for context-aware recommender systems.

As mentioned in Sect. 6.2.2, traditional recommender systems are built based
on the knowledge of partial user preferences, i.e., user preferences for some
(often limited) set of items, and the input data for traditional recommender systems

Fig. 6.4 General components of the traditional recommendation process
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is typically based on the records of the form < user; item; rating >. In contrast,
context-aware recommender systems are built based on the knowledge of partial
contextual user preferences and typically deal with data records of the form <

user; item; context; rating >, where each specific record includes not only how
much a given user liked a specific item, but also the context in which the item
was consumed by this user (e.g., Context D Saturday). Also, in addition to the
descriptive information about users (e.g., demographics), items (e.g., item features),
and ratings (e.g., multi-criteria rating information), context-aware recommender
systems may also make use of additional context attributes, such as context
hierarchies (e.g., Saturday ! Weekend) mentioned in Sect. 6.2.2. Based on the
presence of this additional contextual data, several important questions arise: How
contextual information should be reflected when modeling user preferences? Can we
reuse the wealth of knowledge in traditional (non-contextual) recommender systems
to generate context-aware recommendations? We will explore these questions in this
chapter in more detail.

In the presence of available contextual information, following the diagrams in
Fig. 6.5, we start with the data having the form U � I �C�R, where C is additional
contextual dimension and end up with a list of contextual recommendations
i1; i2; i3 : : : for each user. However, unlike the process in Fig. 6.4, which does
not take into account the contextual information, we can apply the information
about the current (or expected) context c at various stages of the recommendation
process. More specifically, the context-aware recommendation process that is based

Fig. 6.5 Paradigms for incorporating context in recommender systems. (a) Contextual pre-
filtering; (b) contextual post-filtering; (c) contextual modeling
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on contextual user preference elicitation and estimation can take one of the three
forms, based on which of the three components the context is used in, as shown
in Fig. 6.5:

• Contextual pre-filtering (or contextualization of recommendation input). In this
recommendation paradigm (presented in Fig. 6.5a), contextual information drives
data selection or data construction for that specific context. In other words,
information about the current context c is used for selecting or constructing the
relevant set of data records (i.e., ratings). Then, ratings can be predicted using
any traditional 2D recommender system on the selected data.

• Contextual post-filtering (or contextualization of recommendation output). In
this recommendation paradigm (presented in Fig. 6.5b), contextual information
is initially ignored, and the ratings are predicted using any traditional 2D recom-
mender system on the entire data. Then, the resulting set of recommendations is
adjusted (contextualized) for each user using the contextual information.

• Contextual modeling (or contextualization of recommendation function). In this
recommendation paradigm (presented in Fig. 6.5c), contextual information is
used directly in the modeling technique as part of rating estimation.

In the remainder of this section we will discuss these three approaches in detail.

6.3.1 Contextual Pre-filtering

As shown in Fig. 6.5a, the contextual pre-filtering approach uses contextual infor-
mation to select or construct the most relevant 2D (User � Item) data for generating
recommendations. One major advantage of this approach is that it allows deploy-
ment of any of the numerous traditional recommendation techniques previously
proposed in the literature [9]. In particular, in one possible use of this approach,
context c essentially serves as a query for selecting (filtering) relevant ratings data.
An example of a contextual data filter for a movie recommender system would
be: if a person wants to see a movie on Saturday, only the Saturday rating data is
used to recommend movies. Note that this example represents an exact pre-filter. In
other words, the data filtering query has been constructed using exactly the specified
context.

For example, following the contextual pre-filtering paradigm, Adomavicius
et al. [6] proposed a reduction-based approach, which reduces the problem of
multidimensional (MD) contextual recommendations to the standard 2D User
� Item recommendation space. Therefore, as with any contextual pre-filtering
approach, one important benefit of the reduction-based approach is that all the
previous research on 2D recommender systems is directly applicable in the MD
case after the reduction is done. In particular, let RD

User�Item: U � I ! Rating be
any 2D rating estimation function that, given existing ratings D (i.e., D contains
records < user; item; rating > for each of the known, user-specified ratings),
can calculate a prediction for any rating, e.g., RD

User�Item.John; StarWars/. A three-
dimensional rating prediction function supporting the context of time can be defined
similarly as RD

User�Item�Time W U � I � T ! Rating, where D contains records <
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user; item; time; rating > for the user-specified ratings. Then the three-dimensional
prediction function can be expressed through a 2D prediction function in several
ways, including:

8.u; i; t/ 2 U � I � T; RD
User�Item�Time.u; i; t/ D RDŒTimeDt�.User;Item;Rating/

User�Item .u; i/:

Here [Time D t] denotes a simple contextual pre-filter, and DŒTime D t�(User,
Item, Rating) denotes a rating dataset obtained from D by selecting only the records
where Time dimension has value t and keeping only the values for User and Item
dimensions, as well as the value of the rating itself. That is, if we treat a dataset of
three-dimensional ratings D as a relation, then DŒTime D t�.User; Item; Rating/ is
simply another relation obtained from D by performing two relational operations:
selection and, subsequently, projection.

However, the exact context sometimes can be too narrow. Consider, for example,
the context of watching a movie with a girlfriend in a movie theater on Saturday
or, i.e., c D .Girlfriend, Theater, Saturday). Using this exact context as a data
filtering query may be problematic for several reasons. First, certain aspects of the
overly specific context may not be significant. For example, user’s movie watching
preferences with a girlfriend in a theater on Saturday may be exactly the same as on
Sunday, but different from Wednesday’s. Therefore, it may be more appropriate to
use a more general context specification, i.e., Weekend instead of Saturday. And
second, exact context may not have enough data for accurate rating prediction,
which is known as the “sparsity” problem in recommender systems literature. In
other words, the recommender system may not have enough data points about the
past movie watching preferences of a given user with a girlfriend in a theater on
Saturday.

Adomavicius et al. [6] introduce the notion of generalized pre-filtering, which
allows to generalize the data filtering query obtained based on a specified context.
More formally, let’s define c0 D .c0

1; : : : ; c0
k/ to be a generalization of context c D

.c1; : : : ; ck/ if and only if ci ! c0
i for every i D 1; : : : ; k in the corresponding context

hierarchy. Then, c0 (instead of c) can be used as a data query to obtain contextualized
ratings data.

Following the idea of context generalization, Adomavicius et al. [6] proposed
to use not a simple pre-filter [Time D t], which represents the exact context
t of the rating .u; i; t/, but rather a generalized pre-filter [Time 2 St],
where St denotes some superset of context t. Here St is called a contextual
segment [6]. For example, if we would like to predict how much John
Doe would like to see the “Gladiator” movie on Monday, i.e., to calculate
RD

User�Item�Time.JohnDoe; Gladiator; Monday/, we could use not only other user-
specified Monday ratings for prediction, but Weekday ratings in general. In
other words, for every .u; i; t/ where t 2 Weekday, we can predict the rating as
RD

User�Item�Time.u; i; t/ D RDŒTime2Weekday�.User;Item;AGGR.Rating//
User�Item .u; i/. More generally, in

order to estimate some rating R.u; i; t/, we can use some specific contextual segment
St as: RD

User�Item�Time.u; i; t/ D RDŒTime2St �.User;Item;AGGR.Rating//
User�Item .u; i/.
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Note, that we have used the AGGR.Rating/ notation in the above expressions,
since there may be several user-specified ratings with the same User and Item values
for different Time instances in dataset D belonging to some contextual segment St

(e.g., different ratings for Monday and Tuesday, all belonging to segment Weekday).
Therefore, we have to aggregate these values using some aggregation function, e.g.,
averaging, when reducing the dimensionality of the recommendation space. The
above three-dimensional reduction-based approach can be extended to a general
pre-filtering method reducing an arbitrary n-dimensional recommendation space
to an m-dimensional one (where m < n). In this chapter we will assume that
m D 2 because traditional recommendation algorithms are only designed for the
two-dimensional User � Item case. Note that there typically exist multiple different
possibilities for context generalization, based on the context taxonomy and the
desired context granularity. For example, let’s assume that we have the following
contextual taxonomies (is-a or belongs-to relationships) that can be derived from
context hierarchies:

• Company: Girlfriend! Friends! NotAlone! AnyCompany;
• Place: Theater! AnyPlace;
• Time: Saturday!Weekend! AnyTime.

Then, the following are just several examples of possible generalizations c0 of the
above-mentioned context c D .Girlfriend, Theater, Saturday):

• c0 D .Girlfriend, AnyPlace, Saturday);
• c0 D .Friends, Theater, AnyTime);
• c0 D .NotAlone, Theater, Weekend).

Therefore, choosing the “right” generalized pre-filter becomes an important
problem. One option is to use a manual, expert-driven approach; e.g., always
generalize specific days of week into more general Weekday or Weekend. Another
option is to use a more automated approach, which could empirically evaluate the
predictive performance of the recommender system on contextualized input datasets
obtained from each generalized pre-filter, and then would automatically choose
the pre-filter with best performance. An interesting and important research issue
is how to deal with potential computational complexity of this approach due to
context granularity; in other words, in cases of applications with highly granular
contexts, there may exist a very large number of possible context generalizations,
for which exhaustive search techniques would not be practical. For such cases,
effective greedy approaches would need to be developed. Jiang and Tuzhilin [50]
examine optimal levels of granularity of customer segments in order to maximize
predictive performance of segmentation methods. Applicability of these techniques
in the context-aware recommender systems settings constitutes an interesting
problem for future research.

So far, we have discussed applying only one pre-filter at a time. However, as it
has been well-documented in recommender systems literature, often a combination
(a “blend” or an ensemble) of several solutions provides significant performance
improvements over the individual approaches [30, 31, 58, 74]. Therefore, it may also
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Fig. 6.6 Combining multiple pre-filters

be useful to combine several contextual pre-filters into one model at the same time.
The rationale for having a number of different pre-filters is based on the fact that, as
mentioned earlier, typically there can be multiple different (and potentially relevant)
generalizations of the same specific context. Following this idea, Adomavicius et al.
[6] use pre-filters based on the number of possible contexts for each rating, and then
combine recommendations resulting from each contextual pre-filter. The general
overview of this approach is shown in Fig. 6.6. Note that the combination of several
pre-filters can be done in multiple ways. For example, for rating estimation in a
specific context, (a) one could choose the best-performing pre-filter, or (b) use an
aggregate prediction from the entire “ensemble” of pre-filters.

Also note that the contextual pre-filtering approach is related to the problems
of building local models in machine learning and data mining [13]. Rather than
building the global rating estimation model utilizing all the available ratings,
this approach builds a local rating estimation model that uses only the ratings
pertaining to the user-specified criteria in which a recommendation is made (e.g.,
morning). It is important to know if a local model generated by the pre-filtering
approach outperforms the global model of the traditional 2D technique, where
all the information associated with the contextual dimensions is simply ignored.
For example, it is possible that it is better to use the contextual pre-filtering to
recommend movies to see in the movie theaters on weekends, but use the traditional
2D technique for movies to see at home. This is the case because pre-filtering,
on the one hand, focuses recommendations on a particular segment and builds a
local prediction model for this segment, but, on the other hand, computes these
recommendations based on a smaller number of points limited to the considered
segment. This tradeoff between having more relevant data for calculating an
unknown rating based only on the ratings with the same or similar context and
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having fewer data points used in this calculation belonging to a particular segment
(i.e., the sparsity effect) explains why the pre-filtering recommendation method
can outperform traditional 2D recommendation techniques on some segments and
underperform on others. Which of these two trends dominates on a particular
segment may depend on the application domain and on the specifics of the available
data. This observation provides yet another motivation behind the aforementioned
ensemble-based approaches [6] that can combine a number of contextual pre-filters
along with the traditional 2D technique (i.e., as a default filter, where no filtering is
done). This allows to take advantage of more-targeted (local) and well-performing
contextual segments were possible, while reverting to the default, traditional 2D
technique in other cases.

Among other developments, Ahn et al. [12] use a technique similar to the
contextual pre-filtering to recommend advertisements to mobile users by taking
into account user location, interest, and time, and Lombardi et al. [64] evaluate the
effect of contextual information using a pre-filtering approach on the data obtained
from an online retailer. Also, Baltrunas and Ricci [22, 23] take a somewhat different
approach to contextual pre-filtering in proposing and evaluating the benefits of the
item splitting technique, where each item is split into several fictitious items based
on the different contexts in which these items can be consumed. Similarly to the item
splitting idea, Baltrunas and Amatriain [17] introduce the idea of micro-profiling (or
user splitting), which splits the user profile into several (possibly overlapping) sub-
profiles, each representing the given user in a particular context. The predictions
are done using these contextual micro-profiles instead of a single user model. Note
that these data construction techniques fit well under the contextual pre-filtering
paradigm, because they are following the same basic idea (as the data filtering
techniques described earlier)—using contextual information to reduce the problem
of multidimensional recommendations to the standard 2D User � Item space,
which then allows to use any traditional recommendation techniques for rating
prediction. The idea of generalized contextual pre-filtering has also been adopted
in various studies; for example, Zheng et al. [90] use a similar approach (called
context “relaxation”) for travel recommendations. Furthermore, Codina et al. [40]
provide a different approach to generalize the pre-filtering approach; they leverage
semantic similarities between different contextual conditions and compute the
recommendations based on the ratings taken not just from the single contextual
condition, but from the similar contexts as well.

The idea of combining multiple filters is not limited only to pre-filtering and
can be extended to post-filtering and contextual modeling approaches (which will
be discussed next). In particular, complex contextual information can be split into
several components, and the utility of each piece of contextual information may
be different depending on whether it is used in the pre-filtering, post-filtering, or
modeling stage. For example, time information (weekday vs. weekend) may be
most useful to pre-filter relevant data, but weather information (sunny vs. rainy)
may be the most appropriate to use as a post-filter. Determining the utility of
different contextual information with respect to different paradigms of context-
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aware recommender systems constitutes an interesting and promising direction for
future research.

6.3.2 Contextual Post-filtering

As shown in Fig. 6.5b, the contextual post-filtering approach ignores context
information in the input data when generating recommendations, i.e., when gen-
erating the ranked list of all candidate items from which any number of top-N
recommendations can be made, depending on specific values of N. Then, the
contextual post-filtering approach adjusts the obtained recommendation list for
each user using context information. The recommendation list adjustments can be
made by:

• Filtering out recommendations that are irrelevant (in a given context), or
• Adjusting the ranking of recommendations on the list (based on a given context).

For example, in a movie recommendation application, if a person wants to see
a movie on a weekend, and on weekends she only watches comedies, the system
can filter out all non-comedies from the recommended movie list. More generally,
the basic idea for contextual post-filtering approaches is to analyze the contextual
preference data for a given user in a given context to find specific item usage patterns
(e.g., user Jane Doe watches only comedies on weekends) and then use these
patterns to adjust the item list, resulting in more “contextual” recommendations,
as depicted in Fig. 6.7.

As with many recommendation techniques, the contextual post-filtering
approaches can be classified into heuristic and model-based techniques. Heuristic
post-filtering approaches focus on finding common item characteristics (attributes)
for a given user in a given context (e.g., preferred actors to watch in a given context),
and then use these attributes to adjust the recommendations, including:

• Filtering out recommended items that do not have a significant number of these
characteristics (e.g., to be recommended, the movies must have at least two of
the preferred actors in a given context), or

Fig. 6.7 Final phase of the contextual post-filtering approach: recommendation list adjustment
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• Ranking recommended items based on how many of these relevant characteristics
they have (e.g., the movies that star more of the user’s preferred actors in a given
context will be ranked higher).

In contrast, model-based post-filtering approaches can build predictive models
that calculate the probability with which the user chooses a certain type of item in
a given context, i.e., probability of relevance (e.g., likelihood of choosing movies
of a certain genre in a given context), and then use this probability to adjust the
recommendations, including:

• Filtering out recommended items that have the probability of relevance smaller
than a pre-defined minimal threshold (e.g., remove movies of genres that have a
low likelihood of being picked), or

• Ranking recommended items by weighting the predicted rating with the proba-
bility of relevance.

Panniello et al. [71] provide an experimental comparison of the exact pre-filtering
method (discussed in Sect. 6.3.1) versus two different post-filtering methods—
Weight and Filter—using several real-world e-commerce datasets. The Weight
post-filtering method reorders the recommended items by weighting the predicted
rating with the probability of relevance in that specific context, and the Filter
post-filtering method filters out recommended items that have small probability
of relevance in the specific context. Interestingly, the empirical results show that
the Weight post-filtering method dominates the exact pre-filtering, which in turn
dominates the Filter post-filtering method, thus, indicating that the best approach to
use (pre- or post-filtering) really depends on a given application.

As was the case with the contextual pre-filtering approach, a major advantage of
the contextual post-filtering approach is that it allows using any of the numerous
traditional recommendation techniques previously proposed in the literature [9].
Also, similarly to the contextual pre-filtering approaches, incorporating context
generalization techniques into post-filtering techniques constitutes an interesting
issue for future research.

6.3.3 Contextual Modeling

As shown in Fig. 6.5c, the contextual modeling approach uses contextual informa-
tion directly in the recommendation function as an explicit predictor of a user’s rat-
ing for an item. While contextual pre-filtering and post-filtering approaches can use
traditional 2D recommendation functions, the contextual modeling approach gives
rise to truly multidimensional recommendation functions, which essentially repre-
sent predictive models (built using decision trees, regressions, probabilistic models,
or other techniques) or heuristic calculations that incorporate contextual information
in addition to the user and item data, i.e., Rating D R.User; Item; Context/. A sig-
nificant number of recommendation algorithms—based on a variety of heuristics as
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well as predictive modeling techniques—have been developed over the last 15 years,
and some of these techniques can be extended from the 2D to the multidimensional
recommendation settings.

For example, Adomavicius and Tuzhilin [8] proposes to extend the traditional
two-dimensional (2D) neighborhood-based approach [28, 81] to the multidimen-
sional case, which includes the contextual information, by using an n-dimensional
distance metric instead of the user-user or item-item similarity metrics traditionally
used in such techniques. To illustrate how this can be done, consider an example
of the three-dimensional User � Item� Time recommendation space. Following the
traditional nearest neighbor heuristic that is based on the weighted sum of relevant
ratings, the prediction of a specific rating ru;i;t in this example can be expressed as:

ru;i;t D k
X

.u0;i0;t0/¤.u;i;t/

W..u; i; t/; .u0; i0; t0// � ru0;i0;t0 ;

where W..u; i; t/; .u0; i0; t0// describes the “weight” that rating ru0;i0;t0 carries in the
prediction of ru;i;t, and k is a normalizing factor. Weight W..u; i; t/; .u0; i0; t0// is typ-
ically inversely related to the distance between points .u; i; t/ and .u0; i0; t0/ in mul-
tidimensional space, i.e., distŒ.u; i; t/; .u0; i0; t0/�. In other words, the closer the two
points are (i.e., the smaller the distance between them), the more weight ru0;i0;t0 car-
ries in the weighted sum. Moreover, Adomavicius and Tuzhilin [8] presents different
types of the distance functions used for defining weights W..u; i; t/; .u0; i0; t0//; see
[8] for additional details.

Another heuristic-based contextual modeling (CM) method is presented in [70],
where four variants of the same CM method are considered, i.e., Mdl1, Mdl2, Mdl3,
Mdl4. Each of these CM methods requires building a contextual profile prof .u; c/

for user u in context c, and then using the contextual profiles of all the users to find
the N nearest neighbors of user u in terms of these profiles in context c. The four
types of the CM approaches (Mdl1, Mdl2, Mdl3, Mdl4) vary in the constraints by
which the neighbors are selected. In Mdl1, there is no constraint in the selection of
the N neighbors, i.e., they can be selected based on any context at any level of the
hierarchy. In Mdl2, an equal proportion of neighbors is selected from each context
c regardless of the context hierarchy. In Mdl3, N neighbors are selected from each
context c and each level of the context hierarchy. In Mdl4, an equal proportion of
neighbors is selected from each context c at the same level of context hierarchy.

In addition to the heuristic-based contextual modeling techniques, there have
been several model-based techniques proposed in the literature. For example,
Adomavicius and Tuzhilin [8] present a method of extending a regression-based
Hierarchical Bayesian (HB) collaborative filtering model of estimating unknown
ratings proposed by Ansari et al. [15] in order to incorporate additional contextual
dimensions, such as time and location, into the HB model.

Similarly, Karatzoglou et al. [52] have proposed an extended version of matrix
factorization approach based on tensor factorization, which allows to incorporate
contextual information into the recommendation process. A alternative matrix-
factorization-based approach has been proposed by Baltrunas et al. [21], who
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extended the traditional matrix factorization technique to context-aware settings by
introducing additional model parameters to model the interaction of the contextual
factors with ratings.

In addition to extending the traditional User � Item model-based collaborative
filtering techniques to incorporate the contextual dimensions, there have also
been some new techniques developed specifically for context-aware recommender
systems based on the context modeling paradigm. For example, following the
general contextual modeling paradigm, Oku et al. [68] propose to incorporate
additional contextual dimensions (such as time, companion, and weather) directly
into recommendation space and use machine learning technique to provide recom-
mendations in a restaurant recommender system. In particular, they use support
vector machine (SVM) classification method, which views the set of liked items
and the set of disliked items of a user in various contexts as two sets of vectors
in an n-dimensional space, and constructs a separating hyperplane in this space,
which maximizes the separation between the two data sets. The resulting hyperplane
represents a classifier for future recommendation decisions (i.e., a given item in a
specific context will be recommended if it falls on the “like” side of the hyperplane,
and will not be recommended if it falls on the “dislike” side). Furthermore, Oku
et al. [68] empirically show that context-aware SVM significantly outperforms non-
contextual SVM-based recommendation algorithm in terms of predictive accuracy
and user’s satisfaction with recommendations. Similarly, Yu et al. [89] use con-
textual modeling approach to provide content recommendations for smartphone
users by introducing context as additional model dimensions and using hybrid
recommendation technique (synthesizing content-based, Bayesian-classifier, and
rule-based methods) to generate recommendations. Also, Hariri et al. [46] employ
the Latent Dirichlet Allocation (LDA) model for use in context-aware recommender
systems, which allows to model jointly the users, items, and the meta-data associated
with contextual information.

Finally, another model-based approach is presented in [2] where a Personalized
Access Model (PAM) is presented that provides a set of personalized context-based
services, including context discovery, contextualization, binding and matching
services. Then Abbar et al. [2] describe how these services can be combined to form
Context-Aware Recommender Systems (CARS) and deployed in order to provide
superior context-aware recommendations.

In this section we described various ways to incorporate contextual infor-
mation into recommendation algorithms within the framework of pre-filtering,
post-filtering, and contextual modeling paradigms. Since CARS is still a relatively
young sub-area of recommender systems, developing further improvements across
all these three paradigms represent a promising research direction.

6.4 Discussion and Conclusions

Context-awareness is being recognized as an important issue in many recommen-
dation applications, which is evidenced by an increasing number of papers on
context-aware recommender systems that appear in conferences and journals, as
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well as by the number and variety of research workshops that have been dedicated
specifically to the topics related to context-aware recommender systems. Looking at
the current state of the art in context-aware recommender systems, the main research
issues, challenges, and directions can be broadly classified into the following four
general categories [4]:

• Fundamentals, i.e., understanding the notion of context and modeling context in
recommender systems.

• Algorithms, i.e., developing recommendation algorithms that can incorporate
contextual information into recommender systems in advantageous ways.

• Evaluation, i.e., in-depth performance evaluation of various context-aware rec-
ommendation approaches and techniques, their benefits and limitations.

• Engineering, i.e., designing general-purpose architectures, frameworks, and
approaches to facilitate the development, implementation, deployment, and use
of context-aware recommendation capabilities.

Not surprisingly, the overwhelming majority of existing research on context-
aware recommender systems can be classified under the “Algorithms” category [4],
i.e., researchers have focused primarily on how to take advantage of contextual
information in order to improve the quality of recommendations for different
recommendation tasks and applications. Compared to “Algorithms” the other three
categories have been relatively under-explored, although there have been more work
in the several other areas in recent years.

One recent representative example in the “Evaluation” category is the work by
Panniello et al. [70], who performed a comprehensive evaluation and comparison
of several contextual pre-filtering, post-filtering, and modeling techniques under
variety of conditions, e.g., for different recommendation tasks (find-all vs. top-k),
different recommendation utility metrics (accuracy vs. diversity), the granularity
of the processed contextual information, as well as other characteristics. Among
many findings, the comparison shows that there is no “universally” best technique
under all evaluation dimensions. For example, the contextual modeling and post-
filtering approaches demonstrate good accuracy performance in many situations,
while the exact pre-filtering approach often exhibits better diversity. However, the
contextual modeling approaches tend to achieve a comparatively good balance
in the accuracy-diversity trade-off. Another example in the “Evaluation” category
is the work by Campos et al. [33], who focused on exploring “time” as one
of the most valuable and widely used contextual factors in many recommender
systems applications. For example, the authors review common evaluation practices
and methodological issues related to the comparative evaluation of time-aware
recommender systems. They also demonstrate that the choice of the evaluation
conditions impacts the performance ranking of different recommendation strategies
and propose a methodological framework for a robust and fair evaluation process.
These works represent an important step in the direction of improved, standardized
and, thus, more reproducible evaluation procedures for context-aware recommender
systems.
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Developing several large-scale publicly available contextual recommendation
datasets for evaluation purposes would provide further stimulus for the CARS
research activities and, therefore, this should also be an important priority for the
research community.

However, additional research is needed not only in terms of purely algorithmic
evaluation, but also in terms of user studies for understanding various behavioral and
economic implications of using contextual information in recommender systems
(e.g., user acceptance, satisfaction, intrusiveness, privacy, trust, etc.) and preferably
not only on the offline data but also in live experiments on real users (i.e., so called
A/B testing). One example of such effort is the work by Gorgoglione et al. [44],
where the authors study the effects of contextual recommendations on the pur-
chasing behavior of customers and their trust in the provided recommendations,
as opposed to the usual predictive accuracy metrics used in most of the other
CARS studies. In particular, Gorgoglione et al. [44] describe live controlled
experiments performed by the authors with real customers of a major commercial
European retailer, in which the authors compare recommendation accuracy, diver-
sity, customers’ purchasing behavior and measure customer trust in the provided
recommendations across the contextual, content-based, and random recommenda-
tions. The authors show that context-aware recommendation techniques outperform
traditional (non-contextual) approaches in terms of accuracy, trust, and several
economics-based performance metrics across most of their experimental settings.
Another interesting example of user studies with context-aware recommender
systems is the work by Braunhofer et al. [26]. In this study, the users, after
receiving a recommendation from a context-aware system that recommends points-
of-interest, were asked to evaluate the system’s performance on the following two
dimensions: “Does this recommendation fit my preference?” (i.e., “personalization”
performance) and “Is this recommendation well-chosen for the situation?” (i.e.,
“contextualization” performance). In this specific study, the authors show that their
proposed technique is able to improve the baseline performance along one of these
dimensions—contextualization. Exploring the possible relationships between these
two performance dimensions further as well as understanding the performance of
other context-aware recommendation techniques with respect to these dimensions
represent interesting research directions. In summary, it is important for the CARS
community to continue the lines of work described in [26, 44] and to provide
strong additional evidence (e.g., via live controlled experiments) of the economic
and usability advantages of CARS over the traditional recommendation methods.

Much of the work on context-aware recommender systems has been conceptual,
where recommendation techniques are developed, tested on some (often limited)
data, and shown to perform well in comparison to certain benchmarks. Historically,
there has been little work done on the “Engineering” aspect for CARS, i.e., develop-
ing novel data structures, efficient storage methods, and new system architectures.
A recent representative example of such system-building work is the study by
Hussein et al. [47, 48], where the authors introduce a service-oriented architecture
enabling to define and implement a variety of different “building blocks” for
context-aware recommender systems, such as recommendation algorithms, context
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sensors, various filters and converters, in a modular fashion. These building blocks
can then be combined and reused in many different ways into systems that can
generate contextual recommendations. Another example of such work is Abbar
et al. [2], where the authors present a service-oriented approach that implements
the Personalized Access Model (PAM) previously proposed by the authors. The
implementation is done using global software architecture of CARS developed by
the authors and described in [2]. In addition, there has been a number of recent
research advances in database community in developing frameworks and techniques
for building recommender systems functionality (including some context-aware
functionality) directly into relational database engines [61, 62, 82, 83], which
provides a number of important benefits in terms of storage, query processing, query
optimization, and others.

Another important “Engineering” aspect is to develop richer interaction capa-
bilities with CARS that make recommendations more flexible. As compared to
traditional recommender systems, context-aware recommenders have two important
differences. The first is increased complexity, since CARS involve not only users
and items in the recommendation process, but also various types of contextual
information. Thus, the types of recommendations can be significantly more complex
in comparison to the traditional non-contextual cases. For example, in a movie
recommendation application, a certain user (e.g., Tom) may seek recommendations
for him and his girlfriend of top 3 movies and the best times to see them over the
weekend. The second difference is increased interactivity, since more information
(i.e., context) usually needs to be elicited from the user in the CARS settings.
For example, to utilize the available contextual information, a CARS system may
need to elicit from the user (Tom) with whom he wants to see a movie (e.g.,
girlfriend) and when (e.g., over the weekend) before providing any context-specific
recommendations. The combination of these two features calls for the development
of more flexible recommendation methods that allow the user to express the types
of recommendations that are of interest to them rather than being “hard-wired”
into the recommendation engines provided by most of the current vendors that,
primarily, focus on recommending top-N items to the user and vice versa. The
second requirement of interactivity also calls for the development of tools allowing
users to provide inputs into the recommendation process in an interactive and
iterative manner, preferably via some well-defined user interface (UI).

Such flexible context-aware recommendations can be supported in several
ways. First, Adomavicius et al. [11] developed a recommendation query language
REQUEST that allows its users to express in a flexible manner a broad range of
recommendations that are tailored to their own individual needs and, therefore, more
accurately reflect their interests. REQUEST is based on the multidimensional con-
textual recommendation model described in Sect. 6.2.2 and also in [6]. REQUEST
supports a wide variety of features, and the interested reader can find the detailed
account of these features as well as the formal syntax and various properties of the
language in [11]. In addition, Adomavicius et al. [11] provide a discussion of the
expressive power of REQUEST and present a multidimensional recommendation
algebra that provides the theoretical basis for this language.
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Another proposal to provide flexible recommendations is presented in [59],
where the FlexRecs system and framework are described. FlexRecs approach
supports flexible recommendations over structured data by decoupling the definition
of a recommendation process from its execution. In particular, a recommendation
can be expressed declaratively as a high-level parameterized workflow containing
traditional relational operators and novel recommendation-specific operators that
are combined together into a recommendation workflow.

Furthermore, since a major argument for introducing any recommendation
query language is its use by the end-users, it is also very important to develop
simple, friendly, interactive, and expressive user interfaces (UIs) for supporting
flexible but sometimes complex contextual recommendations. High-quality UIs
should reduce the complexity and simplify interactions between the end-users
and the recommender system and make them available to wider audiences. For
instance, for FlexRecs this may entail building a UI for defining and managing
recommendation workflows, while for REQUEST this may involve building front-
end UI allowing users to express REQUEST queries using visual and interactive
methods. Developing these and other UIs for CARS constitutes a topic of future
research.

“Fundamentals” represents arguably the least developed research direction.
Context is a complex notion, and there are many diverse approaches of con-
ceptualizing context in recommender systems, some of them still being debated
among the researchers. Although the recommender systems community is gradually
converging toward the common definition of context, and this chapter represents
an attempt to integrate different approaches into one common framework, addi-
tional work is still required for the CARS community to arrive at a clear, more
formalized definition of context and, therefore, many important questions still
remain to be explored in a principled manner. For example, what are underlying
theoretical underpinnings for context relevance? Are there systematic approaches
for identifying relevant contextual factors (i.e., on which to collect data)? When
explicit contextual information is not available, when should we model context as
a latent factor vs. ignore modeling the context altogether? What are the tradeoffs
of different modeling assumptions (e.g., static vs. dynamic context)? Most of
existing research on context-aware recommender systems follows the assumption
that contextual dimensions are stable and observable, but implications of other
modeling assumptions and approaches should also be explored. These are only some
of the examples of various questions that the CARS community can explore further.

In summary, the field of context-aware recommender systems (CARS) is still a
relatively new and promising area of research with many interesting and practically
important research problems, and much more work is needed to investigate them in
a principled and comprehensive manner.
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Chapter 7
Data Mining Methods for Recommender
Systems

Xavier Amatriain and Josep M. Pujol

7.1 Introduction

Recommender Systems (RS) typically apply techniques and methodologies from
other neighboring areas such as Human Computer Interaction (HCI) or Information
Retrieval (IR). Most of these systems also bear in their core an algorithm that can
be understood as a particular instance of a Data Mining (DM) process [5].

The data mining process typically consists of 3 steps, carried out in succession:
Data Preprocessing [78], Model Learning, and Result Interpretation (see Fig. 7.1).
We will analyze some of the most important methods for data preprocessing
in Sect. 7.2. In particular, we will focus on sampling, dimensionality reduction,
and the use of distance functions because of their significance and their role in
RS. In Sects. 7.3 and 7.4, we provide an overview introduction to the machine
learning methods that are most commonly used in RS: classification, clustering and
association rule discovery (see Fig. 7.1 for a detailed view of the different topics
covered in the chapter).

This chapter does not intend to give a thorough review of Data Mining methods,
but rather to highlight the impact that DM algorithms have in the RS field, and
to provide an overview of the key DM techniques that have been successfully used.
We direct the interested reader to Data Mining and Machine Learning textbooks (see
[14, 19, 39, 70, 93], for example) or the more focused references that are provided
throughout the chapter.
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Fig. 7.1 Main steps and methods in a Data Mining process, with their correspondence to chapter
sections

7.2 Data Preprocessing

We define data as a collection of objects and their attributes, where an attribute is
defined as a property or characteristic of an object. Other names for object include
record, item, point, sample, observation, or instance. An attribute might be also be
referred to as a variable, field, characteristic, or feature. In the context of a typical
collaborative filtering setting the objects in our dataset might be each of the ratings
we have captured from the users. For each of them we will have typical attributes
such as the user and item the rating refers to or the value of the rating itself. We can
also add many other features such as the time or the location the rating occurred, or
any other characteristic of the item or user such as item popularity, user age, or even
the location of the item in the page at the time we received the rating [75].
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Real-life data typically needs to be preprocessed (e.g. cleansed, filtered, trans-
formed) in order to be used by the machine learning techniques in the model learning
step. In this section, we focus on three issues that are of particular importance when
designing a RS. First, we review different similarity or distance measures. Next, we
discuss the issue of sampling as a way to reduce the number of items in very large
collections while preserving its main characteristics. Finally, we describe the most
common techniques to reduce dimensionality.

7.2.1 Similarity Measures

One of the preferred approaches to collaborative filtering (CF) recommenders is
to use the kNN classifier that will be described in Sect. 7.3.1.1. This classification
method—as most classifiers and clustering techniques—is highly dependent on
defining an appropriate similarity or distance measure.1

The simplest and most common example of a distance measure is the Euclidean
distance or the L2 Norm:

d.x; y/ D
vuut nX

kD1

.xk � yk/2 (7.1)

where n is the number of dimensions (attributes) and xk and yk are the kth attributes
(components) of data objects x and y, respectively.

The Minkowski Distance is a generalization of Euclidean Distance:

d.x; y/ D
 

nX
kD1

jxk � ykjr
! 1

r

(7.2)

where r is the degree of the distance. Depending on the value of r, the generic
Minkowski distance is known with specific names: For r D 1, the city block,
(Manhattan, taxicab or L1 norm) distance; For r D 2, the Euclidean distance; For
r ! 1, the supremum (Lmax norm or L1 norm) distance, which corresponds to
computing the maximum difference between any dimension of the data objects.

The Mahalanobis distance is defined as:

d.x; y/ D
p

.x � y/��1.x � y/T (7.3)

where � is the covariance matrix of the data.

1Note that a similarity measure is not a preprocessing step in itself but rather a prerequisite for
being able to execute other data mining processes.
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Another very common approach is to consider items as document vectors of an
n-dimensional space and compute their similarity as the cosine of the angle that they
form:

cos.x; y/ D .x � y/

jjxjjjjyjj (7.4)

where � indicates vector dot product and jjxjj is the norm of vector x. This similarity
is known as the cosine similarity.

The similarity between items can also be given by their correlation which
measures the linear relationship between objects. While there are several correlation
coefficients that may be applied, the Pearson correlation is the most commonly
used. Given the covariance of data points x and y ˙ , and their standard deviation � ,
we compute the Pearson correlation using:

Pearson.x; y/ D ˙.x; y/

�x � �y
(7.5)

Several similarity measures have been proposed in the case of items that only
have binary attributes. First, the M01, M10, M11, and M00 quantities are computed,
where M01 = the number of attributes where x was 0 and y was 1, M10 =
the number of attributes where x was 1 and y was 0, and so on. From those
quantities we can compute: The Simple Matching coefficient SMC D numberofmatches

numberofattributes

D M11CM00
M01CM10CM00CM11

; the Jaccard coefficient JC D M11
M01CM10CM11

. The Extended
Jaccard (Tanimoto) coefficient is a variation of JC for continuous or count attributes
that is computed by d D x�y

kxk2Ckxk2�x�y
.

RS have traditionally used either the cosine similarity (Eq. (7.4)) or the Pearson
correlation (Eq. (7.5))—or one of their many variations through, for instance,
weighting schemes—Chap. 2 details the use of different distance functions for CF.
Most of the other distance measures previously reviewed are possible. Spertus et al.
[88] did a large-scale study to evaluate six different similarity measures in the
context of the Orkut social network. Although their results might be biased by the
particular setting of their experiment, it is interesting to note that the best response to
recommendations were to those generated using the cosine similarity. Lathia et al.
[64] also carried out a study of several similarity measures where they concluded
that, in the general case, the prediction accuracy of a RS was not affected by the
choice of the similarity measure. As a matter of fact and in the context of their work,
using a random similarity measure sometimes yielded better results than using any
of the well-known approaches.



7 Data Mining Methods for Recommender Systems 231

7.2.2 Sampling

Sampling is the main technique used in DM for selecting a subset of relevant
data from a large data set. It is used both in the preprocessing and final data
interpretation steps. Sampling may be used because processing the entire data set
is computationally too expensive. It can also be used to create training and testing
datasets. In this case, the training dataset is used to learn the parameters or configure
the algorithms used in the analysis step, while the testing dataset is used to evaluate
the model or configuration obtained in the training phase, making sure that it
performs well with previously unseen data. As a matter of fact, in most cases we
not only need training and testing, but we also need to think about creating a third
validation dataset. The training set is used for model fitting, the validation one for
learning hyperparameters, and the testing to see how the model generalizes.

The key issue to sampling is finding a subset of the original data set that is
representative—i.e. it has approximately the same property of interest—of the
entire set. The simplest sampling technique is random sampling, where there is an
equal probability of selecting any item. However, more sophisticated approaches are
possible. For instance, in stratified sampling the data is split into several partitions
based on a particular feature, followed by random sampling on each partition
independently.

The most common approach to sampling consists of using sampling without
replacement: When an item is selected, it is removed from the population. However,
it is also possible to perform sampling with replacement, where items are not
removed from the population once they have been selected, allowing for the same
sample to be selected more than once.

It is common practice to use standard random sampling without replacement with
an 80=20 proportion when separating the training and testing data sets. This means
that we use random sampling without replacement to select 20 % of the instances
for the testing set and leave the remaining 80 % for training. The 80=20 proportion
should be taken as a rule of thumb as, in general, any value over 2=3 for the training
set is appropriate.

Sampling can lead to an over-specialization to the particular division of the
training and testing data sets. For this reason, the training process may be repeated
several times. The training and test sets are created from the original data set, the
model is trained using the training data and tested with the examples in the test
set. Next, different training/test data sets are selected to start the training/testing
process again that is repeated K times. Finally, the average performance of the
K learned models is reported. This process is known as cross-validation. There
are several cross-validation techniques. In repeated random sampling, a standard
random sampling process is carried out K times. In n-Fold cross validation, the data
set is divided into n folds. One of the folds is used for testing the model and the
remaining n � 1 folds are used for training. The cross validation process is then
repeated n times with each of the n subsamples used exactly once as validation data.
Finally, the leave-one-out (LOO) approach can be seen as an extreme case of n-Fold
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cross validation where n is set to the number of items in the data set. Therefore,
the algorithms are run as many times as data points using only one of them as a
test each time. It should be noted, though, that as Isaksson et al. discuss in [57],
cross-validation may be unreliable unless the data set is sufficiently large.

A common approach in RS is to sample the available feedback from the users—
e.g. in the form of ratings—to separate it into training and testing. Cross-validation
is also common. Although a standard random sampling is acceptable in the general
case, in others we might need to bias our sampling for the test set in different ways.
We might, for instance, decide to sample only from most recent ratings—since those
are the ones we would be predicting in a real-world situation. We might also be
interested in ensuring that the proportion of ratings per user is preserved in the test
set and therefore impose that the random sampling is done on a per user basis.
However, all these issues relate are beyond the scope of this chapter.

7.2.3 Reducing Dimensionality

It is common in RS to have not only a data set with features that define a high-
dimensional space, but also very sparse information in that space—i.e. there are
values for a limited number of features per object. The notions of density and
distance between points, which are critical for clustering and outlier detection,
become less meaningful in highly dimensional spaces. This is known as the Curse of
Dimensionality. Dimensionality reduction techniques help overcome this problem
by transforming the original high-dimensional space into a lower-dimensionality.

Sparsity and the curse of dimensionality are recurring problems in RS. Even
in the simplest setting, we are likely to have a sparse matrix with thousands of
rows and columns (i.e. users and items), most of which are zeros. Therefore,
dimensionality reduction comes in naturally. Applying dimensionality reduction
makes such a difference and its results are so directly applicable to the computation
of the predicted value, that these methods are in fact considered an approach to
building a RS, rather than a preprocessing technique. In this case we speak of these
techniques as Matrix Completion Methods.

In the following paragraphs, we summarize the two most relevant dimensionality
reduction algorithms in the context of RS: Principal Component Analysis (PCA)
and Singular Value Decomposition (SVD).

7.2.3.1 Principal Component Analysis

Principal Component Analysis [59] is a classical statistical method to find patterns
in high dimensionality data sets. PCA allows to obtain an ordered list of components
that account for the largest amount of the variance from the data in terms of least
square errors: The amount of variance captured by the first component is larger
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Fig. 7.2 PCA analysis of a two-dimensional point cloud from a combination of Gaussians. The
principal components derived using PCS are u1 and u2, whose length is relative to the energy
contained in the components

than the amount of variance on the second component and so on. We can reduce the
dimensionality of the data by neglecting those components with a small contribution
to the variance.

Figure 7.2 shows the PCA analysis to a two-dimensional point cloud generated
by a combination of Gaussians. After the data is centered, the principal components
are obtained and denoted by u1 and u2. Note that the length of the new coordinates
is relative to the energy contained in their eigenvectors. Therefore, for the particular
example depicted in Fig. 7.2, the first component u1 accounts for 83:5 % of
the energy, which means that removing the second component u2 would imply
losing only 16:5 % of the information. The rule of thumb is to choose the target
dimensionality m0 so that the cumulative energy is above a certain threshold,
typically 90 %. PCA allows us to retrieve the original data matrix by projecting the
data onto the new coordinate system X0

n�m0 D Xn�mW 0
m�m0 . The new data matrix X0

contains most of the information of the original X with a dimensionality reduction
of m � m0.

PCA is a powerful technique, but it does have important limitations. PCA relies
on the empirical data set to be a linear combination of a certain basis—although
generalizations of PCA for non-linear data have been proposed. Another important
assumption of PCA is that the original data set has been drawn from a Gaussian
distribution. When this assumption does not hold true, there is no warranty that the
principal components are meaningful.

Although current trends seem to indicate that other matrix factorizations tech-
niques such as SVD or Non-Negative Matrix Factorization are preferred for RS,
earlier works used PCA. Goldberg et al. proposed an approach to use PCA in the
context of an online joke recommendation system [50]. Their system, known as
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Eigentaste,2 starts from a standard matrix of user ratings to items. They then select
their gauge set by choosing the subset of items for which all users had a rating. This
new matrix is then used to compute the global correlation matrix where a standard
two-dimensional PCA is applied.

7.2.3.2 Matrix Factorization and Singular Value Decomposition

Singular Value Decomposition [51] is a powerful technique for dimensionality
reduction. It is a particular realization of the Matrix Factorization approach. The
key issue in an SVD decomposition is to find a lower dimensional feature space
where the new features represent “concepts” and the strength of each concept in
the context of the collection is computable. Because SVD allows to automatically
derive semantic “concepts” in a low dimensional space, it can be used as the basis
of latent-semantic analysis [34], a very popular technique for text classification in
Information Retrieval (IR).

The core of the SVD algorithm lies in the following theorem: It is always possible
to decompose a given matrix A into A D U�VT . Given the n � m matrix data
A (n items, m features), we can obtain an n � r matrix U (n items, r concepts),
an r � r diagonal matrix � (strength of each concept), and an m � r matrix V (m
features, r concepts). Figure 7.3 illustrates this idea. The � diagonal matrix contains
the singular values, which will always be positive and sorted in decreasing order.
The U matrix is interpreted as the “item-to-concept” similarity matrix, while the V
matrix is the “term-to-concept” similarity matrix.

In order to compute the SVD of a rectangular matrix A, we consider AAT and
ATA. The columns of U are the eigenvectors of AAT , and the columns of V are
the eigenvectors of ATA. The singular values on the diagonal of � are the positive
square roots of the nonzero eigenvalues of both AAT and ATA. Therefore, in order

An

m

= U

r

(items)

(features) (concepts)

X r

r

X V

m

n
(items)

(features)

r
(concepts)

λ

Fig. 7.3 Illustrating the basic Singular Value Decomposition Theorem: an item � features matrix
can be decomposed into three different ones: an item � concepts, a concept strength, and a concept
� features

2http://eigentaste.berkeley.edu.

http://eigentaste.berkeley.edu
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to compute the SVD of matrix A we first compute T as AAT and D as ATA and then
compute the eigenvectors and eigenvalues for T and D.

The r eigenvalues in � are ordered in decreasing magnitude. Therefore, the
original matrix A can be approximated by simply truncating the eigenvalues at a
given k. The truncated SVD creates a rank-k approximation to A so that Ak D
Uk�kVT

k . Ak is the closest rank-k matrix to A. The term “closest” means that Ak

minimizes the sum of the squares of the differences of the elements of A and Ak. The
truncated SVD is a representation of the underlying latent structure in a reduced k-
dimensional space, which generally means that the noise in the features is reduced.

The use of SVD as tool to improve collaborative filtering has been known for
some time. Sarwar et al. [85] describe two different ways to use SVD in this context.
First, SVD can be used to uncover latent relations between customers and products.
In order to accomplish this goal, they first fill the zeros in the user-item matrix
with the item average rating and then normalize by subtracting the user average.
This matrix is then factored using SVD and the resulting decomposition can be
used—after some trivial operations—directly to compute the predictions. The other
approach is to use the low-dimensional space resulting from the SVD to improve
neighborhood formation for later use in a kNN approach.

As described by Sarwar et al. [84], one of the big advantages of SVD is that
there are incremental algorithms to compute an approximated decomposition. This
allows to accept new users or ratings without having to recompute the model that
had been built from previously existing data. The same idea was later extended
and formalized by Brand [23] into an online SVD model. The use of incremental
SVD methods has recently become a commonly accepted approach after its success
in the Netflix Prize.3 The publication of Simon Funk’s simplified incremental
SVD method [47] marked an inflection point in the contest. Since its publication,
several improvements to SVD have been proposed in this same context (see
Paterek’s ensembles of SVD methods [74] or Kurucz et al. evaluation of SVD
parameters [63]).

In that sense, Matrix Factorization approaches should be considered as more
than a simple preprocessing or dimensionality reduction technique since the whole
recommendation problem can be formalized as one of Matrix Completion. We can
design a sparse matrix that represents users in rows and items in columns. Each
known preference of a user for an item will represent a value in the matrix. All other
positions will be unknown. It is in that setting, where coming up with a prediction
of how much a user will like an item can be simplified to the task of completing
missing values in the matrix (see Chap. 2 for more details on this usage).

It should be noted that different variants of Matrix Factorization (MF) methods
such as the Non-negative Matrix Factorization (NNMF) have also been used [94].
These algorithms are, in essence, similar to SVD. The basic idea is to decompose
the ratings matrix into two matrices, one of which contains features that describe
the users and the other contains features describing the items. Matrix Factorization

3http://www.netflixprize.com.

http://www.netflixprize.com


236 X. Amatriain and J.M. Pujol

methods can handle the missing values by introducing a bias term to the model. This
can also be handled in the SVD preprocessing step by replacing zeros with the item
average. MF is prone to overfitting. However, there exist MF variants, such as the
Regularized Kernel Matrix Factorization, that can avoid the issue efficiently.

7.2.4 Denoising

Data collected for data-mining purposes might be subject to different kinds of noise
such as missing values or outliers. Denoising is a very important preprocessing
step that aims at removing any unwanted effect in the data while maximizing its
information.

In a general sense we define noise as any unwanted artifact introduced in the data
collection phase that might affect the result of our data analysis and interpretation.
In the context of RS, we distinguish between natural and malicious noise [72]. The
former refers to noise that is involuntarily introduced by users when giving feedback
on their preferences. The latter refers to noise that is deliberately introduced in a
system in order to bias the results.

It is clear that malicious noise can affect the output of a RS. But, also, we
performed a study that concluded that the effects of natural noise on the performance
of RS is far from being negligible [7]. In order to address this issue, we designed
a denoising approach that is able to improve accuracy by asking some users to re-
rate some items [8]. We concluded that accuracy improvements by investing in this
pre-processing step could be larger than the ones obtained by complex algorithm
optimizations.

7.3 Supervised Learning

7.3.1 Classification

A classifier is a mapping between a feature space and a label space, where the
features represent characteristics of the elements to classify and the labels represent
the classes. A restaurant RS, for example, can be implemented by a classifier that
classifies restaurants into one of two categories (good, bad) based on a number of
features that describe it.

There are many types of classifiers, but in general we will talk about either
supervised or unsupervised classification. In supervised classification, a set of labels
or categories is known in advance and we have a set of labeled examples which
constitute a training set. In unsupervised classification, the labels or categories
are unknown in advance and the task is to suitably (according to some criteria)
organize the elements at hand. In this section we describe several algorithms to
learn supervised classifiers and will be covering unsupervised classification (i.e.
clustering) in Sect. 7.4.
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7.3.1.1 Nearest Neighbors

Instance-based classifiers work by storing training records and using them to predict
the class label of unseen cases. A trivial example is the so-called rote-learner. This
classifier memorizes the entire training set and classifies only if the attributes of
the new record match one of the training examples exactly. A more elaborate,
and far more popular, instance-based classifier is the Nearest neighbor classifier
(kNN) [32]. Given a point to be classified, the kNN classifier finds the k closest
points (nearest neighbors) from the training records. It then assigns the class label
according to the class labels of its nearest-neighbors. The underlying idea is that if
a record falls in a particular neighborhood where a class label is predominant it is
because the record is likely to belong to that very same class.

Given a query point q for which we want to know its class l, and a training set
X D ffx1; l1g : : : fxngg, where xj is the j-th element and lj is its class label, the k-
nearest neighbors will find a subset Y D ffy1; l1g : : : fykgg such that Y 2 X andPk

1 d.q; yk/ is minimal. Y contains the k points in X which are closest to the query
point q. Then, the class label of q is l D f .fl1 : : : lkg/.

Perhaps the most challenging issue in kNN is how to choose the value of k. If k
is too small, the classifier will be sensitive to noise points. But if k is too large,
the neighborhood might include too many points from other classes. The right plot
in Fig. 7.4 shows how different k yields different class label for the query point, if
k D 1 the class label would be circle whereas k D 7 classifies it as square. Note that
the query point from the example is on the boundary of two clusters, and therefore,
it is difficult to classify.
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Fig. 7.4 Example of k-nearest neighbors. The left subfigure shows the training points with two
class labels (circles and squares) and the query point (as a triangle). The right sub-figure illustrates
closest neighborhood for k D 1 and k D 7. The query point would be classified as square for
k D 1, and as a circle for k D 5 according to the simple majority vote rule. Note that the query
points was just on the boundary between the two clusters
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kNN classifiers are amongst the simplest of all machine learning algorithms.
Since kNN does not build models explicitly it is considered a lazy learner. Unlike
eager learners such as decision trees or rule-based systems (see Sects. 7.3.1.2
and 7.3.1.3, respectively), kNN classifiers leave many decisions to the classification
step. Therefore, classifying unknown records is relatively expensive.

Nearest Neighbor is one of the most common approaches to CF—and therefore
to designing a RS. As a matter of fact, any overview on RS—such as the one by
Adomavicius and Tuzhilin [1]—will include an introduction to the use of nearest
neighbors in this context. One of the advantages of this classifier is that it is
conceptually very much related to the idea of CF: Finding like-minded users (or
similar items) is essentially equivalent to finding neighbors for a given user or an
item. The other advantage is that, being the kNN classifier a lazy learner, it does not
require to learn and maintain a given model. Therefore, in principle, the system can
adapt to rapid changes in the user ratings matrix. Unfortunately, this comes at the
cost of recomputing the neighborhoods and therefore the similarity matrix. This is
why we proposed a neighborhood model that uses a reduced set of experts as the
source for selecting neighbors [6].

The kNN approach, although simple and intuitive, has shown good accuracy
results and is very amenable to improvements. As a matter of fact, its supremacy as
the de facto standard for CF recommendation has only been challenged recently by
approaches based on Matrix Completion. That said, the traditional kNN approach to
CF has experienced improvements in several directions. For instance, in the context
of the Netflix Prize, Bell and Koren propose a method to remove global effects
such as the fact that some items may attract users that consistently rate lower. They
also propose an optimization method for computing interpolating weights once the
neighborhood is created.

See Chap. 2 for more details on enhanced CF techniques based on the use of
neighborhoods.

7.3.1.2 Decision Trees

Decision trees [80] are classifiers on a target attribute (or class) in the form of a
tree structure. The observations (or items) to classify are composed of attributes and
their target value. The nodes of the tree can be: (a) decision nodes, in these nodes a
single attribute-value is tested to determine to which branch of the subtree applies.
Or (b) leaf nodes which indicate the value of the target attribute.

There are many algorithms for decision tree induction: Hunt’s Algorithm, CART,
ID3, C4.5, SLIQ, SPRINT to mention the most common. The recursive Hunt
algorithm, which is one of the earliest and easiest to understand, relies on the test
condition applied to a given attribute that discriminates the observations by their
target values. Once the partition induced by the test condition has been found, the
algorithm is recursively repeated until a partition is empty or all the observations
have the same target value.



7 Data Mining Methods for Recommender Systems 239

Splits can be decided by maximizing the information gain, defined as follows,

�i D I.parent/ �
kiX

jD1

N.vj/I.vj/

N
(7.6)

where ki are values of the attribute i, N is the number of observations, vj is the
j-th partition of the observations according to the values of attribute i. Finally, I is a
function that measures node impurity. There are different measures of impurity: Gini
Index, Entropy and misclassification error are the most common in the literature.

Decision tree induction stops once all observations belong to the same class
(or the same range in the case of continuous attributes). This implies that the
impurity of the leaf nodes is zero. For practical reasons, however, most decision
trees implementations use pruning by which a node is no further split if its impurity
measure or the number of observations in the node are below a certain threshold.

The main advantages of building a classifier using a decision tree is that it is
inexpensive to construct and it is extremely fast at classifying unknown instances.
Another appreciated aspect of decision tree is that they can be used to produce a set
of rules that are easy to interpret (see Sect. 7.3.1.3) while maintaining an accuracy
comparable to other basic classification techniques.

Decision trees may be used in a model-based approach for a RS. One possibility
is to use content features to build a decision tree that models all the variables
involved in the user preferences. Bouza et al. [21] use this idea to construct a
Decision Tree using semantic information available for the items. The tree is built
after the user has rated only two items. The features for each of the items are used to
build a model that explains the user ratings. They use the information gain of every
feature as the splitting criteria. It should be noted that although this approach is
interesting from a theoretical perspective, the precision they report on their system
is worse than that of recommending the average rating.

As it could be expected, it is very difficult and unpractical to build a decision
tree that tries to explain all the variables involved in the decision making process.
Decision trees, however, may also be used in order to model a particular part of the
system. Cho et al. [28], for instance, present a RS for online purchases that combines
the use of Association Rules (see Sect. 7.4.2) and Decision Trees. The Decision Tree
is used as a filter to select which users should be targeted with recommendations.
In order to build the model they create a candidate user set by selecting those users
that have chosen products from a given category during a given time frame. In their
case, the dependent variable for building the decision tree is chosen as whether the
customer is likely to buy new products in that same category. Nikovski and Kulev
[71] follow a similar approach combining Decision Trees and Association Rules. In
their approach, frequent itemsets are detected in the purchase dataset and then they
apply standard tree-learning algorithms for simplifying the recommendations rules.

Another option to use Decision Trees in a RS is to use them as a tool for exploring
the space of possible items to present to a user during the coldstarting phase. The
basic idea of the approach is to maximize the amount of information obtained with
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each item presented by considering it a node in a decision tree. Golbandi et al. [49],
for instance, detail an efficient tree learning algorithm, specifically tailored to this
application.

The use of Decision Trees for ranking has been studied in several settings
and their use in a RS for this purpose is fairly straightforward [11, 27]. While
it is possible to use individual trees for ranking, it is much more efficient to use
ensembles of decision trees for this purpose. The two kinds of tree ensembles
that are commonly used both for classification and ranking are Random Forests
[25], and Gradient Boosted Decision Trees [45]. Both these techniques are used in
collaborative filtering or personalized ranking applications (see [4, 12]).

Finally, trees or trees ensembles can be used as a way to combine different
algorithms in an ensemble. The solution to the Netflix Prize, for example, used
Gradient Boosted Decision Trees to combine the more than 100 methods that had
been trained [61].

7.3.1.3 Ruled-Based Classifiers

Rule-based classifiers classify data by using a collection of “if : : : then : : :” rules.
The rule antecedent or condition is an expression made of attribute conjunctions.
The rule consequent is a positive or negative classification.

We say that a rule r covers a given instance x if the attributes of the instance
satisfy the rule condition. We define the coverage of a rule as the fraction of
records that satisfy its antecedent. On the other hand, we define its accuracy as
the fraction of records that satisfy both the antecedent and the consequent. We say
that a classifier contains mutually exclusive rules if the rules are independent of
each other—i.e. every record is covered by at most one rule. Finally we say that
the classifier has exhaustive rules if they account for every possible combination of
attribute values—i.e. each record is covered by at least one rule.

In order to build a rule-based classifier we can follow a direct method to extract
rules directly from data. Examples of such methods are RIPPER, or CN2. On the
other hand, it is common to follow an indirect method and extract rules from other
classification models such as decision trees or neural networks.

The advantages of rule-based classifiers are that they are extremely expressive
since they are symbolic and operate with the attributes of the data without any
transformation. Rule-based classifiers, and by extension decision trees, are easy to
interpret, easy to generate and they can classify new instances efficiently.

In a similar way to Decision Tress, however, it is very difficult to build a complete
recommender model based on rules. As a matter of fact, this method is not very
popular in the context of RS because deriving a rule-based system means that we
either have some explicit prior knowledge of the decision making process or that
we derive the rules from another model such a decision tree. However a rule-based
system can be used to improve the performance of a RS by injecting partial domain
knowledge or business rules. Anderson et al. [9], for instance, implemented a CF
music RS that improves its performance by applying a rule-based system to the
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results of the CF process. If a user rates an album by a given artist high, for instance,
predicted ratings for all other albums by this artist will be increased.

Gutta et al. [40] implemented a rule-based RS for TV content. In order to do,
so they first derived a C4.5 Decision Tree that is then decomposed into rules for
classifying the programs. Basu et al. [15] followed an inductive approach using the
Ripper [30] system to learn rules from data. They report slightly better results when
using hybrid content and collaborative data to learn rules than when following a
pure CF approach.

7.3.1.4 Bayesian Classifiers

A Bayesian classifier [46] is a probabilistic framework for solving classification
problems. It is based on the definition of conditional probability and the Bayes
theorem. The Bayesian school of statistics uses probability to represent uncertainty
about the relationships learned from the data. In addition, the concept of priors is
very important as they represent our expectations or prior knowledge about what the
true relationship might be. In particular, the probability of a model given the data
(posterior) is proportional to the product of the likelihood times the prior probability
(or prior). The likelihood component includes the effect of the data while the prior
specifies the belief in the model before the data was observed.

Bayesian classifiers consider each attribute and class label as (continuous or
discrete) random variables. Given a record with N attributes .A1; A2; : : : ; AN/, the
goal is to predict class Ck by finding the value of Ck that maximizes the posterior
probability of the class given the data P.CkjA1; A2; : : : ; AN/. Applying Bayes’
theorem, P.CkjA1; A2; : : : ; AN/ / P.A1; A2; : : : ; AN jCk/P.Ck/.

A particular but very common Bayesian classifier is the Naive Bayes Clas-
sifier. In order to estimate the conditional probability, P.A1; A2; : : : ; AN jCk/, a
Naive Bayes Classifier assumes the probabilistic independence of the attributes—
i.e. the presence or absence of a particular attribute is unrelated to the pres-
ence or absence of any other. This assumption leads to P.A1; A2; : : : ; AN jCk/ D
P.A1jCk/P.A2jCk/ : : : P.AN jCk/.

The main benefits of Naive Bayes classifiers are that they are robust to isolated
noise points and irrelevant attributes, and they handle missing values by ignoring
the instance during probability estimate calculations. However, the independence
assumption may not hold for some attributes as they might be correlated. In this
case, the usual approach is to use the so-called Bayesian Belief Networks (BBN)
(or Bayesian Networks, for short). BBN’s use an acyclic graph to encode the
dependence between attributes and a probability table that associates each node to
its immediate parents. BBN’s provide a way to capture prior knowledge in a domain
using a graphical model. In a similar way to Naive Bayes classifiers, BBN’s handle
incomplete data well and they are quite robust to model overfitting.

Bayesian classifiers are particularly popular for model-based RS. They are often
used to derive a model for content-based RS. Ghani and Fano [48], for instance, use
a Naive Bayes classifier to implement a content-based RS. The use of this model
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allows for recommending products from unrelated categories in the context of a
department store.

Bayesian classifiers can also be used in a CF setting. Miyahara and Pazzani [68],
for instance, implement a RS based on a Naive Bayes classifier. In order to do so,
they define two classes: like and don’t like. In this context they propose two ways
of using the Naive Bayesian Classifier: The Transformed Data Model assumes that
all features are completely independent, and feature selection is implemented as a
preprocessing step. On the other hand, the Sparse Data Model assumes that only
known features are informative for classification. Furthermore, it only makes use of
data which both users rated in common when estimating probabilities. Experiments
show both models to perform better than a correlation-based CF.

Pronk et al. [77] use a Bayesian Naive Classifier as the base for incorporating
user control and improving performance, especially in cold-start situations. In order
to do so they propose to maintain two profiles for each user: one learned from the
rating history, and the other explicitly created by the user. The blending of both
classifiers can be controlled in such a way that the user-defined profile is favored
at early stages, when there is not too much rating history, and the learned classifier
takes over at later stages.

In the previous section we mentioned that Gutta et al. [40] implemented a
rule-based approach in a TV content RS. Another of the approaches they tested
was a Bayesian classifier. They define a two-class classifier, where the classes are
watched/not watched. The user profile is then a collection of attributes together
with the number of times they occur in positive and negative examples. This is
used to compute prior probabilities that a show belongs to a particular class and
the conditional probability that a given feature will be present if a show is either
positive or negative. It must be noted that features are, in this case, related to both
content—i.e. genre—and contexts—i.e. time of the day. The posteriori probabilities
for a new show are then computed from these.

Breese et al. [24] implement a Bayesian Network where each node corresponds
to each item. The states correspond to each possible vote value. In the network,
each item will have a set of parent items that are its best predictors. The conditional
probability tables are represented by decision trees. The authors report better results
for this model than for several nearest-neighbors implementations over several
datasets.

Hierarchical Bayesian Networks have also been used in several settings as a way
to add domain-knowledge for information filtering [98]. One of the issues with
hierarchical Bayesian networks, however, is that it is very expensive to learn and
update the model when there are many users in it. Zhang and Koren [99] propose a
variation over the standard Expectation-Maximization (EM) model in order to speed
up this process in the scenario of a content-based RS.
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7.3.1.5 Logistic Regression

Logistic Regression (LR) is perhaps one the most basic probabilistic classification
models. Although it is not widely spread in the Recommender Systems literature it
is used in the industry, arguably because its simplicity and efficiency.

It is important to note that even though Logistic Regression has the term
regression in its name it is not a regression model but a classifier [19]. The term
regression is due to legacy since LR is a based on the basic Linear Regression.

In regression models the output is always a continuous value, e.g. the predicted
audience of a movie based on a set of features such as production costs, marketing
budget, cast, feedback of the preview, etc. On the other hand in a classifier the output
is a class label. Following the same example, the output would be whether the movie
will be a block-buster or not.

The Linear Regression model is defined by the following linear equation,

h
 .x/ D 
>x (7.7)

once we have learned the parameters theta using the training set the hypothesis can
take any continuous value. The Logistic Regression is similar, but there is an extra
function g.z/ known as the logistic function,

h
 .x/ D g.
>x/ (7.8)

g.z/ D 1

1C e�z
(7.9)

The logistic function yields 1
2

when z is zero. For positive values of z it quickly
goes to 1 and symmetrically it goes quickly to zero for negative values of z. Since it
guarantees that 0 � h
 .x/ � 1 we can treat the output as a probability of belonging
to a particular class. We can predict the class label 1 when h
 .x/ � 1

2
and class label

0 when h
 .x/ < 1
2
.

Logistic Regression creates then a decision boundary defined by 
>x � 0. This
hyperplane (a line in the case of a single feature) separates data into two classes.

The concept of decision boundary is also present in other classification methods,
notably in Support Vector Machines (see Sect. 7.3.1.6). Unlike in SVM’s the
decision boundary yield by Logistic Regression is not aware of margins between
data, as a consequence, the decision boundary might less resilient to the presence
of outliers. On the positive side Logistic Regression is easy to implement, and it is
very efficient specially when there is a large number of features.

Zhang et al. [81] evaluated Logistic Regression, together with other probabilistic
methodologies, for the case of online reviews with a very small set of users assessing
the quality of these reviews. Logistic Regression has also been successfully tested in
the context of tag recommendation by Montañés et al. [36]. A final use of both linear
and (ordinal) logistic regression can be found in Parra et al.’s work [73]. In this case,
regression is used as a way to convert implicit feedback into explicit ratings.
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Fig. 7.5 Different boundary decisions are possible to separate two classes in two dimensions.
Each boundary has an associated margin

7.3.1.6 Support Vector Machines

The goal of a Support Vector Machine (SVM) classifier [33] is to find a linear
hyperplane (decision boundary) that separates the data in such a way that the margin
is maximized. For instance, if we look at a two class separation problem in two
dimensions like the one illustrated in Fig. 7.5, we can easily observe that there are
many possible boundary lines to separate the two classes. Each boundary has an
associated margin. The rationale behind SVM’s is that if we choose the one that
maximizes the margin we are less likely to misclassify unknown items in the future.

A linear separation between two classes is accomplished through the function
w�xCb D 0. We define a function that can classify items of being of classC1 or�1

as long as they are separated by some minimum distance from the class separation
function. The function is given by Eq. (7.10)

f .x/ D
(

1; if w � xC b � 1

�1; if w � xC b � �1
(7.10)

Margin D 2

kwk2 (7.11)

Following the main rationale for SVM’s, we would like to maximize the margin
between the two classes, given by Eq. (7.11). This is in fact equivalent to minimizing

the inverse value L.w/ D kwk2

2
but subjected to the constraints given by f .x/. This is

a constrained optimization problem and there are numerical approaches to solve it
(e.g., quadratic programming).

If the items are not linearly separable we can decide to turn the svm into a
soft margin classifier by introducing a slack variable. In this case the formula to
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minimize is given by Eq. (7.12) subject to the new definition of f .x/ in Eq. (7.13).
On the other hand, if the decision boundary is not linear we need to transform data
into a higher dimensional space . This is accomplished thanks to a mathematical
transformation known as the kernel trick. The basic idea is to replace the dot
products in Eq. (7.10) by a kernel function. There are many different possible
choices for the kernel function such as Polynomial or Sigmoid. But the most
common kernel functions are the family of Radial Basis Function (RBF).

L.w/ D kwk
2

2
C C

NX
iD1

� (7.12)

f .x/ D
(

1; if w � xC b � 1 � �

�1; if w � xC b � �1C �
(7.13)

Support Vector Machines have recently gained popularity for their performance
and efficiency in many settings. SVM’s have also shown promising recent results
in RS. Kang and Yoo [60], for instance, report on an experimental study that aims
at selecting the best preprocessing technique for predicting missing values for an
SVM-based RS. In particular, they use SVD and Support Vector Regression. The
Support Vector Machine RS is built by first binarizing the 80 levels of available user
preference data. They experiment with several settings and report best results for a
threshold of 32—i.e. a value of 32 and less is classified as prefer and a higher value
as do not prefer. The user id is used as the class label and the positive and negative
values are expressed as preference values 1 and 2.

Xu and Araki [96] used SVM to build a TV program RS. They used information
from the Electronic Program Guide (EPG) as features. But in order to reduce
features they removed words with lowest frequencies. Furthermore, and in order to
evaluate different approaches, they used both the Boolean and the Term frequency—
inverse document frequency (TFIDF) weighting schemes for features. In the former,
0 and 1 are used to represent absence or presence of a term on the content. In the
latter, this is turned into the TFIDF numerical value.

Xia et al. [95] present different approaches to using SVM’s for RS in a CF
setting. They explore the use of Smoothing Support Vector Machines (SSVM). They
also introduce a SSVM-based heuristic (SSVMBH) to iteratively estimate missing
elements in the user-item matrix. They compute predictions by creating a classifier
for each user. Their experimental results report best results for the SSVMBH as
compared to both SSVM’s and traditional user-based and item-based CF. Finally,
Oku et al. [38] propose the use of Context-Aware Vector Machines (C-SVM)
for context-aware RS. They compare the use of standard SVM, C-SVM and an
extension that uses CF as well as C-SVM. Their results show the effectiveness of
the context-aware methods for restaurant recommendations.
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Fig. 7.6 Perceptron model

7.3.1.7 Artificial Neural Networks

An Artificial Neural Network (ANN) [101] is an assembly of inter-connected nodes
and weighted links that is inspired in the architecture of the biological brain.
Nodes in an ANN are called neurons as an analogy with biological neurons. These
simple functional units are composed into networks that have the ability to learn a
classification problem after they are trained with sufficient data.

The simplest case of an ANN is the perceptron model, illustrated in Fig. 7.6. If
we particularize the activation function  to be the simple Threshold Function, the
output is obtained by summing up each of its input value according to the weights
of its links and comparing its output against some threshold 
k. The output function
can be expressed using Eq. (7.14). The perceptron model is a linear classifier that
has a simple and efficient learning algorithm. But, besides the simple Threshold
Function used in the Perceptron model, there are several other common choices for
the activation function such as sigmoid, tanh, or step functions.

yk D
(

1; if
P

xiwki � 
k

0; if
P

xiwki < 
k

(7.14)

An ANN can have any number of layers. Layers in an ANN are classified into
three types: input, hidden, and output. Units in the input layer respond to data that
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is fed into the network. Hidden units receive the weighted output from the input
units. And the output units respond to the weighted output from the hidden units
and generate the final output of the network. Using neurons as atomic functional
units, there are many possible architectures to put them together in a network. But,
the most common approach is to use the feed-forward ANN. In this case, signals are
strictly propagated in one way: from input to output.

The main advantages of ANN are that—depending on the activation function—
they can perform non-linear classification tasks, and that, due to their parallel
nature, they can be efficient and even operate if part of the network fails. The main
disadvantage is that it is hard to come up with the ideal network topology for a
given problem and once the topology is decided this will act as a lower bound for
the classification error. ANN’s belong to the class of sub-symbolic classifiers, which
means that they provide no semantics for inferring knowledge—i.e. they promote a
kind of black-box approach.

ANN’s can be used in a similar way as Bayesian Networks to construct model-
based RS’s. However, there is no conclusive study to whether ANN introduce any
performance gain. As a matter of fact, Pazzani and Billsus [76] did a comprehensive
experimental study on the use of several machine learning algorithms for web
site recommendation. Their main goal was to compare the simple naive Bayesian
Classifier with computationally more expensive alternatives such as Decision Trees
and Neural Networks. Their experimental results show that Decision Trees perform
significantly worse. On the other hand ANN and the Bayesian classifier performed
similarly. They conclude that there does not seem to be a need for nonlinear
classifiers such as the ANN. Berka et al. [42] used ANN to build an URL RS for
web navigation. They implemented a content-independent system based exclusively
on trails—i.e. associating pairs of domain names with the number of people who
traversed them. In order to do so they used feed-forward Multilayer Perceptrons
trained with the Backpropagation algorithm.

ANN can be used to combine (or hybridize) the input from several recommenda-
tion modules or data sources. Hsu et al. [41], for instance, build a TV recommender
by importing data from four different sources: user profiles and stereotypes;
viewing communities; program metadata; and viewing context. They use the back-
propagation algorithm to train a three-layered neural network. Christakou and
Stafylopatis [29] also built a hybrid content-based CF RS. The content-based
recommender is implemented using three neural networks per user, each of them
corresponding to one of the following features: “kinds”, “stars”, and “synopsis”.
They trained the ANN using the Resilient Backpropagation method.

More recently, variations of NN have been used in different collaborative filtering
settings. Salakhutdinov et al. used Restricted Boltzmann Machines in the context of
the Netflix Prize [83] to predict ratings. This solution is actually part of the current
Netflix production system (see Chap. 11).
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7.3.2 Ensembles of Classifiers

The basic idea behind the use of ensembles of classifiers is to construct a set
of classifiers from the training data and predict class labels by aggregating their
predictions. Ensembles of classifiers work whenever we can assume that the
classifiers are independent. In this case we can ensure that the ensemble will produce
results that are in the worst case as bad as the worst classifier in the ensemble.
Therefore, combining independent classifiers of a similar classification error will
only improve results.

Several approaches are possible to generate ensembles. The two most common
techniques are Bagging and Boosting. In Bagging, we perform sampling with
replacement, building the classifier on each bootstrap sample. Each sample has
probability .1� 1

N /N of being selected—note that if N is large enough, this converges
to 1 � 1

e  0:623. In Boosting we use an iterative procedure to adaptively change
distribution of training data by focusing more on previously misclassified records.
Initially, all records are assigned equal weights. But, unlike bagging, weights may
change at the end of each boosting round: Records that are wrongly classified will
have their weights increased while records that are classified correctly will have
their weights decreased. An example of boosting is the AdaBoost algorithm.

The use of ensembles of classifiers is common practice in the RS field. As a
matter of fact, any hybridation technique [26] can be considered an ensemble as
it combines in one way or another several classifiers. An explicit example of this
is Tiemann and Pauws’ music recommender, in which they use ensemble learning
methods to combine a social and a content-base RS [90].

Experimental results show that ensembles can produce better results than any
classifier in isolation. Bell et al. [17], for instance, used a combination of 107
different methods in their progress prize winning solution to the Netflix challenge.
They state that their findings show that it pays off more to find substantially different
approaches rather than focusing on refining a particular technique. In order to blend
the results from the ensembles they use a linear regression approach and to derive
weights for each classifier, they partition the test dataset into 15 different bins
and derive unique coefficients for each of the bins. Different uses of ensembles
in the context of the Netflix prize can be tracked in other approaches such as in
Schclar et al.’s [86] or Toescher et al.’s [91].

The boosting approach has also been used in RS. Freund et al., for instance,
present an algorithm called RankBoost to combine preferences [43]. They apply
the algorithm to produce movie recommendations in a CF setting. The winning
solution to the Netflix Prize [61] used Gradient Boosted Decision Trees, a tree-based
ensemble technique that uses boosting, for the final combination of the individual
predictors.
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7.3.3 Evaluating Classifiers

The most commonly accepted evaluation measures for RS are the Mean Average
Error (MAE) or Root Mean Squared Error (RMSE) between the predicted interest
(or rating) and the measured one. These measures compute accuracy without any
assumption on the purpose of the RS. However, as McNee et al. point out [67], there
is much more than accuracy to deciding whether an item should be recommended.
Herlocker et al. [55] provide a comprehensive review of algorithmic evaluation
approaches to RS. They suggest that some measures could potentially be more
appropriate for some tasks. However, they are not able to validate the measures
when evaluating the different approaches empirically on a class of recommendation
algorithms and a single set of data.

A step forward is to consider that the purpose of a “real” RS is to produce a top-N
list of recommendations and evaluate RS depending on how well they can classify
items as being recommendable. If we look at our recommendation as a classification
problem, we can make use of well-known measures for classifier evaluation such
as precision and recall. In the following paragraphs, we will review some of
these measures and their application to RS evaluation. Note however that learning
algorithms and classifiers can be evaluated by multiple criteria. This includes how
accurately they perform the classification, their computational complexity during
training , complexity during classification, their sensitivity to noisy data, their
scalability, and so on. But in this section we will focus only on classification
performance.

In order to evaluate a model we usually take into account the following measures:
True Positives (TP): number of instances classified as belonging to class A that
truly belong to class A; True Negatives (TN): number of instances classified as not
belonging to class A and that in fact do not belong to class A; False Positives (FP):
number of instances classified as class A but that do not belong to class A; False
Negatives (FN): instances not classified as belonging to class v but that in fact do
belong to class A.

The most commonly used measure for model performance is its Accuracy defined
as the ratio between the instances that have been correctly classified (as belong-
ing or not to the given class) and the total number of instances: Accuracy D
.TP C TN/=.TP C TN C FP C FN/. However, accuracy might be misleading in
many cases. Imagine a 2-class problem in which there are 99,900 samples of class
A and 100 of class B. If a classifier simply predicts everything to be of class A, the
computed accuracy would be of 99.9 % but the model performance is questionable
because it will never detect any class B examples. One way to improve this
evaluation is to define the cost matrix where we declare the “cost” of misclassifying
class B examples as being of class A. In real world applications different types of
errors may indeed have very different costs. For example, if the 100 samples above
correspond to defective airplane parts in an assembly line, incorrectly rejecting a
non-defective part (one of the 99,900 samples) has a negligible cost compared to
the cost of mistakenly classifying a defective part as a good part.
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Fig. 7.7 Example of ROC curve. Model 1 performs better for low False Positive Rates while
Model 2 is fairly consistent throughout and outperforms Model 1 for False Positive Rates higher
than 0.25

Other common measures of model performance, particularly in Information
Retrieval, are Precision and Recall. Precision, defined as P D TP=.TP C FP/, is
a measure of how many errors we make in classifying samples as being of class
A. On the other hand, recall, R D TP=.TP C FN/, measures how good we are in
not leaving out samples that should have been classified as belonging to the class.
Note that these two measures are misleading when used in isolation in most cases.
We could build a classifier of perfect precision by not classifying any sample as
being of class A (therefore obtaining 0 TP but also 0 FP). Conversely, we could
build a classifier of perfect recall by classifying all samples as belonging to class A.
As a matter of fact, there is a measure, called the F1-measure that combines both
Precision and Recall into a single measure as: F1 D 2RP

RCP D 2TP
2TPCFNCFP

Sometimes we would like to compare several competing models rather than
estimate their performance independently. In order to do so we use a technique
developed in the 1950s for analysis of noisy signals: the Receiver Operating
Characteristic (ROC) Curve. An ROC curve characterizes the relation between
positive hits and false alarms. The performance of each classifier is represented as a
point on the curve (see Fig. 7.7).

Ziegler et al. show [100] that evaluating recommender algorithms through top-
N lists measures still does not map directly to the user’s utility function. However,
it does address some of the limitations of the more commonly accepted accuracy
measures, such as MAE. Basu et al. [16], for instance, use this approach by
analyzing which of the items predicted in the top quartile of the rating scale were
actually evaluated in the top quartile by the user. McLaughlin and Herlocker [66]
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propose a modified precision measure in which non-rated items are counted as not
recommendable. This precision measure in fact represents a lower-bound of the
“real” precision. Although the F-measure can be directly derived from the precision-
recall values, it is not common to find it in RS evaluations. Huang et al. [56] and
Bozzon et al. [22], and Miyahara and Pazzani [68] are some of the few examples of
the use of this measure.

ROC curves have also been used in evaluating RS. Zhang et al. [82] use the value
of the area under the ROC curve as their evaluation measure when comparing the
performance of different algorithms under attack. Banerjee and Ramanathan [13]
also use the ROC curves to compare the performance of different models.

It must be noted, though, that the choice of a good evaluation measure, even in
the case of a top-N RS, is still a matter of discussion. Many authors have proposed
measures that are only indirectly related to these traditional evaluation schemes.
Deshpande and Karypis [35], for instance, propose the use of the hit rate and the
average reciprocal hit-rank. On the other hand, Breese et al. [24] define a measure
of the utility of the recommendation in a ranked list as a function of the neutral vote.
It is also becoming increasingly common to treat a top-N RS as a learning-to-rank
problem. In that context, it is common to use ranking metrics such as Mean Average
Precision (MAP), Normalized Discounted Cumulative Gain (NDCG), Fraction of
Concordant Pairs (FCP), or Mean Reciprocal Rank (MRR).

Chapter 8 focuses on the use of some of these evaluation measures in the context
of RS and is therefore a good place to continue if you are interested on this topic.

7.4 Unsupervised Learning

7.4.1 Clustering

The main problem for scaling a CF classifier is the amount of operations involved
in computing distances—for finding the best k-nearest neighbors, for instance.
A possible solution is, as we saw in Sect. 7.2.3, to reduce dimensionality. But,
even if we reduce dimensionality of features, we might still have many objects to
compute the distance to. This is where clustering algorithms can come into play.
The same is true for content-based RS, where distances among objects are needed
to retrieve similar ones. Clustering is sure to improve efficiency because the number
of operations is reduced. However, the improve in accuracy is not guaranteed.

Clustering [54] consists of assigning items to groups so that the items in the
same groups are more similar than items in different groups: the goal is to discover
natural (or meaningful) groups that exist in the data. Similarity is determined
using a distance measure, such as the ones reviewed in Sect. 7.2.1. The goal of a
clustering algorithm is to minimize intra-cluster distances while maximizing inter-
cluster distances.
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There are two main categories of clustering algorithms: hierarchical and
partitional. Partitional clustering algorithms divide data items into non-overlapping
clusters such that each data item is in exactly one cluster. Hierarchical clustering
algorithms successively cluster items within found clusters, producing a set of
nested cluster organized as a hierarchical tree.

Many clustering algorithms try to minimize a function that measures the quality
of the clustering. Such a quality function is often referred to as the objective
function, so clustering can be viewed as an optimization problem: the ideal
clustering algorithm would consider all possible partitions of the data and output the
partitioning that minimizes the quality function. But the corresponding optimization
problem is NP hard, so many algorithms resort to heuristics. The main point is
that clustering is a difficult problem for which finding optimal solutions is often
not possible. For that same reason, selection of the particular clustering algorithm
and its parameters (e.g., similarity measure) depend on many factors, including the
characteristics of the data. In the following paragraphs we describe the k-means
clustering algorithm and some of its alternatives.

7.4.1.1 k-Means

k-Means clustering is a partitioning method. The function partitions the data set of
N items into k disjoint subsets Sj that contain Nj items so that they are as close
to each other as possible according a given distance measure. Each cluster in the
partition is defined by its Nj members and by its centroid �j. The centroid for each
cluster is the point to which the sum of distances from all items in that cluster is
minimized. Thus, we can define the k-means algorithm as an iterative process to
minimize E D Pk

1

P
n2Sj

d.xn; �j/, where xn is a vector representing the n-th item,
�j is the centroid of the item in Sj and d is the distance measure. The k-means
algorithm moves items between clusters until E cannot be decreased further.

The algorithm works by randomly selecting k centroids. Then all items are
assigned to the cluster whose centroid is the closest to them. The new cluster
centroid needs to be updated to account for the items who have been added
or removed from the cluster and the membership of the items to the cluster
updated. This operation continues until there are no further items that change their
cluster membership. Most of the convergence to the final partition takes place
during the first iterations of the algorithm, and therefore, the stopping condition
is often changed to “until relatively few points change clusters” in order to improve
efficiency.

The basic k-means is an extremely simple and efficient algorithm. However, it
does have several shortcomings: (1) it assumes prior knowledge of the data in order
to choose the appropriate k ; (2) the final clusters are very sensitive to the selection of
the initial centroids; and (3), it can produce empty cluster. k-means also has several
limitations with regard to the data: it has problems when clusters are of differing
sizes, densities, and non-globular shapes; and it also has problems when the data
contains outliers.
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Xue et al. [97] present a typical use of clustering in the context of a RS by
employing the k-means algorithm as a pre-processing step to help in neighborhood
formation. They do not restrict the neighborhood to the cluster the user belongs
to but rather use the distance from the user to different cluster centroids as a pre-
selection step for the neighbors. They also implement a cluster-based smoothing
technique in which missing values for users in a cluster are replaced by cluster
representatives. Their method is reported to perform slightly better than standard
kNN-based CF. In a similar way, Sarwar et al. [37] describe an approach to
implement a scalable kNN classifier. They partition the user space by applying
the bisecting k-means algorithm and then use those clusters as the base for
neighborhood formation. They report a decrease in accuracy of around 5 % as
compared to standard kNN CF. However, their approach allows for a significant
improvement in efficiency.

Connor and Herlocker [31] present a different approach in which, instead of
users, they cluster items. Using the Pearson Correlation similarity measure they try
out four different algorithms: average link hierarchical agglomerative [52], robust
clustering algorithm for categorical attributes (ROCK) [53], kMetis, and hMetis.4

Although clustering did improve efficiency, all of their clustering techniques yielded
worse accuracy and coverage than the non-partitioned baseline. Finally, Li et al.
[79] and Ungar and Foster [92] present a very similar approach for using k-means
clustering for solving a probabilistic model interpretation of the recommender
problem.

7.4.1.2 Alternatives to k-Means

Density-based clustering algorithms such as DBSCAN work by building up on the
definition of density as the number of points within a specified radius. DBSCAN,
for instance, defines three kinds of points: core points are those that have more than
a specified number of neighbors within a given distance; border points have fewer
than the specified number but belong to a core point neighborhood; and noise points
are those that are neither core or border. The algorithm iteratively removes noise
points and performs clustering on the remaining points.

Message-passing clustering algorithms are a very recent family of graph-based
clustering methods. Instead of considering an initial subset of the points as centers
and then iteratively adapt those, message-passing algorithms initially consider all
points as centers—usually known as exemplars in this context. During the algorithm
execution points, which are now considered nodes in a network, exchange messages
until clusters gradually emerge. Affinity Propagation is an important representative
of this family of algorithms [44] that works by defining two kinds of messages
between nodes: “responsibility”, which reflects how well-suited receiving point is
to serve as exemplar of the point sending the message, taking into account other

4http://www.cs.umn.edu/~karypis/metis.

http://www.cs.umn.edu/~karypis/metis
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potential exemplars; and “availability”, which is sent from candidate exemplar to the
point and reflects how appropriate it would be for the point to choose the candidate
as its exemplar, taking into account support from other points that are choosing that
same exemplar. Affinity propagation has been applied, with very good results, to
problems as different as DNA sequence clustering, face clustering in images, or text
summarization.

Hierarchical Clustering, produces a set of nested clusters organized as a
hierarchical tree (dendogram). Hierarchical Clustering does not have to assume a
particular number of clusters in advanced. Also, any desired number of clusters
can be obtained by selecting the tree at the proper level. Hierarchical clusters
can also sometimes correspond to meaningful taxonomies. Traditional hierarchical
algorithms use a similarity or distance matrix and merge or split one cluster at a
time. There are two main approaches to hierarchical clustering. In agglomerative
hierarchical clustering we start with the points as individual clusters and at each
step, merge the closest pair of clusters until only one cluster (or k clusters) are left.
In divisive hierarchical clustering we start with one, all-inclusive cluster, and at each
step, split a cluster until each cluster contains a point (or there are k clusters).

To the best of our knowledge, the previous alternatives to k-means have not
been applied to RS. On the other hand, other approaches such as Locality-Sensitive
Hashing or Bayesian non-parametric models have already proved useful in practical
applications.

Locality-sensitive hashing (LSH) [10] is a technique for solving a nearest-
neighbor search in high dimensionality spaces. The algorithm relies on the use
of hashing functions that preserve “locality” or, in other words, bucket together
items that are similar. LSH is an unsupervised method that can be considered as an
approach to clustering. However, since it is an approximate solution to the nearest-
neighbor problem, it can also be used for supervised classification as explained in
Sect. 7.3.1.1. Due to its performance and scalability, LSH is used as a preprocessing
step to group similar users in some industrial RS approaches. LinkedIn, for example,
has publicly described its application for people recommendation [18].

Latent Dirichlet Allocation (LDA) [20] is a generative unsupervised model that
can also be considered a form of clustering. As opposed to the previous methods
though, LDA is a mixed membership model in which we consider that each data
point may belong to more than a single clusters. A typical application of LDA is to
identify topics in collections of documents. In that sense, LDA is also very related to
Latent Semantic Analysis, and therefore techniques such as SVD (see Sect. 7.2.3).
LDA has been used in different ways for content-based recommendations. For
example, Jin et. al use LDA to identify topics in webpages in order to implement a
hybrid content/CF recommender system [58]. LDA is also a common approach to
tag recommendation (see [62], for example).

Finally, Bayesian non-parametric models is a family of methods that combines
the power of mixed-membership models such as LDA, and the flexibility of dynamic
methods that adapt the number of clusters to the underlying data distribution.
Hierarchical Dirichlet Processes (HDP) [89] and Recurrent Chinese Restaurant
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Processes (RCRP) have been used to cluster documents and users to later perform
recommendations [3]. These initial results are promising, and highlight the applica-
bility of these flexible approaches for RS.

7.4.2 Association Rule Mining

Association Rule Mining focuses on finding rules that will predict the occurrence
of an item based on the occurrences of other items in a transaction. The fact that
two items are found to be related means co-occurrence but not causality. Note
that this technique should not be confused with rule-based classifiers presented in
Sect. 7.3.1.3.

We define an itemset as a collection of one or more items (e.g. (Milk, Beer,
Diaper)). A k-itemset is an itemset that contains k items. The frequency of a given
itemset is known as support count (e.g. (Milk, Beer, Diaper) = 131). And the support
of the itemset is the fraction of transactions that contain it (e.g. (Milk, Beer, Diaper)
D 0:12). A frequent itemset is an itemset with a support that is greater or equal to a
minsup threshold. An association rule is an expression of the form X ) Y , where
X and Y are itemsets. (e.g. Milk; Diaper ) Beer). In this case the support of the
association rule is the fraction of transactions that have both X and Y . On the other
hand, the confidence of the rule is how often items in Y appear in transactions that
contain X.

Given a set of transactions T , the goal of association rule mining is to find
all rules having support � minsupthreshold and confidence � minconfthreshold.
The brute-force approach would be to list all possible association rules, compute
the support and confidence for each rule and then prune rules that do not satisfy
both conditions. This is, however, computationally very expensive. For this reason,
we take a two-step approach: (1) Generate all itemsets whose support � minsup
(Frequent Itemset Generation); (2) Generate high confidence rules from each
frequent itemset (Rule Generation).

Several techniques exist to optimize the generation of frequent itemsets. On a
broad sense they can be classified into those that try to minimize the number of
candidates (M), those that reduce the number of transactions (N), and those that
reduce the number of comparisons (NM). The most common approach though,
is to reduce the number of candidates using the Apriori principle. This principle
states that if an itemset is frequent, then all of its subsets must also be frequent.
This is verified using the support measure because the support of an itemset never
exceeds that of its subsets. The Apriori Algorithm is a practical implementation of
the principle.

Given a frequent itemset L, the goal when generating rules is to find all non-
empty subsets that satisfy the minimum confidence requirement. If jLj D k, then
there are 2k�2 candidate association rules. So, as in the frequent itemset generation,
we need to find ways to generate rules efficiently. For the Apriori Algorithm we can
generate candidate rules by merging two rules that share the same prefix in the rule
consequent.
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The effectiveness of association rule mining for uncovering patterns and driving
personalized marketing decisions has been known for a some time [2]. However, and
although there is a clear relation between this method and the goal of a RS, they have
not become mainstream. The main reason is that this approach is similar to item-
based CF but is less flexible since it requires of an explicit notion of transaction—
e.g. co-occurrence of events in a given session. In the next paragraphs we present
some promising examples, some of which indicate that association rules still have
not had their last word.

Mobasher et al. [69] present a system for web personalization based on asso-
ciation rules mining. Their system identifies association rules from pageviews
co-occurrences based on users navigational patterns. Their approach outperforms a
kNN-based recommendation system both in terms of precision and coverage. Smyth
et al. [87] present two different case studies of using association rules for RS. In the
first case they use the a priori algorithm to extract item association rules from user
profiles in order to derive a better item-item similarity measure. In the second case,
they apply association rule mining to a conversational recommender. The goal here
is to find co-occurrent critiques—i.e. user indicating a preference over a particular
feature of the recommended item. Lin et al. [65] present a new association mining
algorithm that adjusts the minimum support of the rules during mining in order
to obtain an appropriate number of significant rule therefore addressing some of the
shortcomings of previous algorithms such as the a priori. They mine both association
rules between users and items. The measured accuracy outperforms previously
reported values for correlation-based recommendation and is similar to the more
elaborate approaches such as the combination of SVD and ANN.

Finally, as already mentioned in Sect. 7.3.1.2, Cho et al. [28] combine Decision
Trees and Association Rule Mining in a web shop RS. In their system, association
rules are derived in order to link related items. The recommendation is then
computed by intersecting association rules with user preferences. They look for
association rules in different transaction sets such as purchases, basket placement,
and click-through. They also use a heuristic for weighting rules coming from each
of the transaction sets. Purchase association rules, for instance, are weighted higher
than click-through association rules.

7.5 Conclusions

This chapter has introduced the main data mining methods and techniques that can
be applied in the design of a RS. We have also surveyed their use in the literature
and provided some rough guidelines on how and where they can be applied.

We started by reviewing techniques that can be applied in the pre-processing
step. First, there is the choice of an appropriate distance measure, which is reviewed
in Sect. 7.2.1. This is required by most of the methods in the following steps. The
cosine similarity and Pearson correlation are commonly accepted as the best choice.
Then, in Sect. 7.2.2, we reviewed the basic sampling techniques that need to be



7 Data Mining Methods for Recommender Systems 257

applied in order to select a subset of an originally large data set, or to separating
a training and a testing set. Finally, we discussed the use of dimensionality
reduction techniques such as Principal Component Analysis and Singular Value
Decomposition in Sect. 7.2.3 as a way to address the curse of dimensionality
problem.

In Sect. 7.3, we reviewed the main classification methods: namely, nearest-
neighbors, decision trees, rule-based classifiers, Bayesian networks, logistic regres-
sion, support vector machines, and artificial neural networks. We saw that, although
kNN (see Sect. 7.3.1.1) CF is the preferred approach, all those classifiers can
be applied in different settings. Decision trees (see Sect. 7.3.1.2) can be used to
derive a model based on the content of the items or to model a particular part of
the system. Decision rules (see Sect. 7.3.1.3) can be derived from a pre-existing
decision trees, or can also be used to introduce business or domain knowledge.
Bayesian networks (see Sect. 7.3.1.4) are a popular approach to content-based
recommendation, but can also be used to derive a model-based CF system. In
a similar way, Artificial Neural Networks can be used to derive a model-based
recommender but also to combine/hybridize several algorithms. Finally, support
vector machines (see Sect. 7.3.1.6) are gaining popularity also as a way to infer
content-based classifications or derive a CF model.

Choosing the right classifier for a RS is not easy and is in many senses task and
data-dependent. In the case of CF, some results seem to indicate that model-based
approaches using classifiers such as the SVM or Bayesian Networks can slightly
improve performance of the standard kNN classifier. However, those results are non-
conclusive and hard to generalize. In the case of a content-based RS there is some
evidence that in some cases Bayesian Networks will perform better than simpler
methods such as decision trees. However, it is not clear that more complex non-
linear classifiers such as the ANN or SVMs can perform better.

The choice of the right classifier for a specific recommending task still has
nowadays much of exploratory. A practical rule-of-thumb is to start with the
simplest approach and only introduce complexity if the performance gain obtained
justifies it. The performance gain should of course balance different dimensions. In
Sect. 7.3.3 we reviewed different ways to evaluate the performance of a classifier.
Another option is to combine different classifiers in an ensemble. We described
different techniques to build ensembles in Sect. 7.3.2.

We reviewed clustering algorithms in Sect. 7.4.1. Clustering is usually used in RS
to improve performance. A previous clustering step, either in the user of item space,
reduces the number of distance computations we need to perform. The simplicity
and relative efficiency of the k-means algorithm (see Sect. 7.4.1.1) make it hard
to find a practical alternative. We reviewed some of them such as Hierarchical
Clustering or Message-passing algorithms in Sect. 7.4.1.2.

Finally, in Sect. 7.4.2, we described association rules and surveyed their use
in RS. Association rules offer an intuitive framework for recommending items
whenever there is an explicit or implicit notion of transaction. Although there exist
efficient algorithms for computing association rules, and they have proved more
accurate than standard kNN CF, they are still not a favored approach.
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The choice of the right DM technique in designing a RS is a complex task that
is bound by many problem-specific constraints. However, we hope that the short
review of techniques and experiences included in this chapter can help the reader
make a much more informed decision. Besides, we have also touched upon areas
that are open to many further improvements, and where there is still much exciting
and relevant research to be done in the coming years.
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Chapter 8
Evaluating Recommender Systems

Asela Gunawardana and Guy Shani

8.1 Introduction

Recommender systems can now be found in many modern applications that expose
the user to a huge collections of items. Such systems typically provide the user with
a list of recommended items they might prefer, or predict how much they might
prefer each item. These systems help users to decide on appropriate items, and ease
the task of finding preferred items in the collection.

For example, the DVD rental provider Netflix1 displays predicted ratings for
every displayed movie in order to help the user decide which movie to rent. The
online book retailer Amazon2 provides average user ratings for displayed books,
and a list of other books that are bought by users who buy a specific book. Microsoft
provides many free downloads for users, such as bug fixes, products and so forth.
When a user downloads some software, the system presents a list of additional
items that are downloaded together. All these systems are typically categorized as
recommender systems, even though they provide diverse services.

In the past decade, there has been a vast amount of research in the field of
recommender systems, mostly focusing on designing new algorithms for recom-
mendations. An application designer who wishes to add a recommender system

1www.Netflix.com.
2www.amazon.com.
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to her application has a large variety of algorithms at her disposal, and must
make a decision about the most appropriate algorithm for her goals. Typically,
such decisions are based on experiments, comparing the performance of a number
of candidate recommenders. The designer can then select the best performing
algorithm, given structural constraints such as the type, timeliness and reliability
of availability data, allowable memory and CPU footprints. Furthermore, most
researchers who suggest new recommendation algorithms also compare the perfor-
mance of their new algorithm to a set of existing approaches. Such evaluations are
typically performed by applying some evaluation metric that provides a ranking of
the candidate algorithms (usually using numeric scores).

Initially most recommenders have been evaluated and ranked on their prediction
power—their ability to accurately predict the user’s choices. However, it is now
widely agreed that accurate predictions are crucial but insufficient to deploy a good
recommendation engine. In many applications people use a recommender system
for more than an exact anticipation of their tastes. Users may also be interested
in discovering new items, in rapidly exploring diverse items, in preserving their
privacy, in the fast responses of the system, and many more properties of the
interaction with the recommendation engine. We must hence identify the set of
properties that may influence the success of a recommender system in the context
of a specific application. Then, we can evaluate how the system preforms on these
relevant properties.

In this chapter we review the process of evaluating a recommendation system.
We discuss three different types of experiments; offline, user studies and online
experiments.

Often it is easiest to perform offline experiments using existing data sets and a
protocol that models user behavior to estimate recommender performance measures
such as prediction accuracy. A more expensive option is a user study, where a
small set of users is asked to perform a set of tasks using the system, typically
answering questions afterwards about their experience. Finally, we can run large
scale experiments on a deployed system, which we call online experiments. Such
experiments evaluate the performance of the recommenders on real users which are
oblivious to the conducted experiment. We discuss what can and cannot be evaluated
for each of these types of experiments.

We can sometimes evaluate how well the recommender achieves its overall goals.
For example, we can check an e-commerce website revenue with and without the
recommender system and make an estimation of the value of the system to the
website. In other cases, it can also be useful to evaluate how recommenders perform
in terms of some specific properties, allowing us to focus on improving properties
where they fall short. First, one must show that a property is indeed relevant to
users and affect their experience. Then, we can design algorithms that improve upon
these properties. In improving one property we may reduce the quality of another
property, creating a trade-off between a set of properties. In many cases it is also
difficult to say how these trade-offs affect the overall performance of the system,
and we have to either run additional experiments to understand this aspect, or use
the opinions of domain experts.
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This chapter focuses on property-directed evaluation of recommender
algorithms. We provide an overview of a large set of properties that can be
relevant for system success, explaining how candidate recommenders can be
ranked with respect to these properties. For each property we discuss the relevant
experiment types—offline, user study, and online experiments—and explain how
an evaluation can be conducted in each case. We explain the difficulties and outline
the pitfalls in evaluating each property. For all these properties we focus on ranking
recommenders on that property, assuming that better handling the property will
improve user experience.

We also review a set of previous suggestions for evaluating recommender
systems, describing a large set of popular methods and placing them in the context
of the properties that they measure. We especially focus on the widely researched
accuracy and ranking measurements, describing a large set of evaluation metrics
for these properties. For other, less studied properties, we suggest guidelines from
which specific measures can be derived. We provide examples of such specific
implementations where appropriate.

The rest of the chapter is structured as follows. In Sect. 8.2 we discuss the
different experimental settings in which recommender systems can be evaluated,
discussing the appropriate use of offline experiments, user studies, and online trials.
We also outline considerations that go into making reliable decisions based on
these experiments, including generalization and statistical significance of results.
In Sect. 8.3 we describe a large variety of properties of recommender systems that
may impact their performance, as well as metrics for measuring these properties.
Finally, we conclude in Sect. 8.4.

8.2 Experimental Settings

In this section we describe three levels of experiments that can be used in order to
compare several recommenders. The discussion below is motivated by evaluation
protocols in related areas such as machine learning and information retrieval,
highlighting practices relevant to evaluating recommender systems. The reader is
referred to publications in these fields for more detailed discussions [17, 61, 75].

We begin with offline experiments, which are typically the easiest to conduct,
as they require no interaction with real users. We then describe user studies, where
we ask a small group of subjects to use the system in a controlled environment, and
then report on their experience. In such experiments we can collect both quantitative
and qualitative information about the systems, but care must be taken to consider
various biases in the experimental design. Finally, perhaps the most trustworthy
experiment is when the system is used by a pool of real users, typically unaware
of the experiment. While in such an experiment we are able to collect only certain
types of data, this experimental design is closest to reality.

In all experimental scenarios, it is important to follow a few basic guidelines in
general experimental studies:
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• Hypothesis: before running the experiment we must form an hypothesis. It is
important to be concise and restrictive about this hypothesis, and design an
experiment that tests the hypothesis. For example, an hypothesis can be that
algorithm A better predicts user ratings than algorithm B. In that case, the
experiment should test the prediction accuracy, and not other factors. Other
popular hypothesis in recommender system research can be that algorithm A
scales better to larger datasets than algorithm B, that system A gains more user
trust than system B, or that recommendation user interface A is preferred by users
to interface B.

• Controlling variables: when comparing a few candidate algorithms on a certain
hypothesis, it is important that all variables that are not tested will stay fixed.
For example, suppose that in a movie recommendation system, we switch from
using algorithm A to algorithm B, and notice that the number of movies that
users watch increases. In this situation, we cannot tell whether the change is due
to the change in algorithm, or whether something else changed at about the same
time. If instead, we randomly assign users to algorithms A and B, and notice that
users assigned to algorithm A watch more movies than those who are assigned to
algorithm B, we can be confident that this is due to algorithm A.

• Generalization power: when drawing conclusions from experiments, we may
desire that our conclusions generalize beyond the immediate context of the
experiments. When choosing an algorithm for a real application, we may want
our conclusions to hold on the deployed system, and generalize beyond our
experimental data set. Similarly, when developing new algorithms, we want
our conclusions to hold beyond the scope of the specific application or data
set that we experimented with. To increase the probability of generalization of
the results we must typically experiment with several data sets or applications.
It is important to understand the properties of the various data sets that are used.
Generally speaking, the more diverse the data used, the more we can generalize
the results.

8.2.1 Offline Experiments

An offline experiment is performed by using a pre-collected data set of users
choosing or rating items. Using this data set we can try to simulate the behavior
of users that interact with a recommendation system. In doing so, we assume that
the user behavior when the data was collected will be similar enough to the user
behavior when the recommender system is deployed, so that we can make reliable
decisions based on the simulation. Offline experiments are attractive because they
require no interaction with real users, and thus allow us to compare a wide range
of candidate algorithms at a low cost. The downside of offline experiments is
that they can answer a very narrow set of questions, typically questions about the
prediction power of an algorithm. In particular, we must assume that users’ behavior
when interacting with a system including the recommender system chosen will
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be modeled well by the users’ behavior prior to that system’s deployment. Thus
we cannot directly measure the recommender’s influence on user behavior in this
setting.

Therefore, the goal of the offline experiments is to filter out inappropriate
approaches, leaving a relatively small set of candidate algorithms to be tested by the
more costly user studies or online experiments. A typical example of this process is
when the parameters of the algorithms are tuned in an offline experiment, and then
the algorithm with the best tuned parameters continues to the next phase.

8.2.1.1 Data Sets for Offline Experiments

As the goal of the offline evaluation is to filter algorithms, the data used for the
offline evaluation should match as closely as possible the data the designer expects
the recommender system to face when deployed online. Care must be exercised to
ensure that there is no bias in the distributions of users, items and ratings selected.
For example, in cases where data from an existing system (perhaps a system without
a recommender) is available, the experimenter may be tempted to pre-filter the
data by excluding items or users with low counts, in order to reduce the costs of
experimentation. In doing so, the experimenter should be mindful that this involves
a trade-off, since this introduces a systematic bias in the data. If necessary, randomly
sampling users and items may be a preferable method for reducing data, although
this can also introduce other biases into the experiment (e.g. this could tend to favor
algorithms that work better with more sparse data). Sometimes, known biases in
the data can be corrected for by techniques such as reweighing data, but correcting
biases in the data is often difficult.

Another source of bias may be the data collection itself. For example, users may
be more likely to rate items that they have strong opinions on, and some users may
provide many more ratings than others. Furthermore, users tend to rate items that
they like, and avoid exploring, and hence rating, items that they will not like. For
example, a person who doesn’t like horror movies will tend not to watch them,
would not explore the list of available horror movies for rental, and would not rate
them. Thus, the set of items on which explicit ratings are available may be biased by
the ratings themselves. This is often known as the not missing at random assumption
[47]. Once again, techniques such as resampling or reweighting the test data [70, 71]
may be used to attempt to correct such biases.

8.2.1.2 Simulating User Behavior

In order to evaluate algorithms offline, it is necessary to simulate the online process
where the system makes predictions or recommendations, and the user corrects
the predictions or uses the recommendations. This is usually done by recording
historical user data, and then hiding some of these interactions in order to simulate
the knowledge of how a user will rate an item, or which recommendations a user
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will act upon. There are a number of ways to choose the ratings/selected items to
be hidden. Once again, it is preferable that this choice be done in a manner that
simulates the target application as closely as possible. In many cases, though, we
are restricted by the computational cost of an evaluation protocol, and must make
compromises in order to execute the experiment over large data sets.

Ideally, if we have access to time-stamps for user selections, we can simulate
what the systems predictions would have been, had it been running at the time the
data set was collected [11]. We can begin with no available prior data for computing
predictions, and step through user selections in temporal order, attempting to predict
each selection and then making that selection available for use in future predictions.
For large data sets, a simpler approach is to randomly sample test users, randomly
sample a time just prior to a user action, hide all selections (of all users) after that
instant, and then attempt to recommend items to that user. This protocol requires
changing the set of given information prior to each recommendation, which can still
be computationally quite expensive.

An even cheaper alternative is to sample a set of test users, then sample a single
test time, and hide all items after the sampled test time for each test user. This
simulates a situation where the recommender system is built as of the test time, and
then makes recommendations without taking into account any new data that arrives
after the test time. Another alternative is to sample a test time for each test user,
and hide the test user’s items after that time, without maintaining time consistency
across users. This effectively assumes that the sequence in which items are selected
is important, not the absolute times when the selections are made. A final alternative
is to ignore time. We would first sample a set of test users, then sample the number
na of items to hide for each user a, and finally sample na items to hide. This assumes
that the temporal aspects of user selections are unimportant. We may be forced to
make this assumption if the timestamps of user actions are not known. All three of
the latter alternatives partition the data into a single training set and single test set.
It is important to select an alternative that is most appropriate for the domain and
task of interest, given the constraints, rather than the most convenient one.

A common protocol used in many research papers is to use a fixed number of
known items or a fixed number of hidden items per test user (so called “given n”
or “all but n” protocols). This protocol may be useful for diagnosing algorithms
and identifying in which cases they work best. However, when we wish to make
decisions on the algorithm that we will use in our application, we must ask ourselves
whether we are truly interested in presenting recommendations only for users who
have rated exactly n items, or are expected to rate exactly n items more. If that
is not the case, then results computed using these protocols have biases that make
them unreliable in predicting the performance of the algorithms online, and these
protocols should be avoided.
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8.2.1.3 More Complex User Modeling

All the protocols that we discuss above make some assumptions concerning the
behavior of users, which could be regarded as a user-model for the specific
application. While we discuss only very simple user models, it is possible to suggest
more complicated models for user behavior [46]. Using advanced user models
we can execute simulations of users interactions with the system, thus reducing
the need for expensive user studies and online testing. However, care must be made
when designing user-models; First, user-modeling is a difficult task, and there is a
vast amount of research on the subject (see, e.g. [19]). Second, when the user model
is inaccurate, we may optimize a system whose performance in simulation has little
correlation with its performance in practice. While it is reasonable to design an
algorithm that uses complex user models to provide recommendations, we should
be careful in trusting experiments where algorithms are verified using such complex,
difficult to verify, user models.

8.2.2 User Studies

Many recommendation approaches rely on the interaction of users with the system
(see, e.g., Chaps. 24, 5, 10, and 18). It is very difficult to create a reliable simulation
of users interactions with the system, and thus, offline testing are difficult to conduct.
In order to properly evaluate such systems, real user interactions with the system
must be collected. Even when offline testing is possible, interactions with real users
can still provide additional information about the system performance. In these cases
we typically conduct user studies.

We provide here a summarized discussion of the principles of user studies for
the evaluation of recommender systems. The interested reader can find an in depth
discussion in Chap. 9.

A user study is conducted by recruiting a set of test subjects, and asking them to
perform several tasks requiring an interaction with the recommender system. While
the subjects perform the tasks, we observe and record their behavior, collecting
any number of quantitative measurements, such as what portion of the task was
completed, the accuracy of the task results, or the time taken to perform the task.
In many cases we can ask qualitative questions, before, during, and after the task
is completed. Such questions can collect data that is not directly observable, such
as whether the subject enjoyed the user interface, or whether the user perceived the
task as easy to complete.

A typical example of such an experiment is to test the influence of a recom-
mendation algorithm on the browsing behavior of news stories. In this example,
the subjects are asked to read a set of stories that are interesting to them, in
some cases including related story recommendations and in some cases without
recommendations. We can then check whether the recommendations are used,
and whether people read different stories with and without recommendations.
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We can collect data such as how many times a recommendation was clicked, and
even, in certain cases, track eye movement to see whether a subject looked at a
recommendation. Finally, we can ask qualitative questions such as whether the
subject thought the recommendations were relevant [30, 32].

Of course, in many other research areas user studies are a central tool, and
thus there is much literature on the proper design of user studies. This section
only overviews the basic considerations that should be taken when evaluating a
recommender system through a user study, and the interested reader can find much
deeper discussions elsewhere (see. e.g. [7]).

8.2.2.1 Advantages and Disadvantages

User studies can perhaps answer the widest set of questions of all three experimental
settings that we survey here. Unlike offline experiments this setting allows us to
test the behavior of users when interacting with the recommender system, and the
influence of the recommendations on user behavior. In the offline case we typically
make assumptions such as “given a relevant recommendation the user is likely to use
it” which are tested in the user study. Second, this is the only setting that allows us to
collect qualitative data that is often crucial for interpreting the quantitative results.
Also, we can typically collect in this setting a large set of quantitative measurements
because the users can be closely monitored while performing the tasks.

User studies however have some disadvantages. Primarily, user studies are very
expensive to conduct[39]; collecting a large set of subjects and asking them to
perform a large enough set of tasks is costly in terms of either user time, if the
subjects are volunteers, or in terms of compensation if paid subjects are employed.
Therefore, we must typically restrict ourselves to a small set of subjects and a
relatively small set of tasks, and cannot test all possible scenarios. Furthermore,
each scenario has to be repeated several times in order to make reliable conclusions,
further limiting the range of distinct tasks that can be tested.

As these experiments are expensive to conduct we should collect as much data
about the user interactions, in the lowest possible granularity. This will allow us
later to study the results of the experiment in detail, analyzing considerations that
were not obvious prior to the trial. This guideline can help us to reduce the need for
successive trials to collect overlooked measurements.

Furthermore, in order to avoid failed experiments, such as applications that
malfunction under certain user actions, researchers often execute pilot user studies.
These are small scale experiments, designed not to collect statistical data, but to
test the systems for bugs and malfunctions. In some cases, the results of these
pilot studies are then used to improve the recommender. If this is the case, then
the results of the pilot become “tainted”, and should not be used when computing
measurements in the final user study.

Another important consideration is that the test subjects must represent as closely
as possible the population of users of the real system. For example, if the system is
designed to recommend movies, the results of a user study over avid movie fans
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may not carry to the entire population. This problem is most persistent when the
participants of the study are volunteers, as in this case people who are originally
more interested in the application may tend to volunteer more readily.

However, even when the subjects represent properly the true population of users,
the results can still be biased because they are aware that they are participating in
an experiment. For example, it is well known that paid subjects tend to try and
satisfy the person or company conducting the experiment [60]. If the subjects are
aware of the hypothesis that is tested they may unconsciously provide evidence that
supports it. To accommodate that, it is typically better not to disclose the goal of
the experiment prior to collecting data. Another, more subtle effect occurs when
the payment to subjects takes the form of a complete or partial subsidy of items
they select. This may bias the data in cases where final users of the system are not
similarly subsidized, as users’ choices and preferences may be different when they
pay full price. Unfortunately, avoiding this particular bias is difficult.

8.2.2.2 Between vs. Within Subjects

As typically a user study compares a few candidate approaches, each candidate
must be tested over the same tasks. To test all candidates we can either compare the
candidates between subjects, where each subject is assigned to a candidate method
and experiments with it, or within subjects, where each subject tests a set of
candidates on different tasks [24].

Typically, within subjects experiments are more informative, as the superiority
of one method cannot be explained by a biased split of users between candidate
methods. It is also possible in this setting to ask comparative questions about the
different candidates, such as which candidate the subject preferred. However, in
these types of tests users are more conscious of the experiment, and hiding the
distinctions between candidates is more difficult.

Between subjects experiments, also known as A-B testing (All Between), provide
a setting that is closer to the real system, as each user experiments with a single
treatment. Such experiments can also test long term effects of using the system,
because the user is not required to switch systems. Thus we can test how the user
becomes accustomed to the system, and estimate a learning curve of expertise.
On the downside, when running between subjects experiments, typically more data
is needed to achieve significant results. As such, between subjects experiments may
require more users, or more interaction time for each user, and are thus more costly
then within subjects experiments.

8.2.2.3 Variable Counter Balance

As we have noted above, it is important to control all variables that are not
specifically tested. However, when a subject is presented with the output of several
candidates, as in within subject experiments, we must counter balance several
variables.
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When presenting several results to the subject, the results can be displayed either
sequentially, or together. In both cases there are certain biases that we need to correct
for [1]. When presenting the results sequentially the previously observed results
influence the user opinion of the current results. For example, if the results that were
displayed first seem inappropriate, the results displayed afterward may seem better
than they actually are. When presenting two sets of results, there can be certain
biases due to location. For example, users from many cultures tend to observe results
left to right and top to bottom. Thus, the user may observe the results displayed on
top as superior.

A common approach to correct for such untested variables is by using the Latin
square [7] procedure. This procedure randomizes the order or location of the various
results each time, thus canceling out biases due to these untested variables.

8.2.2.4 Questionnaires

User studies allow us to use the powerful questionnaire tool (e.g. [58]). Before,
during, and after subjects perform their tasks we can ask them questions about
their experience. These questions can provide information about properties that
are difficult to measure, such as the subject’s state of mind, or whether the
subject enjoyed the system.

While these questions can provide valuable information, they can also provide
misleading information. It is important to ask neutral questions, that do not suggest
a “correct” answer. People may also answer untruthfully, for example when they
perceive the answer as private, or if they think the true answer may put them in an
unflattering position.

Indeed, vast amount of research was conducted in other areas about the art of
questionnaire writing, and we refer the readers to that literature (e.g. [56]) for more
details.

8.2.3 Online Evaluation

In many realistic recommendation applications the designer of the system wishes
to influence the behavior of users. We are therefore interested in measuring the
change in user behavior when interacting with different recommender systems. For
example, if users of one system follow the recommendations more often, or if some
utility gathered from users of one system exceeds utility gathered from users of
the other system, then we can conclude that one system is superior to the other, all
else being equal.

The real effect of the recommender system depends on a variety of factors such as
the user’s intent (e.g. how specific their information needs are), the user’s personality
(Chap. 21), such as how much novelty vs. how much risk they are seeking, the
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user’s context, e.g., what items they are already familiar with, how much they trust
the system (Chap. 6), and the interface through which the recommendations are
presented.

Thus, the experiment that provides the strongest evidence as to the true value
of the system is an online evaluation, where the system is used by real users that
perform real tasks. It is most trustworthy to compare a few systems online, obtaining
a ranking of alternatives, rather than absolute numbers that are more difficult to
interpret.

For this reason, many real world systems employ an online testing system [40],
where multiple algorithms can be compared. Typically, such systems redirect a small
percentage of the traffic to different alternative recommendation engine, and record
the users interactions with the different systems.

There are a few considerations that must be made when running such tests. For
example, it is important to sample (redirect) users randomly, so that the comparisons
between alternatives are fair. It is also important to single out the different aspects
of the recommenders. For example, if we care about algorithmic accuracy, it
is important to keep the user interface fixed. On the other hand, if we wish to focus
on a better user interface, it is best to keep the underlying algorithm fixed.

In some cases, such experiments are risky. For example, a test system that
provides irrelevant recommendations, may discourage the test users from using
the real system ever again. Thus, the experiment can have a negative effect on the
system, which may be unacceptable in commercial applications.

For these reasons, it is best to run an online evaluation last, after an extensive
offline study provides evidence that the candidate approaches are reasonable, and
perhaps after a user study that measures the user’s attitude towards the system. This
gradual process reduces the risk in causing significant user dissatisfaction.

Online evaluations are unique in that they allow direct measurement of overall
system goals, such as long-term profit or user retention. As such, they can be used
to understand how these overall goals are affected by system properties such as
recommendation accuracy and diversity of recommendations, and to understand
the trade-offs between these properties. However, since varying such properties
independently is difficult, and comparing many algorithms through online trials is
expensive, it can be difficult to gain a complete understanding of these relationships.

8.2.4 Drawing Reliable Conclusions

In any type of experiment it is important that we can be confidant that the candidate
recommender that we choose will also be a good choice for the yet unseen data
the system will be faced with in the future. As we explain above, we should exercise
caution in choosing the data in an offline experiments, and the subjects in a user
study, to best resemble the online application. Still, there is a possibility that the
algorithm that performed best on this test set did so because the experiment was
fortuitously suitable for that algorithm. To reduce the possibility of such statistical
mishaps, we must perform significance testing on the results.
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8.2.4.1 Confidence and p-Values

The result of a significance test is a significance level or p-value—the probability
that the obtained results were due to chance. In practice, we choose a significance
test (see below) to match our situation in order to evaluate this probability.
Each significance test postulates an underlying random mechanism that may have
generated the result. This is termed the null hypothesis. The chosen test then gives
us a probability that a result that is at least as good as the one we are testing was
produced under the null hypothesis. This probability is the p-value. If the p-value
is below a threshold, we are confident that the null hypothesis is not true, and
we deem our results significant. Traditionally, people choose p D 0:05 as their
threshold, which indicates 95 % confidence. More stringent significance levels (e.g.
0:01 or even lower) can be used in cases where the cost of making the wrong
choice is higher. Notice, however, that the significance test only tells us that the
null hypothesis is unlikely to be true. It does not guarantee that the result was not
randomly produced by some other mechanism. Thus, to be confident that we are
making meaningful decisions, we need to be careful in choosing a test with a strong
null hypothesis that is appropriate for our situation. Below, we discuss how to make
this choice. For more details, see, e.g., [4].

8.2.4.2 Paired Results

In order to perform a significance test that algorithm A is indeed better than
algorithm B, we often use the results of several independent experiments comparing
A and B. Thus, rather than the aggregate results that we typically use to compare
systems, confidence testing requires the results of multiple independent sub-
experiments. Indeed, the protocol we have suggested for generating our test data
(Sect. 8.2.1.2) allows us to obtain such a set of results. Assuming that test users
are drawn independently from some population, the performance measures of
the algorithms for each test user give us the independent comparisons we need.
However, when recommendations or predictions of multiple items are made to
the same user, it is unlikely that the resulting per-item performance metrics are
independent. Therefore, it is better to compare algorithms on a per-user case.

Given such paired per-user performance measures for algorithms A and B a
simple test of significance is the sign test [17, 45]. To use the sign test, we compute a
score (e.g. RMSE for system accuracy) for each user under algorithms A and B. The
sign test makes no assumption on these scores other than that users are independent,
and considers the number of times A beats B. The null hypothesis is that whether
A beats B or vice-versa is determined by a coin-toss. Thus, it uses the number of
times nA that A beats B (e.g. the number of times that alternative A achieved a lower
RMSE than alternative B) If we are interested in a pure winner, i.e., that A would
achieve a strictly better RMSE than B, then draws should count against A, that is,
they should not be counted in nA. If we are interested in the case where A should do
no worse than B, then draws should be counted in nA.
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Let n be the number of users in J for which the predictions were made. The
null hypothesis is that whether A beats B or vice-versa is determined by a coin-toss.
We can now compute the probability that we will observe at least nA times that
system A got a better score than system B under the null hypothesis that the two
systems are equal using:

p D .0:5/n
nX

iDnA

nŠ

iŠ.n � i/Š
(8.1)

when this p-value is below some predefined value (typically, 0:05) we can say that
the null hypothesis that the two system have an equal performance is rejected.

The sign test is an attractive choice due to its simplicity, and lack of assumptions
over the distribution of cases. When nACnB is large, we can take advantage of large
sample theory to approximate Eq. (8.1) by a normal distribution. However, this is
usually unnecessary with powerful modern computers. Some authors (e.g. [61]) use
the term McNemar’s test to refer to the use of a �2 approximation to the two-sided
sign test.

Note that sometimes, the sign test may indicate that system A outperforms system
B with high probability, even though the average performance of system B is higher
than that of system A. This happens in cases where system B occasionally outper-
forms system A overwhelmingly. Thus, the reason for this seemingly inconsistent
result is that the test only examines the probability of one system outperforming the
other, without regard to the magnitude of the difference.

The sign test can be extended to cases where we want to know the probability
that one system outperforms the other by some amount. For example, suppose
that system A is much more resource intensive than system B, and is only worth
deploying if it outperforms system B by some amount. We can define “success” in
the sign test as A outperforming B by this amount, and find the probability of A not
truly outperforming B by this amount as our p value in Eq. (8.1).

A commonly used test that takes the magnitude of the differences into account
is the paired Student’s t-test, which looks at the average difference between the
performance scores of algorithms A and B, normalized by the standard deviation
of the score difference. Using this test requires that the differences in scores for
different users is comparable, so that averaging these differences is reasonable. For
small numbers of users, the validity of the test also depends on the differences
being Normally distributed. [17] points out that this assumption is hard to verify
when the number of samples is small and that the t-test is susceptible to outliers.
He recommends the use of Wilcoxon signed rank test, which like the t-test, uses
the magnitude of the differences between algorithms A and B, but without making
distributional assumptions on the differences. However, using the Wilcoxon signed
rank test still requires that differences between the two systems are comparable
between users.

Another way to improve the significance of our conclusions is to use a larger
test set. In the offline case, this may require using a smaller training set, which may
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result in an experimental protocol that is not representative of the amount of training
data available after deployment. In the case of user studies, this implies an additional
expense. In the case of online testing, increasing the amount of data collected for
each algorithm requires either the added expense of a longer trial or the comparison
of fewer algorithms.

8.2.4.3 Unpaired Results

The tests described above are suitable for cases where observations are paired. That
is, each algorithm is run on each test case, as is often done in offline tests. In online
tests, however, it is often the case that users are assigned to one algorithm or the
other, so that the two algorithms are not evaluated on the same test cases. The Mann-
Whitney test is an extension of the Wilcoxon test to this scenario. Suppose we have
nA results from algorithm A and nB results from algorithm B.

The performance measures of the two algorithms are pooled and sorted so that
the best result is ranked first and the worst last. The ranks of ties are averaged. For
example if the second through fifth place tie, they are all assigned a rank of 3.5. The
Mann-Whitney test computes the probability of the null hypothesis that nA randomly
chosen results from the total nAC nB have at least as good an average rank as the nA

results that came from algorithm A.
This probability can be computed exactly be enumerating all .nACnB/Š

nAŠnBŠ
choices

and counting the choices that have at least the required average rank, or can be
approximated by repeatedly resampling nA of the results. When nA and nB are
both large enough (typically over 5), the distribution of the average rank of nA

results randomly selected from a pool of nA C nB under the null hypothesis is well
approximated by a Gaussian with mean 1

2
.nA C nB C 1/ and standard deviationq

1
12

nA
nB

.nA C nB C 1/. Thus, in this case we can compute the average rank of the nA

results from system A, subtract 1
2
.nA C nB C 1/, divide by

q
1
12

nA
nB

.nA C nB C 1/,

and evaluate the standard Gaussian CDF at this value to get the p value for the test.

8.2.4.4 Multiple Tests

Another important consideration, mostly in the offline scenario, is the effect of
evaluating multiple versions of algorithms. For example, an experimenter might
try out several variants of a novel recommender algorithm and compare them to
a baseline algorithm until they find one that passes a sign test at the p D 0:05

level and therefore infer that their algorithm improves upon the baseline with
95 % confidence. However, this is not a valid inference. Suppose the experimenter
evaluated ten different variants all of which are statistically the same as the baseline.
If the probability that any one of these trials passes the sign test mistakenly is
p D 0:05, the probability that at least one of the ten trials passes the sign test
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mistakenly is 1� .1� 0:05/10 D 0:40. This risk is colloquially known as “tuning to
the test set” and can be avoided by separating the test set users into two groups—a
development (or tuning) set, and an evaluation set. The choice of algorithm is done
based on the development test, and the validity of the choice is measured by running
a significance test on the evaluation set.

A similar concern exists when ranking a number of algorithms, but is more
difficult to circumvent. Suppose the best of N C 1 algorithms is chosen on the
development test set. To achieve a confidence 1 � p that the chosen algorithm
is indeed the best, it must outperform the N other algorithms on the evaluation
set with significance 1 � .1 � p/1=N . This is known as the Bonferroni correction,
and should be used when pair-wise significance tests are used multiple times.
Alternatively, approaches such as ANOVA or the Friedman test for ranking, which
are generalization of the Student’s t-test and Wilcoxon’s rank test. ANOVA makes
strong assumptions about the Normality of the different algorithms’ performance
measures, and about the relationships of their variances. We refer the reader to [17]
for further discussion of these and other tests for ranking multiple algorithms.

A more subtle version of this concern is when a pair of algorithms are compared
in a number of ways. For example, two algorithms may be compared using a
number of accuracy measures, a number of coverage measures, etc. Even if the
two algorithms are identical in all measures, the probability of finding a measure by
which one algorithm seems to outperform the other with some significance level
increases with the number of measures examined. If the different measures are
independent, the Bonferroni correction mentioned above can be used. However,
since the measures are often correlated, the Bonferroni correction may be too
stringent, and other approaches such as controlling for false discovery rate [3] may
be used.

8.2.4.5 Confidence Intervals

Even though we focus here on comparative studies, where one has to choose the
most appropriate algorithm out of a set of candidates, it is sometimes desirable
to measure the value of some property. For example, an administrator may want
to estimate the error in the system predictions, or the net profit that the system is
earning. When measuring such quantities it is important to understand the reliability
of your estimates. A popular approach for doing this is to compute confidence
intervals.

For example, one may estimate that the RMSE of a system is expected to be
1.2, and that it will be between 1.1 and 1.35 with probability 0.95. The simplest
method for computing confidence intervals is to assume that the quantity of interest
is Gaussian distributed, and then estimate its mean and standard deviations from
multiple independent observations. When we have many observations, we can
dispense with this assumption by computing the distribution of the quantity of
interest with a non-parametric method such as a histogram and finding upper and
lower bounds such that include the quantity of interest with the desired probability.
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8.3 Recommender System Properties

In this section we survey a range of properties that are commonly considered when
deciding which recommendation approach to select. As different applications have
different needs, the designer of the system must decide on the important properties
to measure for the concrete application at hand. Some of the properties can be
traded-off, the most obvious example perhaps is the decline in accuracy when other
properties (e.g. diversity) are improved. It is important to understand and evaluate
these trade-offs and their effect on the overall performance. However, the proper
way of gaining such understanding without intensive online testing or defering to
the opinions of domain experts is still an open question.

Furthermore, the effect of many of these properties on the user experience is
unclear, and depends on the application. While we can certainly speculate that users
would like diverse recommendations or reported confidence bounds, it is essential to
show that this is indeed important in practice. Therefore, when suggesting a method
that improves one of this properties, one should also evaluate how changes in this
property affects the user experience, either through a user study or through online
experimentation.

Such an experiment typically uses a single recommendation method with a
tunable parameter that affects the property being considered. For example, we can
envision a parameter that controls the diversity of the list of recommendations. Then,
subjects should be presented with recommendations based on a variety of values
for this parameter, and we should measure the effect of the parameter on the user
experience. We should measure here not whether the user noticed the change in
the property, but whether the change in property has affected their interaction with
the system. As is always the case in user studies, it is preferable that the subjects
in a user study and users in an online experiment will not know the goal of the
experiment. It is difficult to envision how this procedure could be performed in an
offline setting because we need to understand the user response to this parameter.

Once the effects of the specific system properties in affecting the user experience
of the application at hand is understood, we can use differences in these properties
to select a recommender.

8.3.1 User Preference

As in this chapter we are interested in the selection problem, where we need to
choose on out of a set of candidate algorithms, an obvious option is to run a user
study (within subjects) and ask the participants to choose one of the systems [29].
This evaluation does not restrict the subjects to specific properties, and it is generally
easier for humans to make such judgments than to give scores for the experience.
Then, we can select the system that had the largest number of votes.
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However, aside from the biases in user studies discussed earlier, there are
additional concerns that we must be aware of. First, the above scheme assumes
that all users are equal, which may not always be true. For example, an e-commerce
website may prefer the opinion of users who buy many items to the opinion of users
who only buy a single item. We therefore need to further weight the vote by the
importance of the user, when applicable. Assigning the right importance weights in
a user study may not be easy.

It may also be the case that users who preferred system A, only slightly preferred
it, while users who preferred B, had a very low opinion on A. In this case, even if
slightly more users preferred A we may still wish to choose B. To measure this we
need non-binary answers for the preference question in the user study. Then, the
problem of calibrating scores across users arises.

Finally, when we wish to improve a system, it is important to know why people
favor one system over the other. Typically, it is easier to understand that when
comparing specific properties. Therefore, while user satisfaction is important to
measure, breaking satisfaction into smaller components is helpful to understand the
system and improve it.

8.3.2 Prediction Accuracy

Accuracy is by far the most discussed property in the recommendation system
literature. At the base of the vast majority of recommender systems lie a prediction
engine. This engine may predict user opinions over items (e.g. ratings of movies) or
the probability of usage (e.g. purchase).

A basic assumption in a recommender system is that a system that provides more
accurate predictions will be preferred by the user. Thus, many researchers set out to
find algorithms that provide better predictions.

Assuming accurate and consistent user ratings for items, prediction accuracy
is typically independent of the user interface, and can thus be measured in an
offline experiment. That being said, the interface used for providing user feedback
and preferences over items may influence the gathered ratings [54]. This weakens
the generality of the conclusions drawn from such offline experiments. Measuring
prediction accuracy in a user study, however, typically measures the accuracy given
a set of recommendations or item ratings displayed to the user. This is a different
concept from the prediction of user behavior without recommendations, and is
closer to the true accuracy in the real system.

We discuss here three broad classes of prediction accuracy measures; measuring
the accuracy of ratings predictions, measuring the accuracy of usage predictions,
and measuring the accuracy of rankings of items.
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8.3.2.1 Measuring Ratings Prediction Accuracy

In some applications, such as in the new releases page of the popular Netflix DVD
rental service, we wish to predict the rating a user would give to an item (e.g. 1-star
through 5-stars). In such cases, we wish to measure the accuracy of the system’s
predicted ratings.

Root Mean Squared Error (RMSE) is perhaps the most popular metric used
in evaluating accuracy of predicted ratings. The system generates predicted ratings
Orui for a test set T of user-item pairs .u; i/ for which the true ratings rui are known.
Typically, rui are known because they are hidden in an offline experiment, or because
they were obtained through a user study or online experiment. The RMSE between
the predicted and actual ratings is given by:

RMSE D
vuut 1

jTj
X

.u;i/2T
.Orui � rui/2 (8.2)

Mean Absolute Error (MAE) is a popular alternative, given by

MAE D 1

jTj
X

.u;i/2T
jOrui � ruij (8.3)

Compared to MAE, RMSE disproportionately penalizes large errors, so that,
given a test set with four hidden items RMSE would prefer a system that makes
an error of 2 on three ratings and 0 on the fourth to one that makes an error of 3 on
one rating and 0 on all three others, while MAE would prefer the second system.

Normalized RMSE (NMRSE) and Normalized MAE (NMAE) are versions
of RMSE and MAE that have been normalized by the range of the ratings
(i.e. rmax � rmin). Since they are simply scaled versions of RMSE and MAE, the
resulting ranking of algorithms is the same as the ranking given by the unnormalized
measures.

Average RMSE and Average MAE adjust for unbalanced test sets. For example,
if the test set has an unbalanced distribution of items, the RMSE or MAE obtained
from it might be heavily influenced by the error on a few very frequent items. If
we need a measure that is representative of the prediction error on any item, it is
preferable to compute MAE or RMSE separately for each item and then take the
average over all items. Similarly, one can compute a per-user average RMSE or
MAE if the test set has an unbalanced user distribution and we wish to understand
the prediction error a randomly drawn user might face.

RMSE and MAE depend only on the magnitude of the errors made. In some
applications [16, e.g.], the semantics of the ratings may be such that the impact of
a prediction error does not depend only on its magnitude. In such domains it may
be preferable to use a suitable distortion measure d.Or; r/ than squared difference
or absolute difference. For example in an application with a 3-star rating system
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where 1 means “disliked,” 2 means “neutral” and 3 means “liked,” and where
recommending an item the user dislikes is worse that not recommending an item
a user likes, a distortion measure with d.3; 1/ D 5, d.2; 1/ D 3, d.3; 2/ D 3,
d.1; 2/ D 1, d.2; 3/ D 1, and d.1; 3/ D 2 may be reasonable.

8.3.2.2 Measuring Usage Prediction

In many applications the recommender system does not predict the user’s prefer-
ences of items, such as movie ratings, but tries to recommend to users items that
they may use. For example, when movies are added to the queue, Netflix suggests a
set of movies that may also be interesting, given the added movie. In this case we are
interested not in whether the system properly predicts the ratings of these movies
but rather whether the system properly predicts that the user will add these movies
to the queue (use the items).

In an offline evaluation of usage prediction, we typically have a data set
consisting of items each user has used. We then select a test user, hide some of
her selections, and ask the recommender to predict a set of items that the user will
use. We then have four possible outcomes for the recommended and hidden items,
as shown in Table 8.1.

In the offline case, since the data isn’t typically collected using the recommender
system under evaluation, we are forced to assume that unused items would have not
be used even if they had they been recommended—i.e. that they are uninteresting
or useless to the user. This assumption may be false, such as when the set of unused
items contains some interesting items that the user did not select. For example, a
user may not have used an item because she was unaware of its existence, but after
the recommendation exposed that item the user can decide to select it. In this case
the number of false positives is over estimated.

We can count the number of examples that fall into each cell in the table and
compute the following quantities:

Precision D #tp

#tpC #fp
(8.4)

Recall (True Positive Rate) D #tp

#tpC #fn
(8.5)

False Positive Rate (1 - Specificity) D #fp

#fpC #tn
(8.6)

Table 8.1 Classification of
the possible result of a
recommendation of an item
to a user

Recommended Not recommended

Used True-positive (tp) False-negative (fn)

Not used False-positive (fp) True-negative (tn)
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Typically we can expect a trade off between these quantities—while allowing
longer recommendation lists typically improves recall, it is also likely to reduce
the precision. In applications where the number of recommendations that can be
presented to the user is preordained, the most useful measure of interest is precision
at N (often written Precision@N).

In other applications where the number of recommendations that are presented
to the user is not preordained, it is preferable to evaluate algorithms over a range of
recommendation list lengths, rather than using a fixed length. Thus, we can compute
curves comparing precision to recall, or true positive rate to false positive rate.
Curves of the former type are known simply as precision-recall curves, while those
of the latter type are known as a receiver operating characteristic curve3 or ROC
curve. While both curves measure the proportion of preferred items that are actually
recommended, precision-recall curves emphasize the proportion of recommended
items that are preferred while ROC curves emphasize the proportion of items that
are not preferred that end up being recommended.

We should select whether to use precision-recall or ROC based on the properties
of the domain and the goal of the application; suppose, for example, that an online
video rental service recommends DVDs to users. The precision measure describes
the proportion of their recommendations were actually suitable for the user. Whether
the unsuitable recommendations represent a small or large fraction of the unsuitable
DVDs that could have been recommended (i.e. the false positive rate) may not be
as relevant as what proportion of the relevant items the system recommended to
the user, so a precision-recall curve would be suitable for this application. On the
other hand, consider a recommender system that is used for selecting items to be
marketed to users, for example by mailing an item to the user who returns it at no
cost to themselves if they do not purchase it. In this case, where we are interested
in realizing as many potential sales as possible while minimizing marketing costs,
ROC curves would be more relevant than precision-recall curves.

Given two algorithms, we can compute a pair of such curves, one for each
algorithm. If one curve completely dominates the other curve, the decision about
the superior algorithm is easy. However, when the curves intersect, the decision
is less obvious, and will depend on the application in question. Knowledge of the
application will dictate which region of the curve the decision will be based on.

Measures that summarize the precision-recall or ROC curve such as F-measure
[73]—the harmonic mean of the equally weighted precision and recall

F D 2 	 precision 	 recall

precisionC recall
(8.7)

and the Area Under the ROC Curve (AUC) [2] are useful for comparing
algorithms independently of application, but when selecting an algorithm for use in
a particular task, it is preferable to make the choice based on a measure that reflects
the specific needs at hand, such as the actual list length dictated by the application.

3A reference to their origins in signal detection theory.
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Precision-Recall and ROC for Multiple Users

When evaluating precision-recall or ROC curves for multiple test users, a number of
strategies can be employed in aggregating the results, depending on the application
at hand.

In applications where a fixed number of recommendations are made to each user
(e.g. when a fixed number of headlines are shown to a user visiting a news portal),
we can compute the precision and recall (or true positive rate and false positive rate)
at each recommendation list length N for each user, and then compute the average
precision and recall (or true positive rate and false positive rate) at each N [63]. The
resulting curves are particularly valuable because they prescribe a value of N for
each achievable precision and recall (or true positive rate and false positive rate),
and conversely, can be used to estimate performance at a given N. An ROC curve
obtained in this manner is termed a customer ROC (CROC) curve [64].

When different numbers of recommendations can be shown to each user (e.g.
when presenting the set of all recommended movies to each user), we can compute
ROC or precision-recall curves by aggregating the hidden ratings from the test set
into a set of reference user-item pairs, using the recommender system to generate a
single ranked list of user-item pairs, picking the top recommendations from the list,
and scoring them against the reference set. An ROC curve calculated in this way
is termed a Global ROC (GROC) curve [64]. Picking an operating point on the
resulting curve can result in a different number of recommendations being made to
each user.

A final class of applications is where the recommendation process is more
interactive, and the user is able to obtain more and more recommendations. This
is typical of information retrieval tasks, where the user can keep asking the system
for more recommended documents. In such applications, we compute a precision-
recall curve (or ROC curve) for each user and then average the resulting curves
over users. This is the usual manner in which precision-recall curves are computed
in the information retrieval community, and in particular in the influential TREC
competitions [74]. Such a curve can be used to understand the trade-off between
precision and recall (or false positives and false negatives) a typical user would face.

8.3.2.3 Ranking Measures

In many cases the application presents to the user a list of recommendations,
typically as vertical or horizontal list, imposing a certain natural browsing order.
For example, in Netflix, the “movies you’ll love” tab, shows a set of categories, and
in each category, a list of movies that the system predicts the user to like. These
lists may be long and the user may need to continue to additional “pages” until the
entire list is browsed. In these applications, we are not interested in predicting an
explicit rating, or selecting a set of recommended items, as in the previous sections,
but rather in ordering items according to the user’s preferences. This task is typically
known as the ranking of items. There are two approaches for measuring the accuracy
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of such a ranking. We can try to determine the correct order of a set of items for
each user and measure how close a system comes to this correct order, or we can
attempt to measure the utility of the system’s raking to a user. We first describe these
approaches for offline tests, and then describe their applicability to user studies and
online tests.

Using a Reference Ranking

In order to evaluate a ranking algorithm with respect to a reference ranking (a correct
order), it is first necessary to obtain such a reference.

In cases where explicit user ratings of items are available, we can rank the rated
items in decreasing order of ratings. However, there are two problems with this
approach. First, most users typically have not rated some (usually most) of the
items. Second, in many applications, the user ratings are quantized. For example,
in the case of Netflix, each user only rates some of the movies, and the ratings
are quantized to a 5-star scale. Thus, while we know that a movie rated 4 stars is
preferred over a movie rated 3 stars, we do not know which (if either) of two 4-star
movies is actually preferred by the user. We also know nothing about the user’s
preferences over most of the movies, which they have not rated.

Constructing reference rankings from usage data also runs into this problem. We
can assume that items that the user actually used are preferred to those that the user
was aware of but did not use. However, we do not know how to rank unused items
that the user is not known to have been aware of (e.g. items that were never presented
to the user, or items that were presented in a manner that the user may have easily
missed them). We also do not know how to rank used items against other used items,
and unused items the user was aware of against other such items.

Such cases where a ranking over items is incompletely specified is described
technically as a partial order.

Let
�I

2

�
denote the set of all unordered pairs of items in I. Let � be a partial order

over a set of items I. In a partial order, for any two items i1, i2, exactly one of the
following three conditions holds:

1. One item is a successor of the other, e.g. i1 is a successor of i2, denoted i1 � i2,
typically meaning that i1 is preferred to i2. For example, if the user prefers “Star
Wars IV” to “The Matrix”, and the list is ranked by preference, then we can write
“Star Wars IV” � “The Matrix”.

2. If the user prefers the items equally, denoted i1 D i2. For example, a user may
be indifferent as to whether he would get a brand A or brand B laptop, as long
as they both have the same amount of memory, or may bid the same amount for
two items on an auction at eBay.

3. The items may be incomparable. For example, one may not be able to say
whether she prefers the latest Coen brothers movie, or the latest U2 disk.
Alternatively, as discussed above, we may not have information about the user’s
preferences on the pair.
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A total order over a set of items is an order where for each pair of items i1; i2,
either i1 � i2 or i2 � i1. In many cases, the reference ranking is given by a partial
order, but the system outputs its recommendations as a total order, although perhaps
not on all items. Therefore, we now describe ranking accuracy metrics that allow
measurement agreement/disagreement between partial and total orders. To do so,
we formally define the concepts of agreement, disagreement, and compatibility.

Let �1 and �2 be two partial orders over a set of items I, where �1 is the
reference order and �2 is the system proposed order. We define an agreement
relation between the orders �1 and �2 with respect to a pair of items as follows:

• The orders �1 and �2 agree on items i1 and i2 if i1 �1 i2 and i1 �2 i2.
• The orders �1 and �2 disagree on items i1 and i2 if i1 �1 i2 and i2 �2 i1.
• The orders �1 and �2 are compatible on items i1 and i2 if i1 �1 i2 and neither

i1 �2 i2 nor i2 �2 i1. In other words the items are either tied or incomparable
under at least one of the orders.

The Normalized Distance based Performance Measure (NDPM) [76] is
commonly used in information retrieval. It differentiates between correct orders of
pairs, incorrect orders and ties. Formally, let ı�1;�2 .i1; i2/ be a distance function
between a reference ranking �1 and a proposed ranking �2 defined as follows:

ı�1;�2 .i1; i2/ D

8̂̂<
ˆ̂:

0 if �1 and �2 agree on i1 and i2;

1 if �1 and �2 are compatible on i1 and i2;

2 if �1 and �2 disagree on i1 and i2:

(8.8)

The total distance over all item pairs in I is:

ˇ�1;�2 .I/ D
X

.i1;i2/2.I
2/

ı�1;�2 .i1; i2/ (8.9)

where the summation is over all possible item pairs in I (efficient implementations
can sum only over item pairs for which the reference ranking asserts an order).

Let m.�1/ D argmax�ˇ�1;�.I/ be a normalization factor which is the maximal
distance that any ranking � can have from a reference ranking �1. In fact, m.�1/ is
the number of pairs in I for which the reference ranking asserts an ordering, because
the worst possible outcome would be to be wrong on all possible pairs. The NDPM
score NDPM.I;�1;�2/ comparing a proposed ranking of items �2 to a reference
ranking �1 is

NDPM.I;�1;�2/ D ˇ�1;�2 .I/

m.�1/
(8.10)

Intuitively, the NDPM measure will give a perfect score of 0 to rankings over the
set I that completely agree with the reference ranking, and the worst score of 1 is
assigned to a ranking that completely disagrees with the reference ranking. If the
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proposed ranking does not contain a preference between a pair of items that are
ranked in the reference ranking, it is penalized by half as much as providing a
contradicting preference.

The proposed ranking is not penalized for containing preferences that are not
ordered in the reference ranking. This means that for any pair of items that was not
ordered in the reference ranking any ordering predicted by the ranking algorithm is
acceptable. This is because we typically display a list within the application. As such
the ranking algorithm is expected to output a total, not a partial order, and should
not be penalized for being forced to order all pairs.

A potential downside of NDPM in some applications is that it does not consider
the location of disagreements in the reference ranking. In some cases it is more
important to appropriately order items that should appear closer to the head of
the ranked list, than items that are positioned near the bottom. For example, when
ranking movies by decreasing preference, it may be more important to properly
order the movies that the user would enjoy, than to properly order the movies that
the user would not enjoy. It is sometimes important to give different weights to
errors depending on their position in the list.

To this end, we can use the average precision (AP) correlation metric [77],
which gives more weight to errors over items that appear at earlier positions in the
reference ranking. Formally, let �1 be the reference ranking and �2 be a proposed
ranking over a set of items. The AP measure compares the ordering of each item
in the proposed ranking �2 with respect to its preceding items (successors) in the
reference ranking �1.

For each i1 2 I, let the set Zi1 .I;�/ denote all item pairs .i1; i2/ in I such that
i2 � i1. These are all the items that are preferred over i1 (i.e., preceding tems).

Zi.I;�/ D f.i1; i2/ j 8i1; i2 2 I s.t. i2 � i1g (8.11)

We define the indicator function ı.i1; i2;�1;�2/ to equal 1 when �1 and �2 agree
on items i1 and i2, and zero otherwise.

Let Ai1 .I;�1;�2/ be the normalized agreement score between �2 and the
reference ranking �1 for all items i2 such that i2 �1 i1.

Ai1 .I;�1;�2/ D 1

jZi1 .I;�2/j � 1

X
.i1;i2/2Zi1 .I;�2/

ı.i1; i2;�1;�2/ (8.12)

The AP score of a partial order �2 over I given partial order �1 is defined as

AP.I;�1;�2/ D 1

jIj � 1

X
i2I

Ai.I;�1;�2/ (8.13)

The AP score gives a perfect score of 1 where there is total agreement between
the system proposed ranking and the reference ranking for every item pair above
location i for all i 2 f1 : : : jIjg. The worst score of 0 is given to systems were there
is no agreement between the two ranked lists.
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In some cases, we may completely know the user’s true preferences for some set
of items. For example, we may elicit the user’s true ordering by presenting the user
with binary choices. In this case, when a pair of items are tied in the reference
ranking it means that the user is actually indifferent between the items. Thus, a
perfect system should not rank one item higher than the other. In such cases, rank
correlation measures such as Spearman’s � or Kendall’s 	 [37, 38] can be used.
These measures tend to be highly correlated in practice [22]. Kendall’s 	 is given by

	 D CC � C�
p

Cu
p

Cs
(8.14)

where CC and C� are the number of pairs that were correctly, and incorrectly
ordered by the system, respectively, Cu is the number of item pairs for which the
reference ranking asserts any ordering, and Cs is the number of item pairs for which
the evaluated system asserts any ordering.

Utility-Based Ranking

While reference ranking scores a ranking on its correlation with some “true”
ranking, there are other criteria for deciding on ordering a list of items. One popular
alternative is to order items by decreasing utility. In such cases, we not only care
about whether items i1 and i2 were ordered incorrectly, but also about the difference
in utility between i1 and i2. It is not as bad to incorrectly order a pair of items with
similar utilities, as to incorrectly order items with very different utilities.

It is also common to assume that the utility of a list of recommendations is
additive, given by the sum of the utilities of the individual recommendations. The
utility of each recommendation is the utility of the recommended item discounted
by a factor that depends on its position in the list of recommendations. One example
of such a utility is the likelihood that a user will observe a recommendation at
position i in the list. It is usually assumed that users scan recommendation lists
from the beginning to the end, with the utility of recommendations being discounted
more heavily towards the end of the list. The discount can also be interpreted
as the probability that a user would observe a recommendation in a particular
position in the list, with the utility of the recommendation given that it was observed
depending only on the item recommend. Under this interpretation, the probability
that a particular position in the recommendation list is observed is assumed to
depend only on the position and not on the items that are recommended.

In many applications, the user can use only a single, or a very small set of
items, or the recommendation engine is not used as the main browsing tool. In
such cases, we can expect the users to observe only a few items of the top of the
recommendations list. We can model such applications using a very rapid decay
of the positional discount down the list. The R-Score metric [10] assumes that the
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value of recommendations decline exponentially down the ranked list to yield the
following score for each user u:

Ru D
X

j

max.ru;ij � d; 0/

2
j�1
˛�1

(8.15)

where ij is the item in the jth position, ru;i is user u’s rating of item i, d is a
task dependent neutral (“don’t care”) rating, and ˛ is a half-life parameter, which
controls the exponential decline of the value of positions in the ranked list. In the
case of ratings prediction tasks, rui is the rating given by the user to each item (e.g.
4 stars), and d is the don’t care vote (e.g. 3 stars), and the algorithm only gets credit
for ranking items with rating above the “don’t care” vote higher than d (e.g. 4 or
5 stars). In usage prediction tasks, ru;i is typically 1 if u selects i and 0 otherwise,
while d is 0. Using

ru;i D � log.relative-frequency.i// (8.16)

if i is used and 0 otherwise can capture the amount of information in the
recommendation [66]. The resulting per-user scores are aggregated using:

R D 100

P
u RuP
u R�

u

(8.17)

where R�
u is the score of the best possible ranking for user u.

In other applications the user is expected to read a relatively large portion of
the list. In certain types of search, such as the search for legal documents [28],
users may look for all relevant items, and would be willing to read large portions
of the recommendations list. In such cases, we need a much slower decay of the
positional discount. Normalized Discounted Cumulative Gain (NDCG) [33] is a
measure from information retrieval, where positions are discounted logarithmically.
Assuming each user u has a “gain” gu;i from being recommended item i, the average
Discounted Cumulative Gain (DCG) for a list of J items is defined as

DCG D 1

N

NX
uD1

JX
jD1

gu;ij

logb. jC 1/
(8.18)

where ij is the item at position j in the list. The logarithm base is a free parameter,
typically between 2 and 10. A logarithm with base 2 is commonly used to ensure all
positions are discounted. NDCG is the normalized version of DCG given by

NDCG D DCG

DCG� (8.19)

where DCG� is the ideal DCG.
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We show the two methods here as they were originally presented, but note that
the numerator in the two cases contains a utility function that assigns a value for
each item. One can replace the original utility functions with a function that is more
appropriate to the designed application. A measure closely related to R-score and
NDCG is average reciprocal hit rank (ARHR) [18] which is an un-normalized
measure that assigns a utility 1=k to a successful recommendation at position k.
Thus, ARHR decays more slowly than R score but faster than NDCG.

Online Evaluation of Ranking

In an online experiment designed to evaluate the ranking of the recommendation list,
we can look at the interactions of users with the system. When a recommendation
list is presented to a user, the user may select a number of items from the list. We can
now assume that the user has scanned the list at least as deep as the last selection.
That is, if the user has selected items 1, 3, and 10, we can assume that the user has
observed items 1 through 10. We can now make another assumption, that the user
has found items 1, 3, and 10 to be interesting, and items 2, 4, 5, 6, 7, 8, and 9 to
be uninteresting (see, e.g. [35]). In some cases we can have additional information
whether the user has observed more items. For example, if the list is spread across
several pages, and only 20 results are presented per page, then, in the example above,
if the user moved to the second page we can also assume that she has observed
results 11 through 20 and had found them to be irrelevant.

In the scenario above, the results of this interaction is a division of the list into
three parts—the interesting items (1, 3, 10 in the example above), the uninteresting
items (the rest of the items from 1 through 20), and the unknown items (21 till
the end of the list). We can now use an appropriate reference ranking metric to
score the original list. This can be done in two different ways. First, the reference
list can contain the interesting items at the top, then the unknown items, and the
uninteresting items at the bottom. This reference list captures the case where the user
may only select a small subset of the interesting items, and therefore the unknown
items may contain more interesting items. Second, the reference list can contain the
interesting items at the top, followed by the uninteresting items, with the unknown
items completely ignored. This is useful when making unreasonable preference
assumptions, such as that some unknown items are preferred to the uninteresting
items, may have negative consequences. In either case, it should be borne in mind
that the semantics of the reference ranking are different from the case of offline
evaluations. In offline evaluations, we have a single reference ranking which is
assumed to be correct, and we measure how much each recommender deviates from
this “correct” ranking. In the online case, the reference ranking is assumed to be
the ranking that the user would have preferred given that were presented with the
recommender’s ranking. In the offline case, we assume that there is one correct
ranking, while in the online case we allow for the possibility of multiple correct
rankings.
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In the case of utility ranking, we can evaluate a list based on the sum of the
utilities of the selected items. Lists that place interesting items with high utility
close to the beginning of the list, will hence be preferred to lists that place these
interesting items down the list, because we expect that in the latter case, the user
will often not observe these interesting items at all, generating no utility for the
recommender.

8.3.3 Coverage

As the prediction accuracy of a recommender system, especially in collaborative
filtering systems, in many cases grows with the amount of data, some algorithms
may provide recommendations with high quality, but only for a small portion of the
items where they have huge amounts of data. This is often referred to as the long tail
or heavy tail problem, where the vast majority of the items where selected or rated
only by a handful of users, yet the total amount of evidence over these unpopular
items is much more than the evidence over the few popular items.

The term coverage can refer to several distinct properties of the system that we
discuss below.

8.3.3.1 Item Space Coverage

Most commonly, the term coverage refers to the proportion of items that the
recommender system can recommend. This is often referred to as catalog coverage.
The simplest measure of catalog coverage is the percentage of all items that can ever
be recommended. This measure can be computed in many cases directly given the
algorithm and the input data set.

A more useful measure is the percentage of all items that are recommended to
users during an experiment, either offline, online, or a user study. In some cases
it may be desirable to weight the items, for example, by their popularity or utility.
Then, we may agree not to be able to recommend some items which are very rarely
used anyhow, but ignoring high profile items may be less tolerable.

Another measure of catalog coverage is the sales diversity [20], which measures
how unequally different items are chosen by users when a particular recommender
system is used. If each item i accounts for a proportion p.i/ of user choices, the
Gini index is given by:

G D 1

n � 1

nX
jD1

.2j � n � 1/p.ij/ (8.20)

where i1; 	 	 	 in is the list of items ordered according to increasing p.i/. The index is 0
when all items are chosen equally often, and 1 when a single item is always chosen.
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The Gini index of the number of times each item is recommended could also be
used. Another measure of distributional inequality is the Shannon Entropy:

H D �
nX

iD1

p.i/ log p.i/ (8.21)

The entropy is 0 when a single item is always chosen or recommended, and log n
when n items are chosen or recommended equally often.

Steck [70] further discusses how accuracy methods can be modified to better
model the accuracy in the long tail. He suggests a correction for the bias of users
towards the more popular items.

8.3.3.2 User Space Coverage

Coverage can also be the proportion of users or user interactions for which the
system can recommend items. In many applications the recommender may not
provide recommendations for some users due to, e.g. low confidence in the accuracy
of predictions for that user. In such cases we may prefer recommenders that can
provide recommendations for a wider range of users. Clearly, such recommenders
should be evaluated on the trade-off between coverage and accuracy.

Coverage here can be measured by the richness of the user profile required to
make a recommendation. For example, in the collaborative filtering case this could
be measured as the number of items that a user must rate before receiving recom-
mendations. This measurement can be typically evaluated in offline experiments.

8.3.3.3 Cold-Start Problem

Another related set of issues are the well known cold start problems—the coverage
and performance of the system on new items and on new users. Cold start can
be considered as a sub problem of coverage because it measures the system coverage
over a specific set of items and users. In addition to measuring how large the pool of
cold start items or users are, it may also be important to measure system accuracy
for these users and items.

Focusing on cold start items, we can use a threshold to decide on the set of cold
items. For example, we can decide that cold items are only items with no ratings or
usage evidence [64], or items that exist in the system for less than a certain amount
of time (e.g., a day), or items that have less than a predefined evidence amount (e.g.,
less than ten ratings). Perhaps a more generic way is to consider the “coldness” of
an item using either the amount of time it exists in the system or the amount of data
gathered for it. Then, we can credit the system more for properly predicting colder
items, and less for the hot items that are predicted.

It may be possible that a system better recommends cold items at the price of a
reduced accuracy for hotter items. This may be desirable due to other considerations
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such as novelty and serendipity that are discussed later. Still, when computing the
system accuracy on cold items it may be wise to evaluate whether there is a trade-off
with the entire system accuracy.

8.3.4 Confidence

Confidence in the recommendation can be defined as the system’s trust in its
recommendations or predictions [26, 72]. As we have noted above, collaborative
filtering recommenders tend to improve their accuracy as the amount of data over
items grows. Similarly, the confidence in the predicted property typically also grows
with the amount of data.

In many cases the user can benefit from observing these confidence scores [26].
When the system reports a low confidence in a recommended item, the user may
tend to further research the item before making a decision. For example, if a system
recommends a movie with very high confidence, and another movie with the same
rating but a lower confidence, the user may add the first movie immediately to the
watching queue, but may further read the plot synopsis for the second movie, and
perhaps a few movie reviews before deciding to watch it.

Perhaps the most common measurement of confidence is the probability that the
predicted value is indeed true, or the interval around the predicted value where a
predefined portion, e.g. 95 % of the true values lie. For example, a recommender
may accurately rate a movie as a 4 star movie with probability 0:85, or have 95 %
of the actual ratings lie within �1 and C 1

2
of the predicted 4 stars. The most

general method of confidence is to provide a complete distribution over possible
outcomes [49].

Given two recommenders that perform similarly on other relevant properties,
such as prediction accuracy, is can be desirable to choose the one that can provide
valid confidence estimates. In this case, given two recommenders with, say, identical
accuracy, that report confidence bounds in the same way, we will prefer the
recommender that better estimates its confidence bounds.

Standard confidence bounds, such as the ones above, can be directly evaluated
in regular offline trials, much the same way as we estimate prediction accuracy. We
can design for each specific confidence type a score that measures how close the
method confidence estimate is to the true error in prediction. This procedure cannot
be applied when the algorithms do not agree on the confidence method, because
some confidence methods are weaker and therefore easier to estimate. In such a
case a more accurate estimate of a weaker confidence metric does not imply a better
recommender.

Example 8.1. Recommenders A and B both report confidence intervals over possi-
ble movie ratings. We train A and B over a confidence threshold, ranging of 95 %.
For each trained model, we run A and B on offline data, hiding a part of the user
ratings and requesting each algorithm to predict the missing ratings. Each algorithm
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produces, along with the predicted rating, a confidence interval. We compute AC
and A�, the number of times that the predicted rating of algorithm A was within
and outside the confidence interval (respectively), and do the same for B. Then
we compute the true confidence of each algorithm using AC

A�CAC
D 0:97 and

BC

A�CAC
D 0:94. The result indicates that A is over conservative, and computes

intervals that are too large, while B is liberal and computes intervals that are too
small. As we do not require the intervals to be conservative, we prefer B because its
estimated intervals are closer to the requested 95 % confidence.

Another application of confidence bounds is in filtering recommended items
where the confidence in the predicted value is below some threshold. In this scenario
we assume that the recommender is allowed not to predict a score for all values. In
a top n recommendation scenario, we may allow a system to sometimes suggest less
than n items, because it cannot produce a set of n items with sufficient confidence. In
this case the precision of the system is not punished when less results are returned,
and the shorter list is expected to result only in lower recall. As such, measuring
only precision@N in such problems is insufficient, because algorithms have an
incentive to provide less recommendations, or even no recommendations, obtaining
a meaningless precision of 1.

We can hence design an experiment around this filtering procedure by comparing
the accuracy of two recommenders after their results were filtered by removing
low confidence items. In such experiments we can compute a curve, estimating the
prediction accuracy (typically precision-recall curves) for each portion of filtered
items, or for different filtering thresholds. This evaluation procedure does not require
both algorithms to agree on the confidence method.

While user studies and online experiments can study the effect of reporting
confidence on the user experience [67], it is difficult to see how these types of tests
can be used to provide further evidence as to the accuracy of the confidence estimate.

8.3.5 Trust

While confidence is the system trust in its ratings (Chap. 20), in trust we refer
here to the user’s trust in the system recommendation.4 For example, it may be
beneficial for the system to recommend a few items that the user already knows and
likes. This way, even though the user gains no value from this recommendation, she
observes that the system provides reasonable recommendations, which may increase
her trust in the system recommendations for unknown items. Another common way

4Not to be confused with trust in the social network research, used to measure how much a user
believes another user. Some literature on recommender systems uses such trust measurements to
filter similar users [48].
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of enhancing trust in the system is to explain the recommendations that the system
provides (Chap. 10). Trust in the system is also called the credibility of the system.

If we do not restrict ourselves to a single method of gaining trust, such as the
one suggested above, the obvious method for evaluating user trust is by asking users
whether the system recommendations are reasonable in a user study [5, 14, 26, 57].
In an online test one could associate the number of recommendations that were
followed with the trust in the recommender, assuming that higher trust in the
recommender would lead to more recommendations being used. Alternatively, we
could also assume that trust in the system is correlated with repeated users, as users
who trust the system will return to it when performing future tasks. However, such
measurements may not separate well other factors of user satisfaction, and may not
be accurate. It is unclear how to measure trust in an offline experiment, because trust
is built through an interaction between the system and a user.

8.3.6 Novelty

Novel recommendations (Chap. 26) are recommendations for items that the user did
not know about [41]. In applications that require novel recommendation, an obvious
and easy to implement approach is to filter out items that the user already rated or
used. However, in many cases users will not report all the items they have used in
the past. Thus, this simple method is insufficient to filter out all items that the user
already knows.

While we can obviously measure novelty in a user study, by asking users whether
they were already familiar with a recommended item [12, 34], we can also gain
some understanding of a system’s novelty through offline experiments. For such an
experiment we could split the data set on time, i.e. hide all the user purchases that
occurred after a specific point in time. In addition, we can hide some purchases
that occurred prior to that time, simulating the items that the user has purchased
and is hence familiar with, but did not report their purchase to the system. When
recommending, the system is rewarded for each item that was recommended and
purchased after the split time, but would be punished for each item that was
recommended but purchased prior to the split time.

To implement the above procedure we must carefully model the hiding process
such that it would resemble the true preference discovery process that occurs in the
real system. In some cases the set of purchased items is not a uniform sample of
the set of all items the user is familiar with, and such bias should be acknowledged
and handled if possible. For example, if we believe that the user will report more
purchases of unique items, and less purchases of popular or common items, then the
hiding process should tend to hide more popular items.

In using this measure of novelty, it is important to control for accuracy, as
irrelevant recommendations may be new to the user, but still worthless. One
approach would be to consider novelty only among the relevant items [79].
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Example 8.2. We wish to evaluate the novelty of a set of movie recommenders in
an offline test. As we believe that users of our system rate movies after they watch
them, we split the user ratings in a sequential manner. For each test user profile we
choose a cutoff point randomly along the time-based sequence of movie ratings,
hiding all movies after a certain point in the sequence.

Let us assume that user studies on this imaginary system showed that people tend
not to report ratings of movies that they did not feel strongly about, but occasionally
also do not report a rating of a movie that they liked or disliked strongly. Therefore,
we hide a rating of a movie prior to the cutoff point with probability 1� jr�3j

2
where

r 2 f1; 2; 3; 4; 5g is the rating of the movie, and 3 is the neutral rating. We would
like to avoid predicting these movies with hidden ratings because the user already
knows about them.

Then, for each user, each recommender produces a list of 5 recommendations,
and we compute precision only over items after the cutoff point. That is, the
recommenders get no credit for recommending movies with hidden ratings that
occurred prior to the cutoff point. In this experiment the algorithm with the highest
precision score is preferred.

Another method for evaluating novel recommendations uses the above assump-
tion that popular items are less likely to be novel. Thus, novelty can be taken into
account by using an accuracy metric where the system does not get the same credit
for correctly predicting popular items as it does when it correctly predicts non-
popular items [65]. Ziegler et al. [80] and Celma and Herrera [12] also give accuracy
measures that take popularity into account.

Finally, we can evaluate the amount of new information in a recommendation
together with the relevance of the recommended item. For example, when item
ratings are available, we can multiply the hidden rating by some information
measurement of the recommended item (such as the conditional entropy given the
user profile) to produce a novelty score.

8.3.7 Serendipity

Serendipity is a measure of how surprising the successful recommendations are
(Chap. 26). For example, if the user has rated positively many movies where
a certain star actor appears, recommending the new movie of that actor may
be novel, because the user may not know of it, but is hardly surprising. Of course,
random recommendations may be very surprising, and we therefore need to balance
serendipity with accuracy.

One can think of serendipity as the amount of relevant information that is new
to the user in a recommendation. For example, if following a successful movie
recommendation the user learns of a new actor that she likes, this can be considered
as serendipitous. In information retrieval, where novelty typically refers to the
new information contained in the document (and is thus close to our definition
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of serendipity), [79] suggested to manually label pairs of documents as redundant.
Then, they compared algorithms on avoiding recommending redundant documents.
Such methods are applicable to recommender systems when some meta-data over
items, such as content information, is available (Chap. 4).

To avoid human labeling, we could design a distance measurement between items
based on content. Then, we can score a successful recommendation by its distance
from a set of previously rated items in a collaborative filtering system, or from
the user profile in a content-based recommender [78]. Thus, we are rewarding the
system for successful recommendations that are far from the user profile.

Example 8.3. In a book recommendation application, we would like to recommend
books from authors that the reader is less familiar with. We therefore design
a distance metric between a book b and a set of books B (the books that the
user has previously read); Let cB;w be the number of books by writer w in B.
Let cB D maxw cB;w the maximal number of books from a single writer in B.
Let d.b; B/ D 1CcB�cB;w.b/

1CcB
, where w.b/ is the writer of book b.

We now run an offline experiment to evaluate which of the candidate algorithms
generates more serendipitous recommendations. We split each test user profile—
set of books that the user has read—into sets of observed books Bo

i and hidden
books Bh

i . We use Bo
i as the input for each recommender, and request a list

of five recommendations. For each hidden book b 2 Bh
i that appeared in the

recommendation list for user i, the recommender receives a score of d.b; Bo
i /. Thus

the recommender is getting more credit for recommending books from writers that
the reader has read less often. In this experiment the recommender that received a
higher score is selected for the application.

One can also think of serendipity as deviation from the “natural” prediction [53].
That is, given a prediction engine that has a high accuracy, the recommendations
that it issues are “obvious”. Therefore, we will give higher serendipity scores to
successful recommendations that the prediction engine would deem unlikely.

We can evaluate the serendipity of a recommender in a user study by asking the
users to mark the recommendations that they find unexpected. Then, we can also
see whether the user followed these recommendations, which would make them
unexpected and successful and therefore serendipitous. In an online study, we can
assume that our distance metric is correct and evaluate only how distance from the
user profile affected the probability that a user will follow the recommendation. It is
important to check the effect of serendipity over time, because users might at first be
intrigued by the unexpected recommendations and try them out. If after following
the suggestion they discover that the recommendations are inappropriate, they may
stop following them in the future, or stop using the recommendation engine at all.
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8.3.8 Diversity

Diversity is generally defined as the opposite of similarity (Chap. 26). In some cases
suggesting a set of similar items may not be as useful for the user, because it may
take longer to explore the range of items. Consider for example a recommendation
for a vacation [68], where the system should recommend vacation packages.
Presenting a list with five recommendations, all for the same location, varying
only on the choice of hotel, or the selection of attraction, may not be as useful
as suggesting five different locations. The user can view the various recommended
locations and request more details on a subset of the locations that are appropriate
to her.

The most explored method for measuring diversity uses item-item similarity,
typically based on item content, as in Sect. 8.3.7. Then, we could measure the
diversity of a list based on the sum, average, min, or max distance between
item pairs, or measure the value of adding each item to the recommendation
list as the new item’s diversity from the items already in the list [8, 80]. The
item-item similarity measurement used in evaluation can be different from the
similarity measurement used by the algorithm that computes the recommendation
lists. For example, we can use for evaluation a costly metric that produces more
accurate results than fast approximate methods that are more suitable for online
computations.

As diversity may come at the expanse of other properties, such as accuracy [78],
we can compute curves to evaluate the decrease in accuracy vs. the increase in
diversity.

Example 8.4. In a book recommendation application, we are interested in pre-
senting the user with a diverse set of recommendations, with minimal impact to
accuracy. We use d.b; B/ from Example 8.3 as the distance metric. Given candidate
recommenders, each with a tunable parameter that controls the diversity of the
recommendations, we train each algorithm over a range of values for the diversity
parameters. For each trained model, we now compute a precision score, and a
diversity score as follows; we take each recommendation list that an algorithm
produces, and compute the distance of each item from the rest of the list, averaging
the result to obtain a diversity score. We now plot the precision-diversity curves of
the recommenders in a graph, and select the algorithm with the dominating curve.

In recommenders that assist in information search, we can assume that more
diverse recommendations will result in shorter search interactions [68]. We could
use this in an online experiment measuring interaction sequence length as a proxy
for diversification. As is always the case in online testing, shorter sessions may
be due to other factors of the system, and to validate this claim it is useful to
experiment with different diversity thresholds using the same prediction engine
before comparing different recommenders.
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8.3.9 Utility

Many e-commerce websites employ a recommender system in order to improve
their revenue by, e.g., enhancing cross-sell. In such cases the recommendation
engine can be judged by the revenue that it generates for the website [66]. In
general, we can define various types of utility functions that the recommender tries
to optimize. For such recommenders, measuring the utility, or the expected utility
of the recommendations may be more significant than measuring the accuracy of
recommendations. It is also possible to view many of the other properties, such
as diversity or serendipity, as different types of utility functions, over single items
or over lists. In this chapter, however, we define utility as the value that either the
system or the user gains from a recommendation.

Utility can be measured cleanly from the perspective of the recommendation
engine or the recommender system owner. Care must be taken, though, when
measuring the utility that the user receives from the recommendations. First,
user utilities or preferences are difficult to capture and model, and considerable
research has focused on this problem [9, 25, 59]. Second, it is unclear how to
aggregate user utilities across users for computing a score for a recommender. For
example, it is tempting to use money as a utility thus selecting a recommender that
minimizes user cost. However, under the diminishing returns assumption [69], the
same amount of money does not have the same utility for people with different
income levels. Therefore, the average cost per purchase, for example, is not a
reasonable aggregation across users.

In an application where users rate items, it is also possible to use the ratings as
a utility measurement [10]. For example, in movie ratings, where a five star movie
is considered an excellent movie, we can assume that a recommending a five star
movie has a higher utility for the user than recommending a movie that the user will
rate with four stars. As users may interpret ratings differently, user ratings should be
normalized before aggregating across users.

While we typically only assign positive utilities to successful recommendations,
we can also assign negative utilities to unsuccessful recommendations. For example,
if some recommended item offends the user, then we should punish the system for
recommending it by assigning a negative utility. We can also add a cost to each
recommendation, perhaps based on the position of the recommended item in the
list, and subtract it from the utility of the item.

For any utility function, the standard evaluation of the recommender is to com-
pute the expected utility of a recommendation. In the case where the recommender
is trying to predict only a single item, such as when we evaluate the system on time-
based splits and try to predict only the next item in the sequence, the value of a
correct recommendation should simply be the utility of the item. In the task where
the recommender predicts n items we can use the sum of the utilities of the correct
recommendations in the list. When negative utilities for failed recommendations are
used, then the sum is over all recommendations, successful or failed. We can also
integrate utilities into ranking measurements, as discussed in Sect. 8.3.2.3. Finally,
we can normalize the resulting score using the maximal possible utility given the
optimal recommendation list.
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Evaluating utility in user studies and online is easy in the case of recommender
utility. If the utility we optimize for is the revenue of the website, measuring the
change in revenue between users of various recommenders is simple. When we
try to optimize user utilities the online evaluation becomes harder, because users
typically find it challenging to assign utilities to outcomes. In many cases, however,
users can say whether they prefer one outcome to another. Therefore, we can try to
elicit the user preferences [31] in order to rank the candidate methods.

8.3.10 Risk

In some cases a recommendation may be associated with a potential risk. For
example, when recommending stocks for purchase, users may wish to be risk-
averse, preferring stocks that have a lower expected growth, but also a lower risk
of collapsing. On the other hand, users may be risk-seeking, preferring stocks that
have a potentially high, even if less likely, profit. In such cases we may wish to
evaluate not only the (expected) value generated from a recommendation, but also
to minimize the risk.

The standard way to evaluate risk sensitive systems is by considering not just the
expected utility, but also the utility variance. For example, we may use a parameter
q and compare two systems on EŒX�C q 	 Var.X/. When q is positive, this approach
prefers risk-seeking (also called bold [50]) recommenders, and when q is negative,
the system prefers risk-averse recommenders.

8.3.11 Robustness

Robustness (Chap. 24) is the stability of the recommendation in the presence of
fake information [55], typically inserted on purpose in order to influence the
recommendations. As more people rely on recommender systems to guide them
through the item space, influencing the system to change the rating of an item may
be profitable to an interested party. For example, an owner of an hotel may wish
to boost the rating for their hotel. This can be done by injecting fake user profiles
that rate the hotel positively, or by injecting fake users that rate the competitors
negatively.

Such attempts to influence the recommendation are typically called attacks
[43, 52]. Coordinated attacks occur when a malicious user intentionally queries
the data set or injects fake information in order to learn some private information
of some users. In evaluating such systems, it is important to provide a complete
description of the attack protocol, as the sensitivity of the system typically varies
from one protocol to another.

In general, creating a system that is immune to any type of attack is unrealistic.
An attacker with an ability to inject an infinite amount of information can, in most
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cases, manipulate a recommendation in an arbitrary way. It is therefore more useful
to estimate the cost of influencing a recommendation, which is typically measured
by the amount of injected information. While it is desirable to theoretically analyze
the cost of modifying a rating, it is not always possible. In these cases, we can
simulate a set of attacks by introducing fake information into the system data set,
empirically measuring average cost of a successful attack [13, 44].

As opposed to other evaluation criteria discussed here, it is hard to envision
executing an attack on a real system as an online experiment. It may be fruitful,
however, to analyze the real data collected in the online system to identify actual
attacks that are executed against the system.

Another type of robustness is the stability of the system under extreme condi-
tions, such as a large number of requests. While less discussed, such robustness
is very important to system administrators, who must avoid system malfunction.
In many cases system robustness is related to the infrastructure, such as the
database software, or to the hardware specifications, and is related to scalability
(Sect. 8.3.14).

8.3.12 Privacy

In a collaborative filtering system, a user willingly discloses his preferences over
items to the system in the hope of getting useful recommendations (Chap. 19).
However, it is important for most users that their preferences stay private, that is,
that no third party can use the recommender system to learn something about the
preferences of a specific user.

For example, consider the case where a user who is interested in the wonderful,
yet rare art of growing Bahamian orchids has bought a book titled “The Divorce
Organizer and Planner”. The spouse of that user, looking for a present, upon
browsing the book “The Bahamian and Caribbean Species (Cattleyas and Their
Relatives)” may get a recommendation of the type “people who bought this book
also bought” for the divorce organizer, thus revealing sensitive private information.

It is generally considered inappropriate for a recommender system to disclose
private information even for a single user. For this reason analysis of privacy tends
to focus on a worst case scenario, illustrating theoretical cases under which users
private information may be revealed. Other researchers [21] compare algorithms by
evaluating the portion of users whose private information was compromised. The
assumption in such studies is that complete privacy is not realistic and that therefore
we must compromise on minimizing the privacy breaches.

Another alternative is to define different levels of privacy, such as k-identity
[21], and compare algorithms sensitivity to privacy breaches under varying levels
of privacy.

Privacy may also come at the expense of the accuracy of the recommendations.
Therefore, it is important to analyze this trade-off carefully. Perhaps the most
informative experiment is when a privacy modification has been added to an
algorithm, and the accuracy (or any other trade-off property) can be evaluated with
or without the modification [51].
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8.3.13 Adaptivity

Real recommender systems may operate in a setting where the item collection
changes rapidly, or where trends in interest over items may shift. Perhaps the most
obvious example of such systems is the recommendation of news items or related
stories in online newspapers [23]. In this scenario stories may be interesting only
over a short period of time, afterwards becoming outdated. When an unexpected
news event occurs, such as the tsunami disaster, people become interested in
articles that may not have been interesting otherwise, such as a relatively old article
explaining the tsunami phenomenon. While this problem is similar to the cold-start
problem, it is different because it may be that old items that were not regarded as
interesting in the past suddenly become interesting.

This type of adaptation can be evaluated offline by analyzing the amount of
information needed before an item is recommended. If we model the recommen-
dation process in a sequential manner, we can record, even in an offline test, the
amount of evidence that is needed before the algorithm recommends a story. It is
likely that an algorithm can be adjusted to recommend items faster once they
become interesting, by sacrificing some prediction accuracy. We can compare two
algorithms by evaluating a possible trade-off between accuracy and the speed of the
shift in trends.

Another type of adaptivity is the rate by which the system adapts to a user’s
personal preferences [46], or to changes in user profile [42]. For example, when
users rate an item, they expect the set of recommendations to change. If the
recommendations stay fixed, users may assume that their rating effort is wasted, and
may not agree to provide more ratings. As with the shift in trends evaluation, we can
again evaluate in an offline experiment the changes in the recommendation list after
adding more information to the user profile such as new ratings. We can evaluate an
algorithm by measuring the difference between the recommendation lists before and
after the new information was added. The Gini index and Shannon entropy measures
discussed in Sect. 8.3.3 can be used to measure the variability of recommendations
made to a user as the user profile changes.

8.3.14 Scalability

As recommender systems are designed to help users navigate in large collections
of items, one of the goals of the designers of such systems is to scale up to real
data sets. As such, it is often the case that algorithms trade other properties, such as
accuracy or coverage, for providing rapid results even for huge data sets consisting
of millions of items (e.g. [15]).

With the growth of the data set, many algorithms are either slowed down or
require additional resources such as computation power or memory. One standard
approach in computer science research is to evaluate the computational complexity
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of an algorithm in terms of time or space requirements (as done, e.g., in [6, 36]). In
many cases, however, the complexity of two algorithms is either identical, or could
be reduced by changing some parameters, such as the complexity of the model,
or the sample size. Therefore, to understand the scalability of the system it is also
useful to report the consumption of system resources over large data sets.

Scalability is typically measured by experimenting with growing data sets,
showing how the speed and resource consumption behave as the task scales up
(see, e.g. [23]). It is important to measure the compromises that scalability dictates.
For example, if the accuracy of the algorithm is lower than other candidates that
only operate on relatively small data sets, one must show over small data sets the
difference in accuracy. Such measurements can provide valuable information both
on the potential performance of recommender systems in general for the specific
task, and on future directions to explore.

As recommender systems are expected in many cases to provide rapid recom-
mendations online, it is also important to measure how fast does the system provides
recommendations [27, 62]. One such measurement is the throughput of the system,
i.e., the number of recommendations that the system can provide per second. We
could also measure the latency (also called response time)—the required time for
making a recommendation online.

8.4 Conclusion

In this chapter we discussed how recommendation algorithms could be evaluated in
order to select the best algorithm from a set of candidates. This is an important step
in the research attempt to find better algorithms, as well as in application design
where a designer chooses an existing algorithm for their application. As such, many
evaluation metrics have been used for algorithm selection in the past.

We describe the concerns that need to be addressed when designing offline and
online experiments and user studies. We outline a few important measurements that
one must take in addition to the score that the metric provides, as well as other
considerations that should be taken into account when designing experiments for
recommendation algorithms.

We specify a set of properties that are sometimes discussed as important for
the recommender system. For each such property we suggest an experiment that
can be used to rank recommenders with regards to that property. For less explored
properties, we restrict ourselves to generic descriptions that could be applied to
various manifestations of that property. Specific procedures that can be practically
implemented can then be developed for the specific property manifestation based on
our generic guidelines.
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Chapter 9
Evaluating Recommender Systems with User
Experiments

Bart P. Knijnenburg and Martijn C. Willemsen

9.1 Introduction

Traditionally, the field of recommender systems has evaluated the fruits of its labor
using metrics of algorithmic accuracy and precision (see Chap. 8 for an overview
of recommender systems evaluation practices). Netflix organized a million-dollar
contest for just this goal of improving the accuracy of its movie recommendation
algorithm [7]. In recent years, however, researchers have come to realize that the
goal of a recommender system extends well beyond accurate predictions; its primary
real-world purpose is to provide personalized help in discovering relevant content
or items [72].

This has caused two important changes in the field. The first change was
incited by McNee et al. [83] who argued that “being accurate is not enough” and
that one should instead “study recommenders from a user-centric perspective to
make them not only accurate and helpful, but also a pleasure to use” (p. 1101).
McNee et al. suggest broadening the scope of research regarding the outcomes of
the evaluation beyond accuracy measures. This suggestion has spawned a research
area that evaluates recommender systems in online user experiments with user-
centric evaluation metrics that span behaviors (e.g. user retention and consumption)
as well as attitudes (e.g. usability, choice satisfaction, and perceived usefulness;
cf. [67, 95]).
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The second change is a broadening of the scope of research regarding the system
aspects to investigate beyond just the algorithm of the recommender. In essence,
recommender systems apply algorithms on user input with the goal of providing
some kind of personalized output. This means that aside from the algorithm, there
are two important interactive components to any recommender: the mechanism
through which users provide their input, and the means by which they receive
the system’s output. Realizing the importance of these interactive components,
McNee et al. [84] suggested that researchers should put more focus on the
“Human-Recommender Interaction” and investigate these interactive components.
Moreover, in his RecSys 2009 keynote Martin emphasized the importance of this
endeavor: he argued that the interactive components of a recommender account for
about 50 % of its commercial success, while he provocatively estimated that the
algorithm accounts for only 5 % [81]. Indeed, research has shown that the preference
elicitation mechanism and the presentation of recommendations have a substantial
impact on users’ acceptance and evaluation of recommender systems as well as their
usage behavior (cf. [19, 67, 96]).

These two changes have gradually evolved the field to take broader perspective
on the user experience of recommender systems [72]. However, the majority of
current research on recommender systems is still primarily focused on creating
better algorithms, and conducts offline machine learning evaluations instead of
“live” user experiments. The contribution of that research is thus limited to claims
about algorithmic accuracy and precision; without performing any user-centric
evaluations it is difficult to extend these claims to the more user-centric objective of
recommender systems: giving users a pleasant and useful personalized experience.

Proper evaluation of the user experience of a recommender system requires
conducting a user experiment,1 either in the form of a lab experiment or a
randomized field trial (which includes—but also extends beyond—conventional
A/B tests). This chapter of the Recommender System Handbook is meant as a
guideline for students and researchers aspiring to conduct user experiments with
their recommender systems, as well as for editors and reviewers of conferences
and journals to evaluate manuscripts. To this end, this chapter will provide both
theoretical and practical guidelines. The theoretical part starts with the description of
the Knijnenburg et al. [67] User-Centric Evaluation Framework for Recommender
Systems. We subsequently use this framework to highlight aspects of recommenders
and their users that could be the object of study. We outline what has already
been tested, and where gaps in the literature exist. In the practical part, we provide
guidelines regarding all the steps involved in setting up, conducting and analyzing
user experiments. The framework will be used there to motivate and illustrate our
practical guidelines.

1We use the term “user experiment” to denote the use of experimental conditions and formal
measurement as a means of testing theories about users interacting with recommender systems.
This as opposed to “user studies”, which are typically smaller observational studies used to
iteratively improve the usability of a recommender system.
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This chapter is meant as a practical primer; a succinct yet comprehensive
introduction to user experiments, motivated by numerous examples of published
recommender systems studies. The reader who is serious about conducting user
experiments is encouraged to continue their learning process beyond this chapter.
To this effect we have listed a number of excellent textbooks in the conclusion of
this chapter.

9.2 Theoretical Foundation and Existing Work

An essential part of conducting a good experiment is to have a good research model
(or descriptive theory, cf. [53]) of how the aspects under evaluation interact (see
Sect. 9.3.1). Such models are usually based on a synthesis of formal theories and
existing research, identifying the unknown parameters, and formulating testable
hypotheses regarding these parameters. To add some structure to the process of
theory development, it is helpful to conceptualize the interaction between users
and recommenders within a theoretical framework. Several of such frameworks
exist (cf. [84, 95]), but we choose to structure this chapter around the Knijnenburg
et al. [67] User-Centric Evaluation Framework for Recommender Systems.

9.2.1 Theoretical Foundation: The Knijnenburg et al.
Evaluation Framework

The Knijnenburg et al. [67] framework consists of two levels (see Fig. 9.1). The top
level is a middle range “EP type” theory2 of how users experience an interactive
information system. A middle range theory is a theory about human behavior that
is applicable in a specific but reasonably generic situation (in this case: in using an
interactive information system). An “EP type” theory is a theory that can be used to
explain (E) the described behavior and to predict (P) how users would behave under
specific circumstances. The theory that comprises the top level of the Knijnenburg
et al. framework combines3 existing theories of attitudes and behaviors [2–4, 37],
technology acceptance [26, 116], and user experience [46, 47]. Specifically, it
describes how users’ subjective interpretation (Subjective System Aspects, or
SSA) of a system’s critical features (Objective System Aspects) influences their

2See [45] for a taxonomy of different types of theory.
3Like Hassenzahl [46, 47], our framework describes the formation of experiences during tech-
nology use rather than the longer-term phenomenon of technology acceptance, but it extends this
model to behavioral consequences using attitude-behavior theories [2–4, 37] (a theoretical structure
that is prominent in technology acceptance models [26, 116]).
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Fig. 9.1 An updated version of the User-Centric Evaluation Framework [67]

experience of (EXP) and interaction with (INT) a system. Note that the top level of
the framework can potentially be applied beyond the field of recommender systems.

The lower level of the Knijnenburg et al. framework is a classification of
recommender system related constructs under these higher level concepts (inspired
by related analysis-type frameworks of recommender system aspects [84, 95, 122]).
These constructs can be used to turn the top-level theory into models for specific
recommender system evaluation studies. The combination of a top level theory and a
lower level taxonomy makes our framework more actionable than [84] (because the
EP type theory provides concrete suggestions for specific research hypotheses) and
more generic than [95] (because the EP type theory is generative, which makes our
framework more easily adaptable to new areas of recommender system research).
The Knijnenburg et al. framework has been put to practice in several published and
unpublished studies, so we will be able to illustrate many of our practical guidelines
with examples from existing applications of this framework.

An updated version4 of the Knijnenburg et al. [67] evaluation framework is
displayed in Fig. 9.1. It represents the user-centric evaluation of recommender
systems as six interrelated conceptual components:

Objective System Aspects (OSAs) As recommender systems are typically
multi-faceted systems, their evaluation should be simplified by considering
only a subset of all system aspects in each experiment. The Objective
System Aspects (OSAs) are the aspects of the system that are currently being
evaluated. The algorithm can be considered as an OSA, but also the input

4The paths from Personal and Situation Characteristics to Subjective System Aspects were added
to the original framework (as presented in [67]) based on insights from various experiments with
the framework.
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(interaction) mechanisms (e.g. the rating scale used to provide feedback on
recommendations) or output (presentation) mechanisms (e.g. the number of
presented recommendations, or their layout).

Subjective System Aspects (SSAs) Although we are ultimately interested in the
effects of OSAs on User Experience (EXP) and Interaction (INT), we need
to consider Subjective System Aspects (SSAs) as mediating variables of these
effects. SSAs are users’ perceptions of the OSAs. SSAs are measured with
questionnaires that participants are asked to complete after (or sometimes during)
their interaction with the system (see Sect. 9.3.4). The measurement of SSAs is
necessary because incremental advances in recommender system aspects (e.g.
algorithms) are often small, and may go unnoticed. SSAs help establish whether
users perceive a certain system aspect, independently of their evaluation of
the aspect. For example, if an improved system does not lead to the expected
increase in user satisfaction, the SSA “perceived recommendation quality” can
be used to find out if users simply did not notice the improvement, or if they
noticed it but did not really like it. SSAs mediate the effects of OSAs on EXP,
thereby explaining how and why OSAs influence EXP, as well as increasing the
robustness of this causal link.

User Experience (EXP) The User Experience factors (EXPs) are users’ self-
relevant evaluations of the qualities of the recommender system. User experience
is also measured with questionnaires. Note that experience can relate to different
aspects of system usage, namely the evaluation of the recommender system itself
(e.g. perceived system effectiveness; system-EXP), the evaluation of the process
of using the system (e.g. expressing preferences, and browsing or choosing
recommended items; process-EXP), or the evaluation of the chosen items (e.g.
choice satisfaction; outcome-EXP). It is important to make these distinctions,
because different OSAs may influence different aspects of the experience.

Interaction (INT) The “final step” in the evaluation of a recommender system
is the users’ interaction with the system (INT). The interaction can be measured
objectively by logging the users’ clicks. Examples are: the number of recom-
mendations inspected by the user, their rating feedback, and the time they spent
using the recommender. Behavior grounds the subjective part of the evaluation
in observable behavior. At the same time, the subjective components provide
explanations for the (sometimes counterintuitive) observed behaviors.

Personal and Situational Characteristics (PCs and SCs) Although the main
objective of most user experiments is to test the effects of OSAs on SSAs, EXPs
and INTs, these outcomes can also be influenced by Personal Characteristics (e.g.
domain knowledge; PCs) and Situational Characteristics (e.g. choice goals; SCs).
PCs and SCs are typically measured by questionnaires,5 and since they are
beyond the influence of the system they can be measured before users interact
with the system.

5In some cases PCs and SCs can be inferred from user behavior, e.g. observing the click-stream
can tell us the market segment a user belongs to [44]. SCs can also be manipulated, e.g. by priming
users to approach the recommender with either a concrete or abstract mindset [71, 120].
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The evaluation framework can be used as a conceptual guideline for developing
hypotheses. It can answer questions like:

Which EXP aspects is this OSA likely to influence? For example, an improved
algorithm may influence users’ evaluation of the recommendations (outcome-
EXP), while a new preference elicitation method is likely to influence the
perceived effectiveness of the recommendation process (process-EXP). Both
may impact users’ satisfaction with the system itself (system-EXP).

Which SSAs can be used to explain these effects? For example, certain algo-
rithms may produce more accurate recommendations, while other algorithms
may increase the diversity of the recommendations. Both may increase user
satisfaction, but for different reasons.

Which PCs and SCs may moderate these effects? For example, users’ liking
of accurate or diverse recommendations may depend on their choice goals (SC).
The most suitable preference elicitation method may depend on users’ domain
knowledge (PC).

Like most theories [2–4, 26, 37, 116], the theoretical top level of the Knijnenburg
et al. [67] evaluation framework is generative: experimenters should see the rela-
tionships between OSA, SSA, EXP, and INT as a blueprint for their own descriptive
models, but define their own set of measurable constructs and manipulations that
are tailored to their experiment. This way, the framework can help answer questions
that are specifically relevant to the system under evaluation.

9.2.2 Overview of Existing User-Centric Work and Promising
Directions

The main contribution of any recommender system user experiment is an empirical
evaluation of how selected OSAs influence the user experience, possibly moderated
by PCs and SCs. To aid the selection of interesting research topics, we provide a
brief overview of OSAs that have been studied in the past, and some promising
directions for future work. When writing a related works section for their own
papers, researchers are advised to also consult other existing overviews of user-
centric research in recommender systems, such as the following:

• Xiao and Benbasat [122] provide a thorough overview and synthesis of 47
empirical user-centric studies on what they call “recommendation agents”.
Their synthesis consists of a conceptual model that served as inspiration for
the Knijnenburg et al. [67] framework. The authors recently updated their
overview [123].

• Pu et al. [96] provide an overview of the state-of-the-art of user-centric recom-
mender systems studies. Their synthesis consists of a number of practical design
guidelines for recommender systems developers (see also Chap. 10).
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• Konstan and Riedl [72] put the rise of user-centric evaluation of recommender
systems into a historical context. They focus on user-centric implications of
technical aspects of recommender systems.

Here we discuss the most commonly researched OSAs of recommender systems.
Envisioning a recommender system as a generic system that processes inputs to
produce outputs, the main OSA categories are the input (preference elicitation),
processing (algorithm) and output (recommendations and the presentation thereof).
Our overview is meant for researchers who wish to evaluate the user experience
of recommender systems. Researchers who wish to use recommender systems as a
vehicle for researching aspects of human decision making are referred to Chap. 18
for a comprehensive overview.

9.2.2.1 Preference Elicitation Methods

The four most common methods recommender systems use to elicit preferences
from users are rating scales, attribute weights, critiques, and implicit behavior.
Rating scales are the most commonly employed method. They vary in granularity
from binary (thumbs up/down), via the most common star ratings (5 stars or 10
half stars), to sliders (any number of steps). Research has shown that users behave
differently depending on the used rating scale [42]. Users seem to prefer the 5-star
and 10-half-star scales [15, 23, 28, 42, 106]. The more granular rating methods are
more effortful, but also provide more information [60]. Regardless of the rating
scale, user-ratings are often inaccurate [5, 100], and helping users with the rating
task can increase their accuracy [87].

Preference elicitation via attribute weights originates from the field of decision
analysis, where multi-attribute utility theory is used as a standard for rational
decision-making [9]. Early work in this area shows that attribute-based recom-
menders result in better decisions and less effort compared to static brows-
ing tools [48]. This benefit is moderated by domain knowledge: only experts
are more satisfied with attribute-based recommenders and their outcomes; for
novices, expressing preferences in terms of needs or examples tends to work
better [65, 66, 98].

Another method to elicit preferences is example critiquing. In this method, users
iteratively provide detailed feedback on example recommendations. Substantial
user-centric work in this area (as summarized in [19]) shows that example critiquing
systems save cognitive effort and increase decision accuracy. Moreover, aiding users
by suggesting critiques seems to improve users’ decision confidence [16]. On the
other hand, Lee and Benbasat [77] show that a preference elicitation method that
highlights trade-offs may increase users’ trade-off difficulty.

A recommender system needs a certain number of ratings before it can produce
accurate recommendations, but not all users may have rated that many items yet; this
is the so-called “cold start problem”. Implicit behavioral feedback such as browsing
or purchase/consumption actions can be used to compute recommendations in such
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cases. In [67] we compared the use of explicit and implicit feedback to calculate
recommendations. The results of this study showed that an implicit feedback
recommender can provide higher-quality recommendations that result in a higher
perceived system effectiveness and higher choice satisfaction. The results also
showed that users perceived the explicit feedback-based recommendations to be
more diverse, though, and diversity is another good quality of recommendation
lists (cf. [120, 121, 126], see also Chap. 26). The best solution is thus to create a
hybrid system that uses both explicit and implicit feedback. Koren et al. [73] show
that such hybrid recommenders are usually more accurate than their implicit and
explicit counterparts (see also Chap. 23). In [65] we show that hybrid recommenders
are especially satisfying and effective for experts; for novices they seem to be too
complex.

Another way to overcome the cold start problem is to encourage users to rate
more items. Work on this topic shows that the best way to get users to rate more
items is to show them the benefit of rating by presenting good recommendations
early on in the interaction [33, 39, 68].

Future work could conduct a more comprehensive evaluation across the listed
preference elicitation paradigms, or explore how the most suitable preference
elicitation method depends not just on users’ personal characteristics [65], but also
on situational characteristics such as users’ current mindset or choice goal.

9.2.2.2 Algorithms

As mentioned in the introduction, algorithms are often evaluated in an offline
setting. More accurate algorithms are often assumed to result in higher quality
recommendations and more effective systems, but this is not necessarily always
the case. For example, McNee et al. [82] found that users rated their most
accurate algorithm as least helpful, and Torres et al. [112] found that users were
most satisfied with their least accurate algorithm. Despite the prevalent opinion
that recommender systems research should move beyond offline evaluations to
user-centric studies [72], surprisingly few research papers about new algorithmic
solutions test the effect of the proposed algorithm on users’ satisfaction (some
exceptions are [25, 29, 31, 99]). Given the results of McNee et al. [82] and Torres
et al. [112], we strongly suggest that algorithm developers test whether the accuracy
improvements of their algorithms translate to a higher user satisfaction.

9.2.2.3 Recommendations and Their Presentation

The composition and presentation of the list of recommendations has a strong effect
on the user experience. Choosing among top recommendations is a difficult task,
and may lead to a phenomenon called “choice overload” [12]. Overcoming choice
overload is one of the main challenges of research on the presentation of recom-
mendations. Longer lists of recommendations may attract more attention [109], but
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are generally harder to choose from [6, 12]. Diversifying recommendations seems
to be a good antidote against choice overload, because diversified lists are attractive
even when short [120, 121, 126]. In fact, non-personalized diversified lists can be
as attractive as personalized recommendations [67]. A steady stream of research
has considered algorithmic solutions to diversifying recommendations [1, 76, 115,
124, 125]. More research needs to be done on whether these algorithmic solutions
indeed result in perceptibly more diverse recommendations, and on whether these
recommendations reduce choice overload and increase user satisfaction.

The layout of the recommendations on the screen determines the amount of
attention users pay to each recommendation. In a vertical list, users pay more
attention to the first few items than to items lower down the list [12], but this decay
is much less when using a grid layout [18]. In a grid layout, items in the top-left
of the grid are taken to be the most relevant [57]. Chen and Tsoi [20] show that if
recommendations are divided over two pages, the items on the second page get very
few clicks. Comparing a list, grid and pie (circular) layout for recommendations,
they find a slight user preference for the pie layout. This layout does however take
up much more space on the screen.

In many commercial recommender systems the recommendations are organized
into distinct categories. Chen and Pu [17] have developed a “Preference-Based
Organization Interface” that uses categories as a basis for critiquing. In their system,
the primary category has the user’s top recommendations, and each other category
explores a trade-off. Hu and Pu [52] show that this kind of categorization increases
the perceived diversity of the recommendations. Beyond this, the categorization
of recommendations has not received much attention in academic research but
consumer research literature [85, 103] suggests that categorization structures the
user’s choice task, and helps to overcome choice overload.

Another challenge for recommender systems is to explain their recommendations
(see [40, 41, 110] for an overview). Explanations can be based on the preferences of
similar users (e.g. “this item was rated highly by users similar to you”), similar items
(e.g. “this is similar to other items you liked”), or attributes/keywords of interest
(e.g. “this has attributes you prefer”). Explanations can be presented textually (e.g.
as a number, keyword, text or tag cloud) or visually (e.g. as a histogram or pie chart).
Research has found that users like explanations [50], and that they increase users’
understanding of the recommendation process [41, 117], their trust in the quality of
the recommendations, and the competence and benevolence of the system [24, 36,
119] (more on credibility and trust can be found in Chap. 20). This in turn increases
their purchase intentions [118] and their intention to return to the system [94].

Which type of explanation works best? Research comparing different types of
explanation strategies has found that explanations based on the preferences of
similar users are persuasive: users tend to overestimate the quality of recommen-
dations explained this way [10, 41, 50]. Item- and keyword-based explanations
produce more accurate expectations [10, 41] and ultimately lead to more satisfac-
tion [41, 108]. Finally, Pu and Chen demonstrate that carefully organizing the list of
recommendations may also be perceived as an implicit explanation [94]. This type
of explanation produces little perceived cognitive overhead.
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Tintarev and Masthoff [111] explore the idea of personalizing explanations
to the user. They show that users tend to like such personalized explanations,
but that these may actually be less effective than generic explanations. Social
recommenders that use a user’s friends instead of anonymous nearest neighbors for
recommendation purposes have an additional opportunity for explanation, as they
can show how recommendations are linked to the preferences of the user’s friends.
In [62] we demonstrate that displaying such a “recommendation graph” increases
the inspectability of the recommendations, and ultimately users’ satisfaction with
the system.

There is no doubt that explaining recommendations is beneficial for the user
experience, because they help users to increase their understanding of the rec-
ommendation process. However, users can also use explanations to justify their
choice among the presented recommendations, which could arguably reduce choice
overload and increase their decision confidence (see Chap. 18). We reiterate the con-
clusion by Konstan and Riedl [72] and Tintarev and Masthoff [111] that future work
should explore how explanations can help to reduce choice overload and otherwise
improve users’ decision-making.

Work on the presentation of recommendations generally considers variants
of the conventional “Top-N” list of recommendations. Alternative uses of rec-
ommendations are becoming more prevalent in practice, though. Examples are
“co-recommendations” (“Users who bought this also bought. . . ” [89, 90]) and
“smart defaults” (recommendations as default settings for yes/no or multiple-option
decisions [61, 105]). The presentation of these types of recommendations has to date
not been investigated in much detail.

9.3 Practical Guidelines

We now turn to the practical part of this chapter, where we provide guidelines
regarding the different steps involved in recommender system user experiments.
Section 9.3.1 (Research Model) deals with developing a research model and
hypotheses for the experiment. Section 9.3.2 (Participants) discusses the recruitment
of test users. Section 9.3.3 (Manipulations) covers the operationalization of hypothe-
ses into different versions of the system and the process of randomly assigning
participants to these versions. Section 9.3.4 (Measurement) explains how to measure
and analyze subjective concepts like satisfaction with questionnaires. Section 9.3.5
(Statistical Evaluation), finally, explains how to statistically test the formulated
hypotheses. The guidelines are illustrated with existing user-centric work in the
recommender systems field where possible.
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9.3.1 Research Model

The goal of a user experiment is to test the effect of some Objective System Aspect
(OSA) on the user’s Experience (EXP) and Interaction (INT). The Knijnenburg
et al. [67] framework suggests that such effects are mediated by Subjective System
Aspects (SSAs), and possibly moderated by Personal and Situational Characteristics
(PCs and SCs). Before conducting the experiment, the specific constructs and their
expected interrelations should be presented as a research model consisting of a set
of testable hypotheses. Each hypothesis consists of an independent variable and a
dependent variable. Hypotheses are predictions about how the independent variable
influences the dependent variable (and optionally, how a moderating variable
qualifies this effect).

9.3.1.1 Determining Which OSAs Will Be Tested

The first step in developing a research model is to determine which OSAs will be
tested. In a typical experiment the OSAs are manipulated independent variables (see
Sect. 9.3.3): their presence, operation or appearance is altered between different
experimental conditions, but these conditions are exactly the same otherwise
(similar to A/B testing). This concept of ceteris paribus (“all else remains the same”)
is important, because it allows the researchers to trace differences in outcomes
between conditions back to the manipulated OSA. If aside from the manipulated
OSA other aspects differ between conditions as well, then these aspects are said to
be confounded with the OSA: it is then impossible to determine whether the OSA
or any of these other aspects caused the difference in outcomes.

For example, in [68] we manipulated the algorithm by testing a system with
an SVD algorithm against the same system that was altered to select random
items as recommendations. The items were labeled as “recommendations” in both
conditions. If we had given the items different labels in each condition (e.g. “random
items” and “recommendations”), then the labeling would have been confounded
with the algorithm itself. That is, if users judged the recommendations to have
a higher quality, this could be either because they indeed had a higher quality,
or because the “recommendations” label simply made users think that they had a
higher quality. By having the same label for the random items, we ruled out the
latter explanation.

9.3.1.2 Selecting Appropriate Outcome Measures (INT and EXP)

The second step in developing a research model is to select appropriate outcome
measures (dependent variables). These are typically a combination of observed
behaviors (INT) and questionnaire-based feedback (EXP). Although industry exec-
utives are typically most interested in objective outcomes that influence conversion
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rates (i.e. INT), there are reasons why the inclusion of EXP variables is beneficial
for industry and academic researchers alike. First of all, users’ behavior is often
influenced by external factors (e.g. purchases may be gifts rather than a reflection
of the user’s taste; time on a page may be influenced by their Internet connec-
tion speed), so the effects of OSAs on INT are less robust than on EXP. More
importantly, studies that test behavioral variables only (i.e. conventional A/B tests)
can detect behavioral differences, but they often say very little about how and why
the behavioral difference occurred. The explanation of behavioral effects is what
drives scientific discovery and sound corporate decisions, and a carefully selected
combination of EXP and INT variables can provide such explanations.

Knijnenburg et al. [68] provides a good example of the importance of including
both EXP and INT variables in an experiment. Looking only at the behavioral
outcomes of this study, one would come to the conclusion that the system with
the SVD algorithm resulted in a shorter total viewing time and fewer clips clicked
than the system with random recommendations. This result may be counterintuitive,
until one includes perceived system effectiveness as a mediating EXP variable: The
system with the SVD recommender is perceived as more effective, which manifests
in less need for browsing, and hence a shorter viewing time and fewer clips clicked.
Only after incorporating both EXP and INT variables were we able to explain that
the SVD recommender system is indeed effective.

Experiments that measure EXP variables require that the researchers administer
questionnaires, which limits the scale of such experiments compared to conventional
A/B tests. As such, A/B tests can more effectively test the behavioral effects of a
large number of OSAs simultaneously (these tests are more appropriately called
“multivariate tests”). The optimal test plan therefore involves both: A/B tests are
used to discover interesting effects, while user experiments with questionnaires can
follow up these tests to explain how and why these interesting effects come about.

Generally speaking, a well-rounded research effort should use a combination
of INT and EXP variables: the EXP variables explain differences in participants’
behavior, while the INT variables “ground” the user experience in observable
behavior.

9.3.1.3 Explaining the Effects with Theory and Mediating
Variables (SSAs)

The inclusion of EXP variables alone is not always sufficient to explain how and
why users are more satisfied or behave differently between conditions. Moreover,
even if one can demonstrate that a certain OSA makes users more (or less) satisfied,
there needs to be a compelling argument about whether this finding is generalizable,
or rather just a one-off event. A theory that explains the hypothesized effects of a
study more thoroughly can provide a sense of its generalizability [45]. In this regard,
researchers can consult existing theories of user experience [46, 47], technology
acceptance [26, 116], attitudes and behaviors [2–4, 37], or the theory of how users
experience technology embedded in the Knijnenburg et al. [67] framework.
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Just having a theory for the hypothesized effects is not enough, though; the
experiment can (and should) confirm these theories. In the words of Iivari [53],
this means translating the conceptual level theories to the descriptive level, which
involves not only developing hypotheses regarding expected effects of the OSA on
INT and EXP variables, but also hypotheses that explain how and why these effects
come about.

A theory can also help in fine-tuning experimental conditions to rule out
alternative explanations. For example, choice overload theory suggests that choice
overload is moderated by the diversity of an item set, independent of its quality
and size [34, 103]. In Willemsen et al. [120, 121] we therefore took care to
increase the diversity of the recommendations without reducing their quality, and
we manipulated the size of the item set independently from the diversity.

Another way to test theoretical explanations is to include mediating SSA
variables in the research model. These SSAs serve both as a dependent variable
(in the hypothesized effect of OSA ! SSA) and an independent variable (in
the hypothesized effect of SSA ! EXP). For example, experiment FT4 in [67]
tested two matrix factorization algorithms, one using explicit feedback (MF-E)
and the other using implicit feedback (MF-I), against a system that recommended
the (non-personalized) most popular items. The results ([67], Fig. 9) showed that
both algorithms (OSAs) result in a more effective system (EXP) than the non-
personalized version, but that the reason for this differs per algorithm. Specifically,
the MF-I recommendations are perceived to have a higher quality (OSA! SSA),
and these higher quality recommendations eventually result in a more effective
system (SSA! EXP). On the other hand, the MF-E recommendations are perceived
to be more diverse (OSA! SSA), and these diverse recommendations are perceived
to have a higher quality (SSA ! SSA) and thus result in a more effective system
(SSA ! EXP). The mediating SSAs explain the different reasons why each
algorithm leads to a more effective system.

Finally, it may happen that the outcome variable does not differ between OSA
conditions. In some cases, a theoretical examination may point out that different
underlying effects could be counteracting each other, effectively cancelling out the
total effect of the OSA. One can then demonstrate this theoretical phenomenon by
measuring these underlying causes and including them as mediating variables in the
research model.

For example, in Bollen et al. [12] we showed that there was no effect of the
experimental conditions on overall choice satisfaction, but we were still able to
demonstrate the phenomenon of “choice overload” by incorporating the mediating
variables item set attractiveness and choice difficulty. Specifically, the results
showed that more attractive item sets led to higher choice satisfaction, but that
attractive sets were also more difficult to choose from, which in turn reduced
choice satisfaction. We thereby demonstrated that good recommendations do not
always lead to higher choice satisfaction due to choice overload. Similarly, Nguyen
et al. [87] showed that the increased effectiveness of rating support by means of
providing exemplars was limited, because it was counteracted by increased difficulty
of using this type of support, compared to a baseline rating scale.
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9.3.1.4 Include PCs and SCs Where Appropriate

The final step in developing a research model is to determine which PCs and SCs
may influence the outcome variable. Incorporating these aspects into the experiment
will increase the robustness of the results, so they should be considered even though
they are typically beyond the influence of the system.

In some cases, the effect of the OSA on the outcome variable is hypothesized
not to hold universally, but only for a specific type of user or in a specific situation.
In that case, this PC or SC is said to moderate the effect of the OSA on the outcome.
Measuring the PC or SC is then crucial to determine the true effect of the OSA.

For example, in [66] we argued that domain novices and experts use different
strategies to make decisions, and that their ideal recommender system would
therefore require different preference elicitation methods. Our results demonstrated
that novices were indeed more satisfied with a case-based preference elicitation
method, while experts were more satisfied with an attribute-based preference
elicitation method.

9.3.1.5 Practical Tip: Never Formulate a “No Effect” Hypothesis

It is important to note that with every hypothesis comes a null hypothesis, which
argues the absence of the effect described in the hypothesis. For example:

H0: There is no difference in perceived recommendation quality between algo-
rithm A and algorithm B.

H1: Participants perceive the recommendation quality of algorithm A to be higher
than algorithm B.

It is common practice in scientific writing to only state H1 and leave the null
hypothesis implicit. Statistical evaluations can never directly “prove” H1, but they
can support it by rejecting H0 [38]. Importantly though, the absence of support for
H1 does not mean that H0 is supported instead. In other words, if the aforementioned
H1 is not supported, one cannot claim that there is no difference in perceived
recommendation quality between algorithm A and B, only that the current study
did not find such an effect. In fact, providing support for the absence of an effect
is very difficult to do statistically [11]. Researchers are therefore advised to never
formulate a “no effect” hypothesis. Experiments should always be set up in such
a way that differences (not equalities) between experimental conditions prove the
underlying theory.

9.3.2 Participants

Finding participants to take part in the experiment is arguably the most time-
consuming aspect of conducting a user experiment. Participant recruitment involves
a tradeoff between gathering a large enough sample for statistical evaluation,
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and gathering a sample that accurately reflects the characteristics of the target
population. Both considerations are discussed below.

9.3.2.1 Sampling Participants

Ideally, the sample of participants in the experiment should be an unbiased (random)
sample of the target population. Creating a truly unbiased sample is practically
impossible, but if one aspires to extrapolate the study results to real-world situations,
then the participants should resemble the users (or potential users) of the tested
system as closely as possible.

To avoid “sampling bias”, certain practices should be avoided. For example, it is
very tempting to ask colleagues, students or friends to participate, but these people
will arguably have more knowledge of the field of study than an average user. They
may even know what the experiment is about, which may unconsciously cause them
to behave more predictably. Your colleagues and friends may also be more excited
about the experiment, and they may want to please you, which may lead to socially
desirable answers [91, 107]. It is better when participants are “blind”, i.e. when they
have no “special” connection to the researcher, the system, or the experiment.

Another practice to avoid is to post a link to the study to one’s Facebook or
Twitter account, and ask for reposts/retweets. Again, the first-degree participants
will have a connection with the researcher, and should therefore be discarded.
Participants who responded to the reposts/retweets will be more likely to resemble
“blind” users, but extra checks should be performed on them since they are recruited
via a “snowball sampling method” [32, 49, 78, 101].

Participant recruitment messages should be phrased carefully, because their
framing may influence who participates in the study and how participants approach
the tested system. It is generally better to give a generic description of the study to
avoid bias. Specifically, the description should focus on the task (“Test this music
recommender and answer a questionnaire”) rather than the purpose of the study
(“We are studying users’ privacy perceptions of a recommender system”). Avoid
technical terms, otherwise non-expert users may feel they are not knowledgeable
enough to participate (note that even the term “recommender system” itself may not
be common parlance for some potential users). Also make sure that the experiment
works in all major browsers (even older versions) and on both laptops and tablets.

In some cases it makes sense to limit participation in the experiment to a
specific subset of users, especially when some users cannot be given a meaningful
experience. For example, in [62] we tested the inspectability and control of
social recommenders using TasteWeights, a music recommender that uses overlap
between Facebook users’ music likes and their friends’ music likes to calculate
recommendations. We limited participation in this experiment to Facebook users
with sufficient overlap between their own music likes and those of their friends.
Users with insufficiently overlapping profiles were asked to either add more music
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likes or leave the study. We argued that this was admissible because a real system
would likely do something similar. At the same time though, this meant that our
conclusions would only hold for eligible users, and not for the population at large.

9.3.2.2 Determining the Sample Size

User experiments need a reasonable sample size (often reported as N) to allow
robust statistical evaluation of the hypotheses. Increasing the number of participants
increases the statistical power of the experiment. Statistical power is the likelihood
of detecting an effect of certain size in a sample, given that the effect indeed exists in
the population. To determine the required sample size, researchers should perform a
power analysis [22, 35] using an estimate (based on previous work) of the expected
effect size of the hypothesized effects and an adequate power level (usually 85 %). In
recommender systems research manipulations typically have small effects (causing
differences of about 0.2–0.3 standard deviations in the dependent variables) and
occasionally medium-sized effects (differences of around 0.5 standard deviations).
To detect a small effect (0.3 SD) with a power of 85 % in a between-subjects
experiment, 201 participants are needed per experimental condition. To detect a
medium-sized effect (0.5 SD), 73 participants are needed per condition. Within-
subjects experiments need far fewer participants: 102 to detect small effects, and
38 to test medium-sized effects. Note, though, that there are additional sample
size requirements for advanced statistical procedures like Factor Analysis (see
Sect. 9.3.4.2) and Structural Equation Modeling (see Sect. 9.3.5.3).

The results of “underpowered” studies should be mistrusted, even if they are
statistically significant. Due to low power, it is very likely that the experimenters
simply “got lucky” and found a spurious effect [88]. And even if the reported effects
are real, the effect sizes are inevitably overstated. Moreover, a low N means that the
study may not have an inductive base that is wide enough to generalize the findings
to the entire population, because small samples are likely to be biased.

For example, one of the first user-centric evaluations of a recommender system,
conducted by Sinha and Swearingen [104], employs only 19 participants. Even
though the authors find some significant results, the study is severely underpowered
so the conclusions cannot be generalized beyond this specific sample: the large
effect sizes reported are likely to be much smaller (if not absent) in the population.

9.3.2.3 Practical Tip: Run Your Studies on a Crowd-Sourcing Platform

In the past, participants were often recruited through volunteer panels painstakingly
built by universities, or through expensive consumer research panels managed
by marketing firms. This has changed with the rise of classified advertisements
and crowd-sourcing websites such as Craigslist and Amazon Mechanical Turk.
Craigslist allows researchers to post user experiments in various cities under
Jobs > Etcetera, and is very convenient for creating a geographically balanced
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sample. Amazon Mechanical Turk6 is often used for very small tasks, but Turk
workers appreciate more elaborate survey studies. A benefit of Mechanical Turk
is that it has anonymous payment facilities. Requesters can set certain criteria for
workers that are allowed to participate, and experience has shown that it is good
practice to restrict participants to U.S. workers with a high reputation [58, 92].

In our experience, the demographics of Craigslist and Mechanical Turk partici-
pants reflect the general Internet population, with Craigslist users being a bit higher
educated and more wealthy. Turk workers are less likely to complain about tedious
study procedures, but are also more likely to cheat [30]. Ample attention and quality
checks can prevent cheaters from affecting the results. It is good practice to include
a contact email address as well as an open feedback item in the study to catch
unexpected problems with the experiment.

9.3.3 Experimental Manipulations

In a typical user experiment, one or more OSAs are manipulated into two or more
experimental conditions following the ceteris paribus principle (see Sect. 9.3.1).
OSAs can be manipulated in various ways. One can turn the OSA on or off
(e.g. display predicted ratings or not), test different versions of the OSA (e.g.
implicit versus explicit preference elicitation), or test several levels of the OSA
(e.g. display 5, 10 or 20 recommendations). This section explains how to create
meaningful experimental conditions, and how to randomly assign participants to
them.

9.3.3.1 Selecting Conditions to Test

The goal of many user experiments is to demonstrate the superiority of some
new invention: a new algorithm, preference elicitation method, or recommendation
display technique. In such experiments, the condition with the new invention (called
the treatment condition) should be tested against a reasonable baseline condition.
A baseline should be included even when several treatment conditions are compared
against each other, because the baseline condition links the study conditions to the
status quo in recommender systems research.

Selecting a baseline can be difficult. For example, one could compare a rec-
ommender system against a non-personalized system, but the results of such an
unbalanced comparison are usually unsurprising [114]. On the other hand, recom-
mender systems are definitely not always better than their non-personalized variant,
so a comparison with a non-personalized system may very well be justified when

6Mechanical Turk is currently only available for researchers in the United States, but various
alternatives for non-US researchers exist.
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testing a recommender in a new domain [21]. Another option is to test against the
state-of-the-art (e.g. what has proven to be the best algorithm, preference elicitation
method, or recommendation display technique in previous work).

Not all manipulations consist of a specific baseline and treatment condition.
Sometimes (especially when the experiment focuses on the users’ interaction with
the recommender system rather than some new invention) there is no accepted
baseline. A range of plausible conditions should then be considered in a way that
maximizes the opportunity for the effect to occur, while staying within the realm
of plausibility. For example, testing a recommendation list length of 5 versus 300
recommendations is likely to produce a choice overload effect, but finding choice
overload in lists of more plausible lengths (e.g. 20 items) is practically much more
useful. Making the manipulation too subtle (e.g. testing lists of 5 versus 6 items)
may not produce a choice overload effect, or the effect may be so small that many
more participants are needed to detect it.

9.3.3.2 Including Multiple Manipulations

The simplest user experiment includes a single manipulation with two experimental
conditions. One can also create multiple experimental conditions per manipulation,
e.g. when manipulating recommendation list length one can test lengths of 5, 10 and
20. It is also possible to manipulate multiple OSAs in a single experiment, and this is
especially interesting when these OSAs are expected to have an interaction effect on
the outcome variables. Interaction effects occur when a certain manipulation has an
effect in certain condition(s) of the other manipulation, but no effect (or the opposite
effect) in the other condition(s) of the other manipulation.

For example, in [120] we showed that high-diversity recommendations were
perceived as more attractive, were easier to choose from, and led to higher
system satisfaction than low-diversity recommendations, but only for short rec-
ommendation lists (5 recommendations). In longer lists, there was no difference
between high- and low-diversity recommendations. We concluded that giving users
recommendation lists that are both short and diverse could reduce choice overload.

When multiple OSAs are considered simultaneously like in the example above,
these OSAs should be manipulated independently, or orthogonally by creating an
instance of the system for each possible combination of conditions. The example
above considered a 2-by-3 experiment (2 levels of diversity, 3 list lengths), which
resulted in 6 experimental conditions.

9.3.3.3 Setting Up Between-Subjects or Within-Subjects Randomization

There are essentially three ways in which participants can be assigned to experimen-
tal conditions. In a between-subjects experiment, participants are randomly assigned
to one of the experimental conditions. A benefit of between-subjects experiments is
that the manipulation remains hidden from the participant, since each participant
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sees only one condition. This also makes the experiment more realistic, because
users of real systems usually also only see a single version of the system. The
averages of outcome variables are compared between conditions to see if the OSA
had an effect on the outcomes. By assigning participants to conditions randomly,
any differences between participants are leveled out. These differences can still
cause random fluctuations in the outcomes, though, which is why between-subjects
experiments typically need a larger N to attain an adequate level of statistical power.

Our study on different interfaces for an energy-saving recommender [65] is
a good example of a between-subjects experiment. In the experiment different
preference elicitation methods are tested, and users’ satisfaction with the chosen
energy-saving measures is an important outcome variable in the experiment. Having
participants go through the same process of choosing energy-saving measures
several times would have been rather weird, and users would have been able to
guess the purpose of the different preference elicitation methods, which could have
affected the results. With 5 conditions and a number of moderating PCs, the 147
participants recruited for this study were a bare minimum, though.

In a sequential within-subjects experiment, participants interact with both exper-
imental conditions, one at a time. A benefit of within-subjects experiments is that
differences in outcomes can be compared for each participant, which effectively
eliminates the between-participant variability. As a result, fewer participants are
needed to attain an adequate level of statistical power. A downside is that partic-
ipants may be able to guess the experimental manipulation, and that repeating the
same experiment several times may feel unnatural. Moreover, participants may react
differently the second time they walk through the experiment. Randomizing the
order in which participants see the conditions prevents the order from becoming
confounded with the condition in the overall analysis.

In [121] we provide a good example of a within-subjects manipulation. In
that study we tested three levels of diversification of the recommendations. The
three different recommendation lists were presented in random order. Other than
containing different items, the lists showed no apparent differences, so it was not
possible for participants to guess the purpose of the study. Moreover, the presented
lists were sufficiently different that the task of selecting an item from the list did not
feel repetitive. Due to the within-subjects setup, the study was able to detect subtle
differences between conditions. The study additionally manipulated the list length
between-subjects, but no differences between length conditions (or interactions with
diversification) were found.

Pu and Chen [94] also use a within-subjects manipulation, to test two different
presentation techniques for recommendations. Each participant completes two
tasks, one with each presentation technique. To avoid repetitiveness, the tasks
involve different recommendation domains (digital cameras and notebooks). The
presentation order of domains and techniques are manipulated between-subjects in
a 2-by-2 setup; this cancels out any order- and task-effects. They then compare the
presentation techniques using within-subjects tests.

In a simultaneous within-subjects experiment, participants experience all condi-
tions at the same time. This allows participants to compare the different conditions
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and choose which one they like best. This again reduces between-participant
variability, and also avoids order effects. Note though that the position of experimen-
tal conditions should be randomized, because we do not want to confound condition
with position on the screen. The advantage of this method is that it can detect very
subtle differences between conditions. The downside is that showing two conditions
simultaneously is obviously a far cry from a realistic usage scenario.

As an example of a simultaneous within-subjects experiment, Ghose et al. [43]
considered a novel ranking algorithm for a hotel and travel search site based
on crowd-sourced content. Their study pairs the proposed algorithm with several
different baseline algorithms. Each pair is tested as a simultaneous within-subjects
experiment, where the two rankings produced by the proposed algorithm and the
baseline algorithm are presented side-by-side, and users choose which ranking they
prefer. The results show that their proposed algorithm is significantly preferred over
13 different baselines in six different cities. On average, twice as many participants
prefer the recommendations of the proposed algorithm to the baseline.

Ekstrand et al. [31] also conducted a simultaneous within-subject design, and
they chose this design because they were interested in detecting subtle differences
between two recommendation lists produced by common algorithms (user-user,
item-item and SVD). Like Ghose et al. [43] Users were asked which list they
preferred, but also to indicate perceived differences between the lists in terms of the
relative satisfaction, novelty and diversity. Importantly, Ekstrand et al. were able to
link these perceived differences to objective measures of recommendation quality
(e.g., perceived novelty was predicted by popularity rank). The results show that
novelty (which was highest for the user-user algorithm) had a negative effect on
satisfaction and preference for a list, whereas diversity showed a positive effect.

Increased realism is the main reason why between-subjects experiments are more
appropriate than within-subjects experiments in most recommender system studies.
Note, however, that even a between-subjects experiment is not completely natural:
participants know that they are part of an experiment, and may therefore behave
differently. This is called the Hawthorne effect [75]. In experiments that involve
real systems, the Hawthorne effect can be detected by comparing the behavior
of participants in (the baseline condition of) the experiment with the behavior of
participants in the real system (or in an A/B test). If behaviors are substantially
different, this is likely due to the Hawthorne effect.

9.3.3.4 Practical Tip: Think Big, Start Small

Designing experimental manipulations often involves difficult trade-offs. With
several orthogonal manipulations with multiple variants each, the number of
experimental conditions will grow exponentially. Since the number of participants
needed to attain a certain level of statistical power grows linearly with the number
of conditions, it is advisable to keep the number of conditions low.
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The best strategy is therefore to think big, but start small: write down all possible
versions of all OSAs that are relevant to the study in an experiment plan, but then
start investigating the manipulation that seems most likely to cause an effect. If this
experiment indeed detects the effect, subsequent experiments can be conducted to
test different levels of the manipulation, or to include additional manipulations that
may moderate (i.e. interact with) the existing effect.

In [16], for example, Chen and Pu identified several OSAs that may influence the
effectiveness and usability of critiquing-based recommender systems: the number of
recommendations presented in the first round of preference elicitation, the number
of alternatives presented after each round of critiquing, and whether the user initiates
the critiquing or the system suggests critiques (for both unit critiques and compound
critiques). They systematically explored these parameters in a series of 2-condition
experiments. By keeping the setup of the experiments consistent, they were even
able to make comparisons across experiments.

Consistent with the “think big, start small” mantra, it is in some cases perfectly
acceptable to simplify a system to increase experimental control. For example,
the original TasteWeights system [14] allows you to inspect connections between
liked items, friends, and recommendations, and control the weights of both liked
items and friends. In our user experiment of this system [62] we wanted to test the
influence of these features separately, so we split the interaction into two steps: a
control step and an inspection step. This allowed us to manipulate the control and
inspection OSAs independently, which resulted in a much “cleaner” experimental
design.

9.3.4 Measurement

In this section we present best practices for measuring perceptions (SSAs), expe-
riences (EXPs) and personal and situational characteristics (PCs and SCs) using
questionnaires. Most importantly, we give the reader a practical example of
performing a Confirmatory Factor Analysis (CFA) using MPlus,7 a state-of-the-art
statistical software package, and Lavaan8 a package for R that has many of the same
features.

9.3.4.1 Creating Measurement Scales

Due to their subjective nature, measuring perceptions, experiences, and personal
and situational characteristics is not as easy as it may seem. Whereas objective
traits can usually be measured with a single question (e.g. age, income), this is not

7http://www.statmodel.com/.
8http://lavaan.ugent.be/.

http://lavaan.ugent.be/
http://www.statmodel.com/


330 B.P. Knijnenburg and M.C. Willemsen

advisable for subjective concepts. Single-item measurements such as “On a scale
from 1 to 5, how much did you like this system?” are said to lack content validity:
each participant may interpret the item differently. For example, some may like the
system because of its convenience, others may like it because of its ease of use, and
again others may like it because the recommendations are accurate. These different
interpretations reduce the precision and conceptual clarity of the measurement.

A better approach is to create measurement scales consisting of multiple items9;
at least 3 but preferably 5 or more. This is a delicate process that usually involves
multiple iterations of testing and revising items. It is advisable to first develop
around 10–15 items and then reduce it to 5–7 through discussions with domain
experts and comprehension pre-tests with test subjects. One to two additional items
may still be discarded during the analysis of the actual study results.

The items in most user experiments are phrased as statements (e.g. “The system
was easy to use”) to which participants are asked to express their agreement on
a 5- or 7-point scale (from “strongly disagree” to “strongly agree”). Studies have
shown that participants find such items easy to answer. There are a few additional
tips for designing good questionnaire items:

• Invest a lot of time in deciding upon a clear definition of the construct to be
measured, and check for each item whether it fits the construct definition.

• Include both positively and negatively phrased items. This will make question-
naires less leading, and allows one to explore the flipside of the construct. It
also helps to filter out participants who do not carefully read the items. However,
avoid the word “not”, because it is too easily overlooked.

• Study participants may not have a college degree, so their reading level may be
low. Use simple words and short sentences to aid comprehension. Like with the
recruitment message, try to avoid technical terms.

• Avoid double-barreled questions. Each item should measure only one thing at a
time. For example, if a participant found the system fun but not very useful, they
would find it hard to answer the question “The system was useful and fun.”

As mentioned, it is a good idea to pre-test the questionnaire items with experts;
they can give advice on how to accurately define the concept to be measured, and
on whether the proposed questionnaire items cover all aspects of the concept. Fur-
thermore, comprehension pre-tests can be conducted to test how well participants
understand the questionnaire items. A comprehension pre-test invites participants to
read the questionnaire items aloud and to explain their reasoning while answering
the questions. Their think-aloud answers can highlight questionnaire items that are
unclear or interpreted incorrectly.

9Or, multiple measurement scales for the different constructs (e.g. system satisfaction, ease of use,
and recommendation quality), each measured with multiple items.
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9.3.4.2 Establishing Construct Validity

Once a set of items has been developed that accurately reflects the concept to be
measured (i.e. content validity is established), the next step is to establish construct
validity, i.e. to make sure that the items comprise a robust and valid measurement
scale. For the purpose of statistical analysis, each multi-item measurement scale
has to be turned into single variable. Summing the item scores may seem like the
most straightforward way of doing this, but Confirmatory Factor Analysis (CFA)
is a more sophisticated solution that not only creates the measurement variable but
also tests some of the preconditions for construct validity along the way.

Listings 9.1 and 9.2 show example input of a CFA as ran in MPlus and
Lavaan. The output of these tools is very similar, so we present it for MPlus only
(Listing 9.3). The example CFA is based on an experiment with a social network
based music recommender system [62]. This system employs an innovative graph-
based interface that shows how the users’ Facebook music “likes” overlap with
their friends’ music “likes”, and how these friends’ other music “likes” are in
turn used to create a set of recommendations. In the graph, users can trace back
each recommendation to the friends that “liked” that item, and to the overlapping
“likes” that caused these friends to be part of the user’s nearest-neighborhood.
We argued that this graph would provide a good justification for the recommenda-
tions, thereby increasing the perceived recommendation quality (quality) and the
understandability of the recommender system (underst). Moreover, we allowed
users to control either the weights of their “likes” or the weights of their friends,
and we argued that this would influence their perceived control (control). Finally,
we argued that perceived recommendation quality, understandability, and control
would ultimately increase users’ satisfaction with the system (satisf).

The CFA validates the four subjective measurement scales of the experiment.
Each scale is represented by a latent factor, with each item loading on its designated
scale (MPlus: lines 8–11, Lavaan: lines 2–5). The output shows the loadings of
the items on the factors (lines 1–30), which are proportional to the extracted
variance (lines 42–67). The factors may be correlated with each other (lines
32–40). The solution has no standard scale, so we include code (MPlus: line
12, Lavaan: lines 6–9) to give the factors a standard deviation of 1 and a mean
of 0.10 We also declare all items as ordered categorical (MPlus: line 6, Lavaan:
line 12), because they are measured on a 5-point scale. Otherwise, the items
would be treated an interval scale, which would assume that the difference between
“completely disagree” (1) and “somewhat disagree” (2) is the same as the difference
between “neutral” (3) and “somewhat agree” (4). MPlus and Lavaan model ordered
categorical variables in a way that does not make this assumption.

10MPlus and Lavaan use a different parameterization by default by fixing the loading of the first
item to 1. We free up these loadings by including an asterisk after (MPlus) or NA* before (Lavaan)
the first item of each factor. This alternative solution conveniently standardizes the factor scores.
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Listing 9.1 CFA input, MPlus

1 DATA: FILE IS twc.dat; !specify the data file
2 VARIABLE: !list the variable names (columns in the data file)
3 names are s1 s2 s3 s4 s5 s6 s7 q1 q2 q3 q4 q5 q6
4 c1 c2 c3 c4 c5 u1 u2 u3 u4 u5 cgraph citem cfriend;
5 usevariables are s1-u5; !specify which vars are used
6 categorical are s1-u5; !specify which vars are categorical
7 MODEL: !specify each factor as [factorname] by [vars]
8 satisf by s1* s2-s7; !satisfaction
9 quality by q1* q2-q6; !perceived recommendation quality

10 control by c1* c2-c5; !perceived control
11 underst by u1* u2-u5; !understandability
12 satisf-underst@1; !set the std. dev. of each factor to 1

Listing 9.2 CFA input, Lavaan (R package)

1 model <- ’ #specify each factor as [factorname] =� [vars]
2 satisf =� NA*s1+s2+s3+s4+s5+s6+s7 #satisfaction
3 quality =� NA*q1+q2+q3+q4+q5+q6 #perceived rec. quality
4 control =� NA*c1+c2+c3+c4+c5 #perceived control
5 underst =� NA*u1+u2+u3+u4+u5 #understandability
6 satisf �� 1*satisf #set the std. dev. of each factor to 1
7 quality �� 1*quality
8 control �� 1*control
9 underst �� 1*underst

10 ’;
11 fit <- sem(model, data=twc, #specify the dataset
12 ordered=names(twc)); #specify which vars are categorical
13 summary(fit, rsquare=TRUE); #produce model fit and R^2 values

Listing 9.3 CFA output

1 MODEL RESULTS
2 Two-Taile
3 Estimate S.E. Est./S.E. P-Value
4 SATISF BY
5 S1 0.887 0.018 49.604 0.000
6 S2 -0.885 0.018 -48.935 0.000
7 S3 0.770 0.029 26.982 0.000
8 S4 0.821 0.025 32.450 0.000
9 S5 0.889 0.018 50.685 0.000

10 S6 0.788 0.031 25.496 0.000
11 S7 -0.845 0.022 -38.426 0.000
12 QUALITY BY
13 Q1 0.950 0.013 72.837 0.000
14 Q2 0.949 0.013 73.153 0.000
15 Q3 0.942 0.012 77.784 0.000
16 Q4 0.805 0.033 24.332 0.000
17 Q5 -0.699 0.042 -16.700 0.000
18 Q6 -0.774 0.040 -19.428 0.000



9 Evaluating Recommender Systems with User Experiments 333

19 CONTROL BY
20 C1 0.711 0.038 18.653 0.000
21 C2 0.855 0.024 35.667 0.000
22 C3 0.906 0.022 41.704 0.000
23 C4 0.722 0.037 19.276 0.000
24 C5 -0.425 0.056 -7.598 0.000
25 UNDERST BY
26 U1 -0.568 0.048 -11.745 0.000
27 U2 0.879 0.019 46.539 0.000
28 U3 0.748 0.031 24.023 0.000
29 U4 -0.911 0.020 -46.581 0.000
30 U5 0.995 0.014 70.251 0.000
31 QUALITY WITH
32 SATISF 0.686 0.033 20.541 0.000
33 CONTROL WITH
34 SATISF -0.760 0.028 -26.962 0.000
35 QUALITY -0.648 0.040 -16.073 0.000
36 UNDERST WITH
37 SATISF 0.373 0.049 7.581 0.000
38 QUALITY 0.292 0.059 4.932 0.000
39 CONTROL -0.396 0.051 -7.736 0.000
40
41 R-SQUARE
42 Observed Residual
43 Variable Estimate Variance
44 S1 0.788 0.212
45 S2 0.783 0.217
46 S3 0.593 0.407
47 S4 0.674 0.326
48 S5 0.790 0.210
49 S6 0.622 0.378
50 S7 0.714 0.286
51 Q1 0.903 0.097
52 Q2 0.901 0.099
53 Q3 0.888 0.112
54 Q4 0.648 0.352
55 Q5 0.488 0.512
56 Q6 0.599 0.401
57 C1 0.506 0.494
58 C2 0.731 0.269
59 C3 0.820 0.180
60 C4 0.521 0.479
61 C5 0.180 0.820
62 U1 0.322 0.678
63 U2 0.772 0.228
64 U3 0.560 0.440
65 U4 0.831 0.169
66 U5 0.990 0.010

As mentioned earlier, an advantage of using CFA over simply summing the
item scores is that it can help establish the construct validity of the measurement
scales. Specifically, CFA can be used to establish convergent and discriminant
validity. Convergent validity determines whether the items of a scale measure a
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single construct (i.e. that the scale is not a combination of multiple constructs, or
simply a collection of items with no common ground), while discriminant validity
determines whether two scales indeed measure two separate constructs (i.e. that two
scales are not so similar that they actually measure the same construct).

Convergent validity is said to hold when the average variance extracted (AVE)
from the items measuring the factor is larger than 0.50. Beyond that, a higher AVE
indicates more precise measurement. The AVE can be calculated by averaging the
R2 values for all items of a factor (e.g., lines 54–60 for satisf and lines 61–66
for quality). The AVE can be improved by iteratively removing items with low
loadings. Doing this for the presented data removes items C5, U1 and U3 from
the model, respectively. Bear in mind that at least three items should remain per
factor, because a factor with only two items has no free parameters for estimation.
Generally speaking, more items provide a better definition of the construct, and
aiming for 4–5 items per construct is good practice.

In some cases convergent validity does not hold because a factor actually
measures more than one construct. For example, in [63] we found that information
disclosure to an app recommender system actually consisted to two correlated
factors: demographics disclosure and context data disclosure. If there exists some
uncertainty about the factor structure, an Exploratory Factor Analysis (EFA) can be
used to discover the correct factor structure.11 EFA initially makes no assumptions
about which items load on which factors, but tries to find a “clean” factor structure
(with each item loading on one of the factors) that best fits the data. In [64]
we employ this technique to discover the various dimensions of information
disclosure in three different datasets. We first run several EFAs with an increasing
number of factors to determine the optimal number of dimensions (looking at fit
statistics and the conciseness of the model). Then we inspect the model to determine
the optimal factor structure, and conduct a CFA to generate the final measurement
model.

Discriminant validity is called into question when two scales are too highly
correlated (i.e. when the correlation is higher than the square root of the AVE of
either of the two factors). In that case the scales measure essentially the same thing,
which means that they can be combined, or that one of the scales can be discarded.
For example, in FT2 of [67] we originally tried to measure separate factors for
perceived usefulness and fun. These factors were however so highly correlated that
we ended up integrating them into a single factor.

There is no consensus on the sample size needed for CFA, but 100 participants
seems to be a bare minimum, or 200 when unvalidated factors are tested [79]. Larger
CFAs probably require even more participants: a rule of thumb is to have at least five
participants per questionnaire item.

11Moreover, even if you are more or less certain about the factor structure of a CFA model, it
pays to consult the modification indices of the model. The use of modification indices and CFA
goes beyond the current chapter, but is thoroughly explained in Kline’s [59] practical primer on
Structural Equation Models.



9 Evaluating Recommender Systems with User Experiments 335

9.3.4.3 Practical Tip: Use Existing Scales

Developing measurement scales from scratch is a time-consuming activity.
Researching new phenomena often calls for specialized measurement scales, so this
effort is in many cases unavoidable. A good tip is to look for related measurement
scales and adapt them to the experiment at hand. For example, in [70] we developed
scales for privacy concerns and protection as system- and provider-specific versions
of existing scales. Surprisingly little scale development work has been done in the
Human-Computer Interaction field; the Management Information Systems field is a
much better source for related scales.

Most experiments also include some more general constructs that can be copied
verbatim from existing work (this is considered good practice, not plagiarism). Two
sources for existing scales related to recommender systems are the Knijnenburg
et al. [67] framework paper and the ResQue framework developed by Pu et al. [95].
In Knijnenburg et al. [67] we include scales for the following concepts:

• Perceived recommendation quality (SSA)
• Perceived recommendation accuracy (SSA)
• Perceived recommendation variety (SSA)
• Perceived system effectiveness (and fun) (EXP)
• Choice Difficulty (EXP)
• Choice Satisfaction (EXP)
• Effort to use the system (EXP)
• Intention to provide feedback (INT)
• General trust in technology (PC)
• System-specific privacy concern (SC)

Pu et al. [95] include scales for the following concepts (classification ours, only
scales with more than two items are included):

• Interface adequacy (SSA)
• Interaction adequacy (SSA)
• Control (SSA)
• Perceived usefulness (EXP)
• Confidence and trust (EXP)
• Use Intentions (INT)

Despite the fact that the measurement properties of these scales have been tested
before, it is still wise to perform factor analysis on new experimental data to make
sure that the constructs are robustly measured in the context of the new experiment.

9.3.5 Statistical Evaluation

Once the validity of measurements is established and scales have been constructed,
the next step is to statistically test the formulated hypotheses. Note that the practice
of statistical evaluation is continuously evolving, developing tests that are ever
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stronger and more robust. One of the most prominent changes is the transition from
piecewise statistical testing to integrative approaches that evaluate entire research
models and provide simultaneous tests of all hypothesized effects.

As most scholars have been trained in piecewise statistical testing (primarily
t-tests, ANOVAs, and regressions), we will briefly discuss this approach first, but
assume that the reader is already familiar with the mechanics of conducting such
tests. Instead, we will focus mainly on the assumptions that such tests make about
the data, and the consequences when these assumptions are violated. Subsequently
we will discuss the integrative approach in more detail by giving the reader a
practical example of testing a Structural Equation Model (SEM) in MPlus and
Lavaan.

9.3.5.1 Piecewise Statistical Testing: T-tests, ANOVAs, and Regressions

Most researchers perform piecewise tests of their hypotheses, which means that
they perform a separate test of each dependent variable. The dependent variable
is typically a continuous variable that is either an observed behavior (INT) or a
measured construct (SSA or EXP). For measured constructs, individual item scores
are transformed into a scale score, either by saving the factor scores from the
CFA or by simply summing the item scores (after establishing construct validity
with a CFA). The independent variables can either be manipulated OSAs (i.e. the
experimental conditions), continuous variables (SSA, EXP or INT), or both.

The difference between two experimental conditions (e.g., the effect of a
manipulated OSA on a continuous outcome) can be tested with a t-test. For between-
subject manipulations (see Sect. 9.3.3), one uses an independent (2-sample) t-test.
For within-subjects manipulations, one should use a paired (1-sample) t-test.

The main outcome of a t-test is the t-statistic and its p-value; a smaller p-value
signifies more evidence against the null-hypothesis. We typically reject the null
hypothesis at p < 0:05. It is important to also look at the actual difference in
the dependent variable between the experimental conditions: does this difference
signify a substantial effect? For example, the difference between spending $150
and $151 in an e-commerce recommender may not be substantial enough to be
practically relevant, especially if that difference is caused by a computationally
expensive new recommendation algorithm.

The difference between more than two conditions can be tested with an ANOVA
(or a repeated measures ANOVA in case of a within-subjects design). The ANOVA
test produces an F-statistic; its p-value signifies evidence against the null hypoth-
esis that the dependent variable has the same value in all conditions. When
this “omnibus” test is significant, it is usually followed up by testing specific
conditions against each other.

Multiple manipulations can be tested simultaneously with a factorial ANOVA.
Factorial ANOVA tests exist for between-subjects, within-subjects and mixed (both
within- and between-subjects) experiments. The factorial ANOVA will provide test
statistics for each manipulation as well as the interaction between the manipulations.
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Due to the complexity of such interaction effects, it is often helpful to plot the
mean of the dependent variable for each (combination of) experimental condition(s).
Visually inspecting this plot will give you a good understanding of the effects; the
ANOVA results can then be used to find out whether these effects are likely to be
real or due to chance variation.

The effect of one or more continuous independent variables on a continuous
dependent variable can be tested with a linear regression (or a multilevel regression
in case of a within-subjects design). Each independent variable receives a ˇ-weight,
which signifies the effect of a 1-unit difference in the independent variable on the
dependent variable. A t-statistic and a p-value signify the evidence against the null
hypothesis that this ˇ-weight is zero. The regression also has an R2-value, which is
the percentage of the variance of the dependent variable that is explained by the set
of independent variables.

Combinations of continuous independent variables and experimental manipula-
tions can be tested with either a linear regression or an ANCOVA; note that all
the mentioned tests are essentially special cases of linear regression, so a linear
regression can in principle be used in any of the mentioned situations.

9.3.5.2 Assumptions of Statistical Tests

The real art of statistical evaluation is to know when not to apply a certain statistical
test. Virtually all statistical tests make certain assumptions about the data, and
violating these assumptions may invalidate the results of the test.

A very common violation is that of multiple comparisons. The purpose of any
statistical test is to decide whether an observed effect is “real” or due to chance
variation. Taking p < 0:05, we essentially allow an error margin of 5 %: only
1 out of every 20 chance variations is expected to test significantly. However, if
we have k conditions and we test for differences between all possible pairs of
conditions, the family-wise error (i.e. the chance that at least one chance variation
tests significantly) grows considerably. At k D 5 this amounts to 10 tests, and
the family-wise error rate is 40 %. To prevent this problem, one should always
perform an omnibus test (e.g. the F-test in ANOVA) to first make sure that there
are differences between conditions. Next, one can pick a baseline condition and
compare all conditions against that condition, or one can perform all pairwise tests
but calculate a more stringent p-value using post-hoc test methods such as the
Bonferroni correction.

Another common violation is that of data type and non-normality. The t-test,
ANOVA and regression all assume that the dependent variable is a normally
distributed interval12 variable that is unbounded within its predicted range. This is

12An important property of the “interval” data type is that differences between values are
comparable. This is for instance not true for a rating score: the difference between 1 and 2 stars is
not necessarily the same as the difference between 3 and 4 stars (cf. [74]).
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by definition true for factor scores (SSA and EXP), but not for most interaction
variables (INT) such as number of clicks, time (bounded by zero), star ratings
(bounded and discrete), or purchase decisions (yes/no). Certain non-normality
problems can be solved by applying a formulaic transformation to the dependent
variable to make its distribution more normal. For example, most zero-bounded
variables such as time become more normal by applying a log transformation: xt D
ln.xC a/, where a is a fraction of x, chosen in such a way that xt has a fairly normal
distribution. Data type problems can be accounted for by using generalized linear
models (GLMs) or robust regression algorithms. For example, logistic regression
can test nominal outcomes, and Poisson or negative binomial regressions can model
count data. Many textbooks suggest the use of non-parametric tests, but these are
old-fashioned solutions to non-normality problems, and typically do not work for
non-continuous data types; GLMs and robust regressions are typically much more
powerful ways to deal with non-normal data and alternative data types.

Arguably the most severe violation is that of correlated errors. This problem
occurs when repeated measurements on the same participant are treated as indepen-
dent. Repeated measurements do not only occur in within-subjects experiments, but
also when a certain variable is measured several times, such as the lengths of several
sessions from the same participant, or the ratings of several items per session. One
can solve this problem by taking the average of the repeated measurements and do
the analysis with those average values, but this reduces the number of observations
(and thereby the statistical power), and makes it impossible to make inferences
about individual sessions/ratings/etc. An alternative solution is to use an advanced
regression method that allows one to estimate the error correlations resulting from
repeated measurements (i.e. multilevel regression).

Advanced regression techniques have been developed for data that are both
non-normal and repeated, e.g. generalized linear mixed models (GLMM) and gen-
eralized estimating equations (GEE). The algorithms implementing these methods
are under continuous development. Due to the complexities of such analyses, it is a
good advice to consult a statistician if your data happens to have such structure.

9.3.5.3 Integrative Statistical Testing: Structural Equation Models

In this section we present the state-of-the-art of statistical testing: Structural
Equation Modeling (SEM). SEM is an integrative statistical procedure, because it
tests the measurement model and all hypotheses (known as the structural model,
or path model) at the same time. Practically speaking, a SEM is a CFA where the
factors are regressed on each other and on the experimental manipulations. Observed
behaviors (INT) can also be incorporated in SEM.

Listings 9.4–9.6 present example input and output of a SEM as ran in MPlus
and Lavaan, using the same example as the CFA ([62], see Sect. 9.3.4.2), but adding
the two experimental manipulations of the experiment. The ‘control’ manipulation
has three conditions: In the ‘item control’ condition participants can set a weight
for each their “likes”, which in turn determines the weight for each friend that also
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likes these items. In the ‘friend control’ condition participants can set a weight for
each of their friends directly. Finally, in the ‘no control’ condition participants do
not set any weights at all (i.e. items are weighted equally, and friend-weights are
based on the number of overlapping items). This manipulation is represented by two
dummies: citem is 1 for participants in the ‘item control’ condition; cfriend is 1
for participants in the ‘friend control’ condition. Both variables are 0 for participants
in the ‘no control’ condition, making this the baseline condition.

The ‘inspectability’ manipulation has two conditions: In the ‘full graph’ condi-
tion participants get to see the graph-based interface; in the ‘list only’ condition they
get to see a list of recommendations only. This manipulation is represented by the
dummy variable cgraph, which is 1 for participants in the ‘full graph’ condition
and 0 for participants in the ‘list only’ baseline condition.13

For the CFA part of the model we specify the optimized CFA with the items
C5, U1 and U3 removed (MPlus: lines 8–12, Lavaan: lines 2–9; the CFA output is
excluded for brevity). The input now also includes a structural part that specifies the
regressions of each dependent variable on the independent variables (MPlus: lines
13–16, Lavaan: lines 10–13). The output of these regressions (lines 18–46) can be
interpreted as traditional regression outcomes with ˇ-weights, standard errors, a test
statistic, and a p-value. The ˇ-weight for cgraph tests the difference between the
‘full graph’ and ‘list only’ condition, while the ˇ-weights for citem and cfriend

compare these conditions with the ‘no control’ condition. We conduct an omnibus
test for the effect of the control manipulation on understandability (MPlus: lines
16–17, Lavaan: lines 13 and 17), and the output shows that the overall effect of this
manipulation is significant (lines 6–9).

Listing 9.4 SEM input, MPlus

1 DATA: FILE IS twc.dat;
2 VARIABLE:
3 names are s1 s2 s3 s4 s5 s6 s7 q1 q2 q3 q4 q5 q6
4 c1 c2 c3 c4 c5 u1 u2 u3 u4 u5 cgraph citem cfriend;
5 usevariables are s1-c4 u2 u4 u5 cgraph citem cfriend;
6 categorical are s1-u5;
7 MODEL: !specify regressions as [factor] on [predictors]
8 satisf by s1* s2-s7;
9 quality by q1* q2-q6;

10 control by c1* c2-c5;
11 underst by u1* u2-u5;
12 satisf-underst@1;
13 satisf on quality control underst cgraph citem cfriend;
14 quality on control underst cgraph citem cfriend;
15 control on underst cgraph citem cfriend;
16 underst on cgraph citem cfriend (p1-p3);
17 MODEL TEST: p2=0; p3=0; !conduct the omnibus test

13Here we do not discuss the interaction effect between inspectability and control. This interaction
can be tested by multiplying their dummies, creating cgraphitem and cgraphfriend. These
dummies represent the additional effect of item- and friend-control in the graph condition (and
likewise, the additional effect of the graph in the item- and friend-control conditions).
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Listing 9.5 SEM input, Lavaan (R package)

1 model <- ’ #specify regressions as [factor] � [predictors]
2 satisf =� NA*s1+s2+s3+s4+s5+s6+s7
3 quality =� NA*q1+q2+q3+q4+q5+q6
4 control =� NA*c1+c2+c3+c4+c5
5 underst =� NA*u1+u2+u3+u4+u5
6 satisf �� 1*satisf
7 quality �� 1*quality
8 control �� 1*control
9 underst �� 1*underst

10 satisf � quality+control+underst+cgraph+citem+cfriend
11 quality � control+underst+cgraph+citem+cfriend
12 control � underst+cgraph+citem+cfriend
13 underst � cgraph+p2*citem+p3*cfriend
14 ’;
15 fit <- sem(model, data=twc, ordered=names(twc[1:23]));
16 summary(fit, fit.measures=TRUE);
17 wald(fit, "p2;p3"); #conduct the omnibus test

Listing 9.6 SEM output

1 MODEL FIT INFORMATION
2 Chi-Square Test of Model Fit
3 Value 341.770*
4 Degrees of Freedom 212
5 P-Value 0.0000
6 Wald Test of Parameter Constraints
7 Value 9.333
8 Degrees of Freedom 2
9 P-Value 0.0094

10 RMSEA (Root Mean Square Error Of Approximation)
11 Estimate 0.048
12 90 Percent C.I. 0.038 0.057
13 Probability RMSEA <= .05 0.637
14 CFI/TLI
15 CFI 0.990
16 TLI 0.988
17
18 MODEL RESULTS
19 Two-Tailed
20 Estimate S.E. Est./S.E. P-Value
21 <CFA output excluded>
22 SATISF ON
23 QUALITY 0.434 0.077 5.600 0.000
24 CONTROL -0.833 0.111 -7.492 0.000
25 UNDERST 0.109 0.079 1.374 0.169
26 QUALITY ON
27 CONTROL -0.761 0.086 -8.827 0.000
28 UNDERST 0.055 0.077 0.710 0.478
29 CONTROL ON
30 UNDERST -0.320 0.070 -4.579 0.000
31 SATISF ON
32 CGRAPH 0.036 0.145 0.249 0.803
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33 CITEM 0.104 0.180 0.577 0.564
34 CFRIEND -0.205 0.183 -1.122 0.262
35 QUALITY ON
36 CGRAPH 0.105 0.147 0.716 0.474
37 CITEM 0.093 0.158 0.586 0.558
38 CFRIEND 0.240 0.190 1.262 0.207
39 CONTROL ON
40 CGRAPH -0.155 0.141 -1.099 0.272
41 CITEM -0.010 0.171 -0.058 0.954
42 CFRIEND -0.116 0.165 -0.701 0.483
43 UNDERST ON
44 CGRAPH 0.524 0.137 3.834 0.000
45 CITEM 0.342 0.166 2.060 0.039
46 CFRIEND 0.484 0.163 2.977 0.003

The structural part of a SEM should be specified in accordance with the study
hypotheses. However, if we only include the hypothesized effects, one may overlook
important additional effects. For example, our hypotheses may suggest that the
inspectability and control manipulations increase users’ understandability and per-
ceived control, that understandability and perceived control increase the perceived
recommendation quality, and that this in turn increases system satisfaction. These
hypotheses assert that understandability and control have a mediated (indirect) effect
on system satisfaction, but it is perfectly plausible that there also be a direct effect.
Similarly, the hypotheses assert a direct effect of understandability on perceived
recommendation quality, but it is possible that this effect is actually mediated by
perceived control. A prudent way to specify the structural part of a SEM is therefore
to start with a “saturated” path model of the core variables of the study (i.e. OSA,
SSA and EXP), and then prune any non-significant effects from this model.

To build a saturated path model, first line up the core variables in the predicted
order of cause and effect. The Knijnenburg et al. [67] framework suggests a general
order: OSA ! SSA ! EXP. If there are multiple SSA or EXP, one should try to
find theoretical or empirical arguments for a certain causal direction among them. In
the example, we argue cgraph, citem and cfriend14 ! underst! control!
quality! satisf. Next, set up all possible regressions that adhere to the correct
causal direction; this is the model we ran in our example. The output of the example
shows that several effects in this saturated model are non-significant. The next step
is to iteratively prune the model from non-significant effects until all effects are
significant at p < 0:05 (or for experiments with a very large sample, p < 0:01).
In our example, we would iteratively remove non-significant effects on lines 25,
28, and 31–42. This “trimmed” SEM is presented graphically in Fig. 9.2; this is a
standardized way to present the outcomes of a SEM analysis. Finally, we add the
hypothesized effects of SCs, PCs and INTs to the model. The final SEM of our
example is presented graphically in Fig. 3 of [62].

14By design, experimental manipulations can only be independent variables (i.e. they never have
incoming arrows), so they always start the causal chain.
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User Experience (EXP)Objective System
Aspects (OSA)

Subjective System Aspects (SSA)

++

++

+

 Understandability Satisfaction 
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item/friend vs. no control
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0.415 
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+

Fig. 9.2 The structural equation model of the trimmed SEM example. Significance levels:
���p < 0:001, ��p < 0:01, ‘ns’ p > 0:05. Numbers on the arrows (and their thickness) represent
the ˇ-coefficients (and standard error) of the effect. Factors are scaled to have an SD of 1

The main benefit of SEM over other statistical methods is that it estimates the
measured factors and all hypothesized paths in a single model. This has several
advantages over a piecewise analysis. First of all, SEM explicitly models the
mediated structure of causal effects. For example, Fig. 9.2 shows that the effect
of understandability on perceived recommendation quality is fully mediated by
perceived control. In common terms: understandability leads to better recommen-
dations because (and only because) understandability increases users’ perceived
control over the recommendations. Another example: the effect of perceived control
on satisfaction is partially mediated by perceived recommendation quality. In
common terms: control increases users’ satisfaction partially because it leads
to better recommendations, and partially because of other, unobserved reasons.
These other reasons can be explored in a follow-up study. The ability to argue
about the causal structure of a model is the main scientific advantage of SEM over
piecewise statistical analyses. Mediated effects can be tested in piecewise models as
well, but only in a very cumbersome, post-hoc fashion.

Secondly, in SEM the quality of the entire model itself can be evaluated with a
number of fit statistics (lines 1–5 and 10–16). The Chi-square Test of Model Fit tests
the difference between the predicted and observed covariance matrix. A significant
test means that there is significant misfit between the model and reality. Models
are an abstraction of reality, though, so a certain amount of misfit is expected, and
this often amounts to significant misfit [8]. The alternative fit indices (CFI, TLI,
and RMSEA) give an indication of how much misfit the model contains. Hu and
Bentler [51] propose cut-off values for these indices to be: CFI > 0:96, TLI > 0:95,
and RMSEA < 0:05 for a good model. The 90 % confidence interval on the RMSEA
indicates the precision with which the amount of misfit is predicted. This interval
will be wider in smaller samples, and should remain below 0.10. The model fit
statistics help researchers in their effort to find a well-fitting model.15

15Like in CFA, more exploratory model efforts can be assisted by the use of modification indices.
Please consult [59] for examples.
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Finally, there is a technical advantage to fitting the measurement model and
the structural model simultaneously. Psychological constructs are never measured
with 100 % precision, even when they are measured with multiple items. This
lack of precision leads to measurement error, which attenuates the structural
effects. In SEM, however, the precision of a factor can be estimated, and the
structural effects can be corrected for measurement error, leading to more powerful
statistical tests and thus a more robust statistical analysis. Note that despite this
additional power, SEM is not a suitable method for analyzing data from small
samples; estimating a reasonably complex SEM model requires data from at least
200 participants [55, 59].

9.3.5.4 Practical Tip: Learn More About Structural Equation Modeling

MPlus and the Lavaan R package are but examples of tools to analyze Structural
Equation Models. Other tools include AMOS and Lisrel, and several different
R packages. We recommend the use of MPlus because it is easy to learn, has
a powerful set of advanced modeling features, and it uses non-normality robust
estimators by default. It also has good online support and an expansive collection of
high quality video lectures covering a wide range of simple and advanced modeling
techniques. We advise any reader who is serious about SEM to go to http://www.
statmodel.com/ and watch these videos. Beyond these videos, Kline [59] provides
a more general introduction to SEM, and Bollen [13] is the most comprehensive
technical reference.

9.4 Conclusion

When we first endeavored to explain the process of conducting user experiments in
[69], we presented it with the following four steps:

1. Assign participants to conditions
2. Log interaction behavior
3. Measure subjective experience
4. Analyze the collected data

Following an overview of our user-centric evaluation framework and a discussion
of interesting recommender system aspects to evaluate, the practical guidelines
in this chapter provide a more comprehensive discussion of the steps involved in
conducting user experiments. These guidelines first emphasized the formulation of
testable hypotheses. They then discussed the importance of collecting an unbiased
sample of participants that is large enough to test the hypothesized effects. Next,
they covered the development of distinct experimental conditions that manipulate
relevant system aspects, as well as different ways of randomly assigning participants
to these conditions. The guidelines then covered the practice of measuring subjective

http://www.statmodel.com/
http://www.statmodel.com/
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constructs that can be used to determine the perceptual and evaluative effects of the
experimental manipulations. Finally, they explained in detail how to statistically
evaluate the formulated hypotheses with the collected data.

By now it should be clear that learning about user experiments requires working
knowledge in several related domains: It involves familiarizing oneself with the
basic theory of human-computer interaction and human decision-making, research
methods, psychometrics and scale development, and statistics. This chapter has
touched upon each of these topics briefly, but we encourage readers to continue their
learning process in each of these directions. To this effect, we include a selection of
excellent textbooks and other sources below:

On human-computer interaction and human decision-making

• Jacko, “The Human-Computer Interaction Handbook: Fundamentals, Evolv-
ing Technologies, and Emerging Applications” [54]: A thorough primer
on Human-Computer Interaction. This book covers the principles of human
cognition, established interaction paradigms, and HCI design and evaluation
practices.

• Kahneman, “Thinking, Fast and Slow” [56]: A very accessible summary of
Kahneman’s seminal research on human decision-making.

• Smith, Goldstein, and Johnson, “Choice Without Awareness: Ethical and
Policy Implications of Defaults” [105]: A recent paper discussing the ethical
implications of defaults in decision-making. The paper makes suggestions
of how to solve this problem by providing “adaptive defaults” (a type of
recommendation).

On research methods

• MacKenzie, “Human-Computer Interaction: An Empirical Research Perspec-
tive” [80]: A thorough primer on the design, evaluation and reporting of
Human-Computer Interaction experiments.

• Purchase, “Experimental Human-Computer Interaction: A Practical Guide
with Visual Examples” [97]: Another primer on experiments; this book
contains more details on the evaluation.

On psychometrics and scale development

• DeVellis, “Scale Development, Theory and Applications” [27]: A comprehen-
sive treatment of how to develop measurement scales and assess their quality.

• Schaeffer and Presser, “The Science of Asking Questions” [102]: An in-depth
treatment of how to write survey questions.

• Podsakoff, MacKenzie, Lee, and Podsakoff, “Common Method Biases in
Behavioral Research” [93]: A paper describing the problem of “Common
Method Bias” in survey research, and how to solve or mitigate it.

On statistics

• Utts, “Seeing Through Statistics” [113]: A thorough primer on the statistical
evaluation of experimental results.
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• Neter, Kutner, Nachtsheim, and Wasserman, “Applied Linear Statistical Mod-
els” [86]: A more in-depth treatment of linear statistical methods.

• Kline, “Principles and Practice of Structural Equation Modeling” [59]: An
in-depth treatment of structural equation modeling.

We hope that this chapter will spur the adoption of user experiments in the
field of recommender systems. We believe that this is an indispensable requirement
if the field of recommender systems is indeed to move “from algorithms to user
experience” (cf. [72]).
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Chapter 10
Explaining Recommendations: Design
and Evaluation

Nava Tintarev and Judith Masthoff

10.1 Introduction

In recent years, there has been an increased interest in more user-centered evaluation
metrics for recommender systems such as those mentioned in [49]. It has also
been recognized that many recommender systems functioned as black boxes,
providing no transparency into the working of the recommendation process, nor
offering any additional information to accompany the recommendations beyond the
recommendations themselves [35].

This chapter investigates the role of explanations, such as the one depicted in
Fig. 10.1. It is sometimes erroneously assumed that explanations should always
justify why items have been recommended. A popular definition of explanation is
synonymous with justification. However, to explain also means “to make clear by
giving a detailed description” [Oxford concise dictionary]. So, an explanation can
be an item description that helps the user to understand the qualities of the item well
enough to decide whether it is relevant to them or not.

Explanations can serve multiple aims, out which one is transparency: aiming to
expose the reasoning and data behind a recommendation. This is the case with some
of the explanations hosted on Amazon, such as: “Customers Who Bought This Item
Also Bought . . . ”. Explanations can also serve other aims such as helping to inspire
user trust and loyalty, increase satisfaction, make it quicker and easier for users to
find what they want, and persuade them to try or purchase a recommended item. In
this way, we distinguish between different explanation such as e.g. explaining the
way the recommendation engine works (transparency), and explaining why the user
may or may not want to try an item (effectiveness). An effective explanation may be
formulated along the lines of “You might (not) like Item A because. . . ”. In contrast
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Fig. 10.1 Explanation in the Pandora system, “Based on what you’ve told us so far, we’re playing
this track because it features a leisurely tempo . . . ”

to the Amazon example above, this explanation does not necessarily describe how
the recommendation was selected—in which case it is not transparent.

Explanations in advisory systems are not a new idea: explanations have often
been considered as part of the research in the area of advisory expert systems
[6, 33, 38, 44, 86]. This research has largely been focused on what kind of explana-
tions can be generated and how these have been implemented in real world systems
[6, 38, 44, 86]. The kinds of explanations that could be generated were directly
linked to the inference methods, of which the three most common ones were: rule-
based methods [42], Bayesian networks [41], and case-based reasoning [23].

Overall, there are few evaluations of the explanations in these systems. When
they did occur evaluations of explanations have largely focused on user acceptance
of the system such as [14] or acceptance of the systems’ conclusions [87]. An
exception is the MYCIN system and its explanation capability which were evaluated
in terms of the decision support of the system as a whole [33].

New challenges stemming from recommender systems have revived explanation
research, after a decline of studies in expert systems in the 90s. One such
development is the increase in data: due to the growth of the web, many systems
are being used by thousands of users rather than dozens or just a handful of
experts. In addition, new algorithms, in particular in the domain of collaborative
filtering, have been adapted and developed (see also Chap. 2 on neighborhood based
approaches, and Chap. 7 on advances in data mining). These approaches mitigate
domain dependence, and allow for greater generalizability, and are more suitable
for large and often sparse datasets.

Research on explanations in recommender systems to date has been evaluated
much more extensively than in previous advisory systems, and in a much wider
range of domains (varying from movies [73] to financial advice [26] to cultural
heritage artifacts [20]). We supply an overview of existing systems by studying
various properties of the existing explanation facilities.

Explanations are not strictly decoupled from recommendations themselves, the
way preferences are elicited, or the way in recommendations are presented: these
factors influence each other and the explanations that can be generated. So, in
the next section we discuss these types of design choices.
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This enables us to discuss how these choices interact with different explanation
styles, including a table of explanations in commercial and academic systems
(Sect. 10.3). Looking at the different explanation styles we start to sense that
the underlying algorithm of a recommender engine may influence the types of
explanations that can be generated.

Next, in Sect. 10.4, we discuss what defines a good explanation. We list seven
explanatory criteria, and describe how these have been measured in previous
systems. These criteria can also be understood as advantages that explanations may
offer to recommender systems, answering the question of why to explain. Finally,
we conclude with future directions in Sect. 10.5.

10.2 Designing the Presentation and Interaction
with Recommendations

Every stage of the recommendation process, including both preference elicitation
and how recommendations are presented or visualized, requires an interaction
model. All of these factors can affect the types of explanations that can be generated.
In turn, some of the explanations that can be generated may be more suitable
for particular explanatory criteria (which we discuss in Sect. 10.4). Pu et al. [61]
also discusses a complementary evaluation framework for preference-based (such
as critiquing [46]) recommender systems and focuses on the design of both
presentation of recommendations and interaction model. For example one of their
guidelines states: “Showing one search result or recommending one item at a time
allows for a simple display strategy which can be easily adapted to small display
devices; however, it is likely to engage users in longer interaction sessions or only
allow them to achieve relatively low decision accuracy.” (Guideline 9, [61]).

10.2.1 Presenting Recommendations

We summarize the ways of presenting recommendations that we have seen for
the systems considered in this paper. While there are a number of possibilities
for the appearance of the graphical user interface, the actual structure of offering
recommendations can also vary. We identify the following categories for structuring
the presentation of recommendations:

• Top item. Perhaps the simplest way to present a recommendation is by offering
the user the best item for them. For example “You have been watching a lot of
sports, and football in particular. This is the most popular and recent item from
the world cup.”

• Top N-items. The system may also present several items at once.“You have
watched a lot of football and technology items. You might like to see the local
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football results and the gadget of the day.” Note that while this system could
be able to explain the relation between chosen items, it could also explain the
rational behind each single item.

• Similar to top item(s). Once a user shows a preference for one or more items,
the recommender system can offer similar items. For example “You might also
like. . . Oliver Twist by Charles Dickens”.

• Predicted ratings for all items. Rather than forcing selections on the user, a
system may allow its users to browse all the available options. Recommendations
are then presented as predicted ratings on a scale (say from 0 to 5) for each
item. A user might query why a certain item, for example local hockey results, is
predicted to have a low rating. The recommender system might then generate an
explanation like: “While this is a sports article, it is about hockey, which you do
not seem to like!”.

• Structured overview. The recommender system can give a structure which
displays trade-offs between items [59, 88]. The advantage of a structured
overview is that the user can see how items compare, and what other items are
still available if the current recommendation should not meet their requirements.
An example of a structured overview can be seen in Fig. 10.2.

10.2.2 Preference Elicitation

There are different ways in which a user can give input to the recommender
system. This interaction is what distinguishes conversational systems from “single-
shot” recommendations. They allow users to elaborate their requirements over the
course of an extended dialog [62] rather than each user interaction being treated
independently of previous history.

The most popular product

We also recommend the following products because

Manufacturer Price

$2’095.00

$1’499.00

$1’739.99

$1’929.00

$1’595.00

$1’426.99

$1’625.99

Processor speed

1.67 GHz

1.5 GHz

1.5 GHz

1.5 GHz

1.5 GHz

1.2 GHz

1 GHz

Battery life

4.5 hour(s) 512 MB 80 GB 38.6 cm 2.54 kg

1.91 kg

2.49 kg

2.09 kg

2.09 kg

1.41 kg

1.41 kg

33.8 cm

38.6 cm

30.7 cm

30.7 cm

26.9 cm

26.9 cm

80 GB

80 GB

80 GB

60 GB

60 GB

40 GB

512 MB

512 MB

512 MB

512 MB

512 MB

512 MB

5 hour(s)

5 hour(s)

5 hour(s)

4 hour(s)

4.5 hour(s)

5.5 hour(s)

Hard drive
capacity

Display size Weight
Installed
memory

Manufacturer Price Processor speed Battery life
Hard drive
capacity

Display size Weight
Installed
memory

they are cheaper and lighter, but have lower processor speed

Fig. 10.2 Organizational structure, this is a form of structured overview which displays trade-offs
between items [59]
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We expand on the four ways suggested by McGinty and Smyth [47], supplying
examples of current applications.1 Note that although there are more unobtrusive
ways to elicit user preferences, e.g. via usage data [55] or demographics [4], this
section focuses on explicit feedback from users.

• The user specifies their requirements. The user can specify their requirements
through a dialog about their preferences in plain English [50, 83]. Such a
dialog does not make use of the user’s previous interests, nor does it explain
directly. That is, there is no sentence that claims to be a justification of the
recommendation. It does however do so indirectly, by reiterating (and satisfying)
the user’s requirements.

• The user asks for an alternation. A more direct approach is to allow users
to explicitly critique recommended items [46], for instance using a structured
overview (see Sect. 10.2.1). One such system explains the difference between a
selected item and remaining items [45].

• The user rates items. To change the type of recommendations they receive,
the user may want to correct predicted ratings, or modify a rating they made
in the past. The influence based explanation in Table 10.1 shows which rated
titles influenced the recommended book the most [9].

• The user gives their opinion. A common usability principle is that it is easier
for humans to recognize items, than to draw them from memory. For example,
a user could specify whether they think an item is interesting or not, if they
would like to see more similar items, or if they have already seen the item
previously [10, 69]. Amazon.com has explanations that could support this type of
interaction: “Recommended for you [item] because you purchased [item list]”.
For these types of interactions, the item is part of the explanation. The system can
strengthen the recommendation by explaining how or why this item was selected.

Table 10.1 The influence based explanation showed which rated titles influenced the
recommended book the most. Although this particular system did not allow the user to
modify previous ratings, or degree of influence, in the explanation interface, it can be
imagined that users could directly change their rating here. Note however, that it would
be much harder to modify the degree of influence, as it is computed: any modification is
likely to interfere with the regular functioning of the recommendation algorithm [9]

Book Your rating out of 5 Influence out of 100

Of Mice and Men 4 54

1984 4 50

Till We Have Faces: A Myth Retold 5 50

Crime and Punishment 4 46

The Gambler 5 11

1A fifth section on mixed interaction interfaces is appended to the end of this original list.
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Figure 10.5 gives another example explanation along these lines, comparing a
recommendation with previously rated items.

• Mixed interaction interfaces. Recommender systems can also combine dif-
ferent types of interactions [16, 48]. Chen and Pu [16] uses a combination of
system generated and user-driven critiques. McNee et al. [48] allowed both user
and system to select items to rate, and found that asking users for items to rate
increases user loyalty to the system. This tentatively suggests that explanations
accompanying these interactions should mention if the critique or item was user
or system selected.

10.3 Explanation Styles

By applying a particular algorithm in a recommender systems, certain types
of explanations may be easier to generate since the algorithm can produce the
type of information that the explanation style uses. In this section we describe
explanations that would be supported best by a particular underlying algorithm,
or different “explanation styles”. We caution that explanations may follow the
“style” of a particular algorithm irrespective of whether or not this is how the
recommendations have been retrieved or computed. In other words, the explanation
style for a given explanation may, or may not, reflect the underlying algorithm by
which the recommendations are computed. There often is a divergence between
how the recommendations are retrieved and the style of the given explanations.
Consequently, this type of explanation would not be consistent with the goal of
transparency, but may support other explanatory goals.

Transparency is not the only explanatory goal (see Sect. 10.4 on different
explanatory aims and ways to measure them) to consider when deciding upon
explanation style. For example, for a given system one might find that users are
more satisfied with content-based style explanations even though critique-based
style explanations are more efficient. The closest tie between explanation styles
and explanatory aims inspired by an algorithm can be found in [36], who compared
the understandability and scrutability of explanation styles inspired by different
algorithms. More generally, there is a small body of studies which have considered
the effects of different explanation styles on explanatory goals [20, 35, 56, 77]. This
body of work does not tie the explanation style strongly to any specific algorithm.
Papadimitriou et al. [56] for example, considers a classification of explanation styles
that is independent from algorithms which includes human style explanations, item
style explanations and feature style explanations.

Notwithstanding, the underlying algorithm of a recommender engine will to a
certain degree influence the types of explanations that can be generated. Table 10.2
summarizes the most commonly used explanation styles (case-based, content-based,
collaborative-based, demographic-based, knowledge and utility-based) with exam-
ples of each. In this section we describe each style: their assumed inputs, processes
and generated explanations. For commercial systems where this information is not
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Table 10.2 Examples of explanations in commercial and academic systems, ordered by explana-
tion style (case-based, collaborative-based, content-based, conversational, demographic-based and
knowledge/utility-based)

System Example explanation Explanation style

iSuggest-Usability [36] See e.g. Fig. 10.5 Case-based

LoveFilm.com “Because you have selected or highly
rated: Movie A”

Case-based

LibraryThing.com “Recommended By User X for Book A” Case-based

Netflix.com A list of similar movies the user has rated
highly in the past

Case-based

Amazon.com “Customers Who Bought This Item Also
Bought . . . ”

Collaborative-based

LIBRA [9] Keyword style (Tables 10.6 and 10.7);
neighbor style (Fig. 10.7); influence style
(Table 10.1)

Collaborative-based

MovieLens [35] Histogram of neighbors (Fig. 10.3) Collaborative-based

Amazon.com “Recommended because you said you
owned Book A”

Content-based

CHIP [20] “Why is ‘The Tailor’s Workshop recom-
mended to you’? Because it has the fol-
lowing themes in common with artworks
that you like: * Everyday Life * Clothes
. . . ”

Content-based

Moviexplain [70] See Table 10.3 Content-based

MovieLens: “Tagsplana-
tions” [81]

Tags ordered by relevance or preference
(see Fig. 10.4)

Content-based

News Dude [10] “This story received a [high/low] rele-
vance score, because it contains the words
f1, f2, and f3.”

Content-based

OkCupid.com Graphs comparing two users according to
dimensions such as “more introverted”;
comparison of how users have answered
different questions

Content-based

Pandora.com “Based on what you’ve told us so far,
we’re playing this track because it fea-
tures a leisurely tempo . . . ”

Content-based

Adaptive place Advisor
[72]

Dialog e.g. “Where would you like to
eat?” “Oh, maybe a cheap Indian place.”

Conversational

ACORN [84] Dialog e.g. “What kind of movie do you
feel like?” “I feel like watching a thriller.”

Conversational

INTRIGUE [4] “For children it is much eye-catching, it
requires low background knowledge, it
requires a few seriousness and the visit is
quite short. For yourself it is much eye-
catching and it has high historical value.
For impaired it is much eye-catching and
it has high historical value.”

Demographic-based

Qwikshop [45] “Less Memory and Lower Resolution and
Cheaper”

Knowledge/utility-based

(continued)
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Table 10.2 (continued)

SASY [21] “. . . because your profile has: *You
are single; *You have a high budget”
(Fig. 10.6)

Knowledge/utility-based

Top Case [50] “Case 574 differs from your query only
in price and is the best case no matter
what transport, duration, or accommoda-
tion you prefer”

Knowledge/utility-based

(Internet Provider) [25] “This solution has been selected for the
following reasons: *Webspace is avail-
able for this type of connection . . . ”
(Fig. 10.8)

Knowledge/utility-based

“Organizational
Structure” [59]

Structured overview: “We also recom-
mend the following products because:
*they are cheaper and lighter, but have
lower processor speed.” (Fig. 10.2)

Knowledge/utility-based

myCameraAdvisor [82] e.g “. . . cameras capable of taking pictures
from very far away will be more expensive
. . . ”

Knowledge/utility-based

public, we offer educated guesses. While conversational systems are included in
Table 10.2, we consider conversational systems as more of an interaction style than
a specific algorithm.

In the following sections we will give further examples of how explanation styles
can be inspired by common algorithms as classified by Burke [12]. For each example
we also mention how the recommendations are presented, and the interaction model
that was chosen.

For describing the interface between the recommender system and explanation
component we use the notation used in [12]: U is the set of users whose preferences
are known, and u 2 U is the user for whom recommendations need to be generated.
I is the set of items that can be recommended, and i 2 I is an item for which we
would like to predict u’s preferences.

10.3.1 Collaborative-Based Style Explanations

For collaborative-based style explanations the assumed input to the recommender
engine are user u’s ratings of items in I. In user-based collaborative filtering these
ratings are used to identify users that are similar in ratings to u. These similar users
are often called “neighbors” as nearest-neighbors approaches are commonly used to
compute recommendations. A prediction for the recommended item is extrapolated
from the neighbors’ ratings of i (e.g. using a weighted average over the neighbors
predictions).
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Commercially, the most well known usage of collaborative-based explanations
are the ones used by Amazon.com: “Customers Who Bought This Item Also
Bought . . . ”. This explanation assumes that the user is viewing an item which
they are already interested in, and the explanation and several recommendations
are shown just below it. The approach used on Amazon is a item-based collaborative
approach, which recommends items based on item (rating) similarity. This approach
is different from the approach described above in that it uses the similarity between
items (rather than users) to compute a recommendation. The recommendations are
presented in the format of similar to top item. In addition, this explanation suggests
a preference elication model whereby ratings are inferred from purchase behavior
rather explicitly requested. (Note that Amazon also supplies recommendations in
different aspects of the website, some of which use elicit rating elicitation.)

Herlocker et al. suggested 21 explanation interfaces using text as well as
graphics [35]. These interfaces varied with regard to content and style, but a number
of these explanations directly referred to the concept of neighbors. Figure 10.3 for
example, shows how neighbors rated a given (recommended) movie, a bar chart with
“good”, “ok” and “bad” ratings clustered into distinct columns. Again, we see that
this explanation is given for a specific way of recommending items, and a particular
interaction model: this is a single recommendation (either top item or one item out
of a top-N list), and assumes that the users are supplying rating information for
items.

Fig. 10.3 One out of 21
interfaces evaluated for
persuasiveness—a histogram
summarizing the ratings of
similar users (neighbors) for
the recommended item
grouped by good (5 and 4’s),
neutral (3s), and bad (2s and
1s), on a scale from 1 to 5
[35]
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In the classification of [56], collaborative-based style explanations are a type of
human explanation style, since they are based on similar users.

10.3.2 Content-Based Style Explanation

For content-based style explanations the assumed input to the recommender engine
are user u’s ratings (for a sub-set) of items in I. These ratings are then used to
generate a classifier that fits u’s rating behavior and use it on i. Recommendations
are items that the classifier predicts having the highest ratings.

If we simplify this further, we could say that content-based algorithms consider
similarity between items, based on user ratings but considering item properties. In
the same spirit, content-based style explanations are based on the items’ properties.
For example, [70] justifies a movie recommendation according to what they infer
is the user’s favorite actor (see Table 10.3). While the underlying approach is in
fact a hybrid of collaborative- and content-based approaches, the explanation style
suggests that they compute the similarity between movies according to the presence
of features in highly rated movies. They elected to present users with several
recommendations and explanations (top-N) which may be more suitable if the user
would like to make a selection between movies depending on the information given
in the explanations (e.g. feeling more like watching a movie with Harrison Ford over
one starring Bruce Willis). The interaction model is based on ratings of items.

A more domain independent approach is suggested by Vig et al. [81] who
suggest a similarity measure based on user specified keywords, or tags. The
explanations used in this study use the relationship between keywords and items
(tag relevance), and the relationship between tags and users (tag preference) to make
recommendations (see Fig. 10.4). Tag preference, or how relevant a tag is for a given
user, can be seen as a form of content-based explanation, as it is a weighted average
of a given user’s ratings of movies with that tag. Tag relevance, or how relevant a
keyword is for recommending an item, on the other hand is the correlation between
(aggregate) users’ preference for the tag, and their preference for a movie with which
the tag is associated. In this example, showing recommendations as a single top item
allows the user to view many of the tags that are related to the item. The interaction
model is again based on numerical ratings.

Table 10.3 Example of an explanation in Moviexplain, using features such as actors, which occur
for movies previously rated highly by this user, to justify a recommendation [70]

Recommended movie title The reason is the participant Who appears in

Indiana Jones and the Last Crusade (1989) Ford, Harrison Five movies you
have rated

Die Hard 2 (1990) Willis, Bruce Two movies you
have rated
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Fig. 10.4 Tagsplanation with
both tag preference and
relevance, but sorted by tag
relevance [81]

The commercial system Pandora explains its recommendations of songs accord-
ing to musical properties such as tempo and tonality. These features are inferred
from users’ ratings of songs. Figure 10.1 shows an example of this [1]. Here, the
user is offered one song at a time (top item) and gives their opinion as “thumbs-up”
or “thumbs-down” which also can be considered as numerical ratings.

In the classification of [56], content-based style explanations are a type of feature
based explanation, since they explain the recommendation in terms of similarity of
item features to (features of) previously rated items.

10.3.3 Case-Based Reasoning (CBR) Style Explanations

Explanations can also omit mention of detailed item features (e.g. music genre,
actor in a movie) and focus primarily on the similar items used to make the recom-
mendation. The items used are thus considered cases for comparison, resulting in
case-based style explanations. We note that CBR systems greatly vary with regard
to the recommendation algorithm. For example, the FINDME recommender [13] is
based on critiquing, and the ranking of items in [2] is based on their presence in
travel plans of users who expressed similar interests.

While these CBR systems have also used different methods to present their
explanations, we recall that this section, and the sections describing the other
explanation styles, are focused on the style of the explanation rather than the actual
underlying algorithm. As such, each of these systems could in theory have had a
case-based style explanation.

The “influence based style explanation” of [9] in Table 10.1 is a type of case-
based style explanation. Here, the influence of an item on the recommendation
is computed by looking at the difference in the score for the recommended item
computed with the influential item, and the score for the recommender item
when computed without that influential item. In this case, recommendations were
presented as top item, assuming a rating based interaction. Another study computed
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Fig. 10.5 Learn by example,
or case based reasoning [36]

We recommend: “The Cars”

Your Predicted Rating:

Your ratings for similar artists

Liked this artist Didn’t like this artist

‘Fun For All’
‘Atari Teenage Riot’
‘Racers’
‘Death Cab’
‘Rise Against’
‘Funny Boys’

‘The Big Band’

the similarity between recommended items,2 and used these similar items as
justification for a top item recommendation in the “learn by example” explanations
(see Fig. 10.5) [36]. A recent study compared case-based explanations with feature-
based explanations. Showing participants previous items (case-based explanations)
during the rating process improved accuracy (RMSE) and was considered most
useful by participants [52].

In the classification of [56], case-based reasoning style explanations are a
type of item style explanations, since they use exemplars of items to justify a
recommendation.

10.3.4 Knowledge and Utility-Based Style Explanations

Knowledge-based systems reason over a knowledge-base to solve problems through
rules in an inference engine. One common category of knowledge-based system
are case-based systems which use examples of previous similar situations or cases
to predict an outcome or solution. It is therefore arguable that there is a degree
of overlap between knowledge-based, content-based (Sect. 10.3.2) and case-based
style explanations (Sect. 10.3.3) which can be derived from either type of algorithm
depending on the details of the implementation.

For all knowledge and utility-based style explanations the assumed input to
the recommender engine are description of user u’s needs or interests. The rec-
ommender engine then infers a match between the item i and u’s needs. One

2The author does not specify which similarity metric was used, though it is likely to be a form of
rating based similarity measure such as cosine similarity.
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knowledge-based recommender system takes into consideration how camera prop-
erties such as memory, resolution and price reflect the available options as well as
a user’s preferences [45]. Their system may explain a camera recommendation in
the following manner: “Less Memory and Lower Resolution and Cheaper”. Here,
recommendations are presented as a form of structured overview describing the
competing options, and the interaction model assumes that users ask for alterations
in the recommended items.

Similarly, in the system described in [50] users gradually specify (and modify)
their preferences until a top recommendation is reached. This system can generate
explanations such as the following for a recommended holiday titled “Case 574”:
“Top Case: Case 574 differs from your query only in price and is the best case no
matter what transport, duration, or accommodation you prefer”.

The classification of [56] does not cover this style of explanation.

10.3.5 Demographic-Based Style Explanations

For demographic-based style explanations, the assumed input to the recommender
engine is demographic information about user u. From this, the recommendation
algorithm identifies users that are demographically similar to u. A prediction for the
recommended item i is extrapolated from how the similar users rated this item, and
how similar they are to u considering their demographic features.

Surveying a number of systems which use a demographic-based filter e.g.
[4, 39, 57], we could only find one which offers an explanation facility: “For
children it is much eye-catching, it requires low background knowledge, it requires
a few seriousness and the visit is quite short. For yourself it is much eye-catching
and it has high historical value. For impaired it is much eye-catching and it has
high historical value.” [4]. In this system recommendations were offered as a
structured overview, categorizing places to visit according to their suitability to
different types of travelers (e.g. children, impaired). Users can then add these
items to their itinerary, but there is no interaction model that modifies subsequent
recommendations

To our knowledge, there are no other systems that make use of demographic
style explanations. It is possible that this is due to the sensitivity of demographic
information; anecdotally we can imagine that many users would not want to be
recommended an item based on their gender, age or ethnicity (e.g. “We recommend
you the movie Sex in the City because you are a female aged 20–40.”).

The classification of [56] does not cover this style of explanation.
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10.4 Goals and Metrics

Surveying the literature for explanations in recommender systems, we see that
recommender systems with explanatory capabilities have been evaluated according
to different criteria, and identify seven different goals for explanations of single
item recommendations. Here we mention goals that are applicable to single item
recommendations, i.e. when a single recommendation is being offered. When
recommendations are made for multiple items, such as in a list, additional factors
such as diversity (e.g. “this list contains items that are different from each other in
order to improve variation”) may be relevant.

Table 10.4 states these goals, some of which are similar to those desired (but
not evaluated on) in expert systems, cf. MYCIN [8]. In Table 10.5, we summarize
previous evaluations of explanations in recommender systems, and the goal by
which they have been evaluated. Works that have no clear goal stated, or have not
evaluated the system on the explanation goal which they state, are omitted from this
table.

In the introduction, we mentioned that expert systems were commonly evaluated
in terms of user acceptance and the decision support of the system as a whole. User
acceptance can be defined in terms of our goals of satisfaction or persuasion. If the
evaluation measures acceptance with the system as whole, such as [14] who asked
questions such as “Did you like the program?”, this reflects user satisfaction. If
rather the evaluation measures user acceptance of advice or explanations, as in [87],
the criterion can be said to be persuasion.

It is important to identify these goals as distinct, even if they may interact,
or require certain trade-offs. Indeed, it would be hard to generate explanations
that do well for all of the goals, in reality it is a trade-off. While personalized
explanations may lead to greater user satisfaction, they do not necessarily increase
effectiveness [29, 77, 78]. Other times, goals that seem to be inherently related
are not necessarily so, for example it has been found that transparency does not
necessarily aid trust [20]. For these reasons, while an explanation in Table 10.5 may
have been evaluated for several goals, it may not have achieved them all.

The type of explanation that is given to a user is likely to depend on the goals
of the designer of a recommender system. For instance, when building a system

Table 10.4 Explanatory goals and their definitions

Aim Definition

Transparency (Tra.) Explain how the system works

Scrutability (Scr.) Allow users to tell the system it is wrong

Trust Increase users’ confidence in the system

Effectiveness (Efk.) Help users make good decisions

Persuasiveness (Pers.) Convince users to try or buy

Efficiency (Efc.) Help users make decisions faster

Satisfaction (Sat.) Increase the ease of use or enjoyment



10 Explaining Recommendations: Design and Evaluation 367

Table 10.5 The goals for which explanations in recommender systems have been evaluated.
System names are mentioned if given, otherwise we only note the type of recommended items.
Works that have no clear goal stated, or have not evaluated the system on the explanation goal
which they state, are omitted from this table. Note that while a system may have been evaluated
for several goals, it may not have achieved all of them. Also, for the sake of completeness we
have distinguished between multiple studies using the same system

System (type of items) Tra. Scr. Trust Efk. Per. Efc. Sat.

(Advice, intrusion detection system) [24] X

(Internet providers) [25] X X X

(Financial advice, internet providers) [26] X X

(Digital cameras, notebooks computers) [59] X

(Digital cameras, notebooks computers) [60] X X

(Image tags and movies) [66] X X X

(Music) [68] X

(Music) [40] X X

(Music) [67] X X

(Movies) [29] X X X X X

(Movies) [77, 78] X X X

(Social network news) [51] X X X

Adaptive place advisor (restaurants) [72] X X

ACORN (movies) [84] X

CHIP (cultural heritage artifacts) [19] X X X

CHIP (cultural heritage artifacts) [20] X X X

iSuggest-Usability (music) [36] X X

LIBRA (books) [9] X

MovieLens (movies) [35] X X

Moviexplain (movies) [70] X X

myCameraAdvisor [82] X

Qwikshop (digital cameras) [45] X X

SASY (e.g. holidays) [21] X X X

Tagsplanations (movies) [81] X X

that sells books one might decide that user trust is the most important aspect, as it
leads to user loyalty and increases sales. For selecting tv-shows, user satisfaction
could be more important than effectiveness. That is, in a system focused on pure
entertainment it may be more important that a user enjoys using the service, than
that they are presented the very best available shows (as long as the shows are “good
enough”).

In addition, some attributes of explanations may contribute toward achieving
multiple goals. For instance, one can measure how understandable an explanation
is, which can contribute to e.g. user trust, as well as satisfaction.
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In this section we describe seven potential aims for explanations (Table 10.4), and
suggest evaluation metrics based on previous evaluations of explanation facilities,
or offer suggestions of how existing measures could be adapted to evaluate the
explanation facility in a recommender system.

10.4.1 Explain How the System Works: Transparency

An anecdotal article in the Wall Street Journal titled “If TiVo Thinks You Are Gay,
Here’s How to Set It Straight” describes users’ frustration with irrelevant choices
made by a video recorder that records programs it assumes its owner will like, based
on shows the viewer has recorded in the past.3 For example, one user, Mr. Iwanyk,
suspected that his TiVo thought he was gay since it inexplicably kept recording
programs with gay themes. This user clearly deserved an explanation.

An explanation may clarify how a recommendation was chosen. In expert
systems, such as in the domain of medical decision making, the importance
of transparency has also been recognized [8]. Transparency or the heuristic of
“Visibility of System Status” is also an established usability principle [53], and its
importance has also been highlighted in user studies of recommender systems [68].

Vig et al. differentiate between transparency and justification [81]. While trans-
parency should give an honest account of how the recommendations are selected
and how the system works, justification can be descriptive and decoupled from
the recommendation algorithm. The authors cite several reasons for opting for
justification rather than genuine transparency. For example some algorithms that are
difficult to explain (e.g. latent semantic analysis where the distinguishing factors are
latent and may not have a clear interpretation), protection of trade secrets by system
designers, and the desire for greater freedom in designing the explanations.

Cramer et al. studied the effect of transparency on other evaluation goals
such as trust, persuasion (acceptance of items) and satisfaction (acceptance) in
an art recommender [19, 20]. Transparency itself was evaluated in terms of its
effect on actual and perceived understanding of how the system works [20].
Actual understanding was based on the correctness of user answers to interview
questions such as “Could you please tell me how the system works. . . ” . Perceived
understanding was extracted from self-reports in questionnaires and interviews,
measuring responses to statements such as “I understand what the system bases
its recommendations on”.

The evaluation of transparency has also been coupled with scrutability
(Sect. 10.4.2) and trust (Sect. 10.4.3), but we will see in these sections that these
goals can be distinct from each other.

3http://online.wsj.com/article_email/SB1038261936872356908.html, retrieved Feb. 12, 2009.

http://online.wsj.com/article_email/SB1038261936872356908.html
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Fig. 10.6 Scrutable holiday recommender [21]. The explanation is in the circled area, and the
user profile can be accessed via the “why” links

10.4.2 Allow Users to Tell the System It Is Wrong: Scrutability

Explanations may help isolate and correct misguided assumptions or steps. When
the system collects and interprets information in the background, as is the case
with TiVo, it becomes all the more important to allow the user to modify these
assumptions or steps. Explanations can be used in way that helps the users to
correct reasoning, or make the system scrutable [21]. Scrutability is related to the
established usability principle of User Control [53]. See Fig. 10.6 for an example of
a scrutable holiday recommender. Here the user can ask why certain assumptions
(like a low budget) were made. Selecting this option takes them to a page with a
further explanation and an option to modify this in their user model.

While scrutability is very closely tied to the goal of transparency, it deserves to
be uniquely identified. Transparency in and of itself does not allow users to modify
the reasoning in a system, and some systems may only offer partial transparency
together with scrutability. The explanation in Fig. 10.1 (“Based on what you’ve told
us so far, we’re playing this track because it features a leisurely tempo . . . ”) is
transparent but not scrutable. Here, the user cannot change the ratings that affected
this recommendation. If however, the ratings in Table 10.7 were changeable, we
could argue that the explanation was scrutable. However, it is not (fully) transparent
even if they offer some form of justification. There is nothing about the explanations
in the table that suggests that the underlying recommendations are based on a
Bayesian classifier. In such a case, we can imagine that a user attempts to scrutinize
a recommender system, and manages to change their recommendations, but still
does not understand exactly what happens within the system. In contrast, [30] made
a preliminary attempt to make explanations that are both transparent and scrutable.

Czarkowski found that users were not likely to scrutinize on their own, and that
extra effort was needed to make the scrutability tool more visible [21]. In addition,
it was easier to get users to perform a given scrutinization task such as changing
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the personalization (e.g. “Change the personalisation so that only Current Affairs
programs are included in your 4:30–5:30 schedule.”) Their evaluation included
metrics such as task correctness, and if users could express an understanding of
what information was used to make recommendations for them. They understood
that adaptation in the system was based on their personal attributes stored in their
profile, that their profile contained information they volunteered about themselves,
and that they could change their profile to control the personalization [21].

10.4.3 Increase Users’ Confidence in the System: Trust

A study of users’ trust (defined as perceived confidence in a recommender sys-
tem’s competence) suggests that users intend to return to recommender systems
which they find trustworthy [15]. Trust in the recommender system could also be
dependent on the accuracy of the recommendation algorithm [48]. Trust is also
sometimes linked with transparency: previous studies indicate that transparency and
the possibility of interaction with recommender systems increases user trust [25, 68].

We note however, that are also cases where transparency and trust were not
found to be related [20]. Kulesza et al. [40] also found that poor explanations could
decrease how beneficial they were found by users and led to poor mental models.

Consequently, we do not claim that explanations can fully compensate for poor
recommendations, but that they can mitigate their effects on user trust. A user may
be more forgiving, and more confident in recommendations, if they understand why
a bad recommendation (or one based on low confidence) has been made and can
prevent it from occurring again. A user may appreciate when a system is ‘frank’ and
admits that it is not confident about a particular recommendation.

In addition, the interface design of a recommender system may affect its
trustworthiness. In a study of factors determining web page credibility, the largest
proportion of users’ comments (46.1 %) referred to the appeal of the overall visual
design of a site, including layout, typography, font size and color schemes [28].
Likewise the perceived credibility of a Web article was significantly affected by the
presence of a photograph of the author [27]. So, while recommendation accuracy,
and the goal of transparency are often linked to the evaluation of trust, design is also
a factor that needs to be considered as part of the evaluation.

Questionnaires can be used to determine the degree of trust a user places in
a system. An overview of trust questionnaires can be found in [54] which also
suggests and validates a five dimensional scale of trust. Note that this validation was
done with the aim of using celebrities to endorse products, but was not conducted
for a particular domain. Additional validation may be required to adapt this scale to
a particular recommendation domain.

A model of trust in recommender systems is proposed in [15, 60], and the
questionnaires in these studies consider factors such as intent to return to the system,
and intent to save effort. Also [82] query users about trust, but focus on trust
related beliefs such as the perceived competence, benevolence and integrity of a
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virtual adviser. They found that the different trusting beliefs could be improved by
explanations with different content. Although questionnaires can be very focused,
they suffer from the fact that self-reports may not be consistent with user behavior.
In these cases, implicit measures (although less focused) may reveal factors that
explicit measures do not.

One such implicit measure could be loyalty, a desirable bi-product of trust.
One study compared different interfaces for eliciting user preferences in terms of
how they affected factors such as loyalty [48]. Loyalty was measured in terms
of the number of logins and interactions with the system. Among other things,
the study found that allowing users to independently choose which items to rate
affected user loyalty. It has also been thought that Amazon’s conservative use of
recommendations, mainly recommending familiar items, enhances user trust and
has led to increased sales [69]. We encourage readers who would like to learn more
about trust in recommender systems to read a previous handbook chapter which is
dedicated to this topic [80].

10.4.4 Convince Users to Try or Buy: Persuasiveness

Explanations may increase user acceptance of the system or the given recommen-
dations [35]. Both definitions qualify as persuasion, as they are both attempts to
influence the user.

Cramer et al. [20] evaluated the acceptance of recommended items in terms of
how many recommended items were present in a final selection of six favorites.
In a study of a collaborative filtering- and rating-based recommender system for
movies, participants were given different explanation interfaces (e.g. Fig. 10.3) [35].
This study directly inquired how likely users were to see a movie (with identifying
features such as title omitted) for 21 different explanation interfaces. Persuasion was
thus a numerical rating on a 7-point Likert scale.

In addition, it is possible to measure if the evaluation of an item has changed,
i.e. if the user rates an item differently after receiving an explanation. Indeed, it has
been shown that users can be manipulated to give a rating closer to the system’s
prediction [18]. It has also been found that confidence information, or how “sure” a
system is about the relevance or non-relevance of a recommendation, can influence
user ratings. Shani et al. [66] found that participants were more likely to rate an item
that was actually non-relevant as relevant if the system said it was very confident.
For (truly) relevant items, the participants were also less likely to remain undecided
about the relevance of items (a similar pattern was not found for items that were
truly irrelevant).

Both studies were in subjective and low investment domains (movies and
images), and it is possible that users may be less influenced by incorrect predictions
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in high(er) cost domains such as cameras.4 It has also been found that confidence
information can influence user ratings. In addition, too much persuasion may
backfire once users realize that they have tried or bought items that they do not
really want.

Persuasiveness can be measured in a number of ways, For example, it can be
measured as the difference between two ratings: the first being a previous rating,
and the second a re-rating for the same item but with an explanation interface [18].
Another possibility would be to measure how much users actually try or buy items
compared to users in a system without an explanation facility. These metrics can
also be understood in terms of the concept of “conversion rate” commonly used in
e-Commerce, operationally defined as the percentage of visitors who take a desired
action. For a more in-depth discussion of persuasion in recommender systems the
reader may continue in Chap. 20.

10.4.5 Help Users Make Good Decisions: Effectiveness

Rather than simply persuading users to try or buy an item, an explanation may
also assist users to make better decisions: accepting relevant items and discarding
irrelevant ones [66, 77, 78]. Effectiveness is by definition highly dependent on the
accuracy of the recommendation algorithm. An effective explanation would help
the user evaluate the quality of suggested items according to their own preferences.
This would increase the likelihood that the user discards irrelevant options while
helping them to recognize useful ones. For example, a book recommender system
with effective explanations would help a user to buy books they actually end up
liking. Bilgic and Mooney emphasize the importance of measuring the ability of a
system to assist the user in making accurate decisions about recommendations based
on explanations such as those in Fig. 10.7, and Tables 10.6 and 10.7 [9]. Effective
explanations could also serve the purpose of introducing a new domain, or the range
of products, to a novice user, thereby helping them to understand the full range of
options [25, 59].

Vig et al. measure perceived effectiveness: “This explanation helps me determine
how well I will like this movie.” [81]. Effectiveness of explanations can also be
calculated as the absence of a difference between the liking of the recommended
item prior to, and after, consumption. For example, in a previous study, users rated
a book twice, once after receiving an explanation, and a second time after reading
the book [9]. If their opinion on the book did not change much, the system was
considered effective. This study explored the effect of the whole recommendation
process, explanation inclusive, on effectiveness. The same metric was also used to
evaluate whether personalization of explanations (in isolation of a recommender

4In [76] participants reported that they found incorrect overestimation less useful in high cost
domains compared to low cost domains.
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Fig. 10.7 The neighbor style explanation—a histogram summarizing the ratings of similar users
(neighbors) for the recommended item grouped by good (5 and 4’s), neutral (3s), and bad (2s and
1s), on a scale from 1 to 5. The similarity to Fig. 10.3 in this study was intentional, and was used
to highlight the difference between persuasive and effective explanations [9]

Table 10.6 The keyword style explanation by
Bilgic and Mooney [9] for an item (a book).
The item is being recommended based on a
number of keywords such as “HEART” and
“MOTHER”. The explanation lists keywords
that were used in the description of the item,
and that have previously been associated with
highly rated items

Word Count Strength Explain

HEART 2 96.14 Explain

BEAUTIFUL 1 17.07 Explain

MOTHER 3 11.55 Explain

READ 14 10.63 Explain

STORY 16 9.12 Explain

Table 10.7 A more detailed explanation for the strength of a keyword (such as
“HEART”) which shows after clicking on “Explain” in Table 10.6. The rows represent
all the previous items which influence the strength of the keyword [9]

Title Author Rating Count

Hunchback of Notre Dame Victor Hugo, Walter J. Cobb 10 11

Till We Have Faces: A Myth Retold C.S. Lewis, Fritz Eichenberg 10 10

The picture of Dorian Gray Oscar Wilde, Isobel Murray 8 5

system) increased their effectiveness in the movie domain [76]. In [67] there is a
distinction between the likelihood of finding out more about a recommended artist
and the actual rating given to the artist after listening to several songs.

While this metric considers the difference between the before and after ratings,
it does not discuss the effects of over- contra underestimation.5 In our work we

5By overestimation we mean that the prediction is higher than the final or actual rating, and
underestimation when the prediction is lower than it.
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found that users considered overestimation to be less effective than underestimation,
and that this varied between domains. Specifically, overestimation was considered
more severely in high investment domains compared to low investment domains. In
addition, the strength of the effect on perceived effectiveness varied depending on
where on the scale the prediction error occurred [76].

Another way of measuring the effectiveness of explanations has been to test the
same system with and without an explanation facility, and evaluate if subjects who
receive explanations end up with items more suited to their personal tastes [19].
This approach has been used in work which measured both perceived effectiveness
(helpfulness) and performance accuracy (actual effectiveness) [24].

Other work evaluated explanation effectiveness using a metric from marketing
[34], with the aim of finding the single best possible item (rather than “good enough
items” as above) [16]. Participants interacted with the system until they found the
item they would buy. They were then given the opportunity to survey the entire
catalog and to change their choice of item. Effectiveness was then measured by
the fraction of participants who found a better item when comparing with the
complete selection of alternatives in the database. So, using this metric, a low
fraction represents high effectiveness.

Effectiveness is the criterion that is most closely related to accuracy measures
such as precision and recall [19, 70, 72]. In systems where items are easily
consumed, these can be translated into recognizing relevant items and discarding
irrelevant options respectively [66]. For example, there have been suggestions for an
alternative metric of “precision” based on the number of profile concepts matching
with user interests, divided by the number of concepts in their profile [19].

10.4.6 Help Users Make Decisions Faster: Efficiency

Explanations may make it faster for users to decide which recommended item is best
for them. Efficiency is another established usability principle, i.e. how quickly a task
can be performed [53]. This criterion is one of the most commonly addressed in the
recommender systems literature (See Table 10.5) given that the task of recommender
systems is to find needles in haystacks of information.

Efficiency may be improved by allowing the user to understand the relation
between competing options. McCarthy et al. [45], McSherry [50], and Pu and Chen
[59] use so called critiquing, a sub-class of knowledge-based algorithms based on
trade-offs between item properties, which lends itself well to the generation of
explanations. The rules generated by the algorithm can intuitively be translated
to rules such as “Less Memory and Lower Resolution and Cheaper” [45]. This
explanation can help users to find a cheaper camera more quickly if they are willing
to settle for less memory and lower resolution. The efficiency of these explanations
is closely tied with the efficiency of the query language, but can also be compared
from a user-centered perspective in terms of the number of interactions needed by a
user to make a choice.
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Efficiency is often used in the evaluation of so-called conversational recom-
mender systems, where users continually interact with a recommender system,
refining their preferences (see also Sect. 10.2.2). In these systems, the explanations
can be seen to be implicit in the dialog. Efficiency in these systems can be measured
by the total amount of interaction time, and number of interactions needed to
find a satisfactory item [72]. Evaluations of explanations based on improvements
in efficiency are not limited to conversational systems however. Pu and Chen for
example, compared completion time for two explanatory interfaces, and measured
completion time as the amount of time it took a participant to locate a desired
product in the interface [59].

Other metrics for efficiency also include the number of inspected explanations,
and number of activations of repair actions when no satisfactory items are found
[25, 63]. Normally, it is not sensible to expose users to all possible recommendations
and their explanations, and so users can choose to inspect (or scrutinize) a given
recommendation by asking for an explanation. In a more efficient system, the users
would need to inspect fewer explanations. Repair actions consist of feedback from
the user which changes the type of recommendation they receive, as outlined in the
sections on scrutability (Sect. 10.4.2). Examples of user feedback/repair actions can
be found in Sect. 10.2.2.

10.4.7 Make the Use of the System Enjoyable: Satisfaction

Explanations have been found to increase user satisfaction with, or acceptance
of, the overall recommender system [25, 35, 68]. Gedikli et al. [29] studied the
effect of various explanatory aims on satisfaction, and found that user-perceived
transparency had a significant positive effect on overall satisfaction with the
explanation interfaces (but did not find an effect of efficiency or effectiveness on
satisfaction). The presence of longer descriptions of individual items has been found
to be positively correlated with both the perceived usefulness [75], and ease of use of
the recommender system [68]. Also, many commercial recommender systems such
as those seen in Table 10.2 are primarily sources of entertainment. In these cases,
any extra facility should take notice of the effect on user satisfaction. Figure 10.8
gives an example of an explanation evaluated on the criterion of satisfaction.

When measuring satisfaction, one can directly ask users whether the system
is enjoyable to use. Tanaka-Ishii and Frank in their evaluation of a multi-agent
system describing a Robocup soccer game ask users whether they prefer the system
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This solution has been selected for the following reasons:
Webspace is available for this type of connection.
This package is available for you, connections are possible for each location in your state.
The monthly costs for the internet connection are beyond the limit you defined for the
connection.

Fig. 10.8 An explanations for an internet provider, describing the provider in terms of user
requirements: “This solution has been selected for the following reasons . . . ”. This explanation
has been evaluated on satisfaction, among other aims [25]

with or without explanations [71]. Satisfaction can also be measured indirectly by
measuring user loyalty [25, 48] (see also Sect. 10.4.3), and likelihood of using the
system for a search task [20].

In measuring explanation satisfaction, it is important to differentiate between
satisfaction with the recommendation process,6 and the recommended products
(persuasion) [20, 25]. One (qualitative) way to measure satisfaction with the process
would be to conduct usability testing methods such as record a think-aloud protocol
for a user conducting a task [43].

In this case, the participants describe their entire experience using the system:
what they are looking at, thinking, doing and feeling, as they go about a task
such as finding a satisfactory item. Objective notes of everything that users say are
taken, without interpretation or influencing the users in any way. Video and voice
recordings can also be used to revisit the session and to serve as a memory aid. In
such a case, it is possible to identify usability issues and even apply quantitative
metrics such as the ratio of positive to negative comments; the number of times
the evaluator was frustrated; the number of times the evaluator was delighted; the
number of times and where the evaluator worked around a usability problem etc.

It is also arguable that users would be satisfied with a system that offers
effective explanations, confounding the two goals. However, a system that aids
users in making good decisions, may have other disadvantages that decrease the
overall satisfaction (e.g. requiring a large cognitive effort on the part of the user).
Fortunately, these two goals can be measured by distinct metrics.

10.5 Future Directions

This section identifies four strands of promising future directions. Firstly, it seems
likely that future explanations will reflect the social nature of recommenda-
tions. Secondly, explanations may support users in making unexpected discoveries

6Here we mean the entire recommendation process, inclusive of the explanations. We note however
that the evaluation of explanations in recommender systems are seldom fully independent of the
underlying recommendation process.
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and understanding which options got filtered out. Thirdly, we discuss whether
explanations should always be visible, invoked by the user or by certain contexts.
Finally, more research is required to identify when explanations are helpful, and
under which circumstances they may be detrimental.

10.5.1 Social Recommendations

Increasingly, recommendations are based not only on similarity between items
or rating patterns, but also on information in social networks. While this area
of research is still very young, it is likely one that will have a great impact on
explanations in the near future. Ongoing research has been studying the impact
of recommendations based on people’s relationships in online social networks
[51, 58, 85], and geographic information [7, 64, 89], in addition to more classical
recommendation algorithms. One particular interesting strand regards reciprocal vs.
non-reciprocal relationships [32, 58]. Open questions regard how different types of
relationships may affect explanation strength, and how this affects the actual (rather
than perceived) effectiveness of the explanations. Please refer to Chap. 15 for further
reading.

10.5.2 Explanations, Serendipity and the Filter Bubble

Explanations may have a role in helping users accept new and unexpected (serendip-
itous) items. [51] have looked at visualizing the ‘filter bubble’, i.e. the limited
coverage for an individual user which can result from the filtering inherent to
recommendation. In parallel, a growing body of research is studying how to
computationally model serendipity for recommender systems [3, 37, 74]. There
is also a body of research on visualizations of the recommendation space (see
e.g. [31, 79]), and some indication that increasing diversity can help find target
items [11]. It remains an open challenge to tie together visual or textual explanations
to serendipity. More generally, the link between recommender systems evaluations
and explanations evaluation for criteria such as coverage, acceptance and learning
rate is still under-developed, although some tentative efforts are being made [65].
Issues relating to diversity and novelty in recommender systems are also discussed
in Chap. 26 of this handbook.

10.5.3 When Should Explanations Be Shown?

Another question that remains open is whether the explanation mechanism should
be invoked by the user, by a specific context or if they should always be presented
to the user.
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While explanations in recommender systems may be most beneficial for experi-
enced users [26], explanations research in other types of decision support systems
have found that explanations are helpful when something unexpected or undesired
happens [22].. There is also some tentative support for the idea that people who
actually look at explanations in recommender systems use them more [24].

In general, a proactive approach appears to be the best approach for recommender
systems [21, 22]. However, an additional analysis of cognitive load in high cost
domains (cf. work in aviation7) should be considered, in line with previous research
on the trade-off between the cost and benefit of explanations [17, 40].

10.5.4 Explanations: Help or Harm?

Researchers are starting to find that explanations are part of a cyclical process: the
explanations affect acceptance of particular recommendations , the user’s mental
model of the algorithm in the recommender system, and in turn this affects the
ways users interact with the explanations. Explanations may affect users’ behavior
toward the system, and consequently the recommendations that they are given
[5, 82]. Overall however, it is still largely unclear how users’ mental models
are affected by the cyclical and longer-term interaction between explanations and
recommendations. Initial work suggests that they can be harmful [5, 20, 24, 66].
For example, [24] found that at least for a small sub-set of users, explanations not
only helped accept good decisions but also increased their acceptance of incorrect
advice. How to ensure that explanations are helpful (also in the long term) is another
promising avenue for future research.
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Chapter 11
Recommender Systems in Industry:
A Netflix Case Study

Xavier Amatriain and Justin Basilico

11.1 Introduction

Recommender Systems are a prime example of the mainstream industry use of
large-scale machine learning and data mining. Diverse applications in areas such as
e-commerce, search, Internet music and video, gaming, and even online dating apply
similar techniques that leverage large volumes of data to better fulfill a user’s needs
in a personalized fashion. These techniques have such wide applicability because
they have been demonstrated to be effective in increasing core business metrics such
as customer satisfaction and revenue. In this chapter, we will focus on approaches
for applying recommendation algorithms with a focus on the problem formulations,
algorithms, and metrics. Of course, other aspects such as user interaction design can
have a deep impact on the effectiveness of an approach. Those topics are covered in
other chapters in the book but are outside the scope of this one.

Given an existing application, an improvement in the recommendation system
can have a value of millions of dollars and can be the factor that determines the
success or failure of a business. In Sect. 11.2 we will review some of the typical uses
of recommendation systems in industry. While a lot of work in recommendation
focuses on algorithms, there are other aspects of a recommendation approach
that can have a significant impact. For example, adding new data sources or
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representations (features) to an existing algorithm. In Sect. 11.4, we will use Netflix
as the driving example to describe the use of data, models, and other personalization
techniques.

Another important factor we consider is how to measure the success of a
given personalization technique. Root mean squared error (RMSE) was the offline
evaluation metric chosen for the Netflix Prize (see Sect. 11.3). But there are
many other relevant metrics that, if optimized, would lead to different solutions.
For example, ranking metrics such as Normalized Discounted Cumulative Gain
(NDCG), recall, or area under the ROC curve (AUC), often used in Information
Retrieval, can also be used to evaluate recommendations. However, beyond the
optimization of a given offline metric, what we are really pursuing is the impact
of a technique on the business. To do this, we need to relate the quality of a
recommendation to more customer-facing metrics such as click-through rate (CTR)
or retention. We will describe an approach of how to make use of offline and online
metrics to drive innovation, called “Consumer Data Science,” in Sect. 11.6.

A key aspect in building a successful large-scale recommendation system is
to choose an appropriate architecture that is capable of running computationally
complex algorithms and also produces fresh results with an acceptable latency. In
Sect. 11.7, we will describe a three-layer architecture that addresses these concerns.
But before we dive into these details, it will be useful to understand the uses of
recommender systems across industry. In the next section, we will briefly describe
some of the most typical use cases.

11.2 Recommender Systems in Industry

Recommendation systems are used by many Internet-focused companies in a
variety of application domains. Each domain has its own unique recommendation
challenges. We provide here a short overview of some of the more well-known
applications in industry.

Today most e-commerce sites and applications are likely to have some sort of
recommendation engine powering their user experience. The first large company to
be credited as having included a recommender system at the core of their experience
is Amazon. Amazon initially employed a simple item-item collaborative filtering
approach [48]. The current Amazon experience includes many different instances of
recommendation at different levels: from listings on the homepage to many product
pages having lists of other products bought or viewed. Other retail companies
such as eBay have followed the lead and incorporated recommendations in their
experience, such as post-purchase recommendations [88].

News is also an area that companies have applied recommendation approaches
to personalize and focus on the interests of a user. For example, Google News was
powered by some kind of recommendations for news articles from the beginning
[19, 49]. Yahoo! has also invested in personalizing news and other web content
[1, 47]. For news recommendation, some of the key challenges are freshness, where
relevant articles may have a very limited time span, and diversity, where there can be



11 Recommender Systems in Industry: A Netflix Case Study 387

a large number of articles about the same topic. However, news has the advantage of
textual content, which allows for techniques from natural language processing to be
applied to create features that can be used in recommendation, which is especially
helpful when user behavioral data is sparse.

Video recommendation has always been an active area of research, so it is
not surprising that it is used in industry to recommend a variety of types of
video spanning movies, TV shows, and user-generated content. For instance,
recommendations have been an important component of the YouTube experience to
help navigate the vast amounts of user-generated video [20]. With video, it can be
hard to extract good content information without harnessing sophisticated computer
vision approaches. While metadata may be available for professionally-created
content, harnessing user behavior has been key to building recommendations for
videos. In such domains, transitioning from ratings to learning-to-rank has shown to
be important. Google, for instance, uses a new family of loss functions and shows
its applicability in YouTube and Google Music [90].

Music recommendation is also an active application area where there have been
interesting developments in the past years. Pandora, for instance, created a complete
business model around the idea of creating personalized music stations. They
created an approach that combined traditional collaborative filtering techniques with
a curated approach called the Music Genome Project [72]. Similarly, Apple’s iTunes
application uses information about a user’s music library to drive personalized
mixes and playlists. More recently, Spotify started getting in the business of
providing personalized music recommendations in its service. Their approach
to recommendations is currently mostly based on standard matrix factorization
techniques [9]. Finally, EchoNest was a well-known startup that provided music
recommendation engines powering many different services before being acquired
by Spotify. They combined different approaches including collaborative filtering,
metadata, and audio signal analysis of the music [46]. Music recommendation has
some unique aspects [16], such as the multi-level nature of artists, albums, tracks,
and playlists that recommendations can be done across. Music tracks also typically
short and often listened to repeatedly, which can lead to interesting approaches for
leveraging this data and behavior.

More recently, social network companies have introduced a number of different
recommendation avenues. Twitter, for example, introduced their Who to Follow rec-
ommendation algorithm to recommend new social connections [29]. LinkedIn used
a Survival Analysis approach to understand how likely a user is to change jobs [89].
Google has also published work in recommendation systems for some of their social
networks such as Orkut [18]. Yahoo! has also worked on personalizing aspects
such as comments on social sites [2] or tags in image collections for Flickr [77].
Recommendation algorithms are also very important in online dating sites. Those
recommender systems have some particular requirements. For example, the success
of the system is not determined by one user receiving a good recommendation but
rather by both parties accepting it [61].

In addition to focusing on a single domain, some companies are applying
recommendation approaches across domains and even potentially using data from
one domain to recommend in another. Microsoft developed a distributed Bayesian
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approach to recommendation systems called Matchbox [81]. This solution was
deployed in several different contexts. For example, it is the main building block
of the content recommendations for the XBox game console [39], including games,
apps, video, and music content.

Beyond companies building recommendation systems into their own products,
there are also many smaller companies that have focused their activity around
developing general recommendation systems or technologies. Commendo [32] and
Gravity R&D [82], for example, are recommender system consulting firms that
emerged from some of the teams that competed in the Netflix Prize.

While many of the previous examples are interesting from an algorithmic
perspective, they also represent the different or complimentary requirements that
recommender systems have from an industrial point of view. For example, some
important issues that are mentioned in most of these publications, unlike in more
academic settings, are scalability, business metrics, and integration of the system in
the overall user experience. We will go into these issues in the remainder of this
chapter.

11.3 The Netflix Prize

In 2006, Netflix announced the Netflix Prize, a machine learning and data mining
competition to predict movie ratings on a 5-star scale. We conducted this com-
petition to find new ways to improve the recommendations we provide to our
members, which is a key part of our business. However, we had to come up with
a proxy question that was easier to evaluate and quantify: the root mean squared
error (RMSE) of the predicted rating. We offered a $1 million prize to whomever
came up with a solution that reduced RMSE by 10 % beyond what was obtained by
Cinematch, our existing system.

The Netflix Prize put the spotlight on the Recommender Systems area and the
value of generating personalized recommendations from user data. It did so by
providing a crisp problem definition that enabled thousands of teams to focus on
improving a single metric. While this was a simplification of the recommendation
problem, many valuable lessons were learned.

11.3.1 Lessons from the Prize

After the first year of competition, the KorBell team won the first Progress
Prize with an 8.43 % improvement. They reported more than 2000 h of work in
order to come up with the final combination of 107 algorithms that put them
at the top of the leaderboard and resulted in this prize. As per the terms of the
competition, they shared their resulting solution with the team at Netflix. We looked
at the two underlying algorithms with the best performance in the ensemble:
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Matrix Factorization (MF) [44]1 (see Sect. 5.3) and Restricted Boltzmann Machines
(RBM)[71]. Matrix Factorization by itself provided a 0.8914 RMSE, while RBM
alone provided a competitive but slightly worse 0.8990 RMSE. A linear blend of
these two reduced the error to 0.88.

Given that a combination of these two algorithms performed well on the
competition dataset, we sought to put them to use. To do this, we had to overcome
some limitations. For instance, the competition code the authors provided was built
to handle 100 million ratings, however we needed to apply it to the more than 5
billion that we have. Also, the code was designed to run on a static dataset and
thus not built to adapt as members added more ratings. Once we overcame those
challenges, we deployed the two algorithms into production, where they are still
used to predict our members ratings for videos.

One of the most interesting findings during the Netflix Prize came out of a blog
post. Simon Funk introduced an incremental, iterative, and approximate way to
compute a matrix factorization (referred to as SVD) using gradient descent [27].
This provided a practical way to scale matrix factorization methods to large
datasets. Another enhancement to matrix factorization methods was Koren et. al’s
SVD++ [42]. This asymmetric variation enables adding both implicit and explicit
feedback, and removes the need for learning user-specific parameters for the implicit
part.

The second model that proved successful in the Netflix Prize was the Restricted
Boltzmann Machine (RBM). RBMs can be understood as the fourth generation of
Artificial Neural Networks: the first being the Perceptron popularized in the 60s; the
second being the backpropagation algorithm in the 80s; and the third being Belief
Networks (BNs) from the 90s. RBMs are BNs that restrict the connectivity to make
learning easier. RBMs can be stacked to form Deep Belief Networks (DBN), which
is a form of deep learning. For the Netflix Prize, Salakhutditnov et al. proposed an
RBM structure with binary hidden units and softmax visible units with five biases
that are initialized with the movies that the user rated [71].

Many other learnings came out of the competition. For example, the matrix fac-
torization methods mentioned above were combined with traditional neighborhood-
based approaches [42]. Also, early in the competition, it became clear that it was
important to take into account temporal dynamics of user feedback [43]. Another
finding of the Netflix Prize was that there is a large amount of noise in the ratings
provided by users. This was already known in the literature; Herlocker et al.[30]
coined the term “magic barrier” to refer to the limit of accuracy in a recommender
system due to the natural variability in ratings. This limit was relatively close to the
actual Prize threshold [5], and might be a factor in the substantial effort needed to
reduce RMSE by enough to cross the 10 % line.

1The application of Matrix Factorization to the task of rating prediction closely resembles the
technique known as Singular Value Decomposition used, for example, to identify latent factors in
Information Retrieval. Therefore, it is common to see people referring to this MF solution as SVD.
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After almost 3 years, the final Grand Prize ensemble that won the $1M prize
was a truly impressive compilation and culmination of work, blending hundreds
of predictive models to finally cross the finish line [8]. The final solution was
accomplished by combining many independent models developed by different
teams that joined forces. It highlights the power of using ensembles to combine
a heterogeneous set of models to achieve maximum accuracy.

At Netflix, we evaluated some of the new methods included in the final
solution. The additional accuracy gains that we measured did not seem to justify
the engineering effort needed to bring them into a production environment. In
addition, our focus on improving Netflix personalization had expanded beyond
rating prediction. In the next section, we will explain the different methods and
components that produce a complete personalization approach such as the one
used by Netflix.

11.4 Recommendation Beyond Rating Prediction

Netflix has discovered through the years that there is significant business value in
incorporating recommendations to personalize as much of the user experience as
possible. This realization motivated the Netflix Prize described in the previous sec-
tion and has subsequently driven the effort to personalize the service in many other
ways. In Sect. 11.2 we introduced different industrial scenarios for recommender
systems. In the following sections we will use Netflix as an example of a fully
personalized industrial recommendation system.

Before we go into the details, first let us provide some context about the Netflix
service as it relates to personalization. Netflix was originally known as a DVD-
by-mail subscription service in the US, which it was at the time the Netflix Prize
started. However, it has since grown into an international Internet video streaming
subscription service. It allows members to instantly stream movies and TV shows
from a catalog to a multitude of devices such as laptops, smart TVs, game consoles,
tablets, and mobile phones. One of the key aspects of the Netflix service is that it
allows members to watch any video we have available in our catalog at any time on
any device. Since we have a large quantity of available videos that a member can
watch, a key concern is how to help members find videos in our catalog that they
want to watch and will enjoy enough to come back. This is the task where we rely
primarily on our recommendation system to help. The videos we have are licensed
from content providers or produced ourselves. The cost for serving each video
is approximately the same, so we have no incentive for favoring one video over
another when doing recommendation. Thus, we take a member-centric approach to
recommendation. This is in contrast to other domains such as e-commerce, online
advertising, or search where there can be very different amounts of revenue for
different items.
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11.4.1 Everything Is a Recommendation

Netflix personalization starts on a member’s homepage, which the application
displays on any device after login. This page consists of groups of videos arranged
in horizontal rows that create a two-dimensional grid of videos. Each row has a
title that conveys the intended meaningful connection between the group of videos
in that row. Most of our personalization is embodied in the way we generate rows,
select rows, determine what videos to include in a row, determine the ordering of
videos in a row, and determine the ordering rows on a page.

Take as a first example the Top 10 row (see Fig. 11.1). This row is our best guess
of the videos a user is most likely to watch and enjoy. Of course, when we say
“a user”, we really mean everyone in a household using that membership (or profile).
It is important to keep in mind that Netflix personalization is intended to handle a
household that is likely to have different people with different tastes. That is why
with a Top 10 row, someone in a family that watches Netflix is likely to discover
items for dad, mom, the children, or the family as a whole. Even for a single person
household, we want the recommendations to appeal to a person’s range of interests
and moods. While there are specific techniques for group recommendations, such
as the ones described in Chap. 22, those techniques usually rely on having captured
each individual preferences rather than an aggregate. For this and other reasons,
in most parts of our system we cater to different people and moods by not only
optimizing for accuracy, but also for diversity [69, 87].

Another important element of Netflix personalization is awareness. We want
members to be aware of how we are adapting to their tastes. This not only promotes
trust in the system, but also encourages members to give feedback, which will result
in better recommendations. A way of promoting trust with the personalization is
to provide explanations for why we decide to recommend a given movie or show
(see Fig. 11.2). A video is not recommended because it suits a business needs, but
because it matches the information we have from a user: viewing history, explicit
feedback of ratings and taste preferences, or even a friends recommendations. See
Chap. 10 for more details on how to design good explanations for a recommender
system.

On the topic of friends, we have a social feature that allows members to connect
through Facebook to find friends who are also Netflix members. Knowing about
someone’s friends not only gives us another signal to use in our personalization

Fig. 11.1 Example of a Netflix Top 10 row. We promote personalization awareness and reflect
on the diversity of a household. Note that the labels are an illustration, since the system does not
explicitly know the true household composition



392 X. Amatriain and J. Basilico

Fig. 11.2 Adding explanation and evidence for recommendations contributes to user satisfaction
and requires specific algorithms. Evidence can include your predicted rating, related shows you
have watched, or even friends who have interacted with the video

algorithms, but also allows us to create rows based on their social circle to generate
recommendations. See Chap. 15 for some examples on how to use social network
information to generate recommendations.

Similarity is also an important aspect of personalization. We think of similarity in
a very broad sense; it can be between videos or between members, and can be along
multiple dimensions such as metadata, ratings, or viewing data. While similarity
itself can be used as the basis for a recommendation system, we tend to use various
forms of similarity as features in other models or as navigational constructs for the
user (see Fig. 11.3). For example, we generate rows of “adhoc genres” based on
their similarity to videos that a member has interacted with recently, which we label
“Because you watched”. Also, we provide a list of similar videos that a user may
be interested in on the information page for a video. Of course, there can be many
different notions of similarity between two items, each of which can be used for
the basis of generating a list of similars. These can be combined by constructing
independent similarity models and training an ensemble. Other more sophisticated
graphical methods such as SimRank [34] accomplish a similar goal. On the other
hand, similarity itself can be personalized using approaches such as Personalized
Page Rank [26].

In many services like Netflix, even a situation where a user enters an explicit
search query can be turned into a recommendation. An example of this might be
the user entering a generic term (e.g. “summer” or “Italian”) or the title of an item
that is not available in the catalog. In these situations we need to come up with
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Fig. 11.3 Similarity can be used to present recommendations in different contexts and in response
to certain user actions

good related recommendations. Even the auto-complete suggestions when the user
starts typing can be personalized and interpreted recommendation over a constrained
set. LinkedIn’s Metaphor system is another good example of a complete search
recommendation system [64].

In most of the previous contexts, the goal of the recommender system is to
present a number of attractive items for a person to choose from. This is usually
accomplished by selecting some items and sorting them in the order of expected
enjoyment (or utility). Since the most common way of presenting recommended
items is in some form of list, we need an appropriate ranking model that can use a
wide variety of information to come up with an optimal ordering of the items. In the
next section, we will discuss how to design such a ranking model.

11.4.2 Ranking

The goal of a personalized ranking system is to find the best possible ordering of a
set of items for a user within a specific context. At Netflix, we optimize ranking
algorithms to put videos that a member is most likely to play and enjoy at the
beginning of the list. We do this by learning a scoring function frank W U � V ! R

that maps from our (user, video) space to a score, which is a real number.
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An obvious baseline for a ranking function that optimizes consumption is item
popularity. The reason is clear: on average, a member is most likely to watch what
most others are watching. However, popularity is the opposite of personalization; it
will produce the same ordering of items for every user. Thus, the goal becomes to
find a personalized ranking function that is better than item popularity, so we can
better satisfy users with varying tastes.

Recall that our goal is to recommend the videos that each member is most likely
to play and enjoy. One obvious way to approach this is to use the member’s predicted
rating of each item as an adjunct to item popularity. Using predicted ratings on their
own as a ranking function can lead to items that are too niche or unfamiliar. This
is because ratings on their own only indicate what someone who has watched a
video will rate it, and ignores that most people would rate lowly most videos if they
watched them [80]. It can also exclude items that the member may want to watch
even though they may not rate them highly. To compensate for this, rather than using
either popularity or predicted rating on their own, we would like to produce rankings
that balance both of these aspects. One way to do this is to build a ranking prediction
model using these two features.

Let us walk through an example of a very simple scoring approach by choosing
our ranking function to be a linear combination of popularity and predicted rating.
This gives an equation of the form frank.u; v/ D w1p.v/ C w2r.u; v/, where u
represents the user, v is the video (item), p.v/ is the popularity of video v, and
r.u; v/ is the predicted rating for user u of video v. The bias term that is typically

Fig. 11.4 Constructing a basic personalized two-dimensional ranking function based on popular-
ity and predicted rating
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Fig. 11.5 Performance of Netflix ranking system when adding features and optimizing the
learning to rank model. An example ranking metric is shown, but the results hold across a range of
such metrics

learned as part of a linear model is omitted, since it is a constant and thus does not
impact the final ranking. This equation defines a line in a two-dimensional space
(see Fig. 11.4).

Once we have such a function, we can pass a set of videos for a given user
through it and sort them in descending order according to the score. However, first
we need to determine the weights w1 and w2 in our model. We can formulate this as
a machine learning problem: select positive and negative examples of (user, video)
pairs from historical data and let a machine learning algorithm learn the weights
that optimize our goal. Treating ranking as a classification or regression problem is
known as a pointwise approach in the family of machine learning techniques known
as Learning to Rank. In addition to recommendations, it is central to application
scenarios such as search engines or advertisement targeting. A crucial difference
in the case of ranked recommendations is the importance of personalization: we do
not expect to optimize a global notion of relevance, but rather a personalized one.

It is interesting to note that in this model, the predicted rating has gone from
being the final target variable we are trying to predict to generate a recommendation
to being an input to another model that takes into account other features. A model
like this that uses outputs of other models as inputs to produce a final prediction are
also referred to as weighted hybrid models [14].

The previous two-dimensional model is a very basic example of a ranking
function. Apart from popularity and predicted rating, we have tried many other
features at Netflix related to many aspects of the video, user, and their interaction.
Some have shown no positive effect while others have improved our ranking
accuracy tremendously. Features can be simple information derived from metadata
or be produced by other recommendation algorithms, as with the case of rating
prediction. Also, many supervised classification methods beyond simple linear
models can be used or adapted for ranking. In addition, algorithms that directly
optimize ranking objectives can be used. Figure 11.5 shows an improvement in
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ranking that we obtained by adding different features and optimizing the machine
learning approach, such as by using other learning-to-rank approaches like the ones
described in Sect. 11.8.2.

11.4.3 Page Optimization

Another recognizable aspect of personalization in our service is the selection of
“genre” rows. These range from familiar high-level categories like “Comedies”
and “Dramas” to highly tailored slices such as “Imaginative Time Travel Movies
from the 1980s”. Each row represents three layers of personalization: the choice of
genre itself, the subset of videos selected within that genre, and the ranking of those
videos. The set of potential genre rows is very large because they are created from
combinations of individual aspects (represented as tags) associated with a video.
Thus, the space of genres is much larger than the space of videos, which means
selecting them is in itself a recommendation problem. To handle this, row candidates
are generated using a member’s implicit genre preferences (recent plays, ratings,
and other interactions) or explicit feedback provided through our taste preference
survey. These elements are used both as input to the selection algorithm as well as
evidence to support the recommendations (see Fig. 11.6).

The problem of generating a personalized and optimized page is complex. In the
Netflix scenario, there are many thousands of row candidates that can be selected
and ranked. As a matter of fact, the catalog of available candidate rows is much
larger than the catalog of individual items since the same item can be included
in many different rows. On the other hand, when optimizing the page, we are not

Fig. 11.6 Netflix genre rows can be generated from implicit and/or explicit feedback
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only optimizing relevance. As with other personalization elements, freshness and
diversity is taken into account to decide which of the thousands of possible genres
to show.

Finally, it is important to note that when optimizing a full page layout, we need
to incorporate a model of the user’s browsing or attention behavior (see Fig. 11.7)
[45, 53]. For example, our model needs to consider whether the probability of the
user seeing and clicking the third item in the second row is higher or lower than the
probability of seeing and clicking the first item in the fourth row.

To conclude this section, it is worth highlighting how the recommendation
approach has evolved at a company like Netflix. Starting from its formulation as
a rating prediction problem in the Netflix Prize, it evolved to a one-dimensional
ranking, and finally to a full-page personalized optimization problem. This evolution
is illustrated in Fig. 11.8.

Fig. 11.7 Browsing and attention behavior of users needs to be taken into account when
optimizing the whole page experience

Fig. 11.8 The recommendation approach at Netflix has evolved from focusing on rating prediction
to one-dimensional ranking and now to full page optimization
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11.5 Data and Models

11.5.1 Data

The discussion of ranking algorithms in the previous section highlights the impor-
tance of both data and models in creating an optimal recommendation experience.
The availability of high volumes of high-quality user data allows for us to use some
approaches that would have been unthinkable in the past. As an example, we will
discuss next some of the data sources that we can use at Netflix to inform our
recommendations.

We have large amounts of play data about what videos users watch, when, for
how long, and on what device they watched it; as of 2013 we had around 50 million
play events coming into the service every day. Given that helping our users find
something to watch is one of our primary goals, this information about what and
how they have watched in the past is very important. We still have several billion
item ratings from users. We also receive millions of new ratings every day; five
million per day in 2013. Our users also add millions of items to their queues each
day. They also directly enter millions of search queries; three million per day in
2013. Our users can also give explicit feedback on their interests by completing a
signup onramp or taste survey to express preferences.

On the item side, we already mentioned the use of item popularity for ranking.
We have many ways of computing popularity such as over various time ranges,
aggregating user actions in different ways, or grouping users by region or other
similarity metrics. Each item in our catalog also has rich metadata such as synopsis,
genres, actors, directors, subtitles, parental rating, and user reviews. Items also
have associated tag data, which are human-provided annotations on each video that
describe aspects such as mood (e.g. witty, dark, goofy), qualities (e.g. critically-
acclaimed, visually-striking, classic), and storyline (e.g. marriage, time travel,
talking animals). Although a manual tagging approach would be unfeasible for other
domains with a larger or faster changing catalog, it can be very efficient and practical
in a domain like ours where the catalog is in the order of thousands of professionally-
produced items. In this case, it would be hard to obtain such high-quality annotations
from automatic methods. Finally, we can also tap into external data such as box
office performance or critic reviews as a basis for additional features to describe an
item.

We collect presentation and impression data that records what items we have
recommended to a user, where we have shown them, and if they were rendered
on a page in the user interface. We can also observe a user’s interactions with the
recommendations: scrolls, mouse-overs, clicks, or the time spent on a given page.
Using this type of presentation and interaction data, we can look at the effect of
showing a recommendation on a user’s response. This is important for handling the
presentation bias, where a user is more likely to watch a video simply because we
put it in a location where they are likely to see it.
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Some users choose to provide us with social data that we can also use for
personalization. Social data may include the social network connections to other
users, as well as interactions or activities of those connected users. It can also
provide a source of interests (e.g. likes) beyond the scope of items in our catalog
or movies and TV shows in general.

There are also many other data sources related to a user or context such as
demographics, language preference, device, location, or time that can be used to
derive features for our predictive models.

11.5.2 Models

Many different modeling approaches have been used for building recommendation
systems. One thing we have found at Netflix is that with the great availability
of data, both in quantity and types, a thoughtful approach is required to model
selection, training, and testing. We use all sorts of machine learning approaches:
from unsupervised methods such as clustering and dimensionality reduction algo-
rithms to a number of supervised classifiers that have shown optimal results in
various contexts. This is an incomplete list of methods that are useful to know
when working in machine learning for personalization: Linear regression, Logistic
regression, Elastic nets, Singular Value Decomposition, Matrix Factorization,
Restricted Boltzmann Machines, Markov Chains, Latent Dirichlet Allocation [10],
Association Rules, Factorization Machines [65], Gradient Boosted Decision Trees
[25], Random Forests [12], and clustering techniques from the simple k-means to
graphical approaches such as Affinity Propagation [24] or non-parametric such as
Hierarchical Dirichlet Processes [85].

There is no easy answer to how to know which model will perform best for
a given problem. In general, the simpler a feature space is, the simpler a model
can be. But it is easy to get trapped in a situation where a new feature does
not show value because the model cannot learn it. Or, the other way around, to
conclude that a more powerful model is not useful simply because one does not have
the feature space that exploits its benefits. As such, it is important to understand
how the problem definition, feature design, and model interact to find an optimal
combination of them.

Many other chapters in this book (see Chap. 7 on Data Mining Methods for
Recommender Systems for example) focus on describing these and other methods
and their applicability to recommender systems.

11.6 Consumer Data Science

An abundance of source data, measurements, and associated experiments allow
Netflix to operate as a data-driven organization. We have embedded this approach
into our culture from when the company was founded and call it Consumer (Data)



400 X. Amatriain and J. Basilico

Science. Broadly speaking, the main goal of Consumer Science is to effectively
innovate for users by using data to drive product decisions. That is accomplished
by evaluating ideas rapidly, inexpensively, and objectively. We do this by running
many experiments to test ideas. Once something is tested, we want to know the
outcome and also understand why an approach succeeded or failed. This kind
of approach guides not only how we improve the personalization algorithms or
recommendation systems but also the majority of consumer-facing aspects of a
service, from user interface design to streaming technology.

We do this in practice by employing the scientific method and conducting
randomized controlled experiments, which are called AB tests (or bucket tests) [41].
A standard AB test randomly assigns each user to one of two groups: A and B.
Typically group A would be the control group that would be given the current default
experience. Group B that would have some new variation on that experience that is
hypothesized to be better than the current experience. We use the following steps in
running such an experiment:

1. Start with a hypothesis: Algorithm/feature/design X will increase user engage-
ment with our service and ultimately user retention.

2. Design a test: Think about issues such as dependent and independent variables,
control, and significance.

3. Implement the test: Set up the solution or prototype to run in a production
environment where it can serve requests.

4. Execute the test: Assign users to the different groups and let them respond to
the different experiences.

5. Analyze the test: Look for statistically significant changes in business metrics
(e.g. retention) and try to explain them through variations in the behavioral
metrics (e.g. increased selection of recommendations).

When we execute AB tests at Netflix, we track many different metrics (e.g.
viewing hours). However, we ultimately trust user retention as our overall evaluation
criteria (OEC) [40] because it is a long-term metric that ties directly to the success
of the business as a whole. This is because as a monthly subscription service, the
longer that a member stays with us, the more revenue we can collect. Of course, if
we want to run tests that measure retention, this means we have to let them run for
months to measure the effect. Tests usually have thousands of users and anywhere
from 2 to 20 experimental groups exploring variations of a base idea. We typically
have many AB tests running in parallel, and can independently run tests on different
components as long as there is no conflict between them. AB tests let us try radical
ideas or test many approaches at the same time, but their key advantage is that
they allow our decisions to be data-driven. It also helps us to only keep changes
that objectively demonstrate a significant improvement, at least up to some level of
statistical confidence, which helps reduce the complexity of our product, systems,
and algorithms.

An interesting follow-up question that we have faced is how to integrate machine
learning approaches into this data-driven culture of AB testing at Netflix. We have
done this with an offline-online testing procedure that tries to combine the best
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Fig. 11.9 Following an iterative and data-driven offline-online process for innovating in
personalization

of both approaches (see Fig. 11.9). The offline testing cycle is a process where
we test and optimize our algorithms on historical data prior to performing online
AB testing. To measure model performance offline we track multiple metrics: from
ranking measures such as normalized discounted cumulative gain and their page-
level generalizations, to classification metrics such as accuracy, precision, and recall,
to regression metrics such as RMSE, and other metrics to track different aspects of
recommendation like diversity and coverage (see Chap. 8 for more details on the use
of offline metrics for evaluating recommender systems). We also keep track of how
well these offline metrics correlate to measurable online metrics in our AB tests.
However, since the mapping is not perfect, offline performance is only used as an
indication to make informed decisions on follow up steps, not to directly deploy
an algorithm without AB testing. Note that this correlation of offline and online
metrics is an important practical issue that has just started to get some attention in
the academic community [98].

Once offline testing has validated a hypothesis, we are ready to design and launch
the online AB test that will demonstrate if an algorithmic change is an improvement
from the perspective of user behavior. If it does, we will be ready to deploy the
algorithmic improvement to the whole user-base. In fact, this is how we developed
the personalization experience described in the previous sections: a sequence of AB
tests demonstrating that each successive improvement in personalization was better
than an unpersonalized method or the previous personalization approach.

We use this combination of offline and online testing for two primary reasons.
The first is that setting up offline tests are typically easier in terms of the engineering
involved because they do not need to serve millions of users in real-time. They can
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also be faster because they can look at one sub-problem such as ranking or rating
prediction and rapidly evaluate changes at that level: on the scale of hours or days,
versus the months it takes to run an AB test to determine impact on long-term
metrics. This also leads to the second reason, which is that because we are interested
in long-term improvements, not just short-term ones, the pool of users we can
allocate to an AB test is a precious resource. This means that we want to make
sure we are always keeping the AB test experimentation pipeline full for a feature
and allocating users to tests that we have confidence will be better (or at the very
least not worse) than the current default experience.

11.7 Architectures

So far, we have highlighted the importance of using both data and algorithms
to create a good personalization experience. We also talked about enriching the
interaction and engaging the user with the recommendation system. There is another
important piece of the puzzle: how to create a software architecture that can
deliver this experience and support rapid innovation. Coming up with a software
architecture that handles large volumes of existing data, is responsive to user
interactions, and makes it easy to experiment with new recommendation approaches
is not a trivial task. In this section we will describe a generic three-layer architecture
that addresses these challenges and its particular implementation at Netflix.

We will start by going through the general system architecture in Fig. 11.10.
It illustrates a blueprint for multiple personalization algorithm services such as
ranking, row selection, and ratings prediction where each provide recommendations
involving multi-layered machine learning. To start with, our users generate most of
the events and data of interest to the system and at the end our system generates
recommendations to show them. The simplest thing we can do with data is to
store it for later offline processing, which provides input for offline jobs. However,
computation can be done offline, nearline, or online. Online computation can
respond better to recent events and user interaction, but has to respond to requests
in real-time.2 This can limit the computational complexity of algorithms deployed
as well as the amount of data that can be processed. Offline computation has
less limitations on the amount of data and the computational complexity of the
algorithms since it runs in a batch manner with relaxed timing requirements.
However, it can easily grow stale between updates because the most recent data
is not incorporated. One of the key issues in a personalization architecture is how to
combine and manage online and offline computation in a seamless manner. Nearline
computation is an intermediate compromise between these two modes in which
we can perform online-like computations, but do not require them to be served

2For practical purposes we consider responses below a few hundred milliseconds (e.g. 200) to be
real-time.
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Fig. 11.10 System-level architecture diagram for a recommendation system. The main compo-
nents of the architecture contains one or more machine learning algorithms

in real-time. Model training is another form of computation that uses existing
data to generate a model that will later be used during the actual computation of
recommendation results. Another part of the architecture describes how the different
kinds of events and data need to be handled by the event and data distribution
system. A related issue is how to combine the different signals and models that
are needed across the offline, nearline, and online regimes. Finally, we also need to
figure out how to combine intermediate recommendation results in a way that makes
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sense for the user.3 This whole infrastructure runs across the public Amazon Web
Services cloud. The rest of this section will detail the components of this architecture
as well as their interactions. In order to do so, we will break the general diagram into
different sub-systems and we will go into the details of each of them.

11.7.1 Event and Data Distribution

The goal of our system is to use past user interaction data to improve the user’s future
experience. For that reason, we would like the various user interface applications
(Smart TVs, tablets, game consoles, etc.) to not only deliver a delightful user
experience but also collect as many user actions as possible. These actions can
be related to clicks, browsing, viewing, or even the content of the viewport at any
time. They can be aggregated to provide base data for our algorithms. Here we
try to make a distinction between data and events, although the boundary can be
blurry. We think of events as small units of time-sensitive information that need
to be processed with low latency. These events are routed to trigger a subsequent
process, such as updating a nearline result set. On the other hand, we think of data
as more dense information units that might need to be processed and stored for later
use. Here the latency is not as important as the information quality and quantity.
Of course, there are user actions that can be treated as both events and data and
therefore sent to both flows.

At Netflix, our near-real-time event flow is managed through an internal frame-
work called Manhattan. Manhattan is a distributed computation system that is
central to our algorithmic architecture for recommendation. It is somewhat similar
to Twitter’s Storm, but it addresses different concerns and responds to a different set
of internal requirements. The data flow is managed mostly through logging through
Chukwa4 [62] to Hadoop5 for the initial steps of the process. Later we use Hermes,
described in the next section, as our publish-subscribe mechanism.

11.7.2 Offline, Nearline, and Online Computation

As mentioned above, our algorithmic results can be computed either online in real-
time, offline in batch, or nearline in between. Each approach has its advantages and
disadvantages, which need to be taken into account for each use case.

3Intermediate recommendations usually represent lists of items that have been pre-selected and
even ranked in advanced but need to undergo further processing such as filtering or re-ranking
before being presented to the user.
4Chukwa is a Hadoop subproject devoted to large-scale log collection and analysis.
5Hadoop is an open-source software framework for storage and large-scale processing of data-sets
on clusters of commodity hardware.
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Online computation can respond quickly to events and use the most recent data.
An example is to assemble a gallery of action movies sorted for a user given
the current context. Online components are subject to availability and response
time Service Level Agreements (SLA) that specify the maximum latency of the
component in responding to requests from client applications while our user is
waiting for recommendations to appear. For example, that recommendations need
to be returned in at least 250 ms for 99 % of all requests. This can make it harder to
fit complex and computationally costly algorithms in this approach. Also, a purely
online computation may fail to meet its SLA in some circumstances, so it is always
important to have a fast fallback mechanism such as reverting to a precomputed
result. Computing online also means that the various data sources involved also need
to be available online, which can require additional infrastructure to serve that data.

On the other end of the spectrum, offline computation enables more algorithmic
approaches such as complex algorithms and less limitations on the amount of
data that is used. A trivial example might be to periodically aggregate statistics
from millions of video play events to compile baseline popularity metrics for
recommendations. Offline systems also have simpler engineering requirements. For
example, relaxed response time SLAs imposed by clients can be easily met. New
algorithms can be deployed in production without the need to put too much effort
into performance tuning. In the context of Consumer Science we take advantage of
this to support rapid experimentation: if a new experimental algorithm is slower to
execute, we can choose to simply deploy more cloud compute instances to achieve
the throughput required to run an experiment, instead of spending valuable engi-
neering time optimizing performance for an algorithm that may prove to be of little
business value. However, because offline processing does not have strong latency
requirements, it can not react quickly to changes in context or new data. Ultimately,
this can lead to staleness that may degrade the usefulness of recommendations and
thus the user experience. Offline computation also requires having infrastructure for
storing, computing, and accessing large sets of precomputed results.

Much of the computation we need for personalization involving machine learning
algorithms can be done offline. This means that the jobs can be scheduled to be
executed periodically and their execution does not need to be synchronous with the
request or presentation of the results. There are two main kinds of tasks that fall in
this category: model training and batch computation of intermediate or final results.
In the model training jobs, we collect relevant existing data and apply a machine
learning algorithm to produce a set of model parameters (which we will henceforth
refer to as the model). The training process usually involves training several models
with different hyper-parameters in order to select the optimal one. This final model
will usually be encoded and stored in a file for later consumption. Although most
of the models are trained offline in batch mode, we also have some incremental
learning techniques where training updates are indeed performed online. Batch
computation of results is the offline process defined above in which we use existing
models and corresponding input data to compute results that will be used at a later
time either for subsequent online processing or direct presentation to the user.
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Both of these tasks need refined data to process, which usually is generated by
running a database query. Since these queries run over large amounts of data, it
can be beneficial to run them in a distributed fashion, which makes them very good
candidates for running on Hadoop via either Hive6 or Pig7 jobs. Once the queries
have completed, we use a mechanism for publishing the resulting data. We have
several requirements for that mechanism: First, it should notify subscribers when
the result of a query is ready. Second, it should support different repositories (not
only HDFS,8 but also S39 or Cassandra, for instance). Finally, it should transparently
handle errors, allow for monitoring, and alerting. At Netflix we use an internal tool
named Hermes that provides all of these capabilities and integrates them into a
coherent publish-subscribe framework. It allows data to be delivered to subscribers
in near real-time. In some sense, it covers some of the same use cases as Apache
Kafka,10 but it is not a message/event queue system.

Nearline computation can be seen as a compromise between the two previous
modes. In this case, computation is performed exactly like in the online case.
However, we remove the requirement to serve results as soon as they are computed
and can instead store them, allowing processing to be asynchronous. The nearline
computation is done in response to user events so that the system can be more
responsive between requests. This opens the door for potentially more complex
processing to be done per event. An example is to update recommendations to reflect
that a video has been watched immediately after a user begins to watch it. Results
can be stored in an intermediate caching or storage backend. Nearline computation
is also a natural setting for applying incremental learning algorithms.

In any case, the choice of online/nearline/offline processing is not an either/or
question. All approaches can and should be combined. There are many ways to
combine them. We already mentioned the idea of using offline computation as a
fallback. Another option is to precompute part of a result with an offline process
and leave the less costly or more context-sensitive parts of the algorithms for online
computation.

Even the modeling part can be done in a hybrid offline/online manner. This is not
a natural fit for traditional supervised classification applications where the classifier
has to be trained in batch from labeled data and will only be applied online to
classify new inputs. However, approaches such as Matrix Factorization are a more
natural fit for hybrid online/offline modeling: some factors can be precomputed
offline while others can be updated in real-time to create a more fresh result. Other

6Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data
summarization, query, and analysis.
7Pig is a high-level platform for creating MapReduce programs used with Hadoop using a language
called Pig Latin.
8The Hadoop Distributed File System (HDFS) is a distributed file system designed to run on
commodity hardware.
9Amazon S3 (Simple Storage Service) is an online file storage web service offered by Amazon
Web Services.
10Apache Kafka is publish-subscribe messaging rethought as a distributed commit log.
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unsupervised approaches such as clustering also allow for offline computation of
the cluster centers and online assignment of clusters. These examples point to
the possibility of separating our model training into a large-scale and potentially
complex global model training and then alighter user-specific model training or
updating phase that can be performed online or nearline.

Regardless of whether we are doing an online or offline computation, we need
to think about how an algorithm will handle three kinds of inputs: models, data,
and signals. Models are usually small files of parameters that have been previously
trained offline. Data is previously processed information that has been stored in
some sort of database, such as movie metadata or popularity. We use the term signals
to refer to fresh information we input to algorithms. This data is obtained from live
services and can be made of user-related information, such as what the user has
watched recently, or context data such as session, device, or time.

11.7.3 Recommendation Results

The goal of our recommendation system is to come up with a personalized set of
recommendations. These results can be serviced directly from lists that we have
previously computed or they can be generated on the fly by online algorithms.
Of course, we can think of using a combination of both where the bulk of
the recommendations are computed offline and we add some freshness by post-
processing the lists with online algorithms that use real-time signals.

At Netflix, we store offline and intermediate results in various repositories to
be later consumed at request time: the primary data stores we use are Cassandra,11

EVCache,12 and MySQL.13 Each solution has advantages and disadvantages over
the others. MySQL allows for storage of structured relational data that might
be required for some future process through general-purpose querying. However,
the generality comes at the cost of scalability issues in distributed environments.
Cassandra and EVCache both offer the advantages of key-value stores. Cassandra is
a well-known solution for a distributed and scalable NoSQL store. Cassandra works
well in some situations, however in cases where we need intensive and constant
write operations we find EVCache to be a better fit. The key issue, however, is
not so much where to store the results but how to handle the requirements in a way
that conflicting goals such as query complexity, read/write latency, and transactional
consistency meet at an optimal point for each use case.

11Apache Cassandra is an open source distributed database management system designed to handle
large amounts of data across many commodity servers, providing high availability with no single
point of failure.
12EVCache is a distributed in-memory data store for the cloud.
13MySQL is one of the most popular open source relational databases.
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11.8 Research Directions with Industrial Applicability

The Netflix Prize spurred a lot of research advances, but the prize was a sim-
plification of the full recommendation problem. In Sect. 11.4, we illustrated the
broader scope of the recommendation problem by presenting Netflix’ compre-
hensive approach. In this section, we will describe some of the latest advances
in Recommender Systems by highlighting some of the most promising research
directions. Many of these directions are enabled by the availability of larger amounts
of different data such as implicit user feedback, contextual information, or social
network interaction data.

11.8.1 Beyond Explicit Ratings

Explicit ratings are neither the only feedback we can get from our users nor the best
kind of feedback. As already described, explicit feedback is noisy. Another issue is
that ratings are provided on an ordinal scale. However, traditional methods wrongly
interpret ratings as being linear, for example by computing averages. This issue,
however, has been addressed by some recent methods such as OrdRec [95] that treat
rating prediction as ordinal regression.

In most real-world situations, implicit feedback is much more readily available
than ratings and requires no extra effort on the user side. For instance, with a web
page you can have users visiting a URL or clicking on an ad as a positive feedback.
In a music service, a user can decide to listen to a song. We already described in
Sect. 11.5.1 that Netflix relies on many different kinds of data, the most important
of which is user implicit feedback on the service about what a user watched. Also,
many of these recommendation applications focus on helping a user choose an
action (click, listen, watch), so it makes sense that information about previous such
actions contain highly relevant information for predicting future actions. That is
why, besides trying to address some of the issues with explicit ratings, there have
been many recent approaches that use the more reliable and readily available data
from implicit feedback. For example, Bayesian Personalized Ranking (BPR) [66],
uses implicit feedback to compute a personalized ranking.

Implicit and explicit feedback can be combined in different ways [59]. Even
the SVD++ approach explained in Sect. 11.3.1 can combine explicit and implicit
feedback. Another way is to use logistic ordinal regression [60] to provide a
mapping. Taking a Bayesian approach like Matchbox [81], also offers a framework
to integrate different kinds of feedback such as ordinal ratings or implicit like/don’t
like preferences.
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11.8.2 Personalized Learning to Rank

In Sect. 11.4 we highlighted the importance of ranking in an online recommendation
scenario such as Netflix. The traditional pointwise approach to learning to rank
described in Sect. 11.4.2 treats ranking as a simple binary classification problem
where the only input are positive and negative examples. Typical models used in this
context include Logistic Regression, Support Vector Machines, or Gradient Boosted
Decision Trees.

There is a growing research effort in finding better approaches to ranking.
The pairwise approach to ranking, for instance, optimizes a loss function defined
on pairwise preferences from the user. The goal is to minimize the number of
preference inversions in the resulting ranking. Once we have reformulated the
problem this way, we can transform it back into the previous binary classification
problem. Examples of such an approach are RankSVM [17], RankBoost [23],
RankNet [13], or BPR.

We can also try to directly optimize the ranking of the whole list by using
a listwise approach. RankCosine [91], for example, uses similarity between the
ranking list and the ground truth as a loss function. ListNet [15] uses KL-divergence
as loss function by defining a probability distribution. RankALS [83] defines an
objective function that directly includes the ranking optimization and then uses
Alternating Least Squares (ALS) for optimizing.

Across these approaches, we use rank-specific information retrieval metrics to
measure the performance of a ranking model. Some of those metrics include Nor-
malized Discounted Cumulative Gain (NDCG), Mean Average Precision (MAP),
Mean Reciprocal Rank (MRR), or Fraction of Concordant Pairs (FCP). Ideally,
we would like to directly optimize our models those same metrics. However, it is
hard to optimize machine-learned models directly on these measures since they are
not differentiable and standard methods such as gradient descent or ALS cannot be
directly applied.

In order to optimize those metrics, some methods find a smoothed version of
the objective function to run gradient descent. CLiMF optimizes MRR [76], and
TFMAP [75], optimizes MAP in a similar way. AdaRank [93] uses boosting to
optimize NDCG. Another method to optimize NDCG is NDCG-Boost [86], which
optimizes the expectation of NDCG over all possible permutations. SVM-MAP [94]
relaxes the MAP metric by adding it to the SVM constraints. It is even possible
to directly optimize the non-differentiable IR metrics by using techniques such as
Coordinate Ascent [84], Genetic Programming, Simulated Annealing [36], or even
Particle Swarming [21].
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11.8.3 Full Page Optimization

While one-dimensional ranking is already a step beyond rating prediction, we are
most interested in optimizing the personalized experience over a complete “page”.
In order to do that we need to account for several things such as user navigational
patterns, attention models and diversity [54]. While this is not a common theme in
the literature, there are a few recent papers that are addressing the issue. Amr et. al,
for example, present a complete approach to full page optimization in the context
of news [3]. Their approach includes a sequential click model for the user and a
relevance model that promotes diversity through the use of submodular functions.

11.8.4 Context-Aware Recommendations

Most of the work on recommender systems has traditionally focused on the
two-dimensional user/item problem. But we know that in practice many other
dimensions might effect a user’s preference. In the case of Netflix, for example, the
user’s preference for shows might depend on variables such as time of the day, day of
the week, or viewing device. All of those other dimensions are referred to as context.
Using contextual variables represents having to deal with more data and a higher
dimensional problem. However, there is the potential for effective improvements in
applications that make use of context [28].

Adomavicius and Tuzhilin do a thorough review of approaches to contextual
recommendations in Chap. 6 of this book. They categorize context-aware recom-
mender systems (CARS) into three types: contextual pre-filtering, where context
drives data selection; contextual post-filtering, where context is used to filter
recommendations once they have been computed using a traditional approach; and
contextual modeling, where context is integrated directly into the model. Although
some standard approaches to recommendation could theoretically accept more
dimensions, the only a few models have been adapted in this way. Oku et al.’s
Context-aware Support Vector Machines (SVM) [58] extend SVMs with context
dimensions to do recommendation. Xiong et al. present a Bayesian Probabilistic
Tensor Factorization model to capture the temporal evolution of online shopping
preferences [92]. The authors show in their experiments that results using this third
dimension in the form of a tensor does improve accuracy when compared to the non-
temporal case. Multiverse is another multidimensional tensor factorization approach
to contextual recommendations that has proved effective in different situations [35].
Another novel approach to contextual recommendations worth mentioning is the
one based on the use of Sparse Linear Method (SLIM) [55].

A Factorization Machine [65] is a novel general-purpose regression model that
models interactions between pairs of variables and the target by using factors.
Factorization Machines have proved to be useful in different tasks and domains [67].
In particular, they can be efficiently used to model the interaction of contextual
variables [68].
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11.8.5 Metrics and Evaluation

Another important area of research for recommender systems is the development of
metrics that accurately map to user satisfaction with the recommendations. This has
been a concern for many years [30, 37, 51, 80], but it is far from being solved.
Chapter 8 of this book has a very good survey of the different approaches to
evaluating recommender systems.

One of the issues with accuracy metrics is how much they are biased for
popularity. Some recent research addresses this by trying to remove this popularity
bias [79]. However, accuracy is not the only metric we should look at when
evaluating recommendations [52]. Vargas et al., for instance, propose a framework
to evaluate also novelty and diversity. In general, we would like to optimize a
recommender system to different metrics at the same time. To help with this, there
are some recent attempts to introduce a multiple objective optimization function
[69, 70]. These approaches deal with how to optimize a recommender system offline
by using training data.

However, the ultimate objective should always be to evaluate the system on real
users. This is best accomplished through the use of online AB tests. But the use
of AB tests can be costly and challenging [40]. Thus, sometimes controlled user
experiments might be a tool worth considering [38].

11.8.6 Class Imbalance Problems and Presentation Effects

In the traditional formulation of the recommendation problem, we have pairs of
items and users but user feedback values for very few of those dyads. The problem is
then formulated as finding a utility function or model to estimate values for missing
dyads. However, in cases where we have implicit feedback, the recommendation
problem becomes predicting the probability a user will interact with a given item.
There is a big shortcoming in using the standard recommendation formulation in
such a setting: we do not have negative feedback. All the data we have is either
positive or missing. The missing data includes both items that the user explicitly
chose to ignore because they were not appealing and items that would have been
perfect recommendations but were never presented to the user [78].

One way to address this class imbalance problem is to convert missing examples
into both a positive and a negative example, each with a different weight related to
the probability that a random exemplar is positive or negative [22]. Another solution
is to the implicit feedback values: any feedback value greater than zero means
positive preference, while any value equal to zero is converted to no preference [31].
A greater value in the implicit feedback value is used to measure the “confidence”
in the fact the user liked the item. For example, in a music listening experience,
playing a song would always be considered as positive feedback while the amount
of repetitions (or for how long it was listened to) would be interpreted as support.
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In many practical situations, we have more information than the simple binary
implicit feedback from the user. In particular, we might know whether items not
selected by the user were actually displayed to the user. This adds very valuable
information, but slightly complicates the formulation of our recommendation
problem. We now have three different kinds of values for items: positive, presented
but not chosen, and not presented. This issue has been recently addressed by the so-
called Collaborative Competitive Filtering (CCF) approach [96]. The goal of CCF
is to model not only the collaboration between similar users and items, but also the
competition between items for user attention. Another important issue related to
how items are presented is the so-called position bias: An item that is presented in
the first position of a list is more likely to be seen and chosen than one that is further
down [63].

11.8.7 Social Recommendations

Many applications such as Netflix have access to social network data for some
users. The use of this new source of data for recommendations is an active
area of research, as highlighted in Chap. 15. Most of the initial approaches to
social recommendation14 relied on the so-called trust-based model where the trust
(or influence) of others is transmitted through the social network connections [6, 57].
However, it is still unclear whether users prefer recommendations from friends to
those coming from other users. For instance, in another study [11], the authors found
that the selection of users where the recommendation came from did not make much
difference, except if the recipients of the recommendation were made aware of it.
In any case, it seems clear that social trust can be used in a positive way to generate
explanations and support.

There are other uses of social information. For instance, social network data can
be an efficient way to deal with user or item cold-start. Social information can,
for instance, be used to select the most informative and relevant users or items
for modeling [50]. In terms of selecting users, some recent methods propose using
social information to select experts [73] in a similar way as collaborative filtering
settings [4].

Social-based recommendations can also be combined with the more traditional
content-based or collaborative filtering approaches [33]. Social network information
can even be efficiently included in a pure collaborative filtering setting, for example
by including it in the matrix factorization objective function [56, 97].

14It is important to note that the term “social recommendation” was originally used to describe
collaborative filtering approaches [7, 74].
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11.9 Conclusion

The Netflix Prize abstracted the recommendation problem to a simplified proxy of
predicting ratings. It is now clear that this objective, accurate prediction of ratings,
is just one of many components in an effective industrial recommendation system.
These systems also need to take into account factors such as diversity, context,
popularity, interest, evidence, freshness, and novelty. Trying to balance these often
competing factors can be a daunting task, but we have found that it is best handled
using a range of algorithmic approaches and many types of data.

Recommender systems deployed in the wild, such as those at Netflix, have the
difficult goal of optimizing the probability a user chooses something and enjoys it
enough to come back to the service. In order to do so, we need to figure out the best
way employ all the available data: from user interactions to item metadata. We also
need to have optimized approaches, appropriate metrics, rapid experimentation
frameworks, solid algorithmic techniques, and scalable architectures embedded
within a sound methodology for figuring out what actually improves the user
experience. When we put all of this together, we find ourselves continually making
progress towards that goal of creating the best possible recommendation experience
for our users.
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Chapter 12
Panorama of Recommender Systems
to Support Learning

Hendrik Drachsler, Katrien Verbert, Olga C. Santos, and Nikos Manouselis

12.1 Introduction

In this chapter we present an extended version of a state-of-the-art review on
recommender systems (RS) in the field of education and more specifically of
Technology Enhanced Learning (TEL). The chapter is based on a previous study
by Manouselis et al. in 2011 [66] in the first Recommender System Handbook, and
a Springerbriefs book from 2012 by Manouslis et al. [67].

The initial version from 2011 was limited to 20 recommender systems and got
extended by the 2012 publication to 42 systems. The report from 2012 did not
only extend the previous review, it also introduced a classification framework that
provides a detailed overview over research activities on TEL recommender systems
(RecSys). The 2012 publication acts like a map that shows what recommender
system approaches have been studied in the TEL field and summarises the main
findings. It is also a kind of manual that can inform researchers about most
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prominent approaches chosen so far and highlights neglected areas of research that
could be taken up by the research community. It tries to standardise the research on
TEL RecSys by introducing reference datasets, evaluation methods and procedures,
and finally outlines current challenges in the field.

The previous studies are highly cited and had a significant impact on the TEL
RecSys field. Since their publication, the community has much more developed into
a sustainable and coherent research field. Research results became more transparent
and comparable through the use of educational datasets from Educational Resource
portals such as OpenScout (http://learn.openscout.net/) or MACE (http://portal.
mace-project.eu) that act as reference datasets like Movielens or Netflix [110]. The
research community around TEL RecSys is continuously growing as an increasing
amount of research projects, conferences, workshops, special issues in journals and
books shows. Examples include the Workshop series of Social Information Retrieval
for Technology Enhanced Learning (SIRTEL 2007–2009), the RecSysTEL Work-
shop series on Recommender Systems for Technology Enhanced Learning [65, 68],
the dataTEL workshop series on datasets for Technology Enhanced Learning
[25, 26], a specific track on Recommender Systems for Learning (ReSyL) at the 14th
IEEE International Conference on Advanced Learning Technologies (ICALT 2014)
[27], the data competitions from 2013 until 2014 of the LinkedUp project [19, 21],
as well as several special volumes of journals and books [86, 87, 104, 109, 113].
The diversity of the events over the years shows how relevant the research topics
and challenges are for the TEL community. Figure 12.1 shows a world map where
we indicated the countries that contribute research results to this meta-study. It can
be seen that research on TEL RecSys is of global interest.

Fig. 12.1 The world map of TEL RecSys research. It highlights countries that contributed research
considered for this meta-review study

http://portal.mace-project.eu
http://portal.mace-project.eu
http://learn.openscout.net/
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With the current chapter, we aim to go beyond the previous results by updating
the classification framework as well as significantly increasing the amount of
recommender systems that have been analysed in the state-of-the-art review. The
current review almost doubles the number of systems analysed in the previous study
(2012) and includes 82 recommender systems from 35 countries (see Fig. 12.1).
Due to the growths of publications in the field, we needed to be more restrictive
with the selection of suitable research papers that are added to the review. We
therefore mainly considered new publications that are based on empirical data rather
than conceptual drafts. We hope to provide a comprehensive overview about the
TEL RecSys field, further standardise the research and development, outline new
challenges, and increase the common knowledge about the most effective ways to
apply recommender system technology in the educational domain.

Finally, we want to emphasis that all the bibliography covered by this chapter
is available in an open group created at the Mendeley research platform and will
continue to be enriched with additional references (http://bit.ly/recsystel). We would
like to invite the reader to sign up for this group and to connect to the community
of RecSysTEL researchers. Among gaining access to the collected bibliography, we
are looking forward to colleagues that contribute new research articles and findings
within this very fast developing research field.

The chapter is structured as follows. First, an overview of the TEL research field
is presented. Next, the framework model used to classify the reviewed recommender
systems is outlined. After that, the results of the meta review are described,
presenting seven clusters in which the TEL RecSys have been grouped. Finally,
some conclusions and future challenges are discussed.

12.2 Technology Enhanced Learning (TEL)

Technology Enhanced Learning (TEL) aims to design, develop and evaluate socio-
technical innovations for various kinds of learning and education. This involves
individual learners but also groups and organisational knowledge management
processes. It is therefore an application domain that generally covers technologies
that support all forms of teaching and learning activities. The research in this
field is very heterogeneous as proven by Kalz and Specht [51] in their study on
3476 research articles collected from the web of science between 2002–2011.
TEL research is widespread from web-based information systems over mobile
and wearable computing [120] to large scale physical simulators that are used in
medicine, military or public transport education [22, 119].

Within this diverse research area, research on personalisation technologies is
a strong topic with a large amount of national and international funded research
grants. Personalisation of learning gets even more important with the increasing
use of digital learning environments like learning object repositories, learning
management systems, personal learning environments, and devices for mobile
learning scenarios that take into account the learners’ needs [8].

http://bit.ly/recsystel
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The uptake of personalised learning approaches and especially recommender
systems nowadays is reasonable due to the high demand on interpreting data that is
stored in educational institutions. In fact, we have never been so close to investigate
the phenomena of learning as in the days of “big data”. Almost all digital behavior
of learners is stored and saved on servers of educational institutes. Not so long
ago, collecting data was limited in terms of cost, time requirements, scope, and
authenticity of the data, as this was typically done using single groups or classes for
an experiment. The digital way of learning has made data collection an inherent
process of delivering educational content to the students. That means that the
analysis of learning behavior is no longer only related to representative pilot studies
rather than to the usage of the entire student population. This trend has even become
faster with the appearance of Massive Open Online Courses (MOOCs) [72] and the
emerging of the Learning Analytics field [41]. MOOCs provide massive amounts
of student data and therefore provide new opportunities for recommender systems
to offer personalised learning support. Learning Analytics is currently the research
field within TEL that focuses on understanding and supporting learners based on
their data.

As a consequence, recommender systems have become extremely interesting
for TEL research. These efforts resulted in a number of interesting observations
as described in [67]: (1) There is a significant increase of recommender systems
applied in TEL due to the digitalisation of learning and the growths of educational
data; (2) The information retrieval goals that TEL recommenders try to achieve
are sometimes different to the ones identified in other systems (e.g. product
recommenders). For instance, many TEL RecSys try to suggest most suitable
learning activities to learners by taking into account their knowledge level. This level
is measured by prior- or self-assessment methods and taken into account to build
personalised sequences through the learning content or activities; (3) There is a need
to standardise the evaluation of TEL recommenders as the effects of the systems
on the learners are in the focus of the research—rather than the most accurate
algorithm; and (4) TEL RecSys research tries to evaluate its impact on educational
stakeholders ultimately in user studies, rather than in data-driven studies. The
evaluation criteria therefore go beyond traditional recommender system criteria such
as precision, recall, or F1 measures and include specific learning related evaluation
criteria such as effectiveness and efficiency of the learning process.

12.3 Classification Framework for TEL RecSys Review

Several classifications and categories have been used in the past to provide an
overview of recommender systems. Hanani et al. [43] provide a general framework
for information filtering systems, whereas Schafer et al. [94] and Wei et al.
[118] clustered recommender systems in the e-commerce domain by distinguishing
information used for recommendations, the types of recommendations, and various



12 Panorama of Recommender Systems to Support Learning 425

techniques. Burke [12] focused especially on the recommendation techniques and
listed especially new approaches to the dominating content and collaborative
filtering approaches at that time. Adomavicius and Tuzhilin [2] followed up on this
technology study and reviewed various systems that they clustered into content-
based, collaborative, and hybrid ones. They provided a detailed summary of the
different technologies applied by the investigated recommender systems.

There are also publications that provide suitable criteria to categorise and order
recommender systems (e.g. [42, 44, 75]). Manouselis and Costopoulou [62] com-
bined all these evaluation criteria in a comprehensive classification framework with
three main categories: (1) Supported Tasks, (2) Approach, and (3) Operation. The
authors used this framework to analyse and classify 37 multi-criteria recommender
systems. This framework was adjusted in 2012 to TEL by adding specific Supported
Tasks like Find peer learners and Predict learning performance [67]. In this chapter,
we have used the adjusted version for the following review of the 82 TEL RecSys.
A detailed description of the framework and its categories is not available in the
chapter due to page limitations. The interested reader can find a summary of the
current version of the classification framework under the following URL: https://
sites.google.com/site/recsystel/. The additional items (support tasks, methods) that
have been added to the original version of the framework [67] have been emphasised
in Fig. 12.2.
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Recommend sequence of
items
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Fig. 12.2 Classification framework for TEL RecSys based on [67]

https://sites.google.com/site/recsystel/
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12.4 Survey Results

12.4.1 Method and Overview of TEL RecSys

The review of recommender systems presented in Table 12.1 compiles a total of 82
systems. These systems have been identified in previous compilations of educational
recommender systems [66, 67, 69, 86, 87, 89, 91, 111], and have been extended
with works shared in the Mendeley group and complemented with a keyword
search in Google Scholar. This review covers 15 years of research on educational
recommender systems from 2000 until 2014. The extensive compilation of TEL
recommenders offers new insights and trends for the evolution of the research field.

Based on the current state-of-the-art review we have identified seven clusters that
group TEL recommenders systems in terms of relevant contributions to the field.
Within each cluster, papers are reported in chronological order aimed to represent
the research evolution. The clusters identified are the following:

1. TEL RecSys following collaborative filtering approaches as in other domains
2. TEL RecSys that propose improvements to collaborative filtering approaches to

take into account the particularities of the TEL domain
3. TEL RecSys that consider explicitly educational constraints as a source of

information for the recommendation process
4. TEL RecSys that explore other alternatives to collaborative filtering approaches
5. TEL RecSys that consider contextual information within TEL scenarios to

improve the recommendation process

Table 12.1 Overview clusters
Clusters

Cluster 1: Recommending resources for
learning based on CF (7)

[RS1-2000], [RS3-2003], [RS5-2004], [RS7-2005], [RS8-2005],
[RS9-2005], [RS10-2005]

Cluster 2: Improving CF algorithms with
TEL domain particularities (13)

[RS11-2006], [RS14-2008], [RS18-2009], [RS29-2010], [RS30-
2010], [RS47-2011], [RS49-2012], [RS63-2013], [RS64-2013],
[RS71-2014], [RS72-2014], [RS73-2014], [RS78-2007]

Cluster 3: Educational contraints as
source of information (16)

[RS6-2004], [RS19-2009], [RS31-2010], [RS32-2010], [RS33-
2010], [RS50-2012], [RS51-2012], [RS52-2012], [RS53-2012],
[RS54-2012], [RS55-2012], [RS56-2012], [RS57-2012], [RS58-
2012], [RS74-2014], [RS75-2014]

Cluster 4: Exploring non-CF techniques
to find successful educational recom-
mendations (14)

[RS2-2002], [RS15-2008], [RS20-2009], [RS21-2009], [RS22-
2009], [RS34-2010], [RS35-2010], [RS36-2010], [RS59-2012],
[RS60-2012], [RS65-2013], [RS66-2013], [RS76-2014], [RS77-
2014]

Cluster 5: Considering contextual infor-
mation (13)

[RS16-2008], [RS23-2009], [RS37-2010], [RS38-2010], [RS39-
2010], [RS40-2010], [RS41-2014], [RS42-2010], [RS43-2010],
[RS79-2011], [RS80-2013], [RS81-2013], [RS82-2014]

Cluster 6: Assessing the educational im-
pact of recommendations (12)

[RS12-2007], [RS24-2009], [RS25-2009], [RS26-2009], [RS44-
2010], [RS45-2010], [RS48-2011], [RS61-2012], [RS62-2012],
[RS67-2013], [RS68-2013], [RS69-2013]

Cluster 7: Recommending courses (7) [RS4-2003], [RS13-2007], [RS17-2008], [RS27-2009], [RS28-
2009], [RS46-2010], [RS70-2013]
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6. TEL RecSys that assess the educational impact of the recommendations delivered
7. TEL RecSys that focus on recommending courses (instead of resources within

them)

The systems grouped into the mentioned clusters produce recommendations for
learners that either contribute additional learning resources, guide their learning
process or suggest courses to take. However, recommender systems can also
support teachers to improve their courses or monitor their learning resources
[9, 32, 37, 38, 59, 96].

Papers included in Table 12.1 have been given an ID in the form of
RS+ID+YEAR [RSID-YEAR] to facilitate its follow-up in the remainder of the
chapter, since many of the systems analysed have not been named by the authors
with a specific acronym.

12.4.1.1 Cluster 1: Recommending Resources for Learning Based
on Collaborative Filtering

This first cluster contains seven papers that report the application of collaborative
filtering techniques as used in other domains, such as e-commerce, to produce
recommendations in TEL scenarios. CoFind [RS1-2000] guides learners to relevant
resources that have been previously found as valuable by other learners. The system
uses collaborative filtering in combination with folksonomies data [28]. Altered
Vista [RS3-2003] considers user evaluations of learning resources and propagates
them to users with similar tastes in the form of word-of-mouth recommendations
about the qualities of the resources [82]. RecoSearch [RS5-2004] proposes a
collaborative filtering infrastructure for authoring, searching, recommending and
presenting learning objects to learners [34]. RACOFI [RS7-2005] uses a collabora-
tive filtering engine that works with ratings that users provide for learning resources
complemented with an inference rule engine that mines association rules between
learning resources [57]. In QSIA [RS8-2005] traditional collaborative filtering
is extended with a control mechanism to mark users who should be considered
for recommendations [81]. In CYCLADES [RS9-2005] users search, access and
rate learning resources available in repositories found through the Open Archives
Initiative [4]. The last paper included in this cluster [RS10-2005] proposes a
hybrid recommendation service on research papers rated by learners consisting in a
clustering module (using data clustering techniques to group learners with similar
interests) and a collaborative filtering module (using classic collaborative filtering
techniques to identify learners with similar interests in each cluster) [102]. This last
work served to span the research to improve collaborative filtering approaches, as
compiled in cluster 2.
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12.4.1.2 Cluster 2: Improving Collaborative Filtering Algorithms
with TEL Domain Particularities

This cluster compiles 13 papers. A considerable amount of researchers have focused
on multi-attribute criteria of educational resources in order to cover the complexity
of the learning (prior-knowledge, expertise, available study time, etc.) when using
collaborative filtering techniques. For instance, in [RS11-2006] resources have been
described using SCORM learning resource specification [106]. In [RS78-2007]
multi-dimensional ratings provided by the users on learning resources have been
considered [63]. [RS29-2010] investigated multi-criteria ratings with data from
MERLOT learning object repository [99]. [RS47-2011] considered the relationship
(advanced learner, beginner learner) as the third dimension over the typical user
x item in collaborative filtering [114]. [RS63-2013] used the learner tree to take
into account explicit multi-attribute of resources, time-variant multi-preference
of learner and learners’ rating matrix for implicit and explicit attribute based
collaborative filtering [84]. In [RS71-2014] multi-dimensional ratings on learning
objects are considered to correlate one user with another [103].

Other approaches to improve collaborative filtering algorithms have also been
proposed. In particular, [RS14-2008] proposes a collaborative recommendation
system with query extraction mechanisms [61]. [RS18-2009] stores the ratings
made by similar students in the profile together with the learning goal at that time
in order to take into account the learner’s evolution in time [40]. [RS30-2010]
extends a collaborative filtering mechanism with the learners competencies [15].
The RSF system [RS49-2012] presents a collaborative filtering algorithm combined
with an embedded web crawler to update learning material [35]. The DELPHOS
system [RS64-2013] includes a weighted hybrid recommender (collaborative,
content and demographic) that uses different filtering criteria to encode the relative
importance of each particular filter. The weights of the filters can be assigned by
the user him/herself or automatically calculated by the system [124]. [RS72-2014]
shows that a graph-based collaborative filtering algorithm can improve accuracy of
generated recommendations even when the user actions data is sparse and provide
a balanced distribution of users degree centrality [31]. In [RS73-2014] sentiment
analysis techniques on user-generated comments of a repository of educational
resources are used to obtain valuable qualitative information for adjusting the
perceived rating of a given resource by a specific user [52].

12.4.1.3 Cluster 3: Educational Constraints as Source of Information
for the Recommendation Process

The 16 papers in this cluster consider the educational knowledge as information
source for the recommendation process in order to produce recommendations that
better address the educational goals in TEL scenarios. They require an explicit
description of this knowledge in terms of rules, ontologies, concept maps, semantic
relations, etc. They can overcome the lack of large datasets needed by collaborative



12 Panorama of Recommender Systems to Support Learning 429

filtering approaches, but in turn may require maintenance efforts to keep the user and
domain preferences updated, unless semantic techniques and related approaches are
used.

In this line, [RS6-2004] recommends learning objects based on sequencing rules
that help users to be guided through the concepts of an ontology of topics [98].
In [RS19-2009] educational standards such as PAPI and IEEE LOM were used
within an ontology framework to manage learners properties based on learning
styles and reputation metadata [53]. Ontology-based multi-actor learning flows and
competence driven user models as described in [RS31-2010] can provide advice
on tasks and resources [70]. Ontologies have also been used in [RS55-2012] to
recommend resources that match the identified knowledge gaps form the learners
[7] and to support creativity such as in [RS54-2012], where a recommender system
suggests creativity techniques to the users [100]. Networks of ontologies such
as [RS53-2012] that conceptualise different domains and their characteristics to
provide semantic recommendations have also been proposed [20].

Another approach to recommend learning resources based on knowledge gaps is
CLICK [RS56-2012] that suggests resources to learners by comparing automatically
generated domain and learner models from distributed learning repositories [79].
Conceptual relationships have been used in [RS33-2010] to semantically rank
lecture slides and the search needs for the users [115]. Conceptual maps have also
been built in the METIS system [RS51-2012] to recommend learning activities in
the maths domain based on prior knowledge, skills, and abilities of the learners
[107]. MetaMender [RS52-2012] supports the description of meta-rules written by
domain experts to personalise the information to the learner [123]. In this sense,
[RS50-2012] takes the needs and preferences of learners into account to suggest
suitable learning resources from distributed learning repositories based on a rule
approach [14].

Some issues that deal with the learner situation have also been addressed
by several papers. [RS32-2010] considers the limited time available for learning
when proposing a utility-based recommender based on concept knowledge mod-
elling [73]. As discussed in [RS57-2012] TEL RecSys can also be used to enhance
meta-cognition and make learners aware of the processes of their learning [125].
In this sense, [RS58-2012] recommends widgets for learning activities in the
context of personal learning environments for self-regulated learning [78]. In ALEF
[RS75-2014] information stored and maintained in the corresponding user and
domain models can provide learners recommendations on how to achieve more
successful collaboration [6]. Finally, Semantic Affective Educational Recommender
Systems (SAERS) [RS74-2014] can provide appropriate emotional support with
affective educational-oriented recommendations elicited with TORMES (i.e., Tutor-
Oriented Recommendations Modelling for Educational Systems) user centered
design methodology in order to recommend the learning activity to carry out [93].
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12.4.1.4 Cluster 4: Exploring Non Collaborative Filtering Techniques
to Find Successful Educational Recommendations

Specific solutions to produce recommendations for the TEL context have also been
explored in the following 14 papers. An initial idea, suggested in [RS2-2002],
was to consider data mining techniques (such as association rules mining) in
order to build a model that represents learner behaviours, and use this model to
suggest activities or shortcuts that can help learners better navigate the digital
materials [122]. In this line, in RPL [RS21-2009] web mining techniques were
considered together with a scalable search engine to compute recommendations
against a repository of educational resources [54]. AHA! adaptive educational
system was also extended with recommendations in [RS22-2009] using web usage
mining together with hyperlink adaptation to learn learners browsing pathways
for personalised link recommendation [83]. Additionally, in [RS66-2013] data
mining techniques complemented with user centered design methods were used to
identify recommendation opportunities in educational scenarios that promote active
participation of learners and strengthen the sharing of learning experiences [88].

Other approaches such as [RS15-2008] have applied fuzzy logic and item
response theory to recommending courseware with suitable difficulty levels for
learners according to learners’ uncertain/fuzzy feedback responses [17]. In [RS60-
2012] fuzzy knowledge extraction model is used to extract personalised recom-
mendation knowledge by discovering effective learning paths from past learning
experiences through an ant colony optimization model [116]. In [RS65-2013]
MPRLS also uses fuzzy logic theory to construct an appropriate learning path based
on the learners misconceptions to recommend most suitable materials [46]. Meta-
rules derived from a Markov chain model have also been used in [RS20-2009]
to calculate transition probabilities of possible learning resources in a sequenced
course of study for discovering one or more recommended learning paths [48]. In
[RS34-2010] social navigation techniques built upon traces of past user behavior
and using the assembled collective wisdom have been used to guide users to the most
useful information [11]. Peer-to-peer networks have also been used in [RS36-2010]
for searching personalised and useful learning paths suggested by reliable (trusted)
peers [13]. Semantic relatedness of open education resources metadata have been
considered in [RS35-2010] [97]. [RS59-2012] apply factorisation techniques to
generate accurate ratings and perform predictions to recommend most suitable
items, as they take temporal effects into account and therefore accurately model
and adjust to the increasing knowledge of learners [105]. A graph-based algorithm
as defined in [RS76-2014] can be used to create recommendations from cross-
platforms in order to make learners aware of relevant activities, resources and
peers in self-directed learning scenarios [33]. Finally, geometrical description of
the recommender space as in [RS77-2014] can lead to better recommendation and
dynamics understanding [77].
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12.4.1.5 Cluster 5: Consider Contextual Information
in the Recommendation Process

As reported in a recent state-of-the-art review [111] contextual information can be
of value to enrich the TEL recommendations process and there are many research
opportunities in this direction, as the 13 papers clustered here show.

Some relevant approaches identified in the literature are the following. A2M
[RS16-2008] proposed a hybrid approach to select the appropriate recommendation
technique depending on the input received from the learning environment and
filters the output by the course context and the user features to produce an ordered
list of recommendations to be presented to the learner [85]. CoMoLe [RS23-
2009] recommends activities (multimedia contents as well as collaborative tools) to
learners depending on different criteria (user features, context, etc.), and workspaces
through a context-based adaptive mobile educational environment [71]. [RS42-
2010] recommends documents to students according to their current activity that is
tracked in terms of semantic annotations (with Contextualized Attention Metadata)
associated to the accessed resources [10]. [RS38-2010] recommends resources at
the workplace using a context driven recommender system to effectively support
knowledge workers to meet their individual information needs [95]. In a similar
scenario, [RS39-2010] produces contextual recommendations in a knowledge-
sharing environment to the employees of large organisations [5]. [RS37-2010]
adapts a version of Googles PageRank algorithm to context-aware recommendation
in personal learning environments which incorporates different types of relations,
including social relations and relations between resources, to standard collaborative
filtering techniques [30]. [RS41-2014] considers quality information about learning
resources [16].

In some other works, physical sensors are used to collect information from
the environment with educational purposes [91]. For instance, [RS43-2010] uses
semantic web to adaptively recommend learning content according to various types
of context obtained from physical sensors [121]. In the same sense, [RS40-2010]
uses a sensor module to collect data from learners and recommends educational
resources according to predefined context structure [60]. RFID is used in [RS79-
2011] to sense de location of learning resources in the actual environment [117].
SCROLL [RS80-2013] collects context information with the sensors available in
smartphones, as well as from the device features and actions done on it [58]. In
the BISPA system [RS81-2013], physiological measures aimed to detect learners’
affective state are gathered [50]. Finally, AICARP [RS82-2014] proposes an
interactive recommendation that is delivered through two complementary sensorial
actuators taking as input physiological and environmental information [92].
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12.4.1.6 Cluster 6: Assessing the Educational Impact
of Recommendations in Educational Scenarios

Throughout more recent development cycles, it has been demanded that TEL
recommender systems should be evaluated not only according to technical criteria,
but rather by a combination of technical and educational criteria (see a review of
59 papers in [89]). Here, 12 papers compile works in this direction. [RS12-2007]
analysed implicit feedback for navigational support in lifelong learning based on
self-organisation principles to see the effect on effectiveness (completion rates and
amount of progress) and efficiency (time taken to complete) in lifelong learning
[49]. [RS68-2013] showed that recommendations can support learners to enhance
their effort towards an ascending learning curve and better grades [112]. Addition-
ally, in [RS69-2013] learning effectiveness, learning efficiency, course engagement
and knowledge acquisition were measured to evaluate recommendations impact in a
MOOC [89]. The study on learners perception as reported in [RS61-2012] suggests
that recommenders can significantly enhance virtual learning communities and put
the power of determining what constitutes a quality contribution in the hands of the
community members [56].

[RS26-2009] evaluated the applicability of recommendations in mash-up envi-
ronments that combine sources of users from different Web2.0 services [23]. In that
context, [RS44-2010] discuss the applicability of recommendations for empowering
learners to set up their personal learning environments so that they can connect
to networks of learners and collaborate on shared artifacts by using the tools
available [74]. Related to this, [RS45-2010] identified the advantages of using a
discussion forum within an e-learning system to foster communication between
learners [1] and MASSAYO [RS62-2012] suggested that recommendations on blogs
contents can support dynamic interactions in the learning environment by improving
the discussion as they provide contributions from students with different points of
view [45]. In [RS67-2013] students who learned with articles recommended by a
mobile learning system based on their preferences and reading proficiency levels
achieved significantly better reading comprehension in comparison with the students
who read non-adaptive reading materials [47].

Evaluations with users are also useful to compare the best approaches for the
recommendations process. [RS24-2009] compared various cost intensive ontology
based recommendation strategies with light-weight collaborative filtering strategies
regarding their impact on the learning outcomes of the learners in informal learning
networks [76]. [RS25-2009] report an experiment with real learners using an
hybrid approach for recommending learning resources that combines social-based
(using data from other learners) with information-based (using metadata from
learner profiles and learning activities) that shows a positive significant effect on
efficiency (time taken to complete the learning objects) of the learners after a
runtime of 4 months [24]. In LMRF [RS48-2011] learner performance increased
when the students use a recommender system based on content-based filtering and
good learners ratings, compared to both collaborative and content-based filtering
techniques [39].
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12.4.1.7 Cluster 7: Recommending Courses

The previous clusters have focused on recommendations that can be provided
within a course. However, some research works on TEL recommenders have
addressed the problem of recommending appropriate courses to students by taking
into account curricula information. The amount of papers that focus on course
recommendations is less compared to papers that focus on recommendation tasks
within a course or an online environment. Thus, course recommender systems are
rather specific and mainly driven by universities that want to support the starting
students. Nevertheless, the research on this area has progressed over the years. [RS4-
2003] proposed course suggestions for students when they have trouble in choosing
courses [18]. A few years later, a course recommender [RS13-2007] was developed
for University College Dublin students for their online enrollment application [80].
This was followed up by the famous CourseRank system [RS27-2009] for Stanford
University students with more than 70 % of students using the system [55] and
another one [RS46-2010] at the University of Pittsburgh, which was evaluated based
on a long-term evaluation experiment with students [36]. [RS17-2008] takes into
account behavioral patterns to recommends potential courses for learners [101] and
[RS28-2009] computes success probabilities of the student if enrolled in a certain
course [108]. [RS70-2013] shows the integration of a course recommender in a
Moodle instance [3].

12.4.2 Analysis According to the Framework

In the following section we cluster the 82 reviewed TEL RecSys according to the
classification framework depicted in Fig. 12.2. We therefore start with the analysis
of the Supported Tasks illustrated in Table 12.2, afterwards clustered all systems
according to their Approach, in particular, the User Model (Table 12.3), Domain
Model (Table 12.4), and Personalisation characteristics (Table 12.5), and finally
Operation (Table 12.6). It needs to be mentioned that we could not cluster all
systems into all categories exclusively and always end up with a total sum of 82
systems. This has mainly to do with the information that is provided in the papers
and is sometimes incomplete. In other cases, the systems fit into several categories
(e.g., provide a couple of supported tasks).

From Table 12.2, the following issues can be identified regarding the Supported
Tasks that TEL RecSys deal with:

• There is a vast majority of TEL RecSys that aim to support the task of Finding
good Items (content) to support learning activities. In total 61 systems (n=61) aim
to support learners by providing new learning content to their current learning
process.

• The second most used recommendation tasks is recommend a sequence of items
to learners (n=13). Recommend a sequence of items is a very important task
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Table 12.2 Classification of TEL recommenders, according to the Supported Tasks

Supported tasks
Find good items (61) [RS1-2000], [RS3-2003], [RS5-2004], [RS7-2005], [RS8-2005], [RS9-

2005], [RS11-2006], [RS13-2007], [RS14-2008], [RS17-2008], [RS19-
2009], [RS21-2009], [RS22-2009], [RS23-2009], [RS25-2009], [RS26-
2009], [RS27-2009], [RS28-2009], [RS29-2010], [RS30-2010], [RS31-
2010], [RS32-2010], [RS33-2010], [RS34-2010], [RS35-2010], [RS37-
2010], [RS38-2010], [RS39-2010], [RS40-2010], [RS41-2014], [RS42-
2010], [RS43-2010], [RS44-2010], [RS45-2010], [RS46-2010], [RS47-
2011], [RS48-2011], [RS49-2012], [RS50-2012], [RS52-2012], [RS53-
2012], [RS54-2012], [RS55-2012], [RS56-2012], [RS57-2012], [RS58-
2012], [RS62-2012], [RS63-2013], [RS64-2013], [RS67-2013], [RS68-
2013], [RS70-2013], [RS71-2014], [RS72-2014], [RS73-2014], [RS75-
2014], [RS77-2014], [RS78-2010], [RS79-2011], [RS80-2013], [RS81-
2013]

Find peers (9) [RS3-2003], [RS9-2005], [RS37-2010], [RS38-2010], [RS39-2010], [RS47-
2011], [RS54-2012], [RS72-2014], [RS77-2014]

Recommend sequence of
items (13)

[RS6-2004], [RS12-2007], [RS15-2008], [RS20-2009], [RS34-2010],
[RS36-2010], [RS51-2012], [RS57-2012], [RS60-2012], [RS65-2013],
[RS71-2014], [RS75-2014], [RS77-2014]

Predict learning perfor-
mance (1)

[RS59-2012]

Recommend learning ac-
tivity (4)

[RS66-2013], [RS69-2013], [RS74-2014], [RS82-2014]

within TEL RecSys because it is similar to instructional design methods. The
aim of an instructional design is to guide a learner through a series of learning
activities to achieve a certain competence. This didactical objective can be
supported in recommender systems by suggesting the most efficient or effective
paths through a plethora of learning resources to achieve a certain competence.
Recommender systems with this task often considering the prior knowledge of a
learner for their recommendations.

• The Recommendation of peer learners is also a very central recommendation
task for distance education settings and relatively often applied in TEL RecSys
research (n=9). Online learners often feel isolated after a period of time without
any physical meeting. Thus, courses with pure online presence tend to have
higher dropout rates compared to normal courses or blended learning scenarios.
To overcome this situation, recommender systems can be supportive by recom-
mending peer-learners that the target learner can team up within an online course.

• Interesting is that the above mentioned recommendation tasks are applied over all
years in research. So there is not one specific recommendations tasks researchers
have been focus on in a specific timeframe. In the more recent years some
new recommendation tasks have appeared, such as Predict learning performance
(n=1) and Suggest a learning activity (n=4) in contrast to just learning content.
These developments show that recommender systems are increasingly applied to
filter and personalise information in digital learning environments and are also
applied for new educational goals.
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Table 12.3 Classification according to the User Model of the Approach category
Approach: User Model

Representation
method

Vector-space models
(29)

[RS8-2005], [RS9-2005], [RS1-2000], [RS6-2004], [RS11-
2006], [RS5-2004], [RS27-2009], [RS56-2012], [RS33-
2010], [RS35-2010], [RS59-2012], [RS21-2009], [RS55-
2012], [RS46-2010], [RS72-2014], [RS76-2014], [RS73-
2014], [RS77-2014], [RS71-2014], [RS67-2013], [RS40-
2010], [RS14-2008], [RS23-2009], [RS66-2013], [RS69-
2013], [RS60-2012], [RS47-2011], [RS22-2009], [RS74-
2014]

User-item ratings mod-
els (13)

[RS3-2003], [RS7-2005], [RS25-2009], [RS78–2010],
[RS26-2009], [RS34-2010], [RS46-2010], [RS72-2014],
[RS76-2014], [RS13-2007], [RS28-2009], [RS49-2012],
[RS63-2013]

Associative networks (3)[RS39-2010], [RS40-2010], [RS64-2013]
History-based (5) [RS25-2009], [RS20-2009], [RS37-2010], [RS15-2008],

[RS65-2013]
Ontology (18) [RS25-2009], [RS53-2012], [RS50-2012], [RS52-2012],

[RS57-2012], [RS33-2010], [RS32-2010], [RS42-2010],
[RS31-2010], [RS54-2012], [RS51-2012], [RS75-2014],
[RS58-2012], [RS36-2010], [RS68-2013], [RS62-2012],
[RS45-2010], [RS43-2010]

Demographic features
(2)

[RS17-2008], [RS19-2009]

Representation type Measurable (17) [RS3-2003], [RS8-2005], [RS9-2005], [RS1-2000], [RS6-
2004], [RS78–2010], [RS11-2006], [RS5-2004], [RS27-
2009], [RS39-2010], [RS21-2009], [RS76-2014], [RS73-
2014], [RS71-2014], [RS40-2010], [RS13-2007], [RS63-
2013]

Ordinal / Features (4) [RS1-2000], [RS77-2014], [RS64-2013], [RS43-2010]

Probabilistic (3) [RS9-2005], [RS77-2014], [RS70-2013]

Initial Empty (14) [RS3-2003], [RS7-2005], [RS9-2005], [RS1-2000], [RS27-
2009], [RS16-2008], [RS76-2014], [RS73-2014], [RS71-
2014], [RS13-2007], [RS64-2013], [RS49-2012], [RS47-
2011], [RS79-2011]

Manual (24) [RS78-2010], [RS29-2010], [RS34-2010], [RS46-2010],
[RS37-2010], [RS58-2012], [RS67-2013], [RS36-2010],
[RS40-2010], [RS70-2013], [RS68-2013], [RS28-2009],
[RS62-2012], [RS66-2013], [RS69-2013], [RS15-2008],
[RS43-2010], [RS60-2012], [RS65-2013], [RS22-2009],
[RS74-2014], [RS17-2008], [RS19-2009], [RS80-2013]

Stereotype (3) [RS14-2008], [RS23-2009], [RS45-2010]
Learning Clustering (10) [RS21-2009], [RS75-2014], [RS40-2010], [RS70-2013],

[RS49-2012], [RS66-2013], [RS69-2013], [RS22-2009],
[RS74-2014], [RS79-2011]

Classifiers (15) [RS9-2005], [RS39-2010], [RS44-2010], [RS38-2010],
[RS41–2014], [RS73-2014], [RS77-2014], [RS71-2014],
[RS64-2013], [RS49-2012], [RS66-2013], [RS69-2013],
[RS15-2008], [RS47-2011], [RS74-2014]

From the analysis of the User Models that are illustrated in Table 12.3, the
following aspects can be identified:

• Regarding the Representation method, most TEL RecSys identified use classic
Vector-space models with multiple attributes (nD29) to represent the desired
features or the user preferences. In addition, many systems rely on Ontologies
(nD18) that capture various attributes of users and relationships between those
attributes. The ontology-based systems are closely followed by User-item ratings
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Table 12.4 Classification of TEL recommenders, according to the Domain Model
Approach: Domain Model

Representation
Index/List
(16)

[RS3-2003], [RS8-2005], [RS9-2005], [RS5-2004], [RS78–2010],
[RS27-2009], [RS20-2009], [RS35-2010], [RS21-2009], [RS46-2010],
[RS72-2014], [RS76-2014], [RS13-2007], [RS28-2009], [RS49-2012],
[RS65-2013]

Taxonomy (3) [RS1-2000], [RS37-2010], [RS70-2013]
Vector-space
model (18)

[RS33-2010], [RS59-2012], [RS72-2014], [RS76-2014], [RS73-2014],
[RS77-2014], [RS71-2014], [RS67-2013], [RS48-2011], [RS40-2010],
[RS14-2008], [RS23-2009], [RS66-2013], [RS69-2013], [RS15-2008],
[RS47-2011], [RS74-2014], [RS17-2008]

Ontology (23) [RS6-2004], [RS25-2009], [RS53-2012], [RS50-2012], [RS52-2012],
[RS57-2012], [RS33-2010], [RS32-2010], [RS42-2010], [RS31-2010],
[RS54-2012], [RS51-2012], [RS55-2012], [RS75-2014], [RS77-2014],
[RS36-2010], [RS64-2013], [RS68-2013], [RS62-2012], [RS45-2010],
[RS63-2013], [RS43-2010], [RS19-2009]

Graph (1) [RS60-2012]
Rules (1) [RS22-2009]

Generation
Manual(26) [RS8-2005], [RS9-2005], [RS1-2000], [RS6-2004], [RS78–2010],

[RS5-2004], [RS26-2009], [RS27-2009], [RS29-2010], [RS34-2010],
[RS67-2013], [RS36-2010], [RS48-2011], [RS13-2007], [RS64-2013],
[RS68-2013], [RS23-2009], [RS49-2012], [RS62-2012], [RS45-2010],
[RS63-2013], [RS43-2010], [RS47-2011], [RS19-2009], [RS79-2011],
[RS81-2013]

Classifiers
(17)

[RS39-2010], [RS56-2012], [RS44-2010], [RS21-2009], [RS75-2014],
[RS41–2014], [RS73-2014], [RS71-2014], [RS14-2008], [RS28-2009],
[RS66-2013], [RS69-2013], [RS15-2008], [RS60-2012], [RS65-2013],
[RS74-2014], [RS19-2009]

Clustering (8) [RS39-2010], [RS38-2010], [RS70-2013], [RS66-2013], [RS69-2013],
[RS74-2014], [RS17-2008], [RS19-2009]

Sequential
analysis (1)

[RS22-2009]

models (nD13) that capture explicit ratings of users on items. History-based and
Demographic features approaches have been applied less often (nD5 and nD2,
respectively). Although there are few Associative networks approaches listed in
the review (nD3), we believe this approach will become more prominent through
the increasing research on the Educational Data Mining field.

• Regarding the Representation type, most are based on clear Measurable items
(nD17). A distinction needs to be made in this category between implicit and
explicit ratings. Some systems apply explicit ratings like star ratings and tags
given by the users to the content whereas other systems use implicit ratings
extracted from the behaviour of the users such as user accessed a file, time spend
on a resource, etc. Both types of ratings are together the most common types in
TEL RecSys. Ordinal/Feature and Probabilistic approaches are not applied that
often (n=4 and n=3, respectively).

• With regards to the Generation, the initial user preferences engaged by the
examined systems are usually acquired in a Manual way from the users (n=24).
In many cases, the user model is initially Empty (nD14), and then slowly created
throughout the users interactions with the system. Stereotyping was also used in
some cases (n=3). For learning, there is a trend in the recent years to apply more
and more Clustering (n=10) or Classification (n=15) approaches for learning the
initial user model from existing data.
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Table 12.5 Classification according to Personalisation characteristics
Approach: Personalisation

Method
Collaborative filter-
ing (21)

[RS3-2003], [RS8-2005], [RS9-2005], [RS1-2000], [RS78–2010],
[RS11-2006], [RS5-2004], [RS26-2009], [RS12-2007], [RS44-2010],
[RS29-2010], [RS21-2009], [RS37-2010], [RS72-2014], [RS76-2014],
[RS73-2014], [RS13-2007], [RS49-2012], [RS63-2013], [RS47-2011],
[RS79-2011]

Content-based (10) [RS39-2010], [RS38-2010], [RS42-2010], [RS35-2010], [RS21-2009],
[RS75-2014], [RS41–2014], [RS70-2013], [RS68-2013], [RS43-2010]

Hybrid (13) [RS25-2009], [RS27-2009], [RS56-2012], [RS34-2010], [RS21-2009],
[RS46-2010], [RS77-2014], [RS71-2014], [RS48-2011], [RS40-2010],
[RS64-2013], [RS14-2008], [RS19-2009]

Rule-based (22) [RS6-2004], [RS53-2012], [RS50-2012], [RS52-2012], [RS57-2012],
[RS32-2010], [RS31-2010], [RS54-2012], [RS51-2012], [RS55-2012],
[RS75-2014], [RS67-2013], [RS70-2013], [RS68-2013], [RS23-2009],
[RS28-2009], [RS45-2010], [RS65-2013], [RS22-2009], [RS80-2013],
[RS81-2013], [RS82-2014]

Graph-based (4) [RS72-2014], [RS76-2014], [RS36-2010], [RS60-2012]

Knowledge-based
(3)

[RS66-2013], [RS69-2013], [RS74-2014]

Association mining
(1)

[RS17-2008]

Raw retrieval (1) [RS62-2012]

Manually selected
(1)

[RS52-2012]

Algorithm
type

Model-based (24) [RS56-2012], [RS53-2012], [RS50-2012], [RS52-2012], [RS32-2010],
[RS38-2010], [RS42-2010], [RS35-2010], [RS59-2012], [RS54-2012],
[RS51-2012], [RS55-2012], [RS75-2014], [RS41–2014], [RS67-2013],
[RS36-2010], [RS48-2011], [RS70-2013], [RS68-2013], [RS28-2009],
[RS15-2008], [RS43-2010], [RS65-2013], [RS22-2009]

Memory-based (16) [RS3-2003], [RS8-2005], [RS9-2005], [RS1-2000], [RS78-2010],
[RS5-2004], [RS27-2009], [RS12-2007], [RS44-2010], [RS37-2010],
[RS13-2007], [RS14-2008], [RS49-2012], [RS47-2011], [RS17-2008],
[RS19-2009]

Hybrid (13) [RS11-2006], [RS57-2012], [RS34-2010], [RS21-2009], [RS46-2010],
[RS76-2014], [RS73-2014], [RS77-2014], [RS71-2014], [RS40-2010],
[RS64-2013], [RS23-2009], [RS63-2013],

Algorithm
technique

Attribute-based (17)[RS11-2006], [RS39-2010], [RS38-2010], [RS75-2014], [RS41–2014],
[RS71-2014], [RS67-2013], [RS36-2010], [RS70-2013], [RS64-2013],
[RS68-2013], [RS23-2009], [RS28-2009], [RS43-2010], [RS65-2013],
[RS22-2009], [RS17-2008]

Item-to-item (4) [RS44-2010], [RS37-2010], [RS48-2011], [RS15-2008]

User-to-user (10) [RS3-2003],[RS8-2005], [RS9-2005], [RS78–2010], [RS5-2004],
[RS29-2010], [RS36-2010], [RS13-2007], [RS14-2008], [RS49-2012]

Hybrid (13) [RS26-2009], [RS27-2009], [RS56-2012], [RS34-2010], [RS51-2012],
[RS21-2009], [RS76-2014], [RS73-2014], [RS77-2014], [RS40-2010],
[RS63-2013], [RS47-2011], [RS19-2009]

Vector-space model
(2)

[RS42-2010], [RS35-2010]

Output Suggestion (54) [RS3-2003], [RS9-2005], [RS1-2000], [RS6-2004], [RS25-2009],
[RS26-2009], [RS27-2009], [RS39-2010], [RS12-2007], [RS53-2012],
[RS50-2012], [RS52-2012], [RS57-2012], [RS44-2010], [RS32-2010],
[RS38-2010], [RS42-2010], [RS35-2010], [RS31-2010], [RS34-2010],
[RS54-2012], [RS51-2012], [RS21-2009], [RS55-2012], [RS46-2010],
[RS75-2014], [RS76-2014], [RS73-2014], [RS77-2014], [RS71-2014],
[RS58-2012], [RS67-2013], [RS36-2010], [RS48-2011], [RS40-2010],
[RS13-2007], [RS64-2013], [RS68-2013], [RS14-2008], [RS49-2012],
[RS45-2010], [RS66-2013], [RS69-2013], [RS15-2008], [RS43-2010],
[RS60-2012], [RS65-2013], [RS47-2011], [RS22-2009], [RS17-2008],
[RS19-2009], [RS79-2011], [RS80-2012], [RS81-2013]

Prediction (12) [RS7-2005], [RS78–2010], [RS29-2010], [RS59-2012], [RS37-2010],
[RS41–2014], [RS77-2014], [RS48-2011], [RS70-2013], [RS23-2009],
[RS28-2009], [RS63-2013]
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Table 12.6 Classification of TEL recommenders, according to the Domain Model of the Approach
category

Operation
Architecture Centralised (60) [RS3-2003], [RS7-2005], [RS8-2005], [RS1-2000], [RS6-2004], [RS25-

2009], [RS78–2010], [RS5-2004], [RS26-2009], [RS27-2009], [RS39-
2010], [RS12-2007], [RS20-2009], [RS52-2012], [RS57-2012], [RS44-
2010], [RS32-2010], [RS38-2010], [RS29-2010], [RS31-2010], [RS59-
2012], [RS54-2012], [RS51-2012], [RS21-2009], [RS55-2012], [RS46-
2010], [RS37-2010], [RS72-2014], [RS75-2014], [RS41–2014], [RS76-
2014], [RS73-2014], [RS77-2014], [RS71-2014], [RS58-2012], [RS67-
2013], [RS36-2010], [RS48-2011], [RS40-2010], [RS13-2007], [RS70-
2013],[RS14-2008], [RS23-2009], [RS28-2009], [RS49-2012], [RS62-
2012], [RS45-2010], [RS66-2013], [RS69-2013], [RS15-2008], [RS65-
2013], [RS47-2011], [RS22-2009], [RS74-2014], [RS17-2008], [RS19-
2009], [RS79-2011], [RS80-2013], [RS81-2013], [RS82-2014]

Distributed (11) [RS9-2005], [RS56-2012], [RS53-2012], [RS50-2012], [RS42-2010],
[RS35-2010], [RS34-2010], [RS64-2013], [RS68-2013], [RS63-2013],
[RS43-2010]

Location At information
source (5)

[RS7-2005], [RS78–2010], [RS29-2010], [RS59-2012], [RS17-2008]

At recommen-
dation server
(65)

[RS8-2005], [RS9-2005], [RS1-2000], [RS6-2004], [RS25-2009], [RS26-
2009], [RS27-2009], [RS39-2010], [RS12-2007], [RS20-2009], [RS56-
2012], [RS53-2012], [RS50-2012], [RS52-2012], [RS44-2010], [RS32-
2010], [RS38-2010], [RS42-2010], [RS29-2010], [RS35-2010], [RS31-
2010], [RS34-2010], [RS59-2012], [RS54-2012], [RS51-2012], [RS21-
2009], [RS55-2012], [RS46-2010], [RS37-2010], [RS72-2014], [RS75-
2014], [RS41-2014], [RS76-2014], [RS73-2014], [RS77-2014], [RS71-
2014], [RS58-2012], [RS67-2013], [RS36-2010], [RS48-2011], [RS40-
2010], [RS13-2007], [RS70-2013], [RS64-2013], [RS68-2013], [RS14-
2008], [RS23-2009], [RS28-2009], [RS49-2012], [RS62-2012], [RS45-
2010], [RS66-2013], [RS69-2013], [RS15-2008], [RS63-2013], [RS43-
2010], [RS65-2013], [RS47-2011], [RS22-2009], [RS74-2014], [RS19-
2009], [RS79-2011], [RS80-2013], [RS81-2013], [RS82-2014]

Mode Pull (active) (20) [RS3-2003], [RS8-2005], [RS9-2005], [RS1-2000], [RS78–2010],
[RS27-2009], [RS33-2010], [RS38-2010], [RS35-2010], [RS59-2012],
[RS46-2010], [RS37-2010], [RS76-2014], [RS71-2014], [RS58-2012],
[RS36-2010], [RS64-2013], [RS28-2009], [RS49-2012], [RS45-2010]

Passive (46) [RS9-2005], [RS25-2009], [RS26-2009], [RS39-2010], [RS56-2012],
[RS50-2012], [RS52-2012], [RS44-2010], [RS32-2010], [RS31-2010],
[RS34-2010], [RS54-2012], [RS51-2012], [RS55-2012], [RS72-2014],
[RS75-2014], [RS41–2014], [RS76-2014], [RS73-2014], [RS77-2014],
[RS71-2014], [RS67-2013], [RS48-2011], [RS57-2012], [RS13-2007],
[RS70-2013], [RS68-2013], [RS14-2008], [RS23-2009], [RS49-2012],
[RS62-2012], [RS66-2013], [RS69-2013], [RS15-2008], [RS63-2013],
[RS43-2010], [RS65-2013], [RS47-2011], [RS22-2009], [RS74-2014],
[RS17-2008], [RS19-2009], [RS79-2011], [RS80-2013], [RS81-2013],
[RS82-2014]

Analysing the collected systems with respect to the Domain Model characteris-
tics (Table 12.4), the following aspects can be identified:

• Regarding Representation, there is not one major approach for the domain
model for TEL RecSys to recommend items, but three almost equally applied
approaches. The most often used approach is: Ontology (nD23) followed by
Vector-space (nD18) approaches and finally Index/List (n=16). Only a few
systems engage a Taxonomy (nD3), Graph (nD1) or a Rule-based (nD1)
approaches. Interestingly, many of the first recommender systems for learning
rely on Index/List or Ontologies representations of domain models and this
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approach seem to be kind of stable over all development cycles until today. The
Vector-space approach is a more recent development starting in 2008.

• Regarding Generation, most of the domain models are created in a manual
way (nD26). However, an increasing amount of systems in the recent years use
automated metadata generation with classification (nD17), clustering (nD8) and
sequential analysis (nD1) methods.

Table 12.5 presents the analysis of the TEL RecSys based on the Personalisation
aspect. As the extended review shows a broad variety of Personalisation approaches
and different kinds of algorithms have been explored in the 15 years of research in
the field.

• In terms of Methods used for the personalisation of recommendations, Rule-
based (n=22) and Collaborative filtering (nD21) are the most applied techniques
in the TEL field. It is followed by Hybrid (nD13), Content-based techniques
(nD10), Graph-based (n=4) and Knowledge-based (nD3). Other approaches
explored (with nD1) are Association mining, Raw retrieval and Manually
selected. Interestingly, some techniques are time independent and are applied
over all development cycles in TEL field. Examples for this are Collaborative
Filtering (2000–2014), rule-based (2004–2014), whereas other methods are
belonging to more recent development cycles such as Hybrid (2009–2014) and
Content-based (2008–2014) techniques. There is an increasing interest in Graph-
based (2010–2014) and Knowledge-based approaches (2013–2014).

• The Algorithm type used in TEL recommenders are as diverse as the personalisa-
tion techniques. Although, Model-based are dominating (nD24), there have been
plenty of research on Memory-based systems (n=16), and Hybrid (nD13).

• As far as the engaged Algorithm techniques, Attribute-based is the most common
(nD17), followed by Hybrid (nD13), and User-to-user (nD10). Few item-to-
item correlation approaches have been proposed in TEL RecSys (nD4) as well as
Vector space model (nD2). User-to-user filtering seems the most often techniques
over the whole period (2003–2014). Hybrid techniques started to become more
relevant from 2009 until theses days, and Attribute-based systems significantly
increased in the years 2013 and 2014.

• Regarding the Output, a very clear picture is obtained. The produced output is
most of the times a Suggestion (nD54). However, there are also quite a few
systems that predict the evaluation that a user would give to the suggested items
in the form of Prediction (nD12).

Concerning the Operation category of the dimensions, Table 12.6 indicates the
following:

• The Architecture of the majority of TEL RecSys is Centralised (nD60), provid-
ing access to a single recommendation repository. Nevertheless, there are a few
systems that rely on distributed architectures that provide access to a wide range
of repositories (nD11).

• Regarding the Location, recommendations are usually produced at the recom-
mendation server (nD65). Only a few systems produce them at the information
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source (nD5). Recent research on recommender systems is increasingly oriented
to produce recommendations on the user side—i.e. for use on mobile devices
in situated learning activities. Ongoing work in this area has been described
in [111].

• Until now, TEL RecSys Mode either provide their recommendations at an active
Pull mode (nD20) where users request relevant recommendations or in the more
often used Passive mode where users receive recommendations as part of their
natural interaction with the system (n=46).

12.5 Conclusions

This chapter has extended the state-of-the-art reviews of TEL recommenders
2012 by doubling the amount of systems considered. In particular, the current
chapter has reviewed 82 TEL RecSys along the 15 years of this specific research
field (2000–2014). Research works have come from 35 different countries. The
systems compiled and analysed have been classified into 7 exclusive clusters,
namely (1) TEL RecSys following collaborative filtering approaches as in other
domains; (2) TEL RecSys that propose improvements to collaborative filtering
approaches to take into account the particularities of the TEL domain; (3) TEL
RecSys that consider explicitly educational constraints as a source of information
for the recommendation process; (4) TEL RecSys that explore other alternatives
to collaborative filtering approaches; (5) TEL RecSys that consider contextual
information within TEL scenarios to improve the recommendation process; (6) TEL
RecSys that assess the educational impact of the recommendations delivered; and
(7) TEL RecSys that focus on recommending courses (instead of resources within
them). The framework proposed in [67] for the analysis of recommender systems
has been applied with some extensions. The applied framework has been very
valuable to analyse available TEL RecSys from a holistic perspective. However, in
some cases it was not easy to extract relevant information from the content reported
in the papers and to map those back to the framework categories.

After the state-of-the-art analysis of the field carried out in this chapter, we
have perceived that the field is moving and new research approaches are emerging.
For instance, initial TEL RecSys used very small and mostly internal datasets,
whereas more recent studies apply larger reference datasets before they implement
the systems in a real world scenario. Furthermore, the research community tries to
make datasets available to other researchers and use additional reference datasets
that are publicly available to make the results of their studies more comparable.

In the following sections a trend analysis in TEL RecSys for the last 15 years of
research are summarised according to the framework categories.

• Supported Tasks. Finding good Items (content) is the most applied task for
recommender systems in the TEL field. But Recommendation of sequence
of items that aims to create an effective and efficient learning path through
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digital contents is also an important task for the TEL community. Along this
mainly content driven recommendations, the recommendation of other learners,
so-called peers, that follow similar learning goals or have the same interest as a
target learner are very central tasks. There are some new tasks appearing in the
recent years, which go beyond recommending learning content, such as Predict
learning performance and Recommend learning activity.

• User Model. There is no clear trend identifiable regarding the user models in
TEL RecSys. But there seem to be more research efforts going towards clustering
and classification approaches. That is another indicator that the field increasingly
adapts ideas and techniques from the educational data mining and learning
analytics research communities. In this respect, the interested reader can consult
the chapter on Data Mining Methods for Recommender Systems (Chap. 7).

• Domain Model. Similar to the user model category, there is not one major
approach for modeling the domain within TEL RecSys. The initial systems in
the field almost always applied Index/Lists and Ontologies what is reasonable as
TEL RecSys research was mainly driven by two communities: (a) Information
Retrieval, and (b) Adaptive Hypermedia. Index/Lists have been used by the
information retrieval community within TEL, whereas Ontologies have been
extensively used by the Semantic Web and Adaptive Hypermedia community
from 1998 until 2010. Both approaches are still used today but we see some
converging approaches as described in [21]. In turn, like in the User Model
category, more and more classification and clustering approaches are applied for
the Domain Model as well. This emphasises once again the growing usage of
data mining techniques in the field.

• Personalisation. Within the personalisation category we were able to identify
some trends over time regarding the used methods. Examples for this are
Hybrid and Content-based approaches that started to be reported in 2008 and
are increasingly applied in recent years until today. There is an increasing
interest in Graph-based (2010–2014) and Knowledge-based approaches (2013–
2014). These technologies are mainly applied to address two more common
issues within educational datasets: (a) Sparsity, and (b) Unstructured data. When
rating data are sparse, users are likely to receive irrelevant recommendations.
Therefore, graph-based approaches, which extend the baseline of nearest neigh-
bours in collaborative filtering by invoking graph search algorithms, have been
applied successfully in TEL RecSys [31]. Collaborative Filtering and Rule-based
approaches are still the most frequently used techniques over all development
cycles (2004–2014).

• Operation. Regarding the output, most of the TEL RecSys aim to suggest their
recommendations directly to the users in a passive mode. The architectures,
therefore, are in most of the cases centralised systems and the recommendations
are usually created on the side of the recommendation server. There are some
federated search approaches mentioned in the recent papers and also recommen-
dations of learning objects from Linked Data sources have become a relevant
topic in 2013.
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To conclude the chapter, we have reviewed the challenges reported in [67] in the
light of the meta-review carried out in this chapter and extended those from the
previous publication. These are:

1. Pedagogical needs and expectations to recommenders. Recommendation
opportunities in educational scenarios that go beyond recommending learning
resources need to be further explored. For this, user centered design approaches
[88] can be of value, such as to consider recommending learning activities
that, for instance, foster communication [1] and metacognition [78, 89, 125].
At the same time, the potential of semantic technologies is being considered
to describe the educational domain and therefore enrich the recommendation
process [45, 53, 90, 97].

2. Context-based recommender systems. As reported in a state-of-the-art review
of contextual TEL recommenders [111] contextual information can be of value to
enrich the recommendations process and there are many research opportunities
in this direction. Context-based recommenders can extend the input and output
information to be considered in the recommendations process with the usage of
appropriate physical sensors [91], such as reported in [50, 58, 60, 117, 121]. In
this sense, the application of affective computing in TEL RecSys can provide
added value to the recommendations when emotional and sentiment information
is taken into account in the recommendation process [52, 93] and can provide
interactive recommendations through sensorial actuators [92]. Details about
Context-Aware Recommender Systems can be read in the corresponding Chap. 6.

3. Visualisation and explanation of recommendations. An important line of
research in this area is the use of visualisation techniques to provide users
with insights in the recommendation process. Visualisations can help to explain
recommendation results by explicitly exposing relationships among content and
people. El-Bishouty et al. [29], for instance, researched the use of visualisation
techniques to present the relationship between recommended peer-learners.
Visualisation techniques can increase understanding of in- and output for a
recommender system. It therefore also contributes to a higher level of trust
of the user into the system that mainly acts like a black box to them. In this
sense, guidelines for the design of this complex relationships should be taken
into account as compiled in the chapter Guidelines for Designing and Evaluating
Explanations in Recommender Systems Chap. 10.

4. Demands for more diverse educational datasets. In 2011 most TEL recom-
mender studies have still used rather small datasets which were not made public
available [64, 65]. Since then, the dataTEL Theme Team of the European network
of excellence STELLAR [25] collected an initial set of datasets that can be used
by the research community [110]. These days we see many more studies that
take advantage of this initial collection of datasets to start their research [31].
But the dataTEL collection can only be a first start to a comprehensive collection
of datasets for RecSysTEL research. As TEL is a very diverse research field that
starts at school level, over Higher Education until workplace learning and also is
differentiated into informal, non-formal and formal learning, a larger collection
with more diverse datasets is needed.
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5. Distributed datasets. Big data architectures (such as Lambda, http://lambda-
architecture.net) and technologies (such as Apache Drill, http://incubator.apache.
org/drill/) that allow large scale and real time analytics over distributed data,
are expected to change the way that research is taking place over federations
or aggregations of learning information. Applications developed on top of
Linked Open Data such as the ones piloted by the LinkedUp project (http://
linkedup-project.eu), are also bringing new requirements to the infrastructures
needed to support such research scenarios. We see the need for educational
research of e-infrastructure components and services that can host, distribute and
virtualise such big data powered recommendation applications for learning also
to overcome the sparsity of single data silos.

6. New evaluation methods that cover technical and educational criteria.
Recommender systems can be analysed to measure the effect on effectiveness
(completion rates and amount of progress) and efficiency (time taken to com-
plete) in learning [49, 89], towards an ascending learning curve and better grades
[112], including mash-up environments that combine sources of users from
different Web2.0 services [23] and mobile learning approaches [47]. For the
RecSysTEL field it is important that upcoming developments on TEL RecSys
should follow a standardised evaluation method as suggested in [67]. The method
consists of four steps:

a. A selection of datasets that suit the recommendation problem and tasks of the
development.

b. An offline comparison study of different algorithms on the selected datasets
including well known datasets (if possible, educational oriented datasets in the
same way that Movielens is to movie recommendations) to provide insights
into the performance of the recommendation algorithms.

c. A comprehensive user study in a controlled experimental environment to
test psycho-educational effects on the side of the learners as well as on the
technical aspects of the designed recommender system.

d. A deployment of the recommender system in a real life application, where it
can be tested under realistic and normal operational conditions with its actual
users.

The above four steps should come along with a complete description of
the recommender system according to the classification framework presented
in Sect. 12.3. A good example for this research approach is [32]. The used
dataset should be reported and made publicly accessible. This would allow other
researchers to repeat and adjust any part of the research to gain comparable
results and new insights. A detailed description about how to run user studies
with recommender systems is also available in Chap. 9.

We hope the panorama of recommender systems to support learning that has been
compiled in this chapter helps researchers, developers and users to get a clear view
of the field.

http://linkedup-project.eu
http://linkedup-project.eu
http://incubator.apache.org/drill/
http://incubator.apache.org/drill/
http://lambda-architecture.net
http://lambda-architecture.net
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Chapter 13
Music Recommender Systems

Markus Schedl, Peter Knees, Brian McFee, Dmitry Bogdanov,
and Marius Kaminskas

13.1 Introduction

Boosted by the emergence of online music shops and music streaming services,
digital music distribution has led to an ubiquitous availability of music. Music
listeners, suddenly faced with an unprecedented scale of readily available content,
can easily become overwhelmed. Music recommender systems, the topic of this
chapter, provide guidance to users navigating large collections. Music items that
can be recommended include artists, albums, songs, genres, and radio stations.

In this chapter, we illustrate the unique characteristics of the music recommen-
dation problem, as compared to other content domains, such as books or movies.
To understand the differences, let us first consider the amount of time required for
a user to consume a single media item. There is obviously a large discrepancy in
consumption time between books (days or weeks), movies (one to a few hours), and
a song (typically a few minutes). Consequently, the time it takes for a user to form
opinions for music can be much shorter than in other domains, which contributes
to the ephemeral, even disposable, nature of music. Similarly, in music, a single
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item may be consumed repeatedly (even multiple times in a row), while other media
items are typically consumed at most a few times. This implies that a user might not
only tolerate, but actually appreciate recommendations of already known items.

On a practical level, another distinguishing property is that music can be directly
addressed at different levels of abstraction. For instance, while movie recommenders
typically suggest individual items to the user, music recommendation approaches
may suggest groupings of items by genre, artist, or albums.

From a practitioner’s perspective, we note that collaborative filtering tech-
niques are inherently domain-agnostic, and can be easily applied to music rating
data [131, 134].1 However, in the music domain, explicit rating data is relatively
rare, and even when available, tends to be sparser than in other domains [44].
Instead, implicit positive feedback is often drawn from uninterrupted (or unrejected)
listening events.

Due to the sparsity of readily available user feedback data, music recommenda-
tion techniques tend to rely more upon content descriptions of items than techniques
in other domains. Content-based music recommendation techniques are strongly
tied to the broader field of music information retrieval (MIR), which aims at
extracting semantic information from or about music at different representation
levels (e.g., the audio signal, artist or song name, album cover, or score sheet).2

Many of these approaches apply signal processing and analysis methods directly to
music in order to extract musically meaningful features and in turn enable novel
search and browsing interfaces. In all these scenarios, as is the case with memory-
based collaborative filtering methods (see Chap. 2), the concept of similarity
is central. For content-based approaches, item similarity is typically computed
between item feature vectors. Section 13.2 provides an overview of content-based
music recommendation techniques, including both metadata and signal analysis
methods.

From the user’s perspective, content can play an important role in influencing
preferences for music. Studies in music psychology show that a user’s short-term
music preferences are influenced by various factors, such as the environment,
the emotional state, or the activity of the user [97]. We elaborate on contextual
music recommendation approaches in Sect. 13.3. In Sect. 13.4, we present hybrid
recommendation approaches which combine collaborative filtering, content-based,
and context-based methods.

Because users often listen to several songs in rapid succession—e.g., via
streaming radio or a personal music device—some recommender systems have
been designed specifically for serial recommendation [59]. Due to the unique

1We will not further detail collaborative filtering of music ratings in this chapter. To understand the
principles of this technique, we refer the reader to Chap. 2.
2To avoid confusion, we note that content has different connotations within the MIR and
recommender systems communities. MIR makes an explicit distinction between (content-based)
approaches that operate directly on audio signals and (metadata) approaches that derive item
descriptors from external sources, e.g., web documents [70]. In recommender systems research,
as in the remainder of this chapter, both types of approaches are described as “content-based”.
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constraints and modeling assumptions of serial consumption, the evaluation criteria
and algorithmic solutions diverge substantially from the more standard techniques
found in the recommender systems literature. Section 13.5 provides an overview of
automatic playlist generation, including algorithms and evaluation methodologies.

In Sect. 13.6, we discuss common evaluation strategies, benchmarking cam-
paigns, and data sets used in music recommendation research. Finally, we conclude
by highlighting current research challenges in Sect. 13.7.

13.2 Content-Based Music Recommendation

Content information includes any information describing music items that can be
extracted from the audio signal, as well as metadata provided by external sources
(e.g., web documents, discography data, or tags). In this section, we overview
research on content-based approaches to music recommendation, and categorize the
existing approaches with respect to the employed information sources.

13.2.1 Metadata Content

Musical metadata comes in several forms, including manual annotations provided
by experts, social tags obtained from collaborative tagging services, and annotations
automatically mined from the web using text retrieval techniques. Although some
studies have demonstrated such metadata may not perform as well as collaborative
filtering techniques [54], it can be used to augment or replace collaborative filtering
in cold-start scenarios [19, 84].

13.2.1.1 Manual Annotations

Manual annotations include editorial metadata, such as musical genre and sub-
genre, record label, year and country of release, relations between artists, tracks,
and albums, as well as any other associated production information. Additionally,
annotations of musical properties such as tempo, mood, and instrumentation can be
used to provide detailed summaries of musical content.

There is a number of online databases for editorial metadata, which are built
by either music experts or moderated communities of enthusiasts. These databases
ensure a certain quality of data, but impose limitations on its structure, e.g., by
adhering to genre taxonomies [101]. MusicBrainz3 and Discogs4 provide extensive,

3http://www.musicbrainz.org.
4http://www.discogs.com.

http://www.discogs.com
http://www.musicbrainz.org
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freely available, community-built information on artists, record labels, and their
releases. This information is related to the cultural context of music, but it omits
annotations of detailed musical properties beyond genre and musical epoch (e.g.,
90s). Although limited, editorial metadata has been used to build simple genre-
based recommenders [82], to refine audio content-based methods (e.g., [18];
cf. Sect. 13.2.2), or in hybrid recommenders (e.g., [25]; cf. Sect. 13.4).

Bogdanov et al. [19] build an artist recommender exclusively using metadata
from the Discogs database. For each artist in the database, a tag weight vector is
created by propagating genre, style, record label, country, and year information for
each release related to the artist. Relations between artists (aliases, membership in
groups) and the role of the artist in each associated release—e.g., main artist, remix-
ing/performing credits on a release, etc.—are taken into account. Artist similarity
is measured by comparing sparse tag weight vectors, which are compressed using
latent semantic analysis (LSA) [37].

Manual annotations of properties other than genre and epoch are promising,
but they are more costly, and difficult to scale to large collections. Pandora5 is an
example of a large-scale commercial recommender system using such annotations
done by experts [67]. Similarly, AllMusic6 is an example of a commercial database
that provides mood annotations in addition to general editorial metadata. However,
relatively few academic studies incorporate these manual annotations because they
are proprietary, and no public data sets of this kind (and scale) are available for
researchers. Existing work therefore resorts to individual, hand-made annotations,
for instance of genre, tempo, mood [105, 139], year [139], and emotion [81].

13.2.1.2 Social Tags

In contrast to structured taxonomy-driven expert annotations, information about
music items can be collected from social tagging services. Social tagging services
allow casual users to provide unstructured text annotations for any item. Social
tags, while inherently noisy, can draw from a larger pool of annotators, and noisy
annotations can be combined to derive a structured folksonomy of tags [135]. The
Last.fm7 music tagging service has gained some popularity in academic research
by providing open access to an extensive collection of music tags. It includes
uncategorized tags describing genres, moods, instrumentation, and locations, as
well as personal associations evoked in the users by music (e.g., favorite or seen
live) [58]. The tags can be easily obtained for particular artists or tracks, which
can be used to assess similarity between items by comparing respective tag weight
vectors [54]. Similarity comparisons can be enhanced by latent semantic analysis
techniques to overcome the problem of vector sparsity [74].

5http://www.pandora.com.
6http://www.allmusic.com.
7http://www.last.fm.

http://www.last.fm
http://www.allmusic.com
http://www.pandora.com
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13.2.1.3 Annotations by Web Content Mining

As an alternative to social tags, keyword annotations can be mined from music-
related web pages using text processing techniques. Keywords can be extracted from
web pages, blogs and RSS feeds related to music items, as well as lyrics databases.
Schedl et al. provide an overview of text mining techniques for measuring artist
similarity [123], and create a large-scale music search system which operates on an
index of artist term profiles [126]. A similar approach by Barrington et al. [140]
limits the keyword mining process to specific web sites with high-quality music
information, such as AllMusic, Wikipedia,8 Amazon,9 BBC,10 Billboard,11 or Pitch-
fork.12 An early study by Pazzani and Billsus [108] describes a recommendation
approach which used a naïve Bayes classifier to predict user preferences from artist
keywords extracted from web pages. Green et al. [54] retrieve keywords from
Wikipedia artist entries and social tags from Last.fm. They propose to generate
recommendations based on artist-to-artist similarity, or similarity between artists
and a vector of keyword weights summarizing the user’s favorite artists. Similarly,
McFee and Lanckriet [88] combine social tags and keywords extracted from artist
biographies found on Last.fm to predict artist similarity ratings. Celma et al. [35]
extract keywords from RSS feeds related to music artists, and then generate
recommendations by ranking artists by similarity to a set of preferred artists. Finally,
Lim et al. [77] learn a song-level similarity function from topic models over bag-of-
words representations of lyrics provided by musiXmatch.com.

13.2.2 Audio Content

Audio content analysis is advocated by MIR researchers as an alternative or
complement to metadata and collaborative filtering methods [12, 29]. Recommender
systems based on audio content are not susceptible to popularity bias, and are
therefore expected to reveal the “long tail” of music consumption [31]. Music
descriptors obtained by audio signal analysis can enhance music search by enabling
novel ways for querying and interacting with music collections.

Audio content analysis can provide various types of information which can be
incorporated in recommender systems. This information can be broadly divided into
two categories: acoustic and musical features computed directly from audio, and
semantic annotations inferred or predicted from these acoustic features by machine
learning techniques.

8http://www.wikipedia.org.
9http://www.amazon.com.
10http://www.bbc.co.uk.
11http://www.billboard.com.
12http://www.pitchforkmedia.com.

http://www.pitchforkmedia.com.
http://www.billboard.com
http://www.bbc.co.uk
http://www.amazon.com
http://www.wikipedia.org
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13.2.2.1 Acoustic Features: Timbral, Temporal, and Tonal

Acoustic and musical features used by existing music recommenders include:

• timbral features, such as Mel-frequency cepstrum coefficients (MFCCs) [79, 82,
104, 147] and other features related to spectral shape of the signal [17, 32, 76, 92];

• temporal and time-domain features, characterizing temporal evolution of loud-
ness and timbre [17, 76, 104, 137], rhythmic properties such as beat (tempo)
histogram features [17, 55, 76] and onset rate [17, 81], average loudness and
dynamics [17, 32];

• tonal features, such as harmonic pitch class profiles (chroma) [17, 136, 142]
or similar pitch-based features [55, 76, 81], key, scale, chords distribution, and
inharmonicity measures [17, 32, 81].

Timbral, temporal, and tonal information address different aspects of music, and can
be combined to provide a solid foundation for recommendation algorithms. How-
ever, until recently, these different approaches were rarely integrated in academic
studies.

Timbral similarity, which compares spectral shapes of the tracks, is probably the
most basic and common similarity that can be applied for audio-based music recom-
mendation. Timbre information can be represented as probability distributions of the
frame-wise MFCCs, and compared using a number of distance metrics [8, 80, 141].
In particular, Logan [79] considered average, median, and minimum MFCC-based
distance from tracks in a target music collection to the preferred tracks and a
distance to the summarized MFCC distribution of all preferred tracks. Subjective
evaluations of such MFCC-based approaches revealed only average or below-
average user satisfaction [17, 82] and suggested their insufficiency compared to
approaches with larger feature sets containing a combination of timbral, temporal,
and tonal features [17].

Some studies implement wider varieties of acoustic features and include tem-
poral and tonal dimensions of music, which may be complemented with metadata.
Pampalk et al. [103, 104] expand timbral similarity based on MFCCs [8] with
temporal information that includes fluctuation patterns and derived descriptors of
distinctiveness of the fluctuations at specific frequencies and of the overall perceived
tempo. Su et al. [137] proposed a music recommender that encodes the temporal
evolution of timbral information as time sequences of timbre clusters. The system
infers preferred and disliked sequences based on the user’s previous track ratings,
and matches the feature distribution of recommended tracks to the user’s profile.

Celma and Herrera [32] propose an approach based on Euclidean distance,
which uses timbre, dynamics, tempo, meter, rhythmic patterns, tonal strength,
key, and mode information. This approach is compared to an item-based col-
laborative filtering distance using listening statistics from Last.fm. A large-scale
evaluation is conducted, the results of which suggest that the collaborative filtering
approach is better able to predict which tracks a user would like, but also produces
recommendations which are more familiar to the user. Importantly, this study
corroborates that content-based approaches can be effectively incorporated in order



13 Music Recommender Systems 459

to increase novelty of recommendations without a devastating decrease in their
quality. Interestingly, average ratings were merely satisfactory: 3.39 and 2.87
for collaborative filtering and content-based approaches, respectively, on a 1-to-5
Likert-type liking scale.

Instead of computing similarity between music items and a user profile, some
authors propose discriminative models which use audio features to either classify
items into liked and disliked categories or predict user ratings. For example,
Grimaldi and Cunningham [55] propose a classification-based approach which uses
the tracks rated by a user as good and bad examples. The authors apply k-nearest
neighbors (k-NN) and feature sub-space ensemble classifiers to a set of temporal
features derived from beat histograms and tonal features describing harmony. They
conclude that the selected audio features are insufficient for the task, except when
user preferences are strongly driven by specific genres. Moh et al. [92] propose to
classify music into liked and disliked by using a variety of timbral features, including
MFCCs, spectral centroid/rolloff/flux, and zero crossing rate. They evaluate several
classification algorithms based on variants of support vector machines (SVMs), as
well as a probabilistic Gaussian model to predict user preference.

As an alternative to binary classification, Reed and Lee [116] propose ordinal
regression to predict ratings from audio features describing temporal evolution of
the MFCCs within each track. Bogdanov [16] investigates the importance of various
timbral, temporal, tonal, and semantic features for predicting music preferences.
To this end, regression models using these features are built for each particular user
in order to predict her ratings.

13.2.2.2 Automatic Semantic Annotation

Currently, collaborative filtering techniques tend to outperform approaches based
purely on audio [18, 32, 132]. Audio-based methods are inherently limited in that
they cannot (directly) exploit information beyond the pure signal. As a consequence,
low-level acoustic descriptors may capture information which has little direct
relation to user preference. It is thus desirable to use high-level abstractions
or semantic concepts, such as genres, moods, or instrumentation. When these
annotations are not provided by human annotators (as described in Sect. 13.2.1),
machine learning techniques can be used to predict annotations from audio content.

Bridging the so-called semantic gap [6, 33], which arises from the weak linking
between human concepts related to musical aspects and the audio-based features,
is notoriously difficult. To this end, Barrington et al. [12] propose a semantic
music similarity measure which is used for music recommendation. They train
Gaussian mixture models (GMMs) of MFCCs for a number of semantic concepts,
such as genres, moods, instrumentation, vocals, and rhythm. Thereafter, high-
level descriptors are obtained by computing the probabilities of each concept on
a frame basis. The resulting semantic annotations of tracks are represented as a
distribution over tags, and compared in order to assess similarity. Subsequent work
compares this auto-tagging approach to a similarity metric directly derived from
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MFCC distributions and finds that the direct MFCC approach is more effective
at predicting collaborative filtering similarity between tracks [84]. The authors
attribute this finding to the effect of using a fixed set of semantic concepts, which
can provide user-interpretable representations, but may prematurely discard useful
information for determining similarity. Bogdanov et al. [17] propose a similarity-
based recommendation approach grounded on an extensive set of over 60 timbral,
temporal, and tonal features together with automatic semantic annotations by genre,
mood, instrumentation, and rhythm, created by probabilistic SVMs.

13.3 Contextual Music Recommendation

The topic of context-awareness has gained popularity in recommender systems
research in recent years [1] (see Chap. 6 for an extensive review). However, the idea
of using context information in computing applications can be traced back to the
1990s. One of the first works in this area defined context as “information describing
where you are, whom you are with, and what resources are nearby” [127]. In other
words, context can be considered as any information that influences the interaction
of the user with the system. For instance, in the domain of music recommendation,
context can be the situation of the user when listening to recommended tracks (e.g.,
time, mood, current activity, the presence of other people). Clearly, such information
may influence the user’s appreciation of music and thus it could be taken into
account, in addition to the more conventional knowledge of the user’s long-term
preferences, when providing recommendations.

Various classifications of contextual information have been proposed in the
literature. Adomavicius et al. [1] distinguish between fully observable, partially
observable, and unobservable context, where unobservable context may be modeled
using latent features that influence the changes in user’s short-term preferences [56].
Dey and Abowd [38] suggest distinguishing between the primary and secondary
context. The primary context is defined as the user’s location, identity, activity, and
time. The authors argue that these four factors are the most important ones when
characterizing a user’s situation. The secondary context is defined as additional
information which can be derived from the primary context factors. For instance,
the current weather conditions may be derived from the user’s location and time.

In this section, we categorize context information into two general classes—
environment-related context, which consists of features that can be measured by
sensors on the user’s mobile device or obtained from external information services
e.g., the user’s location, current time, weather, temperature, etc., and user-related
context, which is difficult to measure directly and represents a more high-level
information about the user e.g., the user’s activity, emotional state, or social
environment. Similarly to the relation between primary and secondary context
defined by Dey and Abowd [38], environment-related context may be used to derive
the user-related context.
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13.3.1 Environment-Related Context

A user’s environment, such as season, temperature, time of day, noise level,
weather conditions, etc., has an influence on the user’s state of mind, and therefore
indirectly influences her musical preferences. Research has shown that there exists
a correlation between characteristics of the listening situation and the preference for
music that augments these characteristics [96]. For instance, people tend to prefer
different types of music in summer and in winter [109]. Consequently, it may be
beneficial to consider environment-related context attributes when recommending
music content. Such attributes used in music recommendation research can be
classified into the following groups:

• Location of the user can be represented by a ZIP code, geographical coordinates,
type of landscape (e.g., city, nature), nearby monuments, buildings, landmarks,
etc. The surroundings of the user may have a strong impact on her perception
and preferences of music. The US music duo Bluebrain is the first band to
record a location-aware album.13 In 2011, the band released two such albums—
one dedicated to Washington’s park National Mall, and the second dedicated
to New York’s Central Park. Both albums were released as iPhone apps, with
music tracks pre-recorded for specific zones in the parks. As the listener moves
through the landscape, the tracks change through smooth transitions, providing
a soundtrack to the walk. Despite the large potential of location-aware music
services, up to date there has been little research exploring location-related
context information in music recommendations.

• Time information may refer to the time of day (typically categorized into
morning, afternoon, evening, night), or day of week (can be represented by
the exact day or can be categorized into working day, weekend). This kind
of information is potentially useful since studies have shown that user’s music
preferences differ depending on the day of the week or moment of the day [60].

• Weather information may refer to weather conditions (typically categorized into
sunny, overcast, rainy, etc.), to the temperature (e.g., cold, moderate, hot), or to
the season. Such information is relevant for music recommendation since the
user’s music preferences may significantly differ, e.g., in a cold rainy autumn or
a hot sunny midsummer [109].

• Other factors such as information about the traffic conditions, the noise level,
or the amount of ambient light may contribute to the user’s state of mind and
therefore indirectly influence her music preferences.

One of the first music recommenders to exploit environment-related context
was described by Reddy and Mascia [115]. The authors used information about
the user’s location (represented by a ZIP code), time of day (morning, afternoon,
evening, night), day of week, noise level (calm, moderate, chaotic), temperature

13http://bluebrainmusic.blogspot.com/.

http://bluebrainmusic.blogspot.com/
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(frigid, cold, moderate, warm, hot), and weather (rainy, snow, haze, cloudy, sunny,
clear). The described system is capable of recommending songs from the user’s
music library which have to be tagged using a controlled tag vocabulary, where the
tags directly represent the values of context attributes. For instance, to recommend
a song for a particular location, it has to be tagged with the appropriate ZIP code.

Ankolekar and Sandholm [5] presented a mobile audio application, Foxtrot, that
allows its users to explicitly assign audio content to a particular location. The
authors stressed the importance of the emotional link between music and location.
According to the authors, the primary goal of their system is to “enhance the
sense of being in a place” by creating its emotional atmosphere. Foxtrot relies on
crowd-sourcing—the users of Foxtrot are allowed to assign audio pieces (either a
music track or a sound clip) to specific locations (represented by the geographical
coordinates of the user’s current location), and also specify the visibility range of
the audio track—a circular area within which the track is relevant. The system is
then able to provide a stream of location-aware audio content to the users.

Braunhofer et al. [24] explored the possibilities to adapt music to the places of
interest (POIs) that the user is visiting. This idea is based on the hypothesis that a
fitting music track may enhance the sightseeing experience of the user. For instance,
during a visit to a Baroque cathedral a user might enjoy hearing a composition by
Bach, while the narrow streets in Venice offer a good surrounding to listen to a
Vivaldi’s concerto. The matching of music and POIs was made by representing both
music tracks and POIs with a common set of emotion tags, motivated by music
perception research [148]. In a related research, Fernández-Tobías et al. [47] have
developed a technique to recommend music content related to POIs using explicit
knowledge about musicians and POIs extracted from DBpedia14 [9]. The tag-
based [24] and knowledge-based [47] techniques have been combined and evaluated
in a web-based user study [68].

Okada et al. [98] describe a mobile music recommender and define context as “a
finite set of sensed conditions collected from a mobile device”, in other words, the
authors focus on environment-related context information: ambient noise, location
(represented by geographical coordinates), time of day, and day of week. The
authors do not provide a detailed technical description of the recommendation
algorithm (i.e., how exactly context is used to select music), but rather focus on
the architectural design and usability principles of a context-aware mobile music
recommender. The authors describe a user study which shows an overall positive
evaluation of the system. However, user feedback suggests the need for explanations
of the recommendations and more control over the played songs. This leads to an
important research question—how to integrate the features of a regular music player
and a context-aware recommender.

14http://www.dbpedia.org.

http://www.dbpedia.org
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13.3.2 User-Related Context

Any contextual information related to the user may be important when recom-
mending music, since music preferences are linked to people’s activities, emotions,
or social background. Schäfer and Sedlmeier [118] observe different uses of
music to serve listeners’ needs, such as the ones related to cognitive, emotional,
socio-cultural, and physiological functions. The user-related context used in music
recommendation research can be classified into the following groups:

• Activity information includes an action, typically represented as an element from
the set of possible actions (e.g., walking, running, driving), or a numerical
attribute defining the user’s state (e.g., walking pace or heart rate). This type
of context has been shown to have an impact on the user’s musical preferences.
Foley [52] has shown that people prefer different musical tempo depending on
their occupation. North and Hargreaves [97] related personality traits and social
lifestyles to music preferences.

• Emotional state or mood has a direct influence on the user’s music preferences.
For example, a user may wish to listen to different types of music when in a sad
mood compared to when being happy. Research has shown that music can be
used both to moderate the user’s emotional condition [72, 118] and to augment
the emotions perceived by the listener [96].

• Social context information, i.e., the presence of other people, may influence
user’s music preferences. For instance, people may choose music taking into
account the preferences of their companions. Several works have addressed the
issue of generating music playlists for groups of users [10, 113]. Mesnage [90]
exploited user relations in social networks for music discovery.

• Cultural context is closely related to environment-related context (location),
however, it defines a more high-level information, e.g., the user’s cultural back-
ground or belonging to an ethnic group. Koenigstein et al. [71] have exploited
the activity of US-based users in peer-to-peer networks to predict the popularity
of music tracks in US song charts. Schedl [121] used geo-tagged tweets to
extract location-based music listening trends and in turn build a location-aware
recommender system.

Compared to the environment-related context, user-related context is difficult to
measure directly using mobile sensors or external information services. However, it
can be derived to some extent from the environment-related context attributes. For
instance, such context attributes as the time of day, ambient noise level, temperature,
weather, etc., were used in Bayesian classifiers to predict the user’s emotional
state [105] or activity [142].

Emotional state of the user is a particularly popular type of context information,
which can be exploited to create emotion-based music recommenders, such as Musi-
covery.15 In addition to adapting music to the user’s mood, emotions have been used

15http://www.musicovery.com.

http://www.musicovery.com
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to match music with other types of content that can cause an emotional response in
users, e.g., text or images [28, 75, 136]. Emotion-based music recommendation is
becoming an increasingly popular topic, largely due to advances in automatic music
emotion recognition [146].

13.3.3 Incorporating Context Information in Music
Recommender Systems

Having described the main types of context information exploited in music rec-
ommender systems, we now turn to the major challenge of designing a context-
aware recommender—incorporating context information in the recommendation
algorithm. Chapter 6 provides a detailed discussion on the paradigms for incor-
porating context in recommender systems. We therefore refer the reader to the
aforementioned chapter for an in-depth discussion on this topic, and here provide
only a brief overview of techniques for exploiting context in music recommenders.

Context is known to have an effect on user preferences and information needs [1].
To exploit this information when recommending music, one must establish a degree
of relevance between a music track and the contextual information. This information
may be obtained on a per user level, e.g., by having users rate music in a particular
situation defined by the context attributes, or it can be established globally, by
obtaining a relatedness score between a music track and a context attribute. The
relevance of particular contextual attributes for music tracks can then be exploited
in a recommendation algorithm.

We define four types of approaches to establish a degree of relevance between a
music piece and contextual information, as shown in Fig. 13.1:

1. Rating music in context [11, 105] is an extension of the classical collaborative
filtering approach. While suffering from the cold-start problem, this is still the
state of the art when designing context-aware recommender systems [1].

2. Mapping low-level music features to context attributes [142] is an approach
based on machine learning techniques and is closely related to music information
retrieval [30] since it involves audio signal analysis. This approach needs training
data of music labeled with appropriate context values.

3. Direct labeling of music with context attributes [5, 115] is the most straight-
forward approach, whose main disadvantage is the high effort required to label
music tracks, similarly to rating music in context.

4. Predicting an intermediate context, such as the user’s activity [142] or emo-
tional state [24, 105]. This type of approach incorporates the aforementioned
techniques—rating in context [105], mapping low-level music features to con-
text [68, 142], or manual labeling of music with context attributes [24].

In summary, context represents an important source of information which can
be combined with other sources, such as music content features or user ratings, to
provide highly personalized and adaptive music services. Recommender systems
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Fig. 13.1 The different types of approaches to establish the relevance of contextual attributes for
music

that combine these different sources of information are called hybrid systems. In
the next section, we provide a detailed description of hybrid music recommendation
and give more details on works that incorporate context information into recom-
mendation algorithms.

13.4 Hybrid Music Recommendation

Since music preference is a complex and multi-faceted concept, it is a logical
step to incorporate multiple aspects of musical similarity into recommendation.
In the preceding sections, we have discussed different approaches to describe the
contents of music and to exploit the context of music consumption. In this section,
we discuss hybrid music recommenders, i.e., systems that “combine two or more
recommendation techniques to gain better performance with fewer of the drawbacks
of any individual one” [26]. Before reviewing approaches that integrate different
sources, let us briefly reconsider properties of the individual sources used for music
recommendation and the entailed advantages and disadvantages.

Like in every other domain, recommendation approaches built upon implicit or
explicit user feedback have to deal with the common problems of data sparsity and
in particular the cold-start problem. To some extent, this is the same with content-
based approaches that rely on external sources for item description. Regardless
of whether the content source is editorial metadata, text from the web, or social
tags, one or more humans must first create the underlying data. Thus, both of these
approaches also exhibit popularity biases in that wider-known items are more likely
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to have information related to them. By relying on human-crafted data, metadata
methods are also susceptible to attacks, vandalism, and manipulation [34, 91]. Even
putting aside potential malicious influence, web-based approaches must contend
with a great deal of noise in the data. Manual expert annotations, on the other hand,
are accurate, but prohibitively costly to scale to large collections [138]. Context
features inherently derive from end-users, and are therefore the most difficult to
obtain (in academic settings) and typically noisy.

Depending on the type of integration, context-aware recommendation can
additionally amplify the problem of data sparsity [1]. Conversely, content-based
approaches that extract information directly from the audio signal do not suffer
from these problems. Signal-based features provide a static description that can
be used for unbiased and time-independent similarity calculation. However, audio
content methods have drawbacks as well, such as computational overhead and
the requirement of access to the music signal. Moreover, audio content methods
are usually outperformed by collaborative filtering and methods that exploit user-
generated data [132].

In general, any combination of two or more approaches can be considered a
hybrid. For instance, in Sect. 13.2, we described work that combines different types
of content-based recommendation. Other approaches combine different aspects of
collaborative filtering, such as the Auralist framework, which aims at improving
user satisfaction by providing diverse and novel recommendations [149]. In the
remainder of this section, we focus on work that combines different techniques and
information from different sources.

13.4.1 Combining Content with Context Descriptors

To date, there are relatively few methods which combine music content and
user context. Schedl [120] presents the Mobile Music Genius (MMG) player,
which gathers a wide range of user-context attributes during music playback, e.g.,
time, location, weather, device- and phone-related features (music volume), tasks
(running on the device), network, ambient (light, proximity, pressure, noise), motion
(accelerometers, orientation), and player-related features (repeat, shuffle, sound
effects). MMG then learns relations (using a C4.5 decision tree learner) between
these �100-dimensional feature vectors and metadata (genre, artist, and track are
considered), and uses these learned relations to adapt the playlist on the fly when
the user’s context changes by a certain amount.

Elliott and Tomlinson [45] focus on the particular activities of walking and
running. The authors present a system that adapts music to the user’s pace by
matching the beats per minute of music tracks with the user’s steps per minute.
Additionally, the system uses implicit feedback by estimating the likelihood of a
song being played based on the number of times the user has previously skipped the
song. In similar research, de Oliveira and Oliver [99] compare the user’s heart rate
and steps per minute with music tempo to moderate the intensity of a workout.
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Park et al. [105] model a number of context attributes—temperature, humidity,
noise, light level, weather, season, and time of day—with Bayesian networks to infer
the emotional state of the user: depressing, content, exuberant, or anxious/frantic.
The music tracks used in the described system are represented by genre, tempo,
and mood attributes. In order to recommend music for the emotional states, users
must explicitly express their preferences for each music attribute in every emotional
state using a 5-point rating scale. For instance, a user may state that she prefers rock
music with a preference rating of 4 in a depressing state, 3 in a content state, and 2

in an exuberant state.
More recently, Wang et al. [142] described a mobile music recommender where

the time of day, accelerometer data, and ambient noise are used to predict the user’s
activity—running, walking, sleeping, working, or shopping. To recommend music
for the user’s activity context, music tracks had to be labeled with the appropriate
activity labels. The authors use a data set of 1200 songs manually labeled with
activity values and represented by low-level audio feature vectors for training an
auto-tagging algorithm [13].

13.4.2 Combining Collaborative Filtering with Content
Descriptors

Collaborative filtering and content descriptors, in particular those extracted from the
audio signal, exhibit complementary features. A combination of the two is expected
to improve recommendation quality for the following reasons, cf. [26, 27, 31, 41]:

• Avoiding cold-start problems: While new items are lacking preference data, audio
content analysis and comparison to all existing items can be performed instantly.
Thus, when no user feedback is available, a hybrid system could resort to audio
similarity for recommendation.

• Avoiding popularity biases: Preference data, as well as content metadata, may
be focused on popular items only, whereas audio-based information is available
uniformly. Including objective content descriptors can remove recommendation
biases.

• Increasing novelty and diversity: Popularity biases can result in a limited range
of recommended items, whereas audio-based approaches are agnostic to whether
music is a hit or from the long tail. Therefore, new and lesser known items are
more likely to be recommended when both sources are exploited.

• Combining information on usage with musical knowledge: Recommendation
in the multi-faceted domain of music should benefit from the incorporation of
sources reflecting different aspects of music perception.

A straightforward approach to incorporating both preference and content
information is to create independent recommenders and combine their outputs
using a meta-classifier (ensemble learning). Following this direction, Tiemann
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and Pauws [139] implement an item-based collaborative filtering recommender
as well as a content-based recommender that integrates timbre, tempo, genre,
mood, and release year features. Both recommenders predict ratings as weighted
combinations of the most similar items’ ratings. For the final rating prediction,
the feature vectors constructed from the individual recommenders’ predictions
are compared to the output vectors from the learning phase using Euclidean
distance and the rating of the most similar vector is predicted. The idea of fusing
outputs of multiple recommenders is also applied by Lu and Tseng [81], who
combine three rankings, namely a ranking according to content similarity based
on features extracted from the musical score, a ranking according to user-based
collaborative filtering over a data set of user surveys, and an emotion-based ranking
in accordance with manual emotion annotations by an expert. In the combination
step, a personalization component is introduced. This component reweights the
individual rankings according to user feedback gathered in an initial survey in
which users specified preference assessments (likes/dislikes) and the underlying
reasons (such as preference by tonality, rhythm, etc.) for a sample of tracks.

Instead of fusing multiple outputs in a late stage, preference and content can
be integrated earlier, for instance to generate a new set of multi-modal features
or to adapt similarity measures. The challenge is to combine sources in a manner
that avoids the individual drawbacks rather than propagating them. For instance, a
simple feature concatenation or unsupervised linear combination can easily preserve
the data sparsity problems of preference-based approaches [130].

McFee et al. [84] optimize a content-based similarity metric by learning from
a sample of collaborative data. First, a codebook representation of delta-MFCCs is
learned to represent songs as a histogram over the derived codewords. Applying
metric learning to rank, the resulting feature space is optimized to reflect item
similarity according to implicit feedback, i.e., listening histories of users. This
allows to find similar items even for novel and unpopular items based on audio
content, while maintaining high recommendation accuracy resulting from feedback
data.

Van den Oord et al. [100] follow this general direction, but exploit latent
space descriptions of both audio features and implicit feedback (song play counts).
First, a weighted matrix factorization algorithm [62] is used to learn latent factor
representations of users and songs from usage data. Second, log-compressed Mel-
spectrograms of randomly sampled 3-second-windows from the songs are presented
to a convolutional neural network [61], preserving temporal relations in music to
some extent. Here, the latent factor vectors obtained from the weighted matrix
factorization step serve as ground truth to train the network. It is shown that this
latent factor modeling of audio optimized for latent factor information on usage
outperforms traditional MFCC-based vector quantization methods using linear
regression or a multi-layer perceptron for latent factor prediction, as well as the
metric learning to rank method by McFee et al.

For integrating heterogeneous data into a single, unified, multi-modal similarity
space, McFee and Lanckriet [88] propose a multiple kernel learning technique. They
demonstrate the applicability of their technique on a music similarity task on the
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artist level by including five data sources representing different aspects of an artist,
namely artist timbre (modeled over all delta-MFCCs extracted from all songs by
the artist), auto-tags, social tags, biographical text, and collaborative filtering data.
Comparing the unified similarity space with individual similarity spaces (and partial
combinations) against a human-annotated ground truth shows that the multiple
kernel learning technique outperforms an unweighted combination of individual
kernels. It can also be seen that the timbre similarity performs poorly (potentially
since it is originally targeting the song level rather that the artist level) and that social
tags contribute the most valuable information.

Another group of hybrid music recommenders combines user feedback and
content information by means of a probabilistic framework. Li et al. [76] propose a
probabilistic model in which music tracks are pre-classified into groups by means
of both audio content (timbral, temporal, and tonal features) and user ratings.
Predictions are made for users considering the Gaussian distribution of user ratings
given the probability that a user belongs to a group Yoshii et al. [147] propose a
hybrid probabilistic model, in which each music track is represented as a vector
of weights of timbres (a “bag-of-timbres”), i.e., as a GMM over MFCCs. Each
Gaussian corresponds to a single timbre. The Gaussian components are chosen
universally across tracks, being predefined on a certain music collection. Ratings
and “bags-of-timbres” are associated with latent variables, conceptually correspond-
ing to genres, and music preferences of a particular listener can be represented in
terms of proportions of the genres. A three-way aspect model (a Bayes network) is
proposed for this mapping, with the idea that a user stochastically chooses a genre
according to her/his preference, and then the genre stochastically “generates” pieces
and timbres.

Several approaches follow a graph-based interpretation of musical relations to
integrate different sources. In the resulting models, the vertices correspond to the
songs, and the edge weights correspond to the degree of similarity. Shao et al. [130]
build such a model upon a hybrid similarity measure that automatically re-weights a
variety of audio descriptors in order to optimally reflect user preference. On the
resulting song graph, rating prediction is treated as an iterative propagation of
ratings from rated data to unrated data.

Multiple dimensions of similarity can be expressed simultaneously using a
hypergraph—a generalization in which “hyperedges” can connect arbitrary subsets
of vertices. Bu et al. [25] compute a hybrid distance from a hypergraph which
contains MFCC-based similarities between tracks, user similarities according to
collaborative filtering of listening behavior from Last.fm, and similarities on the
graph of Last.fm users, groups, tags, tracks, albums, and artists, i.e., all possible
interactions that can be crawled from Last.fm. The proposed approach is compared
with user-based collaborative filtering, a content-based timbral approach, and their
hybrid combination, on a listening behavior data set. Again, the performance of a
timbral approach fell behind the ones working with collaborative filtering, while
incorporation of all types of information showed the best results.

McFee and Lanckriet [87] build a hypergraph on a wide range of music
descriptors to model and, subsequently, generate playlists by performing random
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walks on the hypergraph (cf. Sect. 13.5). Hypergraph edges are defined to reflect
subsets of songs that are similar in some respect. The different modes of similarity
are derived from the Million Song Dataset (MSD, cf. Sect. 13.6.3), and include:

• Collaborative filtering similarity: connects all songs via an edge that are assigned
to the same cluster after k-means clustering for k D f16; 64; 256g on a low-rank
factorization of the user-song matrix;

• Low-level acoustic similarity: connects all songs assigned to the same cluster
after k-means clustering for k D f16; 64; 256g on audio features;

• Musical era: connects songs from the same year or same decade;
• Familiarity: connects songs with the same level of popularity (expressed in the

categories low, medium, and high);
• Lyrics: connects songs assigned to the same topic derived via latent Dirichlet

allocation (LDA) [15];
• Social tags: connects songs assigned to the same Last.fm tag;
• Pairwise feature conjunctions: creates a category for any pairwise intersection of

the described features and connects songs that match both;
• Uniform shuffle: an edge connecting all songs in case no other transition is

possible.

The weights of the hypergraph are learned using the AotM-2011 data set, a collection
of over 100,000 unique playlists crawled from Art of the Mix16 (cf. Sect. 13.6.6).
In addition to playlist information, this data set also contains a timestamp and
a categorical label, such as romantic or reggae, for each playlist. Experiments
on a global hypergraph with weights learned from all playlists and on category-
specific hypergraphs trained only on the corresponding subsets of playlists show
that performance can be improved when treating specific categories individually
(“playlist dialects”). In terms of features, again, social tags have the most significant
impact on the overall model, however audio features are more relevant for specific
categories such as hip hop, jazz, and blues, whereas lyrics features receive stronger
weights for categories like folk and narrative.

The category labels of the AotM-2011 data set exhibit further interesting aspects.
While most labels refer to genre categories, some refer to a usage scenario or the
user-related context of a playlist. We discuss these aspects next.

13.4.3 Combining Collaborative Filtering with Context
Descriptors

In this section, we review hybrid approaches that incorporate models of user
preference and user-related context. As discussed in the previous section, the
method proposed by McFee and Lanckriet [87] uses different recommenders for

16http://www.artofthemix.org.

http://www.artofthemix.org
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different categories, some of which refer to a user’s activity (road trip, sleep),
emotional state (depression), or social situation (break up). The results indicate
that the influence of different aspects of musical content can vary dramatically,
depending on contextual factors.

The approach by Baltrunas et al. [11] to recommend driving music takes
advantage of ratings specifically assigned to each contextual condition (context-
aware collaborative filtering [1], cf. Sect. 13.3.2). For incorporating environmental
(such as traffic and weather) and user-related factors (such as mood and sleepiness)
into rating prediction, they extend a matrix factorization approach to collaborative
filtering by introducing one additional parameter for each pair-wise combination of
contextual condition and musical genre to the model. The parameters of the model
are then learned using stochastic gradient descent. It is shown that mean absolute
error (MAE) decreases when incorporating contextual factors.

Typically, the user-related context is not explicitly available in the observed
data. In such cases, hidden context can be modeled by latent factor techniques.
Hariri et al. [56] propose a method to apply sequential pattern mining on an
LDA model of playlists from Art of the Mix, in which songs are represented
by social tags from Last.fm. While the LDA topics should reflect the contextual
factors affecting listening preference—e.g., mood or social setting—sequential
pattern mining should capture changes in context over time. Predictions of the
listener’s current context then provide the additional information to build a context-
aware music recommender. Hariri et al. show that the LDA-based context-aware
recommender significantly outperforms a simple metadata-based recommendation
approach.

Taking a similar approach, Zheleva et al. [150] also apply LDA to a set of
listening histories extracted from usage logs of the Zune Social platform17 over a
period of 14 weeks. They compare two approaches. The first, called taste model,
is a direct application of the LDA method developed for text collections and thus
refers to overall factors of listening preference. The second, called session model,
incorporates additional information about listening sessions and aims at capturing
latent factors related to mood in a more consistent listening context. Evaluation
of the approaches is carried out on the genre level, i.e., instead of predicting
individual songs or specific artists, a recommendation consists of a distribution
of genres. Furthermore, the discovered taste topics are compared to genres within
the two-leveled Zune Social genre taxonomy. Evaluation indicates that the context-
aware session model is more effective than the time-agnostic taste model. Yang
et al. [145] investigate “local preferences,” i.e., temporal aspects on a smaller and
more consistent time scale. These preferences reflect changes in listening behavior
that are strongly influenced by the listening context and occurring events rather than
caused by a gradual change in general taste.

The impact of the temporal context is not limited to listening sessions. Temporal
information is also helpful for modeling long-term patterns in listening behavior

17http://zune.net; now Xbox Music.

http://zune.net
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and song life cycles. Dror et al. [43] show that matrix factorization models for
music rating prediction can successfully incorporate additional information such
as temporal dynamics in listening behavior, temporal dynamics in item histories,
and multi-level taxonomy information like genre. Aizenberg et al. [3] apply
collaborative filtering methods to the playlists of radio stations associated with the
web radio station directory ShoutCast.18 Their goals include prediction of existing
radio station programs, as well as predicting the programs of new radio stations.
To this end, they model latent factor station affinities as well as temporal effects.
We discuss the specifics of sequential recommendation in greater detail in the next
section.

13.5 Automatic Playlist Generation

One of the key distinguishing features of music, as compared to other item domains
such as books or movies, is that recommendations are often consumed in rapid
succession during a listening session. Rather than selecting each song individually, a
sequence of songs—a playlist—can be automatically generated, and the user would
consume the sequence much as if it was a traditional radio broadcast. Automatic
playlist generation thus forms a critical component of personalized streaming radio
services and portable music devices.

Because the user does not explicitly select or provide feedback for each song in
a playlist, the modeling assumptions and evaluation criteria can differ from those
of traditional recommender systems (Sect. 8). In this section, we survey evaluation
methodologies and algorithmic approaches for automatic playlist generation.

13.5.1 Parallel and Serial Consumption

In most typical recommendation models, the user is first provided with a set of
candidate items from which to choose, for example, a page of movie recommenda-
tions. The user may then inspect each candidate item before making a selection: in
effect, the user can access the candidate recommendations in parallel. The selection
process may be assisted by presenting the user with a brief summary of each item,
such as a star rating, plot synopsis, or capsule review. This approach works well for
browsing scenarios in which the user is actively engaged and selecting each item
individually.

Unlike browsing a collection, playlist consumption is an inherently serial
process: only one song is consumed at a time, and the user does not select from
a set of alternatives. Typical playlist consumption interfaces mimic conventional

18http://www.shoutcast.com.

http://www.shoutcast.com
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radio or personal music devices, potentially augmented with a limited set of familiar
controls, such as skip, stop, or pause. Because the mode of consumption differs from
that of browsing, the semantics and availability of user feedback differ as well. The
semantics of explicit per-song feedback are straightforward, but events may be rare
due to user disengagement (passive consumption) or fatigue due to consuming a
large number of songs in rapid succession.

Implicit feedback can be somewhat more problematic. If a song plays to
completion, it may be interpreted as implicit positive feedback, but it is also possible
that the user has become disengaged—e.g., by reducing the volume or wandering
away—and there is often no way to infer this behavior directly. Negative feedback,
on the other hand, must derive from an explicit user action, such as clicking a “stop”
or “skip” button [64, 104]. However, as noted by Bosteels et al. [23], great care must
be taken when inferring intent from a user’s intent action: the user may in fact dislike
the recommended song, or she may simply not wish to hear it at that moment due to
otherwise obscure contextual factors.

13.5.2 Playlist Evaluation

Sequential playlist consumption differs from traditional recommender system and
information retrieval settings, and consequently, several methods have been pro-
posed to evaluate playlist generation algorithms. Because the choice of evaluation
criteria influences algorithm design, we first provide a survey of evaluation tech-
niques. At a high level, these techniques fall into four categories which we survey
in this section: user studies, semantic cohesion, partial playlist prediction, and
generative likelihood.

13.5.2.1 User Studies

Early approaches to evaluating automatic playlist generation systems relied upon
user studies. For example, Pauws and Eggen [106] conducted a study in which users
were asked to provide a seed song in response to a pre-selected contextual query
(e.g., lively music), which was then used to seed a playlist generation algorithm.
Each user then rated the resulting playlist on a scale of 1–10. Later studies followed
this general approach by soliciting users for ratings of playlist consistency [111]
and similarity to the seed song [20]. Alternatively, Barrington et al. [12] conducted
a survey in which users were provided with a seed song and playlists generated
by two competing systems, and asked for relative preference of one playlist or the
other.

While user studies provide high-quality information, they are notoriously dif-
ficult to reproduce, and they do not provide a viable means of automatically
evaluating algorithms in a laboratory setting. User evaluation is also difficult to
scale to large collections, as the search space of playlists grows exponentially with
the number of songs in the collection.
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13.5.2.2 Semantic Cohesion

A commonly used alternative to user-centric evaluation is to measure some notion of
cohesion over the songs within a playlist. This general strategy is usually applied to
song-level metadata, for example, by counting the fraction of songs in the playlist by
the same artist [78], or measuring the entropy of the playlist’s genre distribution [42,
69, 111]. In cohesion-based playlist evaluation, the metadata in question is obscured
from the playlist generation algorithm.

The main drawback of cohesion-based evaluation is that it is essentially user-
agnostic, so one cannot directly conclude that an algorithm which produces cohesive
playlists will also produce satisfactory recommendations to users. On the contrary,
a study conducted by Slaney and White [133] provides evidence that users prefer
some degree of diversity in playlists.

13.5.2.3 Partial Playlist Prediction

Rather than evaluate each automatically generated playlist, some authors have
evaluated their algorithm’s ability to predict the hidden songs in pre-existing
playlists from a partial observation. Platt et al. [110] gather a collection of user-
generated playlists over a fixed library of songs. For each playlist in the collection,
the algorithm is given as input a partial observation of the constituent songs, and as
output, produces a ranking over the remaining songs in the library. The algorithm
is then evaluated according to the position within the predicted ranking of the
remaining songs in the playlist.

Maillet et al. [83] conduct a similar experiment, in which playlists are collected
by mining the playback logs of terrestrial broadcast radio stations. Their evaluation
methodology is similar to that of Platt et al., except that the partial observations are
restricted to immediately preceding song(s), rather than arbitrary partial observa-
tions.

Partial prediction evaluation is similar to ranking-based evaluations commonly
used in general implicit-feedback collaborative filtering problems [63, 117]. One
key distinction, however, is that associations are measured between playlists and
songs, not users and songs. Because playlists tend to be much shorter than a
user’s full listening history, the associations tend to be sparse when compared to
a full collaborative filter (see Fig. 13.2). As noted by Platt et al., the sparsity of
observations, coupled with the general lack of strong negative feedback, tends to
result in an overly pessimistic evaluation [110].

13.5.2.4 Generative Likelihood

The final approach to playlist evaluation is borrowed from the statistical natural
language processing community. McFee and Lanckriet [86] argue that because
many practical playlist generation algorithms are stochastic, they induce probability
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Fig. 13.2 The empirical cumulative distribution function (CDF) of the number of songs in user-
generated playlists (solid line), and in a user’s listening history (dashed line). Playlists were
gathered from the Art of the Mix (AotM-2011) corpus, which includes approximately 105 unique
playlists [87]. Listening histories were gathered from the Million Song Dataset Challenge (MSDC)
training set, which contains listening histories for approximately 106 users [85]. Ninety-five percent
of playlists contain 30 or fewer songs, indicating a high degree of sparsity in the observations. Note
that these sets do not span the same user base

distributions over playlists. The induced distribution can thus be interpreted as
model of the data (sample playlists), and evaluated in a similar fashion to a natural
language model. Concretely, the algorithm is scored according to the likelihood of
a test collection of playlists under its corresponding distribution.

In practice, the generative likelihood approach requires a large test corpus of sam-
ple playlists. Test corpora can be formed from user-constructed playlists [86, 87], or
broadcast or streaming radio logs [93, 94]. However, when evaluating on historical
data, rather than intentionally constructed playlists, one must be aware that the data
itself may have been generated by an automated process.

The generative likelihood approach only applies to algorithms for which a
sample playlist’s likelihood can be computed. While this includes broad families
of algorithms, such as Markov processes [86], it rules out direct comparisons
to deterministic algorithms and black-box methods, e.g., existing streaming radio
services. However, the generative likelihood approach does provide a consistent
evaluation framework, and a meaningful objective function for designing and
optimizing playlist generation algorithms.

13.5.3 Playlist Generation Algorithms

A wide range of algorithmic techniques have been proposed for automatic playlist
generation. Most techniques fall into one of three categories, which we survey here.
Constraint satisfaction methods attempt to construct a playlist which satisfies some
user-specified search criteria. Similarity heuristic methods build playlists by finding
songs which are in some way similar to a query or seed song. Finally, machine
learning approaches can be used to optimize model parameters over a training set
of example playlists.
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13.5.3.1 Constraint Satisfaction

Early research into automatic playlist generation algorithms primarily focused on
combinatorial methods. Common formulations of the playlist generation problem
required the user to encode her query in the form of a set of constraints which must
be satisfied by the generated playlist [4, 7, 102, 107]. Usually, constraints would be
applied to metadata associated with each song (e.g., genre or year of release), or
audio content analysis (e.g., track duration or tempo). Pauws et al. [107] identify
several types of constraints, including unary (e.g., “each song must be of the jazz
genre”), binary (e.g., “adjacent songs must have similar loudness”), and global (e.g.,
“total duration less than 60 minutes”).

Research on constraint-based playlist generation has tailed off in recent years
due to several practical limitations. First, constraint satisfaction problems tend to be
computationally intractable even for relatively small personal collections, making
them unattractive for large-scale applications [7]. Second, because constraint
satisfaction is a feasibility problem, and not an optimization problem, there is no
explicit notion of preference between two satisfactory playlists. Consequently, it
may take multiple interactive refinements before the user is satisfied with the recom-
mendations [106]. Finally, constraint generation can be a difficult task for users who
may lack the technical sophistication to clearly express their preferences. However,
it should be noted that constraint satisfaction forms a necessary component of
automatic playlist generators for broadcast radio and streaming services, which may
be required by law to conform to certain regulations [48, Sect. 2.7.3].

13.5.3.2 Similarity Heuristics

As an alternative to the query-by-constraint formulations described above, several
researchers have proposed methods which allow the user to formulate a query in the
form of one or more seed songs. Playlists may then be composed by selecting songs
which are in some way similar to the seed.

The underlying notion of similarity between songs ultimately determines the
song selection, and many different approaches have been proposed in the literature.
Most commonly, song similarity is determined by acoustic content features, such
as MFCCs, rhythmic descriptors, or automatic semantic annotations [12, 20, 42, 51,
78, 104, 112]. Alternative methods of computing similarity between songs include
metadata (e.g., genre or mood) [110], proximity of artists in a social network [49],
or textual similarity extracted from web documents [69].

Given one or more seed songs and a song-level similarity function, several
methods have been proposed to generate a playlist. In the simplest form, the
playlist is constructed by ranking songs by similarity to the seed(s) [12, 78, 110].
More sophisticated approaches construct a graph over songs, and use path-finding
algorithms to navigate between seeds, such as shortest path [51], network flow [49],
and traveling salesman [69, 112].
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13.5.3.3 Machine Learning Approaches

In each of the similarity-based examples above, the notion of similarity between
songs is fixed a priori, and is not informed by user activity. However, most recent
techniques use some form of machine learning to optimize model parameters from
a training set of playlists.

The algorithm proposed by Ragno et al. [114] generates playlists by performing
random walks on an undirected graph where edge weights are determined by
co-occurrence of songs within training playlists. By relying strictly on playlist co-
occurrence, the algorithm is implicitly constrained to only reproduce previously
observed sequences. Other authors proposed methods which incorporate tag-based
similarity [23], latent topic assignment sequences [56], or combine popularity with
artist-level co-occurrence [22] to allow the algorithm to generalize and produce
novel sequences.

The above methods use co-occurrence frequency counts to inform song selection,
but they are not explicitly optimized for playlist prediction. Maillet et al. [83]
propose a method to train a classifier to predict from acoustic features whether an
ordered pair of songs form a bigram in observed playlists. By keeping the first song
fixed, the classifier’s output can be used to induce a ranking over the remaining
songs in the library, from which the next song is selected. The proposed method
also incorporates direct user feedback by using a weighted tag cloud to reorder the
candidate selections. Because the method uses a discriminative classifier, the authors
synthesized “negative” training example bigrams by random sampling.

Recently, generative modeling has emerged as a versatile framework for devel-
oping playlist generation algorithms. In this view, playlists are generated by
sampling sequences from a probability distribution whose parameters are fit to a
training sample. This approach lends itself well to generative likelihood evaluation
(Sect. 13.5.2.4), as the training and testing criteria match exactly. Existing models
in the literature exhibit a range of scale and complexity, including latent topic
models [150], low-dimensional song embedding [93], co-embedding of songs and
users [94], Markov chain mixtures [86], and cross-modal feature integration [87].

13.6 Data Sets and Evaluation

In this section, we give an overview of frequently used data sets and prominent
evaluation campaigns in MIR and music recommendation. In cases where data sets
were specifically created for the purpose of running an evaluation campaign we
discuss them together.

A comparative overview of data sets is given in Tables 13.1 and 13.2. The former
lists statistics of the data sets and the type(s) of editorial metadata included, while
the latter details the kind of data that is provided. Note that the statistics in Table 13.1
only indicate figures of the data sets that are publicly available for the individual
types of items. The last column “Ratings/Evts.” refers to explicit (ratings) or implicit
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Table 13.1 Statistics of public data sets for music recommendation research

Data set/items Songs Albums Artists Users Ratings/evts.

Yahoo! Music [44] —— 624;961 in total —— 1;000;990 262;810;175

MSD [14] 1;000;000 1;019;318 48;373;586

Last.fm—360K [31] 186;642 359;347

Last.fm—1K [31] 107;528 992 19;150;868

MusicMicro [121] 71;410 19;529 136;866 594;306

MMTD [57] 133;968 25;060 215;375 1;086;808

AotM-2011 [87] 98;359 17;332 16;204 859;449

Table 13.2 Features of public data sets for music recommendation research

Data set Feedback type Audio files Item content User context

Yahoo! Music [44] Ratings ✗ ✗ ✗

MSD [14] Listening events, tags ✗ ✓ ✗

Last.fm—360K [31] listening events ✗ ✓ ✗

Last.fm—1K [31] Listening events ✗ ✓ ✓

MusicMicro [121] Listening events ✗ ✓ ✓

MMTD [57] Listening events ✗ ✓ ✓

AotM-2011 [87] Playlists ✗ ✓ Partial

(listening events) preference indications.19 In Table 13.2, the column “Feedback
type” refers to the kind of user-item-relationship that is addressed (e.g., ratings
or listening events), whereas “Item content” indicates the presence or absence
of content descriptors (e.g., metadata or audio features). The last column “User
context” shows whether contextual data of the user or the listening event is provided
(e.g., location or time).20 Note that the absence of audio files in all data sets (see
Table 13.1) would render audio content-based approaches impossible. However,
some data sets (e.g., MSD) come with precomputed audio features, such as those
provided by The Echo Nest.21 If extracting features directly from the audio file
is desired, an alternative solution is to download 30-second-snippets frequently
available for preview in major online music stores and compute features on these.
Such previews are also offered by 7digital22 via their Media Delivery API.23

In the following, we give a short introduction to the evaluation of music
recommendation techniques in general. Hereafter, we present major evaluation

19In AotM-2011, this figure refers to the sum of the length of all playlists, where length is measured
as the number of songs.
20For AotM-2011 this is partially the case, as not all playlist categories refer to contextual factors.
21http://the.echonest.com.
22http://www.7digital.com.
23http://developer.7digital.com/resources/api-docs.

http://developer.7digital.com/resources/api-docs
http://www.7digital.com
http://the.echonest.com
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Table 13.3 Some references
to works that make use of the
discussed data sets

Data set References

Yahoo! Music [44] [53, 73]

MSD [14] [40, 65, 66, 128]

Last.fm—1K/360K [31] [39, 144]

MusicMicro [121] [119, 124]

MMTD [57] [46, 50, 95, 125]

AotM-2011 [87] [21, 86]

campaigns and data sets explicitly addressing the task of music recommendation.24

To give the reader some hints on the usage of each data set, Table 13.3 provides
references to corresponding work.

13.6.1 Evaluation Methodologies

In the recommender systems community, evaluation is often conducted by measur-
ing the error of predicted ratings (e.g., root-mean-square error, RMSE). Due to the
historical shortage of publicly available rating data for music, evaluation of music
recommendation approaches has been carried out for a long time using genre as
proxy and modeling a genre prediction task. Given the genre of the seed item(s) and
that of the recommended item(s), typical IR performance measures are used (e.g.,
precision and recall). Using genre as proxy for music preferences, however, can be
considered inherently incomplete because listeners might have driving factors for
preference other than genres (e.g., happy music with vocals). It further neglects the
perceived quality of recommendations, their actual usefulness for the listener [129],
and the user’s satisfaction [89, 122]—aspects which can only be assessed by asking
real users.

Although the number of user studies has increased [143], conducting such studies
on real-world commercial music collections remains time-consuming, expensive,
and impractical, particularly for academic researchers. Consequently, relatively few
studies measuring aspects related to user satisfaction have been published. The
study by Celma and Herrera [32] may serve as an example of a proper subjective
evaluation experiment, carried out on a larger scale. This study was conducted on
288 participants, each of which provided liking (enjoyment of the recommended
music) and familiarity ratings for 19 tracks recommended by three approaches in
a blind evaluation. The resulting large total number of evaluated tracks served as
a solid basis for statistical testing. Bogdanov [16] proposes to use four subjective
measures addressing different aspects of user preference and satisfaction to assess

24There exist many more music benchmarking activities which are oriented towards retrieval or
annotation, e.g., MIREX (http://www.music-ir.org/mirex/wiki) or MusiClef (http://www.cp.jku.at/
datasets/musiclef).

http://www.cp.jku.at/datasets/musiclef
http://www.cp.jku.at/datasets/musiclef
http://www.music-ir.org/mirex/wiki
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the quality of recommendations: (1) liking; (2) familiarity with the recommended
tracks; (3) listening intention, i.e., readiness to listen to the same track again in the
future; and (4) “give-me-more,” indicating a request for or rejection of more music
that is similar to the recommended track.

13.6.2 Yahoo! Music Dataset and KDD Cup 2011

In 2011, the KDD Cup25 [44] featured a music recommendation task using music
ratings data gathered on a large scale and provided by Yahoo!.26 The corresponding
data set is simply known as the Yahoo! Music data set and currently represents the
largest music recommendation data set, including 262;810;175 ratings of 624;961

music items by 1;000;990 users, and spanning the time period from 1999 to 2010.
User ratings are given partly on a standard 5-point scale, and partly on a 0–100 scale.
Different levels of granularity are covered by the ratings: tracks, albums, artists, and
genres. A characteristic of the data set is its high sparsity (99:96 %), even in light
of the typically sparse nature of other ratings data sets (for instance, 98:82 % for
the Netflix set) [44]. This high sparsity renders recommendation tasks particularly
challenging.

There were two objectives in KDD Cup 2011, which were addressed on separate
tracks. The first track was a traditional recommendation task: predict unknown
music ratings based on given explicit ratings. The best algorithm achieved an RMSE
of 0:84, when assuming a 5-point-scale for rating. It was capable of explaining
59:3 % of the rating variance. The second task aimed at distinguishing loved songs
from songs never rated. In particular, participants were required to predict three
songs for each user in the test set. To this end, the test set contained six songs for
each user: three of which the user rated high, three of which the user never rated.
As performance measure an error rate was used, corresponding to the fraction of
songs wrongly predicted as loved ones. For this second track, a smaller data set was
released, roughly 250;000 users, 300;000 items, and 60;000;000 ratings. The best
performing algorithm achieved an error rate of 2:47 % [44].

The KDD Cup 2011 received a lot of attention and had more than 2000
participants. However, it was also the subject of some controversy within the MIR
community (see http://musicmachinery.com/2011/02/22/is-the-kdd-cup-really-
music-recommendation).

The main criticism stemmed from the total anonymization and absence of
any descriptive metadata. Both users and items are represented only by opaque
numerical identifiers that do not relate to any semantic entity, such as user name or
editorial music metadata. The task was therefore frequently considered as applying
collaborative filtering techniques to a huge data set, rather than addressing the

25http://www.sigkdd.org/kdd2011/kddcup.shtml.
26http://music.yahoo.com.

http://music.yahoo.com
http://www.sigkdd.org/kdd2011/kddcup.shtml
http://musicmachinery.com/2011/02/22/is-the-kdd-cup-really-music-recommendation
http://musicmachinery.com/2011/02/22/is-the-kdd-cup-really-music-recommendation
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particularities of music recommendation. The data set and the challenge effectively
ignore music domain knowledge, and as a result, prohibit the application of content-
based approaches. Nevertheless, the Yahoo! Music data set still represents one of the
largest collections of user ratings on music items.

13.6.3 Million Song Dataset (MSD) and MSD Challenge 2012

Acknowledging the fact that human music perception is not only influenced by
aspects encoded in the audio signal, the proponents of the Million Song Dataset27

(MSD) [14] brought together a wealth of descriptors and information on one million
contemporary popular music pieces. As of the time of writing, MSD contains
content-based descriptors (e.g., estimates of key, tempo, loudness) and editorial
metadata (e.g., artist, title, release year) from The Echo Nest, links to MusicBrainz
and 7digital, collaborative tags and similarity information from Last.fm, term vector
representation of song lyrics from musiXmatch,28 user playcount information (called
“taste profile”) again from The Echo Nest (covering almost 50 million <user,
song, playcount> triples for about one million users), and information about
cover songs from Second Hand Songs.29

Even though it has been criticized by some MIR researchers, foremost for (1) lack
of actual audio material and (2) non-transparency of how the content descriptors
were obtained, MSD certainly marked a cornerstone of publicly available music-
related data sets in terms of size and data variety. In this vein, the proponents
encourage MIR research that scales to commercial sizes of music collections. As for
criticism (1), although it is true that MSD does not come with the actual digital song
files due to copyright reasons, 30-second-snippets can be downloaded easily via
links to 7digital. Criticism (2) originates from the fact that the content descriptors
are provided out of the box by The Echo Nest, which does not reveal details on
how they were computed. Users of MSD however are also free and encouraged to
compute their own audio-based features from the 7digital snippets.

In order to provide an open evaluation contest for music recommendation
algorithms that can use a wide variety of data sources, the MSD Challenge30 [85]
was organized in 2012. In contrast to KDD Cup 2011, which was highly obscured
in terms of available data, the MSD Challenge put strong emphasis on allowing for
a wide variety of approaches (for instance, including web crawling, audio analysis,
collaborative filtering, or use of metadata).

Given full listening histories of one million users and half of the listening
histories for another 110,000 test users, the task was to predict the missing hidden

27http://labrosa.ee.columbia.edu/millionsong.
28http://www.musixmatch.com.
29http://www.secondhandsongs.com.
30http://labrosa.ee.columbia.edu/millionsong/challenge.

http://labrosa.ee.columbia.edu/millionsong/challenge
http://www.secondhandsongs.com
http://www.musixmatch.com
http://labrosa.ee.columbia.edu/millionsong
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listening events for the test users.31 Mean average precision (MAP) computed on
the top 500 recommendations for each listener was used as main performance
measure. The winning algorithm achieved a MAP of 17:91 % using a neighborhood
method [2]. The proponents of the MSD Challenge further provided some simple
reference implementations that recommended songs only based on their popularity,
achieving MAP scores between 2:1 % and 2:3 %.

As noted above, several publicly available data sets are strongly tied to their
respective evaluation campaigns. This does not mean that they were only used in the
corresponding campaigns though; quite the contrary is true. However, there exist
a few collections that were proposed independently of benchmarking initiatives.
A selection is presented in the following.

13.6.4 Last.fm Dataset: 360K/1K Users

In his book “Music Recommendation and Discovery” [31], Celma proposes the
Last.fm Dataset—360K users and the Last.fm Dataset—1K users.32 The former
contains listening information about almost 360;000 users, but only includes artists
they most frequently listened to. The latter provides full listening histories of nearly
1000 users, up to May 2009. While the 360K set contains <user, artist,
playcount> triples, the 1K set further contains information on which songs
were played at which time, thus representing the data as <user, timestamp,
artist, song> quadruples. Both data sets contain user-specific information,
including gender, age, country, and date of registering at Last.fm. The data has been
gathered via the Last.fm API.

13.6.5 MusicMicro and Million Musical Tweets Dataset
(MMTD)

The importance of temporal and spatial information has been highlighted in
context-aware recommender systems in general [1], but also particularly in music
recommendation [36, 124]. Until 2013, however, no music-related data set providing
both types of information in high granularity was publicly available. Although
Celma’s data set contains timestamps of listening events, location is only given on
the user level. Based on music listening information extracted from microblogs, two
data sets were proposed in 2013: MusicMicro [121] and the Million Musical Tweets

31http://www.kaggle.com/c/msdchallenge.
32http://ocelma.net/MusicRecommendationDataset.

http://ocelma.net/MusicRecommendationDataset
http://www.kaggle.com/c/msdchallenge
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Dataset (MMTD) [57].33 The MusicMicro set contains about 600;000 listening
events by almost 137;000 distinct users and 21;000 artists. MMTD encompasses
1;087;000 listening events by 215;000 Twitter users, referring to 25;000 different
artists. The latter data set can be regarded as an extension of the former. Temporal
information is provided as month and weekday, and spatial information is given as
numerical longitude and latitude values, as well as respective countries and cities. In
addition, MMTD further includes identifiers linking to MusicBrainz, 7digital, and
Amazon.

13.6.6 AotM-2011

The AotM-2011 data set34 [87] contains playlists crawled from Art of the Mix,35 a
portal to share music playlists of any kind. The playlists span the time period from
January 1998 to June 2011. The data set contains 101;343 unique playlists, which
contain a total of 859,449 events (i.e., song-playlist pairs). Each playlist has had its
songs matched to the Million Song Dataset, resulting in a total of 98;359 matching
tracks. Furthermore, a timestamp of the playlist’s upload is provided. Some of the
playlists are further annotated with activities. In addition, metadata (name and date
of joining the Art of the Mix site) is supplied for each user.

13.7 Conclusions and Challenges

In this chapter, we have given a brief overview of the state of the art in music
recommender systems. We described the distinguishing characteristics of music
recommendation in comparison to other domains, and surveyed content-based,
context-aware, hybrid, and serial recommendation methods. We further reviewed
common data sets, evaluation strategies and campaigns, and outlined their limita-
tions.

From a practical point of view, there is no single best solution to music
recommendation, in terms of features or algorithms. However, a trend towards
hybrid approaches, in particular incorporating context-aware aspects is evident.

The overarching challenge for music recommendation research is comprehensive
access to large data sets, including not only user ratings, but also contextual
information and audio content. From the researcher’s perspective, this further
motivates the need for efficient and scalable methods which can be applied to large
collections. Unfortunately, publicly available data sets with full access to audio are

33http://www.cp.jku.at/datasets/musicmicro and http://www.cp.jku.at/datasets/MMTD, resp.
34http://bmcfee.github.io/data/aotm2011.html.
35http://www.artofthemix.org.

http://www.artofthemix.org
http://bmcfee.github.io/data/aotm2011.html
http://www.cp.jku.at/datasets/MMTD
http://www.cp.jku.at/datasets/musicmicro
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rare and usually small, and therefore not amenable to recommender evaluation. On
the other hand, companies that are in possession of large collections are not eager
to share their data, be it due to business reasons, user privacy concerns, or legal
constraints (i.e., copyright).

Beyond the issues of data access, there is also a need for better understanding
how different kinds of data (e.g., semantic descriptions, audio content, or contextual
factors) relate to and influence human music perception. Although many of the
studies described in this chapter have evaluated some of these effects in isolation
or on small data sets, there is still a relative lack of large-scale, comprehensive
user studies for music recommendation. Whenever possible, evaluations should be
carried out with real users, instead of optimizing for traces of preference that do
not reveal any background information or intent [122]. Moreover, even with a better
understanding of how individual factors influence music perception, it is still unclear
how to best integrate all available sources when developing hybrid recommenders.

Regarding the state of the art in context-aware music recommendation, we note
that most systems presented in Sects. 13.3 and 13.4 are research prototypes. While
certain music players allow specifying the user’s mood or activity as a query, to
our knowledge, no fully automated context-aware music recommenders have been
released to the public. The research on context-awareness in the music domain is still
in its early stages and more work is needed to address such important research topics
as understanding the relations between contextual conditions and music [97, 109],
explaining context-aware recommendations to users, and determining the right level
of user control over the recommendations [98].

If the research community manages to address these challenges and transcend
current limitations in music recommendation, many more exciting applications can
be expected in the future. These may include music players that “understand”
the user’s information or entertainment need at any point in time and provide
corresponding recommendations, or applications that target specific usage scenarios
such as group recommendations.
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Chapter 14
The Anatomy of Mobile Location-Based
Recommender Systems

Neal Lathia

14.1 Introduction

The widespread adoption of smartphones—putting both the Internet and sensor-
rich hardware into the pockets of millions—is finally bridging the gap between
the online and offline worlds. It is now common for mobile phone users to search the
web and engage with social media while on the move: the services that were once
limited to the desktop computer are now at their fingertips. Furthermore, the vast
information repository on the web can now be used to enhance peoples’ physical-
world experiences. Mobile phones are quickly turning away from being mere portals
to the web and towards devices that help users to explore, discover, and interact with
their actual surroundings.

One of the key technologies that is enjoying much success in the online world
is usage of recommender systems to support users’ browsing. Online recommender
systems take many different shapes: they help users discover movies, music, and
e-commerce items of interest, as well as suggesting new friends to connect to in
online social networks and providing personalised search results. At the heart of
their success is the assumption that a model of users’ preferences can be learned by
observing their behaviour (expressed as, for example, star-ratings or clicks); huge
repositories of data can then be filtered in order to draw out the most interesting
results for each person. Mobile phones, instead, have historically been centred
on location-based services: the underlying paradigm is that the most relevant
information for users is about that which is close by. However, the next generation of
mobile phones now offer the potential to implement recommender systems to build
services that not only leverage users’ current location, but also their rich history of
preferences and actions. In doing so, a crossroads of multiple lines of research, each
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with their own rich literature, is being formed. People’s usage of mobile systems
is of interest to a wide range of fields within Computer Science, ranging from
mobile information retrieval [17], sensor research [22], data mining and knowledge
discovery [14], human-computer interaction [49], as well as persuasive [26] and
ubiquitous computing [47].

This chapter aims to draw together the various lines of enquiry related to
location-based personalisation and mobile recommender systems by presenting a
structured survey of the key elements of a mobile location-based recommender
system. We do so from the point of view of the recommender system itself,
beginning with a broad definition of mobile recommender systems. We then cover
three features of mobile recommender systems:

1. Data. Recording signals of behaviour that reflect users’ preferences is the
foundation for any mechanism that aims to recommend new places, activities, or
friends. In this regard, a growing body of research has delved into collecting data
from users about themselves and their surroundings, via participatory sensing,
crowd-sourcing, and game-based incentives. Furthermore, a range of research
has investigated how to infer users’ activities from such data.

2. Algorithms. The principal technique behind recommender systems is collabo-
rative filtering. While these are readily applied to mobile systems as well, these
algorithms have historically taken a “black-box” approach when computing on
user ratings: they do not, for example, need to consider the physical distance
between places. We will therefore also discuss supervised learning approaches
for mobile recommendations and recent research that augments the efficacy of
recommendations by taking into account features relating to space (e.g., where
people live) as well as preference.

3. System Evaluation. The question of evaluating recommender systems is still
actively discussed [35]. We complement this research by surveying how mobile
recommender systems have been evaluated to date, and how their evaluation
differs from more traditional scenarios.

We conclude our survey by discussing emergent themes and set of directions for
future research.

14.1.1 Defining a Mobile Location-Based Recommender
System

We begin with a broad definition of the kinds of systems that we describe in this
chapter. To date, many recommender systems and location-based systems have been
built and studied as separate entities. Broadly speaking, they can be defined as
follows:

• Recommender Systems retrieve tailored sets of items of interest for each user.
A variety of flavours of recommender systems are discussed throughout this
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handbook: for example, see the chapter on “Data Mining Methods for Rec-
ommender Systems” for approaches that recommend based on users’ historical
preferences (see Chap. 7), and “Semantics-Aware Content-Based Recommender
Systems” for approaches that recommend based on items’ features (see Chap. 4).

• Location-Based Systems or services retrieve information that is tailored to the
user’s current location [72]. Typical applications here include mapping and
route-finding services, applications to find nearby services (e.g., restaurants),
location-based social networks where friends share their location with one
another, traffic notification services, and advertising. The focus is heavily on
location, rather than preference.

Historically, the recommender system literature has been characterised by a focus
on recommender systems that users interact with using a personal computer, and
recommending items that are potentially not ‘consumed’ immediately after being
recommended, such as movies, music, and the contents of e-commerce catalogues.
Although these recommendations may often result in real-world interactions (e.g.,
a movie being sent to your house), they are nevertheless mostly finding content
based on what people like. In other words, any spatial relationships between the
items (e.g., where a restaurant is relative to another) are not useful when computing
recommendations: the focus is on identifying, via a range of machine learning
approaches, implicit relationships between items using the feedback or preferences
given by the system’s users.

The systems that we focus on here, mobile location-based recommender systems,
take on characteristics of both of the above: they are accessed via mobile devices,
use location data (current or otherwise, e.g. historical), involves and leverages users’
movement around a physical space and, most importantly, provide personalised
recommendations that are tailored to users’ preferences. To that end, we exclude
systems that do not recommend places (or venues; ‘items’ that are consumed
by visiting a specific geographic location), such as when users access their
movie recommender (e.g., Netflix account) via a mobile device [34, 52], or seek
personalised app-recommendations with their mobile [39]. In that regard, mobile
location-based recommender systems may be viewed as a particular kind of context-
aware recommender system [2], where spatio-temporal data (about where and when
the system is being used) can be used to further personalise results.

In light of the above, what are the tasks that users of mobile location-based
recommender systems are seeking to perform?

1. Goal-Oriented Search: Location-based recommender systems often allow users
to query for personalised results. Where is the closest restaurants that I would
like to have dinner at? Where are nearby shopping areas? These tasks are often
associated with a particular intended action (e.g., having dinner, going to a bar),
yet with results that can be personalised to each individual.

2. Location Discovery: While the above use case captures when users have
queries/intents, mobile location-based recommenders can also be used to dis-
cover places. What is around me, of interest? What should I see in London? What
places are trending nearby, or events happening in my neighbourhood? All these
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kinds of questions fuel use cases where the user’s historical profile can be used
to personalise recommended places to see, visit, or attend.

3. Routing and Transport: Finally, a number of use cases have appeared in the
literature that deal with recommending personalised routes to follow. While
mainly focused on tourist routes, this use case responds to: how should I get
from here to there? What route should I walk when I am visiting Barcelona, with
my children? And so forth.

Beyond these, there are location-based social matching applications, tailored to
find people of interest in particular locations, and behaviour-oriented applications,
such as those related to sport and physical activity. While these are potentially
amenable to personalisation and recommendation systems, this chapter focuses on
those applications that are related to venues and places. The following published
surveys review mobile recommender systems more broadly: [29, 42, 68].

14.2 Data for Mobile Recommender Systems

One of the key differences between mobile- and web-based recommender systems
is that the former tend to have access to a broader set of data than the latter. Tradi-
tionally, web-based recommender systems’ data is described as being either explicit
(e.g., a rating or similar value derived from a user’s evaluation of an item) or implicit
(e.g., a purchase or click; a value derived from the user’s behaviour). Mobile systems
can also collect these, and more. While recent systems have particularly focused on
location and mobility data, mobile systems can collect:

1. Explicit Data: Mobile users can, as they do on the web, rate, tag, share, ‘like,’
or otherwise score an item while on the go. Beyond this, the most prominent
explicit action that has emerged across mobile services (e.g., Foursquare, Face-
book Places, Google+, Yelp) is the check-in: users share their current location
with their friends by finding and selecting the venue they are in. In the following,
we describe how these relate to preference.

2. Implicit Data: As above, users may provide similar implicit data as they do
on the web by clicking links, streaming videos, making purchases, or otherwise
engaging in an action that is not limited to mobile only. However, the mobile
device does provide some differences: there are behaviours (e.g., taking a photo,
tracking physical exercise) that are exclusive to mobile devices.

3. Sensor Data: Modern smartphones are increasingly sensor-rich. These typically
include sensors that can measure location and mobility, co-location, and other
facets that describe users’ context [47].

Moreover, many mobile systems inherently collect multiple kinds of data at
once. Consider, for example a check-in on a location-based social network (e.g.,
Foursquare). When checking in, users’ sensor data is used to identify nearby
venues [74]: their check-in action is an explicit signal of presence at that venue;
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multiple check-ins at the same venue may be considered as an implicit confidence
metric of preference for that venue [36], and the timestamp of their check-in
implicitly uncovers features of the place where they are [8].

One of the most notable differences between web- and mobile-based recom-
mender system data is that the item set that the recommender uses is often dynamic;
to follow from the example above, not all possible venues that a user may like
to check-in to may be known to the system. A key facet of building a mobile
recommender therefore is using the available data in order to learn about both items
and users. In the following, we describe a number of examples from the literature
where data derived from mobile devices is used to build databases that could suitably
underpin a recommender system. In particular, we focus on finding and inferring
points of interest, learning and modelling mobility data, analysing check-ins, and
inferring context and activities from sensors.

14.2.1 Uncovering Points of Interest and Location Preferences

As mobile devices are used on the go, they become an ideal source of location data.
In this section, we describe how this data can be used to learn about both users and
items in a recommender system, and the relations between them.

Location-based recommender systems rely on having a database of Points-of-
Interest (POIs) from which to source recommendations. The recent literature has
described a number of means of finding and inferring POIs from users’ data. A num-
ber of systems (e.g., Foursquare) maintain their POI database via crow sourcing;
the explicit check-ins that users provide can then be used to uncover venues’ spatio-
temporal patterns [57]. Others, instead, infer them from implicit data. These include,
for example, sourcing POIs by clustering geo-tagged photographs that users upload
to services like Flickr [20, 51]. These datasets can be used to automatically extract
features of places and events [66], and have also been applied to image search result
diversification [40]. Further information about the inferred items can be gathered by
intersecting the location data with any available content and tags [41].

While the methods above can be used to populate information about items, geo-
tagged photos have also been used to make inferences about users’ behaviours.
These include identify trips [60], analysing how tourists navigate a city [31], and
predicting how people travel [18]. In essence, the seemingly meaningless act of
taking a photograph from a geo-aware device can be used to find that (a) the targets
of photographs are items that are of interest to users and (b) the users who took
those photos are interested in, and have travelled between, those targets that they
have captured.

Mobility data has more traditionally been sourced from mobile phones. These
include the phones’ Global Position System (GPS) [88], sensors, GSM traces [76],
as well as the Call Detail Records (CDRs) that are created when devices pair with
cellular network communication towers [9]. A full review of the literature analysing
these data sources is beyond the scope of this chapter [11, 33]. However, these
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sources of data uncover a vast range of features about users’ behaviours, including
how far they tend to travel, their likely mode of travel, and the urban areas they
frequent [67]. Clearly, these sources of data encode users’ daily routines: the open
question, related to recommender systems, is the extent that these also signal users’
tastes. Few historical studies shed some light on this issue. Froehlich et al. [25]
found that mobility patterns correlate with users’ preferences: people tend to fre-
quent those places that they like; similarity between users can also be measured
from location histories [48]. However, other studies uncover that between 50 and
70 % of users’ mobility captures routine behaviours [14]. The fact that such a large
proportion of the user data contains places that users will, by definition, be very
familiar with challenges the perspective of building recommender systems to facili-
tate discovery of new places. Yet this kind of data has been used to design location-
based social activity recommendations [62]. Moreover, GPS traces can be mined
for ‘interesting’ locations [89] in order to recommend locations and activities [86];
further details of the algorithmic approaches appear in the following section.

All of the above data sources share the common trait of requiring processing
prior to being used as signals of users’ mobility and/or preference. They differ
from one another, instead, in how easily and accurately they may be collected.
Typically, sources such as GSM and CDRs are only available to mobile operators;
GPS and similar on-board location services require a tailor made app-based data
collector. While the former kind of data is typically coarse-grained, and GPS can
provide much finer-grained samples (both spatially and temporally), fully efficient
implementations are dependent on the needs on the underlying application. In partic-
ular, continuously querying a phone’s GPS sensor will quickly degrade the device’s
battery: system designers need to trade-off between the sampling accuracy that they
seek and the energy efficiency of their application [64]. On the other hand, many
applications collect data explicitly from their users, such as via location check-
ins. These sorts of systems surface a variety of issues that reflect on data quality,
such as the incentives and reasons that users have for contributing at all. Lindqvist
et. al [49] explored a host of reasons why people participate in these location-
based services (often, at the expense of their own privacy). These include: personal
tracking, gaming, and social signalling with friends; moreover, they also uncover
that there are many places that people proactively chose to do not check-in to.

14.2.2 Behavioural Inferences from Smartphone Sensors

While the previous section mainly dealt with what systems can learn about users
and items from mobility data (including smartphone sensors, like GPS), there is a
growing field of research that focuses on further behavioural aspects that can be
inferred from sensors [43]. To date, these have not been widely applied to recom-
mender systems. We include this brief review here since (a) these inferences provide
insights into users, and is thus relevant to user modelling using smartphones, and (b)
to highlight future opportunities that may emerge from applying these inferences to
personalised systems.
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1. Activity Recognition. Data from smartphone sensors (e.g., the accelerometer)
has been used to monitor and detect users’ current activities. These include
whether the user is walking, sitting, driving, or talking [16]. Moreover, smart-
phone sensors have been used to detect users’ contexts, including whether they
are in an environment where music is being played [50].

2. Transportation Modes. Combinations of accelerometer and GPS data have been
used to infer how users are moving between places, detecting transportation
modes such as bicycles, cars, buses, or subways [77]. These kinds of inferences
have, more broadly, been used to monitor users’ ‘green’ behaviours [26], indicat-
ing how inferences from sensor states can be used to profile users’ behaviours.

3. Sociability. Smartphone sensors have also been used to detect users’ social net-
works and interactions [24]. A mixture of Bluetooth, accelerometers, and micro-
phone sensors has been applied to detect users’ collocations and interactions
[65], both to quantify those users who are more sociable and provide feedback
to users. Other work takes similar data into the domain of recommendation, by
recommending online contacts based on physically sensed collocations [61].

There are a number of challenges related to the above, which include collecting data
efficiently, without overly draining devices’ batteries, designing accurate inference
algorithms in order to infer the higher-level behaviours that are relevant to the user-
modelling task at hand. However, these methods promise to deliver highly granular
data about users: where they go, whom they interact with, their activities and rou-
tines, and more: just as locations reflect preference, future mobile recommender
systems may use sensor inferences to augment user profiles.

14.3 Computing Recommendations in Mobile Applications

In this section, we describe approaches that have been proposed in order to compute
recommendations for mobile users. In particular, we focus on how the problem of
generating recommendations related to venues (e.g., restaurants, shops) has been
formulated into well-defined machine learning problems, that can then be tackled
by learning from the kinds of data described in the previous section.

We begin by briefly reviewing the equivalent in traditional recommender sys-
tems. In general, a recommender system will have a set of items and users; any
given user may have rated a fraction of the items (or performed equivalent actions,
if the system deals with implicit data: we use the term ‘rating’ to generically mean a
preference value). The task of the system is to recommend, to each user, those items
that he/she will be interested in—perhaps with a number of constraints. To do so, the
system computes personalised predictions for those items that a user has not rated.
These predictions can then be used to rank items according to estimated preference;
the user is presented with a list of items ordered according to how interested the
system has forecasted that user will be in them. Broadly, therefore, the two main
approaches to web recommendation focus on rating prediction and item ranking
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[21] (see also Chap. 7). In mobile recommender systems, some of these principles
continue to apply: in the following, we review variants of them that have been
tailored to particular mobile recommendation scenarios.

These variants have emerged for two reasons: first, those tasks that users seek to
accomplish in mobile settings often differ from what people do on the web, and it
is questionable as to whether the problem of information overload is applicable at
all. Further, there are a variety of challenges related to applying machine learning
to tasks related to mobile scenarios. These include limitations that are a result
of the data itself (e.g., inferring preference from mobility, differentiating between
positive and negative experiences from implicit datasets), as well as our current
understanding of the limits to the predictability of any data that can be collected
[14, 33]. Finally, there are also differences in the users themselves, who may be
locals or tourists and may be interested in geographical regions of varying size.

14.3.1 Overview of Recommendation Formulations

In this section, we examine how the problem of recommending places to mobile
users has been defined as a formal prediction problem. In particular, we consider
four variants of the broad problem: (1) recommending venues of particular cat-
egories, (2) recommending the next place that a user may like to visit, (3) rec-
ommending new places that users have yet to visit, and (4) recommending routes
that users may like to take as they navigate a particular space. While each of these
can generally be considered as place-focused recommendation problems, they each
capture differences in users’ needs from a mobile recommender.

1. Categorical Recommendation . The setting that is likely to mirror ‘traditional’
single-category online recommendation is that of recommending venues of a
particular type (e.g., restaurants). Systems described in the literature focus on
shops [78, 82] restaurants [69, 81], and cultural/tourist travel [5, 83]. Much like
movie recommendation (see Chap. 7), the items in this setting tend to all be the
same—the task is therefore to rank them appropriately, perhaps with the only
added constraint of being within a particular radius of the user’s current loca-
tion. In [69], items are described with n-dimensional vectors that include further
attributes of each venue (e.g., average cost); this way of representing the data
allows for the system which takes a conversational approach to recommending
the best restaurant.

2. Predicting the Next Place. Let us assume that a user having dinner at a restau-
rant; she now would like a recommendation for bars or clubs to go to once
she has finished eating. This is an example of seeking a recommendation for
the next place to visit: the relevant inputs to this query are (a) the user and
her preferences/location history, (b) the current location of the user, and (c) the
current time of day. Formally, let us represent a user’s location history as a time
series of venues that end at the current venue Vn at time tn:
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Pu D
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�
(14.1)

Given a set of candidate venues L, the prediction task is thus to predict which
venue VnC1 the user should visit. More broadly, the goal is to rank venues such
that the venue VnC1 that the user would like to visit next is placed as highly
as possible within the recommendation list [56]. To do so, a ranking score Oru;v is
computed for every venue v in .LnfVng/ (i.e., all the venues except the one where
the user currently is) using features from all users’ location histories (as described
below).

Oru;v D P.v D VnC1ju; Vn/ (14.2)

This problem has been tackled in the literature using both Foursquare check-
in data [56] and GPS and WiFi log data (although not from the perspective
of recommendation) [53, 71]. Successfully predicting next places with these
datasets, however, highlights one of the open challenges of this method when
applied to a recommendation scenario: part of the success may be attributed to
the habitual or otherwise routine mobility that is captured in the data [33]; in
essence, predicting that a user will go from home to work and back again seems
to have little value from the perspective of a recommender system. To tackle
this shortcoming, researchers have narrowed the scope of what venues in L are
candidate for recommendation: the following section focuses on one subset of
these.

3. Predicting New Venues. Since recommender systems are often described as
tools to facilitate discovery, another problem that mobile systems may tackle
is that of predicting the previously unvisited venues that a user may like to go
to. This problem has been formally defined by Noulas et. al [55] as follows.
Given the set of venues U that a user u has historically visited over a period of
time .t � �; t/, the aim is to predict those venues in .L n U/ that the user may
like to visit in time .t; t C �/. The choice of time period � is a parameter that
determines the extent that this approach may be amenable to venue rediscovery,
e.g. predicting venues that the user has not been to yesterday, last week, last
month, or ever at all.

Like above, this approach has its own shortcomings. Most notably, this
approach can only predict and recommend novel locations that the system already
knows about (i.e., that are available in the training data set), which is a particular
instance of the cold-start problem.

4. Recommending Routes to Follow. Research that has focused on recommending
to tourists often deals with personalised routes that this kind of user may follow
as they explore a new area [15]; tourists’ digital footprints can be directly uncov-
ered from the photographs they take while on tour [30, 32], which can then be
used to construct personalised tours [1, 12]. The idea here is somewhat akin to
recommending a playlist of tracks [6], albeit with added geographic constraints:
the formal task is to compute a sorted list of places to visit that optimises against
both the user’s preference, the time to travel between stop points, and any other
contextual factors.
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In essence, this setting may be viewed as an instance of the ‘next place’
problem, where the task is to recommend the next N places based on a num-
ber of constraints. For example, the system in [73] considers the time since a
user has visited a place of a particular category, in order to diversify results.
Similarly, the system in [13] also considers venue opening/closing times, the
routes between places, and the ‘best’ times to visit particular venues. Finally,
the system in [4] also considers the kinds of tourists groups that are requesting
recommendations—including, for example, whether the group includes children.

We note that a number of other variant prediction problems that are relevant to
mobile recommendations exist; the above are a selection that have appeared in the
recent literature. These include, for example, discovering new events [75].

14.3.2 Algorithmic Approaches to Venue Recommendation

In this section, we review some of the algorithmic approaches that have been
adopted for mobile recommendation. Many of these leverage the principles underly-
ing collaborative filtering [28, 87]: a full review of collaborative filtering is beyond
the scope of this chapter (see Chap. 7). Broadly speaking, when users can be
represented as vectors of the venues that they have a preference for, and venues
(‘items’) can be represented as vectors of the users who have a preference for them,
the entire family of collaborative filtering approaches can be applied.

A particular characteristic of location-based recommender systems is that rec-
ommendation results may need to be pre- and/or post-filtered in order to localise
the results to a particular geographic area [2]. These approaches are, more gener-
ally, typically applied in context-aware recommender systems: in the location-based
domain, this may, for example, entail pre-filtering by only training on those ratings
that match the current target one and/or post-filtering by removing some of the
ranked items (e.g., “only show me recommendations within a 5 kilometre radius”).

We begin by describing baseline approaches that may be suitable to compare any
recommendation algorithm against. The include:

• Popularity. Although non-personalised, popularity is a strong baseline to con-
sider when recommending venues. Popularity may be defined in a number of
ways: geographically, by absolute number of visitors, by visitors’ frequency of
visits, or by category. While this approach does not personalise results, it captures
the fact that popular venues are—by definition—places that many people will
like to go to. A personalised variant of popularity could, for example, rank places
based on a user’s historical patterns (e.g., ranking coffee shops highly if a user
tends to visit this category often).

• Proximity. Since the ‘items’ in venue recommender systems have an inherent
geographical layout, another baseline to compare against is that of simply recom-
mending venues by geographical distance from the user’s current position [62].
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This baseline does not consider preference, historical mobility, or any other con-
textual factors—yet captures users’ tendency to travel over short distances [54].

An approach that has emerged in the recent literature [55, 56] revolves around
extracting features from the data, creating binary-labelled datasets, and applying
supervised learning in order to learn the likelihood that a user visit a particular
venue. There are three kinds of features that can be extracted from mobility
preference data. These include:

• Place Features. Beyond any categorical/attribute data that is available for
venues, mobility data can be used to infer aspects of places that are, more broadly,
related to the behaviours of those people who attend them. These include (a) the
overall popularity of the venue, (b) the popularity of that venue at a particular
time of day, or day of week, (c) the popularity of the venue within its particular
category or geographic space. Popularity can be defined both in terms of absolute
visits or the unique number of users who have visited a place.

• User Features. As above, beyond any attribute data available for a user, the
mobility data can expose a number of features about preference for venues. These
include (a) the frequency or proportion of times that the user has historically
visited a place, (b) the user’s prior likelihood of visiting a place of a particular
category, and (c) the distance of a venue from the geographic centroid of a users’
historical mobility. If a social network is also available, similar features can
be extracted for a user’s friends for each venue—capturing the importance of
friend’s mobility in determining how users navigate places [23].

• Structural Features. Finally, mobile data about users and places also inherently
encodes a number of structural properties that are a result of both places and
users combined. These include geographic features: the distance between places,
and the rank distance between neighbouring venues. A sizeable amount of data
about users’ mobility allows for features relating to transition probabilities: what
is the likelihood that a person go from venue A to venue B, or from category
A to category B? The benefit of these features is that they are not solely based
on geography; they uncover features that relate places without needing to know
about the spatial layout of the items.

Using any of the available features described above, each visit by a user to a
venue can be turned into a positively labelled instance that can be used to train any
supervised learning approach (e.g. linear regression and decision trees [56]). How-
ever, doing so using only positively labelled instances will lead to poor results, as the
training data is highly skewed. To overcome this, researchers have augmented their
training data by randomly selecting unvisited venues to construct negatively labelled
instances. This approach effectively reduces the problem of ranking into one of
training a regression model with binary data [19]; learning on extracted features
seeks to determine what aspects of venues attract users to them—to then be able to
compute ranking scores for other venues that can be provided as recommendations.

A second approach that has been recently applied to recommending venues is by
using random walks (often, with restart [80]), which is well-known in the context of
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web search [58]. This approach is suitable for a dataset that can be represented as a
graph; broadly, the algorithm begins at node i and moves across the graph’s nodes
with particular transition probabilities: eventually, the steady-state of this walk is
reached, and defines the probability of being at any particular node j, or, put another
way, the relevance of j with respect to i. In the case of venue recommendation, the
graph we have at hand contains nodes of users and venues. Links between users
and venues define the preference (e.g., historical visits) of a user to a venue, and
weights on those links are the transition probabilities. If we have a social network,
there are also links between users; this approach has been used both the recommend
places [55] as well as recommend links to be added to the social network [7]. While
powerful, this method suffers from the perspective of scalability: for example, in
[55], a separate random walk was computed for each user.

14.4 Evaluating Mobile Recommendations

A critical step of all recommender system research is applying a methodology to
evaluate the quality of the recommendations [35]. Mobile recommender systems
are no exception; in fact, many of the techniques that have been applied to evaluate
recommendation quality can be similarly applied to this domain. For a full review
of recommender system evaluation, please refer to Chap. 8. Broadly speaking, just
like in web settings, mobile recommendation evaluations can be conducted using
quantitative and qualitative methods.

Quantitative methods mirror precisely what is traditionally done with web data:
data sets are split into appropriate training and test sets, and the predictive power of
learning algorithms is measured, after they have been given the training set, on the
hidden test set. However, while many web experiments focus on prediction accuracy,
since mobile data is often unary (i.e., a check-in) or implicit (e.g., from location
traces), then ranking metrics are more often appropriate. For example, in [62] the
percentile-ranking metric is used to evaluate the quality of recommended events, a
metric that was previously used with implicit data [36]. In this case, a successful
recommendation would highly rank those events that users subsequently attended.
It therefore defines goneu;j as a binary flag that reflects whether user u attended
event j, and ranku;j as the normalised rank of the event j in u’s recommendations.
The percentile-rank is defined as:

rank D
P

u;j goneu;j � ranku;jP
u;j goneu;j

(14.3)

A number of recent studies have also provided qualitative evaluations of their sys-
tems [13]. Much like their web-based equivalents, these studies entail building a
system, recruiting participants, and evaluating the recommendations using surveys,
interviews, or similar methods. While offering similar benefits, such as a finer



14 Mobile Location-Based Recommender Systems 505

grained understanding of user experience, they do also tend to suffer from similar
drawbacks; for example, they often face cold-start settings and are relatively small-
scale. For example, Tintarev et al. [79] evaluated a mobile tourist recommender
by having recruited participants complete a questionnaire. This questionnaire was
used to generate personalised points of interest, and the system was then evalu-
ated by examining the number of venues visited, as well as their popularity and
novelty. Similarly, the Magitti system [10] was evaluated in the field, allowing the
researchers to understand concepts such as omissions, distance to recommended
places, and the transparency/explainability of the recommendations.

All of the studies above indicate that evaluating a mobile recommender system
begins by evaluating the recommender system as it would be evaluated on the web.
However, limiting studies to these evaluations alone will not expose the complex
mesh of values that users seek in a successful recommendation, including aspects
that are also applicable to the web (novelty, diversity, explainability) as well as
aspects that are unique to mobile settings (distance, time of day, geographic rep-
resentativity, venue opening hours, etc.).

14.5 Conclusions and Future Directions

In this chapter, we have reviewed the basic components of mobile location-based
recommender systems: the tasks that these systems seek to support, the (explicit,
implicit, or sensor) data that can be used to build them, how these kinds of
recommendations are defined as formal prediction problems, the algorithms that
have been applied to them in the recent literature, and how these systems are
both quantitatively and qualitatively evaluated. In doing so, a number of themes
have emerged; a number of open challenges remain as we look forward to the
future research in this domain. We close this chapter by describing a number of
these challenges:

1. Context. Mobile recommender systems are, arguably, even more tied to users’
current context than their web-based equivalents: those venues that people seek
to discover will be highly dependent on (beyond their preferences) where they
are, the time of day, who they are with, and perhaps even how they feel. While
the concept of context is emergent in the recommender system literature [2, 3],
fitting it appropriately into mobile recommender systems requires revisiting how
context can be defined, collected, and applied to this domain.

2. Hierarchical Item Sets. In traditional recommender systems, ‘items’ are well-
defined entities (books, e-commerce items) that often do not overlap, and may be
‘dynamic’ in terms, for example, their stockroom availability [37]. In mobile
recommender systems, ‘items’ are dynamic in that they may be venues that
are open, closed, or permanently moved; they may be events that have varying
temporal qualities (e.g., a theatre production that lasts for 1 month vs. a rock
concert that only happens on one night); or indeed they may have varying
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geographic spans (such as a venue vs. a neighbourhood [85]). In essence, the
items in mobile recommenders are strongly structured and relate to one another
both hierarchically and spatio-temporally. One problem that emerges here is
that historical mobility-preference data detracts from these system’s ability to
recommend upcoming events of interest, that will have no associated data. Future
work can explore how these dynamics may be learned or detected, and, perhaps
more importantly, how to appropriately structure a recommender system that
balances between distance and preference: should such a system recommend that
the user travel to somewhere distant in exchange for a high preference match, or
recommend somewhere nearby that does not fully fit their profile?

3. Privacy. All of the potential that mobile recommender systems uncover seems
to conflict with users’ privacy: the data that we have described above includes
instances of both users’ selective exposure of their location as well as passive
location tracking. Future systems may consider including obfuscation mecha-
nisms that re-introduce certain levels of privacy into the collected data [63]: more
work is required to understand how this would impact users’ recommendations,
and how to overcome any shortcomings.

4. Proactivity and Interruptions. As smartphones accompany their owners
throughout their daily life, and are often within arms reach of their owners [22],
mobile location recommender systems can also proactively send notifications
to their users about places of potential interest that are around them [27].
The challenge with this feature is understanding the balance between pushing
relevant information to users and not overly burdening them with a constant
stream of interruptions. Recent work [59] has analysed interruptions within the
context of mobile experience-sampling: future work could focus on whether a
system could similarly learn about how to appropriately interrupt users to deliver
recommendations.

5. Different Users and Items. This chapter has focused on recommending places
to people. Future mobile systems need not limit themselves to this paradigm. For
example, recent work has used mobility patterns to recommend public transport
fares [44] and personalise service status updates [45]. Similarly, recent work has
recommended passenger pick-up locations to cab drivers (and vice versa) [84],
recommended where to place new retail stores in a city [38], and recommended
places to groups of people [70]; the definition of what constitutes a ‘user’ and an
‘item’ is open to many further interpretations.

The list above constitutes a brief set of ideas about future directions for mobile
recommender systems. As smartphones’ ability to collect valuable data increases,
these devices are beginning to draw the interest of researchers beyond the computer
sciences [46]; the future work in this domain has the potential of having far-reaching
implications across both research and practical applications.
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Chapter 15
Social Recommender Systems

Ido Guy

15.1 Introduction

The recent decade introduced the “social web” social web or “Web 2.0” [54] , a web
where people play a central role by creating content, annotating it with tags, votes
(or ‘likes’), or comments, joining communities, and connecting to friends. Social
media websites are proliferating and attract millions of users who author content,
post messages, share photos with their friends, and engage in many other types of
activities. This rapid growth intensifies the phenomenon of social overload, where
users of social media are exposed to a huge amount of information and participate
in vast amounts of interactions. Social overload makes it harder on the one hand for
social media users to choose which sites to engage in and for how long and on the
other hand makes it more challenging for social media websites to attract users and
retain them.

Social Recommender Systems (SRS) are recommender systems that target the
social media domain. They aim at coping with the social overload challenge by
presenting the most relevant and attractive data to the user, typically by applying
personalization techniques. The “marriage” between recommender systems (RS)
and social media has many potential benefits for both sides. On the one hand, social
media introduces many new types of data and meta-data, such as tags and explicit
online relationships, which can be used in a unique manner by RS to enhance their
effectiveness. On the other hand, recommender systems are crucial for social media
websites to enhance the adoption and engagement by their users and thus play
an important role in the overall success of social media. It should be noted that
traditional RS, such as user-based collaborative filtering, are social in their nature
since they mimic the natural process where we seek advice or suggestions from
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other people [59]. Yet, in this chapter we focus on those recommender systems
that are aimed for the social media domain, which we term social recommender
systems [31].

This chapter focuses on two key areas of SRS, social media content recom-
mendation and people recommendation. We dedicate a section to each of these
areas, reviewing the different sub-domains, their unique characteristics, the applied
methods, case studies in the enterprise, and open challenges. SRS consist of more
areas, such as recommendation of tags and groups (communities), however, these
are left beyond the scope of this chapter. The remainder of the chapter is organized as
follows: the next two sections discuss in detail content and people recommendation.
The following section discusses key aspects characterizing SRS as raised throughout
its preceding two sections. The chapter concludes by reviewing emerging SRS
domains and open challenges.

15.2 Content Recommendation

Social media introduced many new types of content that can be created and shared
by any user in a way that has never been possible before. Users became the
center of every social media website and in many cases were the ones creating the
actual content of the site: textual content as in Wikipedia and WordPress; photos
as in Flickr and Facebook; and video as in YouTube. Users also have a key role
in providing feedback and annotating existing content on social media websites.
Comments allow users to add their own opinion; votes and ratings allow them
to ‘like’ (or dislike) favourite posts; and tags allow them to annotate the content
with keywords that reflect their own viewpoint. These new types of feedback forms
allow RS to implicitly infer user preferences and content popularity by analyzing
the crowd’s feedback.

In the social media era, articulated relationships have become available through
social network sites (SNSs) [7] and changed the world of content recommendation.
While in the past such relationships could only be partially extracted by surveys
and interviews, and later by mining communication patterns from phone logs or
email that are highly sensitive privacy-wise, the availability of relationships in
social networks allows tapping into one’s network of familiar people (Facebook,
LinkedIn) or people of interest (Twitter) in a simpler way without infringing
privacy. The use of the friend list instead of or alongside the list of similar people
as in traditional CF has been broadly proven to be productive for enhancing
content recommendations. Sinha and Swearingen [66] were among the first to
compare friend-based recommendation with traditional methods and showed their
effectiveness for movie and book recommendation. Golbeck [26] showed that
friends can be a trusted source for movie recommendation. Groh and Ehmig [28]
compared collaborative filtering with friend-based “social filtering” and showed the
advantage of the latter for club recommendation within a German SNS. Overall,
recommendation based on friends enhance recommendations’ accuracy; allow the
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user to better judge the recommendations since s/he is familiar with the respective
people; spare the need for explicit feedback from the user in order to calculate
similarity; and help cope with the cold-start problem for new users.

The remainder of this section reviews key domains of social media content
recommendation, such as blogs, microblogs, news, and multimedia. We then briefly
discuss group recommendation, which is especially relevant for recommendation
of social media content. Following, a case study of social media recommendation
within the enterprise is presented in detail. The section concludes with a summary
of key points.

15.2.1 Key Domains

Blogs Blogs are one of the classic social media applications and a natural ground
for recommendation techniques. They typically consist of inherent hierarchy that
SRS need to take into account. At the top of this hierarchy is the blog itself,
which may be owned by an individual user or a community, and is often focused
on a topic or domain. The blog includes different blog posts (or blog entries) that
include one article by a single author. The author (and sometimes other users) can
usually annotate the post with appropriate tags, which also serve for dissemination
to relevant populations. The post’s readers can add comments and can often also
vote for (or ‘like’) the post; other authors can use a trackback to reference the post
from their own post. In one of the early studies of blog recommendation, Arguello
et al. [2] explored personalized recommendation of whole blogs (as opposed to
blog posts) using the TrecBlog06 dataset [50]. Given a query that represented the
user’s topical interests, two document models were explored: the first included
a single large document that was based on concatenation of all the blog’s posts
and the second was based on smaller documents, each representing a single post,
while aggregation was made at ranking time. Evaluation indicated that both models
performed equally well and that hybridization of both further improved the results.

Multimedia Multimedia recommendation is challenging due to the lower amounts
of textual data and the extremely large size of the content. One of the most popular
social media websites, YouTube, includes an advanced recommender system that
drives a large portion of the user traffic and helps direct users to more relevant
videos. Davidson et al. [16] stated that the goals of the YouTube recommendations
are to be recent and fresh, diverse, and relevant to the user’s recent actions. They
also stated that users should understand why a video was recommended to them,
thus incorporating explanations in the YouTube RS. As described in their paper,
YouTube recommendations are based on the user’s personal activity on the site and
are expanded by a variant of collaborative filtering (CF) over the co-visitation graph.
Ranking is done based on a variety of signals for relevance and diversity.

Community Question and Answering. Social or community question-and-
answering (SQA or CQA) websites, such as StackOverflow, Quora, and Yahoo
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Answers, allow users to ask various types of questions and receive (and vote
for) answers from the crowd. As such, they also serve as a fertile ground for
different types of recommender systems for both question askers and answerers.
The challenge here is twofold: on the one hand, recommend to askers similar
previously-asked questions to avoid redundant burden on answerers and spread
of similar information in many question pages; on the other hand, recommend
answerers with questions they may want to answer and increase overall answer
engagement on the website. As one example, Szpektor et al. [67] experimented
with recommendation of questions to potential answerers on the Yahoo Answers
website. They discovered that topic relevance was not a good enough basis for
recommendation. Diversity and freshness also played a key role: on the one hand,
a novel and somewhat different question was more likely to arouse answerer’s
attention and on the other hand it was extremely important for answerers to receive
questions that are very fresh, typically only a few minutes old.

Jobs LinkedIn is one of the most successful SNSs and as the world’s largest
professional network it has many unique recommendation challenges, such as of
companies and of professional groups. Another specifically interesting example
is the recommendation of job opportunities. Such recommendation can have a
tremendous influence on people’s lives as it can ultimately lead to a career
change. Recommendation needs to take into account many aspects, such as location
alternatives, candidate’s experience, and timing. Wang et al. [70] shed some light
on the job recommendation task at LinkedIn and particularly focus on the timing
of recommendation. Their statistical model considered the tenure between two
successive decisions to estimate the likelihood of a user’s decision to make a job
transition at a given point. Evaluation used the real-world job application data and
demonstrated the effectiveness of their model and the importance of considering the
time factor as part of the recommendation process.

News Social news aggregators such as Digg, Google Reader, Reddit, and Slashdot,
allow users to post and rate news articles and surface the most interesting and
trending stories. News recommendation is especially challenging due to the need
for freshness. Old stories or stories to which the user has already been exposed will
be considered bad recommendations, even when relevant to the user’s tastes and
preferences. The pace of news appearance is very high, while different users have
different news consumption rates, which personalization techniques need to take
into account. Digg used to be a popular social news aggregation service, allowing its
users to submit links to news stories, vote, and discuss them. Aside from promoting
the most popular stories to users (by votes), Lerman [46] described the personalized
recommender system implemented for Digg that was based on friends and “diggers
like me”. Recommendations for another popular news website, Google Reader,
were described by Liu et al. [49]. They combined CF techniques with “individual
filtering” techniques. Evaluation, based on a live trial, indicated that the hybrid
approach performed best and improved 38 % over a popularity-based baseline. Pure
CF was only able to improve 31 % on top of the baseline. An increase in return rate
was observed due to the hybrid recommendations, however, interestingly, there was
no effect on the overall number of stories read on the homepage.
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Microblogs Microblogging, most famously brought into attention by Twitter,
allows user to broadcast short messages. Those messages are typically propagated
across a network of followers and “followees”, built by the user’s ability to follow
any another user. On twitter, each message is limited to 140 characters and is called
a ‘tweet’. The high pace of messages (over half a billion tweets per day), their real-
time nature, their concise content, and the lack of metadata and structure, make the
challenge of filtering and personalizing the Twitter firehose of unique nature. In one
of the earlier studies, Chen et al. [12] explored content recommendation through
URLs shared in tweets. They compared 12 algorithms that differed in the following
aspects: (1) candidate selection was either based on popular tweets or on tweets
from followees and followees-of-followees (FoF); (2) topic relevance was based on
cosine similarity between the user and the URL. The user’s representation was based
on self-tweets or on followees’ tweets; (3) social voting was based on the number of
user’s followees who also follow the author and on author’s frequency of tweeting.
Results, based on a field study with 44 subjects, indicated that social voting worked
better than topic relevance; FoF candidate selection outperformed popularity; and
using self tweets for user modeling performed better than using the followees’
tweets. The introduction of the ‘retweet’ feature, which allows user to share another
user’s tweet with their own audience of followers, provided researchers with direct
feedback about the level of interest in an individual tweet. Many studies followed
that attempted to use this information to predict “good” tweets. As one example,
Chen et al. [13] suggested a model for personalized tweet recommendation using
“collaborative ranking”. The model was based on both explicit and latent features
and considered a wide variety of topic-level, social relations, and global factors.
Evaluation was based on re-tweet prediction and showed the superiority of the
collaborative ranking method over various baselines, such as Latent Dirichlet
Allocation and Support Vector Machine. It also indicated that all the three factors
are important to consider.

15.2.2 Group Recommendation

Groups and communities play a central role in social media and often times form
the entry gate for participation [60]. This makes group recommendation techniques
highly relevant for the SRS domain. Due to this relevance, we briefly review the
broad area of group recommendation in this sub-section; in the following section,
as part of the enterprise case study, we describe in more detail an example of SRS
aimed for communities.

Group recommendation targets a group of individuals rather than a single one
(Chap. 22). Example scenarios for group recommendation include friends planning
together their “perfect” vacation; a family selecting a movie or a television show to
watch together; a group of colleagues choosing a restaurant for an evening outside
(or looking for a recipe for a joint meal); or the classic (and less relevant in the era
of personal music players) gym problem [51]: selection of a playlist based on the
current group of trainees in a fitness center.
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Group recommendation poses new challenges compared to individual recom-
mendations. Two of the prominent challenges are the specification of preferences
by members and the recommendation generation. Jameson et al. [40] suggested
a collaborative interface for members to specify their preferences in a group
recommender system for travel, which allowed collaborative editing of the mem-
bers’ preferences. Such an interface holds various benefits: it allows members to
persuade others to specify a similar preference to their own, perhaps by giving them
information they had previously lacked; it enables to explain and justify a member’s
preference (e.g., “I can’t go hiking due to an injury”); it allows taking into account
attitudes and anticipated behavior of other members; and it encourages assimilation
to facilitate the reaching of agreement.

The most studied challenge of group recommendation is the generation of
recommendations themselves. The two main techniques are profile aggregation
and recommendation aggregation. Profile aggregation produces a single profile
representative of the group by aggregating the preferences of the different group
members. Recommendation aggregation generates a recommendation list for each
of the group members and aggregates the list into one single list for the group,
typically by using rank aggregation techniques. Berkovsky et al. [6] experimented
with these two approaches for recipe recommendation to groups and found that
the profile aggregation method was superior over the recommendation aggregation
method.

There are various approaches for aggregating member preferences into a single
community profile, each with its own pros and cons. Among the prominent
approaches are: (1) least misery, which seeks to maximize the minimum ranking
of any group member. Obviously, this approach can lead to a recommendation
that does not maximize the average rating or the maximum benefit; (2) fairness,
which aims at the most equal rating balance across group members. This can lead
to a recommendation that gets a low rating by all members of the group; (3) and
fusion, which aggregates individual rankings (e.g., by Borda count). Baltrunas et al.
[3] compared several techniques for group recommendation using the MovieLens
dataset. They examined both profile aggregation and rank aggregation techniques
and found the optimal one given a set of parameters, such as the group’s size and
the similarity among group members.

15.2.3 Case Study: Social Media Recommendation
in the Enterprise

In this section, we review a body of research that explored recommendation of
mixed social media items within the enterprise, and included three main studies.
The first study [34] focused on recommendation based on social relationships.
As previously mentioned, social media enables the exposure of different types
of social relationships in a way that has never been possible before. The study
explored a rich set of indicators for social relationships based on social media
data and compared two types of networks as basis for recommendation: familiarity
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and similarity. The familiarity network was built based on explicit and implicit
signals from enterprise social media, such as articulated connection within an
enterprise SNS, tagging one another, or co-authorship of the same wiki page. The
similarity network was based on common activity in enterprise social media, such
as membership in the same communities, usage of the same tags, or commenting on
the same blog posts. An “overall” network was also examined, combining the two
types of relationships. The recommendation score of item i to user u was determined
by the following formula:

RS.u; i/ D e�˛t.i/
X

v2NT .u/

ST Œu; v�
X

r2R.v;i/

W.rŒv; i�/ (15.1)

where t.i/ is the number of days passed since the creation date of i; ˛ is a
decay factor; NT.u/ is the set of users within u’s network of type T (T 2
{familiarity,similarity,overall}); ST Œu; v� is the relationship score between u and v

based on the network of type T; R.v; i/ is the set of all relationship types between
user v and item i (authorship, membership, etc.); and W.rŒv; i�/ is the corresponding
weight for the user-item relationship type between user v and item i. Ultimately, the
recommendation score of an item, reflecting its likelihood to be recommended to
the user, may increase due to the following factors: more people within the user’s
network are related to the item, stronger relationships of these people to the user,
stronger relationships of these people to the item, and freshness of the item.

The recommendation widget, depicted in Fig. 15.1, presents the recommenda-
tions with explanations, which displays the people who served as the “implicit
recommenders” and how they were related to both the user and the recommended
item. One of the key research questions of the study was whether explanations
influence the instant interest in the recommended items. This was examined by
comparing recommendations with and without explanations.

The evaluation was primarily based on a user survey with 290 participants.
Figure 15.2 shows the portion of items rated “interesting” for each of the three
network types: familiarity, similarity, and overall. Recommendations from familiar
people were found significantly more accurate than recommendations from similar
people. The overall network did not improve accuracy on top of the familiarity
network. That said, recommendations from similar people were found more diverse
and less expected, indicating that the similarity network contributes on other
dimensions than accuracy to the recommendation quality [53].

Figure 15.3 displays the effect of explanations. While explanations have been
previously shown to have positive effect on recommendation in the long term,
by providing transparency and building trust with the user [37], it was found
that recommendations with explanations in this case also increase their instant
effectiveness: when the people who serve as implicit recommenders were shown,
interest rate in the recommendations grew. This was particularly true for familiar
people, following the intuition that seeing a familiar person who is related to a
recommended item may increase the likelihood of the user’s interest in that item
(e.g., “if John has bookmarked the page, there must have been something interesting
in it”).
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Fig. 15.1 Widget for social media item recommendation based on related people

60.0

50.0

40.0

30.0

20.0

10.0

%

Familiarity Similarity Overall

45.7

37.1

17.2

38.7

48.2
43.8

13.2

38.6

17.6

Interesting

Not Interesting

Already Know

0.0

Fig. 15.2 Rating results across the three network types

After establishing understanding of people-based recommendation, a second
study explored the use of tags for the recommendation task and compared tag-based
with people-based recommendation [35]. The people-based recommendations were
calculated based on a combined network of familiarity and similarity, with a triple-
boost given to the familiarity network based on the results of the previous study.

A preliminary study was conducted to evaluate the use of four types of tags
for recommendation: (1) used tags—tags that the user used to annotate artifacts
with; (2) incoming tags—tags applied to the user by other individuals within a
people tagging application; (3) direct tags—a combination of used and incoming
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Table 15.1 Rating results of tags as topics of interest

% Not interested (%) Interested (%) Highly interested (%)

Used 16.84 38.25 44.91

Incoming 15.48 31.75 52.78

Direct 7.46 22.81 69.74

Indirect 35.38 45.38 19.23

tags; and (4) indirect tags—tags applied on artifacts the user has tagged, but not
necessarily those s/he used. Results, depicted in Table 15.1, indicated that direct
tags, when available, achieve the most accurate results. Interestingly, incoming tags
were slightly more accurate than used tags, indicating that the wisdom of the crowd
reflected in tags applied by others may be more indicative of the user’s interests
than her own used tags. Indirect tags were found to be noisy and significantly less
accurate.

Based on the results of the preliminary study, direct tags, combining used
and incoming tags with equal weight, were chosen for the task of producing the
tag-based recommendations. Experimentation was made with a pure people-based
recommender (PBR), a pure tag-based recommender (TBR), two hybrid people-tag
recommenders (or-PTBR and-PTBR), and a popularity baseline (POPBR). Given a
user profile P.u/ D .N.u/; T.u//, where N.u/ is the set of u’s related people and
T.u/ is the set of u’s related tags, the recommendation score of a social media item
i for user u was calculated as follows:

RS.u; i/ D e�˛t.i/

2
4ˇ

X
v2N.u/

w.u; v/ 	 w.v; i/C .1 � ˇ/
X

t2T.u/

w.u; t/ 	 w.t; i/

3
5

(15.2)

where t.i/ is the number of days passed since the creation date of i; ˛ is a decay
factor; ˇ is a parameter that controls the relative weight between people and tags
and was used to set the different types of personalized recommenders; w.u; v/ and
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Fig. 15.4 Rating results for five different recommenders

w.u; t/ are the relationship strengths of u to user v and tag t, given as part of the
user profile; and w.v; i/ and w.t; i/ are the relationship strengths between v and t,
respectively, to item i. Ultimately, the recommendation score of an item, reflecting
its likelihood to be recommended to the user, increased due to the following factors:
more people and/or tags within the user’s profile were related to the item; stronger
relationships of these people and/or tags to the user; stronger relationships of these
people and/or tags to the item; and freshness of the item.

Comparing people-based and tag-based recommendations produced the results
shown in Fig. 15.4. In general, all personalization techniques outperformed the
popularity-based recommender. In terms of accuracy (interest rate), tag-based rec-
ommenders significantly outperformed people-based recommenders. Yet, people-
based recommenders showed other benefits, such as increased diversity across
item types (tags substantially favored bookmarks), less expected results reflected
in lower rates of already-known items, and more effective explanations. Specifically
regarding explanations, the effect found for people-based explanations in increasing
interest rates was not found for tag-based recommenders. Apparently, seeing the
related tags to a recommended item does not have the effect (or extra value) that
viewing the related people has. Hybrid recommendations, combining people-based
and tag-based approaches, were shown to take the good of both worlds and also
achieved the best accuracy with a ratio of around 70 % interesting items for the top
16 recommendations.

The third study in the series explored recommendation for online communities
rather than for individuals [60]. As mentioned before, online communities have
become central to social media experience and much of the social media content
is created in the context of a community. In that work, recommendations were
generated using group recommendation techniques, but were targeted to the com-
munity owners (moderators) only, so that they can share the content with the rest
of the members as appropriate. Recommendations were generated using two main
techniques. The first considered the members of the communities or a subset of
them, and applied profile aggregation using the fusion approach (with advanced
scoring) to generate a community profile that included both topics and people.



15 Social Recommender Systems 521

Fig. 15.5 Average rating for small vs. large communities across seven community profiles

These topics and people in turn served as the basis for recommendation: their
most related content items were recommended. In particular, three subsets of the
members were examined: all members, all owners, and active members. The second
technique was content-based (CB): it considered the title, description, and tags of the
community to generate recommendations. Hybrid approaches were also considered,
by combining the topics and people from the member-based recommenders with the
topics extracted by the content-based recommender into one community profile.

Evaluation was conducted using a large user survey of enterprise community
owners and results are summarized in Fig. 15.5. Hybrid recommenders were gen-
erally found to perform better than the pure recommenders. For large communities
(100 members or more), it was found that the hybrid profile that considered both
active members and community’s content performed significantly better than all
other profiles. The pure active member-based profile was second best for large
communities. For small communities (less than 100 members), the pure content
profile was the best, followed by the hybrid profile considering all members and the
content. These results indicate that for small communities, the content is a strong
basis for recommendation and all members are a good representative group for
profile aggregation. But for large communities, the content is less effective on its
own and the group of all members becomes too disparate, while the group of only
active members serves as the best basis for profile aggregation.

15.2.4 Summary

We reviewed different domains for recommendation of social media content and a
case study for recommending mixed social media items in the enterprise. We also
discussed the importance and relevance of group recommendation techniques when
recommending social media content. Below are a few important points we wanted
to re-iterate before moving to the next section:



522 I. Guy

• Articulated social networks play an important role in CF for social media content
and enhance traditional CF in various manners.

• Tag-based recommendations are highly effective for producing accurate recom-
mendations and typically outperform regular user-based CF.

• As in Traditional RS, hybrid approaches (e.g., tags+networks, short+long term
interests, collaborative+individual filtering) usually enhance recommendation
effectiveness.

• A large user-base is desirable and can lead to a strong evaluation on live systems
(e.g., A/B testing).

• Accuracy alone is not enough: serendipity, diversity, freshness, and other quali-
ties also play a key role in the success of recommendations.

15.3 People Recommendation

Social recommender systems span beyond content recommendation. As mentioned
in the introduction, social overload originates from both information and interaction
overload. Since people are the key element that makes the web “social”, recommen-
dation of people is a central pillar within the social recommender system domain.
Terveen and McDonald [68] coined the term “social matching” for recommender
systems that recommend people to people. In their work, they explained why a
people recommender is a unique RS, which is different than recommendation of
other artifacts, and thus deserves its own special attention. Among other aspects,
trust, reputation, privacy, and personal attraction have greater importance when it
comes to people recommendation. Please refer to Chap. 16 for further reading.

Social media sites and in particular SNSs define different types of explicit
(or “articulated”) relationships among their users. The main dimensions of the
relationship types are:

• Symmetric vs. asymmetric. In some sites, such as Facebook and LinkedIn, a
relationship between two users is reciprocated. In such a case, one user typically
sends an invitation to connect to another user, who needs to accept the invitation.
Once the other user accepts, the two are reciprocally connected on the site.
On the other hand, asymmetric relationships, such as on Twitter or Pinterest,
allow one user to “subscribe to” or “follow” another user. The other user does
not necessarily need to follow the first user back and thus many asymmetric
relationships are formed.

• Confirmed vs. non-confirmed. Some of the sites require the other side’s agree-
ment for connecting or following, while others do not. Typically, symmetric
networks require such confirmation and as long as it has not been received, no
connection exists. Asymmetric networks do not usually require a confirmation
and any user can choose to follow any other user, however there are exceptions
to these norms.
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• Ad-hoc vs. permanent. Some of the sites encourage connection for an ad-hoc
purpose, such as for people to meet at an event or partner for a joint task, while
others encourage a long-term relationship that is meant to last over months and
years.

• The site’s domain. The domain of the SNS has an important influence on the
formed network. For example, Facebook is typically used for maintaining social
relationships with friends and acquaintances, while LinkedIn is a professional
network meant for maintaining business relationships with colleagues and
partners. The goals and characteristics of a connection in each of these sites are
therefore different, as they would be in SNSs for other domains, such as travel,
art, cooking, question and answering, etc.

The different characteristics of people relationships in the different sites require
different recommendation techniques. For example, a recommender for people
to connect with on Facebook may seek to recommend familiar people, while a
recommender for people to follow on Twitter may recommend people the user is
interested in, even if they are not familiar. Recommending “celebrities” or popular
people is probably a better strategy for a follower-followee network than for a
friendship network.

In the remainder of this section, we review three key types of people recom-
mendation: recommending people to connect with, recommending people to follow,
and recommending strangers to get to know. We describe the unique challenges and
characteristics of each of these recommendation types and demonstrate how existing
approaches handle them. Before summarizing the key aspects, we briefly discuss
two closely related research areas to people recommendation: link prediction and
expertise location.

15.3.1 Recommending People to Connect With

The first study that focused on people recommendation in an SNS introduced
the “do you know?” (DYK) widget [33]. The widget recommended people to
connect to within an enterprise SNS. The action the widget was targeting was
clicking a ‘connect’ button that would trigger an invitation to connect within the
SNS, which the other side would need to confirm for the connection to become
public. Recommendations were made based on a variety of familiarity signals: org-
chart relationships (peers, manager-employee, etc.), paper and patent co-authorship,
project co-membership, blog commenting, person tagging, mutual connections,
connection on another SNS, wiki co-editing, and file sharing. Figure 15.6 illustrates
the widget, which included detailed explanations for each recommendation. The
explanations indicated the counts per each of the signals mentioned above and
further hovering over an evidence line allowed seeing the specific details (e.g., the
wiki pages co-edited) and getting to the actual page of the evidence pieces.
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Fig. 15.6 The “Do You know?” (DYK) Widget

The evaluation of the widget was based on a field study of its use within the
Fringe enterprise SNS. Fringe had the “friending” feature before, but did not have
a people recommender. The inspected effect on the site was dramatic. Both the
number of invitations sent and the number of users who send invitations significantly
increased, as can be seen in Figs. 15.7 and 15.8. One of the users of the site
explained: “I must say I am a lazy social networker, but Fringe was the first
application motivating me to go ahead and send out some invitations to others
to connect.” Explanations increased user trust in the system and made them feel
more comfortable sending invitations, as one user described: “If I see more direct
connections I’m more likely to add them [. . . ] I know they are not recommended by
accident.” Overall, there was a substantial increase in the number of connections per
user on Fringe. However, a sharp decay of the widget usage was found over time, as
excitement of the feature dropped and potential connections were exhausted.

In a follow-up study [11], conducted within a different enterprise SNS, nick-
named Beehive, the aggregation algorithm used by the DYK widget (termed
‘SONAR’) was compared with three other algorithms for people recommendation:
(1) Content Matching (CM)—based on cosine similarity of the content created
by both users: profile entries, status messages, photos’ text, shared lists, job title,
location, description, and tags. Word vectors were created by a simple TF-IDF
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Fig. 15.7 DYK vs. Profile
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Fig. 15.8 Average number of invitations per user before and after the inspected period

procedure. Latent semantic analysis (LSA) was not shown to produce better results
and was not applied since it does not yield intuitive explanations; (2) Content plus
Link (CplusL)—combined CM with social links. A social link was defined as a
sequence of 3 or 4 users, where for each pair of users in the sequence u1 and u2,
either u1 connects to u2, u2 connects to u1, or u1 commented on u2’s content; (3)
Friend of Friends (FoF)—based on the number of mutual friends, as done in many
of the popular SNSs. The FoF algorithm was able to produce recommendations for
only 57.2 % of the users (compared to 87.7 % for SONAR). Figure 15.9 shows the
recommendation widget.

Evaluation was based on a user survey and a controlled field study. Figure 15.10
shows the main survey results. CM and CplusL produced mostly unknown people,
while SONAR and FoF produced mostly known individuals. As could be expected, a
higher portion of the recommended people who were familiar to the user were rated
as good recommendations and resulted in a “connect” action. Yet, the unknown rec-
ommended individuals may help discover new potential friends. The overall supe-
riority of algorithms that involve social links over content was clear: only 30.5 %
of the CM recommendations resulted in a connect action, compared to 40 % for
CplusL, 47.7 % for FoF, and 59.7 % for SONAR.



526 I. Guy

Fig. 15.9 People
recommender widget showing
a person recommended using
the CplusL algorithm
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Fig. 15.10 Survey results for the four algorithms

A later study examined the recommendation impact on the network structure [15].
Since recommendations play such a key role in building the network during its
early stages, they also substantially influence the structure of the generated network,
its characteristics, and measurements. For example, Fig. 15.11 shows the average
degree of recommended connections for each of the four algorithms. FoF is the
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Fig. 15.11 Degree of recommended connections across the four algorithms

most biased towards high-degree connections, while CM does not have such bias:
it often recommends users with few connections or even none at all. The high-
degrees of FoF recommendations lead to a network with fewer nodes and higher
average degree compared to the network created by CM recommendations. Another
aspect of the effect of recommendations on the network is betweenness centrality,
which measures the importance of nodes in the graph [8]: CM and SONAR generate
the highest delta in betweenness compared to CplusL and FoF. Regarding demo-
graphic characteristics, CM is most biased towards the same country, but least biased
towards the same organizational unit, while SONAR substantially increases cross-
country and intra-unit connections. The network effects of people recommendations
are an important global aspect of a people recommender and need to be considered
when designing a new people recommender system.

Another related study by Freyne et al. focused on recommendation as a means
to increase new users’ engagement within an enterprise SNS [22]. That study used
aggregated data external to the SNS in question to recommend both people and con-
tent to new users. Even brand new employees could still get recommendations based
on their initial data, such as their org-chart information (indicating their peers),
location, or organizational unit. The results indicated that combined recommen-
dations have a significant effect in increasing users’ visits to the site as well as
their viewing activity and actual contributions to the site (the latter is depicted
in Fig. 15.12). Interestingly, people recommendations were most effective when
focusing on recommending the most active users, even if they had less familiarity
signals with the user. Yet, as discussed, such recommendations can have a long-term
effect on the network structure and lead to a less balanced degree distribution.
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Friend recommendation has also become popular on mobile devices, where loca-
tion often plays a role and makes the recommendations more transient or ad-hoc.
Quercia et al. [58] discussed “friendsensing”, sensing friends based on Bluetooth
information on mobile devices. Friends were recommended based on co-location,
while two basic approaches were attempted, taking into account the duration of co-
location and its frequency, respectively. A weighted graph was built accordingly and
recommendations were generated using that graph based on link analysis (shortest
path, page rank, k-markov chain, and HITs). Simulation-based evaluation indicated
both basic approaches perform similarly well and way beyond a random baseline.

15.3.2 Recommending Strangers

The focus of the work discussed thus far has been on recommending familiar people
one can connect to. As already implied, there could also be value in recommending
people the user does not know. StrangerRS [31] attempted to recommend people
who are unknown yet interesting within the organization. Such recommendations
can be useful in many potential manners, such as, for getting help or advice, reach
new opportunities, discover new routes for career development, learn about new
assets that can be leveraged, connect with subject-matter experts and influencers,
cultivate one’s organizational social capital, and grow own reputation and influence
within the organization. As mentioned before, recommendation of people to connect
to within an SNS is mostly effective for the network-building phase. Afterwards
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Fig. 15.13 User Interface of the Stranger Recommender System

one’s recommendations become staler, as the network becomes more stable and
connection to others becomes less frequent. This is where stranger recommendation
can become more relevant and complement the recommendation of familiar indi-
viduals, by suggesting interesting people the user does not know, but may want to
start getting acquainted with.

Figure 15.13 shows the user interface of StrangerRS. Since it aimed at recom-
mending strangers, more information about each person was presented, in the form
of their full profile page (part A). Evidence for why this person may be interesting
was also presented (part B). It included similarity points with that individual, such
as common tags, common communities, common files, and others. The action sug-
gested by the recommender was not a connection within the SNS, since it is likely to
be too soon to connect to a stranger, but rather it was suggested to view the person’s
profile, read their blog, or follow them (part C).

A successful recommendation by StrangerRS was considered a recommendation
of a stranger who might be interesting to the user. These two, almost contradict-
ing, goals were not easy to satisfy and led to a much lower accuracy level than
usual familiar people recommendation. Yet, supposedly, the value of a successful
recommendation in this case is much higher, since this is no longer just about
facilitating connection to a known person, but rather about exposing the user to a
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new interesting person s/he was not even aware of. The method used for producing
the recommendations was based on network composition: the extracted familiarity
network was subtracted from the extracted similarity network to produce the recom-
mendations. Jaccard index was the main measure used for similarity between two
individuals. Results, depicted in Figs. 15.14 and 15.15, indicated that two thirds
of the recommended individuals were indeed strangers, yet strangers who were
significantly more interesting than a random stranger. Out of 9 recommendations
presented to each user, 67 % included at least one stranger rated 3 or above in terms
of the user’s interest, on a 5-point Likert scale.

Stranger recommendation is also a common feature of online dating websites.
Pizzato et al. [57] introduced RECON, a reciprocal recommender for online dating.
Similarly to the original social matching framework, they specified a few special
characteristics of reciprocal recommendations, where people are both the subject
and object of recommendations. These included the fact that success is dependent
on both sides; the need for both sides to provide their profiles so that matching can
occur; and the typical requirement that one individual will not be recommended to
too many others. Their evaluation, conducted on a major Australian dating site, was
based on 4 weeks of training and 2 weeks of testing, where success was determined



15 Social Recommender Systems 531

based on previous user interaction. Generally they found that accounting for reci-
procity features improves recommendation accuracy and helps address the cold-start
problem.

15.3.3 Recommending People to Follow

Two studies were the earliest to explore recommendation of people to follow. Han-
non et al. [36] used a CB-CF hybridization to recommend “followees” on Twitter.
They examined several ways to generate user profiles, based on the user’s own
tweets, the user’s followers, the user’s followees, the user’s followers’ tweets, and
the user’s followees’ tweets. The open source search engine Lucene was used to
index users by their profile, after applying TF-IDF to boost distinctive terms or users
within the profile. They applied an offline evaluation using a dataset with 20,000
Twitter users. 19,000 were used as a training set and the remaining 1000 were the
test users. The different methods were compared based on their ability to predict
the user’s followees. A slight advantage was observed to profiles that were based
on followers and followers’ tweets. Hybrid profiles further improved the precision.
A small-scale live trial was also conducted where users indicated whom they were
likely to follow. On average, hybrid approached reached about 7 out of 30 accurate
recommendations.

A second study was performed by Brzozowski and Romero [9], who experi-
mented with the WaterCooler enterprise SNS. During a 24-day live trial period, they
observed patterns of 110 users who followed 774 new individuals. The strongest
pattern found was of the form A  X ! B, meaning that sharing an audience
(follower) with another person is a strong reason to follow that person. Most-replied
was found as a strong global signal. Similarity and most-read were found as weaker
signals for followee recommendation.

In a more recent study, Gupta et al. [29] revealed some details about the followee
recommender systems in use by Twitter. From an architectural perspective, they
noted the decision to process the entire Twitter follower-followee graph in memory
using a single server, which contributed to the performance of the feature. They
developed an open-source in-memory graph processing engine to traverse the Twit-
ter graph and generate recommendations. The algorithm used was a combination
of a random walk and SALSA [45], comparing two approaches: the first gives each
user the same influence regardless of the number of users they follow or are followed
by and the second gives equal influence to each follower-followee edge.

15.3.4 Related Research Areas

Link prediction in social networks is a fertile research area that is closely related
to people recommendation and has often been offered to enhance it. The semi-
nal work by Liben-Nowell and Kleinberg [48] formalized it as a task to predict



532 I. Guy

new interactions within a social network based on the existing set of interactions.
Experimentation with paper co-authorship networks showed, using an unsupervised
learning approach, that the network topology can be effectively used to predict
future collaboration. Moving to the social media domain, Leskovec et al. [47] devel-
oped models to determine the sign of links (positive or negative) in SNSs where
interactions can be positive or negative (Epinions, Slashdot, Wikipedia). Fire et al.
[19] experimented with five social media sites, including Facebook, YouTube, and
Flickr, and proposed a set of graph-topology features for identifying missing links.
This technique was shown to outperform common-friends and Jaccard’s coefficient
measures, implying it can be useful for recommending new connections. Scellato
et al. [63] focused on location-based social networks and suggested a supervised
learning framework to predict new links among users and places. In another study of
mobile networks, Wang et al. [69] showed that combining network-based features
with human mobility features (e.g., user movement across locations) can signifi-
cantly improve link prediction performance using supervised learning.

It is also worth mentioning the research area of expertise location [43, 52] in the
context of people recommendation. Expertise location deals with the problem of
finding an expert in a given domain or technical area. It thus falls within the broad
search domain, since it is triggered by a user query. Similarly to the difference
between content and people recommendation, in expertise location the results are
people rather than documents as in content search. For similar reasons to those
already discussed in this section, the case of searching for people bears some unique
characteristics compared to other content search scenarios and therefore forms its
own area of research. A recent study has particularly focused on expertise location
based on social media data, which serves as a good basis for expertise mining [30].
Despite its pertinence to the search field, expertise location is sometimes mixed with
people recommendation and in many cases is termed “expert recommendation”. It
should be noted that a people recommender should be considered as such only when
it does not involve a user query and is initiated by the system rather than by the user.

15.3.5 Summary

We have seen that people recommendation is a complex field of study. The fact that
it deals with recommending people to themselves bring many interesting aspects to
the table. For example, explanations may serve in this case to make users feel more
comfortable accepting a recommendation and sending an invitation to connect or
start following (in most cases, knowing that the user who has been followed will
get a notification about it, even if their approval is not required). We reviewed three
types of people recommendations: recommendation of familiar people, for example
to connect with on an SNS; recommendation of interesting people, for example to
follow in a social media site; and recommendation of strangers, for dating or for
getting to know within a community or organization. A social website may transfer
between these types of recommendations according to the user’s phase within the
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site. For example, it may be desirable to recommend familiar and interesting people
for users in their early stages, so they can build their network of friends or followees.
In a later stage, when users start to exhaust their connections, stranger recommen-
dations can help users get to know new individuals and increase their social capital.

15.4 Discussion

In this section, we summarize key SRS-related topics that were brought up through-
out the previous two sections on people and content recommendation and suggest
directions for future work.

Explanations The public nature of social media data enables to provide more
transparency into recommendations by showing how they were formed. In some of
the enterprise examples we reviewed for both content and people recommendations,
explanations were found to have a key role in increasing the instant acceptance rate
of recommendations [33, 34]. Beyond that, explanations in RS have been shown to
have longer-term effects of building trust relationships with the user [37].

There are also a few challenges with regards to explanations. First, as we have
seen, explanations do not always increase accuracy. For example, in our mixed
content recommendation study, tag-based explanations did not increase recommen-
dations’ ratings. Second, not every recommendation method can provide intuitive
explanations; there is usually a trade-off between the method’s complexity and the
clarity of explanations it can provide. For instance, recommendations that are based
on clustering techniques are usually harder to explain. Third, explanations pose chal-
lenges in terms of privacy. For example, the YouTube explanations [16] explicitly
show videos previously watched by the user, which directly expose information
that might be sensitive if watched by another person. Fourth, explanations require
extra real-estate on the user interface, which might be particularly challenging on
mobile devices; therefore their cost-to-value ratio should be carefully considered
when designing the recommender system.

Privacy As mentioned several times throughout this chapter, one of the key benefits
of social media data is that large portions of it are public and thus can be used for
analysis without infringing user privacy, as is the case, for example, with email or
file system data (see Chap. 19). It should be noted, however, that in some countries,
public social media information is still considered personal information (PI), when
linked to an identity of a real person. This means that analysis and inference from
such data may still require explicit user consent. Indeed, aggregation of public data,
even if it was previously accessible, may reveal sensitive information the user did not
intend to expose. In addition, as just mentioned, explanations aimed for a specific
user might reveal very sensitive data, such as browsing or viewing history, when
exposed to another person who may watch the screen alongside. Finally, there is
much social media data that is still access-restricted. Recommender systems should
pay special attention not to infringe the privacy model of the data, to avoid the
exposure of sensitive information [18].
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Tags The work we reviewed indicated that tags, a mechanism introduced by social
media to annotate content, such as web pages, photos, or people, can be particularly
effective as a basis for recommendation. Tags’ ability to concisely summarize user
perspective over large content pieces make them a highly valuable resource for
producing recommendations [64]. Aside from recommendations, tags have been
shown to be useful for other purposes, such as enhancing search or generating “tag
clouds” that summarize the common topics of a group of items to the user [42].
Unfortunately, despite their value, tag usage is on the decrease in recent years, with
sites such as Delicious becoming less popular and other sites giving less prominence
to tags. Tag recommendation techniques [41, 65], which are another type of SRS not
discussed in this chapter, should be used to promote tag usage and close the loop: tag
recommendations help generate more tags, while these tags, in turn, used to produce
other recommendations.

Social Relationships One of the most important contributions of social media
to recommender systems is the introduction of the explicit (articulated) network.
Social network sites, such as Facebook, LinkedIn, and Twitter, allow people to
explicitly articulate their connections. As mentioned, there are two main types of
connections, one expresses familiarity and the other expresses interest. Both of these
articulated networks are very useful for content recommendation, and were shown
to enhance traditional CF techniques. They also have other benefits: (1) sparing
the need for explicit feedback in the form of ratings to determine the network
of similarity, (2) help coping with the new-user cold start problem, in case the
network can be used across social media websites, and (3) helping users judge the
recommendations, since they originate from people they know or are interested in
(also making explanations more effective). On the other hand, as we have seen,
recommendations of people to connect with or to follow are essential for enhancing
the formation of such explicit relationships. This is a classic demonstration of the
mutual relationship between recommender systems and social media discussed in
the introduction: on the one hand social media introduces a new type of data that
enhances RS; on the other hand RS are essential for generating this type of data.

Trust and Reputation The topic of trust has a tremendous importance in the RS
domain. Obviously, the best recommendations come from a trusted person. But
on the other hand, trust is very challenging to compute as it represents a very
abstract and subjective quality between two individuals. Reputation represents a
more general concept about a person’s perception by others [38]. One way to define
it is the aggregation of trust in this person across the entire set of users. Social
media and the “wisdom of the crowd” enable to estimate trust and reputation in
ways that have not been possible before. Online social relationships and content
feedback forms (comments, ‘likes’, etc.) introduce more signals that can be used
to calculate trust and reputation. That said, many of the studies still use rough
estimations that are based on controversial assumptions, for example, that a friend
on an SNS is a trustworthy individual. Evaluation of trust and reputation is also
particularly challenging, as even in the real world people have hard time figuring
out who they trust or who has a good reputation. Assuming a network of trust is
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given, there are growing amounts of research that explore how to use it to enhance
CF. The early work of Golbeck [27] suggested to adapt the CF formula in a way
that would boost similar users whom the user trusts. More advanced approaches
incorporate trust in matrix factorization techniques [39].

Evaluation As reviewed throughout this chapter, evaluation of SRS typically uses
the common methods in the broader RS domain (see Chap. 8). These include offline
evaluation, user studies (see Chap. 9) (especially common for SRS), and live field
studies or A/B testing. Evaluation measures include RMSE, NDCG, precision, and
other commonly used metrics from the RS domain. Looking forward, since social
media is characterized by the “wisdom of the crowd”, it will only be natural to see
more crowdsourcing techniques used for evaluation of SRS. These have become
common in many domains in the recent years, including information retrieval (e.g.,
[1, 10, 44]), however they are not as common yet in RS evaluation. Evaluation
that goes beyond accuracy to include serendipity (“surprise”), diversity, novelty,
coverage, and other factors is also due in the SRS area [24]. Finally, evaluation
over time, which also examines the broader effect of the recommendation on the
surrounding ecosystem of users, as demonstrated in [15], is a highly desirable direc-
tion. Rather than focusing mostly on recommendation effectiveness, their broader
and longer-term influence on the environment should also be considered. As another
example to such research, Said and Bellogin [62] started to explore the effect of
recipe recommendation within the Allrecipes.com SNS on users’ health. This kind
of research requires new tools and creative thinking to be brought into the existing
set of evaluation methods.

Recommending Content to Produce We extensively discussed content recom-
mendation in Sect. 15.2. Our examples focused on content the user consumes: video,
news, questions, social media items, etc. As explained in the introduction, one of the
key characteristics of social media is that users are not just the consumers, but also
the producers of content. There is a body of research that attempts to recommend
users content they may want to produce. Question recommendation in CQA sites,
which has already been mentioned in Sect. 15.2, has a role in encouraging users to
produce content in the form of answers. Other works attempted to encourage users
to create more profile entries [25], inspire users to write blogs [17], and prompt
them to edit articles on Wikipedia [14]. Recommending content to generate is a
particularly challenging task since the entry barrier is higher as many social media
users are lurkers (only consume content). It is rooted in the area of persuasive
technologies and theories such as self determination [61] and behavioral models
[20]. Clearly, recommending content to produce has a central role in the symbiosis
between recommender systems and social media.
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15.5 Emerging Domains and Open Challenges

We conclude this chapter by pointing out potential emerging domains for SRS and
a few open challenges on top of the topics discussed throughout this chapter and
summarized in the previous section.

15.5.1 Emerging Domains

We enumerate four domains, which we think can serve as a fertile ground for SRS
research in the years to come.

Mobile and Wearables Recommendations for mobile devices, such as PDAs, have
been suggested since the beginning of the millennium. As smartphones and tablets
with advanced technologies, such as high-resolution cameras, GPS, and touch screens
started to prevail, recommendation technologies adapted themselves, for example,
by taking into account the user’s location (see Chap. 14). The combination of mobile
and social (sometimes referred to as SoLoMo—social, mobile, and location) holds
new opportunities for SRS, which will combine the advanced capabilities of mobile
devices with social interaction across these devices. Looking further into the future,
wearable devices, such as glasses and watches, are likely to have access to even
more personal information that on the one hand will provide more data for SRS
to work with, and on the other hand will require more advanced recommendation
techniques, so these devices can work appropriately with minimum input from the
user.

Smart TVs RS have been quite popular in the TV domain for many years. The
Netflix prize advanced this domain even further [5]. However, as TVs continue to
evolve into “smart TVs”, they enable many more social elements, such as sharing
and interaction between watchers, which make the new TVs a social medium on
its own. This provides a highly interesting opportunity for SRS to make this new
generation of televisions even smarter.

Automotive The automotive domain is also evolving in recent years. Self-driving
cars is arguably the most exciting challenge on the table, but new car models allow
more collaboration between cars and their drivers. Being such an advanced instru-
ment, the car itself plays a special role and can sometimes be treated similarly to a
person, given all the information gathered through its sensors. As more collaboration
is expected to characterize the new generation of smart cars, SRS can play a key
role in sparing extra work from drivers and providing cars with more necessary
information. We start to see this in social navigation technologies, such as Waze,
but this is likely only the beginning.
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Healthcare The healthcare domain has always been slow to adopt “social”, among
other things due to the special privacy concerns it entails. On the other hand, it
is not hard to imagine how much this domain can benefit from more sharing and
collaboration, both among patients and among doctors. In recent years, we start
to see a movement towards more openness to medical data sharing. As it seems
that “social healthcare” starts to take off, the SRS community should consider how
recommendations should be used in this domain, with all the complexities involved
and the critical implications of a successful versus wrong recommendation.

15.5.2 Open Challenges

We finally highlight three more challenges for researchers in the SRS area to
consider.

Social Streams Social streams, such as Twitter or the Facebook newsfeed, syn-
dicate user activity within a social media site or a set of sites. Millions of users
who share and interact in social media create a firehose of data in real-time that
poses new types of challenges in terms of filtering and personalization. There are
different types of streams in terms of the data they contain (homogenous as in
Twitter or heterogeneous as in Facebook), the source of data (a single site or a
group of sites), its access-control (public or friends-only), and subscription model
(following or “friending”). As demonstrated in the Twitter-related work reviewed in
this chapter, the stream’s data is different than “traditional” social media content:
it represents an activity rather than an artifact or an entity; it is more intensive as
one entity (e.g., a wiki page) may have a large amount of activities (e.g., edits); it
may be very noisy (e.g., multiple wiki edits might not be of interest); its freshness
is key: items that are few days old might already be irrelevant; and it is sparse in
content and metadata (e.g., Twitter messages are limited to 140 characters). Due
to all these unique characteristics, recommending social stream items becomes a
challenge on its own within the SRS domain, and as social information continues
to grow, handling this task is becoming both more challenging and more important
[21, 32, 55]. On the other hand, the stream data can also be used to model users’
interests. Its fresh and concise nature can help build a user model that is up-to-
date, identify changes in users’ tastes and preferences in real-time, and detect global
trends that may influence the recommendation strategy [23, 56].

Beyond Accuracy and Evaluation Over Time Many of the studies we reviewed
focused on measuring the effectiveness of recommendation by their accuracy.
As social recommendation proliferate, it is more important than ever to consider
the bigger picture when evaluating the value of recommendation. Typical beyond-
accuracy measures should be considered, including serendipity, diversity (see
Chap. 26), novelty, and coverage [24, 53]. In addition, the effectiveness of recom-
mendation should be compared against the case where no recommendation would
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have been provided [4]. Recommendations that can make the user discover and
take action regarding an item s/he would not have noticed otherwise, are obviously
more valuable. In many of the works we reviewed, evaluation was based on a one-
time user survey. Longer term evaluation is required as the results may substantially
change over time. Techniques that learn and adapt over time based on user behavior
are going to be essential. Additionally, evaluation that examines the broader effect
of the recommendation on the surrounding ecosystem of users, as demonstrated in
[15, 62] is a highly desirable direction for SRS evaluation. This requires new tools
and creative thinking to be brought into the existing evaluation methods.

Cross-Domain Analysis As we discussed, migrating data from one social media
service to another may go a long way enhancing recommendations and help deal
with the cold start problem for new users. Indeed, using another site’s network, tags,
and other types of information have been performed by various previous systems as
mentioned in this chapter. Yet, social media sites differ in many aspects. It is not
certain that one’s travel network can serve as a reliable source of recommenda-
tion for recipes. Similarly, the tags used in a news site context are not necessarily
valuable for video recommendation. More research is due to explore the common
and different among social media systems and when information can effectively
port from one application to another to be used for recommendation. Cross-domain
recommendations in RS have always been harder to explore since they require richer
datasets and involve more complex use cases and research questions (see Chap. 27).
As social media continues to evolve, it will be more important to explore and better
understand these complexities.
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Chapter 16
People-to-People Reciprocal Recommenders

Irena Koprinska and Kalina Yacef

16.1 Introduction

Recommending people to people is the core task of many social websites. Examples
include finding friends, professional contacts and communities to follow on social
networks; matching people in online dating websites, matching job applicants with
employers and matching mentors with mentees. While social networks such as
Facebook and LinkedIn aim at connecting people by creating n-to-n relationships,
online dating websites aim at matching people to create 1-to-1 relationships.

Most people-to-people recommendations, and especially the 1-to-1 recommen-
dations, involve creating relationships that are reciprocal, i.e. where both parties can
express their likes and dislikes and a good match requires satisfying the preferences
of both parties. For instance, in the process of hiring someone for a job, both the
candidate and the company offering the job need to assess each other; deciding
whether the candidate is fit for the position and vice-versa. In online dating,
reciprocity is fundamental. Users will build a successful relationship only if both
parties are interested in each other. Grouping students in education may require
reciprocity in order to maximise learning benefits.

The key role of reciprocity for recommending people to people has only recently
being recognised. In this paper we discuss the distinctive nature of reciprocal
recommenders, review the previous work and present a case study in online dating.
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16.2 Reciprocal vs Traditional Recommenders

Reciprocal recommenders must satisfy the preferences and needs of the two
parties involved in the recommendation. In contrast, the traditional items-to-people
recommenders are one-sided and must satisfy only the preference of the person
for whom the recommendation is generated. Table 16.1 summarizes the differences
between the two types of recommenders; a comprehensive comparison can be found
in [1].

The user behaviour is highly dependent on whether the domain is reciprocal
or not. The success of a traditional book recommender is dependent only on the
person receiving the recommendation. On the other hand, in a reciprocal domain
such as online dating, the user receiving the recommendation knows that the success
depends on both parties and this influences his/her behaviour. In addition, users in
reciprocal domains may choose to act proactively by taking the initiative to connect
with other users or to remain reactive and wait for contact.

Another difference is that for traditional recommenders, users have no reason
to provide detailed information about themselves (user profile). In contrast, for
reciprocal recommenders, there is a clear need and benefit for providing rich user
profiles. These profiles might be inaccurate (e.g. due to a lack of self-awareness
or desire to have a more attractive profile) and reciprocal recommenders need to
account for that.

In traditional recommenders, satisfied and loyal users are likely to repeatedly
use the site, allowing it to build rich user model by exploiting the explicitly and
implicitly stated user preferences. In contrast, in reciprocal domains people may
leave the site permanently after a successful recommendation. For example, a person
who successfully finds a lifelong spouse on a dating website or who finds a long
term job on a job website may not need to use these sites after that. This creates
a paradox for this service provides who want their service to be the best for their
users and therefore achieve what they are set to do. But at the same time, if they
do provide the best recommendations, users may not use their services for long,
possibly affecting revenue. On the other hand, happy users will refer the services

Table 16.1 Main differences between reciprocal and traditional recommenders

Traditional recommenders Reciprocal recommenders

Success is determined solely by the user
seeking the recommendation.

Success is determined by both users—the subject
and object of the recommendation.

Users have no reason to provide detailed
explicit user profiles.

Users are expected to provide detailed
self-profiles. Explicit profiles and preferences are
often inaccurate.

Satisfied users are likely to return for more
recommendations. Better recommendations
mean more engagement.

Users may leave the system after a successful
recommendation. Better recommendations might
mean less engagement.

The same item can be recommended to all
users.

Popular users should not be recommended to too
many users.
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to new users, and are likely to use the service again if there is a future need for it.
This is a clear multi-objective optimization problem. However, it is important to
highlight that both objectives, i.e. (1) good successful recommendations for users
and (2) short term revenue goals, should not be optimized in equal weights, since
an optimization for short-term revenue is likely to hurt the service in the long term,
while optimizing for the goodness of users may actually benefit the whole service.
The key to the multi objective optimization here is to keep short-term revenue high
without decreasing user satisfaction.

Finally, in reciprocal domains it is important that users are not recommended to
others in a way that may cause them to be over-loaded with recommendations. For
instance, if a highly qualified person is recommended to every single job position
that he/she fits, this person is likely to be burdened by the amount of contacts and
leave the website. A similar situation can occur for popular users in a dating website.
These users are important as they represent the best for each service, therefore they
should only be recommended to other users when the recommender is absolutely
sure that these users will reciprocate the contact. We note that the popularity bias
may be an issue also for some traditional recommender systems but it is a bigger
problem for reciprocal recommender systems.

16.3 Previous Work on People-to-People Recommenders

16.3.1 Social Networks

In the broad area of social matching, recommending people to other people [2]
has a clear link with reciprocal recommenders because the quality of a match is
determined by both parties involved in the match. However, some existing work on
social matching tailors recommendations only to the needs of one party [3]. Just a
few papers mention the need for reciprocity and even fewer attempt to act on it.

IBM’s enterprise social networking service, Beehive [4], allows users to connect
to friends and co-workers, post new information or comment on shared information.
Two types of people recommender algorithms were compared: content-based and
collaborative filtering. The content-based approach assumes that if two people post
content on similar topics, they are likely to be pleased to get to know each other. It is
based on similarity of textual content and uses content posted by the user on Beehive
and additional information such as job description and location. The collaborative
filtering is a typical friend-of-friend approach and uses only linking information
from the social network. It is based on the intuition that if many of A’s connections
are connected to B, then A may like to connect to B too. The results show that all
approaches increased the number of connections, compared to a control group that
received no recommendations. The content-based approach was more successful in
recommending contacts that were unknown to each other, while the collaborative
filtering approach was more successful in finding known contacts. It is important
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to note that the befriending in Bee-hive is non-reciprocal, i.e. any user can connect
with any other user without the consent of the other person. However, there are still
important reciprocal social considerations as noted by the authors, e.g. before adding
a contact, one has to consider how the other person would perceive this action and
whether they will reciprocate the connection and also how the new contact will be
perceived by the other people using the social network service.

Kim et al. [5] created a people recommender system for a social networking
website where users can reply positively or negatively to messages from other users.
The authors distinguish between recommender systems for one-way interaction
and two-way interaction. They propose an approach for a two-way interaction that
considers both the interest of the sender and the interest of the recipient of message,
and makes recommendations by combining them with a weighted harmonic mean
to preserve the importance of these ratios of interest. The method uses both user
profiles and information about previous user interactions. For a given user, it finds
the best matching values for every attribute and then combines them in a rule that
can be used to generate recommendations. Their method yields a success rate of
21.5–22.6 %, improving slightly from the baseline success rate (where users were
simply browsing the site to search for people to connect to).

The same research group also developed a collaborative filtering approach that
was evaluated on same social networking website [6]. The algorithm is called
SocialCollab and considers the preferences of both sides. It is based on similarity of
users in terms of attractiveness and taste. Two users are similar in attractiveness if
they are liked by a common group of users, and these two users are similar in taste if
they like a common group of users. To generate a recommendation for a user A, the
SocialCollab algorithm considers all potential candidates R. For each candidate in R
it first finds two groups of similar users (in attractiveness and in taste); the candidate
is added to the recommendation list for A if there is at least one similar user in
both groups that reciprocally liked A. The recommendations are ranked according
to the number of similar users. SocialCollab was shown to outperform standard
collaborative filtering, confirming the importance of reciprocity in people-to-people
recommenders. Cai et al. [7] improved on these results by using gradient descent to
learn the relative contribution of similar users in the ranking of the recommendations
given by SocialCollab. In the same domain, the work of Kutty et al. [8] have reported
improvements over Cai et al. by using a model based on tensor decomposition to
generate recommendations.

Fazel-Zarandi et al. [9] studied different social drivers to predict collaborators
in scientific collaboration networks. These social drivers include level of expertise,
friend-of-friends, homophily, social exchange, and contagion. Fazel-Zarandi et al.
found that these models could be used in combination to better predict collabora-
tions, and that aspects such as homophily, and expert qualifications have a stronger
impact in predicting collaborators than the network structure (including reciprocity).
However, many of the social drivers may be considered reciprocal as aspects such
as homophily, friend-of-friend and even level of expertise can be reciprocal (e.g.
the mutually beneficial relationship between students and mentors in scientific
collaborations).
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16.3.2 Mentor-Mentee Matching

The i-Help system [10] helped students find people who could assist them with
university courses, e.g. first year computer science problems. A matchmaking
system matched helpers with helpees by considering their attributes and preferences.
For the helpers, it stored or inferred attributes such as knowledge of the topic,
interests, cognitive style, eagerness to help, helpfulness, availability, and current
load. The information was collected from several sources including self-evaluation
and peer feedback in previous help sessions. An initial ranked list of potential
helpers was produced. It was then refined by considering the preferences of the
helpee, e.g. the importance of criteria such as helpfulness and urgency; the preferred
and banned helpers. A final list of five potential helpers was compiled; the first of
them to reply became the helper.

The PHelpS system [11] was an earlier prototype of i-Help. It was used in a
workplace to train staff in how to use a new data management system. The candidate
helpers were filtered based on their knowledge of the task, availability and load
using a constraint solver. The list was presented to the helpee who chose the helper.
Both i-Help and PHelpS relied on rich user models encoding the expertise and
preferences of helpers and helpees.

16.3.3 Job Recommendation

Malinowski et al. [12] investigated the problem of matching people and jobs and
argued that the matching should be reciprocal, considering the preferences of both
the job seeker and the recruiter. They built two recommender systems. The first
one recommended job seekers (i.e. their résumés/profiles) to job descriptions of
a particular recruiter. To create training data, a recruiter manually labelled the
resume of a set of people as either fit or not fit for a list of jobs. The attribute
set included demographic, educational, job experience, language, technology skills
and other attributes. The second system recommended jobs to job seekers. To
create training data, the job candidates were asked to rank a set of job descriptions
indicating how well the jobs fitted their preferences. In both cases the authors used
the expectation maximisation algorithm to build the prediction model. The two
recommender systems were evaluated separately and showed promising prediction
accuracy results. Several methods for combining the two recommendations were
proposed but were not implemented and evaluated. More broadly, methods for
combining different recommenders have been summarised by Burke [13].
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16.3.4 Online Dating

The reported research on building recommender systems for online dating is still
limited, and most of the papers are published in the last few years.

One of the first studies of recommender systems for online dating [18] evaluated
two collaborative filtering based approaches (item-to-item and user-to-user). A data
sample from a commercial dating website was collected, where users rated the
attractiveness of other users based on their photos. The predictive accuracy of the
collaborative filtering algorithms was evaluated and the results showed that both
algorithms outperformed the baselines based on random and mean predictions. The
authors mentioned the need for reciprocity, but did not explore it.

In [15], we proposed a content-based system which used both user profiles and
user interactions. To produce recommendations for a given user, it extracted his/her
implicit preferences (i.e. the preferences that are inferred from the interactions
with the other users) and then matched them with the profiles of the other users.
We showed that reciprocity improved both the success rate and recall of the
recommender (see further in the article how these are exactly computed). In [19],
we proposed a recommender system for online dating that combined content-
based and collaborative filtering approaches and utilised both user profiles and user
interactions.

Alsaleh et al. [20] used clustering to group the male users based on their
attributes and the female users based on their preferences. It then generated
recommendations by matching the male clusters with the female clusters based
on user interactions, and recommending cluster members based on compatibility
scores. In their subsequent paper [21], the same research group proposed a tensor
space model for finding latent relationships between users based on user attributes
and interactions. The results showed that the proposed model was more accurate
than SocialCollab [6, 7] and other recommendation methods and baselines.

Diaz et al. [16] formulated the matchmaking task as an information retrieval
problem, where user profiles were ranked with respect to a given ideal partner
profile (i.e. explicit user preferences). Using historical data, a training set of matches
(pairs of users represented with their profile attributes) was created and labelled
as relevant and non-relevant. A match was considered relevant if users exchanged
contact information, and irrelevant if one of the users inspected the profile of the
other user but did not send a message or if he/she sent a message but the other
user did not reply. A machine learning classifier (ensemble of boosted regression
trees) was built and used to predict the relevance of new matches; given a new user,
the potential candidates were ranked based on their predicted score. The approach
was evaluated using data from an online dating website. The authors described the
reciprocal aspect of their work as two-sided relevance and stressed its usefulness for
ranking candidates in matchmaking problems.

McFee and Lanckriet [17] proposed an approach for learning distance metrics
that were optimised for different ranking evaluation measures, e.g. mean aver-
age precision and area under the curve. The metric learning task was cast as
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an information retrieval problem using a machine learning algorithm (structural
support vector machine) to learn the metric, given a ranking. The method was
evaluated using data from an online dating website, where the metric was used to
calculate the distance between users. Similarly to [16], each training example was
a pair of users represented with their profile features and labelled as a successful
or unsuccessful match (the match was successful if the users had expressed mutual
interest and unsuccessful otherwise). The results showed that the new method was
slightly better than the baseline (Euclidean distance measure). Reciprocity was not
discussed in the paper; its main focus was the new general algorithm for learning
distance metrics rather than the online dating application.

16.4 A Case Study in Online Dating

Online dating websites, e.g. Match.com, eHarmony, RSVP, Zoosk, OkCupid and
Meetic, are used by millions of people and their popularity is increasing. Their
revenue is also steadily increasing; it is estimated that in 2014 the US and Australian
online dating industries have reached $2 billion and $113 million dollars in revenue,
respectively [14].

To find dating partners, users provide information about themselves (user
profile) and their preferred partner (user preferences); an example using predefined
attributes is shown in Table 16.2. The explicit user preferences are the preferences
stated by the user as shown in Table 16.2. The implicit user preferences are inferred
from the interactions of the user with other users and may be quite different to the
explicit user preferences (e.g. when a user contacts exclusively short people who
smoke in spite of stating in their preferences that they are looking for tall people
who do not smoke).

We worked with a major Australian dating site where user interactions consist of
four steps:

1. Creating a user profile and specifying the explicit user preferences—New user
Bob creates an account on the website and provides information about himself
(user profile) and his preferred dating partner (explicit user preferences) using a
set of predefined attributes such as the ones shown in Table 16.2 and possibly
adding some textual information to expand on their tastes and personality.

2. Browsing the user profiles of other users for interesting matches—Bob finds
Alice and decides to contact her.

3. Mediated interaction—Bob chooses a message from a predefined list, e.g. I’d like
to get to know you, would you be interested? We call these messages Expressions
of Interest (EOI). Alice can reply with a predefined message that is either positive
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Table 16.2 User profile and explicit user preferences

Bob
My details
(Who I am?)

My ideal partner details
(Who I am looking for?)

Age 44 years old 35–46 years old

Location Sydney Within 20 km

Height 175 cm At most 175 cm

Body type Athletic Slim, average, athletic

Smoking Trying to quit Trying to quit, don’t smoke

Relationship status Divorced Single, divorced, widowed, separated

Have children Have children who don’t live
at home

Have children who don’t live at home,
have children living at home, have no
childrenHow many: 2

Age range: 18–23 years old

Personality Social Social, average

Eye colour Blue –

Hair color Brown –

Nationality Australian –

(e.g. I’d like to know more about you) or negative (e.g. I don’t think we are a good
match) or may not reply at all. When an EOI receives a positive reply, we say that
the interest is reciprocated.
We define an interaction between users A and B as successful if A has sent an
EOI to B and B has responded positively to it. Similarly, we define an interaction
between A and B as unsuccessful if A has sent an EOI to B and B has responded
negatively to it.

4. Unmediated interaction—Typically after a successful interaction, Bob or Alice
buys tokens from the website to send each other unmediated messages. This is
the only way to exchange contact details and develop further their relationship.

Whilst the relationship, once taken offline, may or may not become a successful
one for Bob and Alice, reaching the fourth stage is the crucial and necessary step
that makes it possible for them to find out. It is also the extent to which the dating
website can go.

A major hurdle for progressing through these steps is that users must find fairly
quickly users that are relevant to them, among the hundreds of thousands available.
Failure to do so can result in a loss of interest (“there is no-one that I like”), or a
feeling of rejection when they contact people who don’t reciprocate (“no one wants
to talk to me”). Therefore, an efficient reciprocal recommender algorithm is essential
for a good customer experience.
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16.4.1 A Content-Collaborative Reciprocal Recommender
for Online Dating

CCR is our Content-Collaborative Reciprocal recommender [19]. It uses informa-
tion from the user profile and user interactions to recommend potential matches
for a given user. The content-based part computes similarities between users based
on their profiles. The collaborative filtering part uses the interactions of the set
of similar users, i.e. who they like/dislike and are liked/disliked by, to produce
the recommendation. The recommender is reciprocal as it considers the likes and
dislikes of both sides of the recommendation and aims to match users so that the
paring has a high chance of success.

16.4.1.1 Algorithm

The main assumption of CCR, reflected in steps 1 and 2 below, is that a pair of users
who have similar profiles will reciprocally like the same type of people (in terms
of user profiles), i.e. if U has a similar profile to K1 and K1 reciprocally likes A, B
and C, then U will reciprocally like A, B and C. We tested this hypothesis in [19]
using correlation analysis and a large dataset of more than 7000 users and 16,700
EOI, and found that indeed similar people are reciprocally liked by the same type of
people.

Figure 16.1 shows the three main steps that CCR follows, in order to generate a
recommendation list for a given user U.

Fig. 16.1 The CCR recommender
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1. Generating similar users based on user profiles
This step produces a set of K users who have the most similar profile to U,

i.e. that have the lowest possible distance to U. We use a modified version of
the K-Nearest Neighbor algorithm, with seven attributes (age, height, body type,
education level, smoker, have children and marital status) and a distance measure
specifically developed for these attributes. For example, in Fig. 16.1 the set of
similar users Su for user U consists of K1, K2 and K3.

2. Generating recommendation candidates based on user interactions
This step produces a set Cu of candidate users for recommending to U. For

every user Ki in Su, we compute the list of all users with whom Ki had reciprocal
interest with and add it to the set of candidates Cu. For example in Fig. 16.1,
K1 and A liked each other, so did K1 and B, K1 and C and so on, resulting in a
recommendation candidate set for U of {A, B, C, D, E} with a frequency of 1, 2,
3, 2, 1 respectively.

3. Ranking the candidates
This step uses a ranking method to order the candidates based on their

desirability, and provide meaningful recommendations for U. Figure 16.1 shows
a ranking method based on frequency—C is ranked the highest because it is the
most frequent candidate in Cu.

16.4.1.2 Ranking Method Support

We have developed, implemented and compared a number of ranking methods
[22]. Below we describe Support, which is CCR’s core ranking method. We found
Support to be the best method for our data in spite of its simplicity. In Sect. 16.4.2.5
we describe and evaluate two other ranking methods: Explicit and Implicit.

The Support ranking method is based on the interactions between the group of
similar users Su and the group of candidates. Users are added to the candidate pool
if they have responded positively to at least one Su user or have received a positive
reply from at least one Su user. However, some candidates might have received an
EOI from more than one Su user and responded to some positively and to others
negatively. Thus, some candidates have more successful interactions with Su than
others. The Support ranking method computes the support of Su for each candidate.
The higher the score, the more reciprocally liked is X by Su.

For each candidate X, we calculate the number of times X has responded
positively or has received a positive response from Su, see Table 16.3. We also
calculate the number of times X has responded negatively or has received a negative
response from Su. The support score for X is the number of positive minus the
number of negative interactions. The higher the score for X, the more reciprocally
liked is X by Su. The candidates are sorted in descending order based on their support
score.
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Table 16.3 Ranking method support

X

# Positive
responses
X !Su

# Positive
responses
Su !X

# Negative
responses
X !Su

# Negative
responses
X !Su Score

A 10 1 4 2 5

B 4 2 4 1 1

C 5 1 1 1 4

D 2 0 6 1 �5

Table 16.4 Data
characteristics

Total users 216,662

Male users 119,102 (54.97 %)

Female users 97,560 (45.03 %)

EOIs 167,810

Successful EOIs 24,079 (25.59 %)

Users sent/received at least 1 EOI 7322

Male users sent/received at least 1 EOI 3965

Female users sent/received at least 1 EOI 3357

16.4.1.3 Evaluation

Data

To evaluate the performance of CCR, we used real data from the Australian website
we are working with. The data consists of user profiles and interactions for all active
users in March 2010, i.e. all users who have sent or received at least 1 EOI in March
2010. Due to the size of the data we only considered users who reside in Sydney
and interactions between people from different genders. The data characteristics are
shown in Table 16.4. For each run of the experiment, the dataset is partitioned into
two distinct sets, training and testing, containing approximately 2/3 and 1/3 of the
users, respectively. Each training/testing partition contains an even distribution of
males and females. Each set was also evenly assigned users who were more popular
than their cohort in terms of EOI sent and/or received.

EOIs and their responses from users in the training set to users in the testing
set and vice versa were removed to ensure fair evaluation. Users in either the
testing or training set who no longer meet the minimum number of EOI required
were removed. These processing resulted in the removal of less than 1 % of the
users before the segmentation into training and test sets. Information about the
interactions of the users from the testing set is never included when ranking
the candidates for this user to ensure clear separation between the two sets.
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Selected Attributes and Distance Measure

The original dataset consists of 39 user profile attributes. We conducted a pre-
liminary data analysis of the distribution of these attributes to identify both the
importance and suitability of each attribute. Using this analysis and after some trials
of computing correlations, we manually selected the seven attributes: two numeric
(age and height) and five nominal: body type (values: slim, average, overweight),
education level (secondary, technical, university), smoker (yes, no), have children
(yes, no) and marital status (single, previously married). Some attribute values were
merged together during preprocessing, e.g. the values overweight and largish of
body type were merged into overweight.

To measure the similarity between the user profiles of users A and B, we used a
distance measure that considers the differences between all attributes, but weights
higher the age difference. The distance between nominal attributes is calculated by
using a reflected binary representation (Gray code) and the Hamming distance. The
distance between the numeric attributes is calculated using a function of the absolute
differences. For more details, see [19].

Performance Measure

For a user U we define the following sets:

• Successful EOI sent by U, successful_sent: The set of users who U has sent an
EOI where the user has responded positively.

• Unsuccessful EOI sent by U, unsuccessful_sent: The set of users who U has sent
an EOI where the user has responded negatively.

• Successful EOI received by U, successful_recv: The set of users who have sent
an EOI to U where U has responded positively.

• Unsuccessful EOI received by U, unsuccessful_recv: The set of users who have
sent an EOI to U where U has responded negatively.

• All successful EOI for U: successful = successful_sent + successful_recv.
• All unsuccessful EOI for U: unsuccessful = unsuccessful_sent + unsuccess-

ful_recv.

For each user in the testing set, a list of N ordered recommendations
N_recommendations is generated. We define the successful and unsuccessful EOI
in the set of N recommendations as:

• Successful EOI for U that appear in the set of N recommendations: successful@N
= successful \ N_recommendations.

• Unsuccessful EOI for U that appear in the set of N recommendations: unsuccess-
ful@N = unsuccessful \ N_recommendations.

• Then, the success rate at N (i.e. given the N recommendations) is defined as:

successRate@NŒ%� D #successful@N

#successful@N C #unsuccessful@N
(16.1)



16 People-to-People Reciprocal Recommenders 557

Hence, given a set of N ordered recommendations, the success rate at N is the
number of correct recommendations over the number of interacted recommenda-
tions (correct or incorrect).

For comparison we use the following baseline: the success rate of the recom-
mender using a random set of K users in Su as opposed to K nearest neighbors in
step 1 of the CCR algorithm (see Fig. 16.1). The random set of K users is used to
generate candidates that are then ranked, i.e. there is no change in steps 2 and 3.

Each experiment has been run ten times; the reported success rate is the average
over the ten runs.

Results

We evaluated the performance of CCR for different number of recommendations
N (from 10 to 500) and different number of minimum number of EOI sent by a
user minEOI_sent (from 1 to 20) and compared it to the baseline success rate of
the recommender using a random set of K users in Su as opposed to the K nearest
neighbours. As an example, Fig. 16.2 shows the success rate result all N and minE-
OI_sent = 2. We found that CCR significantly outperforms the baseline for all cases.
For example, for N D 10 and minEOI_sent = 2, the success rate of CCR is 69.26 %
and the baseline success rate is 35.19 %.

As the number of recommendations N increases from 10 to 500, the success rate
decreases by 10–20 %. This means that the best recommendations are at the top of
the list and adding more recommendations only dilutes the success rate. Hence, our
ranking criterion is useful and effective. In practice, the success rate for a smaller N,
e.g. N D 10 � �30 is very important as this is the typical N presented to the user.

Fig. 16.2 CCR success rate results for minEOI_sent = 2
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Unsuccessful recommendations, especially recommendations leading to rejection
can be very discouraging.

Our results also show that as the number of minEOI_sent increases from 1 to 20,
the success rate trends are very similar. However, for users who sent more EOIs,
the success rate is slightly lower (e.g. 60.16 % for minEOI_sent D 10 and 58.54 %
minEOI_sent D 20, for N D 10). This can be explained by the fact that the highly
active users may be less selective.

In all experiments we used K D 100 and C D 250. With these parameters
it took approximately 100 ms to generate the recommendation list for a user which
confirms the efficiency of our algorithm for generation of similar users and candidate
recommendations.

16.4.2 Explicit and Implicit User Preferences

In this section we firstly investigate the power of the explicit versus implicit user
preferences in predicting the success of an interaction between two users. Then we
use these preferences for ranking candidates in CCR. More details can be found
in [22].

16.4.2.1 Explicit User Preferences

We define the explicit preferences of a user U as the vector of attribute values
specified by U. The attributes and their possible values are predefined by the
website.

In our study we used all attributes except location, i.e. 19 attributes—2 numeric
(age and height) and 17 nominal (marital status, have children, education level,
occupation industry, occupation level, body type, eye color, hair color, smoker, drink,
diet, ethnic background, religion, want children, politics, personality and have pets).

For simplicity we considered only people from Sydney and only interactions
between people from different genders.

16.4.2.2 Implicit User Preferences

We learn the implicit user preferences from the user interaction data by applying
a Bayesian classification method; an overview of data mining methods for recom-
mender systems in provided in Chap. 7.

The implicit user preferences of a user U are represented by a binary classifier
which captures U’s likes and dislikes. It is trained on U’s previous successful and
unsuccessful interactions. The training data consists of all users UC with whom
U had successful interactions and all users U� with who U had unsuccessful
interactions during a given time period. Each user from UC and U� is one training
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example; it is represented as a vector of user profile attribute values and labeled as
either Success (successful interaction with U) or Failure (unsuccessful interaction
with U). We used the same 19 user profile attributes as the explicit user preferences
listed in the previous section. Given a new instance, user Unew, the classifier predicts
how successful the interaction between U and Unew will be by outputting the
probability for each class (Success or Failure) and assigning it to the class with
higher probability.

As a classifier we employed NBTree [23] which is a hybrid classifier combining
decision tree and Naïve Bayes classifiers. As in decision trees, each node of a
NBTree corresponds to a test for the value of a single attribute. Unlike decision trees,
the leaves of a NBTree are Naïve Bayes classifiers instead of class labels. We chose
NBTree for two reasons. First, given a new instance, it outputs a probability for each
class; we needed a probabilistic classifier as we use the probabilities for the ranking
of the recommendation candidates. Second, NBTree was shown to be more accurate
than both decision trees and Naïve Bayes, while preserving the interpretability of the
two classifiers, i.e. providing an easy to understand output which can be presented
to the user [23].

16.4.2.3 Are Explicit Preferences Good Predictors of User Interactions?

Data

To evaluate the predictive power of the explicit preferences we consider users who
have sent or received at least 1 EOI during a 1-month period (March 2010). We
further restrict this subset to users who reside in Sydney to simplify the dataset.
These two requirements are satisfied by 8012 users (called target users) who had
115,868 interactions, of which 46,607 (40 %) were successful and 69,621 (60 %)
were unsuccessful. Each target user U has a set of interacted users Uint, consisting
of the users U had interacted with.

Method

We compare the explicit preferences of each target user U with the profile of the
users in Uint by calculating the number of matching and non-matching attributes.

While the user can specify only a single value for a given attribute in his/her
profile, e.g. height D 170 or body D athletic, he/she can specify more than one
value in his/her preferences—a set of values for a nominal attribute, e.g. body D
slim or athletic, and a range of values for a numeric attribute, e.g. height D 155–
175. The matching between the preferences of U and the profile of Uint for a given
attribute is done as follows.

For a numeric attribute, Uint matches U’s preferences if Uint’s value falls within
U’s range or Uint has not specified a value (see the example in Table 16.5). For a
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Table 16.5 Matching U’s explicit preferences with Uint’s profile for
numeric attributes

U’s preference for height 155–175 155–175 155–175

U’s value in profile for height 160 180 Unspecified

Matching outcome (U, Uint) Match Non-match Match

Table 16.6 Matching U’s explicit preferences with Uint’s profile for nominal attributes

U’s preference for body type Slim, average Slim, average Slim, average Slim, average

Uint’s value in profile for body type Slim Average Overweight Unspecified

Matching outcome (U, Uint) Match Match Non-match Match

nominal attribute, Uint matches U’s preferences if Uint’s value has been included in
the set of values specified by U or Uint has not specified a value (see the example in
Table 16.6). An attribute is not considered if U has not specified a value for it. The
preferences of Uint match the profile of U if all attributes match; otherwise, they do
not match.

Results

The results are shown in Table 16.7. They show that 59.40 % of all interactions occur
between users with non-matching preferences and profiles. A further examination
of the successful and unsuccessful interactions shows that:

• In 61.86 % of all successful interactions U’s explicit preferences did not match
Uint’s profile.

• In 42.25 % of all unsuccessful interactions U’s explicit preferences matched the
Uint’s profile.

Suppose that we use the matching of the user profiles and preferences to
try to predict if an interaction between two users will be successful or not (if
the profile and preferences match ! successful interaction; if the profile and
preferences do not match ! unsuccessful interaction). The accuracy will be
49.43 % (17,775+39,998/115,868). This is lower than the baseline accuracy of
always predicting the majority class (ZeroR baseline) which is 59.78 %. A closer
examination of the misclassifications shows that the proportion of false positives
is higher than the proportion of false negatives, although the absolute numbers are
very similar.

In summary, the results show that the explicit preferences are not a good predictor
of the success of interaction between users. This is consistent with [16].
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Table 16.7 Explicit preferences—results

U’s preferences U’s preferences
and Uint’s profile and Uint’s profile
match do not match Total

Successful 17,775 (38.14 %) 28,832 (61.86 %) 46,607
interactions (false positives) (all successful interactions)

Unsuccessful 29,263 (42.25 %) 39,998 (57.75 %) 69,261
interactions (false negatives) (all unsuccessful interactions)

Total 47,038 (40.60 %) 68,830 (59.40 %) 115,858 (all interactions)

16.4.2.4 Are Implicit Preferences Good Predictors of User Interactions?

Data

To evaluate the predictive power of the implicit preferences we consider users who
have at least three successful and three unsuccessful interactions during a 1-month
period (February 2010). This dataset was chosen so that we could test on the March
dataset used in the study of the implicit preferences above. Here too, we restrict this
subset to users who reside in Sydney. These two requirements are satisfied by 3881
users, called target users. The training data consists of the interactions of the target
users during February; 113,170 interactions in total, 30,215 positive and 72,995
negative. The test data consists of the interactions of the target users during Match;
95,777 interactions in total, 34,958 positive (37 %, slightly less than the 40 % in the
study above) and 60,819 negative (63 %, slightly more than the 60 % in the study
above). Each target user U has a set of interacted users Uint, consisting of the users
U had interacted with.

Method

For each target user U we create a classifier by training on U’s successful and
unsuccessful interactions from February as described in Sect. 16.3.2. We then test
the classifier on U’s March interactions. This separation ensures that we are not
training and testing on the same interactions.

Results

Table 16.8 summarizes the classification performance of the NBTree classifier on
the test data. It obtained an accuracy of 82.29 %, considerably higher than the
ZeroR baseline of 63.50 % and the accuracy of the explicit preferences classifier.
In comparison to the explicit preferences, the false positives drop from 61.86 to
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Table 16.8 Classification performance of NBTree on test set

Successful Unsuccessful
<– classified as interactions interactions Total

Successful 24,060 (68.83 %) 10,538 (30.14 %) 34,958

interactions (false positives) (all successful interactions)

Unsuccessful 6064 (9.97 %) 54,755 (90.03 %) 60,819

interactions (false negatives) (all unsuccessful interactions)

Table 16.9 Ranking method Explicit

# Matching # Non-matching Stage 1: Stage 2 (final ranking):
Candidate attributes attributes non-match rank match rank for ties

A 2 0 1 2

B 2 2 2 4

C 4 2 2 3

D 4 0 1 1

30.14 %, an important improvement in this domain since a recommendation that
leads to rejection can be discouraging; the false negatives drop from 42.25 to 9.97 %.

In summary, the results show that the implicit preferences are a very good
predictor of the success of user interactions, and considerably more accurate than
the explicit preferences.

16.4.2.5 Using User Preferences for Ranking Candidates in CCR

Ranking Method Explicit

This is a content-based ranking method. It is based on minimising the number of
non-matching attributes between the candidate profile and the explicit preferences
of the target user; the lower the number of non-matches, the higher the candidate
ranking. In addition to checking if the candidate satisfies the target user’s explicit
preferences it also checks the reverse: if the target user satisfies the candidate’s
explicit preferences. Thus, it minimises the number of reciprocal non-matches.

We compare each candidate (i.e. its profile) with the explicit preferences of
the target user and each target user with the explicit preferences of the candidate.
We tally the number of matches and non-matches from both comparisons. The
candidates are first sorted in ascending order based on the non-match score (stage
1 ranking). After that candidates with the same non-match score are sorted in
descending order based on their match score (stage 2 and final ranking). An example
is shown in Table 16.9.
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Ranking Method Implicit

This ranking method uses previous user interactions, and hence requires a history of
previous usage of the recommender system.

It utilises the classifier generated for each target user U, based upon U’s previous
interactions. Given a candidate, the classifier gives a probability for the two classes
Success and Failure (successful and unsuccessful interaction between the candidate
and target user, respectively). Candidates are then ranked in descending order based
on the probability of class Success.

Baseline

This ranking method assumes that all candidates have an equal chance of a
successful pairing and that any one random selection will give the same chance
of success as any other ranking approach. For each candidate pool the candidates
are randomly shuffled before being presented to the target user.

Results

We used the same data as the data used to learn the implicit user preferences. As
stated already, it consists of the profile attributes and user interactions of all users
who had at least three successful and at least three unsuccessful interactions during
February 2010 and reside in Sydney. We note that this dataset is a subset of the
dataset from Table 16.4 which includes all users who have sent or received at least
1 EOI. A minimum number of positive and negative examples is required for the
training of the NBTree classifier, hence the restriction for at least three successful
and three unsuccessful interactions.

For each run of the experiment, the users who meet the two requirements
listed above are considered as part of the test set. Information about a test user’s
interactions is never included when generating and ranking candidates for that user.
This ensures a clean separation between testing and training data.

Figure 16.3 shows the success rate results for different number of recommenda-
tions N (from 10 to 200) and for minEOI_sent = 5. The main results are:

• The ranking methods Support (described in Sect. 16.4.1.2), Implicit and Explicit
outperform the Random ranking method (baseline) for all N and all minimum
number of EOI.

• The best ranking method is Support, followed by Implicit and Explicit. For a
small number of recommendations .N D 10��50/, Implicit performs similarly
to Support. This is encouraging since the success rate for a small number of
recommendations is very important in practical applications. As N increase the
difference between Support and Implicit increases.
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Fig. 16.3 Success rate of CCR using different ranking methods

• Implicit significantly outperforms Explicit for all N and minimum number of
EOI. For instance, when the top ten recommendations are presented .N D 10/,
the success rates are: Implicit=54.59 %, Explicit=34.78 % for EOI=5; Implicit=
50.45 %, Explicit=36.05 % for EOI=10; Implicit=54.31 %, Explicit=32.95 % for
EOI=20, i.e. the difference between the two methods is 14.4–21.4 %.

• As the number of recommendations N increases from 10 to 200, the success
rate for Support and Implicit decreases with 8–12 %. This means that the best
recommendations are already at the top. Hence, these ranking methods are useful
and effective. For Explicit, as N increases the success rate does not change or
even slightly increases in some cases. This confirms that the ranking function is
less effective, although still better than the baseline.

• As the number of EOI_sent increases from 5 to 20, the success rate trends are
very similar.

16.5 Conclusions and Future Work

People-to-people reciprocal recommenders are an important class of recommenders
which have emerged fairly recently. In this paper we discussed their characteristics
(a more comprehensive analysis is available in [1]) and the management of
reciprocity.

To illustrate different aspects of this type of recommenders and how to take
account of the reciprocity and build an effective reciprocal recommender, we
presented a case study in online dating, using a large dataset from a major Australian
online dating website.
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We have developed CCR, a reciprocal recommender system for an online dating,
that combines content-based and collaborative filtering, and utilises data from both
user profiles and user interactions. It is based on our finding that people with similar
profiles are reciprocally liked by people with similar profiles. CCR achieved success
rate of 64.24–69.26 % for different number of EOI, significantly outperforming the
baseline success rate of [23.44–35.19 %]. An important advantage of CCR is that it
addresses the cold start problem of new users joining the website by being able to
provide recommendations immediately, based on the profile of the new user, which
is very important for engaging the new users.

We also studied the differences between the implicit and explicit user prefer-
ences. We found that the explicit user preferences, stated by the user, are not a good
predictor of the success of user interactions, achieving an accuracy of 49.43 %.
In contrast, the implicit user preferences, that are learned from successful and
unsuccessful previous user interactions, using a probabilistic classifier, were a very
good predictor of the success of user interactions, achieving an accuracy of 89.29 %.
In addition we investigated the use of explicit and implicit user preferences for
ranking of candidates in CCR and found that the ranking method using implicit
preferences is more accurate than the one using explicit preferences.

There are many research questions that arise from designing reciprocal recom-
menders, some of which are the same as for standard recommenders, and others are
inherent to the reciprocity aspect.

Some user profiles need to be handled with care in reciprocal recommender
algorithms: for example, popular users should not be recommended too often,
as they are likely to be overwhelmed and unresponsive. This problem does not
normally occur in non-reciprocal domains or even people-to-people recommenders
that are not reciprocal, e.g. Twitter.

Another issue is that popular users, in some cases, may even hide bait-profiles,
created by criminals to lure people into trusting them in romance scams. The
detection of scamming in the online dating industry is a high priority and requires
the recommender systems to ensure they do not favour bait-profiles over authentic
user profiles [21]. Although this issue is very important in online dating, where
people are particularly vulnerable and seeking relationships, it can also be an issue
in other people-to-people recommendations.

The predictive power of explicit and implicit user preferences needs further
investigation. Not all explicit user preferences are equally important; if the user can
specify the importance of the attributes in the explicit preferences, this information
can be used to improve the prediction of successful and unsuccessful interactions.
A comparison of the explicit and implicit user preferences would also be beneficial,
e.g. (1) to find if there are some latent factors that are difficult to capture, and also
(2) to make users aware when their stated explicit preferences are very different than
their implicit preferences, and adjust the explicit preferences accordingly. It is also
worth investigating if our findings about the explicit and implicit preferences carry
over to other people-to-people reciprocal domains.
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In order to increase the efficiency and relevance of reciprocal recommenders,
a number of other data sources should also be explored: for instance the use of
temporal information (e.g. how quickly users respond to EOIs), or the use of photos
and free text to refine the quality of the implicit user profiles.

Although providing unexpected recommendations has been identified as a useful
property of traditional recommender systems (Chap. 26), it is not clear how much
novelty and serendipity is needed in reciprocal recommenders. In contrast with
traditional domains, in reciprocal domains, users provide more information about
themselves in their user profiles and explicit user preferences. Recommending
surprising matches that do not satisfy these preferences may be seen as unacceptable
by some users, and reduce their trust (Chap. 20) in the system. Some other users,
however, may welcome suggestions of people different to the ones they think they
like. One way to safely allow novelty and serendipity is to explicitly inform the
users when the recommendations deviate from their explicit preferences.

Using user personality (Chap. 21) in reciprocal recommender systems is another
interesting direction for future work. Some online dating website assess personality
by asking users to complete long and intrusive questionnaires, and then match users
based on personality type. It will be useful to acquire user personality implicitly in
a non-obtrusive way, e.g. from free text comments in the user profile; book, movie
and sport preferences; writing style, text sentiment, punctuation and grammar; user
activity level and interactions.

Acknowledgements This work was supported by the Smart Services Cooperative Research
Centre. We also thank Joshua Akehurst, Luiz Pizzato and Judy Kay for their contributions to
this work.

References

1. L. Pizzato, T. Rej, J. Akehurst, I. Koprinska, K. Yacef, and J. Kay, “Recommending People to
People: The Nature of Reciprocal Recommenders With a Case Study in Online Dating,” User
Modeling and User-Adapted Interaction, vol. 23, pp. 447–488, 2013.

2. L. Terveen and D. W. McDonald,“Social matching: A framework and research agenda,” ACM
Transactions on Computer-Human Interaction, vol. 12, pp. 401–434, 2005.

3. D. Richards, M. Taylor, and P. Busch, “Expertise recommendation: A two-way knowledge
communication channel,” presented at the International Conference on Autonomic and
Autonomous Systems, 2008.

4. J. Chen, W. Geyer, C. Dugan, and M. G. I. Muller, “Make new friends, but keep the old:
recommending people on social networking sites,” presented at the International Conference
on Computer-Human Interaction (CHI’2009), New York, 2009.

5. Y. S. Kim, A. Mahidadia, P. Compton, X. Cai, M. Bain, A. Krzywicki, and W. Wobcke, “People
recommendation based on aggregated bidirectional intentions in social network site,” presented
at the Knowledge Management and Acquisition for Smart Systems and Services, 2010.

6. X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. S. Kim, P. Compton, and A. Mahidadia,
“Collaborative filtering for people to people recommendation in social networks,” presented
at the Advances in Artificial Intelligence, 2011.



16 People-to-People Reciprocal Recommenders 567

7. X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. S. Kim, P.Compton, and A. Mahidadia,
“Collaborative filtering for people to people recommendation in social networks,” presented
at the Australian Joint Conference on Artificial Intelligence, 2010.

8. S. Kutty, L. Chen, and R. Nayak, “A people-to-people recommendation system using tensor
space models,” presented at the 27th Annual ACM Symposium on Applied Computing (SAC),
2012.

9. F.-Z. M., D. H.J., Y. Huang, and N. Contractor, “Expert recommendation based on social
drivers, social network analysis, and semantic data representation,” presented at the Second
International Workshop on Information Heterogeneity and Fusion in Recommender Systems
(HetRec).

10. S. Bull, J. E. Greer, G. I. McCalla, L. Kettel, and J. Bowes, “User Modelling in I-Help: What,
Why, When and How,” presented at the User Modeling, 2001.

11. J. Greer, G. McCalla, J. Collins, V. Kumar, P. Meagher, and J. Vassileva, “Supporting peer help
and collaboration in distributed workplace environments,” International Journal on Artificial
Intelligence in Education, pp. 159–177, 1998.

12. J. Malinowski, T. Keim, O. Wendt, and T. Weitzel, “Matching People and Jobs: A Bilateral
Recommendation Approach,” presented at the 39th Annual Hawaii International Conference
on System Sciences, 2006.

13. R. Burke, “Hybrid Recommender Systems: Survey and Experiments,” User Modeling and
User-Adapted Interaction, vol. 12, pp. 331–370, 2002.

14. IBISWorld. (2014, Dating Services in the US: Market Research Report, Apr 2014. Available:
www.ibisworld.com.au/industry/dating-services.html

15. L. Pizzato, T. Rej, T. Chung, I. Koprinska, and J. Kay, “RECON: A Reciprocal Recom-
mender for Online Dating,” presented at the ACM Conference on Recommender Systems
(RecSys’2010), Barcelona, Spain, 2010.

16. F. Diaz, D. Metzler, and S.Amer-Yahia., “Relevance and ranking in online dating systems,”
presented at SIGIR’2010, 2010.

17. B. McFee and G. R. G. Lanckriet, “Metric learning to rank,” presented at the International
Conference on Machine Learning (ICML), 2010.

18. L. Brozovsky and V. Petricek, “Recommender System for Online Dating Service,” presented
at the Procedings of Znalosti 2007 conference, Ostrava, 2007.

19. J. Akehurst, I. Koprinska, K. Yacef, L. Pizzato, J. Kay, and T. Rej, “CCR - a content-
collaborative reciprocal recommender for online dating,” in Peoc. 22nd International Joint
Conference on Artificial Intelligence (IJCAI), Barcelona, Spain, 2011.

20. S. Alsaleh, R. Nayak, Y. Xu, and L. Chen, “13th Asia-Pacific Conference on Web Technologies
and Applications,” 2011.

21. S. Kutty, L. Chen, and R. Nayak, “A people-to-people recommendation system using tensor
space model,” presented at the 27th Symposium on Applied Computing, 2012.

22. J. Akehurst, I. Koprinska, K. Yacef, L. Pizzato, J. Kay, and T. Rej, “Explicit and implicit user
preferences in online dating,” in New Frontiers in Applied Data Mining, L. Cao, J. Huang, J.
Bailey, Y. Koh, and J. Luo, Eds., ed: Springer Lecture Notes in Computer Science, v. 7104,
2012, pp. 15–27.

23. R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid,”
presented at the Int. Conference on Knowledge Discovery in Databases (KDD), 1996.

www.ibisworld.com.au/industry/dating-services.html


Chapter 17
Collaboration, Reputation and Recommender
Systems in Social Web Search

Barry Smyth, Maurice Coyle, Peter Briggs, Kevin McNally,
and Michael P. O’Mahony

17.1 Introduction

The web is probably one of the most important and wide-spread information tools in
use today. Many of us interact with general purpose search engines such as Goggle
and Bing many times a day, while some of us use more specialized search services
to cater for niche needs from time to time. Indeed mainstream search has become
so much a part of everyday life that one would be forgiven for assuming that all of
the major web search challenges have been overcome The reality is very different,
however, and by some measures the pace of innovation in web search has never been
greater as leading services continue to look for new ways to cope with the many
challenges that remain in order to satisfy their users’ changing needs and evolving
expectations.

Recent research has highlighted how even the leading search engines suffer from
low success rates when it comes to delivering relevant results to the average searcher.
For example, in one study [24] of more than 20,000 search queries researchers found
that, on average, Google delivered at least one result worth selecting only 48 %
of the time. In other words, in 52 % of cases, searchers chose to select none of
the results returned, a disappointing and somewhat surprising success rate by any
standard. In large part this problem is as much due to the searcher as it is the search
engine: our search queries tend to be vague and under-specified, and rarely provide a
clear indication of our search needs [49, 113, 124–126]. Mostly we have adapted to
these low success rates. We respond to poor result-lists with follow-up or alternative
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queries until we find what we are looking for. And while we usually do find what
we are looking for it comes at a cost—wasted time and effort—and sometimes we
may abandon our efforts altogether. At best this means that web search is far less
efficient than it should be—indeed recent studies suggest that among information
workers 10 % of salary costs are lost due to wasted search time [30]—and at worst a
significant proportion of searchers may fail to find the information they need, even
though it exists somewhere.

Thus, there remains plenty of scope for improvement in mainstream search. This
is particularly true as the web evolves to become a more social and collaborative
world, creating new opportunities to learn about and harness user preferences and
relationships. In this chapter we will look into the future of web search by reviewing
some of most promising research ideas that have the potential to bring game-
changing innovation to this exciting technology sector. We will argue that the past
is apt to repeat itself and just as Google’s game-changing approach to web search
led to its relentless rise over the past 15 years, so too will new search technologies
emerge to have a similarly disruptive effect on the market over the next 15 years.

It can be useful to view modern search engines as a type of recommender system:
they respond to user queries with a set of result-page recommendations. But unlike
many conventional recommender systems, search engines have focused on text
and link analysis rather than the user interactions and the similarity relationships
that drive recommender systems. There is now an opportunity for recommendation
technologies to play an increasingly important role in web search, by helping to
address core web search challenges as well as contributing to the solution of a
number of secondary search features.

For example, recently, modern search engines have added query recommendation
services to supplement core search functionality. As the user enters their query,
services like Google Suggest use recommendation techniques to identify, rank and
recommend previously successful and relevant queries to the user; see [103]. In
this chapter, we will focus on two promising and powerful new ideas in web
search—personalization and collaboration—that can trace their origins to recent
recommender systems research [5, 37, 59, 94, 105, 112]. They question the very core
assumptions of mainstream web search engines and suggest important adaptations
to conventional approaches to web search.

The first assumption concerns the one-size-fits-all nature of mainstream web
search—two different users with the same query will, more or less, receive the very
same result-list, regardless of their preferences—and argues that web search needs
to become more personalized by considering the implicit needs and preferences of
searchers. We will review a number of different approaches to personalizing web
search which harness different types of user preference and context information
to influence the search experience; see for example [2, 15, 20, 22, 23, 31, 33, 35,
53, 54, 85, 109, 123, 131]. That being said many mainstream search engines are
beginning to adapt the results that they return to users, based on factors such as
location, time of day etc. but less so based on an understanding of user preferences or
needs. A valid concern when it comes to adapting or personalizing result-lists is the
extent to which it may blinker the searcher and limit the possible views and opinions



17 Collaboration, Reputation and Recommender Systems in Social Web Search 571

that the searcher is exposed to in the long-run; see [81]. However, personalization
does not necessarily oblige a narrowing of results. And one of the most interesting
dimensions to modern recommender systems is the extent to which they seek to
explore issues such as diversity and novelty as well as relevance when it comes to
evaluating the quality of result-lists; see for example, [7, 10, 36, 56, 60, 121]. In this
sense the solution to Pariser’s Filter Bubble is the recommendation of more diverse
results and/or results that express novel and divergent viewpoints.

The second assumption to be questioned concerns the solitary nature of web
search. By and large modern web search takes the form of an isolated interaction
between a lone searcher and search engine. However, recent research suggests that
there are many circumstances where the search for information can (and should)
have a more collaborative flavour. Often it makes sense for groups of searchers (e.g.,
friends, colleagues, classmates) to cooperate in various ways as they search for and
share results. We will describe recent work in the area of collaborative information
retrieval, which attempts to capitalize on this potential for collaboration during a
variety of information seeking tasks; see for example, [1, 69, 70, 87–90, 117].

In addition we will highlight a new breed of search service that combines
elements of personalization and collaboration: so-called social search services take
advantage of the recent evolution of the web as a social medium, one that promotes
interaction and collaboration among individuals during search, so that searchers can
benefit from the preferences and experiences of other like-minded individuals. This
provides a new source of information for search engines to use during retrieval,
specifically collaboration and reputation information. And this information can be
used to drive recommendations at search time so that organic search results, based
on term-overlap and link connectivity information, are complimented by additional
result recommendations derived from the preferences and activities of searchers. In
doing so we will bring together recommendation and search in a way that points to
a new future for search engine development in the ongoing quest to deliver the right
information to the right user at the right time.

17.2 A Brief History of Web Search

Before considering some of the emergent search technologies that have the potential
to disrupt the search industry, it is first worth briefly reviewing the history of web
search over the past 15 years, to better understand the evolution of modern web
search. The early web was not a place of search. Instead if you wanted to get to a
particular web page then you either typed the URL directly into your browser, or
you used a portal like Yahoo as a starting point to navigate to this page. As the web
grew (and grew, and grew) it became clear that portal browsing would not scale,
and web search began to emerge in the guise of early search engines such as Lycos,
Excite, and Altavista.

These search engines all relied on so-called information retrieval (IR) technolo-
gies that had been around since the 1970s [4, 96]. A simplified schematic of a
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Fig. 17.1 Functional components of a typical web search engine. A page, pi, is located on the web
by the crawler and its content, the terms t1,. . . ,tn, are retrieved and indexed as part of an offline
process. In response to a search query, the engine probes the index to retrieve results, pi,. . . ,pj,
which match the query terms, which are then ranked by their relevance according to the search
engine’s particular ranking metrics, before being presented to the searcher as a result-list

typical search engine architecture is presented in Fig. 17.1. Briefly, early search
engines constructed their own index of the web, by crawling the web’s network
of pages and analysing the content of each page in turn, recording the terms, and
their frequencies, contained in each page. To respond to a search query, the search
engine retrieves and ranks pages that contain query terms. During the early days
of web search, the emphasis was very much on the size of the index, and search
engines that had indexed more of the web had a clear coverage advantage over their
rivals. Attention was also paid to the ranking of search results; for the most part,
these search engines relied on the frequency of query terms in a web page (relative
to the index as a whole) as the primary arbiter of relevance [122], preferring pages
that contained frequent occurrences of distinctive query terms. While this approach
worked reasonably well in the well-structured, closed-world of information retrieval
systems, where information retrieval experts could be relied upon to submit detailed,
well-formed queries, it did not translate well to the scale and heterogenous nature of
web content or our vague search queries. The outcome was a poor search experience
for most searchers, with relevant results hidden deep within result-lists dominated
by results that were, at best, only superficially relevant to the query.

Improving the ranking of search results became the challenge for these early
search engines and even the race for the largest search index took a back seat in the
face of this more pressing need. It soon became clear, however, that relying solely
on the terms in a page was not going to be sufficient, no matter how much time
was invested in tweaking these early ranking algorithms. Simply put, there were
lots of pages that scored equally well when it came to counting matching query and
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page terms, but few of these pages turned out to be truly relevant and authoritative.
Although term matching information had a role to play in overall relevance, on its
own it was insufficient, and it was clear that there was vital information missing
from the ranking process.

The missing ingredient came about as a result of research undertaken by a
number of groups during the mid 1990s. This included the work of Kleinberg
[43] and, most famously, the work of Google founders Page and Brin [12].
These researchers were among the first to take advantage of the connectedness
of web pages, and they used this information to evaluate the relative importance
of individual pages. Kleinberg, Page, and Brin recognised the web as a type of
citation network (for example, see [71]). Instead of one paper citing another through
a bibliographic reference, on the web one page cited another page through a
hyperlink connecting the two. Moreover, it seemed intuitive that the importance
of a given page should be a function of the various pages that linked to it; the
so-called back-links of the page. Thus a page could be considered important if
lots of other important pages linked to it. This provided the starting point for a
fundamentally new way to measure the importance of a page and, separately, the
work of Kleinberg [43], Chakrabarti et al. [18] and Brin and Page [12] led to
novel algorithms for identifying authoritative and relevant pages for even vague web
search queries. By the late 1990s Page and Brin’s so-called PageRank algorithm
was implemented in the first version of Google, which combined traditional term-
matching techniques with this new approach to link analysis, to provide search
results that were objectively superior to the results of other search engines of the
day. The rest, as they say, is history.

17.3 The Future of Web Search

There is no doubt that web search represents a very significant information discovery
and recommendation challenge. The size and growth characteristics of the web,
and the sheer diversity of content types on offer represent formidable information
retrieval challenges in their own right. At the same time, as the demographics of the
web’s user-base continues to expand, search engines must be able to accommodate
a diverse range of user types and search skill levels. In particular, most of us fail to
live up to the expectations of the document-centric, term-based information retrieval
engines that lie at the heart of modern search technology. These engines, and the
techniques they rely upon, largely assume well-formed, detailed search queries, but
such queries are far from common in web search today [38, 39, 49, 126]. Instead
most web search queries are vague or ambiguous, with respect to the searcher’s true
information needs, and many queries can contain terms that are not even reflected
in the target document(s).

Given that many queries fail to deliver the results that the searcher is looking
for, there is considerable room for improvement in this most fundamental feature
of the search experience. While the problem may reside, at least in part, with the
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nature of web search queries, as discussed above, it is unlikely that users will
improve their query-skills any time soon. In response, researchers have begun to
explore two complementary strands of research as a way to improve the overall
searcher experience. One widely held view is that web search needs to become more
personalized: additional information about users, their preferences and their current
context, for example, should be used to deliver a more personalized form of web
search by selecting and ranking search results that better match the preferences and
context of the individual searcher (for example, see [2, 15, 22, 31, 53, 109]). Another
view is that there is an opportunity for web search to become more collaborative, by
allowing communities of users to co-operate (implicitly or overtly) as they search
(for example, see [1, 69, 70, 87–90, 117]).

In the following sections we will review this research landscape, describing a
number of initiatives that are attempting to transform static (non-personalized),
solitary (non-collaborative), mainstream search engines into more personalized
(see Sect. 17.3.1) or more collaborative (see Sect. 17.3.2) search services. These
initiatives borrow ideas from recommender systems, user profiling, and computer-
supported collaborative working research (for example, see [37, 44, 58, 107, 112]).
We will also highlight recent research that seeks to bring both of these approaches
together leading to a new generation of search services that are both collaborative
and personalized. We will refer to these hybrid services as social search services
and later in this chapter we will describe two detailed case-studies of two different
approaches to social search.

17.3.1 Personalizing Web Search

Many recommender systems are designed to make suggestions to users that are rel-
evant to their particular circumstances or their personal preferences; see Chaps. 13,
14, 22, and 27 in this volume. For example, recommender systems help users to
identify personally relevant information such as news articles [8, 44, 82], books [51],
movies [27, 45, 65], and even products to buy [21, 57, 91–93, 105]. The application
of recommender technologies to web search allows for a departure from the
conventional one-size-fits-all approach to mainstream web search. When it comes
to delivering a more personalized search experience there are two key requirements:
firstly, we must understand the needs of searchers (profiling); secondly, we must
be able to use these profiles to influence the output of the search engine, for
example by re-ranking results according to the profile, or, indeed, by influencing
other components of the web search experience.

To put these research efforts into perspective it is useful to consider two important
dimensions to personalizing web search. On the one hand we can consider the
nature of the profiles that are learned: some approaches focus on short-term user
profiles that capture features of the user’s current search context [15, 31, 109],
while others accommodate long-term profiles that capture the user’s preferences
over an extended period of time [2, 22, 53]. On the other hand, when it comes to
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harnessing these profiles during search, we can usefully distinguish between those
approaches that are guided by an individual target user’s profile (for example, see
[16, 40, 46, 112]) versus those that are collaborative, in the sense that they are guided
by the profiles of a group of users (for example, see [37, 44, 51, 108, 113]).

Generally speaking, user profiles can be constructed in two ways. Explicit
profiling interrogates users directly by requesting different forms of preference
information, from categorical preferences [22, 53] to simple result ratings [2]. In
contrast, implicit profiling techniques attempt to infer preference information by
monitoring user behaviour, and without interfering with users as they go about their
searches [22, 52, 85].

With explicit profiling, the users themselves do the profiling work by either
specifying search preferences up front, or by providing personal relevance feedback
such as rating returned search results. Chirita et al. [22] use individual user profiles
which are defined by the searcher through ODP1 web directory categories to re-rank
results according to the distance between the profile and ODP categories for each
result. They investigate a number of different distance metrics, and report the
findings of a live user evaluation that shows that their personalized approach is
capable of more relevant result rankings than standard Google search. One of the
drawbacks of relying on ODP categories in this way, however, is that only a small
proportion of the web is categorised in the ODP and so many of the returned
search results have no category information to base the re-ranking on. Ma et al. [53]
propose a similar approach whereby user profiles are explicitly expressed through
ODP categories, except they re-rank search results based on the cosine similarity
between result-page content and the ODP directory category profiles. In this way
the search results themselves are not required to be categorised in the ODP.

In contrast, ifWeb [2] builds user profiles using a less structured approach through
keywords, free-text descriptions, and web page examples provided by the user to
express their specific information needs, which are stored as a weighted semantic
network of concepts. ifWeb also takes advantage of explicit relevance feedback
where the searcher provides result ratings that are used to refine and update their
profile. A similar approach is used by the Wifs system [66] in which profiles initially
built using terms selected from a list can be subsequently improved with feedback
on viewed documents provided by users. The major drawback with these types of
explicit approaches to profiling is that the majority of users are reluctant to make the
extra effort in providing feedback [17]. Furthermore, searchers may find it difficult
to categorise their information needs and preferences accurately in the first place.

A potentially more successful approach to profiling is to infer user preferences
implicitly (implicit profiling). As in the work of Chirita et al. [22], Liu et al. [52] also
use hierarchical categories from the ODP to represent a searcher’s profile, except in
this work the categories are chosen automatically based on past search behaviour
such as previously submitted queries and the content of selected result documents.
A number of different learning algorithms are analysed for mapping this search

1The Open Directory Project, http://dmoz.org.

http://dmoz.org
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behaviour onto the ODP categories, including those based on Linear Least Squares
Fit (LLSF) [130], the Rocchio relevance feedback algorithm [97], and k-Nearest
Neighbor (kNN) [28]. In a related approach, statistical language methods are used
[129] to mine contextual information from this type of long-term search history
to build a language model based profile; similarly, user preferences are inferred
[85] based on past behaviour, this time using the browser cache of visited pages to
infer subject areas that the user is interested in. These subject areas, or categories,
are combined into a hierarchical user profile where each category is also weighted
according to the length of time the user spent viewing the pages corresponding to
the category.

The above are all examples of long-term user profiles that seek to capture
information about the user’s preferences over an extended period of time, certainly
beyond the bounds of a single search session. The alternative is to capture short-
term profiling information, typically related to the particular context of the current
information finding task. For example, the UCAIR system [109] concentrates on
recently submitted queries and selected results to build a short-term profile that is
used to personalize results for the current search task. When a new search session
is initiated, a new profile for the user and their current information requirements
is created. Similarly Watson [15] and IntelliZap [31] both generate short-term
profiles from current context information. Watson identifies informative terms in
local documents that the user is editing and web pages that are being browsed,
and uses these to modify the user’s search queries to personalize results. IntelliZap
users initiate a search by selecting a textual query from within a document they are
currently viewing, and the search is then guided by additional terms occurring in
close proximity to the query terms in the document. In these examples, the profiles
guiding the personalization of search results capture context which is pertinent to
the users immediate, and possibly temporary, information needs.

The availability of profile and/or context information is the pre-requisite for
personalization and there have been a wide range of techniques developed for
utilizing profile information to influence different aspects of search experience.
These techniques are not limited to influencing the retrieval and ranking of search
results, for example, and in fact there has been research on how profiles can be used
to influence many other stages in the web search pipeline including the spidering
and indexing [29, 32, 34, 47] of raw page content and query generation [3, 6, 67].
For example, one common way to personalize search results based on a user profile
involves using the profile to re-write, elaborate, or expand the original search query
so that it returns more specific results that better reflect search interests or context.
Koutrika and Ioannidis [46], for example, propose an algorithm they call QDP
(Query Disambiguation and Personalization) to expand a query submitted by the
user according to a user profile represented by weighted relationships between
terms. These relationships take the form of logical operators (such as conjunction,
disjunction, negation and substitution) between words and terms of interest to users.
And so in effect the user’s profile provides a set of personalized query rewriting
rules, which can be applied to the submitted query before it is dispatched to the
search engine, so that an initial query can be expanded or otherwise elaborated
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to capture the likely intent and interests of the searcher. Croft et al. [26] describe
how individualized language models can be used as user profiles with a view to
supporting query expansion and relevance feedback. There is also much research
in the area of query expansion and disambiguation from the perspective of short
term, session-based user profiles from a relevance feedback standpoint which is
also highly relevant to work in personalized search [104]. This perspective is not so
much targeted at personalizing search per se, but rather at improving search at the
level of independent search sessions and many of these approaches can be expanded
to encompass longer-term personalized search profiles.

However, perhaps the most popular way to personalize search through user
profiles is to directly influence the ranking of search results. For example, Jeh and
Widom [40] do this by introducing a personalized version of PageRank [13] for
setting the query-independent priors on web pages based on user profiles. These
profiles consist of a collection of preferred pages with high PageRank values
which are explicitly chosen by the user, and are used to compute a personalized
PageRank score for any arbitrary page based on how related it is to these highly
scored preferred pages. Chirita et al. [23] build on this idea by automatically
choosing these profile pages by analysing the searcher’s bookmarked pages and past
surfing behaviour, along with a HubFinder algorithm that finds related pages with
high PageRank scores which are suitable for driving the personalized PageRank
algorithm. Both of these approaches are based on long-term user profiles drawn
from an extended period of the user’s browsing history.

Chang et al. [20] propose a personalized version of Kleinberg’s HITS [42]
ranking algorithm. Their technique harnesses short-term feedback from the searcher,
either explicitly or implicitly, to build a profile consisting of a personalized authority
list which can then be used to influence the HITS algorithm to personalize the
ranking of search results. Experimental results using a corpus of computer science
research papers shows that personalized HITS is able to significantly improve result
ranking in line with the searcher’s preferences, even with only minimal searcher
feedback.

Another popular ranking-based approach is the re-ranking of results returned
from some underlying, generic web search engine according to searcher preferences
without requiring access to the inner workings of the search engine. Speretta and
Gauch [123] create individual user profiles by recording the queries and selected
result snippets from results returned by Google which are classified into weighted
concepts from a reference concept hierarchy. The results from future Google
searches are then re-ranked according to the similarity between each result and
the searcher’s profile concept hierarchy. Rohini and Varma [98] also present a
personalized search method where results from an underlying web search engine are
re-ranked according to a collaborative filtering technique that harnesses implicitly
generated user profiles.

All of the above techniques focus on harnessing single user profiles (the
preferences of the target searcher) to personalize that user’s search experience. In
recommender systems research it is common to take advantage of groups of related
profiles when it comes to generating recommendations for a target individual.
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For instance, the well known collaborative filtering approach to recommendation
explicitly uses the preferences of a group of users who are similar to the target user
when it comes to generating recommendations [51, 94, 108]; see also [37, 37, 58].
Similar ideas are beginning to influence web search such as approaches that harness
the preferences of communities of users; see [113, 114]. Sugiyama et al. [127]
propose a method whereby long-term user profiles are constructed from similar
searchers according to browsing history using a modified collaborative filtering
algorithm. The idea is that searchers who issued similar queries and selected
similar results in the past can benefit from sharing their search preferences. Sun
et al. [128] propose a similar approach called CubeSVD which is also based on
collaborative filtering to personalize web search results by analysing the correlation
of users, queries and results in click-through data. Both these methods involve the
identification of similar searchers to the current searcher in order to create a more
comprehensive user profile for the individual. More recently, the work of Briggs and
Smyth [11] describes a peer-to-peer approach to personalizing web search that also
leverages the profiles of similar users during result recommendation. Each searcher
is profiled in terms of their prior queries and result selections (once again these are
long-term profiles). In response to a new target query, recommendations are derived
from the user’s own personal profile, but in addition, the query is propagated through
the peer-to-peer search network so that connected users can also suggest relevant
results based on their prior search behaviours. The resulting recommendations are
aggregated and ranked according to their relevance to the target query and also in
terms of the strength of the trust relationship between the target user and the relevant
peer; see also recent trust-based recommendation techniques in [73–75, 78–80].

17.3.2 Collaborative Information Retrieval

Recent studies in specialised information seeking tasks, such as military command
and control tasks or medical tasks, have found clear evidence that search-type
tasks can be collaborative as information is shared between team members [87–90].
Moreover, recent work by Morris [68] highlights the inherently collaborative nature
of more general purpose web search. For example, during a survey of just over
200 respondents, clear evidence for collaborative search behaviour emerged. More
than 90 % of respondents indicated that they frequently engaged in collaboration at
the level of the search process. For example, 87 % of respondents exhibited “back-
seat searching” behaviours, where they watched over the shoulder of the searcher
to suggest alternative queries, while 30 % of respondents engaged in search coor-
dination activities by using instant messaging to coordinate searches. Furthermore,
96 % of users exhibited collaboration at the level of search products, that is, the
results of searches. For example, 86 % of respondents shared the results they had
found during searches with others by email. Thus, despite the absence of explicit
collaboration features from mainstream search engines there is clear evidence that
users implicitly engage in many different forms of collaboration as they search,



17 Collaboration, Reputation and Recommender Systems in Social Web Search 579

although, as reported by Morris [68], these collaboration “work-arounds” are often
frustrating and inefficient. Naturally, this has motivated researchers to consider how
different types of collaboration might be supported by future editions of search
engines.

The resulting approaches to collaborative information retrieval can be usefully
distinguished in terms of two important dimensions, time—that is, synchronous ver-
sus asynchronous search—and place—that is, co-located versus remote searchers.
Co-located systems offer a collaborative search experience for multiple searchers at
a single location, typically a single PC [1, 110], whereas remote approaches allow
searchers to perform their searches at different locations across multiple devices
[69, 70, 117]. The former enjoy the obvious benefit of an increased faculty for
direct collaboration that is enabled by the face-to-face nature of co-located search,
while the latter offer a greater opportunity for collaborative search. Alternatively,
synchronous approaches are characterised by systems that broadcast a “call to
search” in which specific participants are requested to engage in a well-defined
search task for a well defined period of time [110]. In contrast, asynchronous
approaches are characterised by less well-defined, ad-hoc search tasks and provide
for a more open-ended approach to collaboration in which different searchers
contribute to an evolving search session over an extended period of time [70, 114].

A good example of the co-located, synchronous approach to collaborative web
search is given by the work in [1]. Their CoSearch system is designed to improve
the search experience for co-located users where computing resources are limited;
for example, a group of school children having access to a single PC. CoSearch
is specifically designed to leverage peripheral devices that may be available (for
example, mobile phones, extra mice etc.) to facilitate distributed control and division
of effort, while maintaining group awareness and communication. For example,
in the scenario of a group of users collaborating though a single PC, but with
access to multiple mice, CoSearch supports a lead searcher or driver (who has
access to the keyboard), with other users playing the role of search observers. The
former performs the basic search task but all users can then begin to explore the
results returned by independently selecting links so that pages of interest are added
to a page queue for further review. The CoSearch interface also provides various
opportunities for users to associate notes with pages. Interesting pages can be saved
and as users collaborate a search summary can be created from the URLs and
notes of saved pages. In the case where observers have access to mobile phones,
CoSearch supports a range of extended interface functionality to provide observers
with a richer set of independent functionality via a bluetooth connection. In this
way observers can download search content to their mobile phone, access the page
queue, add pages to the page queue and share new pages with the group.

The purpose of CoSearch is to demonstrate the potential for productive collab-
orative web search in resource-limited environments. The focus is very much on
dividing the search labour while maintaining communication between searchers,
and live user studies speak to the success of CoSearch in this regard [1]. The work
in [111] is related in spirit to CoSearch but focuses on image search tasks using a
table-top computing environment, which is well suited to supporting collaboration
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between co-located users who are searching together. Once again, preliminary
studies speak to the potential for such an approach to improve overall search
productivity and collaboration, at least in specific types of information access tasks,
such as image search, for example. A variation on these forms of synchronous search
activities is presented in [110], where the use of mobile devices as the primary
search device allows for a remote form of synchronous collaborative search. The
iBingo system allows a group of users to collaborate on an image search task
with each user using an iPod touch device as their primary search/feedback device
(although conventional PCs appear to be just as applicable). Interestingly, where the
focus on CoSearch is largely on the division of search labour and communication
support, iBingo offers the potential to use relevance feedback from any individual
searcher to the benefit of others. Specifically, the iBingo collaboration engine uses
information about the activities of each user in order to encourage other users to
explore different information trails and different facets of the information space. In
this way, the ongoing activities of users can have an impact on future searches by
the group and, in a sense, the search process is being “personalized” according to
the group’s search behaviour.

Remote search collaboration (whether asynchronous or synchronous) is the aim
of SearchTogether, which allows groups of searchers to participate in extended
shared search sessions as they search to locate information on particular topics;
see also [70]. In brief, the SearchTogether system allows users to create shared
search sessions and invite other users to join in these sessions. Each searcher
can independently search for information on a particular topic, but the system
provides features to allow individual searchers to share what they find with other
session members by recommending and commenting on specific results. In turn,
SearchTogether supports synchronous collaborative search by allowing searchers
to invite others to join in specific search tasks, allowing cooperating searchers
to synchronously view the results of each others’ searches via a split-screen
style results interface. As with CoSearch above, one of the key design goals in
SearchTogether is to support a division of labour in complex, open-ended search
tasks. In addition, a key feature of the work is the ability to create a shared
awareness among group members by reducing the overhead of search collaboration
at the interface level. SearchTogether does this by including various features, from
integrated messaging, query histories, and recommendations arising out of recent
searches.

In the main, the collaborative information retrieval systems we have so far
examined have been largely focused on supporting collaboration from a division
of labour and shared awareness standpoint, separate from the underlying search
process. In short, these systems have assumed the availability of an underlying
search engine and provided a collaboration interface that effectively imports search
results directly, allowing users to share these results. As noted in [83], one of
the major limitations of these approaches is that collaboration is restricted to the
interface in the sense that while individual searchers are notified about the activities
of collaborators, they must individually examine and interpret these activities in
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order to reconcile their own activities with their co-searchers. Consequently, the
work in [83] describes an approach to collaborative search that is more tightly
integrated with the underlying search engine resource so that the operation of the
search engine is itself influenced by the activities of collaborating searchers in a
number of ways. For example, mediation techniques are used to prioritise, as yet,
unseen documents, while query recommendation techniques are used to suggest
alternative avenues for further search exploration.

17.3.3 On Reputation and Recommendation

Collaborative information retrieval has highlighted the importance of the searcher in
web search tasks and the potential for groups of searchers to collaborate (implicitly
or explicitly) during complex search tasks. This perspective suggests that the
reputation of a user may have an important role to play in guiding collaboration;
it seems natural to give greater emphasis to the opinions and/or suggestions of more
reputable users.

Recently there has been considerable interest in reputation systems to evaluate
user reputation and inter-user trust across social web and e-commerce applications.
For example, the reputation system used by eBay has been examined by Jøsang et al.
[41] and Resnick et al. [95]. Briefly, eBay elicits feedback from buyers and sellers
regarding their interactions with each other, and that information is aggregated in
order to calculate user reputation scores. The aim is to reward good behaviour on
the site and to improve robustness by leveraging reputation to predict whether a
vendor will honour future transactions.

The work of O’Donovan and Smyth [76] considers the role of reputation in
recommender systems. In this case, a standard collaborative filtering algorithm
is modified to add a trust score to complement the normal profile or item-based
similarity score, so that recommendation partners are chosen from those users
that are not only similar to the target user, but who have also had a successful
recommendation history with that user. It is posited that this trust information can be
estimated by measuring the accuracy of a profile at making predictions over time,
and using this approach the average prediction error is improved significantly in
comparison with conventional collaborative filtering approaches.

Other research has examined reputation systems employed in social networking
platforms. Lazzari [50] performed a case study of the professional social networking
site Naymz. He warns that calculating reputation on a global level allows users
who have interacted with only a small number of others to accrue a high degree of
reputation, making the system vulnerable to malicious use. Similar to Jøsang et al.
[41], Lazzari [50] suggests that vulnerability lies in the site itself, allowing malicious
users to game the reputation system for their own ends. However, applying
reputation globally affords malicious users influence over the entire system, which
adds to its vulnerability.
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In this chapter we consider the role of reputation models in a social search service
in order to capture the quality of search knowledge that is contributed by users
and how this reputation data can be leveraged to improve overall recommendation
quality.

17.3.4 Towards Social Search

So far we have touched on separate strands of complementary research in the
field of web search, recommender systems and information finding, motivated by
questions that cut to the very core of conventional web search. The one-size-fits-
all nature of mainstream web search is questioned by researchers developing more
personalized web search techniques, and the assumption that search is largely a
solitary experience is undermined by recent studies that highlight the inherently
collaborative nature of many search scenarios.

To date, these different strands of research have been separated by different
motivations and objectives. The world of personalized search, for example, has
been largely guided by the need to produce result-lists that are better targeted to
the needs of the individual searcher, whereas collaborative information retrieval
has focused on supporting groups of searchers by facilitating the division of search
labour and by promoting shared awareness among cooperating searchers. However
both of these research communities are linked by a common thread of research
from the recommender systems field and this perspective has helped to identify
opportunities to bring these two different strands of research together. In what
follows we will describe two complementary case-studies that describe the evolution
of one particular approach to making conventional web search more collaborative
and personal.

To begin with we will describe the HeyStaks social search system [115, 120],
which adds a layer of community-based collaboration atop conventional search
services such as Google or Bing. HeyStaks is an example of a remote, asynchronous
form of collaborative web search and we will summarize the results of recent
live-user studies to highlight its potential end-user benefits. The second case-study
will introduce the notion of reputation as a novel relevance signal that can further
improve the quality of the HeyStaks suggestions, by weighting the influence of other
searchers differently depending on their past search successes.

17.4 Case-Study 1: HeyStaks—A Social Search Utility

We describe a model of collaborative web search as implemented in a system called
HeyStaks, which is novel in two important ways. First of all, HeyStaks adopts a more
user-led approach to collaborative web search, one that is focused on helping users
to better organise and share their search experiences. HeyStaks does this by allowing



17 Collaboration, Reputation and Recommender Systems in Social Web Search 583

users to create, curate and share repositories of search experiences as opposed to
coordinating the participation of search communities. Secondly, HeyStaks is tightly
coupled to a mainstream search engine, such as Google, through a browser toolbar,
which provides the collaborative search engine with the ability to capture and guide
search activities. This means that users can enjoy the benefits of collaborative
search while continuing to use their favourite search engine. Finally, we will also
summarize the findings of a recent live-user study to investigate the nature of search
collaboration that manifests within HeyStaks’ user population.

17.4.1 The HeyStaks System

HeyStaks adds two basic features to a mainstream search engine. First, it allows
users to create search staks, as a type of folder for their search experiences at search
time. Staks can be shared with others so that their searches will also be added to the
stak. Second, HeyStaks uses staks to generate recommendations that are added to
the underlying search results that come from the mainstream search engine. These
recommendations are results that stak members have previously found to be relevant
for similar queries and help the searcher to discover results that friends or colleagues
have found interesting, results that may otherwise be buried deep within Google’s
default result-list.

As shown in Fig. 17.2, HeyStaks takes the form of two basic components: a
client-side browser toolbar and a back-end server. The toolbar allows users to create
and share staks and provides a range of ancillary services, such as the ability to
tag or vote for pages. The toolbar also captures search click-throughs and manages
the integration of HeyStaks recommendations with the default result-list. The back-
end server manages the individual stak indexes (indexing individual pages against
query/tag terms and positive/negative votes), the stak database (stak titles, members,
descriptions, status, etc.), the HeyStaks social networking service and, of course,
the recommendation engine. In the following sections we will briefly outline the
basic operation of HeyStaks and then focus on some of the detail behind the
recommendation engine.

Consider, as a motivating example, the scenario of a group of friends planning a
trip (to Canada, in this case). They know that during the course of their trip research
they will use web search as their primary source of information about what to do
and where to visit. So, one of the group creates a stak called “Canada Trip” and
shares it with the other travellers, encouraging them to use this stak for all of their
Canada-related searches regarding the trip.

Figure 17.3 shows one of the group searching for information related to “visa
Canada”; the “Canada Trip” stak has been automatically suggested as their search
context in the HeyStaks Toolbar based on their query. In addition to the expected
Google search results, they also see a number of pages that have been recommended
from this suggested stak. These are results that other travellers have found to be
useful in their searches for related queries. These recommendations may have been
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Fig. 17.2 The HeyStaks system architecture and outline recommendation model

Fig. 17.3 Google search results with HeyStaks promotions
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previously selected or tagged or otherwise shared during recent searches by group
members. Moreover, these recommendations may have been promoted from much
deeper within the Google result-list, or they may not even be present in Google’s
default results for the target query.

17.4.2 The HeyStaks Recommendation Engine

In HeyStaks each search stak (S) serves as a profile of the search activities of the
stak members and HeyStaks combines a number of implicit and explicit profiling
techniques to capture a rich history of search experiences. Each stak is made up of
a set of result-pages (S D fp1; : : : ; pkg) and each page is anonymously associated
with a number of implicit and explicit interest indicators, including the total number
of times a result has been selected (sel), the query terms (q1; : : : ; qn) that led to its
selection, the number of times a result has been tagged (tag), the terms used to tag it
(t1; : : : ; tm), the votes it has received (vC; v�), and the number of people it has been
shared with (share) as indicated by Eq. (17.1).

pS
i D fq1; : : : ; qn; t1; : : : ; tm; vC; v�; sel; tag; shareg (17.1)

In this way, each page is associated with term data (query terms and/or tag
terms) and usage data (the selection, tag, share, and voting count). The term data is
represented as a Lucene2 index table, with each page indexed under its associated
query and tag terms, and provides the basis for retrieving and ranking promotion
candidates. The usage data provides an additional source of evidence that can be
used to filter results and to generate a final set of recommendations. At search
time, a set of recommendations is produced in a number of stages: relevant results
are retrieved and ranked from the Lucene stak index; these promotion candidates
are filtered based on an evidence model to eliminate noisy recommendations; and
the remaining results are added to the Google result-list according to a set of
recommendation rules.

Briefly, there are two types of promotion candidates: primary promotions are
results that come from the active stak St; whereas secondary promotions come from
other staks in the searcher’s stak-list. To generate these promotion candidates, the
HeyStaks server uses the current query qt as a probe into each stak index, Si, to
identify a set of relevant stak pages P.Si; qt/. Each candidate page, p, is scored using
Lucene’s TF-IDF retrieval function as per Eq. (17.2), which serves as the basis for
an initial recommendation ranking.

rel.qt; p/ D
X
t2qt

tf .t 2 p/ � idf .t/2 (17.2)

2http://lucene.apache.org.

http://lucene.apache.org
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Staks are inevitably noisy, in the sense that they will frequently contain pages
that are not on topic. For example, searchers will often forget to set an appropriate
stak at the start of a new search session and, although HeyStaks includes a number
of automatic stak-selection techniques to ensure that the right stak is active for a
given search, these techniques are not perfect, and misclassifications do inevitably
occur; see also [19, 99–102, 119]. As a result, the retrieval and ranking stage may
select pages that are not strictly relevant to the current query context. To avoid
making spurious recommendations HeyStaks employs an evidence filter, which uses
a variety of threshold models to evaluate the relevance of a particular result in terms
of its usage evidence; tagging evidence is considered more important than voting,
which in turn is more important than implicit selection evidence. For example, pages
that have only been selected once, by a single stak member, are not automatically
considered for recommendation and, all other things being equal, will be filtered out
at this stage. In turn, pages that have received a high proportion of negative votes
will also be eliminated. The precise details of this model are beyond the scope of
this chapter but suffice it to say that any results which do not meet the necessary
evidence thresholds are eliminated from further consideration.

After evidence pruning we are left with revised primary and secondary promo-
tions and the final task is to add these qualified recommendations to the Google
result-list. HeyStaks uses a number of different recommendation rules to determine
how and where a promotion should be added. Once again, space restrictions prevent
a detailed account of this component but, for example, the top three primary
promotions are always added to the top of the Google result-list and labelled using
the HeyStaks promotion icon. If a remaining primary promotion is also in the default
Google result-list then this is labeled in place. If there are still remaining primary
promotions then these are added to the secondary promotion list, which is sorted
according to TF-IDF scores. These recommendations are then added to the Google
result-list as an optional, expandable list of recommendations; for further details see
[116, 118]

17.4.3 Evaluation

To gain an understanding of both how users are using HeyStaks, and whether
they seem to be benefiting from its search promotions, we consider a subset of 95
HeyStaks users who remained active during the course of the early beta release of
the toolbar and service. These users registered with HeyStaks during the period
October to December 2008 and the results below represent a summary of their
usage during the period October 2008 to January 2009. Because this is a study
of live-users in the wild there are certain limitations about what we can measure.
There is no control group, for example, and it has not been feasible, mainly for
data privacy reasons, to analyse the relative click-through behaviour of users, by
comparing their selections of default Google results to their selections of HeyStaks
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Fig. 17.4 (a) The average number of staks created and joined per user. (b) The percentage of
sociable and solitary users

promotions. However, for the interested reader, other studies do report on this type
of analysis in more conventional control-group laboratory studies [9, 25, 114, 120].

Key to the HeyStaks proposition is that searchers need a better way to organise
and share their search experiences, as opposed to the largely ad-hoc and very
manually mechanisms (email, word of mouth, face-to-face collaboration) that are
currently the norm. HeyStaks provides these features but do users actually take
the time to create staks as a gateway to better search collaboration? Do they share
these staks or join those created by others?

During the course of the initial deployment of HeyStaks users did engage in a
reasonable degree of stak creation and sharing activity. For example, as shown in
Fig. 17.4, on average, beta users created just over 3.2 new staks and joined a further
1.4. Perhaps this is not surprising: most users create a few staks and share them with
a small network of colleagues or friends, at least initially.

In total there were over 300 staks created on a wide range of topics, from broad
topics such as travel, research, music and movies, to more niche interests including
archaeology, black and white photography, and mountain biking. A few users were
prolific stak creators and joiners: one user created 13 staks and joined another 11, to
create a search network of 47 other searchers (users who co-shared the same staks).
In fact, on average, each user was connected to a search network of just over five
other searchers by the staks that they shared.

The vast majority of staks were created as public staks, although most (52 %)
remained the domain of a single member, the stak creator. Thus 48 % of staks
were shared with at least one other user and, on average, these staks attracted 3.6
members. Another way to look at this is as depicted in Fig. 17.4b: 70 % of users
make the effort to share or join staks (sociable users); and only 30 % of users created
staks just for their own personal use and declined to join staks created by others
(solitary users).

At its core HeyStaks is motivated by the idea that web search is an inherently
social or collaborative activity. And even though mainstream search engines do
not support this, searchers do find alternative collaboration channels (for example,
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email, IM, etc.) with which to partially, albeit inefficiently, share their search
experiences; see for example [68]. One of the most important early questions to
ask about HeyStaks users concerns the extent to which their natural search activity
serves to create a community of collaborating searchers. As users search, tag, and
vote they are effectively producing and consuming community search knowledge.
A user might be the first to select or tag a given result for a stak and, in this
context, they have produced new search knowledge. Later, if this result is promoted
to another user and then re-selected (or tagged or voted on), then this other user is
said to have consumed that search knowledge; of course they have also produced
search knowledge as their selection, tag, or vote is added to the stak.

We have found that 85 % of users have engaged in search collaborations. The
majority have consumed results that were produced by at least one other user, and
on average these users have consumed results from 7.5 other users. In contrast 50 %
of users have produced knowledge that has been consumed by at least one other
user, and in this case each of these producers has created search knowledge that is
consumed by more than 12 other users on average.

Another matter we might consider is to what degree individual users tend to be
producers or consumers of search knowledge. Are some searchers net producers
of search knowledge, in the sense that they are more inclined to create search
knowledge that is useful to others? Are other users net consumers, in the sense that
they are more inclined to consume search knowledge that others have created? This
data is presented in Fig. 17.5a. To be clear, a net producer is defined as a user who
has helped more other users than they themselves have been helped by, whereas a
net consumer is defined as a user who has been helped by more users than they
themselves have helped. The chart shows that 47 % of users are net producers.
Remember that, above, we noted how 50 % of users have produced at least some
search knowledge that has been consumed by some other user. It seems that the vast
majority of these users, 94 % of them in fact, are actually helping more people than
they are helped by in return.

So, we have found that lots of users are helping other users, and lots of users
are helped by other users. Perhaps this altruism is limited to a small number of

Fig. 17.5 (a) Net producers vs. consumers. (b) Promotion sources (self vs. peer)
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searches? Perhaps, most of the time, at the level of individual searches, users are
helping themselves? A variation on the above analysis can help shed light on this
question by looking at the source of promotions that users judge to be relevant
enough to select during their searches. Overall, the beta users selected more than
11,000 promotions during their searches. Some of these promotions will have been
derived from the searcher’s own past history; we call these self promotions. Others
will have been derived from the search activities of other users who co-share staks
with the searcher; we call these peer promotions. The intuition here is that the
selection of self promotions corresponds to examples of HeyStaks helping users
to recover results they have previously found, whereas the selection of promotions
from peers corresponds to discovery tasks, where the user is benefiting from focused
new content that might otherwise have been missed, or have been difficult to find;
see [55, 72]. Thus Fig. 17.5b compares the percentage of peer and self promotions
and shows that two-thirds of selected promotions are generated from the searcher’s
own past search activities; most of the time HeyStaks is helping searchers to recover
previously found results. However, 33 % of the time peer promotions are selected
(and we already know that these come from many different users), helping the
searcher to discover new information that others have found.

The bias towards self promotions is perhaps not surprising, especially given the
habits of searchers, and especially during the early stages of stak development. The
growth of most staks is initially led by a single user, usually the creator, and so
inevitably most of the promotions are generated in response to the creator’s own
search queries. And most of these promotions will be self promotions, derived from
the leader’s own search activities. Many staks are not shared and so are only capable
of making self promotions. As staks are shared, however, and more users join, the
pool of searchers becomes more diverse. More results are added by the actions of
peers and more peer promotions are generated and selected. It is an interesting task
for future work to explore the evolution of a search stak and to investigate how stak
content and promotions are affected as more and more users participate. Are there
well-defined stages in stak evolution, for example, as self promotions give way to
peer promotions? For now it is satisfying to see that even in the early stages of stak
evolution, where the average stak has between 3 and 4 members, that 34 % of the
time members are benefiting from promotions that are derived from the activities of
their peers.

17.5 Case-Study 2: A Reputation Model for Social Search

As described previously, the many and varied different types of activities that a
HeyStaks user can perform (click-throughs, tagging, voting, sharing) on a web page
are ultimately combined and leveraged by HeyStaks to make recommendations
at search time. While the recommendation algorithm used differentially weights
different activity types (so that tagging, for example, is considered a more reliable
indicator of interest than a simple result click-through), the source of the activity



590 B. Smyth et al.

(the user performing the activity) is not considered explicitly. Intuitively, we might
expect that some users are more experienced searchers than others and, as such,
perhaps their activities should be considered as more reliable at recommendation
time. In other words promotion candidates that come from the activities of very
experienced users might be considered ahead of candidates that come from the
activity of less experienced users. This is particularly important given the potential
for malicious users to disrupt stak quality by introducing dubious results to a stak;
see also [78, 79] for related matters.

In this case-study we describe how user activities in HeyStaks can be harnessed
to generate a computational model of searcher reputation, based on the collaboration
events that naturally occur between HeyStaks users as they share their search
experiences. We describe an algorithm for maintaining an up-to-date reputation
model at search time and go on to propose a mechanism for incorporating reputation
into the HeyStaks result recommendation subsystem.

17.5.1 From Activities to Reputation

It seems natural that the reputation of searchers should be linked to the search
knowledge that they contribute. In simple terms this search knowledge is based
on the creation and sharing of search staks and, ultimately, the web pages that
are added to these staks according to a variety of different types of user activities
(selections, voting, sharing, tagging). Each of these activities results in the creation
of new search knowledge. If the target page is not present in a stak, then its selection,
sharing, voting, or tagging will cause it to be added to the stak for the first time. If
the page is already present, as a result of an earlier activity, then the page’s stak
record will be updated to reflect the additional activity.

What then is the relationship between search activity and searcher reputation?
Under the heading of “more search knowledge is better than less search knowledge”,
it might make sense to model reputation as a direct function of the volume of activity
that a given searcher has engaged in. This would be a mistake. For a start, just
because a user is creating a lot of search knowledge, by adding many pages to many
staks, it does not mean that this new knowledge is useful, especially to others. On
the contrary, and as already mentioned, one of the major concerns in any social
recommender is the potential for misuse through the actions of malicious users, a
problem that would no doubt be exacerbated by valuing the contribution of very
‘productive’ malicious users.

Ultimately, in a social context, reputation is a form of incentive. It allows
HeyStaks to capture and encode the value of user contributions [84, 86]. This is
related to the concept of trust in recommender systems and social networks [48, 77]
where, for example, the accumulation of trust scores can motivate users to enhance
the quantity and quality of their contributions. But like any incentive, reputation can
be gamed and so it is important that the incentive is correctly aligned with the sort
of behaviour that benefits the system and its users as a whole. A reputation model
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that is the sum of all user activities does not meet this requirement since it is not
necessarily to anyone’s benefit to create a system that is measured simply by the
volume of its search knowledge.

17.5.2 Reputation as Collaboration

Thus, our model of reputation must recognise the quality of shared search knowl-
edge. To do this the key idea is that the quality of shared search knowledge can be
estimated by looking at the frequency of search collaborations within HeyStaks.
If HeyStaks recommends a result to a searcher, and the searcher chooses to act on
(select, tag, vote on or share) this result, then we can view this as an instance of
search collaboration (a collaboration event). The current searcher—the one who
chooses to act on the recommendation—is known as the consumer and, in the
simplest case, the original searcher—the one whose earlier activity caused this
result to be added to the stak—is known as the producer. In other words, the
producer creates search knowledge by adding the page to a stak, while the consumer
consumes this knowledge by acting on the page when it is recommended.

The basic idea behind our reputation model is that this implicit collaboration
between producer and consumer confers a unit of reputation on the producer
(Fig. 17.6); incidentally, it is implicit because neither the producer nor the consumer
are consciously or actively collaborating, rather the collaboration is a side-effect of
recommendation, but a side-effect that creates a connection between the producer
and consumer. If a given user is a regular producer of search knowledge (pages
that are frequently recommended to, and acted on, by many other users) then this
producer should enjoy a high reputation score. Moreover, if users create lots of staks
and share these staks with many other users, or simply join staks that have been
created by others, then they create an opportunity for more collaboration events to
occur; and if users contribute good search knowledge to shared staks then their
reputation score will benefit from the realisation of these frequent collaboration
opportunities. In this way, this collaboration-based model of reputation is incen-
tivizing users not just to create search knowledge but also to share it with others.

In reality the conferral of reputation by a consumer on a producer is more
complicated than just described. In the general case, when a consumer acts on the
promoted result, there may be many different relevant producers. One producer will
have been the first to act on the result in question, causing it to be added to a stak,

Fig. 17.6 Producer (P) and
consumer (C) collaboration:
C selects page pi, which has
been recommended to C
based on P’s previous
activity. In turn, C confers
reputation on P

P C

rep

recommendation
selection

Pi
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but subsequent users may have (re)selected it for similar or different queries, or
they may have voted on it or tagged it or shared it with others independently of its
other producers. These other users are also producers in the sense that their actions
will be considered at recommendation time. In this case we should share the unit of
reputation between these multiple producers. We propose to do this using a simple
model so that if, at time t, a consumer acts on a promoted result, then the reputation
score of each of its k producers is incremented by 1=k; that is, a single unit of
reputation is shared equally among the producers. It is worth noting that although
this approach shares out reputation equally at any given collaboration event, because
producers accumulate over time, it will naturally be the case that early producers
will tend to enjoy greater reputation if the result in question features in multiple
collaboration events over an extended time period.

17.5.3 An Example

To illustrate our user reputation model, consider the simple scenario as depicted in
Fig. 17.7. Here, the activity of four users, fu1; : : : ; u4g, with respect to a single search
result-page r, is shown at four points in time ti, where t4 > t3 > t2 > t1. Further,
assume that all four users are members of a particular stak S, which is currently the
active stak for each of these users. The sequence of events at each time step ti is as
follows:

t1: User u1 organically selects result r for some search query q, causing result r to
be added to stak S.

user u1

user u2

user u3

user u4

time t1 time t2 time t3 time t4
1/3

1

user’s promoted result selection

user’s organic result selection

promotes result

assigns reputation 

1/3

1/3

time

us
er

s

Fig. 17.7 Simple example of user reputation calculations in HeyStaks
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t2: User u2 selects result r, which has been promoted by HeyStaks, for a search
query that is related to q. Since user u1 is the only user to have previously
selected result r in stak S, we say that user u1 (the producer) has promoted
result r to user u2 (the consumer). Consequently, user u2 assigns a reputation
score of 1 to user u1.

t3: User u3 organically selects result r for an unrelated search query q0. This time,
result r is not promoted by HeyStaks and hence no reputation is assigned by
user u3 to any of the other users.

t4: Finally, user u4 selects result r, which has been promoted by HeyStaks, for
a search query that is again related to q. Since users u1, u2 and u3 have
all previously selected (either organically or by promotion) result r, on this
occasion reputation is assigned by user u4 to each of these users. Thus, in
Fig. 17.7, the reputation score is distributed equally among the three users, such
that each user receives a score of 1=3.

At the end of the time period, overall user reputation can be calculated, for
example, by simply summing the individual reputation scores that each user has
received. For example, in the above scenario, the overall reputation scores for users
u1, u2, u3 and u4 are 4=3, 1=3, 1=3 and 0, respectively.

17.5.4 Graph-Based Reputation Models

In fact we can treat the collaborations that occur among users as a type of graph, a
collaboration graph. Each node represents a unique user and the edges represent
collaboration events between pairs of users. These edges are directed to reflect
the producer/consumer relationships and reputation flows along these edges, and
is aggregated at the nodes. In the above example, user reputation was calculated as
a simple weighted sum of collaboration events but we could so also consider other
types of aggregation approaches. Below we formalise this model and also describe
an alternative based on PageRank [14].

17.5.4.1 Reputation as a Weighted Sum of Collaboration Events

As previously described, according to this aggregation approach, producer rep-
utation is calculated as a sum of the collaboration events in which they have
participated. Consider the selection of result r by consumer c at time t. The
producers responsible for this result recommendation are given by producers.r; t/
[Eq. (17.3)] such that each pi denotes a specific user ui in a specific stak Sj.

producers.r; t/ D fp1; : : : ; pkg : (17.3)
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Then, for each producer of r, pi, we update its reputation according to Eq. (17.4).
In this way reputation is shared equally among its k contributing producers.

rep.pi; t/ D rep.pi; t � 1/C 1=k : (17.4)

As users participate in more and more collaboration events, their reputation grows
over time. See [61] for further details on this approach.

17.5.4.2 Reputation as PageRank

PageRank [14] can also be applied to compute the reputation of HeyStaks users,
which take the place of web pages in the collaboration graph. When a collaboration
event occurs, directed links are inserted from the consumer to each producer.
Once all collaboration events up to some point in time, t, have been captured, the
reputation of each user pi at time t is given by:

PR.pi/ D 1 � d

N
C d

X
pj2M.pi/

PR.pj/

jL.pjj/ ; (17.5)

where d is a damping factor, N is the number of users, M.pi/ is the set of inlinks
(from consumers) to (producer) pi and L.pj/ is the set of outlinks from pj (i.e. the
other users from whom pj has consumed results).

17.5.5 From User Reputation to Result Promotion

In the previous case-study the standard HeyStaks recommendation engine scores
each recommendation candidate based on how relevant it is to the target query
(rel.qt; r/ as per Eq. (17.2), but here with p replaced by r to avoid confusion between
pages and producers). If reputation is to influence recommendation ranking, as
well as relevance, then we need to transform the above user-based reputation
measures into a page-based reputation measure, which can be incorporated into
recommendation. Recommendation candidates can then be ranked according to
a weighted score of relevance (rel.qt; r/) and reputation (rep.r; t/) by Eq. (17.6),
where w is used to adjust the relative influence of relevance and reputation.

score.r; qt/ D w � rep.r; t/C .1 � w/ � rel.qt; r/ : (17.6)

Equation (17.6) describes one simple approach to combining result reputation
and relevance at recommendation time and we now consider two ways to transform
user reputation into a page reputation score; as mentioned above, here we use r to
refer to a result-page instead of p since the latter is more conveniently associated
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with a producer. In what follows then we describe two alternative approaches to
transferring reputation from producers to pages for the purpose of recommendation.

17.5.5.1 Max Reputation

The first page reputation score calculates the reputation of a result-page r (at time t)
as the maximum reputation of its associated producers, fp1; : : : ; pkg; see Eq. (17.7).
Scoring results in this way provides the advantage that the reputation of a page will
not be prematurely decreased if, for example, many new, but not yet reputable, users
have selected the page.

rep.r; t/ D max
8pi2fp1;:::;pkg

�
rep.pi; t/

�
: (17.7)

17.5.5.2 Hooper’s Reputation

Hooper’s Rule for Concurrent Testimony was proposed to calculate the credibility
of human testimony [106]. Hooper gives to a report a credibility of 1 � .1 � c/k,
assuming k reporters, each with a credibility of c (0 � c � 1). For HeyStaks,
result reputation can be determined by performing a similar calculation across the
reputation scores of its producers as in Eq. (17.8).

rep.r; t/ D 1 �
kY

iD1

.1 � rep.pi; t// : (17.8)

17.5.6 Evaluation

The key hypothesis in this case-study has been that by allowing reputation, as well
as relevance, to influence the ranking of result recommendations, we can improve
the overall quality of search results. In this section we evaluate our reputation
models using data generated during a closed, live-user trial of HeyStaks, designed
to evaluate the utility of the HeyStaks approach to collaborative web search in fact-
finding information discovery tasks.

17.5.6.1 Dataset and Methodology

Our live-user trial involved 64 first-year undergraduate university students with
varying degrees of search expertise; see [63]. Users were asked to participate in a
general knowledge quiz, during a supervised laboratory session, answering as many
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questions as they could from a set of 20 questions in the space of 1 h. Each student
received the same set of questions which were randomly presented to avoid any
ordering bias. See [63] for a list of questions used in the trial.

Each user was allocated a desktop computer with the Firefox web browser and
the HeyStaks toolbar pre-installed; they were permitted to use Google, enhanced
by HeyStaks functionality, as an aid in the quiz. The 64 students were randomly
divided into search groups. Each group was associated with a newly created search
stak, which would act as a repository for the group’s search knowledge. We created 6
solitary staks, each containing just a single user, and four shared staks containing 5,
9, 19, and 25 users. The solitary staks served as a benchmark to evaluate the search
effectiveness of individual users in a non-collaborative search setting, whereas the
different sizes of shared staks provided an opportunity to examine the effectiveness
of collaborative search across a range of different group sizes. All activity on both
Google search results and HeyStaks recommendations was logged, as well as all
queries submitted during the experiment. During the 1 h trial, some 3,124 queries
and 1,998 result activities (selections, tagging, voting, popouts) were logged, and
724 unique results were selected.

While the reputation model was not used during this original live-user trial—
recommendations were ranked based on relevance only—the data produced does
make it possible for us to replay the trial to construct reputation models and use them
to re-rank the recommendations made by HeyStaks. We can then retrospectively
test the quality of re-ranked results versus the original ranking against a ground-
truth relevance. As part of the post-trial analysis, each selected result was manually
classified as relevant (the result contained the answer to a question), partially
relevant (the result referred to an answer, but not explicitly), or not-relevant (the
result did not contain an explicit or implicit reference to an answer) by experts.

17.5.6.2 User Reputation

To get a sense of how users were scored by the two reputation models described in
Sect. 17.5.4, we now examine the type of user reputation values that are generated
from the trial data. In Fig. 17.8, box-plots are shown for the reputation scores across
the four shared staks and for each reputation model. Here we see that for the
WeightedSum model there is a clear difference in the median reputation score for
members of the five person stak when compared to members of the larger staks.
This is not evident in results for the PageRank model, which shows very similar
reputation scores, regardless of stak size.

Figure 17.9 shows the reputation scores (normalised by the maximum user rep-
utation score for each model) that members of the 19-person stak had accumulated
at the end of the trial. Users are ranked according to their WeightedSum score
in descending order, and this ordering is maintained in both graphs. The long-
tail distribution of reputation scores is representative of that found in the other
staks, where a small number of users had accumulated high reputation scores and
the remainder relatively low scores. Users with high reputation can be considered
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as search leaders, who are among the first to locate and add relevant results to
staks, and whose search contributions are deemed to be particularly useful by
other stak members. Further, the graphs indicate a strong correlation exists between
reputation scores according to the WeightedSum and PageRank models (Spearman
rank correlation of 0.91).

17.5.6.3 From Reputation to Quality

Of course the true test of the reputation models is the extent to which they improve
the quality of results recommended by HeyStaks.

We have described how user reputation can be combined with term-based
relevance to generate recommendations; see Eq. (17.6). Accordingly, as mentioned
above, we re-rank each of the (relevance-based) recommendation lists produced
during the trial using the result reputation models, based on the user reputation
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Fig. 17.10 Precision for different combinations of relevance and reputation

scores calculated at the appropriate point in time. In what follows, four combinations
of user and result reputation models are considered to re-rank recommendation lists:
WeightedSum or PageRank combined with the Max or Hooper models. Since we
have ground-truth relevance information for all of the recommendations (relative
to the quiz questions), we can determine the quality of the new recommendations
rankings.

Specifically, for each combination of user and item reputation model, we count
how often the top-ranked recommendation is relevant for each query and then
compute a precision metric by dividing this count by the total number of queries
considered. Thus, precision returns a value between 0 and 1 and a precision of 0.5,
for example, means that 50 % of top-ranked results over all queries are relevant for
a given condition.

Figure 17.10 shows precision versus the weighting (w) used in Eq. (17.6) to
adjust the influence of term-based relevance versus reputation during recommen-
dation. The results for each combination of user and result reputation model show
an increase in precision when compared to recommendations based on relevance
ranking only; at w D 0, reputation is not an influencing factor and in all
cases the precision is 0.54. As the influence of reputation over relevance during
recommendation is increased (by increasing w), an improvement in precision is
seen up to values of w in the range 0.4–0.8. For example, at w D 0:5, the
reputation models achieve a precision of 0.60–0.65 compared to 0.54 for the default
HeyStaks relevance-only recommendations, a percentage improvement of 11–20 %.
In all cases, precision decreases as w approaches 1, indicating that the relevance
information HeyStaks uses to rank recommendations is needed in order to optimally
rank recommendations; i.e. reputation alone does not provide best performance.

The WeightedSum user reputation model, when paired with the Hooper result
reputation model, is the best performing technique, peaking at w D 0:4 and
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wD 0:8, each time achieving a precision of approximately 0.66. Hooper’s model
also performed well when combined with PageRank, achieving a precision of 0.64
at w D 0:8. This leads us to believe that Hooper may be the most suitable option
for result reputation. The score it produces for a result is a consensus based on
the reputation of its producers. The model promotes the idea that a result will have a
high score by way of reinforcement from its producers, assuming they are reputable;
for further discussion and results see [61, 62, 64].

17.6 Search Futures

Mainstream search engines are evolving to offer users greater support when it comes
to finding the right information at the right time, and recommendation technologies
are set to play an important role in their evolution going forward. Researchers are
continuing to explore how to make search engines more responsive to the particular
needs and preferences of individuals, and how to introduce greater opportunity for
collaboration into the standard search model. Where this might take us is a risky
prediction to make other than to say that we can be certain that the way we search
for information today is unlikely to be the way we will search for information in
the near future. With this in mind, what follows is a consideration of two different
pressures that will likely push search forward throughout the next decade.

17.6.1 From Search to Discovery

In the original version of this chapter, published as part of the first edition of this
volume, we predicted that mainstream search engines would likely evolve to accom-
modate many elements of the personalization and collaboration ideas surveyed and
presented. This prediction has come to pass, at least in part. Mainstream search
engines such as Google and Bing are increasingly personalizing their results based
on the searcher and her context. In some cases, mainstream search engines have also
begun to incorporate social signals into their ranking engines. For example, Bing has
partnered with social media services such as Twitter and Facebook to incorporate
content and signals from these networks during result selection and ranking, while
Google now emphasises content from its own social network (Google+) in similar
ways. Indeed Google prioritises content from verified Google+ users, lending a form
of reputation to its rankings.

Where today the burden of web search is still very much on the individual
searcher, we believe that the introduction of recommendation technologies will
provide search engines with the opportunity to function more proactively as they
work to anticipate, rather than respond to, a user’s information needs. For example,
the Google Now service goes some way to realising this by making suggestions to
users based on various signals that are relevant to their needs and context. But this



600 B. Smyth et al.

is just the beginning, and as researchers address the challenges of profiling, privacy,
and recommendation head-on (see also Chap. 19), search engines will provide a
unique platform for the next generation of recommendation technologies. And just
as e-commerce sites have served as an early platform for recommender systems,
search engines will help to introduce a new era of recommendation technologies to
a much wider audience.

For example, in the future we might reasonable expect that most of our informa-
tion needs will be within the prediction capabilities of the “search services” of the
day, as they analyse our online behaviours, capture our daily activities, and mine
our social contexts to predict our need for information ahead of our desire to search,
and so proactively recommend the right information when it is needed. This will
fundamentally change the user-experience and invite new innovations when it comes
not just to the presentation of information, but also how users are “interrupted”
during their day by these proactive recommendations. In addition to predicting and
fulfilling a user’s information needs, search and discovery services of the future
will need predict when to recommend, to carefully time their interventions. Our
tolerance to these interruptions will change throughout the day depending on the
context, activity, and even our emotional state. To deliver the right user experience
it will not only be necessary to identify the right information but also to deliver it at
the right time and in the right way.

17.6.2 Search in a Sensor-Rich, Mobile World

Perhaps the greatest opportunity for further innovation will occur as a direct
response to what is surely an inexorable shift away from large-format computing
devices (desktops and laptops) to mobile devices such as tablets, phones, a new
generation of smart watches, and even smart spectacles such as Google Glass; see
also Chap. 14. The shift from desktops and laptops to phones and tablets is now well
documented and in the near future it is likely that the lion’s share of information
access will be conducted through such devices. These devices introduce an entirely
new set of search and discovery constraints, such as restrictions on screen real-
estate and text input capabilities. But far from being limitations these constraints
serve only to create exciting new opportunities for innovation.

Already there is evidence that voice input is capable of taking over as a primary
source of input for mobile devices. For example, at the time of writing Apple,
Google, and Microsoft all offered mature speech recognition-based virtual assistants
on their mobile platforms. Moreover, Apple have recently revealed some unique
user-interface innovations, both display and input, for its new Apple Watch device.
This includes a fluid, zoomable, scrollable UI combined with haptic feedback and
a novel context-sensitive input device, called the digital crown, which echoes the
click-wheel that distinguished the original iPod as a revolutionary music player
more than a decade ago.

But mobile information and computing devices are just the tip-of the iceberg.
We are living in a world that is increasingly instrumented with sensors that are
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capable of capturing events in the real-world. Indeed almost everything we do,
whether buying groceries, exercising in the park, even taking a nap, can result in
data being created and stored somewhere. Privacy and security issues aside, how
will the availability of this data change the way we access information? At the very
least it will provide a unique insight into our daily routines and the context (see also
Chap. 6) of our lives and so provides a new set signals when it comes to anticipating
our needs and the timing of recommendations.

In conclusion, it is probably fair to say that even though our need for information
is unlikely to wane, our reliance on search probably will. It is more likely that search
and recommendation capabilities will be part of the fabric of the web as it evolves.
For certain the search engines of the future will understand us better than they do
today and will serve us more accurately and more frequently. But we will probably
not recognise many of these interactions as classical search sessions. The iconic
query box and familiar “ten blue links” of search today will most likely fade away
to reveal a more nuanced connection between users and information, where the right
information is just there, when we need it, at a touch or at a glance.
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Chapter 18
Human Decision Making and Recommender
Systems

Anthony Jameson, Martijn C. Willemsen, Alexander Felfernig,
Marco de Gemmis, Pasquale Lops, Giovanni Semeraro, and Li Chen

18.1 Introduction and Preview

What is the function of recommender systems? There are various possible answers;
but in this chapter, we view recommender systems as tools for helping people
to make better choices—not large, complex choices, such as where to build a
new airport, but the small- to medium-sized choices that people make every day:
what products to buy, what documents to read, which people to contact.1 From
this perspective, recommender systems researchers and designers should have a

1There is no crisp distinction in English between “choosing” and “deciding”. We will mostly use
the former term, since “decision making” is often associated with complex problems requiring
deep thought and analysis, whereas recommender systems are more commonly used in connection
with smaller, less complex problems.
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solid broad understanding of how people make choices and how the process of
making choices can be supported. The main reason is that it is often desirable or
necessary to keep the chooser in the loop: Arriving at a choice is in general best
seen as involving collaboration between the chooser and the recommender system.
Leaving the chooser out of the loop makes sense in some extreme cases, as when a
music recommender (see Chap. 13) chooses music and plays it without consulting
the listener; or when an intelligent house automatically sets parameters such as
temperature and air circulation. Note that in cases like these we would often speak
not of a “recommender system” but of an agent that performs tasks on behalf of a
person.

There are two basic ways in which a recommender system can keep the chooser
in the loop:

1. Take over only a part of the processing that is required to make a choice, leaving
the rest to the chooser.

For example, many recommenders use their algorithms to reduce a very large
number of options to a smaller subset but then leave it to the chooser to select an
option from the subset (see Sect. 18.6).

2. Generate an overall recommendation and present it to the chooser; but also offer
an explanation of how the recommendation was generated, so that the chooser
can decide for himself whether he wants to (a) follow the recommendation2; (b)
deviate from the system’s line of reasoning while still using part of it; or (c) reject
the system’s recommendation entirely.
A discussion of explanations from the point of view of choice support will be
given in Sect. 18.4.2.

This chapter begins with a compact overview of the psychology of everyday
choice and decision making—called the ASPECT model—that is based on a broad
range of psychological research and formulated so as to be relevant and accessible to
recommender systems people. We will see that considering these patterns one by one
gives us new ideas about how recommender systems can support particular aspects
of human choice. We then provide a high-level overview of strategies for helping
people make better choices—the ARCADE model—discussing how recommender
systems can make use of these various strategies.3 The succeeding sections of
the chapter consider in turn a number of general topics in recommender systems
research and show how they can be better understood in terms of the models of
choice and choice support.

As an idealization, we assume in this chapter that the main goal of a rec-
ommender system is to help people make choices that they themselves will
ultimately be satisfied with. In particular, if a chooser decides to reject the system’s

2To avoid clumsy formulations like “him- or herself” when using personal pronouns in a generic
way, we will alternate between the masculine and feminine forms on an example-by-example basis.
3Much more detail on the ASPECT and ARCADE models will be found in the book-length
monograph by Jameson et al. [39].
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recommendations and choose differently, that’s no problem as long as the chooser is
ultimately satisfied with her choice. In practice, there can be reasons why a system
designer does want the chooser to tend to accept the recommendations (e.g., if the
recommender system is intended to persuade the chooser to eat healthier food or to
buy a particular company’s products). In these cases, designers are likely to want
to introduce some forms of bias into the system (e.g., recommending a particular
class of options especially often; or making the recommendations seem to be better
founded than they really are). Since introducing bias is in general fairly easy to do,
we will leave the determination of how to do so as an exercise for the interested
reader, so as to be able to focus here on the core issues raised by the goal of choice
support, which are quite complex enough in themselves.4

18.2 Choice Patterns and Recommendation

The question “How do people make choices?” is surprisingly hard to answer, even
if you are familiar with the vast and impressive scientific literature on this topic
in psychology, economics, and other fields. Recommender systems people are in
a good position to understand why, since the same difficulty would arise with the
question “How can a computer program make recommendations?” In both cases,
the top-level answer is: “There are a number of different approaches, and they can
be combined in various ways.”

With regard to computational recommendation, the various different paradigms
(content-based, knowledge-based, etc.) and the ways of combining them have been
ably described in works like those of Burke [9, 10]. The ASPECT model [39, Sect. 3]
aims to do something similar for human choice: It distinguishes six human choice
patterns, which are summarized in Table 18.1.5 Each of these patterns is sometimes
found in its pure form, but they are often blended together in various ways (see
Sect. 18.2.7).

An advantage of distilling out these six choice patterns is that it becomes possible
to think in detail about how to support choice when it occurs according to each
pattern. As can be seen in Table 18.1, each pattern comprises a set of typical
processing steps that are mostly different from the steps found in the other patterns.
With regard to each pattern, we can ask: What can a recommender system do to
help people to execute these steps more successfully? In this way, we will be able
to identify a number of possible applications of recommendation technology that
would otherwise be more difficult to discern.

4More discussion of the distinction between the contrasting goals of persuasion and choice support
is given in [39, Sect. 1.2].
5ASPECT is an acronym formed from the first letters of the six patterns.
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Table 18.1 Overview of the six choice patterns that make up the ASPECT model (C = the chooser)

Attribute-based choice Consequence-based choice
Conditions of applicability Conditions of applicability

– The options can be viewed meaningfully as
items that can be described in terms of
attributes and levels

– The (relative) desirability of an item can be
estimated in terms of evaluations of its levels
of various attributes

– The choices are among actions that will
have consequences

Typical procedure Typical procedure

– (Optional:) C reflects in advance about the
situation-specific (relative) importance of
attributes and/or values of attribute levels

– C reduces the total set of options to a smaller
consideration set on the basis of attribute
information

– C chooses from a manageable set of options

– C recognizes that a choice about a
possible action can (or must) be made

– C assesses the situation
– C decides when and where to make the

choice
– C identifies one or more possible actions

(options)
– C anticipates (some of) the consequences

of executing the options
– C evaluates (some of) the anticipated

consequences
– C chooses an option that rates (relatively)

well in terms of its consequences

Experience-based choice Socially-based choice
Conditions of applicability Conditions of applicability

– C has made similar choices in the past – There is some information available about
what relevant other people do, expect, or
recommend in this or similar situations

Typical procedure Typical procedure

– C applies recognition-primed decision
making

– or C acts on the basis of a habit
– or C chooses a previously reinforced

response
– or C applies the affect heuristic

– C considers examples of the choices or
evaluations of other persons

– or C considers the expectations of
relevant people

– or C considers explicit advice concerning
the options

(continued)

In this section, we will focus on the core functionality of recommender systems:
their ability to suggest which of a set of options a person should choose or how a
person should evaluate a particular option.6

6In the terminology of the ARCADE model (Sect. 18.3 below), this strategy is called Evaluate
on Behalf of the Chooser. As we will see in that section, recommender systems typically also
support choice with applications of other strategies that are not specifically associated with
recommendation technology.
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Table 18.1 (continued)

Policy-based choice Trial-and-error based choice
Conditions of applicability Conditions of applicability

– C encounters choices like this one on a
regular basis

– The choice will be made repeatedly; or C
will have a chance to switch from one
option to another even after having started
to execute the first option

Typical procedure Typical procedure

– [Earlier:] C arrives at a policy for dealing
with this type of choice

– [Now:] C recognizes which policy is
applicable to the current choice situation and
applies it to identify the preferred option

– C determines whether actually to execute the
option implied by the policy

– C selects an option O to try out, either
using one of the other choice patterns or
(maybe implicitly) by applying an
exploration strategy

– C executes the selected option O
– C notices some of the consequences of

executing O
– C learns something from these

consequences
– (If C is not yet satisfied:) C returns to the

selection step, taking into account what
has been learned

To give a more concrete idea of the choice patterns and the relationships among
them, we will refer to the following situation: An English-speaking tourist who is
about to visit France would like to buy a French-English dictionary for his or her
smartphone from an app store that offers a number of relevant dictionaries.

18.2.1 Attribute-Based Choice

If a user applies the attribute-based pattern, he will view each dictionary as an object
that can be described in terms of various evaluation-relevant attributes (e.g., number
of entries, usability, and price), some of which are more important than others. Each
object has a level with respect to each attribute, such as a particular number of
entries, which the user may or not be aware of in advance. The chooser can assign a
value to an object’s level of an attribute. Roughly speaking, the chooser will tend to
select a dictionary that seems attractive in terms of the values of the levels of (some
of) its attributes, with the more important attributes influencing the choice relatively
strongly. But there are many specific ways of applying the attribute-based pattern,
ranging from thoroughly considering each object’s levels on many of its attributes
to considering only a small sample of the attribute information and selecting an
object that looks (relatively) good in terms of the sample. Useful entry points to the
literature on attribute-based choice include [36, 66], [67, Chap. 2], and [5].
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In principle, it is possible for a recommender system to take over just about the
entire process of attribute-based choice from the user if it can acquire some useful
hypotheses about the chooser’s evaluation criteria (i.e., the relative importances of
attributes and the values of levels of attributes) But there are also ways in which a
recommender can help even while keeping the chooser in the loop:

1. The first way concerns the first of the three main steps listed for this pattern in
Table 18.1: People often do not bring stable and appropriate evaluation criteria
to a choice problem but rather develop them while choosing (see Sect. 18.7.2).
Hence it can be useful for a recommender system to tell the chooser something
like “For a person in your situation, a French-English dictionary ought to have
at least 30,000 entries”. This strategy of recommending evaluation criteria is
sometimes found in knowledge-based recommender systems (see Chap. 5). But
on the whole, recommending evaluation criteria is much less common than
recommending particular items.

2. An obvious and frequently applied way in which a recommender system can help
with attribute-based choice is in the second main step: reducing a very large set
of options to a smaller consideration set. The initial set of potentially choosable
options (e.g., books sold via an e-commerce website) is often so large that a
chooser could not possibly consider each item. When choosing without the help
of a recommender system, people often apply very simple winnowing strategies
(see, e.g., [20]) for this purpose, such as eliminating all options that fail to meet
some threshold with regard to one important attribute. Even a highly imperfect
recommendation algorithm can often do a better job of winnowing, while still
leaving the final decision to the chooser (see Sect. 18.6 for further discussion).

18.2.2 Consequence-Based Choice

A different way of thinking about an option is to consider the concrete consequences
of choosing it. So instead of contemplating the number of entries offered by a
dictionary, our tourist might consider how successfully she is likely to be able to use
the dictionary to order meals in restaurants during her vacation. Consequence-based
choice involves a number of different issues than attribute-based choice: Among
other things, the chooser needs to deal with uncertainty about what consequences
will occur if she chooses a particular option and the fact that they may occur in the
distant future. And there is often a considerable variety of possible consequences,
ranging from objectively describable events to the chooser’s affective responses, a
fact that complicates the process of evaluating an option in terms of its anticipated
consequences. Entry points to the literature on consequence-based choice include
works on the most prominent descriptive model, prospect theory [44, 92] and works
that focus on support for consequence-based choice (e.g., [28]).
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Here again, looking at Table 18.1, we can see points at which a recommender
system can support consequence-based choice:

1. The recommender system can help the chooser to recognize that a choice can be
made and to decide when and where to make it. Consider, for example, a system
like COMMUNITYCOMMANDS [49], which suggests commands that a user of
a complex application could execute in the current situation. Regardless of the
value of the specific recommendations, the system is in effect telling the user
that there is more than one command that could be used in the current situation
and that this is a good time to consider which one to use. A recommender
could in principle focus entirely on this specific form of choice support, saying
something like “I recommend thinking now about what command to use in
this situation”. This type of recommendation could be useful when (a) the
recommender does not have good reasons for recommending any specific option;
but (b) the recommender is able to determine in a personalized way when and
where the user should think about a particular type of choice.

2. The recommender can help the user to identify one or more options he didn’t
know were available, such as obscure commands or configuration settings—a
useful function even if the chooser ends up evaluating these options entirely on
his own.

3. The recommender can help the chooser arrive at evaluations of particular
consequences. Even if a chooser knows that a particular consequence will occur
(e.g., having to download a high-quality French-speaking voice with a size
of 100 MB), she may have a hard time anticipating accurately how good or
bad this consequence will be for her. A recommender system could in effect
“recommend”—or warn against—particular unfamiliar consequences instead of
entire options (compare the approach mentioned in Sect. 18.2.1 of recommending
particular evaluation criteria within the attribute-based pattern).

18.2.3 Experience-Based Choice

The two preceding patterns can involve some quite elaborate reasoning about the
merits of the available options. The remaining four ASPECT patterns describe how
people use quite different approaches to arrive at choices in ways that are typically
quicker and less effortful.

Experience-based choice occurs when the chooser’s past experience with the
choice situation and/or with particular options directly suggests some particular
option. For example, if the chooser has had positive experience with the dictionaries
of a particular publisher, he is likely to have a good feeling when he thinks
about purchasing another dictionary from the same publisher, even if he does
not remember the previous experiences. Or he may have fallen into the habit
of purchasing products from a particular publisher, even without any particularly
rewarding experiences. In Table 18.1, four specific variants of this pattern are
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distinguished, which are discussed in [39, Sect. 7]. The principle that they have in
common is that the chooser selects an option that has worked well (or adequately)
in the past.

Entry points to the literature on experience-based choice include [3, 45, 70, 95]
and [30].

On a high level, case-based [83] and content-based [53] recommender systems
can be seen as taking over (part of) the process of experience-based choice by
analyzing the chooser’s relevant previous experiences to determine which of the
currently available options they suggest. One way in which a recommender system
can support experience-based choice while keeping the chooser more in the loop
is by helping the chooser to remember and take into account relevant aspects
of her previous experience, such as the specific actions that the chooser has
performed in the past and the feelings that she had while performing them. The
term recomindation [69] has been coined to refer to this approach.

18.2.4 Socially Based Choice

People often allow their choices to be influenced by the examples, expectations,
or advice of others. If many other people have tried a given dictionary and
rated it positively, their ratings can be seen as a summary of a great deal of
relevant experience that it would be impractical for the current chooser to acquire
himself. In addition to providing such social examples, other people can have social
expectations (e.g., as to what is considered cool or politically incorrect) as well as
explicit advice.

Entry points to the literature on socially based choice include [27], [16, Chaps. 4
and 6], and [87, Chap. 3].

Collaborative filtering can be seen as a way of automating the “follow social
examples” subpattern of the socially based pattern; but a closer look at this pattern
[39, Sect. 8] brings to light additional ways in which recommender systems can
support it:

1. Whereas collaborative filtering normally (directly or indirectly) considers exam-
ples from people who are similar to the current chooser in some respects, the
class of similar people is not always the most relevant class: Sometimes a chooser
wants to make choices that are characteristic of a group of people to which she
does not (yet) belong (for example, people who are more advanced in a particular
domain or who enjoy higher prestige). Some trust-based recommender systems
[91] take into account the social relationships between the chooser and the other
persons whose opinions and choices are being considered.

2. What is interesting about other people is often not the examples that they provide
but the expectations that they have. For example, for a user who wants to become
a well-regarded member of an online community, recommendations about how
to behave are often better based on the (explicit or implicit) expectations that
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govern behavior in that community as opposed to the actual typical behavior of
members, which may largely fail to conform to these expectations.

3. The third variant of the socially based pattern involves not following examples
or expectations but rather taking explicit advice into account. One way in which
a recommender system can support this pattern is by helping the chooser to find
persons who can provide good advice, as is done in many expert finding systems
(see, e.g., the summary in [40, p. 444]).

4. This advice taking subpattern of the socially based pattern is even more relevant
to recommender systems on a different level: When the chooser is aware of
the fact that he is being offered recommendations,7 it is natural for him to
consider (mostly quickly and intuitively) some of the same questions that he
would consider when taking advice from a human advice giver (see, e.g., [8, 42]),
some of which concern the advice giver’s credibility (see Chap. 20). In fact, it
is often appropriate to view the user of a recommender system as applying a
combination of (a) the advice taking subpattern of the socially based pattern, with
the difference that the advice giver is not a person but a recommender system;
and (b) one or more other choice (sub)patterns (see Sect. 18.2.7 for a discussion
of combinations of choice patterns). We will return to this point when discussing
the topic of explanations (Sect. 18.4.2).

18.2.5 Policy-Based Choice

Sometimes, the choice process can be seen as comprising two phases, which may
be separated considerably in time: In the first phase, the chooser arrives at a policy
for making a particular type of choice (e.g., “When buying a dictionary for your
smartphone, always choose the Oxford dictionary if one is available”). Later, when
faced with a specific choice to make, the user applies the policy.

Policy-based choice has been discussed mainly in the literature on organizational
decision making, where policies play a more obvious role than they do with
individual choice (see, e.g., [59, Chap. 2]). Relevant research on individual choices
has been conducted in connection with the concepts of choice bracketing [75] and
self-control [73].

1. A relatively neglected way of supporting a policy-based choice is to recommend
a policy to the chooser. An example would be a system that recommended a
diet or an exercise regime for the user to follow. This type of recommendation
can be especially valuable in that it is often difficult for a chooser to evaluate a
possible policy, partly because of the difficulty of anticipating what consequences
its application will have in the long run. To take a striking example: Camerer et al.

7This type of awareness is often absent, as when the recommender system adapts the order in which
a list of options is presented to the user without announcing the fact that it is doing so.
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[11] found that taxi drivers who can choose how many hours to drive each day
often apply a simple policy (“Drive each day until you have earned a fixed target
amount of money”) that in practice tends to minimize rather than maximize their
hourly earnings.

2. An easier and more frequently found type of support is for a system to help
the user apply a particular policy (e.g., concerning what types of newspaper
story to read each day) by (a) having the chooser formulate the policy somehow
and (b) automatically executing the policy whenever a relevant case arises.
An example is a system for personalized news reading that allows the user
to assign priorities to particular types of news item so as to influence the
news stories that are presented to her. Recommender systems that ask users to
specify their general “preferences” explicitly and that then apply these evaluation
criteria to subsequent choices can be seen as supporting policy-based choice; see
Sect. 18.5.1 for more discussion of what “preferences” actually are.

18.2.6 Trial-and-Error-Based Choice

Especially if none of the other patterns leads readily to a choice, a chooser will
sometimes simply (perhaps randomly) choose an option and see how well it works
out. For example, our dictionary chooser might download the free dictionary and
quickly look up a few words, judging whether it seems worthwhile to spend money
on one of the other dictionaries.

It is useful to view the trial-and-error-based pattern as being applied even in some
cases where the chooser does not go all the way in executing the chosen option. For
example, our dictionary chooser might “try out” a dictionary in the weaker sense of
closely examining its description in the app store and carefully reading the reviews.
The choice process and the appropriate forms of support are in many ways similar
to those that arise when more thorough trials are involved.

Trial-and-error-based choice has been studied from various perspectives in the
psychological literature, mostly not associated with the term “trial and error” (see,
e.g., [17, 51, 68, 74], and [97]).

1. One important way in which a recommender system can support trial-and-error-
based choice is by helping the chooser to decide, at each point in the cycle, which
option(s) to try out next—a type of decision which, upon close inspection, turns
out to involve a surprising variety of considerations. A relatively novel approach
would be for a recommender explicitly to recommend an exploration strategy: a
strategy for choosing the next option to try out (e.g., “In this situation, it seems
best to try out the highest-rated dictionaries first, even though they are the most
expensive ones”). An approach more commonly taken by recommender systems
is to support the execution of a particular exploration strategy; variants of this
approach are discussed in Sect. 18.7.
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2. Recommender systems can also support the second main part of the trial-and-
error-based pattern: learning from the experience acquired in trying out an option.
Among other things, a recommender system can suggest what aspects of the
outcome of a trial to attend to—something that is often not at all obvious. For
example, a dictionary user might be advised to pay attention to how long it takes
him to look up a word, given that this factor will be more important in everyday
use of the dictionary than it is while he is trying it out in an artificial situation.

18.2.7 Combinations of Choice Patterns

The six choice patterns are often used in combination, just as different recommenda-
tion techniques are often combined to create hybrid recommenders [9, 10]. Explicit
discussions of forms of combination are rather rare [39, Sect. 3.3.7]. Many studies,
however, indirectly yield ideas about forms of combination, as does everyday
experience. Most people, for example, can remember choice situations in which our
experience-based “gut feeling” conflicted with the result of a careful consequence-
based analysis, indicating that the two patterns had been applied in parallel and
perhaps largely independently of each other. Another common form of combination
is a “cascade” in which one pattern (e.g., a simple attribute-based strategy) is used
to generate a manageable number of options and then a different pattern is used to
choose among these options.

Recommender systems can in principle recommend particular (combinations of)
choice patterns as being suitable for a given choice situation; this idea is discussed
in Sect. 18.3.2 below.

18.2.8 What Constitutes a Good Choice?

If our goal is to help people make better choices, we should have some idea
of when people feel that they have chosen well. A number of researchers have
investigated this question (see, e.g., [4, 32, 96]). Although specific answers vary,
the following statements are widely accepted (for a more detailed discussion, see
[39, Sect. 3.6]):

1. Choosers want their decisions to yield good outcomes.
This point isn’t as straightforward as it may seem, because what counts as a
“good outcome” is in turn surprisingly complex. In this chapter, we will view
a good outcome as one that the chooser is (or would be) satisfied with in
retrospect, after having acquired the most relevant knowledge and experience.
The emphasis in the recommender systems field on maximizing the accuracy of
recommendations can be seen as an attempt to optimize the outcomes of choice
processes.
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2. Choosers don’t want to invest time and effort in the choice process itself that is
out of proportion to the resulting benefits.
Note that a recommender system whose use yields only barely acceptable
outcomes can still be considered worth using if it drastically reduces the time
and effort required to find an acceptable outcome.

3. Choosers tend to prefer to avoid unpleasant thoughts.
Some ways of thinking about a decision can involve distressing thoughts, as when
a car buyer considers whether to save money by not purchasing an optional safety
feature, noting that doing so will increase the likelihood that a member of her
family will be injured. One benefit of outsourcing parts of the decision process
to a recommender system (or to a human advisor) is that the chooser herself does
not need to think about such matters.

4. Choosers often want to be able to justify the decision that they have made to
other persons—or to themselves.
An implication is that one way of supporting choice is to make it easy for the user
to come up with a satisfying justification of whatever option is best for him, for
example, by supplying a justification explicitly, as is done by many recommender
systems that provide explanations for their recommendations (see Chap. 10 and
Sect. 18.4.2.)

In sum, all of the four main quality criteria for choices are fairly straightforwardly
served by recommender systems. This fact may help to explain their popularity
relative to some other forms of choice support that fare poorly with respect to one
or more of these criteria (e.g., decision support systems that call for effortful and
often frustrating contemplation of trade-offs, which violates two of the four criteria;
see [96]).

18.3 Choice Support Strategies and Recommendation

While discussing the six ASPECT choice patterns, we have focused on how their
application can be supported by the technology that is most characteristic of
recommender systems: technology for generating choices and evaluations on behalf
of the chooser. But there are several other general approaches to supporting choice,
all of which can sometimes be applied fruitfully within recommender systems. The
ARCADE model (introduced in [39, Sect. 4]), is a high-level synthesis of approaches
to choice support that have been discussed, studied, and applied both with and
without support from computing technology. The bottom part of Fig. 18.1 gives a
high-level overview of the six strategies.
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Fig. 18.1 High-level overview of the ARCADE model of choice support strategies, illustrating its
relationship to the ASPECT model of choice patterns (The technologies shown in the pillars of the
arcade are among those that can be deployed to realize the strategy in question.)

18.3.1 Evaluate on Behalf of the Chooser

The strategy that is typical of recommender systems is called within the ARCADE

model Evaluate on Behalf of the Chooser. As is indicated in the bottom part of
Fig. 18.1, the application of this strategy in interactive systems does not always
require recommendation technology; straightforward interface design is often ade-
quate, as when a generally relevant recommendation is offered to all choosers (e.g.,
“You are advised to close all open applications”).

18.3.2 Advise About Processing

The second ARCADE strategy that involves a form of recommendation is the strategy
Advise About Processing. The advice being given here concerns not particular
options on the domain level but rather ways of applying a particular choice pattern
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(or combination of patterns). A recommender system can give procedural advice
of this sort, in effect telling the user, for example, “In this case, it seems best for
you to consider mainly your own past experience and to ignore what you think
your friends would do”.8 For a recommender system to provide advice of this sort
in a personalized way would make sense in a situation where the chooser could
in principle apply any of two or more procedures and the recommender system is
able to predict that one is more suitable than the other for the current user and/or
situation. At this time, it is hard to find examples of this sort of recommendation
by recommender systems, though an early step has been taken by Knijnenburg
et al. [46].

18.3.3 Access Information and Experience

We now turn to the four ARCADE strategies that are not specifically connected with
recommendation technology, though they can all be applied within recommender
systems.

The most obvious way of helping people to choose is to provide relevant
information and give them a clearer idea of what sorts of experiences they have had
or are likely to have if they choose a particular option. Most recommender systems
apply this strategy, especially when they are presenting options for evaluation by the
chooser. Thinking back to the ASPECT choice patterns reminds us that the types of
information, media, and experience that can be provided are by no means restricted
to objective information about properties of the available options. For example, to
support the consequence-based pattern, a system can give a preview of what it will
feel like to watch a particular film; and to support the socially based pattern, it can
inform the user about social examples and expectations.

18.3.4 Represent the Choice Situation

This high-level strategy takes into account the fact that the particular way in which
information about a choice situation is organized (e.g., the way in which items are
displayed on a computer screen) can make particular types of processing easier
or more difficult. For example, it is easier to compare options with each other,
as opposed to evaluating each option individually, if the options are displayed
simultaneously and the information about them is organized so as to facilitate
comparison. Shifting from joint to separate evaluation or vice-versa can have major
consequences for processing (see, e.g., [36]).

8This type of advice is often given implicitly, in that the system provides support for one procedure
but not for others (e.g., by reminding the chooser of her past experience but providing no
information about what other people choose).
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Since a recommender system almost inevitably contributes to the way in which
the choice situation is represented to the chooser, recommender system designers
should think about the consequences of particular forms of organization for the
chooser’s processing. Some issues of this sort are discussed in Sect. 18.8.

18.3.5 Combine and Compute

Even aside from the recommendation algorithms that it applies, a recommender
system can make various types of computation on the basis of available information
whose results can support the chooser’s processing. Simple examples include
functionality for allowing the user to sort or filter recommended items according
to particular attributes. More sophisticated computation is involved, for example,
when a set of items is automatically divided into clusters according to inter-item
similarity so as to provide the user with a better overview of the set of options.
As these examples show, this type of choice support can complement the core
recommendation functionality of a recommender system.

18.3.6 Design the Domain

The basic idea with this strategy is to design the underlying reality that the chooser is
making choices about in a way that makes it easier for the chooser to make the right
choices—or for a recommender system to generate good recommendations. The
difference from the strategy Represent the Choice Situation is that you are crafting
the options and other aspects of the choice situation themselves, not just the way in
which they are presented to the chooser.

Suppose, for example, that you are designing a recommender system that helps
users to choose appropriate privacy settings within a particular social network site.
Using the strategy Represent the Choice Situation, you would try to display the
options to the user in a helpful way (e.g., grouping related options together). But if
the privacy settings are inherently hard to deal with (for example, if there are a large
number of settings that interact in complex ways), even the best representation may
confront users with a challenging choice problem, and even the best recommenda-
tion algorithm can have a hard time determining which combinations of settings
are likely to be best for the chooser. Applying the strategy Design the Domain,
you would reconceptualize the set of privacy options themselves—and maybe also
the underlying privacy management principles—so as to make the choice problem
inherently easier for the chooser and/or for the recommender system. This idea
of “designing for recommendability” is analogous to the idea of “designing for
explanation”, which was studied in connection with expert systems in the 1980s
(see Chap. 10). We are aware of no explicit attempts to achieve this goal, but it
appears to deserve some attention.
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18.3.7 Concluding Remark on Support Strategies

This overview has shown that (a) recommendation technology makes it possible for
recommender systems to support choice in ways that complement other technology-
based forms of support but that (b) what a recommender system designer is
designing is usually a hybrid system that incorporates other choice support strategies
alongside the most relevant strategy Evaluate on Behalf of the Chooser.

18.4 Arguments and Explanations

So far, we have discussed individual applications of the ARCADE strategies. But
a choice support agent will often present a coherent set of applications of such
strategies, which may be called an argument. Arguments have a special role for
recommender systems in that they often serve as part of an explanation of a
recommendation (Sect. 18.4.2).

18.4.1 Arguments

A simple verbal argument within the attribute-based pattern would be “This product
is the best one on the dimension which you consider most important [so it’s worth
considering seriously]”. As this example shows, it is not always necessary or
appropriate to formulate explicitly a conclusion that is implied by the argument.
In discussions and models of argumentation (e.g., [89]), an argument is normally
viewed as comprising purely verbal components; but with recommender systems, it
can also include nonverbal elements such as tables and visualizations.

Almost all of the ARCADE strategies can be used (often in combination)
to construct an argument for presentation to the chooser: Access Information
and Experience and Combine and Compute determine what facts are presented.
Represent the Choice Situation determines how they are presented. Arguments
usually implicitly apply Advise About Processing in that they suggest that the
particular type of processing embodied in the argument is appropriate for the current
choice problem. Evaluate on Behalf of the Chooser is applied whenever an argument
includes an evaluation made on behalf of the chooser (as happens twice in our
example of “. . . the best product on the most important dimension . . . ”).

Here are two points about arguments that are relevant to their use in a recommen-
dation context:

1. Even a good argument does not prove that a particular option should be chosen
but rather suggests reasons for choosing it, which may be overridden by other
considerations (e.g., through the application of other choice patterns).
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2. The chooser sometimes accepts some parts of an argument but not others. For
example if he notices an incorrect statement being offered as one step in an
argument, he can replace it with a correct statement and then try to work with
the modified argument, seeing whether it leads to the same conclusion or to a
different one.

18.4.2 Explanations of Recommendations

An argument can be presented as choice support independently of any recom-
mendation technology, but it can also be provided as part of an explanation of a
recommendation. The topic of explanations is treated thoroughly in Chap. 10, which
covers their use for both choice support and persuasion; Table 10.2 of that chapter
offers a convenient overview of examples of explanations, which the interested
reader may want to consult at this point. As a supplement to that chapter, we provide,
using concepts from the ASPECT and ARCADE models, a theoretical account of
explanations seen as a form of choice support.

As can be seen from Chap. 10, the things that are called explanations come in
a variety of forms, some of which do not involve actual explanations of how the
recommender system arrived at its recommendation. We will consider three types
that together represent most of the issues that arise:

18.4.2.1 Type 1: Direct Support for the Assessment of the Credibility
of the Recommender System

For example, several of the “explanations” tested by Herlocker et al. [34] present
only information that helps the chooser to assess the likelihood that the recommen-
dation is accurate (e.g., “MOVIELENS has predicted correctly for you 80 % of the
time in the past”). This type of information is comparable to information about the
expertise of a human advice giver (e.g., references to academic degrees or job titles).
So this type of explanation can be seen as support for the advice-taking subpattern
of the socially based choice pattern (Sect. 18.2.4).9

Where the goal of the recommender system is choice support, the goal in
providing this type of information should be to convey a realistic impression of
the system’s credibility (not to maximize apparent credibility).

9A thorough discussion of credibility in human and artificial advice giving can be found in
Chap. 20.



628 A. Jameson et al.

18.4.2.2 Type 2: An Argument Coupled with a Fidelity Claim

Many explanations comprise two parts:

1. An argument (in the sense introduced above) that the chooser can consider when
thinking about the choice problem.
Example: “This movie stars your favorite actress, and it belongs to your favorite
genre.”

2. A fidelity claim to the effect that the argument reflects the system’s reasoning in
arriving at the recommendation.
Example: “That’s why this movie is being recommended.”
The fidelity claim is often implicit: The mere fact that the system accompanies a
recommendation with an argument is likely to suggest the fidelity claim.

As was noted above, the argument can constitute useful choice support in its own
right, regardless of whether it is offered as part of an explanation. But the fidelity
claim adds an additional layer to the explanation in that it enables the chooser also
to view the argument as (further) evidence concerning the recommender system’s
credibility (e.g., “If those are the only reasons why the system thinks I ought to
like this movie, I can ignore this recommendation”). Hence this type of explanation
supports the advice-taking subpattern of the socially based choice pattern as well as
whatever choice patterns are represented in the argument itself (e.g., the attribute-
based pattern in the example just given).

Accordingly, there are two different desiderata for this type of explanation:
(a) that the argument should be useful for the chooser, whether she accepts it
wholesale or makes selective, critical use of it; and (b) that the fidelity claim should
be accurate and should help the chooser to make a realistic credibility assessment. In
particular, if a fidelity claim is made even though the argument bears no relationship
to the system’s processing (a practice discussed in Sect. 10.3 of Chap. 10), any
credibility assessment that the chooser makes will be based on a false premise.
From the point of view of choice support, arguments that do not reflect the system’s
processing should be presented as arguments, not as explanations of the system’s
processing.

18.4.2.3 Type 3: An Explicit Description of the Recommender
System’s Processing

Often, an explanation consists of an explicit description of the system’s processing,
as with the “detailed process description” explanation of Herlocker et al. [34]: “To
compute this prediction, MOVIELENS examined 1000 users and selected the 50
users whose ratings correlated closest to yours. Of these users, 33 had rated this
movie. This prediction is based on those 33 ratings.”

This type of explanation differs from the previous type in that it describes
the system’s processing rather than presenting an argument for consideration by
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the chooser; and indeed, the processing done by the recommender system will often
be of a sort that could not be performed in the same way by a human chooser (e.g.,
because it requires data and computational capacity that are not available to the
chooser). Still, it can suggest to the chooser a human-like argument (e.g., “people
with tastes similar to mine apparently tend to like this movie”) that he can make
use of as part of his own thinking about the problem. And he can try to evaluate the
credibility of the processing (e.g., “Is 1000 users a convincingly large number?”),
subject to the limitations imposed by his lack of full understanding of how the
processing works.

Hence this type of explanation has the same two-edged character as the previous
type, and it should be designed with the same two basic desiderata in mind, even
though they can be achieved only less directly: that a helpful argument should be
suggested and that a realistic credibility assessment should be supported.

18.5 “Preferences” and Ratings

The picture of a chooser that has been presented in this chapter is that of a person
who makes choices by applying one or more of the ASPECT choice patterns, a pro-
cess that can be supported through application of one or more of the ARCADE choice
support strategies, which can in turn involve the use of recommendation technology.
A rather different conception, which is often expressed (mostly implicitly) in the
recommender systems field and in economics and other areas (see, e.g., [33]), is that
of a chooser who has preferences which determine what she chooses. According to
this conception, the goal of a recommender system is to acquire information about
the chooser’s preferences so as to be able to create a preference model that can be
used to predict what the chooser will like. To understand the relationship between
these two conceptions, we need to understand what the term preferences refers to.

18.5.1 What Are “Preferences”?

The term preferences is used in a variety of senses in the recommender systems field
to refer to something like the things in the chooser’s head that determine how he will
evaluate particular things and what choices he will make. As a way of teasing apart
some of the senses that the term can have, consider a chooser who is answering the
questions shown in Table 18.2.

Question 1, about a specific, relative preference, is fairly straightforward: The
chooser is in effect being asked which of the two dictionaries she would choose
in the current situation if there were no other dictionaries available. In economics,
it is often assumed that exactly these “stated preferences” are what best expresses
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Table 18.2 Illustration of four different senses of the term preferences

peoples likes and dislikes, and conjoint measurement methods [12] are used to build
a general preference model from such specific choices.10

Question 2 differs from Question 1 in that it requires the chooser to express some
sort of assessment of a dictionary independently of other dictionaries. Note that a
chooser who answers Question 1 may or may not in any sense have made a separate
evaluation of each of the dictionaries (See Sect. 18.3.3). For example, when applying
the attribute-based pattern, the chooser may simply choose one dictionary because it
seems better than the other one on the most important attribute. In this case, forcing
the chooser to answer Question 2 would be to force him to produce assessments
that he does not consider necessary for making his choice. Nevertheless, many
recommender systems use such absolute specific preference statements, elicited as
ratings, as input for creating a model to predict a chooser’s choices and evaluations
(see Sect. 18.5.2 below).

As is illustrated in the bottom row of Table 18.2, the term preferences is also
often used to refer to (relative or absolute) evaluations that apply to categories or
attributes of options, as opposed to specific options. Models in the recommender

10In the recommender systems field, relatively few attempts have been made to measure and model
preferences in such a relative way, for example by using interfaces in which users rank a set of
items; but see, for instance, the work of Boutilier and colleagues (e.g., [54]).
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systems field, but also in fields such as economics and philosophy, often assume
that people’s specific preferences can be predicted and explained in terms of general
preferences, though the latter can be conceptualized in many different ways. The
relationship between general and specific preferences is complex, but the following
points are relevant to our current discussion:

• The six ASPECT choice patterns cannot be reduced to straightforward processes
of deriving specific preferences from general preferences (see Table 18.1 for a
reminder of the typical steps of the patterns).

• Even when it is possible to induce a person to express a general preference by
asking a question like those in the bottom row of Table 18.2, it cannot be assumed
that the response corresponds to any previously existing predisposition that the
person has (see, e.g., [26]).

Taken together, these points imply that we can avoid confusion by using the term
preferences, if at all, only when referring to specific relative preferences. When
we need a term to refer to the general predispositions that people have regarding
a particular choice domain—for example, when we want to distinguish whether
these predispositions change over time on the basis of experience (as in Sect. 18.7
below)—we can use the term evaluation criteria, which avoids most of the problems
with the term preferences—as long as we remember that evaluation criteria can take
very different forms depending on which choice pattern (or combination of choice
patterns) is being applied.

Instead of saying that a recommender system models a chooser’s preferences,
we should say that it creates and uses a preference model, which we can define
as a model that can be used to predict specific preferences. Preference models
take different forms in different types of recommender system, and they do not
necessarily describe anything like the “general preferences” illustrated in Table 18.2.

18.5.2 What Do Ratings Reflect?

Some widely adopted methods in recommender systems acquire input for their
preference model by eliciting ratings, which are supposed to reflect people’s
absolute preferences for specific options (see the discussion of Table 18.2).

18.5.2.1 A Sketch of the Processing Underlying Ratings

Given the importance of ratings in the recommender systems field, it is important
to have some idea of what goes on inside a person’s head when she is asked to
rate an item. There is no clear consensus on this question in relevant areas of
psychology such as attitude research (see, e.g., [23, 29, 81]) and the measurement
of “preferences” (see, e.g., [26, 43, 93]), but the following points would presumably
be widely accepted:
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Table 18.3 Types of association that can be evoked in a rater by an item I that is presented for
rating, organized in terms of the corresponding ASPECT choice patterns

Choice pattern Corresponding type(s) of association

Attribute-based Levels of I on important attributes

Consequence-based Consequences of dealing with I

Experience-based Affective responses to, and stored evaluations of, I and/or similar options

Socially based Social examples, advice, and perceived expectations relevant to I

Policy-based Implications of policies relevant to I

An item I presented to a rater R will evoke various evaluation-relevant memories,
beliefs, experiences, and affective responses (loosely called here associations for
short), and the rating that R gives will be a summary of the overall positivity of
these associations. As is shown in Table 18.3, these associations can be of different
types, which can be organized according to the ASPECT choice patterns. As with the
task of choosing, R will probably not be able to contemplate all possible relevant
associations of these types; he may restrict himself to one or two of the ASPECT

patterns and think selectively within each pattern (e.g., with a dictionary, thinking
only of a relevant previous experience and a salient social example or two). Hence he
can be seen as drawing a sample from the large set of possibly relevant associations.
To express his rating on whatever scale is offered to him, he will choose the
predefined scale value that seems best to summarize his sample; note that there
is no obviously appropriate procedure for arriving at this summary, especially when
different ASPECT patterns are being applied at the same time and the associations
are diverse and maybe even contradictory (see, e.g., [18]).

A type of association that is of special importance is the stored evaluation that
may be available if the rater has evaluated I in the past: Just as a person will often
simply repeat previous choices, when rating an item I she will often just try to
reproduce an evaluation of I that she has expressed in the past (see the entry for
the experience-based pattern in Table 18.3). But even when R did evaluate I in the
past, R may not actually retrieve a stored evaluation but rather infer (on the basis of
associations that come to mind now) what her previous evaluation is likely to have
been.

18.5.2.2 Implications for the Practice of Rating Elicitation

This picture of the activity of rating yields some implications concerning the ways
in which it makes sense to elicit ratings:

1. It is not in general helpful to view a rating as reflecting a single, well-
defined variable such as a degree of “liking” or “preference” that has a true
value that is simply masked by “noise” that arises during the rating process
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(e.g., because of the rater’s inconsistent use of the rating scale).11 Instead, the
various samples of associations that a rater may summarize at different times
can be viewed as the reflections of different perspectives on the item which arise
under different conditions. As an analogy, note that a building (e.g., the White
House) can look quite different when photographed from different angles; no
single photograph, no matter how carefully taken, reflects or even approximates
the “true appearance” of the building.

2. Which particular perspective the rater takes can depend on various factors, such
as the following:

• What specific question is asked (e.g., “How have you enjoyed your experience
with the product so far?” vs. “How do you expect to enjoy the product from
now on?”) or how R interprets an unspecific question (e.g., “How do you rate
the product?”).

• Other aspects of the way in which the rating is elicited, such as the rating
questions that were asked previously [77] and reference points that are
provided [1, 19, 65].

• Other contextual factors that tend to increase attention to particular associa-
tions, such as the rater’s current mood or recent experiences.

• The temporal relationship between the rating event and the experience of the
item. For example, Bollen et al. [6] showed that as the time between viewing a
movie and rating it increases, movie ratings seem to regress toward the middle
of the scale.

3. Although there is in general no single “true” perspective, some perspectives will
in general be more relevant than others in view of the goal of the recommender
system. For example, if the system’s goal is to predict which meal a user is likely
to be satisfied with immediately after eating it, then ratings of other meals that
have been elicited immediately after consumption will be more relevant than
ratings elicited the next day; and vice versa. Hence a way to go about structuring
the rating situation is as follows:

1. Imagine a user who has chosen and dealt with a recommended item I, and
consider from what perspective you would like him to rate I in order to give
you maximal information about whether the recommendation was successful.

2. Try to create a rating situation now that is as similar as possible to that post
hoc rating situation.

11See [2, 77] and [35] for discussions of rating noise.
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18.6 Combating Choice Overload

As was noted in Sect. 18.2.1, one frequent function of recommender systems is to
help the chooser to winnow a large option space down to a manageable consideration
set. Recommender systems are especially well suited to this task, since they have
more computational power than humans for dealing with very large item sets and
can therefore mitigate the frequently discussed problem of choice overload. It is
worthwhile to understand this problem so as to be able to think more precisely about
how a recommender system can aim to mitigate it.

In the psychological literature, it is often argued that larger assortments offer
important advantages for consumers (see, e.g., [15, 78]), as they make it more likely
that the consumer will find a highly satisfactory option. Unfortunately, these benefits
seem to occur mainly for choosers who have relatively stable and precise evaluation
criteria [15] that enable them to identify especially suitable options quickly.

Choosers without such evaluation criteria—for example, consumers who are
unfamiliar with the domain in question—can experience choice overload with a
larger item set12: They may invest an inordinate amount of time in choosing,
experience frustration, find it hard to justify any particular choice, and ultimately
decide not to make a choice at all.

The most straightforward way for a recommender system to help is by applying
the ARCADE strategy Evaluate on Behalf of the Chooser to take over from the
chooser the subtask of winnowing a large set of options down to a consideration set
which is so small that choice overload cannot arise. Even if this consideration set
omits some of the options that the chooser would value highly, this drawback may
be outweighed by the benefits of avoiding choice overload. For example, Bollen
et al. [7] found that people were just as satisfied with choosing from a set of
5 recommendations as from a set of 20 recommendations, because the increased
attractiveness and variety of the larger item set was counteracted by the increased
choice difficulty.

If the recommender system designer for some reason does not want to have
the system provide such a small consideration set, how can choice overload be
combated? Possible remedies in this case are suggested by some of the specific
factors that have been identified as contributing to choice overload (e.g., in the meta-
analysis of 50 studies of Scheibehenne et al. [78]), which include the similarity and
density of the items in the option set [22], the extent to which the option set is
categorized [63], and individual characteristics such as a chooser’s expertise and
her tendency to maximize (i.e., look for the best possible option) or satisfice (i.e,
be satisfied with an adequate option; see [80]). In contrast to the nonpersonalized
option sets typically used in these studies, recommender systems can control many
of these factors, applying one or more of the ARCADE strategies. For example,

12The most widely recounted—and most often overinterpreted—example of choice overload is the
“jam study” of Iyengar and Lepper [38].
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to combat the problem of high density, the recommender system can ensure a
certain amount of diversity in the consideration set ([94] and Chap. 26). Or applying
the strategy Represent the Choice Situation, the recommender system can arrange
the consideration set in such a way that the options are clearly categorized and
structured (e.g., divided into groups according to important attributes, possibly in
a personalized way). Following the example of Schwartz [79, p. 231], the recom-
mender system could apply the strategy Advise About Processing, recommending
that choosers should adopt the standards of a satisficer rather than a maximizer.13

In sum, the problem of choice overload constitutes one of the justifications for
the existence of recommender systems; but combating the problem effectively can
require a variety of tactics based on a good understanding of the problem.

18.7 Supporting Trial and Error

It is sometimes useful to view a recommender system as supporting the trial-
and-error-based choice pattern (Sect. 18.2.6). Examples of such situations are the
following:

• In critique-based recommendation (see, e.g., the survey by McGinty and Reilly
[62] and the further references below), the system presents one or more options,
the chooser gives some sort of feedback on them, the system presents one or
more further options, and so on until the chooser has found a satisfactory option.

• In systems that are explicitly designed to support exploration of unfamiliar
options (e.g., some music recommender systems; see, e.g., [13]), the recommen-
dations are most naturally seen as a way of encouraging the chooser to try out
something new, even if the probability is not particularly high that the chooser
will actually like it (see Chap. 26 for comments on the goal of helping users to
discover new interests).

As was mentioned in Sect. 18.2.6, “trying out” an option may involve simply
acquiring some more information about it than that chooser had initially (as is
typical of critique-based recommender systems), but it can also involve fully
experiencing the option (as is more typical of the second case).

The question of how a recommender system can support trial and error is con-
ceptually tricky, because the relevant situations can differ along two dimensions:

1. Whether the chooser’s evaluation criteria (in the sense defined in Sect. 18.5.1)
are stable or evolving:

• Stable evaluation criteria: The chooser’s evaluation criteria cannot be
expected to change significantly on the basis of the trials and their results.

13This sort of advice might be given selectively only to choosers who had been identified as likely
maximizers with the help of one of the relevant testing scales [64, 80].
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• Evolving evaluation criteria: The chooser’s evaluations and choices can be
expected to change systematically over time as the chooser gains more
experience with the choice domain.
For example, the chooser may become aware of important attributes and
consequences that he was not previously aware of; he may acquire experience
with particular options that influence his future experienced-based choices;
or he may arrive at a new policy for making this type of choice. More
fundamentally, his tastes and abilities may change.

2. Whether the recommender system attempts to improve its preference model (as
defined in Sect. 18.5.1)

• No improvement of preference model: The recommender system does not aim
to improve its preference model by learning from the results of the chooser’s
observed responses to the results of her trials.

• Improvement of preference model: The recommender system does aim to
improve its preference model in this way.

18.7.1 Trial and Error with Stable Evaluation Criteria

When the chooser’s evaluation criteria are stable, trial and error makes sense
when the way in which the options are presented does not make it possible
straightforwardly to identify a suitable option without acquiring further experience
or information about one or more options. As was mentioned in Sect. 18.2.6, one
main challenge facing the chooser concerns the choice of an (implicit or explicit)
exploration strategy, which determines at each point which option(s) should be tried
out next. Possible desiderata of an exploration strategy include (a) a tendency to lead
the chooser to a satisfactory solution quickly and with little effort; (b) a tendency to
yield a highly satisfactory outcome; and (c) a positive experience during the process
of trial and error itself (see the discussion in Sect. 18.2.8 of the desiderata of choice
processes in general). Since it is unlikely to be obvious which of these desiderata
are most important to a given chooser, the question of how to recommend or support
an exploration strategy is a challenging one for recommender system researchers.

In connection with systems that are not necessarily trying to improve their
preference model, some research has looked at ways of helping choosers to arrive
quickly at a satisfactory option. One general strategy applied by many critique-based
systems (see, e.g., [21, 71]) is to provide a number of examples at once for the
chooser to consider, so as to increase the likelihood that at least one of the presented
options is found to represent a step in a good direction. A different approach that is
completely infeasible for unaided choosers was introduced by McCarthy et al. [61]
(and extended by Mandl and Felfernig [56]): Their critique-based recommender
system compares the current chooser’s critiquing history with the histories of
previous choosers to identify previous choosers with similar histories; then it tries
to recommend an item that has tended ultimately to be chosen by those previous
choosers.
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In the case where improvement of the preference model is desired, an additional
goal is to have the chooser try out options that will yield informative feedback from
the chooser, which is a form of active learning on the part of the recommender
system (see Chap. 24). One of the earliest recommender systems that explicitly
attempted to achieve this goal was the AUTOMATED TRAVEL ASSISTANT of
Linden et al. [52], which sometimes proposed flights mainly because they seemed
likely to elicit informative reactions from the chooser. An example of a more
recent effort in the context of conversational recommender systems is the method
presented by Viappiani and Boutilier [90], which tends to generate a diverse set
of recommendations that is likely to contain suitable items for a wide range of
evaluation criteria.

18.7.2 Trial and Error with Evolving Evaluation Criteria

When the chooser’s evaluation criteria are evolving, there is an additional desider-
atum of an exploration strategy: that it should tend to yield information and
experience that will cause the chooser’s evaluation criteria to evolve in a desirable
way. One complication is that there are various types of evolution of evaluation
criteria that may be “desirable” from the chooser’s point of view. For example, he
may want to acquire new tastes, or he may aim to learn more reliable criteria for
choosing options that he will find satisfactory according to his current tastes.

One general approach is to ensure that the chooser is repeatedly confronted with
a broad variety of options, so that no a priori limits are placed on the evolution of
her evaluation criteria. Hence this scenario provides yet another reason to consider
diversity of recommendations as a desirable quality of recommendation lists (see
Chap. 26).

A more specific strategy, introduced in the context of a critiquing system by
McCarthy et al. [60] (see also Pu and Chen [72, pp. 96–98]), is to present pairs
of recommendations each of which clearly illustrates a trade-off between two
dimensions (e.g., the price and resolution of a digital camera); the chooser can then
contemplate these examples to get a better idea of how he wants to handle such
trade-offs.

18.8 Dealing with Potentially Distorting Influences
on Choice Processes

Even when a recommender system reduces an initially large item set to a much
more manageable consideration set, it usually does leave it to the chooser to make
the final selection from this set (see Sect. 18.2.1). Research has shown repeatedly
that the processing in this phase can depend on specific relationships among the
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options that are presented and on the exact way in which they are presented—often
in ways that people are not aware of and would not acknowledge as being relevant.

For basic research on human choice, these effects are of interest in that they
generate criteria for choosing among competing theories of unobservable choice
processes (see, e.g., [76] and [5]). For those who work on recommender systems,
these effects have practical significance in that they warn the system designer of
unobvious drawbacks and benefits of particular ways of presenting options [57].
That is, a recommender system designer can apply the ARCADE strategy Represent
the Choice Situation taking these effects into account when determining how options
will be presented.

18.8.1 Context Effects

As an example of the class of context effects, we will first consider one that has
especially clear practical implications for recommender systems: the decoy effect
(or asymmetric dominance effect; see, e.g., [37]). Consider, for example, the choice
alternatives shown in Table 18.4, which presents important attributes of monthly
subscription plans to a mobile internet provider. If only the options A and B were
available, some customers would choose A because of its higher download limit,
while others would choose B because of its lower price. But suppose now that the
third option D is introduced: This option is dominated by A: It is inferior with regard
to both price and download limit. D is not, however, dominated by B. Hence the
introduction of D introduces an asymmetry between A and B that is favorable to
A: In essence, A looks good because it dominates something, whereas B doesn’t
dominate anything. In a situation where the chooser lacks predetermined, precise
evaluation criteria and a predetermined choice strategy, this sort of consideration
can be enough to influence the choice of some consumers. And indeed, empirical
results (see, e.g., [37]) show that A will tend to be chosen more often once D has
been introduced.

Marketers can and do introduce decoys in this way as a subtle way of promoting
particular products. For the recommender system designer who is interested in
supporting choice rather than influencing it in a particular direction, decoys are more
naturally viewed as a sort of noise that ought to be avoided where it is feasible to do
so. For example, a recommender system might, before presenting a set of options for

Table 18.4 Example illustrating the decoy effect
(The options being compared are monthly subscrip-
tions to a mobile internet provider.)

Item A B D

Price per month 30 euros 20 euros 35 euros

Download limit 10 GB 6 GB 9 GB
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consideration, check whether any option is dominated by any other option according
to evaluation criteria of the sort that users are likely to have; and if so leave it out of
the consideration set.

An analysis of decoy effects in financial service recommendation is presented
by Teppan et al. [86], where decoy effects are documented in the context of real-
world financial services. In a study of users’ choice behavior when interacting
with e-tourism recommenders, Teppan and Felfernig [84] showed that decoy effects
are positively correlated with the chooser’s decision confidence. Further potential
impacts of decoy effects are the increased selection share of a target product and
willingness to buy ([41, Sect. 10.2], [57]). An approach to minimizing decoy effects
in attribute-based decision making is presented in [85]. Felfernig et al. [25] present a
model that supports the identification of suitable decoy products by a recommender
system that uses decoys for persuasive purposes.

Another type of context effect that has a similar sort of relevance to recommender
systems design is the compromise effect: In situations such as the one considered in
our examples so far, an option tends to be viewed relatively favorably if it can be
seen as a compromise between two other options that are available at the same time.
For example, in Table 18.5 the likelihood of choosing A over B is increased if D is
added to the choice set. This effect tends to be stronger if the chooser expects to
have to justify her decision to other persons [82], which is understandable in that
the fact that a given option represents a compromise can be used as a justification
(see Sect. 18.2.8).

Further discussion of context effects and their implications for recommender
systems is provided in [41, Sect. 10.2].

18.8.2 Order Effects

Another relevant aspect of a representation of a choice situation is the order in which
options—or types of information about options—are presented to the chooser. The
order can have an effect for various different reasons:

1. There is often a general assumption on the part of the chooser that the most
relevant and important information will be presented first: In particular, lists of
recommendations and search results are typically ordered in this way.

2. Partly as a consequence of the first point, a chooser will often process options
and other information in the order in which he encounters them. The order of
processing might not be so important if the chooser exhaustively considered
all available options and information. But in general a chooser will process

Table 18.5 Example
illustrating the compromise
effect

Item A B D

Price per month 30 euros 20 euros 55 euros

Download limit 10 GB 6 GB 16 GB
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information selectively, and it is easiest for him to do so in the order in which he
encounters it. For example, a processing strategy that has been studied especially
in connection with attribute-based and trial-and-error-based choice is satisficing:
The chooser considers options one at a time until he has found one that seems
satisfactory; at that point, he stops, even if he is aware that a better option might
be found with additional effort (see, e.g., Payne et al. [66, Chap. 2]).

3. In cases where the chooser needs to store information in memory—for either a
short time or a longer time—the primacy and recency effects that are found with
both short- and long-term memory become relevant (see, e.g., [50, Chap. 8]).
Hence presenting important information in the middle of a sequence makes it
less likely to be remembered (see [24] for an examination of this phenomenon in
a recommender system context).

18.8.3 Framing Effects

The importance of how a choice situation is represented has also been underscored
by research on framing effects. Levin et al. [48] introduced an influential distinction
between three categories of framing effect, which apply to different aspects of
information presentation and which are associated with different explanations in
terms of cognitive processes:

Attribute framing, which is most directly relevant to the attribute-based choice
pattern, concerns the fact that an option’s level of a particular attribute can often be
described in either positive or negative terms; even if the information conveyed is
exactly the same, the positive formulation tends to evoke a more positive evaluation
of the option with respect to that attribute. To mention the best-known example: Beef
described as being “75 % lean” was evaluated more positively than beef described
as being “25 % fat” [47]. Analogous effects can be found within the consequence-
based pattern. For example, a financial service with a 95 % probability of yielding
a gain will typically be evaluated better than a service with a 5 % probability of
yielding a loss.

Where the goal is to have a recommender system present options with minimal
bias, one simple design strategy is to use the same type of framing (positive or
negative) for all options that are being presented.

Analogous strategies can be applied to the other two types of framing dis-
tinguished by Levin et al. [48]: risky choice framing and goal framing. These
types are relevant to the consequence-based pattern; they concern the effect of the
way in which the anticipated consequences of performing particular actions are
characterized in terms of gains or losses.
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18.8.4 Priming Effects

A priming effect is found when exposure to some stimulus, called a prime, increases
the accessibility of information already existing in memory [55]; this change in
information accessibility in turn influences the way in which a person responds to
a stimulus or task. Priming effects have been found in various areas of psychology;
examples of practical relevance for recommender systems include the following:

1. In a widely cited study, Mandel and Johnson [55] showed that different web
page backgrounds (e.g., clouds vs. coins) in an online store influenced the
chooser’s choices regarding the products offered for sale—even when the chooser
had considerable experience in the product domain in question. Evidently, for
example, the exposure to coins primed the choosers to attach more weight to the
“price” attribute—though only about 14 % of participants acknowledged after the
study that their choices might have been influenced by the web page background.

2. In a study by Haeubl and Murray [31], participants were first asked questions
about different attributes of tents (e.g., durability, weight) and then asked to
choose a tent from a given set. Participants tended (implicitly) to assign more
weight to the attributes that they had been asked about.

The implications of results like these for recommender system designers who
aim to support choice are less obvious than the implications for marketers. As with
the other effects considered so far in this section, one strategy is to try to avoid the
presentation of primes that introduce systematic distortion. A more active strategy is
to deploy primes in a way that appears to be consistent with what the system knows
about the chooser’s evaluation criteria. For example, if the system has somehow
determined that the chooser attaches high value to safety as an attribute of cars, the
recommender can not only recommend safe cars and provide information about their
safety but also adaptively use primes to increase the chooser’s attention to safety. In
fact, the system is likely to provide such primes even without any conscious effort by
the designer to do so: The mere fact that information about safety is being presented
can serve as a prime for the attribute of safety even if the chooser does not pay
attention to the details of the information provided.

18.8.5 Defaults

Yet another surprisingly influential factor is whether a particular option constitutes
the default option for the choice in question—that is, the option that will be executed
if the chooser does nothing. There are various ways in which an option can constitute
the default, and there are various reasons why choosers can be inclined to choose
the default option:

1. Sometimes, the chooser is not even aware that there is a choice that she could
make, as in the case of a configuration setting for a complex application that can
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be changed only in a screen that the user is not aware of. In this case, the user
does not choose the default option, but it in effect gets chosen anyway.

2. In other cases, the chooser sees that he has a choice and that one option is
designated as the default. Here, there can be two possible reasons for being
inclined to choose the default option:

• The chooser may assume that this option is one that is in some sense
recommended. This assumption is often—though not always—reasonable in
view of efforts made by the system’s designers to ensure that the default option
is at least acceptable whenever it is chosen—efforts that these designers in turn
often make because they know that the default is likely to be chosen.

• It may simply be physically and/or mentally easier for the user to choose the
default option (e.g., because no mouse clicks or text input are required; see,
e.g., [58]).

The important role of the default option represents an opportunity for designers
of recommender systems: One function of a recommender system can be to
determine automatically which option ought to be the default for a given user in
a given situation (see, e.g., [57, 88]); defaults determined in this way are sometimes
called dynamic defaults.

Whether the default is determined dynamically or not, recommender systems
designers should take into account, when designing for a particular choice situation,
which option (if any) will serve as the default and which factors might cause users
to be inclined to choose it. The designer can then determine whether these effects
are consistent with the overall intent and strategy of the recommender system. In
particular, if the overall intent is to keep the chooser tightly in the loop and have her
explicitly approve the choice that is finally made, the designer may want to minimize
the use of defaults; conversely, defaults can be a useful tool for reducing the need
for the chooser to remain involved in the choice process.

18.9 Recapitulation and Concluding Remarks

The field of recommender systems has been exciting and successful. But what will
recommender systems people be doing 20 years from now? The possibilities for
improving algorithms technically may be unlimited; but if the algorithms continue
to be applied to the same problems, there is a limit to what can be achieved. We
therefore also need new ideas about how recommendation technology can be put to
good use.

We hope to have shown in this chapter that such ideas can come from an
unexpected source: the psychology of choice and choice support. By looking
systematically at the diverse ways in which people make everyday choices, we
identified a number of novel ways in which recommender systems can sup-
port these processes; and imaginative readers will be able to think of many
more. While systematically viewing recommendation as essentially one of six
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high-level strategies for choice support, we saw new ways in which recommendation
technology can be combined with applications of other choice support strategies. In
the rest of the chapter, we showed that a number of familiar concepts and topics
in the recommender systems field—explaining recommendations, eliciting “prefer-
ences”, preventing information overload, supporting exploration, and appropriately
presenting small numbers of recommended options—look quite different, and even
more interesting, when viewed through the prism of an understanding of choice and
choice support.

We therefore hope that this chapter will be found stimulating not only by readers
interested in the psychology of choice but even more by those who are looking for
new and powerful ways to apply recommendation technology.
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Chapter 19
Privacy Aspects of Recommender Systems

Arik Friedman, Bart P. Knijnenburg, Kris Vanhecke, Luc Martens,
and Shlomo Berkovsky

19.1 Introduction

The deluge of online products, services, and information has made recommender
systems an inherent part of the Web realm. They are used in a variety of use cases
and applications: from eCommerce sites, through the Social Web, to health mobile
apps. The benefits of personalized recommendations, both for users and service
providers, are numerous. However, they also bring to the fore some risks that may
limit the uptake of recommenders, one of which is the risk of a privacy breach.

The privacy risk is mainly caused by the recommenders’ need to collect and store
personal information about their users. Indeed, in order to provide personalized
recommendations, a recommender needs to possess some information about its
users, encapsulated in user models. This information serves as the basis for gen-
erating the recommendations and, generally, the quality of the recommendations is
correlated with the amount, richness, and freshness of the underlying user modeling
data. On the other hand, the same factors drive the severity of the privacy risk and
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the damage that can be caused if the user modeling data is exposed to third parties.
This is referred to as the privacy-personalization trade-off [10, 24, 37, 87, 98, 156],
and it inevitably manifests once personalized recommendations are considered.

The privacy risks posed by personalization are aggravated when more sophis-
ticated recommendation scenarios are deployed. For example, consider a recom-
mender that, as part of the recommendation process, either augments its user
models by extracting new features and populating their data, or cross-links multiple
sources of user modeling data. In these scenarios, the recommender is likely to
uncover additional information that was not readily accessible in the original user
models, i.e., information that the users may not have consented to be released for
the recommendation purposes. Having this information exposed and accessed by
untrusted parties could lead to harmful consequences.

In this chapter we concentrate on the privacy challenge faced by recommender
systems. We survey related work on privacy-enhanced recommenders and partition
it into three broad categories. The first focuses on architectures that facilitate
more private recommendations. These entail various decentralized solutions that
eliminate a single repository of user modeling data, which would otherwise be the
target for attacks on the recommender. The second category refers to algorithmic
solutions, which either perturb the original user modeling data or apply formal
encryption methods. These assure that, even if accessed by an untrusted party, only
modified/encrypted user data would be exposed, rather than the original data. Lastly,
the category of policy driven solutions addresses directives and legislation initiatives
that limit the storage, transfer, and exploitation of personal user data. Clearly, these
solutions are not mutually exclusive, and a recommender may—and often will—
deploy solutions from multiple categories.

While these solutions may improve objective and measurable privacy aspects, an
important question pertains to the users of the recommenders. They may have their
own considerations regarding the sensitivity of their data, exposure/preservation of
some information, and measures they are willing to take to protect their privacy [21].
Hence, users’ perception of and reasoning about privacy deserves special attention.
Therefore, we also discuss users’ privacy attitudes and behaviors, as well as current
practices and recent advances to support the users’ privacy decision-making process.

This chapter is structured as follows. In Sect. 19.2 we give a broad definition of
privacy and discuss the privacy risks faced by the users of recommender systems.
In Sect. 19.3 we outline the three categories of solutions to these risks; namely,
the architectural (Sect. 19.3.1), algorithmic (Sect. 19.3.2), and policy solutions
(Sect. 19.3.3). We survey a number of papers implementing the solutions and
summarize each category. In Sect. 19.4 we switch to the human aspects, and discuss
users’ perception of and attitude towards privacy, as well as privacy-related decision
making. We conclude the chapter in Sect. 19.5, where we outline the achievements
and shortcomings of privacy-enhanced recommender systems and discuss future
research directions in light of emerging trends in recommendation technologies.
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19.2 Privacy Risks in Recommender Systems

Most scholars argue that in the modern information age people regard their personal
information as a commodity: they are willing to give up some personal information
in return for personal gains. Recommender systems are a perfect example of this
dynamic: They collect a wide variety of user data as input for their recommender
systems, and in return provide their users with better services and products [10, 37,
44, 87, 139]. The information collected might include users’ clicking or viewing
behavior; contextual information like the location or mood; social information like
user friends, family, or colleagues; as well as demographic parameters like age and
occupation [72]. To make sure that data collectors treat the collected information
responsibly, the OECD [114] has defined a set of Fair Information Practices (FIPS):

Collection Limitation Data should be collected within limits, by lawful and fair
means and with consent (where appropriate).

Data Quality Data should be relevant, accurate, complete and kept up-to-date.
Purpose Specification The purposes of collection should be specified at the time

of collection.
Use Limitation Data should not be used or disclosed for other purposes except

with consent or by the authority of law.
Security Safeguards Personal data should be protected against unauthorized

access, destruction, use, modification or disclosure.
Openness Users should be able to know what data is being collected, who

controls the data, and for what purposes they are used.
Individual Participation An individual should be allowed to inspect the

collected data about themselves, and have them erased, rectified, completed
or amended.

Accountability The collector of the data should be accountable for complying
with the above measures.

Generally speaking, privacy is breached when any of these principles are
violated. Given their need to collect large amounts of information and innate
capability to infer users’ personal tastes from this data, recommender systems run
a heightened risk to violate the Collection Limitation, Purpose Specification, Use
Limitation, and Security Safeguards principles. In this light, we categorize privacy
risks in Table 19.1 along two dimensions: whether the privacy breach is due to direct
access to existing data (a violation of the Collection and Use Limitation principles)
or due to inference of new data (a violation of the Purpose Specification principle),
and who the adversary trying to uncover user information is. We consider three
types of adversaries: (1) the recommender system interacts with the user, but it
might operate in a way that is incompatible with the user’s expectations of privacy
(a violation of the Collection and Use Limitation principles); (2) other users of the
system have no direct access to another user’s private data, but they might exploit the
outputs of the recommender to uncover the information of a target user (a violation
of the Security Safeguards principle); and finally, (3) external entities are not users
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Table 19.1 Privacy risks in recommender systems

Adversary Direct access to existing data Inference of new data

Recommender Unsolicited data collection Exposure of sensitive information

system Sharing data with third parties Targeted advertising

Unsolicited access by employees Discrimination

Other users Leaks through shared device or service Inference from the recommender
output

External Lawful data disclosure

entities Hacking Exposure of sensitive information

Re-identification of anonymized data

of the recommender, but they may try to access the information retained by the
system or intervene in the interaction between the system and its users to get access
to such information (another violation of the Security Safeguards principle, but
regarding a different type of security safeguard). We next look in detail at the risks
imposed by each of these actors.

19.2.1 Risks Imposed by the Recommender System

19.2.1.1 Direct Access to Data

Recommender systems typically rely on a central entity, which accesses personal
user data for the purpose of personalizing a service. However, the availability of this
information, combined with commercial incentives, may result in this data being
used in a way that violates the end-users’ expectations of privacy, even when this
use is consistent with the provider’s privacy policy [46]. There are several ways in
which direct access to data could expose users to privacy risks, including:

Unsolicited data collection As storage capabilities are cheap, online services are
tempted to collect as much user data as possible, either because it might be useful
at some point in the future (e.g., Chap. 6 discusses the value of rich contextual
information), or because it can be monetized. However, collection of data that
is not deemed necessary to provide a service may break user expectations of
privacy. For example, in a survey that aimed to capture the expectations of what
sensitive resources mobile apps use [99], Pandora Internet Radio was one of the
apps singled out by the users for unexpected resource usage, since it accesses
the contact list on the mobile device. In general, users seem particularly wary of
“context tracking,” arguably because unwanted or unexpected inferences can be
made about such data [80].

Sharing data with third parties There are many scenarios in which recom-
mender systems have incentives to share raw user data with third parties. For
example:
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• Companies that have access to such information may wish to share it to
collaborate with the research community, as was the case when AOL released
anonymized user search queries [12] and in the Netflix Prize competition [20].

• Companies may need to share data with third parties to outsource parts of
their operation. Today, many companies offer so-called recommendations as
a service. The third party receives user profiles and interaction logs from a
website, processes them, generates recommendations, and sends them back
to the website. While the user profiles may have been anonymized before
transmission, a copy of the user profile now exists with the third party. Even
if the user were to delete their account, they could not verify the deletion of
their profile by the third party.

• Finally, service providers may be tempted to sell personal user data to data
brokers, as this was shown to be a lucrative business [17]. Data may also
change hands following acquisition of companies, or when liquidators sell off
databases of bankrupt companies.

Ackerman et al. [1] and Krishnamurthy and Willis [92] highlighted that propa-
gation to third parties and profile data that can be linked back to a user’s identity
are important concerns that users have when they consider releasing information
online. Although the data custodian may take precautions and anonymize the
data prior to release to safeguard user privacy, the released data may be subject
to de-anonymization attacks, as will be discussed later.

Unsolicited access by employees While the recommender system may take pre-
cautions to ensure user data is maintained under its control, it is possible that
employees, who need access to user data to fulfill their role, will abuse their
privileges to snoop for data of people they know. Employees may also be tempted
to steal the data of well-known people (celebrities) for curiosity or for money.
This risk exists in any system that retains user information, and can be mitigated
to some extent by ensuring appropriate access control and auditing mechanisms.

19.2.1.2 Inference from User Preference Data

Sophisticated manipulation of the data collected or processed by the recommender
system (see Chap. 7 for an overview of data mining methods) could lead to
additional privacy risks due to inference of new data, sometimes without the
awareness or consent of the user:

Exposure of sensitive information Several recent works [36, 91, 147] have
demonstrated the power of machine learning techniques in uncovering sensitive
and private personal information, including personality traits (see Chap. 21).
While such inferences are probabilistic in nature, they could be harmful even if
wrong, particularly when judgments are based on risk (e.g., insurance decisions)
or prejudice (e.g., workplace discrimination).

Targeted advertising In targeted advertising, the collected data is used to
learn user interests and select advertisements that are most likely to result
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in conversion. The targeted ads may expose sensitive or embarrassing
information—one prominent example is of a parent who learned that his teenager
daughter was pregnant after Target started sending her coupons for baby clothes
and cribs [47].

Discrimination Recent works [105, 106] have shown evidence of online price
discrimination facilitated by personal information. Individuals may perceive this
as a misuse of their information, and as overstepping the purposes specified for
data collection.

Inference attacks exploit various aspects of user data to derive sensitive and
private information. These attacks typically rely on correlations learned from other
users’ data, but can exploit them in various ways. For example, an adversary can rely
solely on information contributed by the system users [147], leverage semantic rela-
tions between different attributes [36], cross-link the data with additional sources to
extract more correlations [91], or exploit the structure of social links [157].

Weinsberg et al. [147] showed that demographic information such as age, gender,
ethnicity, or political orientation can be inferred from information disclosed to
recommender systems. Several classifiers were trained using the data contributed by
the users, and inferred with high accuracy the demographic information of users who
did not disclose similar data. Experiments conducted on the Flixster and Movielens
datasets demonstrated the effectiveness of the approach. In fact, the mere act of
watching a movie (regardless of the rating) conveys a lot of information, in the
sense that classifiers trained over binary data (i.e., movie watched or not) performed
only slightly worse than those trained on the complete rating data.

While Weinsberg et al. exploited structured data, Chaabane et al. [36] leveraged
the ontologized version of Wikipedia to identify semantic relations between unstruc-
tured user interests, and showed how seemingly harmless interests, such as music
interests, can leak sensitive information about users. They assigned the user interests
into higher-level interest topics, and the interests of each user were mapped to
these topics, allowing to identify users with similar tastes. Assuming that users with
similar tastes are similar in multiple aspects, it was then possible to guess a user’s
private attribute based on the public attributes of similar users. The authors crawled
public profiles from Facebook, and used the self-declared, publicly available music
interests of users to infer their gender, relationship, age, and country attributes.

Kosinski et al. [91] conducted a large-scale study that correlated the Face-
book ‘likes’ of users to a range of sensitive personal attributes, including sexual
orientation, ethnicity, religious and political views, and personality traits using
machine learning techniques. The authors generated predictors for these sensitive
attributes and achieved remarkable results. For example, the model could distinguish
between homosexual and heterosexual men in 88 % of cases, African Americans and
Caucasian Americans in 95 % of cases, and between Democrats and Republicans in
85 % of cases. While some ‘likes’ were related to the attribute in question (e.g.,
liking pages related to homosexuality), some of the discovered correlations had no
obvious connections.

The inference problem is exacerbated in online social networks, where friend-
ship links and group membership can be leveraged to infer private information.
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Zheleva and Getoor [157] considered the possibility that linked objects in a social
network are correlated, i.e., that online friends share common characteristics. They
proposed several inference attacks that exploit the structure of the network to predict
private attributes. Based on evaluation of such inference using data from Flickr,
Facebook, Dogster, and BibSonomy, the authors concluded that the performance
of the predictors was dataset-dependent. For example, link-based methods did not
perform well, since there was no strong correlation between the inferred attributes
and the friends. On the other hand, group membership improved the inference, and
some of the group memberships allowed to predict the user’s attributes with high
accuracy. Note that while users may have control over which attributes are made
public, in some social networks (e.g., Facebook and Flickr) the user has limited
control over the visibility of group membership information.

19.2.2 Risks Imposed by Other System Users

Since recommender systems leverage data collected from numerous users, they
allow users to learn personal information about each other, even when such
information is kept private. This problem is most evident when users share the
same account on a device or a service: the recommendations for this account would
be derived from the users’ combined activities, and therefore the recommendations
generated for one user provide insights on the activities of the other users. A similar
problem can occur in group recommender systems (see Chap. 22).

A harder problem is imposed when the outputs of a recommender system leak
private information of other unrelated users in the system. This problem is partic-
ular to collaborative filtering recommender systems (as opposed to content-based
recommenders), since inherently these recommenders adapt the recommendations
provided to each user based on data collected from other users. Ramakrishnan et al.
[124] showed how the recommendations and their explanations can expose informa-
tion of users who rate items across disparate domains. The recommendations allow
an adversary to deduce connections between items. For example, given a certain
item, an adversary can create a fake account and add item ratings to identify the
smallest set of items that would result in a recommendation of the target item. This
implies that there exists a set of users who rated both these items and the target
item. This set of users is likely to be small when the items belong to different
domains, making it easier to target these users in privacy attacks. For example, the
revealed connections can be combined with additional data sources to compromise
the identity of the users and uncover additional personal information.

A stronger attack that exploits the public outputs of item-to-item collaborative
filtering systems was put forward by Calandrino et al. [31]. Public outputs of
such recommenders typically contain item similarity lists or cross-item correla-
tions. For example, Amazon provides the “customers who bought this item also
bought. . . ” lists, Hunch provides the entire item-to-item covariance matrix, and
Last.fm provides an item similarity list. By passively observing the changes in
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these outputs over time, an attacker could infer private transactions of a target
user, given background knowledge on some items previously rated by the user.
In an item-to-item collaborative recommender, when a user makes a transaction
involving an item, this results in an increase of the similarity of the item to
other items in the user’s transaction history. Therefore, the attacker can track the
similarity lists of items known to be associated with the target user, and identify
new items in the lists. When the same item appears in a number of tracked lists, the
attacker can infer that the item was added to the target user’s record. The authors
successfully applied this approach to several real-world recommender systems,
including Hunch, LibraryThing, Last.fm and Amazon. The attack exhibits a trade-
off between the number of inferences and their accuracy (for example, inference
results on LibraryThing ranged from 58 inferences per user with 50 % accuracy
to six inferences per user with 90 % accuracy) and achieves the best results when
applied to small or new sites.

In addition to the passive attack that Calandrino et al. presented in [31], they
also described an active sybil attack that targets neighborhood-based collaborative
filtering. Given background knowledge on some items previously rated by a user,
the adversary creates fake users that are similar to the target user, and likely to
be identified as neighbors of that user and of each other. A neighborhood-based
recommender is therefore likely to provide to the fake users recommendations based
on the other fake users and the target user. This allows to isolate the target user’s
data, as any recommended item that does not appear in the fake profiles is likely to
originate from the target user.

19.2.3 Risks Imposed by External Entities

Data sharing and misuse are subject to the control of the recommender system,
and may therefore be mitigated through regulation, or be disclosed to obtain the
user’s consent. In contrast, some scenarios may lead to unintended data disclosure.
One risk is imposed by unlawful access to data by hackers (e.g., due to insufficient
security safeguards), resulting in data theft. Another risk is due to court subpoenas
and surveillance by law enforcement agencies. While such data access is lawful,
it is often conducted without user awareness, and, in some cases, even without the
service provider’s awareness.

Third parties may also obtain personal information gathered by recommender
systems after it was anonymized for privacy protection. However, even in the
anonymized form, this data poses a serious privacy risk due to the possibility
of de-anonymization. Narayanan and Shmatikov [108] demonstrated the difficulty
of guaranteeing anonymity in transaction and preference records common in
recommender systems. In general, the sparseness of large multi-dimensional data
collections ensures that a record will not have many other “similar” records
in the dataset, allowing to single it out and re-identify it with relatively little
background information. The attack can be carried out by an adversary who knows



19 Privacy Aspects of Recommender Systems 657

a (possibly imprecise) subset of the target user’s attributes, e.g., items that were
rated by the user, ratings that were assigned, or the time of the ratings. The de-
anonymization algorithms evaluate the similarity of each record in the anonymized
dataset to the background information. Due to the sparseness of transaction and
preference records, these algorithms are robust to imprecision and uncertainty in
the background knowledge, as well as to a moderate level of perturbation in the
published records. The authors conjectured that the amount of perturbation needed
to defeat this de-anonymization approach would destroy the utility for collaborative
filtering.

The effectiveness of this attack was demonstrated using the Netflix Prize dataset,
containing anonymized ratings of 500K Netflix subscribers. The authors found that
with background knowledge consisting of eight movie ratings (of which two may
be wrong) and rating dates known within a 14-day error, 99 % of records can be
uniquely re-identified in the dataset. Even without knowing the dates on which
the items were rated, information about a few rated items may be sufficient. For
example, 84 % of records can be uniquely re-identified if the adversary knows
six out of eight movies rated outside the 500 most frequently rated movies. This
background information may be relatively easy to obtain for most users, e.g.,
by observing their voluntary disclosure of information on social networks or on
IMDB. It can be argued that the anonymized records may not contain sensitive
data. However, even in these cases, re-identification carries a privacy risk: any
information that can be traced back to a person can be leveraged in subsequent
attacks, and provide additional hooks that the adversary could use to de-anonymize
further data releases. An aggregate of such releases could lead to a “database of
ruin” [115], which would tie together digital traces from different sources, exposing
an elaborate picture on individuals’ online and offline activities.

The possibility of re-identification of the Netflix dataset resulted in a lawsuit that
was settled out of court, and subsequent cancelation of the second Netflix challenge
[29]. To date, safe release of de-anonymized datasets for research purposes is still an
open problem. As stated in [108], in such scenarios “the purpose of the data release
is to foster computations on the data that have not even been foreseen at the time
of release, and are more sophisticated than the computations that we know how to
perform in a privacy-preserving manner.” Inferences on this data, thus, pose privacy
problems, because they almost definitely go beyond users’ initial expectations of
privacy.

19.2.4 Summary

Research conducted in recent years demonstrated the ability to infer highly sensitive
information from user interest data, even when they express seemingly innocent
information. Such information could be abused either by the systems that collect
the data (e.g., inferring users’ psychological traits and leveraging these for targeted
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advertising); by other users in the systems who may be exposed to the data (e.g., by
default, public “likes” on Facebook) or may analyze the output of the recommender;
or by external entities that access the user data.

These results stress that even privacy-conscious users who may withhold some
of their information, cannot guarantee their privacy, since the withheld information
could be inferred from other information disclosed to the recommender. Moreover,
the privacy of a user does not solely depend on the user’s personal choices and
privacy preferences, but is also influenced by the data made available by other users,
regardless of whether they are associated with the user. Therefore, the user may
only have limited control over the privacy risks resulting from using the system.
Instead, integrating privacy into the design of recommender systems may prove
more effective in safeguarding users’ privacy. In the next section we will discuss
approaches that can be taken to mitigate the identified privacy risks.

19.3 Privacy Solutions

The discussion about the risks of personal data leakage through recommender
systems naturally leads to the “defender” side, i.e., how can the recommender
protect user privacy without compromising the quality of the recommendations.
We consider three categories of approaches, which can address the privacy problem
in recommender systems:

• The first category refers to architectures, platforms, and standards that minimize
the data leakage threat. These include various protocols and certificates that guar-
antee to users that the recommendation provider adheres to privacy-preserving
practices and protects the users’ personal data with due diligence. This inherently
limits the ability of external entities to access user data or to infer new data,
other than the authorized and regulated data access methods. We classify into
this category also the distributed architectures, which eliminate the single point
of failure typical to centralized recommenders.

• The second deals with the algorithmic techniques for data protection. Here, we
distinguish between several types of approaches. Some of them involve data
modification approaches—either of user identities (identity anonymization or
abstraction to stereotypes) or of the rating data (substituting or adding noise
to true rating data). Others exploit provable privacy guarantees offered by the
differential privacy framework or apply cryptographic tools to protect the data.
The basic idea underpinning the algorithmic techniques is that even if the users’
personal data leaked to an adversary or untrusted party, they would possess only
modified or encrypted information, and would struggle to recover the original
data.

• The third category refers to “top-down” legislations, policies, and regulations,
which may be imposed on the recommendation services by their governments
and legislative bodies, or adopted as self-regulatory industry practices. They may
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preclude the services from manipulating, sharing, or trading the data. Although
this category of approaches addresses outright many of the above privacy risks,
the regulations vary significantly across countries and even states, and their
enforcement is hard to validate in practice.

The main rationale for this categorization lies in the grouping of these three
categories into technical and non-technical solutions. The former consist of the
architectural and algorithmic solutions, whereas the latter includes only the policy
solutions. The technical solutions either provide a general infrastructure that
supports privacy, or offer specific algorithms for data protection. On the other
hand, the non-technical solutions provide an umbrella that outlines the allowed
and the prohibited activities with regards to personal user data. Another important
observation stemming from this grouping is that although the three categories
seem independent, many recommender systems may (and actually should) apply
more than one approach to protect the privacy of their users. Hence, we propose
recommender system designers to consider all three categories of solutions when
devising their privacy-protection mechanisms.

For example, consider a use case of a large-scale eCommerce website providing
personalized recommendations to users. The site may apply architectural solutions
and distribute the data storage. At the same time, the site may exploit algorithmic
techniques and allow only cryptography-protected data access. In addition, the site
may want to increase user trust and declare that the collection and use of personal
user data is done in compliance with privacy regulations. Many of these details,
especially the architectural and the algorithmic solutions in place, are not disclosed
by practical websites. Nevertheless, we refer the reader to several publicly accessible
privacy policies (see those of eBay,1 Amazon,2 and Google.3)

We would like to revisit the access and inference risks outlined in Table 19.1,
and intersect these with the three categories of solutions. Clearly, the architectural
and policy solutions better address the direct data access risk, as private protocols,
distribution of the recommendation process, and data protecting regulations make
unauthorized access to the data harder. The application of algorithmic approaches
cannot eliminate this access, but reduces the value of the data if it gets accessed.
However, the algorithmic approaches substantially minimize the risk of inferring
new data, as the input to the inference attacks becomes unreliable. It should also be
mentioned that the policy solutions are likely to address the data inference risk, as
they often prohibit the use of the collected data for purposes that are beyond those
declared by the data collector.

In the following sections we elaborate on each of the categories and on specific
works that apply these approaches.

1http://pages.ebay.com/help/policies/privacy-policy.html.
2http://www.amazon.com/gp/help/customer/display.html?nodeId=468496.
3http://www.google.com/intl/en/policies/privacy/.

http://www.google.com/intl/en/policies/privacy/
http://www.amazon.com/gp/help/customer/display.html?nodeId=468496
http://pages.ebay.com/help/policies/privacy-policy.html
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19.3.1 Architecture and System Design Solutions

In this section, we consider how the architecture underlying the recommender
system can put hard limits on the disclosure, propagation and linkability [119] of
profile data. In Sect. 19.3.1.1, we introduce a trusted component that is guaranteed
to act in a certain way. Then, in Sect. 19.3.1.2, we look at an architecture for
social networking websites that gives the user control over their profile data through
standard technologies from the Semantic Web. Finally, in Sect. 19.3.1.3, we cover
approaches that shift some of the workload of the recommender system to the client-
side, thereby reducing the amount of user data that needs to be disclosed.

19.3.1.1 Trusted Software for Limiting Linkability and Propagation of
User Data

As we saw in Sect. 19.2, a recommender system may cross-link data from multiple
sources to create comprehensive user models. If the models are retained after the
recommendation process terminates, or even disclosed to untrusted parties, this
could pose a grave threat to the user’s privacy. The recommender could therefore
make certain claims regarding data storage, linkability, and disclosure, to put the
user’s mind at ease, e.g., “no disclosure of any profile data without explicit consent,”
“no linkability between individual user sessions,” “no linkability between partial
user profiles,” or “temporal limits on the storage of user data.”

But how can the user trust that the service actually complies with these
principles? In researching privacy-preserving recommendation solutions, Cissée and
Albayrak [39] identified three ways of establishing trust:

• Reputation [74]: Non-compliance would lead to negative user feedback and
sentiment, which discourages other users from using the service.

• Certification [136]: A trusted third party performs a detailed technical audit, e.g.,
by analyzing the source code and performing tests, to verify that the software has
all the qualities and properties that it claims to have.

• Trusted computing [56]: An application has the ability to verify that a system
consists of specific hardware and software, e.g., the ability to encrypt data in a
way that can only be decrypted in a particular configuration.

We will analyze two examples of trusted systems that restrict the linkability and
propagation of profile data: a privacy-preserving event planner proposed in [39] and
a privacy-friendly loyalty card and shopping assistant application for smartphones.

In [39], Cissée and Albayrak built a privacy-preserving event planner on top
of a FIPA-compliant [137] multi-agent system (MAS). The authors list various
properties of MAS entities that make them ideal for creating a privacy-preserving
recommender system, in which only trusted parties can temporarily cross-link user
profile data from multiple sources: entities are autonomous and can be deployed
dynamically in the MAS environment; each entity can perform a well-defined task;
entities can communicate with each other; and they can be tamper resistant.
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With regard to user privacy, the purpose of the system is to ensure that disclosed
user profile data is not stored permanently and cannot be linked to any particular
user. A temporary filter agent (TFE), responsible for generating recommendations,
is created, and a relay entity establishes control over the TFE’s communication abil-
ities on the user’s behalf. This way, it can be ensured that only the recommendations
will be propagated to other entities; user profile data will not be propagated because
the relay does not provide the TFE with the means of communicating it to other
parties. Controlling agents’ communication abilities is not part of the standard MAS
feature set, so the authors have implemented this aspect as trusted software. With
control established, the user provides profile data (made up of behavior information,
personal details and preferences) to the TFE and the service provider hands the
TFE a set of items to recommend from. The TFE uses all data at its disposal to
generate content-based recommendations for the user, which are then propagated to
the service provider for visualization. Finally, the TFE is terminated by the relay
entity, thereby destroying the linked dataset. The service provider can thus present
the user with personalized recommendations without gaining permanent access to
the profile data.

The MobCom project4 explored the possibility of implementing various identity-
based applications such as identity cards, membership cards, and customer loyalty
cards on a smartphone, in a way that protects the privacy of the user. Put et al. [123]
developed a shopping and loyalty card application that discloses only the minimal
amount of information required, with user consent. The smartphone serves as a self-
scanning device with secure local storage for the customer’s personal information,
shopping history, loyalty points and product vouchers. At the start of each shopping
session, a temporary shopping basket is created under a new pseudonym, so that
the store cannot track customer behavior across sessions. In exchange for disclosing
profile data, e.g., product preferences, the retail store offers a more personalized
service and additional loyalty points. This way, customers control their data and
can weigh the benefits of releasing profile data against the loss of privacy. In this
architecture, both the smartphone application and the in-store service are regarded
as trusted software. At the start of the shopping session, the smartphone and the
server can verify that each is running the trusted software and that it has not been
tampered with. The smartphone does not release any profile data without the user’s
explicit consent. The shopping basket contents and any disclosed profile data are
destroyed at the end of the session.

19.3.1.2 User-Managed Portable Profiles

Beyond the privacy risks originating from inference and profiling, which were
discussed in Sect. 19.2, social networking websites (see also Chap. 15) tend to
become data silos [27], with profile data either locked away or only partially

4http://www.mobcom.org.

http://www.mobcom.org
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accessible through proprietary APIs. If users were able to port profile data from
one platform to another, they could receive better recommendations and more
personalized service, alleviating the cold start issue when joining a new service.
They could also allow access to specific profile information on a case by case basis.
Currently, however, this scenario is not possible because users do not have such
level of control over their data.

We focus here on an alternative architecture proposed by Heitmann et al. [64],
which puts the user in charge of fully portable profile data through Semantic
Web technologies and an access control system. Using this architecture, profile
data can be shared between services and the users can decide what parts of their
profiles are disclosed to each provider. Building on earlier work of Hollenbach
et al. [66], Heitmann et al. base their architecture on three standards: (1) Friend-
of-a-Friend [26]: a data format suitable for storing generalized user profile data, as
well as social friendship relations; (2) WebID [32]: an SSL certificate that refers to
the URI where the profile data can be found; and (3) a Web Access Control [66]:
vocabulary for controlling access rights to resources. The authors also identify three
distinct roles for entities that wish to participate in the architecture:

• Profile stores are tasked with storing the user profiles and providing access to
data according to the access rules. They also allow users to manage these access
rules. Notably, the user can perform this role by hosting his own profile.

• Data consumers are third-party services that wish to access the user profile data.
Each time they request data from a profile store, data consumers authenticate
themselves with their own unique WebID.

• User agents are responsible for authenticating the user with profile stores and
data consumers through their WebIDs.

To summarize, users are able to port their profile data from one service to
another. By using Semantic Web technologies, entities that wish to perform any
of these roles, have an easy-to-use, stable, and non-proprietary interface to work
with. Users can selectively disclose parts of their profiles to data consumers of their
choice. Through the use of WebIDs, unlinkability of data is built-in: a user can have
multiple identities, each with its own WebID. Data consumers are thus unable to
link multiple WebIDs to a particular user and the framework assumes that the profile
stores can be trusted to not maintain or disclose links between the users’ multiple
identities. We refer to Chap. 4 for more on Semantic Web technologies.

19.3.1.3 Generating Recommendations on the Client

Shifting some of the recommender’s load to client devices allows to reduce the
amount of information accessed and retained by a recommendation service, thereby
mitigating any privacy risks that could result from the server’s exposure to user data.

Several works proposed to implement the recommendation process as a pure
peer-to-peer system, thereby eliminating the role of a centralized service [22, 94].
However, such systems could still expose user data to other users, who now interact
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directly with the user to generate the recommendations. Lathia et al. [94] addressed
this risk by proposing a privacy-friendly measure of similarity that relies on the
concordance between users, i.e., the proportion by which two user rating sets agree.
This measure has the property that it can be evaluated by comparing the two sets
of ratings to a third rating set, rather than directly to each other. Therefore, user
similarity can be evaluated without exchanging user profiles. Berkovsky et al. [22]
leveraged a hierarchical topology, in which peers are organized into peer-groups
managed by super-peers. A user who seeks recommendations interacts with the
super-peers. The super-peers select a random subset of the underlying peers,
aggregate the results obtained from them, and return them to the querying user,
who processes them to generate the recommendation.

In a hybrid approach proposed by Shokri et al. [131], each client interacts with
a centralized server to obtain recommendations, but can also exchange information
with other system users to enhance privacy. In this approach, each user maintains
two profiles: an offline profile stored locally at the client, which is updated contin-
uously, and an online profile at the server that is only synchronized occasionally.
Users contact each other and exchange items, so that their offline and consequently
the online profiles are a mix of each user’s original ratings and ratings provided
by other users. To maintain accurate recommendations, the exchange process favors
ratings conducted by similar users.

One of the challenges in distributed architectures is that many recommendation
algorithms are computationally intensive, and while mobile devices have recently
become powerful, they are still ill-suited for heavy computations. This limitation
gives rise to architectural approaches that divide work between a powerful back-
end and a weaker end-user device. Such approaches allow for recommendations
to be generated on the client, while disclosing less information to the centralized
recommender back-end than in a centralized recommendation scenario. These
approaches usually leverage the ability to break the recommendation generation into
two stages: (1) modeling, for which the entire dataset is typically required, and (2)
recommending, for which the models are used to compute the recommendations.
Given an established model, recommending can be a relatively light-weight task.

For example, consider item-based collaborative filtering, where all the available
user-item ratings are needed to construct the item-to-item similarity matrix. Rec-
ommendations are then generated by taking items that are similar to items that
the user has previously consumed. In PocketLens [107], Miller et al. set out to
build a portable collaborative filtering recommender system, where the similarity
computation is separated from the recommendation stage. Through homomorphic
encryption methods that are also applied in secure voting systems, the back-end
constructs an item-to-item similarity matrix based on co-occurrence, without having
to decrypt individual purchase records. A mobile client can retrieve this matrix
and generate recommendations locally. After implementing and evaluating several
architectures, the authors found that their best performing architecture could protect
the user’s privacy without compromising the recommendation accuracy.

The separation between the modeling and the recommendation stages is also
evident in matrix factorization. The modeling stage that consists of the derivation of
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the latent factors, requires access to all the ratings and is computationally expensive.
The recommendation generation then is realized as a product of two latent vectors
and can be performed on the client. Moreover, since matrix factorization separates
between the user and the item latent factors, the user data can be stored on the client
side. Vallet et al. [141] explored this possibility in a semi-decentralized setting,
in which the server maintains item factors, whereas user factors are stored and
maintained on the client-side. The authors developed a streaming model, which
performs incremental updates of the latent factors using only the data of the user
interacting with the system, and without any server-side retention of user data. The
predictive accuracy of this model was found comparable to that of a system that
retains user data.

Isaacman et al. [70] leverage the same matrix factorization property in the
context of a distributed system of content producers (e.g., bloggers) and consumers.
To maintain privacy, information is exchanged only between the content producer
and its subscribers, e.g., item ratings are shared only with the item’s producer. The
system computes the probability distribution of content ratings that is estimated
with a low-rank latent model constructed by solving the factorization problem.
Each producer maintains a factor vector that constitutes its “production profile.”
In addition, each consumer maintains for each possible rating value a factor vector,
and these factor vectors constitute its “consumption profile.” The client can compute
the product of these vectors to estimate the probability that the consumer would
provide a certain rating to any given producer’s content, without disclosing all of
the consumer’s ratings to that producer.

To summarize, architectures that shift computation to the client side are
particularly useful for mitigating privacy risks that follow from data retention
on a centralized server. However, user data may still be exposed during
the interaction with the server, or when interacting with other system users.
Cryptographic protocols allow to address this deficiency, and are discussed in
detail in Sect. 19.3.2.4.

19.3.2 Algorithmic Solutions

In this section, we discuss algorithmic solutions to recommender system privacy.
We split them into four categories: algorithms based on pseudonyms or user
anonymization, algorithms involving user data modification, differentially private
algorithms, and cryptography-based algorithms. Similarly to what was discussed
earlier, these categories are not mutually exclusive; a recommender may benefit
from employing multiple solutions that belong to different categories.
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19.3.2.1 Pseudonyms and Anonymization

Algorithmic approaches that mask the users of recommender systems through
pseudonyms and anonymization were not received well initially. In particular,
Schafer et al. [130] wrote in 2001 that “anonymizing techniques are disasters for
recommenders, because they make it impossible for the recommender to easily
recognize the customer, limiting the ability even to collect data, much less to make
accurate recommendations.” More than a decade later, the topic still remains largely
under-investigated and there are only several works in this direction.

An early proposal for a pseudonymity-based personalization framework was
developed by Arlein et al. [9] and drew on the notion of ‘personae.’ The framework
implied that users have in place a suite of abstractions of themselves, e.g., entertain-
ment, medical, and shopping, and use these abstract entities when interacting with
various websites and services. Each persona is linked across multiple services and
exposes only the activities carried out by this persona. The services access only one
user persona at a time and cannot link it to other personae, so they are unable to
uncover additional information, while the users manage their own personae and set
access rights for various services and abstractions.

Another pseudonimity framework for personalized systems was proposed by
Kobsa and Schreck [89]. The framework includes a suite of privacy-preserving
components: user anonymization, user data encryption, role-based access, and
selective access permissions. Each component is managed by a dedicated server and
the servers tune the overall level of user privacy to the user’s privacy settings and the
degree of cooperation between the services possessing the partial user models.

The approaches to user anonymization in recommender systems typically entail
simple de-identification solutions. For example, in the Netflix Prize data, the
identities of the users were replaced with random numbers. A major threat to this
anonymization method lies in the high dimensionality and sparsity of the data [108],
which is typical in recommender datasets. As discussed in Sect. 19.2.3, this sparsity
can be exploited to thwart anonymization and re-identify the records.

19.3.2.2 Obfuscation

Application of data perturbation (or obfuscation) techniques to recommender
systems was inspired by earlier works outside the field of recommender systems
[7]. The basic idea underpinning this body of work is that modifying a certain
number of data points in the user profiles, e.g., by adding noise to the real data,
will have a limited effect on the recommendation accuracy. However, if adversaries
or an untrusted party accessed the user profiles, they would only obtain the disguised
profiles. This allows for “plausible deniability” [61, 142]: the adversary cannot
prove whether a certain profile entry is accurate.

To the best of our knowledge, this idea was first proposed for recommender
systems by Polat and Du [120]. They used a randomized data perturbation technique
to mask ratings stored in the user profiles. The data is modified by adding random
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noise to the ratings, such that no certain information about the ratings can be
derived. Since the recommendations are generated by aggregating user ratings, the
overall impact of data perturbation on the recommendations is assumed to be minor.
The authors compared the recommendations generated using the masked data with
those using the original data, and showed that perturbed profiles could still generate
reasonably accurate recommendations. The accuracy of the recommendations is
inversely correlated with the magnitude of the noise, but the impact of noise
decreases with the number of users and items accessible by the recommender.

Another variant of data perturbation was presented by Parameswaran and Bloug
[118]. They proposed to mask auxiliary data pertaining either to users (e.g.,
demographic data) or to items (e.g., domain metadata), which are exploited by the
similarity computation mechanism of collaborative filtering. The evaluation showed
that the impact of masking auxiliary data on the accuracy of the recommendations is
minor, although the direct contribution of this perturbation to user privacy was not
explored.

Unfortunately, data perturbation through the addition of noise is inapplicable
to binary data, which is prevalent in recommenders, as the systems increasingly
rely on binary behavior logs (browsing logs, purchase data, listened songs, etc.).
In this case, the addition of noise distorts the logs and can be easily identified. In
[122], Polat and Du applied a different technique, called a randomized response, to
the binary user profiles. This technique randomly chooses which bits of the binary
profile are preserved and which are flipped. Two variants of randomized responses
were evaluated and, as before, the accuracy was found to be correlated with the
volume of training data.

The application of random perturbation has gone beyond the canonic col-
laborative filtering. Yakut and Polat [153] applied data perturbation also to the
Eigenstate-based variant of CF that reduces the dimensionality of the rating matrix
through Principal Component Analysis. Two distributions for generating the noise
factors and several variants of privacy-enhanced Eigenstate CF were proposed and
evaluated. Also, Kaleli and Polat [76] applied randomized response to a Naïve Bayes
Classifier implementation of CF. That work primarily focused on tweaking the noise
parameters for the purpose of maintaining reasonable levels of user privacy and
recommendation accuracy at the same time.

Basu et al. [14] applied data perturbation to the Slope-One recommender [96],
a highly scalable version of item-based collaborative filtering. It was found that
Slope-One is robust to the noise and capable of delivering reasonable accurate
recommendations despite the masking of user data. Polat and Du [121] applied data
perturbation to an SVD-based CF recommender, which decomposes the masked
ratings matrix into a product of three latent matrices. SVD recommendations were
also found to be reasonably robust to random perturbation.

More recently, data perturbation was applied by Renckes et al. [126] to a hybrid
graph-based recommender representing users as nodes and their similarity through
the edges. The paper reaffirmed the findings of Polat and Du [120] relating to
the impact of data availability on the accuracy of private recommendations, and
practically demonstrated the privacy-accuracy trade-off. In a nutshell, privacy loss
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decreased with the level of perturbation, but the accuracy of the recommendations
deteriorated too, such that privacy and accuracy conflicted with each other. To
allow users more control over the privacy-accuracy trade-off, Kandappu et al. [77]
have proposed an interactive obfuscation mechanism. The obfuscation is applied to
ratings before they are shared with the system (input perturbation). Before sharing
new ratings, the mechanism probes the recommender to obtain rating predictions
over a hold-out set of items, which were rated by the user but were not disclosed
to the recommender. The magnitude of obfuscation is then calibrated based on the
accuracy of those predictions, such that privacy protection is maximized within the
constraints of a target accuracy level.

Berkovsky et al. [23, 24] focused on the application of data perturbation
to various ratings in collaborative profiles. They compared the impact of five
data masking policies applied to both moderate (close to average) and extreme
(positive or negative) ratings on the accuracy of the generated recommendations.
Perturbation of the latter was found to have a higher impact on the accuracy of the
recommendations than of the former. That is, extreme ratings bear more information
than moderate ratings, and adding noise to these ratings deteriorates the accuracy of
the recommendations. However, extreme ratings were perceived as more sensitive
by the users. This gives a different perspective on the privacy-accuracy trade-off, as
masking the sensitive ratings damages the recommendation accuracy.

Aside from a potential decrease in recommendation accuracy, data perturbation
can also be problematic for legal and psychological reasons. A perturbed profile is
essentially “incorrect data,” which violates the Data Quality principle of the FIPS
(see Sect. 19.2) as well as several European privacy laws that require data collectors
to pursue the correctness of the collected data. Psychologically speaking, users may
fear that this incorrect data may result in incorrect inferences (which is possible
in specific instances even when the overall accuracy of the recommender does not
decrease due to perturbation). Even worse, if users’ data gets subpoenaed or stolen
and published, they may have a hard time defending the claim that some of the data
in their profile is incorrect. So while obfuscated data may afford users “plausible
deniability,” it does not offer them what we would like to call “deniable plausibility”
(i.e., the ability to prove that certain items were in fact fabricated by the obfuscation
mechanism). Indeed, a study by Chen et al. [38] on the application of obfuscation
techniques in online social networks has indicated that users care about the impact
of obfuscation on their visible profile, and suggested to incorporate such preferences
into the obfuscation algorithms.

We summarize the surveyed works that apply data obfuscation techniques in
Table 19.2. These are split into the basic Collaborative Filtering (based on either
user-to-user or item-to-item similarity) and other CF algorithms.

19.3.2.3 Differential Privacy

Differential privacy [48] is a privacy model based on the principle that the output
of a computation should not allow inference about any record in the input.
This is achieved by requiring that the probability distribution over the possible
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Table 19.2 Privacy-preserving recommendation algorithms with data obfuscation

Similarity-based collaborative filtering (CF) User-to-user similarity [24, 120]

Item-to-item similarity [118, 122]

Other CF algorithms Eigenstate-based CF [153]

Naïve Bayes CF [76]

Slope-one [14]

SVD-based CF [121]

Graph-based recommender [126]

outcomes does not change significantly when any particular record is added to
or removed from the input. Therefore, differential privacy provides the means to
mitigate inference of private user data from the output of the recommender system.
One of the commonly used approaches to obtain differential privacy is through the
Laplace mechanism, in which carefully calibrated noise sampled from the Laplace
distribution is added to a computation. The noise masks the influence that any
difference in a particular record could have on the outcome of the computation.

McSherry and Mironov were the first to study the application of differential
privacy to recommender systems, and in particular to collaborative filtering [103].
They used the Laplace mechanism to derive noisy counts and sums over the
input ratings, and to compute a differentially-private variant of the item-to-item
covariance matrix. The noisy covariance matrix could then be used to generate
differentially-private k-Nearest Neighbors and SVD recommendations.

Zhu et al. [158] took a different approach to differentially private neighborhood-
based collaborative recommendations, aiming specifically at the sybil attack
presented by Calandrino et al. [31] (see Sect. 19.2.2). They considered a
differentially-private k-nearest neighbors algorithm that operates in two steps:
selection of the neighbors, and rating prediction based on the neighbors. They relied
on the smooth sensitivity [112] of the similarity function, allowing to introduce
lower levels of noise than those required by the Laplace mechanism. They also
introduced randomness to the k nearest neighbors selection, while ensuring that,
with high probability, the selected neighbors have high similarity scores.

Machanavajjhala et al. [101] studied privacy-preserving social recommendations
on the basis of a graph linking users and items. Given the graph, they derived
utility vectors that capture the utility of items for users, with the goal of inducing a
probability distribution that maximizes the user’s utility while keeping the utility
vector private. The authors provided a theoretical analysis of the problem and
concluded that good recommendations were achievable only under weak privacy
parameters, or only for a small fraction of users, highlighting that the privacy-
accuracy trade-off also exists in differential privacy based methods.

Riboni and Bettini [127] investigated the application of differential privacy to
context-aware recommendations, and specifically to recommendations of Points of
Interest (POI), where the spatial context is taken into account. The spatial domain
of the service is partitioned into non-overlapping regions, and each POI belongs to a
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single region. In addition, each user belongs to a given stereotype, which represents
semantic abstraction of profile data. The Laplace mechanism is used to capture
the distribution of POI preferences for each stereotype. Consequently, when a user
queries a region, the POIs best matching the user stereotype are recommended.

The research of differentially private recommender systems shows that while in
some settings (e.g., social recommendations) it may be impossible to obtain privacy
and accuracy guarantees simultaneously, in other cases privacy-preserving recom-
mender systems can achieve reasonable accuracy. However, the works conducted
so far assume a one-off computation, whereas re-calculation of recommendations
when additional data becomes available may introduce additional privacy leaks.
Therefore, maintaining privacy over multiple computations or data releases requires
an increase in the amount of introduced noise, and leads to deterioration in accuracy.
While there is a line of work studying efficient differential privacy in continual
settings [49, 57], this has not been studied yet in recommender systems.

19.3.2.4 Cryptographic Solutions

Cryptographic solutions mitigate privacy risks triggered by the exposure of user
data, like intentional misuse (e.g., sharing data with third parties or inferring
sensitive information), as well as unintentional disclosure (e.g., data theft). Secure
multi-party computation protocols allow to accurately compute recommendations,
while keeping user input confidential. Unlike data obfuscation or differential
privacy, secure computations produce the same recommendations as non-private
protocols, but this comes at the cost of computational overhead, making these
protocols suitable mainly for off-line recommendations.

The majority of the work in this area relies on additive homomorphic encryp-
tion schemes, such as the Paillier public-key cryptosystem [116]. Essentially,
in such encryption schemes, any linear function of the inputs can be evaluated
by manipulating their encryptions. This property has been leveraged in several
recommendation algorithms and architectures, listed in Table 19.3. Below, we
elaborate on the proposed architectures and provide examples of homomorphic
encryption applications.

Distributed settings As detailed in Sect. 19.3.1.3, distributed architectures mit-
igate privacy risks by keeping the data on the client side. To the best of our
knowledge, the protocol proposed by Canny [32] was the first application of
secure multi-party computations to recommender systems. A partial singular
value decomposition of the ratings data can be reduced to a series of additions of
user inputs and carried out over encrypted inputs using an additive homomorphic
encryption. Based on this, Canny proposed a peer-to-peer system, consisting
of two types of nodes: “clients” who provide in each iteration their encrypted
contribution to the gradient, and “talliers” who manipulate and aggregate these
inputs to derive an encrypted total gradient. The encryption key is shared between
the clients, and each client applies its share of the key to decrypt the total.
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Table 19.3 Privacy-preserving recommendation algorithms with homo-
morphic encryption

Distributed Weighted slope-one [13]

Neighborhood-based [51]

Trust networks [65]

Partial SVD [32]

Factor analysis model [33]

Cross-system collaboration User-to-user similarity [71]

Item-to-item similarity [154]

Client-server Weighted slope-one in cloud setting [15]

Privacy service provider General framework [8]

Neighborhood-based [53]

Trust networks [52]

If enough clients provide decryptions with their share of the key, then the talliers
can reconstruct the new gradient. The result of the computation is guaranteed
to be correct, even in the presence of malicious parties, as long as a sufficient
portion of the nodes are trustworthy and follow the protocol.

Cross-system collaboration Distributed algorithms can also be carried out
between service providers, allowing cross-system collaboration without
disclosing clients’ information to other systems, and thereby mitigating privacy
risks due to sharing data with third parties. For example, Jeckmans et al. [71]
studied how a company can generate recommendations based on its own
customer data and data from other companies, while keeping customer data
confidential. They relied on additive homomorphic encryption, as well as secure
comparison, absolute value, and division protocols. The proposed two-party
protocol, executed between a pair of servers, allows to generate predictions
based on user-to-user similarity, which is evaluated using the ratings that the
users have on both sites.

Client-server settings Encryption can keep user ratings confidential when the
user interacts with the server in the prediction stage, as demonstrated in a
Slope-One recommender that Basu et al. [15] studied. In a Slope-One predictor,
predictions are based on the average deviations of item ratings, which are
linear combinations of user ratings, making it suitable for secure evaluation
with additive homomorphic encryption. In the learning phase, the users send
their (obfuscated or anonymized) inputs to the cloud in the clear, and the cloud
application produces the deviation matrix and the cardinality matrix for the
Slope-One predictor. In the prediction stage, the target user sends a rating vector
encrypted with a public key, which the cloud application manipulates with
additive homomorphic encryption to produce an encrypted prediction vector.
Finally, the user decrypts the vector to retrieve the prediction.

Privacy service provider Several works addressed the privacy risks in the client-
server interaction by introducing a third party acting as a privacy service provider.
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These solutions rely on the “division of trust” principle [8], i.e., no entity in the
system holds the complete information. Aïmeur et al. [8] proposed a framework
for privacy preserving recommenders based on this principle. Each merchant in
the system is assigned to an agent that mediates the interaction with the clients.
The client profiles are encrypted with the agent’s public key, such that the agent
can access them but the merchant cannot. On the other hand, the items are
anonymized by a mapping known only to the merchant, so the agent cannot know
the actual products purchased or rated by the customer. The agent maintains
the list of products associated with a cluster of clients and a table of product
similarities, uses these to generate recommendations, and can update them based
on user inputs, but without knowing the actual products.

Homomorphic encryption is not the only approach to secure computation of
recommendations. Nikolaenko et al. [109] proposed a privacy-preserving matrix
factorization algorithm, in which the recommender profiles items without learning
the users’ ratings. In the proposed protocol, the recommender is assisted by a crypto-
service provider, who prepares a Yao garbled circuit [155] that evaluates the item
profiles given the encrypted rating inputs. The authors report a reasonably low
running time and, since the described operations are parallelizable, they suggest
that the algorithm may be suitable for batch processing of real large-scale datasets.

The extensive research on cryptographic solutions for privacy-preserving rec-
ommendations shows the feasibility of these solutions in diverse settings and with
different recommendation algorithms. However, these solutions entail significant
computational resources and time, as well as storage and communication overhead,
which still impose a hurdle for their application in online recommender systems.

19.3.3 Policy Solutions

As Kobsa points out [87], many countries and states actively regulate consumers’
privacy, and many industries adopt additional privacy guidelines. We refer to [144]
for an overview of the impact of privacy laws and regulations on personalized sys-
tems up to 2006. Two important proposals since then are the U.S. Consumer Privacy
Bill of Rights [67] and the 2012 revision of the European Privacy Directive [55].

Both of these proposals have a heavy emphasis on transparency and control. For
example, the U.S. Consumer Privacy Bill of Rights suggests that “companies should
offer consumers clear and simple choices [. . . ] about personal data collection,
use, and disclosure” and “companies should provide clear descriptions of [. . . ]
why they need the data, how they will use it” [67]. Under the European Privacy
Directive, “personal data should be processed on the basis of the consent of the
person concerned or some other legitimate basis” [55].

The U.S. privacy bill furthermore requires that consumers are able to access the
personal data that companies collect about them, and correct it if necessary. It also
requires that data collection is focused and limited to what is expected in the context
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in which the data was provided by the consumer. The European directive also
requires that people are able to access their personal data. It additionally requires
that they are allowed to transfer this data from one service to another, and that people
are able to delete their data should they so desire.

The 2002 version of the European Union Privacy directive severely limited
the use of non-essential cookies, often used for personalized advertising [54]. As
a result, online advertising could not be targeted and became far less effective
in the EU than in other countries [60]. The new directive requires websites to
explicitly ask their users to accept its non-essential cookies. The Netherlands and the
United Kingdom [69] have already implemented this directive as a national “cookie
consent” law. However, to comply with the rules without losing advertising money,
most sites give users only two options: leave the website or accept the cookies
and continue. The resulting sprawl of consent-requesting pop-ups has caused much
confusion among users, who typically accept the cookies without knowing what
they really consent to, which arguably only increases their privacy concerns [140].

An alternative to privacy legislation is self-regulation via trust seals like the
TRUSTe seal [19] or privacy standards like P3P [43]. Xu et al. [151] have shown that
TRUSTe seals can be an effective substitute to legislation when it comes to reducing
consumers’ privacy concerns. TRUSTe seals have been shown to reduce perceived
risk and increase trust, whereas P3P compliance increases trust but does not reduce
perceived risk [150]. Self-regulation is not without problems, though. Research has
shown that trust seals are only partially effective [50, 68, 128], and A/B tests on
eCommerce websites have demonstrated that seals may lead to significantly lower
conversion rates [30, 59]. This calls the benefits of “certification” (cf. [136]) into
question. P3P, on the other hand, suffers from poor observability and complex user
agents, which has led to a low level of adoption on the user-side [16].

In conclusion, privacy legislation and regulation has become more comprehen-
sive over the last few decades. However, as Compañò and Lusoli point out, “policy
makers need to take into account that citizens do not always behave rationally” [40],
a topic we will cover in much more detail in the next section.

19.4 Human Aspects and Perception of Privacy

While we have mainly discussed the technical solutions to privacy risks in recom-
mender systems, the concept of privacy is an inherently human attitude associated
with the collection, distribution and use of disclosed data, and this disclosure
is also a human behavior. Since recommenders critically rely on their users to
disclose information about themselves, recommender system developers are advised
to conduct user experiments to study users’ information disclosure behavior and
their privacy-related attitudes towards the recommender system (see Chap. 9).

This section discusses existing research concerning users’ privacy attitudes and
behaviors. The link between privacy attitudes and subsequent behaviors is not very
clear: while several studies find this link to be significant [80, 88, 132] others
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find that it is not, or at least not very strong [2, 4, 58]. Due to this divergence,
which Norberg et al. call the privacy paradox [113], developers of recommender
systems are advised to study users’ attitudes and behaviors regarding the privacy of
their systems. The privacy paradox is a symptom of the fact that users’ cognitive
resources are in most cases insufficient to effectively take control over their privacy.
The end of this section therefore discusses the importance of supporting users to
make better privacy decisions, as well as an interesting new venue for recommender
systems to provide such “privacy decision support.”

Privacy Attitudes In studying privacy attitudes, one can make a distinction
between privacy attitude as a personal trait or tendency, and as an attitude
directed towards a specific system. General privacy concern was first measured
by Westin and Harris and Associates, who classified people into three categories:
privacy fundamentalists, pragmatists, and unconcerned [63, 148]. Researchers
have since recognized that this personal trait consists of multiple dimensions. For
example, the Concern For Information Privacy scale consists of four correlated
factors: collection concerns, unauthorized access, fear of accidental errors,
and secondary use [133]. Similarly, Malhotra et al. provide an Internet Users
Information Privacy Concern scale measuring three factors: collection, control,
and awareness [102].
Several works have highlighted the importance of measuring privacy concerns
as a system/context-specific concept [6, 18, 132]. System-specific factors con-
sidered in previous work include “perceived privacy threats” [80, 88, 149],
“perceived protection” [88], and “trust in the company” [80, 104]. These system-
specific factors are usually better at predicting users’ disclosure behavior than
privacy concerns as a personal trait. Recommender system developers are thus
advised to measure users’ system-specific privacy attitudes. Moreover, they
should not just focus on protecting users’ privacy via the technical means
described earlier in this chapter, but also to reduce the potential privacy threats to
begin with (a philosophy called “privacy by design”, cf. [34]) or to increase the
reputation of their brand.

Privacy Behaviors Laufer and Wolfe were the first to argue that people trade off
the risks and benefits of disclosure [95], a process that Culnan and Bies have
called “privacy calculus” [45]. This term is commonly used to investigate infor-
mation disclosure [62, 97, 149], and has become a well-established concept in
privacy research [132]. In the field of recommender systems, several researchers
have demonstrated that users indeed make this trade-off when deciding what
information to disclose [10, 37, 58, 80, 85, 88, 90, 98]. The exact outcome of this
trade-off depends on the context of the decision [81, 110]. Particularly, if users
deem the requested information relevant to the purpose of the system, they will be
more likely to disclose it. For example, it is reasonable to expect that a system for
recommending nearby restaurants would collect street-level location information
from the user device, but a user may be surprised to learn about such data being
collected by a book recommender. This can be problematic for recommender
systems, since they often use data from diverse application domains.
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19.4.1 The Limits of Transparency and Control

Having a minimum level of control over one’s disclosure is a necessary prerequisite
for being able to engage in a privacy calculus. Moreover, people can only make an
informed trade-off between benefits and risks if they are given adequate information.
Based on this reasoning, advocates of transparency and control argue that they
empower users to regulate their privacy at the desired level [35, 138, 152]. This
advocacy for transparency and control has become a central part of the privacy
directives proposed in the European Union and the United States [55, 67].

The call for control suggests that recommender systems should provide users
advanced capabilities to manage their privacy. However, while users claim to want
full control over their data, they typically eschew the hassle of actually exploiting
this control [40]. While it is possible to overcome this control paradox [81], the
privacy controls of systems like Facebook are so complex that they are over-
whelming or confusing to most users [42]. As a result, Facebook users have severe
misconceptions about the implications of their selected privacy settings [100].

Similarly, the call for transparency suggests that recommender systems should be
forced to be open about their privacy practices, so that users can walk away if they
do not like them (cf. “reputation” [74]). However, Bakos et al. demonstrate that only
0.2 % of all users read boilerplate documents such as End User License Agreements
[11]. As noted earlier, “summarizing” this information with trust seals may actually
impede rather than increase system usage [30, 59].

This ironic effect of trust seals on privacy concerns extends to other privacy-
related situations as well. For example, John et al. demonstrate that even subtle
privacy-minded designs and information may trigger users’ privacy fears and reduce
disclosure and participation [73]. They found that a professional looking site garners
higher privacy concerns than an informal and unprofessional looking site, because
the former design reminds users of privacy. While it is arguably more risky to
entrust such an unprofessional-looking site with one’s information, its appearance
apparently downplays privacy concerns and increases disclosure.

Arguably, since even a professional looking site can instill privacy concerns, any
reference to privacy will inadvertently prime users with privacy fears. This high-
lights a fundamental problem of any privacy-preserving architecture or algorithm:
informing users about the superior privacy protection is likely to make them more
concerned about their privacy [78, 80]. In some cases, this fear stems from concerns
that the developers of these systems had not accounted for. For example, Kobsa et al.
show that while client-side recommendation algorithms prevent the disclosure of
personal information to third parties, users are concerned about their device getting
lost or stolen [88]. Their user profile could then not only fall in the hands of a third
party; they themselves would lose access to it. Users’ lack of familiarity with a
technology may exacerbate their privacy concerns. For example, Kobsa et al. show
that users are rather skeptical about cloud-based recommendation services [88] like
those proposed in [15].
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The proponents of increasing transparency and control in information disclosure
decisions assume that people are rational decision-makers who will use the provided
information and controls to their best advantage. However, our decisions often
do not follow rational economic principles [75] (see also Chap. 18), and this also
holds true for information disclosure decisions [4, 5]. In fact, information disclosure
decisions are among the hardest decisions to make, because they have delayed and
uncertain repercussions that are difficult to trade-off with the possibly immediate
gratification of disclosure [2, 5]. In this light, an abundance of information and
control may only aggravate this problem, because it can lead to choice overload or
information overload. Consequently, several researchers have recently questioned
the effectiveness of the “transparency and control” paradigm [111, 135].

19.4.2 Privacy Nudges

The first step in supporting users’ privacy decisions that does not require users to
be rational decision-makers is to nudge these decisions into the “right direction”
[3, 146] (see below for a discussion regarding what the “right direction” of privacy
nudges could be). A nudge is a subtle yet persuasive cue that makes people more
likely to decide in one direction or the other. Carefully designed nudges make it
easier for people to make the right choice, without limiting their ability to choose
freely. Broadly speaking, two types of nudges have been tried out in the field of
privacy decision-making: justifications and defaults.

Justifications Justifications make it easier to rationalize decisions, and to min-
imize the regret associated with choosing the wrong option. Different types of
justifications include providing a reason for requesting the information [41],
highlighting the benefits of disclosure [90, 143], and appealing to the social norm
[6, 25]. Justifications are especially useful in recommender systems, because
recommenders are able to extract valuable taste information from seemingly
irrelevant data. A good disclosure justification can nudge users to disclose these
data, which helps to build their user model and improve the accuracy of the
recommendations.
The effect of justifications seems to vary though. In a study by Kobsa
and Teltzrow, users were 8.3 % more likely to disclose information when they
knew the benefits of disclosure [90]. In a study by Acquisti et al. users were 27 %
more likely to do this when they learned that many others decided to disclose the
same information [6]. However, Besmer et al. found that social cues had barely
any effect on users’ Facebook privacy settings: only the small subset of users who
take the time to customize their settings may be influenced by strong negative
social cues [25]. Knijnenburg et al. tested a wide range of justifications in a
demographics- and context-based mobile app recommender [80, 84]. They also
found “fickleness” in the effects of justifications on users’ disclosure to—and
satisfaction with—the recommender. Users found these justifications helpful, but
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in contrast to some of the above findings, the justifications did not increase users’
disclosure, trust, or satisfaction with the system, but rather decreased them. In
line with Besmer et al. [25], Knijnenburg and Kobsa conclude in a follow-up
analysis that only a subset of users is amenable to justifications [79].

Defaults The other approach to nudging users’ privacy decisions is to ease
their burden of making information disclosure decisions by providing sensible
defaults (see Chap. 18). Providing a certain default option may nudge users in
the direction of that default. For example, John et al. [73] show that people are
more likely to admit to certain sensitive behaviors via an act of omission than
via an act of commission. Similarly, Lai and Hui [93] show that defaults have a
significant impact on user participation in an online newsletter. Recommender
systems can manage privacy perceptions by carefully setting the defaults of
optional features such as making one’s taste profile public, or social network
integration.
Another default that can be used to nudge privacy decisions is the order
of the disclosure requests. Acquisti et al. demonstrated that people disclose
less information when requests are made in increasing order of intrusiveness
compared to a random order [6]. This effect is particularly pronounced for more
intrusive questions: asking those questions upfront increases their likelihood
of being answered. Arguably, people become more wary of disclosing very
personal information as the disclosed information accumulates; the most relevant
information should thus be requested upfront. Similarly, Knijnenburg and Kobsa
manipulated the request order, and showed that any type of information enjoys
higher disclosure when requested first rather than last [80, 84]. Note though,
that although asking sensitive questions upfront increases disclosure in research
settings, it may scare away new users when done in commercial applications.
The order of disclosure requests arguably has a large impact in conversational
recommender systems, where quick convergence on an accurate user model
needs to be balanced with privacy concerns related to sensitive information
requests. Disclosure request order strategies are thus an important topic for future
research in recommender systems.

The problem with existing privacy nudging techniques is that they have to take an
implicit stance on whether the purpose of the nudge should be to increase disclosure,
or to decrease it. Recommender system developers may claim that it is in users’
best interest to provide more data to the recommender, as it will improve their
user model and, subsequently, the recommendations. They may thus argue to use
nudges to increase disclosure, but these nudges may cause the more privacy-minded
users to feel “tricked” into disclosing more information than they would like [28].
Others (e.g., privacy advocates, certain lawmakers) may instead believe that privacy
is an absolute right that needs to be defended at all costs. But if the protective nudges
they impose make it more difficult to disclose information, this would reduce the
overall benefit of a recommender system, especially for less privacy-minded users.
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19.4.3 Privacy Adaptation

Given these opposing forces, how can we nudge users in the “right direction?” This
is a difficult question, because human decisions are highly dependent on the personal
context in which they are made, and the same holds true for information disclosure
decisions [5, 73, 97, 110]. For example, the fact that one person has no problems
disclosing a certain item in a particular context does not mean that disclosure is
equally likely for a different person, a different item, or in a different context [82,
97]. Likewise, a convincing justification to disclose a certain item in a particular
context for a certain person, may be completely irrelevant for a different person,
a different item, or a different context [25, 79]. The “right direction” of a privacy
nudge thus depends on these contextual variables. This idea of context-dependent
privacy nudges leads to a new application domain for recommender systems: user-
tailored privacy decision support [86, 145]. Specifically, a recommender can be
used to predict users’ context-dependent privacy preferences based on their known
characteristics and behaviors, and then provide automatic “smart default” settings
[134] in line with their disclosure profiles. Below we outline the budding research
in this new field of “privacy adaptation.”

The first step towards privacy adaptation is to gain a deeper understanding of
people’s cognitive decision-making process: What kind of benefits and threats do
users consider when making disclosure decisions? What is the relative weight of
each of these aspects? Can the weights be influenced by a justification or a default,
and if so, in what context(s)?

Some of the work by Knijnenburg et al. tries to measure these cognitive
determinants and integrate them in behavioral models of information disclosure
decisions. For example, they demonstrate that:

• the effect of justifications on information disclosure decisions is mediated by the
user’s perceptions of help, trust and satisfaction [80];

• the effect of decision context in a location-sharing service depends on users’
perception of the privacy and benefits of the available options [83] (so-called
“context effects;” cf. Chap. 18);

• perceived risk and relevance mediate user evaluation of the purpose-specificity
of information disclosure requests [81].

The second step towards privacy adaptation is to determine how information
disclosure depends on the recipient, item and type of user. This would allow to train
a recommender that can tailor defaults and justifications to these contextual factors.
Work in this direction shows that even though privacy preferences vary considerably
across users, recommendation techniques can be used to predict these preferences
quite accurately. For example, Knijnenburg et al. identify distinct subgroups of users
with similar privacy preferences in many domains [82]. These subgroups can be
mapped to demographics and other behaviors, allowing a recommender to classify
users into a certain subgroup. Ravichandran et al. [125] apply k-means clustering
to users’ contextualized location sharing decisions to come up with a number of
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default policies. They show that a small number of default policies for the user to
choose from could accurately capture a large part of their location sharing decisions.
Sadeh et al. [129] apply a kNN algorithm and a random forest algorithm to learn
users’ privacy preferences in a location-sharing system. They show that the applied
recommendation techniques can help users in specifying more accurate disclosure
preferences. Pallapa et al. [117] propose context-aware approaches to privacy
preservation in wireless and mobile pervasive environments. One of their solutions
leverages the history of interaction between users to determine the level of privacy
required in new situations. They demonstrate that this solution efficiently supports
users in dealing with their privacy concerns. Finally, adaptive procedures also work
for justifications: although justifications generally do not increase disclosure or
satisfaction, Knijnenburg and Kobsa find that tailoring justifications to the user can
reduce this negative effect [79].

In sum, privacy adaptation strikes a balance between giving users no control
over, or information about, their privacy at all and giving them full control and
information. It solves the problem of finding the “right direction” for nudges by
using users’ own preferences as a yardstick. At the same time, it gives users the right
privacy-related information and the right amount of privacy control that is useful, but
not overwhelming. It thereby enables users to make privacy-related decisions within
the limits of their bounded rationality. In many systems, privacy concerns seem to
rise in concert with the complexity of users’ privacy decisions. “Privacy adaptation”
may thus present a unique opportunity for recommender systems to help solving
this problem.

19.5 Summary and Discussion

We conclude the chapter with a summary of the privacy-enhancing solutions that
were outlined, along with their current shortcomings. Next, we discuss current
and emerging trends in recommender systems and identify the key privacy issues
associated with them. Lastly, we suggest research tracks to better address the privacy
risks of today and those of the future.

In Sect. 19.2, we discussed various privacy risks originating from the recom-
mender system itself, from other system users, or from third parties. The risks
are highly diverse, but center around potential adversaries either directly accessing
the existing user data or inferring new information through cross-linking multiple
sources of user data. While they can be broadly categorized as either technical or
non-technical, the solutions that were proposed in Sect. 19.3 are even more diverse
than the challenges they seek to address.

The architectural solutions covered various protocols and certificates that guar-
antee that the recommender behaves in a way that preserves the users’ privacy.
Barriers are put up for untrusted parties that may want to access user profiles or
infer non-disclosed sensitive data. Then, we proceeded to algorithmic solutions,
which incorporate privacy into the recommendation generation process. Here, we
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partitioned prior works into four broad directions: to anonymize and/or abstract
individual users; to introduce noise into the original user data, making it hard to
uncover true user preferences; to use differential privacy, a widely-used model that
offers provable privacy guarantees; and to exploit cryptography-based approaches
to generate recommendations, while keeping user inputs confidential. Note that
these directions are by no means mutually exclusive—a recommender may deploy
algorithms from several groups to improve user privacy.

As discussed in Sect. 19.4, users have their own perceptions of privacy that do
not necessarily align with the privacy assurances provided by the above solutions.
Moreover, some of the proposed approaches may even have an opposite effect on
users’ behavior and their perception of privacy. We suggested that privacy solutions
should be tailored to users’ inherent privacy preferences. This results in a new
opportunity for recommender systems: providing privacy decision support.

The field of recommender systems is still largely evolving, and is gaining
emerging popularity in several relatively new use-cases and application domains.
Some of these applications pose a significant risk to user privacy, and, therefore,
the importance of privacy-preserving recommendations is paramount there. We will
briefly discuss some of these cases and highlight their privacy implications.

Recommenders on the Social Web. Online social networks are tremendously
popular these days. The social Web attracts billions of users, who not only expose
unprecedented volumes of personal information, but also voluntarily cross-link data
from a wide spectrum of sources. Various personalization and recommendation
technologies have been developed for the social Web (Chap. 15), and these highlight
the need for privacy-preserving solutions that will deliver user-tailored services
without compromising user privacy.

Cross-Domain Recommender Systems. The challenge of generating recommen-
dations by combining multiple sources of user modeling data, which potentially
span several recommender systems and application domains, has recently attracted
a lot of attention (Chap. 27). This poses a direct threat to privacy, as domain-specific
user profiles are inherently linked, and cross-domain recommenders already apply
the techniques mentioned in Sect. 19.2 for the inference of new undisclosed data.
Hence, cross-domain recommenders call for a special focus on the preservation of
user privacy.

Mobile and Context-Aware Recommendations. Users are increasingly surrounded
by sensors and smart environments, which interact directly with the users’ personal
devices. This facilitates the collection of rich user profiles and opens the opportunity
for the delivery of context-aware recommendations (Chaps. 6 and 14). Users have
little control over these pervasive data collection procedures. Users may wish to
control data access limitations and the invasiveness of the recommender, but since
these recommenders typically operate in the background, the act of control itself
may disrupt the users’ primary workflow. Control mechanisms should thus be very
lightweight, lest users simply ignore them.

Explanation of Recommendations. Recommendations are often accompanied by
a textual description explaining why the items were recommended to the user
(Chap. 10). Consider Amazon’s “you were recommended X because you bought
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Y” or the widely-used “people who examined X were also interested in Y.” While
this helps users to find related items and supports the vendors’ cross-selling,
these explanations can potentially compromise user privacy by leaking private
information and revealing information to others watching over the user’s shoulder.

Group Recommenders. Consumption of the recommended items is increasingly
used in a group setting, where users’ individual preferences are combined to provide
recommendations that fit the entire group (Chap. 22). In these settings, users may
infer the preferences of the members of their group from their combined recommen-
dations. Group recommender systems may thus need to perturb recommendations
in a way that allows users a certain level of “plausible deniability” regarding their
specific tastes and preferences.

This chapter has presented a patchwork of technical and non-technical solutions
that can each address specific privacy risks regarding current and future recom-
mender system scenarios. However, it should be highlighted that most of the existing
works in the recommender systems space are focused on a single solution and very
little has been done on developing a holistic and encompassing solution. Hence,
the challenge of integrating the diverse (and often conflicting) solutions from the
architectural and algorithmic realms, and developing a recommender that is privacy-
friendly at the core, user-friendly and maintainable from a development point of
view, and, not the least, complies with existing privacy policies, is still open.

At the same time, recommender system developers should not forget that
dealing with privacy extends beyond the technical aspects of their systems. The
privacy attitudes among recommender system users—the yardstick against which
privacy practices should be evaluated—vary considerably and evolve continuously.
Therefore, industry players have to engage in an active conversation with their
users about what are considered good privacy practices. As we ran a quick survey
among industry contacts to get a basic understanding of prevalent industry privacy
practices, it became painfully clear that companies do not feel comfortable to talk
about even their basic approach to privacy. Moving forward, though, we predict
that a more conscientious discussion about privacy in recommender systems will
emerge, and we conjecture that the key challenges presented above will be addressed
both by the research community and by industrial players concerned with improving
the privacy of their customers.
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Chapter 20
Source Factors in Recommender System
Credibility Evaluation

Kyung-Hyan Yoo, Ulrike Gretzel, and Markus Zanker

20.1 Introduction

Recommender systems are taking on an important role in supporting online
users during complex decision-making processes by providing personalized advice
[9, 73]. Yet, although recommender systems make recommendations based on
often sophisticated data mining and analysis techniques, it cannot be automatically
implied that the advice provided by a system will be accepted by its users. Whether
a recommendation is seen as credible advice and actually taken into account not
only depends on users’ perceptions of the recommendation but also of the system
as the advice-giver. The traditional persuasion literature suggests that people are
more likely to accept recommendations from credible sources. It has recently been
argued that creating a credible recommender system is important for increasing the
likelihood of recommendation acceptance [32, 42, 69, 108, 162]. The question of
how to actually translate credibility into system characteristics in the context of
recommender systems remains, however, underexplored.

Recent research regarding the persuasiveness of technology suggests that tech-
nologies can be more credible and persuasive when leveraging social aspects that
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elicit social responses from their human users [42, 105]. This notion emphasizes
the role of recommender systems as quasi-social actors, and thus, sources of advice
whose characteristics influence the perceptions of their users. Various influential
source factors have been investigated in the traditional persuasion literature based on
human-human communication. Recent research in the context of human-computer
interaction found that these factors are also important when humans interact with
technologies [42, 43, 105, 124]. With regards to recommender systems, some studies
exist that have investigated various influences of system characteristics when users
evaluate systems as well as recommendations (e.g. [28, 91, 108, 121, 122]). While
these findings provide good examples of source factors that help to develop more
credible recommender systems, still many possibly influential source characteristics
have not been examined. Consequently, this chapter seeks to provide a synopsis
of credibility-related research to draw attention to source factors which likely
play a role in recommender system credibility evaluations. For that purpose, this
chapter will first give a brief overview of the source factors found influential in
traditional interpersonal advice seeking relationships. Then, source characteristics
which have been studied in the context of human and technology interaction and, in
particular, in the recommender systems realm will be discussed. Finally, the chapter
identifies research gaps in terms of source factors that have yet to be examined
in the context of recommender systems. Overall, by exploring existing findings
and identifying important knowledge gaps, this chapter seeks to provide insights
for recommender system researchers as far as future research needs are concerned.
It also aims at providing practical implications for recommender system designers
who seek to enhance the credibility of the recommender systems they build. Note
that this chapter focuses on the source characteristics of recommender systems that
determine users’ credibility perceptions. The issue of human users’ decision-making
and the role of recommender systems to support these processes is dealt with in
Chap. 18. Furthermore, see Chap. 6 for discussions about contextual information in
recommender systems.

20.2 Credibility Evaluation of Online Sources

With the plethora of information available online, a growing number of online
users seeks an effective way to find information and evaluate its credibility. Past
online credibility literature has identified a number of different ways that online
information seekers use for their online credibility judgment. At the beginning of
online credibility research, a number of research groups (e.g. [127, 142]) have
identified five criteria that users should employ in their assessments of the credibility
of online information: accuracy, authority, objectivity, currency, and coverage.
Several subsequent empirical studies, however, have revealed that Internet users
do not vigorously apply all five criteria in their judgment of online information
credibility [39, 134]. Rather, recent studies found that most Internet users invoke
cognitive heuristics and rely on others to evaluate the credibility of information
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and sources online [92]. This means that simple cues displayed by online sources
(e.g. Website design/presentation, positive reviews from consumers, endorsements
from a third party) can be the primary factor in users’ online information credibility
assessments. Indeed, a common finding in online credibility research is that online
users often process the surface characteristics of Websites and sources when
evaluating credibility [40, 42]. In the recommender system context, this suggests
the need for research that examines the impacts of source characteristics on system
credibility evaluation.

20.3 Recommender Systems as Social Actors

Most existing recommender system studies have viewed recommender systems as
software tools and have largely neglected their social role in the interaction with
users. A growing number of studies, however, argues that computer applications
like recommender systems need to be understood as “social actors” [124]. Nass and
Moon [105] urged that people construct social relationships with machines includ-
ing computers, and apply social rules in their interactions with technology. Indeed,
several past empirical studies have shown that individuals form social relationships
with technology and that these social relationships form the basis for interactions
with the technology [44, 96, 103, 106, 115, 123]. A good number of recommender
system studies also support this “Computers as Social Actors” paradigm. Wang
and Benbasat [154], for instance, found that users perceived human characteristics
such as benevolence and integrity from recommender systems and treated systems
as social actors. Zanker and his colleagues [165] argued that interactions with
recommender systems should not only be seen from a technical perspective but
should also be examined from social and emotional perspectives. The findings
by Aksoy et al. [2] suggest that the similarity rule is also applied when humans
interact with recommender systems. They found that a user is more likely to use
a recommender agent when it generates recommendations in a way similar to the
user’s decision-making process. Morkes et al. [98] demonstrated that computer
agents that use humor are rated as more likable, competent, and cooperative. More
recently, Yoo [161] investigated how virtual agents embedded in system interfaces
influence users when they evaluate systems. The study found that users socially
interact with the systems and the social cues portrayed by the embedded virtual
agents influence system users’ evaluations of the agents as well as the overall system
quality. These studies all support the notion of recommender systems as social actors
and suggest a need for examining the social aspects of recommender systems. This
implies that recommender systems can be understood as communication sources
to which the communication theories developed for human-human communication
apply. One set of such theories relates to the impact of source characteristics on
persuasion likelihood and outcomes.
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20.4 Source Factors in Human-Human Communication

There has been considerable research attention on investigating various communi-
cator characteristics that influence the outcomes of the communicator’s persuasive
efforts in human-human interactions. This section provides a brief review of the
most relevant source factors examined in the literature. Figure 20.1 provides an
overview of influential source cues influencing credibility assessment in interper-
sonal communication.

20.4.1 Source Credibility

A good number of past studies have confirmed that a more credible source is
preferred and also more persuasive [4, 49, 58, 78, 90, 136, 137]. Credibility is
generally described as comprising multiple dimensions [16, 46, 119, 135] but most
researchers agree that it consists of two key elements: expertise and trustworthiness
[42, 43, 113, 126]. The dimension of expertise captures the perceived knowledge and
skill of the source [85, 113] while trustworthiness of a source refers to aspects such
as character or personal integrity [113]. Whether a source is perceived as having
expertise and being trustworthy depends to a great extent on its characteristics.

20.4.2 Source Cues

20.4.2.1 Source Likeability

People mindlessly tend to agree with those who are seen as likable [18]. Research
generally supports the assumption that liked communicators are more effective

Fig. 20.1 Influential source cues in credibility evaluations
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influence agents than disliked communicators [34, 47, 128]. O’Keefe [113] stressed
enhanced liking for the source is commonly accompanied by enhanced judgments
of the communicator’s trustworthiness. Further, a number of studies found that
similarity increases likeability [21, 23, 64].

20.4.2.2 Multiple Sources

Social impact theory [67, 79] explains that impact of a persuasive attempt depends
on strength, immediacy and number of influencing sources. The theory predicts that
the message will be more persuasive when it comes from multiple sources than from
a single source. This prediction was supported by several studies that found that a
message presented by several different sources was more persuasive than the same
message presented by a single source [56, 57, 158]. Such social or group-based
information evaluation and credibility assessment is increasingly critical within the
context of recent sociotechnical developments. Online users today are naturally
social and often access social collaborative efforts to evaluate online source and
information credibility [92].

20.4.2.3 Similarity

In general, homophily theory [81] states that humans like similar others. However,
the relation between similarity and the dimensions of credibility appears to be
complex. Mills and Kimble [93] found that similar others are seen as having
greater expertise than dissimilar others. However, Delia [31] observed that similarity
between the source and the message receiver makes the receiver see the source less
as an expert. In contrast, some studies found that similarity does not make any
difference in source expertise judgments (e.g., [7, 147]). The perceived similarity
of the message source also has varying effects on perceived trustworthiness of
the communicator. O’Keefe [113] suggested that perceived attitudinal similarities
can enhance liking for the source that is commonly accompanied by enhanced
judgments of the communicator’s trustworthiness. However, Atkinson et al. [7]
found that ethnic similarity and dissimilarity did not influence the perceived
trustworthiness of the source, while Delia [31] observed that similarity sometimes
diminished trustworthiness perceptions. O’Keefe [113] noted that the effects of
perceived similarities on judgments of communicator credibility depend on whether,
and how, the receiver perceives these as relevant to the issue at hand. Thus, different
types of similarity likely have different effects in different communication contexts.

20.4.2.4 Symbols of Authority

Evidence presented in the persuasion literature indicates that people often embrace
the mental shortcut of assuming that sources who simply display symbols of
authority such as titles, tailors and tone should be listened to [13, 48, 63, 120, 126].
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A number of studies reported that cues like the communicator’s education, occu-
pation, training, amount of experience, and outfit influence a message receiver’s
perceptions of source credibility [62, 63].

20.4.2.5 Styles of Speech

Several studies suggest that the style of speech can influence speaker credibility
judgments. Previous findings indicate that providing both sides of an argument
can enhance the trustworthiness of communicators [35, 143] while using complex,
difficult-to-understand terms can increase the perceived expertise of speakers [27].
In addition, the fluency of speech [17, 36, 88, 133], speaking rate [1, 53, 80, 83]
and citing sources of evidence (e.g., [41, 87, 112]) appeared to influence source
credibility evaluation.

20.4.2.6 Humor

Previous studies found effects of humor when message receivers evaluate a com-
municator’s credibility. However, the specific effects varied across different studies.
A number of studies found positive effects of humor on communicator trustworthi-
ness judgments but rarely on judgments of expertise [24, 52, 149]. When positive
effects of humor were found, the effects tended to enhance the audience’s liking of
the communicator and this liking helped increase perceptions of trustworthiness. In
contrast, some researchers found that the use of humor can decrease the audience’s
liking for the communicator, the perceived trustworthiness, and even the perceived
expertise of the source when the use of humor is perceived as excessive or
inappropriate for the context [15, 100, 150].

20.4.2.7 Physical Attractiveness

A number of studies have found that physically attractive communicators are more
persuasive [33, 66, 144]. Eagly et al. [33] explained that there appears to be a
positive reaction to good physical appearance that generalizes to favorable trait
perceptions such as a talent, kindness, honesty and intelligence. The effects of
physical attractiveness are seen as influencing indirectly, especially by means of
influence on the receiver’s liking for the communicator [113].

20.4.2.8 Caring

Caring as a theoretical construct encompasses motives and intentions. Benevo-
lence, which refers to concern about the message receiver’s best interest, has
been proposed as an underlying dimension of trust [8]. Delgado-Ballester [30]
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conceptualizes good intentions as an important factor that determines trustworthi-
ness. Perloff [118] reports that communicators who have the recipient’s interests at
their heart and communicate goodwill are often evaluated as credible sources.

20.4.2.9 Familiarity and Friendliness

As a rule, individuals are more likely to comply with requests of someone they know
in contrast to requests made by strangers [25]. Familiarity itself is very persuasive as
people are more prone to like people they know personally [25, 82, 139]. However,
also friendly strangers will get a head start. Praise and other forms of positive
estimation stimulate liking [22]. Communicators who are nice and friendly can
change attitudes because they make the recipient feel good, and the positive feeling
becomes transferred to the message [126].

20.4.2.10 Discussion

While these source cues have been identified as influential factors for source
credibility in interpersonal communication, the challenge is how these cues can be
translated and implemented in the recommender systems context. This area remains
underexplored but previous findings of recommender system studies indicate the
relevance of interpersonal source cues to recommender systems. For example, a
good deal of studies has found effectiveness of collaborative filtering (e.g. [116,
130]) in recommender systems. This implies that similarity and multiple source
cues are influential factors in the recommender systems context but the cues are
typically not well presented to users. Systems may enhance the impacts of these cues
by explaining the similarity algorithm behind the recommendation (e.g. Amazon’s
explanation of “Customers who viewed this item also viewed”), integrating other
users’ ratings (e.g. MovieLens) or displaying the number of users who were satisfied
with the recommended items. Similarly, symbols of authority could be implemented
by displaying third party seals on the system interface or presenting the users’
ratings of the system. Recent findings by Shani and his colleagues [138] indicate
that users build trust when systems provide a display of confidence alongside a
recommendation although the display does not help the users in identifying the
recommendation quality and making decisions. Styles of speech cues could be
translated into the system’s recommendation generation process or presentation
style. For instance, a good flow of process or informing users about the search
progress could enhance users’ overall satisfaction [94]. The format and layout of
recommendation presentation also has been found to influence users’ perception
[141]. Further, styles of speech cues might be easily translated into real systems due
to advances in voice technology.

The physical attractiveness of source cues can be related to overall system
interface design and the perceived attractiveness of embodied agents. Implementing
caring and friendliness cues into the systems is challenging but improved trans-
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parency and interactivity of recommender systems can express benevolence/caring
towards users. Providing explanations of the reasoning mechanism that generates
recommendations can help users to better understand the good intentions and efforts
of the system, which helps to determine the trustworthiness of the source [154].
Likewise, systems can implement cues of caring or friendliness when interacting
with users. For instance, Amazon’s “Improve Your Recommendations” link allows
users to be involved in the recommendation generation process and shows the
system’s concern about users’ best interest. The conversation styles of systems
or embodied agents can also convey caring and friendliness cues. In addition,
familiarity cues could be translated into interface design (familiar interface vs.
unfamiliar interface) or by integrating social technologies (recommend items that
the users’ social media friends have purchased or rated). When translating humor
into systems one can benefit from the research on funology. Integrating humor or
playfulness into the preference-measurement task might improve users’ interaction
experience with systems [14, 51]. Fun games can be designed to support the
preference elicitation process or humorous virtual agents can be used. Khooshabeh
and his colleagues [71] have found that individuals interacting with a humorous
virtual agent were more likely persuaded by the agent’s suggestions. As discussed
above, there are potential approaches to implementing interpersonal source cues
in recommender systems. However, many cues have not yet been implemented
and empirically tested in the recommender system context. Findings from human-
computer interaction studies can further inform such efforts. The following section
discusses the source factors examined in human-technology interactions, followed
by a systematic overview of source factor-related research in the recommender
system realm.

20.5 Source Factors in Human-Technology Interactions

It seems obvious that a computer is a tool or medium and not an actor in social life.
However, media equation theory suggests that individuals’ interactions with com-
puters, television sets, and new media are fundamentally social and natural, just like
interactions in real life [124]. This theory thus argues that the technologies should
be understood as social actors, not just tools or media. Based on this paradigm, a
growing number of studies have investigated how certain social characteristics of the
technologies influence their users’ perceptions and behaviors. Similarity between a
computer and its users was found to be important when computer users evaluated
the computer and its contents [42, 105]. For example, Nass and Moon [105] report
that computers conveying similar personality types are more persuasive. In their
study, dominant participants were more attracted to, assigned greater intelligence
to, and conformed more with a dominant computer compared to a submissive
computer. Submissive participants reacted the same way to the submissive computer
as opposed to the dominant computer, despite the essentially identical content. Nass
et al. [104] also revealed the effects of demographic similarity. Their study found
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that computer users perceived computer agents as more attractive, trustworthy,
persuasive and intelligent when same-ethnicity agents were presented.

Presenting authority symbols has also been identified as an influential factor
when people interact with technology. Nass and Moon [105] found that a television
set labeled as a specialist was perceived as providing better content than a television
set labeled as a generalist. Fogg [42] also posited that computing technology that
assumes roles of authority is more persuasive. He argued that websites displaying
awards or third-party endorsements such as seals of approval will be perceived as
more credible.

A number of studies [104, 107] argue that the demographic characteristics of
computer agents influence users’ perceptions. Nass et al. [107] illustrated that
people apply gender and ethnicity stereotypes to computers. Specifically, their study
found that people evaluated the tutor computer as significantly more competent and
likeable when it was equipped with a male voice than a female voice. They also
found that the female-voiced computer was perceived as a better teacher of love and
relationships and a worse teacher of computing than a male-voiced computer, even
though they performed identically. In addition, the use of language such as flattery
[44], apology [152] and politeness [86] has been identified as factors which make
a difference in computer users’ perceptions and behaviors. Further, the physical
attractiveness of computer agents was found to matter. The findings by Nass et al.
[104] indicate that computer users prefer to look at and interact with computer
agents that are more attractive. Finally, humor has also been tested in the human-
computer interaction context. Morkes et al. [98] found that computers which display
humor are rated as more likeable.

20.6 Source Factors in Human-Recommender System
Interactions

A number of previous studies have investigated how specific characteristics of
recommender systems influence users’ evaluations of the system as well as its
recommendations. Existing recommender system studies have examined some
source factors identified as influential in traditional interpersonal relations and
also identified important source factors that are prominent in recommender system
contexts. Xiao and Benbasat [159, 160] classified the various source characteristics
that have been studied as being associated with either recommender system type,
input, process or output design. Also, with the increasing interest in and use of
embodied agents in recommender systems, a considerable number of studies has
investigated the effects of characteristics displayed by embodied virtual agents that
often guide users through the various steps of the recommender process. More
recently, there is growing research attention on factors that have emerged with
the rise of social technology. Figure 20.2 provides an overview of source factors
identified in contemporary recommender system research. See Chaps. 8–10 for
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Fig. 20.2 Overview of source factors examined in recommender system research

additional discussions on how to assess the quality and value of recommender
systems. For examples of recommender systems used in industrial settings, see
Chap. 11.

20.6.1 Recommender System Type

Recommender systems come in different shapes and forms and can be classified
based on filtering methods, decision strategies or amount of support provided [159].
A number of previous studies have discussed the advantages and disadvantages
of these different types of recommender systems (e.g. [5, 19, 84]). Different
filtering methods were compared and it was found that meta-recommender systems
that combine collaborative filtering and content filtering are evaluated as more
helpful than traditional systems that use a pure collaborative filtering technique
[131, 132]. Burke [19] also confirmed that hybrid recommender systems provide
more accurate predictions of users’ preferences. Regarding the different decision
strategies used in recommender systems, compensatory recommender systems have
been suggested to lead to greater trust, perceived usefulness and satisfaction than
non-compensatory recommender systems [159]. They have also been found to
increase users’ confidence in their product choices [37]. As far as the amount of
support provided by the recommender system is concerned, Xiao and Benbasat



20 Source Factors in Recommender System Credibility Evaluation 699

[159] argued that needs-based systems rather than feature-based systems help
users to better recognize their needs and more accurately answer the preference-
elicitation questions, thus resulting in better decision quality. Needs-based systems
are therefore recommended for novice users [38].

20.6.2 Input Characteristics

Input characteristics of recommender systems include those cues that are related
to the preference elicitation method, ease of generating new/additional recom-
mendations and the amount of control users have when interacting with the
recommender system’s preference elicitation interface [159]. A number of previous
findings suggest that characteristics associated with recommender system input
design influence system users’ evaluations. Xiao and Benbasat [159] specifically
argued that the preference elicitation method (implicit vs. explicit) influences users’
evaluation of the system. They proposed that an implicit preference elicitation
method leads to greater perceived ease of use and satisfaction with the recommender
system while explicit elicitation is considered to be more transparent by users and
leads to better decision quality. Allowing users more control was also found to be an
influential factor when evaluating systems. West et al. [157] posited that giving more
control to system users will increase their trust and satisfaction with the system.
Indeed, a study conducted by McNee et al. [91] found that users who used user-
controlled interfaces reported higher user satisfaction than users who interacted
with system-controlled and mixed-initiative recommender systems. In addition,
users of user-controlled interfaces felt that recommender systems more accurately
represented their tastes and showed the greatest loyalty to the systems. Similarly,
Pereira [117] demonstrated that users showed more positive affective reactions to
recommender systems when they had increased control over the interaction with the
recommender system. Komiak et al. [76] also found that control over the process
was one of the top contributors to users’ trust in a virtual agent. Supporting the
importance of user control, Wang [153] noted that more restrictive recommender
systems were considered as less trustworthy and useful by their users.

In addition to control, the structural characteristics of the preference elicitation
process (relevance, transparency and effort) have also been found to influence
users’ perceptions of the recommender system [51]. The specific study by Gretzel
and Fesenmaier [51] found that topic relevance, transparency in the elicitation
process and the effort required by users to provide inputs positively influence users’
perceptions of the value of the elicitation process. The findings suggest that by
asking questions, the system takes on a social role and communicates interest in
the user’s preferences, which is seen as valuable. The more questions it asks, the
greater its potential to provide valuable feedback. Also, making intentions explicit
in this interaction is important. Although trust was not specifically measured,
benevolence and intentions are important drivers of trust and can be implied from the
importance based on transparency. Further, McGinty and Smyth [89] suggested that
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the conversation style of recommender systems during the input process matters.
In contrast to Gretzel and Fesenmaier [51], they argued that the comparison-based
recommendation approach, which asks users to choose a preferred item from a list
of recommended items instead of a deep dialogue approach that asks users a series
of direct questions about the importance of product features, would minimize the
cost to the user and maintain recommendation quality.

20.6.3 Process Characteristics

Characteristics of recommender systems displayed during the recommendation
calculation process appear to influence users’ perceptions of the systems [159].
Such process factors include information about the search process and about the
system response time. Mohr and Bitner [94] noted that system users use various cues
or indicators to assess the amount of effort saved by decision aids. Indicators that
inform users about the search progress help them become aware of the efforts saved
by the system. The higher users’ perceptions of the effort saved by decision aids, the
greater their satisfaction with the decision process [11]. Sutcliffe et al. [146] found
that users reported usability/comprehension problems with information retrieval
systems that did not provide a search progress indicator.

Influences of system response time, i.e. the time between the user’s input and the
system’s response, have also been identified as important in a number of studies.
Basartan [10] varied the response time from a simulated shopbot and found that
users prefer those shopbots less that make them wait a long time before receiving
recommendations. In contrast, Sinha and Swearingen [141, 148] found that the
time taken by users to register and to receive recommendations from recommender
systems did not have a significant effect on users’ perceptions of the system. In
the study by McNee et al. [91], the lengthier sign up process increased users’
satisfaction with and loyalty toward the system. Xiao and Benbasat [159] explained
that the contradicting findings of previous studies regarding response time may
depend on users cost-benefit assessments. They suggest that users do not form
negative evaluations of the recommender systems when they perceive the benefits
of waiting as leading to high quality recommendations. The findings of Gretzel
and Fesenmaier [51] regarding the relationship between elicitation effort and the
perceived value of the elicitation process support this assumption.

20.6.4 Output Characteristics

Recommender system characteristics portrayed in the output stage of the recom-
mendation process are related to the content and the format of the recommendations
presented to users. Previous findings indicate that the content and the format of
recommendations can have significant impact on users’ evaluations of recommender
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systems (e.g. [28, 141, 155, 159]). Xiao and Benbasat [159] noted that three
aspects of recommendation contents—the familiarity of the recommended option,
the amount of information on recommended products, and the explanation on how
the recommendation was generated—are especially relevant when users evaluate
recommender systems. Some studies found that more familiar recommendations
increase users’ trust in the recommender system. Sinha and Swearingen [141] found
that recommended products that were familiar to users were helpful in establishing
users’ trust in recommender systems. A study by Cooke et al. [26] also observed that
unfamiliar recommendations lowered users’ favorable evaluations of recommender
systems. Further, the availability of product information appeared to positively
influence users’ perceptions of recommender systems. Sinha and Swearingen
[141] suggest that detailed product information available on the recommendation
page enhances users’ trust in the recommender system. Cooke et al. [26] also
explained that the attractiveness of unfamiliar recommendations can be increased
if recommender systems provide detailed information about the new product.

The impacts of explanations on users’ evaluations of recommender systems have
been investigated in a considerable number of studies. Wang and Benbasat [154]
found that explanations of the recommender system’s reasoning logic strengthened
users’ beliefs in the recommender system’s competence and benevolence. Herlocker
et al. [60] also reported that explanations were important in establishing trust in
systems since users were less likely to trust recommendations when they did not
understand why certain items were recommended to them. Bonhared and Sasse
[114] emphasized that recommender systems must establish a connection between
the advice seeker and the system through explanation interfaces in order to enhance
the user’s level of trust in the system. Similarly, studies by Pu and Chen [121] and
Tintarev and Masthoff [151] showed that system users exhibited more trust in the
case of explanation interfaces.

The format in which recommendations are presented to the user also appears
to influence users’ evaluation of recommender systems. Sinha and Swearingen
[141] found that navigation and layout of recommendation presentation interfaces
significantly influence users’ satisfaction with systems. Swearingen and Sinha [141]
further found that interface navigation and layout influenced users’ overall rating of
systems. Consistent with these findings, Yoon and Lee [164] showed that interface
design and display format influenced system users’ behaviors. However, a study
conducted by Bharti and Chaudhury [12] did not find any significant influence of
navigational efficiency on users’ satisfaction. In addition, Schafer [129] suggested
that merging the preferences interface and the recommendation elicitation interface
within a single interface can make the recommender system be seen as more helpful
since this new “dynamic query” interface can provide immediate feedback regarding
the effect caused by an individual’s preference changes. Since this merges the input
with the output interface, this suggestion touches upon cues such as transparency
already discussed in the context of input characteristics.
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20.6.5 Characteristics of Embodied Agents

Recommender systems often include virtual personas guiding the user through the
process. It can be assumed that social responses are even more prevalent if the sys-
tem is personified. Indeed, the important role and impacts of embodied interface
agents in the context of recommender systems have recently been emphasized in
a number of studies. For example, the presence of a humanoid virtual agent in the
system interface was found to increase system credibility [99], to augment social
interactions [122], to enhance the online shopping experience [65], as well as to
induce trust [156]. With growing interests in such interface agents, a number of
studies have started investigating if and how certain characteristics of the interface
agent influence recommender system users’ perceptions and evaluations.

One of the important identified characteristics of agents is anthropomorphism.
Anthropomorphism is defined as the extent to which a character has either the
appearance or behavioral attributes of a human being [74, 109–111]. Many
researchers have found that anthropomorphism of embodied agents influences
people’s interactions with computers (e.g. [74, 109, 111]), and specifically with
recommender systems [122]. Yet, the benefits and costs of anthropomorphic agents
are debatable. For example, more anthropomorphic interface agents were rated as
being more credible, engaging, attractive and likeable than less anthropomorphic
agents in some studies [74, 110] while other studies found contrasting results
[101, 109, 111]. The social cues communicated by the inclusion of such agents
might create expectations in the users that cannot be met by the actual system
functionalities.

Human voice is a very strong social cue that has been found to profoundly
shape human-technology interactions [102]. However, findings in the context of
embodied interface agents are not widely available and are currently inconclusive.
The voice output of interface agents was found to be helpful in inducing social and
affective responses from users in some studies [97, 122] but other studies found that
sociability is higher when the system avatar only communicated with text [145].

The demographic characteristics of interface agents have also been found to
influence system users’ perceptions and behaviors. Qiu [122] reports that system
users evaluated the system as more sociable, competent, and enjoyable when the
agents were matched with them in terms of ethnicity and gender, thus supporting
the homophily hypothesis. Cowell and Stanny [29] also observed that system users
prefer to interact with interface characters that matched their ethnicity and were
young looking. A study by Nowak and Rauh [110] indicated that people showed a
clear preference for characters that matched their gender.

In addition to similarity cues, other source characteristics have also been inves-
tigated in the context of embodied interface agents. The effects of attractiveness
and expertise of interface agents were tested by Holzwarth et al. [65]. They found
that an attractive avatar is a more effective sales agent at moderate levels of product
involvement while an expert agent is a more effective persuader at high levels of
product involvement. Further, the potential impacts of nonverbal behavior cues
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including facial expression, eye contact, gestures, paralanguage and posture of
interface agents were emphasized by Cowell and Stanney [29]. However, research
in this area is still limited.

20.6.6 Impact of Emerging Social Technologies

Social technologies and recommender systems benefit mutually from each other
[55]. On the one hand, recommender systems embedded in social technologies
alleviate information overload for social technology users by presenting only
relevant and personalized content [54, 55, 167]. On the other hand, recommender
systems can integrate new social media-generated data such as tags, ratings and
comments to enhance the quality of their recommendations. These social media-
generated data can play an important role in recommender system credibility
assessments.

Metzger and her colleagues [92] found that a growing number of online users
make information evaluations and credibility assessments using cues provided
by social technologies. They argued that, today, source credibility is no longer
evaluated by just one person but rather collaboratively. Zhou and his team [167]
specifically examined the benefits of exploiting social content/data in recommender
systems. They explained that social technologies contain data that can be mined
and analyzed to expand user profiles, and to build complex maps of user-to-user
and user-to-interest relationships. Their argument is that recommender systems can
generate high quality and reliable recommendations by incorporating social data
more effectively via the use of the latest collaborative filtering approaches, data
mining techniques, and trust/reputation management technology. Indeed, a study
by Guy and his colleagues [55] found that recommender system users showed
greater interest in items recommended by systems that combined related people
and tags data in order to generate recommendations. In addition, Armentano et al.
[6] found that system users often perceived recommendations as relevant when
the system generated the recommendations using an algorithm based on the social
network structure of users. Further, Guy and Carmel [54] noted that the system
should provide explanations of how and why the specific recommendations were
presented to users to increase the level of trust in the system. In summary, there
is increasing evidence that social cues generated by social technology matter
for credibility assessments. See Chap. 15 for additional discussions on social
recommender systems.

20.7 Discussion

Swearingen and Sinha [141] noted that the ultimate effectiveness of a recommender
system depends on factors that go beyond the quality of the algorithm. Nevertheless,
recommender system features are oftentimes implemented because they can be
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implemented. They might be tested in the course of overall system evaluations or
usability studies but are rarely assessed in terms of their persuasiveness. Häubl and
Murray [59] demonstrated that recommender systems can indeed have profound
impacts on consumer preferences and choice beyond the immediate recommenda-
tion. Thus, conceptualizing recommender systems not only as social but also as
persuasive actors is crucial in understanding their potential impacts. The above
review of the literature suggests a wide array of recommender system characteristics
which could be influential.

Following the paradigm of “Computers as Social Actors” [42, 124], recent
recommender system studies have started emphasizing the social aspects of recom-
mender systems and stress the importance of integrating social cues to create more
credible and persuasive systems [3, 122, 154]. This recognition of recommender
systems as social actors has important implications for recommender systems
research and design. Most importantly, conceptualizing human-recommender sys-
tem interactions as social exchanges means that important source characteristics
identified as influential in traditional advice seeking relationships can also be seen
as potentially influential in human-recommender system interactions.

20.8 Implications

Understanding the influence of source characteristics when evaluating recommender
systems has many implications of theoretical and practical importance. From a
theoretical perspective, the classic interpersonal communication theories need to
be expanded in scope and applied to understand human-recommender system
relationships. By applying classic theories, researchers can test and examine various
aspects of human-recommender system interactions. However, the unique qualities
of human-recommender interactions should be considered when applying these
theories and when developing methodologies to test them. Further, while some
recommender system-related research exists with respect to source characteristics,
the efforts are currently not very systematic and sometimes inconclusive. Clearly,
more research is needed in this area so that a strong theoretical framework can be
built.

From the practical perspective, understanding recommender systems as social
actors whose characteristics influence user perceptions helps system developers and
designers to better understand user interactions with systems. Social interactions
thrive on trust and are also subject to persuasion. The way in which preferences are
elicited, the way recommendations are derived, and the more insight users have in
these processes, the greater perceptions of credibility and the greater the likelihood
for a recommendation to be accepted [51]. Opposed to the common practice of
one-shot interactions, recommender systems would be more probable to trigger a
social frame in the minds of users if their conceptualization and design were more
ambitious with respect to the consideration of the different source factors:
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RS Type and Input Hybrid systems, explicit elicitation and generally giving users
control over the process seem to be highly effective strategies [19, 77, 91, 117, 131,
132, 157, 159]. Seen from an abstract viewpoint two basic conversational strategies
have been explored in recommender systems: asking and proposing. Asking denotes
the explicit elicitation of user preferences in order to compute recommendations
[166]. The Proposing conversation strategy is also known as critiquing, where one
or more items are presented and the user can provide feedback why a specific item
does not exactly match the user’s preferences [20]. One of the earliest systems
combining both strategies, i.e. first asking users about their preferences and then
making several rounds of propositions which can be critiqued, is the ExpertClerk
system [140]. Another system suggested by Schafer [129] has a dynamic query
interface, that merges the preferences interface and the recommendation elicitation
interface within a single user interface. This helps users feel that they have control
over the system since the interface can provide immediate feedback regarding the
effects caused by individuals’ preference changes.

Process During interaction with recommender systems, response times needs to be
kept short [10] and the specifics of the search process should be communicated
to users [11, 94, 146] to demonstrate the system’s efforts as this will influence
credibility perceptions.

Output When generating recommendations, more familiar recommendations with
detailed product descriptions [26, 141] and explanations regarding the underlying
logic of how the recommendation was generated [45, 60, 154] would increase users’
perceived credibility of the system. A good understanding of users’ system use
history and patterns using a sophisticated data mining technique would help the
systems generate recommendations that are more familiar to users. Along with the
text descriptions of recommended products, recommender system designers may
consider providing virtual product experiences. Jiang and Benbasat [70] noted that
a virtual product experience enhances consumers’ product understanding, brand
attitude, purchase intention as well as decreases the perceived risks. Adding virtual
experiences of products enables the users not only to have a better understanding
of the recommended products but also to inspire greater attention, interest and
enjoyment.

Recommender system designers should also pay attention to the display format
of the recommendations [141, 164]. Navigational efficacy, design familiarity and
attractiveness need to be considered when the recommendations are presented to
users. The challenge for design is to find ways in which source characteristics
such as similarity, likeability and authority can be manipulated and translated into
concrete design features that fit within the context of recommender systems. For
instance, presenting third party seals signaling the authority of the system can
increase the overall credibility of systems.

Embodied Agent One way in which some characteristics can be more easily
implemented is by adding an embodied agent to the system interface. The embodied
agent serves as the representative of the system and, thus, emphasizes the social
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role of the system as the advice giver [163]. Voice interfaces can be another way
to translate source characteristics into credibility-evoking recommender system
design, for instance one very recent work combines speech interaction with a
conversational critiquing strategy [50]. Manipulating personalities (e.g. extraversion
or introversion) of recommender systems to match with users’ personalities by
varying communication style and voice characteristics was also suggested by Hess
et al. [61] and Moon [95].

Social Factors The first authors envisioning collaborative recommender systems
[125] already had a clear social perspective of this technology in mind, which
might influence the social structure among its users by fracturing the global village
into smaller tribes. Since then the paradigm shift that came along with social web
applications turns information seekers and consumers also into information con-
tributors. The Social Web therefore not only became a rapidly growing application
domain in order to support users in digging through the enormous information
offerings, but also a precious source for making algorithms more accurate (see
[68] for a quantitative survey on domains of interest to recommender systems
research). However, purposefully exploiting social cues to develop more credible
and persuasive recommender systems is still in its infancy. From the marketing
point of view, creating recommender systems that play similar roles as human
salespersons in physical stores who interact with consumers and advise consumers
in terms of what to buy continues to be an important goal [75, 76].

20.9 Directions for Future Research

While existing studies have identified and tested a number of influential source
characteristics in human-recommender system advice seeking relationships, many
potential characteristics suggested by general communication theories such as
authority, caring, non verbal behaviors like facial expression and gestures, and
humor have not been examined. Those unexamined characteristics need to be
successfully implemented and also empirically tested in future recommender system
studies. The identified and tested source characteristics also need to be more
precisely examined. The effects of source characteristics on judgments of source
credibility are often found to be complex rather than linear in previous studies
conducted in human-human advice seeking contexts [113]. Since situational factors,
individual differences and product type can also play a significant role in determin-
ing the recommender system credibility, relationships will have to be specifically
tested for specific recommender systems to provide accurate input for design
considerations. The increasing use of recommender systems through mobile devices
warrants particular attention in this context. In addition, there can be additional
source characteristics that might not be prominent in influencing advice seeking
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relationships among human actors but are important aspects to be considered in the
realm of recommender systems. For instance, anthropomorphism of the technology
has been identified as an important characteristic that influences interactions with
technologies [74, 111] while it is of course not a critical characteristic in interactions
among human actors. The realness of interface agents can also be considered as a
potentially influential source cue. There is some evidence that users are less likely to
respond socially to a poor implementation of a human-like software character than
to a good implementation of a dog-like character [72]. Cues generated by social
technology also fall into this category. In future research, such additional source
cues need to be identified and tested.

Some of the source characteristics have been tested in isolation from another.
In order to investigate interaction effects, different source cues should be tested
simultaneously if it is possible to implement them at the same time. This will help
with understanding the relationships among various source factors.

Overall, the literature presented in this chapter suggests that there is a great need
for research in this area. It also suggests that new methodologies might have to be
developed to investigate influences that happen at a sub-conscious level. Especially
a greater emphasis on behavioral measures of recommendation acceptance seems to
be warranted if the persuasiveness of recommender systems is to be evaluated.
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Chapter 21
Personality and Recommender Systems

Marko Tkalcic and Li Chen

21.1 Introduction

In recent years, there has been an increased research interest in more user-oriented
approaches in recommender systems, where various psychological aspects have
been investigated (e.g. personality [28] and emotions [70]) compared to the clas-
sical machine-learning approaches in recommender systems (i.e. classical ratings
prediction from the user-item matrix, such as the Netflix-prize problem [36]). As
argued in Chap. 18, an important function of recommender systems is to help people
make better decisions. As personality plays an important role in decision-making
[13] it should be taken into account. It has been also argued that an improvement
in the rating prediction accuracy (usually measured with measures such as the
Root Mean Square Error, see also Chap. 8) does not necessarily mean a better
user experience [45]. As further discussed in Chap. 9, assessing the recommender
systems from a user-centric perspective yields a better picture of the quality of the
recommender system under study. Hence, when optimizing a recommender system
for user-centric aspects one should take into consideration these aspects already in
the design of the recommender systems. This is why personality, which by definition
measures individual users’ differences [33], should be taken into account in order
for the recommender system to perform better in user-centric metrics.

The individual differences between users, as described by personality, are useful
in a wide range of aspects of recommender systems. For example, music preferences
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have been shown to correlate with personality [55]. It has been shown that people
with different personalities can be more or less inclined to consume novel items,
so the degree of diversity in presenting recommended items can be personalized
accordingly [74]. Personality has been used to improve user-similarity calculation
in the new-user problem [29, 69]. Also, group modeling based on personality has
improved the performance of group recommendations [35, 54, 56].

In this chapter we present personality-based recommender systems. We focus on
the tools needed to design such systems, especially on (1) personality acquisition
methods and (2) strategies for using personality in recommender systems.

From its definition in psychology, personality accounts for the individual dif-
ferences in our enduring emotional, interpersonal, experiential, attitudinal and
motivational styles [33]. Incorporating these differences in the recommender system
appears to be a natural choice for delivering personalized recommendations.
Furthermore, personality parameters can be quantified as feature vectors, which
makes them suitable to use in computer algorithms. However, the acquisition
of personality parameters for individual users could be, until recently, acquired
only through extensive questionnaires, which was an obstacle in a day-to-day use
of recommender systems. Examples of such questionnaires are the International
Personality Item Pool (IPIP) [23] and the NEO Personality Inventory [43]. Recently,
several investigations have been conducted to extract personality parameters in an
implicit way from social media streams [22, 37, 53]. Valuable sources for assessing
the personality of a user without bothering her/him with extensive questionnaires
are social media streams (e.g. Facebook [37], blogs [32] or Twitter [53]) and other
user-generated data streams (e.g. email [63]).

The chapter is organized as follows. In Sect. 21.2 we survey various models
of personality that were developed and are suitable for recommender systems.
In Sect. 21.3 we present various methods for acquiring personality, which fall in
either of the two categories: implicit or explicit. In Sect. 21.4 we discuss various
strategies that exploit personality and have been used so far in recommender
systems. Further, in Sect. 21.5 we present the challenges that are still ahead in
the domain of personality-based recommender systems. Finally we provide some
conclusive thoughts in Sect. 21.6

21.2 What is Personality?

According to [44], personality accounts for the most important ways in which
individuals differ in their enduring emotional, interpersonal, experiential, attitudinal
and motivational styles. Translated into the recommender systems terminology,
personality can be thought of as a user profile, which is context-independent (it does
not change with time, location or some other context—see Chap. 6 for context
in recommender systems) and domain-independent (it does not change through
different domains, e.g. books, movies—see also Chap. 27 for personality in cross-
domain recommender systems).
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Historically, the first reports of studies of individual differences among humans
go back to the ancient Greeks with the Hippocrates’ Four Humours that eventually
led to the personality theory known today as the four temperaments (Choleric,
Sanguinic, Melancholic and Phlegmatic) [34].

Today, the Five Factor Model of personality (FFM) [44], is considered one of
the most comprehensive and is the mostly used personality model in recommender
systems [10, 18, 28–30, 48, 49, 67, 72, 74]. The FFM is sometimes referred to also
as the Big-Five (Big5) model of personality.

21.2.1 The Five Factor Model of Personality

The roots of the FFM lie in the lexical hypothesis, which states that things that
are most important in people’s lives eventually become part of their language.
Studying the usage of language, researchers extracted a set of adjectives that
describe permanent traits (see Table 21.1). With further research, these adjectives
were clustered into the five main dimensions: openness to experience, conscien-
tiousness, extraversion, agreeableness, and neuroticism (the acronym OCEAN is
often used) [44].

Openness to Experience (O), often referred to just as Openness, describes the
distinction between imaginative, creative people and down-to-earth, conventional
people. High O scorers are typically individualistic, non conforming and are very
aware of their feelings. They can easily think in abstraction. People with low O
values tend to have common interests. They prefer simple and straightforward
thinking over complex, ambiguous and subtle. The sub-factors are imagination,
artistic interest, emotionality, adventurousness, intellect and liberalism.

Conscientiousness (C) concerns the way in which we control, regulate and direct
our impulses. People with high C values tend to be prudent while those with
low values tend to be impulsive. The sub-factors are self-efficacy, orderliness,
dutifulness, achievement-striving, self-discipline and cautiousness.

Extraversion (E) tells the degree of engagement with the external world (in case
of high values) or the lack of it (low values). The sub-factors of E are friendliness,
gregariousness, assertiveness, activity level, excitement-seeking and cheerfulness.

Table 21.1 Examples of adjectives related to the FFM [44]

Factor Adjectives

Extraversion (E) Active, assertive, energetic, enthusiastic, outgoing, talkative

Agreeableness (A) Appreciative, forgiving, generous, kind, sympathetic, trusting

Conscientiousness (C) Efficient, organized, planful, reliable, responsible, thorough

Neuroticism (N) Anxious, self-pitying, tense, touchy, unstable, worrying

Openness (O) Artistic, curious, imaginative, insightful, original, wide interest
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Extrovert people (high score on the E factor) tend to react with enthusiasm and
often have positive emotions while introverted people (low score on the E factor)
tend to be quiet, low-key and disengaged in social interactions.

Agreeableness (A) reflects individual differences in concern with cooperation and
social harmony. The sub-domains of the A factor are trust, morality, altruism,
cooperation, modesty and sympathy.

Neuroticism (N) refers to the tendency of experiencing negative feelings. People
with high N values are emotionally reactive. They tend to respond emotionally to
relatively neutral stimuli. They are often in a bad mood, which strongly affects
their thinking and decision making (see Chap. 18 for more on decision making).
Low N scorers are calm, emotionally stable and free from persistent bad mood.
The sub-factors are anxiety, anger, depression, self-consciousness, immoderation
and vulnerability. The neuroticism factor is sometimes referred to as emotional
stability [25].

The five factors and their respective adjectives are shown in Table 21.1.

21.2.2 Other Models of Personality

Other personality models that can be of interest to the recommender system
community are the vocational RIASEC (with the main types Realistic, Investigative,
Artistic, Social, Enterprising and Conventional) model [27], which was used in an
e-commerce prototype [7] and the Bartle model (with the main types Killers, Achiev-
ers, Explorers and Socializers), which is suitable for the videogames domain [65].

The Thomas-Kilman conflict mode personality model has been developed to
model group dynamics [66]. The model is composed of the following two dimen-
sions that account for differences in individual behaviour in conflict situations1:
Assertiveness and Cooperativeness. Within this two-dimensional space subjects are
classified into any of these five categories: Competing, Collaborating, Compromis-
ing, Avoiding or Accommodating.

Although learning styles per se are not considered as a personality model
they share with personality the quality of being time invariant. In the domain
of e-learning (see also Chap. 12), models of learning styles have been used
to recommend course material to students [17]. An example is the Felder and
Silverman Learning Style Model [20] which measures four factors: active/reflective,
sensing/intuitive, visual/verbal and sequential/global.

In addition, some ad-hoc personality models have been proposed in the rec-
ommender systems community. For a trendy pictures recommender system, a
personality model with two types, the trend-setters and the trend-spotters, has
been proposed, along with a methodology for predicting the personality types from

1The Thomas-Kilman conflict mode instrument is available at http://cmpresolutions.co.uk/wp-
content/uploads/2011/04/Thomas-Kilman-conflict-instrument-questionaire.pdf.

http://cmpresolutions.co.uk/wp-content/uploads/2011/04/Thomas-Kilman-conflict-instrument-questionaire.pdf
http://cmpresolutions.co.uk/wp-content/uploads/2011/04/Thomas-Kilman-conflict-instrument-questionaire.pdf
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Table 21.2 Main personality models

References Model name
Primary
domain Domain types/traits

[44] Five factor model General Openness, conscientiousness, extraversion,
agreeableness, and neuroticism

[34] Four temperaments General Choleric, sanguinic, melancholic and
phlegmatic

[27] RIASEC Vocational Realistic, investigative, artistic, social,
enterprising and conventional

[65] Bartle types Video games Killers, achievers, explorers and
socializers

[20] Felder and Silverman
learning style model

Learning styles Active/reflective, sensing/intuitive,
visual/verbal, sequential/global

[66] Thomas-Kilmann
conflict model

Group/conflict
modeling

Assertiveness, cooperativeness

social media networks [62]. Especially in the domain of social networks, there
is a tendency to stress the influence/susceptibility aspects of users as the main
personality traits (e.g. leaders/followers) [5] (Table 21.2).

21.2.3 How Does Personality Relate to User Preferences?

A number of studies showed that personality relates strongly with user preferences.
Users with different personalities tend to prefer different kinds of content. These
relations are domain dependant. Such an information is very valuable when
designing a recommender system for a specific domain.

In their study, Rentfrow and Gosling [58] explored how music preferences are
related to personality in terms of the FFM model. They categorized music pieces
each into one of the four categories: reflective & complex, intense & rebellious,
upbeat & conventional and energetic & rhythmic. The reflective & complex category
was related to openness to new experience. Similarly, the intense & rebellious
category was also positively related to openness to new experience. However,
although this category contains music with negative emotions it was not related to
neuroticism or agreeableness. The upbeat & conventional category was found to be
positively related with extraversion, agreeableness, and Conscientiousness. Finally,
they found that the energetic & rhythmic category is related to extraversion and
agreeableness.

In a similar study, Rentfrow et al. [57], extended the domain to general
entertainment, which included music, books, magazines, films and TV shows. They
categorized the content into the following categories: aesthetic, cerebral, communal,
dark and thrilling. The communal category was positively related to extraversion,
agreeableness and conscientiousness while being negatively related to extraversion
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and neuroticism. The aesthetic category was positively related to agreeableness,
extraversion and negatively to neuroticism. The dark category was positively related
extraversion and negatively to conscientiousness and agreeableness. The cerebral
category was related to extraversion while the thrilling category did not reveal any
consistent correlation with personality factors.

The relation between music and personality was also explored by Rawlings
et al. [55]. They observed that the Extraversion and Openness factors are the only
ones that explain the variance in the music preferences. Subjects with high openness
tend to prefer diverse music styles. Extraversion, on the other hand, was found to be
strongly related to preferences to popular music.

Cantador et al. [9] presented the results of an experiment where they observed
the relations between user preferences and personality in the domains of movies,
TV shows, music and books. Their work is based on the myPersonality dataset [37].
They observe a large number of relations between personality traits and individual
domains as well as in crossed domains.

In an experiment based on a contextual movie recommender system dataset
(the CoMoDa dataset [50]), Odic et al. explored the relations between personality
factors and the induced emotions in movies in different social context [51]. They
observed different patterns in experienced emotions for users in different social
contexts (i.e. alone vs. not alone) as functions of the extraversion, agreeableness
and neuroticism factors. People with different values of the conscientiousness and
openness factors did not exhibit different patterns in their induced emotions.

21.3 Personality Acquisition

The acquisition of personality parameters is the first major issue in the design of
personality-based recommender systems. Generally, the acquisition techniques can
be grouped into

• explicit techniques (questionnaires depending on the model)
• implicit techniques (regression/classification based on social media streams)

While explicit techniques provide accurate assessments of the users’ personal-
ities they are intrusive and time consuming. Hence, these techniques are useful
only in laboratory studies and for the assessment of ground truth data for the later
automatic extraction.

Implicit techniques, on the other hand, offer an unobtrusive way of acquiring
personality parameters. However, the accuracy of these instruments is not high and
depends heavily on the quality of the source information (e.g. how often does a user
tweet).

In this section we survey existing techniques for the acquisition of personality in
recommender system. Table 21.3 sums the methods described in this section.
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Table 21.3 Personality acquisition methods

References Method Personality model Source

[15, 23–26, 33] Explicit FFM Questionnaires (from ten
questions up)

[53] Implicit FFM Micro-blogs (twitter)

[4, 37, 61] Implicit FFM Social media (facebook)

[21] Implicit FFM Social media (weibo)

[40] Implicit FFM Role-playing game

[16] Implicit FFM Game (Commons Fishing Game)

[11] Implicit FFM Mobile phone logs

[63] Implicit FFM Emails

[30] Implicit FFM Ratings of products in a webstore

[14] Implicit FFM Stories

[66] Explicit Thomas-Kilmann conflict
model

Questionnaire

[64] Explicit Felder and Silverman
learning style model

Questionnaire

21.3.1 Explicit Personality Acquisition

A widely used questionnaire for assessing the FFM factors is the International
Personality Item Pool (IPIP) set of questionnaires [23]. The IPIP’s web page2

contains questionnaires with 50 and 100 items, depending on the number of
questions per factor (10 or 20). The relatively high number of questions makes it
an accurate instrument, although it’s time consuming for end users. Furthermore,
it has been translated in many languages and validated in terms of cross-cultural
differences [42].

In the questionnaire defined by Hellriegel and Slocum [26], each factor is
measured via five questions, so there are 25 questions in total regarding the five
factors. Each factor’s value is the average of user’s scores on its related five
questions. For example, the questions used to assess “Openness to Experience”
include “imagination”, “artistic interests”, “liberalism”, “adventurousness”, and
“intellect”. Users are required to respond to every question on a 5-point Likert scale
(for example, “imagination” is rated from 1 “no-nonsense” to 5 “a dreamer”). John
and Srivastava [33] developed a more comprehensive list containing 44 items, called
Big Five Inventory (BFI), by which each personality factor is measured by eight or
nine questions. For example, the items related to “Openness to Experience” are
“is original, comes up with new ideas”, “is curious about many different things”,
“is ingenious, a deep thinker”, “has an active imagination”, etc. (each is rated
on a 5-point Likert scale from “strongly disagree” to “strongly agree”, under the

2http://ipip.ori.org/.

http://ipip.ori.org/
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Table 21.4 The ten-items
personality inventory
questionnaire developed by
Gosling et al. [25]

FFM factor Statement: I see myself as

E Extraverted, enthusiastic

A Critical, quarrelsome

C Dependable, self-disciplined

N Anxious, easily upset

O Open to new experiences, complex

E Reserved, quiet

A Sympathetic, warm

C Disorganized, careless

N Calm, emotionally stable

O Conventional, uncreative

general question of “I see Myself as Someone Who . . . ”). This questionnaire
has been recognized as a well-established measurement of personality traits. The
other commonly used public-free instruments include the 100-item Big Five Aspect
Scales (BFAS) [15] and the 100 trait-descriptive adjectives [24]). A super-short
measure of the Big5 model is the Ten Item Personality Inventory (TIPI) in which
each factor is only assessed by two questions (e.g., “Openness to Experiences” is
assessed by “open to new experiences, complex” and “conventional, uncreative” on
the same Likert scale used in BFI) [25]. This instrument can meet the need for a very
short measure (e.g., when time is limited), although it may somewhat diminished
psychometric properties. We provide the TIPI questionnaire in Table 21.4.

A typical example of a commercially controlled instrument is the NEO PI-R
(with a 240-items inventory) [12], which can not only measure the five factors,
but also the six facets (i.e. subfactors) of each factor. For example, “Extroversion”
contains six facets: Gregariousness (sociable), Assertiveness (forceful), Activity
(energetic), Excitement-seeking (adventurous), Positive emotions (enthusiastic),
and Warmth (outgoing). The NEO-FFI instrument, which measures the five factors
only (but not their related facets), is a 60-item truncated version of NEO PI-R [12].

A quasi-explicit instrument for measuring personality is the approach of using
stories. In their work, Dennis et al. [14] developed a set of stereotypical stories
where each one conveys a personality trait from the FFM. For each of the five FFM
factors they devised a pair of stories, one for a high level of the observed factor
and one for the low level of the observed factor. The subject then rates how well
each story applies to her/him on a Likert scale from 1 (extremely inaccurate) to 9
(extremely accurate).

Though different instruments have been developed so far, the choice of instru-
ment is highly application-dependent and there is no one-size-fits-all measure.
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21.3.2 Implicit Personality Acquisition

In their work, Quercia et al. [53], present the outcomes of a study that shows
strong correlations between features extracted from users’ micro-blogs and their
respective FFM factors. The authors used the myPersonality dataset of 335 users.
The dataset contains the users’ FFM personality factors and the respective micro-
blogs. The authors extracted several features from the micro-blogs and categorized
them into the following quantities: listeners, popular, highly-read and influential.
Each of these quantities showed a strong correlation with at least one of the FFM
factors. The authors went a step further into predicting the FFM factors. Using a
machine learning approach (the M5 rules regression and the tenfold-cross validation
scheme) they were able to achieve a predictability in RMSE ranging from 0:69 to
0:88 (on FFM factors ranging from 1 to 5).

Kosinski et al. [37] used the whole myPersonality dataset of over 58,000 subjects
with their respective Facebook activity records to predict the FFM factors of the
subjects. The source dataset was the user-like matrix of Facebook likes. The authors
applied the Singular Value Decomposition method to reduce the number of features
and used the logistic regression model to predict the FFM factors (along with other
user parameters such as gender, age etc.). Their model was able to predict well the
traits Openness and Extraversion while the other traits were predicted with lower
accuracy.

An interesting approach was taken by van Lankveld et al. [40] who observed
the correlation between FFM parameters and the users’ behaviour in a videogame.
They modified the Neverwinter Nights (a third-person role-playing video game)
in order to store 275 game variables for 44 participants. They used variables that
recorded conversation behavior, movement behavior and miscellaneous behaviors.
They found significant correlations between all five personality traits and game
variables in all groups.

Chittaranjan et al. [11] used mobile phone usage information for inferring FFM
parameters. They used call logs (e.g. outgoing calls, incoming calls, average call
duration etc.), SMS logs and application-usage logs as features for predicting the
FFM factors. They observed that a number of these features have a significant
correlations with the FFM factors. Using the Support Vector Machine classifier
they achieved better results in the prediction of the traits than a random baseline
although the difference was not always significant, which makes the task of inferring
personality from call logs a hard one.

Shen et al. [63] attempted to infer the email writer’s personality from her/his
emails. To preserve privacy, they only extract high-level aggregated features from
email contents, such as bag-of-word features (built from most commonly used
words in daily life), meta features (such as TO/CC/BCC counts, importance of the
email, count of different punctuation symbols, count of words, count of positive and
negative numbers, count of attachments, month of the sent time, etc.), word statistics
(through part-of speech tagging, sentiment analysis, and counting of pronouns
and negations words), writing styles (in greeting patterns, closing patterns, wish
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patterns, and smiley words), and speech act scores (for detecting the purpose of
work-related emails). These groups of features are then applied to train predictors
of the writer’s personality, through three different generative models: joint model,
sequential model, and survival model. The function is formally represented as
f W X ! Y , where X is the feature vector and Y D< y1; ::; yK > is the personality
trait value vector (each element of Y corresponds to one personality trait, such as
Extraversion, with either of three values “low”, “medium” and “high”). The joint
model takes all the personality traits as a single entity to jointly decide whether a
feature is selected; sequential model first selects a personality trait, and then uses
this trait to decide whether to select a feature; survival model allows all personality
traits to decide whether to select a feature independently, then the feature selected by
all traits will be get selected. The experiment done on over 100,000 emails showed
that the survival model (with label-independence assumption) works best in terms of
prediction accuracy and computation efficiency, while joint model performs worst
in terms of inferring personality traits such as Agreeableness, Conscientiousness,
and Extraversion. The results to some extend infer that the personality traits are
relatively distinct and independent from each other. Furthermore, it was found that
people with high Conscientiousness are inclined to write long emails and use more
characters; people with high Agreeableness tend to use more “please” and good
wishes in their emails; and people with high Neuroticism use more negations.

The set of studies by Oberlander et al. [32, 47] showed that personality can be
inferred also from blog entries. In [32] they used features such as stemmed bigrams,
no exclusion of stopwords (i.e. common words) or the boolean presence or absence
of features noted (rather than their rate of use) in combination with the Support
Vector Machines classifier. On a large corpus of blogs they managed to predict the
FFM factors with an accuracy ranging from 70 % (for neuroticism) to 84 % (for
openness).

With the development of social networking, some researchers have begun to
study the correlation between users’ personality and their social behavior on the
web (e.g., Facebook, Twitter) [4, 59]. For example, [4] found strong connection
between users’ personality and their Facebook use through a user survey on 237
students. Participants’ personality was self-reported through answering the NEO
PI-R questionnaire. The collected personality data were then used to compute
correlation with users’ Facebook information (such as basic information, personal
information, contact information and education, and work information). The results
show that Extroversion has a positive effect on the number of friends. Moreover,
individuals with high Neuroticism are more inclined to post their private information
(such as photos). The factor Openness to Experience was found to have positive
correlation with users’ willingness to use Facebook as a communication tool, and
the factor Conscientiousness is positively correlated with the number of friends. In
[61], a similar experiment was performed. They verified again that Extroversion was
significantly correlated with the size of a user’s social network. Moreover, people
tend to choose friends who are with higher Agreeableness but similar Extroversion
and Openness.
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In [22], the authors developed a method to predict users’ personality from
their Facebook profile. Among various features, they identified ones that have a
significant correlation with one or more of the Big5 personality traits based on
studying 167 subjects’ public data on Facebook. These features include linguistic
features (such as swear words, social processes, affective processes, perceptual
processes, etc.), structural features (number of friends, egocentric network density),
activities and preferences (e.g., favorite books), and personal information (relation-
ship status, last name length in characters). Particularly, the linguistic analysis of
profile text (which is the combination of status updates, About Me, and blurb text)
was conducted through Linguistic Inquiry and Word Count (LIWC) program [52],
which is a tool to produce statistics on 81 different text features in five psychological
categories. They further proposed a regression analysis based approach to predict the
personality, in two variations: M5’Rules, and Gaussian Processes. The testing shows
that the prediction of each personality factor can be within 11 % of the actual values.
Moreover, M5’Rules acts more effective than Gaussian Processes, with stronger
connection to Openness, Conscientiousness, Extroversion, and Neuroticism.

Recently, Gao et al. [21] proposed a method for inferring the users’ personality
from their social media contents. To be specific, they obtained 1766 volunteers’
personality values and Weibo behavior (which is a popular micro-blog site in China)
to train the prediction model. Hundred and sixty eight features were extracted from
these users’ Weibo status, and then classified into categories including status statis-
tics features (e.g., the total number of statuses), sentence-based features (the average
number of Chinese characters per sentence), word-based features (the number of
emotion words), character-based features (the number of commas, colons, etc.),
and LIWC features. They then applied M5-Rules, Pace Regression and Gaussian
process, to make prediction. The results show that the Pearson correlation between
predicted personality and user self-reported personality can achieve 0.4 (i.e., fairly
correlated), especially regarding the three traits Conscientiousness, Extroversion,
and Openness to Experience.

Hu and Pu studied the effect of personality on users’ rating behavior in
recommender systems [30]. They obtained 86 participants’ valid ratings on at least
30 items among a set of 871 products (from 44 primary categories). The rating
behavior was analyzed from four aspects: number of rated items (NRI), percentage
of positive ratings (PerPR), category coverage (CatCoverage), and interest diversity
(IntDiversity). The CatCoverage is measured as the number of categories of rated
items. The IntDiversity reveals the distribution of users’ interests in each category,
formally defined as the Shannon index according to information theory. They
calculated the correlation between users’ Big5 personality traits and the rating
variables through Pearson product-moment. The results identify the significant
impact of personality on the way users rate items. Particularly, Conscientiousness
and gender were found negatively correlated with the number of ratings, category
coverage and interest diversity, which indicates that conscientious and/or female
users are more likely to prefer providing fewer ratings, lower level of category
coverage, and lower interest diversity. In addition, Agreeableness is positively
correlated with the percentage of positive ratings, implying that agreeable people
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tend to give more positive ratings. All these findings show correlations between
personality and rating behaviour on the samples used. However, exploring whether
it is possible to infer personality from rating behaviour is an open issue for future
work.

Dunn et al. [16] proposed, beside an explicit questionnaire, a gamified user
interface for the acquisition of personality for recommender systems. Through the
Commons Fishing Game (CFG) interface the users were instructed to maximize
the amount gathered from a common resource, which was shared amongst a group
of players; collectively trying not to deplete this resource. The experiment showed
that it is possible to predict Extraversion and Agreeableness with the described
instrument.

21.3.3 Datasets for Offline Recommender Systems
Experiments

Given that a number of research activities has already been published, there
exist some datasets that can be used for personality-aware recommender systems
experiments. The minimal requirements for such a dataset are (a) to include the
user-item interaction data (e.g. ratings) and (b) to include the personality factors
associated to the users. In this section we survey a number of such datasets, which
are summarized in Table 21.5.

The first dataset containing personality parameters to be released was the LDOS-
PerAff-1 [71]. Based on 52 subjects it contains ratings of images. The user-item
matrix has all elements (i.e. sparsity is null). The dataset contains the corresponding
FFM factors for each user. The FFM factors were acquired using the 50-items IPIP

Table 21.5 Overview of datasets

Name References Domain
Personality
model

Number of
subjects Other metadata

LDOS-CoMoDa [38] Movies FFM 95 Movie context
metadata (location,
weather, social state,
emotions etc.)

LDOS-PerAff-1 [71] Images FFM 52 Item induced emotions
in the VAD space

myPersonality [37] Social media
(Facebook)

FFM 38,330 Twitter names

Chittaranjan [11] Mobile phone
usage

FFM 117 Call logs, SMS logs,
app logs
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questionnaire [23]. Furthermore, all items were selected from the IAPS dataset
of images [39] and are annotated with the values of the induced emotions in the
valence-arousal-dominance (VAD) space.

The LDOS-CoMoDa (Context Movies Dataset) dataset [38] was developed for
research on contextual recommender systems. A unique feature of the dataset is that
it contains FFM parameters for each users. According to [38] it contains data for
95 users and 961 movies. The FFM factors were collected using the 50-items IPIP
questionnaire [23]. The dataset is also rich in contextual parameters such as time,
weather, location, emotions, social state etc.

A dataset that contains more users is the myPersonality dataset [37]. It contains
FFM factors for 38,330 users. The dataset has been collected using a Facebook
application. It contains the Facebook Likes for each of the users. Furthermore it also
contains twitter names for more than 300 subjects which opens new possibilities for
crawling these users’ micro-blogs (as has been done in [53]).

Chittaranjan et al. [11] presented a dataset of mobile phone users logs along with
the respective FFM values. The dataset contains information about 177 subjects and
their daily phone usage activities (the CDR—call data record) over a period of 17
months on a Nokia N95 smartphone. The phone usage logs contain data related to
calls, SMSs and application usage.

Furthermore, a number of datasets, not released as datasets per se, exist, as they
have been used in the studies reported in this chapter.

21.4 How to Use Personality in Recommender Systems

In this section we provide an overview of how personality has been used in
recommender systems. The most common issues addressed are the cold-start
problem and the presentation of the recommended results in terms of diversity.
Table 21.6 summarizes the various strategies described in this section.

21.4.1 Addressing the New User Problem

The new user problem occurs when the recommender system does not have enough
ratings from a user that has just started to use the system [3]. The problem is present
both in content-based recommender systems and in collaborative recommender
systems although it is more difficult to solve within the latter. The system must
first have some information about the user, which is usually in the form of ratings.
In the case of content-based recommender systems, the lack of ratings implies
that, for the observed user, the system does not know the preferences towards the
item’s features (e.g. the genre). In the case of collaborative filtering, especially in
neighborhood methods, the lack of ratings for a new user implies that there are not
enough overlapping ratings with other users, which makes it hard to calculate user
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Table 21.6 Survey of recommender systems using personality

References
Recommender
system’s goal

Personality
acquisition
method Approach

[72] Cold-start problem IPIP 50 User-user similarity
measure based on
personality

[29] Cold-start problem TIPI User-user similarity
measure based on
personality

[8, 18] Cold-start problem TIPI Active learning, matrix
factorization

[74] Diversity TIPI Personality-based
diversity adjusting
approach for movie
recommendation

[67] Diversity NEO IPIP 20 Personality-based
diversity adaptation

[9] Cross-domain
recommendations

NEO IPIP 20 Similarities between
personality-based user
stereotypes for genres in
different domains

[54, 56] Group
recommendations

Thomas-Kilmann
conflict model
instrument

Combining assertiveness
and cooperativeness into
the aggregation function

[35] Group
recommendations

Thomas-Kilmann
conflict model
instrument and
NEO IPIP 20

Group satisfaction
modeling with a
personality-based graph
model

similarities. So far this problem has been tackled with various techniques such as
hybrid methods [3], adaptive learning techniques [19] or simply by recommending
popular items [3].

Personality is suitable to address the new-user problem. Given the assumption
that the user’s personality is available (e.g. from another domain) it can be used in
collaborative filtering recommender systems.

Personality has been used in a memory-based collaborative filtering recom-
mender system for images [69, 72]. In an offline experiment, the authors acquired
explicit FFM parameters for each user and calculated the user distances (as opposed
to similarities) using the weighted distance formula

d.bi; bj/ D
vuut 5X

lD1

wl.bil � bjl/2 (21.1)

where bi and bj are the FFM vectors for two arbitrary users (bil and bjl are the
individual FFM factors) and wl are the weights. The weights were computed as the
eigenvalues from the principal component analysis on the FFM values of all users.
On the given dataset, this approach was statistically equivalent to using standard
rating-based user similarity measures.
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A similar approach was taken by Hu and Pu [29] where they used a different
formula to calculate the user similarities. They proposed to use the Pearson
correlation coefficient to calculate the user similarities

sim.bi; bj/ D
P

l.bil � bi/.bjl � bj/pP
l.bil � bi/2

pP
l.bjl � bj/2

(21.2)

and they combined it with existing ratings by controlling the contribution of each
similarity measure with the weight ˛. They compared the proposed approach to a
rating-based user similarity metric collaborative filtering recommender system. On
a dataset of 113 users and 646 songs the personality-based algorithm outperformed
the rating-based in terms of mean absolute error, recall and specificity.

Their results showed that both personality-based similarity and the hybrid
scheme lead CF recommender systems to generate more accurate recommendations
than the traditional rating-based one in a sparse music dataset.

A standard approach to tackle the cold-start problem is to use the active learning
approach (rating elicitation—see also Chap. 24) [19]. In their work, Elahi et al. [18],
proposed an active learning strategy that incorporated user personality data. They
acquired the personality information using the 10-items IPIP questionnaire through
a mobile application. They formulated the rating prediction as a modified matrix
factorization approach where the FFM factors are treated as additional users’ latent
factors:

Orui D bi C bu C qT
i 	 .pu C

X
l

bl/ (21.3)

where pu is the latent factor of the user u, qi is the latent factor o the item i, bu and
bi are the user’s and item’s biases and bl are the FFM factors. The proposed rating
elicitation method outperformed (in terms of Mean Absolute Error) the baseline
(the log(popularity)*entropy method) and the random method.

In these examples, personality has been acquired separately with questionnaires.
With this approach the authors have just moved the burden of an initial questionnaire
about user ratings to another initial questionnaire (for personality). However, the
idea here is that personality is going to be available in advance, for example from
other domains or acquired implicitly.

21.4.2 Diversity/Serendipity

Recently, the impact of personality on users’ preferences on recommendation
diversity has been investigated in [10, 67]. Diversity refers to recommending users
a diverse set of items, so as to allow them to discover unexpected items more
effectively [46] (see also Chap. 26). The existing approaches commonly adopt a
fixed strategy to adjust the diversity degree within the set of recommendations
[2, 31, 75], which however, does not consider that different users might possess
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different attitudes towards the diversity of items. The limitation motivates the
authors of paper [10] to research whether and how personality might impact users’
needs for diversity in recommender systems. They conducted a user survey (with
181 subjects) to know the causal relationship. For each user, they obtained her/his
movie selections as well as personality values. Then, two levels of diversity were
considered: the diversity in respect to individual attributes (such as the movie’s
genre, director, actor/actress, etc.); the overall diversity when all attributes are
combined. The correlation analysis showed that some personality factors have a
significant correlation with users’ diversity preferences. For instance, it shows that
more reactive, excited and nervous persons (high Neuroticism) are more inclined
to choose diverse directors, and suspicious/antagonistic users (low Agreeableness)
prefer diverse movie countries. As for the movie’s release time, its diversity
is preferred by efficient/organized users (high Conscientiousness), while for the
movie’s actor/actress, its diversity is preferred by imaginative/creative users (high
Openness to experience). At the second level (i.e., overall diversity), no matter how
the weights placed on attributes vary, Conscientiousness was shown significantly
negatively correlated with it, which means that less conscientious people essentially
prefer higher level of overall diversity.

Inspired by the user survey’s findings, they developed a personality-based diver-
sity adjusting approach for movie recommendation [74]. They have incorporated
personality, as a moderating factor, into a content-based recommender system.
Specifically, given the user’s personality values in respect to the Big5 factors,
they first identify her/his diversity needs. For example, since high Openness to
Experience is linked to high need for diversity with regards to “actor/actress”,
in the case that the “actor/actress” is the current user’s most important attribute
and s/he possesses a high Openness to Experience value, the system will return
movies with diverse actors/actresses to the user. In addition, if the user has a low
Conscientiousness value, the system will further increase the recommendations’
overall diversity degree, since low Conscientiousness is correlated with high need
for the overall diversity. The number of diverse items within the whole recommen-
dation set is accordingly adjusted to reflect the user’s diversity needs. The proposed
method was tested in a controlled user study (with 52 participants), by means of
comparing it to a variant that incorporated personality in the contrary way (i.e.,
offering less diverse items to the user though s/he spontaneously requires a higher
level of diversity given her/his personality values). The user evaluation demonstrated
that their method can significantly increase users’ perception of system competence
and recommendation accuracy. Users were also more satisfied with the personality-
based recommendation. The findings thus consolidate the previous survey’s results.
They also suggest an effective solution in terms of taking personality into account
for generating personalized diversity in recommender systems.

Tintarev et al. applied a User-as-Wizard approach to study how people apply
diversity to the set of recommendations [67]. Particularly, they emphasized the
personality factor Openness to Experience as for its specific role in personalizing the
recommendation diversity’s level, because it describes users’ imagination, aesthetic
sensitivity, attentiveness to inner feelings, preference for variety, and intellectual
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curiosity (so they assumed that people with higher Openness to Experience would be
more willing to receive novel items). Their experiment was in the form of an online
questionnaire with the aid of Amazon’s Mechanical Turk (MT) service. Hundred
and Twenty users’ responses were analyzed. Each of them was required to provide
some recommendation to a fictitious friend who is in one of three conditions: high
Openness to Experience, low Openness to Experience, no personality description
(baseline). The results did not prove the effect of Openness to Experience on the
overall diversity participants applied, but the authors observed that participants tend
to recommend items with high categorical diversity (i.e., across genres) but low
thematic diversity (inter-genre) to others who are more open to experience. In other
words, users who are low on Openness to Experience might prefer thematic diversity
to categorical variation. The observation is consistent with the finding from [1]
that users generally prefer recommendations from diversified categories, but less
diversity within one category.

21.4.3 Cross-Domain Recommendations

As we mentioned in the introduction, personality is domain-independent, i.e. when
users are being recommended books or movies, we can use the same personality
profile. This can be especially useful in cross-domain recommender systems (see
also Chap. 27). In a study performed by Cantador et al. [9] personality factors are
related to domain genres and similarities between personality-based user stereotypes
for genres in different domains are computed. Among the many cross-domain-
genres combinations we can find relations such as salsa-music lovers are dissimilar
to science-fiction-books lovers or news-tv-show lovers are similar to mystery-books
lovers.

21.4.4 Group Recommender Systems

Group recommendations are discussed in Chap. 22. Recommending items to groups
of users is not the same as recommending items to individual users [41]. Beside
having to choose among strategies that address users as individuals (e.g. least mis-
ery, most pleasure etc.—see Chap. 22 for an extensive overview), the relationships
between group members play an important role. Personality is an important factor
in group dynamics.

In their work, Recio-Garcia et al. [56] and Quijano-Sanchez et al. [54] propose to
use the Thomas-Kilmann Conflict personality model [66] to model the relationships
between group members in terms of assertiveness and cooperativeness. They
applied the model to three group recommendation approaches (i.e. least misery,
minimize penalization and average satisfaction). They collected ground truth data
through a user study with 70 students who formed groups, discussed and decided
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which movies they would watch together in a cinema. The proposed approach
showed an increase in prediction accuracy compared to the same techniques without
taking into account the conflict personality model.

Similarly, Kompan et al. [35] used the Thomas-Kilmann model and the FFM
to model individual users. They modeled the group satisfaction with a graph-
based approach where vertices represent users and edges represent user influences
based on relationship, personality and actual context. They performed a small-scale
user study with users rating movies. The usage of the personality-based group
satisfaction model in an average-aggregation strategy-based group recommender
system outperformed the same algorithm without the proposed group satisfaction
modeling.

21.5 Open Issues and Challenges

The usage of personality in recommender systems has just started, which makes it
a very interesting research topic as there are quite some open issues and challenges
that need to be addressed. In this section we survey these open issues.

21.5.1 Non-intrusive Acquisition of Personality Information

The limitation of traditional explicit acquisition approach is that the required user
effort is usually high, especially if we want to obtain their accurate personality
profile (e.g., through 100-item Big Five Aspect Scales (BFAS); see Sect. 21.3.1).
Users might be reluctant to follow the time-consuming and tedious procedure
to answer all questions, due to their cognitive or emotional reason. Thus, the
implicit, unobtrusive approach might be more acceptable and effective to build
their personality profile. The critical question is then how to accurately derive
users’ personality traits from the information they have provided. In Sect. 21.3.2, we
discussed various methods, such as ones based on users’ emails or their generated
contents and behavior in social networking sites (e.g., Facebook, Twitter). However,
the research is still at the beginning stage, and there is large room to improve the
existing algorithms’ accuracy. One possible solution is to explore other types of info
as to their power of reflecting users’ personality. For instance, since the significant
correlation between users’ personality and their rating behavior was proven in [30],
the findings might be constructive for some researchers to develop the rating-based
personality inference algorithm. The developed method might be further extended
to consider the possible impacts of other actions, such as users’ browsing, clicking,
and selecting behavior in recommender systems. Indeed, it will be interesting to
investigate the complementary roles of various resources to fulfill their combinative
effect on deriving users’ personality. To be specific, we may infer users’ personality
by integrating their history data left at different platforms (e.g., the integration of
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rating behavior, email, and social media content). The different types of info might
be heterogenous in nature, so how to effectively fuse them together might be an
open issue.

21.5.2 Larger Datasets

The recommender systems oriented datasets containing personality factors of users
are very few (see Sect. 21.3.3). Furthermore the number of subjects in databases is
very low, ranging from roughly 50 to a little more than 100, with the exception of
the myPersonality dataset. Compared to the huge datasets that the recommender
systems community is used to work with (e.g. the Netflix or the Yahoo! Music
datasets) the lack of bigger datasets is an obvious issue that needs to be addressed.

21.5.3 Cross-Domain Applications

An unexplored area of recommender systems, where personality appears to be
a natural fit, are cross-domain applications (see also Chap. 27). As personality
is domain-independent it can be used as a generic user model. Cross-domain
applications have been researched in the past and correlations of preferences among
different domains have been identified. For example, Winoto et al. [73] observed the
relations between the games, TV series and movie domains, while Tiroshi et al. [68]
observed the relations between music, movies, TV series and books. The first to
explore the potential role of personality in cross-domain applications were Cantador
et al. [9] who observed the relations between the FFM factors and preferences in
various domains (movies, TV shows, music, books). An intuitive continuation of
this work is the application of the personalities learned in one domain to another
domain to beat the cold-start problem.

Another aspect of cross-domain recommendations is cross-application rec-
ommendations. In order to be able to transfer the personality profiles between
applications a standardized description of personality should be used. There has
been an attempt, the Personality Markup Language (PersonalityML), to standardize
the description of personality in user models across different domains [6].

21.5.4 Diversity

How to provide diverse and novel recommendations has increasingly become an
important topic in the area of recommender systems. That is, we are no longer
satisfied with providing items similar to what users preferred before, but showing
ones that can be unexpected and surprising to users. The recent works [10, 67]
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have indicated the difference occurring among users in terms of their needs for
recommendation diversity as influenced by their inherent personality. It hence
comes to the question of how to enhance the existing diversity algorithm to make
it more tailored to individual user’s requirement. For example, in [74], the authors
gave a preliminary attempt to solve this problem and obtain interesting results. The
ideas might be further enhanced and consolidated from both aspects of algorithm
development and user evaluation. Moreover, in addition to personality, it will
be meaningful to study the potential influence of other personal factors such as
demographic characteristics (e.g., age, gender, cultural background). According
to [10], some demographical properties did show significant correlation with
some diversity variables. For example, people who are younger and/or with lower
education level are more likely to prefer diverse movies. It hence suggests that these
factors could be considered together with personality for optimally adjusting the
diversity degree within the list of recommendations.

21.5.5 Privacy Issues

Although all the research done so far on personality in recommender systems
touched upon the sensitivity of the data, the issue of privacy has not been addressed
properly yet. The fact that, in terms of personality, a user can be tagged as
neurotic or otherwise with labels that suggest a negative trait makes these data
very sensitive. Schrammel et al. [60] explored if there were any differences in the
degree of disclosure acceptance among users with different personalities but found
no significant differences. Some aspects are discussed in Chap. 19.

21.6 Conclusion

In this chapter we presented the usage of personality in recommender systems.
Personality, as defined in psychology, accounts for the most important ways in
which users differ in their preferences and behaviour. It can be acquired using
either questionnaires or by inferring implicitly from other sources (e.g. social
media streams). The most common model of personality is the Five Factor Model
(FFM), which is composed of the factors openness, conscientiousness, extraversion,
agreeableness and neuroticism. This model is suitable for recommender systems
since it can be quantified with feature vectors that describe the degree each factor
is expressed in a user. Furthermore, the FFM (and personality in general) is domain
independent. We presented several methods for the acquisition of personality
factors, with a special focus on implicit methods. We showcased a number of
ways recommender systems have been shown to improve using personality models,
especially in terms of the cold-start problem and diversity. Finally, we provided a
list of open issues and challenges that need to be addressed in order to improve the
adoption of personality in recommender systems.
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Advanced Topics



Chapter 22
Group Recommender Systems: Aggregation,
Satisfaction and Group Attributes

Judith Masthoff

22.1 Introduction

Most work on recommender systems to date focuses on recommending items to
individual users. For instance, they may select a book for a particular user to read
based on a model of that user’s preferences in the past. The challenge recommender
system designers traditionally faced is how to decide what would be optimal for
an individual user. A lot of progress has been made on this, as evidenced by other
chapters in this handbook (e.g. Chaps. 2, 4, 5, 7 and 27).

In this chapter, we go one-step further. There are many situations when it
would be good if we could recommend to a group of users rather than to an
individual. For instance, a recommender system may select television programmes
for a group to view or a sequence of songs to listen to, based on models of all group
members. Recommending to groups is even more complicated than recommending
to individuals. Assuming that we know perfectly what is good for individual
users, the issue arises how to combine individual user models. In this chapter, we
will discuss how group recommendation works, what its problems are, and what
advances have been made. Interestingly, we will show that group recommendation
techniques have many uses as well when recommending to individuals. So, even if
you are developing recommender systems aimed at individual users you may still
want to read on (perhaps reading Sect. 22.8 first will convince you).

This chapter focuses on deciding what to recommend to a group, in particular
how to aggregate individual user models or aggregate recommendations. There are
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other issues to consider when building a group recommender system which are
outside the scope of this chapter. In particular:

• How to acquire information about individual users’ preferences. The usual rec-
ommender techniques can be used (such as explicit ratings and collaborative- and
content-based filtering, see other handbook chapters). There is a complication
in that it is difficult to infer an individual’s preferences when a group uses
the system, but inferences can be made during individual use combined with
a probabilistic model when using it in company. An additional complication is
that an individual’s ratings may depend on the group they are in. For instance,
a teenager may be very happy to watch a programme with his younger siblings,
but may not want to see it when with his friends.

• How will the system know who is present? Different solutions exist, such as
users explicitly logging in, probabilistic mechanisms using the time of day to
predict who is present, the use of tokens and tags, etc. [28]. More sophisticated
approaches have been used in recent years. For example, the GAIN system
divides the group into a known subgroup (users which it knows are there) and
an unknown subgroup (users that cannot be recognized but should be there
statistically) [11]. A group recommender in a public display system recognizes
the gender and emotions of people present and group structures (which people
are alone and which with others) [25].

• How to present and explain group recommendations? As seen in this hand-
book’s chapter on explanations, there are already many considerations when
presenting and explaining individual recommendations. The case of group
recommendations is even more difficult. More discussion on explaining group
recommendations is provided in [23] and under Challenges in our final section.

• How to help users to settle on a final decision? In some group recommenders,
users are given group recommendations, and based on these recommendations
negotiate what to do. In other group recommenders this is not an issue (see
Sect. 22.2.3 on the difference between passive and active groups). An overview
of how users’ decisions can be aided is provided in [23].

The next section highlights usage scenarios of group recommenders, and pro-
vides a classification of group recommenders inspired by differences between the
scenarios. Section 22.3 discusses strategies for aggregating models of individual
users to allow for group recommendation, what strategies have been used in existing
systems, and what we and others have learned from experiments in this area.
Section 22.4 deals with the issue of order when we want to recommend a sequence
of items. Section 22.5 provides an introduction into the modeling of affective state,
including how an individual’s affective state can be influenced by the affective
states of other group members. Section 22.6 explores how such a model of affective
state can be used to build more sophisticated aggregation strategies. Section 22.7
discusses other group attributes (such as personality of users) that can be used
in aggregation strategies. Section 22.8 shows how group modeling and group
recommendation techniques can be used when recommending to an individual user.
Section 22.9 concludes this chapter and discusses future challenges.
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22.2 Usage Scenarios and Classification of Group
Recommenders

There are many circumstances in which adaptation to a group is needed rather than
to an individual. Below, we present two scenarios that inspired our own work in this
area, discuss the scenarios underlying related work, and provide a classification of
group recommenders inspired by differences between the scenarios.

22.2.1 Usage Scenario 1: Interactive Television

Interactive television offers the possibility of personalized viewing experiences.
For instance, instead of everybody watching the same news program, it could be
personalized to the viewer. For me, this could mean adding more stories about the
Netherlands (where I come from), China (a country that fascinates me after having
spent some holidays there) and football, but removing stories about cricket (a sport
I hardly understand) and local crime. Similarly, music programs could be adapted
to show music clips that I actually like.

There are two main differences between traditional recommendation as it applies
to say PC-based software and the interactive TV scenarios sketched above. Firstly,
in contrast to the use of PCs, television viewing is largely a family or social
activity. So, instead of adapting the news to an individual viewer, the television
would have to adapt it to the group of people sitting in front of it at that time.
Secondly, traditional work on recommendation has often concerned recommending
one particular thing to the user, so for instance, which movie the user should watch.
In the scenarios sketched above, the television needs to adapt a sequence of items
(news items, music clips) to the viewer. The combination of recommending to a
group and recommending a sequence is very interesting, as it may allow you to
keep all individuals in the group satisfied by compensating for items a particular
user dislikes with other items in the sequence which they do like.

22.2.2 Usage Scenario 2: Ambient Intelligence

Ambient intelligence deals with designing physical environments that are sensitive
and responsive to the presence of people. For instance, consider the case of a
bookstore where sensors detect the presence of customers identified by some
portable device (e.g. a Bluetooth-enabled mobile phone, or a fidelity card equipped
with an active RFID tag). In this scenario, there are various sensors distributed
among the shelves and sections of the bookstore which are able to detect the
presence of individual customers. The bookstore can associate the identification of
customers with their profiling information, such as preferences, buying patterns and
so on.
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With this infrastructure in place, the bookstore can provide customers with a
responsive environment that would adapt to maximize their well-being with a view
to increasing sales. For instance, the device playing the background music should
take into account the preferences of the group of customers within hearing distance.
Similarly, LCD displays scattered in the store show recommended books based
on the customers nearby, the lights on the shop’s display window (showing new
titles) can be rearranged to reflect the preferences and interests of the group of
customers watching it, and so on. Clearly, group adaptation is needed, as most
physical environments will be used by multiple people at the same time.

22.2.3 Usage Scenarios Underlying Related Work

In this section we discuss the scenarios underlying some of the best known group
recommender systems as well as some newer ones:

• MUSICFX [33] chooses a radio station for background music in a fitness center,
to suit a group of people working out at a given time. This is similar to the
Ambient Intelligence scenario discussed above.

• POLYLENS [36] is a group recommender extension of MOVIELENS. MOVIELENS

recommends movies based on an individual’s taste as inferred from ratings and
social filtering. POLYLENS allows users to create groups and ask for group
recommendations.

• INTRIGUE [2] recommends places to visit for tourist groups taking into account
characteristics of subgroups within that group (such as children and the disabled).

• The TRAVEL DECISION FORUM [22] helps a group to agree on the desired
attributes of a planned joint holiday. Users indicate their preferences on a set of
features (like sport and room facilities). For each feature, the system aggregates
the individual preferences, and users interact with embodied conversational
agents representing other group members to reach an accepted group preference.

• The COLLABORATIVE ADVISORY TRAVEL SYSTEM (CATS) [34] also helps
users to choose a joint holiday. Users consider holiday packages, and critique
their features (e.g., ‘like the one shown but with a swimming pool’). Based on
these critiques, the system recommends other holidays to them. Users also select
holidays they like for other group members to see, and these are annotated with
how well they match the preferences of each group member (as induced from
their critiques). The individual members’ critiques results in a group preference
model, and other holidays are recommended based on this model.

• YU’S TV RECOMMENDER [49] recommends a television program for a group to
watch. It bases its recommendation on the individuals’ preferences for program
features (such as genre, actors, keywords).

• The GROUP ADAPTIVE INFORMATION AND NEWS system (GAIN) [11] adapts
the display of news and advertisements to the group of people near it.
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• The REMINISCENCE THERAPY ENHANCED MATERIAL PROFILING IN

ALZHEIMERS AND OTHER DEMENTIAS system (REMPAD) [7] recommends
multimedia material to be used by a facilitator in a group reminiscence therapy
session, based on the suitability of material for individual participants as inferred
from their date of birth, locations lived in, and interest vectors.

• HAPPYMOVIE [39] recommends movies to groups, using in the recommendation
algorithm the individuals’ personality (assertiveness and cooperativeness) and
the relationship strengths (they call this social trust) between individuals.

• INTELLIREQ [14] supports groups in deciding which software requirements to
implement. Users can view and discuss recommendations for group decisions
based on already defined user preferences.

22.2.4 A Classification of Group Recommenders

The scenarios provided above differ on several dimensions, which provide a way to
classify group recommender systems:

• Individual preferences are known versus developed over time. In most scenarios,
the group recommender starts with individual preferences. In contrast, in CATS,
individual preferences develop over time, using a critiquing style approach.
Others have also adopted this critiquing approach (e.g., [17]). In [35] critiquing is
discussed in detail including its role in group recommendation. In INTELLIREQ,
preferences can be influenced by the group discussion and the group recommen-
dation based on preferences defined so far.

• Recommended items are experienced by the group versus presented as options.
In the Interactive TV scenario, the group experiences the news items. In the
Ambient Intelligence, GAIN, and MUSICFX scenarios, they experience the
music and advertisements. In contrast, in the other scenarios, they are presented
with a list of recommendations. For example, POLYLENS presents a list of movies
the group may want to watch.

• The group is passive versus active. In most scenarios, the group does not
interact with the way individual preferences are aggregated. However, in the
TRAVEL DECISION FORUM and CATS the group negotiates the group model.
In INTELLIREQ, the group does not influence the aggregation, but may influence
the ratings provided.

• Recommending a single item versus a sequence. In the scenarios of MUSICFX,
POLYLENS, and YU’S TV RECOMMENDER it is sufficient to recommend indi-
vidual items: people normally only see one movie per evening, radio stations
can play forever, and YU’S TV RECOMMENDER chooses one TV program only.
Similarly, in the TRAVEL DECISION FORUM and CATS users only go on one
holiday. In contrast, in our Interactive TV scenario, a sequence of items is
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recommended, for example making up a complete news broadcast. Similarly, in
INTRIGUE, it is quite likely that a tourist group would visit multiple attractions
during their trip, so would be interested in a sequence of attractions to visit. Also,
in the Ambient Intelligence scenario it is likely that a user will hear multiple
songs, or see multiple items on in-store displays. In GAIN, the display shows
multiple items simultaneously; additionally, the display is updated every 7 min,
so people are likely to see a sequence as well. In INTELLIREQ, the group needs
to decide on which alternative to choose for multiple requirements.

In this chapter, we will focus on the case where individual preferences are known,
the group directly experiences the items, the group is passive, and a sequence is
recommended. Recommending a sequence raises interesting questions regarding
sequence order (see Sect. 22.4) and considering the individuals’ affective state (see
Sects. 22.5 and 22.6). A passive group with direct experience of the items makes it
even more important that the group recommendation is good.

de Campos et al.’s classification of group recommenders also distinguishes
between passive and active groups [10]. In addition, it uses two other dimensions:

• How individual preferences are obtained. They distinguish between content-
based and collaborative filtering. Of the systems mentioned above, POLYLENS

and HAPPYMOVIE use collaborative filtering; the others tend to use content-
based filtering (e.g. REMPAD or to let users state preferences explicitly (e.g.
INTELLIREQ).

• Whether recommendations or profiles are aggregated. In the first case, rec-
ommendations are produced for individuals and then aggregated into a group
recommendation. In the second case, individual preferences are aggregated into
a group model, and this model is used to produce a group recommendation. They
mention INTRIGUE and POLYLENS as aggregating recommendations, while the
others tend to aggregate profiles. Aggregating profiles can happen in multiple
ways. In this chapter, we will look at the aggregation of preference ratings.
It is also possible to aggregate content: for example, GroupReM aggregates
individuals’ tag cloud profiles to produce a group tag cloud profile[37]. It is
also possible to use a combination of aggregating profiles and aggregating
recommendations: [6] proposes a hybrid switching approach that uses aggregated
recommendations when user data is sparse and aggregated profiles otherwise.
Following their example, [13] also uses a combination.

These two dimensions are related to how the group recommender is implemented
rather than being inherent to the usage scenario. In this chapter, we focus on
aggregating profiles, but the same aggregation strategies apply when aggregating
recommendations. The material presented in this chapter is independent of how the
individual preferences are obtained.
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22.3 Aggregation Strategies

The main problem group recommendation needs to solve is how to adapt to the
group as a whole based on information about individual users’ likes and dislikes. For
instance, suppose the group contains three people: Peter, Jane and Mary. Suppose a
system is aware that these three individuals are present and knows their interest in
each of a set of items (e.g. music clips or advertisements). Table 22.1 gives example
ratings on a scale of 1 (really hate) to 10 (really like). Which items should the system
recommend, given time for four items?

22.3.1 Overview of Aggregation Strategies

Many strategies exist for aggregating individual ratings into a group rating (e.g.
used in elections and when selecting a party leader). For example, the Least
Misery Strategy uses the minimum of ratings to avoid misery for group members
(Table 22.2).

Eleven aggregation strategies inspired by Social Choice Theory are summarized
in Table 22.3 (see [28] for more details).

In [42], aggregation strategies are classified into (1) majority-based strategies
that use the most popular items (e.g., Plurality Voting), (2) consensus-based strate-
gies that consider the preferences of all group members (e.g., Average, Average
without Misery, Fairness), and (3) borderline strategies that only consider a subset
(e.g., Dictatorship, Least Misery, Most Pleasure).

Table 22.1 Example of
individual ratings for ten
items (A–J)

A B C D E F G H I J

Peter 10 4 3 6 10 9 6 8 10 8

Jane 1 9 8 9 7 9 6 9 3 8

Mary 10 5 2 7 9 8 5 6 7 6

Table 22.2 Example of
the Least Misery strategy

A B C D E F G H I J

Peter 10 4 3 6 10 9 6 8 10 8

Jane 1 9 8 9 7 9 6 9 3 8

Mary 10 5 2 7 9 8 5 6 7 6

Group rating 1 4 2 6 7 8 5 6 3 6
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Table 22.3 Overview of aggregation strategies

Strategy How it works Example

Plurality
voting

Uses ‘first past the post’: repetitively,
the item with the most votes is chosen.

A is chosen first, as it has the highest
rating for the majority of the group,
followed by E (which has the highest
rating for the majority when
excluding A).

Average Averages individual ratings B’s group rating is 6, namely
(4 C 9 C 5)/3.

Multiplicative Multiplies individual ratings B’s group rating is 180, namely
4*9*5.

Borda count Counts points from items’ rankings in
the individuals’ preference lists, with
bottom item getting 0 points, next one
up getting one point, etc.

A’s group rating is 17, namely 0 (last
for Jane) C 9 (first for Mary) C 8
(shared top 3 for Peter)

Copeland rule Counts how often an item beats other
items (using majority votea) minus
how often it looses

F’s group rating is 5, as F beats 7
items (B,C,D,G,H,I,J) and looses
from 2 (A,E).

Approval
voting

Counts the individuals with ratings for
the item above a approval threshold
(e.g. 6)

B’s group rating is 1 and F’s is 3.

Least misery Takes the minimum of individual
ratings

B’s group rating is 4, namely the
smallest of 4,9,5.

Most pleasure Takes the maximum of individual
ratings

B’s group rating is 9, namely the
largest of 4,9,5.

Average
without
misery

Averages individual ratings, after
excluding items with individual ratings
below a certain threshold (say 4).

J’s group rating is 7.3 (the average of
8,8,6), while A is excluded because
Jane hates it.

Fairness Items are ranked as if individuals are
choosing them in turn.

Item E may be chosen first (highest
for Peter), followed by F (highest for
Jane) and A (highest for Mary).

Most
respected
person (or
Dictatorship)

Uses the rating of the most respected
individual.

If Jane is the most respected person,
then A’s group rating is 1. If Mary is
most respected, then it is 10.

aIf the majority of group members have a higher rating for an item X than for an item Y, then item
X beats item Y

22.3.2 Aggregation Strategies Used in Related Work

Most of the related work uses one of the aggregation strategies in Table 22.3
(sometimes with a small variation), and they differ in the one used:

• INTRIGUE uses a weighted form of the Average strategy. It bases its group
recommendations on the preferences of subgroups, such as children and the
disabled. It takes the average, with weights depending on the number of people
in the subgroup and the subgroup’s relevance (children and disabled were given
a higher relevance).
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• POLYLENS uses the Least Misery Strategy, assuming groups of people going to
watch a movie together tend to be small and that a small group tends to be as
happy as its least happy member.

• MUSICFX uses a variant of the Average Without Misery Strategy. Users rate all
radio stations, from C2 (really love this music) to �2 (really hate this music).
These ratings are converted to positive numbers (by adding 2) and then squared
to widen the gap between popular and less popular stations. An Average Without
Misery strategy is used to generate a group list: the average of ratings is taken
but only for those items with individual ratings all above a threshold. To avoid
starvation and always picking the same station, a weighted random selection is
made from the top stations of the list.

• YU’S TV RECOMMENDER uses a variant of the Average Strategy. It bases its
group recommendation on individuals’ ratings of program features: �1 (dislikes
the feature), +1 (likes the feature) and 0 (neutral). The feature vector for the group
minimizes its distance compared to individual members’ feature vectors (see [49]
for detail). This is similar to taking the average rating per feature.

• The TRAVEL DECISION FORUM has implemented multiple strategies, including
the Average Strategy and the Median Strategy. The Median strategy (not in
Table 22.1) uses the middle value of the ratings. So, in our example, this results
in group ratings of 10 for A, and 9 for F. The Median Strategy was chosen
because it is nonmanipulable: users cannot steer the outcome to their advantage
by deliberately giving extreme ratings that do not truly reflect their opinions.
In contrast, for example, with the Least Misery strategy devious users can avoid
getting items they dislike slightly, by giving extremely negative ratings. The issue
of manipulability is most relevant when users provide explicit ratings, used for
group recommendation only, and are aware of others’ ratings, all of which is
the case in the TRAVEL DECISION FORUM. It is less relevant when ratings are
inferred from user behavior, also used for individual recommendations, and users
are unaware of the ratings of others (or even of the aggregation strategy used).

• In CATS, users indicate through critiquing which features a holiday needs to
have. For certain features, users indicate whether they are required (e.g. ice
skating required). For others, they indicate quantities (e.g. at least three ski lifts
required). The group model contains the requirements of all users, and the item
which fulfills most requirements is recommended. Users can also completely
discard holidays, so, the strategy has a Without Misery aspect.

• GAIN uses a variant of the Average strategy, with different weights for users that
the system knows are near the system and for unrecognized users who should be
there statistically.

• REMPAD uses the Least Misery strategy.
• HAPPYMOVIE uses a variant of the Average strategy, with different weights for

users based on their personality (assertiveness and cooperativeness) and users’
ratings influenced by the ratings of others based on relationship strengths.

• INTELLIREQ uses Plurality Voting.
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It should be noted that both YU’S TV RECOMMENDER and the TRAVEL

DECISION FORUM aggregate preferences for each feature without using the idea
of fairness: loosing out on one feature is not compensated by getting your way on
another.

In addition to the strategies in Table 22.3, more complicated strategies have been
used,1 such as:

• the graph-based ranking algorithm in [24], which uses (1) a graph with users and
items as nodes, with positive links between users and items rated above the user’s
average item rating, negative links for items rated below the user’s average rating
(with weights of how much above/below), (2) a user neighborhood graph linking
users with similar rating patterns, and (3) an item neighborhood graph linking
items that have been rated similarly. Recommendations for the group are based
on two random walks over the graphs, with the idea that items that are highly
visited by a random walk over positive links would tend to be liked by the group,
and items highly visited by a random walk over negative links would tend to be
disliked by the group.

• the Spearman footrule rank aggregation in [4], which uses as the aggregate list
for the group a list with minimum distance to the individual lists. The Spearman
footrule distance between two lists is the summation of absolute differences
between the ranks of the items in the lists.

• the Nash equilibrium used by Carvalho and Macedo [9], who model group
members as players in a non-cooperative game and players’ actions as item
recommendations (choosing from their top three items). Group satisfaction is
achieved by finding the Nash equilibrium in the game.

• the purity and completeness strategies in [41]. The purity strategy is a statistical
dispersion strategy just like the simpler average strategy. It tries to satisfy as
many group members’ preferences as possible (considering the deviation in
preferences). The completeness strategy models group recommendation as a
negotiation between group members, favoring high scores whilst penalizing large
differences between members.

22.3.3 Which Strategy Performs The Best

Though some exploratory evaluation of MUSICFX, POLYLENS and CATS has taken
place, for none of these systems it has been investigated how effective their strategy
really is, and what the effect would be of using a different strategy. The experiments
presented in this section shed some light on this question.

In contrast, some evaluation of YU’S TV RECOMMENDER has taken place
[49]. They found that their aggregation worked well when the group was quite

1These strategies are too complicated to fully explain here, see the original papers for details.
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I know individual ratings of 
Peter, Mary, and Jane. What to 
recommend to the group?  If 
time to watch 1-2-3-4-5-6-7 

clips…

Why?

Fig. 22.1 Experiment 1: which sequence of items do people select if given the system’s task

homogenous, but that results were disliked when the group was quite heterogeneous.
This is as we would expect, given the Average Strategy will make individuals quite
happy if they are quite similar, but will cause misery when tastes differ widely.

We conducted a series of experiments to investigate which strategy from
Table 22.3 is the best in terms of (perceived) group satisfaction (see [28] for
details). In Experiment 1 (see Fig. 22.1), we investigated how people would solve the
group recommendation problem, using the User as Wizard evaluation method [31].
Participants were given individual ratings identical to those in Table 22.1. These
ratings were chosen to be able to distinguish between strategies. Participants were
asked which items the group should watch, if there was time for one, two, ..,
seven items. We compared participants’ decisions and rationale with those of the
aggregation strategies. We found that participants cared about fairness, and about
preventing misery and starvation (“this one is for Mary, as she has had nothing she
liked so far”). Participants’ behavior reflected that of several of the strategies (e.g.
the Average, Least Misery, and Average Without Misery were used), while other
strategies (e.g. Borda count, Copeland rule) were clearly not used.2

In Experiment 2 (see Fig. 22.2), participants were given item sequences chosen
by the aggregation strategies as well as the individual ratings in Table 22.1.
They rated how satisfied they thought the group members would be with those
sequences, and explained their ratings. We found that the Multiplicative Strategy
(which multiplies the individual ratings) performed the best, in the sense that it
was the only strategy for which all participants thought its sequence would keep all
members of the group satisfied. Borda count, Average, Average without Misery and
Most Pleasure also performed quite well. Several strategies (such as Copeland rule,
Plurality voting, Least misery) could be discarded as they clearly were judged to
result in misery for group members.

2This does not necessarily mean that these strategies are bad, as complexity can also play a role.
In fact, in Experiment 2 Borda count was amongst the best performing strategies.
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You know the individual ratings of 
you and your two friends. I have 

decided to show you the following 
sequence. How satisfied would you 

be? And your friends?

Why?

Fig. 22.2 Experiment 2: What do people like?

We also compared the participants’ judgments with predictions by simple
satisfaction modeling functions. Amongst other, we found that more accurate
predictions3 resulted from using:

• quadratic ratings,4 which e.g. makes the difference between a rating of 9 and 10
bigger than that between a rating of 5 and 6

• normalization,5 which takes into account that people rate in different ways, e.g.,
some always use the extremes of a scale, while others only use the middle of the
scale.

In [30], we did a further study using simulated users based on models of affective
state (see next Section). We found that the Multiplicative strategy performed the
best.

There are also several studies by others investigating the effect of differ-
ent aggregation strategies. Table 22.4 provides an overview of evaluations of
aggregation strategies. Most studies compare group sizes and often also compare
between homogeneous groups (where users’ preferences are similar) and more
heterogeneous groups. Studies typically find that aggregation strategies perform
better for more homogeneous and smaller groups.

Unfortunately, most studies use synthetic groups: they have data about individual
users’ preferences (such as MovieLens data), produce synthetic groups of these indi-
viduals, use an aggregation strategy to recommend to the group, decide how satisfied
each individual in the group would be with the recommendation (independent of the
group), and then calculate the satisfaction of the group as a whole by averaging that

3In terms of satisfaction functions predicting the same relative satisfaction scores for group
members as predicted by participants, see [28] for details.
4We transformed a rating r into (r-scale_midpoint)2 if r	 scale_midpoint, and -(r-scale_midpoint)2

if r<scale_midpoint.
5We transformed a rating r by a user u into r � (TotalRatingsAverage 
 TotalRatings(u)), where
TotalRatingsAverage is the sum for all items of the average ratings by all users, and TotalRatings(u)
is the sum for all items of u’s rating.
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of individuals. The problem with this approach is that it presumes that a group is as
satisfied as the average person in the group, whilst the core reason for the existence
of multiple aggregation strategies is that this may not be the case. Unsurprisingly,
those studies tend to find that the Average strategy performs well (as do strategies
that resemble it).

The notable exception to using synthetic groups is [42], which uses data both
on what individuals watch and what those individuals watch in groups with others.
This provides a more accurate view on what actually happens in groups. The only
drawback of that approach is that what happens in real groups does not necessarily
lead to optimal group satisfaction. For example, when a Dictatorship strategy is used
(as seems to have happened in 20 % of their groups), this may have left others in the
group unsatisfied, and it is possible that the group as a whole would have been more
satisfied if a different approach had been used (though sometimes due to for example
participant personality, individuals may well be satisfied when Dictatorship is used).
This raises the question whether group recommenders should mimic what happens
in real groups or should try to do better.

Sometimes these studies also investigated other aspects not reported here. For
example, the study in [6] investigated the effect of aggregating ratings versus
aggregating preferences.

22.4 Impact of Sequence Order

As mentioned in Sect. 22.2, we are particularly interested in recommending a
sequence of items. The discussion in Sect. 22.3 has mainly focussed on what items to
select if there is time for a certain number of items. For example, for a personalized
news program on TV, a recommender may select seven news items to be shown
to the group. To select the items, it can use an aggregation strategy (such as the
Multiplicative Strategy) to combine individual preferences, and then select the seven
items with the highest group ratings.

In this section, we are interested in the order of items in the sequence. For
example, once seven news items have been selected, the question arises in what
order to show them in the news program. Many options exist: for instance, the news
program could show the items in descending order of group rating, starting with
the highest rated item and ending with the lowest rated one. Or, it could mix up the
items, showing them in a random order.

However, the problem is actually far more complicated than that. Firstly, in
responsive environments, the group membership changes continuously, so deciding
on the next seven items to show based on the current members seems not a sensible
strategy, as in the worse case, none of these members may be present anymore when
the seventh item is shown.

Secondly, overall satisfaction with a sequence may depend more on the order
of the items than one would expect. For example, for optimal satisfaction, we may
need to ensure that our news program has:
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• A good narrative flow. It may be best to show topically related items together.
For example, if we have two news items about Michael Jackson (say about his
funeral and about a tribute tour) then it seems best if these items are presented
together. Similarly, it would make sense to present all sports’ items together.

• Mood consistency. It may be best to show items with similar moods together. For
example, viewers may not like seeing a sad item (such as a soldier’s death) in the
middle of two happy items (such as a decrease in unemployment and a sporting
victory).

• A strong ending. It may be best to end with a well-liked item, as viewers may
remember the end of the sequence most.

Similar ordering issues arise in other recommendation domains. For example, a
music programme may want to consider rhythm when sequencing items. The
recommender may need additional information (such as items’ mood, topics,
rhythm) to optimize ordering. It is beyond the topic of this chapter to discuss
how this can be done (and is very recommender domain specific). We just want
to highlight that the items already shown may well influence what the best next item
is. For example, suppose the top four songs in a music recommender were all Blues.
It may well be that another Blues song ranked sixth may be a better next selection
than a Classical Opera song ranked fifth. Similarly, the group may prefer something
from a different music genre after a sequence of songs from one genre, even if the
song ranked the best next is of the same genre.

In Experiment 3 (see Fig. 22.3 and more detail in [28]), we investigated, in the
news domain, how a previous item may influence the impact of the next item.
Participants rated a set of news items. They were then shown one news item6 and

[Insert name of your favoritesport’s club] wins important game
Fleet of limos for Jennifer Lopez 100-metre trip
Heart disease could be halved 
Is there room for God in Europe?
Earthquake hits Bulgaria
UK fire strike continues
Main three Bulgarian players injured after Bulgaria-Spain football match

How much would you want to watch these 7 
news items? How would they make you feel?

The first item on the news is “England football team
has to play Bulgaria”. Rate interest, resulting mood.

Rate interest in the 7 news items again

Fig. 22.3 Experiment 3: Investigating the effect of mood and topic

6In a between-subject design, two different topics were used evoking different moods.
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rated how interested they were in it and how it made them feel, and re-rated the
original items to see if their ratings would have changed. Amongst others, we found
that mood (resulting from the previous item) and topical relatedness can influence
ratings for subsequent news items.

This means that aggregating individual profiles into a group profile should be
done repeatedly, every time a decision needs to be made about the next item to
display. So, instead of first selecting say seven items to show and then deciding on
the order, only one item is selected, and then it needs to be decided which item from
allremaining ones is the best to show next, given that the first item may have an
impact on the ratings of the remaining ones.

22.5 Modeling Affective State

When recommending to a group of people, you cannot give everybody what they
like all of the time. However, you do not want anybody to get too dissatisfied. For
instance, in a shop it would be bad if a customer were to leave and never come back,
because they really cannot stand the background music. Many shops currently opt
to play music that nobody really hates, but most people not love either. This may
prevent loosing customers, but would not result in increasing sales. An ideal shop
would adapt the music to the customers in hearing range in such a way that they get
songs they really like most of the time (increasing the likelihood of sales and returns
to the shop). To achieve this, it is unavoidable that customers will occasionally get
songs they hate, but this should happen at a moment when they can cope with it
(e.g. when being in a good mood because they loved the previous songs). Therefore,
it is important to monitor continuously how satisfied each group member is. Of
course, it would put an unacceptable burden on the customers if they had to rate their
satisfaction (on music, advertisements etc.) all the time. Similarly, measuring this
satisfaction via sensors (such as heart rate monitors or facial expression recognizers)
is not yet an option, as they tend to be too intrusive, inaccurate or expensive. So, it
was proposed to model group members’ satisfaction; predicting it based on what we
know about their likes and dislikes.

22.5.1 Modeling an Individual’s Satisfaction on Its Own

In [30], we investigated four satisfaction functions to model an individual’s sat-
isfaction. We compared the predictions of these satisfaction functions with the
predictions by the participants of Experiment 2 above. We also performed an
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Is this an 
English word?
(20s to reply)

You got 5 right out 
of 20. How satisfied 
are you with your
performance on this 
task?

Is this an 
English word?
(20s to reply)

You got 15 right out of 20. 
How satisfied are you with your
performance on this task? How 
satisfied are you with your 
performance overall?

Fig. 22.4 Experiment 4: Measuring overall satisfaction during a series of tasks

experiment (see Fig. 22.4) to compare the predictions with the real feelings of
users.7

The satisfaction function that performed the best defines the satisfaction of a user
with a new item i after having seen a sequence items of items as:

Sat.itemsC < i >/ D ı � Sat.items/C Impact.i; ı � Sat.items//

1C ı

with the impact on satisfaction of new item i given existing satisfaction s defined as

Impact.i; s/ D Impact.i/C .s � Impact.i// � "; for 0 � " � 1 and 0 � ı � 1

Parameter ı represents satisfaction decaying over time (with ı D 0 past items
have no influence, with ı D 1 there is no decay).

Parameter " represents the influence of the user’s satisfaction after experiencing
previous items on the impact of a new item. This parameter is inspired by the
psychology and economics literature, which shows that mood impacts evaluative
judgment [30]. For instance, half the participants answering a questionnaire about
their TVs received a small present first to put them in a good mood. These
participants were found to have televisions that performed better. So, if a user is
in a good mood due to liking previous items, the impact of an item they normally
dislike may be smaller (with how much smaller depending on ").

Parameters ı and " are user dependent (as confirmed in the experiment in [30]).
We will not define Impact.i/ in this chapter, see [30] for details, but it involves
quadratic ratings and normalization as found in the experiment discussed above.

7For reasons explained in [30], a learning rather than recommender task was used, and satisfaction
with performance measured. There was an easy (E), medium (M) and difficult (D) variant of the
task, so we could predict accurately how satisfied participants would be with performance on an
individual task, and could focus on modeling the effect of sequences on satisfaction. Half the
participants did tasks in order E-D-M, the other half in order D-E-M.
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Equality 
Matching

Authority Ranking

“Somebody you 
do deals with / 
compete with”

Market Pricing

“Somebody you 
respect highly”

“Somebody you 
share everything 
with, e.g. a best 
friend”

Communal Sharing

“Somebody you 
are on equal footing with”

Fig. 22.5 Types of relationship

22.5.2 Effects of the Group on an Individual’s Satisfaction

The satisfaction function given does not take the satisfaction of other users in the
group into account, which may well influence a user’s satisfaction. As argued in
[30] based on social psychology, two main processes can take place.

Emotional Contagion Firstly, the satisfaction of other users can lead to so-called
emotional contagion: other users being satisfied may increase a user’s satisfaction
(e.g. if somebody smiles at you, you may automatically smile back and feel better as
a result). The opposite may also happen: other users being dissatisfied may decrease
a user’s satisfaction. For instance, if you are watching a film with a group of friends
then the fact that your friends are clearly not enjoying it may negatively impact your
own satisfaction.

Emotional contagion may depend on your personality (some people are more
easily contaged than others), and your relationship with the other person. Anthro-
pologists and social psychologists have found substantial evidence for the existence
of four basic types of relationships, see Fig. 22.5. In Experiment 5 (see Fig. 22.6),
participants were given a description of a hypothetical person they were watching
TV with (using the relationship types in Fig. 22.5) and asked how their own emotion
would be impacted (on a scale from ‘decrease a lot’ to ‘increase a lot’) by that
person’s strong positive or negative emotions (see detail in [30]). Results confirmed
that emotional contagion indeed depends on the relationship you have: you are more
likely to be contaged by somebody you love (such as your best friend) or respect
(such as your mother or boss) then by somebody you are on equal footing with or
are in competition with.

Conformity Secondly, the opinion of other users may influence your own
expressed opinion, based on the so-called process of conformity.
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Think of somebody you share 
everything with (maybe your 
best friend). Assume you and 
this person are watching TV 
together. You are enjoying the 
program a little. How would it 
make you feel to know that the 
other person is enjoying it 
greatly / really hating it?

Fig. 22.6 Experiment 5: Impact of relationship type on emotional contagion

Which card has a 
line oriented as the 

line on card A?

# 3

# 3

# 3

# 3

# 3

# 3 # 3

# 3

I don’t want to 
be odd.

# 3

# 3

Fig. 22.7 Conformity experiment by Asch

Figure 22.7 shows the famous conformity experiment by Asch [3]. Participants
were given a very easy task to do, such as decide which of the four lines has the
same orientation as the line in Card A. They thought they were surrounded by other
participants, but in fact the others where part of the experiment team. The others all
answered the question before them, picking the same wrong answer. It was shown
that most participants then pick that same wrong answer as well.

Two types of conformity exist: (1) normative influence, in which you want to
be part of the group and express an opinion like the rest of the group even though
inside you still belief differently, and (2) informational influence, in which your
own opinion changes because you believe the group must be right. Informational
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influence would change your own satisfaction, while normative influence can
change the satisfaction of others through emotional contagion because of the
(insincere) emotions you are portraying.

More complicated satisfaction functions are presented in [30] to model emotional
contagion and both types of conformity. These functions also serve as a basis for
work in [47].

22.6 Using Satisfaction Inside Aggregation Strategies

Once you have an accurate model of the individual users’ satisfaction, which
predicts how satisfied each group member is after a sequence of items, it would be
nice to use this model to improve on the group aggregation strategies. For instance,
the aggregation strategy could set out to please the member of the group who is
least satisfied with the sequence of items chosen so far. This can be done in many
different ways, and we have only started to explore this issue. For example:

• Strongly Support Grumpiest strategy. This strategy picks the item which is most
liked by the least satisfied member. If multiple of these items exist, it uses one
of the standard aggregation strategies, for instance the Multiplicative Strategy, to
distinguish between them.

• Weakly Support Grumpiest strategy. This strategy selects the items that are quite
liked by the least satisfied member, for instance items with a rating of 8 or above.
It uses one of the standard aggregation strategies, such as the Multiplicative
Strategy, to choose between these items.

• Weighted strategy. This strategy assign weights to users depending on their
satisfaction, and then use a weighted form of a standard aggregation strategy.
For instance, Table 22.5 shows the effect of assigning double the weight to Jane
when using the Average Strategy. Note that weights are impossible to apply to a
strategy such as the Least Misery Strategy.

In [32], we discuss this in more detail, propose an agent-based architecture
for applying these ideas to the Ambient Intelligence scenario, and describe an
implemented prototype. Preliminary work in [38], also uses a strategy which

Table 22.5 Results of average strategy with equal weights and with twice the weight for Jane

A B C D E F G H I J

Peter 10 4 3 6 10 9 6 8 10 8

Jane 1 9 8 9 7 9 6 9 3 8

Mary 10 5 2 7 9 8 5 6 7 6

Average (equal weights) 7 6 4.3 7.3 8.7 8.7 5.7 7.7 6.7 7.3

Average (Jane twice) 5.5 6.8 5.3 8.3 8.3 8.8 5.8 8 5.8 7.5



764 J. Masthoff

balances user satisfaction. Clearly, empirical research is needed to investigate the
best way of using affective state inside an aggregation strategy.

22.7 Incorporating Group Attributes: Roles, Personality,
Expertise, Relationship Strength, Relationship Type
and Personal Impact

Above, we discussed how an individual’s satisfaction can be influenced by others
in the group due to emotional contagion and normative behavior. Individuals’ per-
sonality (e.g., propensity to emotional contagion) and social relationships between
individuals played a role in this. These were incorporated into our models of
satisfaction [30], which were then used in aggregation strategies [32]. Instead of
using group attributes indirectly, via satisfaction models, it is also possible to
incorporate them more directly into aggregation strategies.

Firstly, attributes can be used of individual group members, typically giving more
weight to certain group members than others:

• Demographics and Roles. As mentioned above, INTRIGUE [2] distinguishes
different user types (children, adults with and without disability), and uses higher
weights for more vulnerable user types. The recipe group recommender in [6]
distinguishes between user roles (applicant, partner, child) and varies the weights
based on their presumed level of engagement with the system (lowest for child,
highest for applicant). An analysis of groups whose behavior corresponded to
a Dictatorship strategy in [42] showed many cases in which teenagers acted as
dictator in the company of children and where adults acted as dictator in the
company of teenagers or children. So, different roles may influence what happens
in groups, though [42] does not present the group composition when Dictatorship
is not used.

• Personality: Assertiveness and Cooperativeness. HAPPYMOVIE [39] uses how
assertive (extent to which person attempts to satisfy own concerns) and how
cooperative (extent to which person attempts to satisfy others concerns) group
members are, and gives a higher weight to assertive members and a lower weight
to cooperative members.

• Expertise. As reported in [19], according to Social Psychology expertise may
provide influence, so in normal group processes experts may have more influence
on the group’s decision.8 Gatrell et al. [15] apply higher weights to people with

8Additionally, it seems plausible (but requires investigation) that users would be more dissatisfied
with disliked selected items when their expertise is higher than that of other group members.
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more expertise.9 They infer expertise from activity, namely the number of movies
watched. The recipe group recommender in [6] also uses higher weights for
family members who have engaged more.

• Personal impact.10 Liu et al. [26] incorporate the concept of personal impact into
their group recommender algorithm, to model that different members will have
different impacts on group decisions. They consider decisions made in the past to
decide on personal impact. Herr et al. [19] advocate using the social psychology
concept of cognitive centrality: the degree to which a group member’s cognitive
information is shared within the group. They propose that the degree of centrality
can be used to infer a person’s importance and that more important members
should be given higher weights.

Secondly, attributes can be used of the group as a whole, typically using a
different aggregation strategy based on the type of group:

• Relationship strength. Gatrell et al. [15] advocate using different aggregation
strategies depending on the group’s relationship strength. They propose to use
a Maximum Pleasure strategy for groups with a strong relationship (such as
couples and close friends’ groups), a Least Misery strategy for groups with a
weak relationship (such as first-acquaintance groups), and an Average strategy
for groups with an intermediate relationship (such as acquaintance groups).

• Relationship type. Wang et al. [47] distinguish between positionally homoge-
neous11 and positionally heterogeneous groups. In positionally homogeneous
groups, such as friend and tourist groups, the position of members is equal.
In heterogeneous groups, such as family groups, the position of members is
unequal. They also distinguish between tightly-coupled (strong relationship:
members are close and intercommunication is important) and loosely-coupled
(weak relationship: members are relatively estranged, and intercommunication
is less frequent and less important) groups. Based on these two dimensions,
Wang et al. define four different group types: tightly-coupled homogeneous (e.g.
a friends’ group), loosely coupled homogeneous (e.g. a tourist group), tightly-
coupled heterogeneous (e.g. a family group), and loosely coupled heterogeneous
(e.g. a staff group including managers).

Thirdly, attributes of people pairs in the group can be used, typically to adjust the
ratings of an individual in light of the rating of the other person in the pair:

9This may work well when using an Additive or Multiplicative strategy, but does not really work
for the Least Misery and Most Pleasure strategies used in [15], and hence unfortunately some of
the formulas in [15] which incorporate expertise lack validity.
10Personal impact is not completely distinct from Role: somebody’s role may influence their
personal impact. However, it is still possible for people with the same official roles to have a
different cognitive centrality.
11We have added the word positional to the terms homogeneous and heterogeneous used in [47] to
avoid confusion with the earlier use of these words to indicate how diverse group preferences are.
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• Relationship strengths. HAPPYMOVIE [39] uses relationship strengths (which
they call social trust) into its aggregation strategy, adapting individuals’ ratings
based on the ratings of others depending on the relationship strength between
individuals.

• Personal impact. The concept of personal impact from [26] mentioned above can
also be used in this way. Ioannidis et al. [21] argue that people will be influenced
by some people in their group more than others. Their group recommender uses a
cascading process, where the group can see the votes that have already been cast
and by whom, and can comment on alternatives. They and Ye et al. [48] learn
social influence values for use in the group aggregation strategy.

22.8 Applying Group Recommendation to Individual Users

So, what if you are developing an application that recommends to a single user?
Group recommendation techniques can be useful in three ways: (1) to aggregate
multiple criteria, (2) to solve the so-called cold-start problem, (3) to take into
account opinions of others. Chapter 23 also discusses how aggregation may be
needed when recommending to individuals, and covers several specific aggregation
functions [5].

22.8.1 Multiple Criteria

Sometimes it is difficult to give recommendations because the problem is multi-
dimensional: multiple criteria play a role. For instance, in a news recommender
system, a user may have a preference for location (being more interested in stories
close to home, or related to their favorite holiday place). The user may also prefer
more recent news, and have topical preferences (e.g. preferring news about politics
to news about sport). The recommender system may end up with a situation such
as in Table 22.6, where different news story rate differently on the criteria. Which
news stories should it now recommend?

Table 22.6 resembles the one we had for group recommendation above
(Table 22.1), except that now instead of multiple users we have multiple criteria
to satisfy. It is possible to apply our group recommendation techniques to this
problem. However, there is an important difference between adapting to a group

Table 22.6 Ratings on
criteria for ten news items

A B C D E F G H I J

Topic 10 4 3 6 10 9 6 8 10 8

Location 1 9 8 9 7 9 6 9 3 8

Recency 10 5 2 7 9 8 5 6 7 6
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Table 22.7 Average strategy
ignoring unimportant
criterion Location

A B C D E F G H I J

Topic 10 4 3 6 10 9 6 8 10 8

Recency 10 5 2 7 9 8 5 6 7 6

Group 20 9 5 13 19 17 11 14 17 14

Table 22.8 Average strategy
with weights 3 for Topic and
Recency and 1 for location

A B C D E F G H I J

Topic 30 12 9 18 30 27 18 24 30 24

Location 1 9 8 9 7 9 6 9 3 8

Recency 30 15 6 21 27 24 15 18 21 18

Group 61 36 23 48 64 60 39 51 54 50

of people and adapting to a group of criteria. When adapting to a group of people,
it seems sensible and morally correct to treat everybody equally. Of course, there
may be some exceptions, for instance when the group contains adults as well
as children, or when it is somebody’s birthday. But in general, equality seems a
good choice, and this was used in the group adaptation strategies discussed above.
In contrast, when adapting to a group of criteria, there is no particular reason for
assuming all criteria are as important. It is even quite likely that not all criteria are
equally important to a particular person. Indeed, in an experiment we found that
users treat criteria in different ways, giving more importance to some criteria (e.g.
recency is seen as more important than location) [29]. So, how can we adapt the
group recommendation strategies to deal with this? There are several ways in which
this can be done:

• Apply the strategy to the most respected criteria only. The ratings of unimportant
criteria are ignored completely. For instance, assume criterion Location is
regarded unimportant, then its ratings are ignored. Table 22.7 shows the result
of the Average Strategy when ignoring Location.

• Apply the strategy to all criteria but use weights. The ratings of unimportant
criteria are given less weight. For instance, in the Average Strategy, the weight
of a criterion is multiplied with its ratings to produce new ratings. For instance,
suppose criteria Topic and Recency were three times as important as criterion
Location. Table 22.8 shows the result of the Average Strategy using these
weights. In case of the Multiplicative Strategy, multiplying the ratings with
weights does not have any effect. In that strategy, it is better to use the weights as
exponents, so replace the ratings by the ratings to the power of the weight. Note
that in both strategies, a weight of 0 results in ignoring the ratings completely, as
above.

• Adapt a strategy to behave differently to important versus unimportant criteria:
Unequal Average Without Misery. Misery is avoided for important criteria
but not for unimportant ones. Assume criterion Location is again regarded as
unimportant. Table 22.9 shows the results of the Unequal Average Without
Misery strategy with threshold 6.
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Table 22.9 Unequal Average
Without Misery strategy with
location unimportant and
threshold 6

A B C D E F G H I J

Topic 10 4 3 6 10 9 6 8 10 8

Location 1 9 8 9 7 9 6 9 3 8

Recency 10 5 2 7 9 8 5 6 7 6

Group 21 22 26 26 23 20 22

Whom does she 
resemble ?

Fig. 22.8 Cold-start problem in case of social-filtering

We have some evidence that people’s behavior reflects the outcomes of these
strategies [29], however, more research is clearly needed in this area to see which
strategy is the best. Also, more research is needed to establish when to regard a
criterion as “unimportant". The issue of multiple criteria is also the topic of Chap. 25
in this handbook.

22.8.2 Cold-Start Problem

A big problem for recommender systems is the so-called cold-start problem: to adapt
to a user, the system needs to know what the user liked in the past. This is needed
in content-based filtering to decide on items similar to the ones the user liked. It is
needed in social filtering to decide on the users who resemble this user in the sense
that they (dis)liked the same items in the past (see Fig. 22.8). So, what if you do not
know anything about the user yet, because they only just started using the system?
Recommender system designers tend to solve this problem by either getting users
to rate items at the start, or by getting them to answer some demographic questions
(and then using stereotypes as a starting point, e.g. elderly people like classical
music).

Both methods require user effort. It is also not easy to decide which items to get a
user to rate, and stereotypes can be quite wrong and offensive (some elderly people
prefer pop music and people might not like being classified as elderly).

The group recommendation work presented in this chapter provides an alterna-
tive solution. When a user is new to the system, we simply provide recommendations
to that new user that would keep the whole group of existing users happy. We assume
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Let’s 
adapt to the 

group

Learned about 
the user so-far

Fig. 22.9 Gradually learning about the user, and whom she resembles most

that our user will resemble one of our existing users, though we do not know which
one, and that by recommending something that would keep all of them happy, the
new user will be happy as well.12

Gradually, we will learn about the new user’s tastes, for instance, by them rating
our recommended items or, more implicitly, by them spending time on the items
or not. We provide recommendations to the new user that would keep the group of
existing users happy including the new user (or more precisely, the person we now
assume the new user to be). The weight attached to the new user will be low initially,
as we do not know much about them yet, and will gradually increase. We also start
to attach less weight to existing users whose taste now evidently differs from our
new user.

Figure 22.9 shows an example of the adaptation: the system is including the
observed tastes of the new user to some extent, and has started to reduce the weights
of some of the other users. After prolonged use of the system, the user’s inferred
wishes will completely dominate the selection.

We have done a small-scale study using the MovieLens dataset to explore the
effectiveness of this approach. We randomly selected five movies, and twelve users
who had rated them: ten users as already known to the recommender, and two as
new users. Using the Multiplicative Strategy on the group of known users, movies
were ranked for the new users. Results were encouraging: the movie ranked highest
was in fact the most preferred movie for the new users, and also the rest of the
ranking was fine given the new users’ profiles. Applying weights led to a further
improvement of the ranking, and weights started to reflect the similarity of the new
users with known users. More detail on the study and on applying group adaptation
to solve the cold-start problem is given in [27]. A follow on study in [12] confirmed

12This initially offers the user non-personalized recommendations, however not necessarily by
purely using popularity (e.g. Average without Misery can be used and fairness principles can be
applied towards the other group members when recommending a sequence).
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the usefulness of this method. The use of aggregate ratings to solve the cold-start
problem is also discussed in [46].

Another approach to solving the cold-start problem can be found in Chap. 24.

22.8.3 Virtual Group Members

Finally, group adaptation can also be used when adapting to an individual by adding
virtual members to the group. For instance, parents may want to influence what
television their children watch. They may not mind their children watching certain
entertainment programmes, but may prefer them watching educational programmes.
When the child is alone, a profile representing the parent’s opinions (about how
suitable items are for their child) can be added to the group as a virtual group
member, and the TV could try to satisfy both, establishing a balance between the
opinions of the parent and child. Similarly, a virtual group member with a profile
produced by a teacher could be added to a group of learners.

22.9 Conclusions and Challenges

Group recommendation is a relatively new research area. This chapter is intended
as an introduction in the area, in particular on aggregating individual user profiles.
For more detail please see [22, 23, 27–30, 32].

22.9.1 Main Issues Raised

The main issues raised in this chapter are:

• Adapting to groups is needed in many scenarios such as interactive TV, ambient
intelligence, recommending to tourist groups, etc. Inspired by the differences
between scenarios, group recommenders can be classified using multiple dimen-
sions.

• Many strategies exist for aggregating individual preferences (see Table 22.3), and
some perform better than others. Users seem to care about avoiding misery and
fairness.

• Existing group recommenders differ on the classification dimensions and in the
aggregation strategies used. See Table 22.10 for an overview.

• When recommending a sequence of items, aggregation of individual profiles has
to occur at each step in the sequence, as earlier items may impact the ratings of
later items.
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• It is possible to construct satisfaction functions to predict how satisfied an
individual will be at any time during a sequence. However, group interaction
effects (such as emotional contagion and conformity) can make this complicated.

• It is possible to evaluate in experiments how good aggregation strategies and
satisfaction functions are, though this is not an easy problem.

• Group aggregation strategies are not only important when recommending to
groups of people, but can also be applied when recommending to individuals,
e.g. to prevent the cold-start problem and deal with multiple criteria.

22.9.2 Caveat: Group Modeling

The term “group modeling” is also used for work that is quite different from that
presented in this chapter. A lot of work has been on modeling common knowledge
between group members (e.g. [20, 44], modeling how a group interacts (e.g. [18,
40]) and group formation based on individual models (e.g. [1, 40]).

22.9.3 Challenges

Compared to work on individual recommendations, group recommendation is still
quite a novel area. The work presented in this chapter is only a starting point. There
are many challenging directions for further research, including:

• Recommending item sequences to a group. Our own work and the preliminary
work in [38] seem to be the only work to date on recommending balanced
sequences that address the issue of fairness. Even though sequences are important
for the usage scenario of INTRIGUE, their work has not investigated making
sequences balanced nor has it looked at sequence order. Clearly, a lot more
research is needed on recommending and ordering sequences, in particular on
how already shown items should influence the ratings of other items. Some of
this research will have to be recommender domain specific.

• Modeling of affective state. There is a lot more work needed to produce validated
satisfaction functions. The work presented in this chapter and [30] is only
the starting point. In particular, large scale evaluations are required, as are
investigations on the affect of group size.

• Incorporating satisfaction within an aggregation strategy. As noted in Sect. 22.6,
there are many ways in which satisfaction can be used inside an aggregation
strategy. We presented some initial ideas in this area, but extensive empirical
research is required to investigate this further.

• Explaining group recommendations: Transparency and Privacy. One might think
that accurate predictions of individual satisfaction can also be used to improve
the recommender’s transparency: showing how satisfied other group members are



22 Group Recommender Systems: Aggregation, Satisfaction and Group Attributes 773

could improve users’ understanding of the recommendation process and perhaps
make it easier to accept items they do not like. However, users’ need for privacy
is likely to conflict with their need for transparency. An important task of a group
recommender system is to avoid embarrassment. Users often like to conform
to the group to avoid being disliked (we discussed normative conformity as
part of Sect. 22.5.2 on how others in the group can influence an individual’s
affective state). In [30], we have investigated how different group aggregation
strategies may affect privacy. More work is needed on explanations of group
recommendations, in particular on how to balance privacy with transparency and
scrutability. Chapter 10 provides more detail on the different roles of explanations
in recommender systems [45].

• User interface design. An individual’s satisfaction with a group recommendation
may be increased by good user interface design. For example, when showing an
item, users could be shown what the next item will be (e.g. in a TV programme
through a subtitle). This may inform users who do not like the current item that
they will like the next one better. There is also a need for additional research on
good interfaces for supporting group decision making (for some initial research
see [43]).

• Group aggregation strategies for cold-start problems. In Sect. 22.8.2, we have
sketched how group aggregation can be used to help solve the cold-start problem.
However, our study in this area was very small, and a lot more work is required
to validate and optimize this approach.

• Dealing with uncertainty. In this chapter, we have assumed that we have accurate
profiles of individuals’ preferences. For example, in Table 22.1, the recommender
knows that Peter’s rating of item B is 4. However, in reality we will often have
probabilistic data. For example, we may know with 80 % certainty that Peter’s
rating is 4. Adaptations of the aggregation strategies may be needed to deal with
this. de Campos et al. try to deal with uncertainty by using Bayesian networks
[10]. However, they have so far focused on the Average and Plurality Voting
strategies, not yet tackling the avoidance of misery and fairness issues.

• Dealing with group attributes. In Sect. 22.7, we have discussed initial work on
incorporating group attributes in group recommender systems. Additionally, as
mentioned in [16], users may well have different preferences in the context of
a particular group then when they are alone. Clearly more research is needed in
this area.

• Empirical studies. More empirical evaluations are vital to bring this field
forwards. It is a challenge to design well-controlled, large scale empirical studies
in a real-world setting, particularly when dealing with group recommendations
and affective state. It is likely that different aggregation strategies may be
effective for different kinds of groups and for different application domains (see
[43] for initial work on group recommender application domains). Almost all
research so far (including my own) has either been on a small scale, in a contrived
setting, using synthetic groups (with the problem of using an Average metric, see
Sect. 22.3.3) or lacks control.
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Chapter 23
Aggregation Functions for Recommender
Systems

Gleb Beliakov, Tomasa Calvo, and Simon James

23.1 Introduction

Aggregation functions are employed at various stages and for various purposes in
recommender systems. From vast databases of electronic objects and information,
recommender systems (RS) guide users to items that may be of interest which to date
have included movies [39], web-pages [6], news articles [40], medical treatments
[19, 36], tourist destinations [31], music and other products [37, 43]. Due to the
sheer size of the data sets, aggregation becomes necessary to help summarize the
extent to which an item satisfies a user’s preferences, the similarity between users
or items, or even the credibility of an online store.

The arithmetic mean or maximum/minimum functions are typically the default
choice for such aggregation, however the user-specific and personalized aspects
of RS suggests that the flexibility of some aggregation functions could lead to
more relevant recommendations as opposed to a one-fits-all approach. In this
chapter we will review the basics of aggregation functions and their properties,
and present the most important families, including generalized means, Choquet and
Sugeno integrals, ordered weighted averaging, triangular norms and conorms, as
well as bipolar aggregation functions. Such functions can model various interactions
between the inputs, conjunctive, disjunctive and mixed behavior. We will then
present different methods of construction, based either on analytical formulas,
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algorithms, or empirical data. We discuss how parameters of aggregation functions
can be fitted to observed data, while preserving the desirable properties that
ensure consistency and robustness. By replacing the arithmetic mean with more
sophisticated, adaptable functions, by canceling out redundancies in the inputs, one
can improve the quality of automatic recommendations, and tailor recommender
systems to specific domains.

23.2 Types of Aggregation in Recommender Systems

A key feature of recommender systems that traditionally distinguished them from
other such as internet filtering is the targeted relationship between users and
items. The sophistication of web applications today and the rise of Web 2.0
has resulted in this distinction becoming less pronounced, however we can still
broadly categorize recommender systems based on how data is collected and used
to form user-specific justifications to recommend items. Recommendations based
on justifications concerning item features can be broadly classified as content-
based (CB), whereas recommendations that utilize user similarity are referred to as
collaborative (CF) [1, 2]. It is useful to further identify demographic (DF), utility-
(UB) and knowledge-based (KB) methods [21] as distinct from the usual perception
of CB recommendation as anything that uses item-item similarity. The more recent
literature has been characterized by a focus on hybrid systems (HS), which combine
two or more of these approaches. In particular, the phenomenon of social media
has allowed RS to increasingly take advantage of such information to augment the
accuracy and reliability of recommendations [17].

Collaborative methods use the item preferences or ratings of similar users as
justification for recommendation. The recommendations built into Amazon.com
[37] are an archetypical example of these methods. Aggregation functions (usually
the simple or weighted average) are employed in CF to aggregate the ratings or
preferences of similar users, however they can also be used to determine user
similarity and help define neighborhoods.

Content-based filtering methods form justifications by matching item-features to
user profiles. For instance, a news recommender may build a profile for each user
that consists of keywords and the interest in an unseen news item can be predicted
by the number of keywords in the story that correspond to those in the user’s profile.
The way aggregation functions are used (and whether they are used) for content-
based methods depends on the nature of the profile that is given to each user and
the description of items. We consider their use in item score computation, similarity
computation and the construction of profiles.

Demographic filtering techniques assign each user to a demographic class based
on their user profiles. Each demographic class has an associated user archetype
or user stereotype that is then used to form justifications for recommendation.
Rather than item history, user similarity here is more likely to be calculated from
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personal information and hence may be of lower dimension than most collaborative
techniques. This makes nearest-neighbor or other classification and clustering tools
particularly useful.

Rather than build long-term models, utility-based recommenders match items
to the current needs of the users, taking into account their general tendencies
and preferences. For instance, a user may be looking for a particular book, and
it is known from past behavior that old hardback editions are preferred even if it
takes longer to ship them. As is the case with content-based filtering, items can be
described in the system by their features and, more specifically, the utility associated
with each of those features. Aggregation can then be performed as it is with content-
based filtering, although the user profiles and system information may differ.

Knowledge-based recommenders use background knowledge about associated
and similar items to infer the needs of the user and how they can best be met.
Knowledge-based methods will then draw not only on typical measures of similarity
like correlation, but also on feature similarities that will interest the user. It is pointed
out in [21] that KB recommenders often draw on case-based reasoning approaches.

Hybrid recommender systems are employed to overcome the inherent draw-
backs of each recommendation method. Burke [21] distinguishes weighted, mixed,
switching, feature combination, cascade, feature augmentation and meta-level HS.
Aggregation functions may be involved in the hybridization process—e.g. to
combine different recommender scores in weighted HS or the features in feature
combination HS. On the other hand, some of these hybrid methods are particularly
useful in improving the performance of aggregation functions used at different
stages. For instance, cascade methods use one filtering technique to reduce the size
of the dataset, while feature augmentation HS might use one method to reduce
its dimension. Similarity measures used for CF could be based on the similarity
between user-specific aggregation functions (e.g. the similarity between weights
and parameters) constructed in UB and CB frameworks. Similar meta-level HS are
described in [21]. The switching criteria in switching HS could be based to some
degree on aggregation functions, however here, as with mixed HS, their use is less
likely.

It is also worth making special mention of social media and trust, which play an
increasingly important role in today’s recommender systems. Systems of all types
can now take advantage of the abundance of research concerning social networks
and how users interact and influence one another, as well as the new platforms
through which items can be shared and recommended. Aggregation functions
can be used to indirectly establish trust patterns, preferences and relationships by
summarizing network features and structures. They can also be used directly in the
calculation of network or user similarities and trust/distrust measures [46].

Simple examples of aggregation functions include the arithmetic mean, median,
maximum and minimum, each taking multiple inputs as arguments and combining
them into a single representative output. The use of more complicated and expres-
sive functions in RS would usually be motivated by the desire for more accurate
recommendations, however in some circumstances aggregation functions might
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provide a practical alternative to other data processing methods. In the following
subsections we will investigate the role of aggregation functions within different
types of recommender system, indicating where they can be and have been applied.

23.2.1 Aggregation of Preferences in CF

Given a user u and a neighborhood of similar users Uk D fu1; : : : ; ukg, the
preference of u for an unseen item di can be predicted by aggregating the scores
given by Uk. We will denote the predicted degree of interest, rating or preference by
R.u; di/.

R.u; di/ D
kX

jD1

sim.u; uj/R.uj; di/ (23.1)

The function can be interpreted as a weighted arithmetic mean (WAM) where
similarities between the user and similar users sim.u; uj/ D wj are the weights and
R.uj; di/ D xj are the inputs to be aggregated. Provided wj; xj � 0, the function
R.u; di/ is an aggregation function. Whilst the WAM is simply interpreted, satisfies
many useful properties and is computationally inexpensive, other aggregation
functions including power means (which can be non-linear) or the Choquet integral
(which accounts for correlated inputs) may give a more accurate prediction of the
users’ ratings.

23.2.2 Aggregation of Features in CB and UB
Recommendation

Where the profile is representable as a vector of feature preferences, Pu D
.p1; : : : ; pn/, items can then be described in terms of the degree to which they
satisfy these features, i.e. di D .x1; : : : ; xn/. Here, a value of xj D 1 indicates that
the preference pj is completely satisfied by the item. Pu could also be a vector of
keywords, in which case xj D 1 might simply mean that the keyword pj is mentioned
once. The overall rating R.u; di/ of an item is then determined by aggregating the xj,

R.u; di/ D f .x1; : : : ; xn/ (23.2)

Equation (23.2) is an aggregation function provided the function satisfies certain
boundary conditions and is monotone with respect to increases in xj. The R.u; di/

scores can be used to provide a ranking of unseen items, which can then be
recommended. If the RS allows only one item to be shown, the how and why of
this score evaluation becomes paramount. If the user is only likely to buy/view
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items when all of their preferences are satisfied, a conjunctive function like the
minimum should be used. On the other hand, if some of the preferences are unlikely
to be satisfied simultaneously, e.g. the user is interested in drama and horror films,
an averaging or disjunctive function might be more reliable. We present many
examples of these broad classes of aggregation functions in Sect. 23.3.

In situations where it is practical to calculate item-item similarity, content-based
filtering could also be facilitated using methods that mirror those in collaborative
filtering [2]. In this case, a user profile might consist of all or a subset of previously
rated/purchased items, D D fd1; : : : ; dqg, and a measure of similarity is calculated
between the unseen item di and those in D,

R.u; di/ D
qX

jD1;.j¤i/

sim.di; dj/R.u; dj/: (23.3)

In this case, content-based methods can benefit from the use of aggregation
functions in determining item similarity and item neighborhoods as in Sect. 23.2.3.

23.2.3 Item and User Similarity and Neighborhood Formation

The behavior and accuracy of recommendation when using Eq. (23.1) will be largely
dependent on how similarity (the weighting vector) is determined. The similarity
between one user and another can be measured in terms of items previously rated or
bought, or may be calculated based on known features associated with each user—
e.g. the age, location and interests of a user may be known. The most commonly
used measures of similarity, i.e. the weights in Eq. (23.1), are based on the cosine
calculation [42] and Pearson’s correlation coefficient [40]. Recently, other similarity
measures have emerged such as fuzzy distance [4] (or traditional distances such as
the Euclidean or Manhattan distances) and other recommender-specific metrics, e.g.
as in [3, 24], based on the distribution of user ratings or latent/implicit user and item
feature spaces (see also Chap. 2 of this book).

Equation (23.1) can also be considered within the framework of a k-nearest-
neighbors (kNN) approach. Aggregation functions have been used to enhance
the accuracy and efficiency of nearest-neighbor rules, with the OWA and Cho-
quet integral providing the framework to model decaying weights and neighbor
interaction [14, 50]. In the nearest-neighbor setting, similarity is tantamount to
multi-dimensional proximity or distance. Euclidean distance was considered for
measuring similarity for recommenders that use both ratings and personal infor-
mation as inputs in [45]. Euclidean distance is just one type of metric, and may not
capture the concept of distance well—for instance, where the data dimensions are
correlated to some degree or even incommensurable. Metrics defined with the help
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of certain aggregation functions, including the OWA operator and Choquet integral,
have been investigated in [18, 44] and could potentially prove useful for measuring
similarity in some RS.

If we regard each value sim.u; uj/ in Eq. (23.1) as a weight rather than a
similarity, we can keep in mind that the problem of weight identification for
various aggregation functions has been studied extensively. One method is to
learn the weights from a data subset by using least-squares fitting techniques. For
instance, given a set of mutually rated items D D fd1; : : : ; dqg, the weights of a
WAM can be fitted using the following program:

minimize
qX

iD1

0
@R.u; di/ �

kX
jD1

wjR.uj; di/

1
A2

s.t. wj � 0; 8j

kX
jD1

wj D 1:

What is actually being determined is the vector of weights w D .w1; : : : ; wk/

that minimizes the residual errors. Each weight is then the importance of a given
user uj in accurately predicting R.u; di/. Non-linear functions such as the weighted
geometric mean can also be fitted in this way. Such algorithms are relatively efficient
in terms of computation time, and could be calculated either offline or in real-time
depending on the RS and size of the database.

Alternatively, aggregation functions can be used to combine differing measures
of similarity. Given a number of similarity measures sim1.u; u1/, sim2.u; u1/ etc., an
overall measure of similarity can be obtained. This type of aggregated similarity
was used in [26] for the recommendation of movies. In this example, cosine
and correlation scores were combined using the product, which is a non-linear
and conjunctive aggregation function. In [2], the extension of recommendation
techniques to multi-dimensional approaches was proposed, where a user might
rate a movie in terms of its plot, visual effects and acting as well as providing an
overall score. Two users may provide similar overall scores for a film, however may
like the film for different reasons making this evaluation of similarity misleading.
Aggregation functions can then be used to combine the measures of similarity in
each dimension (also see Chap. 25 for more on recommendations based on multiple
criteria).
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23.2.4 Profile Construction for CB, UB

More sophisticated systems will assign a weight wj to each of the preferences in Pu.
To enhance the online-experience, many recommenders opt to learn the preferences
(and weights) from online behavior, rather than ask the user to state them explicitly.
The features of previously rated or purchased items can be aggregated to give an
overall score for each preference. Given a preference pj, let xij be the degree to
which item di satisfies pj, then the score w.pj/ will be

w.pj/ D f .x1j; : : : ; xnj/: (23.4)

Once all the preferences are determined, these w.pj/ can be used to determine wj for
use in calculations such as Eq. (23.2).

Preferences can also be learned using programming methods of the form
given above for similarity, e.g. in [47], the Choquet integral was used to detect
customer preferences for tourism websites. This stands as an alternative approach
to matrix reduction methods (e.g. principal component analysis, single value
decomposition and use of latent factors) for handling implicit interactions between
users’ preferences and between item descriptors. The advantage with aggregation
functions is that we still obtain data-based models with parameters that have direct
interpretations, however it should be noted that they are less suited to dealing with
sparse datasets.

23.2.5 Connectives in Case-Based Reasoning for RS

The approach of many researchers in the fuzzy sets community has been to frame the
recommendation problem in terms of case-based reasoning [29] where aggregation
functions can be used as connectives . This results in rules of the form,

If di1 is A1 AND di2 is A2 OR : : : din is An THEN . . . (23.5)

x1; x2; : : : ; xn denote the degrees of satisfaction of the rule predicates di1 is A1, etc.,
and aggregation functions are used to replace the AND and OR operations. For
instance, a user whose profile indicates a preference for comedies and action films
might have a recommendation rule “IF the film is a comedy OR an action THEN
recommend it.”1 Each genre can be represented as a fuzzy set with fuzzy connectives
used to aggregate the degrees of satisfaction. The OR- and AND-type behavior are
usually modeled by disjunctive and conjunctive aggregation functions respectively.
In recommender systems, it has been shown that the property of noble reinforcement

1We note here also that such rules could be used in any RS to decide when to recommend items,
e.g. “IF user is inactive THEN recommend something”.
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is desirable [11, 49]. This property allows many strong justifications to result in
a very strong recommendation, or a number of weak justifications to reduce the
recommendation if desired.

Functions that model Eq. (23.5) can be used to match items to profiles or
queries in CB (content-based filtering), UB (utility-based recommendation) and KB
(knowledge-based recommender system). In some demographic RS, items will be
generically recommended to everyone in a given class, making the classification
process the primary task of the RS. It may be desirable to classify users by the degree
to which they satisfy a number of stereotypes, and in turn describe items in terms
of their interest to each of these. For instance, a personal loan with an interest-free
period could be very attractive to graduating students and somewhat attractive to
new mothers, but of no interest to someone recently married. A user could partially
satisfy each of these archetypes, requiring the system to aggregate the interest values
in each demographic. This leads to rules similar to (23.5). “IF the item is interesting
to students OR interesting to mothers THEN it will be interesting to user u” or “IF
user u is unmarried AND either a student OR mother, THEN recommend the item”.

23.2.6 Weighted Hybrid Systems

Given a number of recommendation scores obtained by using different methods,
e.g. RCF.u; di/, RCB.u; di/, etc., an overall score can be obtained using

R.u; di/ D f .RCF.u; di/; RCB.u; di/; : : :/ (23.6)

with f an aggregation function. The P-Tango system [25] uses a linear combination
of collaborative and content-based scores to make its recommendations, and adjusts
the weight according to the inferred user preferences. Aggregation of two or more
methods can be performed using a number of functions with different properties and
behavior. Aggregation-based trust and distrust evaluations, degrees of affinity and
social connectedness can also be incorporated at different levels of a hybrid RS in
weight determination and to guide recommendation rules.

Although the standard operators can provide reasonable improvements to recom-
mendation, the use of lesser known or sometimes more complicated functions could
enable some recommenders to fine-tune the ranking process, creating less irrelevant
and more accurate predictions.

23.3 Review of Aggregation Functions

The purpose of aggregation functions is to combine inputs that are typically
interpreted as degrees of membership in fuzzy sets, degrees of preference, strength
of evidence, or support of a hypothesis, and so on. In this section, we provide
preliminary definitions and properties before giving an introduction to some well
known families.
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23.3.1 Definitions and Properties

We will consider aggregation functions defined on the unit interval f W Œ0; 1�n !
Œ0; 1�, however other choices are possible. The input value 0 is interpreted as no
membership, no preference, no evidence, no satisfaction, etc., and naturally, an
aggregation of n 0s should yield 0. Similarly, the value 1 is interpreted as full
membership or strongest preference, and an aggregation of 1s should naturally
yield 1.

Aggregation functions also formally require monotonicity in each argument,
where an increase to any input cannot result in a decrease in the overall score.

Definition 23.1 (Aggregation Function). An aggregation function is a function of
n > 1 arguments that maps the (n-dimensional) unit cube onto the unit interval
f W Œ0; 1�n ! Œ0; 1�, with the properties

(i) f .0; 0; : : : ; 0„ ƒ‚ …
n�times

/ D 0 and f .1; 1; : : : ; 1„ ƒ‚ …
n�times

/ D 1:

(ii) x � y implies f .x/ � f .y/ for all x; y 2 Œ0; 1�n.

For some applications, the inputs may have a varying number of components (for
instance, some values can be missing). Particularly in the case of automated systems,
it may be desirable to utilize functions defined for n D 2; 3; : : : arguments with
the same underlying property in order to give consistent aggregation results. One
approach is to consider the class of extended aggregation functions [38], which can
be expressed succinctly for all n, however more recently the notion of aggregation
stability (see below) has received attention [16, 41].

Aggregation functions are classed depending on their overall behavior in relation
to the inputs [23, 27, 28]. In some cases we require high inputs to compensate for low
inputs, or that inputs may average each other. In other situations, it may make more
sense that high scores reinforce each other and low inputs are essentially discarded.

Definition 23.2 (Classes). An aggregation function f W Œ0; 1�n ! Œ0; 1� is:

Averaging if it is bounded by min.x/ � f .x/ � max.x/I
Conjunctive if it is bounded by f .x/ � min.x/I
Disjunctive if it is bounded by f .x/ � max.x/I
Mixed otherwise.

The class of aggregation function to be used depends on how the inputs of the
recommender system are interpreted and how sensitive or broad an output is desired.
When aggregating recommendation scores in CF, the use of averaging functions
ensures that the predicted interest in an item is representative of the central tendency
of the scores. On the other hand, the semantics of some mixed aggregation functions
makes their use appealing. For instance, MYCIN [19] is a classical expert system
used to diagnose and treat rare blood diseases and utilizes a mixed aggregation
function so that inputs of only high scores reinforce each other, while scores below
a given threshold are penalized.
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There are several studied properties that can be satisfied by aggregation func-
tions, making them useful in certain situations. We provide descriptions for those
that are frequently referred to in the literature.

Definition 23.3 (Properties). An aggregation function f W Œ0; 1�n ! Œ0; 1� is:

Idempotent if for every t 2 Œ0; 1� the output is f .t; t : : : ; t/ D t;
Symmetric if its value does not depend on the permutation of the arguments,

i.e.,f .x1; x2; : : : ; xn/ D f .xP.1/; xP.2/; : : : ; xP.n// for every x and every permutation
P D .P.1/; P.2/; : : : ; P.n// of .1; 2 : : : ; n/;

Associative if, for f W Œ0; 1�2 ! Œ0; 1�, f .f .x1; x2/; x3/ D f .x1; f .x2; x3// holds for
all x1; x2; x3;

LR-stable if, for all x 2 Œ0; 1�n�1 it holds that, f .x1; : : : ; xn�1; f .x1; : : : ; xn�1// D
f .f .x1; : : : ; xn�1/; x1; : : : ; xn�1/ D f .x1; : : : ; xn�1/;

Shift-invariant if for all � 2 Œ�1; 1� and for all x D .x1; : : : ; xn/, f .x1C�; : : : ; xnC
�/ D f .x/C � whenever .x1 C �; : : : ; xn C �/ 2 Œ0; 1�n and f .x/C � 2 Œ0; 1�;

Homogeneous if for all � 2 Œ0; 1� and for all x D .x1; : : : ; xn/, f .�x1; : : : ; �xn/ D
�f .x/I

Strictly monotone if x � y but x ¤ y implies f .x/ < f .y/;
Lipschitz continuous if there is a positive number M, such that for any two inputs

x; y 2 Œ0; 1�n, jf .x/ � f .y/j � Md.x; y/; where d.x; y/ is a distance between x
and y: The smallest such number M is called the Lipschitz constant of f .

Has neutral elements if there is a value e 2 Œ0; 1� such that f .e; : : : ; e; t; e; : : : ; e/ D
t for every t 2 Œ0; 1� in any position.

Has absorbing elements if there is a value a 2 Œ0; 1� such that for any x with an
input xj D a, it follows that f .x1; : : : ; xj�1; a; xjC1; : : : ; xn/ D a .

23.3.1.1 Practical Considerations in RS

We will discuss some of the implications of each of these properties with some
examples before providing the formal definitions of many important and extensively
studied aggregation functions.

Idempotency All averaging aggregation functions, including the means, OWA
and Choquet integral defined in Sect. 23.3.2, are idempotent.2 The usual inter-
pretation of this property is toward a representation of consensus amongst the
inputs. However in some RS applications, e.g. when aggregating ratings in CF,
the relative ranking of items is of more concern than the commensurability of
input/output interpretations.

2Idempotency and averaging behavior are equivalent for aggregation functions due to the mono-
tonicity requirement. This property is sometimes referred to as unanimity since the output agrees
with each input when the inputs are unanimous.
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Symmetry The use of symmetric aggregation functions implies equal importance
or reliability with regard to the inputs. Non-symmetric weights can be used with
quasi-arithmetic means if it is desired that particular inputs have more influence
on the aggregated output. Although the ordered weighted averaging function
(OWA) is defined with respect to a weighting vector, it is still considered a
symmetric function since changing the order of the inputs will have no effect,
i.e. they will be sorted into descending order regardless.

Example 23.1. A collaborative RS considers two items rated by three similar
users d1 D .0:2; 0:7; 0:6/; d2 D .0:6; 0:2; 0:7/. Aggregating these inputs
using a WAM with symmetric weights would give the identical result
R.u; d1/ D R.u; d2/ D .0:2 C 0:7 C 0:6/=3 D 0:5. Similarly, using an
OWA with weights w D .0:5; 0:4; 0:1/ will also give the same result for both
items, with R.u; d1/ D R.u; d2/ D 0:5.0:7/ C 0:4.0:6/ C 0:1.0:2/ D 0:61.
However if it is known that u1 is more similar to the user than u2 or u3,
then we could use a weighted mean with w D .0:6; 0:2; 0:2/ so that the
rating of u1 has more influence. This results in d2 having a higher predicted
suitability, with R.u; d1/ D 0:6.0:2/ C 0:2.0:7/ C 0:2.0:6/ D 0:38 and
R.u; d2/ D 0:6.0:6/C 0:2.0:2/C 0:2.0:6/ D 0:52.

Associativity Associativity is a useful property for automatic computation as it
allows functions to be defined recursively for any dimension. This is potentially
useful for collaborative RS where data sparsity is a problem. The same function
could be used to evaluate one item rated by 10 similar users, and another rated
by 1000 similar users. T-norms and t-conorms, uninorms and nullnorms are
associative, however the quasi-arithmetic means are not.

Example 23.2. A collaborative RS uses personal information to determine
similarity between users (i.e. the values do not need to be reassessed every
time a new item is rated). Rather than store an items � users matrix for each
user, the system uses a uninorm U.x; y/ to aggregate the similar user ratings
and stores a single vector of aggregated item scores d D .U.di/; : : : ; U.dn//.
When a new item score xij is added, the system aggregates U.U.di/; xij/ and
stores this instead of U.di/. The advantage here is that neither the previous
scores nor the number of times the item is rated is required in order to update
the predicted rating.
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LR-stability The concept of LR-stability [41] or stability with respect to any
position [16] ensures that the function is consistently defined for any number
of inputs. The idea is that if we append the output to the vector of inputs, the new
output should not change. Functions which satisfy LR-stability are then useful
for the sparse item�user matrices that recommender systems need to deal with.

Shift-invariance and homogeneity The main advantage of shift-invariant and
homogeneous functions is that translating or dilating the domain of consideration
will not affect relative orderings of aggregated inputs. The weighted arithmetic
mean, OWA and Choquet integral are all shift invariant, so it makes no difference
whether inputs are considered on [0,100] or [1,7], as long as the inputs are
commensurable.

Strict monotonicity Strict monotonicity is desired in applications where the num-
ber of items to be shown to the user is limited. Weighted arithmetic means and
OWA functions are strictly monotone when wj > 0;8j, while geometric and
harmonic means are strict for x 2�0; 1�n. Aggregation functions which are not
strict, the maximum function for instance, could not distinguish between an item
d1 D .0:3; 0:8/ and another d2 D .0:8; 0:8/.

Example 23.3. A holiday recommendation site uses a utility-based RS where
the Łukasiewicz t-conorm SL.x; y/ D min.xC y; 1/ is used to aggregate item
features. It is able to show the user every item SL.di/ D 1 by notifications
through e-mail. It doesn’t matter that d1 D .0:3; 0:8/ and d2 D .0:8; 0:8/,
since both of them are predicted to completely satisfy the user’s needs.

Lipschitz continuity Continuity, in general, ensures that small input inaccuracies
cannot result in drastic changes in output. Such a property is especially important
in RS where the inputs, whether item descriptions or user ratings, are likely
to be inexact. Some functions only violate this property on a small portion of
the domain. As long as this is taken into account when the RS considers the
recommendation scores, the function might still be suitable.

Neutral and absorbent elements Absorbent elements could be useful in RS to
ensure that certain items always or never get recommended. For example,
a UB recommender could remove every item from consideration which has
any features that score zero, or definitely recommend items which completely
satisfy one of the user preferences. T-norms and t-conorms each have absorbent
elements. Incorporating functions with neutral elements into a recommender
system that aggregates user ratings (in either a CF or CB framework) allows
values to be specified which will not affect recommendation scores. A movie
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that is liked by many people, for instance, would usually have its overall approval
rating reduced by someone who was indifferent toward it but still required to rate
it. If a neutral value exists it will not influence the aggregated score.

23.3.2 Aggregation Families

23.3.2.1 Quasi-Arithmetic Means

The family of weighted quasi-arithmetic means generalizes the power mean, which
in turn includes other classical means such as the arithmetic and geometric mean as
special cases (see [20] for an overview of means).

Definition 23.4 (Weighted Quasi-Arithmetic Means). For a given strictly mono-
tone and continuous function g W Œ0; 1�! Œ�1;C1�, called a generating function
or generator, and a weighting vector w D .w1; : : : ; wn/, the weighted quasi-
arithmetic mean is the function

Mw;g.x/ D g�1

 
nX

iD1

wjg.xj/

!
: (23.7)

where
P

wj D 1 and wj � 0 8 j.
Special cases include:

Arithmetic means WAMw D
nP

jD1

wjxj, g.t/ D t;

Geometric means Gw D
nQ

jD1

x
wj

j , g.t/ D log.t/;

Harmonic means Hw D
 

nP
jD1

wj

xj

!�1

, g.t/ D 1
t ;

Power means Mw;Œr� D
 

nP
jD1

wjxr
j

! 1
r

, g.t/ D tr

The term mean is usually used to imply averaging behavior. Quasi-arithmetic means
defined with respect to a weighting vector with all wj D 1

n are symmetric, and
asymmetric otherwise. Usually the weight allocated to a particular input is indicative
of the importance of that particular input. All power means (including WAMw; Gw

and Hw) are idempotent, homogeneous and strictly monotone on the open interval
�0; 1Œn, however only the weighted arithmetic mean is shift-invariant. The geometric
mean is not Lipschitz continuous.3

3The Lipschitz property for quasi-arithmetic means and other generated aggregation functions is
explored in [13].
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23.3.2.2 OWA Functions

Ordered weighted averaging functions (OWA) are also averaging aggregation
functions, which associate a weight not with a particular input, but rather with its
relative value or order compared to others. They have been introduced by Yager [48]
and have become very popular in the fuzzy sets community.

Definition 23.5 (OWA). Given a weighting vector w, the OWA function is

OWAw.x/ D
nX

jD1

wjx.j/;

where the .:/ notation denotes the components of x being arranged in non-increasing
order x.1/ � x.2/ � : : : � x.n/.

Special cases of the OWA operator, depending on the weighting vector w include:

Arithmetic mean where all the weights are equal, i.e. all wj D 1
n

Maximum function for w D .1; 0; : : : ; 0/;
Minimum function for w D .0; : : : ; 0; 1/;
Median function for wj D 0 for all j ¤ m, wm D 1 if n D 2m C 1 is odd, and

wj D 0 for all j ¤ m; mC 1, wm D wmC1 D 0:5 if n D 2m is even.

The OWA function is a piecewise linear idempotent aggregation function. It is sym-
metric, homogeneous, shift-invariant, Lipschitz continuous and strictly monotone if
wj > 0;8 j.

23.3.2.3 Choquet and Sugeno Integrals

Referred to as fuzzy integrals, the Choquet integral and the Sugeno integral are
averaging aggregation functions defined with respect to a fuzzy measure. They are
useful for modeling interactions between the input variables xj.

Definition 23.6 (Fuzzy Measure). Let N D f1; 2; : : : ; ng. A discrete fuzzy
measure is a set function4 v W 2N ! Œ0; 1� which is monotonic (i.e. v.A/ � v.B/

whenever A � B) and satisfies v.;/ D 0; v.N/ D 1. Given any two sets A; B � N,
fuzzy measures are said to be:

Additive where v.A [ B/ D v.A/C v.B/, for v.A \ B/ D ;;
Symmetric where jAj D jBj ! v.A/ D v.B/;
Submodular if v.A [ B/ � v.A \ B/ � v.A/C v.B/;
Supermodular if v.A [ B/ � v.A \ B/ � v.A/C v.B/;

4A set function is a function whose domain consists of all possible subsets of N. For example, for
n D 3, a set function is specified by 23 D 8 values at v.;/, v.f1g/, v.f2g/, v.f3g/, v.f1; 2g/,
v.f1; 3g/, v.f2; 3g/, v.f1; 2; 3g/.
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Subadditive if v.A [ B/ � v.A/C v.B/ whenever A \ B D ;;
Superadditive if v.A [ B/ � v.A/C v.B/ whenever A \ B D ;;
Decomposable if v.A [ B/ D f .v.A/; v.B// whenever A \ B D ;, for a given

function f W Œ0; 1�2 ! Œ0; 1�;
Sugeno (�-fuzzy measure) if v is decomposable with f D v.A/ C v.B/ C

�v.A/v.B/, � 2� � 1;1Œ.

The behavior of the Sugeno and Choquet integral depends on the values and
properties of the associated fuzzy measure. The fuzzy measure used to define the
Choquet integral can be interpreted as a weight allocation, not merely to individual
inputs but rather to each subset of inputs. It may be that there are redundancies
among the inputs, or that certain inputs complement each other.

Definition 23.7 (Choquet Integral). The discrete Choquet integral with respect
to a fuzzy measure v is given by

Cv.x/ D
nX

jD1

x.j/Œv.fkjxk � x.j/g/ � v.fkjxk � x.jC1/g/�; (23.8)

where .:/ in this case denotes the components of x being arranged in non-decreasing
order such that .x.1/ � x.2/ � 	 	 	 � x.n// (note that this is opposite to OWA).

Special cases of the Choquet integral include weighted arithmetic means and the
OWA function where the fuzzy measure is additive or symmetric respectively.
Submodular fuzzy measures result in Choquet integrals which are concave, the
upshot of which is that increases to lower inputs affect the function more than
increases to higher inputs. Conversely, supermodular fuzzy measures result in
convex functions. Choquet integrals are idempotent, homogeneous, shift-invariant
and strictly monotone where A ¨ B ! v.A/ < v.B/. Where the fuzzy measure is
symmetric, the function will obviously satisfy the symmetry property.

The Choquet integral has been predominantly used for numerical inputs, the
Sugeno integral defined below is useful where the inputs are ordinal. It also uses
fuzzy measures for its definition.

Definition 23.8 (Sugeno Integral). The Sugeno integral with respect to a fuzzy
measure v is given by

Sv.x/ D max
jD1;:::;n

minfx.j/; v.Hj/g; (23.9)

where .:/ denotes a non-decreasing permutation of the inputs such that .x.1/ � x.2/ �
	 	 	 � x.n// (the same as with the Choquet integral), and Hj D f.j/; : : : ; .n/g.

Certain indices have been introduced in order to better understand the behavior
of the Choquet and Sugeno integrals. In particular, the Shapley value gives an
indication of the overall importance of a given input, while the interaction index
between two inputs shows to what extent they are redundant or complimentary.
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Definition 23.9 (Shapley Value). Let v be a fuzzy measure. The Shapley index
for every i 2 N is

.i/ D
X

A�Nnfig

.n � jAj � 1/ŠjAjŠ
nŠ

Œv.A [ fig/ � v.A/�:

The Shapley value is the vector .v/ D ..1/; : : : ; .n//.

Definition 23.10 (Interaction Index). Let v be a fuzzy measure. The interaction
index for every pair i; j 2 N is

Iij D
X

A�Nnfi;jg

.n � jAj � 2/ŠjAjŠ
.n � 1/Š

Œv.A [ fi; jg/ � v.A [ fig/ � v.A [ fjg/C v.A/�:

Where the interaction index is negative, there is some redundancy between the two
inputs. Where it is positive, the inputs complement each other to some degree and
their weight together is worth more than their combined individual weights.

23.3.2.4 T-Norms and T-Conorms

The prototypical examples of conjunctive and disjunctive aggregation functions are
so-called triangular norms and conorms respectively (t-norms and t-conorms) [34].
Given any t-norm T W Œ0; 1�2 ! Œ0; 1�, there is a dual function which is a t-conorm
S, with

S.x; y/ D 1 � T.1 � x; 1 � y/

and vice-versa. T-norms and t-conorms are hence often studied in parallel, as
many properties concerning S can be determined from T . Triangular norms are
associative, symmetric with the neutral element e D 1, whereas triangular conorms
are associative, symmetric and have the neutral element e D 0. The definitions of
the four basic t-norms and t-conorms are provided below.

Definition 23.11 (The Four Basic t-Norms). The two-variate cases for the four
basic t-norms are given by

Minimum Tmin.x; y/ D min.x; y/I
Product TP.x; y/ D xyI
Łukasiewicz t-norm TL.x; y/ D max.xC y � 1; 0/I
Drastic Product TD.x; y/ D

(
0; if .x; y/ 2 Œ0; 1Œ2;

min.x; y/ otherwise:
:

Definition 23.12 (The Four Basic t-Conorms). The two-variate cases for the four
basic t-conorms are given by
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Maximum Smax.x; y/ D max.x; y/I
Probabilistic Sum SP.x; y/ D xC y � xyI
Łukasiewicz t-conorm SL.x; y/ D min.xC y; 1/I

Drastic Product SD.x; y/ D

8̂̂<
ˆ̂:

1; if .x; y/ 2�0; 1�2;

max.x; y/ otherwise: :

There are families of parameterized t-norms and t-conorms that include the above
as special or limiting cases. These families are defined with respect to generating
functions and are known as Archimedean t-norms.

Definition 23.13 (Archimedean t-Norm). A t-norm is called Archimedean if for

each .a; b/ 2�0; 1Œ2 there is an n D f1; 2; : : :g with T.

n�times‚ …„ ƒ
a; : : : ; a/ < b.

For t-conorms, the inequality is reversed, i.e. the t-conorm S > b. Continuous
Archimedean t-norms can be expressed by use of their generators as

T.x1; : : : ; xn/ D g.�1/.g.x1/C : : :C g.xn//;

where g W Œ0; 1�! Œ0;1� with g.1/ D 0 is a continuous, strictly decreasing function
and g.�1/ is the pseudo inverse of g, i.e.,

g.�1/.x/ D g�1.min.g.1/; max.g.0/; x///:

Archimedean families include Schweizer-Sklar, Hamacher, Frank, Yager,
Dombi, Aczel-Alsina, Mayor-Torrens and Weber-Sugeno t-norms and t-conorms.

23.3.2.5 Nullnorms and Uninorms

In some situations, it may be required that high input values reinforce each other
whereas low values pull the overall output down. In other words, the aggregation
function has to be disjunctive for high values, conjunctive for low values, and
perhaps averaging if some values are high and some are low. This is typically the
case when high values are interpreted as “positive” information, and low values as
“negative” information.

In other situations, it may be that aggregation of both high and low values moves
the output towards some intermediate value. Thus certain aggregation functions
need to be conjunctive, disjunctive or averaging in different parts of their domain.

Uninorms and nullnorms are typical examples of such aggregation functions, but
there are many others. We provide the following definitions.

Definition 23.14 (Nullnorm). A nullnorm is a bivariate aggregation function V W
Œ0; 1�2 ! Œ0; 1� which is associative, symmetric, such that there exists an element a
belonging to the open interval �0; 1Œ verifying
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8t 2 Œ0; a�; V.t; 0/ D t;

8t 2 Œa; 1�; V.t; 1/ D t:

Definition 23.15 (Uninorm). A uninorm is a bivariate aggregation function U W
Œ0; 1�2 ! Œ0; 1� which is associative, symmetric and has a neutral element e
belonging to the open interval ]0, 1[.

Some uninorms can be built from generating functions in a similar way to
quasi-arithmetic means and Archimedean t-norms. These are called representable
uninorms.

Definition 23.16 (Representable Uninorm). Let u W Œ0; 1� ! Œ�1;C1� be a
strictly increasing bijection verifying g.0/ D �1; g.1/ D C1 such that g.e/ D 0

for some e 2�0; 1Œ.

• The function given by

U.x; y/ D
�

g�1.g.x/C g.y//; if .x; y/ 2 Œ0; 1�2nf.0; 1/; .1; 0/g;
0; otherwise.

is a conjunctive uninorm with the neutral element e, known as a conjunctive
representable uninorm.

• The function given by

U.x; y/ D
�

g�1.g.x/C g.y//; if .x; y/ 2 Œ0; 1�2nf.0; 1/; .1; 0/g;
1; otherwise.

is a disjunctive uninorm with the neutral element e, known as a disjunctive
representable uninorm.

The 3 � ˘ function is an example of a representable uninorm [51]. It uses a
generating function g.x/ D ln. x

1�x / and is used by the expert system PROSPECTOR
[30] for combining uncertainty factors.

f .x/ D

nQ
iD1

xi

nQ
iD1

xi C
nQ

iD1

.1 � xi/

;

with the convention 0
0
D 0. It is conjunctive on Œ0; 1

2
�n, disjunctive on Œ 1

2
; 1�n

and averaging elsewhere. It is associative, with the neutral element e D 1
2
, and

discontinuous on the boundaries of Œ0; 1�n.
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23.4 Construction of Aggregation Functions

There are infinitely many aggregation functions. The question is how to choose
the most suitable aggregation function for a specific application. Sometimes one
function may suffice for all components of the application, at other times a
different type of aggregation may be employed at various stages. The following
considerations should be helpful.

23.4.1 Data Collection and Preprocessing

The type of data, and how it is collected affects the way it can be aggregated to form
justifications. If users could thoughtfully provide accurate scores on a consistent
scale for each item, or numerical descriptions of themselves with their preferences
expressed to a degree of certainty, an RS could quite comfortably make some
relevant recommendations. Of course, the aesthetic preference is usually to limit
the explicit information required from the user and hence enhance the interactive
experience. We will briefly consider the different types of data that systems are able
to obtain and how this might affect the suitability of certain aggregation functions.

Ordinal Data CF recommenders that ask for explicit ratings information will
usually do so on a finite ordinal scale—e.g. {1 = didn’t like it!,. . . , 5 = loved it!}.
On the other hand, it may be possible to convert user actions into ordinal values
as part of their profile—e.g. {regularly views, sometimes views, etc.}. Ordinal
values can be approximated with values over a given numerical scale, however
it can be problematic to determine whether, say, the step-size between fair and
good should be the same as between good and very good or even fair and poor.
The scale granularity may also make the difference between, say, the weighted
arithmetic mean and the geometric mean negligible. The Sugeno integral is one
such function that is particularly suited to handling ordinal information, since it is
built from max and min operations, while the IOWA is able to deal with induced
orderings according to an ordinal rather than numerically defined variable.

Numerical Data Where a system is capable of representing user inputs or actions
as numerical data, it is useful to take into account whether these values are
accurate, whether they are commensurate, and whether they are independent.
Functions such as the geometric mean are more influenced by changes to low
values than high values, while the arithmetic mean treats high and low inputs the
same way. In CF, two users might have similar preferences however one may
consistently overrate items. In these cases, it might make sense to standardize
the ratings before aggregating so the values between users are comparable. The
use of the WAM implies independence between inputs, however other averaging
functions, especially the Choquet integral, can express interaction and correlation
either among certain inputs or relative scores (see Sect. 23.4.3 below).
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Interval or Multiset Data It may be more natural or convenient for information
to be collected that incorporates some degree of uncertainty. For example, a
user might provide the interval “6 to 8” as their rating for a film. In other
circumstances, both positive and negative aspects may be considered as is the
case with Atanassov’s extension of fuzzy sets [5]. Whereas a standard fuzzy
set usually allocates the degree of membership to a given object, Atanassov’s
so-called intuitionistic fuzzy sets (AIFS) allocate both a membership and non-
membership degree. For example, both the suitable and unsuitable aspects of
an item could be summarized with the pair h0:5; 0:2i, where 0:5 is the extent to
which it is known that it partially satisfies the buyer’s preferences, while the score
of 0:2 is how much it is known that it does not. The gap of 0:3 can be interpreted
as a degree of uncertainty. A number of aggregation functions have recently been
extended to deal with interval and AIFS inputs (see [10, 15]). For intervals, the
most common technique is to aggregate the endpoints of the intervals separately.

Categorical Data In some cases, the use of categorical data may make it imprac-
tical to use aggregation functions. If there is no order between categories, it is
meaningless to take the average or maximum, and other techniques may be useful
for establishing similarity between users etc. It may be possible to transform the
categorical data, for example, by the degree to which it contributes towards a
certain archetype in DF.

Data of Varying Dimension Some components of the vectors associated with di

could be missing—e.g. ratings in CF, or the inputs di D .x1; : : : ; xn/ may
have varying dimension by construction. Associativity, LR-Stability and the use
of generating functions are all ways of dealing with the problem of varying
dimension, whilst maintaining some level of consistency in the way inputs are
treated.

23.4.2 Desired Properties, Semantics and Interpretation

The first step in choosing an aggregation function once the data structure is known is
usually to decide which class of either averaging, conjunctive, disjunctive or mixed
is desired. As discussed in Sect. 23.3.1.1, sometimes it will be more important to
have a function which sorts items into order of preference than one which gives
easily interpreted outputs. We consider four functions whose semantics can be used
to decide which class of function is required:

Minimum (conjunctive) The minimum uses the minimum input as its output. This
means the function can only return a high output if all the inputs are high. Such
aggregation is useful for certain KB or UB systems using Eq. (23.5) or even CB
where it is desired that all the inputs be satisfied. Functions such as the product
(TP) have an accumulative effect for any output which is not perfect, so might be
less useful than the min when the dimension is high.
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Maximum (disjunctive) Whereas the minimum models AND-like aggregation,
disjunctive functions model OR. This type of aggregation results in outputs
which are equal to or greater than the highest input. This is useful in KB, UB
or CB as well if there are multiple preferences or criteria and one good score is
enough justification for recommendation. Consider Example 23.4.

Example 23.4. A user of a CB news recommender has the keywords {Haruki
Murakami, X-Men, bushfires, mathematics, Jupiter orbit} associated with her
profile. It is unlikely that any one news story will be highly relevant to all or
even any few of these keywords, so the RS uses disjunctive aggregation as a
basis for recommendation.

Arithmetic Mean (averaging) When aggregating user ratings in CF or item fea-
tures in CB it is reasonable to assume that although scores will vary, if enough
inputs are used, the output will be reliable. We do not want the recommendations
to be severely affected by an isolated user that is unsatisfied with every item he
purchases, or a single feature among twenty or so that is completely satisfied.

Uninorm (mixed) In cases where different behavior is required on different parts
of the domain, a mixed aggregation function may be required. This can be as
straightforward as deciding that only values with all high inputs should be high,
or it could be that the bounded behavior affects the accuracy of the function. The
use of a uninorm, for instance, allows high values to push the score up and low
values to push the score down. An item with consistently high scores would be
preferred to one with mostly high scores but one or two low ones.

Certain properties of aggregation functions might also make them appealing.
Table 23.1 lists the main aggregation functions we have presented and whether they
always, or under certain circumstances, satisfy the properties in Definition 23.3.

23.4.3 Complexity and the Understanding of Function
Behavior

In some cases, simple functions such as the WAM will be adequate to meet the goals
of recommendation, with potential improvements to the RS lying in other directions.
Due to its properties, the WAM is quite a robust and versatile function. It is not
biased towards high or low scores, it does not accumulate the effects of errors,
it is computationally inexpensive and its common use makes it well understood
and easily interpreted. We present the power mean and Choquet integral as two
example alternatives whose properties might make them more appropriate in certain
situations.
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The power mean The power mean is a parameterized function, capable of
expressing functions that graduate from the minimum to the maximum including
the WAM. This makes it immediately useful when fitting techniques are at our
disposal, since we can use the one process to identify any number of functions
as the best candidate. Consider the harmonic mean Mw;Œ�1� and the quadratic
mean Mw;Œ2�. The harmonic mean cannot give an output greater than zero if
even one of the inputs is zero. This has the nice interpretation of only allowing
items to be considered that at least partially satisfy all criteria, however it is not
conjunctive, so still gives a score somewhere between the highest and lowest
inputs. The harmonic mean is also concave and its output is equal to or less than
the WAM for any choice of di. This allows less compensation for low inputs, so
items must satisfy more of the criteria overall to rate highly. On the other hand,
the quadratic power mean tends more towards high scores, favoring items that
have a few very high scores which compensate more for low-scoring features or
ratings.

The Choquet integral As with the power mean, the Choquet integral is capable of
expressing functions ranging between the minimum and maximum. The use of
the Choquet integral is most interesting in asymmetric situations where there
tends to be some correlation. For example, in a KB recommender, sometimes
preferences will be contradictory while at other times one implies the other. In
the case of Entree [21], it is noted that users might demonstrate a preference
for inexpensive and nice restaurants. Since usually some trade-off is involved, a
restaurant that does satisfy these criteria should be especially rewarded when it
comes to recommendation. In the case of CB movie recommendation, it could
be that a user likes Johnny Depp and Tim Burton. As there is a high frequency
of films which are directed by Tim Burton that also star Johnny Depp, it might
not make sense to double-count these features. The Choquet integral can account
for a combination of these situations, since a weight is allocated to each subset
of criteria. The subset of “stars Depp AND is directed by Burton” would be
allocated less weight than the sum of its parts, while inexpensive and nice
restaurants in the KB example would be allocated more.

Of course, sometimes the structure of the data might be difficult to understand
and interpret towards the use of a particular function. In these cases, it might be
worthwhile to check the accuracy of a number of functions on a subset of the data.
A comparison of the minimum, maximum, arithmetic mean and harmonic mean
could suggest much about which functions will be useful.

23.4.4 Penalty-Based Construction

The problem of choosing the most appropriate aggregation function can also be
framed in terms of penalties [22]. For instance, the weighted arithmetic mean of an
input set is the value y which minimizes,
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P.x; y/ D
nX

jD1

wj.xj � y/2:

In this case, we use the squared distance for the partial penalty for each variable.
If the squared distance is replaced with the absolute value p.xi; y/ D jxj � yj
then we have a weighted median, and if we can use the generator transformations
p.xi; y/ D .g.xj/�g.y//, then we obtain the quasi-arithmetic means. In order for this
minimization to result in aggregation functions, P.x; y/ should satisfy the following
definition.

Definition 23.17. A penalty function P W Œ0; 1�nC1 ! Œ0;1/ satisfies:

i) P.x; y/ � 0 for all x; y;
ii) P.x; y/ D 0 if and only if xi D y 8i;

iii) For every fixed x, the set of minimizers of P.x; y/ is either a singleton or an
interval.

The penalty based function is then given by

f .x/ D arg min
y

P.x; y/;

if y is the unique minimizer, and y D aCb
2

if the set of minimizers is the interval
.a; b/ (open or closed).

The penalty-based framework also allows us to choose the output from a finite
set of options. So in recommendation we can find the predicted rating R.u; di/ from
a discrete rating scale, e.g. R D f1; 2; : : : ; 7g which minimizes our desired penalty.
In collaborative filtering, this would be expressed,

arg min
R.u;di/2R

kX
jD1

sim.u; uj/p.R.uj; di/; R.u; di//:

The partial penalties p can also be chosen such that different penalties are used
for different users or items depending on our knowledge about relationships in the
rating patterns.

23.4.5 Weight and Parameter Determination

The determination of weights for use in ratings aggregation for CF is often
understood in terms of the similarity between users and neighborhood formation.
Weights in CB and UB are a measure of the importance of each feature to
the user, while the weights in weighted HS are indicative of the reliability of
each component in recommendation. Weights can be selected using predetermined
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measures like cosine, or might be decided in advance by the RS designers—
e.g. we decide to weight the similar users with a decreasing weighting vector
w D .0:4; 0:3; 0:2; 0:1/. Some systems adjust weights incrementally according to
implicit or explicit feedback concerning the quality of recommendation, for instance
in the hybrid recommender system, P-Tango [25]. In Sect. 23.5, programming
methods are discussed for determining weights from available data-sets.

23.5 Sophisticated Aggregation Procedures in Recommender
Systems: Tailoring for Specific Applications

We consider the fitting problem in terms of a CF recommender, however it is also
possible to fit weights in CB and UB recommender systems provided the system has
access to input and output values so that the strength of fit can affirm the suitability
of the weights or parameters. Fitting can be accomplished by means of interpolation
or approximation. In the case of interpolation, the aim is to fit the specified output
values exactly (in the case of aggregation functions, the pairs ..0; 0; : : : ; 0/; 0/ and
..1; 1; : : : ; 1/; 1/ should always be interpolated). In the case of RS, the data will
normally contain some errors or degree of approximation, and therefore it may
not be appropriate to interpolate the inaccurate values. In this case our aim is
to stay close to the desired outputs without actually matching them. This is the
approximation problem.

The selection of an aggregation function can be stated formally as follows:
Given a number of mathematical properties P1; P2; : : : and a dataset D D

f.xk; yk/gKkD1, choose an aggregation function f consistent with P1; P2; : : :, and
satisfying f .xk/  yk; k D 1; : : : ; K.

We can also vary the problem to accommodate fitting to intervals, i.e. we require
f .xk/ 2 Œy

k
; yk�. How these values are specified will depend on the application.

In some cases it may be possible to fit the function exactly without violating any of
the desired properties, however most of the time we merely want to minimize the
error of approximation. Mathematically, the satisfaction of approximate equalities
f .xk/  yk can be translated into the following minimization problem.

minimize jjrjj (23.10)

subject to f satisfies P1;P2; : : : ;

where jjrjj is the norm of the residuals, i.e., r 2 RK is the vector of the differences
between the predicted and observed values rk D f .xk/ � yk. There are many ways
to choose the norm, and the most popular are the least squares norm and the least
absolute deviation norm, respectively given by
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Table 23.2 Example dataset for mutually rated items in CF

Items i D 1::10 rated by user and neighbors Unrated

User ratings R.u; di/ 6 4 6 8 10 5 7 7 5 5 ? ?

Neighbor ratings
R.u1; di/ 4 4 4 8 10 3 7 5 3 3 4 7

R.u2; di/ 6 0 6 4 6 1 3 3 1 5 8 7

R.u3; di/ 3 1 8 5 7 2 4 4 2 2 7 5

R.u4; di/ 6 5 6 8 8 6 5 5 3 5 3 8

R.u5; di/ 6 4 6 7 8 1 5 8 5 8 5 9

jjrjj2 D
 

KX
kD1

r2
k

!1=2

; jjrjj1 D
KX

kD1

jrkj;

or their weighted analogues if some of the yk are considered less reliable than others.
Consider Example 23.5.5

Example 23.5. In a CF recommending application we want to use five similar
users to predict the ratings of new objects for a given user. At hand we have a
data set of many items previously rated by the user and the five similar users
or neighbors f.di; R.u; di//g1iD10 where di D .R.u1; di/; : : : ; R.u5; di// denotes
the ratings given by each of the neighbors u1; : : : ; u5 to a past item di, and the
R.u; di/ are the user’s actual ratings. I.e. di D xk; R.u; di/ D yk from above.
Table 23.2 shows an example data set with two items rated by the neighbors
which the user is yet to rate and could be recommended. We want to define
a weighted arithmetic mean using the least squares approach that assigns a
weight wi to each user. So we have

minimize
10P

iD1

 
5P

jD1

wjR.uj; di/ � R.u; di/

!2

subject to
5P

jD1

wj D 1;

w1; : : : ; w5 � 0:

(continued)

5All examples in this section utilize the software packages aotool and fmtools [9]. Versions
have also been created in the R programming language, available at http://aggregationfunctions.
wordpress.com/r-code and http://www.tulip.org.au/resources/rfmtool.

http://www.tulip.org.au/resources/rfmtool
http://aggregationfunctions.wordpress.com/r-code
http://aggregationfunctions.wordpress.com/r-code
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Example 23.5 (continued)
This is a quadratic programming problem, which is solved by a number of
standard methods. In the current example one resulting model allocates the
weights w D< 0:27; 0:07; 0:06; 0:19; 0:41 > with recommendation scores
of 4.7 and 7.9 for the unrated items. The maximum difference between
observed and predicted ratings is 2.45 with an average of 0.98. If we had
instead used the cosine calculation to define the weights, we would have
w D< 0:19; 0:24; 0:23; 0:18; 0:17 > and recommendation scores of 5.6 and
7.1. The accuracy is similar for this method, with maximum error 2.48 and
average error 1.6. Interestingly u5 was least similar using this measure, but
most important when accurately predicting the ratings for u.

As mentioned, if the number of items to be recommended is limited, the
ranking, rather than the accuracy of prediction becomes crucial (see also [33]). In
situations where it makes sense, the ranking of the outputs can be preserved with
f .R.u1; dk/; : : : ; R.un; dk// � f .R.u1; dl/; : : : ; R.un; dl// if R.u; dk/ � R.u; dl/ for
all pairs k; l added as an extra constraint. In CF, imposing this condition weights the
similar users higher who have rankings that better reflect the user’s. This is useful
when we know that some users might tend to overrate or underrate items, but will
be consistent in terms of the items they prefer.

The approximation problem thus far described may turn out to be a general non-
linear optimization problem, or a problem from a special class. Some optimization
problems utilize a convex objective function, in which case the difficulty is not so
much in finding a feasible solution, but rather in feasibly defining the constraints.
Fitting the Choquet integral, for instance has an exponential number of constraints
which need to be defined. Many problems, however can be specified as linear or
quadratic programming problems, which have been extensively studied with many
solution techniques available. Example 23.6 uses the same dataset (Table 23.2) with
the Choquet integral as the desired function. In practice, it would be preferable to
have a much larger data set for the Choquet integral (i.e. the number of instances
should be well above the 2n points required to define it to reduce the chance of
overfitting).

Example 23.6. (Continued from Example 23.5). . . The system designers
decide that they would prefer to use a Choquet integral to predict the unknown
ratings. To make the fitting process less susceptible to outliers, they decide to
use the least absolute deviation norm and express the optimization process as
the following.

(continued)
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Example 23.6 (continued)

minimize
5P

iD1

jCv.di/ � R.u; di/j

subject to v.A/ � v.B/ � 0; for all B � A;

v.A/ � 0;8A � N; v.;/ D 0; v.N/ D 1

This results in a Choquet integral defined by a fuzzy measure with the
following values

v.f1g/ D 1; v.f2g/ D 0:33; v.f3g/ D 0; v.f4g/ D v.f5g/ D 0:67

v.f2; 3g/ D 0:33; v.f2; 4g/ D v.f3; 4g/ D v.f3; 5g/ D v.f2; 3; 4g/ D 0:67

v.A/ D 1 for all other subsets.

The Shapley values provide a good indication of the influence of each of the
neighbors, and are given as

1 D 0:39; 2 D 0:11; 3 D 0; 4 D 0:22; 5 D 0:28

As with the weighted arithmetic mean, the values suggest that neighbors 1, 4
and 5 are perhaps more similar to the given user. We also note the interaction
indices for pairs, given as

I12 D I24 D I45 D �0:17; I14 D �0:33; I15 D �0:5

Iij D 0 for all other pairs.

This shows the redundancy between some of the neighbors. In particular,
neighbors 1 and 5 are very similar. The maximum error in this case is 1.6 and
the average error is 0.6, with resulting recommendations 6.0 and 8.7. Because
of the substitutive variables, the function behaves similar to a maximum
function. We see the high score given for the latter item, mainly due to the
high ratings given by neighbors 4 and 5.

The families of aggregation functions defined in Sect. 23.3.2 are convenient to
use when trying to understand and interpret the results. The weights and parameters
have a tangible meaning and fitting these functions essentially involves finding the
best values for each parameter to maximize the reliability of the RS.

In other situations however, the interpretation side of things may not be as
important: we just want to predict the unknown ratings reliably and automatically.
There are many non-parametric methods for building aggregation functions, which
do not have the advantage of system interpretation, however can be constructed
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automatically and fit the data closely. One “black-box” type method is to build
a general aggregation operator piecewise from the data. We can ensure that
monotonicity and boundary conditions are specified by smoothing the data and
ensuring these properties hold for each individual segment. We consider here, the
construction of spline based aggregation functions [12].

Monotone tensor product splines are defined as

fB.x1; : : : ; xn/ D
J1X

j1D1

J2X
j2D1

: : :

JnX
jnD1

cj1j2:::jn Bj1 .x1/Bj2 .x2/ : : : Bjn.xn/:

If it is desired the built function belong to a particular class or hold certain
properties, additional constraints can be added when fitting. In particular, we
can ensure monotonicity holds by expressing linear conditions on the coefficients
cj1j2:::jn . The fitting of this function to data involves sparse matrices, their size
increasing with the number of basis functions in respect to each variable and
exponentially with n. We give an example of this fitting process in the Example 23.7.

Example 23.7. (Continued from Examples 23.5–23.6). . . It is not necessary
in our application that the weighting of similar users be known. We simply
want automatically built functions that can predict the ratings of unseen
items. We decide that we still desire the properties of monotonicity and
idempotency to ensure reliable outputs, and build a general aggregation
operator represented by tensor product splines. The following quadratic
programming problem is used.

minimize
5P

iD1

.fB.di/ � R.u; di//
2

subject to
J1P

j1D1

J2P
j2D1

: : :
JnP

jnD1

cj1j2:::jn � 0;

fB.0; : : : ; 0/ D 0; fB.1; : : : ; 1/ D 0

Idempotency is also ensured by imposing a number of interpolation conditions
such that fB.ti; : : : ; ti/ D ti. These conditions must be chosen in a certain way
(see [7, 8]). The fitted non-parametric function gives resulting recommenda-
tion scores for the unrated items of 4.2 and 8.1 so it seems that the latter item
should be suggested to the user.

Clearly it is the choice of system designers as to whether to use non-parametric
or parametric methods, and how complex an aggregation function should be used.
Recommender systems usually require timely decisions and deal with large data
sets, so a compromise between expressibility and simplicity is usually sought.
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23.6 Conclusions

The purpose of this chapter has been to present the state of the art in aggregation
functions and introduce established families of these functions that have properties
useful for the purposes of recommendation. This has included means defined
with various weights, Choquet integrals defined with respect to fuzzy measures,
t-norms/t-conorms which can be built from generators, and representable uninorms.
Many of the current methods used in recommender systems involve constructing
weighted arithmetic means where weights are determined by varying measures of
similarity, however in many cases the accuracy and flexibility of functions could
be improved with only slight increases to complexity. We have provided a number
of illustrative examples of the different ways in which aggregation functions can
be applied to recommendation processes including ratings aggregation, feature
combination, similarity and neighborhood formation and component combination
in weighted hybrid recommender system. We also referred to some current software
tools which can be used to fit these functions to data (see also [32, 35]) when we are
trying to find weights, similarity or the parameters used that best model the dataset.
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Chapter 24
Active Learning in Recommender Systems

Neil Rubens, Mehdi Elahi, Masashi Sugiyama, and Dain Kaplan

24.1 Introduction

Recommender Systems (RSs) are often assumed to present items to users for one
reason—to recommend items a user will likely be interested in. However, there
is another reason for presenting items to users: to learn more about their preferences.
This is where Active Learning (AL) comes in. Augmenting RSs with AL helps
the user become more self-aware of their own likes/dislikes while at the same
time providing new information to the system that it can analyze for subsequent
recommendations. In essence, applying AL to RSs allows for personalization of the
recommending process, a concept that makes sense as recommending is inherently
geared towards personalization. This is accomplished by letting the system actively
influence which items the user is exposed to (e.g. the items displayed to the user
during sign-up or during regular use), and letting the user explore his/her interests
freely.

Unfortunately, there are very few opportunities for the system to acquire
information, such as when a user rates/reviews an item, or through a user’s browsing
history. Since these opportunities are few, we want to be as sure as possible that the
data we acquire tells us something important about the user’s preferences. After all,
one of the most valuable assets of a company is user data.
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For example, when a new user starts using a recommender system, very little is
known about his/her preferences [2, 47, 55]. A common approach to learning the
user’s preferences is to ask him/her to rate a number of items (known as training
points). A model that approximates their preferences is then constructed from this
data. Since the number of items reviewed by the user cannot span the system’s entire
catalog (and indeed would make the task of AL as well as recommending moot
points), the collection of items presented to the user for review must necessarily
be very limited. The accuracy of the learned model thus greatly depends on the
selection of good training points. A system might ask the user to rate Star Wars I,
II, and III. By rating all three volumes of this trilogy, we will have a good idea
of the user’s preferences for Star Wars, and maybe by extension, an inclination
for other movies within the Sci-Fi genre, but overall the collected knowledge will
be limited. It is therefore unlikely that picking the three volumes of a trilogy will
be informative.1 Another issue with selecting a popular item such as Star Wars is
that by definition the majority of people like them (or they would not be popular). It
is not surprising then, that often little insight is gained by selecting popular items to
learn about the user (unless the user’s tastes are atypical).

There is a notion that AL is a bothersome, intrusive process, but it does not have
to be this way [50, 66]. If the items presented to the user are interesting, it could
be both a process of discovery and of exploration. Some Recommender Systems
provide a “surprise me!” button to motivate the user into this explorative process,
and indeed there are users who browse suggestions just to see what there is without
any intention of buying. Exploration is crucial for users to become more self-aware
of their own preferences (changing or not) and at the same time inform the system
of what they are. Keep in mind that in a sense users can also be defined by the items
they consume, not only by the ratings of their items, so by prompting users to rate
different items it may be possible to further distinguish their preferences from one
another and enable the system to provide better personalization and to better suit
their needs.

This chapter is only a brief foray into Active Learning in Recommender Sys-
tems.2 We hope that this chapter can, however, provide the necessary foundations.

For further reading, [57] gives a good, general overview of AL in the context
of Machine Learning (with a focus on Natural Language Processing and Bioin-
formatics). For a theoretical perspective related to AL (a major focus in the field of
Experimental Design), see [4, 7, 28]; there have also been recent works in Computer
Science [5, 17, 62].

1Unless our goal is to learn a kind of micro-preference, which we can define as a person’s tendency
to be more “picky” concerning alternatives close to one another in an genre they like.
2Supplementary materials on Active Learning can be found at: http://ActiveIntelligence.org.

http://ActiveIntelligence.org
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24.1.1 Objectives of Active Learning in Recommender Systems

Different RSs have different objectives (Chap. 8), which necessitate different objec-
tives for their Active Learning components as well. As a result, one AL method
may be better suited than another for satisfying a given task [46]. For example, what
is important in the recommender system being built (Chap. 9)? The difficulty of
signing-up (user effort)? If the user is happy with the service (user satisfaction)?
How well the system can predict a user’s preferences (accuracy)? How well
the system can express a user’s preferences (user utility)? How well the system
can serve other users by what it learns from this one (system utility)? System
functionality may also be important, such as when a user inquires about a rating
for an item of interest the system has insufficient data to predict a rating for, what
the system does in response. Does it in such a case give an ambiguous answer,
allowing the user to train the system further if they have the interest and the time
to do so? Or does it require them to rate several other items before providing a
prediction? Perhaps the user has experienced the item (e.g. watched the movie or
trailer) and thinks their rating differs substantially from the predicted one [11]. In
all these cases how the system responds to the user is important for consideration.

Traditionally AL does not consider the trade-off of exploration (learning user’s
preferences) and exploitation (utilizing user’s preferences), that is, it does not
dynamically assign weights to exploitation/exploration depending on system objec-
tives. This trade-off is important because for a new user about which nothing or
little is known, it may be beneficial to validate the worth of the system by providing
predictions the user is likely to be interested in (exploitation), while long-term users
may wish to expand their interests through exploration [50, 52].

Though an objective of the RS will likely be to provide accurate predictions to
the user, the system may also need to recommend items of high novelty/serendip-
ity Chap. 26, improve coverage, maximize profitability, or determine if the user is
even able to evaluate a given item, to name a few [27, 43, 55]. Multiple objectives
may need to be considered simultaneously (Chap. 25), e.g. minimizing the net
acquisition cost of training data while maximizing net profit, or finding the best
match between the cost of offering an item to the user, the utility associated with
expected output, and the alternative utility of inaction [50]. The utility of training
may also be important, e.g. predicting ratings for exotic cars may not be so useful
if the user is not capable of purchasing them and so should be avoided. It can be
seen that the system objective is often much more complex than mere predictive
accuracy, and may include the combination of several objectives.

While Recommender Systems often have an ill-defined or open-ended objective,
namely to predict items a user would be “interested” in, Conversation-based AL
[9, 42, 49], as the name suggests, engages in a conversation with the user as a goal
oriented approach. It seeks to, through each iteration of questioning, elicit a response
from the user to best reduce the search space for quickly finding what it is the user
seeks (see Sect. 24.7).



812 N. Rubens et al.

The New User Problem When a user starts using a RS they expect to see
interesting results after a minimal amount of training. Though the system
knows little about their preferences, it is essential that training points are
selected for rating by the user that will maximize understanding what the new
user wants [46].

The New Product Problem As new products are introduced into the system,
it is important to quickly improve prediction accuracy for these items by
selecting users to rate them [30].

Cost of Obtaining an Output Value Different means of obtaining an output
value come at different costs. Implicit strategies, such as treating a user
click on a suggested item as positive output, or not clicking as negative, are
inexpensive in relation to user effort. Conversely, asking the user to explicitly
rate an item is more costly, though still dependent on the task. Watching a
movie like Star Wars to rate may provide good results but requires substantial
user effort [25]; rating a joke requires much less. This often dovetails the
exploration/exploitation coupling and trade-offs between obtaining outputs
from different inputs should also be considered (e.g. certainty/uncertainty,
ease of evaluation, etc.)

Adaptation for Different AL Methods Though we focus on the traditional
objective of reducing predictive error, it is equally plausible to construct
a method for maximizing other goals, such as profitability. In this case a
model would pick points that most likely increase profit rather than a rating’s
accuracy.

24.1.2 An Illustrative Example

Let’s look at a concrete example of Active Learning in a Recommender System.
This is only meant to demonstrate concepts, so it is oversimplified. Please note that
the similarity metric may differ depending on the method used; here, movies are
assumed to be close to one another if they belong to the same genre. Figure 24.1
on page 813 shows two charts, the leftmost is our starting state, in which we have
already asked the user to rate a movie within the upper right group, which we will
say is the Sci-Fi genre. The right chart shows us four possibilities for selecting our
next training point: (a), (b), (c), or (d). If we select the training point (a) which is an
obscure movie (like The Goldfish Hunter), it does not affect our predictions because
no other movies (points) are nearby. If we select the training point (b), we can predict
the values for the points in the same area, but these predictions are already possible
from the training point in the same area (refer to the chart on the left). If training
point (c) is selected, we are able to make new predictions, but only for the other
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Fig. 24.1 Active Learning: illustrative example (See Sect. 24.1.2)

three points in this area, which happens to be Zombie movies. By selecting training
point (d), we are able to make predictions for a large number of test points that are
in the same area, which belong to Comedy movies. Thus selecting (d) is the ideal
choice because it allows us to improve accuracy of predictions the most (for the
highest number of training points).3

24.1.3 Types of Active Learning

AL methods presented in this chapter have been categorized based on our inter-
pretation of their primary motivation/goal. It is important to note, however, that
various ways of classification may exist for a given method, e.g. sampling close
to a decision boundary may be considered as Output Uncertainty-based since the
outputs are unknown, Parameter-based because the point will alter the model, or
even Decision boundary-based because the boundary lines will shift as a result.
However, since the sampling is performed with regard to decision boundaries, we
would consider this the primary motivation of this method and classify it as such.

In addition to our categorization by primary motivation (Sect. 24.1), we further
subclassify a method’s algorithms into two commonly classified types for easier
comprehension: instance-based and model-based.

Instance-Based Methods A method of this type selects points based on their
properties in an attempt to predict the user’s ratings by finding the closest match to
other users in the system, without explicit knowledge of the underlying model. Other
common names for this type include memory-based, lazy learning, case-based, and
non-parametric [2].

3This may be dependent on the specific prediction method used in the RS.
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Model-Based Methods A method of this type selects points in an attempt to best
construct a model that explains data supplied by the user to predict user ratings
[2]. These points are also selected to maximize the reduction of expected error
of the model. Model-based AL methods often achieve better performance than
instance-based methods, since they utilize not only the properties of the points
(as instance-based methods do), but also are able to optimize label acquisition with
regards to the underlying predictive model. However, the improved performance
comes at a cost. The labeled data obtained for one predictive model may not
be as useful for another; and predictive models do frequently change throughout
the lifecycle of the RS. Moreover, an AL method designed for one model is
often incompatible with a different model since model-based AL methods rely on
access to specific parameters of a model and the model’s estimates (e.g. not all of
the models are able to provide a distribution of rating estimates, and models are
parameterized differently); this might necessitate using a different AL method each
time the predictive model changes.

Modes of Active Learning: Batch and Sequential Because users typically
want to see the system output something interesting immediately, a common
approach is to recompute a user’s predicted ratings after they have rated a
single item, in a sequential manner. It is also possible, however, to allow a
user to rate several items, or several features of an item before readjusting
the model. On the other hand, selecting training points sequentially has the
advantage of allowing the system to react to the data provided by users and
make necessary adjustments immediately. Though this comes at the cost of
interaction with the user at each step. Thus a trade-off exists between Batch
and Sequential AL: the usefulness of the data vs. the number of interactions
with the user.

24.2 Properties of Data Points

When considering any Active Learning method, the following three factors should
always be considered in order to maximize the effectiveness of a given point.
Supplementary explanations are then given below for the first two. Examples refer
to the Illustrative Example (Fig. 24.1 on page 813).

(R1) Represented: Is it already represented by the existing training set? E.g.
point (b).

(R2) Representative: Is the point a good candidate for representing other data
points? Or is it an outlier? E.g. point (a).

(R3) Results: Will selecting this point result in better prediction ratings or accom-
plish another objective? E.g. point (d), or even point (c).
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(R1) Represented by the Training Data As explained in the introduction to this
chapter, asking for ratings of multiple volumes from a trilogy, such as Star Wars,
is likely not beneficial, as it may not substantially contribute to the acquisition
of new information about the user’s preferences. To avoid obtaining redundant
information, therefore an active learning method should favor items that are not
yet well represented by the training set [23].

(R2) Representative of the Test Data It is important that any item selected for
being rated by an AL algorithm be as representative of the test items as possible
(we consider all items as potentially belonging to the test set), since the accuracy of
the algorithm will be evaluated based on these items. If a movie is selected from a
small genre, like Zombie movies from the Illustrative Example (Fig. 24.1 on page
813), then obtaining a rating for this movie likely provides little insight into a user’s
preferences other, more prominent genres. In addition, users naturally tend to rate
movies from genres they like, meaning that any genre that dominates the training
set (which is likely composed of items the user likes) may be representative of only
a small portion of all items [50]. In order to increase information obtained, it is
important to select representative items which may provide information about the
other yet unrated items [23, 58, 64].

(R3) Results Active learning methods are typically evaluated based on how well
they assisted a recommender system in achieving its objectives (e.g. accuracy,
coverage, precision, etc. (Chap. 8). A common objective of RSs is high predictive
accuracy; hence active learning methods are primarily evaluated based on the same
metric. There are also some AL-centric metrics. A common AL-centric metric
reflects the number of acquired ratings. In addition to measuring the quantity of
the elicited ratings, it is also important to measure the type of elicited ratings (e.g.
ratings low/high, genre, etc.) [20]. Many of the objectives have also been adopted
from other fields, in particularly from the field of information retrieval: precision,
cumulative gain4 (a measure for ranking quality of an item based on its relevance
and position in the list (i.e. high rated items should appear towards the top of the
recommendation list)) (Chap. 8). Finally, it is important to closely emulate the actual
settings in which results are obtained (Sect. 24.8).

24.2.1 Other Considerations

In addition to the three Rs listed in Sect. 24.2, it may also be desirable to consider
other criteria for data points, such as the following.

4For comparing of recommendations with various lengths, normalized Discounted Cumulative
Gain (NDCG) is frequently used.
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Cost As touched upon in the introduction to this chapter, obtaining implicit
feedback from user selections is cheaper than asking the user to explicitly rate an
item [24]. This can be considered a variable cost problem. One approach for tackling
this, is to take into account both the cost of labeling an item and the future cost
of estimated misclassification were the item to be added to the training set [35].
Moreover, the cost may be unknown beforehand [59].

Ratability A user may not always be able to provide a rating for an item; you
cannot properly rate a movie you have not seen! It is suggested therefore that the
probability of a user being able to evaluate an item also be considered (Sect. 24.8.4).

Saliency Decision-centric AL places emphasis on items whose ratings are more
likely to affect decision-making, and acquires instances that are related to decisions
for which a relatively small change in their estimation can change the order of
top rated predictions [54]. For example, unless labeling an item would result in
displacing or rearranging a list of top 10 recommended movies on a user’s home
page (the salient items), it may be considered of little use. It is also possible to
only consider the effect of obtaining an item’s rating on items that are strongly
recommended by the system [6].

Popularity It has also been suggested to take an item’s popularity into account
[46], i.e. how many people have rated an item. This operates on the principle
that since a popular item is rated by many people, it may be rather informative.
Conversely, an item’s rating uncertainty should also be considered since popular
items have a tendency to be rated highly by most users (the reason for it being
popular), indicating that the item may not provide much discriminative power and
thus not worth including in the training set. This limitation has been partially
addressed in [36] by selecting popular items (in a personalized manner) among
similar users.

Best/Worst The ratings with extreme values (best/worst) are often quite informa-
tive about both the user’s and items’ preferences [39]. One way to utilize this is to
ask the user to rate items with the highest [20, 65] and lowest predicted ratings
[18, 20]. Note that the highest-predicted is the default strategy used by RSs to
acquire ratings. However, concentrating on obtaining only highly rated items could
introduce a system-wide bias [21] and could result in degradation of predictive
performance [20]. Highest-lowest strategy is more likely to present items that
users are able to rate (likely to have experienced the highest-predicted items, and
can probably easily express a negative opinion about the lowest-predicted items).
A major drawback of this method is that the system tends to obtain new information
when its predictions are wrong (which we would hope is not so frequent). We
hypothesize that this problem could be alleviated by asking a user to provide his/her
most liked/disliked items. However, this changes the type of the task from active
learning (providing a label for an item), to active class selection [40] (providing an
item with a certain label (liked/disliked)).
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24.3 Active Learning in Recommender Systems

With traditional AL, users are asked to rate a set of preselected items. This is often
at the time of enrollment, though a preselected list may be presented to existing
users at a later date as well. It may be argued that since these items are selected
by experts, they capture essential properties for determining a user’s preferences.
Conceptually this may sound promising, but in practice this often leads towards
selecting items that best predict the preferences of only an average user. Since
the idea of RS is to provide personalized recommendations, selecting items to rate
in a personalized manner should readily make more sense. The following matrix
(Table 24.1 on page 817) provides a summary of the methods overviewed in this
chapter.

Table 24.1 Method summary matrix

Primary motivation of
approach Description/goal Possible considerations

Uncertainty Reduction
(Sect. 24.4)

Reducing uncertainty of:
• rating estimates

(Sect. 24.4.1),
• decision boundaries

(Sect. 24.4.2),
• model parameters

(Sect. 24.4.3).

Reducing uncertainty may not
always improve accuracy; the
model could simply be certain
about the wrong thing (e.g. when
the predictive method is wrong).

Error Reduction
(Sect. 24.5)

Reducing the predictive error by
utilizing the relation between the
error and:
• the changes in the output

estimates (Sect. 24.5.1.1),
• the test set error

(Sect. 24.5.1.2),
• changes in parameter

estimates (Sect. 24.5.2.1),
• the variance of the parameter

estimates (Sect. 24.5.2.2).

Estimating reduction of error
reliably could be difficult and
computationally expensive.

Ensemble-based
(Sect. 24.6)

Identifying useful training points
based on consensus between:
• models in the ensemble

(Sect. 24.6.1),
• multiple candidate models

(Sect. 24.6.1).

The effectiveness depends on the
quality of models/candidates, and
could be computationally
expensive since it is performed
with regards to multiple
models/candidates.
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Passive Learning

Active Learning

training data
approximated

function

supervised
learning

user

training data
request

Fig. 24.2 Active learning employs an interactive/iterative process for obtaining training data,
unlike passive learning, where the data is simply given

24.3.1 Active Learning Formulation

Passive Learning (see Fig. 24.2 on page 818) refers to when training data is provided
beforehand, or when the system makes no effort to acquire new data (it simply
accumulates through user activities over time). Active Learning, on the other hand,
selects training points actively (the input) so as to observe the most informative
output (user ratings, behavior, etc.).

Let us define the problem of active learning in a more formal manner
(Table 24.2). An item is considered to be a multi-dimensional input variable and
is denoted by a vector x (also referred to as a data point).5 The set of all items is
denoted by X. The preferences of a user u are denoted by a function fu (also referred
to as a target function); for brevity, we use f when referring to a target user. A
rating of an item x is considered to be an output value (or label) and is denoted as
y D f .x/. Each item x could be rated on a finite scale Y D f1; 2; : : : ; 5g.

In supervised learning, the items and corresponding user ratings are often
partitioned into complementary subsets—a training set and a testing set (also called
a validation set). The task of supervised learning is then too, given a training set
(often supplemented by the ratings of all users), learn a function Of that accurately
approximates a user’s preferences. Items that belong to the training set are denoted
by X.Train/, and these items along with their corresponding ratings constitute a
training set, i.e. T D f.xi; yi/gxi2X.Train/ . We measure how accurately the learned
function predicts the true preferences of a user by the generalization error:

G.Of / D
X
x2X

L
�

f .x/; Of .x/
�

P.x/: (24.1)

5The way in which an item is represented depends on the RS and the underlying predictive method.
In Collaborative Filtering based approaches items could represented through the ratings of the
users, or, in content based RSs, items could be represented through their descriptions.
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Table 24.2 Summary of notation

x input (item)

X inputs (items)

y output (item’s rating)

Y D f1; 2; : : : ; 5g possible outputs (ratings), i.e. y 2 Y

f user’s preferences function (unknown to the system)

X.Train/ training inputs (rated items)

T D f.xi; yigxi2X.Train/ training set (items and their ratings)
Of approximated function of user’s preferences (from training set)

G generalization error (predictive accuracy) see (Eq. (24.1))

xa item considered for rating
OG.xa/ active learning criterion (estimates the usefulness of an item xa)

In practice, however, f .x/ is not available for all x 2 X; it is therefore common to
approximate the generalization error by the test error:

OG.Of / D
X

x2X.Test/

L
�

f .x/; Of .x/
�

P.x/; (24.2)

where X.Test/ refers to the items in the test set, and prediction errors are measured
by utilizing a loss function L, e.g. mean absolute error (MAE):

LMAE

�
f .x/; Of .x/

�
D
ˇ̌̌
f .x/ � Of .x/

ˇ̌̌
; (24.3)

or mean squared error (MSE):

LMSE

�
f .x/; Of .x/

�
D
�

f .x/ � Of .x/
�2

: (24.4)

The active learning criterion is defined so as to estimate the usefulness of
obtaining a rating of an item x and adding it to the training set X.Train/ for achieving
a certain objective (Sect. 24.1.1). For simplicity, let us consider this objective to be
the minimization of generalization error of a learned function with respect to the
training set. We then denote the active learning criterion as:

OG.X.Train/ [ fxg/; (24.5)

or for brevity, denote it as:

OG.x/: (24.6)
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The goal of active learning is to select an item x that would allow us to minimize
the generalization error OG.x/:

argminx
OG.x/: (24.7)

If we consider asking a user to rate an item xj or an item xk, then we would
estimate their usefulness by an active learning criterion, i.e. OG.xj/ and OG.xk/,
and select the one that will result in a smaller generalization error. Note that we
need to estimate the usefulness of rating an item without knowing its actual rating.
To distinguish a candidate item to be rated from the other items we refer to it as
xa. AL can be applied to any predictive method as long as it provides the required
information, such as rating estimates [53] and their distribution [29, 31], closeness
to the decision boundary [16, 67], method parameters [60], etc.

Regression and Classification The problem of predicting a user’s ratings could
be treated as both a regression and a classification problem. It is a regression
problem since the ratings are discrete numerical values,such as if we consider their
ordinal properties, meaning the ratings could be ordered (e.g. a rating of 4 is higher
than a rating of 3). On the other hand, we can disregard the numerical properties
of the ratings and treat the problem as a classification one by treating ratings as
classes/labels.6 For example, we can use a nearest-neighbor (NN) approach to do
classification, e.g. pick the most frequent label of the neighbors; or we can use NN
to do regression, e.g. calculate the mean of the ratings of the neighbors. Throughout
the chapter we use both classification and regression in examples, selecting the one
most appropriate for aiding the current explanation.

24.4 Uncertainty-Based Active Learning

Uncertainty-based AL tries to obtain training points so as to reduce uncertainty in
some aspect, such as concerning output values [37], the model’s parameters [29], a
decision boundary [56], etc. A possible drawback to this approach is that reducing
uncertainty may not always be effective. If a system becomes certain about user
ratings, it does not necessarily mean that it will be accurate, since it could simply be
certain about the wrong thing (i.e., if the algorithm is wrong, reducing uncertainty
will not help). As an example, if the user has so far rated items positively, a system
may mistakenly be certain that a user likes all of the items, which is likely incorrect.

6If the ordinal properties of the labels are considered, it is referred to as Ordinal Classification.
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24.4.1 Output Uncertainty

In Output Uncertainty-based methods, an item to label (training point) is selected
so as to reduce the uncertainty of rating predictions for test items. In Fig. 24.1 on
page 813, with the assumption that the RS estimates the rating of an item based
on the cluster to which it belongs (e.g. items in the same movie genre receive the
same rating), if a user’s rating for a movie from the Sci-Fi genre (upper-right) has
already been obtained, then there is a higher likelihood that the RS may be more
certain about the ratings of other movies in the Sci-Fi genre, likely making it more
beneficial to obtain a user’s preference for a movie from a genre (cluster) not yet
sampled, i.e. a cluster that is still uncertain.

The difference between instance-based and model-based approaches for Output
Uncertainty-based AL is primarily in how for an arbitrary item x the rating’s distri-
bution P.Yx/ is obtained, where a rating’s distribution is defined as the probability
of an item being assigned a certain rating. For model-based methods it is possible
to obtain the rating’s distribution from the model itself. Probabilistic models are
particularly well suited for this as they directly provide the rating’s distribution
[29, 31]. For instance-based methods, collected data is used to obtain the rating’s
distribution. As an example, methods utilizing nearest-neighbor techniques can
obtain a rating’s distribution based on the votes of its neighbors, where “neighbor”
here means a user with similar preferences,7 using a formula such as:

P.Yx D y/ D
P

nn2NNx;y
wnnP

nn2NNx
wnn

; (24.8)

where NNx are neighbors that have rated an item x, and NNx;y are neighbors that
have given an item x a rating of y, and wnn is the weight of the neighbor (such as
similarity).

24.4.1.1 Active Learning Methods

Some AL methods [37] estimate the usefulness of a potential training point in a
local (greedy) manner by measuring the uncertainty of its output value:

OGUncertaintylocal
.xa/ D �Uncertainty.Ya/: (24.9)

Since our goal is to minimize OG, rating an item with high uncertainty is useful; it will
eliminate the uncertainty about the rating of the chosen item. However, labeling an
item whose rating is uncertain does not necessarily accomplish the goal of reducing
the uncertainty of ratings for other items (e.g. labeling an outlier may only reduce
rating uncertainty for a few other similar items, such as when selecting item (c) in
the Zombie genre, or even none as in (d), shown in Fig. 24.1 on page 813.

7Defining a neighbor as a similar item is also feasible depending on the method.
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We may thus consider reducing uncertainty in a global manner by selecting an
item which may reduce the uncertainty about other unrated items. One approach
[51] for doing this is to define criteria by measuring the uncertainty of ratings over
all of the test items X.Test/ with respect to a potential training input item xa:

OGUncertainty.xa/ D 1ˇ̌
X.Test/

ˇ̌ X
x2X.Test/

ET.a/ .Uncertainty.Yx// ; (24.10)

where 1

jX.Test/j is a normalizing factor, and ET.a/ .Uncertainty.Yx// is the expected

value of uncertainty with respect to adding an estimated rating ya of a candidate
item xa to the training set T; i.e. T.a/ D T [ .xa; ya/.

A possible drawback of this non-local approach is that while with the local
approach it is only necessary to estimate the uncertainty of a single output value ya,
for the non-local approach uncertainty needs to be estimated for the output values
of all the test points with respect to a potential training point .xa; ya/; this may be
difficult to estimate accurately and could be computationally expensive.

24.4.1.2 Uncertainty Measurement

Uncertainty of an item’s rating (output value) is often measured by its variance, its
entropy [37], or by its confidence interval [50]. Variance is maximized when ratings
deviate the most from the mean rating, and entropy when all the ratings are equally
likely.

Uncertainty of an output value could be calculated by using a definition of
variance as follows:

Uncertainty.Ya/ D VAR.Ya/ D
X
y2Y

�
y � Ya

�2
P.Ya D y/; (24.11)

where Ya is the mean rating of all users for an item xa and P.Ya D y/ is the
probability of an items rating Ya being equal to y, both being calculated based on
either nearest-neighbors for instance-based, or obtained from the model for model-
based approaches.

Uncertainty could also be measured by entropy as follows:

Uncertainty.Ya/ D ENT.Ya/ D �
X
y2Y

P.Ya D y/ log P.Ya D y/: (24.12)

In [58] a method is proposed for measuring the uncertainty of a rating based on the
probability of the most likely rating:

Uncertainty.Ya/ D �P.Ya D y�/; (24.13)

where y� D argmaxyP.Ya D y/ is the most likely rating.
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In [50] the confidence interval is used as a measure of uncertainty for selecting
the training input point:

c D P.bl.Ya/ < ya < bu.Ya//; (24.14)

where c is the confidence that the actual rating ya will lie in the interval between
the lower bound bl.Ya/ and the upper bound bu.Ya/. For example, it is possible
for the system to be certain that an item will be assigned a rating between 3 and
5 with a probability c D 90%. Many methods prefer items with a higher upper
bound, indicating that an item may be rated highly (good for exploitation), and if
the confidence interval is also wide then it may be good for exploration. In some
cases where it is desirable to increase the number of items predicted to be more
highly rated, it may be beneficial to use the expected change in the lower bound of
the confidence interval for selecting an item [50], the higher the expected change
the more desirable.

24.4.2 Decision Boundary Uncertainty

In Decision Boundary-based methods, training points are selected so as to improve
decision boundaries. Often an existing decision boundary is assumed to be some-
what accurate, so points are sampled close to the decision boundary to further refine
it (Fig. 24.3 on page 823). In a way this may also be considered Output Uncertainty-
based, since the uncertainty of the points close to the decision boundary may be
high. This method operates with the assumption that the decision boundary of
the underlying learning method (e.g. Support Vector Machine) is easily accessible.
A clear advantage of this method is that given a decision boundary, selecting training
examples by their proximity to it is computationally inexpensive.

Fig. 24.3 Decision boundary uncertainty
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As discussed in [56], training points may be selected for obtaining a more
accurate dividing hyperplane (Fig. 24.3b on page 823), or if the direction of
the hyperplane is already certain, input points may be selected for reducing the size
of margin (Fig. 24.3c on page 823). While it may seem obvious to sample training
points closest to the decision boundary [16, 67], there are also methods that select
the items furthest away [16] that have potential advantages in scenarios involving
several candidate classifiers, which are discussed in Sect. 24.6. This is because a
classifier should be quite certain about any items far from a decision boundary, but
if newly acquired training data reveals the classifier to be inaccurate, the classifier
may not fit the user’s preferences well, so it should be removed from the pool of
candidate classifiers.

24.4.3 Model Uncertainty

Model Uncertainty-based methods select training points for the purpose of reducing
uncertainty within the model, more specifically to reduce uncertainty about the
model’s parameters. The assumption is that if we improve the accuracy of the
model’s parameters the accuracy of output values will improve as well. If we were to
predict a user’s preferences based on membership in different interest groups [29],
i.e. a group of people with a similar interest, then training points may be selected so
as to determine to which groups the user belongs (Sect. 24.4.3.1).

24.4.3.1 Probabilistic Models

Probabilistic models are best explained with an example. The aspect model [29], a
probabilistic latent semantic model in which users are considered to be a mixture
of multiple interests (called aspects) is a good choice for this. Each user u 2 U
has a probabilistic membership in different interest groups z 2 Z. Users in the
same interest group are assumed to have the same rating patterns (e.g. two users
of the same aspect will rate a given movie the same), so users and items x 2 X are
independent from each other given the latent class variable z. The probability of the
user u assigning an item x the rating y can be computed as follows:

P.yjx; u/ D
X
z2Z

p.yjx; z/p.zju/: (24.15)

The first term p.yjx; z/ is the likelihood of assigning an item x the rating y by users
in class z (approximated by a Gaussian distribution in [29]). It does not depend on
the target user and represents the group-specific model. The global-model consists
of a collection of group-specific models. The second term p.zju/ is the likelihood
for the target user u to be in class z, referred to as a user personalization parameter
(approximated by a multinomial distribution in [29]). The user model �u consists of
one or more user personalization parameters, i.e. �u D f
uz D p.zju/gz2Z .
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A traditional AL approach would be to measure the usefulness of the candidate
training input point xa based on how much it would allow for reduction of the
uncertainty about the user model’s parameters �u (i.e. the uncertainty about to which
interest group z the user u belongs):

OG
Uncertainty.xa/ D Uncertainty.�u/; (24.16)

Uncertainty.�u/ D �
*X

z2Z


uzjxa;y log 
uzjxa;y

+
p.yjxa;�u/

; (24.17)

where �u denotes the currently estimated parameters of the user u and 
uzjx;y a
parameter that is estimated using an additional training point .xa; y/. Since the goal
of the above criterion is to reduce the uncertainty of which interest groups the target
user belongs to, it favors training points that assign a user to a single interest group.
This approach may not be effective for all models, such as with the aspect model, in
which a user’s preferences are better modeled by considering that a user belongs to
multiple interest groups [29, 31].

Another potential drawback comes from the expected uncertainty being com-
puted over the distribution p.yjx; �u/ by utilizing the currently estimated model �u.
The currently estimated model could be far from the true model, particularly when
the number of training points is small, but the number of parameters to be estimated
is large. Therefore, performing AL based only on a single estimated model can be
misleading [31]. Let us illustrate this by the following example shown in Fig. 24.4
on page 825. The four existing training points are indicated by solid line contours,
test points by dashed ones. Based on these four training examples, the most likely
decision boundary is the horizontal line (dashed), even though the true decision
boundary is a vertical line (solid). If we select training input points based only
on the estimated model, subsequent training points would likely be obtained from
areas along the estimated boundary, which are ineffective in adjusting the estimated

Fig. 24.4 A learning
scenario when the estimated
model is far from the true
model. Training points are
indicated by solid contours
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decision boundary (horizontal line) towards the correct decision boundary (vertical
line). This example illustrates that performing AL for the currently estimated
model without taking into account the model’s uncertainty can be very misleading,
particularly when the estimated model is far from the true model. A better strategy
could be to consider model uncertainty by utilizing the model distribution for
selecting training input points [31]. This would allow for adjusting the decision
boundary more effectively since decision boundaries other than the estimated one
(i.e. horizontal line) would be considered for selecting the training input points.
This idea is applied to probabilistic models in [31] as follows. The usefulness of the
candidate training input point is measured based on how much it allows adjusting
the model’s parameters �u towards the optimal model parameters �u

�:

OG
Uncertainty.xa/ D
*X

z2Z


u
�

z log

uzjxa;y


u
�

z

+
p.yjxa;�u

�/

: (24.18)

The above equation corresponds to Kullback–Leibler divergence which is mini-
mized when the estimated parameters are equal to the optimal parameters. The true
model �u

� is not known but could be estimated as the expectation over the posterior
distribution of the user’s model i.e. p.�uju/.

24.5 Error-Based Active Learning

Error-based Active Learning methods aim to reduce the predictive error, which is
often the final goal. Instance-based approaches try to find and utilize the relation
between the training input points and the predictive error. Model-based approaches
tend to aim at reducing the model error (i.e. the error of model parameters), which
is hoped would result in the improvement of predictive error.

24.5.1 Instance-Based Methods

Instance-based methods aim at reducing error based on the properties of the input
points, such as are listed in Sect. 24.2.

24.5.1.1 Output Estimates Change (Y-Change)

This approach [53] operates on the principle that if rating estimates do not change
then they will not improve. Thus, if the estimates of output values do change, then
their accuracy may either increase or decrease. However, it is expected that at least
something will be learned from a new training point, so it follows then that in many
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a

b

Fig. 24.5 Output estimate-based AL (Sect. 24.5.1.1). The x-axis corresponds to an item’s index,
and the y-axis to the changes in rating estimates with regard to a candidate training point. Training
points that cause many changes in rating estimates are considered to be more informative (a) vs (b)

cases estimates do in fact become more accurate. Assuming that most changes in
estimates are for the better, an item that causes many estimates to change will result
in the improvement of many estimates, and is considered useful.

As an example (Fig. 24.5 on page 827), if a user rates an item that is representa-
tive of a large genre, such as the Sci-Fi movie Star Wars, then its rating (regardless
of its value) will likely cause a change in rating estimates for many other related
items (e.g. items within that genre), in other words, rating such a representative
item is very informative about the user’s preferences. On the other hand, the user
rating an item without many other similar items, such as the movie The Goldfish
Hunter, would change few rating estimates, and supply little information.
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To find the expected changes in rating estimates caused by a candidate item’s
rating, all possible item ratings are considered (since the true rating of a candidate
item is not yet known). The difference is calculated between rating estimates for
each item for each of its possible ratings, before and after it was added to the training
set (refer to the pseudocode in Algorithm 1).

More formally the above criterion could be expressed as:

OGYchange.xa/ D �
X

x2X.Test/

Ey2YL.OfT.x/; OfT[.xa;y/.x//; (24.19)

where OfT.x/ is the estimated rating for an item x given the current training set T,
and OfT[.xa;y/.x/ is the rating’s estimate after a hypothetical rating y of an item xa is
added to the training set T, and L is the loss function that measures the differences
between the rating estimates OfT.x/ and OfT[.xa;y/.x/. By assuming that ratings of a
candidate item are equally likely and using a mean squared loss function, the above
criterion could be written as:

OGYchange.xa/ D �
X

x2X.Test/

1

jYj
X
y2Y

�OfT .x/ � OfT[.xa;y/ .x/
�2

(24.20)

where 1
jYj is a normalizing constant since we assume all possible ratings y 2 Y of an

item xa.
The advantage of this criterion is that it relies only on the estimates of ratings,

available from any learning method. It has a further advantage of utilizing all unrated
items, something that differentiates it from other methods in which only a small
subset of all items (ones that have been rated by the user) are considered. It also
works in tandem with any of a variety of learning methods, enabling it to potentially
adapt to different tasks.

24.5.1.2 Cross Validation-Based

In this approach a training input point is selected based on how well it may allow for
approximation of already known ratings, i.e. items in the training set [16]. That is, a
candidate training point xa with each possible rating y 2 Y is added to the training
set T, then an approximation of the user’s preferences Of is obtained and its accuracy
is evaluated (i.e. cross-validated) on the training items X.Train/. It is assumed that
when the candidate training item is paired with its correct rating, the cross-validated
accuracy will improve the most. The usefulness of the candidate training point is
measured by the improvement in the cross-validated accuracy as following:

OGCVT
.xa/ D �max

y2Y
X

x2X.Train/

L.OfT[.xa;y/.x/; f .x//; (24.21)
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Algorithm 1 Output estimates-based Active Learning (Sect. 24.5.1.1)

# OG estimates predictive error that rating an item xa would allow to achieve
function OG.xa/

# learn a preference approximation function Of based on the current training set T
OfT Dlearn.T/

# for each possible rating of an item xa e.g. f1; 2; : : : ; 5g
for ya 2 Y

# add a hypothetical training point .xa; ya/

T.a/ D T [ .xa; ya/

# learn a new preference approximation function Of based on the new training set T.a/

OfT.a/ Dlearn.T.a//

# for each unrated item
for x 2 X.Test/

# record the differences between ratings estimates
# before and after a hypothetical training point .xa; ya/ was added to the training set T

OG D OG C
�

�
�OfT .x/ � OfT.a/ .x/

�2
�

return OG

where L is a loss function such as MAE or MSE (Sect. 24.3.1), and f .x/ is the actual
rating of the item x, and OfT[.xa;y/.x/ is the approximated rating (where a function Of
is learned from the training set T [ .xa; y/) .

A potential drawback is that training points selected by this AL method could be
overfitted to the training set.

24.5.2 Model-Based

In model-based approaches training input points are obtained as to reduce the
model’s error, i.e. the error of the model’s parameters. A potential drawback of
this approach is that reducing the model’s error may not necessarily reduce the
prediction error which is the objective of AL.

24.5.2.1 Parameter Change-Based

Parameter Change-based AL [60] favors items that are likely to influence the model
the most. Assuming that changes in the model’s parameters are for the better, i.e.
approach the optimal parameters, it is then beneficial to select an item that has the
greatest impact on the model’s parameters:

OG
change.xa/ D �
X




Ey2YL.
T; 
T[.xa;y//; (24.22)
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Fig. 24.6 Decomposition of generalization error G into model error C, bias B, and variance V ,
where g denotes optimal function, Of is a learned function Ofi’s are the learned functions from a
slightly different training set

where 
T are the model’s parameters estimated from the current training set T,
and 
T[.xa;y/ are the model’s parameter estimates after a hypothetical rating y of
an item xa is added to the training set T, and L is the loss function that measures the
differences between the parameters.

24.5.2.2 Variance-Based

In this approach the error is decomposed into three components: model error C (the
difference between the optimal function approximation g, given the current model,
and the true function f ), bias B (the difference between the current approximation
Of and an optimal one g), and variance V (how much the function approximation Of
varies ). In other words, we have (Fig. 24.6):

G D CC BC V: (24.23)

One solution [14] is to minimize the variance component V of the error by assuming
that the bias component becomes negligible (if this assumption is not satisfied then
this method may not be effective). There are a number of methods proposed that
aim to select training inputs for reducing a certain measure of the variance of the
model’s parameters. The A-optimal design [12] seeks to select training input points
so as to minimize the average variance of the parameter estimates, the D-optimal
design [33] seeks to maximize the differential Shannon information content of the
parameter estimates, and the Transductive Experimental design [68] seeks to find
representative training points that may allow retaining most of the information of
the test points. The AL method in [62], in addition to the variance component, also
takes into account the existence of the model error component.
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24.5.2.3 Image Restoration-Based

It is also possible to treat the problem of predicting the user’s preferences as one
of image restoration [44], that is, based on our limited knowledge of a user’s
preferences (a partial picture), we try to restore the complete picture of the user’s
likes and dislikes. The AL task is then to select the training points that would
best allow us to restore the “image” of the user’s preferences. It is interesting to
note that this approach satisfies the desired properties of the AL methods outlined
in Sect. 24.2. For example, if a point already exists in a region, then without
sampling neighboring points the image in that region could likely be restored. This
approach also may favor sampling close to the edges of image components (decision
boundaries).

24.6 Ensemble-Based Active Learning

Sometimes instead of using a single model to predict a user’s preferences, an
ensemble of models may be beneficial (Chap. 22). In other cases only a single
model is used, but it is selected from a number of candidate models. The main
advantage of this is the premise that different models are better suited to different
users or different problems. The preferences of one user, for example, could be
better modeled by a stereotype model, while the preferences of another user may be
better modeled by a nearest-neighbor model. The training input points for these AL
methods must be selected with regards to multiple models (Sect. 24.6.1) or multiple
model candidates (Sect. 24.6.2).

24.6.1 Models-Based

In Models-based approaches, the models form a “committee” of models that act, in a
sense, cooperatively to select training input points [61]. Methods tend to differ with
respect to: (1) how to construct a committee of models, and (2) how to select training
points based on committee members [57]. As [57] explains thoroughly (please
refer to it for more details), the Query by Committee approach (QBC) involves
maintaining a committee of models which are all trained on the same training data.
In essence, they represent competing hypotheses for what the data might look like
(as represented by the model). The members of this committee then vote on how
to label potential input points (the “query” in “QBC”). The input points for which
they disagree the most are considered to be the most informative. The fundamental
premise of QBC is minimizing the version space, or the subset of all hypotheses that
are consistent with all the collected training data; we want to then constrain the size
of this space as much as possible, while at the same time minimizing the number of
training input points. Put a different way, QBC “queries” in controversial regions to
refine the version space.
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There are many ways to construct the committee of models; [57] provides
numerous examples. It can, for example, be constructed through simple sam-
pling [61]. With generative model classes, this can be achieved by randomly
sampling an arbitrary number of models from some posterior distribution, e.g.
using the Dirichlet distribution over model parameters for naive Bayes [41], or
sampling Hidden Markov Models (HMMs) using the Normal distribution [15].
The ensemble can be constructed for other model classes (such as discriminative
or non-probabilistic models) as well, e.g. query-by-boosting and query-by-bagging
[1], which employ the boosting [22] and bagging [8] ensemble learning methods
to construct the committees; there has also been research [13] on using a selective
sampling algorithm for neural networks that utilizes the combination of the “most
specific” and “most general” models (selecting the models that lie at two extremes
of the current version space given the current training set).

The “committee is still out” on the appropriate number of models to use, but even
small sizes have demonstrated good results [41, 58, 61].

Measuring the disagreement between models is fundamental to the committee
approach; there are two main means for calculating disagreement: vote uncertainty
[15] and average Kullback-Leibler (KL) divergence [41]. Vote uncertainty selects
the point with the largest disagreement between models of the committee. KL
divergence is an information-theoretic measure of the difference between two
probability distributions. KL divergence selects the input point with the largest
average difference between the distributions of the committee consensus and the
most differing model.

24.6.2 Candidates-Based

Different models are better suited to different users or to different prob-
lems (Chap. 7). So both the choice of the training set (AL) and the choice of the
model, called Model Selection (MS), affect the predictive accuracy of the learned
function. There is in fact a strong dependency between AL and MS, meaning that
useful points for one model may not be as useful for another (Fig. 24.9 on page
834). This section discusses how to perform AL with regards to multiple model
candidates and the issues that may arise when doing so.

The concept of model has several different meanings. We may refer to a model as
a set of functions with some common characteristic, such as a function’s complexity,
or the type of a function or learning method (e.g. SVM, Naive Bayes, nearest-
neighbor, or linear regression). The characteristics of the functions that may differ
are often referred to as parameters. Thus, given a model and training data, the task
of MS is to find parameters that may allow for accurate approximation of the target
function. All of the model’s characteristics affect the predictive accuracy, but for
simplicity we concentrate only on the complexity of the model.

As illustrated by Fig. 24.7 on page 833, if the model is too simple in comparison
with the target function, then the learned function may not be capable of approx-
imating the target function, making it under-fit (Fig. 24.7a on page 833). On the
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Fig. 24.7 Dependence between model complexity and accuracy. (a) Under-fit; (b) over-fit;
(c) appropriate fit

other hand, if the model is too complex it may start trying to approximate irrelevant
information (e.g. noise that may be contained in the output values) which will
cause the learned function to over-fit the target function (Fig. 24.7b on page 833).
A possible solution to this is to have a number of candidate models. The goal of
model selection (MS) is thus to determine the weights of the models in the ensemble,
or in the case of a single model being used, to select an appropriate one (Fig. 24.7c
on page 833):

min
M

G.M/: (24.24)

The task of AL is likewise to minimize the predictive error, but with respect to the
choice of the training input points:

min
X.Train/

G.X.Train//: (24.25)

It would be beneficial to combine AL and MS since they share a common goal of
minimizing the predictive error:

min
X.Train/; M

G.X.Train/; M/: (24.26)

Ideally we would like to choose the model of appropriate complexity by a MS
method and to choose the most useful training data by an AL method. However
simply combining AL with MS in a batch manner, i.e. selecting all of the training
points at once (Fig. 24.8), may not be possible due to the following paradox:

• To select training input points by a standard AL method, a model must be fixed.
In other words, MS has already been performed (see Fig. 24.9 on page 834).

• To select the model by a standard MS method, the training input points must be
fixed and corresponding training output values must be gathered. In other words,
AL has already been performed (see Fig. 24.10 on page 834).

As a result Batch AL selects training points for a randomly chosen model, but
after the training points are obtained the model is selected once again, giving rise
to the possibility that the training points will not be as useful if the initial and final
models differ. This means that the training points could be over-fitted to a possibly
inferior model, or likewise under-fitted.
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select model
MS

select all training points
for model

AL

select final model
MS

Fig. 24.8 Batch active learning

Fig. 24.9 Training input points that are good for learning one model, are not necessary good for
the other

Fig. 24.10 Dependence of model selection on active learning. Unable to determine which model
is more appropriate (Model Selection), until training points have been obtained (Active Learning)

With Sequential AL, the training points and models are selected incrementally in
a process of selecting a model, then obtaining a training point for this model, and
so on (Figs. 24.11). Although this approach is intuitive, it may perform poorly due
to model drift, where a chosen model varies throughout the learning process. As the
number of training points increases, more complex models tend to fit data better
and are therefore selected over simpler models. Since the selection of training input
points depends on the model, the training points chosen for a simpler model in the
early stages could be less useful for the more complex model selected at the end of
the learning process. Due to model drift portions of training points are gathered for
different models, resulting in the training data being not well suited for any of the
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Fig. 24.11 Sequential active learning

models. However, because the selection of the final model is unclear at the onset,
one possibility is to select training input points with respect to multiple models [63],
by optimizing the training data for all the models:

min
X.Train/

X
M

OG.X.Train/; M/w.M/; (24.27)

where w.M/ refers to the weight of the model in the ensemble, or among the
candidates. This allows each model to contribute to the optimization of the training
data and thus the risk of overfitting the training set to possibly inferior models can
be hedged.

24.7 Conversation-Based Active Learning

Preference elicitation [45], just as active learning, aims at constructing an accurate
model of user preferences. However, unlike AL that elicits ratings to inductively
model the user preferences, preference elicitation aims to lean about user pref-
erences on a more abstract level e.g. by directly acquiring or deducting user’s
preferences (e.g. by asking users which genre of movies they like). Preference
elicitation is often performed with the help of conversation-based AL that is goal
oriented with the task of starting general and, through a series of interaction cycles,
narrowing down the user’s interests until the desired item is obtained [9, 42, 49],
such as selecting a hotel to stay at during a trip. In essence, the goal is to supply
the user with the information that best enables them to reduce the set of possible
items, finding the item with the most utility. The system therefore aims at making
accurate predictions about items with the highest utility for a potentially small group
of items, such as searching for a restaurant within a restricted locale. A common
approach is to iteratively present sets of alternative recommendations to the user,
and by eliciting feedback, guide the user towards an end goal in which the scope of
interest is reduced to a single item. This cycle-based approach can be beneficial
since users rarely know all their preferences at the start (becoming self-aware),
but tend to form and refine them during the decision making process (exploration).
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Thus Conversation-based AL should also allow users to refine their preferences in a
style suitable to the given task. Such systems, unlike general RSs, also include AL
by design, since a user’s preferences are learned through active interaction. They
are often evaluated by the predictive accuracy, and also by the length of interaction
before arriving at the desired goal.

24.7.1 Case-Based Critique

One means for performing a conversation with a user is the Case-based Critique
approach, which finds cases similar to the user’s query or profile and then elicits a
critique for refining the user’s interests [49]. As mentioned above (Sect. 24.7), the
user is not required to clearly define their preferences when the conversation initi-
ates; this may be particularly beneficial for mobile device-oriented systems. Each
step of iteration displays the system’s recommendations in a ranked list and allows
for user critique, which will force the system to re-evaluate its recommendations and
generate a new ranked list. Eliciting a user critique when a feature of a recommended
item is unsatisfactory may be more effective in obtaining the end goal than mere
similarity-based query revision combined with recommendation by proposing. As
an example of a user critique, he/she may comment “I want a less expensive hotel
room” or “I like restaurants serving wine.”

24.7.2 Diversity-Based

While suggesting items to the user that are similar to the user query is important
(Sect. 24.7.1), it may also be worthwhile to consider diversity among the set of
proposed items [42]. This is because if the suggested items are too similar to each
other, they may not be representative of the current search space. In essence, the
recommended items should be as representative and diverse as possible, which
should be possible without appreciably affecting their similarity to the user query.
It is particularly important to provide diverse choices while the user’s preferences
are in their embryonic stages. Once the user knows what it is they want, providing
items that match as closely as possible may be pertinent, and the AL technique used
should attempt to make this distinction, i.e. if the recommendation space is properly
focused, reduce diversity, and if incorrect, increase it.

24.7.3 Query Editing-Based

Another possibility is to allow a user to repeatedly edit and resubmit a search query
until their desired item is found [9]. Since it is an iterative process, the objective
is to minimize the number of queries needed before the user finds the item of
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highest utility. A query’s usefulness is estimated based on the likelihood of the
user submitting a particular query, along with its satisfiability, accomplished by
observing user actions and inferring any constraints on user preferences related to
item utility and updating the user’s model. As an example, a user may query for
hotels that have air-conditioning and a golf course. The RS can determine this to be
satisfiable, and further infer that though the user is likely to add a restraint for the
hotel being located in the city-center, no hotels match such criteria, so the system
preemptively notifies the user that such a condition is unsatisfiable to prevent wasted
user effort. The RS may also infer that for a small increase in price there are hotels
with a pool and spa and a restaurant. Knowing the user’s preferences for having
a pool (and not for other options), the system would only offer adding the pool
option, since it may increase the user’s satisfaction, and not the others since they
may overwhelm the user and decrease overall satisfaction.

24.8 Evaluation Settings

Proper evaluation of active learning is important for measuring how well the system
meets given objectives, and investigating if there are any undesirable side effects.
In experimental studies, evaluation setup should reflect as closely as possible
the actual settings for which the system was designed. In Sect. 24.3.1 we briefly
described machine learning-based settings under which active learning algorithms
are typically evaluated. If one aims for a more realistic evaluation, other domain
specific aspects must be considered (some of which are described below).

24.8.1 Scope

Traditionally, the evaluation of active learning strategies has been user-centered; that
is, the usefulness of the elicited rating was judged based on the improvement in the
user’s prediction error. This is illustrated in Fig. 24.12a. In this scenario the system
is supposed to have a large number of ratings from several users, and focusing on
a new user (the first one in Fig. 24.12a) it first elicits ratings from this new user
that are in X, and then system predictions for this user are evaluated on the test
set T. Hence these traditional evaluations focussed on the new-user problem and
measured how the ratings elicited from a new user may help the system to generate
good recommendations for this particular user. Elahi et al. [20] noted that eliciting
a rating from a user may improve not only the rating predictions for that user, but
also the predictions for the other users, as is graphically illustrated in Fig. 24.12b.
To illustrate this point, let us consider an extreme example in which a new item
is added to the system. The traditional user-centered AL strategy, when trying to
identify the items that a target user should rate, may ignore obtaining user’s rating
for that new item. In fact, this item has not been rated by any other user and
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Fig. 24.12 Comparison of the scope of the ratings data configurations used for evaluating (a) user-
centered and (b) system-centered active learning strategies (Sect. 24.8.1)

therefore its ratings cannot contribute to improving the rating predictions for the
target user. However, the rating of the target user for the new item would allow to
bootstrap the predictions8 for the rest of the users in the system, and hence from
the system’s perspective the elicited rating is indeed very informative. Conversely,
it was shown some user-centric strategies, while being beneficial for the target
user, may increasing the system error. For instance, requesting to rate the items
with the highest predicted ratings (an AL approach that is often adopted in real
RSs), may generate a system-wide bias, and inadvertently increase the system error
(especially at the early stages) by adding to the training set disproportionately more
high ratings than low ones, and as a result biasing the rating prediction towards
overestimating ratings. Elicited rating has effects across the system, so a typical
user-centric evaluation which ignores any changes of rating prediction of other
users also ignores these cumulative effects, which could be more influential on the
performance of the system as a whole.

24.8.2 Natural Rating Acquisition

In RSs there are two primary ways in which ratings are acquired: (1) users are
prompted to rate an item by an active learning method; (2) users provide ratings
without being prompted (natural rating acquisition), e.g. while browsing items.
Previous studies considered the situation where the active learning rating elicitation
strategy was the only tool used to collect new ratings from the users. Recently, [20]
has proposed a more realistic evaluation setting, where in addition to the ratings
being acquired by the elicitation strategies, the ratings are also entered by the users

8Recently it has also been proposed to utilize transfer learning for leveraging pre-existing labeled
data from related tasks to improve the performance of an active learning algorithm [34, 69].
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(without being prompted), similarly to what happens in actual settings. Mixing in
naturally acquired ratings significantly impacts the performance of some of the
active learning methods (Sect. 24.8.5). For example, without mixing in naturally
acquired ratings, highest-predicted AL is shown to acquire many new ratings. Yet,
when the naturally acquired ratings are mixed in, highest-predicted AL acquires
very few ratings since many of the ratings are already collected by the natural
process (i.e. the user would rate these items on his own initiative).

24.8.3 Temporal Evolution

Ratings data changes with time: more ratings are added, new users and items
appear, underlying recommendation and active learning algorithms change, as do
user interfaces. While it is convenient to evaluate AL method on a snapshot of the
database; it is also advisable to incorporate temporal aspects of RSs in order to
obtain a more complete view of the algorithm’s performance. proposed considering
temporal aspects with a simulation loop that models the day-by-day process of rating
elicitation and rating database growth (starting from an empty database); where
users repeatedly come back to the system for receiving recommendations, while
the system has possibly elicited ratings from other users. To achieve a realistic
setting, only the items that users actually experienced during the following week
(according to the timestamps) are added to the database for each time period.
Elahi et al. [20] showed that different strategies improve different aspects of the
recommendation quality at different stages of the rating database growth. Moreover,
performance of AL varies significantly from week to week, caused by the fact
that for every week system is trained on the data from previous weeks, and is
evaluated on the next week’s ratings. Hence, the quality of the training data and
predictive difficulty of the test set can therefore change from week to week, and
hence influence the performance of the AL strategies. Zhao et al. [70] proposed AL
method that explicitly takes temporal changes into account, focusing on changes in
users preferences over time.

Time-dependent evolution of predictive aspects of recommender systems has
also received some attention. In [10] the author analyzes the temporal properties
of a standard user-based collaborative filtering [26] and Influence Limiter [48],
a collaborative filtering algorithm developed for counteracting profile injection
attacks by considering the time at which a user has rated an item. These works
evaluate the accuracy of prediction algorithms while the users are rating items and
the database is growing. This is radically different from the typical evaluations that
we mentioned earlier, where the rating dataset is decomposed into the training and
testing sets without considering the timestamp of the ratings. In [10] it is argued that
considering the time at which the ratings were added to the system gives a better
picture of the real user experience during the interactions with the system in terms
of recommendation accuracy. They discovered the presence of two time segments:
the start-up period, until day 70 with MAE dropping gradually, and the remaining
period, where MAE was dropping much slower.
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24.8.4 Ratability

A user may not always be able to provide a rating for an item; e.g. you cannot
rate a movie you have not seen [25, 38]. On the other hand, the system typically
contains ratings for only a portion of items that users have experienced. This is
a common problem of any offline evaluation of a recommender system, where the
performance of the recommendation algorithm is estimated on a test set that is never
coincident with the recommendations set. The recommendation set is composed of
the items with the largest predicted ratings. But if such an item is not present in the
test set, an offline evaluation will be never able to check if that prediction is correct
[19]. Only a few evaluations simulated limited knowledge about the user’s ratings
[20, 25]; from the user and/or system perspective. The system is assumed to unaware
about what items the simulated user has experienced, and may ask ratings for items
that the user will not be able to provide. This better simulates a realistic scenario
where not all rating requests can be satisfied by a user. It is important to note that
the simulated application of an active learning strategy is able to add many fewer
ratings than what could be elicited in a real setting. In fact, the number of ratings
that are supposed to be known by the users in the simulated process is limited by the
number of ratings that are present in the dataset. In [19] it has been estimated that the
number of items that are really known by the user is more than 4 times larger than
what is typically observed in the simulations. Hence, a lot of our elicitation request
would be unfulfilled, even though the user in actuality would have been able to rate
the item. To adjust for the discrepancy between the knowledge of the actual and
simulated users, it is recommended to increase number of active learning requests
by a factor of 4 [19].

24.8.5 Summary

In [20] performance of many of the common active learning methods has been
evaluated considering many of the aspects mentioned above, as to more realistically
simulate actual RS settings. The evaluation (summarized in Table 24.3 on page
841) has shown that the system-wide effectiveness of a rating elicitation strategy
(Sect. 24.8.1) depends on the stage of the rating elicitation process (Sect. 24.8.3),
and on the evaluation metrics (Sects. 24.2 and 24.1.1). Surprisingly, some common
user-centric strategies (Sect. 24.8.1) may actually degrade the overall performance
of a system. Finally, the performance of many common active learning strategies
changes significantly when evaluated concurrently with e.g. the natural acquisition
of ratings (Sect. 24.8.2).
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Table 24.3 Summary of performance evaluation (performance: �—good, �—bad)
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variance ✕ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕

Popularity ✕ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✓

Lowest-pred ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✕ ✓ ✕

Lo-hi-pred ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✓ ✓ ✓ ✓ ✓

Highest-pred ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✓

Binary-pred ✕ ✓ ✓ ✕ ✕ ✕ ✓ ✕ ✕ ✕ ✕ ✕ ✓ ✓ ✓

Voting ✓ ✕ ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✓ ✓ ✕ ✕ ✓

log(pop)*ent ✕ ✓ ✓ ✓ ✕ ✕ ✓ ✓ ✓ ✓ ✕ ✕ ✕ ✕ ✓

Random ✓ ✕ NA ✓ ✓ ✓ NA ✕ ✓ ✕ ✓ ✓ ✕ ✕ NA

Natural ✓ ✓ ✓ NA ✕ ✕ ✓ ✓ ✓ NA ✓ ✓ ✓ ✓ ✓

24.9 Computational Considerations

It is also important to consider the computational costs of AL algorithms. Roy and
Mccallum [51] have suggested a number of ways of reducing the computational
requirements, summarized (with additions) below.

• Many AL select an item to be rated based on its expected effect on the learned
function. This may require retraining with respect to each candidate training item,
and so efficient incremental training is crucial. Typically this step-by-step manner
has lower cost than starting over with a large set.

• New rating estimates may need to be obtained with respect to each candidate
item. Likewise, this could be done in an incremental manner, since only the
estimates that change would need to be obtained again.

• It is possible to incrementally update the estimated error only for items likely to
be effected by the inclusion of a training point, which in practice is only nearby
items or items without similar features. A common approach is to use inverted
indices to group items with similar features for quick lookup.

• A candidate training item’s expected usefulness can likely be estimated using a
subset of all items.

• Poor candidates for training points can be partially pruned through a pre-filtering
step that removes poor candidate items based on some criteria, such as filtering
books written in a language the user cannot read. A suboptimal AL method may
be a good choice for this task.
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24.10 Discussion

Though very brief, hopefully the collection of Active Learning methods presented
in this chapter has demonstrated that AL is indeed not only beneficial but also
desirable for inclusion in many systems, namely Recommender Systems. It can
be seen that due to individual characteristics, the AL method selected, in many
cases, relies heavily on the specific objectives (Sect. 24.1.1) that must be satisfied,
either due to business constraints, preferred system behavior, user experience, or
a combination of these (and possibly others). In addition to AL objectives, it is
also prudent to evaluate the computational costs (Sect. 24.9) of any methods under
consideration for use, and their trade-offs. Despite the success that many of the
methods discussed have received, there is also something to be said for abstracting
the problem, or finding solutions to other problems that though seemingly unrelated,
may have strikingly similar solutions (e.g. Image Restoration (Sect. 24.5.2.3)). We
have also touched upon conversation-based systems (Sect. 24.7) which differ from
traditional RSs, but include the notion of AL by design. Depending on the task
at hand, such as specific goal oriented assistants, this may also be a nice fit for a
Recommender System.

Some issues related to AL have already been well studied in Statistics; this is
not the case in Computer Science, where research is still wanting. Recommender
Systems are changing at a rapid pace and becoming more and more complex. An
example of this is the system that won the NetFlix Recommendation Challenge,
which combined multiple predictive methods in an ensemble manner (Chap. 3).
Given the high rate of change in predictive methods of RSs, and their complex
interaction with AL, there is an ever increasing need for new approaches.

Improving accuracy has traditionally been the main focus of research. Accuracy
alone, however, may not be enough to entice the user with RSs (Chap. 8). This is
because the system implementing AL may also need to recommend items of high
novelty/serendipity, improve coverage, or maximize profitability, to name a few [27,
32, 43, 55]. Another aspect that is frequently overlooked by AL researchers is the
manner in which a user can interact with AL to reap improvements in performance.
Simply presenting items to the user for rating lacks ingenuity to say the least; surely
there is a better way? One example of this is a work [3] which demonstrated that by
using the right interface even such menial tasks as labeling images could be made
fun and exciting. With the right interface alone the utility of an AL system may
increase dramatically.

Many issues remain that must be tackled to ensure the longevity of AL in
RSs; with a little innovation and elbow grease we hope to see it transform from
a “bothersome process” to an enjoyable one of self-discovery and exploration,
satisfying both the system objectives and the user at the same time.
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Chapter 25
Multi-Criteria Recommender Systems

Gediminas Adomavicius and YoungOk Kwon

25.1 Introduction

The research discipline of recommender systems arose to address the problem of
information or choice over-abundance, i.e., to help users find information or items
that are most likely to be interesting to them or to be relevant to their needs
[4, 7, 12, 38, 39, 73, 74]. Typically, the recommendation problem assumes that
there is set Users of all the users of a system and set Items of all possible items
that can be recommended to them. Then, the utility function that measures the
appropriateness of recommending item i 2 Items to user u 2 Users is often defined
as R W Users�Items! R0. R0 typically represents users’ possible preference ratings
for items (e.g., non-negative integers or real numbers within a certain range). The
goal of recommender systems is, for each user u 2 Users, to be able to (a) accurately
estimate (or approximate) utility function R.u; i/ for item i 2 Items for which R.u; i/
is not yet known, and then (b) select one or a set of items i for which the predicted
value R.u; i/ is high (i.e., items that are predicted to be relevant for u) and also
possibly satisfy some other desirable conditions (e.g., items with high novelty or
diversity [31, 88]).

In most recommender systems, utility function R.u; i/ usually estimates a single-
criterion value, e.g., an overall evaluation or rating of an item by a user. In some
recent work, this assumption has been considered as limited [2, 4, 51], because the
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suitability of the recommended item for a particular user may depend on more than
one utility-related aspect that the user takes into consideration when making the
choice. Particularly in systems where recommendations are based on the opinion of
others, the incorporation of multiple criteria that can affect the users’ opinions may
lead to more accurate recommendations.

Thus, the additional information provided by multi-criteria ratings could help
to improve the quality of recommendations because it would be able to represent
more complex preferences of each user. As an illustration, consider the following
example. In a traditional single-rating movie recommender system, user u provides
a single rating for movie i that the user has seen, denoted by R.u; i/. Specifically,
suppose that the recommender system predicts the rating of the movie that the user
has not seen based on the movie ratings of other users with similar preferences,
who are commonly referred to as “neighbors” [12, 73, 74]. For example, if two
users u and u0 have seen three movies in common, and both of them rated their
overall satisfaction from each of the three movies as 6 out of 10, the two users are
considered as neighbors and the ratings of unseen movies for user u are predicted
using the ratings of user u0. Therefore, the ability to correctly determine the users
that are most similar to the target user is crucial in order to have accurate predictions
or recommendations.

In contrast, in a multi-criteria rating setting, users can provide their subjective
preference ratings on multiple attributes of an item. For example, a two-criterion
movie recommender system allows users to specify their preferences on two
attributes of a movie (e.g., story and visual effects). A user may like the story,
but dislike the visual effects of a movie, e.g., R.u; i/ D (9, 3). If we simply
aggregate the two individual criteria ratings by giving them the same weight in
making recommendations, rating the user’s overall satisfaction as 6 out of 10 in the
single-rating application might correspond to a variety of situations in multi-rating
application: (9, 3), (6, 6), (4, 8), etc. Therefore, although the ratings of the overall
satisfaction are stated as 6, two users may show different rating patterns on each
criterion of an item, e.g., user u gives ratings (9, 3), (9, 3), (9, 3), and user u0 gives
ratings (3, 9), (3, 9), (3, 9) to the same three movies. This additional information
on each user’s preferences would help to model users’ preferences more accurately,
and new recommendation techniques need to be developed to take advantage of
this additional information. The importance of studying multi-criteria recommender
systems has been highlighted as a separate strand in the recommender systems
literature [2, 4, 51], and recently several recommender systems (as we present later
in this chapter) have been adopting multiple criteria ratings, instead of traditional
single-criterion ratings. Thus, the aim of this chapter is to provide an overview of
multi-criteria recommender systems.

The use of multi-criteria recommender systems has been proposed for a
wide range of applications. As mentioned above, for experiential products (such
as movies, books, and music) users may have varying subjective tastes and
preferences for multiple product dimensions, and richer information on user
preferences helps to improve the quality of recommendations [2, 42, 43, 68]. Other
popular domains where multi-criteria recommendation algorithms can be applied



25 Multi-Criteria Recommender Systems 849

include travel and tourism domains. Customers can have different preferences on
friendliness, room size, service quality, and tidiness about the hotel, in addition
to an overall perspective [34]. Mobile banking business can also adopt the multi-
criteria algorithms by tracking each user’s behavior data on the mobile service,
rather than obtaining explicit ratings [93]. Furthermore, restaurants [44, 83] can
be considered with different aspects such as the quality of service, location, value
for money, and an overall experience. Similarly, research papers [58, 99] can be
recommended with the information on multiple dimensions such as title, keywords,
authors, publication year, and the citation links (i.e., representing the papers that
cite the target paper as well as the papers cited by the target paper). Multi-criteria
recommendation algorithms have also been used to support clinical decision making
by combining evidence-based (i.e., disease information) and patient-centric (i.e.,
patient preferences) information [22].

Generally, recommendation techniques are often classified based on the recom-
mendation approach into several categories: content-based, collaborative filtering,
knowledge-based, and hybrid approaches [4, 7]. Content-based recommendation
techniques find the best recommendations for a user based on what the user
liked in the past [48, 69], and collaborative filtering recommendation techniques
make recommendations based on the information about other users with similar
preferences [12, 41, 73, 74]. Knowledge-based approaches use knowledge about
users and items to find the items that meet users’ requirements [14, 17]. The
bottleneck of this knowledge-based approach is that it needs to acquire a knowledge
base beforehand, but the obtained knowledge base helps to avoid cold start or
data sparsity problems that pure content-based or collaborative filtering systems
encounter by relying on solely the ratings obtained by users. Hybrid approaches
combine content-based, collaborative filtering, and knowledge-based techniques in
many different ways [15, 16].

Multi-criteria recommender systems can employ any of these general
approaches. However, it is important to note that “multi-criteria” is a very generic
term, and we observe that in research literature “multi-criteria recommender
systems” may point to several substantially different ideas, including:

• Multi-attribute content search, filtering, and preference modeling;
• Multi-objective recommendation strategies;
• Multi-criteria rating-based preference elicitation.

Below we provide a brief overview of these three categories.

Multi-Attribute Content Search, Filtering, and Preference Modeling These
approaches allow the user to specify her current preferences or needs based on
various content-based attributes across all items, through searching or filtering pro-
cesses (e.g., searching for only comedy movies) or by pre-specifying her “favorite”
content attributes (e.g., indicating favorite actors or the fact that comedy movies are
preferable to action movies), and recommend to the user the items that are the most
similar to her preferences and satisfy specified search and/or filtering conditions.
Therefore, even though there are some aspects of “multi-criteria” nature due to
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multiple content attributes, most of these approaches are well represented by the
existing paradigms of content-based, hybrid, conversational, case-based reasoning,
and some knowledge-based recommender systems as well as traditional information
retrieval approaches. For example, several case-based travel recommender systems
[76, 77] filter out unwanted items based on each user’s preferences on multi-attribute
content (e.g., locations, services, and activities), and find personalized travel plans
for each user by ranking possible travel plans based on the user’s preferences and
past travel plans of this or similar users. In addition, some case-based recommender
systems [14, 72] allow users to “critique” the recommendation results by refining
their requirements as part of the interactive and iterative recommendation process,
which uses various search and filtering techniques to continuously provide the
user with the updated set of recommendations. For example, when searching for
a desktop PC, users can critique the current set of provided recommendations by
expressing their refined preferences on individual features (e.g., cheaper price)
or multiple features together (e.g., higher processor speed, RAM, and hard-disk
capacity). An entire research stream of conversational recommender systems is
dedicated to these types of approaches [8, 9, 13, 37, 95–97]. Some additional
examples of related approaches can be found in Chap. 5.

Multi-Objective Recommendation Strategies Traditionally, the main focus of
recommender systems research has been on developing recommendation algorithms
that provide accurate recommendations, where accuracy can be evaluated using a
variety of different measures, such as MAE, RMSE, precision, recall, F-measure,
normalized discounted cumulative gain (NDCG), and many others, depending on
recommendation task. However, understanding that recommendation accuracy may
not always completely align with recommendation usefulness, researchers have
been proposing a number of alternative measures, including coverage, diversity,
novelty, serendipity, and several others, to evaluate the performance of recommender
systems. As a result, modern recommender systems implementations may use mul-
tiple performance criteria when deciding on the final set of recommendations to be
shown to a given user, e.g., using accuracy, diversity, and freshness recommendation
criteria in Netflix movie recommendations [6]. In summary, the “multi-criteria”
nature in such approaches arises not from the attempts to represent more complex
user preferences but rather from optimizing multiple different recommendation
performance objectives. This type of work is well represented in recommender
systems research stream on performance metrics and evaluation [31, 75, 88].

Multi-Criteria Rating-Based Preference Elicitation This category of recom-
mender systems engage multi-criteria ratings, often by extending traditional collab-
orative filtering approaches, that represent users’ subjective preferences for various
components of individual items. For instance, such systems allow users to rate not
only the overall satisfaction from a particular movie, but also the satisfaction from
the various movie components (factors), such as the visual effects, the story, or
the acting. In other words, these approaches allow a user to specify her individual
preferences in a more precise and nuanced manner by rating each item on multiple
criteria (e.g., rating the story of movie “Avatar” as 3, and the visual effects of the
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same movie as 5), and then are able to leverage this more sophisticated preference
information in item recommendations. These approaches differ from the multi-
attribute content approaches in that the users do not indicate their preference or
importance weight on the visual effects component for movies in general or to be
used in a particular user query, but rather how much they liked the visual effects of
the particular movie. One example of early research in this area is the Intelligent
Travel Recommender system [76], where users can rate multiple travel items within
a “travel bag” (e.g., location, accommodation, etc.) as well as the entire travel bag.
Then, candidate travel plans are ranked according to these user ratings, and the
system finds the best match between recommended travel plans and the current
needs of a user. These and similar types of multi-criteria rating-based systems are
the focus of this chapter and more exemplar systems and techniques are provided in
the later sections.

In summary, as seen above, a number of recommendation approaches that employ
traditional content-based, knowledge-based, collaborative filtering, and hybrid tech-
niques can be viewed as multi-criteria recommender systems in some way or
another. Some of these approaches model user preferences based on multi-attribute
content of items that users preferred in the past, others allow users to specify
their current content-related preferences as search or filtering conditions, and yet
others try to provide recommendations by balancing several performance metrics at
once. However, as mentioned earlier, there is a recent trend in multi-criteria recom-
mendation that studies innovative approaches in collaborative recommendation by
attempting to capture and model user preferences in a more comprehensive, more
nuanced manner by engaging multi-criteria ratings. We believe that this additional
information on users’ preferences offers many opportunities for providing novel
recommendation support, creating a unique multi-criteria rating environment that
has not been extensively researched. Therefore, in the following sections, we survey
the state-of-the-art techniques on this particular type of systems that use individual
ratings along multiple criteria, which we will refer to as multi-criteria rating
recommenders.

The remainder of this chapter is organized as follows. In Sect. 25.2, we overview
the particular type of multi-criteria recommender systems that use multi-criteria
ratings, referred to as multi-criteria rating recommenders. In Sects. 25.3 and 25.4,
we survey the state-of-the-art algorithms that are used in this type of recommenders
for rating prediction and recommendation generation. Finally, Sect. 25.5 discusses
research challenges and future research directions for multi-criteria recommender
systems, followed by brief conclusions in Sect. 25.6.

25.2 Multi-Criteria Rating Recommendation

In this section, we define the multi-criteria rating recommendation problem by for-
mally extending it from its single-rating counterpart (for more details on traditional
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single-rating recommender systems refer to Chaps. 2, 3 and 7), and provide some
further discussion about the advantages that additional criteria may provide in
recommender systems.

25.2.1 Traditional Single-Rating Recommendation Problem

Traditionally recommender systems operate in a two-dimensional space of Users
and Items. The utility of items to users is generally represented by a totally ordered
set of ratings R0. The ratings can be unary (e.g., purchases), binary (e.g., like vs.
dislike, high vs. low, good vs. bad), small set of ordered discrete values (e.g., 1-star,
2-stars, . . . , 5-stars), or numbers within a certain range (e.g., Œ�10; 10�) [4]. In most
recommendation applications, function R is explicitly known only for some subset
of the Users � Items space, e.g., for the items that users have previously consumed
and have provided their preference ratings for, and that the majority of the Users �
Items space is unknown. Recommender systems aim to predict the utility of an item
for a user. As mentioned earlier, a utility function R can be formally written as
follows:

R W Users � Items! R0 (25.1)

The utility function is determined based on user inputs, such as numeric ratings
that users explicitly give to items and/or transaction data that implicitly shows
users’ preferences (e.g., purchase history). The majority of traditional recommender
systems use single-criterion ratings that indicate how much a given user liked a
particular item in total (i.e., the overall utility of an item by a user). For example,
in a movie recommender system, as shown in Fig. 25.1, user Alice may assign a
single-criterion rating of 5 (out of 10) for movie Wanted, which can be denoted by
R.Alice; Wanted/D 5. As an illustration, let us assume that the neighborhood-based
collaborative filtering technique [73], i.e., one of the most popular heuristic-based
recommendation techniques, is used for rating prediction. This technique predicts
a user’s rating for a given item based on the ratings of other users with similar
preferences (i.e., neighbors). Particularly, in this example, the recommender system
tries to predict the utility of movie Fargo for Alice based on the observed ratings.
Since Alice and John show similar rating patterns on the four movies that both of
them have previously seen and rated (see Fig. 25.1), for the purpose of this simple
example the rating of movie Fargo for user Alice is predicted using John’s rating
(i.e., 9), although we would like to note that it is more common to use the ratings of
more than one neighbor in a real system.
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Fig. 25.1 Single-rating movie recommender system

25.2.2 Extending Traditional Recommender Systems
to Include Multi-Criteria Ratings

With a growing number of real-world applications, extending recommendation
techniques to incorporate multi-criteria ratings has been regarded as one of the
important issues for the next generation of recommender systems [4]. Examples
of multi-criteria rating systems include Zagat’s Guide that provides three criteria
for restaurant ratings (e.g., food, décor, and service), Buy.com that provides multi-
criteria ratings for consumer electronics (e.g., display size, performance, battery
life, and cost), and Yahoo! Movies that show each user’s ratings for four criteria
(e.g., story, action, direction, and visuals). This additional information about users’
preferences provided by multi-criteria ratings (instead of a single overall rating) can
potentially be helpful in improving the performance of recommender systems.

Some multi-criteria rating systems can choose to model a user’s utility for a
given item with an overall rating R0 as well as the user’s ratings R1; : : : ; Rk for
each individual criterion c (c D 1; : : : ; k), whereas some systems can choose not
to use the overall rating and focus solely on individual criteria ratings. Therefore,
the utility-based formulation of the multi-criteria recommendation problem can be
represented either with or without overall ratings as follows:

R W Users � Items! R0 � R1 � 	 	 	 � Rk (25.2)

or

R W Users � Items! R1 � 	 	 	 � Rk (25.3)

Given the availability of multi-criteria ratings (in addition to the traditional single
overall rating) for each item, Figs. 25.1 and 25.2 illustrate the potential benefits
of this information for recommender systems. While Alice and John have similar
preferences on movies in a single-rating setting (Fig. 25.1), in a multi-criteria rating
setting we could see that they show substantially different preferences on several
movie aspects, even though they had the same overall ratings (Fig. 25.2). Upon
further inspection of all the multi-criteria rating information, one can see that Alice
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Fig. 25.2 Multi-criteria movie recommender system (ratings for each item: overall, story, action,
direction, and visual effects)

and Mason show very similar rating patterns (much more similar than Alice and
John). Thus, using the same collaborative filtering approach as before, but taking
into account multi-criteria ratings, Alice’s overall rating for movie Fargo would be
predicted as 5, based on Mason’s overall rating for this movie.

This example implies that a single overall rating may hide the underlying
heterogeneity of users’ preferences for different aspects of a given item, and
multi-criteria ratings may help to better understand each user’s preferences, as a
result enabling to provide users more accurate recommendations. It also illustrates
how multi-criteria ratings can potentially produce more powerful and focused
recommendations, e.g., by recommending movies that will score best on the story
criterion, if this is the most important one for some user.

Therefore, new recommendation algorithms and techniques are needed that can
utilize multi-criteria ratings in recommender systems. Since recommender systems
typically calculate and provide recommendations using the following two-phase
process, i.e., rating prediction phase and recommendation generation phase, multi-
criteria rating information can be used in both of these phases in different ways.
A number of approaches have been developed for the prediction or recommendation
and there are already several systems implementing such algorithms, which we
analyze in the next two sections.

• Prediction: the phase in which the prediction of a user’s preference is calculated.
Traditionally, it is the phase in which a recommender estimates the utility
function R for the entire or some part of Users � Items space based on known
ratings and possibly other information (such as user profiles and/or item content);
in other words, it calculates the predictions of ratings for the unknown items.

• Recommendation: the phase in which the calculated prediction is used to support
the user’s decision by some recommendation process, e.g., the phase in which the
user gets recommended a set of top-N items that maximize his/her utility (such
as recommend N items with highly predicted ratings and that also satisfy some
additional desirable requirements, e.g., related to item diversity or novelty).

We first classify the existing techniques for multi-criteria rating recommenders
into two groups—techniques used during rating prediction and techniques used
during recommendation generation—and describe these groups in more detail in
the next two sections. The overview of these techniques is presented in Table 25.1.
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Table 25.1 Techniques for multi-criteria rating recommenders

Phase of the
recommendation
process Recommendation techniques

Rating
prediction

Heuristic-based approaches Model-based approaches

Using multi-criteria ratings to
improve user-user or item-item
similarity calculation in
neighborhood-based collaborative
filtering:

• Calculate similarity values on
each criterion, aggregate individ-
ual similarities into a single sim-
ilarity (possibly using importance
weights for each criterion)

• Calculate similarity values using
multidimensional distance metrics
directly on multi-criteria rating
vectors

Heuristic rating prediction using
fuzzy modeling:

• Fuzzy linguistic modeling
• Fuzzy multi-criteria preference

aggregation

Building predictive models to
estimate unknown ratings given
multi-criteria rating data

• Typical approach: build models to
aggregating individual criteria
ratings into one overall rating

Representative model-based
approaches:

• Simple aggregation functions:
simple average, linear regression

• Probabilistic modeling: flexible
mixture models, probabilistic
latent semantic analysis

• Multi-linear singular value
decomposition (MSVD)

• Complex aggregation functions:
support vector regression (SVR)

Item
recommendation
(i.e.,
determining the
best items)

When the overall rating is available (among the multi-criteria ratings)

• Typical approach: rank items by their predicted overall rating

When the overall rating is not available:

• Design a total order for item recommendations, e.g., UTA approach
• Find Pareto optimal item recommendations, e.g., data envelopment

analysis, skyline queries
• Use individual rating criteria as recommendation filters

25.3 Engaging Multi-Criteria Ratings During Prediction

This section provides an overview of the techniques that use multi-criteria ratings
to predict an overall rating or individual criteria ratings (or both). In general,
recommendation techniques can be classified by the formation of the utility function
into two categories: heuristic-based (sometimes also referred to as memory-based)
and model-based techniques [4, 12]. Heuristic-based techniques compute the utility
of each item for a user on the fly based on the observed data of the user and are
typically based on a certain heuristic assumption. For example, a neighborhood-
based technique—one of the most popular heuristic-based collaborative filtering
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techniques—assumes that two users who show similar preferences on the observed
items will have similar preferences for the unobserved items as well. In contrast,
model-based techniques learn a predictive model, typically using statistical or
machine-learning methods, that can best explain the observed data, and then use
the learned model to estimate the utility of unknown items for recommendations.
Following this classification, we also present the algorithms of multi-criteria rating
recommenders by grouping them into heuristic and model-based approaches.

25.3.1 Heuristic Approaches

There has been some work done to extend the similarity computation of the
traditional heuristic-based collaborative filtering technique to reflect multi-criteria
rating information [2, 52, 92]. In this approach, the similarities between users
are computed by aggregating traditional similarities from individual criteria or
using multidimensional distance metrics. Note that this approach changes only
the similarity calculation component of traditional recommendation algorithms;
once the similarity is estimated, the overall rating calculation process remains the
same.

In particular, the neighborhood-based collaborative filtering recommendation
technique predicts unknown ratings for a given user, based on the known ratings of
the other users with similar preferences or tastes (i.e., neighbors). Therefore, the first
step of the prediction processes is to choose the similarity computation method to
find a set of neighbors for each user. Various methods have been used for similarity
computation in single-criterion rating recommender systems, and the most popular
methods are correlation-based and cosine-based. R.u; i/ represents the rating that
user u gives to item i, and R.u/ represents the average rating of user u. Assuming
that I.u; u0/ represents the common items that two users u and u0 rated, two popular
similarity measures can be formally written as follows:

• Pearson correlation-based:

sim.u; u0/ D
P

i2I.u;u0/.R.u; i/ � R.u//.R.u0; i/ � R.u0//qP
i2I.u;u0/.R.u; i/ � R.u//2

qP
i2I.u;u0/.R.u0; i/ � R.u0//2

(25.4)
• Cosine-based:

sim.u; u0/ D
P

i2I.u;u0/ R.u; i/R.u0; i/qP
i2I.u;u0/ R.u; i/2

qP
i2I.u;u0/ R.u0; i/2

(25.5)

Multi-criteria rating recommenders cannot directly employ the above formulas,
because R.u; i/ contains an overall rating r0, and k multi-criteria ratings r1; : : : ; rk,
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i.e., R.u; i/ D .r0; r1; : : : ; rk/.1 Thus, there are k+1 rating values for each pair of
.u; i/, instead of a single rating. Two different similarity-based approaches that use
k C 1 rating values in computing similarities between users have been used. The
first approach aggregates traditional similarities that are based on each individual
rating. This approach first computes the similarity between two users separately
on each individual criterion, using any traditional similarity computation, such as
correlation-based and cosine-based similarity. Then, a final similarity between two
users is obtained by aggregating kC1 individual similarity values. Adomavicius and
Kwon [2] propose two aggregation approaches: an average and the worst-case (i.e.,
smallest) similarity, as specified in (25.6) and (25.7). As a general approach, Tang
and McCalla [92], in their recommender system of research papers, compute an
aggregate similarity as a weighted sum of individual similarities over several criteria
of each paper (e.g., overall rating, value added, degree of being peer-recommended,
and learners’ pedagogical features such as interest and background knowledge) as
specified in (25.8). In their approach, the weight of each criterion c, denoted by wc,
is chosen to reflect how important and useful the criterion is considered to be for the
recommendation.

• Average similarity:

simavg.u; u0/ D 1

kC 1

Xk

cD0
simc.u; u0/ (25.6)

• Worst-case(smallest) similarity:

simmin.u; u0/ D min
cD0;:::;k

simc.u; u0/ (25.7)

• Aggregate similarity:

simaggregate.u; u0/ D
Xk

cD0
wcsimc.u; u0/ (25.8)

The second approach calculates similarity using multidimensional distance metrics,
such as Manhattan, Euclidean, and Chebyshev distance metrics [2]. The distance
between two users u and u0 on item i, d.R.u; i/; R.u0; i//, can be calculated as:

• Manhattan distance: Xk

cD0
jrc.u; i/ � rc.u

0; i/j (25.9)

1In some recommender systems, R.u; i/ might not contain the overall ratings r0 in addition to k
multi-criteria ratings, i.e., R.u; i/ D .r1; : : : ; rk/. In this case, all the formulas in this subsection
will still be applicable with index c 2 f1; : : : ; kg, as opposed to c 2 f0; 1; : : : ; kg.
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• Euclidean distance: rXk

cD0
jrc.u; i/ � rc.u0; i/j2 (25.10)

• Chebyshev (or maximal value) distance:

max
cD0;:::;k

jrc.u; i/ � rc.u
0; i/j (25.11)

The overall distance between two users can be simply an average distance for all
common items that both users rated, and it can be formally written as:

dist.u; u0/ D 1

jI.u; u0/j
X

i2I.u;u0/
d.R.u; i/; R.u0; i// (25.12)

The more similar two users are (i.e., the larger the similarity value between
them is), the smaller is the distance between them. Therefore, the following simple
transformation is needed because of the inverse relationship of the two metrics:

sim.u; u0/ D 1

1C dist.u; u0/
(25.13)

Manouselis and Costopoulou [52] also propose three different algorithms to
compute similarities between users in multi-criteria rating settings: similarity-per-
priority, similarity-per-evaluation, and similarity-per-partial-utility. The similarity-
per-priority algorithm computes the similarities between users based on importance
weights wc.u/ of user u for each criterion c (rather than ratings R.u; i/). In this way, it
creates a neighborhood of users that have the same importance weights on multiple
criteria with the target user. Then, it tries to predict the overall utility of an item for
this user, based on the total utilities of the users in the neighborhood. In addition, the
similarity-per-evaluation and similarity-per-partial-utility algorithms create separate
neighborhoods for the target user for each criterion, i.e., they calculate the similarity
with other users per individual criterion, and then predict the rating that the target
user would provide upon each individual criterion. The similarity-per-evaluation
algorithm calculates the similarity based on the non-weighted ratings that the users
provide on each criterion. The similarity-per-partial-utility algorithm calculates the
similarity based on the weighted (using wc.u/ of each user u) ratings that the users
provide on each criterion.

In such systems, the similarities between users are obtained using multi-criteria
ratings, and the rest of the recommendation process can be the same as in single-
criterion rating systems. The next step is, for a given user, to find a set of neighbors
with the highest similarity values and predict unknown overall ratings of the
user based on neighbors’ ratings. Therefore, these similarity-based approaches
are applicable only to neighborhood-based collaborative filtering recommendation
techniques that need to compute the similarity between users (or items).
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In summary, multi-criteria ratings can be used to compute the similarity between
two users in the following two ways [2]: by (1) aggregating similarity values that
are calculated separately on each criterion into a single similarity and (2) calculating
the distance between multi-criteria ratings directly in the multi-dimensional space.
Empirical results using a small-scale Yahoo! Movies dataset show that both heuristic
approaches outperform the corresponding traditional single-rating collaborative
filtering technique (i.e., that uses only single overall ratings) by up to 3.8 % in
terms of precision-in-top-N metric, which represents the percentage of truly high
overall ratings among those that the system predicted to be the N most relevant
items for each user [2]. The improvements in precision depend on many parameters
of collaborative filtering techniques, such as neighborhood sizes and the number
of top-N recommendations. Furthermore, these approaches can be extended as
suggested by Manouselis and Costopoulou [52] by computing similarities using
not only known rating information, but also importance weights for each criterion.
The latter approaches were evaluated in an online application that recommends
e-markets to users, where multiple buyers and sellers can access and exchange infor-
mation about prices and product offerings, based on users’ multi-criteria evaluations
on several e-markets. The similarity-per-priority algorithm using Euclidian distance
performed the best among their proposed approaches in terms of the mean absolute
error (MAE) (i.e., 0.235 on scale of 1–7) with a fairly high coverage (i.e., 93 % of
items can be recommended to users) as compared to non-personalized algorithms,
such as arithmetic mean and random, that produce higher MAE (0.718 and 2.063,
respectively) with 100 % coverage [52].

Maneeroj et al. [50] further investigate the problem of finding the most appropri-
ate neighbors in multi-criteria recommendation settings. In particular, based on the
observation that different criteria may have varying importance for different users,
they propose an approach that incorporates the individualized importance levels of
each criteria into the user-user similarity calculation process. This approach may
provide more appropriately chosen neighbors and, consequently, result in better
recommendation results.

As mentioned earlier, once the similarity between users or items is computed,
the standard neighborhood-based collaborative filtering recommendation technique
generally estimates the rating that user u would give to item i by computing the
weighted average of all known ratings R.u0; i/, where user u0 is “similar” to u. Two
popular ways to compute this weighted average are as follows [12]:

• Weighted sum approach:

R.u; i/ D
P

u02N.u;i/ sim.u; u0/R.u0; i/P
u02N.u;i/ jsim.u; u0/j (25.14)

• Adjusted weighted sum approach:

R.u; i/ D R.u/C
P

u02N.u;i/ sim.u; u0/.R.u0; i/ � R.u0//P
u02N.u;i/ jsim.u; u0/j (25.15)
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Here the value of rating R.u0; i/ is weighted by the similarity of user u0 to user
u—the more similar the two users are, the more weight R.u0; i/ will have in the
computation of rating R.u; i/. N.u; i/ represents the set of users that are similar to
user u among the ones who consumed item i, and the size of set N.u; i/ can range
anywhere from 1 to all users in the dataset. Limiting the neighborhood size to some
specific number (e.g., 3) will determine how many similar users will be used in
the computation of rating R.u; i/.

In the similarity-based approach [2], the above two formulas are typically used
to predict the overall ratings only, because the recommendations are usually based
on the system’s predictions of the overall user preferences for items. In other
words, R.u; i/ here refers to r0 and not to the entire multi-dimensional rating vector
R.u; i/ D .r0; r1; : : : ; rk/. However, the same formulas can be used to predict
each individual criteria rating ri, if desired. Also, the heuristic similarity-based
approach explained above represent the user-based approach that uses neighboring
users to compute recommendations. As the user-based approach using single
criterion ratings can be straightforwardly transformed to the item-based approach
that uses neighboring items to compute recommendations [85], the formulas for the
user-based approach in the multi-criteria rating settings can be straightforwardly
rewritten for the item-based approach.

Furthermore, having to submit precise numeric ratings for multiple criteria of
each individual item may represent an increased burden for users. Therefore, it may
be advantageous to consider the subjective, imprecise, and vague nature of human
ratings when collecting such information. Several studies propose to use fuzzy
linguistic approaches for representing and collecting user ratings and to employ
fuzzy multi-criteria decision making techniques to rank the relevant items for each
user [10, 66]. More specifically, each user’s relevance feedback can be collected in
the qualitative form (in linguistic terms). For example, in the work of Boulkrinat
et al. [10], each user evaluated six criteria of a hotel (i.e., Clean, Comfort, Location,
Facilities, Staff, and Value-for-Money), and the user’s preferences are expressed
through linguistic terms on a scale of 7 levels (i.e., Very High, High, Medium High,
Medium, Medium Low, Low and Very Low). The preference for each criterion is
then modeled not by a single numeric value (i.e., single level) but rather by a “fuzzy
number” (essentially, by a range of levels). The weight of each criterion can be
provided by an individual user, representing his or her personal relative importance
among the six criteria.

Other fuzzy-based algorithms for multi-criteria CF systems are introduced in the
work of Nilashi et al. [61], including Weighted Fuzzy MC-CF and Fuzzy Euclidean
MC-CF that use fuzzy-based average similarity and fuzzy-based Euclidean distance
respectively, and Fuzzy Average MC-CF that uses a fuzzy-based user- and item-
based predictions in a weighted approach. Palanivel and Sivakumar [68] also
propose a fuzzy aggregation-based approach that finds preference criterion using a
maximum operator, particularly from implicit interest indicators such as time spent
on hearing a music item, number of accesses to a music item, and music download
status. The use of such implicit interest indicators can further mitigate the burden
for the users to keep providing multiple ratings for each consumed item.
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25.3.2 Model-Based Approaches

Model-based approaches construct a predictive model to estimate unknown ratings
by learning from the observed data. Several existing approaches for multi-criteria
rating recommenders fall into this category, including simple aggregation functions,
probabilistic modeling, multilinear singular value decomposition (MSVD), and
support vector regression (SVR).

Aggregation Function Approach While overall rating r0 is often considered
simply as just another criterion rating in similarity-based heuristic approaches
(as illustrated earlier), the aggregation function approach assumes that the overall
rating serves as an aggregate of multi-criteria ratings [2]. Given this assumption,
this approach finds aggregation function f that represents the relationship between
overall and multi-criteria ratings, i.e.,

r0 D f .r1; : : : ; rk/ (25.16)

For example, in a movie recommendation application, the story criteria rating
may have a very high “priority,” i.e., the movies with high story ratings are well
liked overall by some users, regardless of other criteria ratings. Therefore, if the
story rating of the movie is predicted high, the overall rating of the movie must also
be predicted high in order to be accurate.

The aggregation function approach consists of three steps, as summarized in
Fig. 25.3. First, this approach estimates k individual ratings using any recom-
mendation technique. That is, the k-dimensional multi-criteria rating problem is
decomposed into k single-rating recommendation problems. Second, aggregation
function f is chosen using domain expertise, statistical techniques, or machine
learning techniques. For example, the domain expert may suggest a simple average
function of the underlying multi-criteria ratings for each item based on her prior
experience and knowledge. An aggregation function also can be obtained by using
statistical techniques, such as linear and non-linear regression analysis techniques,
as well as various sophisticated machine learning techniques, such as artificial
neural networks. Finally, the overall rating of each unrated item is computed based
on the k predicted individual criteria ratings and the chosen aggregation function f .

While the similarity-based heuristic approaches described earlier apply to only
neighborhood-based collaborative filtering recommendation techniques, the aggre-
gation function approach can be used in combination with any traditional recom-
mendation technique, because individual criteria ratings are used for the prediction
in the first step. As one example of possible aggregation functions, Adomavicius and
Kwon [2] use linear regression and estimate coefficients (i.e., importance weights
of each individual criterion) based on the known ratings.

Adomavicius and Kwon [2] also note that the aggregation function can have
different scopes: total (i.e., when a single aggregation function is learned based
on the entire dataset), user-based or item-based (i.e., when a separate aggregation
function is learned for each user or item).
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Fig. 25.3 Aggregation function approach (an example of a three-criteria rating system)

Empirical analysis using data from Yahoo! Movies shows that the aggregation
function approach (using multi-criteria rating information) outperforms a tradi-
tional single-rating collaborative filtering technique (using only overall ratings) by
0.3–6.3 % in terms of precision-in-top-N (N D 3; 5; and 7) metric [2].

Probabilistic Modeling Approach Some multi-criteria recommendation appro-
aches adopt probabilistic modeling algorithms that are becoming increasingly
popular in data mining and machine learning. One example is the work of Sahoo
et al. [80], which extends the flexible mixture model (FMM) developed by Si and
Jin [89] to multi-criteria rating recommenders. The FMM assumes that there are
two latent variables Zu and Zi (for users and items), and they are used to determine
a single rating r of user u on item i, as shown in Fig. 25.4a. Sahoo et al. [80]
also discover the dependency structure among the overall ratings (r0) and multi-
criteria ratings (r1; r2; r3, and r4), using Chow-Liu tree structure discovery [19], and
incorporate the structure into the FMM, as shown in Fig. 25.4b.

The FMM approach is based on the assumption that the joint distribution of three
variables (user u, rating r, and item i) can be expressed using the sum of probabilities
over the all possible combinations of the two latent class variables Zu and Zi, as
follows.

P.u; i; r/ D
X
Zu;Zi

P.Zu/P.Zi/P.ujZu/P.ijZi/P.rjZu; Zi/ (25.17)

In summary, an overall rating of an unknown item for a target user is estimated
with the following two steps: learning and prediction. In the first (learning) step, all
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Fig. 25.4 Examples of probabilistic modeling approach in recommender systems. (a) Flexible
Mixture Model for a single-rating recommender system [89]. (b) FMM with multi-criteria rating
dependency structure [80]

the parameters of the FMM are estimated using the expectation maximization (EM)
algorithm [21]. Using the obtained parameters, in the second (prediction) step, the
overall rating of a given unknown item is predicted as the most likely value (i.e.,
the rating value with the highest probability). This approach has been extended to
multi-criteria ratings, and the detailed algorithm can be found in [80].

Sahoo et al. [80] also compare their model in Fig. 25.4b with the model
that assumes independence among multi-criteria ratings conditional on the latent
variables, and found that the model with dependency structure performs better
than the one with the independence assumption. This finding demonstrates the
existence of the “halo effect” in multi-criteria rating systems. The “halo effect” is
a phenomenon often studied in psychometric literature, which indicates a cognitive
bias whereby the perception of a particular object in one category influences the
perception in other categories [94]. In multi-criteria recommender systems, the
individual criterion ratings provided by users are correlated due to the “halo effect”,
and particularly more correlated to an overall rating than to other individual ratings
[80]. In other words, the overall rating given by the user to a specific item seems to
affect how the user rates the other (individual) criteria of this item. Thus, controlling
for an overall rating reduces this halo effect and helps to make individual ratings
independent of each other, as represented in the Chow-Liu tree dependency structure
(Fig. 25.4b).

Using data from Yahoo! Movies, Sahoo et al. [80] show that multi-criteria rating
information is advantageous over a single rating when very little training data
is available (i.e., less than 15 % of the whole data is used for training). On the
other hand, when large training data is available, additional rating information does
not seem to add much value. In this analysis, they measure the recommendation
accuracy using the MAE metric. However, when they validate this probabilistic
modeling approach using precision and recall metrics in retrieving top N items, their
model performs better in all cases (i.e., both with small and large datasets) with a
maximum of 10 % increase. With more training data, the difference between the
model with multi-criteria ratings and the traditional single-rating model diminishes
in terms of precision and recall metrics.
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Fig. 25.5 Graphical model representation of multi-criteria PLSA algorithms. (a) Full Gaussian
PLSA [100]. (b) Linear Gaussian Regression PLSA using Yahoo!Movies dataset [100]

Another probabilistic modeling approach was proposed by Zhang et al. [100],
who extend the probabilistic latent semantic analysis (PLSA) approach used for
single-criteria recommender systems [32] into multi-criteria rating settings. In
particular, [100] investigate two multi-criteria PLSA algorithms, based on their
modeling of the underlying multi-criteria rating distribution of each user: (1) using
full multi-variate Gaussian distribution, and (2) using linear Gaussian regression
model. Both proposed approaches provide accuracy improvements over several
single-criteria and multi-criteria recommender systems baselines. Graphical model
presentations of the two approaches are shown in Fig. 25.5a and b, where r
represents a rating of item i by user u and Z is a latent variable. The full gaussian
model uses multi-variable nodes r0; r1; : : : ; rk instead of uni-variate node r, and
applies the same EM algorithm as used in the single-rating PLSA. Linear Gaussian
regression model computes the overall preference (r0) as the linear combination of
preferences on individual criteria (r1; : : : ; rk). Furthermore, while the work of Sahoo
et al. [80] does not employ any normalization scheme for ratings of each user (e.g.,
adjusting the neutral vote of the individuals to zero and standardizing the scale of all
users to the same value), [100] shows that user normalization significantly affects
the performance of the multi-criteria PLSA approaches.

Multilinear Singular Value Decomposition (MSVD) Approach Li et al. [46]
propose an approach to improve a traditional collaborative filtering algorithm by
utilizing the MSVD technique which is a particular realization of the Matrix Fac-
torization approach in multi-criteria rating settings. Singular value decomposition
(SVD) techniques have been extensively studied in numerical linear algebra and
have also gained popularity in recommender systems applications because of their
effectiveness in improving recommendation accuracy [28, 40, 84]. In single-rating
recommender systems, these techniques are used to find a lower-dimensional feature
space. For example, using K latent features (i.e., rank-K SVD), user u is associated
with user-factor vector pu (the user’s preferences on K features), and item i is
associated with item-factor vector qi (the item’s importance weights on K features).
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After all the values in user- and item-factors vectors are estimated, the preference
of how much user u likes item i, denoted by R�.u; i/, is predicted by taking an inner
product of the two vectors, i.e.,

R�.u; i/ D pT
u qi (25.18)

More details on the basic SVD techniques can be found in Chap. 7. While
the SVD techniques are commonly used as a decomposition method for two-
dimensional data (i.e., single criterion ratings), they can be extended for multi-
dimensional data (i.e., multi-criteria ratings), referred to as MSVD techniques [20].

For example, Li et al. [46] incorporate contextual information and multi-criteria
ratings into recommendation processes. Based on the contextual information, the
recommendation problem is defined as a 3-order tensor representing the rating
of an item by a user on a criterion under a specific context, and the tensor
approximation based on the truncated MSVD technique is then performed. The
approximated tensor is finally used to improve neighborhood formation for later
use in a neighborhood-based collaborative filtering approach, i.e., identifying the
nearest neighbors of each user and computing top-N recommendations.

More specifically, Li et al. [46] use the MSVD to reduce the dimensionality of
multi-criteria rating data and evaluate their approach in the context of a restaurant
recommender system, where a user rates a restaurant on 10 criteria (i.e., cuisine,
ambience, service, etc.). The results demonstrate that their approach improves the
accuracy of recommendations (as measured by precision-in-top-N) by up to 5 %, as
compared to the traditional single-rating model.

Support Vector Regression (SVR) Approach Several other studies also follow
the general aggregation function approach; however, instead of using the tradi-
tional linear least squares regression method, they propose to use the Support
Vector Regression (SVR) [23] to learn the regression-based rating aggregation
functions [25, 34, 35, 81]. While all features can be considered in the regression,
[34, 35] propose several ways to choose the most relevant features—by using the
chi-squared statistics with respect to the overall ratings for each criterion, applying a
genetic feature selection algorithm, or obtaining the advice from a domain expert—
and highlight the importance of choosing an adequate subset of item dimensions
since it affects the performance of recommendations.

In addition to the higher reported predictive accuracy, another advantage of
the SVR technique is that it can be employed in settings with relatively few data
points but many features (e.g., many rating dimensions). In particular, Jannach
et al. [35] use both user- and item-based SVR approach, i.e., they estimate regression
models R�

user individually for each user and regression models R�
item individually

for each item. Then, the two predictions can be combined using item and user
weights. As described in Fig. 25.6, user- and item-based SV-regression is learned
from training data, and criteria ratings can be predicted using any CF technique.
Then, overall ratings are estimated using the criteria predictions and SV-regression
functions. The final prediction is computed as a weighted combination of the two
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Fig. 25.6 Gradient descent algorithm for the weighted support vector regression (SVR)
method [35]

overall predictions obtained from user and item-based SV-regression function. Step
4 of Fig. 25.6 describes how weights wu and wi are estimated (optimized) in a
personalized manner for each user u and item i. A fast, heuristic gradient descent
procedure is used to estimate parameters for each user and item by minimizing the
prediction error calculated as the difference between the predicted and the actual
rating. Here parameter � determines the size of the correcting step, and � is used as
a regularization to avoid over-fitting.

The results show that the proposed approach using support vector regression with
individual and optimized weights for each single user and item compares favorably
against a number of existing approaches with respect to multiple evaluation metrics
(RMSE, F-measure, precision-in-top-N) on hotel and movie rating datasets. In
addition, [35] also evaluated several feature selection strategies that can be useful
for multi-criteria recommendation settings with many rating dimensions and showed
that using relative simple feature selection procedures (such as chi-square statistics)
can lead to further improvements in recommendation accuracy.

In summary, the above approaches represent some of the initial attempts to
apply sophisticated learning techniques to address multi-criteria recommendation
problems, and we expect to see more such techniques in the future. In the next
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section, we discuss different approaches to recommending items to users, assuming
that the unknown multi-criteria ratings have been estimated using any of the
techniques discussed above.

25.4 Engaging Multi-Criteria Ratings During
Recommendation

As mentioned above, multi-criteria recommender systems may choose to model a
user’s utility for a given item by including both the overall rating and ratings of
individual item components/criteria or they may choose to include only ratings
of individual criteria. If overall ratings are included as part of the model, the
recommendation process in such cases is typically straightforward: after predicting
all unknown ratings, the recommender system uses the overall rating of items to
select the most highly predicted items (i.e., the most relevant items) for each user.
In other words, the recommendation process is essentially the same as in traditional,
single-criterion recommender systems.

However, without an overall rating the recommendation process becomes more
complex, because it is less apparent how to establish the total order of the items.
For example, suppose that we have a two-criterion movie recommender system,
where users judge movies based on their story (i.e., plot) and visual effects.
Further, suppose that one movie needs to be chosen for recommendation among
the following two alternatives: (1) movie X, predicted as 8 in story and 2 in visuals,
and (2) movie Y , predicted as 5 in story and 5 in visuals. Since there is no overall
criterion to rank the movies, it is not easy to judge which movie is better, unless
some other modeling approach is adopted, using some non-numerical (e.g., rule-
based) way for expressing preferences. Several approaches have been proposed in
the recommender systems literature to deal with this problem: some try to design
a total order on items and obtain a single global optimal solution for each user,
whereas others take one of the possible partial orders of the items and find multiple
(Pareto optimal) solutions. Below we briefly mention related work on multi-criteria
optimization, describe several approaches that have been used in the recommender
systems literature, and discuss other potential uses of multi-criteria ratings in the
recommendation process.

25.4.1 Related Work: Multi-Criteria Optimization

Multi-criteria optimization problems have been extensively studied in the operations
research (OR) literature [24], although not in the context of recommender systems.
This multi-criteria optimization approach assists a decision maker in choosing the
best alternative when multiple criteria conflict and compete with each other. For
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example, various points of view, such as financial, human resources-related, and
environmental aspects should be considered in organizational decision making. The
following approaches are often used to address multi-criteria optimization problems,
and can be applied to recommender systems, as discussed in [4]:

• Finding Pareto optimal solutions;
• Taking a linear combination of multiple criteria and reducing the problem to the

single-criterion optimization problem;
• Optimizing only the most important criterion and converting other criteria to

constraints;
• Consecutively optimizing one criterion at a time, converting an optimal solution

to constraints and repeating the process for other criteria.

In multi-criteria rating recommenders, an item can be evaluated differently on
a different criterion; thus, it is not an easy task to find the best item overall.
Below we describe several recommendation approaches that have been used in the
recommender systems literature, all of them having roots in multi-criteria optimiza-
tion techniques, including: converting the multi-criteria optimization problem into
single-criterion ranking problem (Sect. 25.4.2), finding Pareto optimal recommen-
dations (Sect. 25.4.3), and using multiple criteria as constraints (Sect. 25.4.4).

25.4.2 Designing a Total Order for Item Recommendations

In the recommender systems literature there has been some work using multi-
attribute utility theories from decision sciences, which can be described as one
way to take a linear combination of multiple criteria and find an optimal solution
[43], essentially reducing the multi-criteria optimization problem to a simple, single-
criteria ranking problem. For example, the approach by Lakiotaki et al. [43] ranks
the items by adopting the UTilités Additive (UTA) method proposed by Siskos
et al. [90]. Their algorithm aims to estimate overall utility U of a specific item for
each user by adding the marginal utilities of each criterion c.c D 1; : : : ; k/.

U D
Xk

cD1
uc.Rc/ (25.19)

which is subject to the following constraints: uc.Rworst
c / D 0, 8c D 1; 2; : : : ; k

and
Pk

cD1 uc.Rbest
c / D u1.Rbest

1 / C u2.Rbest
2 / C 	 	 	 C uk.Rbest

k / D 1. Here Rc is the
rating provided on criterion c, and uc.Rc/ is a non-decreasing real-value function
(marginal utility function) for a specific user. Assuming that ŒRworst; Rbest� is the
criterion evaluation scale, Rworst

i and Rbest
i are the worst and the best level of the i-th

criterion respectively. The decision maker is asked to provide her global evaluation
so as to form a total pre-order of the alternatives (items): i1 � i2 � 	 	 	 � im.
The developed utility model is assumed to be consistent with the decision maker’s
judgment policy so that U.i1/ > U.i2/ 	 	 	 > U.im/. In developing the global
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utility model to meet this requirement, there are two types of possible errors which
may occur: (1) the under-estimation error when the developed model assigns an
alternative to a lower (better) rank than the one specified in the given pre-order (the
alternative is under-estimated by the decision maker), and (2) the over-estimation
error when the developed model assigns an alternative to a higher (worse) rank than
the one specified in the given pre-order (the alternative is over-estimated by the
decision maker). The final model is chosen by minimizing the sum of these two
errors. Given the estimated ratings on multiple criteria, this can be performed using
linear programming techniques.

Since this approach uses the ranking information with ordinal regression tech-
niques, Kendall’s tau is used as a measure of correlation between two ordinal-level
variables to compare an actual order and the predicted order. The empirical results
obtained by using data from Yahoo! Movies show that 20.4 % of users obtain a
Kendall’s tau of 1 indicating a total agreement of the orders between the ones
predicted by the recommender system and the ones stated by users, and the mean
value of Kendall’s tau across all users is 0.74. This approach is also evaluated using
the Receiver Operating Curve (ROC), which depicts relative trade-offs between true
positives and false positives. The obtained Area Under Curve (AUC) of 0.81, where
1 represents a perfect classifier and 0.5 represents the performance of a random
classifier, demonstrates that multi-criteria ratings provide measurable improvements
in modeling users’ preferences.

Similarly, Manouselis and Costopoulou [52] propose a method that calculates
total utility U either by summing the k predicted partial utilities uc (in their
similarity-per-partial-utility algorithm) or by weighting the predicted ratings that
the user would give on each criterion c by the user’s importance weights wc (in their
similarity-per-evaluation algorithm). In both cases, the total utility of a candidate
item is calculated using an aggregate function of the following form:

U D
Xk

cD1
uc D

Xk

cD1
wcRc (25.20)

Here individual ratings on multiple criteria are used to rank the candidate items,
rather than explicitly estimate overall ratings. Finally, once the total order on the
candidate items is established using any of the above techniques, each user gets
recommended the items that maximize this total utility.

Akhtarzada et al. [5] also use each user’s ratings on items under multiple criteria
to rank the items as a recommendation list. To do so, users are first assigned ideal
values on each criterion as an average of their past ratings, and the rating on a new
item for a specific user is predicted by calculating the distance between the ideal
values for all users and the ideal values for the user. Then, when a user sees an item,
the most similar item can be recommended based on the similarities between items
for the user.
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25.4.3 Finding Pareto Optimal Item Recommendations

This approach discovers several good items among large number of candidates
(rather than arriving at a unique solution by solving a global optimization problem)
when different items can be associated with multiple conflicting criteria and the total
order on items is not directly available. Data envelopment analysis (DEA), often
also called “frontier analysis”, is commonly used to measure productive efficiency
of decision making units (DMU) in operations research [18]. DEA computes the
efficiency frontier, which identifies the items that are “best performers” overall,
taking into account all criteria. DEA does not require a priori weights for each
criterion, and uses linear programming to arrive more directly at the best set of
weights for each DMU. Specifically, in the context of multi-criteria recommender
systems, given all the candidate items that are available for recommendation to
a given user (including the information about their predicted ratings across all
criteria), DEA would be able to determine the reduced set of items (i.e., the frontier)
that have best ratings across all criteria among the candidates. These items then can
be recommended to the user.

While DEA has not been directly used in multi-criteria rating recommenders,
the multi-criteria recommendation problem without overall ratings can also be
formulated as a data query problem in the database field, using similar motivation
[44]. Lee and Teng [44] utilize skyline queries to find the best restaurants across
multiple criteria (i.e., food, décor, service, and cost). As Fig. 25.7 shows, skyline
queries identify a few skyline points (i.e., Pareto optimal points) that are not
dominated by any others from a large number of candidate restaurants in two-
dimensional data space (food and décor). Here, for a given user, a candidate item is
considered to be dominated, if there exists another candidate item that has better or
equal ratings on all criteria.

Empirical results using multi-criteria ratings of Zagat Survey in [44] show
that the recommender system using skyline queries helps to reduce the number

Fig. 25.7 An example of
skyline points (the best
candidate restaurants) in
two-dimensional space
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of choices that users should consider from their inquiries. For example, when a
user searches for buffet restaurants which are located in New York City with a
cost of no more than $30, the system recommends only two restaurants among
twelve candidate restaurants, based on the ratings on four criteria. However, this
preliminary work needs to be extended in several directions because the skyline
queries may not scale well with the increasing number of criteria, resulting in a
large number of skyline points with high computational cost.

25.4.4 Using Multi-Criteria Ratings as Recommendation
Filters

Similar to how content attributes can be used as recommendation filters in recom-
mender systems [45, 86], multi-criteria ratings can be used for similar purposes
as well. For example, a user may want to specify that only the movies with an
exceptionally good story should be recommended to her at a given time, regardless
of other criteria, such as visual effects. Then, only the movies that are highly
predicted in the story criterion (say, � 9 out of 10) will be recommended to the
user. In other words, the dimensionality of multi-criteria optimization problem can
be reduced by converting some of the criteria to constraints (filters). This approach
is also similar to how content-based [45, 86] or context-aware [3] recommendation
approaches filter recommendations; however, it is also slightly different from
them, because the filtering is done not based on objective content attributes (e.g.,
MovieLength < 120 min) or additional contextual dimensions (e.g., TimeOf-Week
= weekend), but on the subjective rating criteria (e.g., Story� 9), the predicted value
of which is highly dependent on user’s tastes and preferences.

25.5 Discussion and Future Work

Recommender systems represent a vibrant and constantly changing research area.
Among the important recent developments, recommender systems have recently
started adopting multi-criteria ratings provided by users, and in this chapter we
explored algorithms and techniques for multi-criteria recommender systems. These
relatively new systems have not yet been studied extensively, and in this section
we present a number of challenges and future research directions for this category
of recommender systems.



872 G. Adomavicius and Y. Kwon

25.5.1 Developing New Approaches for Multi-Criteria Ratings

Modeling Multi-Criteria Ratings Traditionally, user preferences in recommender
systems (including multi-criteria recommender systems) are expressed using simple
numeric ratings. Recent work has started to explore alternative approaches for
representing and collecting user ratings (e.g., using fuzzy techniques [10, 66]) as
well as for modeling ratings in a more nuanced manner (e.g., taking into account
semantic interval-scale characteristics of numeric ratings [57]). A comprehensive
exploration of user preference modeling, especially in more complex multi-criteria
settings, represents an interesting direction for future work.

Intelligent Data Pre-Processing and Segmentation It is well-known that many
recommendation settings suffer from the data “sparsity” issue. One possible
approach to alleviate this problem is to perform intelligent data segmentation or
clustering, where the non-useful dimensions (criteria) are discarded or where data
from similar users (or similar items) is merged and the resulting recommendations
are calculated (and potentially improved) by taking this aggregation into account.
In data mining literature, there has been some work on what the optimal
customer segmentation should be [36]. Also, in multi-criteria recommender
systems, several approaches have already used a wide variety of specialized user
clustering procedures as part of the proposed recommendation algorithms (e.g.,
[42, 47, 49, 61, 62]). Some researchers have also explored different feature selection
techniques for determining the best criteria to use in multi-criteria settings [35].
However, further studies are needed to examine various data pre-processing
and segmentation approaches for multi-criteria recommender systems in a more
systematic manner.

Predicting Relative Preferences An alternative way to define the multi-criteria
recommendation problem could be formulated as predicting the relative preferences
of users, as opposed to the absolute rating values. There has been some work on
constructing the correct relative order of items using ordering-based techniques. For
example, Freund et al. [26] developed the RankBoost algorithm based on the well-
known AdaBoost method and, in multi-criteria settings, such algorithms could be
adopted to aggregate different relative orders obtained from different rating criteria
for a particular user. In particular, this is an approach taken by the DIVA system
[59, 60].

Constructing the Item Evaluation Criteria More research needs to be done on
choosing or constructing the best set of criteria for evaluating an item. For example,
most of current multi-criteria rating recommenders require users to rate an item on
multiple criteria at a single level (e.g., story and special effects of a movie). This
single level of criteria could be further broken down into sub-criteria, and there
could be multiple levels depending on the given problem. For example, in a movie
recommender system, special effects could be again divided into sound and graphic
effects. More information with multiple levels of criteria could potentially help to
better understand user preferences, and various techniques, such as the analytic
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hierarchy process (AHP), can be used to consider the hierarchy of criteria [79],
as Schmitt et al. [87] propose to do in their system. As we consider more criteria
for each item, we may also need to carefully examine the correlation among criteria
because the choice of criteria may significantly affect the recommendation quality.
Furthermore, it is important to have a consistent family of criteria for a given
recommender system application, which means that the criteria are monotonic,
exhaustive, and non-redundant. In summary, constructing a set of criteria for a given
recommendation problem is an interesting and important topic for future research.

Incorporating Domain-Specific Information Many multi-criteria recommender
systems are designed without exploiting specific domain knowledge. For example,
understanding not just the multiple hotel characteristics (such as cleanliness,
location, service, etc.), but also the different segments of population that like to
travel (e.g., business travellers, senior travellers, honeymoon/romantic travellers,
spring-break travellers, etc.) can provide substantial advantages in designing better
recommendation algorithms. Several studies have started exploring the models
that can incorporate domain-specific information into multi-criteria recommender
systems [11, 27], but there are a lot of further opportunities in this research direction.
Similarly, many application domains have rich content information available, and
taking advantage of this information (e.g., leveraging tag information for movie
recommendation [29, 30] or leveraging job-seeking intent for talent recommen-
dation [78]), can provide further improvements in multi-criteria recommender
systems.

25.5.2 Extending Existing Techniques for Multi-Criteria
Settings

Reusing Existing Single-Rating Recommendation Techniques A huge number
of recommendation techniques have been developed for single-rating recommender
systems over the last 15–20 years, and some of them have been extended to multi-
criteria rating systems, as discussed in this chapter. For example, neighborhood-
based collaborative filtering techniques can take into account multi-criteria ratings
using the huge number of design options that Manouselis and Costopoulou [53]
suggest (and as discussed in Sect. 25.3.1). There have also been multi-criteria
SVD-based and PLSA-based recommendation approaches proposed (as discussed
in Sect. 25.3.2), which stem from their single-criterion counterparts. However,
among alternative approaches, there has been a number of sophisticated hybrid
recommendation approaches developed in recent years [16], and some of them
could potentially be adopted for multi-criteria rating recommenders. Finally, more
sophisticated techniques, e.g., based on data envelopment analysis (DEA) or multi-
criteria optimization, could be adopted and extended for choosing best items in the
multi-criteria rating settings.
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Investigating Group Recommendation Techniques for Multi-Criteria Settings
Some techniques for generating recommendations to groups, as described in
Chap. 22, can be adopted in multi-criteria rating settings. According to [33], a group
preference model can be built by aggregating the diverse preferences of several
users. Similarly, a user’s preference for an item in multi-criteria rating settings can
be predicted by aggregating the preferences based on different rating criteria. More
specifically, there can be many different goals for aggregating individual preferences
[55, 64], such as maximizing average user satisfaction, minimizing misery (i.e., high
user dissatisfaction), and providing a certain level of fairness (e.g., low variance
with the same average user satisfaction). Multi-criteria rating recommenders could
investigate the adoption of some of these approaches for aggregating preferences
from multiple criteria.

25.5.3 Managing Multi-Criteria Ratings

Managing Intrusiveness The extra information provided by multi-criteria ratings
can give rise to an important issue of “intrusiveness”, i.e., the requirement for
the users to provide this extra information to the system. Specifically, for a
recommender system to achieve good recommendation performance, users typ-
ically need to provide to the system a certain amount of feedback about their
preferences (e.g., in the form of item ratings). This can be an issue even in single-
rating recommender systems [39, 56, 63], and some less intrusive techniques to
obtain user preferences in multi-criteria recommender systems have been explored
[54, 65, 67, 71]. Multi-criteria rating systems are likely to require a more significant
level of user involvement because each user would need to rate an item on multiple
criteria. Therefore, it is important to measure the costs and benefits of adopting
multi-criteria ratings and find an optimal solution to meet the needs of both
users and system designers. Preference disaggregation methods could support the
implicit formulation of a preference model based on a series of previous decisions.
A characteristic example is the UTA (i.e., UTilités Additive) method, which can be
used to extract the utility function from a user-provided ranking of known items
[43]. Another example is the ability to obtain each user’s preferences on several
attributes of an item implicitly from the user’s written comments, minimizing
intrusiveness [1, 54, 70]. There are also some empirical approaches with less
computational complexity [82]. Lastly, performing user studies on multi-criteria
recommender systems would further examine the impact of having to submit more
ratings on the overall user satisfaction.

Dealing with Missing Multi-Criteria Ratings Multi-criteria recommender sys-
tems typically would require the users to provide more data to such systems
than their single-rating counterparts, thus increasing the likelihood of obtaining
missing or incomplete data. One popular technique to deal with missing data is
the expectation maximization (EM) algorithm [21] that finds maximum likelihood
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estimates for incomplete data. In particular, the probabilistic modeling approach
for multi-criteria rating prediction proposed by Sahoo et al. [80] uses the EM
algorithm to predict values of the missing ratings in multi-criteria rating settings.
Similarly, Bayesian models are proposed to handle incomplete missing rating data,
for example, missing ratings on one criterion with the ratings on other criteria [91].
The applicability of other existing techniques in this setting should be explored, and
novel techniques could be developed by considering the specifics of multi-criteria
information, such as the possible relationships between different criteria.

Collecting Large-Scale Multi-Criteria Rating Data Multi-criteria rating datasets
that can be used for algorithm testing and parameterization are rare. For this new
area of recommender systems to be successful, it is crucial to have a number
of standardized real-world multi-criteria rating datasets available to the research
community. Some initial steps towards a more standardized representation, reusabil-
ity, and interoperability of multi-criteria rating datasets have been taken in other
application domains, such as e-learning [98].

In this section we discussed several potential future research directions for
multi-criteria recommenders that should be interesting to recommender systems
community. This list is not meant to be exhaustive; we believe that research in this
area is only in its preliminary stages, and there are a number of possible additional
topics that could be explored to advance multi-criteria recommender systems.

25.6 Conclusions

In this chapter, we aimed to provide an overview of multi-criteria recommender
systems. More specifically, we focused on the category of multi-criteria rating
recommenders, i.e., techniques that provide recommendations by modelling a user’s
utility for an item as a vector of ratings along several criteria. We reviewed current
techniques that use multi-criteria ratings for calculating the rating predictions and
generating recommendations, and discussed open issues and future challenges for
this class of recommender systems.

This survey provides a systematic view of multi-criteria recommender systems,
a roadmap of relevant work, and a discussion of a number of promising future re-
search directions. However, we believe that this sub-area of recommender systems is
still in its early stages of development, and much more research is needed to unlock
the full potential of multi-criteria recommenders.
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Chapter 26
Novelty and Diversity in Recommender Systems

Pablo Castells, Neil J. Hurley, and Saul Vargas

26.1 Introduction

Accurately predicting the users’ interests was the main direct or implicit drive of
the recommender systems field in roughly the first decade and a half of the field’s
development. A wider perspective towards recommendation utility, including but
beyond prediction accuracy, started to appear in the literature by the beginning of
the 2000s [36, 70], taking views that began to realize the importance of novelty and
diversity, among other properties, in the added value of recommendation [53, 90].
This realization grew progressively, reaching an upswing of activity by the turn
of the past decade [1, 3, 20, 39, 75]. Today we might say that novelty and
diversity are becoming an increasingly frequent part of evaluation practice. They are
being included increasingly often among the reported effectiveness metrics of new
recommendation approaches, and are explicitly targeted by algorithmic innovations
time and again. And it seems difficult to conceive progress in the recommender
systems field without considering these dimensions and further developing our
understanding thereof. Even though dealing with novelty and diversity remains an
active area of research and development, considerable progress has been achieved
in these years in terms of the development of enhancement techniques, evaluation
metrics, methodologies, and theory, and we deem the area is therefore ripe for a
broad overview as we undertake in this chapter.

In this chapter we analyze the different motivations, notions and perspectives
under which novelty and diversity can be understood and defined (Sect. 26.2).
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We revise the evaluation procedures and metrics which have been developed in this
area (Sect. 26.3), as well as the algorithms and solutions to enhance novelty and/or
diversity (Sect. 26.4). We analyze the relationship with the recent and prolific stream
of work on diversity in Information Retrieval, as a confluent area with recommender
systems, and discuss a unifying framework that aims to provide a common basis as
comprehensive as possible to explain and interrelate different novelty and diversity
perspectives (Sect. 26.5). We show some empirical results that illustrate the behavior
of metrics and algorithms (Sect. 26.6), and close the chapter with a summary and
discussion of the progress and perspectives in this area, and directions for future
research (Sect. 26.7).

26.2 Novelty and Diversity in Recommender Systems

Novelty can be generally understood as the difference between present and past
experience, whereas diversity relates to the internal differences within parts of an
experience. The difference between the two concepts is subtle and close connections
can in fact be established, depending on the point of view one may take, as we
shall discuss. The general notions of novelty and diversity can be particularized in
different ways. For instance, if a music streaming service recommends us a song we
have never heard before, we would say this recommendation brings some novelty.
Yet if the song is, say, a very canonical music type by some very well known singer,
the involved novelty is considerably less than we would get if the author and style
of the music were also original for us. We might also consider that the song is even
more novel if, for instance, few of our friends know about it. On the other hand, a
music recommendation is diverse if it includes songs of different styles rather than
different songs of very similar styles, regardless of whether the songs are original or
not for us. Novelty and diversity are thus to some extent complementary dimensions,
though we shall seek and discuss in this chapter the relationships between them.

The motivations for enhancing the novelty and diversity of recommendations are
manifold, as are the different angles one may take when seeking these qualities.
This is also the case in other fields outside information systems, where novelty and
diversity are recurrent topics as well, and considerable efforts have been devoted
to casting clear definitions, equivalences and distinctions. We therefore start this
chapter by overviewing the reasons for and the possible meanings of novelty and
diversity in recommender systems, with a brief glance at related perspectives in
other disciplines.

26.2.1 Why Novelty and Diversity in Recommendation

Bringing novelty and diversity into play as target properties of the desired outcome
means taking a wider perspective on the recommendation problem concerned
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with final actual recommendation utility, rather than a single quality side such as
accuracy [53]. Novelty and diversity are not the only dimensions of recommendation
utility one should consider aside from accuracy (see e.g. Chap. 8 for a comprehen-
sive survey), but they are fundamental ones. The motivations for enhancing novelty
and diversity in recommendations are themselves diverse, and can be founded in the
system, user and business perspectives.

From the system point of view, user actions as implicit evidence of user needs
involve a great extent of uncertainty as to what the actual user preferences really
are. User clicks and purchases are certainly driven by user interests, but identifying
what exactly in an item attracted the user, and generalizing to other items,
involves considerable ambiguity. On top of that, system observations are a very
limited sample of user activity, whereby recommendation algorithms operate on
significantly incomplete knowledge. Furthermore, user interests are complex, highly
dynamic, context-dependent, heterogeneous and even contradictory. Predicting the
user needs is therefore an inherently difficult task, unavoidably subject to a non-
negligible error rate. Diversity can be a good strategy to cope with this uncertainty
and optimize the chances that at least some item pleases the user, by widening the
range of possible item types and characteristics at which recommendations aim,
rather than bet for a too narrow and risky interpretation of user actions. For instance,
a user who has rated the movie “Rango” with the highest value may like it because—
in addition to more specific virtues—it is a cartoon, a western, or because it is a
comedy. Given the uncertainty about which of the three characteristics may account
for the user preference, recommending a movie of each genre generally pays off
more than recommending, say three cartoons, as far as three hits do not necessarily
bring three times the gain of one hit—e.g. the user might rent just one recommended
movie anyway—whereas the loss involved in zero hits is considerably worse than
achieving a single hit. From this viewpoint we might say that diversity is not
necessarily an opposing goal to accuracy, but in fact a strategy to optimize the gain
drawn from accuracy in matching true user needs in an uncertain environment.

On the other hand, from the user perspective, novelty and diversity are generally
desirable per se, as a direct source of user satisfaction. Consumer behaviorists
have long studied the natural variety-seeking drive in human behavior [51]. The
explanation of this drive is commonly divided into direct and derived motivations.
The former refer to the inherent satisfaction obtained from “novelty, unexpect-
edness, change and complexity” [50], and a genuine “desire for the unfamiliar,
for alternation among the familiar, and for information” [64], linking to the
existence of an ideal level of stimulation, dependent on the individual. Satiation
and decreased satisfaction results from the repeated consumption of a product or
product characteristic in a decreasing marginal value pattern [25]. As preferences
towards discovered products are developed, consumer behavior converges towards
a balance between alternating choices and favoring preferred products [16]. Derived
motivations include the existence of multiple needs in people, multiple situations,
or changes in people’s tastes [51]. Some authors also explain diversity-seeking as a
strategy to cope with the uncertainty about one’s own future preference when one
will actually consume the choices [44], as e.g. when we choose books and music
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for a trip. Moreover, novel and diverse recommendations enrich the user experience
over time, helping expand the user’s horizon. It is in fact often the case that we
approach a recommender system with the explicit intent of discovering something
new, developing new interests, and learning. The potential problems of the lack
of diversity which may result from too much personalization has recently come to
the spotlight with the well-known debate on the so-called filter bubble [60]. This
controversy adds to the motivation for reconciling personalization with a healthy
degree of diversity.

Diversity and novelty also find motivation in the underlying businesses in
which recommendation technologies are deployed. Customer satisfaction indirectly
benefits the business in the form of increased activity, revenues, and customer
loyalty. Beyond this, product diversification is a well-known strategy to mitigate
risk and expand businesses [49]. Moreover, selling in the long tail is a strategy to
draw profit from market niches by selling less of more and getting higher profit
margins on cheaper products [9].

All the above general considerations can be of course superseded by particular
characteristics of the specific domain, the situation, and the goal of the recommen-
dations, for some of which novelty and diversity are indeed not always needed.
For instance, getting a list of similar products (e.g. photo cameras) to one we
are currently inspecting may help us refine our choice among a large set of very
similar options. Recommendations can serve as a navigational aid in this type of
situation. In other domains, it makes sense to consume the same or very similar
items again and again, such as grocery shopping, clothes, etc. The added value of
recommendation is probably more limited in such scenarios though, where other
kinds of tools may solve our needs (catalog browsers, shopping list assistants, search
engines, etc.), and even in these cases we may appreciate some degree of variation
in the mix every now and then.

26.2.2 Defining Novelty and Diversity

Novelty and diversity are different though related notions, and one finds a rich
variety of angles and perspectives on these concepts in the recommender system
literature, as well as other fields such as sociology, economy, or ecology. As
pointed out at the beginning of this section, novelty generally refers, broadly, to
the difference between present and past experience, whereas diversity relates to the
internal differences within parts of an experience. Diversity generally applies to a
set of items or “pieces”, and has to do with how different the items or pieces are with
respect to each other. Variants have been defined by considering different pieces and
sets of items. In the basic case, diversity is assessed in the set of items recommended
to each user separately (and typically averaged over all users afterwards) [90].
But global diversity across sets of sets of items has also been considered, such as
the recommendations delivered to all users [3, 4, 89], recommendations by different
systems to the same user [11], or recommendations to a user by the same system
over time [46].
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The novelty of a set of items can be generally defined as a set function (average,
minimum, maximum) on the novelty of the items it contains. We may therefore
consider novelty as primarily a property of individual items. The novelty of a piece
of information generally refers to how different it is with respect to “what has
been previously seen” or experienced. This is related to novelty in that when a
set is diverse, each item is “novel” with respect to the rest of the set. Moreover,
a system that promotes novel results tends to generate global diversity over time
in the user experience; and also enhances the global “diversity of sales” from the
system perspective. Multiple variants of novelty arise by considering the fact that
novelty is relative to a context of experience, as we shall discuss.

Different nuances have been considered in the concept of novelty. A simple
definition of novelty can consist of the (binary) absence of an item in the context
of reference (prior experience). We may use adjectives such as unknown or unseen
for this notion of identity-based novelty [75]. Long tail notions of novelty are
elaborations of this concept, as they are defined in terms of the number of users
who would specifically know an item [20, 61, 89]. But we may also consider how
different or similar an unseen item is with respect to known items, generally—
but not necessarily—on a graded scale. Adjectives such as unexpected, surprising
and unfamiliar have been used to refer to this variant of novelty. Unfamiliarity
and identitary novelty can be related by trivially defining similarity as equality,
i.e. two items are “similar” if and only if they are the same item. Finally, the
notion of serendipity is used to mean novelty plus a positive emotional response—
in other words, an item is serendipitous if it is novel—unknown or unfamiliar—and
relevant [57, 88].

The present chapter is concerned with the diversity and novelty involved in
recommendations, but one might also study the diversity (in tastes, behavior,
demographics, etc.) of the end-user population, or the product stock, the sellers, or
in general the environment in which recommenders operate. While some works in
the field have addressed the diversity in user behavior [31, 72], we will mostly focus
on those aspects a recommender system has a direct hold on, namely the properties
of its own output.

26.2.3 Diversity in Other Fields

Diversity is a recurrent theme in several fields, such as sociology, psychology,
economy, ecology, genetics or telecommunications. One can establish connections
and analogies from some—though not all—of them to recommender systems, and
some equivalences in certain metrics, as we will discuss.

Diversity is a common keyword in sociology referring to cultural, ethnic or
demographic diversity [47]. Analogies to recommender system settings would apply
to the user population, which is mainly a given to the system, and therefore not
within our main focus here. In economy, diversity is extensively studied in relation
to different issues such as the players in a market (diversity vs. oligopolies), the
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number of different industries in which a firm operates, the variety of products
commercialized by a firm, or investment diversity as a means to mitigate the risk
involved in the volatility of investment value [49]. Of all such concepts, product
and portfolio diversity most closely relate to recommendation, as mentioned in
Sect. 26.2.1, as a general risk-mitigating principle and/or business growth strategy.

Behaviorist psychology has also paid extensive attention to the human drive for
novelty and diversity [51]. Such studies, especially the ones focusing on consumer
behavior, provide formal support to the intuition that recommender system users
may prefer to find some degree of variety and surprise in the recommendations they
receive, as discussed in Sect. 26.2.1.

An extensive strand or literature is devoted to diversity in ecology as well, where
researchers have worked to considerable depth on formalizing the problem, defining
and comparing a wide array of diversity metrics, such as the number of species
(richness), Gini-Simpson and related indices, or entropy [62]. Such developments
connect to aggregate recommendation diversity perspectives that deal with sets of
recommendations as a whole, as we shall discuss in Sects. 26.2.3 and 26.5.3.3.

Finally, the issue of diversity has also attracted a great deal of attention in
the Information Retrieval (IR) field. A solid body of theory, metrics, evaluation
methodologies and algorithms has been developed in this scope in the last decade
[6, 17, 21, 22, 24, 67, 84], including a dedicated search diversity task in four
consecutive TREC editions starting in 2009 [23]. Search and recommendation are
different problems, but have much in common: both tasks are about ranking a set
of items to maximize the satisfaction of a user need, which may or may not have
been expressed explicitly. It has in fact been found that the diversity theories and
techniques in IR and recommender systems can be connected [77, 78], as we will
discuss in Sect. 26.5.4. Given these connections, and the significant developments
on diversity in IR, we find it relevant to include an overview of this work here, as
we will do in Sects. 26.3 (metrics) and 26.4 (algorithms).

26.3 Novelty and Diversity Evaluation

The definitions discussed in the previous sections can only get a full, precise and
practical meaning when one has given a specific definition of the metrics and
methodologies by which novelty and diversity are to be measured and evaluated. We
review next the approaches and metrics that have been developed to assess novelty
and diversity, after which we will turn to the methods and algorithms proposed in
the field to enhance them.

26.3.1 Notation

As is common in the literature, we will use the symbols i and j to denote items, u
and v for users, I and U for the set of all items and users respectively. By Iu and
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Ui we shall denote, respectively, the set of all items u has interacted with, and the
set of users who have interacted with i. In general we shall take the case where
the interaction consists of rating assignment (i.e. at most one time per user-item
pair), except where the distinction between single and multiple interaction makes
a relevant difference (namely Sect. 26.5.2.1. We denote ratings assigned by users
to items as r.u; i/, and use the notation r.u; i/ D ; to indicate missing ratings, as
in [5]. We shall use R to denote a recommendation to some user, and Ru whenever
we wish or need to explicitly indicate the target user u to whom R is delivered—
in other words, R will be a shorthand for Ru. By default, the definition of a metric
will be given on a single recommendation for a specific target user. For notational
simplicity, we omit as understood that the metric should be averaged over all users.
Certain global metrics (such as aggregate diversity, defined in Sect. 26.3.5) are the
exception to this rule: they directly take in the recommendations to all users in their
definition, and they therefore do not require averaging. In some cases where a metric
is the average of a certain named function (e.g. IUF for inverse user frequency, SI for
self-information) on the items it contains, we will compose the name of the metric
by prepending an “M” for “mean” (e.g. MIUF, MSI) in order to distinguish it from
the item-level function.

26.3.2 Average Intra-List Distance

Perhaps the most frequently considered diversity metric and the first to be proposed
in the area is the so-called average intra-list distance—or just intra-list diversity, ILD
(e.g. [70, 85, 90]). The intra-list diversity of a set of recommended items is defined
as the average pairwise distance of the items in the set:

ILD D 1

jRj.jRj � 1/

X
i2R

X
j2R

d.i; j/ (26.1)

The computation of ILD requires defining a distance measure d.i; j/, which
is thus a configurable element of the metric. Given the profuse work on the
development of similarity functions in the recommender systems field, it is common,
handy and sensible to define the distance as the complement of well-understood
similarity measures, but nothing prevents the consideration of other particular
options. The distance between items is generally a function of item features [90],
though the distance in terms of interaction patterns by users has also been considered
sometimes [79].

The ILD scheme in the context of recommendation was first suggested, as far
as we are aware of, by Smyth and McClave [70], and has been used in numerous
subsequent works (e.g. [75, 79, 85, 90]). Some authors have defined this dimension
by its equivalent complement intra-list similarity ILS [90], which has the same
relation to ILD as the distance function has to similarity, e.g. ILD D 1 � ILS if
d D 1 � sim.
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26.3.3 Global Long-Tail Novelty

The novelty of an item from a global perspective can be defined as the opposite of
popularity: an item is novel if few people are aware it exists, i.e. the item is far in the
long tail of the popularity distribution [20, 61]. Zhou et al. [89] modeled popularity
as the probability that a random user would know the item. To get a decreasing
function of popularity, the negative logarithm provides a nice analogy with the
inverse document frequency (IDF) in the vector-space Information Retrieval model,
with users in place of documents and items instead of words, which has been
referred to as inverse user frequency (IUF) [15]. Based on the observed user-item
interaction, this magnitude can be estimated as IUF D � log2 jUij=jUj, where by
Ui

defDfu 2 Ujr.u; i/ ¤ ;g we denote the set of users who have interacted with item
i. Thus the novelty of a recommendation can be assessed as the average IUF of the
recommended items:

MIUF D � 1

jRj
X
i2R

log2

jUij
jUj (26.2)

The IUF formula also has a reminiscence of the self-information measure of
Information Theory, only for that to be properly the case, the probability should add
to 1 over the set of items, which is not the case here. We discuss that possibility in
Sect. 26.5.2.1.

26.3.4 User-Specific Unexpectedness

Long-tail novelty translates to non-personalized measures for which the novelty of
an item is seen as independent of the target user. It makes sense however to consider
the specific experience of a user when assessing the novelty carried by an item that
is recommended to her, since the degree to which an item is more or less familiar
can greatly vary from one user to the next.

Two perspectives can be considered when comparing an item to prior user
experience: the item identity (was this particular item seen before?) or the item
characteristics (were the attributes of the item experienced before?). In the former
view, novelty is a Boolean property of an item which occurs or not in its totality,
whereas the latter allows to appreciate different degrees of novelty in an item even
if it was never, itself, seen before.

It is not straightforward to define identity-based novelty on an individual user
basis. In usual scenarios, if the system observes the user interact with an item, it will
avoid recommending her this item again.1 This is a rather trivial feature and does not

1Of course, what “interaction” means and to what extent it will inhibit future recommendations is
application-dependent, e.g. an online store may recommend an item the user has inspected but not
bought.
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need to be evaluated—if anything, just debugged (e.g. for near-duplicate detection).
We may therefore take it for granted, except in particular scenarios where users
recurrently consume items—where on the other hand a recommender system may
have a more limited range for bringing added value. It would be meaningful though
to assess the Boolean novelty of an item in probabilistic terms, considering the user
activity outside the system, which in a detailed sense is of course impractical. Long
tail novelty can be seen as a proxy for this notion: a user-independent estimate of
the prior probability that the user—any user—has seen the item before. Finer, user-
specific probability estimation approaches could be explored but have not, to the
best of our knowledge, been developed in the literature so far.

An attribute-based perspective is an easier-to-compute alternative for a user-
specific novelty definition. Taking the items the user has been observed to encounter,
the novelty of an item can be defined in terms of how different it is to the previously
encountered items, as assessed by some distance function on the item properties.
This notion reflects how unfamiliar, unexpected and/or surprising an item may be
based on the user’s observed experience. The set-wise distance to the profile items
can be defined by aggregation of the pairwise distances by an average, minimum, or
other suitable function. For instance, as an average:

Unexp D 1

jRjjIuj
X
i2R

X
j2Iu

d.i; j/

where by Iu
defDfi 2 I j r.u; i/ ¤ ;g we denote the set of items with which user u has

interacted.
Some authors have generalized the notion of unexpectedness to the difference

of a recommendation with respect to an expected set of items, not necessarily the
ones in the target user profile, thus widening the perspective on what “expected”
means [1, 32, 57]. For instance, Murakami et al. [57] define the expected set as
the items recommended by a “primitive” system which is supposed to produce
unsurprising recommendation. The difference to the expected set can be defined
in several ways, such as the ratio of unexpected recommended items:

Unexp D jR � EXj=jRj (26.3)

EX being the set of expected items. Other measures between the recommended and
expected set include the Jaccard distance, the centroid distance, the difference to an
ideal distance, etc. [1].

26.3.5 Inter-Recommendation Diversity Metrics

Adomavicius and Kwon [3, 4] recently proposed measuring the so-called aggregate
diversity of a recommender system. This perspective is different from all the metrics
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described above in that it does not apply to a single set of recommended items, but to
all the output a recommender system produces over a set of users. It is in fact a quite
simple metric which counts the total number of items that the system recommends.

Aggdiv D
ˇ̌̌
ˇ̌[
u2U

Ru

ˇ̌̌
ˇ̌ (26.4)

A version Aggdiv@k of the metric can be defined by taking Ru as the top k items
recommended to u. Since it applies to the set of all recommendations, aggregate
diversity does not need to be averaged over users, differently from most other
metrics mentioned in these pages.

Aggregate diversity is a relevant measure to assess to what extent an item
inventory is being exposed to users. The metric, or close variations thereof, have
also been referred to as item coverage in other works [11, 32, 35, 36] (see also
Chap. 8). This concept can be also related to traditional diversity measures such
as the Gini coefficient, the Gini-Simpson’s index, or entropy [62], which are
commonly used to measure statistical dispersion in such fields as ecology (bio-
diversity in ecosystems), economics (wealth distribution inequality), or sociology
(e.g. educational attainment across the population). Mapped to recommendation
diversity, such measures take into account not just whether items are recommended
to someone, but to how many people and how even or unevenly distributed. To
this extent they serve a similar purpose as aggregate diversity as measures of the
concentration of recommendations over a few vs. many items. For instance, Fleder
and Hosanagar [31] measure sales concentration by the Gini index, which Shani and
Gunawardana (See Chap. 8) formulate as:

Gini D 1

jIj � 1

jIjX
kD1

.2k � N � 1/p.ikjs/

where p.ikjs/ is the probability of the k-th least recommended item being drawn
from the recommendation lists generated by a system s:

p.ijs/ D jfu 2 U j i 2 RugjP
j2I jfu 2 U j j 2 Rugj

The Gini index and aggregate diversity have been used in subsequent work such
as [42, 76]. Other authors (e.g. [72] or Chap. 8) suggest the Shannon entropy with
similar purposes:

H D �
X
i2I

p.ijs/ log2 p.ijs/

Related to this, Zhou et al. [89] observe the diversity of the recommendations
across users. They define inter-user diversity (IUD) as the average pairwise Jaccard
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distance between recommendations to users. In a quite equivalent reformulation of
this measure we may define the novelty of an item as the ratio of users to which it
is not recommended2:

IUD D 1

jRj
X
i2R

jfv 2 U j i … Rvgj
jUj � 1

D 1

jUj � 1

X
v2U
jR � Rvj=jRj (26.5)

Since jR�Rvj=jRj D 1�jR\Rvj=jR[Rvj, it can be seen that the difference between
this definition and the Jaccard-based formulation is basically that the latter has jRj
instead of jR [ Rvj in the denominator, but the above formulation is interesting
because it connects to the Gini-Simpson index, as we will show in Sect. 26.5.3.3.

With a similar metric structure, Bellogin et al. [11] measure the inter-system
diversity (ISD), i.e. how different the output of a system is with respect to other
systems, in settings where several recommenders are operating. This can be defined
as the ratio of systems that do not recommend each item:

ISD D 1

jRj
X
i2R

jfs 2 S j i … Rsgj
jSj � 1

D 1

jSj � 1

X
s2S
jR � Rsj=jRj (26.6)

where S is the set of recommenders in consideration, and Rs denotes the recommen-
dation to the target user by a system s 2 S. This metric thus assesses how different
the output of a recommender system is with respect to alternative algorithms. This
perspective can be useful, for instance, when an application seeks to distinguish
itself from the competition, or when selecting an algorithm to add to an ensemble.

In a different angle, Lathia et al. [46] consider the time dimension in novelty and
diversity. Specifically, they study the diversity between successive recommendations
by a system to a user, as the ratio of items that were not recommended before:

TD D jR � R0j=jRj (26.7)

The authors distinguish the difference between consecutive recommendations,
and the difference between the last recommendation and all prior recommendations.
In the former case (which they name “temporal diversity”) R0 is the recommendation
immediately preceding R, and in the latter (“temporal novelty”) R0 is the union of
all recommendations to the target user preceding R. In both cases, the metric gives
a perspective of the ability of a recommender system to evolve with the changes in
the environment in which it operates, rather than presenting users the same set of
items over and over again.

2Note that we normalize IUD by jUj � 1 because all items in R are recommended to at least one
user (the target of R), therefore if we normalized by jUj, the value of the metric for the optimal
recommendation would be .jUj � 1/=jUj < 1. Put in another way, v 2 U in the numerator could
be as well written as v 2 U� fug, which would call for normalizing by jU� fugj D jUj � 1. The
difference is negligible in practice though, and we believe both forms of normalization would be
acceptable. The same rationale applies to Eq. (26.6) below.
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Note that IUD, ISD and TD fit as particular cases under the generalized
unexpectedness scheme [1] described in the previous section (Eq. (26.3)), where
the set EX of expected items would be the items recommended to other users by the
same system (EX D Rv), to the same user by other systems (EX D Rs), or to the
same user by the same system in the past (EX D R0). One difference is that IUD and
ISD take multiple sets EX for each target user (one per user v and one per system s
respectively), whereby these metrics involve an additional average over such sets.

26.3.6 Specific Methodologies

As an alternative to the definition of special-purpose metrics, some authors have
evaluated the novelty or diversity of recommendations by accuracy metrics on
a diversity-oriented experimental design. For instance, Hurley and Zhang [39]
evaluate the diversity of a system by its ability to produce accurate recommendations
of difficult items, “difficult” meaning unusual or infrequent for a user’s typical
observed habits. Specifically, a data splitting procedure is set up by which the test
ratings are selected among a ratio of the top most different items rated by each user,
“different” being measured as the average distance of the item to all other items in
the user profile. The precision of recommendations in such a setting thus reflects the
ability of the system to produce good recommendations made up of novel items. A
similar idea is to select the test ratings among cold, non-popular long tail items. For
instance, Zhou et al. [89] evaluate accuracy on the set of items with less than a given
number of ratings. Shani and Gunawardana also discuss this idea in Chap. 8.

26.3.7 Diversity vs. Novelty vs. Serendipity

Even though the distinction between novelty and diversity is not always a fully
clean-cut line, We may propose a classification of the metrics described so far as
either novelty or diversity measures. ILD can be considered the genuine metric
for diversity, the definition of which it applies to the letter. We would also
class inter-recommendation metrics (Sect. 26.3.5) in the diversity type, since they
assess how different are recommendations to each other. They do so at a level
above an individual recommendation, by (directly or indirectly) comparing sets of
recommended items rather than item pairs.

On the other hand, we may consider that long tail and unexpectedness fit in
the general definition of novelty: unexpectedness explicitly measures how different
each recommended item is with respect to what is expected, where the latter can be
related to previous experience. And long tail non-popularity defines the probability
that an item is different (is absent) from what a random user may have seen before.
The methodologies discussed in the previous section can also be placed in the
novelty category, as they assess the ability to properly recommend novel items.
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It should also be noted that several authors target the specific concept of
serendipity as the conjunction of novelty and relevance [32, 39, 57, 87, 89]. In
terms of evaluation metrics, this translates to adding the relevance condition in the
computation of the metrics described in Sects. 26.3.3 and 26.3.4. In other words,
taking the summations over i 2 R ^ i relevant to u in place of just i 2 R turns a
plain novelty metric (long tail or unexpectedness) into the corresponding serendipity
metric.

26.3.8 Information Retrieval Diversity

Differently (at least apparently) from the recommender systems field, diversity in
IR has been related to an issue of uncertainty in the user query. Considering that
most queries contain some degree of ambiguity or incompleteness as an expression
of user needs, diversity is posited as a strategy to cope with this uncertainty
by answering as many interpretations of the query as early as possible in the
search results ranking. The objective is thus redefined from returning as many
relevant results as possible to maximizing the probability that all users (all query
interpretations) will get at least some relevant result. This principle is derived
from reconsidering the independence assumption on document relevance, whereby
returning relevant documents for different query interpretations pays off more
than the diminishing returns from additional relevant documents for the same
interpretation. For instance a polysemic query such as “table” might be interpreted
as furniture or a database concept. If a search engine returns results in only one of
the senses, it will satisfy 100 % the users who were intending this meaning, and
0 % the rest of users. But combining instead a balanced mix of both intents, results
will likely satisfy all users by far more than 50 %, in a typical search where a few
relevant results are sufficient to satisfy the user need.

IR diversity metrics have been defined under the assumption that an explicit space
of possible query intents (also referred to as query aspects or subtopics) can be
represented. In general, the aspects for evaluation should be provided manually, as
has been done in the TREC diversity task, where a set of subtopics is provided for
each query, along with per-subtopic relevance judgments [23].

Probably the earliest proposed metric was subtopic recall [84], which simply
consists in the ratio of query subtopics covered in the search results:

S-recall D jfz 2 Z j d 2 R ^ d covers zgj
jfz 2 Z j z is a subtopic of qgj

where Z is the set of all subtopics. Later on the TREC campaign popularized metrics
such as ERR-IA [21] and ˛-nDCG [24], and a fair array of other metrics have been
proposed as well. For instance, based on the original definition of ERR in [21], the
intent-aware version ERR-IA is:
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ERR-IA D
X

z

p.zjq/
X
dk2R

p.reljdk; z/
k�1Y
jD1

.1 � p.reljdj; z//

where p.zjq/ takes into account that not all aspects need to be equally probable for a
query, weighting their contribution to the metric value accordingly. And p.reljd; z/ is
the probability that document d is relevant to the aspect z of the query, which can be
estimated based on the relevance judgments. E.g. for graded relevance Chapelle [21]
proposed p.reljd; z/ D 2g.d;z/�1=2gmax , where g.d; z/ 2 Œ0; gmax� is the relevance
grade of d for the aspect z of the query. It is also possible to consider simpler
mappings, such as a linear map g.d; z/=gmax, depending on how the relevance grades
are defined [75].

Novelty, as understood in recommender systems, has also been addressed in IR,
though perhaps not to as much extent as diversity. It is mentioned, for instance,
in [10] as the ratio of previously unseen documents in a search result. It is
also studied at the level of document sentences, in terms of the non-redundant
information that a sentence provides with respect to the rest of the document [7].
Even though the concept is essentially the same, to what extent one may establish
connections between the sentence novelty techniques and methodologies, and item
novelty in recommendation is not obvious, but might deserve future research.

26.4 Novelty and Diversity Enhancement Approaches

Methods to enhance the novelty and diversity of recommendations are reviewed in
this section. It is noteworthy that research in this area has accelerated over the last
number of years. The work can be categorized into methods that re-rank an initial
list to enhance the diversity/novelty of the top items; methods based on clustering;
hybrid or fusion methods; and methods that consider diversity in the context of
optimization of learning to rank objectives.

26.4.1 Result Diversification/Re-ranking

One common approach to enhance the diversity of recommendation is the diversifi-
cation or re-ranking of the results returned by an initial recommender system. In this
approach, a set of candidate recommendations that have been selected on the basis
of relevance, are re-ranked in order to improve the diversity or novelty of the recom-
mendation, or the aggregate diversity of all recommendations offered by the system.
Generally, work that has taken this approach[26, 28, 30, 85, 90] attempts to optimize
the set diversity as expressed by the ILD measure defined in Sect. 26.3.2.

In the recommendation context, a personalized recommendation is formed for a
given target user u, and the relevance of any particular item to the recommendation
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Algorithm 2 Greedy selection to produce a re-ranked list R from an initial set C
R ;
while jRj < k do

i�  arg max
i2C�R

g.R [ fig ; �/

R R [ fi�g
end while
return R

depends on u. However, for notational simplicity, we will write frel.i/ for the
relevance of item i, dropping the dependence on u. Given a candidate set C, the
problem may be posed to find a set R � C of some given size k D jRj, that
maximizes div.R/ i.e.

Ropt D arg max
R�C;jRjDk

div.R/ (26.8)

More generally, an objective to jointly optimize for relevance and diversity can
be expressed as:

Ropt.�/ D arg max
R�C;jRjDk

g.R; �/ (26.9)

where

g.R; �/ D .1 � �/
1

jRj
X
i2R

frel.i/C � div.R/

and � 2 Œ0; 1� expresses the trade-off between the average relevance of the items in
the set and the diversity of the set. In information retrieval, a greedy construction
approach to solving Eq. (26.9) is referred to as the maximum marginal relevance
(MMR) approach in [17], where relevance is measured with respect to a given query.
In the greedy approach, the recommended set R is built in an iterative fashion as
follows. Let Rj be the set at iteration j 2 f1; 2; : : : ; kg. The first item in the set is the
one that maximizes frel.i/ and the j-th item is chosen to maximize g.Rj�1 [ fig; �/.
Algorithm 2 summarizes this approach.

In the context of case-based reasoning, a greedy solution to Eq. (26.9) is proposed
in [52, 70] as a means of selecting a set of cases to solve a given target problem.
Using nearest-neighbor user- and item-based collaborative filtering methods to
generate the initial candidate set, Ziegler et al. [90] also propose a greedy solution
to Eq. (26.9), as a means of re-ranking the set, terming the method as topic
diversification, as they employ a taxonomy-based distance metric. In the context of a
publish-subscribe system, Drosou and Pitoura [28] use the formulation in Eq. (26.9)
as a means of selecting a diverse set of relevant items to recommend to a user from
a set of items gathered over a particular time window. The method is proposed in
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the context of image retrieval in [26] and an alternative method to optimize for
Eq. (26.9) is studied in [85], again using an item-based kNN method to generate the
candidate set. Also, in [27] a number of different heuristics for solving the maximum
diversity problem (Eq. (26.8)) are evaluated and while none out-performs all others
in all cases, several succeed in finding very good quality solutions in reasonable
time. This work is followed up in [8], where a multiple-pass randomized greedy
algorithm is shown to give better performance than the single-pass greedy algorithm.

Rather than maximize as a trade-off between relevance and diversity, [54] takes a
more conservative approach of choosing the most diverse subset from a candidate set
of items that have equal relevance, thereby maximizing diversity under a constraint
of maintaining overall relevance. Similarly, [83] avoids using an explicit weighted
trade-off between diversity and relevance and instead presents two algorithms that
modify an initial relevance ranking of items to increase diversity.

Though it is difficult to compare directly across the different approaches, as
the measures of relevance and pairwise distance differ, researchers have generally
found the expected trade-off of increasing diversity and decreasing relevance of the
retrieved set as � is decreased towards 0. McGinty and Smyth [52, 70] evaluate the
effect of diversifying the recommended set by counting the number of steps it takes
a conversational recommender system to reach a given target item. Diversification
always performs better than the algorithm that selects items using similarity only. An
adaptive method that determines at each step whether or not to diversify gives even
better performance. Evaluating on the Book-Crossing dataset, Ziegler et al. [90]
found that the accuracy of their system, as measured by precision and recall, dropped
with increasing diversification. Zhang and Hurley [85] evaluate on the Movielens
dataset; they form test sets of increasing difficulty by splitting each user’s profile
into training a test sets of items and varying the average similarity of the items in
the test set to the items in the training set, and find the diversified algorithm achieves
better precision on the more difficult test sets.

Alternatives to MMR A number of alternative scoring functions for guiding
re-ranking that capture the compromise between relevance and diversity or novelty
have been proposed in the literature. For example, [82] computes a weighted sum
of a global probability for including a candidate item in R and a local probability
dependent on the set of items already in R. Definitions of novelty and diversity of
news articles based on a distance between concepts in a taxonomy are given in [65]
and a replacement heuristic is used to increase the novelty or diversity of the initial
ranking by swapping in highly novel/diverse articles. To take account of mutual
influence between items, [12] replace the pairwise diversity in the utility function
by an estimate of the probability that the pair of items are both liked. Finally,
an alternative formulation of the diversity problem, r-DisC diversity, is presented
in [29] and solved using a greedy algorithm. In this formulation, the items in the set
R are selected to cover the candidate, such that there is an item in R within a certain
similarity threshold to each item in C, under a constraint that all items in R also have
a certain minimum pairwise dissimilarity.

Aggregate Diversity Targeting aggregate diversity (Eq. (26.4) in Sect. 26.3.5),
items are re-ranked in [2] using a weighted combination of their relevance and
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a score based on inverse popularity, or item likeability. Adomavicius and Kwon
find that their re-ranking strategies succeed in increasing aggregate diversity at a
small cost to accuracy as measured by the precision. A follow-up to this work is
presented in [3], in which the aggregate diversity problem is shown to be equivalent
to the maximum flow problem on a graph whose nodes are formed from the users
and items of the recommendation problem. Other work [45] has investigated how
neighborhood filtering strategies and multi-criteria ratings impact on aggregate
diversity in nearest-neighbor collaborative filtering algorithms. In this line, Vargas
and Castells [76] find out that aggregate diversity is considerably improved by
transposing the kNN CF recommendation approach, swapping the role of users and
items. The authors show the approach can be generalized to any recommendation
algorithm based on a probabilistic reformulation of arbitrary user-item scoring
functions which isolates a popularity component.

26.4.2 Using Clustering for Diversification

A method proposed in [86] clusters the items in an active user’s profile, in order to
group similar items together. Then, rather than recommend a set of items that are
similar to the entire user profile, each cluster is treated separately and a set of items
most similar to the items in each cluster is retrieved.

A different approach is presented in [14], where the candidate set is again
clustered. The goal now is to identify and recommend a set of representative items,
one for each cluster, so that the average distance of each item to its representative is
minimized.

A nearest-neighbor algorithm is proposed in [48] that uses multi-dimensional
clustering to cluster items in an attribute space and select clusters of items as
candidates to recommend to the active user. This method is shown to improve
aggregate diversity.

A graph-based recommendation approach is described in [69] where the recom-
mendation problem is formulated as a cost flow problem over a graph whose nodes
are the users and items of the recommendation. Weights in the graph are computed
by a biclustering of the user-item matrix using non-negative matrix factorization.
This method can be tuned to increase the diversity of the resulting set, or increase
the probability of recommending long-tail items.

26.4.3 Fusion-Based Methods

Since the early days of recommender systems, researchers have been aware that no
single recommendation algorithm will work best in all scenarios. Hybrid systems
have been studied to offset the strengths of one algorithm against the weaknesses
of another (see [68] for example). It may be expected that the combined outputs
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of multiple recommendation algorithms that have different selection mechanisms,
may also exhibit greater diversity than a single algorithm. For example, in [66, 79],
recommendation is treated as a multi-objective optimization problem. The outputs
of multiple recommendation algorithms that differ in their levels of accuracy,
diversity and novelty are ensemble using evolutionary algorithms. As another
example, in a music recommendation system called Auralist [88], a basic item-
based recommender system is combined with two additional algorithms, in order
to promote serendipity (see section below).

26.4.4 Learning to Rank with Diversity

In the last few years, there is an increasing interest in learning to rank algorithms
for recommender systems. These algorithms directly optimize an objective related
to the ranking rather than forming the ranking in a post-processing step from a
set of predicted ratings. To date, most such techniques do not take into account
the dependencies between the items in the ranking. However, a small number of
works have appeared in the literature that optimize a combined objective of ranking
accuracy and set diversity. In [71], the concept of diversity is integrated into a matrix
factorization model, in order to directly recommend item sets that are both relevant
and diversified. A matrix factorization model is again used in [40] to optimize
a ranking objective that is explicitly modified to account for the diversity of the
ranking.

26.4.5 Serendipity: Enabling Surprising Recommendations

A number of algorithms have been proposed in the literature to recommend
serendipitous items. For example, in a content-based recommender system,
described in [41], a binary classifier is used to distinguish between relevant
and irrelevant content. Those items for which the difference in the positive and
negative class scores is smallest are determined to be the ones about which the
user is most uncertain and therefore the ones that are likely to yield serendipitous
recommendations.

Oku and Hattori [59] propose a method for generating serendipitous recommen-
dations that, given a pair of items, uses the pair to generate a recommended set of
serendipitous items. Several ways to generate the set are discussed and several ways
to rank the items and hence select a top k are evaluated.

Utility theory is exploited in [1], where the utility of a recommendation is
represented as a combination of its utility due to its quality and its utility due to
its unexpectedness. A couple of different utility functions are proposed and ways to
compute these functions on movie and book recommendation systems are discussed
and evaluated.
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Other recent work [13, 73] has investigated the use of graph-based techniques
to make serendipitous recommendations in mobile app and music recommendation,
respectively.

26.4.6 Other Approaches

A nearest neighbor algorithm called usage-context based collaborative filtering
(UCBCF) is presented in [58], which differs from standard item-based CF in the
calculation of item-item similarities. Rather than the standard item representation
as a vector of user ratings, an item profile is represented as a vector of the k
other items with which the item significantly co-occurs in user profiles. UCBCF
is shown to obtain greater aggregate diversity than standard kNN and Matrix
Factorization algorithms. A system described in [8] maps items into a utility space
and maps a user’s preferences to a preferred utility vector. In order to make a diverse
recommendation, the utility space is split into m layers in increasing distance from
the preferred utility and non-dominated items are chosen from each layer so as to
maximize one dimension of the utility vector.

The works discussed so far have considered diversity in terms of the dissimilarity
of items in a single recommendation set, or, in the case of aggregate diversity, the
coverage of items in a batch of recommendations. Another approach is to consider
diversity in the context of the behavior of the system over time. Temporal diversity
(Eq. (26.7) in Sect. 26.3.4) is investigated by Lathia et al. [46] in a number of
standard CF algorithms, and methods for increasing diversity through re-ranking
or hybrid fusion are discussed. In a related vein, Mourao et al. [56] explore the
“oblivion problem”, that is, the possibility that in a dynamic system, items can be
forgotten over time in such a way that they recover some degree of the original
novelty value they had when they were discovered.

26.4.7 User Studies

It is one thing to develop algorithms to diversify top k lists, but what impact do these
algorithms have on user satisfaction? A number of user studies have explored the
impact of diversification on users. Topic diversification is evaluated in [90] by carry-
ing out a user survey to assess user satisfaction with a diversified recommendation.
In the case of their item-based algorithm, they find that satisfaction peaks around a
relevance/diversity determined by � D 0:6 in Eq. (26.9) suggesting that users like a
certain degree of diversification in their lists.

While much of the work in diversifying top k lists does not consider the ordering
of items in the recommended list, provided an overall relevance is attained, Ge et al.
[32, 33] look at how this ordering affects the user’s perception of diversity. In a user
study, they experiment with placing diverse items—ones with low similarity to the
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other items in the list—either in a block or dispersed throughout the list and found
that blocking the items in the middle of the list reduces perceived diversity.

The work of Hu and Pu [37] addresses user-interface issues related to augmenting
users’ perception of diversity. In a user study that tracks eye movements, they find
that an organizational interface where items are grouped into categories is better than
a list interface in supporting perception of diversity. In [19], 250 users are surveyed
and presented with 5 recommendation approaches, with varying degrees of diversity.
They find that users perceive diversity and that it improves their satisfaction but that
diverse recommendations may require additional explanations to users who cannot
link them back to their preferences.

26.4.8 Diversification Approaches in Information Retrieval

Most diversification algorithms proposed in IR follow the same greedy re-ranking
scheme as described earlier for recommender systems in Sect. 26.4.1. The algo-
rithms distinguish from each other in the greedy objective function and the theory
behind it. They can be classed into two types based on whether or not the algorithms
use an explicit representation of query aspects (as introduced earlier in Sect. 26.3.8).
Explicit approaches draw an approximation of query aspects from different sources,
such as query reformulations suggested by a search engine [67], Wikipedia dis-
ambiguation entries [81], document classifications [6], or result clustering [34].
Based on this, the objective function of the greedy re-ranking algorithms seeks to
maximize the number of covered aspects and minimize the repetition of aspects
already covered in previous ranking positions. For example xQuAD [67], the most
effective algorithm in TREC campaigns, defines its objective function as:

f .dkjS; q/ D .1 � �/ p.qjdk/C �
X

z

p.zjq/ p.dkjq; z/
k�1Y
jD1

.1 � p.djjq; z//

where p.qjdk/ stands for the initial search system score, z represents query aspects,
p.zjq/ weights the contribution on each aspect by its relation to the query, p.dkjq; z/
measures how well document dk covers aspect z, the product after that penalizes the
redundancy with previous documents in the ranking covering the same aspect, and
� 2 Œ0; 1� sets the balance in the intensity of diversification.

Diversification algorithms that do not explicitly deal with query aspects generally
assess diversity in terms of the content of documents. For instance Goldstein and
Carbonell [17] greedily maximize a linear combination of similarity to the query
(the baseline search score) and dissimilarity (minimum or average distance) to the
documents ranked above the next document. Other non-aspect approaches formulate
a similar principle in more formal probabilistic terms [22], or in terms of the trade-
off between risk and relevance, in analogy to Modern Portfolio Theory [80] on
the optimization of the expected return for a given amount of risk in financial
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investment. Vargas et al. [77, 78] show that IR diversity principles and techniques
make sense in recommender systems and can be adapted to them as well, as we
discuss in Sect. 26.5.4.

26.5 Unified View

As the overview through this chapter shows, a wide variety of metrics and
perspectives have been developed around the same concepts under different variants
and angles. It is natural to wonder whether it is possible to relate them together
under a common ground or theory, establishing equivalences, and identifying
fundamental differences. We summarize next a formal foundation for defining,
explaining, relating and generalizing many different state of the art metrics, and
defining new ones. We also examine the connections between diversity as researched
and developed in the Information Retrieval field, and the corresponding work in
recommender systems.

26.5.1 General Novelty/Diversity Metric Scheme

As shown in [75] it is possible indeed to formulate a formal scheme that unifies and
explains most of the metrics proposed in the literature. The scheme posits a generic
recommendation metric m as the expected novelty of the items it contains:

m D 1

jRj
X
i2R

nov.ij
/

An item novelty model nov.ij
/ at the core of the scheme determines the
nature of the metric that will result. The scheme further emphasizes the relative
nature of novelty by explicitly introducing a context 
 . Novelty is relative to
a context of experience: (what we know about) what someone has experienced
somewhere sometime, where “someone” can be the target user, a set of users, all
users, etc.; “sometime” can refer to a specific past time period, an ongoing session,
“ever”, etc.; “somewhere” can be the interaction history of a user, the current
recommendation being browsed, past recommendations, recommendations by other
systems, “anywhere”, etc.; and “what we know about that” refers to the context of
observation, i.e. the available observations to the system. We elaborate next on how
such models can be defined, computed, and packed into different metrics.

26.5.2 Item Novelty Models

As discussed in Sect. 26.3.4, the novelty of an item can be established in terms of
whether the item itself or its attributes have been experienced before. The first case,
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which we may refer to as an issue of simple item discovery, calls for a probabilistic
formulation, whereas feature-based novelty, which we shall refer to as an issue of
item familiarity, can be more easily defined in terms of a distance model.

26.5.2.1 Item Discovery

In the simple discovery approach, nov.ij
/ can be expressed in terms of the
probability that someone has interacted with the item [75]. This probability can be
defined from two slightly different perspectives: the probability that a random user
has interacted with the item (to which we shall refer as forced discovery) as in IUF
(Eq. (26.2)), or the probability that the item is involved in a random interaction (free
discovery). Both can be estimated based on the amount of interactions with the item
observed in the system, as a sample of all the interaction the item may have received
in the real world. We shall use the notation p.knownji; 
/—the probability that “i
is known” by any user given a context 
—for forced discovery, and p.ijknown; 
/

for free discovery. Note that these are different distributions, e.g. the latter sums
to 1 over the set of all items, whereas the former sums to 1 with p.:knownji; 
/.
Forced discovery reflects the probability that a random user knows a specific item
when asked about it, whereas free discovery is the probability that “the next item”
someone discovers is precisely the given item. It is shown in [75] that the metrics
induced by either model are quite equivalent in practice, as the two distributions are
approximately proportional to each other (exactly proportional if the frequency of
user-item pairs is uniform, as is the case e.g. with one-time ratings). In Sect. 26.7 we
shall show some empirical results which confirm this near equivalence in practice.

Now depending on how we instantiate the context 
 , we can model different
novelty perspectives. For instance, if we take 
 to be the set of available observations
of user-item interaction (to be more rigorous, we take 
 to be an unknown user-item
interaction distribution of which the observed interactions are a sample), maximum-
likelihood estimates of the above distributions yield:

p.knownji; 
/ � jfu 2 U j 9t .u; i; t/ 2 Ogj = jUj D jUij=jUj
p.ijknown; 
/ � jf.u; i; t/ 2 Ogj = jOj (26.10)

where Ui denotes the set of all users who have interacted with i, and O � U� I� T
is the set of observed item-user interactions with i (each labeled with a different
timestamp t 2 T). If the observations consist of ratings, user-item pairs occur only
once, and we have:

p.knownji; 
/ � jUij=jUj D jfu 2 U j r.u; i/ ¤ ;gj = jUj
p.ijknown; 
/ � jfu 2 U j r.u; i/ ¤ ;gj = jOj D jUij=jOj

(26.11)
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Both p.ijknown; 
/ and p.knownji; 
/ make sense as a measure of how popular
an item is in the context at hand. In order to build a recommendation novelty metric
based on this, we should take nov.ij
/ to be a monotonically decreasing function
of these probabilities. The inverse probability, dampened by the logarithm function
(i.e. � log2 p) is frequent in the literature [75, 89], but 1 � p is also reported as
“popularity complement” [75, 79]. The latter has an intuitive interpretation when
applied to forced discovery: it represents the probability that an item is not known
to a random user. The former also has interesting connections: when applied to
forced discovery, it gives the inverse user frequency IUF (see Sect. 26.3.3). When
applied to free discovery, it becomes the self-information (also known as surprisal),
an information theory measure that quantifies the amount of information conveyed
by the observation of an event.

26.5.2.2 Item Familiarity

The novelty model scheme defined in the previous section considers how different
an item is from past experience in terms of strict Boolean identity: an item is new
if it is absent from past experience (known D 0) and not new otherwise (known D
1). There are reasons however to consider relaxed versions of the Boolean view:
the knowledge available to the system about what users have seen is partial, and
therefore an item might be familiar to a user even if no interaction between them
has been observed in the system. Furthermore, even when a user sees an item for the
first time, the resulting information gain—the effective novelty—ranges in practice
over a gradual rather than binary scale (consider for instance the novelty involved
in discovering the movie “Rocky V”).

As an alternative to the popularity-based view, we consider a similarity-based
model where item novelty is defined by a distance function between the item and
a context of experience [75]. If the context can be represented as a set of items,
for which we will intentionally reuse the symbol 
 , we can formulate this as the
distance between the item and the set, which can be defined as an aggregation of the
distances to the items in the set, e.g. as the expected value:

nov.ij
/ D
X
j2


p.jj
/ d.i; j/

The p.jj
/ probability enables further model elaborations, or can be simply taken as
uniform thus defining a plain distance average.

In the context of distance-based novelty, we find two useful instantiations of the

 reference set: (a) the set of items a user has interacted with—i.e. the items in
his profile—and (b) the set R of recommended items itself. In the first case, we
get a user-relative novelty model, and in the second case, we get the basis for a
generalization of intra-list diversity. The notion of expected set in [1] plays a similar
role to this idea of 
 context. It is possible to explore other possibilities for 
 ,
such as groups of user profiles, browsed items over an interactive session, items
recommended in the past or by alternative systems, etc., which might motivate future
work.
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26.5.3 Resulting Metrics

As stated at the beginning of this section, having defined a model of the novelty
of an item, the novelty or diversity of a recommendation can be defined as the
average novelty of the items it contains [75]. Each novelty model, and each context
instantiation produce a different metric. In the following we show some practical
instantiations that give rise to (hence unify and generalize) metrics described in the
literature and covered in Sect. 26.3.

26.5.3.1 Discovery-Based

A practical instantiation of the item discovery models described in Sect. 26.6
consists of taking the novelty context 
 to be the set of user-item interactions
observed by the system. The different discussed variants in the novelty model result
in the following practical metric combinations (mean IUF, mean self-information,
mean popularity complement):

MIUF D � 1

jRj
X
i2R

log2 p.knownji; 
/

MSI D � 1

jRj
X
i2R

log2 p.ijknown; 
/

MPC D 1

jRj
X
i2R

.1 � p.knownji; 
//

where the probabilities are estimated by Eq. (26.10) or (26.11) depending on the
nature of the data. MPC has the advantage of simplicity, a clear interpretation
(the ratio of unknown recommended items), and ranges in Œ0; 1�. MIUF generalizes
the metric proposed by Zhou et al. [89] (Eq. (26.2) in Sect. 26.3.3), and MSI
provides a nice connection to information theory concepts. MPC has the potential
shortcoming of a tendency to concentrate its values in a small range near 1, whereas
MIUF and MSI deliver less clumped values. We might as well consider the expected
popularity complement of free discovery, but that does not have a particularly
interesting interpretation or property with respect to the other metrics. In fact, given
the discussed near equivalence of free and forced discovery, the three above metrics
behave quite similarly to each other, as we will illustrate in Sect. 26.6 for MSI and
MPC.
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26.5.3.2 Familiarity-Based

Distance based item novelty models give rise to intra-list diversity and unexpect-
edness metrics. As mentioned in Sect. 26.5.2.2, these metrics simply result from
taking, respectively, the recommended items or the target user’s profile as the

 novelty context. The complement of any similarity function between items is
potentially suitable to define the distance measure. For instance, with feature-
based similarity we may define d.i; j/ D 1 � cos .i; j/ for numeric item features,
d.i; j/ D 1 � Jaccard.i; j/ for Boolean (or binarized) features, and so forth. The
distinction between collaborative and content-based similarity deserves attention
though, and care should be taken to make a meaningful choice between these two
alternatives. Content-based similarity compares items by their intrinsic properties,
as described by the available item features. Even though a collaborative similarity
measure (which compares items by their common user interaction patterns) might
make sense in some particular cases, we would contend that content-based similarity
is generally more meaningful to assess the diversity in a way that users can perceive.

26.5.3.3 Further Unification

By explicitly modeling novelty as a relative notion, the proposed framework has
a strong unifying potential of further novelty and diversity conceptions. Take for
instance the notion of temporal diversity [46] discussed in Sect. 26.3.5. The metric
can be described in the framework in terms of a discovery model where the source of
discovery is the past recommendations of the system 
 � R0, and novelty is defined
as the complement of forced discovery given this context:

1

jRj
X

i 2 R.1 � p.knownji; R0/ D 1

jRj
X
i2R

.1 � Œi 2 R0�/ D 1

jRj jR � R0j D TD

Similarly, for inter-user diversity (Eq. (26.5) in Sect. 26.3.5), we take as context
the set of recommendations to all users in the system, 
 � fRvjv 2 Ug. By
marginalization over users, and assuming a uniform user prior p.v/ D 1=jUj we
have:

1

jRj
X
i2R

.1 � p.known j i; fRvjv 2 Ug/ D 1

jRj
X
i2R

X
v2U

.1 � p.knownji; Rv//p.v/

D 1

jRjjUj
X
v2U

X
i2R

.1 � p.knownji; Rv// D 1

jRjjUj
X
v2U
jR � Rvj D IUD
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Inter-system novelty can be obtained in a similar way. So can generalized
unexpectedness metrics, in their set difference form (Eq. (26.6) in Sect. 26.3.5), by
using the expected set as context 
 in place of R0, Rv or Rs above.

Biodiversity measures from ecology can also be directly related to some of the
recommendation metrics we have discussed. The equivalences hold by equating
items to species, and the occurrence of an item in a recommendation as the existence
of an individual of the species. In particular, stated in this way, aggregate diversity
is the direct equivalent of so called richness, the number of different species that
are present in an ecosystem [62]. On the other hand, it can be seen that the Gini-
Simpson index (GSI) [62] is exactly equivalent to inter-user diversity. GSI is defined
as the probability that two items (individuals) picked at random from the set of
recommendations (ecosystem) are different items (species), which can be expressed
as a sum over items, or as an average over pairs of recommendations:

GSI D 1 �
X
i2I

jfu 2 U j i 2 Rugj2
jUj.jUj � 1/k2

D 1 � 1

jUj.jUj � 1/

X
u2U

X
v2U

jRu \ Rvj
jRujjRvj

where k D jRuj assuming they are the same size, or equivalently, considering we
are computing GSI@k, and we assume item pairs are not sampled from the same
recommendation. On the other hand, the average value of IUD over all users is:

IUD D 1

jUj.jUj � 1/

X
u2U

X
v2U

jRu � Rvj
jRuj D 1 � 1

jUj.jUj � 1/

X
u2U

X
v2U

jRu \ Rvj
jRuj

D 1 � k.1 � GSI/ / GSI ut

Table 26.1 summarizes some of the metrics that can be obtained in the unified
framework by different instantiations of 
 and item novelty models.

Table 26.1 Some item novelty and context model instantiations, and the metric they
result into

Metric Used in Item novelty model Context

ILD [70, 75, 79, 85, 90] X
j2


p.j j 
/ d.i; j/ 
 � R

Unexp [1, 32, 57, 75] 
 � items in user profile
MIUF [89] � log2 p.known j i; 
/


 � all observed user-item
interaction data

MSI [75] � log2 p.i j known; 
/

MPC [66, 75, 79]

1 � p.known j i; 
/

TD [46]

 � items recommended

in the past

IUD/GSI [89] 
 � fRu j u 2 Ug
ISD [11] 
 � fRs j s 2 Sg
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26.5.3.4 Direct Optimization of Novelty Models

The metric scheme described in the previous sections enables the definition of
novelty or diversity enhancement re-ranking methods by the greedy optimization
of an objective function combining the initial ranking score and the novelty model
value:

g.i; �/ D .1 � �/frel.i/C � nov.ij
/

By taking a particular novelty model nov.ij
/, one optimizes for the corresponding
metric that takes the model at its core. This is an approach to diversity enhancement
which is by definition difficult to overcome—in terms of the target metrics—by
other re-ranking means.

26.5.4 Connecting Recommendation Diversity and Search
Diversity

Recommendation can be formulated as an information retrieval task, one where
there is no explicit user query. To this extent, and in the aim to find a perspective as
comprehensive as possible on the topic at hand in this chapter, it is natural to wonder
whether it is possible to establish a connection between the work on diversity in
both fields. This question finds affirmative answers in many senses [75, 77, 78]. We
summarize here what we find to be the main considerations in this direction: (a)
recommendation novelty and diversity can be extended to be sensitive to relevance
and rank, (b) IR diversity principles, metrics and algorithms can be adapted to a
recommendation setting, and (c) personalized search diversity can be formalized as
a link between search and recommendation diversity.

26.5.4.1 Rank and Relevance

The novelty and diversity metrics described so far generally lack two aspects: they
consider neither the relevance nor the rank position of the items when assessing
their contribution to the novelty value of the recommendation. This is in contrast to
IR metrics such as ERR-IA and ˛-nDCG which add up the novelty contribution of
items only when they are relevant to the query, and apply a rank discount reflecting
the assumption that lower ranking positions are less likely to be actually reached
by users. Some authors in the recommender systems domain have also proposed to
take relevance into account [32, 39, 57, 87, 89], though it is most often not the case,
and rank position is generally not taken into account in the reported metrics.
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Vargas and Castells [75] show that it is possible to deal with relevance and
novelty or diversity together by introducing relevance as an intrinsic feature to the
unified metric scheme described in the previous section. This can be done by just
replacing “average” by “expected” item novelty at the top level of the scheme, where
the novelty of a recommended item should only count when it is actually seen and
consumed (chosen, accepted) by the user. The expected novelty is then computed in
terms of the probability of choice. If we make the simplifying assumptions that (a)
the user chooses an item if and only if she discovers it and likes it, and (b) discovery
and relevance are independent, the resulting scheme is:

m D C
X
i2R

p.seenji; R/ p.relji/ nov.ij
/

where p.relji/ estimates the probability that i is relevant for the user, achieving the
desired effect that only relevant novel items count, and p.seenji; R/ estimates the
probability that the user will get to see the item i while browsing R.

The probability of relevance can be defined based on relevance judgments (test
ratings), for instance as p.relji/ � r.u; i/=.rmax/, where rmax is the maximum possi-
ble rating value. Assessing relevance and diversity together has several advantages.
It allows for a unified criteria to compare two systems, where separate relevance
and novelty metrics may disagree. Furthermore, assessing relevance and novelty
together allows distinguishing, for example, between recommendations A and B
in Table 26.2: B can be considered better (relevance-aware MPC D 0:5) since it

Table 26.2 Toy example recommendations of size two by three systems
A, B, C

Rank A B l

1 ✓ ✗ ✓ ✓ ✗ ✗

2 ✗ ✓ ✗ ✗ ✓ ✓

Metric p.seen j ik; R/ p.rel j i/ A B C

Plain MPC 1 1 1 0.5 0.5

Relevance-aware MPC 1 r.u; i/=rmax 0 0.5 0.5

Zipfian MPC 1=k 1 0.25 0.5 0.25

Precision 1 r.u; i/=rmax 1 0.5 0.5

H(Plain MPC, Precision) – – 1 0.5 0.5

For each item, the pairs of check and cross marks indicate whether or not
the item is relevant (left) and novel (right) to the user (e.g. item 1 of A
is relevant and not novel). Below this, the values of MPC are shown with
different combinations of rank discount and relevance awareness: plain MPC
without relevance or rank discounts, relevance-weighted MPC (without rank
discount), and MPC with a Zipfian rank discount (without relevance). The
specific expression of the discount function p.seenjik; R/ and the relevance
weight p.relji/ is shown for each metric variant. The last two rows show the
precision of each recommendation, and the harmonic mean of precision and
plain MPC
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recommends one useful item (relevant and novel), whereas the items recommended
by A (relevance-aware MPC D 0) lack either relevance or novelty. Note that
an aggregation of separate novelty and relevance metrics would not catch this
difference—e.g. the harmonic mean of MPC and precision is 0:5 for both A and B.

On the other hand, the p.seenji; R/ distribution allows the introduction of a
browsing model of a user interacting with the ranked recommendations, thus
connecting to work on the formalization of utility metrics in IR [18, 21, 55]. The
browsing model results in a rank discount which reflects the decreasing probability
that the user sees an item as she goes down the ranking. Different models result
in discount functions such as logarithmic p.seenjik; R/ D 1= log2 k as in nDCG,
exponential pk�1 as in RBP [55], Zipfian 1=k as in ERR [21], and so forth (see [18]
for a good compendium and formalization of alternatives). Rank discount allows
distinguishing between recommendations B and C in Table 26.2: B is better (Zipfian
MPC D 0:5) since it ranks the relevant novel item higher than C (Zipfian MPC
D 0:25), with higher probability to be seen by the user.

26.5.4.2 IR Diversity in Recommendation

Vargas et al. [77, 78] have shown that the IR diversity principles, metrics and
algorithms can be directly applied to recommendation. At a theoretical level, the
evidence of user needs implicit in user actions is generally even more ambiguous
and incomplete to a recommender system than an explicit query can be to a
search system, whereby the rationale of diversifying retrieved results to increase
the chances of some relevant result applies here as well. At a practical level, it
makes as much sense to consider the different aspects of a user’s preferences
(there are different sides to a person’s interests) as it can make for an expressed
query. A user interest aspect representation can be drawn from item features in
some suitable, meaningful space. This can be done in analogy to the document
categories as handled in [6]. From this point on, IR diversity metrics such as ERR-
IA [21] or subtopic recall [84] can be applied, and aspect-based algorithms such as
xQuAD [67] or IA-Select [6] can be adapted, equating users to queries and items to
documents.

Non-aspect based diversification methods are applied even more straightfor-
wardly to recommendation, as proved by the equivalence between MMR [17] and
methods in the recommender systems field [70, 90] (Sect. 26.4.1), or the adaptation
of the Modern Portfolio Theory from IR [80] to recommendation [69].

26.5.4.3 Personalized Diversity

Recommender and search systems can be seen as extremes in the explicit vs. implicit
spectrum of the available evidence of user needs: a recommender system takes
no explicit query and relies on observed user choices—implicit evidence of user
preferences—as input, whereas basic search systems use just an explicit query.
Personalized search represents a middle ground in this spectrum, using both an
explicit user query and implicit user feedback and observed actions.
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The possibility to consider diversity in the presence of both a query and a user
profile has been researched as well [63, 74]. This standpoint has interesting philo-
sophical implications, since personalization can also be seen as a strategy to cope
with the uncertainty in a user query. While in a diversification approach the system
accepts a situation of uncertainty and adapts its behavior to it, personalization tries
to reduce the uncertainty by enhancing the system knowledge about the user need.

Diversity and personalization do not necessarily exclude each other, and can in
fact be combined into personalized diversification, as shown in [74]. Vallet and
Castells developed and tested a full framework that generalizes IR diversification
methods (including xQuAD [67] and IA-Select [6]) into a personalized diversifi-
cation scheme, by introducing the user as a random variable in the probabilistic
formalization of the diversity algorithm [74]. In addition to bridging two theories,
the scheme compared favorably empirically to personalization and diversity alone.

26.6 Empirical Metric Comparison

We illustrate the metrics and some of the algorithms described along this chapter
with some empirical measurements for a few recommendation algorithms on
MovieLens 1M. In the tests we present, ERR-IA and subtopic recall are defined
using movie genres as user aspects; ILD and unexpectedness take Jaccard on genres
as the distance measure; and aggregate diversity is presented as a ratio over the total
number of items, for a better appreciation of differences.

Table 26.3 shows the metric values for some representative recommendation
algorithms: matrix factorization (MF) recommender, based on [38]; a user-based
kNN algorithm using the Jaccard similarity, and omitting the normalization by the
sum of similarities in the item prediction function; a content-based recommender
using movie tags; a most-popular ranking; and random recommendation. We may
mainly notice that matrix factorization stands out as the most effective in aggregate
diversity and ERR-IA. The latter can be attributed to the fact that this metric takes
relevance into account, a criteria on which MF achieves the best results of this set
(as seen in nDCG).

Table 26.3 Novelty and diversity metrics (at cutoff 10) on a few representative recommendation
algorithms in the MovieLens 1M dataset.

nDCG ILD Unexp MSI MPC Aggdiv IUD Entropy ERR-IA S-recall

MF 0.3161 0.6628 0.7521 9.5908 0.8038 0.2817 0.9584 8.5906 0.2033 0.5288
u-kNN 0.2856 0.6734 0.7785 9.0716 0.7361 0.1589 0.8803 7.1298 0.1800 0.5422
CB 0.1371 0.6825 0.7880 9.7269 0.8101 0.1650 0.7762 6.2941 0.1001 0.5378
PopRec 0.1415 0.6624 0.8451 8.5793 0.6514 0.0183 0.4943 4.5834 0.0773 0.5253
Random 0.0043 0.7372 0.8304 13.1067 0.9648 0.9647 0.9971 11.7197 0.0034 0.5055

The highest value of each metric is shown in boldface and table cells are colored in shades of
green, darker representing higher values (the values of random recommendation are disregarded
in the color and bold font of the rest of rows—though not vice versa—to allow the appreciation
of differences excluding the random recommendation)
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Content-based recommendation procures the best long tail novelty metrics,
confirming a well-known fact [20]. It is not comparably as bad in unexpectedness
as one might expect, and this can be attributed to the fact that movie genres (the
basis for the unexpectedness distance) and movie tags (the basis for CB similarity)
seem not to correlate that much. This, and the good results in terms of ILD
can also be related to the suboptimal accuracy of this algorithm as a standalone
recommender, which may lend it, albeit to a small degree, some of the flavor of
random recommendations. We have checked (outside the reported results) that CB
naturally gets the lowest ILD value of all recommenders if the metric uses the same
features as the CB algorithm (i.e. movie tags).

Popularity has (almost by definition) the worst results in terms of most novelty
and diversity metrics; except in terms of unexpectedness (distance to user profile),
which makes sense since this algorithm ignores any data of target users and
thus delivers items that are weakly related to the individual profiles. Random
recommendation is naturally optimal at most diversity metrics except the one that
takes relevance into account (it has low subtopic recall though, because of a bias
in MovieLens whereby genre cardinality—therefore subtopic coverage—correlates
negatively with popularity). And kNN seems to achieve a good balance of the
different metrics. We may also notice that aggregate diversity, IUD and entropy
go hand in hand, as one would expect.

In order to give an idea of how related or different the metrics are, Table 26.4
shows the pairwise Pearson correlation of the metrics on a user basis for the MF
recommender. We see that ILD, unexpectedness and subtopic recall tend to go
hand in hand, even though they capture different properties as seen previously
in the comparison of recommenders in Table 26.3 (e.g. popularity has very good
unexpectedness but very poor ILD). MSI and MPC confirm to be quite equivalent,
and IUD (which is equivalent to Gini-Simpson) goes strongly along with these long
tail metrics. Note that aggregate diversity and entropy do not have a definition for
individual users, and therefore they cannot be included in this table. However, as
mentioned before, these measures show strong system-wise correspondence with
IUD in Table 26.3 and, by transitivity, can be expected to correlate with long-tail
metrics as well. The correlation between ERR-IA and nDCG reflects the fact that
in addition to aspect diversity ERR-IA takes much into account relevance, which is
what nDCG measures.

Table 26.4 Pearson
correlation between different
metrics (on a user basis)
applied to a matrix
factorization algorithm on
MovieLens 1M.

nDCG
0.64 ERR-IA
0.03 -0.02 S-recall
0.03 -0.09 0.71 ILD
0.07 -0.06 0.62 0.85 Unexp
0.02 0.09 -0.21 -0.21 -0.20 MSI
0.02 0.10 -0.19 -0.21 -0.19 0.97 MPC
0.06 0.14 -0.20 -0.27 -0.23 0.87 0.93 IUD

The shades of color (red for negative, green for positive)
highlight the magnitude of values
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Table 26.5 Novelty and diversity metrics (at cutoff 10) on a few novelty and diversity
enhancement algorithms applied to the matrix factorization algorithm on MovieLens 1M

nDCG     ILD       Unexp      MSI        MPC    Aggdiv     ERR-IA    S-recall

MF 0.3161 0.6628 0.7521 9.5908 0.8038 0.2817 0.2033 0.5288
+MMR 0.2817 0.7900 0.8089 9.6138 0.8054 0.2744 0.1897 0.6814
+Unexp 0.2505 0.7588 0.8467 9.6011 0.8029 0.2483 0.1431 0.6439
+MSI 0.2309 0.6130 0.7384 10.6995 0.8961 0.4700 0.1583 0.4483
+MPC 0.2403 0.6233 0.7389 10.3406 0.8818 0.3683 0.1622 0.4696
+xQuAD 0.2726 0.6647 0.7596 9.5784 0.8034 0.2292 0.2063 0.6370
+Random 0.0870 0.6987 0.7698 10.2517 0.8670 0.4836 0.0623 0.5561

The diversifiers are denoted either by their common name, or by the name of the metric (the item
novelty model) they target in their objective function

Finally, and just for the sake of illustration, we see in Table 26.5 the effect of
different novelty/diversity enhancers, applied to the best performing baseline in
nDCG, namely matrix factorization. The diversifiers labeled as MMR, Unexp, MSI
and MPC are greedy optimizations of the corresponding item novelty model of each
metric. xQuAD is an implementation of the algorithm described in [67] using movie
genres as aspects, an algorithm which implicitly targets ERR-IA. We arbitrarily
set � D 0:5 for all algorithms, without a particular motive other than illustrative
purposes. We can see that each algorithm maximizes the metric one would expect.
The fact that MSI appears to optimize MPC better than MPC itself is because (a)
both metrics are almost equivalent, and (b) � D 0:5 is not the optimal value for
optimization, whereby a small difference seems to tip the scale towards MSI by
pure chance. Please note that these results are in no way aiming to approximate
optimality or evaluate an approach over another, but rather to exemplify how the
different models, metrics and algorithms may work and relate to each other in a
simple experiment.

26.7 Conclusion

The consensus is clear in the community on the importance of novelty and diversity
as fundamental qualities of recommendations, and it seems difficult to make
progress in the field without considering these dimensions. Considerable progress
has been achieved in the area in defining novelty and diversity from several points of
view, devising methodologies and metrics to evaluate them, and developing different
methods to enhance them. This chapter aims to provide a wide overview on the work
so far, as well as a unifying perspective linking them together as developments from
a few basic common root principles.

It is our perception that work in this area is far from being finished. There
is still room for further understanding the role of novelty and diversity, as well
as theoretical, methodological and algorithmic developments around them. For
instance, modeling feature-based novelty in probabilistic terms in order to unify
discovery and familiarity models would be an interesting line for future work.
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Aspects such as the time dimension, along which items may recover part of their
novelty value [43, 56], or the variability among users regarding their degree of
novelty-seeking trend, are examples of issues that require further research. Last but
not least, user studies would bring considerable light as to whether the described
metrics match the actual user perception, as well as the precise extent and conditions
in which users appreciate novelty and diversity versus accuracy and other potential
dimensions of recommendation effectiveness.
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Chapter 27
Cross-Domain Recommender Systems

Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky,
and Paolo Cremonesi

27.1 Introduction

Nowadays, the majority of recommender systems offer recommendations for items
belonging to a single domain. For instance, Netflix recommends movies and TV
programs, Barnes&Noble recommends books, and Last.fm recommends songs and
music albums. These domain-specific systems have been successfully deployed by
numerous websites, and the single-domain recommendation functionality is not
perceived as a limitation, but rather pitched as a focus on a certain market.

Nonetheless, large e-commerce sites like Amazon and eBay often store user
feedback for items from multiple domains, and in social media users often express
their tastes and interests for a variety of topics. It may, therefore, be beneficial to
leverage all the available user data provided in various systems and domains, in
order to generate more encompassing user models and better recommendations.
Instead of treating each domain (e.g., movies, books, and music) independently,
knowledge acquired in a source domain could be transferred to and exploited
in another target domain. The research challenge of transferring knowledge, and
the business potential of delivering recommendations spanning across multiple
domains, have triggered an increasing interest in cross-domain recommendations.
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Consider two motivating use cases for cross-domain recommendations. The first
refers to the well known cold-start problem, which hinders the recommendation
generation due to the lack of sufficient information about users or items. In a
cross-domain setting, a recommender may draw on information acquired from
other domains to alleviate such problem, e.g., a user’s favorite movie genres may
be derived from her favorite book genres. The second refers to the generation
of personalized cross-selling or bundle recommendations for items from multiple
domains, e.g., a movie accompanied by a music album similar to the soundtrack of
the movie. This recommendation may be informed by the user’s movie tastes, but
may not be extracted from rating correlations within a joined movie-music rating
matrix.

These use cases are underpinned by an intuitive assumption that there are
correspondences between user and item profiles in the source and target domains.
This assumption has been validated in several marketing, behavioral, and data
mining studies, which uncover strong dependencies between different domains
[58, 66]. Cross-domain recommender systems leverage these dependencies through
considering, for example, overlaps between the user or item sets, correlations
between user preferences, and similarities of item attributes. Then, they apply
a variety of techniques for enriching the knowledge in the target domain, and
improving the quality of recommendations generated therein.

Cross-domain recommendation is a challenging and still largely under-explored
topic. Although it has been studied from several angles, an agreed upon definition
of the cross-domain recommendation problem has not emerged yet, and no work
has analyzed and classified the existing cross-domain recommendation techniques.
In this chapter we survey the state of the art in cross-domain recommender
systems, categorize the methods for establishing and exploiting links between
diverse domains, compare the outcomes of prior work, and outline future research
directions.

The chapter is structured as follows. In Sect. 27.2 we formulate the cross-
domain recommendation problem, describing its main tasks and goals. In Sect. 27.3
we present a general categorization of cross-domain recommendation techniques.
In Sects. 27.4 and 27.5 we review cross-domain recommendation approaches,
distinguishing between knowledge aggregation and knowledge linkage/transfer
approaches. In Sect. 27.6 we overview cross-domain recommendation evaluation.
In Sect. 27.7 we discuss practical considerations about cross-domain recommender
systems. Finally, in Sect. 27.8 we discuss open research issues in cross-domain
recommendation.
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27.2 Formulation of the Cross-Domain Recommendation
Problem

The cross-domain recommendation problem has been addressed from various per-
spectives in different research areas. It has been handled by means of user preference
aggregation and mediation strategies for the cross-system personalization problem
in user modeling [2, 8, 58], as a potential solution to mitigate the cold-start
and sparsity problems in recommender systems [16, 59, 64], and as a practical
application of knowledge transfer in machine learning [26, 40, 51].

Aiming to unify perspectives, we provide a generic formulation of the
cross-domain recommendation problem, focusing on existing domain notions
(Sect. 27.2.1) and cross-domain recommendation tasks (Sect. 27.2.2) and goals
(Sect. 27.2.3), and discuss the possible scenarios of data overlap between domains
(Sect. 27.2.4).

27.2.1 Definition of Domain

In the literature researchers have considered distinct notions of domain. For
instance, some have treated items like movies and books as belonging to different
domains, while others have considered items such as action movies and comedy
movies as different domains. To the best of our knowledge, in the context of
recommender systems research, there have been no attempts to define the concept
of domain. Here we distinguish between several domain notions according to the
attributes and types of recommended items. Specifically, we consider that domain
may be defined at four levels (see illustration in Fig. 27.1):

• (Item) Attribute level. Recommended items are of the same type, having the
same attributes. Two items are considered as belonging to distinct domains if
they differ in the value of certain attribute. For instance, two movies belong to
distinct domains if they have different genres, like action and comedy movies.
This definition of domain is rather borderline, and is mainly used as a way to
increase the diversity of recommendations (e.g., we may wish to recommend
some thriller movies even to users who only watch comedy movies).

• (Item) Type level. Recommended items are of similar types and share some
attributes. Two items are considered as belonging to distinct domains if they have
different attribute subsets. For instance, movies and TV shows belong to distinct
domains, since although they have several attributes in common (title, genre),
they still differ with respect to some others (e.g., the live attribute for TV shows).

• Item level. Recommended items are not of the same type, differing in most, if
not all, of their attributes. For instance, movies and books belong to different
domains, even though they have some attributes in common (title, release/publi-
cation year).
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Fig. 27.1 Notions of domain according to attributes and types of recommended items. (a)
Attribute level: same type of items (movies) with different values of certain attribute (genre). (b)
Type level: similar types of items (movies and TV shows), sharing some of their attributes. (c) Item
level: different types of items (books and movies). (d) System level: same type of items (movies)
on different systems (theater and TV)

• System level. Recommended items belong to distinct systems, which are con-
sidered as different domains. For instance, movies rated in the MovieLens
recommender, and movies watched in the Netflix video streaming service.

In Table 27.1 we summarize the considered notions of domains, addressed
domains, and used datasets/systems in a significant number of prior works on cross-
domain user modeling and recommendation. It can be seen that the majority of the
papers considers domains at the item (about 55 %) and system (24 %) levels. The
most frequently addressed domains are movies (75 %), books (57 %), music (39 %)
and TV (18 %). In this context, we note that around 10 % of the papers addresses
various domains, by exploiting user preference data from multi-domain systems
like Amazon and Facebook. Analyzing the pairs of domains frequently addressed,
we observe that movies are often crossed with books (33 %), music (19 %), and TV
(7 %), whereas books are crossed with music (14 %) and TV (10 %).

The table also shows the utilized types of user preferences: ratings (61 %), tags
(29 %), thumbs up (14 %), transaction history (7 %), and click-through data (4 %).
Although only a few papers use semantic concepts as user preferences, in some
papers, social tags are transformed into concepts from WordNet or Wikipedia.
Overall, about 14 % of the papers use semantic-based user preferences.

27.2.2 Cross-Domain Recommendation Tasks

The research on cross-domain recommendation generally aims to exploit knowledge
from a source domain DS to perform or improve recommendations in a target
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Table 27.1 Summary of domain notions, domains, and user preference datasets/systems used
in the cross-domain user modeling and recommendation literature

User preferences—
Domain notion Domains datasets/systems References

Item attribute Book categories Ratings—
BookCrossing

Cao et al. [13]

Movie genres Ratings—EachMovie Berkovsky et al. [7]
Ratings—MovieLens Lee et al. [38]

Cao et al. [13]

Item type Books, movies, music Ratings—Amazon Hu et al. [31]
Loni et al. [44]

Books, games, music,
movies and TV shows

Ratings Winoto and Tang [66]

Item Books, movies Ratings—
BookCrossing,
MovieLens/EachMovie

Li et al. [40, 41]
Gao et al. [26]

Ratings,
tags—LibraryThing,
MovieLens

Zhang et al. [67]
Shi et al. [59]
Enrich et al. [20]

Ratings, transactions Azak [3]

Ratings—Imhonet Sahebi and Brusilovsky
[55]

Ratings—Douban Zhao et al. [69]

Movies, music Thumbs up—Facebook Shapira et al. [58]

Books, movies, music Tags—MovieLens,
Last.fm, LibraryThing

Fernández-Tobías et al. [23]

Books, movies,
music, TV shows

Thumbs up—Facebook Tiroshi and Kuflik [65]
Cantador et al. [10]
Tiroshi et al. [64]

Music, tourism Semantic concepts Fernández-Tobías et al. [21]
Kaminskas et al. [35]

Restaurants, tourism Ratings, transactions Chung et al. [14]

Various domains Tags—Delicious,
Flickr

Szomszor et al. [61, 62]

System Movies Ratings—Netflix Cremonesi et al. [16]
Zhao et al. [69]

Ratings—Douban,
Netflix

Zhao et al. [69]

Ratings—MovieLens,
Moviepilot, Netflix

Pan et al. [52]
Pan et al. [53]

Music Tags—
Delicious,Last.fm

Loizou [43]

Tags—Blogger, Last.fm Stewart et al. [60]
Various domains Tags—Delicious,

Flickr, StumbleUpon,
Twitter

Abel et al. [1]
Abel et al. [2]

Click-through
data—Yahoo! services

Low et al. [45]
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domain DT . Analyzing the literature, we observe that the addressed tasks are
diverse, and a consensual definition of the cross-domain recommendation problem
has not been formulated yet. Hence, some researchers have proposed models aimed
to provide jointly diverse recommendations of items belonging to multiple domains,
whereas others have developed methods to alleviate cold-start and sparsity situations
in a target domain by using information from source domains.

Aiming to provide a unified formulation of the cross-domain recommendation
problem, we define the tasks we identify as providing recommendations across
domains. Without loss of generality, we consider two domains DS and DT (the
definitions are extensible to more source domains). Let US and UT be their sets
of users, and let IS and IT be their sets of items. The users of a domain are those
who expressed preferences (e.g., ratings, reviews, tags, and consumption logs) for
the domain items. The items do not necessarily have preferences from users of the
domain, but may have content-based attributes that establish their membership to
the domain.

Sorted in increasing order of complexity, we distinguish between the following
three recommendation tasks (see Fig. 27.2):

• Multi-domain recommendation: recommend items in both the source and target
domains, i.e., recommend items in IS [ IT to users in US (or, equivalently, in UT

or US [ UT ).
• Linked-domain recommendation: recommend items in the target domain by

exploiting knowledge from the source and target domains, i.e., recommend items
in IT to users in US by exploiting knowledge about US [ UT and/or IS [ IT .

• Cross-domain recommendation: recommend items in the target domain by
exploiting knowledge from the source domain, i.e., recommend items in IT to
users in US by exploiting knowledge about US and/or IS.

Multi-domain approaches have mainly focused on the provision of cross-system
recommendations, by jointly considering user preferences for items in various
systems. To perform this type of recommendations, a significant overlap between
user preferences in distinct domains is needed. This is becoming more and more

DS

DT

DSUS

a b cIS IT

UT DT

US

IS IT

UT DT

US

IS IT

UT

DS

Fig. 27.2 Cross-domain recommendation tasks. Grey filled areas represent the target users and
recommended items, and hatched areas represent the exploited data for generating recommenda-
tions (a) Multi-domain. (b) Linked-domain. (c) Cross-domain
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feasible, since users maintain profiles in various social media, and there are intercon-
necting mechanisms for both cross-system interoperability [12] and cross-system
user identification [11]. In addition to social media, the benefits of multi-domain
recommendations also come through in e-commerce sites, where personalized
cross-selling [19, 36] can increase customer satisfaction, and consequently, their
loyalty and the businesses profitability. For such purposes, in general, approaches
aim to aggregate knowledge from the source and target domains.

Linked-domain approaches have been mainly applied to improve the recommen-
dations in a target domain where there is a scarcity of user preferences, either at
the user level (the cold-start problem) or at the community level (the data sparsity
problem). To deal with these situations, a common solution is to enrich or enhance
the available knowledge in the target domain with knowledge from the source
domain. Hence, to perform this type of recommendations, some data relations or
overlaps between domains are needed, and approaches aim to establish explicit or
implicit knowledge-based links between the domains.

Finally, cross-domain approaches have been proposed to provide recommen-
dations in a target domain where there is no information about the users. In this
case, there is no assumption of data relations and/or overlaps between domains, and
approaches aim to establish knowledge-based links between domains or to transfer
knowledge from the source domain to the target domain.

For the sake of simplicity, we consider the three recommendation tasks together,
as a single formulation of the cross-domain recommendation problem, although in
Sects. 27.4 and 27.5 we review specific approaches for each task.

27.2.3 Cross-Domain Recommendation Goals

From both the research and practical perspectives, it is important to match the
recommendation algorithms to the task in hand. For this reason, we initially present
a taxonomy of cross-domain recommendation goals. The taxonomy is described in
a solution-agnostic way: each problem is defined based solely on its goals—without
discussing how they are solved, which will be done in Sect. 27.3.

At the first level of the taxonomy, we consider the three recommendation tasks
presented in Sect. 27.2.2, namely multi-domain, linked-domain, and cross-domain
tasks, which are the columns of Table 27.2. At the second level, we distinguish
between the specific goals addressed by cross-domain recommenders, which are the
rows of Table 27.2. We identify the following goals:

• Addressing the system cold-start problem (system bootstrapping). This is related
to situations in which a recommender is unable to generate recommendations
due to an initial lack of user preferences. One possible solution is to bootstrap
the system with preferences from another source outside the target domain.
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Table 27.2 Summary of cross-domain recommendation approaches based on goals
and tasks

Goal Multi-domain task Linked-domain task Cross-domain task

Cold start Shapira et al. [58]

New user Winoto et al. [66]
Cremonesi et al. [16]
Low et al. [45]
Hu et al. [31]
Sahebi et al. [55]

Berkovsky et al. [6, 7]
Berkovsky et al. [8]
Nakatsuji et al. [47]
Cremonesi et al. [16]
Tiroshi et al. [65]
Braunhofer et al. [9]

New item Kaminskas et al. [35]

Accuracy Cao et al. [13]
Zhang et al. [67]
Li et al. [42]
Tang et al. [63]
Zhang et al. [68]

Li et al. [40, 41]
Moreno et al. [46]
Shi et al. [59]
Pan et al. [52]
Gao et al. [26]
Pan et al. [53]
Zhao et al. [69]

Pan et al. [48]
Stewart et al. [60]
Pan et al. [51]
Tiroshi et al. [64]
Loni et al. [44]

Diversity Winoto et al. [66]

User model Szomszor et al. [61]
Abel et al. [1]
Abel et al. [2]
Fernández-Tobías [23]
Goga et al. [28]
Jain et al. [32]

• Addressing the new user problem. When a user starts using a recommender,
this has no knowledge of the user’s tastes and interests, and cannot produce
personalized recommendations. This may be solved by exploiting the user’s
preferences collected in a different source domain.

• Addressing the new item problem (cross-selling of products). When a new item
is added to a catalog, it has no prior ratings, so it will not be recommended by
a collaborative filtering system. This problem is particularly evident when cross-
selling new products from different domains.

• Improving accuracy (by reducing sparsity). In many domains, the average
number of ratings per user and item is low, which may negatively affect the
quality of the recommendations. Data collected outside the target domain can
increase the rating density, and thus may upgrade the recommendation quality.

• Improving diversity. Having similar, redundant items in a recommendation list
may not contribute much to the user’s satisfaction (Chap. 26). The diversity of
recommendations can be improved by considering multiple domains, as this may
provide a better coverage of the range of user preferences.
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• Enhancing user models. The main goal of cross-domain user modeling applica-
tions is to enhance user models. Achieving this goal may have personalization-
oriented benefits such as (1) discovering new user preferences for the target
domain [60, 62], (2) enhancing similarities between users and items [1, 8], and
(3) measuring vulnerability in social networks [28, 32].

Table 27.2 shows the mapping between the above recommendation tasks and
goals. Cross-domain tasks are mainly used to address the cold start problem
boosting data density, while linked-domain tasks are used to improve accuracy and
diversity.

27.2.4 Cross-Domain Recommendation Scenarios

As discussed by Fernández-Tobías et al. [22], in the context of a cross-domain
recommendation task, domains can be explicitly or implicitly linked by means of
content-based (CB) or collaborative filtering (CF) characteristics associated with
users and/or items, such as ratings, social tags, semantic relations, and latent factors.

Let XU D fxU1 ; 	 	 	 ; xUm g and XI D fxI1; 	 	 	 ; xIng be the sets of characteristics
utilized to represent the users and items, respectively. Two domains DS and DT

are linked if XU
S \ XU

T ¤ ¿ or XI
S \ XI

T ¤ ¿, i.e., if they share user or
item characteristics. In a realistic setting, due to the heterogeneity of domain
representations, one may need to set functions that map characteristics between
domains, i.e., f W XU

S ! XU
T and g W XI

S ! XI
T . For instance, to link movies

and books, a mapping function could identify users registered in two systems,
f .ui;movie system/ D uj;book system, or could link related genres, g.comedymovie system/ D
humorbook system.

Next, we describe representative examples of user and item characteristics, as
well as their inter-domain relations and data overlap scenarios.

• Content-based relations between domains. In CB systems, a set of content
or metadata features F D fF1; 	 	 	 ; Fng—e.g., keywords, properties, and
categories—describes both user preferences and item attributes, i.e., XU �
F;XI � F. In general, a user profile is composed of a vector, where each
component reflects the degree to which the user likes or is interested in a specific
feature, and similarly, an item profile is composed of a vector whose components
reflect the relevance of the features to the item. An overlap between domains DS

and DT occurs when XU
S \ XU

T ¤ ¿ and FS \ FT ¤ ¿.
• Collaborative filtering-based relations between domains. In CF systems, user

preferences are modeled as a matrix R 2 R
jUj�jIj, in which an element ru;i is the

rating assigned by user u to item i. Thus, XU D I (I being the rated items), and
domains DS and DT overlap when XU

S \XU
T ¤ ¿, i.e., IS\IT ¤ ¿. An equivalent

reasoning can be done for items, to derive that XI D U (U being the users with
ratings), and that DS and DT overlap when XI

S \ XI
T ¤ ¿, i.e., US \ UT ¤ ¿.
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Fig. 27.3 Scenarios of data overlap between user and item sets in two domains DS and DT : no
overlap, user overlap, item overlap, and user and item overlap

Moreover, as explained in subsequent sections, approaches have been proposed
to represent users and/or items in lower dimension spaces, called latent factors, in
which the above vector representations are valid. In these cases, if U and I denote
the sets of user and item latent factors, respectively, then XU D U and XI D I.

As shown in Fig. 27.3, for the above types of relations, and generalizing the
possible cross-domain CF cases identified by Cremonesi et al. [16], four scenarios
of data overlap between two domains DS and DT can exist:

• No overlap. There is no overlap between users and items in the domains, i.e.,
UST D US \ UT D ¿ and IST D IS \ IT D ¿.

• User overlap. There are some common users who have preferences for items in
both domains, i.e., UST ¤ ¿, but every item belongs to a single domain. This is
the case, for instance, where some users rated movies and books.

• Item overlap. There are some common items that have been rated by users from
both domains, i.e., IST ¤ ¿. This is the case, for instance, where two IPTV
providers share a catalog of TV programs, which may be rated in each system.

• User and item overlap. There is overlap between both the users and items, i.e.,
UST ¤ ¿ and IST ¤ ¿.
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27.3 Categorization of Cross-Domain Recommendation
Techniques

As discussed in Sect. 27.2, cross-domain recommendation has been addressed from
various perspectives in distinct research areas. This has entailed the development
of a wide array of recommendation approaches, which in many cases are difficult
to compare due to the user preferences they use, the cross-domain scenario they
deal with, and the algorithms and data on which they are based. Moreover, pub-
lished reviews of the research literature and categorizations of existing approaches
[16, 22, 33, 39] have not reflected the entire complexity of the space. In this
section, we categorize and propose a unifying schema for the existing cross-domain
recommendation techniques.

Chung et al. presented in their seminal research [14] a framework that provides
integrated recommendations for items that may be of different types, and may
belong to different domains. The framework accounts for three levels of recom-
mendation integration: single item type recommendations, which consist of items
of the same type, cross item type recommendations, which consist of items of
different types that belong to the same domain, and cross domain recommendations,
which consist of items whose types belong to different domains. The authors
stated that integrated recommendations can be generated by following at least three
approaches:

• General filtering: instantiating a recommendation model for multiple item types
that may belong to different domains.

• Community filtering: utilizing ratings shared among several communities or
systems that may deal with different item types and domains.

• Market basket analysis: applying data mining to extrapolate hidden relations
between items of different types/domains and to build a model for item filtering.

In [43], Loizou identified three main trends in cross-domain recommendation
research. The first focuses on compiling unified user profiles appropriate for cross-
domain recommendations [29]. This is considered as an integration of domain-
specific user models into a single, unified multiple-domain user model, which is
subsequently used to generate recommendations. The second involves profiling
user preferences through monitoring their interactions in individual domains [34],
which can be materialized through agents that learn single-domain user preferences
and gather them from multiple domains to generate recommendations. The third
deals with combining (or mediating) information from several single-domain
recommender systems [6]. A number of strategies for mediating single-domain CF
systems were considered: exchange of ratings, exchange of user neighborhoods,
exchange of user similarities, and exchange of recommendations.

Based on these trends, Cremonesi et al. surveyed and categorized cross-domain
CF systems [16]. They enhanced Loizou’s categorization by considering a more
specific grouping of approaches:
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• Extracting association rules from rating behavior in a source domain, and using
extracted rules to suggest items in a target domain, as proposed by Lee et al. [38].

• Learning inter-domain rating-based similarity and correlation matrices, as pro-
posed by Cao et al. [13] and Zhang et al. [67].

• Combining estimations of rating probability distributions in source domains to
generate recommendations in a target domain, as proposed by Zhuang et al. [70].

• Transferring knowledge between domains to address the rating sparsity problem
in a target domain, as proposed by Li et al. [40, 41] and Pan et al. [50, 51].

For the last group, Li presented a survey of transfer learning techniques in
cross-domain CF [39]. There, Li proposed an alternative categorization based
on types of domain. Specifically, the author distinguished between (1) system
domains that are associated with different recommenders, and represent a scenario
where the data in a target recommender are very sparse, while the data in related
recommenders are abundant; (2) data domains that are associated with multiple
sources of heterogeneous data, and represent a scenario where user data in source
domains (e.g., binary ratings) can be obtained easier than in a target domain (e.g.,
five-star ratings); and (3) temporal domains that are associated with distinct data
periods, and represent a scenario where temporal user preference dynamics can
be captured. For these categories, Li considered three recommendation strategies
differing in the knowledge transferred between domains:

• Rating pattern sharing, which aims to factorize single-domain rating matrices
utilizing user/item groups, encode group-level rating patterns, and transfer
knowledge between domains through the encoded patterns [40–42].

• Rating latent feature sharing, which aims to factorize single-domain rating
matrices using latent features, share latent feature spaces across domains, and
transfer knowledge between domains through the latent feature matrices [50–53].

• Domain correlating, which aims to factorize single-domain rating matrices using
latent features, explore correlations between latent features in single domains,
and transfer knowledge between domains through such correlations [13, 59, 67].

Pan and Yang identified in a survey of transfer learning for machine learning
applications [49] three main questions to be faced: (1) what to transfer—which
knowledge should be transferred between domains; (2) how to transfer—which
learning algorithms should be exploited to transfer the discovered knowledge;
and (3) when to transfer—in which situations the knowledge transfer knowledge
is beneficial. Focusing on the what and how questions, Pan et al. proposed in
[50, 51] a two-dimensional categorization of transfer learning-based approaches
for cross-domain CF. The first dimension takes the type of transferred knowledge
into account, e.g., latent rating features, encoded rating patterns, and rating-based
correlations and covariances. The second dimension considers the algorithm, and
distinguishes between adaptive and collective approaches, assuming, respectively,
the existence of rating data only in the source domain, and in both the source and
target domains.
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In a more recent survey, Fernández-Tobías et al. went beyond CF recommen-
dations, taking into account approaches that establish cross-domain relationships
not necessarily based on ratings [22]. They identified three directions to address
the cross-domain recommendation problem. The first is through the integration
of single-domain user preferences into a unified cross-domain user model, which
implies aggregating user profiles from multiple domains (“compile unified profiles”
in [43]), and the mediation of user models across domains (“profile through
monitoring” in [43]). The second direction aims to transfer knowledge from a source
domain to a target domain, and includes approaches that exploit recommendations
generated for a source domain in a target domain (“mediating information” in [43]),
and approaches based on transfer learning, surveyed in [39]. The third direction is
about establishing explicit relations between domains, which may be based either
on content-based relations between items or on rating-based relations between
users/items. The authors then proposed a two-dimensional categorization of cross-
domain recommendation approaches: (1) according to the type of inter-domain
relations: content-based relations (item attributes, tags, semantic properties, and
feature correlations) vs. rating-based relations (rating patterns, rating latent factors,
and rating correlations); and (2) according to the goal of the recommendation
task: adaptive models, which exploit knowledge from a source domain to generate
recommendations in a target domain, vs. collective models, which are built using
data from several domains to improve recommendations in a target domain.

As can be seen from the previous discussion, the existing categorizations of
cross-domain recommendation techniques are diverse. We aim to reconcile these
categorizations in a way that captures and unifies their core ideas. For this, we focus
on the exploitation of knowledge in cross-domain recommendation, which dictates
the following two-level taxonomy:

• Aggregating knowledge. Knowledge from various source domains is aggregated
to perform recommendations in a target domain (Fig. 27.4a). Three use cases are
considered, which will be analyzed in Sect. 27.4:

Target 
domain

Source 

a b

domain
knowledge
aggregation

Target
domain

Source 
domain

knowledge
linkage/transfer

target domain
recommendations

target domain
recommendations

Fig. 27.4 Exploitation of knowledge in cross-domain recommendation. (a) Aggregating knowl-
edge. (b) Linking/transferring knowledge



932 I. Cantador et al.

– Merging user preferences—the aggregated knowledge consists of user prefer-
ences, e.g., ratings, tags, transaction logs, and click-through data.

– Mediating user modeling data—the aggregated knowledge comes from user
modeling data exploited by various recommender systems, e.g., user similari-
ties and user neighborhoods.

– Combining recommendations—the aggregated knowledge is composed of
single-domain recommendations, e.g., rating estimations and rating probabil-
ity distributions.

• Linking and transferring knowledge. Knowledge linkage or transfer between
domains is established to support recommendations (Fig. 27.4b). Three variants
are considered, which will be analyzed in Sect. 27.5:

– Linking domains—linking domains by a common knowledge, e.g., item
attributes, association rules, semantic networks, and inter-domain correla-
tions.

– Sharing latent features—the source and target domains are related by means
of implicit latent features.

– Transferring rating patterns—explicit or implicit rating patterns from source
domains are exploited in the target domain.

27.4 Knowledge Aggregation for Cross-Domain
Recommendations

In this section, we survey cross-domain recommendation approaches that aggregate
knowledge from source domains to perform or improve recommendations in a
target domain. The aggregated knowledge can be obtained at any stage of the
recommendation process. In particular, it can be obtained from user preferences
acquired at the user modeling stage (Sect. 27.4.1), from intermediate user modeling
data utilized at the item relevance estimation stage (Sect. 27.4.2), or from item
relevance estimations used at the recommendation generation stage (Sect. 27.4.3).

27.4.1 Merging Single-Domain User Preferences

Merging user preferences from different source domains is among the most widely
used strategies for cross-system personalization, and the most direct way to address
the cross-domain recommendation problem (see Fig. 27.5).

Research has shown that richer profiles can be generated for users when multiple
sources of personal preferences are combined, revealing tastes and interests not
captured in isolated domains [2, 61]. It has been also shown that enriching sparse
user preference data in a certain domain by adding user preference data from other
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Fig. 27.5 Merging user
preferences. Data sources
from different domains are
merged, and a traditional
single-domain recommender
system is used on the merged
data
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domains, can significantly improve the generated recommendations under cold-start
and sparsity conditions [55, 58]. These benefits, however, are accompanied by the
need for having a significant amount of user preferences in multiple domains, and
methods for accessing and merging the user profiles from different systems, which
may have distinct types and/or representations of user preferences.

The most favorable scenario for aggregation-based methods implies that different
systems share user preferences of the same type and representation. This scenario
was addressed by Berkovsky et al. with a mediation strategy for cross-domain CF
[6, 7]. The authors considered a domain-distributed setting where a global rating
matrix R is split, so that single-domain recommenders store local rating matrices
Rd having the same structure. In this setting, a target domain recommender imports
rating matrices Rd from the source domains, integrates the local and remote rating
data into the unified rating matrix R, and applies CF to R. Note that this approach can
be seen as a centralized CF with ratings split across multiple domains. Nonetheless,
in this approach, smaller rating matrices are more efficiently maintained by local
systems, and the data is shared with the target system only when needed.

Berkovsky et al. [6, 7] showed an improvement in the accuracy of target domain
recommendations when aggregating ratings from several domains. This was also
observed by Winoto and Tang [66]. The authors collected ratings for items in several
domains and conducted a study that revealed that even when there exists significant
overlap and correlation between domains, recommendation accuracy in the target
domain is higher if only ratings in such domain are used. Despite these findings,
Winoto and Tang stated that cross-domain recommendations may have alternative
benefits, in particular, serendipity and diversity.

Apart from serendipity and diversity, other benefits of cross-domain recommen-
dations have been identified. Sahebi and Brusilovsky [55] examined the impact
of the size of user profiles in the source and target domains on the quality of
CF, and showed that aggregating ratings from several domains allows increasing
the accuracy of recommendations in the target domain under cold-start conditions.
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Similarly, Shapira et al. showed significant accuracy improvements by using
aggregation-based methods when the available user preferences are sparse [58].
In this case, the authors used a dataset composed of unary Facebook likes as user
preferences.

Beyond numeric ratings and unary/binary data, other types of user preferences
have also been aggregated for cross-domain recommendations. In particular, several
studies have focused on aggregating user profiles composed of social tags and
semantic concepts. In this context, there is no need for user or item overlap between
domains, since tags and concepts are used as a common representation to merge
user preferences from multiple domains.

Szomszor et al. were among the first to correlate tag-based user profiles from
multiple systems. In [62], they presented an architecture that transforms a set of raw
tags into a set of filtered tags aligned between folksonomies in different domains.
Crossing social-tag based profiles from the Delicious and Flickr folksonomies, the
authors showed that filtered tags increase the overlap between domains, and allows
discovering prominent user interests, locations, and events. In a follow-up work
[61], Szomszor et al. extended their framework to map social tags to Wikipedia
concepts, and build cross-domain user profiles composed of Wikipedia categories.
An evaluation showed that new concepts of interest were learnt when expanding
a user tag cloud with an external repository. Related to these works, Abel et al.
[1] investigated the aggregation of a user’s tag clouds from multiple systems. They
evaluated a number of methods for semantic enrichment of tag overlap between
domains, via tag similarities and via association rules deduced from the tagging data
across systems. Aiming to analyze commonalities and differences among tag-based
profiles, in Abel et al. [2] mapped tags to WordNet categories and DBpedia concepts.
They used the mapped tags to build category-based user profiles, which revealed
significantly more information about the users than the profiles available in specific
systems. Also in the context of tag-based user profile aggregation, Fernández-Tobías
et al. [23] presented an approach that maps tags to emotional categories, under
the assumption that emotions evoked by items in an entertainment domain can be
represented through tags of folksonomies in which the items are annotated. Hence,
emotions assigned to preferred items would be the bridge to merge user profiles
across domains.

Regarding the use of semantic concepts as user preferences, Loizou [43]
presented an approach that builds a graph where the nodes are associated with
Wikipedia concepts describing items liked by the users, and the edges encode the
semantic relationships between those concepts, obtained by integrating user ratings
and Wikipedia hyperlinks. Using such a graph, a Markov chain model was used
to produce recommendations by assessing the probability of traversing the graph
towards a particular item, using the nodes in the user’s profile as starting points.
A related approach was studied by Fernández-Tobías et al. [21] and by Kaminskas
et al. [35]. The authors presented a knowledge-based framework of semantic
networks that link concepts from different domains. These networks are weighted
graphs, in which nodes with no incoming edges represent concepts belonging to the
source domain, and nodes with no outgoing nodes represent concepts belonging
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to the target domain. The framework provides an algorithm that propagates the
node weights, in order to identify target concepts that are most related to the
source concepts. Implemented on top of DBpedia, the framework was evaluated
for recommending music suited to places of interest, which were related through
concepts from several domains and contextual dimensions of location and time.

Instead of aggregating user preferences directly, several researches have focused
on directed weighted graphs that link user preferences from multiple domains. In
[47], Nakatsuji et al. presented an approach that builds domain-specific user graphs
whose nodes are associated with users, and whose edges reflect rating-based user
similarities. Domain graphs are connected via users who either rated items from
several domains or shared social connections, to create a cross-domain user graph.
Over this graph, a random walk algorithm retrieves items most liked by the users
associated with the extracted nodes. Cremonesi et al. [16] built a graph whose nodes
are associated with items and whose edges reflect rating-based item similarities.
In this case, the inter-domain connections are the edges between pairs of items in
different domains. The authors also proposed to enhance inter-domain edges by
discovering new edges and strengthening existing ones, through strategies based on
the transitive closure. Using the built multi-domain graph, several neighborhood-
and latent factor-based CF techniques were evaluated. In [64], Tiroshi et al. collected
a dataset containing user preferences in multiple domains extracted from social
network profiles. The data was merged into a bipartite user-item graph, and various
statistical and graph-based features of users and items were extracted from the
graph. These features were exploited by a machine learning algorithm that addressed
the recommendation problem as a binary classification problem.

The last type of cross-domain recommendation based on user preference aggre-
gation is formed by the approaches that map user preferences from multiple domains
to domain-independent features, and use the mapped feature-based profiles to build
machine learning models that predict a user’s preferences in the target domain.
Although not conducting evaluations, González et al. [29] proposed an approach for
unifying single-domain user models by interoperability and coordination of several
agents. In addition to user tastes and interests, the unified model is composed of
the user’s socio-demographic and emotional features. Focusing on user personality
features, Cantador et al. [10] studied the relations that exist between personality
types and user preferences in multiple entertainment domains, namely movies,
TV, music, and books. They analyzed a large number of Facebook user profiles
composed of both Big Five personality trait scores [15] and explicit preferences for
16 genres in each of the above domains. As a result, the authors inferred similarities
between personality-based user stereotypes in different domains. Finally, Loni et al.
[44] presented an approach that encodes rating matrices from multiple domains as
real-valued feature vectors. With these vectors, an algorithm based on factorization
machines [54] finds patterns between features from the source and target domains,
and outputs preference estimations associated with the input vectors.

We summarize the discussed aggregation-based methods in Table 27.3. Aggre-
gating ratings from several CF systems is the simplest method, but requires
access to user profiles, and a significant rating overlap between domains, which
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Table 27.3 Summary of cross-domain user modeling and recommendation approaches based on
merging single-domain user preferences where (N) no overlap, (U) user overlap, (I) item overlap,
(UI) user and item overlap

Cross-domain approach Inter-domain relationships References
Aggregating user ratings
into a single multi-domain
rating matrix

Rating correlations Berkovsky et al. [7] UI

Sahebi and Brusilovsky [55] U

Shapira et al. [58] U

Rating correlations and
relations between domain
categories

Winoto and Tang [66] U

Using a common
representation for user
preferences from multiple
domains

Social tag overlap Szomszor et al. [62] N

Szomszor et al. [61] N

Abel et al. [1] N

Abel et al. [2] N

Fernández-Tobías et al. [23] N

Semantic relationships between
domain concepts

Loizou [43] N

Fernández-Tobías et al. [21] N

Kaminskas et al. [35] N

Linking user preferences
via a multi-domain graph

Rating-based user/item
similarities

Nakatsuji et al. [47] U

Cremonesi et al. [16] U

Patterns of user-item
graph-based features

Tiroshi et al. [64] U

Mapping user preferences
to domain-independent
features

Socio-demographic and
emotional features

González et al. [29] N

Personality features Cantador et al. [10] N

User-item interaction features Loni et al. [44] U

may not be achievable in real situations. Thus, most aggregation-based methods
transform user preferences from multiple domains into a common representation,
independent of the domains of interest, and usable for establishing inter-domain
data relations and overlaps. For this purpose, social tags and semantic concepts serve
as the main types of user preferences. More recent methods focus on aggregating
several sources of user preferences from multiple domains into a single graph.
Due to the increasing use of social media, we envision that novel cross-domain
recommendation approaches that both unify user preferences and aggregate them
into multi-domain graphs will be developed.

27.4.2 Mediating Single-Domain User Modeling Data

Not only immediate user preferences, but also other recommendation-related
information about users, items, and domains may be aggregated or mediated (see
Fig. 27.6). An early approach for cross-domain recommendation through mediation
was proposed by Berkovsky et al. [8]. The central idea behind user model mediation
is that importing any user modeling data from source recommenders may benefit
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Fig. 27.6 Mediating user
modeling data. A model is
learnt in the source domain
(e.g., the neighborhood of a
user) and used in the target
domain
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a target recommender [4]—the mediation can enrich the user models of the
target recommender, and yield more accurate recommendations. What data can
be mediated between the source and the target recommenders? The most simple
scenario covered in Sect. 27.4.1 includes importing the user models, whereas more
complex scenarios include mediating specific recommendation data.

For example, in a CF system, cross-domain mediation may import the list of
nearest neighbors. This is underpinned by two assumptions: (1) there is overlap of
users between domains, and (2) user similarity spans across domains, i.e., if two
users are similar in a source domain, they are similar also in the target domain. This
idea was leveraged in the heuristic variant of cross-domain mediation developed by
Berkovsky et al. [7]. There, it was shown that importing nearest neighbors, and
computing their similarity with the target domain data only, can produce more
accurate recommendations than single-domain recommendations. A similar idea
was formulated by Shapira et al. [58] as the k nearest neighbors (k-NN) source
aggregation. They used multi-domain Facebook data to produce the set of candidate
nearest neighbors, and compute their local similarity degree in the source domain.
This allowed overcoming the new user problem and the lack of ratings in the target
domain. Another attempt to use multi-domain Facebook data was done by Tiroshi
and Kuflik [65]. They applied random walks to identify source domain-specific
neighbor sets, which were used to generate recommendations in the target domain.

Aggregating the lists of nearest neighbors relies on their data in the target domain
only, which may be too sparse and result in noisy recommendations. Thus, one could
consider importing and aggregating also the degree of their similarity in the source
domain. This approach was referred to in [7] as cross-domain mediation. A content-
based and a statistical variant of domain distance metrics were evaluated in [5],
producing comparable results and outperforming single-domain recommendations.
The weighted k-NN aggregation was further enhanced by Shapira et al. [58].
The authors compared several weighting schemes, the performance of which was
consistent across several metrics and recommendation tasks. The above scenarios of
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cross-domain mediation assume an overlap between the sets of users. An analogous
scenario refers to a setting where items overlap between the source and target
domains, which opens the opportunity for further mediation. One of them, involving
only the music domain, but two systems (for tagging and for blogging) was studied
by Stewart et al. [60]. The authors leveraged the tags assigned by similar users on
Last.fm in order to recommend tags on Blogger.

Moving from CF to latent factor-based methods, we highlight two works
compatible with the user modeling data mediation pattern. Low et al. [45] developed
a hierarchical probabilistic model that combines user information across multiple
domains, and facilitates personalization in domains with no prior user interactions.
The model is underpinned by a global user profile based on a latent vector, and
a set of domain-specific latent factors that eliminate the need for common items
or features. Pan et al. [52] dealt with transferring uncertain ratings, i.e., expected
rating range or distribution derived from behavioral logs, using latent features of
both users and items. The uncertain ratings were transferred from the source to the
target domain, and leveraged there as constraints for the matrix factorization model.

We summarize the mediation-based approaches in Table 27.4. As can be seen,
they all imply either user- or item-overlap between the source and target domains.
These are necessary for identifying high-level user preferences spanning across
domains. This often requires sharing of user data between several systems, which
is avoided due to commercial competition and conflicts with privacy regulations.
However, it is usual for a user to utilize multiple systems (or, in a more common
use-case, to have accounts on multiple social networks), and thus cross-domain
recommendations through mediation is a feasible scenario. Most of the surveyed
approaches apply simple mediation methods, whereas the last two are based on
latent representations, and apply probabilistic or transfer learning models. None

Table 27.4 Summary of cross-domain recommendation approaches based on mediating single-
domain user modeling data, where (N) no overlap, (U) user overlap, (I) item overlap, (UI) user
and item overlap

Cross-domain approach Inter-domain relationships References
Aggregating neihgbourhoods to
generate recommendations

Rating-based user similarities Berkovsky et al. [7] U

Tiroshi and Kuflik [65] UI

Shapira et al. [58] U

Aggregating user-to-user
similarities to generate
recommendations

Content- and rating-based user
similarities

Berkovsky et al. [7] U

Shapira et al. [58] U

Exploiting user neighborhoods to
enhance target user models

User overlap Stewart et al. [60] I

Combining probabilistic user
models

Latent features of domains and
global user preferences

Low et al. [45] U

Combining heterogeneous user
preferences

Domain-dependent constraints
on matrix factorization

Pan et al. [52] UI
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Fig. 27.7 Combining
single-domain
recommendations.
Recommendations are
generated independently for
each domain and later merged
for the final recommendation
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of these works counts on explicit domain distance or similarity, which will be
elaborated in Sect. 27.5.1). Hence, we conjecture that more future work will address
cross-domain recommendation by mediating richer user modeling data.

27.4.3 Combining Single-Domain Recommendations

Overlap of both user and item sets allows aggregating ready-made single-domain
recommendations (see Fig. 27.7). Contrarily to the mediation-based cross-domain
recommendation scenarios, the predicted recommendations from the source domain
may inform on their own to the target domain recommender. Hence, the cen-
tral question in combining single-domain recommendation refers to the weights
assigned to recommendations coming from the source domains, which reflect their
importance for the target domain. These weights may be computed through various
factors, such as the reliability of each recommender, distance between the domains,
and so forth.

The idea of combining single-domain recommendations was referred to in [6, 7]
as remote-average mediation. There, movie ratings were partitioned into domains
according to the genres of the movies. Since movies combine elements from multi-
ple genres, and users watch movies from various genres, the user- and item-overlap
are both present. This allows computing stand-alone recommendations in the source
domains, and aggregating them for the target domain. Weighted aggregation of
single-domain recommendations also was studied by Givon and Lavrenko [27].
The authors focused on the book recommendation task, accomplished using two
different methods. Standard CF recommendations were complemented by relevance
model-based recommendations, relying on the similarity of a book and the user’s
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Table 27.5 Summary of cross-domain recommendation approaches based on combining
recommendations from single-domain user preferences

Cross-domain approach Inter-domain relationships References

Aggregating user rating
predictions

Rating-based user similarities Berkovsky et al. [7] UI

Givon and Lavrenko [27] UI

Combining estimations of
rating distribution

Rating distribution similarities Zhuang et al. [70] N

(N) no overlap, (U) user overlap, (I) item overlap, (UI) user and item overlap

model, both consisting of book contents and tags assigned to the book. The two
were combined in a weighted manner, such that the relative importance of the CF
recommendations increased with the number of ratings available.

A relevant approach for cross-domain consensus regularization, although applied
to classification problems and not to recommender systems, was proposed by
Zhuang et al. [70]. The central contribution of that work is a framework for learning
from multiple source domains, and reconciling discrepancies between the classifiers
using the local data of the target domain. One of the advantages of the framework is
that it does not require overlaps in either the user or item sets.

The overviewed approaches that combine single-domain recommendations are
summarized in Table 27.5. Clearly, the key point for this group of cross-domain rec-
ommenders refers to the way the stand-alone source domain recommendations are
combined. This is touched upon in [70], but also addressed in numerous researches
outside the recommender systems space. It should be highlighted that the single-
domain recommenders can use various techniques, and the combination of their
outputs is independent of other components, e.g., user modeling, contextualization,
and presentation, which makes this cross-domain aggregation variant attractive for
practical recommenders.

27.5 Knowledge Linkage and Transfer for Cross-Domain
Recommendation

In this section, we survey cross-domain recommendation approaches that
link or transfer knowledge between domains, enhancing the information
available in the target domain for the generation of recommendations. The
knowledge linkage and transfer can be done explicitly—e.g., via common item
attributes, semantic networks, association rules, and inter-domain user preference
similarities (Sect. 27.5.1)—implicitly by means of latent features shared by
domains (Sect. 27.5.2), or by means of rating patterns transferred between domains
(Sect. 27.5.3).
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Fig. 27.8 Linking domains.
An external knowledge
source is used to link items
from different domains. User
preferences in the source
domain may be used to adapt
the item linkage
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27.5.1 Linking Domains

A natural approach to address the heterogeneity of several domains is to identify
correspondences between their characteristics. For instance, we may link a par-
ticular movie and a book because both belong to genres that can be semantically
mapped, e.g., comedy movies and humorous books. In general, such inter-domain
correspondences may be established directly using some kind of common knowl-
edge between domains, e.g., item attributes, semantic networks, association rules,
and inter-domain preference-based similarities or correlations (see Fig. 27.8).

These links are valuable sources of information for reasoning across domains. A
recommender system could identify potentially relevant items in the target domain
by selecting those that are related to others in the source domains, and for which
the user has expressed a preference in the past. Besides, inter-domain similarities
and correlations can be exploited to adapt or combine knowledge transferred
from different domains. One of the earliest approaches for linking domains was
explored by Chung et al. [14]. Aiming to support the decision making process in
recommendation, they proposed a framework for designing personalized filtering
strategies. In the framework, relevant items in the target domain are selected
according to the attributes they have in common with items in the source domain
the user is interested in. That is, the inter-domain links are established through
the overlap of item attributes, and no user or item overlap between the domains
is required.

Conversely to the use case of Chung et al. [14], in a realistic setting, items are
highly heterogeneous, and often no common attributes between domains can be
found. To address this situation, we may establish more complex, likely indirect
relations between items in different domains. Hence, when suitable knowledge
repositories are available, concepts from several domains can be connected by the
means of semantic properties, forming semantic networks that explicitly link the
domains of interest. Along these lines, Loizou [43] proposed to use Wikipedia
as a universal vocabulary to express and relate user preferences across multiple
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domains. The author presented an approach that builds a graph, the nodes of which
represent concepts (Wikipedia pages) describing items liked by the users, and edges
encode the semantic relationships between those concepts, obtained by integrating
user ratings and Wikipedia hyperlinks. Using such a graph, a Markov chain model
produces recommendations by assessing the probability of traversing the graph from
the nodes in the user’s profile as a starting point toward the recommendable items.

A major difficulty of the above approaches is the well known knowledge
acquisition problem, that is, building the above mentioned knowledge repositories.
To address this problem, information has to be extracted and stored in a formal
and structured representation that can be exploited by a recommender. Fernández-
Tobías et al. [21] and Kaminskas et al. [35] envisioned Linked Data as a solution to
the problem. Specifically, they proposed a framework for extracting a multi-domain
semantic network from the DBpedia ontology, which links items and concepts in
the source and target domains. Over the extracted network, a constrained spreading
algorithm computes semantic similarities to rank and filter items in the target
domain.

Inter-domain association rules have also been explored as an alternative to relate
various types of items. In this direction, Azak [3] presented a framework for
cross-domain recommendation in which knowledge-based rules defined by domain
experts facilitate mapping between attributes in distinct domains, e.g., “people who
like romance drama movies also like dramatic poetry books.” These rules are then
used to enhance CB and CF recommendations, adjusting the predicted ratings
whenever rule conditions hold. In [10], Cantador et al. related user personality
types with domain-dependent preferences by means of automatically generated
association rules. The authors also extracted personality stereotypes for sets of
domain genres. Based on these stereotypes, inter-domain similarities were com-
puted between genres, which may be used to support knowledge transfer between
domains.

Instead of linking domains by mapping attributes, an alternative way to transfer
knowledge is to compute similarities or correlations between domains based on
user preference or item content analysis. In an early work, Berkovsky et al. [5]
explored this idea aiming to identify related domains, from which user data would
be imported and utilized to enrich the user model in the target domain. The proposed
approach makes use of web directories to identify websites that characterize
the domains of interest. Then, the approach establishes domain similarities by
computing the cosine similarity between the TF-IDF term vectors of the domains’
websites. We note that this method requires no overlap of users or items, but rather
an external source of representative documents classified to several domains.

Another way of exploiting inter-domain similarities for cross-domain recom-
mendation consists of integrating them into the matrix factorization method [56].
Specifically, such similarities are imposed as constraints over user or item latent fac-
tors when jointly factorizing rating matrices. For instance, Cao et al. [13] proposed
an approach in which inter-domain similarities are implicitly learnt from data, as
model parameters in a non-parametric Bayesian framework. Since user feedback
is used to estimate the similarities, user overlap between the domains is required.
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Addressing the sparsity problem, Zhang et al. [67] adapted the probabilistic matrix
factorization method to include a probability distribution of user latent factors that
encodes inter-domain correlations. One strength of this approach is that user latent
factors shared across domains are not needed, allowing more flexibility in capturing
the heterogeneity of domains. Instead of automatically learning implicit correlations
in the data, Shi et al. [59] argued that explicit common information is more effective,
and relied on shared social tags to compute cross-domain user-to-user and item-to-
item similarities. Similarly to previous approaches, rating matrices from the source
and target domains are jointly factorized; but in this case user and item latent factors
from each domain are restricted, so that their product is consistent with the tag-based
similarities.

We have reviewed approaches that establish links and compute similarities
between domains, which are summarized in Table 27.6. We observe that the
majority of the proposed methods do not require inter-domain user or item overlap.
Instead, linking approaches exploit content information to establish the inter-domain
relationships. Likewise, in [5, 59], similarities are computed based on common text
and social tags. For these approaches, it is also worth noticing that no one clearly
outperforms the others, since most of them are designed for particular cross-domain
scenarios and, to the best of our knowledge, have not been compared empirically.

27.5.2 Sharing Latent Features by Domains

Latent factor models are among the most popular CF techniques [37]. In these
models, user preferences and item attributes, which are typically very sparse, are
characterized through a reduced set of latent factors discovered from data, to obtain

Table 27.6 Summary of cross-domain user modeling and recommendation approaches
based on linking domains, where (N) no overlap, (U) user overlap, (I) item overlap, (UI)
user and item overlap

Cross-domain approach Inter-domain relationships References

Relating and filtering items
via common attributes

Item attribute overlap Chung et al. [14] N

Building semantic network
linking domain concepts

Semantic relationships
between domain concepts

Loizou [43] N

Fernández-Tobías et al. [21] N

Kaminskas et al. [35] N

Relating item types via
knowledge-based rules

Inter-domain
knowledge-based rules

Azak et al. [3] N

Cantador et al. [10] N

Computing inter-domain
similarities

Text overlap Berkovsky et al. [5] N

Constraining matrix
factorization with
inter-domain similarities

Rating overlap Cao et al. [13] U

Zhang et al. [67] N

Social tag overlap Shi et al. [59] N
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Fig. 27.9 Sharing latent features. Latent features models are learnt simultaneously on both the
source and target domains, constraining user and/or item features to be the same across the domains

a denser representation. The assumption is that using the new representation, latent
user preferences and item attributes are better captured and matched.

Related to the what to transfer aspect of transfer learning [49], latent factors
shared between domains can be exploited to support cross-domain recommen-
dations (see Fig. 27.9). Also, as pointed in Sect. 27.3, two types of approaches
have been studied to address the how to transfer aspect; namely, adaptive and
collective models. In the former, latent factors are learnt in the source domain,
and are integrated into a recommendation model in the target domain, while in the
latter, latent factors are learnt simultaneously optimizing an objective function that
involves both domains.

In [51], Pan et al. addressed the sparsity problem in the target domain following
the adaptive approach, proposing to exploit user and item information from auxiliary
domains where user feedback may be represented differently. In particular, they
studied the case in which users express binary like/dislike preferences in the source
domain, and utilize 1–5 ratings in the target domain. Their approach performs
singular value decomposition (SVD) in each auxiliary domain, in order to separately
compute user and item latent factors, which are then shared with the target domain.
Specifically, transferred factors are integrated into the factorization of the rating
matrix in the target domain and added as regularization terms so that specific
characteristics of the target domain can be captured.

Latent factors can also be shared in a collective way, as studied by Pan et al.
[50]. In this case, instead of learning latent features from the source domains and
transferring them to the target domain, the authors proposed to learn the latent
features simultaneously in all the domains. Both user and item factors are assumed
to generate the observed ratings in every domain, and, thus, their corresponding
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random variables are shared between the probabilistic factorization models of
each rating matrix. Moreover, the factorization method is further extended by
incorporating another set of factors that capture domain-dependent information,
resulting in a tri-factorization scheme. A limitation of the proposed approach is that
the users and items from the source and target domains have to be identical.

Instead of focusing on sharing latent factors, Enrich et al. [20] and Fernández-
Tobías and Cantador [24] studied the influence of social tags on rating prediction,
as a knowledge transfer approach for cross-domain recommendations. The authors
presented a number of models based on the SVD++ algorithm [37] to incorporate the
effect of tag assignments into rating estimation. The underlying hypothesis is that
information about item annotation in a source domain can be exploited to improve
rating prediction in a target domain, as long as a set of common tags between the
domains exists. In the proposed models, tag factors are added to the latent item
vectors, and are combined with user latent features to compute rating estimations.
The difference between these models is in the set of tags considered for rating
prediction. In all the models knowledge transfer is performed through the shared
tag factors in a collective way, since these are computed jointly for the source and
the target domains.

In [31], Hu et al. presented a more complex approach that takes domain factors
into account. There, the authors argue that user-item dyadic data cannot fully
capture the heterogeneity of items, and that modeling domain-specific information
is essential to make accurate predictions in a setting, where users typically express
their preferences in a single domain. They referred to this problem as the unac-
quainted world, and proposed a tensor factorization algorithm to exploit the triadic
user-item-domain data. In that method, rating matrices from several domains are
simultaneously decomposed into shared user, item, and domain latent factors, and
genetic algorithm automatically estimates optimal weights of the domains.

Table 27.7 summarizes the described approaches sharing latent factors across
domains. In contrast to the methods presented in Sect. 27.5.1, these approaches
require inter-domain user or item overlap to extract shared latent factors, unless
shared content information is available [20, 24]. As in the previous section, it is
worth noticing the lack of a comparative study of the approaches. Again, the reason
for this may be that the considered cross-domain task and data overlap scenarios
vary among works.

27.5.3 Transferring Rating Patterns Between Domains

Rather than sharing user or item latent factors for knowledge transfer, a different
set of approaches analyzes the structure of rating data at the community level.
These methods are based on the hypothesis that even when their users and items are
different, close domains are likely to have user preferences sampled with the same
population. Therefore, latent correlations may exist between preferences of groups
of users for groups of items, which are referred to as rating patterns. In this context,
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Table 27.7 Summary of cross-domain recommendation approaches based on latent
features shared by domains, where (N) no overlap, (U) user overlap, (I) item overlap,
(UI) user and item overlap

Inter-domain
Cross-domain approach relationships References

Using user and item latent features
of source domains to regularize
latent features in a target domain

Shared latent user
preferences and latent
item attributes

Pan et al. [51] UI

Using the same latent factors to
jointly factorize the rating matrices
in the source and target domains

User and item overlap Pan et al. [50] UI

Extending matrix factorization
with a vector of latent factors
associated to social tags

Social tag overlap Enrich et al. [20] N

Fernández-Tobías and
Cantador [24] N

Sharing latent features via a
user-item-domain tensor
factorization

Rating overlap Hu et al. [31] U
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Fig. 27.10 Transferring rating patterns. A co-clustering model is learnt on the source domain to
obtain rating patterns, which are used to cluster users and items in the target domain

rating patterns can act as a bridge that relates the domains (see Fig. 27.10), such
that knowledge transfer can be performed in either adaptive or collective manners.
In the adaptive setting, rating patterns are extracted from a dense source domain.
In the collective setting, data from all the domains are pulled together and jointly
exploited, even though users and items do not overlap across domains.

Lee et al. [38] proposed one of the first approaches to exploit rating patterns for
cross-domain recommendation. Similarly to the cross-domain mediation proposed
by Berkovsky et al. [6], global nearest neighbors are identified by adding the
similarity scores from each domain. Then, patterns of items commonly rated
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together by a set of neighbors are discovered using association rules. Finally, in
the recommendation stage, rating predictions are computed with the standard user-
based CF algorithm, but enhanced with the user’s rules that contain the target items.

Li et al. [40] proposed an adaptive method based on simultaneously co-clustering
users and items in the source domain, to extract rating patterns. Clustering is
performed using a tri-factorization of the source rating matrix [18]. Then, knowl-
edge is transferred through a codebook, a compact cluster-level matrix computed
in the source domain taking the average rating of each user-item cluster. In the
target domain, missing ratings are predicted using the codebook. Moreno et al.
[46] extended the codebook idea to a scenario in which various source domains
contribute to the target domain. The approach is based on a linear combination of
codebooks, where the weights are learnt by minimizing the prediction error in the
target domain.

In a related work [41], Li et al. extended the same idea to a collective approach
using a probabilistic framework. Instead of relying on an dense source domain
data to build the codebook, all rating matrices are pulled together to extract the
shared patterns. Furthermore, rather than having each user/item belonging to a single
cluster, a probability distribution is introduced to allow users and items belong to
multiple clusters, with distinct membership degrees. In the same fashion, the ratings
associated with each user-item cluster are also given by a conditional probability
distribution. In this way, a generative rating model is obtained, since the ratings of
each domain can be recovered by drawing users and items from the shared cluster-
level model, and then drawing the expected rating conditioned to the user-item
cluster.

A strength of both approaches is that neither overlap of users nor of items is
required. However, Cremonesi and Quadrana [17] partially disproved it, showing
that the codebook does not transfer knowledge when source and target domains do
not overlap. They provided an alternative explanation to the accuracy increase using
a codebook that does not involve knowledge transfer between domains.

Finally, Gao et al. [26] followed the idea of extracting rating patterns by
co-clustering rating matrices, and addressed two limitations of previous methods.
First, they argued that some domains are more related to the target domain than
others, and this cannot be captured using identical rating patterns. Second, they
hypothesized that performance may suffer when the domains are diverse, and do not
share common rating patterns. To overcome these limitations, the authors proposed
a model capable of controlling the amount of knowledge transferred from each
domain. Specifically, they used a co-clustering algorithm of Li et al. [40], but split
the extracted rating patterns into a shared part and a domain-specific part. In contrast
to [40], optimization is performed in a collective way, since the shared part of the
rating patterns is learnt simultaneously from all the domains.

Table 27.8 summarizes the described cross-domain approaches based on transfer-
ring rating patterns between domains. We observe that more recent methods based
on clustering do not rely on any overlap between domains. However, as discussed in
[26], care must be taken in order not to degrade performance by transferring noisy
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Table 27.8 Summary of cross-domain recommendation approaches based on transferring
rating patterns between domains, where (N) no overlap, (U) user overlap, (I) item overlap,
(UI) user and item overlap

Cross-domain approach Inter-domain relationships References

Extracting association
rules from user rating
behavior

Rating overlap Lee et al. [38] U

Transferring implicit
cluster-level rating patterns
between domains

Rating patterns Li et al. [40] N

Li et al. [41] N

Moreno et al. [46] N

Cremonesi and Quadrana [17] N

Domain-independent parts
of rating patterns

Gao et al. [26] N

patterns from unrelated domains. We therefore conjecture that further research on
the when to transfer aspect [49] will be conducted, to identify valuable information
from source domains.

27.6 Evaluation of Cross-Domain Recommender Systems

In this section, we discuss the methods used to evaluate cross-domain recommender
systems. The focal point is that such systems cannot be evaluated in a problem-
independent way; whether a cross-domain recommender system is an appropriate
solution cannot be evaluated without taking into account for what it is intended.
The nature of the evaluation must be connected to the purpose for which the recom-
mendations are required. Thus, we compare the corresponding evaluation methods
based on the cross-domain recommendation goals addressed in the literature (see
Sect. 27.2.3).

Three types of evaluations can be used to compare cross-domain recommender
systems [25, 57]. Offline experiments evaluate a system by analyzing past user
preferences. They are typically the easiest to conduct, as they require no interaction
with real users. With online studies, a small group of subjects is asked to use the
system in a controlled environment, and to report on the experience. Finally, live
trials evaluates the system based on feedback from real users. As most cross-
domain recommendation works use offline experiments (with a few performing
online studies, and no live trials, see Table 27.9), we focus on offline experiments.
The reader is referred to Chap. 8 for an extensive discussion on methodologies and
metrics used to evaluate recommender systems.

The decision regarding the evaluation method is often critical, as each one reflects
a specific task or goal. Many offline evaluation schemes exist, which differ in a
number of aspects: data partitioning, metrics, and sensitivity analysis (e.g., relative
density of domain datasets, and degree of overlap between domains), as discussed
respectively in the next sections.
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Table 27.9 Summary of cross-domain recommendation approaches based on
the technique used to partition the data into training and test sets

Data partitioning References

Online studies Braunhofer et al. [9]
Fernandez-Tobias et al. [23]
Shapira et al. [58]

Szomszor et al. [61]
Winoto et al. [66]

Leave-all-users-out Cremonesi et al. [16]
Goga et al. [28]
Hu et al. [31]
Jain et al. [32]

Kaminskas et al. [35]
Loni et al. [44]
Shapira et al. [58]
Tiroshi et al. [65]

Leave-some-users-out Abel et al. [1]
Abel et al. [2]

Li et al. [40, 41]
Stewart et al. [60]

Hold-out Li et al. [42]
Nakatsuji et al. [47]
Pan et al. [48]
Pan et al. [51]
Pan et al. [52]
Pan et al. [53]

Sahebi et al. [55]
Shi et al. [59]
Tang et al. [63]
Zhang et al. [67]
Zhang et al. [68]
Zhao et al. [69]

27.6.1 Data Partitioning

In order to evaluate algorithms offline, it is necessary to simulate the process
where the system makes recommendations, and users evaluate them. This requires
pre-recorded datasets of interactions between users and items. In cross-domain
applications, there are (at least) two potentially overlapping datasets: the source
dataset DS and the target dataset DT .

We assume DS and DT are chosen according to the recommendation task and
goal in hand. For instance, if we are evaluating a cross-selling recommender, DS and
DT are set at the item level as described in Sect. 27.2.1, contain items of different
nature, like movies and books, and have overlapping users. On the contrary, if we
are evaluating a cross-domain recommender as a tool to increase recommendation
diversity, DS and DT are set at the item attribute level, with items of the same type,
but differ in the value of certain attribute, as comedy and drama movies.

In offline evaluations, a portion of DT is hidden to facilitate prediction of the
available knowledge, and gauge the quality of the recommendations. There is a
number of ways to choose the ratings to be hidden. The most general approach
creates three subsets of ratings from the original datasets: (1) Dtraining_profiles, which
contains the set of ratings from users Utraining_profiles for items Itraining_profiles that are
used to train the algorithms under evaluation; (2) Dtest_profiles, which contains the
set of users Utest_profiles and their known ratings for items Itest_profiles that are used as
input profiles for the trained recommender; and (3) Dtest_ratings, which contains the
set of users Utest_profiles and their hidden ratings for items Itest_ratings that are used as
the ground truth to evaluate the recommendations.

Depending on the choice of the Dtraining_profiles, Dtest_profiles, and Dtest_ratings

subsets, different evaluation data partitions can be designed.
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Fig. 27.11 Partitioning of D: (left) hold-out—test ratings sampled and hidden without partitioning
the users; (middle) leave-some-users-out—users split into disjoint training/test sets; (right) leave-
all-users-out—ratings in the target dataset used as test profiles and ratings

• Hold-out (Fig. 27.11-left) is implemented when Dtest_profiles � Dtraining_profiles,
i.e., test ratings are sampled and hidden from the original dataset without
partitioning the users. This partition is suitable to evaluate linked- and multi-
domain recommenders with the accuracy goal, and is applicable to memory-
based recommenders, which are unable to provide recommendations to new
users.

• Leave-some-users-out (Fig. 27.11-middle) is implemented when Utraining_profiles\
Utest_profiles D ¿, i.e., the users are split into two disjoint subsets: one for
training and one for testing. This partition is suitable to evaluate a cross-domain
recommender with the new user goal.

• Leave-all-users-out (Fig. 27.11-right) is implemented when Dtraining_profiles \
DT D ¿, i.e., the ratings in the target dataset are used only as profile and test
ratings. This partition is suitable to evaluate a cross-domain recommender with
the cold-start and new item goals.

27.6.2 Metrics

The notion of relevance of recommendations and the ways to measure it have been
debated in numerous works on recommender systems. Generally speaking, there
are three categories of evaluation metrics: predictive metrics, ranking metrics, and
classification metrics [30].

Theoretical debates surround the distribution of the missing ratings. Because
of the data sparsity, offline evaluations are performed on a small fraction of the
available items. Each metric makes implicit assumptions regarding the value and
the distribution of the missing ratings, which impact the interpretation of obtained
results. For instance, predictive metrics like MAE and RMSE assume that the
unknown ratings are missing at random, the classification metric of precision
assumes that all missing ratings are irrelevant for the user, whereas recall, fallout,
and ROC assume that non-relevant ratings are missing with a higher probability
than relevant ratings. Practical debates also consider the recommendation goal.
Prediction metrics are to be preferred when the goal is to reduce the sparsity of the
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Table 27.10 Summary of metrics used for the evaluation of cross-domain recommender
system

Category Metric References

Predictionmetrics MAE Berkovsky et al. [6, 7]
Berkovsky et al. [8]
Cao et al. [13]
Hu et al. [31]
Li et al. [40, 41]
Moreno et al. [46]
Loni et al. [44]
Nakatsuji et al. [47]

Pan et al. [48]
Pan et al. [51]
Pan et al. [52]
Pan et al. [53]
Shapira et al. [58]
Shi et al. [59]
Winoto et al. [66]

RMSE Li et al. [42]
Loni et al. [44]
Pan et al. [51]
Pan et al. [52]

Pan et al. [53]
Sahebi et al. [55]
Zhang et al. [67]
Zhao et al. [69]

Ranking
metrics

ROC Goga et al. [28]
MRR Abel et al. [1] Abel et al. [2]
nDCG Zhang et al. [68]
AUC Fernandez-Tobias et al. [23]

Hu et al. [31]
Tiroshi et al. [65]

MAP Fernández-Tobías et al. [23]
Shapira et al. [58]
Jain et al. [32]

Shapira et al. [58]
Zhang et al. [68]

Classificationmetrics Precision Kaminskas et al. [35]
Tiroshi et al. [64]

Stewart et al. [60]

Recall Stewart et al. [60] Nakatsuji et al. [47]
F-measure Cremonesi et al. [16] Gao et al. [26]

target domain; ranking metrics are adopted when testing user models, especially
in cold-start situations; and classification metrics are best-suited for the top-N
recommendation task.

Table 27.10 summarizes the offline evaluation metrics exploited in cross-domain
recommenders. The majority of works adopts prediction metrics. This is motivated
by the fact that the addressed goal is to reduce sparsity and increase accuracy,
and the algorithms designed for this are often based on error-metric optimization
techniques, which are naturally evaluated using the category of predictive metrics.

27.6.3 Sensitivity Analysis

The performance of a cross-domain recommender system is mainly affected by
three parameters: the overlap between the source and target domains, the density
of the target domain data, and the size of the target user’s profile. Thus, the
evaluation of a cross-domain recommendations mostly considered the sensitivity
of the corresponding algorithms with respect to these three parameters.
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Most works have assumed an overlap of users between the source and target
domains. They all conducted evaluations with 100 % of overlap, except for two
works. Cremonesi et al. [16] analyzed the behavior of various cross-domain
recommenders by varying the percentage of user-overlap in the range 0–50 %, and
Zhao et al. [69] adopted a similar evaluation by varying the percentage of user
overlap in the range 0–100 %. Fewer works [8, 16, 53, 69] studied the case of item
overlap, and they all assume to have the same catalog of items across domains.
Some works [2, 9, 23, 35, 60, 61] studied the case of overlapping features, especially
social tags. Shi et al. [59] studied the sensitivity of the cross-domain recommender
by varying the number of overlapping tags between 5 and 50.

Some works [8, 40, 41, 55, 59] have studied the sensitivity of recommendations
as a function of the user profile size, i.e., the number of ratings provided by the
user receiving the recommendations. This is particularly important for the cold-start
and new user goals. Both Pan et al. [51] and Abel et al. [2] developed tag-based
recommenders, and performed their analysis by varying the number of tags in the
user profile in the 10–40 and 0–150 ranges, respectively. Others conducted a similar
analysis on rating-based recommenders: Shi et al. [59] varied the profile size from
20 to 100 ratings, Berkovsky et al. [8] varied the profile size from 3 to 33 % of
ratings, and Li et al. [40, 41] and Sahebi et al. [55] varied the profile size in the
range of 5–15 and 1–20 ratings, respectively.

Finally, some works [13, 16, 51, 58] have studied the quality of recommendations
as a function of the dataset density. This is important for the cold-start and accuracy
goals. Cao et al. [13] varied the density of the multi-domain dataset, i.e., the union
of source and target datasets, between 0.2 and 1 %. Shapira et al. [58] varied the
density of the dataset between 1 and 40 %, but only for the baseline single-domain
algorithms, while evaluating cross-domain algorithms at the 1 % density. Cremonesi
et al. [16] varied the density of the target domain between 0.1 and 0.9 %. The
sensitivity analyses performed in the above works are summarized in Table 27.11.

Table 27.11 Summary of variables for sensitivity analysis of cross-
domain recommender systems

Parameter References

Overlap between domains Abel et al. [2]
Cremonesi et al. [16]

Shi et al. [59]
Zhao et al. [69]

Target domain density Cao et al. [13]
Cremonesi et al. [16]
Pan et al. [48]

Pan et al. [51]
Shapira et al. [58]

User profile size Berkovsky et al. [6, 7]
Berkovsky et al. [8]
Li et al. [40, 41]

Sahebi et al. [55]
Shi et al. [59]
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27.7 Practical Considerations in Cross-Domain
Recommendation

We have covered so far a wide spectrum of models and techniques applicable to
cross-domain recommendation. Recommender system practitioners may find this
variety of options overwhelming, when materializing a cross-domain recommender.
Therefore, we list several practical considerations that drive the choice of the
appropriate recommendation solution.

The first set of considerations deals with the pivotal questions of “what, when,
and how to transfer?” that have already been raised in Sect. 27.3. The term ‘transfer’
refers in the following discussion to both the knowledge aggregation (Sect. 27.4) and
the knowledge transfer (Sect. 27.5) approaches.

• What to transfer? Single-domain recommenders may gather different types
of user data: explicit ratings, unary purchase lists, browsing logs, and many
others. They are also likely to store domain metadata and recommendation
method-specific data, e.g., collaborative neighborhoods of similar users and
matrix factorization latent vectors. It cannot be determined in advance what
knowledge from the source domain recommenders can benefit the target domain
recommender, and some form of information gain analysis needs to be done. This
may be a complex process, in which the target recommendation method and the
recommendation task in hand should be taken into consideration .

• When to transfer? Deciding what information should be transferred is tightly
bound to the consideration of conditions under which the transfer is beneficial. It
is clear that at the initial deployment period of the target domain recommender,
the transfer will enrich the recommender. On the contrary, no transfer is
needed when the target domain recommender possesses complete and up-to-date
information. But what happens in-between? This depends not only on the sparsity
of the target domain data, but also on factors like the overlap of ratings between
the domains, and freshness of data in the source domains.

• How to transfer? The answer to the ‘how’ question deals with the implemen-
tation of the knowledge transfer. Two high-level options are possible: either
to implement direct one-to-one mappings between the source and the target
recommenders, or to leverage a common representation that will facilitate the
transfer. The downside of the former is that the number of possible combinations
is quadratic and will grow if new recommenders are being introduced. The latter
requires only a single transfer mechanism from/to the common representation,
but an agreed upon representation is hard to achieve in practice. Some rules for
reconciling conflicts in the transferred data should also be put in place.

Additional question that needs to be dealt with is “where from to transfer?”
This question is peripheral in transfer learning since any available information is
considered relevant, but this is not the case in cross-domain recommenders. The
main indicator here is the distance between domains. Some pairs of domains,
e.g., movies and TV, are inherently closer than others, e.g., games and tourism.
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The close domains have a greater potential to benefit the target recommender, and
are naturally the preferred sources. Contextual factors (location, temporal closeness)
and the overlaps of user and item sets are also important in answering this question.
We believe that practical cross-domain recommenders need to thoroughly examine
the sources of the transferred knowledge.

Knowledge transfer between domains typically requires some auxiliary infor-
mation. We highlight here two types of such information, which actually underpin
the transfer. These are semantic networks like WordNet and DBpedia, and open
or crowdsourced knowledge references like Wikipedia and Open Directory. The
auxiliary information is critical for the knowledge transfer, since it links the domains
and informs the answer to the ‘how’ question. Hence, important considerations
faced by a practical cross-domain recommender deal with the availability and
reliability of the auxiliary information. Chapters 4 and 15 address such issues in
semantic-aware and social recommender systems.

The next set of considerations deals with the target recommendation task. Many
options exist here: best item vs. top-K, one-off vs. sequential interaction, single
product vs. bundle of products, recommendation to individual users vs. to a group of
a users. Every recommendation scenario implies a different algorithm in place, and
also distinct types of knowledge that can be transferred from the source domains.
Related to this, the metric of recommendation success should be considered. Do
the recommendations need to discover all the relevant items, match as many
aspects of user interests as possible, or provide a surprising recommendation?
Likewise, technical constraints may be an important factor. For instance, are
the recommendations computed offline or delivered live to users? Is it a server-
side recommendation which can be resource intense, or a lightweight client-side
recommendation? These considerations cannot be discarded, as answers to the
above questions may affect the choice of the knowledge transfer and of the cross-
domain recommendation approach.

Last but not the least, special attention should be paid to ethical and privacy
aspects (Chap. 19) in cross-domain recommenders. Transferring data and knowl-
edge between single-domain recommenders may contradict privacy policies of the
recommenders and existing privacy regulations. Moreover, it may allow malicious
attackers not only to get access to a larger volume of user data, but also to apply data
mining to the combined knowledge, uncovering (potentially sensitive) information.
With respect to this, knowledge transfer methods are generally more robust than
the aggregation methods, although they still cannot completely eliminate the data
mining risk. Developers of a cross-domain recommender should keep the privacy
consideration in mind, when selecting their knowledge transfer method.

27.8 Open Research Issues

This section provides an overview of new requirements and applications emerging
from the landscape of cross-domain recommender systems. One interesting issue
that deserves more attention in the future is the synergy between contextual
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and cross-domain recommendations: different contexts (e.g., location, time, and
mood) can be treated as different domains (see Chap. 6 for details on context-
aware recommendation). This opens interesting scenarios in which context-aware
techniques can be applied to cross-domain recommendations, and vice versa.
Moreover, context can be treated as a bridge between different domains, and seminal
work has already been carried out in this direction [9, 23].

Another important issue concerns the metrics adopted for the evaluation of the
recommendations. A common practice with cross-domain recommender systems is
to evaluate their relevance through predictive accuracy metrics, such as MAE and
RMSE, which capture the error between the actual and predicted ratings. However,
in many commercial systems only a small number of best recommendations is
shown, while the predicted ratings are not. That is, the system suggests a few
items that are likely to be very appealing for users. Direct evaluation of top-
N recommendation performance must be accomplished by means of alternative
methodologies based either on classification metrics (e.g., recall and fallout) or
ranking metrics (e.g., average reciprocal hit-rank and average relative position), as
explained in Chap. 8.

We can push this idea further, by considering that accuracy is not sufficient to
provide useful recommendations. Other criteria have been proposed to augment the
evaluation dimensions, such as diversity, novelty, and serendipity (see Chap. 26). As
one can expect, cross-domain recommendations would be less accurate than those
based on the same amount of user data pertaining to the target domain. However,
the true advantage of cross-domain recommendations is not necessarily in their
accuracy, but rather in their novelty and diversity, which may lead to a higher
satisfaction and utility for the user. In this context, the recently proposed novelty
and diversity metrics could be taken into consideration [57].

The next open research issue deals with the use of cross-domain recommender
systems as a means to reduce the user model elicitation effort. The preference
elicitation process is important for the recommenders (Chap. 24), but it may pose
two conflicting requirements. On the one hand, the system must collect “enough”
ratings in order to learn the users’ preferences and improve the accuracy of
recommendations. On the other hand, gathering ratings imposes a burden on the
users, which may negatively affect their experience. Cross-domain recommender
systems could be used as alternative elicitation tools able to build detailed user
profiles without the need to collect explicit user preferences.

Finally, the importance of real life datasets needs to be stressed (Chap. 11). These
are necessary for evaluations of new cross-domain approaches, but are quite scarce
and hard to reach in practice. Large-scale cross-domain datasets are gathered by big
industry players, like Amazon, eBay, and Yelp, but these datasets rarely become
available to the broader research community. We would like to encourage industry
researchers to cooperate with the academic researchers and share their data. This
could boost both the research in cross-domain recommendation and the deployment
of practical cross-domain recommenders.
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Chapter 28
Robust Collaborative Recommendation

Robin Burke, Michael P. O’Mahony, and Neil J. Hurley

28.1 Introduction

Collaborative recommender systems are dependent on the goodwill of their users.
There is an implicit assumption—note the word “collaborative”—that users are in
some sense “on the same side”, and at the very least, that they will interact with
the system with the aim of getting good recommendations for themselves while
providing useful data for their neighbors. Herlocker et al. [14] use the analogy of
the “water-cooler chat”, whereby co-workers exchange tips and opinions.

However, as contemporary experience has shown, the Internet is not solely
inhabited by good-natured collaborative types. Users will have a range of purposes
in interacting with recommender systems, and in some cases, those purposes may be
counter to those of the system owner or those of the majority of its user population.
To cite a well-known example, the Google search engine finds itself engaging in
more-or-less continual combat against those who seek to promote their sites by
“gaming” its retrieval algorithm.

In search engine spam, the goal for an attacker is to make the promoted page
“look like” a good answer to a query in all respects that Google cares about. In
the case of collaborative recommendation, the goal for an adversary is to make a
particular product or item look like a good recommendation for a particular user
(or maybe all users) when really it is not. Alternatively, the attacker might seek
to prevent a particular product from being recommended when really it is a good
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choice. If we assume that a collaborative system makes its recommendations purely
on the basis of user profiles, then it is clear what an attacker must do—add user
profiles that push the recommendation algorithm to produce the desired effect. A
single profile would rarely have this effect, and in any case, fielded systems tend
to avoid making predictions based on only a single neighbor. What an attacker
really needs to do is to create a large number of psuedonomous profiles designed
to bias the system’s predictions. Site owners try to make this relatively costly, but
there is an inherent tension between policing the input of a collaborative system
and making sure that users are not discouraged from entering the data that the
algorithm needs to do its work. The possibility of designing user rating profiles
to deliberately manipulate the recommendation output of a collaborative filtering
system was first raised in [31]. Since then, research has focused on attack strategies,
detection strategies to combat attacks and recommendation algorithms that have
inherent robustness against attack.

A framework for understanding this research is sketched in Fig. 28.1. First, we
demonstrate the extent of the problem by modeling efficient attacks, attacks that
can with relatively low cost produce a large impact on system output. This enables
us to understand the shape of the impact curve for efficient attacks. Research on
detection attempts to identify groups of profiles that make up an attack and to
eliminate them from the database. Attacks that are not efficient are more difficult
to detect, but because they are inefficient, must be very large to have an impact.
A large influx of ratings for a particular item is easy to detect with standard system
monitoring procedures. Research on detection therefore focuses on how to detect
efficient attacks and variants of them, seeking to increase the size of the “detectable”

Fig. 28.1 Curves show the
theoretical impact of attacks
of different degrees of
efficiency. The shaded areas
shows attacks that can be
detected

Efficient
attack

Inefficient
attack

Im
pa

ct

Scale

Detectable
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boxes in the diagram, and thereby limiting the impact that an attacker can have. At
the same time, researchers have studied a number of algorithms that are intended
to be robust against attack, having lower impact curves relative to efficient attacks.
With the combination of these techniques, researchers have sought, not to eliminate
attacks, but to control their impact to the point where they are no longer cost-
effective.

This chapter looks at each of these points in turn. In Sect. 28.3, we look
at research that aims to identify the most efficient and practical attacks against
collaborative recommender systems, establishing the shape of the impact curve
suggested above. Section 28.5 looks at the problem of detection: in particular,
the left-most shaded area for detecting efficient attacks. Lastly, in Sect. 28.7, we
examine attempts to reduce the impact of attacks through robust algorithms.

28.2 Defining the Problem

A collaborative recommender is supposed to change its recommendations in
response to the profiles that users add. It is somewhat counter-intuitive to suppose
that “robustness” or “stability” is a desirable property in a system that is supposed
to be adaptive. The goal of robust recommendation is to prevent attackers from
manipulating the system through large-scale insertion of user profiles, a profile
injection attack.

We assume that any user profile is feasible. That is, we do not want to demand
that users’ ratings fit with those that have been entered previously or that they
make any kind of objective sense. Users are entitled to their idiosyncratic opinions
and there is always the possibility that what is an unusual user today may be
more typical tomorrow as new users sign up. So, a profile, taken by itself, cannot
constitute an attack. Also, it is important to note that some web phenomena that
look like attacks are not considered such within this definition. For example, in
the Fall of 2008, numerous videogame fans converged on the page for the game
Spore on Amazon.com, using it as a vehicle for airing their complaints about the
digital rights management software included with the game. Presumably these were
a large number of authentic individuals, and while their ratings no doubt skewed the
recommendations for Spore for some time, their actions would not be considered an
attack as we define it here. It is not clear that any automated technique can identify
when a real user posts a rating to make a political statement or as a prank, rather
than to reflect an honest preference.1

For the purposes of this research, an attack is a concerted effort to bias the results
of a recommender system by the insertion of a large number of profiles using false
identities. Each of the separate identities assumed by the attacker are referred to as

1It could be argued that even such a technique did exist, it would not be in the interest of a
collaborative system to deploy it.

Amazon.com
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an attack profile. Once created, these profiles are used to insert preference data into
the system. The most dangerous attacks are those that are crafted for maximum
impact on the system, so much research has been devoted to finding the most
effective and practical attacks against different algorithms.

While random vandalism surely does occur, research in this area has concen-
trated on attacks designed to achieve a particular recommendation outcome. The
objectives of product push and product nuke attacks are to promote or demote the
recommendations made for items, respectively. For example, the goal of an attacker
might be to force a system to output poor recommendations for his competitors’
products (nuke) while attempting to secure positive recommendations for his own
(push).

From the perspective of the attacker, the best attack against a system is one
that yields the biggest impact for the least amount of effort, under the constraint
of remaining undetectable. There are two types of effort involved in mounting an
attack. The first is the effort involved in crafting profiles. On of the crucial variables
here is the amount of knowledge that is required to put together an attack. A high-
knowledge attack is one that requires the attacker to have detailed knowledge of the
ratings distribution in a recommender system’s database. Some attacks, for example,
require that the attacker know the mean rating and standard deviation for every item.
A low-knowledge attack is one that requires system-independent knowledge such as
might be obtained by consulting public information sources.

We assume that the attacker will have a general knowledge of the type of
algorithm being employed to produce recommendations. An attacker that has more
detailed knowledge of the precise algorithm in use would be able to produce an
informed attack that makes use of the mathematical properties of the algorithm itself
to produce the greatest impact.

The second aspect of effort is the number of profiles that must be added to
the system in order for it to be effective. The ratings are less important since the
insertion of ratings can be easily automated. Most sites employ online registration
schemes requiring human intervention, and by this means, the site owner can impose
a cost on the creation of new profiles. This is precisely why, from an attacker’s
perspective, attacks requiring a smaller number of profiles are particularly attractive.

28.2.1 An Example Attack

To illustrate the basic idea of a profile injection attack, consider the simplified
recommender system database that is presented in Fig. 28.2. In this example, the
objective is to demote the recommendations that are made for item 7 (i.e. a product
nuke attack), and a number of attack profiles (users i through m) have been inserted
into the system to target this item.

In particular, consider the binary recommendation problem in which the task is
to predict whether or not user h likes item 7. In the first instance, let the attack
profiles be ignored and consider only the authentic profiles (users a through g) as
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1 2 3 4 5 6 7 
a +  + + + 
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c +  +    
d  + +  
e      
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i +  +    
j  + +   
k      
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m  + +    
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Fig. 28.2 Simplified system database showing authentic user profiles and a number of attack
profiles inserted. In this example, user h is seeking a prediction for item 7, which is the subject
of a product nuke attack

possible neighbours for the target user, h. Regardless of the specific recommendation
algorithm used, presumably the algorithm would determine that users a and f have
similar tastes to the active user, and since both of these users like item 7, a positive
recommendation for the item follows.

When the attack profiles are also considered as possible neighbours, the situation
is significantly altered. Several of these attack profiles are also similar to user h, and,
since all of these profiles rate item 7 poorly, the system is now likely to recommend
a negative rating for the item. Thus, the objective of the attack is realised. The next
section discusses how these attack profiles must be crafted to work well in a realistic
setting.

28.3 Characterising Attacks

A profile-injection attack against a recommender system consists of a set of profiles
added to the system by the attacker. A profile consists of a set of rating/item pairs, or
alternately, we can think of the profile being a vector of all items, with a rating value
for each item, but allowing the null value for unrated items. For the attacks that we
are discussing, there will always be a target item it that the attacker is interested
in promoting or demoting. There will generally also be a set of filler items, that
are chosen randomly from those available. We will denote this set IF. Some attack
models also make use of a set of items that are selected out of the database. The
small set usually has some association with the target item (or a targeted segment
of users). For some attacks, this set is empty. This will be the set IS. Finally, for
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completeness, the set I; contains those items not rated in the profile. Since the
selected item set is usually small, the size of each profile (total number of ratings) is
determined mostly by the size of the filler item set. Some of the experimental results
report filler size as a proportion of the size of I (i.e., the set of all items).

28.3.1 Basic Attacks

Two basic attack models, introduced originally in [18], are the random and average
attack models. Both of these attacks involve the generation of profiles using
randomly assigned ratings to the filler items in the profile.

28.3.1.1 Random Attack

Random attack profiles consist of random ratings distributed around the overall
mean assigned to the filler items and a prespecified rating assigned to the target
item. In this attack model, the set of selected items is empty. The target item it is
assigned the maximum rating (rmax) or the minimum rating (rmin) in the case of push
or nuke attacks, respectively.

The knowledge required to mount such an attack is quite minimal, especially
since the overall rating mean in many systems can be determined by an outsider
empirically (or, indeed, may be available directly from the system). However, this
attack is not particularly effective [7, 18].

28.3.1.2 Average Attack

A more powerful attack described in [18] uses the individual mean for each item
rather than the global mean (except for the pushed item). In the average attack, each
assigned rating for a filler item corresponds (either exactly or approximately) to the
mean rating for that item, across the users in the database who have rated it.

As in the random attack, this attack can also be used as a nuke attack by using rmin

instead of rmax. It should also be noted that the only difference between the average
attack and the random attack is in the manner in which ratings are computed for the
filler items in the profile.

The average attack might be considered to have considerable knowledge cost
of order jIFj (the number of filler items in the attack profile) because the mean
and standard deviation of these items must be known. Experiments, however, have
shown that the average attack can be just as successful even when using a small
filler item set. Thus the knowledge requirements for this attack can be substantially
reduced, but at the cost of making all profiles contain the same items, possibly
rendering them conspicuous [5].
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28.3.2 Low-Knowledge Attacks

The average attack requires a relatively high degree of system-specific knowledge
on the part of attackers. A reasonable defense against such attacks would be to make
it very difficult for an attacker to accumulate the required distribution data. The next
set of attack types are those for which the knowledge requirements are much lower.

28.3.2.1 Bandwagon Attack

The goal of the bandwagon attack is to associate the attacked item with a small
number of frequently rated items. This attack takes advantage of the Zipf’s
distribution of popularity in consumer markets: a small number of items, bestseller
books for example, will receive the lion’s share of attention and also ratings. The
attacker using this model will build attack profiles containing those items that have
high visibility. Such profiles will have a good probability of being similar to a large
number of users, since the high visibility items are those that many users have rated.
It does not require any system-specific data, because it is usually not difficult to
independently determine what the “blockbuster” items are in any product space.

The bandwagon attack uses selected items which are likely to have been rated by
a large number of users in the database. These items are assigned the maximum
rating value together with the target item it. The ratings for the filler items are
determined randomly in a similar manner as in the random attack. The bandwagon
attack therefore can be viewed as an extension of the random attack.

As we show in Sect. 28.4, the bandwagon attack is nearly as effective as the aver-
age attack against user-based algorithms, but without the knowledge requirements
of that attack. Thus it is more practical to mount. However, as in the case of the
average attack, it falls short when used against an item-based algorithm [18].

28.3.2.2 Segment Attack

Mobasher et al. [26] introduced the segment attack and demonstrated its effective-
ness against the item-based algorithm. The basic idea behind the segment attack
is to push an item to a targeted group of users with known or easily predicted
preferences. For example, the producer of a horror movie might want to get the
movie recommended to viewers who have liked other horror movies. In fact, the
producer might prefer not to have his movie recommender to viewer who do not
enjoy the horror genre, since these users might complain and thereby reveal his
attack.

To mount this attack, the attacker determines a set of segment items that are
likely to be preferred by his intended target audience. Like the bandwagon attack,
it is usually fairly easy to predict what the most popular items in a user segment
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would be. These items are assigned the maximum rating value together with the
target item. To provide the maximum impact on the item-based CF algorithm, the
minimum rating is given to the filler items, thus maximising the variations of item
similarities.

28.3.3 Nuke Attack Models

All of the attack models described above can also be used for nuking a target item.
For example, as noted earlier, in the case of the random and average attack models,
this can be accomplished by associating rating rmin with the target item instead of
rmax . However, the results presented in Sect. 28.4 suggest that attack models that are
effective for pushing items are not necessarily as effective for nuke attacks. Thus,
researchers have designed additional attack models designed particularly for nuking
items.

28.3.3.1 Love/Hate Attack

The love/hate attack is a very simple attack, with no knowledge requirements. The
attack consists of attack profiles in which the target item it is given the minimum
rating value, rmin, while other ratings in the filler item set are the maximum rating
value, rmax. This can be seen as a very low-knowledge version of the Popular Attack
below. Surprisingly, this is one of the most effective nuke attacks against the user-
based algorithm.

28.3.3.2 Reverse Bandwagon Attack

The reverse bandwagon attack is a variation of the bandwagon attack, discussed
above, in which the selected items are those that tend to be rated poorly by many
users. These items are assigned low ratings together with the target item. Thus
the target item is associated with widely disliked items, increasing the probability
that the system will generate low predicted ratings for that item. This attack was
designed to reduce the knowledge required by selecting only a handful of known
disliked items. For example, in the movie domain, these may be box office flops
that had been highly promoted prior to their openings.

In Sect. 28.4, we show that although this attack is not as effective as the more
knowledge-intensive average attack for nuking items in the user-based system, it is
a very effective nuke attack against item-based recommender systems.
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28.3.4 Informed Attack Models

The low-knowledge attacks above work by approximating the average attack,
concentrating on items that are expected to be rated because of their popularity. The
average attack in turn is a natural choice for an attacker with a basic intuition about
collaborative recommendation, namely that users will be compared on the basis
of similarity, so the incentive is to make the profiles similar to the average user. Of
course, should detailed knowledge be available concerning the rating distributions of
particularly influential users in the system, the potential exists for more sophisticated
attacks. In addition, knowledge of the precise algorithm, if available, can likewise be
applied to mount more powerful attacks. In the following sections, informed attacks
in the context of knowledge about the recommendation algorithm are discussed.

28.3.4.1 Popular Attack

Let us assume that the recommender system uses the widely studied user-based
algorithm proposed in [35], where similarities between users are calculated using
Pearson correlation.2 In a similar manner to the bandwagon attack, attack profiles
are constructed using popular (i.e. frequently rated) items from the domain under
attack.

A high degree of overlap does not, however, guarantee high similarities between
attack and authentic profiles. The bandwagon attack used random filler items to
generate variation among ratings with the aim of producing at least some profiles
that correlate correctly with any given user. The Popular Attack makes use of
average rating data and rates the filler items either rmin C 1 and rmin, according
to whether the average rating for the item is higher or lower. Linking the rating
value to the average rating is likely to result in positive correlations between attack
and authentic profiles and furthermore also maximises the prediction shift (see
Sect. 28.4) of attack profiles as computed by the algorithm under consideration (see
[32] for details).3

The ratings strategy described above applies to push attacks; this strategy can
easily be adjusted for nuke attacks. For example, positive correlations but negative
prediction shifts can be achieved by assigning the target item a rating of rmin, and
ratings of rmax and rmax � 1 to the more- and less-liked selected items.

The knowledge requirement here is intermediate between the bandwagon attack
and the average attack. Like the bandwagon attack, the popular items can usually

2See [32] for a discussion on informed attacks in cases where alternative similarity metrics are
employed. Note that none of the metrics considered provided robustness against attack.
3Note that an optimal push attack strategy is also presented in [25]. In this case, it is concluded that
maximising the correlation between authentic and attack profiles is the primary objective. While
this conclusion makes sense, it is important to select attack profile ratings that also maximise
prediction shift, as is the case with the popular attack described here.
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be easily estimated from outside the system because there are no filler items, the
Popular Attack will need more such items. The attacker then needs to guess at the
relative average preferences between these items in order to provide the correct
rating. It might be possible to extract such distinctions from the system itself, or
if not, to mine them from external sources; for example, counting the number of
positive and negative reviews for particular items to find general trends.

28.3.4.2 Probe Attack Strategy

A strategy that is less conspicuous to the popular attack is to obtain items and their
ratings from the system itself via the probe attack. To perform this strategy, the
attacker creates a seed profile and then uses it to generate recommendations from the
system. These recommendations are generated by the neighboring users and so they
are guaranteed to be rated by at least some of these users and the predicted ratings
will be well-correlated with these users’ opinions. One could imagine probing
narrowly in order to influence a small group as in the segment attack, or probing
more broadly to construct an average attack. In a sense, the probe attack provides a
way for the attacker to incrementally learn about the system’s rating distribution.

This strategy also has another advantage over the popular attack, since less
domain knowledge is required by an attacker. Only a small number of seed items
need to be selected by the attacker, thereafter the recommender system is used to
identify additional items and ratings. In the experiments conducted in Sect. 28.4,
seed items are selected and assigned ratings in a similar manner as in the popular
attack.

28.3.4.3 Power User Attack

It is well known that certain users in the system have considerable influence on
the recommendations made for others [13, 34]. Accordingly, the power user attack
has been proposed [43]. Power users are identified as those (genuine) users in the
dataset which, for example, appear in the highest number of neighbourhoods or
have the largest number of ratings. The effectiveness of such users as attackers
is demonstrated by selecting a group of genuine power users to act as attackers.
Their ratings for the attacked item is set to the maximum or minimum depending
on whether a push or nuke attack is intended, but otherwise their profile is left
unchanged. The challenge remains as to how power user attack profiles could be
synthesised by an actual attacker and the degree of knowledge required to so do,
which is left to future work.
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28.3.5 Obfuscated Attacks

The above attacks were proposed from the point-of-view of finding effective
strategies to manipulate a CF system under certain constraints of knowledge
available to the attacker. They give little attention to the issue of how conspicuous
an attack is. However, if a CF system takes counter-measures to filter out attacks,
then the attacker must in turn put effort into hiding the attack. Obfuscated attacks
attempt to manipulate ratings using profiles that are difficult to distinguish from
genuine profiles. In [17], an Average over Popular (AoP) attack is proposed that
modifies the Average attack, so that filler items are chosen from a set of the most
popular items. This circumvents detection strategies that depend on the difference
between the way that filter items are chosen in the Average attack and the way
that genuine users choose items to rate. Another obfuscation method is proposed
in [8], where attack profiles are constructed to be highly diverse and so circumvent
detection strategies that use clustering (see Sect. 28.5.3). Furthermore, attackers can
exploit knowledge of the detection strategy. For example, [30] shows that if the
attacker is aware of the criteria used to decide if an attack profile exists in the user’s
neighbourhood, then the attacker can construct profiles which, although somewhat
less effective than the standard attacks, can circumvent detection. An evaluation of
the effectiveness of various types of attack profile obfuscation is carried out in [42].

28.4 Measuring Robustness

Collaborative recommendation algorithms can be categorised into two general
classes, which are commonly referred to as memory-based and model-based
algorithms [3]. Memory-based algorithms utilise all available data from a system
database to compute predictions and recommendations. In contrast, model-based
algorithms operate by first deriving a model from the system data, and this model is
subsequently used in the recommendation process.

A wide range of collaborative recommendation algorithms have been proposed
in the literature, and a comprehensive analysis of the robustness of all of these
algorithms is beyond the scope of this chapter. Here, we focus on two widely
implemented and studied algorithms, the user-based and item-based algorithms
[35, 39]. The reader is referred to [27, 28, 38] for a robustness analysis of some
other collaborative recommendation algorithms.

28.4.1 Evaluation Metrics

Since the objective of push and nuke attacks is to promote and demote target items,
we need to evaluate how successfully they do so. Evaluation metrics for robustness
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need to capture the differences in the predicted ratings and recommended status (i.e.
whether or not the target item in included in a top N recommended list) of target
items pre- and post-attack.

Many researchers have used average prediction shift to evaluate the changes in
predicted ratings. Let UT and IT be the sets of users and items, respectively, in the
test data. For each user-item pair .u; i/, the prediction shift denoted by �u;i can be
measured as �u;i D p0

u;i � pu;i, where p0 is the post-attack prediction and p before.
A positive value means that the attack has succeeded in making the pushed item
more positively rated. The average prediction shift for an item i over all users can
be computed as �i D P

u2UT
�u;i=jUT j. Similarly the average prediction shift for

all items tested can be computed as N� DPi2IT
�i=jIT j.

Prediction shift is a good indicator that an attack is having the desired effect of
making a pushed item appear more desirable. However, it is possible that an item
could be strongly shifted on average, but still not make it onto a recommendation
list. For example, the item’s initial average prediction could be so low that even
a strong boost is insufficient. To capture the impact of an attack on prediction
lists, another metric has been proposed: hit ratio. Let Ru be the set of top N
recommendations for user u. If the target item appears in Ru, for user u, the scoring
function Hui has value 1; otherwise it is zero. Hit ratio for an item i is given by
HitRatioi D P

u2UT
Hui=jUT j. Average hit ratio can then calculated as the sum of

the hit ratio for each item i following an attack on i across all items divided by the
number of items: HitRatio DPi2IT

HitRatioi=jIT j.
Many experimenters make use of the publicly available MovieLens 100K

dataset.4 This dataset consists of 100,000 ratings made by 943 users on 1682 movies.
Ratings are expressed on an integer rating scale of 1–5 (the higher the score, the
more liked an item is). Results below should be assumed to be relative to this dataset
unless otherwise stated.

28.4.2 Push Attacks

To get a sense for the impact that a push attack can have, we will look at results
originally reported in [27]. In these figures, the user-based algorithm is subjected
to various attacks of different sizes (attack size is measured as a percentage of the
total number of authentic profiles in the system; thus an attack of 1 % equates to the
insertion of ten attack profiles into the MovieLens dataset). Figure 28.3 (left) shows
the average attack (3 % filler size), the bandwagon attack (using one frequently rated
item and 3 % filler size), and the random attack (6 % filler size). These parameters
were selected as they are the versions of each attack that were found to be most
effective. Not surprisingly, the most knowledge-intensive average attack achieved
the best performance in terms of prediction shift. This attack works very well.

4http://www.cs.umn.edu/research/GroupLens/data/.

http://www.cs.umn.edu/research/GroupLens/data/
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Fig. 28.3 Prediction shift (left) and hit ratio (right) for product push attacks mounted against the
user-based collaborative recommendation algorithm. Hit ratio results relate to a 10 % attack size

It is capable of moving an average-rated movie (3.6 is the mean) to the top of the
five point scale. The performance of the bandwagon attack was quite comparable,
despite having a minimal knowledge requirement. In addition, the bandwagon attack
was clearly superior to the random attack, which highlights the significance of
including the selected items that are likely to be rated by many users.

Interestingly, Fig. 28.3 (right) shows that the largest hit ratios were achieved
by the bandwagon attack, indicating that prediction shift does not necessarily
translate directly into top N recommendation performance. This result is particularly
encouraging from the attacker’s perspective, given that the required knowledge to
implement such attacks is low. Note that all attacks significantly outperform the
pre-attack hit ratio results (indicated by “base line” in the figure).

The item-based algorithm was shown in [18] to be relatively robust against the
average attack. The segment attack was introduced in [26] specifically crafted as
a limited-knowledge attack for the item-based algorithm. It aims to increase the
column-by-column similarity of the target item with the users preferred items. If the
target item is considered similar to something that the user likes, then its predicted
rating will be high—the goal of the push attack. The task therefore for the attacker is
to associate her product with popular items considered similar. The users who have
a preference for these similar items are considered the target segment. The task for
the attacker in crafting a segment attack is therefore to select items similar to the
target item for use as the segment portion of the attack profile IS. In the realm of
movies, we might imagine selecting films of a similar genre or those containing the
same actors.

In [26], user segments are constructed by looking at popular actors and genres.
For the results shown in Fig. 28.4, the segment is all users who gave above
average ratings (4 or 5) to any three of the five selected horror movies, namely,
Alien, Psycho, The Shining, Jaws, and The Birds. For this set of five movies, the
researchers selected all combinations of three movies that had at least 50 users
support, and chose 50 of those users randomly and averaged the results.



974 R. Burke et al.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Attack Size (%)

P
re

di
ct

io
n 

S
hi

ft

 

 

In−segment
All−user

0 10 20 30 40 50
0% 

10%

20%

30%

40%

50%

60%

# of Recommendations

H
it 

R
at

io

 

 

In−segment
All−user
Baseline

Fig. 28.4 Prediction shift (left) and hit ratio (right) for product push attacks mounted against the
item-based collaborative recommendation algorithm. Hit ratio results relate to a 10 % attack size

The power of the segmented attack is demonstrated in the figure, which contrasts
the horror movie fans against the set of all users. While the segmented attack shows
some impact against all users, it is clearly very successful in pushing the attacked
movie precisely to those users defined by the segment. Further, in the context of the
item-based algorithm, the performance of this attack compares very favourably to
that of the high-knowledge average attack. For example, the average attack achieved
a hit ratio of 30 % against all users for top N lists of size 10 and an attack size of
10 %. In contrast, the segmented attack achieved approximately the same hit ratio
for the same size top N list, but using an attack size of only 1 %.

It should also be noted that, although designed specifically as an attack against
the item-based algorithm, the segment attack is also effective against the user-based
algorithm. Due to limitations of space, we do not show these results here—refer to
[27] for details.

28.4.3 Nuke Attacks

It might be assumed that nuke attacks would be symmetric to push attacks, with
the only difference being the rating given to the target item and hence the direction
of the impact on predicted ratings. However, our results show that there are some
interesting differences in the effectiveness of models depending on whether they are
being used to push or nuke an item. In particular, the rating distribution should be
taken into account: there are in general relatively few low ratings in the MovieLens
database, so low ratings can have a big impact on predictions. Furthermore, if we
look at the top N recommendations, the baseline (the rate at which an average movie
makes it into a recommendation list) is quite low, less than 0.1 even at a list size of
50. It does not take much to make an item unlikely to be recommended.

In the love/hate attack, the randomly selected 3 % of filler items were assigned
the maximum rating while the target item was given the minimum rating. For the
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Fig. 28.5 Prediction shifts achieved by nuke attacks against the user-based (left) and item-based
(right) algorithms

reverse bandwagon attack (designed to attack the item-based algorithm), items with
the lowest average ratings that meet a minimum threshold in terms of the number of
user ratings in the system are selected as the selected item set, as described in detail
in Sect. 28.3. The experiments were conducted using jISj D 25 with a minimum of
ten users rating each movie.

Results are shown in Fig. 28.5 for all attack models. Despite the minimal
knowledge required for the love/hate attack, this attack proved to be the most
effective against the user-based algorithm. Among the other nuke attacks, the
bandwagon attack actually surpassed the average attack, which was not the case
with the push results discussed above.

The asymmetry between these results and the push attack data is somewhat
surprising. For example, the love/hate attack produced a positive prediction shift
slightly over 1.0 for a push attack of 10 % against the user-based algorithm, which
is much less effective than even the random attack. However, when used to nuke
an item against the user-based algorithm, this model was by far the most effective
model we tried, with a prediction shift of almost twice that of the average attack.
For pushing items, the average attack was the most successful, while it proved to be
one of the least successful attacks for nuking items. The bandwagon attack, on the
other hand, performed nearly as well as the average attack in pushing items, and had
superior overall performance for nuking, despite its lower knowledge requirement.

Overall, the item-based algorithm proved to be far more robust. The average
attack was the most successful nuke attack here, with reverse bandwagon close
behind. The asymmetries between push and nuke continue as we examine the item-
based results. The random and love/hate attacks were poor performers for push
attacks, but as nuke attacks, they actually failed completely to produce the desired
effect. Reverse bandwagon (but not bandwagon) proved to be a reasonable low-
knowledge attack model for a nuke attack against the item-based algorithm.
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Fig. 28.6 Hit ratios achieved by the popular, probe and average push attacks against the user-based
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28.4.4 Informed Attacks

Finally, we turn to the evaluation of the informed attack strategies against the user-
based algorithm. In particular, we compare the performance of the informed popular
and probe push attacks to the average attack as seen above.

The attacks were implemented as follows. Popular attack profiles consisting of a
total of 100 items (including the target item) were selected and assigned ratings as
described in Sect. 28.3. For the probe attack, 10 seed items were selected at random
from the 100 most frequently rated items from the system. Thereafter the system was
interrogated to discover additional profile items and ratings. In total, probe attack
profiles consisted of 100 items. Likewise, the benchmark average attack profiles
consisted of 100 items, which corresponds to a filler size of approximately 1.7 %.
For the purposes of comparison, the 100 most frequently-rated items were chosen
for average attack profiles (and not selected randomly, as before).

Figure 28.6 shows the hit ratios achieved by the three attacks. It is clear from the
figure that the impact of the informed attacks was significantly greater than that of
the average attack. For example, for an attack size of only 2 %, the hit ratios achieved
by the popular, probe and average attacks were 65 %, 34 % and 3 %, respectively, for
top N lists of size 10. Thus the advantage of creating attacks that consider particular
features of the algorithm under attack is clearly demonstrated.

The main drawback associated with the informed attacks lies in the high degree
of domain knowledge that is required in order to select the appropriate items and
ratings with which to create the attack profiles. As discussed in Sect. 28.3, however,
such knowledge is often made directly available to attackers by recommender
system applications. Further, the knowledge required can often be obtained from
other sources, e.g. by examining best seller lists and the number of positive and
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negative reviews received by items, etc. Even in situations where such data is only
partially available, previous work demonstrates that these informed attacks retain
their strong performance [33].

28.4.5 Attack Impact

It is clear from the research summarized above that the memory-based algorithms
that form the core of collaborative recommendation research and practice are highly
vulnerable to manipulation. An attacker with fairly limited knowledge can craft
attacks that will make any item appear well liked and promote it into many users’
recommendation lists. The “efficient” attacks that have been developed clearly are
a threat to the stability and usability of collaborative systems and thus we see the
justification for the low-scale/high-impact portion of the theoretical curve shown in
Fig. 28.1.

To respond to this threat, researchers have examined two complementary
responses. The shaded “detection” areas in Fig. 28.1 point towards the first response,
which is to detect the profiles that make up an attack and eliminate them. The second
approach is to design algorithms that are less susceptible to the types of attacks that
work well against the classic algorithms.

28.5 Attack Detection

Figure 28.7 summarises the steps involved in attack detection. This is a binary
classification problem, with two possible outcomes for each profile, namely,
Authentic, meaning that the classifier has determined that the profile is that of a
genuine system user or Attack, meaning that the classifier has determined that this is
an instance of an attack profile. One approach to the detection problem, followed by
work such as [1, 11], has been to view it as a problem of determining independently
for each profile in the dataset, whether or not it is an attack profile. This is the ‘single
profile’ input shown in Fig. 28.7. The input is a single rating vector ru, for some user
u from the dataset. Before processing by the classifier, a feature extraction step may
extract a set of features, fu D .f1; : : : ; fk/ from the raw rating vector ru. The classifier
takes fu as input and outputs, “Attack” or “Authentic”. If the classifier is a supervised
classifier, then a training phase makes use of annotated dataset of profiles, i.e. a set
of profiles labelled as Authentic or Attack, in order to learn the classifier parameters.

Because most attack scenarios consist of groups of profiles working in concert
to push or nuke a particular item, work such as [23, 30] has suggested that there
is benefit to considering groups of profiles together when making the classification.
This is represented by the ‘Group of Profiles’ input, in which the classifier considers
an entire group of profiles, possibly after some feature extraction, and outputs a label
for each profile in the group. Note that not all steps may take place in any particular
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Fig. 28.7 The detection process

scenario. For instance, there may be no feature extraction, in which case, f D r and
if unsupervised classifiers are used, then there is no need for a training phase.

28.5.1 Evaluation Metrics

To compare different detection algorithms, we are interested primarily in measures
of classification performance. Taking a ‘positive’ classification to mean the labeling
of a profile as Attack, a confusion matrix of the classified data contains four sets,
two of which—the true positives and true negatives—consist of profiles that were
correctly classified as Attack or Authentic, respectively; and two of which—the false
positives and false negatives—consist of profiles that were incorrectly classified
as Attack or Authentic, respectively. Various measures are used in the literature
to compute performance based on the relative sizes of these sets. Unfortunately,
different researchers have used different measures, making direct comparison of
results sometimes difficult.

Precision and recall are commonly used performance measures in information
retrieval. In this context, they measure the classifier’s performance in identifying
attacks. Each measure counts the number of attack profiles correctly classified.
Recall which is also called sensitivity presents this count as a fraction of the total
number of actual attacks in the system. Precision, which is also called the positive
predictive value (PPV), presents this count as a fraction of the total number of
profiles labelled as Attack:
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recall � sensitivity D # true positives

# true positivesC # false negatives
; (28.1)

precision � PPV D # true positives

# true positivesC # false positives
:

Analogous measures can be given for performance in identifying authentic profiles.
Specificity presents the count of authentic profiles correctly classified as a fraction
of the total number of authentic profiles in the system. Negative predictive value
(NPV), presents the count as a fraction of the total number of profiles labelled
Authentic:

specificity D # true negatives

# true negativesC # false positives
; (28.2)

NPV D # true negatives

# true negativesC # false negatives
:

In detection results below, we use the terms precision, recall, specificity and NPV.

28.5.1.1 Impact on Recommender and Attack Performance

The misclassification of authentic profiles results in the removal of good data from
the ratings database, which has the potential to impact negatively on the overall
performance of the recommender system. One way to assess this impact is to
compute the MAE of the system before and after detection and filtering. On the
positive side, the removal of attack profiles reduces attack performance. Assuming
the attack is a push or nuke attack, the degree to which attack performance is affected
can be assessed by computing the prediction shift on the targeted item before and
after detection and filtering.

28.5.2 Single Profile Detection

The basis of individual profile detection is that the distribution of ratings in an
attack profile is likely to be different to that of authentic users and therefore each
attack profile can be distinguished by identification of these differences. As such,
individual profile detection is an instance of a statistical detection problem. It should
be noted that it is in the interest of the attacker to minimise the statistical differences
between attack and authentic profiles, in order to minimise the probability of
detection. On the other hand, a cost-effective attack is likely to consist of unusually
influential profiles—e.g., a targeted pushed item will have unusually high ratings
and filler items may have been chosen to support the influence of the profile towards



980 R. Burke et al.

high ratings for the target. As a result, distinctive characteristics are likely to exist
and may be manifested in many ways, including an abnormal deviation from the
system average rating, or an unusual number of ratings in a profile [1].

28.5.2.1 Unsupervised Detection

An unsupervised individual profile detection algorithm is described in [11]. Detec-
tion is based on certain common generic attributes of attack profiles, for example
that there is a higher than usual rating deviation from mean in such profiles and
that such profiles are likely to have a higher than usual similarity to their closest
neighbours. Measures of these attributes are proposed and these are applied to
compute a probability that a profile is an attack profile. This method is adapted
to take into account the timestamps of when ratings are made in [41].

28.5.2.2 Supervised Detection

Supervised detection algorithms have focussed on the selection of attributes of
attack profiles from which to build a feature vector for input to a classifier. Generally,
such features have been selected by observation of generic attributes that are
common across attack profiles of a number of different attack strategies and also
model specific attributes that are common across profiles that have been generated
for a specific type of attack.

In [6] profile attributes based to those proposed in [11] and others along similar
lines were developed into features for inclusion in a feature vector input to a
supervised classifier. Moreover, other features based on the statistics of the filler
and target items in the user profile, rather than the entire profile, were proposed. For
example, the filler mean variance feature is defined as the variance of the ratings in
the filler partition of the profile and is used to detect average attacks; the filler mean
target difference feature, defined as the difference between the means of the target
items and the means of the filler items, is used to detect bandwagon attacks.

The authors looked at three supervised classifiers: kNN, C4.5, and SVM. The
kNN classifier uses detection attributes of the profiles to find the k D 9 nearest
neighbors in the training set using Pearson correlation for similarity to determine
the class. The C4.5 and SVM classifiers are built in a similar manner such that they
classify profiles based on the detection attributes only. The results for the detection
of a 1 % average attack over various filler sizes are reproduced in Fig. 28.8. SVM
and C4.5 have near perfect performance on identifying attack profiles correctly, but
on the other hand, they also misclassify more authentic profiles than kNN. SVM has
the best combination of recall and specificity across the entire range of filler sizes
for a 1 % attack.

The effect of misclassification of authentic profiles is assessed by examining the
MAE of the system before and after detection and filtering. The increase in MAE is
observed to be less than 0.05 on a rating scale of 1–5. Finally the effectiveness of
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Fig. 28.8 Recall (left) and specificity (right) vs filler size for three classifiers trained on a 1 %
average attack

the attack as measured by the prediction shift on the targeted item is shown to be
significantly reduced when detection is used. All three classifiers reduce the range of
attacks that are successful, particularly at low attack sizes. The SVM algorithm, in
particular, dominates for attack sizes less than 10 %, allowing no resulting prediction
shift over that entire range.

Hurley et al. [17] took a statistical approach to attack detection, by building
statistical models of attack and genuine profiles, whose parameters are learned from
a training set. This strategy proved highly successful in identifying the average,
random and bandwagon attacks.

28.5.3 Group Profile Detection

A number of unsupervised algorithms that try to identify groups of attack profiles
have been proposed [25, 30, 40]. Generally, these algorithms rely on clustering
strategies that attempt to distinguish clusters of attack profiles from clusters of
authentic profiles.

28.5.3.1 Neighbourhood Filtering

In [30] an unsupervised detection and filtering scheme is presented. Rather than
filtering profiles from the dataset in a preprocessing step, in this method, filtering
is applied to the profiles in the active user’s neighbourhood during prediction
for a particular item. This approach has the advantage of identifying just those
attack profiles that are targeting the active item. The strategy is based on an
algorithm proposed in [12] in the context of reputation reporting systems that
aims to provide a reputation estimate for buyers and sellers engaged in on-line
marketplaces that is robust to malicious agents who attempt to fraudulently enhance
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Fig. 28.9 Precision and NPV
for the neighbourhood
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their own reputations. The approach involves the clustering of neighbourhoods into
two clusters. Analysing the statistics of the clusters, a decision is made as to whether
an attack is present and, if so, which cluster contains the attack profiles. All profiles
in the cluster are removed.

Clustering is performed using the Macnaughton-Smith et al. [20] divisive
clustering algorithm. The rating distributions for the active item over each of the
clusters are then compared. Since the goal of an attacker is to force the predicted
ratings of targeted items to a particular value, it is reasonable to expect that the
ratings for targeted items that are contained in any attack profiles are centered on the
attack value, which is likely to deviate significantly from the mean of the authentic
neighbours’ ratings. Thus an attack is deemed to have taken place if the difference
in the means for the two clusters is sufficiently large. The cluster with the smaller
standard deviation is determined to be the attack cluster.

Results for this algorithm (using precision and NPV) applied to an informed
nuke attack on the Movielens dataset are reproduced in Fig. 28.9. The fraction of
authentic users contained in the cluster identified as the cluster of authentic users
is at least 75 % for all attack sizes tested, so attack profiles are being effectively
filtered from the system. However, particularly for small attack sizes, a significant
proportion of the attack cluster is made up of authentic users. The cost of removing
malicious profiles is to also lose authentic profiles that may have contributed to the
accuracy of the prediction. Results show that filtering a system that has not been
attacked leads to an increase of around 10 % in the MAE.

28.5.3.2 Detecting Attacks Using Profile Clustering

In [25] the observation is made that attacks consist of multiple profiles which are
highly correlated with each other, as well as having high similarity with a large
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number of authentic profiles. This insight motivates the development of a clustering
approach to attack detection, using Probabilistic Latent Semantic Analysis (PLSA)
and Principal Component Analysis (PCA).

In the PLSA model [15], an unobserved factor variable Z D fz1; : : : zkg is
associated with each observation. In the context of collaborative recommendation,
an observation corresponds to a rating for some user-item pair and ratings are
predicted using

Pr.u; i/ D
kX

iD1

Pr.zi/Pr.ujzi/Pr.ijzi/ :

The parameters of this expression are chosen to maximise the likelihood of the
observed data, using the Expectation Maximisation algorithm. As discussed in [28],
the parameters Pr.ujzi/ can also be used to produce a clustering of the users by
assigning each user u to each cluster Ci such that Pr.ujzi/ exceeds a certain threshold
� or to the cluster that maximises Pr.ujzi/ if � is never exceeded.

It is noted in [25] that all or most attack profiles tend to be assigned to a
single cluster. Identifying the cluster containing the attack profiles provides an
effective strategy for filtering them from the system. Using the intuition that clusters
containing attack profiles will be ‘tighter’ in the sense that the profiles are very
similar to each other, the average Mahalanobis distance over the profiles of each
cluster is calculated and that with the minimum distance is selected for filtering.
Experiments show that PLSA based attack detection works well against strong
attacks. However, for weaker attacks the attack profiles tend to be distributed across
different clusters.

A second strategy to exploit the high similarity between attack profiles proposed
in [25] is to base a clustering on a PCA of the covariance matrix of the user
profiles. Essentially this strategy attempts to identify a cluster where the sum of
the pair-wise covariances between profiles in the cluster is maximised. PCA has
been widely used as a dimension reduction strategy for high-dimensional data.
Identifying profiles with dimensions, the method is explained intuitively in [25] as a
method of identifying those highly-correlated dimensions (i.e. profiles) that would
safely be removed by PCA. Alternatively, a cluster C can be defined by an indicator
vector y such that y.i/ D 1 if user ui 2 C and y.i/ D 0 otherwise. With S defined as
the covariance matrix, the sum of the pair-wise covariances of all profiles in C, may
be written as the quadratic form

yTSy D
X

i2C;j2C

S.i; j/ :

Moreover, for the normalised eigenvectors xi of S, associated with eigenvector �i

such that �1 � 	 	 	 � �m, the quadratic form evaluates as

yTSy D
mX

iD1

.y:xi/
2.xT

i Sxi/ D
mX

iD1

.y:xi/
2�i :
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Fig. 28.10 Precision and recall for the PLSA and PCA clustering strategies vs filer size for a 10 %
average attack (left). Precision vs attack size for PCA clustering and UnRAP on an average attack,
with filler size=10 % (right)

With this observation, the method described in [25] may be understood as a method
that seeks the binary vector y that maximises the quadratic form by choosing
y so that it has small correlation with those 3–5 eigenvectors corresponding
to the smallest eigenvalues and hence correlates strongly with the eigenvectors
corresponding to large eigenvalues.

Precision and recall results for the PLSA and PCA clustering strategies are
reproduced in Fig. 28.10 for an average attack of size 10 %. Similar results have
been obtained for random and bandwagon attacks. The PLSA and PCA clustering
strategies require that the size of the filtered cluster be specified and, in these results,
the cluster size is taken to be the actual number of inserted attack profiles. This point
should be taken into account in comparing the results with those obtained with the
neighbourhood filtering strategy (Fig. 28.9), in which no such control on the cluster
size was applied. The 80 % maximum recall obtained for the PLSA strategy is due
to the fact that the wrong cluster is selected approximately 20 % of the time. The
PCA clustering strategy shows very good performance, even in the case of attacks
consisting of a mixture of random, average and bandwagon profiles.

In [17], this unsupervised clustering strategy is compared with detection that
exploits statistical models of the attack. It is pointed out that the clustering succeeds
by exploiting the difference in genuine rating behaviour, in terms of the selection
of which items to rate, and the choice of ratings in the random and average
attacks. This motivates the AoP attack, which in turn is detected, through both an
unsupervised and supervised mixture of Gaussian model of rating behaviour. This is
a good illustration of the attack/detection game in which attacks motivate detection
strategies, which again motivate more sophisticated attacks and in turn detection
strategies to combat these attacks. Work in a similar spirit is reported in [19], in
which a latent statistical model is proposed for rating behaviour, where the latent
variables encode different rating types. One of the learned rating types—the one that
maximises the entropy of the distribution of item selection—is selected as an attack
type. Again, this is exploiting the difference between the item selection strategies of
the attack and genuine profiles.
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The UnRAP algorithm [4] also uses clustering to distinguish attack profiles.
This algorithm uses a measure called the Hv score which has proved successful
in identifying highly correlated biclusters in gene expression data. In the context
of attack detection, the Hv score measures for each user, a sum of the squared
deviations of its ratings from the user mean, item mean and overall mean ratings:

Hv.u/ D
P

i2I.ru;i � Nri � Nru C Nr/2P
i2I.ru;i � Nru/2

;

where Nri is the mean over all users of the ratings for item i, Nru is the mean over all
items of the ratings for user u and Nr is the mean over users and items.

A Hv score is assigned to all users in the database and users are sorted according
to this score. The top r D 10 users with highest score are identified as potential
attackers and are examined to identify a target item. The target is identified as that
which deviates most from the mean user rating. Next, a sliding window of r users
is passed along the sorted user list, shifting the window by one user each iteration.
The sum of the rating deviation for the target item is calculated over the window
and a stopping point is reached when this sum reaches zero. The users traversed
during this process become candidate attack profiles, which are then further filtered
by removing any that have not rated the item or whose rating deviation is in the
opposite direction to the attack. Precision results for this method on an average
attack are reproduced in Fig. 28.10, compared with the PCA clustering strategy. In
general, the authors report that this method performs well particularly for mid-size
attacks, in which other methods show a dip in performance.

A graph-based detection strategy is proposed in [48] where the problem is posed
as finding a maximum submatrix in the profile similarity matrix. The problem is
transformed into a graph and node-merging heuristics are applied. Evaluation on
the Movielens 100k dataset, shows better performance than UnRAP, including good
performance on the obfuscated AoP attack.

28.5.3.3 Hybrid Attack Detection

Hybrid has been used in the literature to refer to detection methods that combine
two or more base detection methods. In this sense, a hybrid method combining both
the PCA and UnRAP measures has been proposed in [50]. Another method that
combines the UnRAP score with two scores proposed in [11] is described in [16].
Alternatively, hybrid attack detection has been used to refer to methods that detect
a number of different attack types simultaneously. In particular, in [44], a semi-
supervised method is presented to detect a mixture of average and random attacks.
A key feature of this system is its ability to work with a small seed set of labelled
data, using a classification method that extends Naive-Bayes to situation where both
labelled and unlabelled data are present.
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28.5.4 Detection Findings

For both supervised and unsupervised detection, it has proved possible to achieve
reasonably good performance against the attack types discussed in Sect. 28.3.
Perhaps this is not so surprising, since the assumption is that these attacks are
crafted according to a fairly regular pattern and thereby vary substantially from the
real users of the system. The extent to which real-life attacks against recommender
systems correspond to these idealized models is not known, since e-commerce
companies have been reluctant to reveal vulnerabilities that they have identified in
their own systems.

Going back to the framework in Fig. 28.1, these findings give us some optimism
that the shaded area at the upper left exists. That is, it is possible to detect attacks
that are crafted to be optimal against the well-known memory-based algorithms. It
remains an open question to what extent these detection measures extend downward
and to the right, into regions where attacks differ from the optimal and have
correspondingly less impact, but still remain a source of profit for the attacker.

28.6 Beyond Memory-Based Algorithms

Much of the early research on robustness focussed on attacks tailored to memory-
based algorithms. Looking beyond such algorithms, we can ask whether model-
based algorithms are inherently more robust to attack and whether it is possible to
develop attacks that are effective on these algorithms.

28.6.1 Model-Based Recommendation

It was shown in [28] that model-based recommendation algorithms provide a
greater degree of robustness to attack strategies that have proven highly effective on
memory-based algorithms. Moreover, this robustness does not come at a significant
cost in terms of recommendation accuracy. This work has been followed up in
[22, 24], which surveys model-based attack resistant algorithms and proposes a
robust matrix factorisation strategy.

A model-based recommendation strategy based on clustering user profiles is
analysed in [28]. In this strategy, similar users are clustered into segments and
the similarity between the target user and a user segment is calculated. For each
segment, an aggregate profile, consisting of the average rating for each item in
the segment is computed and predictions are made using the aggregate profile
rather than individual profiles. To make a recommendation for a target user u and
target item i, a neighbourhood of user segments that have a rating for i and whose
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Fig. 28.11 Prediction shift vs attack size for an average attack at 5 % filler for segment recom-
mendation (left). MAE on the attacked item vs attack size for filler size of 10 % using RMF (right)

aggregate profile is most similar to u is chosen. A prediction for item i is made using
the k nearest segments and associated aggregate profiles, rather than the k nearest
neighbours. Both k-means clustering and PLSA-based clustering, as described in
Sect. 28.5.3.2, are evaluated. The prediction shift achieved by an average attack
on these algorithms, compared with the standard kNN algorithm, is shown in
Fig. 28.11 (left). The model-based algorithms are considerably more robust and not
significantly less accurate, since, according to [28], PLSA and k-means clustering
achieve an MAE of 0.75 and 0.76 using 30 segments, in comparison to a value of
0.74 for kNN. On the other hand, the high diversity attack proposed in [8] directly
tailors the construction of the attack set to make clustering less-effective. Evaluated
on the Movielens dataset, using an attack of size 5 % of the user base size, the high
diversity average attack achieves a 40 % increase in the number of rating predictions
of at least four compared to the non-attacked system, in comparison to about a 10 %
increase when a simple average attack is used.

28.6.2 Privacy-Preserving Algorithms

An evaluation of the robustness of four different privacy-preserving recommenda-
tion algorithms using six standard attack models is carried out in [2]. In general, it
is found that model-based privacy-preserving algorithms are very robust to these
attacks. On the other hand, a robustness study of a specific privacy-preserving
recommender algorithm is carried out in [9], in which it is shown that the public
information made available by the distributed recommender system can be exploited
in the development of an attack that is specifically focussed towards this algorithm.
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28.6.3 The Influence Limiter and Trust-Based
Recommendation

In [36, 37] a recommendation algorithm is presented for which robustness bounds
can be calculated. The algorithm introduces two key additional features to the
recommendation process, an influence limiter and a reputation system. The idea
behind the algorithm is to weight the contribution of each user towards a prediction
by using a global measure of reputation. The reputation value is boosted when a
profile correctly estimates a rating for a neighbor and is reduced which it fails to do
so. Within this recommendation model, the authors prove a non-manipulation result
that shows that any attack strategy involving up to n attack users, the negative impact
due to the attacker is bounded by a small amount. They also show that a user seeking
to maximize influence has a strict incentive to rate honestly. Other properties of this
algorithm, such as its accuracy, are still under study.

The influence limiter is just one algorithm that takes into account trust and repu-
tation in order to build recommendations. In recent years, there has been increasing
focus on incorporating trust models into recommender systems [21, 29, 47, 49]. In
[21], trust propagation is used to increase the coverage of recommender systems
while preserving accuracy. In [29] it is argued that the reliability of a profile to
deliver accurate recommendations in the past should be taken into account by
recommendation algorithms. An algorithm that uses trust as a means of filtering
profiles prior to recommendation so that only the top k most trustworthy profiles
participate in the prediction process is presented in [47]. The trust associated with
a user for making predictions for an item is computed based on the users’ accuracy
on predicting their own ratings for that item. The robustness achieved by such
algorithms is a function of how difficult it would be for an attacker to become
trusted. Finally, [49] show that average attack profiles receive low trust values
in their model, compared to genuine profiles. But, again, there is some research
[8, 46], that exploits the vulnerabilities of trust-based systems, to develop attacks
specifically for these systems.

28.7 Robust Algorithms

An alternative (or perhaps a complement) to filtering and detection is to develop
recommendation algorithms that are intrinsically robust to attack.

28.7.1 Robust Matrix Factorisation (RMF)

One model-based approach to collaborative recommendation which has proven
very successful recently, is the application of matrix factorisation approaches based
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on singular value decomposition (SVD) and its variants. Cheng and Hurley [10]
showed that standard matrix factorisation algorithms can be made more robust
through the use of trimmed least squares, that removes outliers during the fitting of
the model. In [22] a robust factorisation strategy is proposed in which the clustering
strategy of Sect. 28.5.3.2 is used in conjunction with the training phase of the
factorisation procedure. For example, the PLSA clustering strategy can be applied in
conjunction with the PLSA recommendation algorithm. After elimination of attack
clusters, the Pr.ziju/ distribution of the remaining clusters should be renormalised
and the last few steps of training should be re-run, to maintain the predictive
accuracy of the standard PLSA algorithm and significantly reduce prediction shift.

Another strategy proposed in [25] is in the context of the application of
Generalized Hebbian Learning algorithm to compute a rank-1 SVD factorisation:

R  GH ;

where R is the rating matrix and G and H are matrices of rank 1. Again, the algorithm
is modified so that the contribution of the suspicious users towards the prediction
model is zero, once suspicious users have been identified. Results from this strategy
are reproduced in Fig. 28.11 (right). The MAE for the attacked algorithm is shown
when the number of suspicious users r is set to the exact number of attack profiles
inserted, and when it is given a fixed value of 7 % of the user base. Also shown for
reference is the MAE on the kNN algorithm and standard SVD, with and without
attack.

Theoretical results have also been derived to support the robustness of particular
classes of model-based algorithm. In [45], a manipulation-resistant class of collab-
orative filtering algorithm is proposed for which robustness is proved, in the sense
that the effect of any attack on the ratings provided to an end-user diminishes with
increasing number of products rated by the end-user. Here, effectiveness is measured
in terms of a measure of the average distortion introduced by the attack to the ratings
provided to the user. The class of algorithms for which the proof holds is referred to
as a linear probabilistic collaborative filtering. In essence, the system is modelled as
outputting a probability mass function (PMF) over the possible ratings and in linear
algorithms, the PMF of the attacked system can be written as a weighted sum of the
PMF obtained considering only genuine profiles and that obtained considering only
attack profiles. Robustness is obtained, because, as the user supplies more ratings,
the contribution of the genuine PMF to the overall PMF begins to dominate. The
authors show that, while nearest neighbour algorithms are not linear in this sense,
some well-known model-based algorithms such as the Naive-Bayes algorithm are
asymptotically linear.
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28.7.2 Other Robust Recommendation Algorithms

Attack profiles are ineffective if they do not appear in the neighborhoods of
authentic users. By avoiding similarity as a criterion for neighbour selection, the
recommendation algorithm can be made robust to attacks where the attack profiles
are designed to have high similarity with authentic users. In [30] it is argued
that the goal of neighbour selection is to select the most useful neighbours on
which to base the prediction. While similarity is one measure of usefulness, the
notion of neighbour utility can be extended to include other performance measures.
A selection criterion is proposed based on a notion of inverse popularity. It is shown
that, with this selection strategy, the same overall system performance in terms of
MAE is maintained. Moreover, cost-effective attacks that depend on popular items
to build highly influential profiles are rendered much less effective.

In [38], a robust algorithm is presented based on association rule mining.
Considering each user profile as a transaction, it is possible to use the A priori
algorithm to generate association rules for groups of commonly liked items. The
support of an item set X � I is the fraction of user profiles that contain this item
set. An association rule is an expression of the form X) Y.�r; ˛r/, where �r is the
support of X [ Y and ˛r is the confidence for the rule, defined as �.X [ Y/=�.X/.
The algorithm finds a recommendation for a user u by searching for the highest
confidence association rules, such that X � Pu is a subset of the user profile and
Y contains some item i that is unrated by u. If there is not enough support for
a particular item, that item will never appear in any frequent item set and will
never be recommended. This algorithm proves robust to the average attack. For
attack sizes below 15 %, only 0.1 % of users are recommended an attacked item
by the association rule algorithm, compared to 80–100 % of users for the kNN
algorithm. The trade-off is that coverage of the association rule algorithm is reduced
in comparison to kNN. However, the algorithm is not robust against the segment
attack.

28.8 Practical Countermeasures to Recommender System
Attack

The above discussion has assumed that malicious parties can access a recommender
system, create multiple profiles and tailor them through the careful selection of item
ratings. While this may represent a worst-case scenario against which algorithm
designers can measure the robustness of their systems, it offers many practical
challenges to a would-be attacker. These challenges can be made more difficult
through system design choices that more carefully control the interactions with
the user and make it harder for users to remain fully anonymous. For example,
mobile based authentication or credit-card authentication can allow all profiles to be
associated with a physical entity, increasing the risk of being exposed. The addition
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of new users and rating entry could be controlled, for example using Captchas,
to make automatic user generation and rating submission difficult. Indeed, a cost
is associated with rating entry, for example, if feedback can only be given upon
purchase, this can act as an effective deterrent. Finally, systems can be made more
open, by allowing ratings of users to be viewed by all others. In this way, malicious
behaviour could be detected by the users themselves, although such exposure also
introduces a risk of attacks that exploit open information.

28.9 Conclusion

Collaborative recommender systems are meant to be adaptive—users add their
preferences to these system and their output changes accordingly. Robustness in this
context must mean something different than the classical computer science sense of
being able to continue functioning in the face of abnormalities or errors. Our goal is
to have systems that adapt, but that do not present an attractive target to the attacker.
An attacker wishing to bias the output of a robust recommender system would have
to make his attack sufficiently subtle that it does not trigger the suspicion of an
attack detector, sufficiently small that it does not stand out from the normal pattern
of new user enrollment, and sufficiently close to real user distribution patterns that it
is not susceptible to being separated out by dimensionality reduction. If this proves
a difficult target to hit and if the payoff for attacks can be sufficiently limited, the
attacker may not find the impact of his attack sufficiently large relative to the effort
required to produce it. This is the best one can hope for in an adversarial arena.

It is difficult to say how close we have come to this ideal. If an attacker is aware
that such detection strategies are being applied, then the attack can be modified to
avoid detection. The general finding is that obfuscated attacks are not much less
effective than optimal ones and much harder to detect. More research is needed in
this area.

Similar issues apply in the context of attack resistant recommendation algo-
rithms. While model-based algorithms show robustness to attacks that are effective
on memory-based algorithms, it is possible to conceive of new attacks that target
model-based algorithms. Sandvig et al. [38], for example, shows that association
rule based recommendation is vulnerable to segment attacks.

Another way to view the problem is as a game between system designer and
attacker. For each system that the designer creates, an optimal attack against it can be
formulated by the attacker, which then requires another response from the designer,
etc. What we would like to see is that there are diminishing returns for the attacker,
so that each iteration of defense makes attacking more expensive and less effective.
One benefit of a detection strategy is that a system with detection cannot be more
vulnerable to attack than the original system, since in the worst case, the attacks are
not detected. We do not yet know if the robust algorithms that have been proposed
such as RMF have some as-yet-undiscovered flaw that could make them vulnerable
to a sophisticated attack, perhaps even more vulnerable than the algorithms that they
replace.
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